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Abstract. This paper (This paper is a brief outline of some of the con-
tent of the keynote by the author at the 16th International Conference
on Software Engineering and Formal Methods (SEFM 2018) in Toulouse,
France; 27th–29th June 2018.) briefly reviews Testability Transforma-
tion, its formal definition, and the open problem of constructing a set
of formal test adequacy semantics to underpin the current practice of
deploying transformations to help testing and verification activities.

1 Introduction

Testability transformation modifies a program to make it easier to test. Unlike
traditional program transformation [18,43], which alters a program’s syntax
without changing its input–output behaviour, Testability Transformation may
alter functionality. Nevertheless, it does respect a program semantics, defined by
the test adequacy criterion. Therefore, the sense in which a Testability Trans-
formation is meaning preserving rests on a formal definition of the semantics of
transformations that preserve test adequacy. Sadly, to date, such a test adequacy
semantics has yet to be formally defined.

There are several widely-used test adequacy criteria in practice, such as state-
ment, branch, data flow, path and mutation adequacy [8,9,31]. Each of these ade-
quacy criteria gives rise to a different test adequacy semantics, the definitions
of which and their relationship as a formal lattice of semantics remain inter-
esting and important open scientific problems at the intersection of Software
Engineering and Formal Methods (SEFM). Tackling this set of related semantic
definitions will provide a firm mathematical foundation for Testability Transfor-
mation, and by extension, may also yield insights into currently-deployed testing
techniques. This paper aims to draw out some of these open problems as research
questions for the SEFM research community.

Testability Transformation itself, was first formalised in 2004 [25]. However,
informally, software engineers have performed transformations to aid testabil-
ity for considerably longer. For example, it is routine for testers to ‘mock up’
procedures to allow testing of the ‘whole’ before the ‘parts’ have been fully imple-
mented. Similarly, for verification purposes, it is often necessary to model parts
of the system with stubs, where source code is unavailable for analysis [2].
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These simple mock–and–model transformations are relatively well-
understood. By contrast, other transformations, that have the potential to more
dramatically benefit the effectiveness and efficiency of testing and verification,
remain less well-understood, because of a lack of proper formal underpinnings.
These more ambitious Testability Transformations exploit the way in which
transformation rules can be ‘more aggressive’ in their disruption of the input–
output behavior, so long as they take care to preserve test adequacy semantics.

For example, Testability Transformation has been used to tackle problems
such as flag variables [4,5,20], unstructured control flow [28], data flow testing
[34], state-based testing [33], and nesting [40]. An overview of these applications
of Testability Transformation can be found in the 2008 survey [23]. As well as
source code transformation, it has also been applied, more recently at bytecode
level [37]. It has also been applied to alleviate problems in dynamic symbolic
execution [11] and to tackle the oracle problem in testing [39].

Nevertheless, the lack of formal underpinning means that much of this work
rests on, as yet, uncertain foundations and this inhibits progress; transforma-
tions should take care to preserve test adequacy semantics, yet there is no for-
mal description of test adequacy semantics for any of the widely-used adequacy
criteria. Much more could undoubtedly be achieved in terms of practical trans-
formation benefit, if only the designers of Testability Transformations had a
formal test adequacy semantics to which they could appeal. Practitioners and
researchers could use such a semantics to motivate, justify or otherwise explore
their transformation spaces.

2 Formal Definition of Testability Transformation

The goal of a Testability Transformation is to make it easier to test the untrans-
formed program. Although test data is ultimately applied to the original pro-
gram, the technique that generates it uses the transformed version because it
is easier. The transformation process therefore needs to guarantee that any
adequate set of test data, generated and adequate for the transformed pro-
gram, will also be adequate for the original program. This (test-based) meaning
preservation guarantee replaces the more familiar guarantee, whereby traditional
transformation preserves the input–output relationship of the untransformed
program.

The formal definition of Testability Transformation is simple and has been
known for some time [25]. In this section, we briefly review this formal definition
of Testability Transformation, based on earlier work [22,25], which we augment
by defining, slightly more formally, what is intended by the term ‘test adequacy
criterion’:

Definition 1 (Test Adequacy Criterion). Let P be a set of programs, with
an input space I. A test adequacy criterion, c is a function from programs to
predicates over sets of inputs:

c ∈ P → 2I → {true, false}
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A test adequacy criterion determines whether a set of test inputs (i.e., test
suite) meets the criterion of interest for the tester. An example is the branch
adequacy criterion which is true, for test suite T and program P , when for every
feasible branch, b in P , the test suite T contains at least one test that executes b.
Another example is the statement adequacy criterion, which is true when every
reachable statement is executed by the at least one test in the test suite.

In practice [3], since branch traversibility and statement reachability are both
undecidable, testers settle for a measure of the percentage of branches (state-
ments) covered, setting (rather arbitrary) percentage thresholds for satisfaction
of the coverage predicate. Alternatively, practicing testers may choose to identify
a set of important branches (statements) that are know to be feasible (and of
interest) that would need to be covered in order for the test adequacy criterion
to return true.

With the concept of tests adequacy criterion in hand, we can now define what
it means to be a transformation that is concerned with both programs and the
tester’s chosen adequacy criterion, both of which might be transformed, as we
shall see.

Definition 2 (Testing-Oriented Transformation). Let P be a set of pro-
grams and C be a set of test adequacy criteria. A program transformation is
a partial function in P → P. A Testing-Oriented Transformation is a partial
function in (P × C) → (P × C).

The test adequacy criterion, C refers to the overall criterion, which may be
composed of a set of instances, each of which is denoted by lower case c. For
instance, branch coverage is a possible choice for C, while a particular instance,
c, might capture the specific set of branches to be covered.

A testing-oriented transformation is defined to be a partial function, simply
to allow that the transformation might be undefined for some programs; the pos-
sibility that a testing-oriented transformation may fail to terminate is not ruled
out. In practice, this is relatively unimportant generalisation from total func-
tions, because it will always be acceptable to leave the program untransformed.
Therefore, a partial testing-oriented transformation can be easily converted to a
total testing-oriented transformation.

Definition 3 (Testability Transformation). A Testing-Oriented Transfor-
mation, τ is a Testability Transformation iff, for all programs p, criteria c, and
test sets T , T is adequate for p according to c if T is adequate for p′ according
to c′, where τ(p, c) = (p′, c′).

In some cases, the test adequacy criterion can be transformed along with
the program under test and this definition allows for that. We call this a co-
transformation (that is, one in which both the program under test and the test
adequacy criteria are transformed). For instance, MC/DC test adequacy [49]
can be safely co-transformed to branch adequacy provided that the program
is co-transformed to expand the boolean logic operator terms in predicates [8].
This co-transformation means that branch coverage of the expanded program
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is equivalent (has the same test adequate test input sets) as MC/DC on the
untransformed version.

In other circumstances, it will be more convenient to leave the adequacy cri-
terion untransformed, and thereby to produce a program transformation that
respects it. That is, for some criterion, c, a c–preserving Testability Transforma-
tion guarantees that the transformed program is suitable for testing with respect
to the original criterion; a widely-used scenario in practice.

Definition 4 (c–Preserving Testability Transformation). Let τ be a
Testability Transformation. If, for some criterion, c, for all programs p, there
exists some program p′ such that τ(p, c) = (p′, c), then τ is called a c–preserving
Testability Transformation.

As an illustrative example, consider the program

Example 1. Simple program under test illustration

input(z);
x=1; y=z;
if (y>3) x=x+1;

else x=x-1;
output(x,y,z)

Example 1 can be transformed to

input(z)
if (z>3) ;

else ;
output(x,y,z)

Such a transformation does not preserve the effect of the original program
on the variables x and y and, therefore, does not preserve the input–output
behaviour of Example 1. However, it does preserve the set of sets of inputs that
execute (or ‘cover’ in testing nomenclature) all branches. It also preserves the set
of sets of inputs that cover all statements, despite the fact that the transforma-
tion process has removed some statements. Therefore, the transformation can be
said to be a ‘branch–adequate transformation’. It is also a ‘statement–adequate
transformation’.

This guarantee of test-adequacy for the transformation has practical signifi-
cance: test inputs can be constructed from the transformed program, safe in the
knowledge that any set of inputs that is branch adequate for the transformed
program will also be branch adequate for the original (Example 1). Since branch
adequacy subsumes statement adequacy, we would also immediately know that
such a set of test inputs would also be statement adequate for Example 1.

Of course, when executed on each version, the input–output relationship will
be different, but this is unimportant for test input generation; the test inputs,
once generated, will be applied to Example 1, not the transformed version.
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The advantage of the transformation is that it may prove to be more effective
and/or efficient to generate tests from the transformed program than the origi-
nal. This has been the motivation for the previous work on Testability Transfor-
mation, which has revealed many such cases whereby transformation eases test
input generation and verification.

Testability transformation is not only useful, but also offers interesting intel-
lectual and scientific challenges: transformations can cover different paths in the
transformed program, yet still preserve path adequacy, because the sets of test
inputs that cover all paths in the transformed program also cover all the paths
in the original. The behaviour of transformed programs and their relationship
to the original from which they are constructed are thus highly subtle and a
full understanding clearly necessitates a proper formal semantic treatment. As a
simple illustration of this need, consider the simple fragment F , defined below:

Example 2. (F)

input(x);
if (x>0) x=-1;

else x=1;
output(x)

The fragment F can be branch-adequately transformed to F ′ defined below:

Example 3. (F’)

input(x);
if (x>0);

else;
output(x)

This transformation is also path-adequate. Furthermore, F ◦ F can be path-
adequately transformed to F ′ ◦ F ′. That is, as illustrated in Fig. 1, test suites
that cover all branches of F ′ ◦ F ′, also cover all branches of F ◦ F , even though
the test inputs will traverse different branches. Indeed, test inputs that cover all
paths in F ′ ◦ F ′ also cover all paths in F ◦ F , even though they follow different
paths in the transformed program than they follow in the original.

Formal treatments of slicing may provide a starting point for understanding
this behaviour [7,13,42,46], since we are partially concerned with the interplay
between data and control flow. Slicing makes a good starting point for under-
standing a subclass of Testability Transformations for two reasons:

1. Slicing reduces program size and is, thereby, likely to reduce execution time,
which may, in turn, help improve the performance of test techniques [24]. Slic-
ing will likely be particularly useful for test techniques that require repeated
execution of the program under test to generate test inputs [12,26], because
the slice computation cost can be offset by the multiple test execution time
gain.
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Fig. 1. The version on the right is both a branch-adequate and a path-adequate trans-
formation of the version on the left, even though all possible test inputs follow different
paths in each program. The original program partitions the set of all inputs (all initial
values of x) into two disjoint subsets, each of which causes execution to follow one of
two paths. Two test inputs, one from each subset, are necessary and sufficient to cover
all (feasible) paths. The transformed program creates the same test input partition
and so it preserves path-adequacy. This is illustrated by the input sets located at the
top of each figure, and the path that inputs drawn from each follows. These two paths
for each program are depicted in red and blue (or light and dark grey when printed in
black-and-white). Observe that the feasible path sets are different for the two programs,
and these two disjoint input subsets therefore follow different paths in each program.
However, all input sets that cover (follow) all feasible paths in the transformed program
on the right, nevertheless, also follow all feasible paths in the original on the left; the
transformation is path adequacy preserving.

2. Slicing on all predicates for which we seek branch adequacy will maintain the
computation needed for these predicates to correctly replicate their behaviour
in the unsliced original program, thereby ensuring sufficiency of branch ade-
quacy for these predicates.

However, although it may sufficient for path-adequacy, preserving control
flow does not appear to be necessary, as illustrated in Fig. 1.

3 Testability Transformation and Abstract Interpretation

There exist valid Testability Transformations for which the allowable trans-
formations are neither subsets nor supersets the traditional transformation set
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that preserves the input–output behaviour of the untransformed program. For
instance, consider this simply illustrative example:

Example 4 (More Concrete). if (x>y) ; else ;

This program can be transformed to the empty program, while preserving
the input–output behaviour of untransformed program. However, this appar-
ently ‘simple optimization’ does not preserve the sets of test suites that cover all
branches of the original and, therefore, it cannot be a branch–adequate trans-
formation. Therefore, there exist Testability Transformation semantics that are
clearly not simply more abstract (allow a superset of transformations) than the
conventional input–output relation semantics.

Furthermore, consider the program:

Example 5 (More Abstract). if (x>y) x=1; else x=2;

This program can be branch–adequately transformed to:

if (x>y) ; else ;

Clearly, such a branch–adequate transformation does not preserve the con-
ventional input–output semantics. Therefore, branch–adequacy semantics is also
not more concrete than conventional semantics.

From Examples 4 and 5 we are forced to conclude that branch–adequacy
semantics is neither universally more concrete nor more abstract than conven-
tional input–output relation semantics. Similar arguments can be made for other
test adequacy criteria and the semantics they denote.

However, this observation does not mean that the consideration of the
abstraction level of the semantics preserved has no role to play in formalising
Testability Transformation. Quite the opposite: it should be possible to construct
a lattice of Testability Transformation semantics ordered by semantic abstraction
[22]. Therefore, abstract interpretation [16] would also be a promising framework
within which to explore test adequacy semantics.

Perhaps a trace-based semantics would be more suitable to capture the prop-
erties preserved by Testability Transformation. However, as the example in Fig. 1
demonstrates, the traces followed in two different programs can be entirely dif-
ferent and yet the two programs are, nevertheless, path adequate testability
transformations of each other. This suggests that perhaps merely abstracting
from simple traces may prove insufficient to capture the semantics of test ade-
quacy1.

1 Author’s note: I sincerely hope that I may be proved wrong in this conjecture, since a
simple abstracted trace semantics that captures test adequacy (and thereby informs
Testability Transformation) would shed much light on many testing problems.
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4 Testability Transformation and Metamorphic Testing

Metamorphic testing [15] is one approach to tackle the test oracle problem [6].
The oracle problem is captured by the question:

“What output(s) should be expected for a given input?”

With metamorphic testing, the tester uses relationships between already
observed test cases (input–output pairs) and properties of a as-yet-unseen out-
puts for some newly provided test input. In this way Metamorphic Testing offers
an oracle, albeit an incomplete one, where either no oracle, or an even more
incomplete oracle, was previously available. As a simple illustration we might
have:

if p(i) = r then p(f(i)) = g(r)

for some program p and so-called ‘metamorphic relations’ f and g.
In this way we define one test case (f(i), g(r)) in terms of another, (i, r),

using metamorphic relations (f and g).
As a more concrete example, suppose our first test reveals that

CheckBalance(i) = r,

giving us output r, a balance in a bank account, for the input i, a bank
account number. From this test case, we can generate a set of new tests, using
a non-negative deposit, x:

CheckBalance(Deposit(i, x)) = r′,where x ≥ 0,

such that we expect the condition r′ ≥ r. That is, we do not know the correct
value r′ should take (because we lack a complete test oracle). Nevertheless, we
do have a property that r′ should satisfy, for this new input x, expressed in terms
of some previously witnessed test case (i, r).

A far more detailed and complete account of metamorphic testing can be
found elsewhere [15]. For the present paper we merely wish to observe that meta-
morphic testing already lies at an intersection between Software Engineering and
Formal Methods, because there is clearly a need to formalise the metamorphic
relations for each metamorphic application area in order to provide a sound
foundation for each.

It is also interesting to observe the close resemblance between metamorphic
test relations and algebraic data type specifications [21]; both essentially capture
a set of algebraic properties to be maintained in all valid instances. For instance,
in the CheckBalance example above, metamorphic testing is simply exploiting
the following algebraic property of CheckBalance and Deposit to find new test
cases for old:

∀x ∈ IR.
x ≥ 0 ∧ CheckBalance(i) = r ∧ CheckBalance(Deposit(i, x)) = r′

⇒
r′ ≥ r
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which has a similar structure (and potential uses) as the familiar algebraic prop-
erties of data structures, such as:

∀s ∈ Stack, x ∈ Elem.
top(push(x, s)) = x

There are at least two connections between Testability Transformation and
Metamorphic Testing:

1. Metamorphic Testing as Testability Transformation: Consider again
the metamorphic relations f and g for the program p, where

if p(i) = r then p(f(i)) = g(r)

If we re-write this, slightly, as

if p(i) = r then (f ◦ p)(i) = g(r)

it becomes immediately clear that f ◦ p can be regarded as a (relatively
simply) transformed version of p, and that the transformation of the oracle
from p(i) = r to (f ◦ p)(i) = g(r) can also be regarded as a transformation of
the oracle, thereby resembling a test adequacy criterion transformation.

2. Metamorphic Testability Transformation: If we generalise a metamor-
phic equation like if p(i) = r then p(f(i)) = g(r), we can obtain a kind of
‘Metamorphic Testability Transformation’, which combines the metamorphic
effect of the oracle with the transformation effect on the program. The gen-
eralisation would be if p(i) = r then (Tp(p))(f(i)) = (Tc(g))(r) where Tp is a
Testability Transformation on programs and Tc is a Testability Transforma-
tion on the oracle; akin to a testability co-transformation of program and test
adequacy criterion, as defined by Definition 3 of Testability Transformation.

These two possibilities for combining Metamorphic Testing and Testability
Transformation are each, essentially, formalisations of McMinn’s Co-testability
Transformation, which transforms both the program under test and the corre-
sponding oracle for that program under test [39].

5 Testability Transformation Research Questions
to Be Tackled Using Formal Methods

In this section we give seven open problems concerning formal aspects of Testa-
bility Transformation, each of which could yield sufficient challenges for a con-
nected set of research activities involving several non-trivial subprojects, perhaps
suitable for a PhD programme or other grant-funded project at the intersection
of Software Engineering and Formal Methods.

Research Question 1 (Novel Semantics). Can we define an elegant formal
semantics for Branch Adequacy?
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According to such a branch adequacy semantics, any meaning–preserving
transformation would preserve the sets of sets of branch adequate inputs. Ide-
ally, the semantics should admit specialisation to a specific set of branches, so
there is also a need to formalise the specification of branches to support such a
specialisation.

Branch adequacy is widely-studied and held out as a goal for many test
techniques [10,45], making this good starting point. Progress on Research Ques-
tion 1 alone could yield great progress in our understanding of many test input
generation techniques.

There are several possible candidates for defining a test adequacy semantics.
Different notations may be more valuable in different contexts. For instance, one
might presume that algebraic semantics [19] would be intellectually close to the
notions of transformation and might be best suited to declarative formulation
and correctness proofs of transformation rules. By contrast, operational seman-
tics [44] might best explain and inform the way in which test adequacy criteria
have an operational character, being concerned with execution and, for sev-
eral practically important criteria, execution paths. Finally, Hoare triples [1,29]
might best capture the way that certain aspects of state must be maintained
in order to preserve test behaviour, while others can be safely removed without
affecting test adequacy.

Research Question 2 (Semantic Abstraction). What is the relationship
between Testability Transformation and Abstract Interpretation?

As discussed in Sect. 3, Abstract Interpretation appears to be clearly relevant
to Testability Transformation, but not to explain the relationship between test
adequacy semantics and conventional semantics. Rather, it would appear that
each of the different test adequacy criteria gives rise to a different semantics.
It is the relationship between these different test adequacy semantics that may
best be explained in terms of Abstract Interpretation.

An initial answer to Research Question 2 might start by considering the rela-
tionships between the test adequacy semantics for branch, statement and path
coverage, all of which exhibit a prima facie structural relationship. It will also
be interesting to compare the abstraction relationships between test adequacy
criteria and the subsumption relationship between them; perhaps abstract inter-
pretation can also provide a semantic framework for better understanding of test
adequacy subsumption.

Research Question 3 (Mutation Semantics). What is the test adequacy
semantics for mutation testing?

Mutation testing [31] has been shown to be highly effective as a test adequacy
criterion [14,32]. Therefore, it would be interesting to formalise the semantics
preserved by mutation testing. There are different forms of mutation, such as
strong, firm and weak [48]; a formalisation would allow a more rigorous investi-
gation of relationships between these different forms of mutation. It would also
be useful to specialise a semantics, so that it can apply only to a specific set
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of mutants, thereby facilitating a formal investigation of relationships between
mutations sets and mutant subsumption [30,35].

Finally, since mutants are, themselves, transformations of the program under
test, it would be fascinating to formalise the mutants themselves, and candidate
fixes, within the same Testability Transformation formal semantic framework.
This would facilitate a mathematical investigation of mutants as repair candi-
dates [36], mutant equivalence [27,38,41], links between mutation and meta-
morphic testing [50], and of the empirically-observed phenomenon of mutational
robustness [47].

Research Question 4 (Transformation Sets). What are the transformation
rules that are correct for a given test adequacy criterion (branch, mutation...)
and what proof obligations can be discharged when defining them?

Once some initial theoretical foundations have been laid, it would be highly
useful for testing practitioners to have such sets of transformation rules. Formal
semantic foundations imbue transformation sets with the safety-in-application
that comes for formal guarantees of meaning preservation (with respect to a test
adequacy criterion of interest to the tester). Work on abstract interpretation
frameworks for specifying and reasoning about the correctness of transformation
rules [17] may be useful here.

Research Question 5. What transformations can be performed on test ade-
quacy criteria and what proof obligations do they raise?

Test adequacy criteria can be transformed, both with and without transform-
ing the program under test. This has been known for some time (the example of
MC/DC to branch coverage from Sect. 2 is one such example). However, we lack
a formal framework within which to understand such criteria transformations
with which we could attempt to prove their correctness.

Research Question 6. Can we define a formal semantics of Testability Trans-
formation that helps us to better inform and understand the practice of Meta-
morphic Testing?

A formal understanding of this relationship would help to generalise both
Testability Transformation and Metamorphic Testing, as set out in Sect. 4. Such
a formalisation would also provide a new mathematical foundation for the study
of metamorphic testing, using the formal semantics established in answer to
Research Question 1. This would not only be theoretically helpful (yielding
improved understanding and reasoning about Metamorphic Testing), it would
also have practice benefit by extending the reach of Metamorphic Testing, to
include transformed programs as well as transformed test oracles.

Research Question 7 (Anticipatory Testing). What Testability Transfor-
mations can be used to assist and pre-harden programs for Anticipatory Testing?
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Anticipatory Testing is a (very recent) new approach to testing proposed by
Tonella2 that seeks to identify tests that reveal future failures in systems before
they have occurred. A transformation that makes it easier to find anticipatory
tests would help the tester to find such cases and may alleviate some of the
challenges of anticipatory testing.

It will also be interesting to explore Anti-Testability Transformations; trans-
formations that make the task of finding anticipatory tests harder. Using a more
conventional meaning-preserving transformation approach (in which the trans-
formed program is considered to be a meaning–preserving, and improved, ver-
sion of the original), such anticipatory-test-denying transformations could yield
a form of automated system security hardening.

6 Conclusion

This paper’s primary role is to argue for a formal semantic underpinning for
Testability Transformation. It outlines how such a semantic framework could
combine practical industrial impact with theoretical elegance and intellectual
challenge. The hope is that the research community will take up the challenge
of defining these much-needed formal semantics.

The definition of the sets of semantics preserved by different test adequacy
criteria will undoubtedly also shed much needed light on test adequacy more
generally, and thereby provide a mathematical basis for much of the current ad
hoc practices of software testing.
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