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Abstract. Run-time Verification (RV) is an essential component of
developing cyber-physical systems, where often the actual model of the
system is infeasible to obtain or is not available. In the absence of a
model, i.e., black-box systems, RV techniques evaluate a property on the
execution path of the system and reach a verdict that the current state of
the system satisfies or violates a given property. In this paper, we intro-
duce Prevent, a predictive runtime verification framework, in which if a
property is not currently satisfied, the monitor generates the probabil-
ity based on the finite extensions of the execution path, that satisfy the
specification property. We use Hidden Markov Model (HMM) to extend
the partially observable paths of the system. The HMM is trained on
a set of iid samples generated by the system. We then use reachability
analysis to construct a lookup table that provides the probability that
the extended path satisfies or violates the specification from the current
state. The current state is estimated at run-time using Viterbi algorithm
that gives the most probable state. We show an empirical evaluation
of Prevent on a version of randomized dining philosopher and on the
QNX Neutrino kernel traces collected from an autopilot software of a
hexacopter.

1 Introduction

Run-time Verification (RV) [17] has become a crucial element in developing
Cyber-Physical Systems (CPSs) [32,40,42]. In RV, a monitor checks the current
execution, that is a finite prefix of an infinite path, against a given property,
typically expressed in Linear Temporal Logic (LTL) [23], that represents a set of
acceptable infinite paths. If any infinite extension of a prefix belongs (does not
belong) to the set of infinite paths that satisfy the property, the monitor accepts
(resp. rejects) the prefix. For example, ϕF : �e (resp. ϕG : �¬e) is satisfied (resp.
not satisfied) on any infinite paths with the prefix u1 : ¬e,¬e, e. Whenever the
monitor is not able to reach a verdict with the given prefix π because π can be
extended to satisfy and to violate the property, the monitor outputs unknown [3].
For example, the prefix u2 : ¬e,¬e can be extended to both a path that satisfies
ϕF : �e (e.g., any extension of u1) and a path that violates ϕF (e.g., (¬e)ω).
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The monitor is able to reach a verdict with a finite extension of the prefix,
if the property is monitorable [12]. In this paper, we estimate the finite exten-
sions of a prefix using a prediction model. The prediction model is trained from
identically and independently distributed (iid) samples of the previous execution
paths of the system. We use Hidden Markov Models [26] (HMMs) to realize a
prediction model of the system with partially observable behaviour.

We focus on the properties that can be evaluated with regular extensions,
that is, the extensions that are expressible by a Deterministic Finite Automaton
(DFA). Depending on the given property, the extensions may specify the prefixes
that satisfy the property (good extensions) or violate it (bad extensions). We use
an upper-bound on the length of the estimated extensions. The monitor in our
framework is the result of a bounded reachability analysis on the product of an
HMM and a DFA. Using the product model, the monitor is able to predict a
verdict, in terms of the probability of the extensions that satisfy or violate the
property. To extend an execution path, the monitor needs to know the current
state, which is estimated at run-time by Viterbi algorithm [38]. Viterbi algorithm
generates the most likely state based on a given observation.

We implemented our approach as a proof-of-concept tool1, called Prevent
(Predictive Runtime Verification Framework), and report on using it in two case
studies: the original and a modified version of randomized dining philosophers
algorithm, and the QNX Neutrino [24] kernel traces. In summary, we make the
following contributions:

– introduce Prevent, a predictive runtime verification framework to detect sat-
isfaction/violation of a property based on partial execution,

– methodology for constructing a prediction model, that is, the product of a
trained HMM and the DFA specifying good and bad extensions,

– define the prediction error on a partial trace and evaluate the monitor per-
formance using hypothesis testing,

– implement the runtime monitoring algorithm using Viterbi approximation,
– evaluate Prevent with two case studies: a modified version of the randomized

dining philosophers problem and the flight control of a hexacopter.

The rest of the paper is structured as follows: in Sect. 2, we give an overview of
Prevent. In Sects. 4 and 5, we provide the details of, respectively, constructing
the monitor, and the run-time monitoring algorithm. We define a measure to
assess the prediction accuracy and validate the performance of the monitor using
hypothesis testing in Sect. 6. Finally, we provide the empirical evaluation of
Prevent on two case studies in Sect. 7.

2 An Overview of Prevent

The key idea in Prevent is to finitely extend the execution trace using a pre-
diction model, and check the extended path against the specification property.
1 Available at https://bitbucket.org/rbabaeecar/prevent/.

https://bitbucket.org/rbabaeecar/prevent/
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Fig. 1. The overview of Prevent framework.

The prediction model is obtained from iid sample traces collected from the past
executions of the system. The prediction model enables the monitor to estimate
the extensions that satisfy or violate the given property within a finite horizon,
that is represented as the maximum length of the finite extensions. This gives
the monitor the ability to detect a property violation before its occurrence.

An overview of Prevent is shown in Fig. 1. The two main components of
Prevent, learning and monitoring are described below:

Learning. We use the sample traces to train HMM using Baum-Welch algo-
rithm [26]. The training samples represent an independent and identical dis-
tribution (iid) over all the execution traces of the system. The trained HMM
represents the joint distribution of the paths over Σ∗ and S∗, where Σ is the
observation space and S is the state space of the system.

Monitoring. The monitor in our framework is the result of a bounded reachability
analysis on the product of the HMM and the DFA that specifies the acceptable
or unacceptable extensions by the property. The monitor is implemented as a
lookup table. Each entry is a composite state that specifies a DFA state, a hidden
state in the HMM, and an observation, and the probability that from the current
state the system will satisfy or violate the property in a bounded number of
steps. The current hidden states maintain a history of the previous observations
(the prefix Y in Fig. 1). The monitor updates its estimation of the current state
by running the Viterbi approximation to obtain (H × A)Y . The output of the
monitor is therefore Pr(H×AY |= �≤hAccept), where h is the finite horizon, or
the maximum length of the extensions that are estimated by the monitor. Since
H × A has a small size, the probability results of the reachability analysis can
be computed off-line for all the states (H × A), and for 1 ≤ h ≤ HMAX , and
stored in a table. The value of HMAX represents the maximum length of the
extensions that the monitor needs to predict the evaluation of the property, and
can be obtained empirically from the execution samples.
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3 Preliminaries

In this section, we briefly introduce the used definitions and notations.
A probability distribution over a finite set S is a function P : S → [0,1] such

that
∑

s∈S P (s) = 1. We use X1:τ to denote a sequence x1,x2, . . . ,xτ of values of
a random variable X, and use u and w to resp. denote a finite and infinite path.

Hidden Markov Model (HMM): HMM is the joint distribution over X1:τ , the
sequence of one state variable, and Y1:τ , the sequence of observations (both with
identical lengths). The joint distribution is such that Pr(yi | X1:i, Y1:i) = Pr(yi |
xi) for i ∈ [1..τ ] (the current observation is conditioned only on the current
state), and Pr(xi | X1:i−1, Y1:i−1) = Pr(xi | xi−1) for i ∈ [1..τ ] (the current
state is only conditioned on the previous hidden states). We use π to denote the
initial probability distribution over the state space, i.e., Pr(x1) = π(x1). As a
result, an HMM can be defined with three probability distributions:

Definition 1 (HMM). A finite discrete Hidden Markov Model (HMM) is a
tuple H : (S,Σ, π, T,O), where S is the non-empty finite set of states, Σ is
the non-empty finite set of observations, π : S → [0,1] is the initial probability
distribution over S, T : S × S → [0,1] is the transition probability, and O :
S × Σ → [0,1] is the observation probability. We use ΘH to denote π, T , and O.

Discrete-Time Markov Chains (DTMC). We use Discrete-Time Markov Chain
(DTMC) for reachability analysis necessary to construct our monitor.

Definition 2 (DTMC). A Discrete-Time Markov Chain (DTMC) is a tuple
M : (S,Σ, π,P, L), where S is a non-empty finite set of states, Σ is a non-
empty finite alphabet, π : S → [0,1] is the initial probability distribution over S,
P : S × S → [0,1] is the transition probability, such that for any s ∈ S, P (s, ·) is
a probability distribution, and L : S → Σ is the labeling function.

Deterministic Finite Automaton: We use Deterministic Finite Automaton (DFA)
to describe the extensions of a prefix.

Definition 3 (DFA). A Deterministic Finite Automaton (DFA) is a tuple A :
(Q,Σ, δ, qI , F ), where Q is a set of finite states, Σ is a finite alphabet, δ :
Q × Σ → Q is a transition function determining the next state for a given state
and symbol in the alphabet, qI ∈ Q is the initial state, and F ⊆ Q is the set of
final states (L(A) ⊆ Σ∗ denotes the language of a DFA A).

4 Monitor Construction

A monitor is a finite-state machine (FSM) that consumes the output of the sys-
tem execution sequentially, and produces the evaluation of a given property at
each step, typically as a Boolean value [4]. The monitor in our framework is still
an FSM, in the form of a look-up table, that instead of Boolean values produces
a value in [0,1]. The value indicates the probability of the extensions that satisfy
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or violate the specification, assuming that the property is currently not satis-
fied/violated. These probability values are the result of a bounded reachability
analysis on the product of the trained HMM and the DFA.

In the rest of this section, we describe how an HMM is built using standard
Expectation-Maximization (EM) learning technique [6] (Sect. 4.1), describe the
product model of HMM and DFA as a DTMC used to perform the reachability
analysis (Sect. 4.2), and, our monitor construction approach (Sect. 4.3).

4.1 Training HMM

We use Maximum Likelihood Estimation (MLE) technique [29] to train an HMM.
The log-likelihood function L(Θ) of the HMM H : (S,Σ, π, T,O) over an obser-
vation sequence Y1:τ is defined as L(Θ) = log(

∑
X1:τ

Pr(X1:τ ,Y1:τ | θ)).
Since the probability distribution over the state sequence X1:τ is unknown,

L(Θ) does not have a closed form [37], leaving the training techniques to heuris-
tics such as EM. One well-known EM technique for training an HMM is Baum-
Welch algorithm [26] (BWA), where the training alternates between estimating
the distribution over the hidden state variable, Q : X → [0,1], with some fixed
choice for Θ (Expectation), and maximizing the log-likelihood to estimate the
values of Θ by fixing Q (Maximization) [28].

The Expectation phase in BWA computes Pr(Xt = s | Y,Θ) and Pr(Xt =
s,Xt+1 = s′ | Y,Θ) for s, s′ ∈ S through forward-backward algorithm [26].
Maximization is performed on a lower bound of L(Θ) using Jensen’s inequality:
L(Θ) ≥ Q(X) logPr(X1:τ ,Y1:τ | Θ) − Q(X) logQ(X).

Since the second term is independent of Θ [28], only the first term is maxi-
mized in each iteration: Θ(k) = argmaxΘQ(X) logPr(X1:τ ,Y1:τ | Θ(k−1)).

The training starts with random initial values for Θ(0), and consequently
running the forward-backward algorithm to update the parameters of the model:

π∗(s) = Pr(X1 = s | Y,Θ) T ∗(s,s′) =
∑τ

t=1 Pr(Xt = s,Xt+1 = s′ | Y,Θ)
∑T

t=1 Pr(Xt = s | Y,Θ)

O∗(s,o) =
∑τ

t=1 #(Yt = o) · Pr(Xt = s | Y,Θ)
∑T

t=1 Pr(Xt = s | Y,Θ)

BWA is essentially a gradient-decent approach, thus its outcome is highly
sensitive to the initial values of Θ [37].

We use the Bayesian Information Criterion (BIC) [7] to choose the number
of hidden states. BIC assigns a score to a model according to its likelihood but
also penalizes models with more parameters to avoid over-fitting: BIC(H) =
log(n)|Θ|−2L(Θ), where |Θ| = |S|2+ |S||Σ|, and n is the size of training sample.

4.2 The Product of the Prediction Model and the Specification

From each state of the trained HMM, the monitor needs to expand the observed
execution, u, and predict expected value of the given property. The expansion of
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u is based on a DFA that specifies good and bad extensions of u. The monitor
maintains the configurations of both the DFA and the trained HMM by creating
the product of the two models [39,41]:

Definition 4 (The Product of an HMM and a DFA). Let H = (S,Σ, π,
T,O) and A = (Q,Σ,δ,qI ,F ) respectively be an HMM and a DFA. We define the
DTMC MH×A : (S′ = S × Q × Σ, {Accept}, π′,P,L) as follows:

π′(s,q,o) =

{
π(s) if q ∈ qI

0 otherwise
L(s,q,o) =

{
{Accept} if q ∈ F

∅ otherwise

P((s,q,o),(s′,q′,o′)) =

{
T (s,s′) · O(s′,o′) if δ(q′,o) = q

0 otherwise

4.3 Constructing Monitor with Bounded Prediction Horizon

The monitor’s purpose is to estimate the probability of all the finite extensions of
length at most h that satisfy a given property. The variable h is a positive integer
we call the prediction horizon. Let σ0σ1 · · · σt be the extension of a finite path
that ends at the state σ (σ0 = σ ∈ S′), such that L(σt) = Accept in the product
model M (σi = (si,qi,oi) is the composite state of the product model M, for all
0 ≤ i ≤ t). The monitor’s output is Pr(σ0σ1 · · · σt), t ≤ h, which is computed by
performing the following reachability analysis on M [1]: Pr(σ |= �≤hAccept).

In order to compute this probability we adopt the transformation from [16]:

PAcc(σ,σ′) =

⎧
⎪⎨

⎪⎩

0 if L(σ) = Accept and σ �= σ′

1 if L(σ) = Accept and σ = σ′

P(σ,σ′) otherwise
(1)

The transformation (1) allows us to recursively compute Pr(σ |= �≤hAccept)
as follows: Pr(σ |= �≤hAccept) =

∑
σ′ PAcc(σ,σ′)Pr(σ′ |= �≤h−1Accept) (2).

This is essentially the transient probability for σ0 · · · σhw [16], that is, starting
from σ0 the probability of being at state σh (i.e., after h steps), such that L(σh) =
Accept (w ∈ Σω is any infinite extension of the path). The probability measure
of σ0 · · · σhw is based on the prefix σ0σ1 · · · σh and can be written as the joint
probability distribution of the hidden state variable and that of the observation.

Computing (2) for all the states at runtime is not practical, due to multi-
plications of large and typically sparse matrices [16]. Instead, for all t ≤ h we
compute the probabilities off-line and store them in a table MT (σ,t), where
MT (σ,t) = Pr(σ |= �≤tAccept). Our monitor, thus, is transformed into a look-
up table with the size at most O(|S| × |Q| × |Σ| × h).

5 Run-Time Monitoring with Viterbi Approximation

For each state σ = (s,q,o) the monitor needs to estimate the hidden state s (q
is derivable from o). We employ the Viterbi algorithm to find the most likely
hidden state during monitoring.
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1 Monitor(Y, H, A, h)

inputs : Execution observation Y , HMM H = (S, Σ, π, T, O), DFA A = (Q, Σ,
δ, qI , F ), prediction horizon h

output: Pr((H × A)Y |= �≤hAccept)
2 begin
3 Construct the monitor table MT (H,A, Σ, h)
4 foreach s ∈ S do v(s) ← O(s,Y1)π(s)// Initialize the Viterbi vector
5 i ← 1, t ← h, q ← qI // t is the horizon index
6 forall Yi ∈ Y do
7 s ← argmaxsv(s)
8 q ← δ(q,Yi)
9 output MT ((s,q,Yi), t) // Output the prediction

10 if q ∈ F or t = 0 then t ← h else t ← t − 1
11 forall s ∈ S do // Updating the next Viterbi vector
12 vnext(s) ← O(s,Yt+1)maxs′(v(s′)T (s′,s))
13 v ← vnext, i ← i + 1

Runtime monitoring procedure using Viterbi approximation.

For an observation sequence Y = Y1:τ , Viterbi algorithm [10,38] derives
X∗

1:τ = argmaxX1:τ
Pr(X1:τ |Y,Θ), so-called the Viterbi path. Let vt(s) be the

probability of the Viterbi path ending with state s at time t: vt(s) = O(s,Yt)
maxs′∈S(vt−1(s′)T (s′,s)) (3).

To find X∗
t at step t, the monitor only requires vt−1(s′) for all s′ ∈ S.

Therefore, we can obtain X∗
t by using only two vectors that maintain the values

of vt(s) and vt−1(s) (we call them Viterbi vectors).
Procedure Monitor demonstrates our runtime monitoring algorithm. We

assume that the monitor table MT is already constructed as described in Sect. 4
(line 3). Line 4 initialize the Viterbi vector. The horizon index t stores the
prediction horizon at each iteration (initialized to h at the beginning – line 5).
Each iteration of the for loop in lines 6–13 is over one observation in the sequence
Y . For each observation Yi, the configuration (s,q,Yi) (lines 7–8) combined with
t gives us the index to retrieve the probability value in the monitor table (line 9).
If the path is not accepted by the DFA, the monitor shrinks its horizon index by
one (t is decremented — line 10). Each time that the observed path is accepted
by the DFA, the horizon index is reset to h (line 10), for the prediction of the
next extension. Similarly, once the prediction horizon has reached zero, i.e., the
property is not satisfied within the given prediction horizon, the horizon index is
reinitialized to h. At the end, the Viterbi vector is updated for the next iteration
in lines 11–13 according to (3).

In each monitoring iteration (the loop in lines 6-13), reading the value from
the monitor table MT is constant time. For a trained model with k hidden states,
updating the Viterbi vector requires O(k) operations of finding maximums, which
can be improved to lg(k) using a Max-Heap. Therefore, each monitoring iteration
is of O(k lgk) in execution time. The space complexity is mainly bounded by the
size of the monitor table and the Viterbi vectors: O(k h).
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6 Prediction Evaluation

In this section, we first define a lower bound on the prediction error of the
monitor on a single trace, and then use two-sided hypothesis testing to evaluate
the average prediction performance on a set of testing samples. Finally, we exploit
the hypothesis testing results to find an empirical lower bound of the horizon.

6.1 Prediction Error

Let (oi · · · oi+λi(A)) be an extension of length λi(A) at point i that is accepted
by a given DFA A, i.e., (oi · · · oi+λi

) ∈ L(A) (for brevity, we use λi instead of
λi(A)). Recall that the monitor’s output at point i is the probability of all the
extensions of length at most h that are accepted by A (Pr(σi |= �≤hAccept)).
For any λi ≤ h we have: Pr(σi |= �≤hAccept) ≥ Pr(σi · · · σi+λi |= Accept) =⇒
λi × Pr(σi |= �≤hAccept) ≥ λi × Pr(σ · · · σi+λi |= Accept).

We define λ̂i = λi × Pr(σi |= �≤hAccept) as the expected value of λi esti-
mated by the monitor. Therefore, we can obtain the following minimum error of
the prediction at point i: εmin

i = λi − λ̂i.
Notice that since λi ≥ λ̂i, εmin is always positive. If there is no k, i < k < λi

such that (oi · · · oi+k) ∈ L(A), i.e., (oi · · · oi+λi
) is the minimal extension that is

accepted by A, then εmin
i+t = (λi − t)− λ̂λi−t, 0 ≤ t < λi ≤ h, where t is the horizon

index in Monitor. As a result, the value of εmin
i can be computed on-the-fly.

In our implementation, we assume that there exists at least one point k ≤
h such that (oi · · · oi+k) ∈ L(A); otherwise, εmin

i is not well-defined, and the
prediction accuracy can not be verified. If such a point does not exist, we can
extend the prediction horizon by increasing h such that there is at least one
accepting extension in the trace. The rest of the path after the last point in
which the trace is accepted by A is discarded as there is no observation to
compare the prediction and compute the error.

In the following, we give an empirical evaluation of the monitor’s prediction
using hypothesis testing which leads to an empirical lower bound for h.

6.2 Empirical Evaluation Using Hypothesis Testing

To assess the performance of the prediction, aside from the execution trace, we
use hypothesis testing on a set of test samples.

Let Λ = 1
τ

∑τ
i=1 λi be the random variable that represents the mean of all

λi values, for 1 ≤ i ≤ τ . Notice that for iid samples, the value of Λ for a trace
is independent of that value for the other traces.

Let λ̄M be the estimation of Λ by the monitor over a set of monitored traces,
and λ̄ be the mean of Λ on a separate set of n iid samples with variance ν. We
test the accuracy of the prediction using the following two-sided hypothesis test
H0 : λ̄M = λ̄. Using confidence α, we use student’s t-distribution to test H0:
λ̄−λ̄M√

ν
n

≤ tn−1,α. Given the mean of the length of the shortest finite extensions in

the test sample we can use it to obtain a lower bound for h: h ≥ λ̄ − tn−1,α

√
ν

n .
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That is, the prediction horizon h must be at least as large as the mean of the
length of the extensions in the test sample that are accepted by A.

7 Case Studies

We evaluate Prevent on two case studies: (1) randomized dining philosophers
from Prism [27], which includes the original algorithm, and a modified version
that we introduce specifically for evaluating Prevent, (2) QNX Neutrino kernel
traces collected from the flight control software of a hexacopter. We show the
estimation of good and bad extensions in the randomized dining philosophers
and hexacopter traces, respectively, each of which represents one of the most
commonly used property patterns in Dwyer et al. [11]’s survey: response pattern
in the randomized dining philosophers algorithm, and the absence pattern for
monitoring a regular safety property [1] in the flight control of a hexacopter. The
implementation of monitoring in both experiments is conducted off-line.

7.1 Randomized Dining Philosopher

We adapt Rabin and Lehmann [25]’s solution to the dining philosophers problem
that has the characteristics of a stochastic system to be trained using HMM. We
also present a modification of their algorithm, which represents a generic form
of decentralized on-line resource allocation [36], where our monitoring solution
can be seen as a component of the liveness enforcement supervisory [19].

We consider the classic form of the problem, where philosophers are in a ring
topology, and are selected for execution by a fair scheduler. Figure 2a demon-
strates a state diagram of one philosopher, with Th, H, T, P, D, and E repre-
senting the philosopher to be, respectively, thinking, hungry, trying, picking a
fork, dropping a fork, and eating. A philosopher starts at (Th), and immediately
transitions to (H)2. Based on the outcome of a fair coin, the philosopher then
chooses to pick the left or the right fork if they are available, and moves to (T).
If the fork is not available the philosopher remains at (T) until it is granted
access to the fork. The philosopher moves to (E), if the other fork is available;
otherwise, the philosopher drops the obtained fork, moves to (D), and eventually
transitions back to (H). After the philosopher finishes eating, it drops the forks in
an arbitrary order (D), and moves back to (Th). The algorithm is deadlock-free
but lockouts are still possible [25].

Our modification of the algorithm is to add a self-transition at (P): a philoso-
pher does not drop the first obtained fork with probability c, i.e., it stays at (P),
which is shown with dotted lines in Fig. 2a (the transition from (P) to (D) has
the probability 1−c, which is not shown in the figure). This modification enables
the philosopher to control its waiting time, the period between when it becomes
hungry for the first time after thinking, and when it eats. A higher value of c

2 For simplicity, we remove a self-transition to (Th); however, unlike [9] we do not
merge the states (Th) and (H) because we want to distinguish between the incoming
transitions to (Th) and (H) in computing the waiting time.
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means that, instead of going back to (H), the philosopher is more likely to stay
at (P) so that as soon as the other fork is available it will eat. It is not diffi-
cult to observe that as long as there is at least one philosopher with c �= 1, the
symmetry that causes the deadlock [25] will eventually break, and the algorithm
remains deadlock-free. In a distributed real-time system, where each philosopher
represents a process with unfixed deadlines, changing the value of c enables the
processes to dynamically adjust their waiting time according to their deadlines.

Fig. 2. Training an HMM for the monitored philosopher in a program with 3
philosophers.

The purpose of our experiments is to implement a monitor that observes the
outputs of a single philosopher, and predicts a potential starvation (lockout) by
estimating the extensions that leads to eating.

Predicting Starvation at Run-Time. We use Matlab HMM toolbox to train
HMMs, and 100 iid samples collected from the implementation of our modified
version, with c = 1 for all philosophers except the one that is being monitored3.
The trained model presents the behavioral signature of the system when a longer
waiting time is likely. The size of HMM (i.e., the number of hidden states) is
chosen based on the BIC score of each model with different sizes (see Sect. 4.1).
Figure 2b demonstrates the trained HMM of one philosopher that is constructed
from the traces of a 5-s execution of three philosophers. The trained model
reflects the distribution of the prefixes in the training sample, which in turn is
determined by how the scheduler as well as other philosophers behaved during
training (i.e., resolving non-determinism of the model). For instance, multiple
consecutive trys in the training sample create several states in the trained HMM,
3 We tweaked the implementation in https://ti.tuwien.ac.at/tacas2015/ [14].

https://ti.tuwien.ac.at/tacas2015/


Prevent: A Predictive Run-Time Verification Framework 215

Table 1. Prediction results on 100 test samples.

N Size of
HMM

BIC
(+e03)

hmin Size of
MT

λ̄M mean(εmin)

3 17 25.1 9.94 360 9.30 1.75

4 14 11.9 5.49 180 5.30 1.28

5 10 10.1 6.36 154 6.16 0.80

6 14 7.69 5.61 180 5.17 1.05

7 16 6.09 4.28 170 3.84 1.06

8 10 5.42 4.94 110 4.32 1.33

9 14 4.83 3.15 120 2.77 0.92

10 10 4.40 4.31 110 3.84 0.97

Fig. 3. The comparison of the pre-
diction results from two trained
models.

each emitting the symbol (T), but only one has a high probability to transition
to (P) and the others model the state where the philosopher can not pick a fork.
Finite extensions that we consider in the prediction are based on the following
regular expression: (¬hungry)∗(hungry(¬eat)∗eat(¬hungry)∗)∗.

Figure 3 gives a comparison between the prediction results (h = 33) of two
trained models, one trained using the samples from the original implementation
(LR) and the other one trained from the samples of our modified version (LR-
sap), both containing three philosophers. The monitored trace is synthesized in
a way that it does not contain any eat, and up to point 33 the philosopher is
only at state (T). After that the philosopher frequently picks and drops a fork.
When the last event of a prefix is pick, compared to when it ends with any
other observations, the philosopher has a higher chance to reach eat (e.g., with
probability 0.98 at point 35); however, since HMM maintains the history of the
trace, a prefix with frequent (pick, drop) one after another shows a decline in
the probability of observing eat (e.g., with probability of 0.8 at point 57). The
results in Fig. 3 demonstrate that the model trained on the bad extensions (LR-
sap) provides an under-approximation of the model that is trained on the good
traces (LR), thus, producing more false positives.

The summary of our results is displayed in Table 1. We use Prism to per-
form the reachability analysis on the product of the trained HMM and the DFA.
The size of the product model is equal to the size of the HMM, as each state
in the trained HMMs emits exactly one observation. The minimum prediction
horizon (hmin) is obtained empirically from 100 test samples. We choose the
prediction horizon to be three times as large as hmin during monitoring. The
average of the estimated length of the acceptable extensions by the monitor is
shown as λ̄M , and the mean of the error on the entire testing set is denoted by
mean(εmin). On average, the monitor predicts the next eat (within the predic-
tion horizon) with one step error. The monitor is not able to detect the waiting
periods that approximately are longer than 3× hmin ± 1. Increasing the predic-
tion horizon decreases the error, with the cost of a larger monitor table (MT ).
The value of λ̄M is influenced by the total number of discrete events produced by
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the monitored philosopher. With more philosophers λ̄M decreases because the
monitored philosopher, and hence, the monitor, are scheduled less often.

7.2 Hexacopter Flight Control

In this section, we apply Prevent to detect injected faults from QNX Neu-
trino’s [24] kernel calls. The traces are obtained using QNX tracelogger during
the flight of a hexacopter4. The vehicle is equipped with an autopilot, but can
be controlled manually using a remote transmitter. The autopilot system uses
a cascaded PID controller. QNX’s microkernel follows message-passing architec-
ture, where almost all the processes (even the kernel processes) communicate via
sending and receiving messages that are handled by the kernel calls MSG-SENDV,
MSG-RECEIVEV, and MSG-REPLY. Figure 4a shows a sub-trace of the kernel call
sample from the hexacopter flight control system.

In this case study, we inject faults by introducing an interference process,
with the same priority as the autopilot process, that simply runs a while-loop to
consume CPU time. The interference process abrupts message-passing between
the processes of the same or lower priorities, causing a kernel call to handle the
error (typically due to a timeout) and to unblock the sender (shown as event
MSG_ERROR in Fig. 4a). The purpose of the monitor is to predict the existence
of an interference process by only observing the kernel calls.

We use SFIHMM [8] on an Intel Xeon 2.40GHz 128GB RAM machine with
Debian 9.3 to train an HMM from 1-s of the auto-pilot execution, with the
intervening process in full effect. The HMM with the minimum BIC has 19 states.
The regular expression (¬MSG_ERROR)∗ (MSG_ERROR)Σ∗ is used to generate the
finite extensions that contain the bad prefixes of the property �¬MSG_ERROR.

The monitor’s prediction on part of the trace generated from another sce-
nario, where the interference process is partially in effect and started executing in
the middle of the flight, is depicted in Fig. 4. The event MSG_ERROR is emitted at
index 10,861, and the probability of the prefix that contains MSG_ERROR within
next 50 steps is 0.15 at index 10,815. That means that the monitor predicts the
message error with %15 chance, almost 45 steps before its occurrence. The points
where the probability is zero is because the monitor was not able to correctly
estimate the hidden state of the model. More training samples are required to
enable the monitor to estimate the correct state of the model. In our case, three
consecutive instances of MSG_RECEIVEV did not appear in the training sample,
hence, the prefix can not be associated to any state of the model by the monitor.

8 Related Work

There have been several proposals to define semantics of LTL properties on the
finite paths [20]; however, to the best of our knowledge, our approach is the first

4 Full system description is available at https://wiki.uwaterloo.ca/display/ESGDAT/
QNX+Hexacopter+Flight+Control+Dataset.

https://wiki.uwaterloo.ca/display/ESGDAT/QNX+Hexacopter+Flight+Control+Dataset
https://wiki.uwaterloo.ca/display/ESGDAT/QNX+Hexacopter+Flight+Control+Dataset
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...
10850 : MSG-SENDV
10851 : CONNECT-CLIENT-INFO
10852 : MSG-REPLYV
10853 : MSG-RECEIVEV
10854 : MSG-SENDV
10855 : CONNECT-CLIENT-INFO
10856 : MSG-REPLYV
10857 : MSG-RECEIVEV
10858 : MSG-RECEIVEV
10859 : MSG-SENDV
10860 : CONNECT-CLIENT-INFO
10861 : MSG-ERROR
...

Fig. 4. The monitoring of �¬MSG_ERROR on the flight control trace with the interfer-
ence process.

one in verifying finite paths based on the extensions obtained from a trained
HMM. HMMs have been recently used in run-time monitoring of CPSs [2,13,30,
31,33,35,40]. Sistla et al. [31] propose an internal monitoring approach (i.e., the
property is specified over the hidden states) using specification automata and
HMMs with infinite states. Learning an infinite-state HMM is a harder problem
than the finite HMMs, but does not require inferring the size of the model [5].

The notion of acceptance accuracy and rejection accuracy in [30] are the
complement to our notion of prediction error. According to their definition, our
Viterbi approximation generates a threshold conservative monitor for any regular
safety property and regular finite horizon. The analytical method in [33] to find
an upper bound for the timeliness of a monitor can be applied to Prevent to
find an upper bound for the prediction horizon.

Several works focus on efficiently estimating the internal states of an HMM
at runtime using particle filtering [13,35]. Particle filtering uses weights based on
the number of particles in each state, and updates the weights in each observa-
tion. Viterbi algorithm provides the most likely state, as an over-approximation.
Adaptive Runtime Verification [2] couples state estimation [35] with feed-back
control loop to generate several monitors that run on different frequencies. These
works are orthogonal to our framework and can be combined with Prevent.

Learning models for verification is executed on Markov Chain models [18,22].
HMMs are trained in [14] for statistical model checking. Our work focuses on
predictive monitors using a similar technique. We also provide assessments for
evaluating the learned model and inferring its size.

9 Conclusion

We introduced Prevent, a predictive run-time monitoring framework for prop-
erties with finite regular extensions. The core part of Prevent involves learning
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a model from the traces, and constructing a tabular monitor using reachability
analysis. The monitor produces a quantitative output that represents the prob-
ability that from the current state, the system satisfies a property within a finite
horizon. The current state is estimated using Viterbi algorithm. We defined an
empirical evaluation of the prediction using the expected length of the extension
of the execution that satisfies the property. In future, we are interested in explor-
ing other evaluation methods, including comparing the prediction results of the
trained model with those of the complete model by applying abstraction [15].

We provided preliminary evaluation of our approach on two case studies: the
randomised dining philosophers problem, and the flight control of a hexacopter.
In both cases, the trained models are extracted from bad traces, thus, the moni-
tor has a tendency to produce false positives. An interesting modification to our
approach, which would reduce the number of false positives, is to involve a mix-
ture of trained models based on both good and bad traces, and only employing
ones that have a higher likelihood to generate the current execution trace.

Lastly, an implementation of Prevent with the application of on-line learning
methods (such as state merging or splitting techniques [21,34]) is necessary to
apply the framework to the real-world scenarios.
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