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Abstract. Recent developments in autonomous driving, vehicle-to-
vehicle communication and smart traffic controllers have provided a hope
to realize platoon formation of vehicles. The main benefits of vehicle
platooning include improved safety, enhanced highway utility, efficient
fuel consumption and reduced highway accidents. One of the central
components of reliable and efficient platoon formation is the underlying
control strategies, e.g., constant spacing, variable spacing and dynamic
headway. In this paper, we provide a generic formalization of platoon
control strategies in higher-order logic. In particular, we formally verify
the stability constraints of various strategies using the libraries of mul-
tivariate calculus and Laplace transform within the sound core of HOL
Light proof assistant. We also illustrate the use of verified stability theo-
rems to develop runtime monitors for each controller, which can be used
to automatically detect the violation of stability constraints in a runtime
execution or a logged trace of the platoon controller. Our proposed for-
malization has two main advantages: (1) it provides a framework to com-
bine both static (theorem proving) and dynamic (runtime) verification
approaches for platoon controllers; and (2) it is inline with the industrial
standards, which explicitly recommend the use of formal methods for
functional-safety, e.g., automotive ISO 26262.
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1 Introduction

Autonomous cars seem to be just around the corner, as most of the car manu-
facturers (e.g., Tesla, BMW, Toyata, Nissan, Ford, Jaguar Land Rover, etc.) and
even silicon valley players (e.g., Intel and Nvidia) claim that fully autonomous
vehicles will be on the road around 2020 [1,2]. Such a speedy development in
autonomous driving is motivated by the fact that the autonomous cars will be
more safe and crashless than the human driven cars. For example, the human
error is to blame for up to 90% of the 1.2 million deaths that occur each year from
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car accidents around the world [3]. Like various fields of science and engineering,
the developments in autonomous driving have opened the doors to many other
interesting fields, for example, automated vehicle platooning is one of the most
benefiting fields.

A platoon is a group of vehicles (as shown in Fig. 1) that travels in a close
proximity to one another, nose-to-tail, at highway speeds. Vehicle platoons have

Fig. 1. Platoon of vehicles

been proposed since at least the early 1980’s even before we had wireless
communication, global positioning system (GPS) and commercially available
radar sensors. However, given the exceptional capabilities and reliability of the
autonomous cars, vehicle platooning can become a reality using a mix of available
technologies such as drive-by-wire steering [4], radar cruise control [5] and lane
keep assist systems [6] to name a few. Some of the main advantages of the vehi-
cle platooning are increased road capacity, reduction in drag and improved fuel
economy, improved traffic congestion strategies [7] and reduced roadside acci-
dents due to the autonomous features, e.g., collision detection [8] and automatic
emergency braking [9].

The stability of the automated vehicles in a platoon, individually or as a
group, depends on the interaction of the vehicles and is vital for an uninter-
rupted flow of traffic and a better throughput. A stable platoon ensures that
the vehicles should not collide with each other while maintaining a safe inter-
vehicle spacing bound. In practice, the stability of platoon is ensured by two
types of controllers, i.e., autonomous and non-autonomous [10]. The autonomous
controllers use the on-board sensors for determining the speed and position of
the connected vehicles, whereas the non-autonomous controllers are based on
other forms of the inter-vehicle communication. Furthermore, communication
amongst controllers is either unidirectional or bidirectional, based on the infor-
mation shared between the neighbouring vehicles. Similarly, various strategies
can be used for the platoon control, such as constant spacing, variable spacing
and variable time headway.

Traditionally, the platoon controllers are analyzed using informal approaches
including paper-and-pencil based proofs [10] and numerical simulations [11].
These informal approaches have known limitations when used in safety-critical
domains, for example, missing assumptions and even wrong derivations in hand-
driven proofs, and inherent incompleteness of the numerical algorithms, respec-
tively. Considering these facts, it is natural to think about complementing tradi-
tional analysis approaches with formal methods for developing reliable platoon
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controllers. In this direction, model checking has been used to verify the high-
level models of the platoon controllers using the temporal logic based proper-
ties [12–14]. In all these approaches, the authors considered the vehicles platoon
and their controllers as a discrete-time system by modeling them as automata
and verified their properties, such as safety and inter-vehicle spacing bound prop-
erties. Thus, these model checking based analysis lacks the physical analysis of
the platoon, which requires modeling and reasoning of control strategies using
differential equations and their frequency domain stability analysis using Laplace
transform. Similarly, Mashkoor et al. [15] used higher-order logic to formally rea-
son about the cyber-physical transportation system. The authors used random
variables to model the unpredictable elements of the system and formally con-
ducted a probabilistic analysis of the transportation system without considering
the dynamic aspects of the system. In this paper, we propose a higher-order logic
based framework to formally model and verify the stability of various types
of platoon controllers using the HOL Light proof assistant [16]. Consequently,
we utilize the verified results to construct monitors, which ensure the platoon
stability at runtime. The main reasons for using higher-order logic and HOL
Light include the expressibility to represent the platoon controllers, which are
modeled using differential equations in time-domain and the Laplace transform
in frequency-domain. Moreover, HOL Light has the smallest trusted core (i.e.,
approximately 400 lines of Ocaml code) amongst all other HOL proof assistants
and the underlying logic kernel has been verified in the CakeML project [17].

The main contributions of the paper are as follows:

• Deep embedding based formalization of platoon controller types, configura-
tions and strategies along with the associated differential equations based
functional models.

• Formal derivation of the Laplace domain transfer functions using the formal-
ized libraries of multivariate calculus [18] and the Laplace transform [19,20]
in the HOL Light proof assistant.

• Formal verification of the platoon control strategies based on the formal mod-
els of various controllers.

• Development of the stability monitors for each type of the controllers and
demonstration of their violation detection capability on a pseudo-randomly
generated traces of a platoon controller.

The source code of our HOL Light development is available for download
at [21] and thus can be used by the other researchers and engineers interested
in the design and verification of the platoon controllers.

The rest of the paper is organized as follows: Sect. 2 presents an overview
of the HOL Light proof assistant along with the formalization of the Laplace
transform. Section 3 provides the formal modeling of the platoon controller and
its stability. We provide the formal verification of the platoon control strategies
and the stability constraints in Sect. 4. Section 5 describes the construction of
the stability monitors. Finally, Sect. 6 concludes the paper and highlights some
future research directions.
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2 Preliminaries

This section presents a brief introduction to the HOL Light proof assistant and its
multivariate calculus and the Laplace transform theories, which are extensively
used in the rest of the paper.

2.1 Theorem Proving and HOL Light Proof Assistant

Theorem proving is a widely adapted formal verification technique, which is
concerned with constructing the proofs of the mathematical theorems using a
computer program (called theorem prover or proof assistant) [22]. Theorem prov-
ing systems have been commonly used for verifying the properties of the software
and hardware systems. For example, a hardware designer can certify a digital
circuit by modeling its behavior by some predicates and verifying its different
properties using Boolean algebra. Similarly, a mathematician can verify the tran-
sitive property of the ordering of real numbers using some basic axioms of real
numbers theory. These properties are expressed as theorems using some logic,
such as propositional, first-order or higher-order logic, based on the required
expressiveness. For example, using the higher-order logic is advantageous over
the first-order logic as it provides the additional quantifiers and is more expres-
sive as well. Moreover, higher-order logic can better describe the complex math-
ematical concepts including multivariate calculus, transcendental functions and
topological spaces. Once such a mathematical theory is developed inside a proof
assistant, we say that it is formalized.

HOL Light [16] is an interactive theorem proving environment for construct-
ing the mathematical proofs. The main implementation of HOL Light is done in
a functional programming language, Objective CAML (OCaml), which is orig-
inally developed to automate the mathematical proofs [23]. The logical kernel
of HOL Light is of approximately 400 lines of OCaml code and its main compo-
nents are its types, terms, theorems, rules of inference, and axioms. A theory in
HOL Light consists of types, constants, definitions, axioms and theorems. The
HOL Light theories are ordered in a hierarchical fashion and the child theories
can inherit the types, definitions and theorems of the parent theories. Every
new theorem has to be verified based on the primitive inference rules and basic
axioms or already verified theorems present in HOL Light, which ensures the
soundness of this technique.

2.2 Multivariable Calculus and Laplace Transform Theories

HOL Light provides an extensive support for the analysis of physical systems
based on multivariate calculus theories, which include derivatives, integration,
transcendental theory, topology, vector analysis and Laplace transform theory.
Table 1 presents some definitions from the Laplace transform theory of HOL Light,
which includes the Laplace transform, Laplace existence and the exponential-
order conditions, and the differential equation of order n. Interested readers can
refer to [19,20] for more details about this theory. It is extensively used in our
proposed verification of the platoon control strategies for the automated vehicles.
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Table 1. Laplace transform

3 Formal Modeling of Platoon Controller and Stability

In this section, we present the formal modeling of a platoon controller based on
its types, configurations and the underlying strategies along with the concept of
the platoon stability.

3.1 Formalization of Platoon Controller

The connected vehicles in a platoon are widely characterized by the controllers,
which are mainly responsible for their automated operation. The platoon con-
trollers are generally of two types namely autonomous and non-autonomous.

• Autonomous controllers use the on-board sensors for determining the speed
and position of the connected vehicles.

• Non-autonomous controllers are based on some other form of the inter-vehicle
communication.

The information sharing among the neighbouring vehicles is either unidi-
rectional or bidirectional depending upon the configuration of the platoon con-
trollers.

• Unidirectional configuration allows a controller to use the information about
the relative distance and velocity of only the preceding vehicle.

• Bidirectional controller can access the information about the relative distance
and velocity of both the proceeding and preceding vehicles by considering
their individual masses.
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The autonomous controllers can adapt different strategies to maintain the
stable operation of the platoon along the highway. In general, controllers utilize
three strategies namely constant spacing, variable spacing and variable time-
headway.

• Constant spacing policy requires that each vehicle maintains a constant dis-
tance (spacing) with its preceding vehicle in a platoon.

• Variable spacing policy allows a variable inter-vehicle spacing, which depends
on the velocity of the vehicles in a platoon. For example, a faster moving vehi-
cle creates more inter-vehicle space between itself and its proceeding vehicle.
It is also known as the constant time headway spacing.

• Variable time headway policy imposes constraints on the relative velocity
rather than the absolute velocity of the vehicle in contrast to the constant
time headway spacing policy, which results into large inter-vehicle spaces and
thus decreases the throughput of the highway traffic.

In our formalization, we model the types of the controller, its configurations
and strategies as enumerated datatype using the built-in define type mechanism
in HOL Light.

type controller type = autonomous | non autonomous

type configuration = unidirectional | bidirectional

type strategy = constant spacing | variable spacing | var time headway

We model a platoon as a tuple (x, n,m, k, c, ch, vd, h0, ca, cd), where
the description and the type of each parameter is given in Table 2.
Indeed, these parameters characterize various physical aspects of the vehi-
cles in a platoon (e.g., the horizontal distance x, the number of vehicles
in a platoon n and the mass of a vehicle m). In HOL Light, we for-
malize the platoon tuple (x, n,m, k, c, ch, vd, h0, ca, cd) and controller tuple
(controller type, configuration, strategy, platoon) as type abbreviations:

type abbrev platoon:(x × n × m × k × c × h × ch × vd × h0 × ca × cd)

type abbrev controller:(controller type × configuration × strategy × platoon)

It is important to note that platoon contains a unique mass m, which implies
that we only consider a platoon with identical vehicles as shown in Fig. 1.

In order to ensure that the given parameters of a platoon indeed repre-
sent a valid platoon, we formalize the associated constraints as a predicate
is valid platoon (Definition 1). For example, the mass m should always be greater
than 0 and the number of vehicles in a platoon should be greater than 1.

Definition 1. Valid Platoon
� is valid platoon (x,n,m,k,c,h,ch,vd,h0,ca,cd) ⇔ 0 < m ∧ 0 < k ∧ 0 < c ∧

0 < h ∧ 0 < ch ∧ 0 < vd ∧ 0 < h0 ∧ 0 < ca ∧ 0 < cd ∧ 1 < n
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Table 2. Data types for platoon parameters

Parameter description Type

Horizontal distance x:N → (R → C)

Number of vehicles n:N

Mass of a vehicle m:R

Disturbance constant k:R

Fluctuations constant c:R

Time headway h:R

Fluctuations due to time headway ch:R

Desired platoon speed vd:R

Nominal value of time headway h0:R

Additional fluctuations with respect to platoon leader ca:R

Additional fluctuations with respect to “virtual” mass cd:R

3.2 Formalization of the Platoon Stability

The stability is an important property of a vehicle platoon, which describes the
capability of a platoon to attenuate the oscillations introduced by the leader or
any other vehicle in the platoon. In general, such oscillations can be considered
in terms of various signals. e.g., the position error between the vehicles or the
relative acceleration of connected vehicles. In this paper, we consider the notion
of stability with respect to the position error between the vehicles. Formally, a
platoon is stable if any oscillation with respect to the position error diminishes
out as it propagates towards the tail of the platoon. The platoon stability in lon-
gitudinal direction is mathematically expressed as a norm condition on spacing
errors in the frequency domain, as given in the following equation:

∣
∣
∣
∣

∣
∣
∣
∣

zn(iω)
zn−1(iω)

∣
∣
∣
∣

∣
∣
∣
∣
< 1, n = 2, 3, 4, ... (1)

where zn−1 is the spacing error between the vehicle n − 1 and its proceeding
vehicle n, i.e., it is the deviation from the desired inter-vehicle spacing for vehicle
n − 1. If xn−1 is the inter-vehicle spacing between the vehicle n − 1 and its
preceding vehicle n − 2 and xn is the inter-vehicle spacing between the vehicle
n and its preceding vehicle n − 1, then the spacing error between vehicles n − 1
and n is given by zn−1 = xn−1 − xn. Similarly, zn represents the spacing error
between the vehicle n and its proceeding vehicle n + 1, i.e., zn = xn − xn+1. In
case of all the desired inter-vehicle spacings are same, i.e., xn = xn−1 = ... = x1,
then this leads to the zero spacing errors, i.e., zn = zn−1 = ... = z1 = 0. We
formalize platoon stability in HOL Light as follows:
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Definition 2. Stable Platoon
� ∀ s x y. transfer function s x y ⇔ laplace transform y s

laplace transform x s
� ∀ ω x y. frequency response ω x y ⇔ transfer function (iω) x y

� ∀ ω z. is stable platoon ω z n ⇔
∣
∣
∣
∣

∣
∣
∣
∣

frequency response ω (λt. z (n)) (λt. z (n - 1))

∣
∣
∣
∣

∣
∣
∣
∣

< 1

where the predicate is stable platoon accepts the parameters z:N → (R → C),
which represents the complex-domain representation of the spacing error, angu-
lar frequency ω:R and number of vehicles n, and returns the condition that the
complex norm of the transfer function at s = iω, i.e., Zn(iω)

Zn−1(iω) is always less than
1 for every vehicle in the platoon.

This concludes our fundamental formalization of the platoon controller and
the corresponding stability. We build upon the concepts, formalized in this
section, to formalize various control strategies and verify their correctness in
the next section.

4 Formal Verification of the Platoon Control Strategies

In this section, we first present the formalization of an autonomous unidirectional
controller with constant spacing policy. Indeed, the main intention is to demon-
strate the formalization steps, i.e., formal modeling of the controller dynamics
in higher-order logic, formalization of the necessary constraints, and the formal
verification of the stability theorem. Building upon these steps, we next present
its generalization to all types of controllers along with the verification of a gen-
eralized stability theorem.

4.1 Autonomous Unidirectional Controller

Generally, the dynamics of platoon controllers are characterized by a set of differ-
ential equations, which interrelate the parameters of the platoon. The schematic
representation of the platoon of vehicles having autonomous unidirectional con-
troller with constant spacing policy is depicted in Fig. 2. It consists of n intercon-
nected vehicles of identical masses, i.e., m1 = m2 = ... = mn−1 = mn = m. The
parameters k and c are the disturbance and fluctuation constants, representing
the control gains on the relative position and velocity, respectively. Similarly,
the parameter u represents the force required by the first vehicle to move for-
ward in the platoon. The mathematical representation of this platoon controller’s
dynamics are given as the following equation set:
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Fig. 2. Autonomous unidirectional controller with constant spacing
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where the variables x and v represent the inter-vehicle spacing and velocity of
platoon vehicles, respectively. Overall, the set of differential equations character-
ize the dynamics of n vehicles in the platoon depicted in Fig. 2. We can rewrite
Eq. (2) in a compact form by eliminating the variable v and representing it in
the form of spacing error, i.e., z as:

d2zn

dt2
+

c

m

dzn

dt
+

k

m
zn =

c

m

dzn−1

dt
+

k

m
zn−1, n = 2, 3, 4, ... (3)

We formally model this controller in HOL Light as follows:

Definition 3. Unidirectional Controller with Constant Spacing
� ∀ k c m ch n vd ca cd h h0 x.

control uni cs (autonomous,unidirectional,constant spacing,

((x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon)) t ⇔
let zn−1 = (λt. x (n - 1) t - x (n) t) and

zn = (λt. x (n) t - x (n + 1) t) in

D2 [ k
m

; c
m

; 1] zn = D1 [ k
m

; c
m

] zn−1

where the operators D1 and D2 represent the first-order and second-order
complex-valued derivatives in HOL Light, respectively, and thus can be obtained
by instantiating n = 1 and n = 2 in the predicate diff eq n order, given in Table 1.
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We next model some physical constraints associated with the controller model
control uni cs, which include differentiability, existence of the Laplace transform
and zero-initial conditions for parameters zn−1 and zn, as given in Definition 4.

Definition 4. Constraints for a Platoon having Autonomous Unidirec-
tional Controller
� ∀ x n s c m k.

constraints uni cs x n s c m k ⇔
let zn−1 = (λt. x (n - 1) t - x (n) t) and

zn = (λt. x (n) t - x (n + 1) t) in

(∀t. differentiable higher derivative [2,1] [zn−1,zn]) ∧
laplace exists higher deriv [2,1] [zn−1,zn] s ∧
zero initial conditions [1,0] [zn−1,zn] ∧
non zero tf uni cs zn−1 s c m k

where the first two conjuncts provide the differentiability and the Laplace exis-
tence conditions for the second-order and first-order derivatives of the spacing
errors zn−1 and zn, respectively. Similarly, the next conjunct imposes the zero-
initial conditions for the spacing errors zn−1 and zn, respectively. Finally, the
last conjunct ensures that the transfer function does not include the singulari-
ties, i.e., the points at which the denominator of the transfer function becomes

infinite or undefined. Mathematically, it is described as s2 +
c

m
s +

k

m
�= 0.

Our next step is to formally verify that the platoon controller model
control uni cs implies the platoon stability for any number of vehicles. The main
purpose of this verification is twofold: (1) identify the stability constraints in
terms of the platoon parameters, and (2) utilize verified stability constraints
to ensure the stability of a given platoon at any time instant. Indeed this step
requires the instantiation of platoon parameters with concrete values (i.e., num-
ber of vehicles n = 10, mass m = 1000 kg, etc.). We verify the following univer-
sally quantified stability theorem in HOL Light.

Theorem 1. Stability of a Platoon having Autonomous Unidirectional
Controller
� ∀ k c m ch n vd ca cd h h0 x w.

let s = iω and

p = ((x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon) and

z = (λ n t. x (n) t - x (n + 1) t) in

0 < ω ∧ 2k

m
< ω2 ∧ valid platoon p ∧ constraints uni cs x n s c k m ∧

∀ t. control uni cs (autonomous,unidirectional,constant spacing,p) t

=⇒ is stable platoon ω z n

The main proof of Theorem 1 consists of the following steps: (1) rewriting
with the Definitions 1–4, (2) complex arithmetic reasoning and (3) the veri-
fication of Lemma 1, which transforms the time-domain model of the platoon
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controller control uni cs into its equivalent frequency-domain representation, i.e.,
transfer function. The verification of Lemma 1 is quite involved due to the rea-
soning about the Laplace transform in HOL Light [19]. The formal statement of
Lemma 1 is given as follows:

Lemma 1. Model Implies Transfer Function
� ∀ k c m ch n vd ca cd h h0 x s.

let p = ((x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon) and

zn−1 = (λt. x (n - 1) t - x (n) t) and

zn = (λt. x (n) t - x (n + 1) t) in

valid platoon p ∧ constraints uni cs x n s c k m ∧
∀ t. control uni cs (autonomous,unidirectional,constant spacing,p) t

=⇒ transfer function s zn zn−1 =

c

m
s +

k

m

s2 +
c

m
s +

k

m

4.2 Generalized Platoon Controller

We formally model various types of platoon control strategies as given in Table 3.
We also formalize the physical constraints and verify the stability for each con-
trol strategy along the same lines as that of autonomous unidirectional con-
troller presented in Sect. 4.1. Finally, we package them in an inductive predi-
cate gen platoon control, which takes two parameters, i.e., controller and time t
and returns the predicate describing the physical behavior of the controller. For
example, for controller (autonomous,unidirectional,constant spacing,platoon), the
inductive predicate gen platoon control returns control uni cs1.

Finally, we verify a general theorem, which describes the stability constraints
for any type of the controller cc, as follows:

Theorem 2. Stability of a Platoon
� ∀ (cc:controller) s.

let s = iω and

p = (x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon and

cc = (ct,cg,sg,p) and

z = (λn t. x (n) t - x (n + 1) t) in

gen stability physical constraints cc s ω ∧ ∀ t. gen platoon control cc t

=⇒ is stable platoon ω z n

where the predicate gen stability physical constraints encapsulates the stabil-
ity and physical constraints of all types of controllers in our formalization.

1 We have omitted the formal definition of gen platoon control for the sake of concise-
ness, however, interested reader can find the formal definition and HOL Light code
on the project’s webpage [21].
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The formal proof of Theorem 2 is based on induction on cc:controller and further
induction on the controller type, configuration and strategy along with the veri-
fied stability theorems for each control strategy (e.g., Theorem 1 for autonomous
unidirectional controller presented in Sect. 4.1).

This concludes our formalization of platoon controllers in the HOL Light proof
assistant. In summary, we formalized the basic notions of the platoon controllers

Table 3. Formal platoon models considering various control strategies

using the new type definition and corresponding physical and stability con-
straints. The notable feature of our formalization is its generic nature, as we
can model a platoon controller with any number of vehicles composed of basic
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controller types, configurations and strategies. Moreover, the physical and stabil-
ity constraints are explicitly present in our formally verified stability theorems,
which may get ignored in the conventional platoon analysis and may result into
an unstable platoon interrupting the traffic flow on the highways. In the next
section, we describe the utilization of our verified results in HOL Light to develop
stability monitors for automatically detecting the violations of the stability
constraints.

5 From Verified Controller to Stability Monitors

Static formal verification approaches, such as theorem proving, provide an effec-
tive way to formally model and verify digital hardware, its underlying software,
control and cyber-physical systems at an appropriate abstract level. For exam-
ple, we employed higher-order logic to formalize various control strategies of a
platoon due to the involvement of multivariate calculus (i.e., complex frequency
domain and Laplace transform). Moreover, we formally verified some of the most
important stability constraints for arbitrary platoon parameters. Indeed, this is
one of the main strengths of the interactive proof assistants as compared to the
simulation based analysis where verification holds only for the applied test cases
and thus cannot be considered as complete. However, the verification of impor-
tant properties of given system in a proof assistant does not guarantee that the
system will behave as expected during the runtime operation. Indeed, the veri-
fied results in a proof assistant provide a confidence that the system will behave
correctly only when the corresponding conditions are met at all times during the
life-time of a system. Actually this falls under the scope of runtime verification
approaches, which are light-weight formal methods to monitor the correctness
of a given system with respect to a formal specification at runtime.

We demonstrate here the utilization of verified stability theorems for var-
ious control strategies to construct monitors, which are capable of detecting
the violation on a given execution of the system. Consider that the behavior of
a platoon controller at each time instant (called an event) is characterized by
the tuple platoon and frequency w, i.e., event = ((x,n,m,k,c,h,ch,vd,h0,ca,cd),w).
Thus, an execution of the platoon controller consists of the sequence of events
and we model it as an event list in HOL Light. Next, we consider the autonomous
unidirectional controller with constant spacing, for which the stability of the
platoon is ensured if the following two conditions are met for every event in
the controller execution. (1) P1 : valid platoon (x,n,m,k,c,h,ch,vd,h0,ca,cd) and

(2) P2 : 0 < ω ∧ 2k

m
< ω2. In terms of temporal logic, a formal requirement to

ensure the platoon stability is �P1∧ �P2 where � represents Globally (G) or an
Always operator in the linear temporal logic (LTL). We can model this monitor
in HOL Light as (ALL P1 execution) ∧ (ALL P2 execution) where ALL is a HOL
Light function, which ensures the satisfaction of a predicate on each element of
the list. Moreover, we developed a tactic MONITOR TAC, which automatically
verifies that both the predicates P1 and P2 holds for a given platoon controller
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execution as a list of events. We tested the efficiency of the MONITOR TAC
on randomly generated executions and it can check the validity in a reasonable
time. For example, on average MONITOR TAC returns the truth (T) in 3 s on
an execution of 1000 unique events.

The main purpose of the above illustration was to show that the efforts spent
during the formalization within an interactive proof assistant can be comple-
mented by the development of the monitors to ensure the correctness of the sys-
tem operation at runtime, and thus closing the loop from abstract verification to
the real-time monitoring on the concrete system. Our illustration only describes
the off-line monitoring where the platoon controller execution is given as a logged
data. However, the same monitor can be used for the online monitoring by trans-
lating the monitor as a post-condition in the actual system implementation or
by generating the monitor using well-known LTL3 [24] or the rewriting-based
monitoring approaches [25].

We believe that the stability monitoring can be used for the already avail-
able platoon controllers by inspecting the logged traces and by adding monitors
in the early controller prototypes for quickly evaluating the correctness of the
underlying algorithms. Thus, engineers working on the design and development
of the platoon controllers can use the proposed framework without any prior
knowledge of theorem proving and gain formally analyzed insights about the
given platoon control system.

6 Conclusion and Future Work

This paper provides a framework for analyzing the platoon control strategies
using both the static and dynamic verification approaches. It mainly presents
the formal modeling of the platoon controller and its stability using higher-order
logic. Next, the proposed formalization is used for formally verifying various
platoon control strategies and their stability within the sound core of the HOL
Light proof assistant. Finally, the formally verified stability theorems are used
to develop the runtime monitors for each of the controllers that are used for
detecting the violation of any stability constraints.

In future, we plan to formally analyze the platoon considering different con-
nected vehicles (having different masses). We can also incorporate the stability in
lateral direction and their physical constraints in our framework for the platoon
stability. The other direction is to formally analyze the platoon of connected
vehicles, where some of the vehicles act in a malicious manner by changing the
control gain and thus the properties of the controllers. Such scenarios can com-
promise the safety of other vehicles on the highways and result in destabilizing
the traffic flow [26]. Finally, it is interesting to consider two-dimensional platoons,
which can be analyzed by combining our current framework and formalization of
the z-Transform [27], which is already available in the HOL Light proof assistant.
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