
Einar Broch Johnsen
Ina Schaefer (Eds.)

16th International Conference, SEFM 2018
Held as Part of STAF 2018
Toulouse, France, June 27–29, 2018, Proceedings

Software Engineering
and Formal MethodsLN

CS
 1

08
86

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 10886

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7407

Einar Broch Johnsen • Ina Schaefer (Eds.)

Software Engineering
and Formal Methods
16th International Conference, SEFM 2018
Held as Part of STAF 2018
Toulouse, France, June 27–29, 2018
Proceedings

123

Editors
Einar Broch Johnsen
University of Oslo
Oslo
Norway

Ina Schaefer
Braunschweig University of Technology
Braunschweig
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-92969-9 ISBN 978-3-319-92970-5 (eBook)
https://doi.org/10.1007/978-3-319-92970-5

Library of Congress Control Number: 2018944412

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Message from the STAF Organizers

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences and workshops may vary from year to
year, but they all focus on foundational and practical advances in software technology.
The conferences address all aspects of software technology, from object-oriented
design, testing, mathematical approaches to modeling and verification, transformation,
model-driven engineering, aspect-oriented techniques, and tools. STAF was created in
2013 as a follow-up to the TOOLS conference series that played a key role in the
deployment of object-oriented technologies. TOOLS was created in 1988 by Jean
Bézivin and Bertrand Meyer and STAF 2018 can be considered its 30th birthday.

STAF 2018 took place in Toulouse, France, during June 25–29, 2018, and hosted:
five conferences ECMFA 2018, ICGT 2018, ICMT 2018, SEFM 2018, TAP 2018, and
the Transformation Tool Contest TTC 2018; eight workshops and associated events.
STAF 2018 featured seven internationally renowned keynote speakers, welcomed
participants from all around the world, and had the pleasure to host a talk by the
founders of the TOOLS conference, Jean Bézivin and Bertrand Meyer.

The STAF 2018 Organizing Committee would like to thank (a) all participants for
submitting papers and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
Ecole Nationale Supérieure d'Electrotechnique, Electronique, Hydraulique et
Télécommunications (ENSEEIHT), the Institut National Polytechnique de Toulouse
(Toulouse INP), the Institut de Recherche en Informatique de Toulouse (IRIT), the
région Occitanie, and all sponsors for their support. A special thanks goes to all the
members of the Software and System Reliability Department of the IRIT Laboratory
and the members of the INP-Act SAIC, dealing with all the foreseen and unforeseen
work to prepare a memorable event.

Marc Pantel
Jean-Michel Bruel

Message from the SEFM Program Chairs

This volume contains the papers presented at SEFM 2018, the 16th International
Conference on Software Engineering and Formal Methods, held June 27–29 in
Toulouse, France. SEFM 2018 was collocated with STAF 2018.

The SEFM conference aims to bring together leading researchers and practitioners
from academia, industry, and government, to advance the state of the art in formal
methods, to facilitate their uptake in the software industry, and to encourage their
integration within practical software engineering methods and tools. The topics of
interest for submission included the following aspects of software engineering and
formal methods:

– New frontiers in software architecture: self-adaptive, service-oriented, and cloud
computing systems; component-based, object-based, and multi-agent systems;
real-time, hybrid, and embedded systems; reconfigurable systems

– Software verification and testing: model checking and theorem proving; verification
and validation; probabilistic verification and synthesis; testing

– Software development methods: requirement analysis, modeling, specification, and
design; light-weight and scalable formal methods

– Application and technology transfer: case studies, best practices, and experience
reports; tool integration

– Security and safety: security and mobility; safety-critical, fault-tolerant, and secure
systems; software certification

– Design principles: domain-specific languages, type theory, abstraction, and
refinement

SEFM 2018 solicited full research papers describing original research results, case
studies and tools, and short papers on new ideas and work in progress, describing new
approaches, techniques, and/or tools that are not fully validated yet. We received 58
submissions from 25 different countries. Each submission was reviewed by at least
three Program Committee members. We accepted 17 regular papers, with an accep-
tance rate of 29%. The program also featured two remarkable invited talks:

– Mark Harman (Facebook and University College London): “We Need a Testability
Transformation Semantics”

– Andrzej Wasowski (IT University of Copenhagen): “Hunting Resource Manipu-
lation Bugs in Linux Kernel Code”

Our first words of thanks go to the Program Committee members and to the external
reviewers, who carried out thorough and careful reviews and enabled the assembly of
this high-quality work. We thank the authors for their submissions, and for their
collaboration in further improving their papers. A special word of thanks goes to our
invited speakers, Mark Harman and Andrzej Wasowski, for accepting our invitation
and for their very stimulating contributions. We also thank the local Organizing

Committee of STAF 2018, who largely contributed to the success of this event. We
also thank the developers and maintainers of the EasyChair conference management
system, which was of great help in handling the paper submission, reviewing, dis-
cussion, and assembly of the proceedings. Finally, we are most grateful to Alexander
Knüppel, who provided invaluable help in the preparation of the conference website
and proceedings.

June 2018 Einar Broch Johnsen
Ina Schaefer

VIII Message from the SEFM Program Chairs

Organization

Steering Committee

Manfred Broy Technische Universität, Munich, Germany
Radu Calinescu University of York, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Alessandro Cimatti FBK, Italy
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Mike Hinchey Lero, The Irish Software Engineering Research Centre,

Ireland
Paddy Krishnan Oracle Labs, Australia
Eva Khn TU Wien, Austria
Zhiming Liu Southwest University, China
Gwen Salan Grenoble INP, Inria, LIG, France
Marjan Sirjani Malardalen University, Sweden

Program Chairs

Einar Broch Johnsen University of Oslo, Norway
Ina Schaefer Technische Universität Braunschweig, Germany

Program Committee

Erika Abraham RWTH Aachen University, Germany
Elvira Albert Universidad Complutense de Madrid, Spain
Ade Azurat Fasilkom UI, Indonesia
Luis Barbosa University of Minho, Portugal
Dirk Beyer LMU Munich, Germany
Marcello Bonsangue Leiden University, The Netherlands
Jonathan Bowen London South Bank University, UK
Mario Bravetti University of Bologna, Italy
Einar Broch Johnsen University of Oslo, Norway
Ana Cavalcanti University of York, UK
Alessandro Cimatti FBK-irst, Italy
Ferruccio Damiani Università di Torino, Italy
Frank De Boer CWI, The Netherlands
Rocco De Nicola School for Advanced Studies Lucca, Italy
John Derrick Unversity of Sheffield, UK
Anke Dittmar University of Rostock, Germany
George Eleftherakis The University of Sheffield, UK
José Luiz Fiadeiro Royal Holloway, University of London, UK
Carlo A. Furia Chalmers University of Technology, Sweden

Philipp Haller KTH Royal Institute of Technology, Sweden
Klaus Havelund Jet Propulsion Laboratory, USA
Rob Hierons Brunel University, UK
Marieke Huisman University of Twente, The Netherlands
Paddy Krishnan Oracle, USA
Peter Gorm Larsen Aarhus University, Denmark
Kung-Kiu Lau The University of Manchester, UK
Martin Leucker University of Lübeck, Germany
Tiziana Margaria Lero, Ireland
Mercedes Merayo Universidad Complutense de Madrid, Spain
Shin Nakajima National Institute of Informatics, Japan
Viet Yen Nguyen Hypefactors, Denmark
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Marc Pantel IRIT/INPT, Université de Toulouse, France
Anna Philippou University of Cyprus, Cyprus
Geguang Pu East China Normal University, China
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Philipp Ruemmer Uppsala University, Sweden
Bernhard Rumpe RWTH Aachen University, Germany
Gwen Salaün University of Grenoble Alpes, France
Augusto Sampaio Federal university of Pernambuco, Brazil
Cesar Sanchez IMDEA Software Institute
Ina Schaefer Technische Universität Braunschweig, Germany
Neeraj Singh INPT-ENSEEIHT/IRIT, University of Toulouse,

France
Marjan Sirjani Malardalen University, Sweden; Reykjavik University,

Iceland
Graeme Smith The University of Queensland, Australia
Bernhard Steffen Technische Universität Dortmund, Germany
Maurice H. Ter Beek ISTI-CNR, Pisa, Italy
Willem Visser Stellenbosch University, South Africa
Bruce Watson Stellenbosch University, South Africa
Heike Wehrheim University of Paderborn, Germany
Wang Yi Uppsala University, Sweden
Ingrid Chieh Yu University of Oslo, Norway

Additional Reviewers

Abd Alrahman, Yehia
Arshad, Rehman
Barbon, Gianluca
Cardone, Felice
Convent, Lukas
Correas Fernández, Jesús
Dangl, Matthias

Din, Crystal Chang
Dokter, Kasper
Foster, Simon
Freitas, Fred
Galletta, Letterio
García, Miriam
Giraudo, Mauro

X Organization

Gordillo, Pablo
Gossen, Frederik
Inverso, Omar
Irfan, Ahmed
Isabel, Miguel
Jafari, Ali
Krishna, Ajay
Kulik, Tomas
Laarman, Alfons
Lamprecht, Anna-Lena
Lange, Felix Dino
Lemberger, Thomas
Lu, Yi
Macedo, Hugo Daniel
Markin, Grigory
Mauro, Jacopo
Micheli, Andrea
Mohaqeqi, Morteza
Nellen, Johanna
Netz, Lukas
Neves, Renato
Paolini, Luca

Pauck, Felix
Peng, Cong
Pérez, Jorge A.
Qian, Chen
Raco, Deni
Rüthing, Oliver
Sabouri, Hamideh
Sacerdoti Coen, Claudio
Santini, Francesco
Schupp, Stefan
Sharma, Arnab
Spagnolo, Giorgio O.
Stolz, Volker
Ta, Quang-Trung
Tapia Tarifa, Silvia Lizeth
Thoma, Daniel
Thomsen, Michael Kirkedal
Varga, Simon
von Wenckstern, Michael
Winter, Kirsten
Zhang, Ning

Organization XI

Contents

Invited Keynote

We Need a Testability Transformation Semantics . 3
Mark Harman

Specification

From Software Specifications to Constraint Programming 21
Stefan Hallerstede, Miran Hasanagić, Sebastian Krings,
Peter Gorm Larsen, and Michael Leuschel

Automated Specification Extraction and Analysis with Specstractor 37
Christoph Schulze, Rance Cleaveland, and Mikael Lindvall

Bridging the Gap Between Informal Requirements and Formal
Specifications Using Model Federation . 54

Fahad Rafique Golra, Fabien Dagnat, Jeanine Souquières, Imen Sayar,
and Sylvain Guerin

Concurrency

Program Verification for Exception Handling on Active Objects
Using Futures . 73

Crystal Chang Din, Rudolf Schlatte, and Tzu-Chun Chen

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 89
Stefan Schupp and Erika Ábrahám

FASTLANE Is Opaque – a Case Study in Mechanized Proofs of Opacity 105
Gerhard Schellhorn, Monika Wedel, Oleg Travkin, Jürgen König,
and Heike Wehrheim

Program Analysis

Monte Carlo Tree Search for Finding Costly Paths in Programs 123
Kasper Luckow, Corina S. Păsăreanu, and Willem Visser

A Cloud-Based Execution Framework for Program Analysis 139
Daniel Balasubramanian, Dmitriy Kostyuchenko, Kasper Luckow,
Rody Kersten, and Gabor Karsai

Cross-Architecture Lifter Synthesis . 155
Rijnard van Tonder and Claire Le Goues

Model Checking and Runtime Verification

Counterexample Simplification for Liveness Property Violation 173
Gianluca Barbon, Vincent Leroy, and Gwen Salaün

Online Enumeration of All Minimal Inductive Validity Cores 189
Jaroslav Bendík, Elaheh Ghassabani, Michael Whalen, and Ivana Černá

Prevent: A Predictive Run-Time Verification Framework Using
Statistical Learning . 205

Reza Babaee, Arie Gurfinkel, and Sebastian Fischmeister

Applications

Formal Verification of Platoon Control Strategies . 223
Adnan Rashid, Umair Siddique, and Osman Hasan

Exploring Properties of a Telecommunication Protocol with Message Delay
Using Interactive Theorem Prover . 239

Catherine Dubois, Olga Grinchtein, Justin Pearson, and Mats Carlsson

Automated Validation of IoT Device Control Programs Through
Domain-Specific Model Generation . 254

Yunja Choi

Shape Analysis and Reuse

Graph-Based Shape Analysis Beyond Context-Freeness 271
Hannah Arndt, Christina Jansen, Christoph Matheja, and Thomas Noll

Facilitating Component Reusability in Embedded Systems with GPUs 287
Gabriel Campeanu

Author Index . 303

XIV Contents

Invited Keynote

We Need a Testability
Transformation Semantics

Mark Harman1,2(B)

1 Facebook, London, UK
mark.harman@ucl.ac.uk

2 University College, London, UK

Abstract. This paper (This paper is a brief outline of some of the con-
tent of the keynote by the author at the 16th International Conference
on Software Engineering and Formal Methods (SEFM 2018) in Toulouse,
France; 27th–29th June 2018.) briefly reviews Testability Transforma-
tion, its formal definition, and the open problem of constructing a set
of formal test adequacy semantics to underpin the current practice of
deploying transformations to help testing and verification activities.

1 Introduction

Testability transformation modifies a program to make it easier to test. Unlike
traditional program transformation [18,43], which alters a program’s syntax
without changing its input–output behaviour, Testability Transformation may
alter functionality. Nevertheless, it does respect a program semantics, defined by
the test adequacy criterion. Therefore, the sense in which a Testability Trans-
formation is meaning preserving rests on a formal definition of the semantics of
transformations that preserve test adequacy. Sadly, to date, such a test adequacy
semantics has yet to be formally defined.

There are several widely-used test adequacy criteria in practice, such as state-
ment, branch, data flow, path and mutation adequacy [8,9,31]. Each of these ade-
quacy criteria gives rise to a different test adequacy semantics, the definitions
of which and their relationship as a formal lattice of semantics remain inter-
esting and important open scientific problems at the intersection of Software
Engineering and Formal Methods (SEFM). Tackling this set of related semantic
definitions will provide a firm mathematical foundation for Testability Transfor-
mation, and by extension, may also yield insights into currently-deployed testing
techniques. This paper aims to draw out some of these open problems as research
questions for the SEFM research community.

Testability Transformation itself, was first formalised in 2004 [25]. However,
informally, software engineers have performed transformations to aid testabil-
ity for considerably longer. For example, it is routine for testers to ‘mock up’
procedures to allow testing of the ‘whole’ before the ‘parts’ have been fully imple-
mented. Similarly, for verification purposes, it is often necessary to model parts
of the system with stubs, where source code is unavailable for analysis [2].
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-92970-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_1&domain=pdf

4 M. Harman

These simple mock–and–model transformations are relatively well-
understood. By contrast, other transformations, that have the potential to more
dramatically benefit the effectiveness and efficiency of testing and verification,
remain less well-understood, because of a lack of proper formal underpinnings.
These more ambitious Testability Transformations exploit the way in which
transformation rules can be ‘more aggressive’ in their disruption of the input–
output behavior, so long as they take care to preserve test adequacy semantics.

For example, Testability Transformation has been used to tackle problems
such as flag variables [4,5,20], unstructured control flow [28], data flow testing
[34], state-based testing [33], and nesting [40]. An overview of these applications
of Testability Transformation can be found in the 2008 survey [23]. As well as
source code transformation, it has also been applied, more recently at bytecode
level [37]. It has also been applied to alleviate problems in dynamic symbolic
execution [11] and to tackle the oracle problem in testing [39].

Nevertheless, the lack of formal underpinning means that much of this work
rests on, as yet, uncertain foundations and this inhibits progress; transforma-
tions should take care to preserve test adequacy semantics, yet there is no for-
mal description of test adequacy semantics for any of the widely-used adequacy
criteria. Much more could undoubtedly be achieved in terms of practical trans-
formation benefit, if only the designers of Testability Transformations had a
formal test adequacy semantics to which they could appeal. Practitioners and
researchers could use such a semantics to motivate, justify or otherwise explore
their transformation spaces.

2 Formal Definition of Testability Transformation

The goal of a Testability Transformation is to make it easier to test the untrans-
formed program. Although test data is ultimately applied to the original pro-
gram, the technique that generates it uses the transformed version because it
is easier. The transformation process therefore needs to guarantee that any
adequate set of test data, generated and adequate for the transformed pro-
gram, will also be adequate for the original program. This (test-based) meaning
preservation guarantee replaces the more familiar guarantee, whereby traditional
transformation preserves the input–output relationship of the untransformed
program.

The formal definition of Testability Transformation is simple and has been
known for some time [25]. In this section, we briefly review this formal definition
of Testability Transformation, based on earlier work [22,25], which we augment
by defining, slightly more formally, what is intended by the term ‘test adequacy
criterion’:

Definition 1 (Test Adequacy Criterion). Let P be a set of programs, with
an input space I. A test adequacy criterion, c is a function from programs to
predicates over sets of inputs:

c ∈ P → 2I → {true, false}

We Need a Testability Transformation Semantics 5

A test adequacy criterion determines whether a set of test inputs (i.e., test
suite) meets the criterion of interest for the tester. An example is the branch
adequacy criterion which is true, for test suite T and program P , when for every
feasible branch, b in P , the test suite T contains at least one test that executes b.
Another example is the statement adequacy criterion, which is true when every
reachable statement is executed by the at least one test in the test suite.

In practice [3], since branch traversibility and statement reachability are both
undecidable, testers settle for a measure of the percentage of branches (state-
ments) covered, setting (rather arbitrary) percentage thresholds for satisfaction
of the coverage predicate. Alternatively, practicing testers may choose to identify
a set of important branches (statements) that are know to be feasible (and of
interest) that would need to be covered in order for the test adequacy criterion
to return true.

With the concept of tests adequacy criterion in hand, we can now define what
it means to be a transformation that is concerned with both programs and the
tester’s chosen adequacy criterion, both of which might be transformed, as we
shall see.

Definition 2 (Testing-Oriented Transformation). Let P be a set of pro-
grams and C be a set of test adequacy criteria. A program transformation is
a partial function in P → P. A Testing-Oriented Transformation is a partial
function in (P × C) → (P × C).

The test adequacy criterion, C refers to the overall criterion, which may be
composed of a set of instances, each of which is denoted by lower case c. For
instance, branch coverage is a possible choice for C, while a particular instance,
c, might capture the specific set of branches to be covered.

A testing-oriented transformation is defined to be a partial function, simply
to allow that the transformation might be undefined for some programs; the pos-
sibility that a testing-oriented transformation may fail to terminate is not ruled
out. In practice, this is relatively unimportant generalisation from total func-
tions, because it will always be acceptable to leave the program untransformed.
Therefore, a partial testing-oriented transformation can be easily converted to a
total testing-oriented transformation.

Definition 3 (Testability Transformation). A Testing-Oriented Transfor-
mation, τ is a Testability Transformation iff, for all programs p, criteria c, and
test sets T , T is adequate for p according to c if T is adequate for p′ according
to c′, where τ(p, c) = (p′, c′).

In some cases, the test adequacy criterion can be transformed along with
the program under test and this definition allows for that. We call this a co-
transformation (that is, one in which both the program under test and the test
adequacy criteria are transformed). For instance, MC/DC test adequacy [49]
can be safely co-transformed to branch adequacy provided that the program
is co-transformed to expand the boolean logic operator terms in predicates [8].
This co-transformation means that branch coverage of the expanded program

6 M. Harman

is equivalent (has the same test adequate test input sets) as MC/DC on the
untransformed version.

In other circumstances, it will be more convenient to leave the adequacy cri-
terion untransformed, and thereby to produce a program transformation that
respects it. That is, for some criterion, c, a c–preserving Testability Transforma-
tion guarantees that the transformed program is suitable for testing with respect
to the original criterion; a widely-used scenario in practice.

Definition 4 (c–Preserving Testability Transformation). Let τ be a
Testability Transformation. If, for some criterion, c, for all programs p, there
exists some program p′ such that τ(p, c) = (p′, c), then τ is called a c–preserving
Testability Transformation.

As an illustrative example, consider the program

Example 1. Simple program under test illustration

input(z);
x=1; y=z;
if (y>3) x=x+1;

else x=x-1;
output(x,y,z)

Example 1 can be transformed to

input(z)
if (z>3) ;

else ;
output(x,y,z)

Such a transformation does not preserve the effect of the original program
on the variables x and y and, therefore, does not preserve the input–output
behaviour of Example 1. However, it does preserve the set of sets of inputs that
execute (or ‘cover’ in testing nomenclature) all branches. It also preserves the set
of sets of inputs that cover all statements, despite the fact that the transforma-
tion process has removed some statements. Therefore, the transformation can be
said to be a ‘branch–adequate transformation’. It is also a ‘statement–adequate
transformation’.

This guarantee of test-adequacy for the transformation has practical signifi-
cance: test inputs can be constructed from the transformed program, safe in the
knowledge that any set of inputs that is branch adequate for the transformed
program will also be branch adequate for the original (Example 1). Since branch
adequacy subsumes statement adequacy, we would also immediately know that
such a set of test inputs would also be statement adequate for Example 1.

Of course, when executed on each version, the input–output relationship will
be different, but this is unimportant for test input generation; the test inputs,
once generated, will be applied to Example 1, not the transformed version.

We Need a Testability Transformation Semantics 7

The advantage of the transformation is that it may prove to be more effective
and/or efficient to generate tests from the transformed program than the origi-
nal. This has been the motivation for the previous work on Testability Transfor-
mation, which has revealed many such cases whereby transformation eases test
input generation and verification.

Testability transformation is not only useful, but also offers interesting intel-
lectual and scientific challenges: transformations can cover different paths in the
transformed program, yet still preserve path adequacy, because the sets of test
inputs that cover all paths in the transformed program also cover all the paths
in the original. The behaviour of transformed programs and their relationship
to the original from which they are constructed are thus highly subtle and a
full understanding clearly necessitates a proper formal semantic treatment. As a
simple illustration of this need, consider the simple fragment F , defined below:

Example 2. (F)

input(x);
if (x>0) x=-1;

else x=1;
output(x)

The fragment F can be branch-adequately transformed to F ′ defined below:

Example 3. (F’)

input(x);
if (x>0);

else;
output(x)

This transformation is also path-adequate. Furthermore, F ◦ F can be path-
adequately transformed to F ′ ◦ F ′. That is, as illustrated in Fig. 1, test suites
that cover all branches of F ′ ◦ F ′, also cover all branches of F ◦ F , even though
the test inputs will traverse different branches. Indeed, test inputs that cover all
paths in F ′ ◦ F ′ also cover all paths in F ◦ F , even though they follow different
paths in the transformed program than they follow in the original.

Formal treatments of slicing may provide a starting point for understanding
this behaviour [7,13,42,46], since we are partially concerned with the interplay
between data and control flow. Slicing makes a good starting point for under-
standing a subclass of Testability Transformations for two reasons:

1. Slicing reduces program size and is, thereby, likely to reduce execution time,
which may, in turn, help improve the performance of test techniques [24]. Slic-
ing will likely be particularly useful for test techniques that require repeated
execution of the program under test to generate test inputs [12,26], because
the slice computation cost can be offset by the multiple test execution time
gain.

8 M. Harman

Fig. 1. The version on the right is both a branch-adequate and a path-adequate trans-
formation of the version on the left, even though all possible test inputs follow different
paths in each program. The original program partitions the set of all inputs (all initial
values of x) into two disjoint subsets, each of which causes execution to follow one of
two paths. Two test inputs, one from each subset, are necessary and sufficient to cover
all (feasible) paths. The transformed program creates the same test input partition
and so it preserves path-adequacy. This is illustrated by the input sets located at the
top of each figure, and the path that inputs drawn from each follows. These two paths
for each program are depicted in red and blue (or light and dark grey when printed in
black-and-white). Observe that the feasible path sets are different for the two programs,
and these two disjoint input subsets therefore follow different paths in each program.
However, all input sets that cover (follow) all feasible paths in the transformed program
on the right, nevertheless, also follow all feasible paths in the original on the left; the
transformation is path adequacy preserving.

2. Slicing on all predicates for which we seek branch adequacy will maintain the
computation needed for these predicates to correctly replicate their behaviour
in the unsliced original program, thereby ensuring sufficiency of branch ade-
quacy for these predicates.

However, although it may sufficient for path-adequacy, preserving control
flow does not appear to be necessary, as illustrated in Fig. 1.

3 Testability Transformation and Abstract Interpretation

There exist valid Testability Transformations for which the allowable trans-
formations are neither subsets nor supersets the traditional transformation set

We Need a Testability Transformation Semantics 9

that preserves the input–output behaviour of the untransformed program. For
instance, consider this simply illustrative example:

Example 4 (More Concrete). if (x>y) ; else ;

This program can be transformed to the empty program, while preserving
the input–output behaviour of untransformed program. However, this appar-
ently ‘simple optimization’ does not preserve the sets of test suites that cover all
branches of the original and, therefore, it cannot be a branch–adequate trans-
formation. Therefore, there exist Testability Transformation semantics that are
clearly not simply more abstract (allow a superset of transformations) than the
conventional input–output relation semantics.

Furthermore, consider the program:

Example 5 (More Abstract). if (x>y) x=1; else x=2;

This program can be branch–adequately transformed to:

if (x>y) ; else ;

Clearly, such a branch–adequate transformation does not preserve the con-
ventional input–output semantics. Therefore, branch–adequacy semantics is also
not more concrete than conventional semantics.

From Examples 4 and 5 we are forced to conclude that branch–adequacy
semantics is neither universally more concrete nor more abstract than conven-
tional input–output relation semantics. Similar arguments can be made for other
test adequacy criteria and the semantics they denote.

However, this observation does not mean that the consideration of the
abstraction level of the semantics preserved has no role to play in formalising
Testability Transformation. Quite the opposite: it should be possible to construct
a lattice of Testability Transformation semantics ordered by semantic abstraction
[22]. Therefore, abstract interpretation [16] would also be a promising framework
within which to explore test adequacy semantics.

Perhaps a trace-based semantics would be more suitable to capture the prop-
erties preserved by Testability Transformation. However, as the example in Fig. 1
demonstrates, the traces followed in two different programs can be entirely dif-
ferent and yet the two programs are, nevertheless, path adequate testability
transformations of each other. This suggests that perhaps merely abstracting
from simple traces may prove insufficient to capture the semantics of test ade-
quacy1.

1 Author’s note: I sincerely hope that I may be proved wrong in this conjecture, since a
simple abstracted trace semantics that captures test adequacy (and thereby informs
Testability Transformation) would shed much light on many testing problems.

10 M. Harman

4 Testability Transformation and Metamorphic Testing

Metamorphic testing [15] is one approach to tackle the test oracle problem [6].
The oracle problem is captured by the question:

“What output(s) should be expected for a given input?”

With metamorphic testing, the tester uses relationships between already
observed test cases (input–output pairs) and properties of a as-yet-unseen out-
puts for some newly provided test input. In this way Metamorphic Testing offers
an oracle, albeit an incomplete one, where either no oracle, or an even more
incomplete oracle, was previously available. As a simple illustration we might
have:

if p(i) = r then p(f(i)) = g(r)

for some program p and so-called ‘metamorphic relations’ f and g.
In this way we define one test case (f(i), g(r)) in terms of another, (i, r),

using metamorphic relations (f and g).
As a more concrete example, suppose our first test reveals that

CheckBalance(i) = r,

giving us output r, a balance in a bank account, for the input i, a bank
account number. From this test case, we can generate a set of new tests, using
a non-negative deposit, x:

CheckBalance(Deposit(i, x)) = r′,where x ≥ 0,

such that we expect the condition r′ ≥ r. That is, we do not know the correct
value r′ should take (because we lack a complete test oracle). Nevertheless, we
do have a property that r′ should satisfy, for this new input x, expressed in terms
of some previously witnessed test case (i, r).

A far more detailed and complete account of metamorphic testing can be
found elsewhere [15]. For the present paper we merely wish to observe that meta-
morphic testing already lies at an intersection between Software Engineering and
Formal Methods, because there is clearly a need to formalise the metamorphic
relations for each metamorphic application area in order to provide a sound
foundation for each.

It is also interesting to observe the close resemblance between metamorphic
test relations and algebraic data type specifications [21]; both essentially capture
a set of algebraic properties to be maintained in all valid instances. For instance,
in the CheckBalance example above, metamorphic testing is simply exploiting
the following algebraic property of CheckBalance and Deposit to find new test
cases for old:

∀x ∈ IR.
x ≥ 0 ∧ CheckBalance(i) = r ∧ CheckBalance(Deposit(i, x)) = r′

⇒
r′ ≥ r

We Need a Testability Transformation Semantics 11

which has a similar structure (and potential uses) as the familiar algebraic prop-
erties of data structures, such as:

∀s ∈ Stack, x ∈ Elem.
top(push(x, s)) = x

There are at least two connections between Testability Transformation and
Metamorphic Testing:

1. Metamorphic Testing as Testability Transformation: Consider again
the metamorphic relations f and g for the program p, where

if p(i) = r then p(f(i)) = g(r)

If we re-write this, slightly, as

if p(i) = r then (f ◦ p)(i) = g(r)

it becomes immediately clear that f ◦ p can be regarded as a (relatively
simply) transformed version of p, and that the transformation of the oracle
from p(i) = r to (f ◦ p)(i) = g(r) can also be regarded as a transformation of
the oracle, thereby resembling a test adequacy criterion transformation.

2. Metamorphic Testability Transformation: If we generalise a metamor-
phic equation like if p(i) = r then p(f(i)) = g(r), we can obtain a kind of
‘Metamorphic Testability Transformation’, which combines the metamorphic
effect of the oracle with the transformation effect on the program. The gen-
eralisation would be if p(i) = r then (Tp(p))(f(i)) = (Tc(g))(r) where Tp is a
Testability Transformation on programs and Tc is a Testability Transforma-
tion on the oracle; akin to a testability co-transformation of program and test
adequacy criterion, as defined by Definition 3 of Testability Transformation.

These two possibilities for combining Metamorphic Testing and Testability
Transformation are each, essentially, formalisations of McMinn’s Co-testability
Transformation, which transforms both the program under test and the corre-
sponding oracle for that program under test [39].

5 Testability Transformation Research Questions
to Be Tackled Using Formal Methods

In this section we give seven open problems concerning formal aspects of Testa-
bility Transformation, each of which could yield sufficient challenges for a con-
nected set of research activities involving several non-trivial subprojects, perhaps
suitable for a PhD programme or other grant-funded project at the intersection
of Software Engineering and Formal Methods.

Research Question 1 (Novel Semantics). Can we define an elegant formal
semantics for Branch Adequacy?

12 M. Harman

According to such a branch adequacy semantics, any meaning–preserving
transformation would preserve the sets of sets of branch adequate inputs. Ide-
ally, the semantics should admit specialisation to a specific set of branches, so
there is also a need to formalise the specification of branches to support such a
specialisation.

Branch adequacy is widely-studied and held out as a goal for many test
techniques [10,45], making this good starting point. Progress on Research Ques-
tion 1 alone could yield great progress in our understanding of many test input
generation techniques.

There are several possible candidates for defining a test adequacy semantics.
Different notations may be more valuable in different contexts. For instance, one
might presume that algebraic semantics [19] would be intellectually close to the
notions of transformation and might be best suited to declarative formulation
and correctness proofs of transformation rules. By contrast, operational seman-
tics [44] might best explain and inform the way in which test adequacy criteria
have an operational character, being concerned with execution and, for sev-
eral practically important criteria, execution paths. Finally, Hoare triples [1,29]
might best capture the way that certain aspects of state must be maintained
in order to preserve test behaviour, while others can be safely removed without
affecting test adequacy.

Research Question 2 (Semantic Abstraction). What is the relationship
between Testability Transformation and Abstract Interpretation?

As discussed in Sect. 3, Abstract Interpretation appears to be clearly relevant
to Testability Transformation, but not to explain the relationship between test
adequacy semantics and conventional semantics. Rather, it would appear that
each of the different test adequacy criteria gives rise to a different semantics.
It is the relationship between these different test adequacy semantics that may
best be explained in terms of Abstract Interpretation.

An initial answer to Research Question 2 might start by considering the rela-
tionships between the test adequacy semantics for branch, statement and path
coverage, all of which exhibit a prima facie structural relationship. It will also
be interesting to compare the abstraction relationships between test adequacy
criteria and the subsumption relationship between them; perhaps abstract inter-
pretation can also provide a semantic framework for better understanding of test
adequacy subsumption.

Research Question 3 (Mutation Semantics). What is the test adequacy
semantics for mutation testing?

Mutation testing [31] has been shown to be highly effective as a test adequacy
criterion [14,32]. Therefore, it would be interesting to formalise the semantics
preserved by mutation testing. There are different forms of mutation, such as
strong, firm and weak [48]; a formalisation would allow a more rigorous investi-
gation of relationships between these different forms of mutation. It would also
be useful to specialise a semantics, so that it can apply only to a specific set

We Need a Testability Transformation Semantics 13

of mutants, thereby facilitating a formal investigation of relationships between
mutations sets and mutant subsumption [30,35].

Finally, since mutants are, themselves, transformations of the program under
test, it would be fascinating to formalise the mutants themselves, and candidate
fixes, within the same Testability Transformation formal semantic framework.
This would facilitate a mathematical investigation of mutants as repair candi-
dates [36], mutant equivalence [27,38,41], links between mutation and meta-
morphic testing [50], and of the empirically-observed phenomenon of mutational
robustness [47].

Research Question 4 (Transformation Sets). What are the transformation
rules that are correct for a given test adequacy criterion (branch, mutation...)
and what proof obligations can be discharged when defining them?

Once some initial theoretical foundations have been laid, it would be highly
useful for testing practitioners to have such sets of transformation rules. Formal
semantic foundations imbue transformation sets with the safety-in-application
that comes for formal guarantees of meaning preservation (with respect to a test
adequacy criterion of interest to the tester). Work on abstract interpretation
frameworks for specifying and reasoning about the correctness of transformation
rules [17] may be useful here.

Research Question 5. What transformations can be performed on test ade-
quacy criteria and what proof obligations do they raise?

Test adequacy criteria can be transformed, both with and without transform-
ing the program under test. This has been known for some time (the example of
MC/DC to branch coverage from Sect. 2 is one such example). However, we lack
a formal framework within which to understand such criteria transformations
with which we could attempt to prove their correctness.

Research Question 6. Can we define a formal semantics of Testability Trans-
formation that helps us to better inform and understand the practice of Meta-
morphic Testing?

A formal understanding of this relationship would help to generalise both
Testability Transformation and Metamorphic Testing, as set out in Sect. 4. Such
a formalisation would also provide a new mathematical foundation for the study
of metamorphic testing, using the formal semantics established in answer to
Research Question 1. This would not only be theoretically helpful (yielding
improved understanding and reasoning about Metamorphic Testing), it would
also have practice benefit by extending the reach of Metamorphic Testing, to
include transformed programs as well as transformed test oracles.

Research Question 7 (Anticipatory Testing). What Testability Transfor-
mations can be used to assist and pre-harden programs for Anticipatory Testing?

14 M. Harman

Anticipatory Testing is a (very recent) new approach to testing proposed by
Tonella2 that seeks to identify tests that reveal future failures in systems before
they have occurred. A transformation that makes it easier to find anticipatory
tests would help the tester to find such cases and may alleviate some of the
challenges of anticipatory testing.

It will also be interesting to explore Anti-Testability Transformations; trans-
formations that make the task of finding anticipatory tests harder. Using a more
conventional meaning-preserving transformation approach (in which the trans-
formed program is considered to be a meaning–preserving, and improved, ver-
sion of the original), such anticipatory-test-denying transformations could yield
a form of automated system security hardening.

6 Conclusion

This paper’s primary role is to argue for a formal semantic underpinning for
Testability Transformation. It outlines how such a semantic framework could
combine practical industrial impact with theoretical elegance and intellectual
challenge. The hope is that the research community will take up the challenge
of defining these much-needed formal semantics.

The definition of the sets of semantics preserved by different test adequacy
criteria will undoubtedly also shed much needed light on test adequacy more
generally, and thereby provide a mathematical basis for much of the current ad
hoc practices of software testing.

Acknowledgements. Many thanks to Patrick Cousot, Paul Marinescu, Peter
O’Hearn, Tony Hoare, Mike Papadakis, Shin Yoo, and Jie Zhang for comments on
earlier drafts. Thanks also to the Facebook Developer Infrastructure leadership for
their support and to the European Research Council for part-funding my scientific
work through the ERC Advanced Fellowship scheme.

References

1. Apt, K.R.: Ten years of Hoare’s logic: a survey - part I. ACM Trans. Prog. Lang.
Syst. 3(4), 431–483 (1981)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device
drivers. In: Proceedings of the First European Systems Conference (EuroSys 2006),
pp. 73–85. Leuven, Belgium, April 2006

3. Bardin, S., Delahaye, M., David, R., Kosmatov, N., Papadakis, M., Traon, Y.L.,
Marion, J.Y.: Sound and quasi-complete detection of infeasible test requirements.
In: International Conference on Software Testing, Verification and Validation
(ICST 2015), pp. 1–10. IEEE Computer Society (2015)

2 https://www.pre-crime.eu.

https://www.pre-crime.eu

We Need a Testability Transformation Semantics 15

4. Baresel, A., Binkley, D., Harman, M., Korel, B.: Evolutionary testing in the pres-
ence of loop-assigned flags: a testability transformation approach. In: International
Symposium on Software Testing and Analysis (ISSTA 2004), pp. 108–118. Omni
Parker House Hotel, Boston, Massachusetts, July 2004. Appears in Software Engi-
neering Notes 29(4)

5. Baresel, A., Sthamer, H.: Evolutionary testing of flag conditions. In: Cantú-Paz, E.,
Foster, J.A., Deb, K., Davis, L.D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish,
R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A.,
Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller, J. (eds.) GECCO 2003, Part
II. LNCS, vol. 2724, pp. 2442–2454. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-45110-2 148

6. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The Oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

7. Barraclough, R., Binkley, D., Danicic, S., Harman, M., Hierons, R., Kiss, A.,
Laurence, M.: A trajectory-based strict semantics for program slicing. Theor. Com-
put. Sci. 411(11–13), 1372–1386 (2010)

8. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold, New York (1990)
9. Bertolino, A.: Software testing research: achievements, challenges, dreams. In:

Briand, L., Wolf, A. (eds.) Future of Software Engineering 2007. IEEE Computer
Society Press, Los Alamitos (2007)

10. British Standards Institute: BS 7925–2 software component testing (1998)
11. Cadar, C.: Targeted program transformations for symbolic execution. In: 10th Joint

Meeting on Foundations of Software Engineering (ESEC/FSE), pp. 906–909 (2015)
12. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.

Commun. ACM 56(2), 82–90 (2013)
13. Cartwright, R., Felleisen, M.: The semantics of program dependence. In: ACM

SIGPLAN Conference on Programming Language Design and Implementation,
pp. 13–27 (1989)

14. Chekam, T.T., Papadakis, M., Traon, Y.L., Harman, M.: An empirical study on
mutation, statement and branch coverage fault revelation that avoids the unreliable
clean program assumption. In: Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, 20–28 May 2017,
pp. 597–608 (2017)

15. Chen, T.Y., Feng, J., Tse, T.H.: Metamorphic testing of programs on partial differ-
ential equations: a case study. In: 26th Annual International Computer Software
and Applications Conference (COMPSAC 2002), pp. 327–333. IEEE Computer
Society (2002)

16. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2(4),
511–547 (1992)

17. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: The 29th ACM Symposium on Principles of Pro-
gramming Languages (POPL 2002), pp. 178–190, Portland, Oregon, 16–18 January
2002

18. Darlington, J., Burstall, R.M.: A transformation system for developing recursive
programs. J. Assoc. Comput. Mach. 24(1), 44–67 (1977)

19. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs. MIT
Press, Cambridge (1996)

20. Gong, D., Yao, X.: Testability transformation based on equivalence of target state-
ments. Neural Comput. Appl. 21(8), 1871–1882 (2012)

21. Guttag, J.: Abstract data types and the development of data structures. Commun.
ACM 20(6), 396–404 (1977)

https://doi.org/10.1007/3-540-45110-2_148
https://doi.org/10.1007/3-540-45110-2_148

16 M. Harman

22. Harman, M.: Open problems in testability transformation (keynote paper). In:
1st International Workshop on Search Based Testing (SBST 2008), Lillehammer,
Norway (2008)

23. Harman, M., Baresel, A., Binkley, D., Hierons, R., Hu, L., Korel, B., McMinn,
P., Roper, M.: Testability transformation – program transformation to improve
testability. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods
and Testing. LNCS, vol. 4949, pp. 320–344. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78917-8 11

24. Harman, M., Danicic, S.: Using program slicing to simplify testing. Softw. Test.
Verification Reliab. 5(3), 143–162 (1995)

25. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A.,
Roper, M.: Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (2004)

26. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing (keynote paper). In: 8th IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST 2015), Graz, Austria,
April 2015

27. Harman, M., Yao, X., Jia, Y.: A study of equivalent and stubborn mutation oper-
ators using human analysis of equivalence. In: 36th International Conference on
Software Engineering (ICSE 2014), pp. 919–930, Hyderabad, India, June 2014

28. Hierons, R., Harman, M., Fox, C.: Branch-coverage testability transformation for
unstructured programs. Comput. J. 48(4), 421–436 (2005)

29. Hoare, C.A.R.: An axiomatic basis of computer programming. Commun. ACM 12,
576–580 (1969)

30. Jia, Y., Harman, M.: Higher order mutation testing. J. Inf. Softw. Technol. 51(10),
1379–1393 (2009)

31. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

32. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: International
Symposium on Foundations of Software Engineering (FSE), pp. 654–665 (2014)

33. Kalaji, A., Hierons, R.M., Swift, S.: A testability transformation approach for
state-based programs. In: 1st International Symposium on Search Based Software
Engineering (SSBSE 2009), pp. 85–88. IEEE, Windsor, May 2009

34. Korel, B., Harman, M., Chung, S., Apirukvorapinit, P., Gupta, R.: Data depen-
dence based testability transformation in automated test generation. In: 16th Inter-
national Symposium on Software Reliability Engineering (ISSRE 2005), pp. 245–
254, Chicago, Illinios, USA, November 2005

35. Kurtz, B., Ammann, P., Delamaro, M.E., Offutt, J., Deng, L.: Mutant subsumption
graphs. In: 10th Mutation Testing Workshop (Mutation 2014), Cleveland Ohio,
USA, March 2014, to appear

36. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

37. Li, Y., Fraser, G.: Bytecode testability transformation. In: Cohen, M.B.,
Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 237–251. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23716-4 21

38. Madeyski, L., Orzeszyna, W., Torkar, R., Jozala, M.: Overcoming the equivalent
mutant problem: a systematic literature review and a comparative experiment of
second order mutation. IEEE Trans. Softw. Eng. 40(1), 23–42 (2014)

39. McMinn, P.: Search-based failure discovery using testability transformations to
generate pseudo-oracles. In: Rothlauf, F. (ed.) Genetic and Evolutionary Compu-
tation Conference (GECCO 2009), pp. 1689–1696. ACM, Montreal (2009)

https://doi.org/10.1007/978-3-540-78917-8_11
https://doi.org/10.1007/978-3-540-78917-8_11
https://doi.org/10.1007/978-3-642-23716-4_21

We Need a Testability Transformation Semantics 17

40. McMinn, P., Binkley, D., Harman, M.: Empirical evaluation of a nesting testability
transformation for evolutionary testing. ACM Trans. Softw. Eng. Methodol. 18(3)
(2009). Article no. 11

41. Papadakis, M., Jia, Y., Harman, M., Traon, Y.L.: Trivial compiler equivalence:
a large scale empirical study of a simple, fast and effective equivalent mutant
detection technique. In: 37th International Conference on Software Engineering
(ICSE 2015), pp. 936–946, Florence, Italy (2015)

42. Parsons-Selke, R.: A graph semantics for program dependence graphs. In: Sixteenth
ACM Symposium on Principles of Programming Languages (POPL), Austin, TX,
11–13 January 1989, pp. 12–24 (1989)

43. Partsch, H.A.: The Specification and Transformation of Programs: A Formal App-
roach to Software Development. Springer, Heidelberg (1990)

44. Plotkin, G.D.: The origins of structural operational semantics. J. Logic Algebraic
Prog. 60, 3–15 (2004)

45. Radio Technical Commission for Aeronautics: RTCA DO178-B Software consider-
ations in airborne systems and equipment certification (1992)

46. Reps, T., Yang, W.: The semantics of program slicing. Technical report 777, Uni-
versity of Wisconsin (1988)

47. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software mutational
robustness. Genet. Program. Evolvable Mach. 15(3), 281–312 (2014)

48. Woodward, M.R., Halewood, K.: From weak to strong, dead or alive? An analysis of
some mutation testing issues. In: 2nd Workshop on Software Testing, Verification,
and Analysis. Banff, Canada, July 1988

49. Yu, Y.T., Lau, M.F.: A comparison of MC/DC, MUMCUT and several other cov-
erage criteria for logical decisions. J. Syst. Softw. 79(5), 577–590 (2006)

50. Zhang, J., Hao, D., Zhang, L., Zhang, L.: To detect abnormal program behaviours
via mutation deduction. In: Mutation Testing Workshop, Mutation 2018, to appear

Specification

From Software Specifications
to Constraint Programming

Stefan Hallerstede1(B), Miran Hasanagić1, Sebastian Krings2,
Peter Gorm Larsen1, and Michael Leuschel2

1 Department of Engineering, Aarhus University, Aarhus, Denmark
sha@eng.au.dk

2 University of Düsseldorf, Düsseldorf, Germany

Abstract. Non-deterministic specifications play a central role in the use
of formal methods for software development. Such specifications can be
more readable, but hard to execute efficiently due to the usually large
search space. Constraint programming offers advanced algorithms and
heuristics for solving certain non-deterministic models. Unfortunately,
this requires writing models in a form suitable for efficient solving where
the readability typically required from a specification is lost. Tools like
ProB attempt to bridge this gap by translating high-level first-order
predicate logic specifications into formal models suitable for constraint
solving. In this paper we study potential improvements to this methodol-
ogy by (1) using refinement to transform specifications into models suit-
able for efficient solving, (2) translating first-order predicates directly
into the OscaR framework and (3) using different kinds of solvers as
a back end. Formal verification by proof ensures the correctness of the
solution of the model with respect to the specification.

1 Introduction

State-based modelling methods like B and VDM support writing abstract spec-
ifications and implement them by refinement. Refinement is carried out semi-
automatically, leading to deterministic implementations which are amenable to
automatic code generation. A long term ambition of software tools like ProB [17]
is to allow users to write very high-level specifications, which are easy to read and
write, amenable to formal proof and can yet still be executed efficiently. In other
words, specifications are viewed as non-deterministic programs, where constraint
solving is used to compute solutions to their formal specifications [18]. Still, the
efficient solution of hard constraint satisfaction problems often requires an encod-
ing of formal descriptions of the problems that is difficult to comprehend. Such
concerns turn specifications into non-deterministic implementations and open up
the possibility for programming errors just as in the case of deterministic imple-
mentations. As a consequence, we benefit less from the declarative paradigm than
we would expect. In this paper we propose to use formal refinement as a method
to relate formal models SPEC that describe problems at a high level of abstrac-
tion to formal models AIMP at a lower level of abstraction targeting constraint
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 21–36, 2018.
https://doi.org/10.1007/978-3-319-92970-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_2&domain=pdf

22 S. Hallerstede et al.

solvers. In the same way as for the deterministic case, refinement achieves cor-
rectness with respect to an easier to understand abstract specification. Figure 1
illustrates the approach. The low-level models can be translated into different
frameworks like Constraint Programming (CP), Constraint Logic Programming
over Finite Domains (CLP(FD)) or SAT for efficient execution according to their
“flavour”. The different models may still share modelling concepts but use spe-
cific concepts with efficient representations in the target frameworks. In order
to ease formal refinement proofs, typically several refinement steps REFN are
used before reaching an implementation (AIMP here).

Fig. 1. Refinement and translation of abstract models

ProB [17] is a tool that can execute high-level models described in first-order
predicate logic with set theory by translating them into different frameworks,
in particular, CLP(FD) and SAT. We use the OscaR library [22] as an addi-
tional target bypassing ProB to experiment with different translations into a
CP framework. The objective is to extend ProB eventually also with a CP
translation. As a result of this approach ProB will be capable of providing an
efficient target for the translation of a given model. Furthermore, we obtain a
methodology to compare the performance of different frameworks as we can prove
that they encode the same model while still exploiting their respective strengths.
Finally, beside performance we are also interested in refutation completeness, in
particular. Some search heuristics sacrifice refutation completeness in favour of
performance. In some practical situations this is acceptable when the alternative
is for the search to time out. Of course, for the user of a specification method it
is essential to understand the significance of the answer obtained. In this paper
we deal with the two latter points. We briefly discuss the translations provided
by ProB and the one we use for OscaR. We compare the performance of the
different translated models. Furthermore, since ProB can translate models at
different levels of abstraction, we can compare performance gains achieved by
refining models to lower levels of abstraction.

The following example illustrates the abstraction levels we have to bridge
from a high-level problem description to an efficient CP encoding. We use the
well-known n-queens problem [3] that is commonly used as a benchmark for
constraint solvers and allows evaluating the scalability of our approach. Details
are discussed in Sect. 4.

Example. Consider the following specification of the n-queens problem: n queens
need to be placed on a n-times-n board such that no queen can attack another.

From Software Specifications to Constraint Programming 23

Let n be a (non-negative) integer constant. Let NQABS be the following predi-
cate, a specification of the n-queens problem in first-order predicate logic:

shape of the board
︷ ︸︸ ︷

b ⊆ 1 .. n × 1 .. n∧
n queens

︷ ︸︸ ︷

card b = n ∧
∀p, q · p �→ q ∈ b⇒

∀i · i 	= 0 ⇒ p+ i �→ q 	∈ b
︸ ︷︷ ︸

horizontal

∧ p �→ q+ i 	∈ b
︸ ︷︷ ︸

vertical

∧ p+ i �→ q+ i 	∈ b
︸ ︷︷ ︸

“ \”-diagonal

∧ p+ i �→ q− i 	∈ b
︸ ︷︷ ︸

“/”-diagonal

It captures the main characteristics of the problem: the shape of the board, the
number of queens and a constraint specifying that no queen must be placed on
the board such that it can be attacked by some queen p �→ q ∈ b on the board
horizontally, vertically or diagonally.1

The following specification NQCON is considered an abstract description
when the problem is to be solved by means of constraint programming:

b ∈ array 1 .. n to 1 .. n ∧ allDifferent (b)∧
allDifferent (λx · x ∈ 1 .. n | b(x) + x) ∧ allDifferent (λx · x ∈ 1 .. n | b(x) − x)

where b ∈ array A to B models an array and is defined to be a total function
from A to B (formally, dom b = A∧ ran b ⊆ B ∧ b−1 ; b ⊆ id) and allDifferent (b)
for an array b as b; b−1 ⊆ id, that is, b is injective. CP frameworks usually
have optimised search heuristics for well-known constraints. See the study of
efficient solvers for the allDifferent constraint in [13], for instance. After all,
it requires some reasoning to see that any solution of the n-queens problem
described by NQCON is a solution to the specification NQABS . Refinement
bridges the gap between the two abstraction levels. It is tempting to ask for a
stronger relationship than refinement by requiring that no solutions are lost in
the implementation. However, this can be considered a design decision as one
could, e.g., wish to remove certain “unwanted” solutions.

If the approach described in this article is followed, then specification and
refinement give rise to a method of multi-paradigm programming where impera-
tive, functional and logic program development styles are mixed. Program refine-
ment integrates imperative and logic programming, whereas the theories used in
the proofs contribute functional programming. All proofs presented in this arti-
cle have been carried out with the Isabelle proof assistant [20] in Isabelle/HOL,
that supports this view directly.

Related Work. In [10] the authors argue that specifications should be non-
executable, being more expressive as well as providing a higher level of abstrac-
tion. Moreover, it is stated that executable specifications, being close to a pro-
gramming language style, may introduce implementation bias together with over-
specification. In general the distinction between these two specification styles is
that a non-executable specification describes what to achieve, while the other
captures how to achieve it. Hence, the two styles require a trade-off involv-
ing expressiveness against executability. A counterargument to [10] is discussed
1 The term p �→ q denotes the pair with first component p and second component q.

24 S. Hallerstede et al.

in [6] showing how abstract specifications can be written to be executable often
even correspond closely to logic programs. The current literature addressing this
gap focuses on translations from a formal model towards a constraint solver.
For example [5,15] presents translations from Z to Prolog and VDM to ABC,
respectively. However, such approaches compared to the methodology presented,
focuses solely on making specifications executable, and do not consider com-
bining refinement together with limiting the search space. In all of this work
executable and non-executable specifications are opposed to each other. In our
work specifications that are not readily executable are refined to executable ones.
These may be non-deterministic or deterministic.

Overview of this Article. The remainder of this paper is organised as fol-
lows. Section 2 describes our approach of specification, refinement and constraint
solving. It provides an example of an (admittedly simple) data refinement. This
work focuses on methodological issues of combining different formal methods
techniques and data refinement is one of the aspects we discuss. Section 3 dis-
cusses the translation of specifications into constraint programming languages.
It is important to be aware of this because these languages directly affect the
specifications that can be executed (just as is the case for other programming
languages). In Sect. 4 we discuss the n-queens problem in greater depth. The
n-queens problem is representative of combinatorial problems, in general.
Whereas the example from Sect. 2 makes use of data refinement, the n-queens
problem changes the structure of the specification during the refinement. Veri-
fied standard constraint programming models are derived by refinement. All the
models are executed in ProB to witness the performance gains (or lack thereof).
The final implementation is also executed in OscaR. The various models and
proofs are available at https://github.com/miranha/SpecCP.

2 Refinement and Constraint Programming

Software specifications are described conveniently using predicate logic together
with set theory, abstracting from details of data representation and program
execution. They are abstract models of software. The discussion of refinement in
this section follows conceptually the refinement notion of Event-B [1]. However,
we avoid the discussion of Event-B proof obligations and focus on the joint use
of refinement and constraint solving. We use first-order logic specifications with
set theory and integer arithmetic. Isabelle/HOL, which is used to prove the
refinement steps, is also used in other contexts to verify properties of Event-B
and VDM specifications [4,25]. The examples that we use in this article, however,
we have translated from and to Isabelle by hand into the dialect of the B-notation
used by ProB, which can be achieved straightforwardly.

Refinement. In some situations abstract models SPEC can be implemented
with reasonable effort as deterministic programs PROG . Specification SPEC is
not as efficiently executable as the deterministic implementation PROG . Refine-
ment permits us to improve SPEC gradually, introducing more implementa-
tion details step by step until reaching PROG . There are various notions of

https://github.com/miranha/SpecCP

From Software Specifications to Constraint Programming 25

refinement. Implication is one of them [11]: REFN refines SPEC if and only
if REFN ⇒ SPEC . This notion can be extended to permit changes in the
data representation, say, replacing variable v by variable w. The relationship
is expressed by a predicate SIMR(w , v). This is referred to as data refinement
[24]. If SIMR(w, v) is functional of the shape v = SIMF (w), data refinement of
SPEC (v, v′) by REFN (w,w′) can be described as follows:

w = SIMG(v) ∧ REFN (w,w′) ∧ v′ = SIMF (w′) ⇒ SPEC (v, v′)

where w = SIMG(v) ⇒ v = SIMF (w). Now, SIMR is itself a specification and
can be implemented (or it may be an implementation already). If REFN , SIMF
and SIMG are executable, then we can compute SPEC in terms of them. In
order to be able to understand the solution produced by the implementation we
can use SIMF and SIMG to translate between the data representations. The
refinement relation is considered part of the implementation and implemented
itself. So, refinement is simply implication. For instance, we could sort an array
a in terms of another representation b,

b = SIMG(a) ∧ REFN (b, b′) ∧ a′ = SIMF (b′) ⇒ SPEC (a, a′).

More generally, we refine a specification SPEC by a sequential program
TOCON ;REFN ;TOABS , where TOCON translates into a suitable data rep-
resentation and TOABS translates back. Figure 2 shows how SPEC is refined.
In the examples treated in this article we only encounter functions of the sort
SIMF and SIMG as described above.

a a′

b b′

SPEC

REFN

TOCON TOABS

Fig. 2. Specification SPEC refined by specification TOCON ;REFN ;TOABS

This notion of refinement corresponds to guard refinement in Event-B where
the concrete guard of an event (resp. a state transition) must imply the abstract
guard [1]. It also corresponds to postcondition strengthening in VDM [14] or the
refinement calculus [2,19]. In all of these cases a predicate is used to specify a
successor state. In this article we focus on this predicate and use implication
to express refinement. It can be applied easily in various model-based formal
methods.

In some cases providing a deterministic implementation may be very difficult
and constraint programming can be used. Instead of using refinement to provide
algorithmic structure, it can be used to cast a predicate into a shape that can
be solved efficiently by a constraint solver.

Example. We illustrate this by means of the puzzle Who killed Agatha? [23].
“Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler,

and Charles live in Dreadsbury Mansion, and are the only ones to live there.

26 S. Hallerstede et al.

A killer always hates, and is no richer than his victim. Charles hates no one
that Agatha hates. Agatha hates everybody except the butler. The butler hates
everyone not richer than Aunt Agatha. The butler hates everyone whom Agatha
hates. No one hates everyone. Who killed Agatha?”

Assume we have three distinct constants Agatha, butler and Charles. We
wish to determine the killer k in the following specification WKA(r, h, k)

Agatha ∈ (h \ r)[{k}] ∧ irreflexive(r) ∧ transitive(r) ∧ antisymmetric(r)∧
h[{Agatha}] ∩ h[{Charles}] = ∅ ∧ h[{Agatha}] = P \ {butler}∧
(∀x · x �→ Agatha
∈ r ⇒ butler �→ x ∈ h) ∧ h[{Agatha}] ⊆ h[{butler}]∧
(∀x · h[{x}]
=P)

where P = {Agatha, butler ,Charles}, r models the relationship richer and h
models the relationship hates. This specification captures the informal descrip-
tion above. The use of symbolic constants improves readability. However, search-
ing for a solution for k this may not necessarily be the most efficient represen-
tation. Switching to integer constants I = 0 .. 2 instead, we could use them in
arithmetic expressions as in

∑
y∈h[{x}] y. We can map the values in I to values

in P by means of the function

abs(i) = if i = 0 then Agatha else (if i = 1 then butler else Charles)

and from P to I by means of the function

con(p) = if p = Agatha then 0 else (if p = butler then 1 else 2).

Note that, i = con(p) ⇒ p = abs(i). We can prove that WKB(s, j, �) given by

0 ∈ (j \ s)[{�}] ∧ irreflexive(s) ∧ transitive(s) ∧ antisymmetric(s)∧
j ⊆ I × I ∧ s ⊆ I × I ∧ j[{0}] ∩ j[{2}] = ∅ ∧ j[{0}] = I \ {1}∧
(∀x · x ∈ I ∧ x �→ 0
∈ s ⇒ 1 �→ x ∈ j) ∧ j[{0}] ⊆ j[{1}]∧
(∀x · x ∈ I ⇒ j[{x}]
=I)

refines WKA(r, h, k). Formally,

s = {con(x) �→ con(y) | x �→ y ∈ r} ∧ j = {con(x) �→ con(y) | x �→ y ∈ h}∧
WKB(s, j , �) ∧ k = abs(�) ⇒ WKA(r, h, k).

Note, that the equations in the first line describe functions. Finally, we arrive
at a shape of the specification WKC (s, j, �) that permits efficient execution by
a constraint solver,

� ∈ I ∧ 0 �→ � ∈ j−1 ∧ 0 �→ �
∈ s−1 ∧
irreflexive(s) ∧ transitive(s) ∧ antisymmetric(s)∧
j ⊆ I × I ∧ s ⊆ I × I ∧ (∀x · x ∈ I ∧ 0 �→ x ∈ j ⇒ 2 �→ x
∈ j)∧
0 �→ 0 ∈ j ∧ 0 �→ 1
∈ j ∧ 0 �→ 2 ∈ j ∧ (∀x · x ∈ I ∧ x �→ 0
∈ s ⇒ 1 �→ x ∈ j)∧
(∀x · x ∈ I ∧ 0 �→ x ∈ j ⇒ 1 �→ x ∈ j) ∧ (∀x · x ∈ I ⇒ ∑

y∈j[{x}]1 ≤ 2)

From Software Specifications to Constraint Programming 27

To translate this formula into a dedicated constraint programming model, we
would next replace some formulas to match with the library of the constraint pro-
gramming language. For example, we would replace

∑
y∈j[{x}] 1 by sum(j[{x}])

in the last row. Furthermore, we would replace the relations j and s by cor-
responding two-dimensional boolean arrays. However, this representation is a
trivial rewriting of the formula above, replacing terms of the shape (x, y) ∈ z
by a(x, y) = TRUE, and we do not show it. Figure 3 shows how the model for
the puzzle could be translated to OscaR. The translation has been produced by
hand following the rules described in Sect. 3. It consists of a section of declara-
tions, the actual model and a call to the solver. The most interesting part for
this article is the development of models that can be analysed efficiently. Note,
the use of transpose in the OscaR model. This is an implementation concern
that is reflected by the use of the relational inverse in the abstract formula: the
first index of j and s must not be a CPIntVar.

Fig. 3. OscaR model with solver for the puzzle “Who killed Agatha?”

The constraint solver of ProB can solve the models at all abstraction levels
that we have presented in this section. A set like P = {Agatha, butler ,Charles}
gets translated by ProB internally into the set {1, 2, 3}; as such the first data
refinement WKB is performed internally by ProB and not required by the user.
The translation of the constraint ∀x · h[{x}]
= P into a sum constraint in WKC
is also not necessary: ProB has built-in support for set equality and inequality
and can handle the set inequality h[{x}]
= P relatively efficiently.

3 Translation and Constraint Solving

This section discusses the translation approaches introduced in Sect. 1.
Section 3.1 discusses the use of specifications as constraint solving languages
directly with ProB, outlining some important concepts of the applied transla-
tions. Section 3.2 outlines the translation of predicate logic statements from a

28 S. Hallerstede et al.

specification into a language for constraint solving in OscaR. Whereas the trans-
lation to OscaR requires the user to adopt certain data representations, ProB
can also solve the abstract specifications. In fact, internally ProB attempts to
find efficient representations to increase the speed of the search. However, no
generally efficient method exists [12]. A longer term goal of our work combining
refinement with translations is to permit writing specifications that steer the
internal representations to gain more control over the efficiency while keeping
the abstraction level high. Independently of this, the approach used by ProB for
finding the solution to a non-deterministic specification influences the specifica-
tion style for specific problems. In other words, implementation concerns always
shine through.

3.1 Translation in ProB

A key concept of ProB’s default constraint solver [8] is reification, i.e., rep-
resenting the truth value of a constraint C by a boolean decision variable
RC ∈ 0..1 so that RC = 1 ⇔ C. Reification is important for ProB to avoid
choice points, e.g., for P ∨ Q, ProB will set up the constraint similar to
RP ∈ 0..1∧(RP = 1 ⇔ P)∧RQ ∈ 0..1∧(RQ = 1 ⇔ Q)∧(RP = 1∨RQ = 1). The
constraint (RP = 1 ∨ RQ = 1) is handled by ProB’s boolean constraint solver,
while P and Q can be handled by different solvers. Indeed, arithmetic predicates
and operators like x + y ≥ 0 are mapped to the finite domain solver CLP(FD).
Equality, inequality, set membership and subset constraints are handled by a
dedicated solver in ProB itself.

In the worst case, universal quantifiers ∀x.Q ⇒ R get expanded when the
domain {x|Q} is known. However, there is special support for ∀x.x ∈ S ⇒ P (x):
here P will be checked for every element added to S, even when S is not yet fully
known. Certain universal quantifiers can be expanded into a conjunction: e.g.,
∀x.x ∈ 1..3 ⇒ P (x) gets automatically translated into P (1) ∧ P (2) ∧ P (3); this
enables reification of the entire quantified predicate. The treatment of existential
quantifiers is similar; in the worst case they are evaluated when all but the
quantified variables are known. However, some quantifiers can be expanded into
disjunctions: e.g., ∃x.x ∈ 1..3 ∧ P (x) gets translated into P (1) ∨ P (2) ∨ P (3).

As mentioned earlier, ProB provides alternate constraint solving backends: a
translation to SAT via Kodkod and a translation to SMTLib using Z3. The SAT
encoding via Kodkod performs well for constraints over relations and operators
such as relational composition and transitive closure. It, however, requires all
base types to be finite. For the “Who killed Agatha?” of Sect. 2 the SAT backend
is slightly slower (60 ms vs 10 ms). For the n-queens problem in Sect. 4, it is
considerably slower than ProB’s default solver (e.g., over 5 s compared to 10
ms for n = 16). The Z3 backend is even slower (e.g., over 6 s for n = 8). Hence,
in the rest of the paper we have concentrated on the default solver of ProB.

From Software Specifications to Constraint Programming 29

3.2 Translation to OscaR

OscaR (using many ideas of Comet [12]) supports the execution of non-deter-
ministic specifications, as well as permitting us to experiment easily with differ-
ent model representations and search heuristics. Furthermore, OscaR is a library
for Scala [21], so the used syntax is Scala syntax with the extensions made by
OscaR. A specification ∀z · p1(x, z) ∧ . . . pn(x, z) specifies values of variables x
to be computed, constrained by relationships among each other and variables z.
Universal quantifiers and conjunctions are preferred over existential quantifiers
and disjunctions as the latter may lead to backtracking. However, some uses do
lead to loss of efficiency and sometime even lead to performance improvements.
For instance, we use auxiliary variables to add additional constraints (sometimes
redundant but with an effect on performance). So a specification has the form
∃y · ∀z · p1(x, y, z)∧ . . . pn(x, y, z) where y corresponds to an auxiliary variable of
the corresponding constraint program. Generally, OscaR tracks domains of vari-
ables efficiently, while the search algorithms restrict the domains further in order
to minimise the remaining non-deterministic choices. By means of backtracking
OscaR is able to find multiple solutions. In comparison to OscaR, ProB is able
to find solutions for certain infinite problems and it will find all solutions for
finitely posed problems. For OscaR the latter property depends on the chosen
search heuristics. However, usually completeness is sacrificed for efficiency.

The OscaR CP solver adopts a modelling methodology using decision vari-
ables and constraints among them, similar to other CP solvers. Its general
structure is based around three components as shown in Fig. 3: a declaration
of the decision variables, a model and a search heuristic. The declaration intro-
duces the decision variables and their domains. The model component captures
the constraints for the decision variables. The search heuristic specifies a non-
deterministic search heuristic for finding a solution for the model. Usually the
declaration and model together are considered to be one component. We treat
them separate as this is relevant for the translation. The domains associated with
the different variables are highly relevant for the efficiency of the search heuristic.
We only discuss the translation for the declaration and the model, and assume
that a common search heuristic is to be applied to the model, such as binary first
fail. The translation is indicated by the notation S

cp� P describing the trans-
lation from specification element S to constraint programming construct P . We
describe the translation by way of examples. They are easy to understand and
generalise. For these translations the focus is on the extensions relevant for a
specification as provided by OscaR.

The Declarations. The basic data types allowed for decision variables sup-
ported by OscaR are boolean and integer types. An integer type CPIntVar must
be given a finite domain from which its values may be drawn. The boolean type
CPBoolVar is a subtype of integer with the domain of 0 and 1. The translation
of integer and boolean domains as well as declaration of decision variables can
be translated as follows, respectively: D = m .. n

cp� val D = m to n, i ∈ D
cp�

val i = CPIntVar(D) and b ∈ B
cp� val b = CPBoolVar().

30 S. Hallerstede et al.

The Model. Once the decision variables have been declared together with their
domain, constraints can be added to the constraint store. In OscaR constraints
are added to the constraint store by means of the function add(...). When
adding constraints, two important aspects of the constraints to consider are con-
junctions and disjunctions. Although both are of boolean type, they are treated
differently by OscaR to improve the performance of the search for a solution.
Atomic predicates are translated by P

cp� add(Pcp) where Pcp is the atomic pred-
icate in OscaR syntax, for instance, the translation of x ≤ y is x.isLeEq(y).

A conjunction describes a collection of constraints each of which needs to
be true. They can be added separately to the constraint store. For example,
x = 5 ∧ y ≤ x

cp� add(x.isEq(5)); add(y.isLeEq(x)). This is the common
approach for treating conjunctions in OscaR. The general form of this is of the
following shape P ∧ Q

cp� P ′;Q′ where P and Q are translated to P ′ and Q′.
A disjunction describes a collection of constraints either of which needs to

be true. It cannot be divided into separate constraints as is the case with con-
junction. All separate constraints are implicitly conjoined. For this reason dis-
junctions are represented as boolean expressions within the constraint language.
The operators available for this are logical or (||), logical and (&&) as well as
implication (==>). This lifts the predicate into a constraint expression of the
OscaR constraint language. This is applied to the disjunction translation, for
example, x = 5 ∨ y ≤ x

cp� add(x.isEq(5) || y.isLeEq(x)), while the general
form is P ∨ Q

cp� add(Pcp || Qcp) where Pcp and Qcp are translations of the
conjuncts into OscaR syntax. Technically, Pcp and Qcp require a second layer in
the translation for constraint expressions but we do not develop this here. We
make the strong assumption that the disjuncts are atomic. This introduces an
implementation concern into the constraint modelling language. It is justified
by the following reasoning: representing operators within constraints creates an
additional layer for the search reducing its performance.2 So the larger portion
of a specification contains such constructs, the lower the performance will be.
Hence, generally it is discouraged to represent large parts of a constraint program
as constraint expressions because this negatively impact implementation perfor-
mance. Nonetheless, the connectives ||, && and ==> are very useful in OscaR
(see Fig. 3) but should be used as little as possible. In particular, for conjunction
it can usually be avoided.

We could add the rule P ∧ Q
cp� add(Pcp && Qcp) to the translation, e.g.

to deal with cases where conjunctions appear within disjunctions. However, we
are more interested to use refinement to arrive at efficient representations than
at maximising the class of translatable specifications. In any case, ProB which
is described above permits a large class of translations already. The objective
of the translation to OscaR is to achieve high performance. Generality is sec-
ondary. Whenever possible, disjunctions should be avoided. For instance, instead
of writing a specification x = 1 ∨ x = 2 ∨ x = 3 one can declare the domain
of x correspondingly. If that is not possible, one could also introduce a deci-

2 Private communication with Pierre Schaus.

From Software Specifications to Constraint Programming 31

sion variable y with domain 1 .. 3 and use the constraint x = y. Computations
concerning constraints are very efficient! Of course, there will be cases where
disjunctions are unavoidable. Negation is available because the domains of the
involved decision variables are declared. As a result, negation may never lead
to infinite domains rendering the model non-executable. The specification must
contain a term x ∈ D providing the (finite) domain for each decision variable
x. And each universal quantification must provide a (finite) domain, that is, it
must be of the shape ∀x · x ∈ D ⇒P . Universal quantification is discussed next.

A universal quantifier can be translated by adding individually each con-
straint described by way of the quantified variable with finite domain. For exam-
ple, ∀x · x ∈ 4 .. 7 ⇒ x > 3

cp� (4 to 7).foreach(x => add(x>3)). The Scala
operator foreach iterates through all elements of the range (here (4 to 7)).
The general form of the translation has the shape ∀x · x ∈ m .. n ⇒ P (x)

cp�
(mton).foreach(x => P′(x)), where P ′(x) is the translation of P (x). Universal
quantification is essentially treated like an indexed conjunction.

Finally, existential quantifiers are discussed next. If existential terms are
involved in a specification they must be lifted so that the specification has the
shape ∃y · p1(x, y) ∧ . . . pn(x, y) so that they can be treated as auxiliary variables.
The translation does not support existential quantifiers occurring inside universal
quantifiers. OscaR does not support this directly. In principle, the translation
could deal with this in the way ProB does (see the discussion in Sect. 3.1).
Whereas in the case of the universal quantifier the bound variable gets eliminated
in the translation, in the case of existential quantifiers they stay. They are treated
like the global variables but are not considered part of the result. As indicated
in the introduction of this section, they should be considered auxiliary variables.

4 Solving the N-Queens Problem

In the example “Who killed Agatha?” of Sect. 2 we demonstrated the change
of data representation. This permitted us to express a subset relationship as an
arithmetic expression. The problem statement remained structurally unchanged:
it is easy to see how the computed solution is related to the abstract specification.

In this section we change the specification structurally while keeping the data
representation by way of the n-queens problem. The encodings of the n-queens
problem are not new. Usually, one finds informal arguments that argue why a
certain encoding is correct (e.g. [12]). However, the smarter the encodings get,
the more likely errors occur in the corresponding models. This is no different
from the situation in sequential programming. Finally, we evaluate the various
models and compared there scalability.

Refinement of n-queens. The initial specification describes the problem in
terms of the geometry of the chess board. Numbering the rows and columns
from 1 to n for some n larger than 0, we can describe the queens on which fields
a queen could attack arithmetically as indicated in Fig. 4. We can express that a

32 S. Hallerstede et al.

Fig. 4. Positions “J” on 3 × 3-board that can be attacked by a queen “Q” on position
p �→ q (where i ∈ {−1, 1})

queen at position p �→ q cannot attack another queen by requiring that no queen
may be placed on a position it may reach, that is, p �→ q ∈ b implies

∀i · i
= 0 ⇒ p + i �→ q
∈ b ∧ p �→ q + i
∈ b ∧ p + i �→ q + i
∈ b ∧ p + i �→ q − i
∈ b,

that no other queen is on a position that can be attacked by it. The complete
specification NQABS also specifying the board positions 1 .. n × 1 .. n and the
number of queens n to be placed on the board is easy to understand,

b ⊆ 1 .. n × 1 .. n ∧ card b = n ∧ ∀p, q · p �→ q ∈ b⇒
∀i · i 	= 0 ⇒ p+ i �→ q 	∈ b ∧ p �→ q+ i 	∈ b ∧ p+ i �→ q+ i 	∈ b ∧ p+ i �→ q− i 	∈ b

and relate to the informal statement of the n-queens problem. It relates to the
board geometry, the number of queens and the positions a queen placed on the
board may attack. Unfortunately, this specification is not efficient to execute.
The first problem we identify is the size of the board to consider. It is n2. Because
a queen can attack any other queen that is placed in the same column we can
exclude all configurations of queens on a board where more than one queen is on
any column. Thus, there must be precisely one queen on each column. Hence,
we can represent the board as an array in a first refinement NQARR

b ∈ array 1 .. n to 1 .. n∧
∀p, q · p �→ q ∈ b ⇒ ∀i · i 	= 0 ⇒ p+ i �→ q 	∈ b ∧ p+ i �→ q+ i 	∈ b ∧ p+ i �→ q− i 	∈ b

Of course, it is no longer necessary to verify that at most one queen placed in
each column. The predicate ∀p, q · p �→ q ∈ b ⇒ ∀i · i
= 0 ⇒ p + i �→ q
∈ b
is a slightly complicated way of saying that b is injective. This is expressed
by the formula allDifferent (b). When translating to constraint programming
languages like OscaR, predicates like allDifferent are translated into efficient
representations in the constraint store. Typically, a library of such predefined
constraint predicates exists in constraint programming languages that permit
performance improvements when used. The only predicate that could still be
improved is ∀p, i · i
= 0 ⇒ p + i �→ b(p)+ i
∈ b ∧ p + i �→ b(p)− i
∈ b where we
have used that b is a total function from 1 .. n to 1 .. n to rewrite the predicate.

From Software Specifications to Constraint Programming 33

We have

∀p, i, q · i
= 0 ⇒ p + i �→ b(p)+ i
= q �→ b(q) ∧ p + i �→ b(p)− i
= q �→ b(q)
⇐ ∀p, i, q · i
= 0 ⇒ i �→ i
= q − p �→ b(q)− b(p) ∧ i �→ − i
= q − p �→ b(q)− b(p)
⇐ ∀p, i, q · i
= 0 ⇒ i �→ i
= abs (q − p) �→ abs (b(q)− b(p))
⇐ ∀p, q · p
= q ⇒ abs (q − p)
= abs (b(q)− b(p)) (1)

Hence, NQARR is refined by NQMID which we define by

b ∈ array 1 .. n to 1 .. n∧
allDifferent (b) ∧ ∀p, q · p
= q ⇒ abs (q − p)
= abs (b(q)− b(p))

Specification NQMID is often used in examples for constraint programming.
Furthermore, we have (∀p, q · p
= q ⇒ b(p) + p
= b(q) + q ∧ b(p) − p
= b(q) − q)
⇒ (1). Thus we can refine NQMID by NQCON , defined by

b ∈ array 1 .. n to 1 .. n ∧ allDifferent (b)∧
allDifferent (λx · x ∈ 1 .. n | b(x) + x) ∧ allDifferent (λx · x ∈ 1 .. n | b(x) − x)

The predicate allDifferent (a) is widely used in constraint programming. Infor-
mally, it is defined as: no value occurs more than once in the array a.

A formal refinement verifies that any solution computed for a refined specifi-
cation is also a solution of the initial specification. In addition, the proofs provide
an explanation for the correctness of the encodings.

Note that the way we have proved the refinements, we have not assured the
existence of a solution in the refined specifications. We could refine any specifica-
tion by false. One could prove the existence of a solution for each specification.
However, for specific values of n this is what a constraint solvers does: it finds
values for the decision variables that satisfy the specification.

Performance of the Specifications. We evaluate the performance of all four
specifications NQABS , NQARR, NQMID and NQCON , where ProB can solve
all while OscaR is only applied to NQCON using its built-in allDifferent con-
straint. Additionally for ProB, we add NQPRM which uses a built-in predicate
for permutations and a random search heuristic and is otherwise identical to
NQCON . The specifications are evaluated for various board sizes ranging from
n = 8 to n = 1000, with a step size of 8. Benchmarks were run on AMD Opterons
with 2 GHz and four physical cores; up to three benchmarks were run in parallel.
Measurements show the time in seconds taken to find one solution for the cor-
responding specification of the board size n. Results are shown in Fig. 5, where
missing combinations of boards size and solver are due to time-outs, i.e., the
solver failed to produce an answer in 5 min.

All in all, benchmark results support our motivation to translate specifica-
tions to OscaR, as OscaR allows to explorate much larger models. First, note
that the most abstract specification NQABS only scales to n = 8. Next, the
more low-level NQARR and its following refinement NQMID display similar
performance and scale to at most n = 168. The least abstract model NQCON

34 S. Hallerstede et al.

scales to n = 600, while the random permutation version NQPRM only scales
slightly better. Finally, the OscaR version solves a board size of up to n = 1000.

Additionally, note that OscaR displays a somewhat erratic behaviour, e.g.,
it is slower or cannot find a solution for certain smaller board sizes, while being
able to solve larger ones more efficiently. This might be due to both the internal
implementation of OscaR and the allDifferent constraint, allowing to exploit
symmetries for certain board sizes. For example the search of the state space
might be vulnerable to wrong choices, such that it might has to explore a large
sub-tree before getting on the right track again. With techniques such as con-
flict driven clause learning [27] and random restarts [7], the search can become
much more resilient. In this paper OscaR and ProB are used as representa-
tives of a CP solver, and the presented method can consider others as well. For
this purpose, the n-queens problem served well as a simple, yet scalable, bench-
mark for evaluating the methodology presented. As we have argued in [16], more
involved benchmarks allow for higher transferability of the benchmarks to real-
world applications. In this respect, in [9,26] we discuss real-world applications,
where constraint solving is used for solving and validating larger timetables and
railway network configurations.

Fig. 5. Results of successful benchmarks, time-outs omitted

5 Conclusion

We have shown how refinement permits work with executable specifications with-
out committing early to implementation-biased data representations. Formal
specification should be considered abstract programming and associated reason-
ing techniques like refinement support for implemention. In principle, this soft-
ware is multi-paradigm: it may contain imperative, logic and functional parts
that appear seamless in abstract specifications. Compared to work like [19] where
programs are executable or non-executable, we change the focus once more and

From Software Specifications to Constraint Programming 35

say that specifications are executable or non-executable to emphasise the abstrac-
tion also in the final implementation. We have described a translation to OscaR
that we use for experimenting with translations and search heuristics. This com-
plements the use of ProB where making consistent changes to the translation
or search is more intricate. The preliminary evaluation to compare efficiency
of abstraction levels points towards the direction in which this research will be
continued: specifications are the better programs!

Acknowledgments. The work presented here is partially supported by the INTO-
CPS project funded by the European Commission’s Horizon 2020 programme under
grant agreement number 664047.

References

1. Abrial, J.R.: Modeling in Event-B – System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1674-2

3. Bruen, A., Dixon, R.: The n-queens problem. Discrete Math. 12(4), 393–395 (1975)
4. Couto, L.D., Foster, S., Payne, R.J.: Towards verification of constituent systems

through automated proof. CoRR abs/1404.7792 (2014)
5. Dick, A.J.J., Krause, P.J., Cozens, J.: Computer aided transformation of Z into

prolog. In: Nicholls, J.E. (ed.) Z User Workshop. Workshops in Computing, pp.
71–85. Springer, London (1990). https://doi.org/10.1007/978-1-4471-3877-8 5

6. Fuchs, N.E.: Specifications are (preferably) executable. Softw. Eng. J. 7(5), 323–
334 (1992)

7. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through ran-
domization. In: Mostow, J., Rich, C. (eds.) AAAI, pp. 431–437. AAAI Press/MIT
Press (1998)

8. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. TPLP 11(4–5), 767–782 (2011)

9. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

10. Hayes, I., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330–338 (1989)

11. Hehner, E.C.R.: A Practical Theory of Programming. Springer, New York (1993).
https://doi.org/10.1007/978-1-4419-8596-5

12. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2009)

13. van Hoeve, W.J.: The all different constraint: a survey. arXiv cs/0105015 (2001)
14. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall, Engle-

wood Cliffs (1990)
15. Kans, A., Hayton, C.: Using ABC to prototype VDM specifications. SIGPLAN

Not. 29(1), 27–36 (1994)
16. Krings, S., Leuschel, M., Körner, P., Hallerstede, S., Hasanagić, M.: Three is

a crowd: SAT, SMT and CLP on a chessboard. In: Calimeri, F., Hamlen, K.,
Leone, N. (eds.) PADL 2018. LNCS, vol. 10702, pp. 63–79. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73305-0 5

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4471-3877-8_5
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-1-4419-8596-5
https://doi.org/10.1007/978-3-319-73305-0_5

36 S. Hallerstede et al.

17. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

18. Leuschel, M., Schneider, D.: Towards B as a high-level constraint modelling lan-
guage – solving the jobs puzzle challenge. In: Ameur, Y.A., Schewe, K.D. (eds.)
ABZ 2014. LNCS, vol. 8477, pp. 101–116. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43652-3 8

19. Morgan, C.C.: Programming From Specifications, 2nd edn. Prentice Hall, Engle-
wood Cliffs (1994)

20. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

21. Odersky, M., al.: An Overview of the Scala Programming Language. Technical
report. IC/2004/64, EPFL, Lausanne, Switzerland (2004)

22. OscaR Team: OscaR: Scala in OR (2012). bitbucket.org/oscarlib
23. Pelletier, F.J.: Seventy-five problems for testing automatic theorem provers. J.

Autom. Reason. 2, 191–216 (1986)
24. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Theories

and their Comparison, vol. 46. Cambridge University Press, Cambridge (1998)
25. Schmalz, M.: Term rewriting in logics of partial functions. In: Qin, S., Qiu, Z. (eds.)

ICFEM 2011. LNCS, vol. 6991, pp. 633–650. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24559-6 42

26. Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university
timetable validation and improvement. In: Bjørner, N., de Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 487–495. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19249-9 30

27. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-
fiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

https://doi.org/10.1007/978-3-662-43652-3_8
https://doi.org/10.1007/978-3-662-43652-3_8
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://bitbucket.org/oscarlib
https://doi.org/10.1007/978-3-642-24559-6_42
https://doi.org/10.1007/978-3-642-24559-6_42
https://doi.org/10.1007/978-3-319-19249-9_30
https://doi.org/10.1007/978-3-319-19249-9_30

Automated Specification Extraction
and Analysis with Specstractor

Christoph Schulze1,2, Rance Cleaveland1(B), and Mikael Lindvall2

1 Department of Computer Science, University of Maryland,
College Park, MD 20742, USA

cschulze@umd.edu, rance@cs.umd.edu
2 Fraunhofer Center for Experimental Software Engineering,

College Park, MD 20742, USA
mikli@fc-md.umd.edu

Abstract. This paper presents Specstractor, a tool chain for the extrac-
tion and analysis of system specifications in the form of collections of
invariants. Such invariants convey valuable information about the behav-
ior of a software system and are also useful in identifying missing or
defective parts of existing specifications. Using data-mining techniques,
Specstractor derives likely invariants from test data that it automatically
generates from the system under analysis, using an iterative approach to
refine the set of proposed invariants and eliminate false positives. The
paper describes the Spectstractor technology and evaluates it on real-
world artifacts from automotive-control and medical-device applications.

1 Introduction

Specstractor is an automated tool chain for the extraction and analysis of pro-
posed system invariants from testing data. These invariants yield useful insight
into the actual system behavior and can reveal issues in developer-maintained
specifications. They can also serve as a starting point for formal system speci-
fications when such specifications do not exist. Invariants have long been used
in software specification and development, as they can convey important infor-
mation about the relationships among state variables that must be preserved
throughout behaviors of a software system and can do so at a higher level of
abstraction than system code [1–4].

This paper presents the foundations, design and implementation of Specstrac-
tor. The tool is intended to work on so-called Mealy systems, which are formally
defined in this paper, and which Simulink models may be seen as instances of.
The tool uses data mining over test cases generated from Mealy systems to pro-
pose invariants. Since data-mining techniques rely on data that may only give a
partial view of system behavior, some of the invariants Specstractor infers can
be invalid. In order to combat these false positives the tool employs an itera-
tive test → infer → instrument → retest paradigm. Specifically, an initial set
of invariants is inferred from the first set of automatically generated test cases.

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-319-92970-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_3&domain=pdf

38 C. Schulze et al.

Additional testing cycles are used to identify false positives and to refine the
proposed set of invariants until a final, stable set of invariants has been found.
Specstractor also employs static analyses of the system to improve further the
quality of the resulting invariants and the performance of the data-mining algo-
rithms [5]. The tool is designed in a modular fashion that allows users to add
support for new test generators and data-mining technologies.

This paper also describes an addition to the core functionality of Specstrac-
tor: the capability to infer invariants involving numerically-valued variables.
Other work on invariant mining [1,5] required variables to come from enumerated
types; they could not infer an invariant such as speed > 25 ⇒ cruiseControl =
off without manual abstractions supplied by the user. To provide better support
for numerical variables our Range Miner algorithm uses a combination of auto-
mated data binning, association-rule mining and merging and adjustment of the
invariants to generate accurate value ranges within invariants. The paper con-
cludes with an evaluation of Specstractor and Range Miner on Simulink models
of automotive applications and medical devices.

2 Mathematical Preliminaries

This section introduces the class of system models, Mealy systems, and invari-
ants, transition specifications, that the Specstractor framework works with.

2.1 Mealy Machines

Definition 1. A Mealy machine is a tuple 〈Q,Q0, I, O, δ〉 where:

1. Q is a non-empty set of states;
2. Q0 ⊆ Q is the non-empty set of start states;
3. I is the set of input symbols;
4. O is the set of output symbols; and
5. δ ∈ (Q × I) → (O × Q) is the transition function.

Traditional Mealy machines also require that Q, I and O be finite and that Q0

be a singleton set, but we do impose these restrictions in this paper. A Mealy
machine represents a system whose states are given by Q. When the machine
is in a given state, δ is used to compute the new state based on inputs given
by the system’s environment, with the computed outputs being delivered to the
environment as a result. We use the following definitions in what follows.

Definition 2. Let M = 〈Q,Q0, I, O, δ〉 be a Mealy machine.

1. 〈q, i, o, q′〉 ∈ Q × I × O × Q is a transition of M iff 〈o, q′〉 = δ(q, i). We use
T (M) to represent the set of all transitions of M .

2. An execution of M is a finite sequence 〈q0, i0, o0, q′
0〉 · · · 〈qn−1,

in−1, on−1, q
′
n−1〉 ∈ T (M)∗ such that either n = 0, or n > 0 and the fol-

lowing hold.
Initiality. q0 ∈ Q0 (the first transition starts from an initial state of M).

Automated Specification Extraction and Analysis with Specstractor 39

Consecution. For every consecutive pair of transitions 〈qj , ij , oj , q′
j〉 and

〈qj+1, ij+1, oj+1, q
′
j+1〉, q′

j = qj+1 (the target state of a transition is the
source state of the following transition).

We write E(M) for the set of executions of M .

This papers deals with system invariants. For Mealy machines, the invariants we
focus on are transition specifications, which we define (semantically) as follows.

Definition 3. Let M = 〈Q,Q0, I, O, δ〉 be a Mealy machine.

1. A transition specification φ is any subset of Q × I × O × Q.
2. Transition specification φ is satisfied by transition t ∈ T (M) iff t ∈ φ. It is

satisfied by execution t0 · · · tn−1 ∈ E(M) iff ti satisfies φ for all 0 ≤ i < n.
3. Specification φ is an invariant of M iff each execution e ∈ E(M) satisfies φ.

Intuitively, a transition specification represents a desired relationship between
source states, inputs, outputs and target states. A specification is satisfied by a
transition if the transition is contained in the specification’s set, and by an execu-
tion if every transition in the execution is so contained. A transition specification
is then an invariant if it is satisfied by every execution.

2.2 Mealy Systems

Mealy machines may be seen as semantic objects. Mealy systems are instead
more symbolic representations of Mealy-style behavior. In what follows, we fix
a set V of values and use Y X to represent the set of functions from X to Y .

Definition 4. A Mealy system is a tuple 〈X,Q0, U, C, δ〉, where:

1. X = {x0, . . . , xn−1} is a finite set of state variables;
2. Q0 ⊆ V

X is the (non-empty) initial condition;
3. U = {u0, . . . , um−1} is a finite set of input variables;
4. C = {c0, . . . , cl−1} is a finite set of output variables, with X,U and C all

pair-wise disjoint;
5. δ ∈ (VX × V

U) → (VC × V
X) is the transition function.

Intuitively, a Mealy system uses variables to represent states, inputs and outputs.
Specifically, a state q ∈ V

X is a mapping from each state variable xi to some
value q(xi) ∈ V, while i ∈ V

U represents an input “vector” assigning a value
i(ui) ∈ V to input variable ui. Outputs are treated similarly. The initial condition
Q0 explicitly specifies the initial system states, while δ similarly defines the
transition function. In practice, Q0 and δ are usually given symbolically; in
addition, some state variables may also be seen as parameters, or variables whose
values are not changed by any transition. In such a case, an initial condition
would specify the allowed parameter settings.

Semantically, a Mealy system M = 〈X,Q0, U, C, δ〉 is interpreted as a Mealy
machine �M� = 〈VX , Q0,V

I ,VC , δ〉. The notions of transition and execution
for Mealy machines (Definition 2) carry over directly to Mealy systems in the
obvious manner. Transition specifications for Mealy systems will be first-order
formulas defined over a Mealy system’s variables.

40 C. Schulze et al.

Definition 5. Let M = 〈X,Q0, U, C, δ〉 be a Mealy specification, and let X ′ =
{x′

0, . . . , x
′
n−1} be the set of primed versions of state variables; assume X ′ is

pairwise disjoint from X,U and C.

1. A transition specification is any first-order formula φ whose free variables are
drawn from X,U,C and X ′.

2. Let t = 〈q, i, o, q′〉 ∈ T (�M�) be a transition of �M�. Then t satisfies speci-
fication φ, notation t |= φ, iff ρt ∈ V

X∪U∪C∪X′
satisfies φ in the standard

first-order sense, where ρt is given as follows.

ρt(y) =

⎧
⎪⎪⎨

⎪⎪⎩

q(y) if y ∈ X
i(y) if y ∈ U
o(y) if y ∈ C
q′(x) if y ∈ X ′ and y = x′

3. φ is satisfied by an execution t0 . . . tn−1 iff ti |= φ for each i; it is an invariant
of M iff e |= φ for each e ∈ E(M).

Intuitively, a transition specification for a Mealy system is a logical formula
whose free variables refer to the state, input, output and primed state variables
of a Mealy system. In the definition of |=, ρt is a valuation for these free variables;
note that the source state of the transition is used to interpret the state variables
in φ, while the target state defines the values for the primed state variables.

Example 1. To illustrate Mealy-system transition specifications, consider a sim-
plified cruise-control system for an automobile. The state variables for the sys-
tem include status, which indicates whether the system is off or on; mode,
which indicates whether or not the cruise control is active, and thus control-
ling vehicle speed, or inactive, indicating that it is not; and setSpeed, which
is real-valued and represents the speed the cruise control is trying to maintain.
The inputs include: switch, which the driver can either set to on or off; set,
a boolean value indicating whether or not the driver pressed the set-button on
the control; brake, a boolean indicating whether or not the driver is stepping
on the brake pedal; and speed, a real value indicating current vehicle speed.
The only output, throttleSetting, is a real value in the range [0, 1] indicating
the percentage by which the throttle should be open. The set V of values is
R ∪ {active, false, inactive, off, on, true}. Here are two sample invariants.

1. (status = on ∧ brake) ⇒ mode′ = inactive. This asserts that if the driver
steps on the brake and the cruise control is on, it must become inactive.

2. (status = on ∧ set) ⇒ (setSpeed′ = speed ∧ mode′ = active). This says
that if the cruise control is on and the driver presses the set-button, the set
speed should be updated and the cruise control should become active.

We close this section by describing two notations for defining Mealy systems.

Automated Specification Extraction and Analysis with Specstractor 41

Discrete-Time Simulink. Simulink is a popular block-diagram notation for mod-
eling control systems. The language has both continuous-time and discrete-time
semantic accounts; the latter is the basis for modeling digital controllers, while
the former is used for plant modeling and analog-controller design. A Simulink
system consists of top-level inports and outports, and a series of interconnected
blocks; the discrete semantics states that a block “fires”, or evaluates, when
all of its inputs are present. In addition some Simulink blocks store values. A
discrete-time model executes a simulation step by first reading its inputs, fully
evaluating blocks according to the evaluation rule just mentioned, which may
have side effects including updating the values by some blocks, and producing
outputs. Given this high-level account, it is immediate to see how discrete-time
Simulink models give rise to Mealy systems: the data-store blocks correspond to
state variables, the inports and outports define input and output variables, and
the semantics of Simulink model evaluation define the transition function. The
initial condition is implicitly defined by the Simulink semantics as well.

C Functions. In control-systems development a common approach to imple-
menting a digital controller is to write a function in C that computes the desired
control behavior. State information is encoded in variables defined externally to
the function but read and written within the function; function inputs (if they
are used) provide inputs, and the return value (if it is used) represent outputs.1

Again, this gives rise naturally to a Mealy system: the external variables are the
state variables, function inputs are the inputs, the return value is the output,
and the function body defines how transition are computed.

3 Specstractor

Specstractor is the implementation of the specification-extraction framework
originally presented in [1] and elaborated on in [5], and based on the Mealy-
system formalism described in the previous section. It uses an iterative test →
infer → instrument → retest cycle that uses data mining to extract proposed
system invariants from sets of executions automatically generated from the sys-
tem model. These invariants are then used to generate instrumentation for the
model that checks whether the invariants are being maintained; the instrumented
model has a new set of executions generated for it to double-check the validity of
the proposed invariants and also to determine if new invariants can be proposed.
Such executions may be seen as tests, as they include a sequence of inputs pro-
vided to the systems, and in what follows we will freely refer to them as such. In
the remainder of the paper we will use Simulink models as our Mealy systems.

A key to the approach is the generation of “good” sets of executions. Ideally
these executions should satisfy some coverage criterion; however, the traditional
coverage criteria for state machines, such as state coverage and transition cover-
age, are not useful for the types of Simulink models we are interested in, since the
1 In fact, it is common practice in these applications not to use C-function inputs and

outputs, but instead use other external variables for this purpose.

42 C. Schulze et al.

number of states and transitions is too large to be effectively covered. Instead,
we focus on coverage of the logic in the model, using adaptations of well-known
structural-coverage metrics for source code (decision coverage, MC/DC, etc.) to
Simulink. The Reactis R©2 tool supports the generation of tests with these types
of coverage as goals; the resulting test cases, by exercising the boolean predi-
cates in the model, provide some measure of semantic coverage of transition-
computation aspects of model behavior without requiring coverage of the entire
Mealy machine underlying the Simulink model.

Fig. 1. Overview of the iterative control cycle of Specstractor

Figure 1 gives an overview of the Specstractor iterative cycle.

Setup Specstractor. This phase creates a user-selected folder for the execution
of Specstractor and copies all necessary data to the folder (e.g. Simulink mod-
els). It also performs a one-time data-flow analysis of the system [5] to detect
dependencies between inputs, state variables and outputs; this is used to ensure
that generated invariants reflect causal relationships among these variables.

Initialize Iteration. Specstractor begins each iteration by creating a subfolder
for the iteration’s generated data (test cases, proposed invariants, etc.)

Generate Test Data. Test data is then created from the Simulink model using
the Reactis test-generation tool, which uses a combination of Monte Carlo simu-
lation, constraint solving and search heuristics to achieve high coverage of various
structural metrics (e.g. decision coverage).

Infer Invariants. Once test cases are generated, Specstractor generates invari-
ants in the form of association rules, which are implications whose left-hand sides
(LHS) refer to the values of input and current-state variables, and whose right-
hand sides (RHS) refer to output variables and new values of state variables. For
this task, the tool uses a modified Frequent Pattern (FP)-Growth [6] algorithm
from the Sequential Pattern Mining Framework (SPMF) [7]. The modifications
to the FP-growth algorithm include the use of data from the static analysis to
improve the performance of the algorithm [5] and the inclusion of the Range
Miner algorithm (Sect. 4.1) to handle continuous variables.

Instrument System. To validate proposed invariants, the system models are
instrumented with so-called monitor models [8]. Each monitor model is respon-
sible for checking the truth or falsity of a single proposed invariant mined in

2 Reactis R© and Reactis for C R© are registered trademarks of Reactive Systems, Inc.

Automated Specification Extraction and Analysis with Specstractor 43

the previous task. Reactis provides support for automating this instrumentation
processes; Specstractor contains instrumenters that translate the mined invari-
ants into the format that Reactis requires and automatically modifies the Reactis
configuration file to integrate them into the test-generation process.

Retest. After the model is instrumented, we repeat the cycle in order retest the
proposed invariants. The purpose of this retesting phase is to check whether the
inferred invariants can be falsified with additional testing. Since the invariants
are attached to the models as observers, they are treated as additional coverage
objectives by Reactis, which then actively tries to find counterexamples to the
proposed invariants. In the process it either disproves invariants by finding a test
case that forces a violation of the invariants, or strengthens the confidence in
them by creating additional tests that support them. In addition to validating
existing invariants the additional test data can also uncover new behaviors which
lead to invariants that were missed in previous iterations. For this reason, the
test data of all previous iterations is aggregated with the newly created test data
and a new set of invariants is inferred in each iteration.

Terminating the Process. The iterative process terminates if there no invari-
ants are added to or removed from the set of invariants for nt iterations, where
nt is a parameter set by the user.

Specstractor can be configured with different test generators, instrumenters
and data miners, and thus can support Mealy-system notations besides Simulink.

4 Numerical Variables and Range Miner

Traditional association rule-mining algorithms such as Apriori [9] and FP-
Growth [6] do not work well with unbounded data values, as they treat each
value of an integer or floating-point number separately. For example, for one of
our models, a cruise-control system of a car, the approaches would create the
invariants speed = 24.4 ⇒ active = false, speed = 24.45 ⇒ active = false and
so on. The validation step would then try to find counterexamples to each of
these rules, creating more test data, and the subsequent data-mining step would
find even more invariants. This stops the approach from converging, since it can
always find invariants that differ from existing ones only in minor differences of
the numerical constants appearing in the invariants.

If the user has pre-existing knowledge about the system, s/he can supply
manually created abstractions for the data values that Specstractor would then
automatically apply to the generated test data. However, the user would to be
in possession of such information for this approach to be applicable.

Quantitative association-rule-mining [10,11] algorithms have been proposed
to infer association rules from continuous variables; however, our preliminary
experiments indicate performance and accuracy problems with them. We thus
have created an approach, Range Miner, that builds on our existing iterative
framework to infer accurate invariants over numerical variables.

44 C. Schulze et al.

4.1 Range Miner

The Range Miner algorithm uses the existing iterative process of Fig. 1 to refine
an initial finite discretization of numerical variables (see Fig. 2(a)). It starts by
analyzing the first set of test cases that are generated and discretizing the value
range of any continuous variable using binning [12]. Invariants are then inferred
from the binned data using the existing FP-Growth algorithm. Invariants with
neighboring bins may also be merged [13] (see Fig. 2(b)) to reduce the number
of invariants to manage.

Without manual abstractions each variable often can take many more differ-
ent values (one for each bin), which leads to more false positives. We therefore
supplement the test generator to better cope with the additional false positives.
This is achieved with additional test data generated by fuzzing test cases (see
Fig. 2(c)) from earlier iterations and by carrying over information for the test
generator between iterations. After the process terminates each invariant with a
binned variable is analyzed to check if its boundaries can be extended without
violating the invariant (see Fig. 2(d)). The remainder of the section explains the
steps in more detail.

4.2 Discretization via Fixed Point Binning

Discretization via data binning is a standard method to pre-process data for
data-mining algorithms [12]. Data values are put into bins, or buckets, that
represent a range of values. Two common types of binning methods are equal
length and frequency binning (see 1a and 2a on the top left of Fig. 2). However,
it is very unlikely that the automatically created bins line up completely with
interesting points in the data (e.g. the 25 mph in our previous example). This
can be rectified by the final invariant adjustment of the Range Miner; this is
described below. However, by leveraging other characteristics of the Reactis test
data, we can create a better initial binning that requires less adjustment. We
call this modified method fixpoint binning (1b, 2b in Fig. 2).

Fig. 2. Overview of the techniques used in the Range Miner approach.

A fixpoint is a bin with a single value that is created from additional informa-
tion that we extract from the test data. Reactis produces two kinds of interesting

Automated Specification Extraction and Analysis with Specstractor 45

fixpoints that we take advantage of. Firstly, the most interesting values are often
the most frequent ones in the test data. Secondly, floating-point values generated
by Reactis rarely include a fractional component except when they are interest-
ing points. If a fixed point is inside an existing bin the original bin is split. Even
if the interesting points are not always accurate the approach will later rectify
the situation by merging them together with neighboring bins.

4.3 Association Rule Mining and Merging of Invariants

The association-rule miner is unchanged apart from the fact that the test data is
binned before it is handled by the miner. However, we add a step after invariant
generation that performs an initial merging of invariants. This step is important
for the performance of the test generator, which tends to deteriorate in the
presence of too many invariants. The merging approach is illustrated on the top
right of Fig. 2. It compares all the invariants of the same length and to determine
if they are equal in all parts except for one variable; if they are then they are
merged. For invariants involving more than two variables, finding the optimal
merging strategy is a multi-dimensional knapsack problem [14]. We use a greedy
algorithm to try to find the optimal merge strategy in these cases.

4.4 Improving the Test Generator

Compared to manual abstractions, Range Miner must deal with many more false
positives. In order to better identify and remove these additional false positives
we modify the existing test-generation process by adding three mechanisms:
preloading of existing test data; fuzz testing; and the generation barrier.

In each iteration of Specstractor the Reactis test generator always starts at
0% coverage, carrying over no information from previous iterations. This is very
inefficient because we already have existing test data that can cover many parts
of the system. Reactis has a feature that allows the preloading of existing test
data. However, if we load all the existing test data in each iteration Reactis
would have to process more test data in each iteration, which would eventually
damage its performance. Instead of preloading all data we sample the existing
test data. In particular, we search the test data for the first np occurrences of an
invariant, were np is a user supplied value. An invariant occurs in the test data
when the test data makes both the LHS and RHS of an invariant true.

In order to invalidate an invariant the test generator must find a transition
in a system execution in which the LHS of the invariant is true but the RHS is
not. In deterministic systems this can only happen as follows. The system must
be in a state where the LHS of the invariant is true and other inputs or state
variables that are not part of the LHS change the output of the system in a way
so that it makes the RHS of the invariant false. We therefore have incorporated
fuzz testing to help with the invalidation of false positives (see Fig. 2). For each
invariant the fuzz tester identifies nf occurrences of the invariants in the test
data (nf is a user-tunable value). The test case is copied from the start of the
test case to the test step where the invariant occurs. The fuzzer then modifies

46 C. Schulze et al.

input values that are not part of the LHS of the invariant to try to identify a
counterexample to the invariant.

The generation barrier leverages an observation made during the evaluation
of Range Miner. Specifically, we saw that the true invariants are almost always in
the test data after two or three iterations. Any invariant appearing afterwards is
nearly always a false positive. The generation barrier is a user-configurable limit
that sets the number of iterations of the approach after which no new invariants
are retained. After the barrier has been reached additional iterations will only
try to remove the remaining false positives.

4.5 Invariant Extension

The bins that are created by the automated binning step are not always accu-
rately lined up with interesting decision points in the system. For example in one
of our models the mined invariant measuredValue ∈ [130, 180) ∧ timer ∈ [5, 20]
⇒ alarm = 1 states that if the measured value and the timer are in a cer-
tain range then the alarm is turned on. The invariant is correct but incomplete;
the invariant describing the whole behavior of the system in this case would be
measuredValue ∈ [130, 180) ∧ timer ≥ 5 ⇒ alarm = 1. This invariant was not
inferred since the maximum value the timer reached during the test execution
was 20 before the timer was either reset or the test case ended. In order to com-
bate this phenomenon we do a post-processing step after the invariant extraction
has terminated to look for extensions to individual invariants.

In the post-processing step, we evaluate each invariant that contains a binned
variable to check if any of the binned variables can be extended into neighbor-
ing bins, or even indefinitely. To achieve this we create hypothesized invariants
and test them against the accumulated test data generated during the invariant
extraction. If the invariant cannot be extended into the whole neighboring bin,
we create other proposed invariants that sample the neighboring bin to deter-
mine if it is true for parts of the neighboring bin (see Fig. 2). The invariants that
cannot be invalidated using existing data are rechecked using automated testing.

5 Experimental Evaluation

This section describes two experimental evaluations of Specstractor. In the first
we apply Specstractor to 12 third-party models of automotive-control systems
and medical devices and compare the resulting invariants with existing specifica-
tions for these models. We particularly study how the invariants may be used to
identify issues in the requirements documentation and how deviations between
the requirements and the system and inconsistencies in the requirements are
manifest in the invariants. We also present effort data.

The second study evaluates the Range Miner algorithm. Specifically, we com-
pare the execution time and resulting invariants of the Range Miner approach
with invariants obtained using manually-developed abstractions. This study is
performed on 5 models using continuous variables. The experimental setup is the

Automated Specification Extraction and Analysis with Specstractor 47

same as in [5], which describes in detail dependent and independent variables of
the experimental approach and the data-collection mechanism.

Table 1 lists the 12 systems used in our evaluations: 11 model [1,5,8] the
lighting- and cruise-control systems of a car, while one is a model of a blood-
infusion pump [15]. The table shows the number of continuous variables in the
model and the type/complexity of the specifications. Eight of the models have
natural-language requirements descriptions ranging from two to five pages, for
an overall total of 30 pages. Manual analysis of these yielded a total of 70 require-
ments (3–17 per model). Three of the models have specifications in the form of
state machines. We counted each transition and state in a state machine as one
requirement (4–6 states per model, with 9–16 transitions), for a total 54 require-
ments. We do not have any specifications for the Cruise Control system and it
is therefore only used to evaluate the Range Miner.

Table 1. The systems used in the evaluations. The variables column shows how many
inputs/state variables/outputs a system has, while the continuous column lists how
many of these variables are continuously valued.

Name Variables Continuous Blocks Requirements Requirement
complexity

Cruise control 7/2/2 1/0/1 83 N/A N/A

Emergency
blinking 1

2/1/1 N/A 165 State
machine

5 states/14 transitions

Emergency
blinking 2

5/3/2 0/2/1 375 State
machine

6 states/16 transitions

Emergency
blinking 3

5/1/3 N/A 107 State
machine

4 states/9 transitions

Daytime
driving light

14/1/3 0/1/0 52 Natural
language

5 pages/7 requirements

Fog light 10/3/4 0/1/0 59 Natural
language

3.5 pages/12
requirements

High beam
light

9/0/2 N/A 52 Natural
language

3 pages/6 requirements

Low beam
light

9/0/5 N/A 40 Natural
language

4 pages/6 requirements

Parking light 7/0/7 N/A 83 Natural
language

4 pages/6 requirements

Position light 9/0/7 N/A 48 Natural
language

3 pages/5 requirements

Rear fog light 11/0/5 N/A 56 Natural
language

4.5 pages/14
requirements

Blood pump 2/5/5 1/2/2 238 Natural
language

3 pages/16
requirements

48 C. Schulze et al.

5.1 Comparison with Given Specifications

In this study we compared the Specstactor-derived invariants manually against
given system specifications. We also recorded the effort that is necessary to map
the resulting invariants to the specifications.

Table 2. Result of the mapping analysis.

Name Invariants Merged False
positive

Req. Acc. Inacc. Undoc. Not
extracted

Expected
to miss

Effort

Emergency
blinking 1

46 46 0 14 14 0 7 0 0 90

Emergency
blinking 2

49 29 1 16 12 4 0 0 0 60

Emergency
blinking 3

65 43 0 9 9 0 0 0 0 60

Daytime
driving light

31 30 0 7 3 3 0 0 1 40

Fog light 72 39 0 12 6 3 0 3 0 120

High beam
light

42 21 0 6 1 5 0 0 0 45

Low beam
light

48 12 0 6 0 5 0 0 1 40

Parking
light

38 9 0 6 3 3 0 0 0 40

Position
light

30 5 0 5 1 3 0 0 1 30

Rear fog
light

66 28 0 14 6 6 0 0 2 90

Blood pump 39 28 1 16 6 7 0 0 3 80

SUM 526 290 2 111 76 39 7 3 8 695

Table 2 contains the following evaluation data for each model.

Name, Invariant, Merged, False Positive, Req. The name of the model
is given, as is the number of invariants computed by Specstractor. For perfor-
mance reasons we configured the data miner so that each RHS has only one
conjunct; the number of such invariants computed by Specstractor is listed in
the Invariants column. To compare the invariants against the requirements we
then merged invariants with the same LHS into a single invariant with multi-
ple conjuncts on the RHS. The number of such merged invariants is listed in
the Merged Column. The False Positive column lists the number of invariants
that are in fact not invariants, as determined by subsequent analysis. Using
manual abstractions we did not observe any false positives for the evaluation
systems. However, a few false positives remained while using the Range Miner
algorithm; this issue is discussed in the next subsection. Req. contains the num-
ber of requirements for each model in the associated requirements specifications.

Automated Specification Extraction and Analysis with Specstractor 49

In the case of state-machine based specifications, this number coincides with the
number of transitions in the specification, since each transition can be seen as an
association rule that Specstractor should infer. This treatment of state machines
stands in contrast to the automaton-learning framework found, for example, in
LearnLib [16]: there, entire state machines, and not just transitions, are learned.
In order to report the results of mapping invariants to these requirements, we
created classifications that constitute the next columns in the table.

Accurate Specification. These are requirements that can be completely
described by the extracted (merged) invariants. Note that in general, multiple
invariants may be needed to describe a given requirement.

Inaccurate Specification. Such requirements are not accurately reflected in
the extracted invariants. As an example the requirement specification for Blood
Pump states that “If Blood Pressure (CNAP) improves within 10 s of the silent
warning alarm, then the system will clear the alarm, and resume blood infusion”.
The relevant invariant states that whenever the blood pressure improves the
warning alarm is cleared, independent of the time.

Undocumented Behavior. This is system behavior that is not documented in
the requirements specification but that is described by the extracted invariants.
In the Emergency Blinking 1 model, for example undocumented behavior took
the form of missing transitions in the state machine that was the requirements
documentation for the system. With the help of the extracted invariants we were
able to identify additional transitions that were implemented but not specified.

Not Extracted. These are behaviors of the system that are not covered by any
invariant. In our study these took the form of invariants that had empty LHS, and
thus were not detectable using the data-mining approach used in Specstractor.

Expected to Miss/Out of Scope. Any requirement that involves time or a
system state that cannot be observed where the time/state cannot be observed
would fall in this category.

Effort. The effort to analyze the resulting invariants varied between 30 and
120 min per model and on average was 63 min. These times included the com-
parison of the invariants against the requirements as well as a manual inspection
of the system to determine whether an invariant describes an undocumented
behavior or is a false positive. It does not include the computer time neces-
sary to extract the invariants or the time to instrument the internal variables
(10–15 min per model) so that the data miner could see the state values. For
more information about the execution time of the approach we refer the reader
our previous case study in [5], which contains a detailed execution time and
memory consumption analysis for these models. The most important factor in
the effort to apply the approach was the number and complexity of the result-
ing invariants and of the requirements. The most effort spent per model was on
the Fog Light system, due to the fact that the Specstractor user missed instru-
menting an unfamiliar Simulink block. Analyzing why this behavior was missed
took about 50% of the analysis effort. Similarly, analyzing the undocumented

50 C. Schulze et al.

behavior in Emergency Blinking 1 was very time-consuming in comparison to
checking the invariants against the specifications.

5.2 Range Miner Evaluation

We also evaluated the Range Miner (RM) algorithm against our manual abstrac-
tion (MA) approach. Table 3 shows the resulting invariants, the number of false
positives, the average number of iterations and the average iteration time to per-
form the extraction (split into test generation, data mining and other) for both
RM and MA. RM requires more iterations and more test-generation time per
iteration and is therefore always slower than MA. This is due to the increased
number of false positives that RM has to remove and the additional test data
that we preload in the new test-generation process. The test-execution time tends
to be the dominating factor in the Specstractor approach, and it is influenced
mostly by the number of invariants to verify.

Table 3. Comparison between the manual abstraction and Range Miner algorithm

Name Invariants False
positives

#Iterations Iteration
time (s)

Test time
(s)

Data
mining
time (s)

Other
time (s)

MA RM MA RM MA RM MA RM MA RM MA RM MA RM

Cruise
control

31 29 0 2 5 11 92 188 84 131 6 54 2 3

Emergency
blinking 2

58 49 0 1 6 8 111 121 103 110 7 10 1 1

Daytime
driving light

31 31 0 0 5 11 89 139 70 72 16 63 3 4

Fog light 72 70 0 0 5 9 114 170 109 160 2 3 3 7

Blood pump 39 30 0 1 5.2 12.2 122 166 109 124 11 39 2 3

The number of invariants differs between MA and RM because of the distinct
ways that MA and RM partition the data. By merging values RM generated
invariants that required two or more invariants to describe with MA. We did
observe four false positives in RM that the test generator was unable to remove
consistently; during the 10 repetitions of the experiments they appeared 6–7
times. Thus, the test generator can remove them, although not consistently.

The results show that we can accurately infer invariants over continuous
variables, but in order to do so we need more compute time. However, it also
shows that there are still some false positives that the test generator could not
consistently remove.

Automated Specification Extraction and Analysis with Specstractor 51

6 Related Work

Accurate specifications are of critical importance in formal methods [17] but
actual specifications of systems are often inaccurate and incomplete. Different
specification-mining approaches have been proposed to address these issues [18].

Many approaches [19–21] infer state machines that are intended to represent a
complete model of the system’s behavior. Specstractor on the other hand focuses
on deriving individual requirements in the form of association rules. Our reason-
ing is that these single requirements are easier to comprehend and compare
against existing natural language specifications than inferred state machines.
The Daikon tool presented by Ernst et al. [2] instruments a system under test
and collects trace data from test cases supplied to Daikon. The generated trace
data is then used to infer likely invariants. In contrast, we infer invariants from
the test data directly. Furthermore our iterative approach verifies the inferred
invariants via additional tests that try to find counterexamples, or improve our
confidence in the mined invariants. Similar to Daikon, we designed Specstrac-
tor to be extensible so that we can support multiple languages and modeling
notations in the future.

Quantitative association rule mining [10,11] has been proposed to mine asso-
ciation rules from numeric variables. Our experiments indicated however that
the value ranges inferred were often inaccurate and the performance too slow for
our purposes. The Range Miner on the other hand combines simple data binning
with our existing iterative verification framework to refine the mined invariants.
The GoldMine tool [22] uses decision trees to derive quantitative association
rules. The application is the verification of hardware designs. However, by using
single decision trees we often cannot infer rules that are true but have very low
support and by using decision-forest-based methods (i.e. multiple decision trees)
the rate of false positive rules is very high. Furthermore, decision trees do not
offer the very useful property of association rules that invalid rules will not be
inferred again if one piece of evidence contradicts them.

Zeng et al. [23] use mined invariants to minimize the size of a test suite.
Specstrator instead leverages the mined invariants to create modified versions of
the test suite to better invalidate false invariants.

7 Conclusion

This paper presents the Specstractor tool chain for the automated extraction
and analysis of system invariants. It describes the implementation of the itera-
tive framework that extracts invariants from automatically generated test cases
using data-mining techniques. It also introduces the Range Miner algorithm,
which allows the approach to automatically infer invariants involving numerical
data. Finally, it presents an evaluation of the tool chain on 12 Simulink models
and their associated specification artifacts. We demonstrate that the approach
can accurately infer invariants that describe the system with few false positives,
and that these invariants can be used to identify issues in the artifacts in the

52 C. Schulze et al.

form of mismatches between the specification and the implementation and miss-
ing specifications. The evaluation of the Range Miner shows that it can also
accurately infer invariants from variables with continuous values. However, it
requires more test-generation time and more iterations to invalidate additional
false positives that do not appear when using manual abstractions.

For future work we are planing to add new types of invariants, including ones
that span multiple transitions in a sequence as well as so-called event invariants
that describe temporal relationships between events. Furthermore, we want to
evaluate if model checkers can remove the false positives that we could not
invalidate with the current approach, and we want to port the approach to C.
We also plan to study issues related to scaling and larger models.

References

1. Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C., Latronico, E.:
Automatic requirement extraction from test cases. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann,
N. (eds.) RV 2010. LNCS, vol. 6418, pp. 1–15. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16612-9 1

2. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69, 35–45 (2007)

3. Cheng, X., Hsiao, M.S.: Simulation-directed invariant mining for software verifica-
tion. In: Proceedings of DATE 2008, pp. 682–687. ACM, New York (2008)

4. Beschastnikh, I., et al.: Mining temporal invariants from partially ordered logs. In:
SLAML 2011, pp. 3:1–3:10. ACM, New York (2011)

5. Schulze, C., Cleaveland, R.: Improving invariant mining via static analysis. ACM
Trans. Embed. Comput. Syst. 16, 167:1–167:20 (2017)

6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD Record, vol. 29, pp. 1–12. ACM (2000)

7. Fournier-Viger, P., Lin, J.C.-W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z.,
Lam, H.T.: The SPMF open-source data mining library version 2. In: Berendt, B.,
Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.)
ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46131-1 8

8. Cleaveland, R., Smolka, S.A., Sims, S.T.: An instrumentation-based approach
to controller model validation. In: Broy, M., Krüger, I.H., Meisinger, M. (eds.)
ASWSD 2006. LNCS, vol. 4922, pp. 84–97. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70930-5 6

9. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. Proc.
VLDB 1215, 487–499 (1994)

10. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational
tables. In: Proceedings of SIGMOD, pp. 1–12. ACM, New York (1996)

11. Salleb-Aouissi, A., Vrain, C., Nortet, C.: Quantminer: a genetic algorithm for min-
ing quantitative association rules. IJCAI 7, 1035–1040 (2007)

12. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier,
New York (2011)

13. Bay, S.D.: Multivariate discretization for set mining. Knowl. Inf. Syst. 3(4), 491–
512 (2001)

https://doi.org/10.1007/978-3-642-16612-9_1
https://doi.org/10.1007/978-3-642-16612-9_1
https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/978-3-540-70930-5_6
https://doi.org/10.1007/978-3-540-70930-5_6

Automated Specification Extraction and Analysis with Specstractor 53

14. Kellerer, H., Pferschy, U., Pisinger, D.: Introduction to NP-completeness of knap-
sack problems. In: Knapsack Problems, pp. 483–493. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24777-7 16

15. Lindvall, M., et al.: Safety-focused security requirements elicitation for medical
device software. In: Requirements Engineering, pp. 134–143. IEEE (2017)

16. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnlib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

17. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1 2

18. Zeller, A.: Specifications for free. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 2–12. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20398-5 2

19. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: Proceedings of ISSTA, p. 85. ACM Press, July 2010

20. Le Goues, C., Weimer, W.: Specification mining with few false positives. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 292–306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2 26

21. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proceedings of ICSE, p. 501. ACM Press, May 2008

22. Vasudevan, S., et al.: GoldMine: automatic assertion generation using data mining
and static analysis. In: Proceedings of DATE, pp. 626–629 (2010)

23. Zeng, F., Cao, Q., Mao, L., Chen, Z.: Test case generation based on invariant
extraction. In: Proceedings of WCNMC, pp. 1–4. IEEE, September 2009

https://doi.org/10.1007/978-3-540-24777-7_16
https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-642-20398-5_2
https://doi.org/10.1007/978-3-642-00768-2_26

Bridging the Gap Between Informal
Requirements and Formal Specifications

Using Model Federation

Fahad Rafique Golra1(B), Fabien Dagnat2, Jeanine Souquières1, Imen Sayar1,
and Sylvain Guerin3

1 Université de Lorraine, CNRS, LORIA, 54000 Nancy, France
fahad-rafique.golra@univ-lorraine.fr

2 IMT Atlantique, IRISA, Université Bretagne Loire, 29238 Brest, France
3 Openflexo, 29280 Plouzané, France

Abstract. Software development projects seeking a high level of accu-
racy reach out to formal methods as early as the requirements engi-
neering phase. However the client perspective of the future system is
presented in an informal requirements document. The gap between the
formal and informal approaches (and the artifacts used and produced by
them) adds further complexity to an already rigorous task of software
development. Our goal is to bridge this gap through a fine-grained level
of traceability between the client-side informal requirements document
to the developer-side formal specifications using a semi-formal modeling
technique, model federation. Such a level of traceability can be exploited
by the requirements engineering process for performing different actions
that involve either or both these informal and formal artifacts. The effort
and time consumed in developing such a level of traceability pays back
in the later phases of a development project. For example, one can accu-
rately narrow down the requirements responsible for an inconsistency in
proof obligations during the analysis phase. We illustrate our approach
using a running example from a landing gear system case study.

1 Introduction

General software development methods do not lend themselves to the kind of rig-
orous analysis necessary for ensuring the degree of assurance required for safety
(or life) critical systems [1]. Formal methods attain that level of quality through
proper documentation and significant analysis. In projects using formal methods,
we usually come across domain artifacts (feasibility reports, existing models and
software, standards, etc.), user requirements document (also serves as a frame
of reference for the agreement between client and supplier) and the specifica-
tions document (used for formally defining the requirements). The specification
documents are prepared to concretize the software development team’s perspec-
tive of the software under development [2]. Where requirements document is an
informal description of the system, a specification document uses rigorous formal
methods that serve for verification and prototyping of a designed system.
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 54–69, 2018.
https://doi.org/10.1007/978-3-319-92970-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_4&domain=pdf

Bridging the Gap Between Informal Requirements and Formal Specifications 55

As a development project progresses, artifacts contributing to its goal are
produced. Traceability is the ability to link these artifacts together, so that one
can identify the relationship between them and trace back/forward to them. Due
to the gap between the informal and formal approaches, a requirement is taken
as a single unit of reference for traceability [3]. This amounts to a coarse-grained
traceability that overlooks individual concepts in each requirement [4]. We argue
that a fine-grained level of traceability that can link individual concepts in for-
mal specifications to the individual concepts of informal requirements shall help
reduce this gap. Different approaches propose using a controlled natural lan-
guage [5] to solve this issue. Even though the use of controlled natural language
helps reduce requirements ambiguity, it hardly offers any support for improving
the level of traceability between the requirements and specifications.

In a previous work, we proposed a concept-level traceability between the
informal requirements and the formal specifications [6]. As an extension to that
work, we use semi-formal models to formalize this traceability mechanism. We
chose model federation [7] to realize a framework for the development and co-
evolution of requirements and specifications. Model federation is an approach
that enables binding a set of models from heterogeneous paradigms together.
This binding is defined through a behavior that specifies the evolution of feder-
ated models in the development of a software system. Using this approach we
developed an open source tool that can link requirements documented in various
formats (word processors, spreadsheets, databases, xml files or Reqif supporting
tools) to the formal specifications. We illustrate the use of our framework using
examples from the landing gear system case study [8].

The rest of this paper is organized as follows. First, we describe the gap
between the informal and formal approaches in Sect. 2. The model federation
approach in presented in Sect. 3. In Sect. 4, we explain the structural core and
in Sect. 5, we describe the methodological aspects of our framework. We share
the lessons learned in various case studies, in Sect. 6. Then in Sect. 7 we discuss
the state of the art. Finally, we conclude this paper in Sect. 8.

2 The Gap

Formal methods serve as the backbone of software engineering for critical and
complex systems [9]. They guarantee the correctness of the system under devel-
opment and help in early validation/verification of requirements. For example,
Event-B [10] is a formal method for modeling and reasoning about large reactive
and distributed systems. It is centered on the notion of transitions. Models are
developed using two basic constructs: contexts and machines. Building a specifi-
cation is a gradual process that uses context extension and machine refinement.
Rodin [11], an Eclipse based IDE for Event-B provides effective support for
refinement and mathematical proofs.

When working on a critical and complex system, one has to deal with both
informal and formal models during requirements engineering and/or early archi-
tecture design. The most obvious informal model is the requirements document

56 F. R. Golra et al.

that lists the requirements of the system to be built using natural language.
Even though some approaches propose a controlled structure for writing the
requirements [5], the requirements document remains informal. Tools like spread-
sheets and word processors are still extensively used for maintaining the require-
ments [12]. Such tools along with other requirements management tools (e.g.
Rational DOORS1) may provide the necessary flexibility for requirements man-
agement, but they offer little support when it comes to traceability. Other tools
specifically designed for requirements traceability (e.g. Reqtify2) offer a very
coarse-grained traceability. They consider a requirement as a unit concept and
link it to other artifacts of software development. This makes it hard to keep
track of individual concepts that form the core of a system design.

Unless the traceability approaches can pin down the concepts that lead to
problems in specifications (e.g. conflicting requirements), the problem of gap
between the informal and formal approaches in early software development can
not be resolved. Imposing formal languages for documenting requirements is not
possible because requirements elicitation is often a shared responsibility of clients
and suppliers. In an earlier work, we also shared the case where the requirements
document was almost completely prepared by the client organization [13]. Some-
times, the clients of critical and complex industry, especially from aviation and
defense sectors, prepare the requirements documents in advance and then call
for an open bidding for the projects. In requirement engineering, especially for
critical and complex systems, where formal specification helps ensuring the cor-
rectness of the system, these informal requirements become the Achilles heel of
the complete process. Coarse-grained traceability to the requirements level is
not sufficient enough to cover this gap of informal to formal models. We argue
that a very fine-grained level of forward and backward traceability to/from the
specifications can reduce this gap. With such an approach at hand, one can even
look forward to semi-automatic co-evolution of requirements and specifications.

3 Model Federation

Model Federation is a modeling approach where the focus is shifted from models
to group of models. Instead of manipulating a single large model, it promotes
using a set of interdependent models. This approach stems from the fact that a
model is not an isolated entity, rather it depends on other models. For example
one can federate a document file (.docx) with a list of states and a minimalistic
state automaton (xml file format of UPPAAL). A model federation is therefore a
chosen group of models reifying their dependencies to serve an intention. In the
context of the automaton federation example, it aims at ensuring the consistency
of the textual list of states and the automaton. An action on a member of a
federation might impact the whole federation. Hence, each action on a model
must be considered as an action on the federation. For instance, changing the
name of a state is an action both on the document file and the automaton.
1 https://www.ibm.com/us-en/marketplace/rational-doors.
2 https://www.3ds.com/products-services/catia/products/reqtify/.

https://www.ibm.com/us-en/marketplace/rational-doors
https://www.3ds.com/products-services/catia/products/reqtify/

Bridging the Gap Between Informal Requirements and Formal Specifications 57

While this conceptual approach can be applied in any discipline using models,
it is at its best when dealing with heterogeneous models pertaining to different
paradigms. Co-evolution is difficult in such a scenario [14], especially if one wants
to keep the various members of the federation in their respective paradigms [7]. It
is often easier to act directly on the federation rather than acting on it members
first and then recovering the consistency. The role of the federation therefore is
to reify the process of ensuring consistency between the models of the federation.
Notice that the level of consistency can vary, depending on the intention of its
designer. Some federations may constrain the possible actions on the models of
the federation to ensure a strict level of consistency. While others may choose
to gather the inconsistencies and require human intervention to resolve them.

The list of states of the
system is:

• Alpha

• Bravo

Word technological space

State

txtItem:•
uppaalState:•

rename()

next

WordUPPAL

@A

•
•

@B

•
•

MyProject

federation space

...
<!ELEMENT template (name,
parameter?, declaration?,
location*, init?, transition*)>
...

UPPAL DTD

A

B

MyAutomaton

UPPAAL technological space

XMLTA

rename()

WordTA

TextRun
setText()

conforms to

instance of

Design time

Runtime

technology adapter

technological space

model

model slot

concept

model instance

model slot instance

concept instance

Fig. 1. An example of a model federation

The approach is relatively young but we have designed a framework with
associated methods and tools. This framework relies on the following architec-
ture. A federation gathers a set of conceptual models, named virtual models and
a set of federated models. Each federated model pertains to a technological space
and uses the language of its specific paradigm while a virtual model is built using
the Federation Modeling Language (FML). Each federated model can be viewed
as an autonomous component while the virtual models serve as control compo-
nents. Figure 1 presents a simplified version of the automaton federation example
that groups these different models. The upper half of the figure illustrates the
design of a federation with a model coming from the Word technological space
(.docx file), another coming from the XML technological space (UPPAAL file)
and one virtual model reifying the dependencies between the textual data and
the corresponding automaton. A technology adapter (TA) is a reusable library
that defines connections between the FML execution engine and a particular
technological space. The model federation framework provides ways to define
TA. The automaton virtual model, shown in Fig. 1 relies on the two technol-

58 F. R. Golra et al.

ogy adapters (Docx TA and XML TA) for accessing the models of respective
technological spaces.

FML is a language designed to define virtual models. A virtual model is
composed of a set of concepts, while itself being a concept. Hence, virtual model
are structuring units while concepts are the core entities. A concept has a set
of roles and behaviors. A parallel to object-oriented approach can be useful to
understand FML3. A concept corresponds to a class, its roles to the attributes
of the class and its behaviors to the methods of the class. In our example, a
concept State is presented with two roles txtItem and uppaalState. These roles
have types defining the kind of value the role will point to at runtime. Our
example illustrates three forms of such types i.e. another concept for next, a
type defined in a TA for txtItem or a type defined in an external model for
uppaalState. Whenever a type external to the federation space (from a TA or
an external model) is used, one needs to use a model slot. A model slot is a
mediation entity, associated with a TA, in charge of giving access to external
elements of the corresponding technological space. A model slot defines a view
on an external model by interpreting it as a set external concepts. Notice that a
model slot can limit its interpretation to the needed part of the external model.

FML is designed to define not only the structure of the virtual models but
also their behavior. Beware, here the behavior means the collection of actions an
engineer will be able to perform on a model federation. It is different from the
behavior of the System Under Study. The rename operation already cited for
the automaton federation is an example of this behavior. One could also define
operations to add or remove states, transitions, etc. The renaming operation is
defined by a rename behavior in the concept State. It uses the setText action of
the Word TA and rename from the XML TA. When the FML execution engine
runs a federation, it creates virtual model instances containing concept instances.
Some concept instances are connected to external elements through model slot
instances. The lower part of the Fig. 1 illustrates this runtime phase.

The tool support for model federation framework, Openflexo4, is developed as
an open source initiative with active community around it. This tool offers a FML
execution engine with an interactive virtual model design environment. It has
been used in several use-cases including model mapping, multi-paradigm process
modeling and enterprise architecting. It has also been used to build a tool, the
freemodeling editor that has been put to practice in industrial projects [15]. As
of today, this tool offers some mature technology adapters (docx and excel for
documents, EMF and OWL for modeling languages, JDBC for databases, REST
and XMLRPC for external services and one for diagramming tools) and some
other rudimentary ones (pdf, http, XML and powerpoint).

3 Beware, even though useful for comprehension, this correspondence is not reliable,
as some aspects of FML do not map to object oriented concepts.

4 http://openflexo.org and https://github.com/openflexo-team.

http://openflexo.org
https://github.com/openflexo-team

Bridging the Gap Between Informal Requirements and Formal Specifications 59

4 Linking Requirements to Specifications

In order to overcome the informal to formal barrier, as described in Sect. 2,
we developed an approach to link requirements and formal specifications using
a fine-grained level of traceability. We develop a model federation using three
virtual models in federation space i.e. requirements, specification and glossary
virtual models. For the requirements, this federation connects to any of the
three technological spaces shown in Fig. 2. It may connect to other technological
spaces for which the tool offers a technology adapter e.g. databases, EMF, service
oriented platforms, etc. For formal specifications, currently we are supporting
Event-B technological space through XML technology adapter.

Fig. 2. Model federation for requirements to specification tracing

4.1 Requirement Virtual Model

We benefit from the strength of model federation by developing a virtual model
for requirements. Instead of rewriting the requirements using a formal grammar
or transforming the requirements into another (formal or semi-formal) model,
the requirement virtual model interprets the textual requirements for our specific
use of traceability. It allows identifying and tracing back to individual concepts
within the textual description. For our specific use, we only need two concepts
from a requirement i.e. the requirement identifier and its textual description.
Functional and non-functional requirements are treated the same way, as long
as there is a corresponding concept in both the requirement and the specification.
Using existing Technology Adapters, requirement virtual model can connect to
heterogeneous platforms to get any requirements from a word processor, spread-
sheet or RIF/ReqIF compliant XML formats (e.g. DOORS, ProR, etc.).

Requirement concept of requirement virtual model, as illustrated in Fig. 3
gets the identifier and the textual description of the requirement from the con-
nected Requirements Technological Space. It also contains two boolean type roles
isValidated and isConsidered that are used to relay back the information to
the concerned stakeholders about the status of a requirement; whether or not
it was included in the specification and does it pose any proof obligation issue.
The IdentifiedConcept refers to a word/sub-phrase in the textual descrip-
tion of the requirements document which carries an equivalent formal concept

60 F. R. Golra et al.

Fig. 3. Simplified requirement virtual model

in the system specification. The exploration and selection of concepts ensuring
the conformity to the defined needs is a progressive activity carried out for the
development of specifications in complex software development. For example, the
European Cooperation for Space Standardization details a complete process in
ECSS-E-ST-10-06C, starting from the identification of possible concepts to the
establishment of technical specifications [16]. The behavior part of this model,
not shown in the figure, allows to describe the operations like relaying the infor-
mation to the stakeholders, observing any change in the requirements, triggering
certain behavior in the connected Glossary VM, etc.

4.2 Specification Virtual Model

Specification VM interprets a specification with the intention of linking it to the
requirements. The long-term objective of this virtual model is to interpret spec-
ifications from different (lightweight) formal methods, however we have focused
on the Event-B specifications for the moment. Still, the use of model federation
offers tool independence by allowing us to use the same virtual model for Atelier
B, Rodin or B-Toolkit. Figure 4 illustrates the key concepts of the specification
virtual model. The notions of local variable, action, variants and invariants, etc.
are abstracted behind EventProperty and MachineProperty for brevity.

The goal of interpreting an Event-B model is to gather the formal concepts
from a specification and to identify the kind of those concepts. A formal con-
cept can be of any kind e.g. a machine, variable, constant, etc. We believe that

Fig. 4. Excerpt from the specification virtual model

Bridging the Gap Between Informal Requirements and Formal Specifications 61

the behavior of a trace link between an informal concept and a formal concept
depends on the kinds of those concepts. For example, when an informal concept
in a requirement is traced to a constant concept of a specification, one can define
the behavior of the trace link such that a change in an informal concept auto-
matically changes the formal concept, but a change in formal concept requires a
validation of a requirement engineer to be propagated to the informal concept.
For such federation level behavior, the user can add an operation in Specification
VM that triggers the behavior of the linked virtual models. Specification VM
already contains the behavior for observing the Event-B technological Space and
triggering various behaviors of the Glossary VM.

4.3 Glossary Virtual Model

Glossary VM is the key model that binds Requirement VM and Specification
VM. The InformalConcept from this model is linked to the Requirement VM,
from where it gets the informal keyword of the concept. This keyword can be
of any kind specified by the InformalCKind. For the moment, we have left it to
the user to choose the kind of the concept, but for an industrial application, one
can integrate Natural Language Processing techniques (e.g. [17]) that can parse,
extract and categorize the concepts from the requirement descriptions (Fig. 5).

The FormalConcept of the glossary virtual model is linked to the Specification
VM, from where it gets the formalKeyword. It also specifies the kind of the con-
cept amongst the ones described by the FormalCKind. Where InformalConcept
only defines the basic manipulation behaviors like create, update and delete,
the FormalConcept also defines the refine and isPOTrue behaviors. The refine
behavior carries the information about the refinement of an Event-B machine
to the corresponding requirement in the requirements document. The isPOTrue
behavior notifies the concerned stakeholders of the requirement, whether or not
the proof obligations of the corresponding Event-B machine are validated. Trace
binds the InformalConcept with the FormalConcept. Each trace has a unique
identifier. The create and update behaviors assign a kind to the trace amongst
the ones defined by TraceKind:

Fig. 5. Glossary virtual model

62 F. R. Golra et al.

– A Fact connects an informal concept of Noun, Number or String kind to a
formal concept of Constant, Set, Variable, etc. These trace links are used
by requirements that specify facts about the future system.

– A Functionality connects an informal concept of Verb kind to a formal
concept of Event kind. A requirement linked to this kind of trace describes
an expected functionality of the system under development.

– An Obligation connects an informal concept of String kind to a formal
concept of Axiom, Invariant, Theorem and Guard kinds. These trace links
are used for preconditions or postconditions on the functioning of a system.

– A Behavior is a collection of Functionality links, such that their events
must be performed in a temporal order. The informal concept is a String (a
sub phrase) that contains the functionality concepts along with their order
and links them to each of their corresponding formal concepts. The informal
concept in the requirement specifies a behavior expected of the future system.

It is important to note here that our objective is not to exhaustively define
the behavior of all kinds of trace links, but to propose a mechanism where such
behavior can be specified. The three virtual models i.e. RVM, SVM and GVM,
are used by the tool providers. An end user defines its traceability links with a
set of available behavioral templates provided by the tool provider. The virtual
models are instantiated in the background. Unless the user needs a customized
behavior, she does not need to work with the virtual models. A strong motiva-
tion for choosing model federation was its ability to decouple the technological
dependence from the core behavior of the methodology. For example, the behav-
ior chosen for a trace link between a requirement and Event-B machine does not
depend on the tool used for documenting the requirements. The technological
aspects of a requirement coming from DOORS or from an Excel spreadsheet do
not alter this behavior. They are confined in the Technology Adapter.

5 Process Driven Approach

To witness the full potential of our framework, one needs to define the process
that integrates the building blocks from the models presented in the previous
section. Using the Openflexo tool, we have developed a process modeling editor
that serves for defining the process, as shown in Fig. 6. Once defined, each activity
is linked with the behaviors of individual virtual models for the execution. The
user has the liberty to define a desired behavior for each activity.

As the tool follows a process driven approach, it does not impose a specific
behavior to the user. We demonstrate the use of our framework by discussing
few examples of the activities from the landing gear system case study [8].

1. Initializing a machine: At the start of the specification process, there exists
no corresponding Event-B machine for the concepts identified in the require-
ments document. The user identifies an informal concept, for which (s)he
plans to develop an Event-B machine. Same thing happens, when a concept
found in the requirements document does not correspond to any existing

Bridging the Gap Between Informal Requirements and Formal Specifications 63

Fig. 6. Enterprise architecture editor

Fig. 7. Virtual model instance - initialization (This figure does not show the instances
of RVM and SVM for the reason of brevity.)

machine and the development of a new machine is intended. In the example
of Fig. 7, the user identifies “landing system” as informal concept. As per the
process of Fig. 6, when no corresponding machine exists, the framework offers
to create a new one. Specification VM can be used for creating a stub for the
new machine. Once the machine is created, “Landing system” is identified
as a machine concept of Specification VM and it is linked to the informal
concept “landing system”.

2. Updating a trace link: The default behavior of the framework when the name
of an Event-B machine (e.g. Landing System) changes is to update the glos-
sary and maintain the trace link. Conversely, when the name of the informal
concept landing system changes, the framework generates a notification for
the system analyst to check for probable inconsistencies. Even though the
framework provides a default behavior for the activities associated with trac-
ing, thanks to the model federation approach, the user has the flexibility to
define a different behavior. Usually the behavior of such activities is encoded
within the tool implementations, and changing the behavior is impossible or
at least difficult in case of open source software. For model federation, this
behavior is not coded in the tool, rather defined in the model itself.

3. Adding new trace links: The process of linking requirements to formal spec-
ifications is fairly flexible and varies from case to case. One can choose an
informal concept and link it to an existing formal concept. But it can also go
the other way round, when one selects an existing formal concept and links
it to a concept from a requirement. In Fig. 7, we see that “gears” from FR-3

64 F. R. Golra et al.

is linked to the “gears pos” in Landing System machine. Once this link is
formed, the user goes in the reverse direction for linking this formal concept
to other identified concepts from the requirements that refer to it. Similarly,
the user links the informal concepts “extending” and “extend gears” to a cor-
responding formal concept “extend gears” through a trace link of type func-
tionality, as shown in Fig. 8. It is important to know that multiple derivatives
of a single informal concept (e.g. extending, extend gears, etc.) do not need
to have different corresponding formal concepts. One can notice in the figure
that the complete description of FR-18 forms an informal concept linked to
the guard of the Landing System machine.

4. Early requirements validation: The process of tracing the requirements to the
formal specifications forms the basis of validation. A requirement can have
trace links to multiple Event-B machines and similarly a machine can have
links to multiple requirements. The process of validation does not need to
wait till the requirements document is complete. Hence, as the requirement
document is under development, the formal specification process can start in
parallel. This way requirements are traced to the specifications as and when
they arrive. The isPOTrue property of the formal concept in the Glossary
VM keeps track of the proof obligations of the linked Event-B machine. If the
proof obligations of all the machines traced by a requirement’s concepts are
proved, the isValidated property of the requirement virtual model returns
true. If a requirement is linked to the glossary but the trace is not complete
to the formal specification, the isConsidered property of the requirement
virtual model return false. This way the information about the validity of the
requirements is relayed back to the stakeholders.

5. Refinement of requirements and specifications: Requirement elicitation is a
gradual process that involves the refinement of abstract level requirements to
the concrete level requirements. This process can be carried out at require-
ments or specifications. When an informal requirement is refined, all the infor-
mal concepts reappearing in the refined requirements with their corresponding
formal concepts are notified to the stakeholder for possibly new trace links.
In case of a refinement of an Event-B machine, the information is passed

Fig. 8. Virtual model instance - traces (This figure does not show the instances of
RVM and SVM for the reason of brevity.)

Bridging the Gap Between Informal Requirements and Formal Specifications 65

through the refine property of the glossary virtual model. The goal is to
trigger new trace links from the requirements to the new machine.

The tool implementation5 for this approach also supports requirements elic-
itation, links to domain models, ontologies and goal models, etc. but they are
out of scope for this article. The intention is to show parts of the default process
and the possibility to define user-specific processes. The tool being modular, we
have linked this requirement to specification traceability module with our previous
modules e.g. goal modeling and requirements elicitation modules [13].

6 Lessons Learned

During the early development of the approach, we focused on two case studies
i.e. the landing gear system [8] and the hemodialysis machine [18]. Finally we
implemented our approach on a real-life case study provided by our industrial
partner from aviation and aerospace industry, under a research project, FOR-
MOSE, funded by French National Research Agency (ANR)6. Based on our
experiences with these implementations, we share the following lessons learned:

1. Parallel incremental development of requirements and specifications: During
our case studies, we found out that it is not necessary to wait for the require-
ments document to start the specifications. As soon as requirements start to
pour in, the development of specifications can start. The parallel and incre-
mental development of both these artifacts helps requirements elicitation.

2. Fine-grained traceability: We applied a very fine-grained level of traceabil-
ity going down to the concept level, within each requirement. Such a level
of traceability helped the analysts to associate proper requirements to the
justifications of each concept at the specification level. It also helped in cate-
gorizing the requirements according to their corresponding implementations
in the formal specifications. Prioritization of requirements from the clients
perspective is a common practice, but when combined with the specification
view of priorities, it helps stakeholders to take informed decisions.

3. The validation of the informal requirements: Late validation of requirements
after the requirements engineering phase increases the cost of corrective mea-
sures. The proposed framework helped in bringing the validation process close
to requirements elicitation so much that the validation of requirements is done
in parallel with the requirements document development. Once developed, it
helps in proving the correctness of the formal specification in relation to the
concepts present in the informal requirements, all along the development pro-
cess. Maintaining the trace links in a glossary reduces the effort of validating
complex specification models through refinement.

4. Automation of traces: One of the main reasons for using model federation for
the linking informal requirements to formal specifications was the possibility

5 FORMOD tool is available at https://downloads.openflexo.org/Formose.
6 Bound by a non-disclosure agreement, we can’t share the details of this case study.

https://downloads.openflexo.org/Formose

66 F. R. Golra et al.

of operationalizing the trace links. A trace link is not just a pointer from
an informal concept to a formal concept, it contains a behavior. This allows
to (semi-)automate some tasks of linking the two artifacts. Some behaviors
we came across during the case studies were automatic update of constants,
triggering notifications to the stakeholders, generating requests for proof obli-
gations, changing the state of requirements from valid to conflicting, etc.

5. Verification of requirements: Because the traceability of requirements to for-
mal specification was taken to a fine-grained level, the introduction of corre-
sponding concepts helped in the verification of formal specifications. We found
out that such traceability helps in detecting omissions in the requirements
(initial states, implicit undescribed requirements, or absence of scenarios) or
contradictions between the specifications and requirements.

6. Specification versions of clients documents: An interesting finding of the
implementation of our framework to the industrial project was that the spec-
ification stakeholders relate more with the formal text than the informal one.
The available trace links made it very easy to generate a version of require-
ments document where the informal concepts were replaced with the formal
ones, as shown in Fig. 9. This eased their comprehension of requirements and
improved the communication within the team.

noitpircseDdi.qeR

FR-3 The [Landing System] goal is maneuvering [gears pos] and their associated [doors pos]

FR-3-1 Maneuvering [gears pos] consists of [extend gears] or [retract gears] and reversing their
movement

... ...

FR-18 The [doors pos] must be [open doors] when [extend gears] or [retract gears]

FR-19 In nominal mode, the landing sequence is: [open doors] → [extend gears] → [close doors]

Fig. 9. Specification version of requirements document

7 Related Work

The gap between the informal requirements and the formal specifications was
acknowledged and has been a topic of research interest for the past three decades.
Deriving VDM specifications from Structural Analysis (mostly Data Flow Dia-
grams) [19], Object Constraint Language (OCL) specifications from UML use
cases [3] and system specifications from Problem Frame descriptions [4] are few of
the examples to bridge this gap. However, most of such efforts are tools and tech-
nology specific endeavors. They lack a generic methodology that can be applied
in a variety of configurations. The main focus of our work is to reduce the technol-
ogy dependence from the methodology of linking informal requirements to formal
specifications. From the requirements perspective, we accept requirements com-
ing from any tool or described in any formalism. For the specifications, we only
implemented Event-B model for now. This is an implementation shortcoming
but it does not alter the proposed methodology.

Bridging the Gap Between Informal Requirements and Formal Specifications 67

KAOS is a refinement-based goal-oriented methodology for deriving specifi-
cations formalized using Linear Temporal Logic from informal requirements [20].
KAOS facilitates the derivation of system specifications through refinements, but
imposes its own requirements description (goal modeling) methodology and con-
strains the language used for formal specifications. Besides, KAOS suffers from
the lack of support for non-functional requirements. Li et al. [21] present another
refinement based approach for the transformation of informal requirements to
formal specifications, that can handle NFRs. They use a requirement ontology
for classification and propose a requirements modeling language. The advantage
of the proposed methodology is that the user is not restricted to any specific
requirements specification method or tool.

Our work is notably closest to the approach of Jastram et al. where their
requirement model differentiates between phenomena (state space and transi-
tions of the system) and artifacts (the restriction on states and transitions) [22].
They classify the artifacts into Domain Knowledge (W), Requirements (R), Spec-
ifications (S), Program (P) and Programming Platform (M). Once formalized,
these elements of requirements are mapped to Event-B, using ProR [23]. The
main difference with our approach is that we propose explicit definition of trace-
ability behavior in the trace links. Apart from mapping the concepts of infor-
mal requirements to formal specifications, we classify different kinds of trace
links. The behavior of each kind of trace link is then reused for providing semi-
automatic co-evolution of requirements and formal specifications.

Heisel et al. proposed a requirements elicitation process that is independent
of the specification language [24]. An extension to their work using Rodin and
ProR offers a fine-grained traceability between informal requirements and formal
specifications [6]. We have proposed yet another extension to this work using
model federation. The advantage of this extension is that the trace links are
now fine-grained to a concept level and that they contain the behavior of the
trace, rendering them executable. The main limitation of our approach is the
cost it incurs. Indeed, the process of maintaining the consistency between the
requirements and the formal specifications must be reified. A method engineer
has to define the corresponding behavior. Furthermore, the specification engineer
needs to invest time for linking individual concepts of informal requirements to
the formal specifications. However, this investment provides improved clarity and
the possibility of automating certain activities in case of requirements change.
Notice also that probably common behaviors would emerge and provide a set of
reusable federation behaviors, lowering the cost of their design.

8 Conclusion and Future Work

We proposed a framework for linking informal requirements to formal require-
ments specifications. The main contributions of our approach are: (i) fine-grained
traceability between individual concepts in a requirement and individual con-
cepts in a formal specification, (ii) a mechanism for the incorporation of behav-
ior within the trace links, and (iii) tooling and methodology for the incremental

68 F. R. Golra et al.

development and co-evolution of requirements and formal specifications. We are
currently working on an operational semantics of FML using a process calculus
encoding similar to [25]. The aim of this semantics is twofold. One, we plan to
check the correctness of our FML interpreter. Second, we would be able to prove
properties about behaviors such as, for example, any modification of an artifact
leads to a corresponding modification of depending artifacts. Proving properties
of the process alongside the product would help certification of critical systems.

References

1. Coram, M., Bohner, S.: The impact of agile methods on software project manage-
ment. In: 12th IEEE International Conference and Workshops on the Engineering
of Computer-Based Systems, ECBS, pp. 363–370. IEEE (2005)

2. Clark, R.G., Moreira, A.M.: Formal specifications of user requirements. Autom.
Softw. Eng. 6(3), 217–232 (1999)

3. Giese, M., Heldal, R.: From informal to formal specifications in UML. In: Baar, T.,
Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp.
197–211. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30187-
5 15

4. Seater, R., Jackson, D., Gheyi, R.: Requirement progression in problem frames:
deriving specifications from requirements. Requir. Eng. 12(2), 77–102 (2007)

5. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (EARS). In: International Requirements Engineering Conference, pp. 317–
322. IEEE (2009)

6. Sayar, I., Souquières, J.: La validation dans les premires étapes du processus de
développement. ISI-DAT 22(4), 11–41 (2017)

7. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Addressing mod-
ularity for heterogeneous multi-model systems using model federation. In: Com-
panion Proceedings of the International Conference on Modularity, pp. 206–211.
ACM (2016)

8. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

9. Rierson, L.: Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. CRC Press, Boca Raton (2017)

10. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

11. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

12. Behutiye, W., Karhapää, P., Costal, D., Oivo, M., Franch, X.: Non-functional
requirements documentation in agile software development: challenges and solu-
tion proposal. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 515–522.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 41

13. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Continuous
requirements engineering using model federation. In: 24th International Require-
ments Engineering Conference (RE), pp. 347–352, September 2016

https://doi.org/10.1007/978-3-540-30187-5_15
https://doi.org/10.1007/978-3-540-30187-5_15
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-319-69926-4_41

Bridging the Gap Between Informal Requirements and Formal Specifications 69

14. Hebig, R., Giese, H., Stallmann, F., Seibel, A.: On the complex nature of MDE evo-
lution. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MOD-
ELS 2013. LNCS, vol. 8107, pp. 436–453. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41533-3 27

15. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Using free mod-
eling as an agile method for developing domain specific modeling languages. In:
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems, MODELS 2016, pp. 24–34. ACM, New York
(2016)

16. ECSS: Space Engineering - Technical Requirements Specification. Standard ECSS-
E-ST-10-06C, European Cooperation for Space Standardization (2009)

17. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of confor-
mance to requirements templates using natural language processing. IEEE Trans.
Softw. Eng. 41(10), 944–968 (2015)

18. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

19. Fraser, M.D., Kumar, K., Vaishnavi, V.K.: Informal and formal requirements spec-
ification languages: bridging the gap. IEEE Trans. Softw. Eng. 17(5), 454–466
(1991)

20. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software, vol. 10. Wiley, Chichester (2009)

21. Li, F.-L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L., Mylopoulos, J.: From
stakeholder requirements to formal specifications through refinement. In: Fricker,
S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 164–180. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16101-3 11

22. Jastram, M., Hallerstede, S., Leuschel, M., Russo, A.G.: An approach of require-
ments tracing in formal refinement. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K.
(eds.) VSTTE 2010. LNCS, vol. 6217, pp. 97–111. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15057-9 7

23. Jastram, M.: ProR, an open source platform for requirements engineering based
RIF. In: Systems Engineering Infrastructure Conference, SEISCONF (2010)

24. Heisel, M., Souquières, J.: A method for requirements elicitation and formal spec-
ification. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER
1999. LNCS, vol. 1728, pp. 309–325. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-47866-3 21

25. Wong, P.Y., Gibbons, J.: Formalisations and applications of BPMN. Sci. Comput.
Program. 76(8), 633–650 (2011)

https://doi.org/10.1007/978-3-642-41533-3_27
https://doi.org/10.1007/978-3-642-41533-3_27
https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/978-3-319-16101-3_11
https://doi.org/10.1007/978-3-642-15057-9_7
https://doi.org/10.1007/3-540-47866-3_21
https://doi.org/10.1007/3-540-47866-3_21

Concurrency

Program Verification for Exception
Handling on Active Objects

Using Futures

Crystal Chang Din1(B), Rudolf Schlatte1, and Tzu-Chun Chen2

1 Department of Informatics, University of Oslo, Oslo, Norway
{crystald,rudi}@ifi.uio.no

2 Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

tc.chen@dsp.tu-darmstadt.de

Abstract. For implementing correct systems, handling and recovering
from exceptional situations is important but challenging for ensuring
correct interactions among distributed objects which are processing con-
currently. To focus on exploring novel handling constructs for actor-based
programming languages, we study ABS, an actor-based concurrent mod-
eling language with an underlying executable formal semantics. This
paper introduces multi-party session blocks with recovery handlers for
exceptions into ABS. With this novel construct, we verify the correct-
ness of interactions among objects within a session block. Program cor-
rectness is ensured by specifying invariants as pre- and post-conditions,
called session contracts, for such a block, which is more expressive than
the existing class invariant proof system for ABS. We present the exten-
sion of ABS with a try-catch-finally construct and class session recovery
blocks that handle uncaught exceptions.

1 Introduction

Properly handling and recovering from exceptional situations is an important
part of specifying and implementing robust and correct systems, especially for
distributed systems where correctness must take partial failure scenarios into
account [17]. Therefore, modeling languages should include means of specifying
exceptional situations and how to recover from them. This paper presents a
new approach to expressing multi-party exception transmission and recovery for
active object languages [4]. We designed the approach for the modeling language
ABS [13]. This paper adds standard language constructs to specify, raise and
handle exceptional situations, as well as a novel construct, the session block, for
reestablishing object invariants after unhandled exceptions.

Existing class invariant-based proof theories for ABS [7] are restricted in
expressivity, specifically in the area of upholding guarantees of protocols involv-
ing series of message exchanges between multiple participants. The problem is

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 73–88, 2018.
https://doi.org/10.1007/978-3-319-92970-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_5&domain=pdf

74 C. C. Din et al.

that the semantics of ABS process interleaving and scheduling cannot forbid arbi-
trary messages to be processed in-between the expected ones, requiring whole-
program analysis. This paper addresses this problem by introducing the concept
of sessions, which temporarily restrict the scheduling behavior to the parts of a
model participating in the session. In this work, we define session contracts to
express the desired properties of a session based on the new session construct.
A proof system for session contracts is introduced.

The rest of the paper is structured as follows. Section 2 describes the main
characteristics of the ABS language. Section 3 introduces the new language con-
structs. Section 4 introduces session contracts and provides a proof system for
verifying session contracts. Section 5 discusses related work. Section 6 discusses
future work and concludes the paper.

2 A Short Introduction to ABS

The ABS language was developed to model distributed, parallel systems. Its
design makes it amenable to both formal analysis and simulation (execution).
The syntax is similar to languages in the C/Java family tree. ABS is an actor-
based active object language, with interface inheritance and code reuse via traits.
Being an active object language means that objects are “heavy-weight”: method
calls create processes on the target object, which are scheduled cooperatively
in each concurrent object group (cog). Process switching occurs only when the
current process terminates or at clearly marked program locations (await state-
ments); this makes models of concurrent and distributed systems amenable to
compositional analysis and proof. Data is modeled via a functional sub-language
consisting of algebraic datatype definitions and side effect-free functions.

2.1 A Brief Example

Figure 1 shows a complete ABS model simulating bank accounts and transac-
tions involving multiple accounts. The Account interface and CAccount class
model a bank account with the usual deposit, withdrawal and balance inspec-
tion methods. Methods of type Unit, e.g., deposit, can omit an explicit return
Unit; statement. The Transaction interface and CTransaction class model the
control flow that models a transaction involving transferring some funds from
one account to another, with a small commission transferred to a third account.
The method transfer of the Transaction class (Line 17) first deducts the given
amount from the sender account, then calculates the commission and deposits
the proper amounts in the receiver and commission accounts.1

ABS object references are typed via interfaces, which describe the set of
messages that an object can process (lines 3, 8). Classes (lines 11, 16) imple-
ment zero or more interfaces and contain method definitions. Method calls (e.g.,
Line 20) are asynchronous, written o!m(), and create a new process in the callee.

1 The slightly awkward calculation of profit is used to introduce a runtime error.

Program Verification for Exception Handling on Active Objects 75

Fig. 1. A motivating example

Execution in the caller continues in parallel with the new process. The value of
a method call is a future (see Line 30), which can be used to synchronize with
the resulting process (Line 31) and to obtain the result (Line 32). Abbreviated
syntax makes it possible to omit an explicit future definition to synchronize with
the callee and, optionally, obtaining the result (see Line 18).

One question is what the behavior of an asynchronous method call is, when
it immediately followed by a fp.get expression, e.g., omitting Line 31 in the
example. In this case, the get expression blocks until fp has a value. Blocking
means that the cog will not schedule another process. There exists abbreviated
syntax for this kind of call: instead of f = o!m(); v = f.get; one can write v
= o.m();. This notation is used in examples later in this paper.

Finally, the behavior of a model is specified via its main block (Lines 24–34).

2.2 Asynchronous Method Calls, Scheduling Points, and Object
Groups

The concurrency model of ABS merits some more explanation. The unit of con-
currency in ABS is the concurrent object group (cog). Each cog contains a num-
ber of objects and cooperatively schedules the processes running on these objects

76 C. C. Din et al.

such that at most one process per cog is running. As mentioned in Sect. 2.1, each
asynchronous method call results in a process being created at callee-side that
executes the method named in the call. Figure 2 shows the relation of processes,
cogs, and sessions (sessions are introduced in Sect. 3.4). So, the two processes
created by the method calls in Fig. 1, Line 20 and 21 can run in parallel provided
they are not running in the same cog.

Fig. 2. Cogs contain objects, which run processes. A session temporarily “captures” its
set of participants. The session names participating objects whose cogs join the session;
other objects in the cog cannot join a different session at the same time.

A cog schedules a process to run when its currently running process reaches
a scheduling point. A scheduling point occurs when a process terminates, either
by executing its return statement or via an unhandled exception, or at the point
of an await or suspend statement. The cog will choose the next process to run
non-deterministically from its set of runnable processes. A process is runnable
after it has been freshly created, after a suspend statement, and after an await
statement if the condition in the await statement is true.

Cogs and cooperative scheduling makes modeling distributed concurrent sys-
tems easy and safe. Processes in different cogs are running in parallel, but do not
have access to shared state. Processes within the same cog, on the other hand,
can share state if they run on the same object, but are running interleaved, with
scheduling points clearly visible at the source code level.

3 Exception Recovery in ABS

This section describes the new constructs added to the ABS language for mod-
eling exceptional situations, handling exceptions and recovering from unhandled
exceptions, and multi-party sessions.

The current ABS language documentation can be found at [1]. A formal
semantics of ABS can be found in [13]. Figures 3 and 4 summarize the syntax
of the ABS functional and imperative layer, respectively. Parts highlighted in
yellow mark the elements added in this paper.

Program Verification for Exception Handling on Active Objects 77

Fig. 3. Core ABS syntax for the functional level. Terms e and x denote possibly
empty lists over corresponding syntactic categories, square brackets [] denote optional
elements. (Color figure online)

Fig. 4. Syntax for the imperative layer of ABS. Notation as in Fig. 3 (Color figure
online)

3.1 Exception Modeling in the Functional Layer

Algebraic data structures in ABS are defined with the keyword data, which
defines both a type and a set of constructors. Exceptions are defined with the
keyword exception, which introduces a named constructor for the new excep-
tion. The type of an exception is always ABS.StdLib.Exception, which is pre-
defined in the ABS standard library. Exceptions can be used as data values.
For example, they can be stored in lists and can be used in the case pattern-
matching expression. Additionally, exceptions are used as argument to the throw
statement and are pattern-matched in catch branches (see Sect. 3.2 below).

3.2 Exception Handling in the Imperative Layer

The imperative layer of ABS adds a throw statement for manually raising
exceptions. Additionally, normal code execution can also lead to exceptions,
like attempting to send a message to null or dividing by zero.

78 C. C. Din et al.

For handling exceptions, the imperative layer of ABS adds the familiar try-
catch-finally construct. Exceptions raised in the statement(s) protected by
try are pattern-matched by the branches in the catch block; the statements in
the first matching branch are then executed (“the exception is handled by that
branch”). Finally, all statements in the finally block are executed, regardless of
how the try block was executed. In case no catch branch matches (“the exception
is unhandled”), the finally block is executed and the exception is (hopefully)
handled by an enclosing try-catch block. The scope of variables declared in the
try block does not extend to the catch and finally blocks since they might
not have been initialized yet when entering these blocks. To ensure progress,
finally blocks cannot contain blocking operations or process suspension.

Unhandled exceptions terminate the current process and are stored in its
future. As in [10], unhandled exceptions propagate across futures. When the
callee process terminated with an exception, that exception will be raised when
the caller tries to obtain the future’s value via a get expression, and will thereby
propagate along the chain of process invocations until it is handled.

Note that a process crash is effectively ignored if no other process tries to
access its return value.

3.3 Recovery in the Object Layer

The compositional proof system of ABS [5,7] relies on class invariants; processes
are responsible to establish these invariants at all of their scheduling points.
Since with exceptions processes can terminate at arbitrary points, we introduce
recovery blocks as a fall-back mechanism to reestablish class invariants.

All unhandled exceptions still lead to process termination, as above in
Sect. 3.2, but additionally the unhandled exception is matched against the recov-
ery block given in the class definition. If a matching branch is found, its state-
ments are executed and the object is kept alive. If no matching branch is found
in the recovery block, the object is killed. A dead object is marked as invalid, all
processes running on it are terminated, and all further messages to that object
result in an exception in the caller. This is not quite as draconian as it sounds,
since models of distributed systems need to model this type of partial failure
anyway.

3.4 Session Blocks

As discussed above, try-catch blocks and class recovery blocks help restore per-
object class invariants in the face of exceptional situations. But they do not help
in a systematic way for recovering invariants that span more than one object. In
general, this requires corrective actions undoing or compensating from messages
sent as part of an incomplete transaction. For example, see Fig. 1: when creating a
CTransaction object with factor= 0, executing the transfer method will lead
to a division by zero on Line 19, after sending a withdraw message to sender but
before the corresponding deposit messages. Hence, the system-wide invariant

Program Verification for Exception Handling on Active Objects 79

(“the amount of money in the system is constant”) is violated. To handle these
cases, we introduce the session block construct.

A session is the analogue of a critical section over a group of cogs. During the
lifetime of a session, the participating cogs will only run processes that “belong”
to the session. Unrelated processes are not scheduled until the session has ended.
Sessions are implemented and modeled via session blocks. The cog running the
process that is executing the session block (the “session initiator”) is a session
participant, as are the cogs of all objects named in the session block parameter
list. In Fig. 2 we see a session with two participants. For the duration of a session,
all participants will only schedule processes that are created during the session
by a session participant. There can be multiple active sessions in the system,
but no cog can participate in more than one session at a time.

Figure 4 introduces the syntax of the session block. Figure 5 shows an exam-
ple of this construct, in a revised CTransaction class. Note the use of local
variables start sender etc. is to record progress through the session and estab-
lish which actions in the CAccount objects can be undone. As with try-catch-
finally, variables declared in the body of the session block go out of scope
before entering the recovery block, since their value and status are uncertain.

The semantics of initiating and terminating a session demands synchroniza-
tion among all participants. When the session initiator starts executing a session
block, the list of participating cogs is calculated from the block’s parameter list.

Fig. 5. Error recovery in the transaction class via a session block

80 C. C. Din et al.

In Fig. 5, Line 6, there are four participants (the cogs of the three Account
objects plus the cog of the Transaction object, which runs the session initia-
tor). Execution of the initiating process blocks until all participants have (a) left
any currently active sessions they might be in, and (b) have reached a scheduling
point. Then, all participants acknowledge entering the session and receive the
list of participants. When the session initiator reaches the end of the session
body, either normally or via an exception, execution blocks until all partici-
pants have finished executing all processes that are part of the session. A final
synchronization point is at the end of the recovery block, in case it is entered.

4 Program Analysis of Session Blocks with Exception
Handlers

A session block, introduced in Sect. 3, is used to identify a special group of
interactions in which (i) the states of participants in the interactions shall not
be updated by other processes, and (ii) once an exception occurs but is not
caught by catch block, the recovery block will recover the states of participants.

In this section, we give a session-contract based verification framework. This
verification framework is inspired by the ABS class-invariant based verifica-
tion [5], which, however, is not designed for verifying the preservation of invari-
ants while exceptions are thrown or verifying properties across multiple objects,
such as in the case in Fig. 1.

4.1 Session Contracts

In this section we first briefly explain the class-invariant based verification frame-
work for ABS [7]. Then we will point out why this proof strategy is too strong
for the language setting where exception handling is considered. The verifica-
tion framework in [7] assumes formal specification at the class level, i.e. for each
object implemented in a class C we aim to establish its class invariant IC. We
need to prove that C’s initialization block establishes IC, and IC holds before pro-
cess releasing at each await and suspend statements, as well as when a method
on C returns. Thus, class invariants need to hold at each scheduling points but
not necessary in between. Consequently, if an exception is thrown between two
scheduling points, this may lead to a system ending in a state where class invari-
ant does not hold. For instance, we define a specification for the banking example
in Fig. 1.

sender.balance + commission.balance + receiver.balance = v (1)

which says that the summation of balances of the sender’s account, the receiver’s
account and the commission’s account is a constant v. This property cannot be
proven within the verification framework for ABS [7]. One reason is that the
specification language used in [7] cannot express the state of the invoked objects,
and this property does not hold at every suspension point as it should in [7], for

Program Verification for Exception Handling on Active Objects 81

instance, after the balance of the sender has been decreased but the balance of
other accounts have not yet been changed. Besides, if there is any runtime error,
for example division by zero, this property does not hold when an exception is
thrown.

To overcome these restrictions, the concept of session is introduced in this
work. The modified version of the banking example using session is presented
in Fig. 5, for which we define Eq. (1) as a session contract. Session contracts
express the state of the session or the communication pattern between objects
in the same session. They are assumed at session entry and should be proven at
session exit. Accordingly, the following statement should be proven upon session
termination in Fig. 5.

v − amount + profit + (amount − profit) = v

In case of uncaught exceptions in the session block, the session contract should
hold after the recovery block. In order to prevent the session state from being
randomly modified at the process release points, we only allow process suspension
outside the session blocks.

4.2 Proof System

In this section we introduce a modular proof system for proving session-based
ABS programs. We first prove that each method satisfies its method contract and
then prove that each session block satisfies its corresponding session contract.

4.2.1 Program Analysis at Method Level
We verify ABS methods against method contracts by applying the proof rules
in Fig. 6, i.e. one rule for each program statement. The program logic is first-
order dynamic logic for ABS (ABSDL) [2,5,7]. For a sequence of executable ABS
statements S and ABSDL formulae P and Q, the formula P ⇒ [S]Q expresses: If
the execution of S starts in a state where the assertion P holds and the program
terminates normally, then the assertion Q holds in the final state. Gentzen-
style sequent calculus is used to prove ABSDL formulae. In sequent notation,
P ⇒ [S]Q is written P � [S]Q. A sequent calculus as realized in ABSDL essen-
tially constitutes a symbolic interpreter for ABS. For example, the method rule
in Fig. 6 expresses the proof of method m against its precondition p and post-
condition q . In the assign rule, the assignment v = e is an active statement in a
modality [π v = e;ω], where v is a program variable and e is a pure (side effect-
free) expression. The nonactive prefix π consists of an arbitrary sequence of open-
ing braces “{”, i.e. beginnings “m(x){” of method blocks, “try{” of try-catch-
finally blocks, and “session(e){” of session blocks. The remaining program
is represented by ω. The assign rule generates a so-called update [2], as {v := e}
shown above, for the assignment statement, which captures state changes and is
placed outside the modality box. Updates can be viewed as explicit substitutions
that accumulate in front of the modality during symbolic program execution. We
use U to represent the accumulated updates up to now. Updates can only be

82 C. C. Din et al.

applied to formulae or terms. Once the program to be verified has been com-
pletely executed and the modality is empty (see the emptyBox rule in Fig. 6), the
accumulated updates are applied to the formula after the modality, resulting in
a pure first-order formula. Γ stands for (possibly empty) sets of side formulae,
and φ the property required to be proven upon execution termination.

Fig. 6. Proof rules for statements.

Figure 6 also provides rules for other statements. Rules skip, new, return,
and get are for skip statements, object creation, return statements, and get
statements, respectively. In rule new, fresh(o) expresses that there is no object
reference equals o up to now. Object o belongs to class C is captured by predi-
cate cl(o, C). The rule ifElse is for conditional statements. The rule while proves
that a while loop preserves loop invariant I. In the rule asyncCall we assume
that method contract of the invoked method is provided. We formulate method
contract in the form of C.m(x) : (p, q), where (p, q) is a pair of pre- and post-
condition of method m(x) in class C. For brevity, we skip the case of multiple
implementations of a given interface but they can be handled in the standard
way using adaptation rule [6]. The asyncCall rule has two premises. The first one
proves that the precondition p of m holds. The update substitutes this with callee
o, and formal parameters x with actual parameters e. In the second premise, a
fresh future fr ′ is generated and added into an update clause. The environment
carries information about the callee of fr ′, i.e. predicate bt(fr , o, C.m(e)) expresses
that future fr belongs to method m(e) which is executed on object o of class C.
In rule return, the keyword r captures the return value and the postcondition q
is required to be proven. Note that we consider partial correctness, so for the

Program Verification for Exception Handling on Active Objects 83

get rule we assume it is possible to fetch the data from the future at the get
statements eventually. Since it is not possible to know the exact fetched data
while applying the get rule, we follow the same principle as for the new rule and
assign a fresh value, i.e. v′, to variable v. However, if the environment carries
information about the callee of fr , we can use the post condition q to restrict
the possible values v′. If such information is unavailable, we assume q = true. If
future fr in the get statement does not contain value, i.e. ¬isValue(fr), but an
exception, an exception will be thrown. This is captured by the second premise.
The rule syncCall is syntactic sugar to an asynchronous call plus a get statement.
Note that we do not present the proof rules for await and suspend statements in
this paper, because we only allow process suspension outside the session blocks.

Fig. 7. Proof rules for try-catch-finally statements.

In Fig. 7 we provide proof rules for try-catch-finally statements. Runtime
exceptions are handled in the proof rules (see the example of the get rule in
Fig. 6). Errors created during evaluation of expressions, for example division by
zero, are handled in a similar way. The rule try-catch-finally has two premises. If
the thrown exception matches the first case listed in the catch block, statements
s2 from the catch clause are then executed. Otherwise, the exception is thrown
again and the first case in the catch block is eliminated. Note that the finally
block can be empty, i.e. s3 is an empty list. The rule try-emptyCatch-finally
expresses that the exception cannot be caught by the catch clause so it executes
the finally clause and then throws the exception to the outer scope. Maybe
there will be another try-catch clause around it, i.e. contained in the nonactive
code π and the remaining program ω. The rule emptyTry says if a try clause is
completely executed without throwing any exceptions, then the finally clause
and the remaining program will be executed.

4.2.2 Proof of the Example at Method Level
In this section, we provide method contracts for the example shown in Sect. 3.4.
The method contract for withdraw is

CAccount.withdraw(Rat amount1):(this.balance = balance′, this.balance = balance′ − amount1)

in which this.balance accesses the field balance, and logical variable balance′

stores the value of balance at the prestate. This contract expresses that if the

84 C. C. Din et al.

value of balance at prestate is balance′, then it updates to balance′ −amount1
upon method termination. The method contract for deposit is:

CAccount.deposit(Rat amount2):(this.balance = balance′′, this.balance = balance′′ + amount2)

This contract expresses that if the value of balance at prestate is balance′′,
then it updates to balance′′ + amount2 upon method termination. Finally, a
method contract for getBalance is given below:

CAccount.getBalance():(true, r = this.balance)

There is no requirement for the precondition. In the postcondition the value of
balance is assigned to variable r. We can prove these three method contracts
by using rules method, assign, return and emptyBox in Fig. 6.

4.2.3 Program Analysis at Session Level
Session contract must be proven at the end of the session if there is no exception
left unhandled, assuming the session contract holds at the session entry. The
proof rules in Fig. 8 together with the ones in Figs. 6 and 7 build up a proof
system for verifying session blocks. The rules in Figs. 6 and 7 will be used when
the session block is not empty and the current active statement is not a throw
statement for exception. A session block may contain try-catch-finally clauses
but cannot be nested within another session block.

Fig. 8. Rules for proving session contracts.

The rule sessionRecover has two premises. If the thrown exception matches
the first case listed in the recover block, statements s2 from the recover clause
are then executed. Otherwise, the same exception is thrown again and the first
case in the recover block is eliminated. The rule emptyRecover says if none of
the cases in the recover block matches the exception thrown from a session
block, this proof branch cannot be closed. This means the recover block needs
to be re-implemented until the session contract can be successfully proven in
the end of the recover block. The rule emptySession says if a session block is
completely executed without throwing any exceptions, then the session contract
should be proven at this session exit. The rule sessionStart captures the proof
obligation of a session. We use this rule to prove that a session preserves the

Program Verification for Exception Handling on Active Objects 85

session contract SC. Contracts for all the methods in the system are assumed
known from the beginning. The set init are variables defined before session entry
but used in the session block.

4.2.4 Proof of the Example at Session Level
In this section, we explain the proof outline for the example in Fig. 5, which
presents the cases when exceptions are thrown in a session. Equation (1) is the
corresponding session contract. Since the session involves method invocations,
the proof requires knowledge of all the invoked methods from the session. This
knowledge is formalized as the method contracts presented in Sect. 4.2.2.

An exception can be thrown at any execution point of the session block. Since
there is an execution barrier between the session body and the recovery block
(see Sect. 3.4), all the processes executed in or related to the session block are
finished before the recovery block can be executed. The recovery block rescues
all the possible failing cases and makes sure the program is back to the state
as if this particular transaction has never been executed. Below we present the
proof outline for the recovery block and show that the session contract holds at
the end of the recovery block.

Session participants, i.e. objects, and their method invocations are known
in a session. According to this knowledge, we instantiate each method contract
of the invoked methods in the session as follows: In the method contract for
the deposit method of the sender object, we instantiate this to sender and
parameter amount2 to start sender − bal sender. In the method contract for the
withdraw method of the commission object, we instantiate this to commission
and parameter amount1 to bal commission − start commission; In the method
contract for the withdraw method of the receiver object, we instantiate this to
receiver and parameter amount1 to bal receiver − start receiver.

sender.deposit(start sender − bal sender):
(sender.balance = bal sender,
sender.balance = bal sender + (start sender − bal sender))

commission.withdraw(bal commission − start commission):
(commission.balance = bal commission,
commission.balance = bal commission − (bal commission − start commission))

receiver.withdraw(bal receiver − start receiver):
(commission.balance = bal receiver,
commission.balance = bal receiver − (bal receiver − start receiver))

Assume in the beginning of the session block the following holds

sender.balance = sb ∧ commission.balance = cb ∧ receiver.balance = rb

where sb, cb, rb are logical variables to record the initial balance of the
accounts and sb + cb + rb = v. Besides, start sender = sb when established,
start commission = cb when established, and start receiver = rb when established.
Depending on which initial balance of the accounts are successfully accessed in
the session block, the conditional branches in the recovery block will be selected

86 C. C. Din et al.

for execution. In the end of the recovery block we show that

sender.balance + commission.balance + receiver.balance
= [sb | bal sender + (start sender − bal sender)]+

[cb | bal commission − (bal commission − start commission)]+
[rb | bal receiver − (bal receiver − start receiver)]

= sb + cb + rb = v

in which the symbol [a | b] means either a is selected or b is selected. Thus, this
session contract does hold in the end of the recovery block. From these proof
results, we show that the execution of a session will always end in a safe state,
with the session contract reestablished, irregardless of the presence of exceptions.

5 Related Work

The use of futures for transferring both result and exception values goes back
to [15]. A specification of an exception handling system for active objects using
one-way asynchronous communication and interacting via a request/response
protocol was presented in [9]. Future-based communication and verification of
such system were not considered. The first approach for exception recovery based
on object state rollback for unhandled errors in ABS was proposed in [10]. This
approach was implemented but ultimately rejected for inclusion in the main lan-
guage for two reasons: the impact of object rollback on the ABS proof theory
was too high, and the proposed approach did not handle notions of correctness
that need to be expressed over multiple objects. The approach in this paper
addresses both of these shortcomings. Reasoning about exception handling in
Java is supported by PVS [12]. The invariant-based verification framework for
ABS was provided by [5,7], in which formal specification was at the class level.
KeY-ABS [5] is a theorem prover that realized the proof system for ABS. It was
developed based on KeY [2], which supports deductive verification for exception
handling in sequential Java programs. A new rule implemented in KeY to rea-
son about exception handling in loops was introduced by [16]. A modular and
scalable network-on-chip example is proven by KeY-ABS. The proof results are
shown in [8]. In the work of [14], core ABS is extended with sessions and annota-
tions to express scheduling policies based on required communication ordering.
The annotation is statically checked against the session automata derived from
the session types.

6 Conclusion

This paper shows an extension of the Active Object-based modeling language
ABS with exception specifications, handling and recovery. We introduce several
language constructs including the means to express coordinated multi-party ses-
sions and recovery actions. To guarantee session correctness, we provide session

Program Verification for Exception Handling on Active Objects 87

contracts and an attendant proof system. We show that a system, in which excep-
tions are thrown, can be recovered back to a safe state, where session contract
holds. Soundness proofs for the reasoning system with respect to the opera-
tional semantics are left as future work. Other planned future work includes (1)
building up our type system to describe allowed scheduling during the lifetime
of the session, and (2) tool support for the new language constructs, including
an implementation of the type checking and runtime semantics, and a thor-
ough evaluation of the usability of session contracts in the context of existing
case studies utilizing ABS. Inspired by behavioral types [3,11], our type system
will be designed to regulate the runtime behavior of objects and schedulers, and
reduce the number of exceptions caused by undesired communication behaviour.

Acknowledgement. This work was supported by the research projects CUMULUS:
Semantics-based Analysis for Cloud-Aware Computing, ERC project LiveSoft, and the
SIRIUS Centre for Scalable Data Access.

References

1. The ABS Development Team. ABS Documentation. http://docs.abs-models.org
2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):

Deductive Software Verification - The KeY Book, vol. 10001. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-319-49812-6

3. Chen, T.-C., Viering, M., Bejleri, A., Ziarek, L., Eugster, P.: A type theory for
robust failure handling in distributed systems. In: Albert, E., Lanese, I. (eds.)
FORTE 2016. LNCS, vol. 9688, pp. 96–113. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39570-8 7

4. de Boer, F.S., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C.,
Johnsen, E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.:
A survey of active object languages. ACM Comput. Surv. 50(5), 76:1–76:39 (2017)

5. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

6. Din, C.C., Johnsen, E.B., Owe, O., Yu, I.C.: A modular reasoning system using
uninterpreted predicates for code reuse. J. Log. Algebraic Methods Program. 95,
82–102 (2018)

7. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

8. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 14

9. Dony, C., Urtado, C., Vauttier, S.: Exception handling and asynchronous active
objects: issues and proposal. In: Dony, C., Knudsen, J.L., Romanovsky, A., Tri-
pathi, A. (eds.) Advanced Topics in Exception Handling Techniques. LNCS, vol.
4119, pp. 81–100. Springer, Heidelberg (2006). https://doi.org/10.1007/11818502 5

http://docs.abs-models.org
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1007/11818502_5

88 C. C. Din et al.

10. Göri, G., Johnsen, E.B., Schlatte, R., Stolz, V.: Erlang-style error recovery for
concurrent objects with cooperative scheduling. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014. LNCS, vol. 8803, pp. 5–21. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45231-8 2

11. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 31–336 (2016)

12. Jacobs, B.: A formalisation of Java’s exception mechanism. In: Sands, D. (ed.)
ESOP 2001. LNCS, vol. 2028, pp. 284–301. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45309-1 19

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

14. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3 19

15. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation (PLDI), pp.
260–267 (1988)

16. Steinhöfel, D., Wasser, N.: A new invariant rule for the analysis of loops with non-
standard control flows. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 279–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66845-1 18

17. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp. 49–64. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62852-5 6

https://doi.org/10.1007/978-3-662-45231-8_2
https://doi.org/10.1007/978-3-662-45231-8_2
https://doi.org/10.1007/3-540-45309-1_19
https://doi.org/10.1007/3-540-45309-1_19
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/3-540-62852-5_6

Spread the Work: Multi-threaded Safety
Analysis for Hybrid Systems

Stefan Schupp and Erika Ábrahám(B)

Theory of Hybrid Systems, RWTH Aachen University, Aachen, Germany
{stefan.schupp,abraham}@cs.rwth-aachen.de

Abstract. We consider a method for the bounded safety analysis of
hybrid systems, whose continuous behaviour is intertwined with discrete
execution steps. The method computes a tree of state sets, which together
over-approximate reachability by bounded-length executions. If none of
the state sets intersects with a given set of unsafe states then we have
proven bounded safety. Otherwise, we iteratively repeat parts of the com-
putations with locally refined search parameters, in order to reduce the
over-approximation error.

In this paper we present a parallelization technique for the above
method. We identify independent computations that can be carried out
by different threads/processes concurrently, and examine how to achieve
work-balance between the threads at low communication cost. Further-
more, we discuss how to assure mutually exclusive node access during
refinement computations, without high synchronization costs. We evalu-
ate our proposed solutions experimentally on some benchmarks.

1 Introduction

The massive application of digital controllers for the control of continuous (e.g.
physical) systems raises the need for verification approaches for such hybrid sys-
tems with mixed discrete-continuous behaviour. Though the reachability prob-
lem for hybrid systems is in general undecidable, a variety of incomplete safety
analysis approaches have been developed. Besides verification methods based on
theorem proving, SMT solving or rigorous simulation, these include techniques
based on flowpipe construction, e.g. [1–3].

Starting from a set of initial states, flowpipe-construction-based methods
iteratively over-approximate flowpipes, i.e. the set of states reachable from a
given state set via time evolution according to the system’s continuous dynamics,
and sets of successors via discrete execution steps. Due to non-determinism, these
computations generate a tree with state sets as nodes, where the root includes all
initial states and the children of a node include all discrete successors from the
node’s flowpipe. These computations are usually bounded in the time duration

This work was supported by the German research council (DFG) in the context of
the HyPro project and the DFG Research Training Group 2236 UnRAVeL.

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 89–104, 2018.
https://doi.org/10.1007/978-3-319-92970-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_6&domain=pdf

90 S. Schupp and E. Ábrahám

for flowpipes and the number of discrete steps executed (unless a fixedpoint can
be detected).

If none of the flowpipes and discrete successor sets contain unsafe states
then the model is safe. Otherwise, due to over-approximation, no conclusive
information can be derived. Therefore, it is important to provide possibilities to
reduce the over-approximation error by increasing the precision of the com-
putations [4–6]. To avoid complete re-starts of the analysis upon parameter
refinement for increased precision, some approaches use counterexample-guided
refinements [7,8].

For applicability, it is also important to increase the scalability of these meth-
ods. A piece of work in this direction is [9], where the authors propose a scalable
approach to compute the set of all states reachable by fixed-step simulation.
Approaches like [10–12] decompose the state space into lower-dimensional sub-
spaces in which reachability computations can be executed faster (but usually
with less precision). One of the few parallelization approaches is presented in [13];
besides speeding up sequential computations, the authors propose to parallelize
flowpipe computations for the over-approximation of reachability between two
discrete state changes.

In this paper we propose a parallelization approach for a sequential algo-
rithm [8], which applies flowpipe-construction-based reachability analysis in an
iterative counterexample-guided refinement loop for error reduction. In contrast
to [13] we do not parallelize the construction of a single flowpipe, but compute
several flowpipes independently by parallel threads. An extension could addition-
ally apply parallelization according to [13], but it is left for future work. With-
out a refinement loop, different flowpipe computations would be independent
and thus their parallelization would be natural. However, our experience shows
that achieving a work-load balance at low communication costs is challenging.
Furthermore, the refinement loop makes additional synchronization necessary,
which we keep at a minimum to reduce unnecessary synchronization costs. We
implemented our method and provide some experimental results.

The rest of this paper is structured as follows: Sect. 2 contains preliminar-
ies on flowpipe-construction-based reachability analysis and its embedding in a
refinement loop as introduced in [8]. Section 3 presents our parallelization app-
roach, followed by experimental results in Sect. 4. We conclude the paper in
Sect. 5.

2 Preliminaries

2.1 Hybrid Automata

Hybrid automata are a well-established formalism for modeling hybrid systems.

Definition 1 (Hybrid automata: Syntax [14]). A hybrid automaton is a
tuple H = (Loc,Var ,Flow , Inv ,Edge, Init) with the following components:

– Loc is a finite set of locations or control modes.

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 91

– Var = {x1, . . . , xd} is a finite ordered set of real-valued variables; sometimes
we use the vector notation x = (x1, . . . , xd). The number d is called the dimen-
sion of H. By ˙Var we denote the set {ẋ1, . . . , ẋd} of dotted variables (which
represent first derivatives during continuous evolution), and by Var ′ the set
{x′

1, . . . , x
′
d} of primed variables (which represent values directly after a dis-

crete change). Furthermore, given a variable set X, let PredX denote a set
of predicates with free variables from X.

– Flow : Loc → PredVar∪ ˙Var specifies for each location its flow or dynamics.
– Inv : Loc → PredVar assigns to each location an invariant.
– Edge ⊆ Loc×PredVar ×PredVar∪Var ′ ×Loc is a finite set of edges (�1, g, r, �2)

with source location �1, target location �2, guard g, and reset function r.
– Init : Loc → PredVar assigns to each location an initial predicate.

While the presented approach can be generalized, in this work we focus on
linear hybrid automata, where PredVar is the set of all conjunctions of lin-
ear equalities and inequalities over Var , Flow assigns to each location a linear
ordinary differential equation (ODE) system of the form ẋ = Ax with some
A ∈ R

d×d, and where reset functions on discrete transitions are defined by affine
mappings x′ = Ax + b with A ∈ R

d×d and b ∈ R
d.

A state ,= (�, ν) of a hybrid automaton consists of a location � ∈ Loc and
a variable valuation ν : Var → R. We refer to a set of states with a common
location � and valuations from a set V by (�,V) = {(�, ν) | ν ∈ V}.

The state of a hybrid automaton can be changed either by time or by discrete
steps. A time step (�, ν) t→ (�, f(ν, t)) (also called flow) of length t models the
passage of t time units: the control location remains unchanged and the variable
values evolve continuously according to a solution f of the ODE system Flow(�);
the time step is enabled only if the invariant Inv(�) is satisfied during the whole
time step, i.e., by all f(ν, t′) with 0 ≤ t′ ≤ t. A discrete step (�, ν) e→ (�′, ν′)
(also called jump) models a discrete change of the control mode: it follows an
edge e = (�, g, r, �′) ∈ Edge which is enabled (i.e., ν satisfies g and ν′ satisfies
Inv(�′)), where ν′ results from ν by applying the affine mapping specified by r.
Note that hybrid automata are in general non-deterministic, as a time step and
several jumps can be enabled at the same time.

An execution or path π = σ0
t0→ σ′

0
e0→ σ1

t1→ . . . is a (finite or infinite) sequence
of alternating time and discrete steps, starting in an initial state σ0 = (�0, ν0)
such that ν0 satisfies Init(�0). A state is called reachable if there is a finite
path leading to it. Given a hybrid automaton H and subset T of its states, the
reachability problem poses the question whether some state of T is reachable
in H.

2.2 Reachability Analysis Based on Flowpipe Construction

In this work we use a bounded flowpipe-construction-based reachability analysis
method for linear hybrid automata. As the reachability problem for linear hybrid
automata is in general undecidable, this approach computes over-approximations
of bounded reachability (with upper bounds on the number of jumps and on the

92 S. Schupp and E. Ábrahám

Fig. 1. Jump successors can be processed individually (6 sets on the left), clustered (2
sets in the middle) or aggregated (1 set on the right).

length of time steps). The computation starts from a set (�0,V0) of initial states
and over-approximates, alternatingly, time successors within a time horizon T
and jump successors iteratively up to a given jump depth J . As datatypes for
state sets Ω = (�,V), different geometric or symbolic state set representations
(e.g. boxes, convex polyhedra, zonotopes, support functions or Taylor models)
can be used to over-approximate the valuation set V (when interpreted as a
subset of Rd).

To compute bounded time successors from a given set of valuations V in a
location �, the time horizon T is divided into N time segments of size δ = T

N .
For each i = 0, . . . , N − 1 the set of states reachable from V in � within time
[iδ, (i + 1)δ] is over-approximated, intersected with the invariant of � and stored
as a state set in Ωi (called the ith flowpipe segment). The union

⋃N−1
i=0 Ωi of the

flowpipe segments is referred to as the flowpipe and over-approximates the set
of states reachable from V in � within T time. If any of the flowpipe segments
has a non-empty intersection with the set of unsafe states then the algorithm
terminates (with an inconclusive answer due to over-approximation).

Otherwise, for each flowpipe segment Ωi = (�,Vi) and jump e = (�, g, r, �′)
rooted in � we determine an over-approximation Ωe,i of the jump successors from
Ωi along e; this includes the intersection of Vi with g, the affine transformation
of the result according to r, and the intersection with the invariant of �′.

Fig. 2. Valuation set V0 over-
approximated by a box (blue)
and a convex polytope (green)
[8]. (Color figure online)

One possibility is to apply the algorithm
now iteratively to all non-empty jump succes-
sors Ωe,i with i = 0, . . . , N − 1 and e being a
jump leaving �, until the jump depth has been
reached. However, this approach is computation-
ally very expensive. Alternatively, we can group
the jump successors into a fixed number k of
clusters (if there are more than k segments),
over-approximate each cluster by one set, and
continue the computations for each cluster over-
approximation. If k > 1 then we call this proce-
dure clustering, and for k = 1 we call it aggrega-
tion (see Fig. 1).

The choices of time segmentation, state set representation and cluster-
ing/aggregation parameters influence the over-approximation error. Usually,
a smaller time step size δ, a more precise state set representation and finer
clustering leads to a smaller error on the cost of increased computation time.

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 93

For instance, boxes require little computational effort for set operations but in
general introduce more over-approximation error as e.g. convex polytopes do
(see Fig. 2). We refer to [15,16] for further details.

Fig. 3. An example for a search
tree.

During the analysis, we store the state sets
for which flowpipes and jumps successors need
to be computed in a search tree, whose depth is
limited by the jump depth (see Fig. 3). The root
node stores the initial states, whereas each other
node ni stores either the jump successor states
of the flowpipe segment given by the parent, or
a clustering/aggregation of such sets, depending
on the parameter setting. If we label each parent-
child connection with the union of the time inter-
vals of the considered flowpipe segments and the
jump taken, then the path from the root to a node describes a symbolic path
Π = I0, e0, . . . , Ik, ek, which represents all paths Paths(Π) = {σ0

t0→ σ′
0

e0→
σ1 . . . σl+1 | l ≤ k ∧ ∀0 ≤ i ≤ l.ti ∈ Ii}. A path π ∈ Paths(Π) that does not exist
in the hybrid automaton is called spurious.

The structure of the search tree depends not only on the analyzed hybrid
automaton but also on the analysis parameters. Non-determinism naturally
causes a branching in the search tree, but over-approximation might cause not
only larger sets in the nodes but also additional branching.

If the algorithm has terminated due to the detection of an unsafe state then
the symbolic path to one of the nodes represents a counterexample path leading
to an unsafe state. However, due to over-approximation, we do not know whether
this counterexample is spurious or not.

2.3 Counterexample-Guided Parameter Refinement

Most available algorithms terminate at this point; the user needs to restart
the search with adapted parameters to achieve a higher precision. To avoid a
complete restart, in [8] we presented a counterexample-guided approach to repeat
the search with refined parameters along (potentially spurious) counterexample
paths only.

A user-defined collection of parameter settings is stored in an ordered list,
the refinement strategy. We say that we compute at refinement level i when
we use the (i + 1)st setting in the refinement strategy. The refinement levels
might differ e.g. in the state set representation, the time step size or in the
clustering/aggregation settings.

The search starts at refinement level 0, i.e., with the first setting in the
refinement strategy. When a potential counterexample is detected at refinement
level i then we enforce an iterative re-computation of reachability within the
counterexample’s symbolic path Π (called the refinement path) at refinement
level i + 1 (unless i was the last defined level, in which case the algorithm
terminates without any conclusive answer). These re-computations start at the

94 S. Schupp and E. Ábrahám

root node, for which the successors are computed at refinement level i + 1,
however, only its successors along Π will be further processed by the refinement
(i.e. only successors with symbolic path Π ′ for which Paths(Π)∩Paths(Π ′) 	= ∅).

Note that several refinements might be applied to the same symbolic path.
A special case is when a counterexample is detected before the whole previous
counterexample has been refined, i.e., before reaching the end of the previous
counterexample. In this case the counterexample must be spurious, because the
previous over-approximative computations did not detect any unsafe states at
that point; we continue the computations without additional refinement.

The refinements stop if either the counterexample could be shown to be
spurious (path is safe) or we have tried all settings in the strategy but the
potential counterexample could not be excluded. In the first case, the analysis
continues with further successor computations; if the path with the spurious
counterexample had less jumps than the jump depth, then also successors for its
last state set are further processed, however, for these computations we jump
back to refinement level 0.

Due to space restrictions, we cannot explain how we store the refined sets at
all levels in a single search tree, and how we switch back from a higher refinement
level to level 0 after the elimination of a spurious counterexample. Regarding the
aspects of parallelization, it is not necessary to understand these mechanisms in
detail. It is however important to notice that a node in the search tree can store
several state sets, each computed at a different refinement level. Thus a node
and a refinement level uniquely specify a state set stored in the tree.

3 Parallel Reachability Analysis

In the following we propose a parallelization approach for the previously
introduced reachability analysis method with counterexample-guided parameter
refinement for hybrid automata. We first discuss some aspects of a sequential
implementation (Sect. 3.1) before we describe our parallel approach (Sect. 3.2)
and implementation details (Sect. 3.3).

3.1 Sequential Analysis

In this section we recall from [8] some implementation-related concepts for the
sequential analysis with counterexample-guided parameter refinement, as they
will play basic roles for the parallelization.

Task. A task collects all information that is needed to compute flow and jump
successors for a state set stored in a node of the search tree. In a classical
approach without refinement, storing a reference to the search tree node would
be sufficient for this purpose, assuming that all search parameters are globally
accessible. With refinement, tasks are either basic at refinement level 0 or they
are refinement tasks storing the refinement work at a positive refinement level for
a node on a (potentially spurious) counterexample path. In both cases, the task

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 95

additionally needs to store the current refinement level (specifying the parameter
values for the computations). In the case of refinement, the task also needs to
store the symbolic path of the counterexample, to which also the refinement of
the successors should be restricted.

Fig. 4. HyDRA’s execution structure. Dashed lines denote synchronized access.

Worker. A worker (or in the sequential setting the worker) is responsible for
the execution of tasks. In our setup we employ one type of workers, which
uses a state-of-the-art method for computing flowpipes and jump successors (see
Sect. 2). However, as stated in [17], we could also consider specialized workers
(e.g. applying different successor computation approaches dedicated to certain
types of dynamics). We could even consider the decomposition of the state space
as described in [10] and the invocation of specialized sub-workers on the compo-
nents, but these ideas are not yet implemented.

Task Queue. Once a worker completed a basic task, it adds the corresponding
jump successor state sets as new nodes to the search tree and creates tasks for
them to trigger their processing (unless the jump depth has been reached or a
potential counterexample has been detected). To keep track of the tasks that still
need to be processed, in the sequential setup the worker maintains its own task
queue – we will extend this concept for parallelization. In the implementation
we use priority queues which allow to implement different search heuristics by
modifying the order inside the queue.

Refinement Queue. Whenever a worker detects the potential reachability of some
unsafe states, it triggers a refinement of the symbolic path to the current node
(the refinement path) as presented in [8]. As counterexamples might share a
prefix, when refining a node, the worker first checks whether the node has already
been refined to the required level; if so then there will only be created requests
for processing the children along the refinement path (in the form of new tasks).

96 S. Schupp and E. Ábrahám

For their storage, we want to prioritize refinement tasks over basic tasks.
Instead of changing the ordering of the task queue, we do so by using a separate
refinement queue, as it also allows for separate queue balancing methods (see
Sect. 3.2).

3.2 Parallel Analysis

In this work we develop parallelization based on multi-threading. The tasks are
natural units for parallel processing: multiple threads can implement workers (in
a one-to-one correspondence between threads and workers) processing different
tasks in parallel.

Local and Global Queues. As in the sequential case, each worker has a local task
queue and a local refinement queue. Access to these local queues is restricted
to the owning worker, therefore it does not require any synchronisation and is
thus fast. Additionally, for work balancing, we need a mechanism to distribute
tasks between threads. For this purpose we use a global task queue and a global
refinement queue, which can be accessed by all workers in a synchronized fashion.

Initially there are some initial tasks (for initial state sets) in the global task
queue, and the global refinement queue and all local queues are empty.

When idle, each worker tries first to obtain a task to process from its local
refinement queue or its local task queue, in this order, to keep the synchronization
overhead as small as possible. Only if both of its local queues are empty, the
worker tries to obtain a task from the global refinement or the global task queue,
using synchronized access. If both global queues are also empty, the worker re-
checks the global queues regularly, until they are filled or until also all other local
queues are empty, which leads to a synchronized completion of the algorithm.

If a worker processes a task, resulting new tasks will be added to the worker’s
local queues. I.e., without further balancing, the subtree under the currently
processed node in the search tree will be analyzed by this worker only.

To allow work-balancing, workers can move tasks from their local queues to
the corresponding global queues (from local task queue to global task queue, from
local refinement queue to global refinement queue). We consider three heuristics
for this balancing step, which apply after each completion of a task: (i) the worker
pushes all but one tasks from its local queues to the global queues; (ii) only
when the local queue size is larger than a certain threshold, tasks exceeding that
threshold are moved from the local to the global queues; (iii) push a certain ratio
of tasks from the local queues to the global queues. We expect that approaches
(i) and (iii) will result in balanced work distribution at higher synchronization
costs while approach (ii) should be better suited to limit these costs but lead
to a less balanced execution. Note that the queue balancing happens after the
completion of each task by a worker, i.e. when potential successor tasks have
been added to the thread-local queues.

We also consider a different setting, where only global queues are present. In
this setting, work is automatically distributed but getting work from the queues
and adding new tasks to the queues require synchronization.

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 97

Node Synchronization. All workers share a single search tree. Without path
refinement, the workers need to synchronize on the access to the global queues,
but not on search tree nodes: each search tree node (below the jump depth
level) will be referred to by exactly one task, which will be processed by exactly
one worker. However, this is not the case for path refinement, as counterexample
paths might share a prefix. To ensure thread-safety during path refinement, each
worker first gets a lock on the tree node it intends to refine, processes the node,
and gives the lock free before starting to process any other node.

3.3 Implementation

We extended our HyDRA tool by the presented approach, based on a previous
implementation of the sequential counterexample-guided parameter refinement
method. HyDRA uses the HyPro [15] C++ library for state set representations,
and it has been developed in a modular fashion to be easily extensible.

The general data flow of HyDRA is illustrated in Fig. 4. Similarly to the
design principles presented in [17], the reachability analysis core (compute reach-
ability) of HyDRA is built up of separate components dealing with the com-
putation of continuous and discrete successors. Our implementation extends the
existing concepts by distributing the analysis process among multiple threads.

The main thread of the tool is responsible for management operations e.g.
invoking the parser, dispatching workers or plotting the computed reachability
over-approximations, if required. Reachability is computed by a fixed number
of separate worker-threads. After pre-processing and initialization by the main
thread, i.e. parsing and creation of tasks from the initial states, the worker
threads are created. Tasks are shared via globally accessible work queues – as
stated before we maintain separate queues for refinement tasks and regular anal-
ysis tasks. Following the concept of work stealing, an idle worker with empty local
queues obtains its next task to work on from a global work queue and processes
it. Each worker extends the shared search tree by jump successor state sets and
creates the corresponding new tasks for the work queue.

Signaling. Inter-thread communication is necessary to join workers after com-
pletion of the analysis. A worker reports idleness via an event system whenever
there is no task in its local queues and no task available in the global queues.
During idling, the worker repeatedly tries to get a task from the global queues;
if this succeeds, the worker signals the end of its idling period (this signalling
happens inside the synchronized access to the global queues). When all workers
reported idleness i.e. all queues are empty, the main thread signals the worker
threads to terminate. All workers are joined and post-processing of the computed
sets e.g. plotting (in the figure: exit) can be performed. As signaling requires syn-
chronization, the number of signals should be limited as far as possible.

Queue Access. To reduce the overhead introduced by synchronization, we equip
our global queues with synchronized as well as non-synchronized methods for
access. Idle workers can utilize non-synchronized methods for the global queues

98 S. Schupp and E. Ábrahám

to check for emptiness and only use synchronized access methods whenever the
queue is not empty (after a second, synchronized check for emptiness while hold-
ing the lock for the queue). This allows to avoid unnecessary synchronization
in scenarios where there are many idle workers constantly accessing the global
queues which are empty most of the time but at the same time ensures that
dequeuing of tasks is still synchronized.

Thread-Safe Linear Optimization. Despite synchronized access to the task
queues and the single search tree nodes, adjustments to the implemented state set
representations in HyPro have to be considered to make the tool thread safe.
In general this does not require specialized approaches, however adapting an
embedded linear optimization engine required some effort. HyPro allows to use
different linear solving backends with a fallback to glpk which are wrapped into
an optimizer class. It is known that glpk is not thread-safe, however with minor
modifications it is possible to obtain a re-entrant version. This can be achieved
by changing the maintained global glpk-context object to a thread-local con-
text. Now that each thread maintains its own glpk-context, special care has to
be taken to avoid memory-leaks. We extend our optimization wrapper class by
mapping the unique thread id to the corresponding glpk context and its problem
instances. State set representations (e.g. support functions) which hold their own
optimizer class instance now have to make sure the glpk context for this instance
is properly deleted upon joining threads, as for every thread which accesses this
state set the corresponding mapping in the optimizer class is extended. To avoid
this we provide clean-up methods, which should be called before a thread is
joined. Clean-up deletes all glpk-problem instances and removes the thread-
local glpk-context instance (which can only be deleted by its creating thread).
In general creating a glpk-problem instance upon request and deleting it after-
wards would solve this issue as well – however as the same problem instance
usually is used several times we reduce the overhead of creating and deleting
these instances by keeping them as long as possible.

4 Experimental Results

We tested our implementation on several well-known benchmarks with a timeout
(denoted as to) of 10 min on a machine equipped with 48×2.1 GHz AMD Opteron
CPUs and a memory limit (mo) of 8 GB.

Benchmarks. Three benchmarks have been selected for empirical evaluation.
We include two instances of the navigation benchmark [18] – instance 9 (na09,
time horizon T = 3 s, jump depth J = 9) and instance 11 (na11, time horizon
T = 3 s, jump depth J = 8). Both instances model a point mass moving on a
two-dimensional plane subdivided into cells which each model different acceler-
ation affecting the movement of the point mass. Due to the large set of initial
states, these benchmarks usually exhibit strong branching behavior and thus

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 99

should be well-suited to evaluate the capabilities of our implementation. Fur-
thermore, we include an instance of Fisher’s mutual exclusion protocol bench-
mark (fish, T = 12 s, J = 13) which also was used in [19]. This benchmark
models several processes competing for a shared resource which can be accessed
in a mutually exclusive way. As all processes have the same priority the model is
non-deterministic and we expect to obtain a shallow search tree during analysis.
In our evaluation we did not include benchmarks with little non-deterministic
choices. Our central goals are to investigate on the influence of queue balancing
methods and on the potential speed-up which can be achieved by parallelization.
Additionally, our results show that the overhead caused by synchronization is
small (see below) so we can expect little influence on running times for bench-
marks with little branching.

Table 1. Parameter settings: Refinement strategies are lists of configurations, each
configuration specified by a triplet (1) state set representation (box, support functions
(sf)), (2) time step size, (3) aggregation (agg)/clustering in k clusters (cl .k). Addition-
ally, the last column specifies the queue balancing rate.

Name Refinement strategy Work balancing

s0 (box , 0.1, agg), (sf , 0.01, agg), (sf , 0.001, agg) 100%

s1 (sf , 0.1, agg), (sf , 0.01, agg) 100%

s2 (sf , 0.1, agg), (sf , 0.01, cl .5) 100%

s3 (box , 0.1, agg), (box , 0.01, agg) 100%

s4 (box , 0.1, agg), (box , 0.01, cl .3) 100%

s5 (box , 0.1, agg), (box , 0.01, cl .3) 10%

s6 (box , 0.1, agg), (box , 0.01, cl .3) 50%

s7 (box , 0.1, agg), (box , 0.01, cl .3) Global queue only

Settings. For our experiments we consider 8 different settings (see Table 1). Even
though path refinement is not the main focus of our presented approach, all 8
settings support path refinement as this involves synchronization (see Sect. 3).

Each setting specifies a refinement strategy and a work queue balancing
heuristics. A refinement strategy is a sequence of triplets, each triplet specifying
(1) the state set representation used, (2) the time step size for flowpipe construc-
tion and (3) settings for aggregation/clustering. In regard to queue balancing,
we made experiments with pushing all tasks above a threshold from the local
queues to the global queues, but this was far less stable in efficiency than push-
ing a certain percentage of the local queue contents, therefore here we include
only experiments with the latter. In Table 1, the work queue balancing heuristics
specifies which portion of the local queues is moved to the global queues after
the completion of each task (at least one task is always left in non-empty local
queues, i.e., 100% means all but one).

100 S. Schupp and E. Ábrahám

Settings s0–s4 differ in their refinement heuristics, but they are all eager in
pushing all but one task from the local to the global queues after the comple-
tion of each task. Contrary, settings s4–s7 share the same refinement heuristics
but they differ in their work balancing method. Especially, setting s7 completely
avoids thread-local queues: every worker operates on the global queues directly.
The difference is that, while in all other settings the work distribution takes place
at the end of the flowpipe computation in a batch, s7 pushes single successor
tasks to the global queues during its computations such that idle workers poten-
tially could start computation earlier. As the experimental results will show,
this works surprisingly good, even though the increased synchronization effort
is recognizable.

Table 2. Running times [sec.] for settings s0–s7, timeout (to) = 10 min, memout (mo)
= 8GB, † = safety cannot be shown. Running times averaged over 10 runs.

Benchmark Setting #threads

1 2 4 8 16 32 48

na09 s0 21.99 20.32 20.32 20.40 20.34 20.29 20.35

s1 24.87 15.72 11.87 11.70 11.68 11.70 11.72

s2 to to to to mo mo mo

s3 † † † † † † †
s4 263.8 134.9 69.34 36.87 21.68 16.70 15.63

s5 252.8 127.9 64.79 32.85 17.00 10.41 7.51

s6 263.5 132.8 68.70 36.20 20.90 15.53 13.95

s7 78.52 46.60 32.01 29.52 34.21 42.23 45.03

na11 s0 70.49 45.72 45.39 45.42 45.41 45.47 45.44

s1 18.47 9.81 6.15 5.03 4.68 4.49 4.50

s2 to 290.7 146.4 75.53 39.92 22.45 16.50

s3 † † † † † † †
s4 95.73 47.05 24.04 12.21 6.42 3.60 3.13

s5 93.68 45.85 23.28 12.03 6.57 4.02 3.54

s6 92.11 47.16 24.02 12.20 6.62 3.74 3.02

s7 95.92 49.12 25.12 13.03 8.02 6.16 6.49

fish s0 40.66 20.46 10.43 5.49 2.96 1.84 1.61

s1 to to to 393.9 201.5 107.2 79.02

s2 to to to 394.3 201.4 107.4 79.07

s3 40.57 20.44 10.47 5.54 2.97 1.82 1.78

s4 40.56 20.45 10.49 5.55 2.97 1.79 1.83

s5 40.63 20.47 10.87 6.76 4.56 3.92 3.96

s6 40.67 20.42 10.47 5.53 2.96 1.84 1.70

s7 42.73 21.79 11.26 6.06 3.68 3.45 3.93

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 101

Results. The running times for our experiments are listed in Table 2. In general,
we can observe a speed-up when increasing the number of worker threads – we
could achieve a speedup of up to factor 33 (na09) which in this case results
in ∼70.1% efficiency (efficiency = speedup

#threads) of the parallelization (na11: max.
factor 30, fish: max. factor 25). Even though a general speed-up when using
more worker threads can be observed, some instances (e.g. na09, s0) stabilize in
their running times. This indicates that either work is not well balanced or there
is a heavy synchronization overhead.

For interpreting the results, it is important to mention that processing each
single task is in general computationally expensive: the time required to com-
pute a flowpipe is usually long in comparison to the time it takes to acquire a
lock for synchronization and move tasks to global queues. Consequently the run-
ning times using one thread in our implementation resemble the running times
of a purely sequential approach. Furthermore, with aggregation/clustering the
number of generated new tasks is often relatively small. For example, for a deter-
ministic system a task might generate just a single successor task, in which case
no work balancing would take place at all. This might lead to insufficient work
balancing and explain why for some benchmarks and some settings involving
more workers does not lead to any additional speedup.

To further investigate upon this we ran the benchmarks with up to 48 threads.
For benchmark instances such as the navigation benchmark in combination with
settings where aggregation was used (s0, s1, s3) we can observe that the running
times already converge for a low number of threads as there are not enough
tasks created during analysis such that most threads idle. The running times
for these settings do not significantly increase when using more threads which
confirms that our implementation successfully minimizes the synchronization
effort required. An exception is setting s7 on benchmark na09, where the running
times increase when using more than 8 threads; as this setting only uses global
queues, the increased need for synchronization is reflected in the running times.

To investigate on the actual work distribution we collected the number of
tasks processed by each worker thread. Table 3 shows the coefficient of varia-
tion (CV) of these results to allow for statements about variance in the work
distribution. The coefficient of variation as a relative measure for variance gives
the influence of the variance of data on the mean in percent. Lower percentages
hereby indicate a lower variance in data.

We can observe the influence of different queue balancing methods for bench-
marks with settings which produce a lot of tasks (s4–s7). With increasing number
of threads the average number of processed tasks per worker decreases. When
using settings which produce too few tasks, many worker threads idle, thus
increasing the variance of processed tasks per worker (see e.g. na09, s0). As
expected the setting using only global queues shows the lowest CV throughout
the experiments as all available tasks are immediately shared.

Settings with local queues where 100% of the created tasks are shared are
expected to exhibit a similar CV as when using global queues only, there are
only two differences: firstly, when using global queues only, tasks are shared

102 S. Schupp and E. Ábrahám

Table 3. Coefficient of variation (left) and idle time (right) in percent for settings
s0–s7, “–” marks failures (timeout, memout). Unsuccessful settings are left out.

Benchmark Setting #threads #threads

2 4 8 16 32 48 2 4 8 16 32 48

na09 s0 87.5 85.4 102.2 133.5 197.2 220.6 18.72 34.96 36.52 33.5 15.28 12.2

s1 32.7 43.6 39.0 44.8 92.5 118.4 10.63 28.78 36.52 28.29 12.76 10.21

s4 0.1 0.7 1.0 1.3 1.7 2.2 0.04 0.18 0.44 0.85 1.09 1.22

s5 0.4 1.1 1.8 2.7 4.0 4.9 0.16 0.46 1.07 2.30 4.33 6.16

s6 0.2 0.4 1.0 1.4 1.8 2.2 0.05 0.18 0.45 0.86 1.33 1.69

s7 0.4 0.6 0.9 1.3 2.2 2.7 0.11 0.23 0.30 0.41 0.38 0.41

na11 s0 45.3 44.3 70.4 130.8 175.1 215.8 7.52 6.05 3.54 2.44 1.36 0.74

s1 24.0 15.3 29.2 45.1 90.5 121.0 4.13 20.95 40.91 47.22 33.84 25.93

s2 0.4 0.9 1.9 3.6 6.0 7.6 0.11 0.51 2.33 5.76 12.10 17.2

s4 0.9 1.7 10.3 11.0 15.7 13.5 0.11 0.44 1.21 3.45 5.79 6.17

s5 2.2 3.2 5.3 8.8 13.6 16.2 0.17 0.64 1.43 3.82 6.62 7.75

s6 1.4 2.1 2.6 17.3 11.9 12.6 0.07 0.46 0.81 3.35 6.35 7.74

s7 2.5 3.0 3.6 3.3 3.9 5.5 0.01 0.30 0.72 1.63 2.67 2.78

fish s0 0.6 3.6 7.6 8.8 11.6 14.3 0.32 1.22 3.32 5.94 10.21 12.33

s1 – – 6.8 8.0 10.0 13.2 – – 0.44 1.09 2.44 3.7

s2 – – 7.6 8.5 10.0 12.7 – – 0.44 1.06 2.65 3.8

s3 0.8 3.3 7.4 9.3 11.8 13.9 0.29 1.43 3.84 5.88 10.45 11.37

s4 0.8 3.4 7.1 8.0 11.3 13.9 0.29 1.19 4.39 6.41 9.90 11.70

s5 0.3 2.6 14.9 24.8 67.6 99.8 0.24 2.00 1.96 7.73 15.30 14.81

s6 0.9 3.4 8.1 8.4 11.6 14.0 0.32 1.29 3.98 6.01 10.42 11.85

s7 0.5 1.2 2.6 2.9 4.1 4.9 0.23 0.67 1.44 2.56 2.83 2.50

immediately after their creation, whereas in the presence of local queues sharing
happens after task completion; secondly, 100% sharing with local queues is not
exactly 100% as one single task is kept for further processing in a local queue.
Strategies where a worker only shares part of its created tasks (s5, s6) show a
larger variance i.e. work is less equally distributed. With regard to the observed
running times we can deduce that sharing work comes at a price – even though
setting s7 has the lowest variance, the running times in comparison to settings
s4–s6, which share the same analysis parameters are worse.

Note that a low CV can also be achieved when many threads are taking
turns in processing a small number of such tasks. Therefore, we also analyzed
the average share of idle time for all threads (see Table 3, right). We can con-
clude that the increased running time for setting s7 indeed can be amounted to
synchronization, as the idle time for the workers is amongst the lowest ones.

5 Conclusion

We have presented a natural approach to parallelize reachability analysis for lin-
ear hybrid systems. Experimental results show a general reduction of the anal-
ysis times. The observed synchronization overhead is minor compared to what

Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 103

we gain from the parallel execution and thus this approach is usable also for
systems for which the search tree has a low level of branching (e.g. for determin-
istic systems). Naturally, the possibilities of work sharing are restricted to prob-
lem instances with a low level of non-determinism. The used modular approach
allows for several extensions and improvements as future work: (i) combining this
method with the approach presented in [13], and (ii) using specialized workers
which allow for subset-computations which can be performed in parallel.

References

1. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robot. 30(4), 903–918 (2014)

2. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

4. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

5. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in
space-time. In: Proceedings of HSCC 2013, pp. 203–212. ACM (2013)

6. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

7. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podel-
ski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained
space abstractions. STTT 18(4), 449–467 (2016)

8. Schupp, S., Ábrahám, E.: Efficient dynamic error reduction for hybrid sys-
tems reachability analysis. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 287–302. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89963-3 17. Accessible for reviewers under
https://ths.rwth-aachen.de/research/publications/

9. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

10. Schupp, S., Nellen, J., Ábrahám, E.: Divide and conquer: variable set separation
in hybrid systems reachability analysis. In: Proceedings of QAPL 2017. EPTCS,
vol. 250, pp. 1–14. Open Publishing Association (2017)

11. Bogomolov, S., Forets, M., Frehse, G., Podelski, A., Schilling, C., Viry, F.: Reach
set approximation through decomposition with low-dimensional sets and high-
dimensional matrices. CoRR abs/1801.09526 (2018)

12. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear
systems. In: Proceedings of RTSS 2016, pp. 13–24. IEEE Computer Society Press
(2016)

13. Ray, R., Gurung, A.: Parallel state space exploration of linear systems with inputs
using XSpeed. In: Proceedings of HSCC 2015, pp. 285–286. ACM (2015)

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-319-89963-3_17
https://doi.org/10.1007/978-3-319-89963-3_17
https://ths.rwth-aachen.de/research/publications/
https://doi.org/10.1007/978-3-319-63387-9_20

104 S. Schupp and E. Ábrahám

14. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of LICS 1996,
pp. 278–292. IEEE Computer Society Press (1996)

15. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

16. Schupp, S., Ábrahám, E., Chen, X., Ben Makhlouf, I., Frehse, G., Sankara-
narayanan, S., Kowalewski, S.: Current challenges in the verification of hybrid
systems. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp.
8–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25141-7 2

17. Frehse, G., Ray, R.: Design principles for an extendable verification tool for hybrid
systems. In: Proceedings of ADHS 2009, pp. 244–249. IFAC-PapersOnLine (2009)

18. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24743-2 22

19. Bu, L., Ray, R., Schupp, S.: ARCH-COMP17 category report: bounded model
checking of hybrid systems with piecewise constant dynamics. In: Proceedings of
ARCH 2017. EPiC Series in Computing, vol. 48, pp. 134–142. EasyChair (2017)

https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-25141-7_2
https://doi.org/10.1007/978-3-540-24743-2_22

FastLane Is Opaque – a Case Study
in Mechanized Proofs of Opacity

Gerhard Schellhorn1, Monika Wedel2, Oleg Travkin2,
Jürgen König2(B), and Heike Wehrheim2

1 Universität Augsburg, Augsburg, Germany
schellhorn@informatik.uni-augsburg.de

2 Paderborn University, Paderborn, Germany
{oleg82,jkoenig,wehrheim}@uni-paderborn.de

Abstract. Software Transactional Memory (STM) algorithms provide
programmers with a high-level synchronization technique for concurrent
programming. STMs guarantee “seemingly atomic” access to shared state
via transactions. This seeming atomicity is the standard requirement on
STM implementations and formalized in the concept of opacity. The
standard proof technique for opacity is via refinement: the STM imple-
mentation is shown to refine an IO automaton called TMS2 which itself
is known to be opaque.

This paper presents a case study of proving opacity via TMS2 refine-
ment. Our case study concerns the FastLane implementation of STM
which is specifically designed to achieve good performance on varying
contention: it supports different modes for low and high thread counts
plus provides a switching scheme between modes. This basic concept pro-
vides new challenges for verification: besides having to prove opacity of
every mode itself, we also need to show that switching does not invalidate
opacity. For both parts, we present fully mechanized proofs of opacity
carried out in the interactive theorem prover KIV.

1 Introduction

Software Transactional Memory (STM) as proposed by Shavit and Touitou [23]
has been introduced as a high-level synchronization technique for concurrent
access to shared state. STM provides programmers with the concept of transac-
tions, and thereby replaces standard synchronization primitives used for achiev-
ing mutual exclusion like locks or semaphores. A transaction is expected to
perform as if it was being executed atomically. STM implementations need to
guarantee this seeming atomicity while at the same time – for performance rea-
sons – allowing for concurrency. Typically, STMs achieve this via fine-grained
synchronization primitives (like compare-and-swap operations).

Opacity [14] has recently evolved as the standard correctness condition for
STMs formalizing this seeming atomicity. In its basic flavour, opacity is simi-
lar to serializability of database transactions [22]: Each concurrent execution of
transactions (i.e., an execution in which read and write operations of different
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 105–120, 2018.
https://doi.org/10.1007/978-3-319-92970-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_7&domain=pdf

106 G. Schellhorn et al.

transactions are interleaved) has to be equivalent to a sequential one (i.e., one
in which operations of different transactions are never interleaved). In addition,
opacity has specific requirements on aborting transactions in that all transac-
tions, even aborting ones, need to see a consistent view of the shared state as
produced by prior successfully committed transactions.

Verifying opacity of an STM algorithm typically proceeds by a proof of refine-
ment. To this end, Doherty et al. [9] have proposed an (input-output)-automaton
called TMS2 which serves as the abstract specification in the refinement proof.
TMS2 has been shown to be opaque [9,18] and in addition is given in an opera-
tional style which allows for refinement proofs by simulation. A large number of
opacity proofs have recently been done in this form (e.g. [2,6,8,17]).
In this paper, we provide another case study of proving opacity. The case study
concerns the FastLane STM algorithm of Wamhoff et al. [24]. FastLane is
designed to work specifically well on varying contention on access to the shared
state. It provides different modes for different thread counts as to avoid the over-
head in synchronization when not necessary. The mode is dynamically adapted
to the number of transactions. This dynamic mode switching provides new chal-
lenges for verification: in addition to verifying opacity of every mode in isolation,
we also need to prove that mode switching does not invalidate opacity. To this
end, we provide (1) a general definition of an (input-output) automaton switch-
ing being two automata and (2) proof obligations guaranteeing overall refinement
of a mode-switching automaton (wrt. some specification A) when composed out
of automata refining A. We prove soundness of this general theorem, and then
prove that the resulting proof obligations are satisfied by the combined imple-
mentation with mode switching, implying that it refines TMS2 and is therefore
opaque. All proofs are fully mechanized within the interactive theorem prover
KIV [10] and available online [11].

2 The FastLane Algorithm

Our chosen case study is the FastLane algorithm by Wamhoff et al. [24]. It
suggests three operational modes in order to dynamically change the STM algo-
rithm based on the number of processes running transactions. For one process,
no synchronization is necessary as all transactions will execute sequentially. For
this case, a simple sequential STM algorithm is sufficient. When the number of
processes is high, an STM algorithm has to take into account all sorts of conflicts.
Well scaling algorithms usually add some bookkeeping in order to manage con-
currency of transactions [5,7,15]. However, when there are only few threads avail-
able, the bookkeeping part of an algorithm becomes an avoidable overhead. The
FastLane mode itself is dedicated to particularly this third scenario, and can
improve throughput of transactions compared to algorithms that are designed
for a high number of concurrent transactions. Note that the name “FastLane”
sometimes refers to the algorithm with all three modes and sometimes to just
the mode for low numbers of threads.

The FastLane algorithms allows for switching modes whenever the current
execution is in a quiescent state, i.e., when no transaction is pending. It may

FastLane is Opaque 107

seem as if it is sufficient to show correctness of each algorithm separately in such
a case, because each algorithm operates in isolation from the other. However, it
is their composition that we want to show to be correct and hence it has to be
taken into consideration.

2.1 The FastLane Mode

Before looking at the specific algorithm, we first give some more general expla-
nation on STMs. An STM algorithm provides the concept of transactions to pro-
grammers. Transactions access locations in shared state (in the algorithm given
by parameter addr). The following operations need to be supplied by STMs:

– a start operation (sometimes also called begin operation),
– a write operation writing a particular value on a particular location,
– a read operation reading from a particular location,
– a cancel and a commit operation.

These operations are sometimes specialized for specific transactions, e.g., an
STM might have read-only transactions with optimized read operations.

Transactions furthermore need to be well-formed, i.e., always start with the
start operation, then to be followed by a number of reads and writes and finally
end with a call to the commit operation. The necessary synchronization to get
“seeming atomicity” is achieved via the use of meta-data which e.g. might record
specific accesses of transactions (like read and write sets). Basically, the STM
has to make sure that every transaction operates on a consistent view of the
shared state.

The FastLane mode is designed to operate in a concurrent setting with low
contention. It assigns exactly one thread the role of being a master. All other
threads become helper threads. The master thread has priority over the other
threads and is therefore on the “fast lane”.

Figure 1 describes the algorithm of the FastLane mode. At the start of a
transaction, it is determined whether the current thread is a master or a helper
(lines L4–14). Before this check, the master lock is acquired and if the current
thread is the master, the master lock is kept throughout the whole transaction
until it commits. The master lock must be acquired before the check, because
helper threads can also become master threads, if the transaction is supposed
to be performed pessimistically (L9–12). The latter protects transactions from
being aborted due to conflicts with other transactions, because only helper trans-
actions can abort in this mode.

A master transaction (L15–29) is straightforward for the most part. The
shared variable cntr acts as an indicator for a writing transaction. If cntr is
odd, then there is currently a writing transaction (otherwise not). On the first
write, the master sets cntr to an odd value (L21–22). In any case, the location
addr to which it writes is marked as dirty1. Helper transactions use the dirty

1 A hash function reduces the size of the dirty array, but can also cause transactions
to abort due to hash collisions when there is actually no conflict.

108 G. Schellhorn et al.

Fig. 1. The FastLane algorithm as proposed by Wamhoff et al. [24]

array to detect conflicts with the master transaction and abort in this case. On
commit (L26–29), the master increments cntr back to an even value and releases
its master lock, which enables writing helper transactions to commit.

Helper transactions (L37–74) are more complicated as they contain all the
handling of conflicts with the master thread. It is worth noting that helpers
restart immediately after being aborted (L74). Therefore, the first thing a helper
does is to set a target jump location (L38). The second task of a helper is to
fetch the latest even value of cntr and store it in its start variable (L39). The
variable start is used to determine, whether the helper attempts to read from
or write to a dirty location (L45–46 and L51–52) and causes the transaction to
abort and reset, if this is indeed the case. Besides this, a helper transaction has
sets for locations read and written (rd-set and wr-set). During read attempts,
a helper prioritizes its writes from the wr-set over the shared memory (L42–
48) as wr-set contains the later entries. On the other hand, write attempts do
not actually write to memory, but add the pair of location and value to the
write set wr-set. The actual writing appears during the transaction’s commit
(L55–70). If the write set of a helper transaction is empty, it can safely return

FastLane is Opaque 109

(L56–57), because conflicts with other transactions would have been detected
during its read attempts (L45–46). However, if wr-set is not empty, the helper
must acquire the helpers and the master locks first (L58–59). The helpers lock
protects it from conflicts with other helpers, while acquiring the masters locks
ensures that there is currently no master transaction. After acquiring both locks,
the helper checks once again for conflicts with other transactions by checking
the state of the dirty array for each locations in its read and write set (L30–36).
This validation is necessary, because previously read locations might have been
overwritten by other transactions at this stage. If the validation fails, the transac-
tion releases both locks and aborts. Otherwise, it continues with incrementation
of cntr to an odd value, followed by writing each write from the wr-set to the
memory and by setting its dirty value to the new cntr value. The helper trans-
action completes its executions successfully with a second increment of cntr to
an even value and the release of both previously acquired locks.

3 Proof Method

We are ultimately interested in showing the opacity [14] of the FastLane
mode as well as its composition with the other modes. Opacity [14] is the stan-
dard correctness criterion for transactional memory. We will do so by showing
FastLane and the composition to refine an abstract, operational specification
called TMS2 [9]. TMS2 is known to be opaque [9,18]. Hence, every refinement of
TMS2 is opaque as well. We thus never define opacity in this paper and only work
with TMS2 in the following. TMS2 is modelled as an input/output automaton
(IO automaton or IOA). Our definition of IO automata follows that of Lynch and
Tuttle [19]2. The idea in IOAs is to distinguish between internal and external
actions, where the external actions of a system are visible to the environment
and the internal ones are hidden from it.

Definition 1. An IO automaton A consists of

– a set of states states(A) and a set of initial states start(A) ⊆ states(A),
– a set of actions act(A) = int(A) ∪̇ ext(A), partitioned into internal and

external ones, and
– a transition relation steps(A) ⊆ states(A) × act(A) × states(A).

Figure 2 shows the specification of TMS2 in a generic format we use for all
automata A. The states states(A) are given as a tuple of typed state vari-
ables. Constraints on initial values describe initial states. The transition relation
steps(A) is given by deterministic steps for every action a. A boolean precondi-
tions Prea(s) specifies when the action is enabled and an effect function Effa :
states(A) → states(A) that is defined by parallel updates on the state variables
gives the new state. We have steps(A)(s, a, s ′) ⇔ Prea(s) ∧ s ′ = Effa(s).

2 We leave out the equivalence relation on locally controlled actions, since we do not
need it for our refinement proofs.

110 G. Schellhorn et al.

Fig. 2. The state space and transition relation of TMS2 [6]

FastLane is Opaque 111

For TMS2 the shared state is a nonempty sequence of memories, which can
be indexed by n ∈ N. Each element of this sequence results from a successfully
committing transaction. It specifies a possible view on the memory a subsequent
transaction sees. Besides this sequence, the state consists only of variables local
to a transaction t ∈ T . The state of each transaction t is defined over a program
counter pct ∈ PC, a numerical identifier of the transaction beginIdxt ∈ N, a read
set rdSett and a write set wrSett . The latter two map locations l ∈ L to values
v ∈ V . The program counter values are further distinguished into values, in
which the transaction is either not yet started or already finished (PCExternal)
and the remaining program locations, in which it is active. The beginIdxt marks
the memory with the smallest index, that transaction t may use when reading
and writing. When other transactions finish while t is running, new views become
available that t may use.

The relation steps(TMS2) contains three transitions for each of the opera-
tions of a transaction (begin, read, write, commit, cancel). Each operation has
a separate invoke and response transition that is externally visible. These cap-
ture the idea that each operation may take time and thus can be refined by
multiple concrete steps. The response to invt(cancel) is always respt(abort);
begin, read and write may also respond by aborting the transaction. In addi-
tion, TMS2 provides steps for each operation, which are prefixed by a “do”, e.g.,
DoCommitWritert . These are internal transitions at which an operation takes
effect and becomes visible to other transactions (begin and cancel have an empty
effect, therefore they have no do-step). These are similar to linearization points
in linearizable data structures [16]. However, here, they only refer to one of the
read, write or commit operations, and not to the complete transaction.

An IOA like TMS2 has runs by iteratively executing steps. Formally, a run
of A is a (finite or infinite) sequence s0a0s1a1s2 . . . of alternating states and
actions of A, such that s0 ∈ start(A) and (si , ai , si+1) ∈ steps(A) for all i . A
trace of a run is its largest subsequence consisting only of external actions. The
set trace(A) consists of all traces that are a trace of a run of A. It defines the
possible observable behavior of A.

An automaton C refines automaton A, when ext(C) = ext(A). The refine-
ment is correct (we write C ≤ A), when trace(C) ⊆ trace(A) holds. The refine-
ment relation between FastLane (as C) and TMS2 (as A) is shown via a forward
simulation.

Theorem 1. A forward simulation from a concrete IOA C to an abstract IOA
A is a relation F ⊆ states(C) × states(A) such that each of the following holds:
Initialization:
∀ sC ∈ start(C) • ∃ sA ∈ start(A) • F (sC , sA)
External step correspondence
∀ sC , s ′

C ∈ states(C), sA ∈ states(A), a ∈ ext(C) • F (sC , sA) ∧ (sC , a, s ′
C) ∈

steps(C)
⇒ ∃ s ′

A ∈ states(A) • F (s ′
C , s ′

A) ∧ (sA, a, s ′
A) ∈ steps(A)

112 G. Schellhorn et al.

Internal step correspondence
∀ sC , s ′

C ∈ states(C), sA ∈ states(A), a ∈ int(C) • F (sC , sA) ∧ (sC , a, s ′
C) ∈

steps(C)
⇒ F (s ′

C , sA)∨ ∃ s ′
A ∈ states(A), a ′ ∈ int(A) • F (s ′

C , s ′
A)∧ (sA, a ′, s ′

A) ∈ steps(A)
The existence of a forward simulation implies C ≤ A.

The initialization condition requires initial states that match via F in both
IOAs. External spreeps have to correspond in both IOAs preserving F . Internal
steps of C must match either one internal or no abstract step, again preserving
the forward simulation F . Thus by induction, for all runs of C a corresponding
run of A can be found with the same trace, implying refinement. We write
C ≤(F) A, when refinement of A to C is provable with forward simulation F . The
forward simulation conditions given here are derived from those in Lynch and
Vandrager [20] (adapted to several internal actions). The same proof obligations
are also used in our opacity proof of a pessimistic STM in [8].

4 Proving FastLane Refinement of TMS2

In this section we prove that the FastLane algorithm of Fig. 1 is opaque, by
providing a corresponding automaton FastLane, a forward simulation F and
proving C ≤F TMS2. That a combination with other algorithms is possible, is
shown in the next section. The states and some example transitions of FastLane
are shown in Fig. 3. The state variables directly correspond to the global and
local variables of the algorithm. Since we want to distinguish one thread as mas-
ter, it is necessary to have program counters pcp for every thread p instead of
for every transaction. pcp ∈ {L1 . . .L74} gives the line number the thread will
execute next. A thread that does not execute a transaction has pcp = L0. A
thread is in between executing reads and writes, has pcp = M 0 if is the master,
pcp = H 0 otherwise. Since our setting involves processes, it is now necessary
to manage a finite map pidf : PID
→ T between threads and transactions.
To have a simple scheme to get a new transaction, we assume, that transac-
tions T (0),T (1), . . . can be enumerated. Starting a new transaction by invoking
START (action invt(TMBegin) in Fig. 3) uses a global counter tcntr , that is incre-
mented in this step, T (tcntr) is the new transaction that is put into pidf .

We typically have one transition per line of code, plus additional steps
labelled with the corresponding external action of TMS2 for invoke and return.
All other steps are labelled with internal actions which are parameterized with
the thread p executing it. They usually are named with helper or master routine
executed, and the line number, start2p and helperstart39p are two examples.
As an exception, those steps of the program that correspond to do-steps of
TMS2 are labelled with the corresponding internal action of TMS2 (we have
act(TMS2) ⊆ act(C)). This allows to already fix the internal step correspon-
dence in the forward simulation of Theorem 1. Steps with actions from TMS2
require a corresponding abstract step, all others require none.

Some example transitions of the FastLane automaton are shown at the
bottom of Fig. 3 definitions. The full transition relation can be viewed as part

FastLane is Opaque 113

Fig. 3. Definition of state and some example transitions as part of the transition rela-
tion of the FastLane mode.

of our proof project website [11]. The examples show that line 18 of the code
is split in two steps. A first step that reads mem(addrt) into the local variable
valt , which implements the DoReadt(addrt ,maxIdx) step from TMS2 (the index
maxIdx fixes that the read of TMS2 will be from lastMem), and the returning
step which implements respt(TMRead(valt)).

For the steps that implement do-steps of TMS2 we choose

Action Master Line Helper Line

DoCommitReadOnlyt(n) L27(if condition negative) L56 (if condition positive)
DoCommitWritert L28 L68
DoReadt(addrt ,maxIdx) L18a L43 & L44
DoWritet(l , v) L24 L53

The remaining steps of the FastLane mode are defined in a similar way. All
of them have to be atomic steps of the behavior, and thus impossible to divide
into more fine-grained steps.

To prove opacity we created a forward simulation, a representation of its
specification is shown below:

MemR(sC , sA) ∧ ∀ p • FW (sA, sC , p)

114 G. Schellhorn et al.

Each element of the specification either serves the purpose of specifying the
forward simulation or to narrow the scope of states that need to be considered.
The MemR(sC , sA) predicate only lets concrete and abstract states be matched,
if the current memory and the write sets of the abstract state are consistent with
the memory of the concrete state. The FW predicate contains the invariant and
the remaining forward simulation. The predicates are described in more detail
in the following:

MemR The predicate uses a threefold case distinction. If cntr is even (which
means no writer is currently active), then latestMem = mem must hold. If cntr
is odd, there a two options possible:

– masterID = masterLock : Let T (x) be the transaction currently running on
the thread masterLock . The currently writing thread is the master thread thus
all writes of its writeset have been executed. Thus latestMem ⊕wrset(T (x))).

– masterID �= masterLock : Then the currently writing transaction is a helper
transaction in a committing state. For every location one of two cases holds.
If dirty(l) �= cntr then the helper transaction did not write to l thus
mem(l) = latestMem(l) must hold.
If dirty(l) = cntr then mem(l) must already contain the value from the
corresponding write set.

FW The first part of FW specifies the forward simulation. This is the mapping
of program counters from the TMS2 automaton to the FastLane specification.
It matches all internal “do” and external invoke or commit actions to the corre-
sponding abstract actions.

The second part - the invariant - specifies multiple facts that need to hold for
concrete or abstract states to be part of the simulation. For concrete states these
facts need to hold for all reachable states, since otherwise the forward simulation
can not be shown. The invariant excludes impossible states from consideration
and so simplifies the proof.

For abstract states it is specified that in their initial state all write and
read-sets are empty and all transactions are still either in a notStarted or begin-
Pending program counter. For concrete states mainly the relation of the current
program counter to certain variables is specified. A key point is the restriction
on the dirty function which is used in the proof to relate the abstract and con-
crete memory. Additionally it is stated when masterLock is definitely possessed
by some thread and when it is not. Similarly it is specified if cntr is certain to be
even or odd with regards to program counters. Also certain nonsensical states
are excluded, e.g. two threads having the same transaction.

5 Combining FastLane with Other Implementations

The Fastlane algorithm is optimized for the case, where a small number of
threads is active, which usually implies that conflicts between transactions are

FastLane is Opaque 115

rare. When the number of active processes becomes greater than some threshold
c, it is assumed, that the implementation switches to another implementation
([24] suggests e.g. [5]), that is better suited to handle large numbers of parallel
transactions. To further increase efficiency, it is assumed that as long as only
a single process is active, the execution switches to a purely sequential imple-
mentation where starting and finishing a transaction does nothing, and read-
ing and writing directly accesses the main memory. We have modelled such a
sequential implementation SEQ as an IO-Automaton as well. The implementa-
tion uses a single program counter, so by construction it is able to run at most
one transaction t at any time. We have verified SEQ ≤(F) TMS2 using a sim-
ple forward simulation F that maps the current memory mem used in SEQ to
lastMem ⊕ wrset(t) in TMS2 while transaction t is running (otherwise directly
to lastMem)3.

The question we therefore have to solve in this section, is how to define
and to verify a combined model COMB which switches between three modes:
SEQ , FastLane and an (unknown) third implementation IMPL of TMS2. The
automaton COMB will require additional state variables and transitions com-
pared to the individual ones. The state of COMB must store the current mode,
the number of currently active processes, and a mapping between processes and
transactions. Note that a process can execute several transactions, while each
transaction t ∈ T can be executed by TMS2 only once.

To modularize the problem we give a solution in two steps. The first step
gives generic criteria for combining two different implementations C1 ≤(F1) A
and C2 ≤(F2) A into a new implementation C ∈ switch(C1,C2), defined below,
that switches between C1 and C2. More precisely, it specifies sufficient proof
obligations under which C ≤(F) A for some F . Since we do not fix any specifics
of C or A, the theorem we derive for this step is generally valid for all imple-
mentations of interfaces combining several ones into one.

The second step then instantiates the generic theorem to prove that our
concrete combination COMB is in switch(switch(SEQ ,FastLane), IMPL).

Definition 2. Given two automata C1 and C2 an automaton C is in
switch(C1,C2), if it satisfies the following criteria:

– ext(C) = ext(C1) = ext(C2) and int(C1) ∪ int(C2) ⊆ int(C).
– All states sC ∈ states(C) have a boolean mode-component sC .mode to deter-

mine which algorithm is active.
– All states sC ∈ states(C) with sC .mode = true allow to extract via

sC .s1 ∈ states(C1). Similarly, there is a selector sC .s2 ∈ states(C2), when
sC .mode = false.

– Initial states sC ∈ start(C) satisfy sC .mode = true ∧ sC .s1 ∈ start(C1) (the
first implementation starts).

– The transition relation of step(C) can be split into three parts step1, step2,
step3: step1 and step2 must correspond to steps of C1 and C2, step3 are new
internal steps. Formally, it is required, that the following holds:

3 Details of this proof can be found in the corresponding KIV project [11].

116 G. Schellhorn et al.

step1(C)(sC , a, s ′
C) ⇒ step(C1)(sC .s1, a, s ′

C .s1) ∧ sC .mode ∧ s ′
C .mode,

step2(C)(sC , a, s ′
C) ⇒ step(C2)(sC .s1, a, s ′

C .s2) ∧ ¬ sC .mode ∧ ¬ s ′
C .mode,

step3(C)(sC , a, s ′
C) ⇒ a ∈ int(C).

The simplest automaton C ∈ switch(C1,C2) has states(C) = states(C1) ×
states(C2) × Boolean, where .s1, .s2, and .mode select the three components.
Our more liberal definition allows to add extra state, and to avoid duplication
of state. E.g., both SEQ and FastLane will use main memory, which we do
not want to duplicate. Note that the implication allows for step1(C) to have
additional preconditions compared to step(C1), or to have additional effects on
state variables not selected by sC .s1. The steps in step3 are new internal steps
added to the automaton that manage switching between modes. To prove that
C refines A we need a new forward simulation. It is clear that we need F1 when
sC .mode = true and F2 when sC .mode = false. However, this is typically not
sufficient, as other new components of the state will need an extra invariant
Inv(sC) to “glue” the parts together. Also, while C1 is running, critical state
variables needed by C2 should not be changed, which gives another invariant
Inv1(sC). In our example, running the sequential algorithm must keep cntr at
an even value, masterLock free (i.e. = ⊥), and preserve dirty(l) ≤ cntr for all
l ∈ L. Therefore we define the following simulation relations F0 and F :

F0(sC , sA) ⇔ if sC .mode then F1(sA, sC .s1) ∧ Inv1(sC)
else F2(sA, sC .s2) ∧ Inv2(sC)

F (sC , sA) ⇔ Inv(sC) ∧ F0(sC , sA)

We can then prove the following theorem:

Theorem 2. Let C1 ≤(F1) A, C2 ≤(F2) A and C ∈ switch(C1,C2). Then
C ≤(F) A with F defined as above holds, when the following proof obligations
can be shown:

– All transitions preserve the invariant:
Inv(sC) ∧ step(C)(sC , a, s ′

C) ⇒ Inv(s ′
C)

– All step2-transitions preserve Inv1:
Inv(sC) ∧ Inv1(sC) ∧ step(C)(sC , a, s ′

C) ∧ step1(C)(sC .2, a, s ′
C .2) ⇒

Inv1(s ′
C)

– All step1-transitions preserve Inv2:
Inv(sC) ∧ Inv2(sC) ∧ step(C)(sC , a, s ′

C) ∧ step2(C)(sC .2, a, s ′
C .2) ⇒

Inv2(s ′
C)

– Switching steps preserve F0:
Inv(sC) ∧ F0(sC , sA) ∧ step3(sC , a, s ′

C) ⇒ F0(s ′
C , sA)

Proof: The proof obligations imply that F is a forward simulation. For steps in
step1 F in the pre- and poststate both reduce to F1 ∧ Inv1 which is preserved
since C1 ≤(F1) A and the third condition. Similarly for steps in step2. For
switching steps, the first and last proof obligations directly show that F0 and
Inv hold afterwards. �

FastLane is Opaque 117

We apply the theorem twice. First, we define SFL ∈ switch(SEQ ,FastLane),
then COMB ∈ switch(SFL, IMPL) parameterized with IMPL, where we just
assume IMPL ≤F3 TMS2. For simplicity, both SFL and COMB use the
same states, they differ only in the available transitions. Each state sC is a
tuple of all the state variables of SEQ and FastLane (so selectors sC .seq and
sC .fl are definable), plus an arbitrary rest component for IMPL, such that
a selector sC .impl ∈ states(IMPL) can be assumed. The tuple also includes
runmode ∈ {seq ,fl , impl} to determine the running machine and a finite set
regset ∈ set(PID) of (registered) process identifiers. The processes running
transactions (those in dom(pidf)) are required to be a subset of this set.
The initial states of both SFL and COMB satisfy sC .seq ∈ start(SEQ) ∧
runmode = seq ∧ pidf = ∅ ∧ regset = ∅. SFL runs transitions of SEQ , when
sC .runmode = seq , otherwise steps of FastLane. Theorem 2 is instantiated by
defining sC .mode := (runmode = seq) and by using their steps when defining
step1 resp. step2.

As a first part of step3, both SFL and COMB have transitions to register
and unregister a process pid by adding or removing it from sC .regset , leaving all
other state unchanged. Unregistering pid requires pid �∈ dom(pidf). These steps
leave the running implementation sC .runmode unchanged. Steps that switch the
running implementation form the second part of step3. They change runmode
to seq , when card(regset) ≤ 1, to FastLane when card(regset) is below some
constant c, and to IMPL otherwise. These switching steps are enabled when no
transaction is running, i.e. when pidf is empty.

Finally, steps that start or leave transactions (of each machine) are restricted
to modify pidf suitably (all others leave them unchanged). Steps that start a
new transition t (have action invt(TMBegin) of TMS2) must be invoked by some
pid ∈ regset that does not run a transition. They add the pair (pid , t) to pidf .
An additional precondition ensures, that they are not enabled, when the system
wants to switch to a new implementation. Dually, steps that finish a transaction
(have action respt(abort) or respt(TMEnd)) remove the corresponding pair again.

The additional invariant Inv for the SFL instance requires that processes
running transactions are registered (dom(pidf) ⊆ regset), and that transactions
with a number ≥ tcntr are not in pidf and still have empty read- and writesets.
Inv1 stores properties of the FastLane state, that hold while the sequential
algorithm is running: cntr is even, masterLock is free, all program counters pcfp
are L0, and dirty(l) ≤ cntr holds for all locations l . Inv2 is not used (i.e. true).

For the second instance COMB we have to be careful that reusing state of
FastLane in IMPL is possible (e.g. masterLock or the dirty flags might be shared
with IMPL). Therefore predicates Inv , Inv1 and Inv2 as well as the effect of
switching to and from mode = impl on other state variables are left unspecified.
This allows to either specify that state is not reused (e.g. masterLock = free as
part of Inv2) or to constrain switching (e.g. switching to fl may require a state
with masterLock = free, or alternatively may reset masterLock). An instance
must be provided for each concrete implementation IMPL, and we collect the
necessary assumptions that must be proved. A full listing of all assumptions

118 G. Schellhorn et al.

can be found in the KIV proofs at [11], here we only give a few typical ones
informally (recall that IMPL ≤F3 TMS2 and SFL ≤F TMS2).

– Register and Unregister in mode = impl preserve F3 and Inv1.
– Switching from mode = impl may assume Inv , Inv2 and F3 before the step.

After the step F and Inv1 must hold, together with the invariants Inv and
Inv1/Inv2 of SFL (as specified above), when the new mode is seq/fl .

– Steps of IMPL as well as steps that switch to or from mode = impl must
leave regset unchanged.

– Steps of IMPL must change pidf correctly (similar to FastLane).

6 Conclusion

In this paper, we presented the results of a case study on proving opacity of
STMs, specifically FastLane. The case study required the development of proof
techniques for combined STMs, where the combination concerned the switching
between modes. This general proof technique has been shown to be sound, and
has been instantiated for FastLane. All proofs have been fully mechanized with
the theorem prover KIV.

Related Work. A number of other approaches for proving opacity of STMs have
been proposed. These can be classified as either model checking or deductive
verification techniques. In model checking, there has been research by Guerraoui
et al. [12,13] using a reduction theorem; other approaches use model checkers
like SPIN or TLC [4,21].

In deductive verification, the most frequently used approach is to show a
given STM to be a refinement of TMS2 [2,6,8,9,17]. The only instance known
to us, where a similar type of “combined” STM was considered is work by Arm-
strong and Dongol [1]. They show refinement to hold between a concrete TM
consisting of a hardware and a software TM and TMS2. The main difference
to the scenario considered here is that there both TMs run in parallel. Thus
– in contrast to our setting – interference between TMs needs to be modelled
as well which is done with the help of so-called interference automata. Then, a
forward simulation is shown to exist between each of the automata and TMS2.
Under some constraints on the interferences, these forward simulations can be
combined to give a simulation between the complete TM and TMS2. In flavour,
this is similiar to our approach, but we use switching for combining TMs, not
parallel composition.

References

1. Armstrong, A., Dongol, B.: Modularising opacity verification for hybrid transac-
tional memory. In: Bouajjani and Silva [3], pp. 33–49. https://doi.org/10.1007/978-
3-319-60225-7_3

https://doi.org/10.1007/978-3-319-60225-7_3
https://doi.org/10.1007/978-3-319-60225-7_3

FastLane is Opaque 119

2. Armstrong, A., Dongol, B., Doherty, S.: Proving opacity via linearizability: a sound
and complete method. In: Bouajjani and Silva [3], pp. 50–66. https://doi.org/10.
1007/978-3-319-60225-7_4

3. Bouajjani, A., Silva, A. (eds.): FORTE 2017. LNCS, vol. 10321. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-60225-7

4. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: Formal Methods in Computer Aided Design,
2007, FMCAD 2007, pp. 37–44. IEEE (2007)

5. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPoPP,
pp. 67–78. ACM (2010). http://doi.acm.org/10.1145/1693453.1693464

6. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.:
Mechanized proofs of opacity: a comparison of two techniques. Formal Aspects
Comput. (2017). https://doi.org/10.1007/s00165-017-0433-3

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006). https://doi.org/
10.1007/11864219_14

8. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. In: Fatourou, P., Jiménez, E., Pedone, F. (eds.) OPODIS.
LIPIcs, vol. 70, pp. 35:1–35:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016). https://doi.org/10.4230/LIPIcs.OPODIS.2016.35

9. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects Comput. 25(5), 769–799 (2013).
https://doi.org/10.1007/s00165-012-0225-8

10. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV - overview and
verify this competition. Softw. Tools Technol. Transf. 17, 677–694 (2014)

11. KIV proofs for FastLane (2018). http://www.informatik.uni-augsburg.de/swt/
projects/FastLane.html

12. Guerraoui, R., Henzinger, T.A., Singh, V.: Completeness and nondeterminism in
model checking transactional memories. In: van Breugel, F., Chechik, M. (eds.)
CONCUR 2008. LNCS, vol. 5201, pp. 21–35. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85361-9_6

13. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distrib. Comput. 22(3), 129 (2010)

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory.
In: Chatterjee, S., Scott, M.L. (eds.) PPOPP, pp. 175–184. ACM (2008).
http://doi.acm.org/10.1145/1345206.1345233

15. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101. ACM (2003)

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

17. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software
transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1_36

18. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop
on the Theory of Transactional Memory (2012)

19. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed
algorithms. In: Schneider, F.B. (ed.) PODC, pp. 137–151. ACM (1987).
http://doi.acm.org/10.1145/41840.41852

https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-319-60225-7
http://doi.acm.org/10.1145/1693453.1693464
https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14
https://doi.org/10.4230/LIPIcs.OPODIS.2016.35
https://doi.org/10.1007/s00165-012-0225-8
http://www.informatik.uni-augsburg.de/swt/projects/FastLane.html
http://www.informatik.uni-augsburg.de/swt/projects/FastLane.html
https://doi.org/10.1007/978-3-540-85361-9_6
https://doi.org/10.1007/978-3-540-85361-9_6
http://doi.acm.org/10.1145/1345206.1345233
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-642-32940-1_36
https://doi.org/10.1007/978-3-642-32940-1_36
http://doi.acm.org/10.1145/41840.41852

120 G. Schellhorn et al.

20. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I Untimed
Systems. Inf. Comput. 121(2), 214–233 (1995). https://doi.org/10.1006/inco.1995.
1134

21. O’Leary, J., Saha, B., Tuttle, M.R.: Model checking transactional memory with
Spin. In: 29th IEEE International Conference on Distributed Computing Systems,
2009, ICDCS 2009, pp. 335–342. IEEE (2009)

22. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979). http://doi.acm.org/10.1145/322154.322158

23. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997). https://doi.org/10.1007/s004460050028

24. Wamhoff, J., Fetzer, C., Felber, P., Rivière, E., Muller, G.: FastLane: improving
performance of software transactional memory for low thread counts. In: Nicolau,
A., Shen, X., Amarasinghe, S.P., Vuduc, R.W. (eds.) PPoPP, pp. 113–122. ACM
(2013). http://doi.acm.org/10.1145/2442516.2442528

https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
http://doi.acm.org/10.1145/322154.322158
https://doi.org/10.1007/s004460050028
http://doi.acm.org/10.1145/2442516.2442528

Program Analysis

Monte Carlo Tree Search for Finding
Costly Paths in Programs

Kasper Luckow1, Corina S. Păsăreanu1,2(B), and Willem Visser3

1 Carnegie Mellon University SV, Mountain View, CA, USA
ksluckow@gmail.com, corina.pasareanu@west.cmu.edu

2 NASA Ames Research Center, Mountain View, CA, USA
3 Stellenbosch University, Stellenbosch, South Africa

wvisser@cs.sun.ac.za

Abstract. We describe a heuristic analysis technique for finding costly
paths in programs, where the cost refers to the execution time or mem-
ory consumed by the program. The analysis can support various software
engineering tasks, such as finding vulnerabilities related to denial-of-
service attacks, guiding compiler optimizations or finding performance
bottlenecks in software. The analysis performs sampling over symbolic
program paths, which are computed with a symbolic execution over the
program, and uses Monte Carlo Tree Search (MCTS) to guide the search
for costly paths. We implemented the proposed method in Symbolic
PathFinder and we evaluated it on Java programs. Our experiments
show the promise of the technique for finding performance bottlenecks
in software.

1 Introduction

In this paper, we investigate the application of Monte Carlo Tree Search (MCTS)
for the analysis of space-time consumption in programs. MCTS is a search heuris-
tic that uses random sampling to iteratively expand a search tree with the goal of
finding the optimal decisions in a given large problem domain. MCTS has found
success in solving difficult Artificial Intelligence problems, notably in computer
Go [12], which has been regarded as one of the most challenging games for AI.
Despite its success, there has been little research reported on the use of MCTS
for software analysis, although there is an obvious fit, since often software anal-
ysis artifacts can be expressed as annotated trees or graphs (e.g. abstract syntax
trees, symbolic execution trees, call trees or graphs etc.) which can be naturally
explored with MCTS.

In our work, we use MCTS to find deep or costly paths in programs, where
the cost refers to execution time or memory consumed along a path. Our
work is motivated by a DARPA project which addresses the detection of soft-
ware worst-case vulnerabilities related to the space-time usage of software sys-
tems. An adversary can exploit these vulnerabilities by generating inputs that
induce expensive space-time utilization, thereby denying service to begin users

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 123–138, 2018.
https://doi.org/10.1007/978-3-319-92970-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_8&domain=pdf

124 K. Luckow et al.

or disabling the system. Finding paths with large space-time cost can also have
many other applications, such as enabling compiler optimizations or finding and
fixing performance bottlenecks. Our technique generalizes to finding paths that
maximize other costs as well, such as input/output usage or power consumption
along a path (provided a suitable hardware model). Furthermore, our technique
can be applied, with small modifications, to other types of software analysis, e.g.
to maximize coverage of statements and assertions.

Our analysis uses Monte Carlo sampling over program paths, assuming at
first a uniform distribution over the choices at the conditions in the code, i.e.
both true and false branches are assumed to be equally likely. The analysis then
gradually builds a search tree that dictates how to change the probabilities of
taking the branching conditions, to focus the search on “costly” paths in the
program, where the cost records the execution time or memory consumed along
the path. The output of the algorithm is a program path that likely leads to the
highest cost in the program.

Instead of doing pure Monte Carlo sampling over the program, which may
require a prohibitively large amount of samples, we chose to perform sampling
over symbolic program paths, which are computed with a symbolic execution of
the program. Each symbolic path represents multiple concrete paths all following
the same control flow in the program. Thus we only need to sample each program
path once and we can also prune the already sampled paths, to speed-up the
convergence of the analysis to the optimal results. Our MCTS approach (with
pruning) always converges to the results of an exact analysis but it is often much
faster, as we show in the experiments.

We have implemented our technique using the Symbolic PathFinder (SPF)
symbolic execution tool [9]. We evaluate it on Java implementations of classical
algorithms, comparing it with: (exact) symbolic execution, Monte Carlo sam-
pling, and a Reinforcement Learning approach adapted from [7]. In addition, we
evaluate MCTS on complex systems from DARPA STAC engagements and show
the merits of the approach compared to exact analysis.

2 Background

Monte Carlo tree search (MCTS) is a heuristic search algorithm for certain deci-
sion processes, most notably those used in game play. The algorithm focuses
on the analysis of the most promising moves (in a game), expanding a search
tree based on random sampling of the search space [1]. MCTS can generally
be applied to any application domain that can be modeled as a tree. MCTS is
asymmetric in the sense that it favors exploring promising (and seemingly impor-
tant) sub-trees while never assigning a zero probability to any choice (governed
by criteria discussed below).

Conceptually, MCTS consists of four steps which are repeated until some
stopping criteria is met (number of iterations, quality of result, etc.).

MCTS for Finding Costly Paths in Programs 125

1. Selection: start from the root node, R, in the search tree and select successive
child nodes according to the tree policy down to an expandable node, L, i.e. a
node that has unvisited children. L can also be a terminal node (e.g., win/loss
for a game) in which case MCTS continues with step 4.

2. Expansion: for the expandable node, L, add a node, C, to the search tree
from the available decisions at L.

3. Simulation: perform a random playout from node C governed by the simu-
lation policy until a terminal node is reached. The terminal node yields an
outcome, reward, based on the reward function.

4. Backpropagation: update the information stored in the nodes on the path
from C to R with the reward computed. This might also include updating
visit counts etc.

The specifics of the reward function depend on the application and the type
of analysis being performed.

The MCTS-guided symbolic analysis we propose is based on the Upper Confi-
dence Bound applied to Trees (UCT); the algorithms presented in this paper are
adapted versions of the general UCT MCTS algorithm described in [1]. The UCT
MCTS algorithm adapts the upper confidence bound (UCB1) algorithm from the
multi-armed bandit literature to the tree setting and builds the search tree by
expanding one node at a time prioritized by the UCB criteria. It guarantees an
optimal balance of exploration and exploitation—that is, the trade-off between
exploiting actions that are known to be good and exploring actions with poor
value estimates. The algorithm directs sampling of paths to adaptively focus the
search towards more promising areas of the search space. Heuristic approaches,
as used in previous studies, do not have this property.

3 MCTS with Symbolic Execution

We describe a symbolic execution approach that uses MCTS to guide the search
for the program paths that have the highest time or memory cost (i.e. reward).
Symbolic execution is a systematic program analysis technique which executes
programs on symbolic inputs instead of concrete inputs. For each explored path,
the analysis maintains a Path Condition (PC), which is a conjunction of con-
straints over the symbolic inputs that characterize all the concrete inputs that
follow the path. The symbolic paths form a symbolic execution tree that char-
acterizes all the concrete program paths, up to some user-specified bound.

At a high level, our analysis works by gradually building and sampling the
symbolic execution tree of the program. In our setting, a symbolic execution
tree only encodes the decisions at conditional statements and we disregard the
other states (e.g., assignments, method invocations, and returns). A decision is
introduced whenever a conditional statement (on condition c) is symbolically
executed in the program. The evaluation of the statement introduces two new
transitions in the tree: The first one leads to the execution of the “then” block
in the code and the path condition is updated as PCthen = c ∧ PC. The second
leads to the execution of the “else” block and the path condition is updated with

126 K. Luckow et al.

PCelse = ¬c ∧ PC. If the path condition for a branch is not satisfiable, which is
checked with an off-the-shelf solver, that branch is not explored.

We denote a symbolic execution tree augmented with information for MCTS
as the tuple T = 〈S, s0,→, St〉, where S is the set of nodes (or states), s0 ∈ S is
the initial state, →⊆ S×S is the transition relation, and St ⊆ S is the set of deci-
sions in the search tree maintained by the MCTS algorithm. Let children(s) and
parent(s) denote the children nodes and parent node of state s ∈ S, respectively.

For a decision node, s ∈ St, N(s) denotes how many times the decision has
been visited, and Q(s) denotes the cumulative reward of all the samples that
have passed through this decision (the precise computation is defined below).
St, N(·) and Q(·) are global to all algorithms in the following.

We also define a reward function, reward(s), that for a terminal state
s ∈ S returns a value that quantifies the outcome of the sample. In our set-
ting, reward(s) denotes time or memory cost for a path. For our experiments,
we use the number of nodes along the path in the tree as a proxy for timing
measurement, and the number of bytes allocated along the path for memory
measurement. Other reward functions can be defined in a straightforward way.

Algorithm 1 shows the overall approach.

Algorithm 1. Overall algorithm for MCTS-guided symbolic execution
1: function MCTSGuidedSymExe(s0, C, n) � Where s0 - initial state of the program, C - MCTS

bias, n - budget (samples)
2: Δmax ← −1
3: St ← {s0}
4: for i = 1 to n do
5: sf ← TreePolicy(s0, C) � Steps 1 and 2
6: Δ ← SymbolicSimulation(sf) � Step 3
7: Backpropagation(sf , Δ) � Step 4
8: Δmax ← max(Δ, Δmax)
9: end for
10: return Δmax

11: end function

The algorithm takes as input an initial state, s0, a bias parameter, C
(described later), and a sampling budget, n. Note that in practice, we use (pos-
sibly composite) termination criteria, e.g., stopping the analysis based on time,
bounds on expected reward, and/or coverage metrics. It returns the maximum
reward, Δmax, observed from the n samples. In practice extra information is
returned, e.g., the path condition of the path with reward Δmax; solving it pro-
vides concrete test inputs that will exercise the same (costly) path.

The algorithm maintains a set St of nodes in the search tree (i.e. the nodes in
the symbolic execution tree that were expanded by MCTS). Initially the St set
contains only the initial state, s0. The algorithm then proceeds to perform the
four MCTS steps n times. Steps 1 (selection) and 2 (expansion) are performed
by procedure TreePolicy shown in Algorithm 2, while steps 3 (simulation)
and 4 (backpropagation) are performed by SymbolicSimulation and Back-
propagation, respectively, as explained later in this section.

TreePolicy performs a symbolic execution where each decision that has
only children that are already part of the search tree, will be resolved using

MCTS for Finding Costly Paths in Programs 127

Algorithm 2. Algorithm for selecting a new leaf to expand in the search tree
1: function TreePolicy(s, C) � Where s - symbolic state, C - MCTS bias
2: while s is non-terminal do
3: if EligibleChildren(s) − St �= ∅ then
4: return Expand(s)
5: else
6: sc ← BestChild(s, C)
7: s ← sc

8: end if
9: end while
10: return s

11: end function

procedure BestChild (Algorithm 3), which selects the child with the highest
UCT value.

The UCT formula for balancing exploitation and exploration when selecting
the next node s′ from nodes is determined by:

UCT (s, s′) =
Q(s′)
N(s′)

+ C

√
2 ln N(s)

N(s′)

Here C > 0 is the bias parameter, a constant that controls how much
exploration to perform. For rewards in [0; 1], C =

√
2 satisfies the Hoeffd-

ing inequality [4]. For rewards outside this range other values of C may yield
better results. The first component of the UCT formula above corresponds to
exploitation; it is high for moves with high average win ratio. The second com-
ponent corresponds to exploration; it is high for moves with few simulations. At
each selection step, the child state with the largest UCT value is picked. Note
N(s) =

∑
s′∈children(s) N(s′).

Algorithm 3. Computing the best child of a search tree node
1: function BestChild(s, C) � Where s - symbolic state s.t. s ∈ St, children(s) ∈ St, C - MCTS

bias

2: return argmax
s′∈children(s)

Q(s′)
N(s′) + C

√
2 lnN(s)
N(s′)

3: end function

For now, assume that EligibleChildren(s) is equivalent to children(s) (we
will see it has a different meaning when pruning is enabled). Symbolic execution
proceeds from this state. The procedure returns when a decision in the search
tree is explored such that one (or more) children are not part of the search tree.
In this case, successive node selection (step 1) ends, and MCTS proceeds with
expansion (step 2) encapsulated by procedure Expand (Algorithm 4): from the
set of unexpanded children, MCTS selects uniformly at random a child node to
be added to the search tree. This node is then returned and marks the end of
step 2. We denote this as the new frontier node, sf , in the search tree.

The frontier node is used for performing a playout using symbolic simulation
(procedure SimulationPolicy, Algorithm 5): successor nodes are selected at

128 K. Luckow et al.

Algorithm 4. Algorithm for expanding a new leaf in the search tree
1: function Expand(s) � Where s - symbolic state
2: choose s′ ∈ EligibleChildren(s) − St uniformly at random
3: N(s′) ← 0
4: Q(s′) ← 0
5: St ← St ∪ s′

6: return s′

7: end function

random until the path terminates. At this point, the reward function is applied
to the end state and the reward is returned to the overall MCTS algorithm,
which is the end of step 3.

Algorithm 5. Algorithm for making a random playout
1: function SymbolicSimulation(s) � Where s - symbolic state
2: while s is non-terminal do
3: choose s′ ∈ EligibleChildren(s) uniformly at random
4: s ← s′

5: end while
6: return reward(s)

7: end function

Backpropagation (see Algorithm 6) is the final step in MCTS-guided sam-
pling and iteratively updates the total reward with Δ and increments the visit
count for all states starting at sf and ending in the root node, s0.

Algorithm 6. Algorithm for backpropagating reward
1: function Backpropagation(s, Δ) � Where s - symbolic state, Δ - reward
2: while s is not null do
3: N(s) ← N(s) + 1
4: Q(s) ← Q(s) + Δ
5: s ← parent(s)
6: end while

7: end function

Pruning. Our sampling works over symbolic paths, representing multiple con-
crete paths that follow the same control flow in the program. Thus, it is not
necessary to sample along the same path multiple times, since repeated sam-
pling can not bring new information to the analysis. We can therefore prune
the explored paths, reducing the search space and accelerating the convergence
of the analysis, since pruning enforces that paths cannot be re-sampled, thus
always providing new information when reinforcing choices.

Pruning is enabled by keeping a boolean flag for each state, p(s), marking
whether s has been pruned from the search. When no pruning is used, procedure
EligibleChildren(s) simply returns children(s). When pruning is used, the
definition of EligibleChildren is restricted to only include children states
s′ ∈ children(s) s.t. p(s′) = false.

MCTS for Finding Costly Paths in Programs 129

1 void target(int a, boolean c) {
2 int i = 0;
3 if (c)
4 while (i < a) i++;
5 else
6 while (i < 10 ∗ a) i++;
7 }

Listing 1. Example. Fig. 1. Results: samples vs. reward

Initially, p(s) = false for all states. When a path s0, s1, . . . , sn terminates in
TreePolicy (line 10) or SymbolicSimulation (line 6), the terminal node is
updated with p(sn) = true. This information is backpropagated iteratively for
sk where k = n − 1, n − 2, . . . , 0 either until s0 is marked (in which case the
analysis terminates, because all paths have been explored), or when there is a
p(s′

k) = false such that sk′ ∈ children(sk) (i.e. all children must be marked as
pruned before marking a parent as pruned).

Pruning also requires a modification to the expansion step (Algorithm 4):
When a node s′ is expanded from s, it is initialized with the visit counts and
rewards obtained from playouts from that subtree of s. This is required since—if
initialized to zero as in the non-pruning case—the qualities of the choices of s′

would be incorrect because pruned paths cannot be re-sampled.
Since MCTS with pruning always explores new paths, and since we assume

a finite number of paths, it follows that the search converges to an exhaustive
analysis and that the path with the maximum reward (according to the reward
function) will be sampled eventually.

Proposition 1 (Termination). If pruning is enabled, then the symbolic path
with the maximum reward is guaranteed to be sampled within n iterations of the
MCTS algorithm, where n denotes the total number of symbolic paths.

4 Example

We illustrate our approach on the example in Listing 1. This example shows a
method that takes two symbolic inputs: one boolean input, c, that directs which
of the two loops will be executed and an integer, a ∈ [1, 50], that determines how
many times each loop will execute. Note that the second loop will run 10 times
as long as the first; it contains the longest path (maximum reward). Figure 2
shows the search tree that is built for the first four iterations by the analysis
using a reward function based on depth of paths and bias C = 5. Note that
we do not present unsatisfiable paths, e.g., the path condition 0 ≥ a · 10 is not
satisfiable given the constraints on a.

Initially, the search tree has only one node (the root). During the selec-
tion step (Algorithm 2) the initial state of the search tree has eligible children

130 K. Luckow et al.

Fig. 2. Search trees obtained in the first four iterations.

(in fact just one1), and it is expanded (Algorithm 4) creating a node labeled with
condition c. A simulation is started (Algorithm 5) and a random choice for c is
made which can pick either the first or the second loop; let us assume the first
loop is picked (true branch) and a simulation is made until the end, yielding the
reward 7. This corresponds to 5 loop iterations before the simulation (randomly)
decides to follow the false branch of the loop condition. The program terminates
and the reward is propagated back up the tree (Algorithm 6). In the next itera-
tion, one of c’s children is expanded. This is also done randomly (Algorithm 4);
assume that the child corresponding to the true branch is picked. Assume we
use pruning, hence this node will be initialized with the rewards and visit counts
already obtained for that sub-tree (i.e. the single run from before with reward
7). Now, from the playout, this path cannot be chosen again, but instead the
loop is iterated seven times yielding reward 9. It is similarly propagated back
and the cumulative reward for the nodes in the search tree will therefore be 16.

In the next iteration, MCTS is forced to expand the false branch for condition
c (it is the only unexpanded child). Since this loop will iterate ten times more
than the other loop, we also can expect to obtain rewards that are ten times
higher. Let us assume that the simulation from this node yields the reward 22.
Similarly, this value is propagated back, but note how it influences the UCT cal-
culation for each node: for the next iteration of MCTS, the tree policy will decide
to take the false branch of condition c again, because the UCT value is higher
(Algorithm 3). A new node is expanded and initialized with the rewards and
visit counts already obtained for the sub-tree due to pruning. Pruning enforces
that the loop cannot be iterated the same number of times as before, but let
us assume that a new path yields the reward 32. This value is propagated back
thereby updating the UCT values of the nodes. For the next iteration (not shown
here), MCTS will again pick this same branch, because the UCT is higher than
for the true branch. Note that the UCT value is increasing at a much greater
rate for the false branch (with the deep loop) than for the true branch due
to the exploitation term: effectively MCTS will keep exploring the deep loop
exhaustively before continuing with the smaller loop.

Our analysis tool allows the visualization of various statistics during execu-
tion and Fig. 1 shows the reward reached across the samples, and illustrates how

1 For technical reasons, the root always has one child, representing the first condition.

MCTS for Finding Costly Paths in Programs 131

the analysis favors the second loop at first (allowing the discovery of the longest
program path). Only at the end does it try the first loop (the much lower part
of the graph).

5 Implementation and Evaluation

We evaluated the presented approach (denoted MCTS) by a comparison with:
traditional, exhaustive symbolic execution (Exact), standard Monte Carlo sam-
pling (MC)—which proceeds by randomly selecting a choice at any decision—
and another Reinforcement Learning (RL) method introduced in [7] for sam-
pling symbolic paths. The RL approach has been modified to reinforce choices
on decisions similar to the MCTS algorithm presented here. At a high level, it
works by sampling paths according to probabilities computed for choices (ini-
tially uniform). Similar to MCTS, rewards are backpropagated and later used for
reinforcing (i.e. updating the probabilities) the choices that seemed promising
for maximizing the reward. The RL approach has three parameters: number of
samples, L, made with current probabilities before the reinforcement step; a his-
tory parameter, h, that controls how much the probabilities are updated during
the reinforcement step according to the rewards obtained from the L samples;
and ε, which is a greediness parameter that adjusts the probability assigned dur-
ing the reinforcement step to the best choice at a decision (i.e. the choice at a
decision with the best game-theoretic value) from the L samples.

The major differences are that the RL approach is entirely probabilistic and
uses two phases (sampling and reinforcing choices). In contrast, MCTS uses
the deterministic selection phase after each sample to enforce sampling of the
currently best sub-tree (according to the UCT value). To cope with potentially
infinite paths arising from, e.g., loops, we perform a bounded exploration (with
k = 1000 decisions) of the sampled paths to ensure termination. Precision of the
analysis can be improved if k is exceeded by an iterative approach where k is
gradually increased. For all our experiments, this limit was never reached.

For evaluating MCTS, RL and MC, we developed a framework based on
Symbolic PathFinder (SPF) [9], called Canopy that enables experimenting
with sampling-based symbolic analyses. Canopy is open-source and available at
https://github.com/isstac/canopy which also contains a distribution for repro-
ducing the results and an appendix with the full results tables. Canopy leverages
two optimizations: incremental constraint solving and constraints satisfiability
caching. The optimizations improve analysis times by a factor 2–5 with con-
straints caching dominating the improvements (full results are available in the
appendix).

We used an application server running Ubuntu 16.04 and equipped with
an Intel Xeon E5-2680@2.70 GHz and 64 GB of RAM. We use a reward function
that counts the number of symbolic decisions along a path (i.e. the depth). Later,
we also show experiments with a reward function that uses memory allocations
along paths.

https://github.com/isstac/canopy

132 K. Luckow et al.

For the sampling-based approaches, we use a budget of 2, 000 samples within
which we record the results. Also, for all evaluations except the scalability eval-
uation, we made 50 runs with different seeds for the random number generators.
We do this to demonstrate their general performance. For the scalability evalu-
ation, we performed 25 runs for each data point.

Case Studies: We use two sets of case studies: (1) classic algorithms with well
understood bounds to give the reader a better intuition of how MCTS per-
forms; (2) complex applications (client-server, databases, native libraries, etc.),
provided by DARPA as part of a project called STAC. (1) includes Quicksort,
Merge Sort, Traveling Salesman Problem, Insertion Sort, and search operation
in a Binary Search Tree. (2) includes LawDB, a network service hosting per-
sonnel data; Gabfeed, a web forum platform; Text Crunchr, a program for text
encryption and analysis; Airplan Shifter, a web app for analyzing flight routes;
WithMi, a P2P text chat and file transfer program; Find Entry, a program for
managing entries in a data structure; and Passwd Checker, a password check-
ing component. All examples have been parameterized by an input size (shown
in parenthesis after their name) representing, e.g., the length of the list to be
sorted for Quicksort, the size of a tree on which an operation is performed etc.
Except for the scalability evaluation, we use the largest input size where the
Exact analysis is still tractable within one hour of analysis time.

Evaluating the Effect of Pruning: We evaluated pruning vs. no pruning using
MCTS C = 5—we will later show empirically that this a good overall bias
parameter. Table 1 shows the results.

Column Max is the maximum reward observed over the 50 runs; column Max
is how many of the runs found the maximum observed reward; and column
Max #1run is how many maximum rewards were found in a single run (i.e. 2, 000
samples) on average.

When pruning is not used, the number of unique paths explored is signifi-
cantly reduced; pruning, by construction, enforces exploration of new behaviors
for each sample and guarantees progress. In terms of finding one path with the
true maximum reward, pruning does not have a significant effect. However, prun-
ing helps finding multiple paths with maximum reward. In particular, for BST
Search, MCTS with pruning explores—in a single run of 2, 000 samples—the two
paths with maximum reward (i.e. the same as the exact analysis) out of over
seven million paths.

Comparison of MCTS with MC, RL, and Exact: We evaluated MCTS and RL
on several different configurations since the literature is not clear on their influ-
ence: MCTS with C =

√
2, 5, 10, 20, 50, 100; RL with the nine configurations

corresponding to permutations of L, h and ε with high and low values.
We report the configuration for MCTS and RL that yielded the best overall

results. The results table for all configurations (including raw data) is available
at https://github.com/isstac/canopy.

https://github.com/isstac/canopy

MCTS for Finding Costly Paths in Programs 133

Table 1. Pruning vs no pruning using MCTS C = 5.

Example Paths Max Max # Max #1run

Prun No prunExact PrunNo prunExact PrunNo prunPrun No prunExact

BST

Search(8)

2,000.00 893.40 7,087,261 82 79 82 2 1 2.00 2.00 2

Insertion

Sort(10)

2,000.00 642.48 3,628,800 47 47 47 21 10 12.67 2.00 512

Merge

Sort(10)

2,000.00 1,202.12 3,628,800 32 32 32 33 32 177.48 170.28 35,840

Quicksort(9) 2,000.00 1,642.72 1,081,621 53 53 54 2 6 32.00 4.33 160

TSP(5) 2,000.00 858.24 15,018 66 66 66 40 29 129.73 49.07 808

Airplan

Shifter(10)

2,000.00 1,986.82 3,628,800 28 28 28 50 50 140.14 136.06 215,040

Find

Entry(6)

2,000.00 873.30 660,665 86 80 86 2 1 2.00 2.00 2

Gabfeed(7) 2,000.00 1,262.56 973,049 62 62 62 6 4 1.17 1.25 64

LawDB(7) 2,000.00 1,069.04 545,835 48 48 48 3 15 40.00 2.73 240

Ngram(14) 2,000.00 431.82 7,174,453 42 41 44 2 3 2.00 2.00 2

Passwd

Checker(4)

2,000.00 571.04 1,082,401 131 131 131 3 1 2.00 2.00 2

Text

Crunchr(7)

2,000.00 68.30 1,149,877 65 59 65 2 1 12.00 1.00 64

Table 2 summarizes the results. Column Max Rew. presents the mean, μ, and
standard deviation, σ, of the maximum rewards found from the 50 runs. They
characterize the stability of the analysis in terms of finding maximum rewards
despite different seeds. Column Mean Rew. presents the mean and standard
deviation of all the paths covered in the runs and thus characterizes in general
how “good” the technique is in exploring promising paths. Columns Max, Max
and Max #1run are the same as in Table 1. Columns Max sample and Max
time show at which sample and time the path with the best reward from column
Max was found on average.

MCTS is superior on a number of parameters: MCTS generally obtains—on
average—a greater maximum reward than RL and MC. On every example, it
also finds a path with equal or greater reward than RL and MC and in addition it
tends to find multiple such paths when present. Compared to the Exact analysis,
MCTS is also capable of finding the path with highest reward much faster. For
example, for BST Search, MCTS finds one of two longest paths (out of over seven
million paths) in less than 14 s, while the Exact analysis finds it after 44 min.
From the experiments, a small bias parameter of C = 5 or C = 10 performs well
overall for the sample budget. In contrast, a very high bias parameter yields poor
results. This is expected since a high bias parameter will favor the exploration
term thereby reducing MCTS to MC in the limit.

The plots in Figs. 3 and 4 show how MCTS (C = 5) and MC perform dur-
ing 2,000 samples for Quicksort(9). MCTS is clearly better: it keeps exploring
promising sub-trees finding the longest path (reward 53) in 488 samples while
MC only finds a path with max reward 46 in 1,772 samples.

134 K. Luckow et al.

Table 2. Results for exact analysis, MCTS, and MC with path pruning. Number
following the example name denotes the input size configuration. MCTS and RL con-
figurations are denoted in parenthesis with the format MCTS(C) and RL(L;h;ε).

Fig. 3. MCTS quicksort. Fig. 4. MC quicksort. Fig. 5. Airplan shifter.

Scalability: We demonstrate the scalability of MCTS compared to the Exact
analysis and how it fares compared to MC. We obtained results for input sizes
1..30 for each example and set a time limit of 1 h for the Exact analysis for each

MCTS for Finding Costly Paths in Programs 135

Fig. 6. Find entry. Fig. 7. LawDB. Fig. 8. Ngram.

Fig. 9. Passwd checker. Fig. 10. Gabfeed. Fig. 11. Text Crunchr.

Fig. 12. Analysis time
for Text Crunchr.

Fig. 13. MCTS WithMi
(allocation reward).

Fig. 14. MC WithMi
(allocation reward).

input size; for MCTS (C = 5) and MC, we use a budget of 2, 000 samples. We
ran MC and MCTS 25 times for each input size and report the average maximum
reward observed. Figures 5, 6, 7, 8, 9, 10 and 11 show the scalability results.

MC and MCTS scale far beyond the exact analysis and in general—for the
input sizes at which Exact analysis does not time out—both techniques are able
to find a path with the highest reward with MCTS being slightly better. For
greater input sizes, MCTS is better.

Text Crunchr is a representative example of these observations: As shown
in Fig. 12, the analysis time of the Exact analysis grows exponentially in the
size of the program whereas MCTS and MC grows polynomially; they easily
scale to input size 30, but Exact exceeds the 1 h budget at input size 8. Using

136 K. Luckow et al.

MCTS, we found a time complexity vulnerability in Text Crunchr that is due to
a component that performs post-processing of word frequency results in O(n2)
time. The vulnerability is that the user controls the input file and can craft
input that triggers the worst case behavior. Since MCTS also outputs concrete
test inputs that expose the path with maximum reward, we used it to mount an
actual exploit.

For Password Checker, we noticed that MCTS can find paths with much
higher rewards if given a larger budget. Even if the bias parameter is set to
aggressively favor the exploitation term, it cannot find deeper paths within the
current budget. This explains why the analysis plateaus around input size 8.

Reward Functions for Memory Allocations: We also used the MCTS analysis
with a reward function that counts the number of bytes of memory allocations
to find costly paths in terms of memory. We analyzed a text compression compo-
nent of the real-world example, WithMi. It uses a trie for a special encoding of
common characters that appear in the text shared by users over a P2P network.
Our analysis discovered a vulnerability that would allow a user to maximize
the size of the trie and thus the number of allocated nodes, leading to crashing
WithMi. Figure 13 shows that MCTS exhibits similar behavior with a reward
function that captures allocations; in contrast, Monte Carlo sampling performs
poorly (see Fig. 14).

6 Related Work

MCTS was first used in a software engineering context to improve heuristics
for a theorem prover [3]. More recent work uses MCTS for optimizing program
synthesis [5] and for symbolic regression [13]. MCTS was used before in Java
PathFinder [10]. That work considers explicit state model checking and imple-
ments a heuristic for deadlock detection.

Meta-heuristics have been used for Worst-Case Execution Time (WCET)
analysis—notably genetic algorithms [8]. Unlike all previous approaches, we use
symbolic execution and thus instead of searching the concrete input space, we
search the symbolic execution tree that encodes the program behaviors. Our
search space is thus smaller and we can exploit pruning, which provides a guar-
antee of convergence to the optimal results. A recent example of using genetic
algorithms to find performance bottlenecks is [11]: it uses a fitness function
that represents the elapsed time of an application that can be maximized by
manipulating input parameters. This is a black-box approach, whereas symbolic
execution is by definition white-box.

Another related work uses symbolic execution to find inputs for load testing
of software [14]. The technique executes paths with an iterative analysis, start-
ing with a small depth, and expands paths that look most promising in future
iterations. We play out executions to their end to find out which paths are more
promising and thus have more information to pick the correct paths to favor
going forward.

MCTS for Finding Costly Paths in Programs 137

WISE [2] uses symbolic execution and “branch generators” for complexity
analysis. Branch generators dictate which branches to take along the worst-
case paths. SPF-WCA [6] extends WISE with more general path policies, which
are history and context dependent. Both WISE and SPF-WCA perform an
exhaustive analysis for increasing input sizes (to obtain the policies) which may
be intractable even at small input sizes. Our analysis uses MCTS to avoid an
exhaustive exploration.

7 Conclusion

We presented a symbolic execution method that uses MCTS to guide the search
for costly paths in programs, where the cost is defined with respect to space-time
consumption. We implemented the approach in Canopy and we evaluated it on
complex Java programs. In the future, we plan to increase the scalability of our
approach by developing a parallel version and by incorporating domain-specific
knowledge, based on decision patterns.

Acknowledgment. We would like to thank the anonymous reviewers for their valu-
able comments. This material is based on research sponsored by DARPA under agree-
ment number FA8750-15-2-0087. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon.

References

1. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo
tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

2. Burnim, J., Juvekar, S., Sen, K.: Wise: automated test generation for worst-case
complexity. In: IEEE 31st International Conference on Software Engineering, ICSE
2009, pp. 463–473, May 2009

3. Ertel, W., Schumann, J.M.P., Suttner, C.B.: Learning heuristics for a theorem
prover using back propagation. In: Retti, J., Leidlmair, K. (eds.) 5. Österreichische
Artificial-Intelligence-Tagung, pp. 87–95. Springer, Heidelberg (1989)

4. Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte-Carlo search. University
Tartu, Estonia, Technical report, 1 (2006)

5. Lim, J., Yoo, S.: Field report: applying Monte Carlo Tree Search for program
synthesis. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, pp. 304–310. Springer,
Cham (2016)

6. Luckow, K., Kersten, R., Păsăreanu, C.: Symbolic complexity analysis using
context-preserving histories. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 58–68, March 2017

7. Luckow, K., Păsăreanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
Proceedings of the 29th ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2014, pp. 575–586, New York, NY, USA. ACM (2014)

138 K. Luckow et al.

8. McMinn, P.: Search-based software test data generation: a survey: research articles.
Softw. Test. Verification Reliab. 14(2), 105–156 (2004)

9. Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic pathfinder: integrating symbolic execution with model checking for
Java bytecode analysis. Autom. Softw. Eng. 20, 391–425 (2013)

10. Poulding, S., Feldt, R.: Heuristic model checking using a Monte-Carlo Tree Search
Algorithm. In: Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, pp. 1359–1366, New York, NY, USA. ACM (2015)

11. Shen, D., Luo, Q., Poshyvanyk, D., Grechanik, M.: Automating performance bot-
tleneck detection using search-based application profiling. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis, ISSTA 2015, pp.
270–281, New York, NY, USA. ACM (2015)

12. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep
neural networks and tree search. Nature 529, 484–503 (2016)

13. White, D.R., Yoo, S., Singer, J.: The programming game: evaluating MCTS as an
alternative to GP for symbolic regression. In: Proceedings of the Companion Pub-
lication of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1521–1522, New York, NY, USA. ACM (2015)

14. Zhang, P., Elbaum, S.G., Dwyer, M.B.: Automatic generation of load tests. In:
26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), Lawrence, KS, USA, 6–10 November 2011, pp. 43–52 (2011)

A Cloud-Based Execution Framework
for Program Analysis

Daniel Balasubramanian1(B), Dmitriy Kostyuchenko1, Kasper Luckow2,
Rody Kersten2, and Gabor Karsai1

1 Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN 37212, USA

{daniel.a.balasubramanian,dmitriy.kostyuchenko,
gabor.karsai}@vanderbilt.edu

2 Carnegie Mellon University, Moffett Field, CA 94035, USA
{kasper.luckow,rody.kersten}@sv.cmu.edu

Abstract. Program analysis is a popular method to determine prop-
erties about program behavior, such as execution times and potential
security vulnerabilities. One of the biggest challenges faced by almost
every form of program analysis is scalability. One way to address scala-
bility issues is to distribute the analysis across multiple machines. How-
ever, this is not an easy task; designing a distribution framework that is
capable of supporting multiple types of program analysis requires care-
ful thought and consideration. This paper presents the cloud-based exe-
cution framework that we built for performing distributed analysis of
Java bytecode programs. We describe the design decisions that allow
this framework to be generic enough to support multiple types of analy-
sis but remain efficient at the same time. We also present a simple, static
work partitioning algorithm that we have found to work well in practice
and provide benchmarks to show its efficiency.

1 Introduction

Program analysis is a popular method to determine properties about program
behavior. It is used by everyday tools, such as compilers, as well as dedicated
static and dynamic program analysis engines. One of the main drawbacks of
most types of program analysis is that they generally have trouble scaling due
to issues such as exponential state-space explosion. Program analysis algorithms
may alleviate such problems by introducing either abstractions [1] or heuristics
[2]. Abstractions generally over-approximate the problem and result in coarse-
grained answers. Heuristics, on the other hand, try to make the best guess pos-
sible, but may result in incorrect answers if the guesses are incorrect.

Even with issues such as exponential state-space explosion, there are often
practical benefits that can be gained by distributing program analysis [3,4]. If an
exploration can be parallelized and distributed across multiple machines, more
of the decision space can be explored in a given amount of time. An analysis
that requires a week to run on a single machine may be impractical for many
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 139–154, 2018.
https://doi.org/10.1007/978-3-319-92970-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_9&domain=pdf

140 D. Balasubramanian et al.

users, but if that analysis can be reduced to a few hours when distributed, then
it becomes feasible again.

When adapting an analysis technique for a distributed environment, several
issues need consideration. First, one must decide what type of cluster environ-
ment will be used to perform the exploration. Supporting only one specific cluster
environment is easier than designing a framework that can be reused on multi-
ple types of commodity platforms. More important, though, is the issue of what
types of program analysis will be performed. If there is a known, fixed-set of
analysis algorithms, limited flexibility in the parallelization framework may be
acceptable. If, on the other hand, program analyses are expected to be added
over time, the framework must be designed so that these can be accommodated
with minimal changes to the overall system.

This paper describes the cloud-based framework that we built for performing
program analysis of Java bytecode programs, as well as a static, over-partitioning
algorithm for dividing the work. We focus on the design decisions that allow our
framework to accommodate multiple types of program analysis. While this paper
emphasizes this generality, we have used our framework for scaling symbolic
analyses that identify denial-of-service (DoS) vulnerabilities [2]. In addition, we
provide benchmark results that demonstrate the efficiency of our design.

Our custom framework was written after spending approximately one year
performing our program analysis using Apache Spark [5], an open-source cloud
framework for distributed data analysis that has also been recently proposed
for program analysis and symbolic execution in particular. For this reason, we
also present detailed insights and reasons into why the Spark framework was
not well-suited for our program analysis and the design decisions to which that
experience led us.

The rest of this paper is structured as follows. Section 2 gives background
information on symbolic execution and one of the heuristic algorithms that
we parallelize. Section 3 describes the design of our parallelization framework.
Benchmark results are presented in Sect. 4. We discuss our approach and previ-
ous experiences in Sect. 5. We survey related work in Sect. 6, and we conclude in
Sect. 7.

2 Background

Our cloud framework was motivated by our desire to parallelize our program
analysis techniques [2] that are based on symbolic execution for identifying
Denial-of-Service (DoS) vulnerabilities in Java bytecode. Symbolic execution is
a program analysis technique which executes programs on symbolic rather than
concrete inputs, and it computes the program effects as functions in terms of the
symbolic inputs [6]. The behavior of a program P is determined by the values
of its inputs and can be described by means of a symbolic execution tree where
tree nodes are program states and tree edges are the program transitions as
determined by the symbolic execution of program instructions.

For each explored path, symbolic execution maintains a path condition PC –
a conjunction of constraints over the symbolic inputs that characterizes exactly

A Cloud-Based Execution Framework for Program Analysis 141

those inputs that follow the path. The feasibility of path conditions is checked
using off-the-shelf constraint solvers, as the conditions are encountered during
symbolic execution, to detect infeasible paths and to generate test inputs that
execute feasible paths. To deal with loops and recursion, a bound can be put on
exploration depth.

Our work on SPF-WCA [2] proposed a heuristic for symbolic execution to
analyze and identify DoS vulnerabilities in Java bytecode programs. Generally
speaking, a DoS vulnerability can be defined as a vulnerability in which a pro-
gram consumes an unexpectedly large amount of resources while processing an
input. For instance, an XML document with recursively defined entities can cause
an XML parser to consume an exponential amount of memory while processing
this input (also known as an XML bomb attack).

SPF-WCA implements a worst-case complexity analysis based on the sym-
bolic execution tool Symbolic PathFinder (SPF). An analyzed algorithm is
symbolically executed for increasing sizes of the symbolic input (e.g., the size of
the collection to be sorted for a sorting algorithm). This information is precise
for small input sizes where exhaustive analysis is still feasible. From those paths,
a heuristic is computed that can guide the search for large input sizes. Worst-
case paths are collected (with respect to a given cost-model), and a function is
fit to these results using regression analysis.

An alternative approach we are also exploring is distributing the analysis of
the tool Canopy [7], which is also a DoS vulnerability detection tool based on
symbolic execution performed by Symbolic PathFinder. It uses Monte Carlo
Tree Search (MCTS) to explore “promising” areas of the symbolic execution
tree that seem to maximize the cost. Instead of a systematic exploration of
the symbolic execution tree, Canopy uses sampling of the paths, i.e. a path
is explored from the initial state until termination (or bound is met). MCTS
selects how decisions are resolved during sampling. It is well-known that MCTS
is easily parallelizable, since the state shared between samples is minimal [8].

Because we began with two program analyses that we wanted to parallelize
(pure symbolic execution performed by the SPF tool and heuristic-based sym-
bolic execution performed by the SPF-WCA tool), we designed our framework
so that it is not tightly coupled to the particular type of program analysis being
performed. This helped minimize the amount of effort needed to add additional
techniques (Sect. 3.3 describes how the sampling approach above was imple-
mented).

3 Cloud Framework

The overall architecture of our framework is shown in Fig. 1. At a high-level, the
architecture can be separated into two subsystems, one consisting of a Bridge-
Daemon system, and the other consisting of a Dispatcher-Worker system.

The Bridge-Daemon system is responsible for initializing the cluster, monitor-
ing its health, distributing work orders, and routing status reports. This system
is static for all applications and is agnostic to the analysis being performed. The

142 D. Balasubramanian et al.

Dispatcher-Worker system, in contrast, is dynamic and specific to the type of
program analysis being performed. It bookends the Bridge-Daemon system in
that the Dispatcher is responsible for defining and partitioning the work, the
Worker is responsible for executing the work partition, and the Bridge-Daemon
system is responsible for routing messages between the two. This separation of
concerns allows us to keep the fabric of the cluster stable and well-tested even
when active development is occurring on the implementation of actual program
analysis tasks. To that end, we have worked to keep each of the components
relatively simple, easy to reason about, and easy to test. We’ve also been very
careful to make sure that the layers of the system are easily containerized using
tools such as Docker for easy deployment to services such as AWS, though so
far we have had the luxury of using a networked cluster of dedicated machines.

Fig. 1. High-level architecture.

The underlying technology used is Akka Actors [9] defined in Scala, using
the internal messaging protocol of Akka and the Kryo object serialization
library. Remoting is a problem that is difficult to implement robustly, but is
also well-understood. We have chosen to use battle-tested technology in order to
remove some uncertainty from our development process and to focus directly on
program analysis. Through our work, we have found Akka to be the distributed
framework that is both most reliable and least obtrusive.

3.1 Bridge-Daemon Subsystem

The Bridge-Daemon system makes up the basic structure of the processing clus-
ter. The Bridge component is instantiated on at least two nodes and is responsi-
ble for message routing and monitoring. The monitoring is a keep-alive message,
handled by the Akka Actors framework, sent periodically from the Daemon

A Cloud-Based Execution Framework for Program Analysis 143

to the Bridge. The Bridge nodes themselves do not contain any application-
specific logic; their only function is to coordinate the cluster by maintaining a list
of currently available Daemons and passing messages between the Daemons and
Dispatcher. This architecture allows Daemon nodes to be added and removed
in an ad-hoc fashion, without having to define available workers ahead of time.

Each Daemon contains a configuration file specifying the address of each
Bridge. When a Daemon node is brought online, it registers itself with each
Bridge and maintains a keep-alive connection to every Bridge. Thus, every
Bridge is aware of the health of every Daemon. A Daemon is instantiated on each
processing node and is responsible for the coordination of work on that node.

The Daemons coordinate the work on a given node by maintaining a queue of
outstanding work items of a given analysis type. An analysis type is implemented
as a custom Java/Scala class defined in the main JAR or loaded from an external
JAR at runtime.

The function of the Daemon is to receive work requests, examine the task being
requested, instantiate a Worker for the task, and continuously report the status
of work being performed. As with the Bridge, the Daemon does not contain any
application-specific logic. Though it manages the actual work being performed,
new types of tasks can be added at any time with minimal or no changes by
defining external JARs with additional Java/Scala classes.

3.2 Dispatcher-Worker Subsystem

The application-specific logic is introduced with the Dispatcher-Worker system.
The Dispatcher is responsible for receiving a work request from a client through
a REST endpoint. The request is comprised of an archive containing all of the
files and parameters needed to execute the task. The Dispatcher makes the files
needed to do the work available to all Worker nodes, determines an appropriate
partitioning of the work based on the type of work being performed, and issues
a directive to a Bridge node to initiate the task using the given parameters.

To perform the partitioning, the Dispatcher queries the Bridge for the
amount of Daemon nodes available, which determines the sizes of the partitions.
In our symbolic-execution based analyses, for example, the amount of Daemon
nodes determines the partition depth of the binary decision tree that represents
all of the decision instructions in the system under test. The Dispatcher then
generates all permutations of the subtrees of the decision tree at the determined
depth, and shuffles the list in order to help keep the execution time relatively
uniform. The shuffled list of subtrees is grouped into task sets, and those task
sets are distributed to the available Daemon nodes to be queued and executed.

As the task is performed, the Dispatcher receives regular status updates
from the individual Worker nodes in order to compile and report an interme-
diate picture of the work in progress. The logic of receiving client requests and
providing intermediate and final results to the client is implemented in a sepa-
rate REST service; the Dispatcher is implemented such that its only concern
is the actual analysis.

144 D. Balasubramanian et al.

The task itself is performed by Worker instances. The expectation is that the
Dispatcher and the Worker are created in tandem, so that whatever format the
communication between the two takes place in will be understood by both. Thus
the directive to start work sent by the Dispatcher can be defined in whatever
way makes sense for the task; conversely, the status update reports sent by
the Worker are expected to be understood by the Dispatcher. Once a Worker
receives a request for work, it will begin executing the task while continually
making progress reports back up through the system.

Fig. 2. Network configuration.

The whole process - as illustrated in Fig. 2 - is simple but robust. The
Dispatcher receives a request from a client over a REST interface. It then
determines how the request can be parallelized. The Dispatcher then sends a
list of specific work items to the Bridge, which routes them to the appropriate
Daemon nodes, with each work item being assigned to a single Worker to ensure
no duplication of effort. The Daemon nodes examine the requests and instantiate
specific Worker instances. The Worker instances, using the parameters in the
request, perform the work, while continuously reporting the status of the work
and any intermediate results. Those status reports are routed back through the
Daemon node, back to the Bridge, and then back to the original Dispatcher.
At this point, the Dispatcher interprets the results (potentially integrating the
separate results into a coherent picture) and makes them available to the client
on request. Thus the application-specific logic is kept entirely separate from the
cloud processing logic.

A Cloud-Based Execution Framework for Program Analysis 145

In order to support new analysis types, the analyst must define a Dispatcher
which has knowledge of the analysis being performed and how to partition the
problem space. This partitioning depends on the problem: for example in the
case of a binary decision tree it might be a series of Yes/No choices that lead
to a particular subtree, or in the case of a genetic fuzzing algorithm it might
be a set of random seeds. The Dispatcher is responsible for sending the prob-
lem partitions to the cluster system and receiving results from the executors.
The analyst must also define a Worker which is able to receive a single problem
partition, perform the analysis and report the results back through the cluster
system to the Dispatcher. These components can be written in any JVM lan-
guage supporting the Akka framework; currently, that is Scala and Java. The
process of implementing new analysis types is largely limited to the implemen-
tation of the analysis itself, with practically no attention needing to be paid to
the workings of the cluster system.

Fig. 3. Static partitioning algorithm for a binary decision tree.

A good example of an application implementation in this system is SPF-
WCA. The client requests for an analysis to be performed by sending the system
under test and all required files in an archive to the Dispatcher REST endpoint.
For this particular problem, we partition the decision tree of the application.
That is, for every branching instruction encountered, we consider both the true
and false options. This creates a binary tree with every node representing a
branch in the system under test. At this point, the Dispatcher interrogates the
Bridge regarding how many nodes are available for use, and partitions the entire
system decision tree into subtrees to be analyzed separately.

146 D. Balasubramanian et al.

One of the problems we encountered is that the analysis time of a given
subtree is wildly unpredictable, and this unpredictability can cause an unequal
work distribution. As we are using static partitioning, we have developed a sta-
tistical approach to the problem, depicted in Fig. 3 for partitioning a binary
decision tree. Because the cost of analyzing each subtree is essentially random,
we over-partition the problem space and assign multiple subtrees to the individ-
ual workers. As the number of problems approaches infinity, the level of work
distribution approaches equality. Once the tasks are defined, the Dispatcher
assigns a block of tasks to a Daemon and sends the task requests to a Bridge
which forwards the tasks to the defined Daemon. The Daemon adds the tasks to an
internal queue and instantiates Worker instances as resources become available.
The Workers perform the tasks and continually report progress back through
the Daemon, the Bridge, and to the Dispatcher. The Dispatcher is then able to
integrate those results into a single worst-case analysis, which is made available
to the client through the same REST endpoint. As the results in Sect. 4 indicate,
this static over-partitioning is effective in practice.

3.3 Adding a New Analysis

We present here a practical example of implementing a new type of analysis
by looking at Sampling SPF (Canopy), which we have added fairly late in the
process. Rather than describe the implementation, we show the real-world code.

We begin (Fig. 4) by creating a Dispatcher that partitions the problem space
(a binary decision tree) into “Frontiers.” These Frontiers are defined as strings
composed of ‘0’s and ‘1’s defining the path to a particular subtree. After a set
of frontiers is built, the Dispatcher divides the set between available workers,
creates data structures defining the tasks, and forwards those data structures
through the Bridge.

For the Worker implementation (Fig. 5), we need to create an instance of
an existing analysis class that’s used for single-machine operation, provide it
with configuration and a Frontier from which to begin, and start the analysis.
Additionally, we need to respond to status update requests issued regularly by
the Daemon by querying the analysis class and converting its internal state to a
JSON representation.

When the Dispatcher receives status updates from the workers, they are
added to an overall task status summary which is committed to disk on a regular
basis (Fig. 6).

This is a functional minimal integration of a new analysis type, with some
boilerplate omitted.

4 Benchmarks and Results

Tables 1 and 2 show benchmark results of exhaustive symbolic execution (SPF)
and worst-case analysis (SPF-WCA) applied to a set of classic algorithms used

A Cloud-Based Execution Framework for Program Analysis 147

Fig. 4. Dispatcher Start Implementation

Fig. 5. Worker Implementation

148 D. Balasubramanian et al.

Fig. 6. Dispatcher Results Implementation

for WISE [10]. For comparison, we show the total run times for the same com-
putation being performed on one execution core, 128 cores, and 256 cores, as
well as the amount of speedup gained using multiple cores. It is important to
note that for our motivating use case (identifying DoS vulnerabilities), the final
worst case is typically found long before the entire task completes. Our frame-
work allows us to easily gather intermediate results, and so the advantage of
distributed execution is even greater than just the raw speedup. The full run
times are provided here as a like-to-like comparison of the performance improve-
ment. The execution times vary so drastically between the two (SPF-WCA is
much quicker, but less sound) that it is difficult to find an example that can be
practically run on single-core SPF and multi-core SPF-WCA. Regardless, the
purpose of these results is to show speedup for two different types of analysis,
not to compare different analysis types.

As the results show, the relative amount of speedup varies from problem to
problem, but the performance increases relatively linearly, with more complex
problems scaling better. This actually works in our favor because the amount
of overhead is fixed by the number executors and the number of partitions; as
the runtime of a problem on a given worker increases, the effects of system
overhead decrease. Further performance increases can be achieved by optimizing
the cluster structure, and this remains on our list of future work. And of course,

Table 1. Experimental results for exhaustive symbolic execution on classic algorithms.
The speedups compared to the single worker case are shown in parenthesis.

Benchmark Number of workers

1 128 256

Sorted Linked List insert 22108 s 188 s (117x) 98 s (225x)

Red-Black Tree search 11242 s 167 s (67x) 56 s (200x)

Quicksort (JDK 1.5) 14711 s 132 s (111x) 83 s (177x)

Merge Sort (JDK 1.5) 19113 s 184 s (103x) 110 s (173x)

Bellman-Ford 19507 s 174 s (112x) 110 s (177x)

Dijkstra’s 16849 s 171 s (98x) 112 s (150x)

Traveling Salesman 23409 s 193 s (121x) 99 s (236x)

Insertion Sort 10259 s 101 s (101x) 82 s (125x)

A Cloud-Based Execution Framework for Program Analysis 149

Table 2. Experimental results for SPF-WCA on classic algorithms. The speedups
compared to the single worker case are shown in parenthesis.

Benchmark Number of workers

1 128 256

Sorted Linked List insert 13980 s 129 s (108x) 80 s (174x)

Red-Black Tree search 2520 s 36 s (70x) 26 s (96x)

Quicksort (JDK 1.5) 5940 s 60 s (99x) 46 s (129x)

Merge Sort (JDK 1.5) 2460 s 36 s (68x) 28 s (87x)

Bellman-Ford 7260 s 65 s (111x) 38 s (191x)

Dijkstra’s 13080 s 164 s (79x) 121 s (108x)

Traveling Salesman 3420 s 43 s (79x) 33 s (103x)

Insertion Sort 2520 s 41 s (61x) 30 s (84x)

the overall execution time can be reduced even more by simply expanding the
cluster with additional nodes.

5 Discussion

Our current framework was written after spending approximately one year per-
forming our program analysis with the Apache Spark [5] framework, a popular
distributed execution platform built on top of Akka [9]. It is one of the most
robust tools for cloud computing, especially scientific computation, though we
have found it to be unsuitable for our specific needs. The Spark system is built
on the paradigm of making existing computations semantically identical to their
distributed versions. Data structures are created in the code, processed with
user-defined functions, and the results collected; the concepts are identical to
local computation, and the work distribution and result generation across the
cluster occurs transparently.

Our implementation of exhaustive SPF exploration using Spark and
Apache YARN [11] followed the idiomatic Spark model: we partitioned the
decision space of the program as described earlier, encoded those partitions as
BitSets denoting the choices needed to be made in order to reach the head of
the desired subtree, and used that dataset as input to our process. The function
that we mapped over the dataset was the actual exhaustive SPF exploration,
with the output being a set of statistics for the explored subtree. We then col-
lected those results, integrated them into a single picture, and reported them
back to the user. A conceptually sound implementation, though in practice we
encountered difficulties:

1. The SPF exploration process of the symbolic execution tree is a long-running
function with unpredictable runtimes for different subtrees. This unpre-
dictability introduced a large amount of uncertainty into the overall runtime

150 D. Balasubramanian et al.

of the analysis, pinning it to the runtime of the longest-running subtree. It is
possible to return intermediate results in a Spark exploration, but the only
practical way to do so is to return the results of the individual tasks, limiting
the granularity of intermediate data to the overall number of defined tasks.
Our tool resolves this problem by adding reporting of intermediate results
at arbitrary points during task execution. This allows us to obtain an entire
picture of the current state of execution even if the execution, or even an
individual task, has not yet completed.

2. Another factor influencing our decision was the high level of abstraction pro-
vided by the Spark framework, which is a double-edged sword. While it was
easy to work with, we had limited visibility into the underlying components
and the debugging process, while feasible, was slow and tedious. Any imper-
fections in a tool could have several consequences depending on the mode of
failure:
(a) The particular exploration could have returned bad data; this was essen-

tially impossible to debug, as we had very limited insight into the explo-
ration as it was occurring due to Spark’s high level of abstraction. Our
tool allows us to control execution at a low level, with the data from the
analysis being available for examination immediately, or being returned
to the Dispatcher with a clear chain of custody.

(b) The particular analysis could have crashed with an exception, which
would be detected by Spark and logged, but the actual process of extract-
ing and interpreting logs was more time-consuming than we preferred. In
contrast, our tool reports analysis failures directly to the Dispatcher and,
most crucially, ties them to the input data that caused the failure. This
allows for easier and more focused troubleshooting, and even automated
recovery.

(c) The particular analysis could stall, which was a case not readily distin-
guishable from a normal long-running analysis. This resulted in an anal-
ysis that would remain in a partially-completed state for an arbitrarily
long duration. Due to the continuous reporting of analysis state, our tool
lets us determine if the analysis is still making progress or if it has entered
deadlock. This progress reporting is not limited; since the Workers have
direct access to the running analysis classes, and our reporting format
can contain arbitrary data, we are free to include any useful metadata
regarding the status of the analysis.

3. We found that cluster performance degraded for large, long-running tasks
running on multiple executors. Some of the reasons were due to a great mul-
titude of configuration settings whose effects on our distributed computation
were not obvious without trial and error. The customization and configura-
tion of the cluster turned into a persistent and considerable cost. While our
tool shifts a lot of the configuration burden from an intermediate layer like
YARN directly to us, we have found that we are able to more clearly and
easily reason about the impact of the configuration changes we make.

Overall, we found ourselves spending more time debugging the system than
developing it, and decided that because the tasks we were executing were long

A Cloud-Based Execution Framework for Program Analysis 151

running, resource-intensive, and having complex failure modes, that we would
be better served by a system which provided a more detailed picture of the
internal state of the work being performed. Thus we descended one level on
the abstraction hierarchy and built something that looks like a stripped-down
version of Spark, with node management, status reporting, health monitoring,
and work distribution being handled by us. This provided us with complete and
easily accessible information regarding the cluster state (because we manage
it), the status and distribution of the work (because we control it), and any
intermediate result reporting (because we can send anything whenever we want).

6 Related Work

Many solutions exist in the literature for parallelization of specific program anal-
ysis tools/techniques. These papers were highly influential to our work and their
specific solutions are discussed here for comparison. While in some cases these
dedicated distribution implementations may perform slightly better than our
framework, the solution we present is generic in the sense that it allows for
simple extension with new program analysis techniques. It achieves this general-
ity while maintaining most of the performance, as evidenced by the near-linear
speed-up reported in Sect. 4.

A solution for the parallelization of Symbolic PathFinder (SPF) also
exists [12].The technique is named Simple Static Partitioning. It first performs
an initial shallow symbolic execution, during which path conditions are collected.
It then uses a heuristic algorithm to create a static partitioning that it believes,
based on the collected path conditions, will be a reasonable distribution of work.
The algorithm favors partitioning with respect to commonly used variables and
simple (efficiently solvable) constraints. It provides a performance improvement
of up to 90% of the ideal parallel speedup.

Cloud9 [13] is a framework for parallel symbolic execution. It runs on com-
modity hardware and is based on KLEE [14]. In Cloud9, each worker has a
queue of jobs, corresponding to unexplored branches of the symbolic execution
tree. A load-balancer instructs workers with a high load (long job queue) to send
jobs to workers with a low load (short job queue). As balancing is done dynami-
cally, this approach does not require static-partitioning of the search space. Since
finding a balanced partitioning is not statically decidable, this approach prevents
the overall system having to wait for the worker processing the largest subtree
to finish.

A similar approach to distributed concolic execution is taken for LIME Con-
colic Tester (LCT) [15]. In LCT, it is not inputs that are distributed to
workers but rather constraints. While these are larger in size, the argument is
that in that case, expensive constraint solving will be done on the side of the
available worker.

In SAGE [16], new inputs generated by concolic execution can also be dis-
tributed over local threads or to other machines.

In Mayhem [17], multiple symbolic execution engines run in parallel on the
same machine. A new engine is instantiated each time execution forks.

152 D. Balasubramanian et al.

Platform as a Service (PaaS) infrastructure has also been proposed for per-
forming distributed verification [4]. In that work, CPAchecker, an open-source
Java-based framework for software verification, was ported to the Google App-
Engine. The PaaS infrastructure provides benefits like automated scaling and
load balancing, but also imposes restrictions, such as access to a specific set of
Java classes and the inability to load native libraries. Notably, changes had to be
made to the actual verification framework to run it on the Google App-Engine.
In contrast, our framework does not impose these types of restrictions, and can
be configured to run on various types of Infrastructure as a Service (IaaS), such
as Microsoft Azure or Amazon EC2.

Another closely related work, named CloudSDV, does distributed driver
verification using Microsoft Azure [3]. One difference is that we use a static,
over-partitioning algorithm to statically assign work items to available nodes,
while CloudSDV uses a work queue from which individual worker nodes dis-
cover and consume verification tasks. CloudSDV also uses the Microsoft Azure
APIs, whereas we rely on the Akka Remoting and Akka Cluster Java-based
libraries for communication and cluster management tasks.

7 Conclusions

This paper presented a cloud-based framework for performing distributed anal-
ysis of Java bytecode programs. We described the architecture and design deci-
sions that allow new analyses to be added relatively easily while at the same time
offering good performance. Our benchmarks show the efficiency of the framework
and architecture with different types of program analysis. We also described a
static work-partitioning algorithm that provides good results in practice and
offers a simple but effective alternative to more complex dynamic partitioning
algorithms.

We are continually adding new analysis tools to the framework (such as
fuzzing) in order to enhance our ability to locate potential vulnerabilities in Java
bytecode. Another addition that we are researching is the automatic evaluation of
the complexity of the system under test in order to enable automatic complexity
scaling in correspondence with the resources available to the cluster. Finally,
we are continuing to develop our deployment and monitoring tools to allow our
framework to function as a complete turn-key system that can be easily deployed
on generic distributed execution platforms such as Amazon AWS, and we are
planning on making our tools open-source in the near future.

Acknowledgment. This material is based on research sponsored by DARPA under
agreement number FA8750-15-2-0087. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S. Government.

A Cloud-Based Execution Framework for Program Analysis 153

References

1. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

2. Luckow, K., Kersten, R., Psreanu, C.: Symbolic complexity analysis using context-
preserving histories. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 58–68, March 2017

3. Kumar, R., Ball, T., Lichtenberg, J., Deisinger, N., Upreti, A., Bansal, C.:
CloudSDV enabling static driver verifier using microsoft azure. In: Ábrahám, E.,
Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 523–536. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 33

4. Beyer, D., Dresler, G., Wendler, P.: Software verification in the Google app-engine
cloud. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 327–333.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 21

5. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 56–65 (2016)

6. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

7. Luckow, K., Pasareanu, C., Visser, W.: Monte Carlo Tree Search for Finding Costly
Paths in Programs. In submission

8. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo
tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

9. Haller, P.: On the integration of the actor model in mainstream technologies: the
Scala perspective. In: Proceedings of the 2nd Edition on Programming Systems,
Languages and Applications Based on Actors, Agents, and Decentralized Control
Abstractions. AGERE! 2012, pp. 1–6. ACM, New York (2012)

10. Burnim, J., Juvekar, S., Sen, K.: WISE: automated test generation for worst-
case complexity. In: Proceedings of the 31st International Conference on Software
Engineering, ICSE 2009, Vancouver, Canada, 16–24 May 2009, pp. 463–473 (2009)

11. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia,
S., Reed, B., Baldeschwieler, E.: Apache hadoop yarn: yet another resource nego-
tiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC
2013, pp. 5:1–5:16. ACM, New York (2013)

12. Staats, M., Pasareanu, C.S.: Parallel symbolic execution for structural test gen-
eration. In: Proceedings of the Nineteenth International Symposium on Software
Testing and Analysis, ISSTA 2010, Trento, Italy, 12–16 July 2010, pp. 183–194
(2010)

13. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: Proceedings of the Sixth Conference on
Computer Systems, EuroSys 2011, pp. 183–198. ACM, New York (2011)

14. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX conference on Operating systems design and implementation, OSDI 2008,
pp. 209–224. USENIX Association, Berkeley (2008)

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-319-33693-0_33
https://doi.org/10.1007/978-3-319-08867-9_21

154 D. Balasubramanian et al.

15. Kähkönen, K., Saarikivi, O., Heljanko, K.: LCT: a parallel distributed testing tool
for multithreaded Java programs. Electron. Notes Theoret. Comput. Sci. 296, 253–
259 (2013)

16. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20–27 (2012)

17. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP
2012, pp. 380–394. IEEE Computer Society, Washington, DC (2012)

Cross-Architecture Lifter Synthesis

Rijnard van Tonder(B) and Claire Le Goues(B)

Carnegie Mellon University, Pittsburgh, USA
{rvantonder,clegoues}@cs.cmu.edu

Abstract. Code translation is a staple component of program analysis.
A lifter is a code translation unit that translates low-level code to a
higher-level intermediate representation (IR). Lifters thus enable a host
of static and dynamic analyses for such low-level code. However, writing
a lifter is a tedious manual process which must be repeated for every
architecture an analysis aims to support. We introduce cross-architecture
lifter synthesis, a novel approach that automatically synthesizes lifters for
previously unsupported architectures. Our insight is that lifter synthesis
can be bootstrapped with existing IR sketches that exploit the shared
semantic properties of heterogeneous architecture instruction sets. We
show that our approach automates a significant amount of translation
effort for a previously unsupported instruction set, and that it enables
discovery of new bugs on new architecture targets through reuse of an
existing IR-based analysis.

1 Introduction

Intermediate representations (IRs) are a staple component of compilers [20,23]
and program analyses [5,8,11,18]. Code translation can generate programs in an
IR from high level source languages (e.g., compilers) or low level machine code
(e.g., decompilers). A lifter is a code translation unit that emits a higher level,
architecture-agnostic intermediate representation of architecture-specific lower-
level code. Lifters are central to low-level code analysis because they enable reuse
of architecture-agnostic analyses at the IR level (e.g., taint analysis, constraint
generation) [14,22], and provide essential high level abstractions for program
analysis (CFG and function recovery) [9].

However, writing the translation layer for an IR is onerous, requiring manual
translation of architecture-specific instructions (e.g., for x86, ARM, MIPS) to
the target IR while preserving the native semantics. Modeling the semantics
of a new instruction set requires an engineer to consult instruction manuals
numbering up to 1,000s of pages per architecture [14,15]. Recent work raises
the importance of automating the lifting process [14]. In our own past work, we
identify the potential to reuse existing analyses in the IR for new architectures,1

but are faced with the undesirable prospect of writing new lifters from scratch.

1 e.g., https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0.

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 155–170, 2018.
https://doi.org/10.1007/978-3-319-92970-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_10&domain=pdf
https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0

156 R. van Tonder and C. L. Goues

We propose a novel synthesis technique to automate the lifting translation
process, with a goal of producing an IR program usable for further program anal-
ysis (e.g., to find bugs). At a high level, our technique uses inductive synthesis
over finite input-output pairs of native instructions to infer semantically equiva-
lent instructions in the IR. We verify the correctness of synthesized instructions
by executing the IR (under associated operational semantics) and comparing
computational events with that of native execution. Our approach learns sketches
(templates) from existing IR instructions, that then drive synthesis. Two key
insights enable our synthesis approach. First, software exhibits a “natural” prop-
erty: code structure is repetitive and predictable [16]. Instruction architectures
are inherently heterogeneous, but they share similar semantic operations (e.g.,
move instructions, arithmetic operations). Our approach mines sketches from
existing IR programs which preserve this underlying shared semantics. More-
over, because instructions are not distributed uniformly (e.g., move instructions
are more common) [6,16], our approach (1) extends across heterogeneous archi-
tectures and (2) achieves high translation coverage. Second, we parameterize
synthesis by exploiting statement structure to produce an efficient search.

Prior work only partially addresses the challenge of automatic lifting.
Hasabnis et al. [13,14] observe the forward translation of compiler IR (GCC’s
RTL) to assembly code and produce an inverse mapping from assembly back
to the original RTL IR. However, this approach requires a forward translation
from the IR to assembly for each architecture. This approach is impossible if
no such translation exists (typical for low-level IRs, which lift directly from
assembly [8,22]). Related synthesis approaches automate discovery of symbolic
instruction encodings from input-output pairs [10,15]. By contrast, we address
the unique challenge of cross-translating the semantics of instructions to another
target language (IR) that supports additional program analysis abstractions
(e.g., taint analysis, control flow recovery, function recovery). Recent work in
program synthesis has proposed the notion of exploiting existing code for scal-
ing synthesis [6]. To the best of our knowledge, we are the first to demonstrate
these ideas toward practical, real-world application by enabling automatic lifter
synthesis. Our contributions are as follows:

– Automatic Lifter Synthesis. We introduce a technique for automatically
synthesizing language translation components that lifts low-level code to an
IR. We demonstrate that lifter synthesis enables cross-language translation,
allowing analysis reuse on previously unsupported architectures.

– Learning Synthesis Templates. We show that mining sketches is effec-
tive for translating across heterogeneous instruction architectures. Mining
sketches (a) preserves shared semantic properties across architectures and
(b) scales synthesis by efficiently constraining the candidate sketch search
space.

– Experimental Evaluation. We validate our approach by synthesizing a
lifter for MIPS, a previously unsupported architecture in the Binary Anal-
ysis Platform.2 On average, the synthesized lifter successfully translates

2 Available at https://github.com/BinaryAnalysisPlatform/bap.

https://github.com/BinaryAnalysisPlatform/bap

Cross-Architecture Lifter Synthesis 157

84.4% of instructions to IR, across 28 binaries. Our technique complements
additional strategies for lifting the remainder of unlifted instructions (e.g.,
manually, or with more aggressive synthesis exploration). The synthesized
lifter allows a previous IR-based analysis to discover 29 new bugs in binaries
for the previously-unsupported architecture.

– Implementation. We release our tool and results at https://github.com/
squaresLab/SynthLift.

2 Overview and Problem Definition

We formulate IR translation as a syntax-guided synthesis problem [4]. We boot-
strap the approach by obtaining an initial set of programs in the IR translated
by some existing lifter targeting some other architecture/instruction set (e.g.,
x86 or ARM).3 We mine these IR programs to turn concrete program frag-
ments into sketches for use in synthesis. Given an unsupported architecture (for
which we do not yet have IR translation rules), we (A) collect input-output pairs
observed during native execution, and then (B) apply inductive inference over
those sketches to discover IR program fragments that satisfy those pairs. We
use the oracle-guided inductive synthesis [4] principle to invalidate candidate
program fragments using ground-truth input-output pairs.

Fig. 1. Synthesizing IR from sketches and I/O pairs.

Overview. Our goal is to use existing IR terms translated from instructions in
a source architecture S (like ARM) to synthesize satisfying IR translation rules
for instructions of a new target architecture T (like MIPS). The first step of
lifter synthesis deconstructs concrete IR terms (Fig. 1b) from previously lifted
code in source architecture S (Fig. 1a). Program sketches are syntactic templates
that define the search space for synthesis. A sketch is a partial implementation
3 Note that this is not a limiting assumption on generalizing the technique: an existing,

functional IR implies at least one existing translation layer implementation, as is the
case with, e.g., REIL [8] LLVM [19], VEX IR [21].

https://github.com/squaresLab/SynthLift
https://github.com/squaresLab/SynthLift

158 R. van Tonder and C. L. Goues

of a program with missing expressions called holes [7]; we denote holes by ?? in
Fig. 1b. There are two types of holes in our IR sketches: variables, denoted by
??r, and immediate bit vector values, denoted by ??i (respectively corresponding
to registers and immediate values in the machine architecture).

The second step of synthesis (Fig. 1c) collects concrete input-output pairs,
instruction operands, and instruction opcodes from the target architecture T

that we want to lift. In the example, the target architecture is MIPS.4 We gen-
erate traces of input-output pairs by dynamically executing one or more native
MIPS instructions. We use the LLVM disassembler to obtain static instruction
information:: their opcodes, syntactic register names, and immediate values.5

Static values denoting operands are converted to symbolic IR variables, which
we denote in the example by rx and ix respectively (x is fresh).

The LifterSynthesisT procedure then enumerates candidate IR sketches
and fills operand holes with the target T’s register and immediate values operand,
respectively. The procedure seeks an IR instruction and operand assignment that
satisfies all dynamic I/O observations for the native instruction in T when exe-
cuted according to the IR’s operational semantics. When successful, synthesis
produces a lifter rule that translates native instructions to the IR for the tar-
get T.

Translation Substitution. The synthesis procedure in Fig. 1 identifies IR
statements whose semantics (specified in Sect. 3) match the input-output pairs of
native execution translation rules. For example, an addiuT operand with opcodes
〈r1, r2, i1〉 map to an IR statement r1 := r2 + i1:s32 (note that syntactic register
and immediate values are both converted into proper typed values when trans-
lated into the IR). Translation binds concrete values to IR operand variables
rx, ix positionally (Fig. 2).

Fig. 2. Lifting to a target T (MIPS)

In general, we do not know the correct order for applying operands obtained from
disassembly; we consider permutation of operands during synthesis in Sect. 4.

Restricting the Synthesis Search Space. The syntactic structure of instruc-
tions from native execution allows us to prune the search space of sketches. Fig. 1c
gives an intuition: the IR sketch ??r := ??r & ??r won’t be considered for the
addiuT 〈r1,r2,i1〉 MIPS instruction because the IR does not use an immedi-
ate value. In practice, we find that pruning reduces the set of valid candidate
sketches to 83% per native instruction, on average.
4 https://www.mips.com/products/architectures/mips32/.
5 We use LLVM for convenience–dynamic binary instrumentation techniques can sim-

ilarly provide instruction operands and opcodes.

https://www.mips.com/products/architectures/mips32/

Cross-Architecture Lifter Synthesis 159

Problem Scope. Our approach synthesizes instructions including arithmetic
operations, bitwise operations, and conditional jumps. We do not consider the
details of CPU-specific memory models and modes (e.g., concurrency, mem-
ory segments, or privileged instructions). While important, these aspects do not
directly support the goal of modeling the essential dataflow properties of instruc-
tion semantics in the IR. Extension of the IR to additional architecture-specific
memory or permission models is possible, but we leave this consideration for
future work. For simplicity, we have demonstrated a one-to-one translation of
native instruction to IR instruction, whereas IRs are typically designed to rep-
resent a single native instruction in one or more IR instructions. We discuss
one-to-many translation in Sect. 4.

3 Synthesis Model

We perform oracle-guided synthesis of IR translation using dynamic execution
traces of native instructions for a target architecture T. For simplicity of intro-
ducing the model, we consider only one iteration of verifying instruction correct-
ness. In one iteration, our goal is to check whether a sequence of events produced
during a single step of execution of a native instruction is syntactically equal
to the sequence of events produced by a executing a translation of the native
instruction to the IR. Our model assumes a sequential running process, i.e.,
executing a native instruction is uninterruptible, and memory cannot be modi-
fied by concurrent processes. Further, we assume instruction output is invariant
under the same inputs. Our assumptions are consistent with the goal of track-
ing dataflow properties of instruction semantics (e.g., taint analysis, constraint
generation), as well as those underlying previous work [10,15]. In this section
we introduce the program model and operational semantics for comparing IR
and native execution. We use the BAP IR [1,3], which performs competitively
relative to other IRs [17]. However, the approach generalizes under the synthesis
model and assumptions presented in this section.

3.1 Comparing Executions

Program Model. The execution context of a program is modeled by state σ.
Both native and IR instructions operate on a state σ that comprises a memory
μ and variable bindings Δ. Memory μ is modeled by a partial function from
addresses to values nat → int. Variable bindings Δ is modeled by a partial
function from variable names to values var → int.

Events. A sequence of events reify the effect of executing an instruction.
Events generated during native execution serve as the ground truth oracle
for synthesis. We denote events on registers (including flags) by a 4-tuple
〈action, REG, reg, value〉. An action may be either a read operation R or a write
operation W. We use a syntactic value REG to disambiguate events on registers
from those on memory. A register reg may be any syntactic term corresponding
to a register for a given architecture (e.g., EAX for the x86 architecture). The

160 R. van Tonder and C. L. Goues

value is a bitvector with a word size for a given architecture. We denote events
on memory by a 4-tuple 〈action, MEM, addr, value〉. Actions on memory are the
same as for registers. A read action on memory reads a bitvector value from a
nonnegative address addr. A write action on memory writes a bitvector value
to a nonnegative address addr. All events are syntactic elements; we say e1 = e2
if an event e1 is syntactically equal to e2.

Comparing Events. For every instruction executed in the trace of the native
Architecture T, a single native instruction IT in state σT produces a sequence
of events ET. We denote the execution step by 〈σT, IT, ∅〉 T� 〈σ′

T
,−, ET〉. For

convenience, we define a function step
T

that returns the sequence of events
after executing the instructions: ET = step

T
(σT, IT).

Next, consider execution for IR in an architecture-agnostic language IR. Our
goal is to generate a sequence of events EIR which is equivalent to ET by executing
a logical instruction (comprising one or more IR statements) denoted by IIR.
We denote an execution step in the IR by 〈σIR, IIR, ∅〉 IR∗� 〈σ′

IR,−, EIR〉 and
define a convenience function stepIR that returns the sequence of events after
execution EIR = stepIR(σIR, IIR).

Executing an IR instruction requires an initial state σIR that simulates the
native architecture state σT. We introduce a function αIR that resolves register
and memory values from the trace, and maps these values to the initial IR
execution state, i.e., σIR = αIR(σT).

We now define an equivalence relation of execution ∼ as equal event sequences
generated from in-tandem single step execution of source and target languages.
Let liftIR be the function that translates a native instruction to target IR
instructions, where IIR = liftIR(IT). Then synthesis requires:

step
T
(σT, IT) ∼ stepIR(αIR(σT), liftIR(IT))

which simplifies to checking ET ∼ EIR. If ET ∼ EIR holds, a synthesis iteration is
complete and IT lifts to IIR. We perform multiple such iterations to refine the
accuracy of translation, invalidating IR statements that do not satisfy all input-
output equivalence constraints. We defer details of the approach and algorithm
to Sect. 4.

3.2 Operational Semantics

Native Execution. The semantics of native execution is treated as a black
box, allowing us to observe input-output pairs of an instruction execution. We
use dynamic instrumentation to record sequences of events during an execution
trace. We support tracing with popular instrumentation frameworks QEMU6

and Pin.7 Dynamic events on registers, flags, and memory are recorded in the

6 https://www.qemu.org/.
7

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

https://www.qemu.org/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Cross-Architecture Lifter Synthesis 161

trace and processed to produce ET, accepted as ground truth. For purposes of syn-
thesis, we synchronize byte ordering (endianness) for T and IR at the dynamic
instrumentation level, if needed.

IR Execution. We use an analysis-based IR to execute synthesized state-
ments according to an operational semantics.8 The BAP interpreter performs
architecture-agnostic execution of IR statements. Figure 3 is a simplified version
of the IR grammar. Our work extends the operational semantics and interpreter
to generate events during IR execution. For brevity, we elide the rules. The
essential changes entail event recording for each rule: variable assignments on
registers and reads produce Write and Read events, respectively. The same follows
for memory accesses; the sequence rule appends events for two instructions, and
so on. The full IR grammar and operational semantics is available online [1]. As
a concrete example, executing the IR statement R2 := R0 results in the event
sequence EIR = [(R,REG,R0,0x1), (W,REG,R2,0x1)] (where R0 initially stores
the value 0x1). The production of ground truth ET by native execution and EIR

is compared during synthesis iterations to discover IR statements that satisfy the
observed input-output pairs. Note that since we perform a synthesis iteration for
one native instruction at a time, execution of the IR code is synchronized with
native execution. Our operational semantics therefore does not continue execu-
tion by advancing a program counter: instead, it iterates through the sequence
of IR statements and executes them until the sequence is empty.9

4 Synthesis Approach

We now explain how our synthesis approach generates translation rules that lift
native instructions to a sequence of IR statements as a function of the following
inputs: (A) A unique identifier for the instruction (i.e., opcode); (B) the set of
instruction operands (as purely syntactic values, i.e., register names and imme-
diate values); (C) a set of input-output pairs on register and memory; and (D)
a set of candidate sketches in the IR.

4.1 Sketches from Term Deconstruction

Our first key insight is that concrete IR terms (generated from existing lifters)
preserve semantic properties to correctly synthesize translation rules for new
architectures. Our technique deconstructs concrete IR terms to automatically
generate the set of sketch candidates for synthesis. The second key insight is
that the syntactic values of native instruction operands (register names and
immediate values) reduce the set of possible sketch candidates, making synthesis
efficient.
8 Note that IRs may lack a specified operational semantics. Our work emphasizes the

importance of using a formally specified IR to enable translation synthesis.
9 Note that PC-relative instructions, such as jumps, still need access to a program

counter variable to enable synthesis. For this, an internal PC is kept in the execution
environment.

162 R. van Tonder and C. L. Goues

We deconstruct concrete IR terms to generate sketches. Formally, a sketch
is a partial function λh.S that accepts a vector of arguments h, or holes, and
generates a concrete term S. The arity of S depends on the number of leaf
nodes in the AST of the IR term. The input domain consists of two kinds of
terms: free variables (e.g., corresponding to registers), and immediate values (i.e.,
constants). Note that these two kinds of terms correspond to the leaf nodes var
and imm in the IR grammar, respectively (see Fig. 3).

As an example, suppose we encounter the concrete IR statement R1 := R0+5.
We recursively visit each term in the statement and generate holes for terminal
nodes, thereby deconstructing the statement to yield a sketch as follows:

�λh.S�
def
= var := var + imm

Three holes are created: the first two operands refer to variables, and the
third operand refers to an immediate bitvector value. Given a vector of operands
o = 〈R5, R6, 2〉, we can perform a substitution in S:

�(λh.S) o� = R5 := R6 + 2
To apply a vector of operators, it must match the arity in S over the number

of variables |vs| and immediate values |is|. In our example, S has arity 3, par-
titioned as an arity pair 〈2, 1〉 since |vs|= 2 and |is|= 1. We use Algorithm 1 to
generate a set of candidate sketches from a program in the IR by visiting each
statement in the program. The function ToSketch in line 4 takes a concrete
term IIR and turns it into a sketch containing holes (all concrete values in leaf
nodes are converted to holes). Line 5 obtains the operands of IIR and partitions
them to obtain the arity pair 〈|vs|, |is|〉. The result of Algorithm 1 produces
a partial function Lookup mapping unique arity pairs to a set of candidate
sketches.

Fig. 3. Simplified IR grammar

Cross-Architecture Lifter Synthesis 163

4.2 Synthesis

We perform syntax-guided inductive synthesis over sketches. The program syn-
thesis problem stipulates that the formula ∀x.φ(x, �P �(x)) be valid for all inputs
x for a synthesized program �P � [7]. The formula φ relates an input and output
specification against a synthesized program �P �. For an oracle-based, syntax-
guided synthesis the general formula is

∀x.φ(x, �P �(x)) ≡ ∀x. oracle(x) = �P �(x)

for some equivalence relation =. In Sect. 3 we defined the equivalence relation
for IR and native execution as equivalence of event sequences. In terms of inputs
〈σT, IT〉 from source language T (as in Sect. 3) and sketches �S�, we define the
translation synthesis problem as finding �S� subject to:

∀〈σT, IT〉.φ(〈σT, IT〉, �S�(〈σT, IT〉)) ≡
step

T
(σT, IT) ∼ stepIR(αIR(σT), �(λh.S) Ops(IT)�) (1)

for each unique IT. The synthesis algorithm goal is to discover a sketch �S�
applied to the operands of native instruction Ops(IT) such that (1) holds.

Algorithm 2 describes the synthesis process. Input consists of the lookup func-
tion produced by MineSketches and trace information T containing a set
of triples 〈σT, IT, ET〉 generated from dynamic executions ET = step

T
(σT, IT).

Functions Code and Ops in line 2 of Algorithm 2 extracts a unique identifier
code associated with IT, and its operands as a vector o, respectively. In line 4,

164 R. van Tonder and C. L. Goues

instruction operands o, initial execution state σT, and computed events ET are
associated with unique instruction codes in the map Ψ . Candidate sketches S
are obtained from a partition of the instruction’s operands (lines 5 and 6).

SynthInsn enumerates through all candidate sketches to find a satisfying
assignment of operands that satisfy events. As mentioned in Sect. 2, we can-
not assume that the operand order returned by the disassembler guarantees the
desired semantics. In Algorithm 3, line 4, Perm generates sketches that per-
mute the order of input operands in λh.S. We discuss permutation strategies in
Sect. 4.3. Each permuting sketch λh.Sp applies o and generates a concrete IR
term CIR and executes it to produce EIR. Lines 7 and 8 verify the concrete term
satisfies all events for the instruction IT observed so far. The check ET ∼ EIR

short circuits the more expensive Verify check (line 12) as an optimization.
Each satisfying sketch is added to the result set R. Valid sketches in the result
set are updated in the map LiftT. Algorithm 4 synthesizes liftIR (introduced
in Sect. 3) by transforming the LiftIR map into a lookup function.

In summary, using Algorithms 1–4 we fully derive the desired translation
IIR = liftT(IT) from initial inputs PIR and TT:

LiftT = Synthesize(MineSketches(PIR), TT)
liftT = λ IT.(LiftHelper LiftIR)

4.3 Operand Permutations and One-To-Many Translation

The disassembler may return instruction operands in any order to Ops(IT). We
observed that operand order tends to correspond roughly with a left-to-right
reading of assembly instruction semantics. For example, an instruction add R0, 8
corresponding to a semantic expression R0 = R0 + 8 would disassemble with
the operands in the order 〈R0, R0, 8〉 However, we also observed small discrepan-
cies. For example, memory store instructions in the IR grammar may swap the
source and destination operands compared to the disassembled order. Function
Perm thus implements a customizable permutation transformation on operands.
Though exhaustive enumeration is feasible for small numbers of operands, we
have found that only permuting adjacent operands proved effective in practice.
When we experimented with an exhaustive permutations approach, we observed
no increase in successful synthesis. Complexity of trying all adjacency swapping
permutations is fast: linear in arity (order O(|vs|+|is|)).

Our current implementation synthesizes one-to-many translation by preserv-
ing existing one-to-many mappings implemented in current ARM and x86 lifters.
This allows synthesis to discover, e.g., conditional branch statements. On the
other hand, relying on a rigid mapping may miss sketches such as multiple con-
secutive assign statements. We leave sketch composition for synthesis to future
work.

Cross-Architecture Lifter Synthesis 165

5 Evaluation

The goal of SynthLift is pragmatic: to synthesize lifter rules for new archi-
tectures, alleviating the need to manually translate the majority of instructions.
The focus application is to enable existing analyses for unsupported architec-
tures. We target a previously unsupported architecture, MIPS, and show that
the synthesized lifter discovers new bugs in commercial off-the-shelf MIPS bina-
ries. Accordingly, we evaluate SynthLift as follows:

– Is SynthLift effective at enabling existing analyses for previously unsup-
ported architectures (Sect. 5.1)?

– What is the speed and accuracy of SynthLift, and what percentage of
instructions can SynthLift recover in widely used programs (Sect. 5.2)?

– How well does SynthLift generalize across architectures (Sect. 5.3)?

5.1 Analysis Reuse

We applied an existing taint-based analysis to find new bugs in COTS binaries
for MIPS [2]. The analysis checks for cases where results of C library functions are
unused. For example, some C POSIX functions are declared with a “warn unused
result” attribute that flags warnings at compile time. Our analysis follows taint
flows for function return values to detect such bugs in binaries, where source
code is not typically available. The analysis looks for cases where the return
value is overwritten without being read. We ran the analysis on 30 binaries in
the sbin directory of a COTS D-Link router. In total, we discovered 29 bugs
in 30 binaries; for brevity, we summarize 8 binaries comprising 17 bugs that
span a variety of functions handled by the analysis (Fig. 4a). Not shown, we
discovered 12 additional bugs across 12 additional binaries for similar functions
as in Fig. 4a. 11 binaries did not generate bug reports. We manually inspected
analysis results using a decompiler to confirm true positives; where possible, we
were able to confirm unchecked values for binaries that have source code (such
as ntpclient). We encountered two false positives. This happened when return
values of two consecutive malloc calls are inaccurately tracked in our ABI model
(note: the inaccuracy is not due to the synthesized instruction semantics). To
consider a large real-world example, we also lifted OpenSSL to recover 86% of
instructions, and confirmed that the analysis did not find any bugs.

5.2 Synthesizing the MIPS Lifter

To synthesize the MIPS lifter, we used IR sketches generated from 28 ARM Core-
utils10 binaries, and used 5 programs from the Hacker’s Delight benchmarks [24]
(compiled to MIPS) to generate dynamic input-output pairs. Coreutils is a set
of highly popular command-line utilities and representative of typical programs;
Hacker’s Delight programs perform a variety of bit-manipulation operations that
generate input-output pairs for a diverse set of native instructions.
10 https://www.gnu.org/software/coreutils/coreutils.html.

https://www.gnu.org/software/coreutils/coreutils.html

166 R. van Tonder and C. L. Goues

Fig. 4. Analysis results and distribution of sketches mined from IR.

End-to-end synthesis (mining sketches, processing traces, and lifter synthesis)
takes 58 s. Each native MIPS instruction starts with a set of 29 initial sketches on
average (using Algorithm 2 Partition and instruction operands). On average,
successfully synthesized instructions complete with 2 satisfying sketches (due
to commutativity of binary operations). Synthesis converges quickly: Fig. 5, left
boxplot, shows that synthesis discovers the final set of satisfying sketches after
only two input-output pairs for most instructions. The final set of satisfying
sketches verify over thousands of input-output events for typical instructions
(Fig. 5). We observe that the distribution of input-output pairs by Hacker’s
Delight binaries mirror the intuition that common instructions like “load word”
(LW) represent a disproportionately large part of the programs.

Fig. 5. MIPS Lifter Synthesis. On the left, the number of iterations until synthesis
converges on the final set of satisfying sketches over all events. On the right, the number
of verified input-output pair events for successfully synthesized instructions.

Cross-Architecture Lifter Synthesis 167

We ran the synthesized lifter on the 28 MIPS Coreutils binaries in the Debian
distribution. To count lifter coverage, we take the percentage of individual native
MIPS instructions that fire a translation rule in the lifter. On average, the lifter
recovers 84.8% of instructions. Thus, 15.2% of instructions in the binary could
not be lifted (in practice, we substitute NOP instructions in the IR). Synthesis
fails when a suitable sketch cannot satisfy the semantics of an instruction. One
such instruction is LUi, or load upper immediate. To lift this instruction, we
ideally want an IR candidate such as var := imm << imm2 , where imm2 is
16. However, such a candidate is never mined from the IR sourced from ARM.
In Sect. 5.4 we suggest further improvements to our technique to address such
cases.

5.3 Generalizing Across Architectures

BAP currently supports lifting for both the ARM and x86 architectures. To val-
idate our ability to synthesize across architectures, we targeted MIPS by mining
sketches lifted from the suite of x86 Coreutils programs. The x86-sourced MIPS
lifter synthesized six fewer instructions than the ARM version due to missing a
rotation sketch.11 Interestingly, the x86-sourced lifter recovered the same 84.8%
instructions when lifting the MIPS Coreutils test set. Figure 4b suggests why we
gain the same utility when synthesizing under different architectures: the eight
most frequent sketches for ARM and x86 are very similar, and account for the
majority of IR instructions.

5.4 Discussion

Mining versus Manually Specifying. Our approach demonstrates the appli-
cability and feasibility of mining sketches to enable a cross-architecture trans-
lation. Figure 4b also suggests that manually specifying a small set of sketches
is competitive to mining sketches. However, we observe that manual specifica-
tion poses additional challenges compared to mining: (a) it is difficult to antici-
pate exactly the set of sketches to specify; current approaches usually involve a
human-in-the-loop who must iteratively estimate or consult specification manu-
als [10]; (b) the set of effective sketches changed based on how the IR is designed
(i.e., different IRs will require different sketch templates); (c) manual specifica-
tion does not naturally consider similarities of multiple heterogeneous architec-
tures; our summary in Fig. 4b is a first result to show that sketches do translate
for IRs. Our approach sees manual specification as complementary: mining is an
effective approach for revealing initial common sketches (and how the IR-specific
design structure relates to sketches), and can automatically discern similarity in
e.g., architectures at the IR level. A human-in-the-loop can use this information
to make synthesis more effective.

11 The missing rotation operator is however found in subexpressions of IR statements,
but we fail to generate the desired statement var:= var << imm.

168 R. van Tonder and C. L. Goues

Partial Instruction Set Recovery. We showed in Sect. 5.2 that the synthe-
sized lifter recovers a high percentage (roughly 85%) of instructions in typical
binaries. On the other hand, the lifter has a lower rate of coverage for the entire
MIPS instruction set, approximately 33 instructions of 45.12 While a greater
percentage of the instruction set is desirable, our goal is to (a) assess whether
translation can be synthesized “out-of-box” without specifically considering the
target architecture and (b) validate how well existing analyses can operate with
a partial lifter synthesized for a new architecture. Our evaluation reveals ample
opportunity for improving instruction set coverage (e.g., manually specifying
missing sketches) and existing work has shown nondeterminstic approaches, like
stochastic search [15] to be effective. At present, our goal is to demonstrate syn-
thesis effectiveness using a tractable method, i.e., using only the set of finite
sketches mined from existing rules. We leave the appeal of combining comple-
mentary approaches to future work.

6 Related Work

Bornholt et al. [6] propose mining sketches for structure to scale program synthe-
sis. Our work demonstrates the ability to fill this gap by mining IR sketches to
scale IR translation over heterogeneous architecture instruction sets. Our work
relates generally to syntax-guided synthesis over sketches [4,7]. Related work
in inductive synthesis uses I/O pairs to recover x86 semantics as SMT encod-
ings [10,15]. Our approach similarly uses I/O pairs to infer semantics, but targets
IR translation for multiple architectures and mines sketches automatically in lieu
of manual specification. Hasabnis et al. leverage forward source-to-compiler-IR
translation [14] and symbolic execution of compilers [13] to lift low level instruc-
tions to the compiler IR. These approaches rely on the existence of a forward
translation routine (i.e., compiler) for each architecture, which then reverse the
mapping to generate assembly-to-IR rules. In contrast, our approach general-
izes to cross-architecture translation using a bootstrapped set of initial candi-
date sketches and input-output pairs only—no existing translation is required
for each architecture target. Applications in static binary translation manually
translate dynamically executed QEMU instructions to static LLVM IR [9] for
multiple architectures; we believe our technique has the ability to automate the
translation process. Work on verifying correctness of low level IRs is complemen-
tary to the lifter synthesis problem; related techniques can assert correctness of
semantics with respect to observed I/O-pairs [10,12] or symbolic equivalence
checking [17].

7 Conclusion

We have presented cross-architecture lifter synthesis, a new way to automatically
synthesize IR translation rules for new architectures by leveraging existing IR
12 Using Fig. 5, (excluding instructions TEQ, SYSCALL, SYNC, and SDC1 which are modeled

differently in the trace than actual MIPS semantics), and compared to a simplified
MIPS ISA (goo.gl/YUEdiy).

https://goo.gl/YUEdiy

Cross-Architecture Lifter Synthesis 169

programs. We demonstrated that our approach is effective at recovering a lifter
for a new architecture, and provides sufficient instruction coverage to enable
analysis reuse and discovery of new bugs. Synthesis could discover more rules by
generating candidates over the IR grammar (e.g., using stochastic search [4,15]),
or by manually supplying a small number of plausible sketches (rather than man-
ual, per-instruction translation). We further believe our work has further appli-
cation for discovering semantic relations between different languages: lifter syn-
thesis reveals similar semantic properties across heterogeneous architectures and
can distinguish differences when cross-translation synthesis fails. Lifter synthesis
opens up new methods for language translation, e.g., by complementing man-
ual processes, and is amenable to automation assistance where sketches can be
manually specified (e.g., [10]). Finally, we believe the approach has broad appli-
cation to IRs generally, including automatic discovery and synthesis of common
semantics for IR-to-IR translation.

Acknowledgments. This work is partially supported under NSF grant number CCF-
1563797. All statements are those of the authors, and do not necessarily reflect the
views of the funding agency. The authors would like to thank the BAP Team for their
continued open source development and support for the BAP project.

References

1. BAP IR Operational Semantics (2018). https://github.com/BinaryAnalysis
Platform/bil/releases/download/v0.1/bil.pdf. Accessed 23 Apr 2018

2. BAP Warn Unused Analysis (2018). https://opam.ocaml.org/packages/bap-warn-
unused/bap-warn-unused.1.3.0/. Accessed 23 Apr 2018

3. Binary Analysis Platform (2018). https://github.com/BinaryAnalysisPlatform/
bap. Accessed 23 Apr 2018

4. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, pp. 1–8 (2013)

5. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Compiler Construction, pp. 2732–2733 (2004)

6. Bornholt, J., Torlak, E.: Scaling program synthesis by exploiting existing code.
Machine Learning for Programming Languages (2015)

7. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: POPL 2016, pp. 775–788 (2016)

8. Dullien, T., Porst, S.: REIL: a platform-independent intermediate representation
of disassembled code for static code analysis. In: CanSecWest 2009 (2009)

9. Federico, A.D., Payer, M., Agosta, G.: rev.ng: a unified binary analysis framework
to recover CFGs and function boundaries. In: CC 2017, pp. 131–141 (2017)

10. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from I/O samples. In: PLDI 2012, pp. 441–452 (2012)

11. Gotovchits, I., van Tonder, R., Brumley, D.: Saluki: finding taint-style vulnerabil-
ities with static property checking. In: BAR 2018 (2018)

12. Hasabnis, N., Qiao, R., Sekar, R.: Checking correctness of code generator architec-
ture specifications. In: CGO 2015, pp. 167–178 (2015)

https://github.com/BinaryAnalysisPlatform/bil/releases/download/v0.1/bil.pdf
https://github.com/BinaryAnalysisPlatform/bil/releases/download/v0.1/bil.pdf
https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0/
https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0/
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/BinaryAnalysisPlatform/bap

170 R. van Tonder and C. L. Goues

13. Hasabnis, N., Sekar, R.: Extracting instruction semantics via symbolic execution
of code generators. In: FSE 2016, pp. 301–313 (2016)

14. Hasabnis, N., Sekar, R.: Lifting assembly to intermediate representation: a novel
approach leveraging compilers. In: ASPLOS 2016, pp. 311–324 (2016)

15. Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: automatically
learning the x86–64 instruction set. In: PLDI 2016, pp. 237–250 (2016)

16. Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P.T.: On the naturalness of
software. Commun. ACM 59(5), 122–131 (2016)

17. Kim, S., Faerevaag, M., Junk, M., Jung, S., Oh, D., Lee, J., Cha, S.K.: Testing
intermediate representations for binary analysis. In: ASE 2017 (2017)

18. Kinder, J., Veith, H.: Precise static analysis of untrusted driver binaries. In:
FMCAD 2010, pp. 43–50 (2010)

19. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO 2004, pp. 75–88 (2004)

20. Le, V., Sun, C., Su, Z.: Randomized stress-testing of link-time optimizers. In:
ISSTA 2015, pp. 327–337 (2015)

21. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: USENIX Security Symposium 2009 (2009)

22. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE Security and Privacy, pp. 317–331 (2010)

23. Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in GCC
and LLVM. In: ISSTA 2016, pp. 294–305 (2016)

24. Warren, H.S.: Hacker’s Delight. Pearson Education, London (2013)

Model Checking and Runtime
Verification

Counterexample Simplification
for Liveness Property Violation

Gianluca Barbon1(B), Vincent Leroy2, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG,
38000 Grenoble, France

gianluca.barbon@inria.fr
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,

38000 Grenoble, France

Abstract. Model checking techniques verify that a model satisfies a
given temporal property. When the model violates the property, the
model checker returns a counterexample, which is a sequence of actions
leading to a state where the property is not satisfied. Understanding
this counterexample for debugging the specification is a complicated
task because the developer has to understand by manual analysis all
the steps (possibly many) that have provoked the bug. The objective
of this work is to improve the comprehension of counterexamples and
thus to simplify the detection of the source of the bug. Given a liveness
property, our approach first extends the model with prefix/suffix infor-
mation w.r.t. that property. This enriched model is then analysed to
identify specific states called neighbourhoods. A neighbourhood consists
of a choice between transitions leading to a correct or incorrect part of
the model. We exploit this notion of neighbourhood to highlight relevant
parts of the counterexample, which makes easier its comprehension. Our
approach is fully automated by a tool that we implemented and that was
validated on several real-world case studies.

1 Introduction

Recent computing trends promote the development of hardware and software
applications that are intrinsically parallel, distributed, and concurrent. This is
the case of service-oriented computing, cloud computing, cyber-physical systems
or the Internet of Things. Designing and developing distributed software in this
context is a tedious and error-prone task, and the ever increasing software com-
plexity is making matters even worse. Although we are still far from proposing
techniques and tools avoiding the existence of bugs in a software under devel-
opment, we know how to automatically chase and find bugs that would be very
difficult, if not impossible, to detect manually.

Model checking [1] is an established technique for automatically verifying
that a behavioural model, e.g., a Labelled Transition System (LTS), satisfies a
given temporal formula written with temporal logic. When the model violates
the property, the model checker returns a counterexample, which is a sequence
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 173–188, 2018.
https://doi.org/10.1007/978-3-319-92970-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_11&domain=pdf

174 G. Barbon et al.

of actions leading to a state where the property is not satisfied. Understand-
ing this counterexample for debugging the specification is a complicated task
for several reasons: (i) the counterexample can contain many actions, (ii) the
debugging task is mostly achieved manually, and (iii) the actions in the coun-
terexample seem to have the same importance even if it is not the case. Note that
in this work, we have a specific focus on liveness properties, and more precisely
inevitability properties which are one of the classes of liveness properties most
used by developers in practice [9].

Our goal in this paper is to simplify the debugging of concurrent systems
whose specification compiles into a behavioural model. To do so, we propose a
novel approach for improving the comprehension of counterexamples by high-
lighting some of the actions in the counterexample that are of prime impor-
tance, that is, actions that make the specification go from a (potentially) correct
behaviour to an incorrect one. These parts of the model correspond to decisions
or choices that are of particular interest because they might explain the source
of the bug. Once these specific actions have been identified, they can be used for
building a simplified version of the counterexample, keeping only actions that
are relevant from a debugging perspective.

Our approach takes as input a behavioural model (LTS) describing all pos-
sible executions of a system. This LTS can be obtained by compilation from a
higher-level textual specification language such as process algebra. Given such
an LTS and a liveness property, in a first step, we enhance each state of the
LTS model with prefix/suffix information about the actions belonging to the
property that have already been or remain to be executed. This enriched LTS
is then analysed to identify specific states called neighbourhoods. A neighbour-
hood consists of a choice between transitions leading to a correct or incorrect
part of the model. Those states identify specific parts of the specification that
may explain the appearance of the bug and are therefore meaningful from a
debugging perspective. Several simplification techniques can be defined on top
of this notion of neighbourhood, which aim at removing irrelevant parts of the
counterexample and highlighting relevant ones to simplify its comprehension.
Our approach is fully automated by a tool that we implemented. This tool was
applied on several real-world case studies for evaluation purposes.

The paper is organized as follows. Section 2 introduces behavioural model and
model checking. Section 3 presents the technique for computing the LTS enriched
with prefix/suffix information. This information is then used for identifying
neighbourhoods and building counterexample abstractions from them. Section 4
illustrates our approach on two real-world case studies. Section 5 overviews
related work and Sect. 6 concludes this paper.

2 Preliminaries

In this work, we adopt Labelled Transition System (LTS) as behavioural model
of concurrent programs. An LTS consists of states and labelled transitions con-
necting these states.

Counterexample Simplification for Liveness Property Violation 175

Definition 1. (LTS) An LTS is a tuple M = (S, s0, Σ, T) where S is a finite
set of state identifiers; s0 ∈ S is the initial state identifier; Σ is a finite set of
labels; T ⊆ S × Σ × S is a finite set of transitions.

A transition is represented as s
l−→ s′ ∈ T , where l ∈ Σ. An LTS is produced

from a higher-level specification of the system described with a process algebra
for instance. Specifications can be compiled into an LTS using specific compilers.
In this work, we use LNT [6] and LOTOS [5] as specification languages and com-
pilers from the CADP toolbox [10] for obtaining LTSs from these specifications.
However, our approach is generic in the sense that it applies on LTSs produced
from any specification language and any compiler/verification tool. An LTS can
be viewed as all possible executions of a system. One specific execution is called
a trace.

Definition 2. (Trace) Given an LTS M = (S, s0, Σ, T), a trace of size n ∈ N

is a sequence of labels l1, l2, . . . , ln ∈ Σ such that s0
l1−→ s1 ∈ T, s1

l2−→
s2 ∈ T, . . . , sn−1

ln−→ sn ∈ T . A trace is either infinite because of loops or the
last state sn has no outgoing transitions. The set of all traces of M is written
as t(M).

Model checking consists in verifying that an LTS model satisfies a given
temporal property ϕ, which specifies some expected requirement of the system.
Temporal properties are usually divided into two main families: safety and live-
ness properties [1]. In this work, we focus on a class of liveness properties, called
inevitable execution properties. Most of the patterns that commonly occur in the
specification of liveness properties make use of the inevitable executions. This
is the case of the Response Property Pattern, that is the most common pattern
in [9]. An inevitable execution property states that, given an LTS M and an
action l, every trace from the initial state in M presents a transition with the
action l. In this work we support nested inevitable executions. For instance, a
property with two nested actions l1 and l2 states that every trace in a given
model must exhibit the action l1 later followed by the action l2. Note that the
two actions do not need to be contiguous in traces. To express nested inevitable
executions we define a nested inevitability operator using the Action-based Com-
putation Tree Logic (ACTL) [8]:

Definition 3. (Nested Inevitability Operator) Given a sequence of labels
l1, . . . ln, the nested inevitability operator is defined as

Inev(l1, l2, . . . ln) = A[truetrueUl1A[truetrueUl2 . . . A[truetrueUlntrue] . . .]]

where A and U denote the ACTL operators along All paths and Until, resp.

A nested inevitable execution property can be semantically characterised by
a possibly infinite set of traces tϕ, corresponding to the traces that comply with
the property ϕ in an LTS. If the LTS model does not satisfy the property, the
model checker returns a counterexample, which is one of the traces characterised
by t(M) \ tϕ.

176 G. Barbon et al.

Definition 4. (Counterexample) Given an LTS M = (S, s0, Σ, T) and a prop-
erty ϕ, a counterexample is any trace which belongs to t(M) \ tϕ. A counterex-
ample can be in the form of an elementary trace, which is a trace where states

are pairwise distinct, or a lasso, which is a trace s0
l1−→ s1 ∈ T, . . . , sn−2

ln−1−−−→
sn−1 ∈ T, sn−1

ln−→ sn ∈ T , such that s0
l1−→ s1 ∈ T, . . . , sn−2

ln−1−−−→ sn−1 ∈ T is
an elementary trace and sn = si for some 0 ≤ i < n.

3 Counterexample Simplification

In this section we discuss in detail our approach to simplify counterexamples.
Section 3.1 presents the notions of prefixes and suffixes. Section 3.2 describes the
algorithm to compute them and enrich the initial LTS. In Sect. 3.3 we iden-
tify transitions and we introduce the neighbourhood notion. Section 3.4 presents
simplification techniques, focusing on one of them.

3.1 Prefixes and Suffixes

An LTS M is a model representing all possible executions of a system. Given
an inevitable execution property ϕ, our goal is to analyse each state s in M to
understand whether all the traces that pass through s satisfy the sequence of
actions expressed by ϕ. To do this we compare the prefixes of traces that reach
the state to prefixes of the given sequence. Similarly we compare the suffixes of
traces that start from the state to suffixes of the given sequence. Note that in
this work we use the symbol “·” to denote the concatenation operator for labels
and sequences of labels.

Definition 5. (Sequence of Inevitable Actions) Given an inevitable execution
property p = Inev(l1, . . . , ln), the sequence of concatenated labels k = l1 · l2 ·
. . . · ln of size n ∈ N is the sequence of inevitable actions that respect the order
defined by the nested inevitability operator.

The sequence of inevitable actions may represent non-contiguous transitions
in the model. In order to match traces and prefixes (suffixes, resp.) of traces with
the sequence of inevitable actions, we define a matching operator as follows:

Definition 6. (Matching Operator) Given an LTS M = (S, s0, Σ, T), a
sequence of labels j = a1 · a2 · . . . · an, a sequence of contiguous transitions

z = s1
l1−→ s2 ∈ T, s2

l2−→ s3 ∈ T, . . . , sm−1
lm−1−−−→ sm ∈ T , z is said to match

j, written j ≺ z, if there exists integers 1 ≤ i1 < i2 < . . . < in ≤ m such that
a1 = li1 , a2 = li2 , . . . , an = lin .

We assign to each state of the LTS the prefixes of the sequence of inevitable
actions k obtained up to the state under analysis. To do this, we introduce the
notions of max prefix and common prefix, w.r.t. k. The max prefix is the longest
prefix of the k sequence among the prefixes of traces that end in a given state.

Counterexample Simplification for Liveness Property Violation 177

The common prefix is the longest prefix of the k sequence that is common to all
the prefixes of traces that end in a given state. We define T

e
s as the set of all the

prefixes of traces that end in s and P
k as the set of all the prefixes of k.

Definition 7. (Max and Common Prefix) Given an LTS M = (S, s0, Σ, T),
a sequence of inevitable actions k, the set P

k of all the prefixes of k, a state
s ∈ S, the max prefix, defined as mps, is the longest element in P

k such that
∃t ∈ T

e
s, mps ≺ t. The common prefix, defined as cps, is the longest element in

P
k such that ∀t ∈ T

e
s, cps ≺ t.

In a similar way we assign to each state of the LTS the suffixes of the sequence
of inevitable actions k that will be completed starting from s. We introduce the
notions of max suffix and common suffix, w.r.t. k. The max suffix is the longest
suffix of the k sequence among the suffixes of traces that start from a given state.
The common suffix is the longest suffix of the k sequence that is common to all
the suffixes of traces that start from a given state. We define T

o
s as the set of all

the suffixes of traces that start from s and S
k as the set of all the suffixes of k.

Definition 8. (Max and Common Suffix) Given an LTS M = (S, s0, Σ, T),
a sequence of inevitable actions k, the set S

k of all the suffixes of k, a state
s ∈ S, the max suffix, defined as mss, is the longest element in S

k such that
∃t ∈ T

o
s, mss ≺ t. The common suffix, defined as css, is the longest element in

S
k such that ∀t ∈ T

o
s, css ≺ t.

The example given in Fig. 1 shows the max/common prefixes and suffixes
calculated on each state of an LTS for a given sequence of inevitable actions
k = A · Y . Let us take a look at state 8: the cp value shows that the action A
exists in every prefix of k produced by prefixes of traces that end in state 8.
Conversely, the cs value in state 8 is empty while the ms value is A ·Y , meaning
that the suffix A·Y is not contained in every suffix of traces that starts in state 8.
As a matter of fact, we can see that the only suffix of traces that respects the k

sequence is the one that begins with the transition 9 C−→ 10 ∈ T .
In some cases inevitable execution properties might not be satisfied because

of loops in which the execution of the system can remain infinitely. Our notion of

Fig. 1. Max/common prefixes and suffixes

178 G. Barbon et al.

suffix allows us to discover such loops and understand whether they prevent the
satisfaction of the property. One of these loops is present in the example in Fig. 1
and is composed of states 4, 5, 6, 8, 9 and 12. These loops are treated in the
next section by extracting the Strongly Connected Components (SCCs) [17] from
the LTS. The LTS with the max/common prefixes (suffixes, resp.) computed for
each state is called enriched LTS.

Definition 9. (Enriched LTS) Given an LTS M = (S, s0, Σ, T) and a sequence
of inevitable actions k, the enriched LTS is a tuple Mk

E = (SE , s0E , ΣE , TE)
such that each state sE ∈ SE is a tuple sE = (s,mps, cps,mss, css), where
s ∈ S, mps, cps ∈ P

k
s , mss, css ∈ S

k
s ; s0E = (s0,mps0 , cps0 ,mss0 , css0);

ΣE = Σ; TE ⊆ SE × ΣE × SE, where ∀s
l−→ s′ ∈ T, (s,mps, cps,mss, css)

l−→
(s′,mps′ , cps′ ,mss′ , css′) ∈ TE.

3.2 Prefixes and Suffixes Calculation

This section presents the computation of the prefixes and suffixes defined in
Sect. 3.1. In order to handle cycles in an LTS we use the notion of SCC, that is
a partition of an LTS where every state is reachable from any other state. Note
that every SCC in an LTS is also a Maximally Strongly Connected Component,
since an SCC cannot be subsumed by a larger SCC by definition. To detect
all the SCCs in an LTS we use the Tarjan’s SCCs algorithm [17]. Given an
LTS M = (S, s0, Σ, T), the algorithm allows the detection of all the SCCs in
linear time, with a cost of O(|S|+ |T |). Given a sequence of inevitable actions k,
our approach considers each SCC of the LTS, and computes the max/common
prefixes and suffixes for every state in the SCC. Note that we start computing
prefixes for states in a given SCC only when all its predecessors SCCs have been
computed (in the case of suffixes we first compute all the successors).

We now introduce some notions related to the SCCs that we will use through-
out the whole section. Given an LTS M = (S, s0, Σ, T) and an SCC G in M ,
where the sets of states and transitions in G are defined as SG and TG, respec-
tively, we denote as Se

G ⊆ SG the set of initial states of G, such that, given a

transition s
l−→ s′ ∈ T , the state s /∈ SG and s′ ∈ Se

G. The transition s
l−→ s′ ∈ T

is defined as incoming transition and the set of incoming transitions is written as
T e

G. Similarly, we denote as So
G ⊆ SG the set of outgoing states such that, given a

transition s
l−→ s′ ∈ T , the state s ∈ So

G and s′ /∈ SG. The transition s
l−→ s′ ∈ T

is defined as an outgoing transition and the set of outgoing transitions is written
as T o

G. We denote as GM the component graph [7] of an LTS M where the states
are given by SCCs of M . The SCC containing the initial state s0 of the LTS
M does not have any predecessors and it is defined as G0. By definition, since
all cycles are contained in SCCs, GM is a directed acyclic graph. The rest of
this section presents the computation of the max prefix (suffix, resp.) and of the
common prefix (suffix, resp.) for states of an SCC.

Max Prefix Calculation. The max prefix inside an SCC is computed by first
extracting the longest max prefix among the incoming states of the SCC. Second,

Counterexample Simplification for Liveness Property Violation 179

the incoming max prefix is extended with actions contained inside the SCC to
produce the longest (possible) prefix of k. Note that the max prefix is the same
for all the states of an SCC. The cost of the computation for an SCC G is
O(|T e

G| + |TG| + |k|), since we first have to explore all the incoming transitions
to compute the initial max prefix, and second we have to collect all the actions
in the SCC that are also present in k. Let us consider the SCC composed of
states 1, 2 and 3 in Fig. 2 (note that SCCs in states 0, 4 and 5 are trivial).
Given k = A · B · C, the initial max prefix for the SCC is A, since the transition
from state 0 to state 1 is the only incoming transition and it contains the first
action of the k sequence. One can notice that by looping inside the SCC it is
possible to complete the k sequence, since the SCC contains also actions B and
C. Consequently, the max prefix in each state of the SCC (states 1, 2 and 3) is
equivalent to the k sequence.

Fig. 2. Prefix and suffix calculation on an SCC

Max Suffix Calculation. The max suffix is computed similarly to the max
prefix, by considering suffixes of successors instead of prefixes of predecessors.
In the example in Fig. 2 the max suffix for every state in the SCC is B · C, since
they are the only two actions contained in the SCC that also exist in k.

Common Prefix Calculation. We describe here the computation of the com-
mon prefix for each state in an SCC. The pseudo-code of this procedure is
detailed in Algorithm1. The algorithm is divided into two main steps: initiali-
sation and internal transitions computation.

Initialisation Step. Given an SCC G the algorithm initialises the common prefix
of states in G to k (Line 3). There are two exceptions to this rule. First, the
initial state of the LTS s0 is initialised to the empty sequence since it has no
predecessors. Second, if s is an initial state of G, cps is initialised with the
common prefixes of its incoming transitions (Line 7). Let us take a look at the
example in Fig. 2. The initialisation step assigns cp = A · B · C to states 2 and
3, while it assigns cp = A to state 1, which is the only initial state of the SCC.

Internal Transitions Computation Step. After the initialisation step, there may
still be paths within G that can produce a prefix smaller than the ones in initial
states. This step deals with internal transitions to detect smaller prefixes. First
of all, we use Q (Line 8) as sorted set to order by increasing common prefix size

180 G. Barbon et al.

the states in SG. When modifying the common prefix of a state s, UpdatePo-
sition(Q, s) updates the position of s in Q. The loop of Line 9 iterates on Q,
removing the first element s at each iteration. The common prefix of all suc-
cessors s′ of s within G is updated using a function LCP, which computes the
longest common prefix between two sequences of actions. When producing a
smaller prefix, the position of s′ in Q is updated. Let us consider again the SCC
in Fig. 2. The internal transitions computation step corrects the values of cp in
states 2 and 3, assigning respectively cp = A and cp = A · B. The value of cp in
state 1 remains the same, since it was already the lower one among all the states
of the SCC.

Correctness and Complexity. The common prefix algorithm behaves similarly to
the Dijkstra’s algorithm that deals with the single-source shortest-paths problem
in weighted directed graphs (in particular, to the implementation which uses a
Fibonacci heap as priority queue). The complexity of the algorithm is O(|T e

G| +
|TG|+ |SG| log |SG|) because the while loop performs exactly |SG| iterations and
the cost of inserting an element to Q and updating its position is O(log |Q|).

Algorithm 1. Common Prefix Computation
1: procedure CommonPrefix(G, k)
2: for all s ∈ SG do
3: cps ← k
4: if s = s0 then cps ← ∅
5: else if s ∈ Se

G then

6: for all s′ l−→ s ∈ExtractIncomingTrans(s) do
7: if s′ /∈ SG then cps ← LCP(cps, cps′ · l)
8: Q ← SG

9: while Q �= ∅ do
10: s ← PopFirst(Q)

11: for all s
l−→ s′ ∈ TG do

12: t ← LCP(cps · l, cps′)
13: if |t| < |cps′ | then cps′ ← t ; UpdatePosition(Q, s′)

Common Suffix Calculation. The common suffix calculation is similar to the
prefix case, but it differs in the initialisation step. In the suffix case the execution
may loop into the current SCC and never go through an outgoing transition, and
a state may thus have a smaller common suffix than all states from its successor
SCCs. This initialisation step is presented in Algorithm2. In the case of a final
state, the suffix is empty (Line 3). Otherwise, the common suffix is initialised to
the smallest suffix of k traversed by a loop from s to itself (Line 4). In the absence
of loops (SCC with single state and no self-loop), MinSuffixLoop returns k.
The remainder of the computation is similar to Algorithm 1, using a function
LCS, which computes the longest common suffix, instead of LCP. Searching
the smallest-suffix loop for each state is done by iteratively removing labels from
k and looking for isolated vertices. Hence, the overall cost of the computation is

Counterexample Simplification for Liveness Property Violation 181

O(|T o
G|+ |k|×(|TG|+ |SG|)+ |SG| log |SG|). Let us consider the example in Fig. 2.

The initialisation step assigns cs = B · C to state 1, which is the smallest suffix
of k that can be produced inside the SCC starting from state 1. It then assigns
the empty sequence and cs = C to states 2 and 3, since they are outgoing states.
The algorithm will later update the value of cs in state 1 to the empty sequence
with the internal transitions computation step.

Algorithm 2. Common Suffix Computation (Initialisation Step)
1: procedure CommonSuffixInit(G, k)
2: for all s ∈ SG do

3: if � ∃s l−→ s′ then css ← ∅
4: else css ← MinSuffixLoop(s, k,G)
5: if s ∈ So

G then

6: for all s
l−→ s′ ∈ExtractOutgoingTrans(s) do

7: if s′ /∈ SG then css ← LCS(css, l · css′)

Order of Calculation. So far, we have considered the computation of prefixes
and suffixes for the states of an SCC. However, evaluating prefixes requires that
the prefixes of all predecessor states of an SCC are correct (successors states
in case of suffixes). It is thus important to execute our approach on SCCs in
an appropriate order. Since by definition there are no cycles in GM, we can
define the depth of an SCC as 0 for the SCC that contains s0, and 1 plus the
maximum depth of predecessor SCCs otherwise. Our approach computes prefixes
in SCCs by increasing depth, and suffixes by decreasing depth, ensuring the
presence of the necessary information. Given the costs of computing prefixes
and suffixes in each SCC, the total cost of the calculation of the enriched LTS
is O(|k| × (|T | + |S|) +

∑
G∈GM

(|SG| log |SG|)).

3.3 Neighbourhoods

The enriched LTS with max/common prefixes and suffixes can now be used to
characterise its transitions. A transition is typed as correct if it always leads to
a correct part of the model, as incorrect if it always leads to an incorrect part
of the model, as neutral if none of the previous cases apply.

More specifically, a correct transition leads to a portion of the LTS where
the sequence of actions k is always respected. To state whether a transition is a
correct one we compute the sum of the length of cp in the source state and of
cs in its destination state. Note that we also have to take into account the label
of the transition in this sum, since the concatenation of cp with the label may
produce a valid prefix of k. If the sum is equal or higher than the size of the k
sequence the transition is identified as correct.

Definition 10. (Correct Transition) Given an enriched LTS Mk
E =

(SE , s0E , ΣE , TE), two states sE = (s,mps, cps,mss, css) ∈ SE, s′
E =

(s′,mps′ , cps′ ,mss′ , css′) ∈ SE, a correct transition is a transition sE
l−→ s′

E ∈ TE

such that cp = cps · l if cps · l is a prefix of k, cp = cps otherwise, and
|cp| + |css′ | ≥ |k|.

182 G. Barbon et al.

On the contrary, an incorrect transition is a transition that leads to a por-
tion of the LTS where the sequence of actions k is never respected. We take into
account the sum of the length of mp in the source state and of ms in its desti-
nation state. If the sum is lower than the size of the k sequence the transition is
classified as incorrect.

Definition 11. (Incorrect Transition) Given an enriched LTS Mk
E =

(SE , s0E , ΣE , TE) two states sE = (s,mps, cps,mss, css) ∈ SE, s′
E =

(s′,mps′ , cps′ ,mss′ , css′) ∈ SE, an incorrect transition is a transition
sE

l−→ s′
E ∈ TE such that mp = mps · l if mps · l is a prefix of k, mp = mps

otherwise, and |mp| + |mss′ | < |k|.
When a transition cannot be identified as correct nor as incorrect, it means

that it is common to both correct and incorrect behaviours. Such transition is
called a neutral transition.

The LTS where correct, incorrect and neutral transitions have been detected
allows us to recognise neighbourhoods in states in which an incoming neutral
transition is followed by a correct or an incorrect one. A neighbourhood rep-
resents a choice in the LTS between branching behaviours that directly affect
the property satisfaction, and it consists of incoming and outgoing transitions
of that state.

Definition 12. (Neighbourhood) Given an LTS Mk
E = (SE , s0E , ΣE , TE) where

transitions have been typed as correct, incorrect or neutral, a state s ∈ SE where
∀t = s′ l−→ s ∈ TE, t is a neutral transition and ∃t′ = s

l−→ s′′ ∈ TE, t′ is
a correct or an incorrect transition, the neighbourhood of state s is the set of
transitions Tnb ⊆ TE such that for each t′′ ∈ Tnb, either t′′ = s′ l−→ s ∈ TE or
t′′ = s

l−→ s′′′ ∈ TE.

Fig. 3. The four types of neighbourhoods.

We can identify four different types of neighbourhoods by looking at their
outgoing transitions (see Fig. 3 from left to right). The first type consists of
neighbourhoods with at least one correct transition and no incorrect transitions,
and highlights a choice that can lead to behaviours that always comply with the
sequence of inevitable actions. The second type is represented by neighbourhoods
with at least one incorrect transition but no correct transitions, and highlights
a choice that can lead to behaviours that never comply with the sequence of
inevitable actions. The third and the fourth types have both at least one correct

Counterexample Simplification for Liveness Property Violation 183

and one incorrect outgoing transition, and they differ because of the presence
(or not) of one (or more) neutral outgoing transition(s).

In Fig. 4 we show the example described in Sect. 3.1 (in Fig. 1), where the
transition detection has allowed to detect neighbourhoods (states coloured in
grey). In particular state 9, where correct and neutral transitions are present,
shows a neighbourhood of the first type, where a choice that will always satisfy
the property is possible. On the contrary, states 1, 6 and 8 show neighbourhoods
of the second type, where a choice that leads to an incorrect behaviour is possible.

Fig. 4. Transitions classification and neighbourhoods

3.4 Simplification Techniques

The final step of our approach aims at simplifying the counterexample produced
from the LTS and a given property. To do so we make a joint analysis of the coun-
terexample and of the LTS enriched with neighbourhoods computed previously.
This analysis can be used for obtaining different kinds of simplifications, such as:
(i) an abstracted counterexample, that allows to remove from a counterexample
actions that do not belong to neighbourhoods (and thus represent noise); (ii) a
shortest path to a neighbourhood, which retrieves the shortest sequence of actions
that leads to a neighbourhood; (iii) improved versions of (i) and (ii), where the
user provides a pattern representing a sequence of non-contiguous actions, in
order to allow the developer to focus on a specific part of the model; (iv) tech-
niques focusing on a notion of distance to the bug in terms of neighbourhoods.
For the sake of space, we focus on the abstracted counterexample in this paper.

Abstracted Counterexample. This technique abstracts a counterexample keeping
only transitions that belong to neighbourhoods. The technique takes as input
an LTS M where neighbourhoods have been identified, and a counterexample
c, produced from M and from the inevitability property expressed by k. The
procedure for the abstracted counterexample first identifies in c the states that
belong to a neighbourhood in M . Second, it removes all the actions in c that
do not represent incoming or outgoing transitions of neighbourhoods identified
in the previous step. Figure 5 shows an example of a counterexample where two
neighbourhoods, highlighted on the right side, have been detected and allow us
to identify actions that are preserved in the abstracted counterexample.

184 G. Barbon et al.

Fig. 5. Abstracted counterexample

4 Illustration on Case Studies

We implemented our approach in a Java tool, which consists of about 6000
lines of code. Compilers provided by the CADP toolbox [10] have been used
to transform LNT [6] and LOTOS [5] specifications into LTS models, which are
used as input format to our application. Our tool was applied to several examples
in order to validate it. We present here two of them, showing the verification of
both a simple and a nested inevitable execution property.

Sanitary Agency. We describe here the Sanitary Agency [16] case study, which
models an agency that aims at supporting elderly citizens in receiving sanitary
assistance from the public administration. The model is composed of four par-
ticipants, depicted in Fig. 6: a bank to manage fees and payments; a cooperative
to provide welfare services; a citizen to perform the service requests; a sanitary
agency to manage citizens’ requests and which also contribute to the payment.
For illustration purposes, we defined a property with two nested inevitable exe-
cutions. The property states that the treatment of a citizen request by the agency
(represented by the REQ EM action) should always take place, and should always
be followed by the reception of a transport service by the citizen (represented
by the PROVT REC action).

Our tool identified five neighbourhoods in the model. We then applied the
abstracted counterexample technique to the shortest counterexample, allowing
to discover two neighbourhoods and consequently reducing the length of the
counterexample from 15 actions to 4. The top side of Fig. 7 depicts the short-
est counterexample while the bottom side depicts the corresponding neighbour-
hoods. The extracted actions are relevant since the neighbourhoods to which they
belong precisely identify choices in the model that violate the property. In this
case, the first neighbourhood shows that the first action in the property is not
inevitable. The REQ EM action can take place only after an ACCEPTANCE EM action,
but the neighbourhood exhibits an incorrect transition with the REFUSAL EM
action, revealing that the citizen request can be refused and thus preventing
its treatment. The second neighbourhood shows that, even when the citizen
request is treated by the agency, the system does not always satisfy the nested
inevitable action, since it can also provide meal services. This is highlighted by

Counterexample Simplification for Liveness Property Violation 185

Fig. 6. Sanitary agency models

the choice between the correct transition with the PROVT EM action (emission of a
transport service) and the incorrect transition with the PROVM EM action (emis-
sion of a meal service).

Fig. 7. Sanitary agency: shortest counterexample and neighbourhoods

Alternating Bit Protocol. We now discuss the Alternating Bit Protocol case
study, which consists of a data link layer network protocol that allows the retrans-
mission of lost or corrupted messages. The version of the protocol analysed here,
available as CADP demo [12], is a variant without data values written in LOTOS.
The model is composed of four processes: a transmitter process that acquires and
sends a message; a receiver process that gets a message; medium1 and medium2
processes that represent transmission channels.

The demo is provided with an inevitable execution property that states that
a PUT action will be eventually reached from the initial state. This property is not
satisfied by the model because of the presence of loops in the specification that
can lead to an infinite trace that never reaches a PUT action. More precisely, the
problem is caused by an interaction between the receiver and the medium2 pro-
cesses. When the transmitter process has not yet started the message treatment

186 G. Barbon et al.

(represented by the PUT action), the receiver might have to wait. In this case the
receiver produces a TIMEOUT action, followed by the sending of an incorrect ack
message (RACK1 action). If this ack message is lost by medium2 (LOSS action)
and the receiver is still waiting, a loop might be produced until the transmitter
starts the message treatment.

Our tool detects six neighbourhoods in the model, all with correct and neutral
transitions. Figure 8 depicts a portion of the model with these neighbourhoods,
which are located at states 0, 2, 5, 12, 13 and 23. In particular, neighbourhoods
at states 5, 12, 13, 23 present choices that make the execution of the system
remain infinitely inside the loops, preventing the satisfaction of the property by
reaching the PUT action. This is highlighted by neutral transitions containing
LOSS, RACK1 and TIMEOUT actions that repeat the cycle.

Fig. 8. Excerpt of the Alternating Bit protocol LTS model

5 Related Work

Causality analysis aims at relating causes and effects, which can help in debug-
ging faults in (possibly concurrent) systems. This analysis relies on a notion of
counterfactual reasoning, where alternative executions of the system are derived
by assuming changes in the program. In [11], the authors present a general app-
roach for causality analysis of system failures based on component specifications
and observed component traces. In [3], the authors choose the Halpern and Pearl
model to define causality checking in order to localise errors in hardware sys-
tems by analysing counterexample traces. Our approach is complementary to
causality analysis since it helps to detect any kind of bugs and not only those
involving causality.

In [4], sequential pattern mining is applied to execution traces for revealing
unforeseen interleavings that may be a source of error, through the adoption
of the well-known mining algorithm CloSpan. CloSpan is also adopted in [14],
where the authors apply sequential pattern mining to traces of counterexamples,
in order to reveal unforeseen interleavings that may be a source of error. However,
reasoning on traces induces several issues. The handling of looping behaviours
is non-trivial and may result in the generation of infinite traces or of an infinite
number of traces. Coverage is another problem, since a high number of traces
does not guarantee to produce all the relevant behaviours for analysis purposes.

Counterexample Simplification for Liveness Property Violation 187

As a result, we decided to work on the debugging of LTS models, which represent
in a finite way all possible behaviours of the system.

In [13] the authors propose a method to interpret counterexamples traces
from liveness properties by dividing them into fated and free segments. Fated
segments represents inevitability w.r.t. the failure, pointing out progress towards
the bug, while free segments highlight the possibility to avoid the bug. The pro-
posed approach classifies states in different layers (representing distances from
the bug) and produces a counterexample annotated with segments by exploring
the model. Both our work and [13] aim at building an explanation from the coun-
terexample. However, our method focuses on locating branching behaviours that
affect the property satisfaction whereas their approach produces an enhanced
counterexample where inevitable events (w.r.t. the bug) are highlighted.

Fault localisation for program debugging has been an active topic of research
for many years in the software engineering community [18]. One of the main
approaches in that line of work aims at localising faults using testing approaches.
As an example, the approach presented in [15] relies on mutation testing to
locate effectively the faulty statements. Experiments carried out in [15] reveal
that mutation-based fault localisation is significantly more effective than cur-
rent state-of-the-art fault localisation techniques. Note that this work applies
on sequential C programs whereas we focus on formal models of concurrent
programs.

We published in [2] an approach for counterexample analysis of safety prop-
erty violation. [2] describes a preliminary version of neighbourhood and of the
counterexample abstraction. The algorithmic solution using prefix/suffix anno-
tations presented in Sect. 3 as well as the tool support and experiments presented
in Sect. 4 are entirely new.

6 Conclusion

In this paper, we have proposed a method for improving the comprehension of
counterexamples returned by a model checker when an inevitability property
is not satisfied on a given behavioural model. To do so, we have first defined
an algorithm to enrich the LTS that represents the model of the system with
notions of prefixes and suffixes, which express parts of the sequence of inevitable
actions. Second, we have provided a method to extract relevant portions of the
LTS, called neighbourhoods, which highlight choices between a correct and an
incorrect behaviour. Third, we have proposed a set of simplification techniques
to extract relevant information that explains the cause of the bug, exploiting
the notion of neighbourhood. All the steps of our approach are automated by a
tool we implemented. The resulting simplified counterexample gives an improved
explanation of the bug, as we have shown on experiments we carried out on real-
world examples.

Acknowledgements. We are grateful to Radu Mateescu for his valuable inputs on
liveness properties.

188 G. Barbon et al.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Barbon, G., Leroy, V., Salaün, G.: Debugging of concurrent systems using coun-

terexample analysis. In: Dastani, M., Sirjani, M. (eds.) FSEN 2017. LNCS, vol.
10522, pp. 20–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68972-2 2

3. Beer, A., Heidinger, S., Kühne, U., Leitner-Fischer, F., Leue, S.: Symbolic causality
checking using bounded model checking. In: Fischer, B., Geldenhuys, J. (eds.) SPIN
2015. LNCS, vol. 9232, pp. 203–221. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23404-5 14

4. Befrouei, M.T., Wang, C., Weissenbacher, G.: Abstraction and mining of traces
to explain concurrency bugs. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014.
LNCS, vol. 8734, pp. 162–177. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11164-3 14

5. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987)

6. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McKinty, C.,
Powazny, V., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS
Translator (Version 6.7). INRIA/VASY and INRIA/CONVECS, 153 pages (2018)

7. Clarke, E.M., Jha, Y., Lu, S., Veith, H.: Tree-like counterexamples in model check-
ing. In: Proceedings of LICS 2002, pp. 19–29. IEEE Computer Society (2002)

8. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM (1999)

10. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

11. Gößler, G., Le Métayer, D.: A general trace-based framework of logical causality.
In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 11

12. Inria CONVECS Team: CADP Demo 01: Alternating Bit Protocol. http://cadp.
inria.fr/demos.html

13. Jin, H.S., Ravi, K., Somenzi, F.: Fate and FreeWill in error traces. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 445–459. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 31

14. Leue, S., Befrouei, M.T.: Mining sequential patterns to explain concurrent coun-
terexamples. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol.
7976, pp. 264–281. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39176-7 17

15. Papadakis, M., Traon, Y.L.: Effective fault localization via mutation analysis: a
selective mutation approach. In: Proceedings of SAC 2014, pp. 1293–1300. ACM
(2014)

16. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: Proceedings of ICWS 2004, pp. 43–50. IEEE Computer
Society (2004)

17. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

18. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

https://doi.org/10.1007/978-3-319-68972-2_2
https://doi.org/10.1007/978-3-319-68972-2_2
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1007/978-3-319-11164-3_14
https://doi.org/10.1007/978-3-319-11164-3_14
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/978-3-319-07602-7_11
http://cadp.inria.fr/demos.html
http://cadp.inria.fr/demos.html
https://doi.org/10.1007/3-540-46002-0_31
https://doi.org/10.1007/978-3-642-39176-7_17
https://doi.org/10.1007/978-3-642-39176-7_17

Online Enumeration of All Minimal
Inductive Validity Cores

Jaroslav Bend́ık1(B), Elaheh Ghassabani2, Michael Whalen2, and Ivana Černá1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,cerna}@fi.muni.cz

2 Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN, USA

{ghass013,mwwhalen}@umn.edu

Abstract. Symbolic model checkers can construct proofs of safety prop-
erties over complex models, but when a proof succeeds, the results do not
generally provide much insight to the user. Minimal Inductive Validity
Cores (MIVCs) trace a property to a minimal set of model elements nec-
essary for constructing a proof, and can help to explain why a property
is true of a model. In addition, the traceability information provided by
MIVCs can be used to perform a variety of engineering analysis such as
coverage analysis, robustness analysis, and vacuity detection. The more
MIVCs are identified, the more precisely such analyses can be performed.
Nevertheless, a full enumeration of all MIVCs is in general intractable
due to the large number of possible model element sets. The bottleneck
of existing algorithms is that they are not guaranteed to emit minimal
IVCs until the end of the computation, so returned results are not known
to be minimal until all solutions are produced.
In this paper, we propose an algorithm that identifies MIVCs in an
online manner (i.e., one by one) and can be terminated at any time.
We benchmark our new algorithm against existing algorithms on a vari-
ety of examples, and demonstrate that our algorithm not only is better
in intractable cases but also completes the enumeration of MIVCs faster
than competing algorithms in many tractable cases.

Keywords: Inductive validity cores · SMT-based model checking
Inductive proofs · Traceability · Proof cores

1 Introduction

Symbolic model checking using induction-based techniques such as IC3/PDR [6],
k-induction [21], and k-liveness [5] can be used to determine whether properties
hold of complex finite or infinite-state systems. Such tools are popular both
because they are highly automated (often requiring no user interaction other
than the specification of the model and desired properties), and also because, in
the event of a violation, the tool provides a counterexample demonstrating a sit-
uation in which the property fails to hold. These counterexamples can be used
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 189–204, 2018.
https://doi.org/10.1007/978-3-319-92970-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_12&domain=pdf

190 J. Bend́ık et al.

both to illustrate subtle errors in complex hardware and software designs [18,19]
and to support automated test case generation [23,24].

If a property is proved, however, most model checking tools do not pro-
vide additional information. This can lead to situations in which developers
have an unwarranted level of confidence in the behavior of the system. Issues
such as vacuity [14], incorrect environmental assumptions [22], and errors either
in English language requirements or formalization can all lead to failures of
“proved” systems. Thus, even if proofs are established, one must approach veri-
fication with skepticism.

Recently, proof cores1 have been proposed as a mechanism to determine which
elements of a model are used when constructing a proof. This idea is formalized
by Ghassabani et al. for inductive model checkers [8] as Inductive Validity Cores
(IVCs). IVCs offer proof explanation as to why a property is satisfied by a model
in a formal and human-understandable way. The idea lifts UNSAT cores [25] to
the level of sequential model checking algorithms using induction. Informally, if
a model is viewed as a conjunction of constraints, a minimal IVC (MIVC) is a set
of constraints that is sufficient to construct a proof such that if any constraint is
removed, the property is no longer valid. Depending on the model and property
to be analyzed, there are many possible MIVCs, and there is often substantial
diversity between the IVCs used for proof. In previous work [8–10,20] we have
explored several different uses of IVCs, including:
Traceability: Inductive validity cores can provide accurate traceability matri-
ces with no user effort. Given multiple IVCs, rich traceability matrices [20] can
be automatically constructed that provide additional insight about required vs.
optional design elements.

Vacuity Detection: Syntactic vacuity detection (checking whether all subfor-
mulae within a property are necessary for its validity) has been well studied [14].
IVCs allow a generalized notion of vacuity that can indicate weak or mis-specified
properties even when a property is syntactically non-vacuous.

Coverage Analysis: Coverage analysis provides a metric as to whether a set of
properties is adequate for the model. Several different notions of coverage have
been proposed [4,13], but these tend to be very expensive to compute. IVCs
provide an inexpensive coverage metric by determining the percentage of model
atoms necessary for proofs of all properties.

Impact Analysis: Given a single (or for more accurate results, all) MIVC, it
is possible to determine which requirements may be falsified by changes to the
model. This analysis allows for selective regression verification of tests and proofs:
if there are alternate proof paths that do not require the modified portions of
the model, then the requirement does not need to be re-verified.

Design Optimization: A practical way of calculating all MIVCs allows syn-
thesis tools to find a minimum set of design elements (optimal implementation)
for a certain behavior. Such optimizations can be performed at different levels
of synthesis.

1 https://www.cadence.com/.

https://www.cadence.com/

Online Enumeration of All Minimal Inductive Validity Cores 191

To be useful for these tasks, the generation process must be efficient and the
generated IVCs must be accurate and precise (that is, sound and minimal). In
previous work, we have developed an efficient offline algorithm [9] for finding all
minimal IVCs based on the MARCO algorithm for MUSes [15]. The algorithm
is considered offline because it is not until all IVCs have been computed that
one knows whether the solutions computed are, in fact, minimal. In cases in
which models contain many IVCs, this approach can be impractically expensive
or simply not terminate.

In this paper, we propose a novel online algorithm for MIVC enumeration.
With this algorithm, solutions are produced incrementally, and each solution
produced is guaranteed to be minimal. Therefore, the algorithm produces at least
some MIVCs even in the case of models for which a complete MIVC enumeration
is intractable. Moreover, the proposed algorithm is often more efficient then the
baseline MARCO also in the case of tractable models. We demonstrate this via
an experimental evaluation.

The rest of the paper is organized as follows. In Sect. 2 we define all the
necessary notions. Section 3 summarizes the existing techniques. In Sect. 4 we
present our novel algorithm. Section 5 provides an example execution of our
algorithm. Finally, Sects. 4.6 and 6 cover implementation details and present
experimental results.

2 Preliminaries

A transition system (I, T) over a state space S consists of an initial state predi-
cate I : S → bool and a transition step predicate T : S×S → bool. The notion of
reachability for (I, T) is defined as the smallest predicate R : S → bool satisfying
the following formulae:

∀s ∈ S : I(s) ⇒ R(s)
∀s, s′ ∈ S : R(s) ∧ T (s, s′) ⇒ R(s′)

A safety property P : S → bool holds on a transition system (I, T) iff it holds
on all reachable states, i.e., ∀s ∈ S : R(s) ⇒ P (s). We denote this by (I, T) � P .
We assume the transition step predicate T is equivalent to a conjunction of
transition step predicates T1, . . . , Tn, called top level conjuncts. In such case, T
can be identified with the set of its top level conjuncts {T1, . . . , Tn}. By further
abuse of notation, we write T \ {Ti} to denote removal of top level conjunct Ti

from T , and T ∪ {Tj} to denote addition of top level conjunct Tj to T .

Definition 1. A set of conjuncts U ⊆ T is an Inductive Validity Core (IVC) for
(I, T) � P iff (I, U) � P . Moreover, U is a Minimal IVC (MIVC) for (I, T) � P
iff (I, U) � P and ∀Ti ∈ U : (I, U \ {Ti}) � P .

Note, that the minimality (and dually maximality) in this work is with
respect to the set inclusion and not wrt cardinality as e.g. in the MaxSAT prob-
lem. There can be multiple MIVCs with different cardinalities. For an illustration
of the concepts on a particular transition system, please refer e.g. to the Altitude
Switch example [9].

192 J. Bend́ık et al.

3 Existing Techniques

Consider first a naive enumeration algorithm that explicitly checks each subset
of T for being an IVC and then finds the minimal IVCs using subset inclusion
relation. The main disadvantage of this approach is the large number of checks
since there are exponentially many subsets of T . We briefly describe existing
techniques that can be used to find all MIVCs while checking only a a small
portion of subsets of T for being IVCs. Most of the techniques were inspired
by the MUS enumeration techniques [2,3,16] proposed in the area of constraint
processing and applied by Ghassabani et al. [8,9].

Definition 2 (Inadequacy). A set of conjuncts U ⊆ T is an inadequate set
for (I, T) � P iff (I, U) � P . Especially, U ⊆ T is a Maximal Inadequate Set
(MIS) for (I, T) � P iff U is inadequate and ∀Ti ∈ (T \ U) : (I, U ∪ {Ti}) � P .

Inadequate sets are duals to inductive validity cores. Each U ⊆ T is either
inadequate set or an inductive validity core. In order to unify the notation, we
use notation inadequate and adequate. Note that especially minimal inductive
validity cores can be thus called minimal adequate sets.

The first property used to improve the naive enumeration algorithm is the
monotonicity of adequacy with respect to the subset inclusion.

Lemma 1 (Monotonicity). If a set of conjuncts U ⊆ T is an adequate set
for (I, T) � P then all its supersets are adequate for (I, T) � P as well:

∀U1 ⊆ U2 ⊆ T : (I, U1) � P ⇒ (I, U2) � P .

Symmetrically, if U ⊆ T is an inadequate set for (I, T) � P then all its subsets
are inadequate for (I, T) � P as well:

∀U1 ⊆ U2 ⊆ T : (I, U2) � P ⇒ (I, U1) � P .

Proof. If U1 ⊆ U2 then reachable states of (I, U2) form a subset of the reachable
states of (I, U1).

The monotonicity allows to determine status of multiple subsets of T while
using only a single check for adequacy. For example, if a set U ⊆ T is determined
to be adequate, then all of its supersets are adequate and do not need to be
explicitly checked. Let Sup(U) and Sub(U) denote the set of all supersets and
subsets of U , respectively.

Every algorithm for computing MIVCs has to determine status (i.e. adequate
or inadequate) of every subset of T . In order to distinguish the subsets whose
status is already known from those whose status is not known yet, we denote
the former subsets as explored subsets and the latter as unexplored subsets.
Moreover, we distinguish maximal unexplored subsets:

– Umax is a maximal unexplored subset of T iff Umax ⊆ T , Umax is unexplored,
and each of its proper supersets is explored.

Online Enumeration of All Minimal Inductive Validity Cores 193

Algorithm 1. A näive shrinking algorithm
input : (I, U) � P
output: MIVC for (I, U) � P

1 for Ti ∈ U do
2 if (I, U \ {Ti}) � P then U ← U \ {Ti}
3 return U

A straightforward way to find a (so far unexplored) MIVC of T is to find an
unexplored adequate subset U ⊆ T and turn U into an MIVC by a process called
shrinking. A shrinking procedure iteratively attempts to remove elements from
the set that is being shrunk, checking each new set for adequacy and keeping only
changes that leave the set adequate. A näive example is shown in Algorithm 1.

Ghassabani et al. [9] proposed an online algorithm for MIVC enumeration
which is based on the MUS enumeration algorithm MARCO [16]. The algorithm
iteratively chooses maximal unexplored subsets and tests them for adequacy.
Each maximal subset that is found to be adequate is then shrunk into a MIVC.
This algorithm enumerates MIVCs in an online manner with a relatively steady
rate of the enumeration. However, an evaluation of the algorithm shown that it
is rather slow since the shrinking procedure can be extremely time consuming
as each check for adequacy is in fact a model checking problem.

Therefore, Ghassabani et al. [9] proposed another algorithm which, instead
of computing MIVCs in on online manner, rather computes only approximately
minimal IVCs. In particular, it iteratively picks maximal unexplored subsets,
checks them for adequacy, and turns the adequate subsets into approximately
minimal IVCs using the approximation algorithm IVC UC [8]. IVC UC is able to
identify IVCs which are often very close to actual MIVCs, yet cheap to com-
pute. This enumeration algorithm computes approximately minimal IVCs, and
identifies MIVCs offline at the very end of the computation. An experimental
evaluation shows that the latter algorithm computes all MIVCs much faster than
the algorithm based on shrinking. However, it does not enumerate MIVCs online
and thus on some benchmarks may produce no MIVCs within a given time limit.

4 Grow-Shrink Algorithm

In this section, we propose a novel algorithm for online MIVC enumeration.
The MIVCs are found using an improved shrinking procedure. Moreover, the
algorithm uses a procedure grow, which is a dual of the shrinking procedure.
The algorithm also maintains the set Unexplored of unexplored subsets.

We can effectively use the set Unexplored for speeding up the shrinking pro-
cedure. When testing the set U \ {Ti} (see line 2 in Algorithm 1) we first check
whether U \ {Ti} is still unexplored. If U \ {Ti} is already explored, then its
status is already known and no test for adequacy is needed.

4.1 Shrink Procedure

In the following observation, we specify which explored subsets can be used to
speed up the shrinking procedure.

194 J. Bend́ık et al.

Algorithm 2. Approximate grow
input : (I, T) � P
input : inadequate U ⊂ T for (I, T) � P
input : set Unexplored of unexplored subsets of T
output: approximately maximal inadequate set for (I, T) � P

1 M ← a maximal M ∈ Unexplored such that M ⊇ U
2 while (I,M) � P do
3 MIVC ← IVC UC((I,M), P) // gets approximately minimal IVC

4 Ti ← choose Ti ∈ (MIVC \ U)
5 M ← M \ {Ti}
6 return M

Observation 1. Let U1, U2 be subsets of T such that U1 is explored, U2 is unex-
plored, and U1 ⊂ U2. Then U1 is inadequate for (I, T) � P .
Symmetrically, if U1, U2 are subsets of T such that U2 is explored, U1 is unex-
plored, and U1 ⊂ U2. Then U2 is adequate for (I, T) � P .

Proof. If U1 is adequate, then all of its supersets are necessarily adequate. Thus,
if U1 is determined to be adequate, then not just U1 but also all of its super-
sets become explored. Since U1 is explored and U2 is unexplored, then U1 is
necessarily an inadequate subset of T .

In other words, during the shrinking procedure, we are guaranteed that when-
ever we find an explored set, this set is inadequate. Thus, as a further optimiza-
tion in our algorithm we try to identify as many inadequate sets as possible
before starting the shrinking procedure. The search for inadequate sets is done
with the help of the grow procedure.

4.2 Grow Procedure

Recall that if a set is determined to be inadequate then all of its subsets are
necessarily also inadequate. Therefore, the larger is the set that is determined
to be inadequate, the more inadequate sets are explored. To identify inadequate
sets as quickly as possible we search for maximal inadequate sets (MISes).

In order to find a MIS, we can find an inadequate set U ⊂ T and use a pro-
cess called grow which turns U to a MIS for (I, T) � P . The grow procedure
iteratively attempts to add elements from T \ U to U , checking each new set
for adequacy and keeping only changes that leave the set inadequate. Same as
in the case of shrink procedure, we can use the set Explored to avoid checking
sets whose status is already known. However, such grow procedure might still
perform too many checks for adequacy and thus be very inefficient.

Instead, we propose to use a different approach. Algorithm 2 shows a pro-
cedure that, given an inadequate set U for (I, T) � P , finds an approximately
maximal inadequate set. It first finds some maximal unexplored set M such that
M ⊇ U and checks it for adequacy. If M is inadequate, then it is necessarily

Online Enumeration of All Minimal Inductive Validity Cores 195

Algorithm 3. Solving algorithm
1 Function Solve(I,U ,P):
2 res ← CheckAdq(I, U, P)
3 if res = Unknown then
4 approximateWarning ← true // a global variable

5 return (res = Adequate)

a MIS (this is a straightforward consequence of Observation 1) Otherwise, if M
is adequate then it is iteratively reduced until an inadequate set is found.

In particular, whenever M is found to be adequate, the approximative algo-
rithm IVC UC by Ghassabani et al. [8] is used to find an approximately minimal
IVC MIV C of M . MIV C succinctly explains M ’s adequacy. In order to turn M
into an inadequate set, it is reduced by one element from MIV C \U and checked
for adequacy. If M is still adequate then the approximate growing procedure
continues with a next iteration. Otherwise, if M is inadequate, the procedure
finishes.

Proposition 1. Given an unexplored inadequate set U for (I, T) � P and a set
Unexplored of unexplored subsets of T , Algorithm2 returns an unexplored inad-
equate subset M of T .

Proof. Let us denote initial M as Minit. Since Minit ⊇ U and M is recursively
reduced only by elements that are not contained in U , then in every iteration
holds that U ⊆ M ⊆ Minit. Since both U, Minit are unexplored, then M is
necessarily also unexplored.

4.3 Solve Procedure

Determining whether a particular subset of elements U ⊂ T can prove a prop-
erty of interest P is as hard as model checking ([8], Theorem 1). Thus, in the
general case, determining whether a set of model elements is an MIVC may not
be possible for model checking problems that are in general undecidable, such
as those involving infinite theories. We assume there is a function CheckAdq
that checks whether or not P is provable for some (I, U). CheckAdq can return
Unknown (after a user-defined timeout) as well as Adequate or Inadequate.
For a given set U , if our implementation is unable to prove the property, we con-
servatively assume that the property is falsifiable and set a global warning flag
approximateWarning to the user that the results produced may be approximate.

4.4 Complete Algorithm

In this section, we describe, how to combine the shrink and grow methods to
form an efficient online MIVC enumeration algorithm. We call the algorithm
Grow-Shrink algorithm. Since knowledge of (approximately) maximal inade-
quate subsets can be exploited to speed up the shrinking procedure, it might

196 J. Bend́ık et al.

Algorithm 4. The Grow-Shrink algorithm
1 Function Init((I, T) � P):
2 Unexplored ← P(T) // a global variable

3 shrinkingQueue ← empty queue // a global variable

4 approximateWarning ← false // a global variable

5 FindMIVCs()

1 Function FindMIVCs():
2 while Unexplored �= ∅ do
3 Umax ← a maximal set ∈ Unexplored
4 if Solve(I, Umax , P) then
5 UIVC ← IVC UC((I, Umax), P)
6 Shrink(UIVC)

7 else
8 Unexplored ← Unexplored \ Sub(Umax)
9 while shrinkingQueue is not empty do

10 U ← Dequeue(shrinkingQueue)
11 Shrink(U)

1 Function Shrink(U):
2 growingQueue ← empty queue
3 for Ti ∈ U do
4 if U \ {Ti} ∈ Unexplored then
5 if Solve(I,U \ {Ti}, P) then U ← U \ {Ti}
6 else Enqueue(growingQueue,U \ {Ti})

7 output U // Output Minimal IVC

8 UpdateShrinkingQueue(U)
9 Unexplored ← Unexplored \ Sup(U)

10 while growingQueue is not empty do
11 V ← Dequeue(growingQueue)
12 Grow(V)

1 Function Grow(V):
2 M ← a maximal set ∈ Unexplored such that M ⊇ V
3 while Solve(I ,M ,P) do
4 MIVC ← IVC UC((I ,M),P)
5 UpdateShrinkingQueue(MIVC)
6 Enqueue(shrinkingQueue,MIVC)
7 Unexplored ← Unexplored \ Sup(MIVC)
8 Ti ← choose Ti ∈ (MIVC \ V)
9 M ← M \ {Ti}

10 Unexplored ← Unexplored \ Sub(M)

1 Function UpdateShrinkingQueue(U):
2 for V ∈ shrinkingQueue do
3 if U ⊆ V then remove V from shrinkingQueue

Online Enumeration of All Minimal Inductive Validity Cores 197

be tempting to first find all MISes. However, this is in general intractable since
there can be up to exponentially many MISes (w.r.t. the size of T). Instead, we
propose to alternate both the shrinking and growing procedures. Note that dur-
ing shrinking, we might determine some subsets to be inadequate. Such subsets
can be subsequently used as seeds for growing. Dually, adequate subsets that are
explored during growing can be later used as seeds for the shrinking procedure.

The pseudocode of our algorithm is shown in Algorithm4. The computa-
tion of the algorithm starts with an initialisation procedure Init which creates
a global variable Unexplored for maintaining the unexplored subsets and a global
shrinking queue shrinkingQueue for storing seeds for the shrinking procedure.
Then the main procedure FindMIVCs of our algorithm is called.

Procedure FindMIVCs works iteratively. In each iteration, the procedure picks
a maximal unexplored subset Umax and checks it for adequacy. If Umax is inad-
equate, then Umax and all of its subsets are marked as explored. Otherwise, if
Umax is adequate, then the algorithm IVC UC [8] is used to reduce Umax into an
approximately minimal IVC, and subsequently the procedure Shrink is used to
shrink it into a MIVC.

Procedure Shrink works as described in Sect. 4.1. However, besides shrinking
the given set into a MIVC, the procedure has also another purpose. Every inad-
equate set that is found during the shrinking is stored in a queue growingQueue.
At the end of the procedure, all of these inadequate sets are grown into approx-
imately maximal inadequate sets using the procedure Grow.

Procedure Grow turns a given inadequate set V into an approximately max-
imal inadequate set M as described in Sect. 4.2. The resultant set and all of its
subsets are marked as explored. Moreover, every adequate set found during the
growing is marked as explored and enqueued into shrinkingQueue. The queue
shrinkingQueue is dequeued at the end of each iteration of the main procedure
FindMIVCs and the sets that were stored in the queue are shrunk to MIVCs.

We need to ensure that each result of the shrinking procedure is a fresh
MIVC, i.e. that each MIVC is produced only once. We shrink two kinds of inad-
equate sets in our algorithm: those that result from the inadequate maximal
unexplored subsets, and those that are stored in shrinkingQueue. In the for-
mer case, we always shrunk an unexplored subset UIVC which guarantees that
the resultant MIVC UMIVC is unexplored and thus fresh (if UMIVC is already
explored, then UIVC would be necessarily also explored). However, in the latter
case, all the sets stored in shrinkingQueue are already explored. To guarantee
that shrinking of the sets from shrinkingQueue result only in fresh MIVCs, we
maintain the following invariants of the queue:

(I1) For each already produced MIVC M holds that there is no U in the queue
such that M ⊆ U .

(I2) There are no two U, V in the queue such that U ⊆ V .

To ensure that the invariants hold, we use the procedure UpdateShrinkingQueue
which given an adequate set U removes from shrinkingQueue all supersets of U .
We call the procedure every time a MIVC is found and every time a set is added
to the queue.

198 J. Bend́ık et al.

Correctness: The algorithm produces only the MIVCs found by the shrinking
procedure and all of them are fresh, i.e. produced only once. Only subsets whose
status is known are removed from the set Unexplored , thus no MIVC is excluded
from the computation. The algorithm terminates and all MIVCs are found since
the size of Unexplored is reduced after every iteration.

4.5 Symbolic Representation of Unexplored Subsets

Since there are exponentially many subsets of T , it is intractable to represent
the set Unexplored explicitly. Instead, we use a symbolic representation that
is based on a well known isomorphism between finite power sets and Boolean
algebras. We encode T = {T1, T2, . . . , Tn} by using a set of Boolean variables
X = {x1, x2, . . . , xn}. Each valuation of X then corresponds to a subset of T .
This allows us to represent the set of unexplored subsets Unexplored using a
Boolean formula fUnexplored such that each model of fUnexplored corresponds to
an element of Unexplored . The formula is maintained as follows:

• Initially, fUnexplored = True since all of P(T) are unexplored.
• To remove an adequate set U ⊆ T and all its supersets from the set Unexplored

we add to fUnexplored the clause
∨

i:Ti∈U ¬xi.
• To remove an inadequate set U ⊆ T and all its subsets from the set Unexplored

we add to fUnexplored the clause
∨

i:Ti �∈U xi.

In order to get an element of Unexplored , we ask a SAT solver for a model
of fUnexplored . In particular, to get a maximal unexplored subset, we ask a SAT
solver for a maximal model of fUnexplored . To get a maximal unexplored superset
of U ⊆ T , we fix the truth assignment to the Boolean variables that correspond
to elements in U to True and ask for a maximal model of fUnexplored .

Example 1. Let us illustrate the symbolic representation on T = {T1, T2, T3}. If
all subsets of T are unexplored then fUnexplored = True. If {T1, T3} is classified
as an MIVC and {T1, T2} as a inadequate set, then fUnexplored is updated to
True ∧ (¬x1 ∨ ¬x3) ∧ (x3).

4.6 Implementation

We have implemented2 the Grow-Shrink algorithm in an industrial model checker
called JKind [7], which verifies safety properties of infinite-state synchronous
systems. It accepts Lustre programs [12] as input. The translation of Lustre into
a symbolic transition system in JKind is straightforward and is similar to what is
described in [11]. Verification is supported by multiple “proof engines” that exe-
cute in parallel, including K-induction, property directed reachability (PDR),
and lemma generation. During verification, JKind emits SMT problems using
the theories of linear integer and real arithmetic, and can use the Z3, Yices,
MathSAT, SMTInterpol, and CVC4 SMT solvers as back-ends. When a property
2 https://github.com/jar-ben/jkind/tree/newalgorithm-shrink-tracking.

https://github.com/jar-ben/jkind/tree/newalgorithm-shrink-tracking

Online Enumeration of All Minimal Inductive Validity Cores 199

Fig. 1. The power set from the example execution of our algorithm. (Color figure
online)

is proved and IVC generation is enabled, an additional parallel engine executes
the IVC UC algorithm [8] to generate an (approximately) minimal IVC. To imple-
ment our method, we have extended JKind with a new engine that implements
Algorithm 4 on top of Z3.

5 Example Execution of the Grow-Shrink Algorithm

The following example explains the execution of our algorithm on a simple
instance where the transition step predicate T is given as a conjunction of five
sub-predicates {T1, T2, T3, T4, T5}. We do not exactly state what are the predi-
cates and what is the safety property of interest. Instead, Fig. 1 illustrates the
power set of {T1, T2, T3, T4, T5} together with an information about adequacy of
individual subsets. The subsets with solid green border are the adequate subsets,
and the subsets with dashed red border are the inadequate ones. To save space,
we encode subsets as bitvectors, for example the subset {T1, T2, T4} is written
as 11010. There are three MIVCs in this example: 00011, 01001, and 11010.

We illustrate the first iteration of the main procedure FindMIVCs of our
algorithm. Initially, all subsets are unexplored, i.e. fUnexplored = True and the
queue shrinkingQueue is empty. The procedure starts by finding a maximal
unexplored subset and checking it for adequacy. In our case, Umax = 11111
is the only maximal unexplored subset and it is determined to be adequate.
Thus, the algorithm IVC UC is used to compute an approximately minimal IVC
UIVC = 01101 which is then shrunk to a MIVC 01001.

During the shrinking, sets 00101, 01001, and 01000 are subsequently checked
for adequacy and determined to be inadequate, adequate, and inadequate,
respectively. The set 01001 is the resultant MIVC, thus the formula fUnexplored

is updated to fUnexplored = True ∧ (¬x2 ∨ ¬x5). The other two sets, 00101 and
01000, are enqueued to the growingQueue and grown at the end of the procedure.

We first grow the set 00101. Initially, the procedure Grow picks M = 10111
as the maximal unexplored superset of 00101, and checks it for adequacy. It is
adequate and thus, an approximately minimal IVC MIVC = 00011 is computed,

200 J. Bend́ık et al.

enqueued to shrinkingQueue, and formula fUnexplored is updated to fUnexplored =
True ∧ (¬x2 ∨ ¬x5) ∧ (¬x4 ∨ ¬x5). Then, M is (based on MIVC) reduced to
M = 10101 and checked for adequacy. It is found to be inadequate, thus formula
fUnexplored is updated to fUnexplored = True∧(¬x2∨¬x5)∧(¬x4∨¬x5)∧(x2∨x4),
and the procedure terminates.

The growing of the set 01000 results into an approximately maximal inad-
equate subset 01110. Moreover, an approximately minimal IVC 11110 is found
during the growing and enqueued into shrinkingQueue. The formula fUnexplored

is updated to fUnexplored = True ∧ (¬x2 ∨¬x5)∧ (¬x4 ∨¬x5)∧ (x2 ∨x4)∧ (¬x1 ∨
¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x5).

After the second grow, the procedure Shrink terminates and the main proce-
dure FindMIVCs continues. The queue shrinkingQueue contains two sets: 00011,
11110, thus the procedure now shrinks them. During shrinking the set 00011,
the algorithm would attempt to check the sets 00001 and 00010 for adequacy,
however since both these are already explored, the set 00011 is identified to be
a MIVC without performing any adequacy checks. The procedure FindMIVCs
would now shrink also the set 11110, thus empty the queue shrinkingQueue, and
continue with a next iteration.

6 Experiment

We are interested in examining the performance of algorithms to compute min-
imal IVCs. We examine Grow-Shrink, the algorithm presented in this paper,
and the two state-of-the-art algorithms (briefly described in Sect. 3): Offline
MARCO, the algorithm from [9], and Online MARCO, a variant of the algo-
rithm from [9] that performs a shrink step prior to returning a solution to ensure
minimality. We investigate the following research questions: (RQ1:) For the large
models where the complete MIVC enumeration is intractable, how many MIVCs
are found within the given time limit? (RQ2:) For the tractable models, i.e.
models in which all MIVCs are found, how much time is required to complete
the enumeration of MIVCs? Finally, we are interested in how many solver calls
are necessary for the enumeration. Thus, we add (RQ3:) What is the (average)
number of solver calls with result adequate/inadequate required by evaluated
online algorithms to produce individual MIVCs?

Experimental Setup : We start from a benchmark suite that is a superset of
the benchmarks used in [9]. This suite contains 660 models, and includes all
models that yield a valid result (530 in total) from previous Lustre model check-
ing papers [11,17] and 130 industrial models yielding valid results derived from
an infusion pump system [19] and other sources [1,17]. As this paper is concerned
with analysis problems involving multiple MIVCs, we include only models that
had more than 4 MIVCs (46 models in total). To consider problems with many
IVCs, we took those models and mutated them, constructing 20 mutants for
each model. The mutants varied both in the number and in the size of indi-
vidual MIVCs. We added the mutants that still yielded valid results and have

Online Enumeration of All Minimal Inductive Validity Cores 201

Fig. 2. Number of MIVCs produced by
online algorithms.

Fig. 3. Runtime for tractable bench-
marks for all algorithms in a log scale.

more than 5 MIVCs (384 in total) back to the benchmark suite. Thus, the final
suite contains 430 Lustre models. The original benchmarks and our augmented
benchmark are available online3.

For each test model, we configured JKind to use the Z3 solver and the “fastest”
mode of JKind (which involves running the k-induction and PDR engines in
parallel and terminating when a solution is found). The experiments were run
on a 3.50 GHz Intel(R) i5-4690 processor 16 GB memory machine running Linux
with a 30 min timeout. All experimental data is available online4.

6.1 Experimental Results

In this section, we examine the experimental results to address the research
questions.

RQ1 and RQ2: Data related to the first two research questions is shown in
Figs. 2 and 3. Figure 2 describes the number of MIVCs found be the two online
algorithms in the intractable benchmarks, i.e. the benchmarks where the algo-
rithms did not complete the computation within the time limit. There are 33
such benchmarks. Grow-Shrink substantially outperforms Online MARCO in
the majority of the benchmarks, finding an average of 55% additional MIVCs.

Figure 3 describes the time for each algorithm needed to complete the compu-
tation in the case of 397 tractable benchmarks. Grow-Shrink is on average only
1.08 times slower than Offline MARCO, yet as previously discussed, has the
advantage of returning guaranteed MIVCs, rather than approximate MIVCs. It
is on average 1.50 times faster than Online MARCO.

RQ3: For RQ3, we examined the number of required calls to the solver per
MIVC. For this question, we used the 33 models that contained a large number
3 https://github.com/elaghs/benchmarks.
4 https://github.com/jar-ben/online-mivc-enumeration.

https://github.com/elaghs/benchmarks
https://github.com/jar-ben/online-mivc-enumeration

202 J. Bend́ık et al.

Fig. 4. Average number of performed adequacy checks required to produce individual
MIVCs. Note that Figure (b) is in a log scale.

of MIVCs (>70) in order to show the solver efficiency as the number of MIVCs
increased. A point with coordinates (x, y) states that the algorithm needed to
perform y solver calls (on average) in order to produce (find) the first x MIVCs.
We grouped the calls in terms of the number of calls that returned adequate vs.
inadequate results. It is evidenced by the results in Fig. 4, the new algorithm
improves upon Online MARCO as the number of MIVCs becomes larger.

The improvement in the number of inadequate calls is due the novel shrinking
and growing procedures. Each (approximately) maximal inadequate subset found
by the growing procedure allows to save (up to exponentially) many inadequate
calls during subsequent executions of the shrinking procedure. Indeed, the Grow-
Shrink algorithm performed on average only 353 inadequate calls to output the
first 70 MIVCs, whereas the online MARCO needed to perform 7775 calls to
output the same number of MIVCs.

The improvement in the number of adequate calls is not so significant as in
the case of inadequate calls. Yet, since the adequate calls are usually much more
time consuming than inadequate ones, even a slight saving in the number of
adequate calls might significantly speed up the whole computation. The Grow-
Shrink algorithm saves adequate calls due to the usage of the shrinking queue
and due to the invariants that are maintained by the queue. In particular, shall
two comparable sets appear in the queue, only the smaller is left. Thus, the
algorithm avoids shrinking of relatively large sets and saves some adequate calls.

7 Conclusion

We have presented an online algorithm, called Grow-Shrink algorithm, for com-
putation of minimal Inductive Validity Cores (MIVCs). The new algorithm sub-
stantially outperforms previous approaches. As opposed to the Offline MARCO
algorithm in [9], it is guaranteed to produce minimal IVCs. As opposed to a
näive extension Online MARCO, the new algorithm is substantially faster and
requires fewer solver calls as the number of MIVCs increases. We believe that

Online Enumeration of All Minimal Inductive Validity Cores 203

this new algorithm will substantially increase the applicability of software engi-
neering tasks that require MIVCs. In the future, we hope to examine parallel
computation of MIVCs using a variant of this algorithm to further increase
scalability.

Acknowledgements. This work has been partially supported by the Czech Science
Foundation grant No. 18-02177S.

References

1. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 82–96. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-17524-9 7

2. Bend́ık, J., Beneš, N., Barnat, J., Černá, I.: Finding boundary elements in ordered
sets with application to safety and requirements analysis. In: De Nicola, R., Kühn,
E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 121–136. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41591-8 9

3. Bend́ık, J., Benes, N., Cerná, I., Barnat, J.: Tunable online MUS/MSS enumera-
tion. In: FSTTCS 2016, pp. 50:1–50:13 (2016)

4. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for formal verification.
In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 111–125.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3 11

5. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In:
FMCAD, pp. 52–59. IEEE (2012)

6. Een, N., et al.: Efficient implementation of property directed reachability. In
FMCAD 2011 (2011)

7. Gacek, A., Backes, J., Whalen, M., Wagner, M., Ghassabani, E.: The Jkind model
checker (2017). arXiv preprint arXiv:1712.01222

8. Ghassabani, E., et al.: Efficient generation of inductive validity cores for safety
properties. In: FSE 2016 (2016)

9. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of all minimal
inductive validity cores. In: FMCAD 2017 (2017)

10. Ghassabani, E., Gacek, A., Whalen, M.W., Heimdahl, M., Lucas, W.: Proof-based
coverage metrics for formal verification. In: ASE 2017 (2017)

11. Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with
SMT-based techniques. In: FMCAD 2008 (2008)

12. Halbwachs, N., et al.: The synchronous dataflow programming language Lustre.
In: Proceedings of the IEEE (1991)

13. Kupferman, O., Li, W., Seshia, S.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: FMCAD 2008, p. 25 (2008)

14. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. STTT
4(2), 224–233 (2003)

15. Liffiton, M., et al.: Fast, flexible MUS enumeration. Constraints 21(2), 223–250
(2016)

16. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

17. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for
infinite-state systems. In: FMCAD 2016 (2016)

https://doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1007/978-3-319-41591-8_9
https://doi.org/10.1007/978-3-540-39724-3_11
http://arxiv.org/abs/1712.01222

204 J. Bend́ık et al.

18. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

19. Murugesan, A., et al.: Compositional verification of a medical device system. In:
HILT 2013 (2013)

20. Murugesan, A., et al.: Complete traceability for requirements in satisfaction argu-
ments. In: RE 2016 (RE@Next! Track) (2016)

21. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X 8

22. Whalen, M., Cofer, D., Miller, S., Krogh, B.H., Storm, W.: Integration of formal
analysis into a model-based software development process. In: Leue, S., Merino,
P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 68–84. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79707-4 7

23. Whalen, M., Gay, G., You, D., Heimdahl, M., Staats, M.: Observable modified
condition/decision coverage. In: ICSE 2013. ACM (2013)

24. You, D., Rayadurgam, S., Whalen, M., Heimdahl, M.: Efficient observability-based
test generation by dynamic symbolic execution. In: ISSRE 2015 (2015)

25. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean
formula. In: SAT 2003 (2003)

https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-540-79707-4_7

Prevent: A Predictive Run-Time
Verification Framework

Using Statistical Learning

Reza Babaee(B), Arie Gurfinkel, and Sebastian Fischmeister

Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
{rbabaeec,arie.gurfinkel,sebastian.fischmeister}@uwaterloo.ca

Abstract. Run-time Verification (RV) is an essential component of
developing cyber-physical systems, where often the actual model of the
system is infeasible to obtain or is not available. In the absence of a
model, i.e., black-box systems, RV techniques evaluate a property on the
execution path of the system and reach a verdict that the current state of
the system satisfies or violates a given property. In this paper, we intro-
duce Prevent, a predictive runtime verification framework, in which if a
property is not currently satisfied, the monitor generates the probabil-
ity based on the finite extensions of the execution path, that satisfy the
specification property. We use Hidden Markov Model (HMM) to extend
the partially observable paths of the system. The HMM is trained on
a set of iid samples generated by the system. We then use reachability
analysis to construct a lookup table that provides the probability that
the extended path satisfies or violates the specification from the current
state. The current state is estimated at run-time using Viterbi algorithm
that gives the most probable state. We show an empirical evaluation
of Prevent on a version of randomized dining philosopher and on the
QNX Neutrino kernel traces collected from an autopilot software of a
hexacopter.

1 Introduction

Run-time Verification (RV) [17] has become a crucial element in developing
Cyber-Physical Systems (CPSs) [32,40,42]. In RV, a monitor checks the current
execution, that is a finite prefix of an infinite path, against a given property,
typically expressed in Linear Temporal Logic (LTL) [23], that represents a set of
acceptable infinite paths. If any infinite extension of a prefix belongs (does not
belong) to the set of infinite paths that satisfy the property, the monitor accepts
(resp. rejects) the prefix. For example, ϕF : �e (resp. ϕG : �¬e) is satisfied (resp.
not satisfied) on any infinite paths with the prefix u1 : ¬e,¬e, e. Whenever the
monitor is not able to reach a verdict with the given prefix π because π can be
extended to satisfy and to violate the property, the monitor outputs unknown [3].
For example, the prefix u2 : ¬e,¬e can be extended to both a path that satisfies
ϕF : �e (e.g., any extension of u1) and a path that violates ϕF (e.g., (¬e)ω).
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 205–220, 2018.
https://doi.org/10.1007/978-3-319-92970-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_13&domain=pdf

206 R. Babaee et al.

The monitor is able to reach a verdict with a finite extension of the prefix,
if the property is monitorable [12]. In this paper, we estimate the finite exten-
sions of a prefix using a prediction model. The prediction model is trained from
identically and independently distributed (iid) samples of the previous execution
paths of the system. We use Hidden Markov Models [26] (HMMs) to realize a
prediction model of the system with partially observable behaviour.

We focus on the properties that can be evaluated with regular extensions,
that is, the extensions that are expressible by a Deterministic Finite Automaton
(DFA). Depending on the given property, the extensions may specify the prefixes
that satisfy the property (good extensions) or violate it (bad extensions). We use
an upper-bound on the length of the estimated extensions. The monitor in our
framework is the result of a bounded reachability analysis on the product of an
HMM and a DFA. Using the product model, the monitor is able to predict a
verdict, in terms of the probability of the extensions that satisfy or violate the
property. To extend an execution path, the monitor needs to know the current
state, which is estimated at run-time by Viterbi algorithm [38]. Viterbi algorithm
generates the most likely state based on a given observation.

We implemented our approach as a proof-of-concept tool1, called Prevent
(Predictive Runtime Verification Framework), and report on using it in two case
studies: the original and a modified version of randomized dining philosophers
algorithm, and the QNX Neutrino [24] kernel traces. In summary, we make the
following contributions:

– introduce Prevent, a predictive runtime verification framework to detect sat-
isfaction/violation of a property based on partial execution,

– methodology for constructing a prediction model, that is, the product of a
trained HMM and the DFA specifying good and bad extensions,

– define the prediction error on a partial trace and evaluate the monitor per-
formance using hypothesis testing,

– implement the runtime monitoring algorithm using Viterbi approximation,
– evaluate Prevent with two case studies: a modified version of the randomized

dining philosophers problem and the flight control of a hexacopter.

The rest of the paper is structured as follows: in Sect. 2, we give an overview of
Prevent. In Sects. 4 and 5, we provide the details of, respectively, constructing
the monitor, and the run-time monitoring algorithm. We define a measure to
assess the prediction accuracy and validate the performance of the monitor using
hypothesis testing in Sect. 6. Finally, we provide the empirical evaluation of
Prevent on two case studies in Sect. 7.

2 An Overview of Prevent

The key idea in Prevent is to finitely extend the execution trace using a pre-
diction model, and check the extended path against the specification property.
1 Available at https://bitbucket.org/rbabaeecar/prevent/.

https://bitbucket.org/rbabaeecar/prevent/

Prevent: A Predictive Run-Time Verification Framework 207

Fig. 1. The overview of Prevent framework.

The prediction model is obtained from iid sample traces collected from the past
executions of the system. The prediction model enables the monitor to estimate
the extensions that satisfy or violate the given property within a finite horizon,
that is represented as the maximum length of the finite extensions. This gives
the monitor the ability to detect a property violation before its occurrence.

An overview of Prevent is shown in Fig. 1. The two main components of
Prevent, learning and monitoring are described below:

Learning. We use the sample traces to train HMM using Baum-Welch algo-
rithm [26]. The training samples represent an independent and identical dis-
tribution (iid) over all the execution traces of the system. The trained HMM
represents the joint distribution of the paths over Σ∗ and S∗, where Σ is the
observation space and S is the state space of the system.

Monitoring. The monitor in our framework is the result of a bounded reachability
analysis on the product of the HMM and the DFA that specifies the acceptable
or unacceptable extensions by the property. The monitor is implemented as a
lookup table. Each entry is a composite state that specifies a DFA state, a hidden
state in the HMM, and an observation, and the probability that from the current
state the system will satisfy or violate the property in a bounded number of
steps. The current hidden states maintain a history of the previous observations
(the prefix Y in Fig. 1). The monitor updates its estimation of the current state
by running the Viterbi approximation to obtain (H × A)Y . The output of the
monitor is therefore Pr(H×AY |= �≤hAccept), where h is the finite horizon, or
the maximum length of the extensions that are estimated by the monitor. Since
H × A has a small size, the probability results of the reachability analysis can
be computed off-line for all the states (H × A), and for 1 ≤ h ≤ HMAX , and
stored in a table. The value of HMAX represents the maximum length of the
extensions that the monitor needs to predict the evaluation of the property, and
can be obtained empirically from the execution samples.

208 R. Babaee et al.

3 Preliminaries

In this section, we briefly introduce the used definitions and notations.
A probability distribution over a finite set S is a function P : S → [0,1] such

that
∑

s∈S P (s) = 1. We use X1:τ to denote a sequence x1,x2, . . . ,xτ of values of
a random variable X, and use u and w to resp. denote a finite and infinite path.

Hidden Markov Model (HMM): HMM is the joint distribution over X1:τ , the
sequence of one state variable, and Y1:τ , the sequence of observations (both with
identical lengths). The joint distribution is such that Pr(yi | X1:i, Y1:i) = Pr(yi |
xi) for i ∈ [1..τ] (the current observation is conditioned only on the current
state), and Pr(xi | X1:i−1, Y1:i−1) = Pr(xi | xi−1) for i ∈ [1..τ] (the current
state is only conditioned on the previous hidden states). We use π to denote the
initial probability distribution over the state space, i.e., Pr(x1) = π(x1). As a
result, an HMM can be defined with three probability distributions:

Definition 1 (HMM). A finite discrete Hidden Markov Model (HMM) is a
tuple H : (S,Σ, π, T,O), where S is the non-empty finite set of states, Σ is
the non-empty finite set of observations, π : S → [0,1] is the initial probability
distribution over S, T : S × S → [0,1] is the transition probability, and O :
S × Σ → [0,1] is the observation probability. We use ΘH to denote π, T , and O.

Discrete-Time Markov Chains (DTMC). We use Discrete-Time Markov Chain
(DTMC) for reachability analysis necessary to construct our monitor.

Definition 2 (DTMC). A Discrete-Time Markov Chain (DTMC) is a tuple
M : (S,Σ, π,P, L), where S is a non-empty finite set of states, Σ is a non-
empty finite alphabet, π : S → [0,1] is the initial probability distribution over S,
P : S × S → [0,1] is the transition probability, such that for any s ∈ S, P (s, ·) is
a probability distribution, and L : S → Σ is the labeling function.

Deterministic Finite Automaton: We use Deterministic Finite Automaton (DFA)
to describe the extensions of a prefix.

Definition 3 (DFA). A Deterministic Finite Automaton (DFA) is a tuple A :
(Q,Σ, δ, qI , F), where Q is a set of finite states, Σ is a finite alphabet, δ :
Q × Σ → Q is a transition function determining the next state for a given state
and symbol in the alphabet, qI ∈ Q is the initial state, and F ⊆ Q is the set of
final states (L(A) ⊆ Σ∗ denotes the language of a DFA A).

4 Monitor Construction

A monitor is a finite-state machine (FSM) that consumes the output of the sys-
tem execution sequentially, and produces the evaluation of a given property at
each step, typically as a Boolean value [4]. The monitor in our framework is still
an FSM, in the form of a look-up table, that instead of Boolean values produces
a value in [0,1]. The value indicates the probability of the extensions that satisfy

Prevent: A Predictive Run-Time Verification Framework 209

or violate the specification, assuming that the property is currently not satis-
fied/violated. These probability values are the result of a bounded reachability
analysis on the product of the trained HMM and the DFA.

In the rest of this section, we describe how an HMM is built using standard
Expectation-Maximization (EM) learning technique [6] (Sect. 4.1), describe the
product model of HMM and DFA as a DTMC used to perform the reachability
analysis (Sect. 4.2), and, our monitor construction approach (Sect. 4.3).

4.1 Training HMM

We use Maximum Likelihood Estimation (MLE) technique [29] to train an HMM.
The log-likelihood function L(Θ) of the HMM H : (S,Σ, π, T,O) over an obser-
vation sequence Y1:τ is defined as L(Θ) = log(

∑
X1:τ

Pr(X1:τ ,Y1:τ | θ)).
Since the probability distribution over the state sequence X1:τ is unknown,

L(Θ) does not have a closed form [37], leaving the training techniques to heuris-
tics such as EM. One well-known EM technique for training an HMM is Baum-
Welch algorithm [26] (BWA), where the training alternates between estimating
the distribution over the hidden state variable, Q : X → [0,1], with some fixed
choice for Θ (Expectation), and maximizing the log-likelihood to estimate the
values of Θ by fixing Q (Maximization) [28].

The Expectation phase in BWA computes Pr(Xt = s | Y,Θ) and Pr(Xt =
s,Xt+1 = s′ | Y,Θ) for s, s′ ∈ S through forward-backward algorithm [26].
Maximization is performed on a lower bound of L(Θ) using Jensen’s inequality:
L(Θ) ≥ Q(X) logPr(X1:τ ,Y1:τ | Θ) − Q(X) logQ(X).

Since the second term is independent of Θ [28], only the first term is maxi-
mized in each iteration: Θ(k) = argmaxΘQ(X) logPr(X1:τ ,Y1:τ | Θ(k−1)).

The training starts with random initial values for Θ(0), and consequently
running the forward-backward algorithm to update the parameters of the model:

π∗(s) = Pr(X1 = s | Y,Θ) T ∗(s,s′) =
∑τ

t=1 Pr(Xt = s,Xt+1 = s′ | Y,Θ)
∑T

t=1 Pr(Xt = s | Y,Θ)

O∗(s,o) =
∑τ

t=1 #(Yt = o) · Pr(Xt = s | Y,Θ)
∑T

t=1 Pr(Xt = s | Y,Θ)

BWA is essentially a gradient-decent approach, thus its outcome is highly
sensitive to the initial values of Θ [37].

We use the Bayesian Information Criterion (BIC) [7] to choose the number
of hidden states. BIC assigns a score to a model according to its likelihood but
also penalizes models with more parameters to avoid over-fitting: BIC(H) =
log(n)|Θ|−2L(Θ), where |Θ| = |S|2+ |S||Σ|, and n is the size of training sample.

4.2 The Product of the Prediction Model and the Specification

From each state of the trained HMM, the monitor needs to expand the observed
execution, u, and predict expected value of the given property. The expansion of

210 R. Babaee et al.

u is based on a DFA that specifies good and bad extensions of u. The monitor
maintains the configurations of both the DFA and the trained HMM by creating
the product of the two models [39,41]:

Definition 4 (The Product of an HMM and a DFA). Let H = (S,Σ, π,
T,O) and A = (Q,Σ,δ,qI ,F) respectively be an HMM and a DFA. We define the
DTMC MH×A : (S′ = S × Q × Σ, {Accept}, π′,P,L) as follows:

π′(s,q,o) =

{
π(s) if q ∈ qI

0 otherwise
L(s,q,o) =

{
{Accept} if q ∈ F

∅ otherwise

P((s,q,o),(s′,q′,o′)) =

{
T (s,s′) · O(s′,o′) if δ(q′,o) = q

0 otherwise

4.3 Constructing Monitor with Bounded Prediction Horizon

The monitor’s purpose is to estimate the probability of all the finite extensions of
length at most h that satisfy a given property. The variable h is a positive integer
we call the prediction horizon. Let σ0σ1 · · · σt be the extension of a finite path
that ends at the state σ (σ0 = σ ∈ S′), such that L(σt) = Accept in the product
model M (σi = (si,qi,oi) is the composite state of the product model M, for all
0 ≤ i ≤ t). The monitor’s output is Pr(σ0σ1 · · · σt), t ≤ h, which is computed by
performing the following reachability analysis on M [1]: Pr(σ |= �≤hAccept).

In order to compute this probability we adopt the transformation from [16]:

PAcc(σ,σ′) =

⎧
⎪⎨

⎪⎩

0 if L(σ) = Accept and σ �= σ′

1 if L(σ) = Accept and σ = σ′

P(σ,σ′) otherwise
(1)

The transformation (1) allows us to recursively compute Pr(σ |= �≤hAccept)
as follows: Pr(σ |= �≤hAccept) =

∑
σ′ PAcc(σ,σ′)Pr(σ′ |= �≤h−1Accept) (2).

This is essentially the transient probability for σ0 · · · σhw [16], that is, starting
from σ0 the probability of being at state σh (i.e., after h steps), such that L(σh) =
Accept (w ∈ Σω is any infinite extension of the path). The probability measure
of σ0 · · · σhw is based on the prefix σ0σ1 · · · σh and can be written as the joint
probability distribution of the hidden state variable and that of the observation.

Computing (2) for all the states at runtime is not practical, due to multi-
plications of large and typically sparse matrices [16]. Instead, for all t ≤ h we
compute the probabilities off-line and store them in a table MT (σ,t), where
MT (σ,t) = Pr(σ |= �≤tAccept). Our monitor, thus, is transformed into a look-
up table with the size at most O(|S| × |Q| × |Σ| × h).

5 Run-Time Monitoring with Viterbi Approximation

For each state σ = (s,q,o) the monitor needs to estimate the hidden state s (q
is derivable from o). We employ the Viterbi algorithm to find the most likely
hidden state during monitoring.

Prevent: A Predictive Run-Time Verification Framework 211

1 Monitor(Y, H, A, h)

inputs : Execution observation Y , HMM H = (S, Σ, π, T, O), DFA A = (Q, Σ,
δ, qI , F), prediction horizon h

output: Pr((H × A)Y |= �≤hAccept)
2 begin
3 Construct the monitor table MT (H,A, Σ, h)
4 foreach s ∈ S do v(s) ← O(s,Y1)π(s)// Initialize the Viterbi vector
5 i ← 1, t ← h, q ← qI // t is the horizon index
6 forall Yi ∈ Y do
7 s ← argmaxsv(s)
8 q ← δ(q,Yi)
9 output MT ((s,q,Yi), t) // Output the prediction

10 if q ∈ F or t = 0 then t ← h else t ← t − 1
11 forall s ∈ S do // Updating the next Viterbi vector
12 vnext(s) ← O(s,Yt+1)maxs′(v(s′)T (s′,s))
13 v ← vnext, i ← i + 1

Runtime monitoring procedure using Viterbi approximation.

For an observation sequence Y = Y1:τ , Viterbi algorithm [10,38] derives
X∗

1:τ = argmaxX1:τ
Pr(X1:τ |Y,Θ), so-called the Viterbi path. Let vt(s) be the

probability of the Viterbi path ending with state s at time t: vt(s) = O(s,Yt)
maxs′∈S(vt−1(s′)T (s′,s)) (3).

To find X∗
t at step t, the monitor only requires vt−1(s′) for all s′ ∈ S.

Therefore, we can obtain X∗
t by using only two vectors that maintain the values

of vt(s) and vt−1(s) (we call them Viterbi vectors).
Procedure Monitor demonstrates our runtime monitoring algorithm. We

assume that the monitor table MT is already constructed as described in Sect. 4
(line 3). Line 4 initialize the Viterbi vector. The horizon index t stores the
prediction horizon at each iteration (initialized to h at the beginning – line 5).
Each iteration of the for loop in lines 6–13 is over one observation in the sequence
Y . For each observation Yi, the configuration (s,q,Yi) (lines 7–8) combined with
t gives us the index to retrieve the probability value in the monitor table (line 9).
If the path is not accepted by the DFA, the monitor shrinks its horizon index by
one (t is decremented — line 10). Each time that the observed path is accepted
by the DFA, the horizon index is reset to h (line 10), for the prediction of the
next extension. Similarly, once the prediction horizon has reached zero, i.e., the
property is not satisfied within the given prediction horizon, the horizon index is
reinitialized to h. At the end, the Viterbi vector is updated for the next iteration
in lines 11–13 according to (3).

In each monitoring iteration (the loop in lines 6-13), reading the value from
the monitor table MT is constant time. For a trained model with k hidden states,
updating the Viterbi vector requires O(k) operations of finding maximums, which
can be improved to lg(k) using a Max-Heap. Therefore, each monitoring iteration
is of O(k lgk) in execution time. The space complexity is mainly bounded by the
size of the monitor table and the Viterbi vectors: O(k h).

212 R. Babaee et al.

6 Prediction Evaluation

In this section, we first define a lower bound on the prediction error of the
monitor on a single trace, and then use two-sided hypothesis testing to evaluate
the average prediction performance on a set of testing samples. Finally, we exploit
the hypothesis testing results to find an empirical lower bound of the horizon.

6.1 Prediction Error

Let (oi · · · oi+λi(A)) be an extension of length λi(A) at point i that is accepted
by a given DFA A, i.e., (oi · · · oi+λi

) ∈ L(A) (for brevity, we use λi instead of
λi(A)). Recall that the monitor’s output at point i is the probability of all the
extensions of length at most h that are accepted by A (Pr(σi |= �≤hAccept)).
For any λi ≤ h we have: Pr(σi |= �≤hAccept) ≥ Pr(σi · · · σi+λi |= Accept) =⇒
λi × Pr(σi |= �≤hAccept) ≥ λi × Pr(σ · · · σi+λi |= Accept).

We define λ̂i = λi × Pr(σi |= �≤hAccept) as the expected value of λi esti-
mated by the monitor. Therefore, we can obtain the following minimum error of
the prediction at point i: εmin

i = λi − λ̂i.
Notice that since λi ≥ λ̂i, εmin is always positive. If there is no k, i < k < λi

such that (oi · · · oi+k) ∈ L(A), i.e., (oi · · · oi+λi
) is the minimal extension that is

accepted by A, then εmin
i+t = (λi − t)− λ̂λi−t, 0 ≤ t < λi ≤ h, where t is the horizon

index in Monitor. As a result, the value of εmin
i can be computed on-the-fly.

In our implementation, we assume that there exists at least one point k ≤
h such that (oi · · · oi+k) ∈ L(A); otherwise, εmin

i is not well-defined, and the
prediction accuracy can not be verified. If such a point does not exist, we can
extend the prediction horizon by increasing h such that there is at least one
accepting extension in the trace. The rest of the path after the last point in
which the trace is accepted by A is discarded as there is no observation to
compare the prediction and compute the error.

In the following, we give an empirical evaluation of the monitor’s prediction
using hypothesis testing which leads to an empirical lower bound for h.

6.2 Empirical Evaluation Using Hypothesis Testing

To assess the performance of the prediction, aside from the execution trace, we
use hypothesis testing on a set of test samples.

Let Λ = 1
τ

∑τ
i=1 λi be the random variable that represents the mean of all

λi values, for 1 ≤ i ≤ τ . Notice that for iid samples, the value of Λ for a trace
is independent of that value for the other traces.

Let λ̄M be the estimation of Λ by the monitor over a set of monitored traces,
and λ̄ be the mean of Λ on a separate set of n iid samples with variance ν. We
test the accuracy of the prediction using the following two-sided hypothesis test
H0 : λ̄M = λ̄. Using confidence α, we use student’s t-distribution to test H0:
λ̄−λ̄M√

ν
n

≤ tn−1,α. Given the mean of the length of the shortest finite extensions in

the test sample we can use it to obtain a lower bound for h: h ≥ λ̄ − tn−1,α

√
ν

n .

Prevent: A Predictive Run-Time Verification Framework 213

That is, the prediction horizon h must be at least as large as the mean of the
length of the extensions in the test sample that are accepted by A.

7 Case Studies

We evaluate Prevent on two case studies: (1) randomized dining philosophers
from Prism [27], which includes the original algorithm, and a modified version
that we introduce specifically for evaluating Prevent, (2) QNX Neutrino kernel
traces collected from the flight control software of a hexacopter. We show the
estimation of good and bad extensions in the randomized dining philosophers
and hexacopter traces, respectively, each of which represents one of the most
commonly used property patterns in Dwyer et al. [11]’s survey: response pattern
in the randomized dining philosophers algorithm, and the absence pattern for
monitoring a regular safety property [1] in the flight control of a hexacopter. The
implementation of monitoring in both experiments is conducted off-line.

7.1 Randomized Dining Philosopher

We adapt Rabin and Lehmann [25]’s solution to the dining philosophers problem
that has the characteristics of a stochastic system to be trained using HMM. We
also present a modification of their algorithm, which represents a generic form
of decentralized on-line resource allocation [36], where our monitoring solution
can be seen as a component of the liveness enforcement supervisory [19].

We consider the classic form of the problem, where philosophers are in a ring
topology, and are selected for execution by a fair scheduler. Figure 2a demon-
strates a state diagram of one philosopher, with Th, H, T, P, D, and E repre-
senting the philosopher to be, respectively, thinking, hungry, trying, picking a
fork, dropping a fork, and eating. A philosopher starts at (Th), and immediately
transitions to (H)2. Based on the outcome of a fair coin, the philosopher then
chooses to pick the left or the right fork if they are available, and moves to (T).
If the fork is not available the philosopher remains at (T) until it is granted
access to the fork. The philosopher moves to (E), if the other fork is available;
otherwise, the philosopher drops the obtained fork, moves to (D), and eventually
transitions back to (H). After the philosopher finishes eating, it drops the forks in
an arbitrary order (D), and moves back to (Th). The algorithm is deadlock-free
but lockouts are still possible [25].

Our modification of the algorithm is to add a self-transition at (P): a philoso-
pher does not drop the first obtained fork with probability c, i.e., it stays at (P),
which is shown with dotted lines in Fig. 2a (the transition from (P) to (D) has
the probability 1−c, which is not shown in the figure). This modification enables
the philosopher to control its waiting time, the period between when it becomes
hungry for the first time after thinking, and when it eats. A higher value of c

2 For simplicity, we remove a self-transition to (Th); however, unlike [9] we do not
merge the states (Th) and (H) because we want to distinguish between the incoming
transitions to (Th) and (H) in computing the waiting time.

214 R. Babaee et al.

means that, instead of going back to (H), the philosopher is more likely to stay
at (P) so that as soon as the other fork is available it will eat. It is not diffi-
cult to observe that as long as there is at least one philosopher with c �= 1, the
symmetry that causes the deadlock [25] will eventually break, and the algorithm
remains deadlock-free. In a distributed real-time system, where each philosopher
represents a process with unfixed deadlines, changing the value of c enables the
processes to dynamically adjust their waiting time according to their deadlines.

Fig. 2. Training an HMM for the monitored philosopher in a program with 3
philosophers.

The purpose of our experiments is to implement a monitor that observes the
outputs of a single philosopher, and predicts a potential starvation (lockout) by
estimating the extensions that leads to eating.

Predicting Starvation at Run-Time. We use Matlab HMM toolbox to train
HMMs, and 100 iid samples collected from the implementation of our modified
version, with c = 1 for all philosophers except the one that is being monitored3.
The trained model presents the behavioral signature of the system when a longer
waiting time is likely. The size of HMM (i.e., the number of hidden states) is
chosen based on the BIC score of each model with different sizes (see Sect. 4.1).
Figure 2b demonstrates the trained HMM of one philosopher that is constructed
from the traces of a 5-s execution of three philosophers. The trained model
reflects the distribution of the prefixes in the training sample, which in turn is
determined by how the scheduler as well as other philosophers behaved during
training (i.e., resolving non-determinism of the model). For instance, multiple
consecutive trys in the training sample create several states in the trained HMM,
3 We tweaked the implementation in https://ti.tuwien.ac.at/tacas2015/ [14].

https://ti.tuwien.ac.at/tacas2015/

Prevent: A Predictive Run-Time Verification Framework 215

Table 1. Prediction results on 100 test samples.

N Size of
HMM

BIC
(+e03)

hmin Size of
MT

λ̄M mean(εmin)

3 17 25.1 9.94 360 9.30 1.75

4 14 11.9 5.49 180 5.30 1.28

5 10 10.1 6.36 154 6.16 0.80

6 14 7.69 5.61 180 5.17 1.05

7 16 6.09 4.28 170 3.84 1.06

8 10 5.42 4.94 110 4.32 1.33

9 14 4.83 3.15 120 2.77 0.92

10 10 4.40 4.31 110 3.84 0.97

Fig. 3. The comparison of the pre-
diction results from two trained
models.

each emitting the symbol (T), but only one has a high probability to transition
to (P) and the others model the state where the philosopher can not pick a fork.
Finite extensions that we consider in the prediction are based on the following
regular expression: (¬hungry)∗(hungry(¬eat)∗eat(¬hungry)∗)∗.

Figure 3 gives a comparison between the prediction results (h = 33) of two
trained models, one trained using the samples from the original implementation
(LR) and the other one trained from the samples of our modified version (LR-
sap), both containing three philosophers. The monitored trace is synthesized in
a way that it does not contain any eat, and up to point 33 the philosopher is
only at state (T). After that the philosopher frequently picks and drops a fork.
When the last event of a prefix is pick, compared to when it ends with any
other observations, the philosopher has a higher chance to reach eat (e.g., with
probability 0.98 at point 35); however, since HMM maintains the history of the
trace, a prefix with frequent (pick, drop) one after another shows a decline in
the probability of observing eat (e.g., with probability of 0.8 at point 57). The
results in Fig. 3 demonstrate that the model trained on the bad extensions (LR-
sap) provides an under-approximation of the model that is trained on the good
traces (LR), thus, producing more false positives.

The summary of our results is displayed in Table 1. We use Prism to per-
form the reachability analysis on the product of the trained HMM and the DFA.
The size of the product model is equal to the size of the HMM, as each state
in the trained HMMs emits exactly one observation. The minimum prediction
horizon (hmin) is obtained empirically from 100 test samples. We choose the
prediction horizon to be three times as large as hmin during monitoring. The
average of the estimated length of the acceptable extensions by the monitor is
shown as λ̄M , and the mean of the error on the entire testing set is denoted by
mean(εmin). On average, the monitor predicts the next eat (within the predic-
tion horizon) with one step error. The monitor is not able to detect the waiting
periods that approximately are longer than 3× hmin ± 1. Increasing the predic-
tion horizon decreases the error, with the cost of a larger monitor table (MT).
The value of λ̄M is influenced by the total number of discrete events produced by

216 R. Babaee et al.

the monitored philosopher. With more philosophers λ̄M decreases because the
monitored philosopher, and hence, the monitor, are scheduled less often.

7.2 Hexacopter Flight Control

In this section, we apply Prevent to detect injected faults from QNX Neu-
trino’s [24] kernel calls. The traces are obtained using QNX tracelogger during
the flight of a hexacopter4. The vehicle is equipped with an autopilot, but can
be controlled manually using a remote transmitter. The autopilot system uses
a cascaded PID controller. QNX’s microkernel follows message-passing architec-
ture, where almost all the processes (even the kernel processes) communicate via
sending and receiving messages that are handled by the kernel calls MSG-SENDV,
MSG-RECEIVEV, and MSG-REPLY. Figure 4a shows a sub-trace of the kernel call
sample from the hexacopter flight control system.

In this case study, we inject faults by introducing an interference process,
with the same priority as the autopilot process, that simply runs a while-loop to
consume CPU time. The interference process abrupts message-passing between
the processes of the same or lower priorities, causing a kernel call to handle the
error (typically due to a timeout) and to unblock the sender (shown as event
MSG_ERROR in Fig. 4a). The purpose of the monitor is to predict the existence
of an interference process by only observing the kernel calls.

We use SFIHMM [8] on an Intel Xeon 2.40GHz 128GB RAM machine with
Debian 9.3 to train an HMM from 1-s of the auto-pilot execution, with the
intervening process in full effect. The HMM with the minimum BIC has 19 states.
The regular expression (¬MSG_ERROR)∗ (MSG_ERROR)Σ∗ is used to generate the
finite extensions that contain the bad prefixes of the property �¬MSG_ERROR.

The monitor’s prediction on part of the trace generated from another sce-
nario, where the interference process is partially in effect and started executing in
the middle of the flight, is depicted in Fig. 4. The event MSG_ERROR is emitted at
index 10,861, and the probability of the prefix that contains MSG_ERROR within
next 50 steps is 0.15 at index 10,815. That means that the monitor predicts the
message error with %15 chance, almost 45 steps before its occurrence. The points
where the probability is zero is because the monitor was not able to correctly
estimate the hidden state of the model. More training samples are required to
enable the monitor to estimate the correct state of the model. In our case, three
consecutive instances of MSG_RECEIVEV did not appear in the training sample,
hence, the prefix can not be associated to any state of the model by the monitor.

8 Related Work

There have been several proposals to define semantics of LTL properties on the
finite paths [20]; however, to the best of our knowledge, our approach is the first

4 Full system description is available at https://wiki.uwaterloo.ca/display/ESGDAT/
QNX+Hexacopter+Flight+Control+Dataset.

https://wiki.uwaterloo.ca/display/ESGDAT/QNX+Hexacopter+Flight+Control+Dataset
https://wiki.uwaterloo.ca/display/ESGDAT/QNX+Hexacopter+Flight+Control+Dataset

Prevent: A Predictive Run-Time Verification Framework 217

...
10850 : MSG-SENDV
10851 : CONNECT-CLIENT-INFO
10852 : MSG-REPLYV
10853 : MSG-RECEIVEV
10854 : MSG-SENDV
10855 : CONNECT-CLIENT-INFO
10856 : MSG-REPLYV
10857 : MSG-RECEIVEV
10858 : MSG-RECEIVEV
10859 : MSG-SENDV
10860 : CONNECT-CLIENT-INFO
10861 : MSG-ERROR
...

Fig. 4. The monitoring of �¬MSG_ERROR on the flight control trace with the interfer-
ence process.

one in verifying finite paths based on the extensions obtained from a trained
HMM. HMMs have been recently used in run-time monitoring of CPSs [2,13,30,
31,33,35,40]. Sistla et al. [31] propose an internal monitoring approach (i.e., the
property is specified over the hidden states) using specification automata and
HMMs with infinite states. Learning an infinite-state HMM is a harder problem
than the finite HMMs, but does not require inferring the size of the model [5].

The notion of acceptance accuracy and rejection accuracy in [30] are the
complement to our notion of prediction error. According to their definition, our
Viterbi approximation generates a threshold conservative monitor for any regular
safety property and regular finite horizon. The analytical method in [33] to find
an upper bound for the timeliness of a monitor can be applied to Prevent to
find an upper bound for the prediction horizon.

Several works focus on efficiently estimating the internal states of an HMM
at runtime using particle filtering [13,35]. Particle filtering uses weights based on
the number of particles in each state, and updates the weights in each observa-
tion. Viterbi algorithm provides the most likely state, as an over-approximation.
Adaptive Runtime Verification [2] couples state estimation [35] with feed-back
control loop to generate several monitors that run on different frequencies. These
works are orthogonal to our framework and can be combined with Prevent.

Learning models for verification is executed on Markov Chain models [18,22].
HMMs are trained in [14] for statistical model checking. Our work focuses on
predictive monitors using a similar technique. We also provide assessments for
evaluating the learned model and inferring its size.

9 Conclusion

We introduced Prevent, a predictive run-time monitoring framework for prop-
erties with finite regular extensions. The core part of Prevent involves learning

218 R. Babaee et al.

a model from the traces, and constructing a tabular monitor using reachability
analysis. The monitor produces a quantitative output that represents the prob-
ability that from the current state, the system satisfies a property within a finite
horizon. The current state is estimated using Viterbi algorithm. We defined an
empirical evaluation of the prediction using the expected length of the extension
of the execution that satisfies the property. In future, we are interested in explor-
ing other evaluation methods, including comparing the prediction results of the
trained model with those of the complete model by applying abstraction [15].

We provided preliminary evaluation of our approach on two case studies: the
randomised dining philosophers problem, and the flight control of a hexacopter.
In both cases, the trained models are extracted from bad traces, thus, the moni-
tor has a tendency to produce false positives. An interesting modification to our
approach, which would reduce the number of false positives, is to involve a mix-
ture of trained models based on both good and bad traces, and only employing
ones that have a higher likelihood to generate the current execution trace.

Lastly, an implementation of Prevent with the application of on-line learning
methods (such as state merging or splitting techniques [21,34]) is necessary to
apply the framework to the real-world scenarios.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,

Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2_18

3. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5_11

4. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

5. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model.
In: Proceedings of the 14th International Conference on Neural Information Pro-
cessing Systems: Natural and Synthetic, NIPS 2001, pp. 577–584. MIT Press, Cam-
bridge (2001)

6. Bilmes, J.A.: A gentle tutorial of the EM algorithm and its applications to param-
eter estimation for Gaussian mixture and hidden Markov models. Technical report
TR-97-021, International Computer Science Institute, Berkeley, CA (1997)

7. Claeskens, G., Hjort, N.L.: Model Selection and Model Averaging. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge (2008)

8. DeDeo, S.: Conflict and computation on Wikipedia: a finite-state machine analysis
of editor interactions. Futur. Internet 8(3), 31 (2016)

9. Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without
fairness assumption. Distrib. Comput. 17(1), 65–76 (2004)

https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11

Prevent: A Predictive Run-Time Verification Framework 219

10. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering, pp. 411–420 (1999)

12. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0_4

13. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime veri-
fication with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1_9

14. Kalajdzic, K., Jegourel, C., Lukina, A., Bartocci, E., Legay, A., Smolka, S.A.,
Grosu, R.: Feedback control for statistical model checking of cyber-physical sys-
tems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 46–61.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_4

15. Katoen, J.-P.: Abstraction of probabilistic systems. In: Raskin, J.-F., Thiagarajan,
P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 1–3. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75454-1_1

16. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6

17. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

18. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
probabilistic automata for model checking. In: 2011 Eighth International Confer-
ence on Quantitative Evaluation of Systems, pp. 111–120, September 2011

19. Moody, J., Antsaklis, P.: Supervisory Control of Discrete Event Systems Using
Petri Nets. The International Series on Discrete Event Dynamic Systems. Springer,
New York (1998). https://doi.org/10.1007/978-1-4615-5711-1

20. Morgenstern, A., Gesell, M., Schneider, K.: An asymptotically correct finite path
semantics for LTL. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol.
7180, pp. 304–319. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28717-6_24

21. Mukherjee, K., Ray, A.: State splitting and merging in probabilistic finite state
automata for signal representation and analysis. Sig. Process. 104, 105–119 (2014)

22. Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster statistical model
checking by means of abstraction and learning. In: Bonakdarpour, B., Smolka, S.A.
(eds.) RV 2014. LNCS, vol. 8734, pp. 340–355. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11164-3_28

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977)

24. Qnx neutrino rtos. http://blackberry.qnx.com/en/products/neutrino-rtos/
neutrino-rtos. Accessed 14 Aug 2017

25. Rabin, M.O., Lehmann, D.: The advantages of free choice: a symmetric and fully
distributed solution for the dining philosophers problem. In: Roscoe, A.W. (ed.) A
Classical Mind, pp. 333–352. Prentice Hall International (UK) Ltd., Hertfordshire
(1994)

26. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989)

https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-319-47166-2_4
https://doi.org/10.1007/978-3-540-75454-1_1
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-1-4615-5711-1
https://doi.org/10.1007/978-3-642-28717-6_24
https://doi.org/10.1007/978-3-642-28717-6_24
https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.1007/978-3-319-11164-3_28
http://blackberry.qnx.com/en/products/neutrino-rtos/neutrino-rtos
http://blackberry.qnx.com/en/products/neutrino-rtos/neutrino-rtos

220 R. Babaee et al.

27. Radomised dining philosophers case study. http://www.prismmodelchecker.org/
casestudies/phil.php. Accessed 24 Jan 2018

28. Roweis, S.T., Ghahramani, Z.: A unifying review of linear Gaussian models. Neural
Comput. 11(2), 305–345 (1999)

29. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

30. Sistla, A.P., Srinivas, A.R.: Monitoring temporal properties of stochastic systems.
In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp.
294–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-
9_25

31. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_58

32. Sistla, A.P., Žefran, M., Feng, Y.: Runtime monitoring of stochastic cyber-physical
systems with hybrid state. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 276–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29860-8_21

33. Sistla, A.P., Zefran, M., Feng, Y., Ben, Y.: Timely monitoring of partially observ-
able stochastic systems. In: HSCC, 17th International Conference (Part of CPS
Week), pp. 61–70 (2014)

34. Stolcke, A., Omohundro, S.M.: Best-first model merging for hidden Markov model
induction. CoRR, abs/cmp-lg/9405017 (1994)

35. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29860-8_15

36. Tanenbaum, A.S., van Steen, M.: Distributed Systems - Principles and Paradigms,
2nd edn. Pearson Education, London (2007)

37. Terwijn, S.A.: On the learnability of hidden Markov models. In: Adriaans, P.,
Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 261–
268. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45790-9_21

38. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

39. Wilcox, C.M., Williams, B.C.: Runtime verification of stochastic, faulty systems.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 452–459. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_34

40. Yavolovsky, A., Žefran, M., Sistla, A.P.: Decision-theoretic monitoring of cyber-
physical systems. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
404–419. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_25

41. Zhang, L., Hermanns, H., Jansen, D.N.: Logic and model checking for hidden
Markov models. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 98–112.
Springer, Heidelberg (2005). https://doi.org/10.1007/11562436_9

42. Zheng, X., Julien, C., Podorozhny, R., Cassez, F., Rakotoarivelo, T.: Efficient and
scalable runtime monitoring for cyber-physical system. IEEE Syst. J. PP(99), 1–12
(2017)

http://www.prismmodelchecker.org/casestudies/phil.php
http://www.prismmodelchecker.org/casestudies/phil.php
https://doi.org/10.1007/978-3-540-78163-9_25
https://doi.org/10.1007/978-3-540-78163-9_25
https://doi.org/10.1007/978-3-642-22110-1_58
https://doi.org/10.1007/978-3-642-29860-8_21
https://doi.org/10.1007/978-3-642-29860-8_21
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/3-540-45790-9_21
https://doi.org/10.1007/978-3-642-16612-9_34
https://doi.org/10.1007/978-3-319-46982-9_25
https://doi.org/10.1007/11562436_9

Applications

Formal Verification of Platoon Control
Strategies

Adnan Rashid1(B), Umair Siddique2, and Osman Hasan1

1 School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{adnan.rashid,osman.hasan}@seecs.nust.edu.pk
2 Department of Computing and Software, McMaster University, Hamilton, Canada

siddiu3@mcmaster.ca

Abstract. Recent developments in autonomous driving, vehicle-to-
vehicle communication and smart traffic controllers have provided a hope
to realize platoon formation of vehicles. The main benefits of vehicle
platooning include improved safety, enhanced highway utility, efficient
fuel consumption and reduced highway accidents. One of the central
components of reliable and efficient platoon formation is the underlying
control strategies, e.g., constant spacing, variable spacing and dynamic
headway. In this paper, we provide a generic formalization of platoon
control strategies in higher-order logic. In particular, we formally verify
the stability constraints of various strategies using the libraries of mul-
tivariate calculus and Laplace transform within the sound core of HOL
Light proof assistant. We also illustrate the use of verified stability theo-
rems to develop runtime monitors for each controller, which can be used
to automatically detect the violation of stability constraints in a runtime
execution or a logged trace of the platoon controller. Our proposed for-
malization has two main advantages: (1) it provides a framework to com-
bine both static (theorem proving) and dynamic (runtime) verification
approaches for platoon controllers; and (2) it is inline with the industrial
standards, which explicitly recommend the use of formal methods for
functional-safety, e.g., automotive ISO 26262.

Keywords: Autonomous driving · Platoon control
Formal verification

1 Introduction

Autonomous cars seem to be just around the corner, as most of the car manu-
facturers (e.g., Tesla, BMW, Toyata, Nissan, Ford, Jaguar Land Rover, etc.) and
even silicon valley players (e.g., Intel and Nvidia) claim that fully autonomous
vehicles will be on the road around 2020 [1,2]. Such a speedy development in
autonomous driving is motivated by the fact that the autonomous cars will be
more safe and crashless than the human driven cars. For example, the human
error is to blame for up to 90% of the 1.2 million deaths that occur each year from
c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 223–238, 2018.
https://doi.org/10.1007/978-3-319-92970-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_14&domain=pdf

224 A. Rashid et al.

car accidents around the world [3]. Like various fields of science and engineering,
the developments in autonomous driving have opened the doors to many other
interesting fields, for example, automated vehicle platooning is one of the most
benefiting fields.

A platoon is a group of vehicles (as shown in Fig. 1) that travels in a close
proximity to one another, nose-to-tail, at highway speeds. Vehicle platoons have

Fig. 1. Platoon of vehicles

been proposed since at least the early 1980’s even before we had wireless
communication, global positioning system (GPS) and commercially available
radar sensors. However, given the exceptional capabilities and reliability of the
autonomous cars, vehicle platooning can become a reality using a mix of available
technologies such as drive-by-wire steering [4], radar cruise control [5] and lane
keep assist systems [6] to name a few. Some of the main advantages of the vehi-
cle platooning are increased road capacity, reduction in drag and improved fuel
economy, improved traffic congestion strategies [7] and reduced roadside acci-
dents due to the autonomous features, e.g., collision detection [8] and automatic
emergency braking [9].

The stability of the automated vehicles in a platoon, individually or as a
group, depends on the interaction of the vehicles and is vital for an uninter-
rupted flow of traffic and a better throughput. A stable platoon ensures that
the vehicles should not collide with each other while maintaining a safe inter-
vehicle spacing bound. In practice, the stability of platoon is ensured by two
types of controllers, i.e., autonomous and non-autonomous [10]. The autonomous
controllers use the on-board sensors for determining the speed and position of
the connected vehicles, whereas the non-autonomous controllers are based on
other forms of the inter-vehicle communication. Furthermore, communication
amongst controllers is either unidirectional or bidirectional, based on the infor-
mation shared between the neighbouring vehicles. Similarly, various strategies
can be used for the platoon control, such as constant spacing, variable spacing
and variable time headway.

Traditionally, the platoon controllers are analyzed using informal approaches
including paper-and-pencil based proofs [10] and numerical simulations [11].
These informal approaches have known limitations when used in safety-critical
domains, for example, missing assumptions and even wrong derivations in hand-
driven proofs, and inherent incompleteness of the numerical algorithms, respec-
tively. Considering these facts, it is natural to think about complementing tradi-
tional analysis approaches with formal methods for developing reliable platoon

Formal Verification of Platoon Control Strategies 225

controllers. In this direction, model checking has been used to verify the high-
level models of the platoon controllers using the temporal logic based proper-
ties [12–14]. In all these approaches, the authors considered the vehicles platoon
and their controllers as a discrete-time system by modeling them as automata
and verified their properties, such as safety and inter-vehicle spacing bound prop-
erties. Thus, these model checking based analysis lacks the physical analysis of
the platoon, which requires modeling and reasoning of control strategies using
differential equations and their frequency domain stability analysis using Laplace
transform. Similarly, Mashkoor et al. [15] used higher-order logic to formally rea-
son about the cyber-physical transportation system. The authors used random
variables to model the unpredictable elements of the system and formally con-
ducted a probabilistic analysis of the transportation system without considering
the dynamic aspects of the system. In this paper, we propose a higher-order logic
based framework to formally model and verify the stability of various types
of platoon controllers using the HOL Light proof assistant [16]. Consequently,
we utilize the verified results to construct monitors, which ensure the platoon
stability at runtime. The main reasons for using higher-order logic and HOL
Light include the expressibility to represent the platoon controllers, which are
modeled using differential equations in time-domain and the Laplace transform
in frequency-domain. Moreover, HOL Light has the smallest trusted core (i.e.,
approximately 400 lines of Ocaml code) amongst all other HOL proof assistants
and the underlying logic kernel has been verified in the CakeML project [17].

The main contributions of the paper are as follows:

• Deep embedding based formalization of platoon controller types, configura-
tions and strategies along with the associated differential equations based
functional models.

• Formal derivation of the Laplace domain transfer functions using the formal-
ized libraries of multivariate calculus [18] and the Laplace transform [19,20]
in the HOL Light proof assistant.

• Formal verification of the platoon control strategies based on the formal mod-
els of various controllers.

• Development of the stability monitors for each type of the controllers and
demonstration of their violation detection capability on a pseudo-randomly
generated traces of a platoon controller.

The source code of our HOL Light development is available for download
at [21] and thus can be used by the other researchers and engineers interested
in the design and verification of the platoon controllers.

The rest of the paper is organized as follows: Sect. 2 presents an overview
of the HOL Light proof assistant along with the formalization of the Laplace
transform. Section 3 provides the formal modeling of the platoon controller and
its stability. We provide the formal verification of the platoon control strategies
and the stability constraints in Sect. 4. Section 5 describes the construction of
the stability monitors. Finally, Sect. 6 concludes the paper and highlights some
future research directions.

226 A. Rashid et al.

2 Preliminaries

This section presents a brief introduction to the HOL Light proof assistant and its
multivariate calculus and the Laplace transform theories, which are extensively
used in the rest of the paper.

2.1 Theorem Proving and HOL Light Proof Assistant

Theorem proving is a widely adapted formal verification technique, which is
concerned with constructing the proofs of the mathematical theorems using a
computer program (called theorem prover or proof assistant) [22]. Theorem prov-
ing systems have been commonly used for verifying the properties of the software
and hardware systems. For example, a hardware designer can certify a digital
circuit by modeling its behavior by some predicates and verifying its different
properties using Boolean algebra. Similarly, a mathematician can verify the tran-
sitive property of the ordering of real numbers using some basic axioms of real
numbers theory. These properties are expressed as theorems using some logic,
such as propositional, first-order or higher-order logic, based on the required
expressiveness. For example, using the higher-order logic is advantageous over
the first-order logic as it provides the additional quantifiers and is more expres-
sive as well. Moreover, higher-order logic can better describe the complex math-
ematical concepts including multivariate calculus, transcendental functions and
topological spaces. Once such a mathematical theory is developed inside a proof
assistant, we say that it is formalized.

HOL Light [16] is an interactive theorem proving environment for construct-
ing the mathematical proofs. The main implementation of HOL Light is done in
a functional programming language, Objective CAML (OCaml), which is orig-
inally developed to automate the mathematical proofs [23]. The logical kernel
of HOL Light is of approximately 400 lines of OCaml code and its main compo-
nents are its types, terms, theorems, rules of inference, and axioms. A theory in
HOL Light consists of types, constants, definitions, axioms and theorems. The
HOL Light theories are ordered in a hierarchical fashion and the child theories
can inherit the types, definitions and theorems of the parent theories. Every
new theorem has to be verified based on the primitive inference rules and basic
axioms or already verified theorems present in HOL Light, which ensures the
soundness of this technique.

2.2 Multivariable Calculus and Laplace Transform Theories

HOL Light provides an extensive support for the analysis of physical systems
based on multivariate calculus theories, which include derivatives, integration,
transcendental theory, topology, vector analysis and Laplace transform theory.
Table 1 presents some definitions from the Laplace transform theory of HOL Light,
which includes the Laplace transform, Laplace existence and the exponential-
order conditions, and the differential equation of order n. Interested readers can
refer to [19,20] for more details about this theory. It is extensively used in our
proposed verification of the platoon control strategies for the automated vehicles.

Formal Verification of Platoon Control Strategies 227

Table 1. Laplace transform

3 Formal Modeling of Platoon Controller and Stability

In this section, we present the formal modeling of a platoon controller based on
its types, configurations and the underlying strategies along with the concept of
the platoon stability.

3.1 Formalization of Platoon Controller

The connected vehicles in a platoon are widely characterized by the controllers,
which are mainly responsible for their automated operation. The platoon con-
trollers are generally of two types namely autonomous and non-autonomous.

• Autonomous controllers use the on-board sensors for determining the speed
and position of the connected vehicles.

• Non-autonomous controllers are based on some other form of the inter-vehicle
communication.

The information sharing among the neighbouring vehicles is either unidi-
rectional or bidirectional depending upon the configuration of the platoon con-
trollers.

• Unidirectional configuration allows a controller to use the information about
the relative distance and velocity of only the preceding vehicle.

• Bidirectional controller can access the information about the relative distance
and velocity of both the proceeding and preceding vehicles by considering
their individual masses.

228 A. Rashid et al.

The autonomous controllers can adapt different strategies to maintain the
stable operation of the platoon along the highway. In general, controllers utilize
three strategies namely constant spacing, variable spacing and variable time-
headway.

• Constant spacing policy requires that each vehicle maintains a constant dis-
tance (spacing) with its preceding vehicle in a platoon.

• Variable spacing policy allows a variable inter-vehicle spacing, which depends
on the velocity of the vehicles in a platoon. For example, a faster moving vehi-
cle creates more inter-vehicle space between itself and its proceeding vehicle.
It is also known as the constant time headway spacing.

• Variable time headway policy imposes constraints on the relative velocity
rather than the absolute velocity of the vehicle in contrast to the constant
time headway spacing policy, which results into large inter-vehicle spaces and
thus decreases the throughput of the highway traffic.

In our formalization, we model the types of the controller, its configurations
and strategies as enumerated datatype using the built-in define type mechanism
in HOL Light.

type controller type = autonomous | non autonomous

type configuration = unidirectional | bidirectional

type strategy = constant spacing | variable spacing | var time headway

We model a platoon as a tuple (x, n,m, k, c, ch, vd, h0, ca, cd), where
the description and the type of each parameter is given in Table 2.
Indeed, these parameters characterize various physical aspects of the vehi-
cles in a platoon (e.g., the horizontal distance x, the number of vehicles
in a platoon n and the mass of a vehicle m). In HOL Light, we for-
malize the platoon tuple (x, n,m, k, c, ch, vd, h0, ca, cd) and controller tuple
(controller type, configuration, strategy, platoon) as type abbreviations:

type abbrev platoon:(x × n × m × k × c × h × ch × vd × h0 × ca × cd)

type abbrev controller:(controller type × configuration × strategy × platoon)

It is important to note that platoon contains a unique mass m, which implies
that we only consider a platoon with identical vehicles as shown in Fig. 1.

In order to ensure that the given parameters of a platoon indeed repre-
sent a valid platoon, we formalize the associated constraints as a predicate
is valid platoon (Definition 1). For example, the mass m should always be greater
than 0 and the number of vehicles in a platoon should be greater than 1.

Definition 1. Valid Platoon
� is valid platoon (x,n,m,k,c,h,ch,vd,h0,ca,cd) ⇔ 0 < m ∧ 0 < k ∧ 0 < c ∧

0 < h ∧ 0 < ch ∧ 0 < vd ∧ 0 < h0 ∧ 0 < ca ∧ 0 < cd ∧ 1 < n

Formal Verification of Platoon Control Strategies 229

Table 2. Data types for platoon parameters

Parameter description Type

Horizontal distance x:N → (R → C)

Number of vehicles n:N

Mass of a vehicle m:R

Disturbance constant k:R

Fluctuations constant c:R

Time headway h:R

Fluctuations due to time headway ch:R

Desired platoon speed vd:R

Nominal value of time headway h0:R

Additional fluctuations with respect to platoon leader ca:R

Additional fluctuations with respect to “virtual” mass cd:R

3.2 Formalization of the Platoon Stability

The stability is an important property of a vehicle platoon, which describes the
capability of a platoon to attenuate the oscillations introduced by the leader or
any other vehicle in the platoon. In general, such oscillations can be considered
in terms of various signals. e.g., the position error between the vehicles or the
relative acceleration of connected vehicles. In this paper, we consider the notion
of stability with respect to the position error between the vehicles. Formally, a
platoon is stable if any oscillation with respect to the position error diminishes
out as it propagates towards the tail of the platoon. The platoon stability in lon-
gitudinal direction is mathematically expressed as a norm condition on spacing
errors in the frequency domain, as given in the following equation:

∣
∣
∣
∣

∣
∣
∣
∣

zn(iω)
zn−1(iω)

∣
∣
∣
∣

∣
∣
∣
∣
< 1, n = 2, 3, 4, ... (1)

where zn−1 is the spacing error between the vehicle n − 1 and its proceeding
vehicle n, i.e., it is the deviation from the desired inter-vehicle spacing for vehicle
n − 1. If xn−1 is the inter-vehicle spacing between the vehicle n − 1 and its
preceding vehicle n − 2 and xn is the inter-vehicle spacing between the vehicle
n and its preceding vehicle n − 1, then the spacing error between vehicles n − 1
and n is given by zn−1 = xn−1 − xn. Similarly, zn represents the spacing error
between the vehicle n and its proceeding vehicle n + 1, i.e., zn = xn − xn+1. In
case of all the desired inter-vehicle spacings are same, i.e., xn = xn−1 = ... = x1,
then this leads to the zero spacing errors, i.e., zn = zn−1 = ... = z1 = 0. We
formalize platoon stability in HOL Light as follows:

230 A. Rashid et al.

Definition 2. Stable Platoon
� ∀ s x y. transfer function s x y ⇔ laplace transform y s

laplace transform x s
� ∀ ω x y. frequency response ω x y ⇔ transfer function (iω) x y

� ∀ ω z. is stable platoon ω z n ⇔
∣
∣
∣
∣

∣
∣
∣
∣

frequency response ω (λt. z (n)) (λt. z (n - 1))

∣
∣
∣
∣

∣
∣
∣
∣

< 1

where the predicate is stable platoon accepts the parameters z:N → (R → C),
which represents the complex-domain representation of the spacing error, angu-
lar frequency ω:R and number of vehicles n, and returns the condition that the
complex norm of the transfer function at s = iω, i.e., Zn(iω)

Zn−1(iω) is always less than
1 for every vehicle in the platoon.

This concludes our fundamental formalization of the platoon controller and
the corresponding stability. We build upon the concepts, formalized in this
section, to formalize various control strategies and verify their correctness in
the next section.

4 Formal Verification of the Platoon Control Strategies

In this section, we first present the formalization of an autonomous unidirectional
controller with constant spacing policy. Indeed, the main intention is to demon-
strate the formalization steps, i.e., formal modeling of the controller dynamics
in higher-order logic, formalization of the necessary constraints, and the formal
verification of the stability theorem. Building upon these steps, we next present
its generalization to all types of controllers along with the verification of a gen-
eralized stability theorem.

4.1 Autonomous Unidirectional Controller

Generally, the dynamics of platoon controllers are characterized by a set of differ-
ential equations, which interrelate the parameters of the platoon. The schematic
representation of the platoon of vehicles having autonomous unidirectional con-
troller with constant spacing policy is depicted in Fig. 2. It consists of n intercon-
nected vehicles of identical masses, i.e., m1 = m2 = ... = mn−1 = mn = m. The
parameters k and c are the disturbance and fluctuation constants, representing
the control gains on the relative position and velocity, respectively. Similarly,
the parameter u represents the force required by the first vehicle to move for-
ward in the platoon. The mathematical representation of this platoon controller’s
dynamics are given as the following equation set:

Formal Verification of Platoon Control Strategies 231

Fig. 2. Autonomous unidirectional controller with constant spacing

dx1

dt
= v1,

dv1
dt

=
u

m
,

dx2

dt
= v2

dv2
dt

=
k

m
x1 − k

m
x2 +

c

m
v1 − c

m
v2

.

.

dxn−1

dt
= vn−1

dvn−1

dt
=

k

m
xn−2 − k

m
xn−1 +

c

m
vn−2 − c

m
vn−1

dxn

dt
= vn

dvn

dt
=

k

m
xn−1 − k

m
xn +

c

m
vn−1 − c

m
vn

(2)

where the variables x and v represent the inter-vehicle spacing and velocity of
platoon vehicles, respectively. Overall, the set of differential equations character-
ize the dynamics of n vehicles in the platoon depicted in Fig. 2. We can rewrite
Eq. (2) in a compact form by eliminating the variable v and representing it in
the form of spacing error, i.e., z as:

d2zn

dt2
+

c

m

dzn

dt
+

k

m
zn =

c

m

dzn−1

dt
+

k

m
zn−1, n = 2, 3, 4, ... (3)

We formally model this controller in HOL Light as follows:

Definition 3. Unidirectional Controller with Constant Spacing
� ∀ k c m ch n vd ca cd h h0 x.

control uni cs (autonomous,unidirectional,constant spacing,

((x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon)) t ⇔
let zn−1 = (λt. x (n - 1) t - x (n) t) and

zn = (λt. x (n) t - x (n + 1) t) in

D2 [k
m

; c
m

; 1] zn = D1 [k
m

; c
m

] zn−1

where the operators D1 and D2 represent the first-order and second-order
complex-valued derivatives in HOL Light, respectively, and thus can be obtained
by instantiating n = 1 and n = 2 in the predicate diff eq n order, given in Table 1.

232 A. Rashid et al.

We next model some physical constraints associated with the controller model
control uni cs, which include differentiability, existence of the Laplace transform
and zero-initial conditions for parameters zn−1 and zn, as given in Definition 4.

Definition 4. Constraints for a Platoon having Autonomous Unidirec-
tional Controller
� ∀ x n s c m k.

constraints uni cs x n s c m k ⇔
let zn−1 = (λt. x (n - 1) t - x (n) t) and

zn = (λt. x (n) t - x (n + 1) t) in

(∀t. differentiable higher derivative [2,1] [zn−1,zn]) ∧
laplace exists higher deriv [2,1] [zn−1,zn] s ∧
zero initial conditions [1,0] [zn−1,zn] ∧
non zero tf uni cs zn−1 s c m k

where the first two conjuncts provide the differentiability and the Laplace exis-
tence conditions for the second-order and first-order derivatives of the spacing
errors zn−1 and zn, respectively. Similarly, the next conjunct imposes the zero-
initial conditions for the spacing errors zn−1 and zn, respectively. Finally, the
last conjunct ensures that the transfer function does not include the singulari-
ties, i.e., the points at which the denominator of the transfer function becomes

infinite or undefined. Mathematically, it is described as s2 +
c

m
s +

k

m
�= 0.

Our next step is to formally verify that the platoon controller model
control uni cs implies the platoon stability for any number of vehicles. The main
purpose of this verification is twofold: (1) identify the stability constraints in
terms of the platoon parameters, and (2) utilize verified stability constraints
to ensure the stability of a given platoon at any time instant. Indeed this step
requires the instantiation of platoon parameters with concrete values (i.e., num-
ber of vehicles n = 10, mass m = 1000 kg, etc.). We verify the following univer-
sally quantified stability theorem in HOL Light.

Theorem 1. Stability of a Platoon having Autonomous Unidirectional
Controller
� ∀ k c m ch n vd ca cd h h0 x w.

let s = iω and

p = ((x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon) and

z = (λ n t. x (n) t - x (n + 1) t) in

0 < ω ∧ 2k

m
< ω2 ∧ valid platoon p ∧ constraints uni cs x n s c k m ∧

∀ t. control uni cs (autonomous,unidirectional,constant spacing,p) t

=⇒ is stable platoon ω z n

The main proof of Theorem 1 consists of the following steps: (1) rewriting
with the Definitions 1–4, (2) complex arithmetic reasoning and (3) the veri-
fication of Lemma 1, which transforms the time-domain model of the platoon

Formal Verification of Platoon Control Strategies 233

controller control uni cs into its equivalent frequency-domain representation, i.e.,
transfer function. The verification of Lemma 1 is quite involved due to the rea-
soning about the Laplace transform in HOL Light [19]. The formal statement of
Lemma 1 is given as follows:

Lemma 1. Model Implies Transfer Function
� ∀ k c m ch n vd ca cd h h0 x s.

let p = ((x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon) and

zn−1 = (λt. x (n - 1) t - x (n) t) and

zn = (λt. x (n) t - x (n + 1) t) in

valid platoon p ∧ constraints uni cs x n s c k m ∧
∀ t. control uni cs (autonomous,unidirectional,constant spacing,p) t

=⇒ transfer function s zn zn−1 =

c

m
s +

k

m

s2 +
c

m
s +

k

m

4.2 Generalized Platoon Controller

We formally model various types of platoon control strategies as given in Table 3.
We also formalize the physical constraints and verify the stability for each con-
trol strategy along the same lines as that of autonomous unidirectional con-
troller presented in Sect. 4.1. Finally, we package them in an inductive predi-
cate gen platoon control, which takes two parameters, i.e., controller and time t
and returns the predicate describing the physical behavior of the controller. For
example, for controller (autonomous,unidirectional,constant spacing,platoon), the
inductive predicate gen platoon control returns control uni cs1.

Finally, we verify a general theorem, which describes the stability constraints
for any type of the controller cc, as follows:

Theorem 2. Stability of a Platoon
� ∀ (cc:controller) s.

let s = iω and

p = (x,n,m,k,c,h,ch,vd,h0,ca,cd):platoon and

cc = (ct,cg,sg,p) and

z = (λn t. x (n) t - x (n + 1) t) in

gen stability physical constraints cc s ω ∧ ∀ t. gen platoon control cc t

=⇒ is stable platoon ω z n

where the predicate gen stability physical constraints encapsulates the stabil-
ity and physical constraints of all types of controllers in our formalization.

1 We have omitted the formal definition of gen platoon control for the sake of concise-
ness, however, interested reader can find the formal definition and HOL Light code
on the project’s webpage [21].

234 A. Rashid et al.

The formal proof of Theorem 2 is based on induction on cc:controller and further
induction on the controller type, configuration and strategy along with the veri-
fied stability theorems for each control strategy (e.g., Theorem 1 for autonomous
unidirectional controller presented in Sect. 4.1).

This concludes our formalization of platoon controllers in the HOL Light proof
assistant. In summary, we formalized the basic notions of the platoon controllers

Table 3. Formal platoon models considering various control strategies

using the new type definition and corresponding physical and stability con-
straints. The notable feature of our formalization is its generic nature, as we
can model a platoon controller with any number of vehicles composed of basic

Formal Verification of Platoon Control Strategies 235

controller types, configurations and strategies. Moreover, the physical and stabil-
ity constraints are explicitly present in our formally verified stability theorems,
which may get ignored in the conventional platoon analysis and may result into
an unstable platoon interrupting the traffic flow on the highways. In the next
section, we describe the utilization of our verified results in HOL Light to develop
stability monitors for automatically detecting the violations of the stability
constraints.

5 From Verified Controller to Stability Monitors

Static formal verification approaches, such as theorem proving, provide an effec-
tive way to formally model and verify digital hardware, its underlying software,
control and cyber-physical systems at an appropriate abstract level. For exam-
ple, we employed higher-order logic to formalize various control strategies of a
platoon due to the involvement of multivariate calculus (i.e., complex frequency
domain and Laplace transform). Moreover, we formally verified some of the most
important stability constraints for arbitrary platoon parameters. Indeed, this is
one of the main strengths of the interactive proof assistants as compared to the
simulation based analysis where verification holds only for the applied test cases
and thus cannot be considered as complete. However, the verification of impor-
tant properties of given system in a proof assistant does not guarantee that the
system will behave as expected during the runtime operation. Indeed, the veri-
fied results in a proof assistant provide a confidence that the system will behave
correctly only when the corresponding conditions are met at all times during the
life-time of a system. Actually this falls under the scope of runtime verification
approaches, which are light-weight formal methods to monitor the correctness
of a given system with respect to a formal specification at runtime.

We demonstrate here the utilization of verified stability theorems for var-
ious control strategies to construct monitors, which are capable of detecting
the violation on a given execution of the system. Consider that the behavior of
a platoon controller at each time instant (called an event) is characterized by
the tuple platoon and frequency w, i.e., event = ((x,n,m,k,c,h,ch,vd,h0,ca,cd),w).
Thus, an execution of the platoon controller consists of the sequence of events
and we model it as an event list in HOL Light. Next, we consider the autonomous
unidirectional controller with constant spacing, for which the stability of the
platoon is ensured if the following two conditions are met for every event in
the controller execution. (1) P1 : valid platoon (x,n,m,k,c,h,ch,vd,h0,ca,cd) and

(2) P2 : 0 < ω ∧ 2k

m
< ω2. In terms of temporal logic, a formal requirement to

ensure the platoon stability is �P1∧ �P2 where � represents Globally (G) or an
Always operator in the linear temporal logic (LTL). We can model this monitor
in HOL Light as (ALL P1 execution) ∧ (ALL P2 execution) where ALL is a HOL
Light function, which ensures the satisfaction of a predicate on each element of
the list. Moreover, we developed a tactic MONITOR TAC, which automatically
verifies that both the predicates P1 and P2 holds for a given platoon controller

236 A. Rashid et al.

execution as a list of events. We tested the efficiency of the MONITOR TAC
on randomly generated executions and it can check the validity in a reasonable
time. For example, on average MONITOR TAC returns the truth (T) in 3 s on
an execution of 1000 unique events.

The main purpose of the above illustration was to show that the efforts spent
during the formalization within an interactive proof assistant can be comple-
mented by the development of the monitors to ensure the correctness of the sys-
tem operation at runtime, and thus closing the loop from abstract verification to
the real-time monitoring on the concrete system. Our illustration only describes
the off-line monitoring where the platoon controller execution is given as a logged
data. However, the same monitor can be used for the online monitoring by trans-
lating the monitor as a post-condition in the actual system implementation or
by generating the monitor using well-known LTL3 [24] or the rewriting-based
monitoring approaches [25].

We believe that the stability monitoring can be used for the already avail-
able platoon controllers by inspecting the logged traces and by adding monitors
in the early controller prototypes for quickly evaluating the correctness of the
underlying algorithms. Thus, engineers working on the design and development
of the platoon controllers can use the proposed framework without any prior
knowledge of theorem proving and gain formally analyzed insights about the
given platoon control system.

6 Conclusion and Future Work

This paper provides a framework for analyzing the platoon control strategies
using both the static and dynamic verification approaches. It mainly presents
the formal modeling of the platoon controller and its stability using higher-order
logic. Next, the proposed formalization is used for formally verifying various
platoon control strategies and their stability within the sound core of the HOL
Light proof assistant. Finally, the formally verified stability theorems are used
to develop the runtime monitors for each of the controllers that are used for
detecting the violation of any stability constraints.

In future, we plan to formally analyze the platoon considering different con-
nected vehicles (having different masses). We can also incorporate the stability in
lateral direction and their physical constraints in our framework for the platoon
stability. The other direction is to formally analyze the platoon of connected
vehicles, where some of the vehicles act in a malicious manner by changing the
control gain and thus the properties of the controllers. Such scenarios can com-
promise the safety of other vehicles on the highways and result in destabilizing
the traffic flow [26]. Finally, it is interesting to consider two-dimensional platoons,
which can be analyzed by combining our current framework and formalization of
the z-Transform [27], which is already available in the HOL Light proof assistant.

Formal Verification of Platoon Control Strategies 237

References

1. http://www.driverless-future.com/?page id=384 (2018)
2. https://www.technologyreview.com/s/602196/2021-may-be-the-year-of-the-

fully-autonomous-car/ (2018)
3. https://phys.org/news/2017-09-self-driving-cars-road-toll.html (2018)
4. Changfu, Z., Kai, L.: Development of the drive-by-wire technology. Automobile

Technol. 3(001), 1–5 (2006)
5. Van Arem, B., Van Driel, C.J.G., Visser, R.: The impact of cooperative adaptive

cruise control on traffic-flow characteristics. Trans. Intell. Transp. Syst. 7(4), 429–
436 (2006)

6. Kawazoe, H., Shimakage, M., Sadano, O., Sato, S.: Lane Keeping Assistance Sys-
tem and Method for Automotive Vehicle, US Patent 6,493,619, 10 December 2002

7. Fernandes, P., Nunes, U.: Platooning with IVC-enabled autonomous vehicles:
strategies to mitigate communication delays, improve safety and traffic flow. Trans.
Intell. Transp. Syst. 13(1), 91–106 (2012)

8. Biswas, S., Tatchikou, R., Dion, F.: Vehicle-to-vehicle wireless communication pro-
tocols for enhancing highway traffic safety. Commun. Mag. 44(1), 74–82 (2006)

9. Yi, J., Alvarez, L., Horowitz, R., Canudas De Wit, C.: Adaptive emergency braking
control using a dynamic tire/road Friction Model. In: Decision and Control, vol.
1, pp. 456–461. IEEE (2000)

10. Eyre, J., Yanakiev, D., Kanellakopoulos, I.: A simplified framework for string sta-
bility analysis of automated vehicles. Veh. Syst. Dyn. 30(5), 375–405 (1998)

11. Barooah, P., Mehta, P.G., Hespanha, J.P.: Mistuning-based control design to
improve closed-loop stability margin of vehicular platoons. Trans. Autom. Con-
trol 54(9), 2100–2113 (2009)

12. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification
of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017)

13. Dolginova, E.: Safety Verification for Automated Vehicle Maneuvers. Ph.D thesis,
Massachusetts Institute of Technology (1998)

14. Wongpiromsarn, T., Murray, R.M.: Formal verification of an autonomous vehicle
system. In: Conference on Decision and Control (2008)

15. Mashkoor, A., Hasan, O.: Formal probabilistic analysis of cyber-physical trans-
portation systems. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7335, pp.
419–434. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31137-
6 32

16. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

17. Kumar, R.: Self-compilation and Self-verification. Technical report, University of
Cambridge, Computer Laboratory (2016)

18. Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reasoning 50(2),
173–190 (2013)

19. Taqdees, S.H., Hasan, O.: Formalization of laplace transform using the multivari-
able calculus theory of HOL-Light. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 50

http://www.driverless-future.com/?page_id=384
https://www.technologyreview.com/s/602196/2021-may-be-the-year-of-the-fully-autonomous-car/
https://www.technologyreview.com/s/602196/2021-may-be-the-year-of-the-fully-autonomous-car/
https://phys.org/news/2017-09-self-driving-cars-road-toll.html
https://doi.org/10.1007/978-3-642-31137-6_32
https://doi.org/10.1007/978-3-642-31137-6_32
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-642-45221-5_50

238 A. Rashid et al.

20. Rashid, A., Hasan, O.: Formalization of transform methods using HOL Light. In:
Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017.
LNCS (LNAI), vol. 10383, pp. 319–332. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-62075-6 22

21. Rashid, A.: Formal Verification of Platoon Control Strategies (2018). http://save.
seecs.nust.edu.pk/projects/fvpcs/

22. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

23. A History of OCaml (2015). http://ocaml.org/learn/history.html
24. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.

Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)
25. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Automated Soft-

ware Engineering, pp. 135–143 (2001)
26. Dunn, D.D.: Attacker-induced Traffic Flow Instability in a Stream of Automated

Vehicles. Utah State University (2015)
27. Siddique, U., Mahmoud, M.Y., Tahar, S.: On the formalization of Z-Transform in

HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 483–498.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 31

https://doi.org/10.1007/978-3-319-62075-6_22
https://doi.org/10.1007/978-3-319-62075-6_22
http://save.seecs.nust.edu.pk/projects/fvpcs/
http://save.seecs.nust.edu.pk/projects/fvpcs/
http://ocaml.org/learn/history.html
https://doi.org/10.1007/978-3-319-08970-6_31

Exploring Properties
of a Telecommunication Protocol

with Message Delay Using Interactive
Theorem Prover

Catherine Dubois1, Olga Grinchtein2(B), Justin Pearson3, and Mats Carlsson4

1 ENSIIE, Samovar (UMR CNRS 5157), Évry, France
catherine.dubois@ensiie.fr

2 Ericsson AB, Stockholm, Sweden
olga.grinchtein@ericsson.com

3 Uppsala University, Uppsala, Sweden
justin.pearson@it.uu.se

4 RISE SICS, Stockholm, Sweden
mats.carlsson@ri.se

Abstract. An important task of testing a telecommunication protocol
consists in analysing logs. The goal of log analysis is to check that the
timing and the content of transmitted messages comply with specifica-
tion. In order to perform such checks, protocols can be described using a
constraint modelling language. In this paper we focus on a complex pro-
tocol where some messages can be delayed. Simply introducing variables
for possible delays for all messages in the constraint model can drasti-
cally increase the complexity of the problem. However, some delays can
be calculated, but this calculation is difficult to do by hand and to justify.
We present an industrial application of the Coq proof assistant to prove
a property of a 4G protocol and validate a constraint model. By using
interactive theorem proving we derived constraints for message delays of
the protocol and found missing constraints in the initial model.

Keywords: Testing of telecommunication protocol
Constraint programming · Formal proof · Coq

1 Introduction

We presented in [11] a constraint model of a telecommunication protocol that
broadcasts public warning messages [1]. The goal was to check that the message
transmission conforms to specification by analysing logs. We used the constraint
modelling language MiniZinc [15] to model the protocol and to find solutions
that indicated errors in logs. We used this approach to analyze both real and
generated logs. Since some messages of the protocol can be delayed, introducing
a delay for every message increases the complexity of the model. However, it is

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 239–253, 2018.
https://doi.org/10.1007/978-3-319-92970-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_15&domain=pdf

240 C. Dubois et al.

possible to derive a formula for some delays, which simplifies the problem to be
solved by a constraint solver. We manually derived the delays in [11], but we did
not prove the correctness of the derivation.

In this work we use the Coq proof assistant [20] to derive and prove the for-
mula for delays of some messages. By using Coq we found necessary assumptions
that should be made on parameters of the constraint model. We also found miss-
ing constraints in [11]. By using Coq we are guaranteed that resulting calcula-
tions are correct. Furthermore because certain properties of the model had to be
proved and derived it was more appropriate to use a proof assistant rather than a
computer algebra system. The rest of the paper is structured as follows. Section 2
presents Constraint Programming and the Coq proof assistant. Section 3 is an
overview of the telecommunication protocol that we analyse. Section 4 presents
the constraint model on which our proofs in Coq are based. Section 5 presents
a property of the protocol we explore and a new constraint model for delays.
Section 6 describes proof steps in Coq.

2 Preliminaries

In this section we present very briefly, both constraint programming and the
proof assistant Coq.

Constraint Programming [18] (CP) is a framework for modelling and solv-
ing combinatorial problems including verification and optimisation tasks. A con-
straint problem is specified as a set of decision variables that have to be assigned
values so that the given constraints on these variables are satisfied, and option-
ally so that a given objective function is minimised or maximised. We use italic
to distinguish decision variables from parameters in the constraints.

MiniZinc [15] is a constraint modelling language, which has gained popular-
ity recently due to its high expressivity and large number of available solvers
that support it. It also contains many useful modelling abstractions such as
quantifiers, sets, arrays, and a rich set of global constraints. All the constraints
presented in this paper are shown in a form that is very close to their MiniZinc
version.

Coq [20] is an interactive proof assistant based on constructive type theory,
more precisely, the calculus of inductive constructions. It also has a trustworthy
kernel [2]. Coq allows the user to state theorems, write proofs that are verified
according to the Curry-Howard isomorphism, and thus checking is reduced to
type checking. It is also possible to write and verify algorithms. Proofs are written
with the help of tactics (a.k.a. proof commands). Coq has many basic tactics,
including tactics for unfolding definitions, but also more complex ones, e.g. doing
arithmetic reasoning, or applying inductive proof schemes. Coq also provides a
rich library of high-level tactics that automates many low level details. Coq has
been used successfully in many projects of large scale such a formal proof of the
four colour theorem [10] or the construction of an optimising compiler for C [14].
Interactive theorem provers differ from automatic theorem provers, such as SMT
or SAT solvers, in that the user has to guide the tool to produce the proof.

Exploring Properties of a Telecommunication Protocol 241

3 Protocol Overview

Our case study is the Earthquake and Tsunami Warning System (ETWS) that is
a part of the Public Warning System [1]. Its purpose is to broadcast emergency
information to all the users in a certain area when earthquake or tsunami is
imminent. We do not present all details of the protocol, but only the part that
we used in the Coq development.

Write− ReplaceWarningRequest{
WarningType : ′0580′H
rPer : 30
nBR : 4
WarningMessageContents : ′41424344′H

}

Fig. 1. Warning message of combined type

There are three participants in the protocol that we consider: the network
entity, a radio base station and the user equipments. By receiving a warning
message from a network entity, the radio base station broadcasts paging mes-
sages and system information messages to the user equipments. In this work
we focus on paging messages. Periodicity of paging messages depends on the
type of warning message as shown in Figs. 2 and 4. Warning messages can be of
three different kinds depending on its content: messages can be primary notifica-
tions, and/or secondary notifications. So the type of a warning message can be
primary, secondary, or combined. A primary notification is a very simple mes-
sage indicating a type of imminent danger, e.g. “earthquake”, while a secondary
notification message contains more detailed text data. Warning messages of com-
bined type include both. Paging message is used to inform user equipment about
the presence of primary notification and/or secondary notification.

In Fig. 1 is shown an example of the content of a warning message, where only
information elements relevant to this work are included. The parameter rPer is
in seconds and is used to calculate periodicity of paging messages of secondary
notifications. The parameter nBR represents the number of paging messages of
secondary notifications.

The periodicity of paging messages of primary notifications is equal to the
default paging cycle dPC and the number of paging messages of primary notifica-
tions is ndPC that is configured in radio base station. The periodicity of paging
messages of secondary notifications is a multiple of dPC.

Figures 2 and 4 illustrate interleaving of paging messages of primary and
secondary notifications.

In Fig. 2 is shown the acquisition of paging messages by the user equipment
after the radio base station receives a first warning message of primary type
and then a warning message of combined type. The user equipment first reads

242 C. Dubois et al.

W
ar
ni
ng

m
es
sa
ge

1
P
ri
m

warning messages

W
ar
ni
ng

m
es
sa
ge

2
P
ri
m

Se
c

P
ag

in
g
1

paging messages of two primary notifications

P
ag

in
g
2

P
ag

in
g
3

P
ag

in
g
4

P
ag

in
g
5

P
ag

in
g
6

P
ag

in
g
7

P
ag

in
g
8

P
ag

in
g
9

P
ag

in
g
4

paging messages of secondary notification

P
ag

in
g
6

P
ag

in
g
8

P
ag

in
g
10

Fig. 2. An example of acquiring paging messages by user equipment transmitted by
radio base station after receiving warning message of primary type and warning message
of combined type. Different shapes on the top of the vertical lines represent different
types of warning messages.

W
ar
ni
ng

m
es
sa
ge

1
P
ri
m

Se
c

W
ar
ni
ng

m
es
sa
ge

2
P
ri
m

W
ar
ni
ng

m
es
sa
ge

3
Se

c

W
ar
ni
ng

m
es
sa
ge

4
Se

c

W
ar
ni
ng

m
es
sa
ge

5
P
ri
m

Se
c

delayPN2 delaySN2
delaySN3

delayPN3

delaySN4

Fig. 3. Transmission of warning messages.

Exploring Properties of a Telecommunication Protocol 243

W
ar
ni
ng

m
es
sa
ge

1
Se

c

warning messages

W
ar
ni
ng

m
es
sa
ge

2
P
ri
m

P
ag

in
g
4

paging messages of primary notification

P
ag

in
g
5

P
ag

in
g
6

P
ag

in
g
1

paging messages of secondary notification

P
ag

in
g
2

P
ag

in
g
3

P
ag

in
g
4

P
ag

in
g
6

Fig. 4. An example of acquiring paging messages by user equipment transmitted by
radio base station after receiving warning message of secondary type and warning
message of primary type.

P
a
g
P
N

1
,1

P
ag

in
g
1

P
a
g
P
N

1
,2

P
ag

in
g
2

P
a
g
P
N

1
,3

P
ag

in
g
3

dPC dPCdelay

P
a
g
S
N

1
,1

P
ag

in
g
1

P
a
g
S
N

1
,2

P
ag

in
g
4

P
a
g
S
N

1
,3

P
ag

in
g
5

P
a
g
S
N

1
,4

P
ag

in
g
6

a b adelay

Fig. 5. An example of acquiring paging messages by user equipment transmitted by
radio base station after receiving warning message of combined type.

244 C. Dubois et al.

three messages of primary notification corresponding to warning message 1. After
warning message 2 is received by the radio base station, it starts to transmit
paging messages of primary and secondary notifications, since warning message
2 has combined type. Figure 2 illustrates replacement of warning messages. If
the radio base station receives a new warning message of primary type, while
transmitting paging messages of primary notification of the previous warning
message, then the radio base station starts to transmit paging messages of new
primary notification. Similar replacement can occur for secondary notifications.

In Fig. 4 is shown the acquisition of paging messages by user equipment
after the radio base station receives first warning message of secondary type and
then warning message of primary type. The radio base station transmits paging
messages of secondary type and after receiving warning message 2 it starts to
transmit paging messages of primary type.

4 Constraint Model

In [11] we introduced a constraint model that had constraints on timestamps and
content of messages broadcast by a radio base station, including paging messages.
It is a discrete time model, since we deal with timestamps. The goal was to
check that timing and content of messages in the logs comply with specification.
Logs contain messages of 4 different types including paging messages. We used
simulators for both network and user equipment entities, and our system under
test is a radio base station. In this section we introduce a constraint model for
paging messages in more details than in [11].

For each warning message we know the timestamp corresponding to the
sending time. Figure 3 shows transmission of five warning messages. Since warn-
ing messages can contain primary and/or secondary notifications, we construct
array delayPN that defines timestamps of transmission of primary notifica-
tions by network entity and array delaySN that defines timestamps of trans-
mission of secondary notifications. The array delayPN has nPrim elements and
the array delaySN has nSec elements. Timestamp of the first warning message
is 0 and the message is of combined type. This means that delayPN1 = 0 and
delaySN1 = 0. The second warning message is of primary type and has times-
tamp delayPN2. The third warning message is of secondary type and has times-
tamp delaySN2. The fourth warning message is also of secondary type and has
timestamp delaySN3. The last warning message is of combined type and hence
has two equal timestamps delayPN3 and delaySN4.

Paging messages of primary and secondary notifications have different peri-
odicity and we need to distinguish them in order to check that messages in the
log comply with specification. Therefore we introduce a two dimensional array
of correct timestamps of paging messages of primary notification PagPN of size
nPrim · ndPC, and another two dimensional array of correct timestamps of sec-
ondary notification PagSN of size nSec · nBRmax, where nBRmax is the maximum
number in the array nBR of numbers of paging messages of secondary notifica-
tions. We post constraints on these arrays which calculate periodicity of paging

Exploring Properties of a Telecommunication Protocol 245

messages. Periodicity of paging messages of primary notification is equal to dPC
as shown in Fig. 5. The time difference between two consecutive paging messages
of secondary notification depends on dPC and the repetition period rPer of the
notification, and can take two different values a and b for the same notification
as shown in Fig. 5. Integer decision variable delay in Fig. 5 represents the delay
of first paging message that is the time difference between time when radio base
station starts to transmit primary notification and/or secondary notification and
the time user equipment reads first paging message.

The arrays delayPN and delaySN represent the timestamps of the warning
messages sent to the radio base station by a network entity. Since some vari-
able delay can occur, we introduce arrays of decision variables delayPN50 and
delaySN50 which represent the delay of each warning message. We assume that
delays are between 0 and 50 ms.

We post a constraint to guarantee that if delayPNi = delaySNj then the
equality delayPN50 i = delaySN50 j holds, 1 ≤ i ≤ nPrim and 1 ≤ j ≤ nSec.
Since the exact number of paging messages depends on delay , delayPN50 and
delaySN50 , we set PagPN and PagSN to −1 to define missing paging messages.

Constraint (1) defines the timestamp of the first paging message of the first
primary notification.

IF (delayPN1 = 0)
PagPN 1,1 = 0

ELSEIF (nPrim > 1)
((r < delayPN2 − delay ∧ PagPN 1,1 = r)∨
(r ≥ delayPN2 − delay ∧ PagPN 1,1 = −1)∨
(r ≥ delayPN2 − delay∧

r < delayPN2 − delay + 50 ∧ PagPN 1,1 = r∧
delayPN50 2 > r − delayPN2 + delay))

ELSE
PagPN 1,1 = r (1)

where r = roundupdPC(delayPN1 − delay + delayPN50 1) and

∀y ∈ N roundupdPC(y) = y + dPC − 1 − ((y + dPC − 1) mod dPC) (2)

Constraint (2) rounds y to the smallest integer that is greater or equal to y and
a multiple of dPC. The constraint (2) is used to define timestamps of paging
messages which are multiples of dPC.

Constraint (3) defines timestamp of first paging message of ith primary noti-
fication, 1 < i < nPrim.

(∀1 < i < nPrim)
((r < delayPNi+1 − delay ∧ PagPN i,1 = r)∨
(r ≥ delayPNi+1 − delay ∧ PagPN i,1 = −1)∨
(r ≥ delayPNi+1 − delay ∧ r < delayPNi+1 − delay + 50 ∧ PagPN i,1 = r∧

delayPN50 i+1 > r − delayPNi+1 + delay))
(3)

246 C. Dubois et al.

where r = roundupdPC(delayPNi − delay + delayPN50 i).
Constraint (4) defines the timestamp of the first paging message of the last

primary notification
IF (nPrim > 1)

PagPN nPrim,1 = r (4)

where r = roundupdPC(delayPNnPrim − delay + delayPN50 nPrim)
By replacing delayPN by delaySN, delayPN50 by delaySN50 and nPrim by

nSec, in (1), (3) and (4) we obtain a formula for calculating timestamps of first
paging messages of secondary notification.

Constraint (5) defines the timestamp of (k + 1)th paging message of ith
primary notification, 1 ≤ i < nPrim

(∀1 ≤ i < nPrim)(∀1 ≤ k < ndPC)
(PagPN i,k �= −1 ∧ PagPN i,k + dPC < delayPNi+1 − delay + delayPN50 i+1∧
PagPN i,k+1 = PagPN i,k + dPC)

∨
(PagPN i,k �= −1 ∧ PagPN i,k + dPC ≥ delayPNi+1 − delay + delayPN50 i+1∧

PagPN i,k+1 = −1)
∨
(PagPN i,k = −1 ∧ PagPN i,k+1 = −1)

(5)
Constraint (6) defines timestamp of (k+1)th paging message of the last primary
notification

(∀1 ≤ k < ndPC)
PagPN nPrim,k+1 = PagPN nPrim,k + dPC (6)

Constraint (7) defines timestamp of (k + 1)th paging message of jth secondary
notification, 1 ≤ j ≤ nSec, 1 ≤ k < nBRj .

(∀1 ≤ j ≤ nSec)(∀1 ≤ k < nBRj)
IF (PagSN j,k ≥ 0 ∧ (j = nSec ∨ PagSN j,1 + r <

delaySNj+1 − delay + delaySN50 j+1))
PagSN j,k+1 = PagSN j,1 + r

ELSE
PagSN j,k+1 = −1 (7)

where r = roundupdPC(rPerj ·k−(PagSN j,1−delaySNj −delaySN50 j +delay))
We based our proofs in Coq on the structure of the constraints presented in this
section.

5 A New Constraint Model for Delays

In this section we focus on the property of the protocol introduced in Sect. 5.1,
which helped us to design a better constraint model presented in Sect. 5.2. A new
constraint model includes constraints that were missing in [11]. The constraints
presented in Sect. 5.2 were obtained by interactive theorem proving with Coq.

Exploring Properties of a Telecommunication Protocol 247

5.1 A Property of the Protocol

Variable message delay increases complexity of the protocol drastically. A radio
base station can read a warning message sent by the network entity with some
delay. Introducing for each message a variable that represents delay between 0
and 50 would result in combinatorial explosion. Our goal is to find a formula to
compute delay based on the structure of the constraint model of the protocol that
eliminates some values and make it easier for a constraint solver to find a solution.
Constraints in Sect. 4, which calculate periodicity of paging messages, contain
delays delayPN50 and delaySN50 . If we constrain the values of delayPN50 and
delaySN50 , the new constraint model of the protocol should have a property
that the array of timestamps of paging messages PagPN and PagSN will not
change.

5.2 Constraints for Delay

The major impact of the delays delayPN50 and delaySN50 on PagPN and
PagSN is that they can increase timestamps of paging messages by dPC. We
introduce constraints that define delays delayPN50constr and delaySN50constr
of notification messages. For each possible value of delayPN50 and delaySN50
we find corresponding values delayPN50constr and delaySN50constr such that
arrays of timestamps of paging messages PagPN and PagSN will not change. The
following constraints are implicitly universally quantified over 1 ≤ i ≤ nPrim,
1 ≤ j ≤ nSec and 1 ≤ k ≤ nBRj .

The timestamp of the first paging message of the primary notification should
be equal to the smallest value greater or equal to delayPNi − delay and divis-
ible by dPC. In order to increase the timestamp of the first paging message by
dPC, the delay delayPN50constr should be the smallest value that guarantees
roundupdPC(delayPNi − delay + delayPN50constr) > roundupdPC(delayPNi −
delay). This also holds for delaySNi and delaySN50constr .

Constraint (8) defines delayPN50constr

(delayPN50 i = 0 ∧ delayPN50constr i = 0)∨
(delayPN50 i ≥ 1 ∧ (delayPNi − delay) mod dPC = 0 ∧

delayPN50constr i = 1)∨
(delayPN50 i ≥ 1 ∧ (delayPNi − delay) mod dPC > 0 ∧

roundupdPC(delayPNi − delay) =
roundupdPC(delayPNi − delay + delayPN50 i)∧
delayPN50constr i = 0)∨

(delayPN50 i ≥ 1 ∧ (delayPNi − delay) mod dPC > 0 ∧
roundupdPC(delayPNi − delay) <

roundupdPC(delayPNi − delay + delayPN50 i) ∧
delayPN50constr i = dPC − ((delayPNi − delay) mod dPC) + 1) (8)

Let rPerCoqj = rPerj · k − 2 · dPC where k is index of paging message of jth
secondary notification, 1 ≤ k ≤ nBRj . Let r = roundupdPC(delaySNj − delay +
delaySN50 j)

248 C. Dubois et al.

The timestamp of the (k + 1)th paging message of secondary notification
depends on rPerj ·k that makes constraints for the delay of secondary notification
more complex than for primary notification. In order to define delaySN50constr
we consider two cases. The first case defines the delay that increases the times-
tamp of the first paging message of secondary notification. The second case
introduces the delay that increases the timestamp of the (k + 1)th paging mes-
sage of secondary notification.

The first case requires that the Eq. (9) holds

roundupdPC(rPerCoqj + (2 · dPC + delaySNj − delay − r)) =
roundupdPC(rPerCoqj + (2 · dPC + delaySNj − delay − r) + delaySN50 j) (9)

Then by replacing the variable delayPN50 by delaySN50 and delayPN50constr
by delaySN50constr in the constraint (8), we obtain the first part of the con-
straint for delaySN50constr .

If the Eq. (9) does not hold, then we define delaySN50constr as

(roundupdPC(delaySNj − delay) =
roundupdPC(delaySNj − delay + delaySN50 j) ∧

delaySN50constr j = dPC − rPerCoqj mod dPC−
(delaySNj − delay + (dPC − 1)) mod dPC)

∨
(roundupdPC(delaySNj − delay) <
roundupdPC(delaySNj − delay + delaySN50 j)
∧

(((delaySNj − delay) mod dPC = 0 ∧
rPerCoqj mod dPC = 0 ∧ delaySN50constr j = 1)∨

((delaySNj − delay) mod dPC = 0∧
rPerCoqj mod dPC > 0 ∧
delaySN50constr j = 1 + dPC − rPerCoqj mod dPC)∨

((delaySNj − delay) mod dPC > 0 ∧ rPerCoqj mod dPC = 0 ∧
delaySN50constr j = dPC − (delaySNj − delay) mod dPC + 1)∨

((delaySNj − delay) mod dPC > 0 ∧
rPerCoqj mod dPC > 0 ∧ rPerCoqj mod dPC ≤

dPC − (delaySNj − delay) mod dPC ∧
delaySN50constr j = dPC − (delaySNj − delay) mod dPC + 1)∨

((delaySNj − delay) mod dPC > 0 ∧
rPerCoqj mod dPC > 0 ∧ rPerCoqj mod dPC >

dPC − (delaySNj − delay) mod dPC ∧
delaySN50constr j = dPC − (delaySNj − delay) mod dPC+

dPC − rPerCoqj mod dPC + 1)) (10)

Constraints (8)–(10) contain decision variables delayPN50 and delaySN50 . Our
goal is to replace these variables by delayPN50constr and delaySN50constr
in our MiniZinc constraint model, thus delayPN50 and delaySN50 should be
eliminated. For example, constraint (8) will be replaced by

Exploring Properties of a Telecommunication Protocol 249

(delayPN50constr i = 0 ∨ ((delayPNi − delay) mod dPC = 0∧
delayPN50constr i = 1) ∨ (delayPNi − delay) mod dPC > 0∧
delayPN50constr i = dPC − ((delayPNi − delay) mod dPC) + 1), (11)

we add this constraint to the model and we replace the variable delayPN50 by
delayPN50constr in (1)–(5).

6 Proofs in Coq

We made several assumptions that are formalised in Coq as axioms.1 Constraint
(12) is based on 3GPP standard.

dPC ≥ 320 (12)

Constraint (13) is based on the property that the user equipment can read first
paging messages with delay less than dPC and we assume that radio base station
can receive first notification message with delay less than 50 ms.

0 ≤ delay < dPC + 50 (13)

Constraints (14), (15) and (16) are required by proofs in Coq, which use lemmas
of natural arithmetics.

rPerj > 2 · dPC (14)

delayPNi > delay (15)

delaySNj > delay (16)

delayPN1 and delaySN1 can be equal to 0, but we do not consider this case,
since then we set delayPN50 1 and delaySN50 1 to 0. Constraint (14) is a stronger
version of assumption we made in [11]. We assumed in [11] that rPerj > dPC,
but we did not take in consideration message delays.

We started by proving correctness of the constraint that was manually derived
for delay. However, while applying tactics in Coq, we found that some cases were
missing in the constraint. The parameter rPer did not occur in formula for the
delay. The constraints described in the previous section were derived by analysing
the required assumptions after applying tactics.

We proved in Coq that the delays delayPN50 and delaySN50 can be replaced
by delayPN50constr and delaySN50constr in the constraint model, that is the
solutions for arrays of decision variables PagPN and PagSN are not changed
after this replacement.

We split the proof into several lemmas and theorems, where we used Coq
library for basic Peano arithmetic. We formulated different theorems for paging
messages of primary and secondary notifications. Since constraints on times-
tamps of paging messages of secondary notifications are more complex, they
require more lemmas to prove.

The proof consists of several steps.
1 The Coq model is available at https://github.com/astra-uu-se/SEFM18.

https://github.com/astra-uu-se/SEFM18

250 C. Dubois et al.

1. We proved general properties of roundupdPC. For example, we prove that

∀n, d ∈ N,
(d ≤ 50 ∧ roundupdPC(n) < roundupdPC(n + d)) →
roundupdPC(n + d) = roundupdPC(n) + dPC

2. We proved that delayPN50constr i ≤ delayPN50 i and delaySN50constr j ≤
delaySN50 j , 1 ≤ i ≤ nPrim, 1 ≤ j ≤ nSec.

3. We proved that

roundupdPC(t + delayPN50constr i) = roundupdPC(t + delayPN50 i),

and

roundupdPC(t′ + delaySN50constr j) = roundupdPC(t′ + delaySN50 j),

where t, t′ are expressions from constraint model.
4. Let t′ mod dPC = 0. We proved that

– if t′ < (delayPNi −delay)+delayPN50 i and t′ ≥ (delayPNi −delay) then
t′ < (delayPNi − delay) + delayPN50constr i.

– if t′ < (delaySNj −delay)+delaySN50 j and t′ ≥ (delaySNj −delay) then
t′ < (delaySNj − delay) + delaySN50constr j .

5. In constraint (10) delaySN50constr j depends on k. We showed that we do not
need to have two or more values of delaySN50constr j with different values
of k for the same delaySN50 j , delaySNj and delay . We proved that we can
always choose the largest value of delaySN50constr j .

From Step 2 we derived that

– delayPN50constr i ≤ 50,
– delaySN50constr j ≤ 50,
– if t > (delayPNi − delay) + delayPN50 i, then t > (delayPNi − delay) +

delayPN50constr i,
– if t > (delaySNj − delay) + delaySN50 j , then t > (delaySNj − delay) +

delaySN50constr j

Constraint (10) can be simplified by removing 2 · dPC, since we have expression
rPerCoqj +2 ·dPC = rPerj ·k−2 ·dPC+2 ·dPC. We add 2 ·dPC in order to be able
to use lemmas of natural arithmetics in Coq. We have delaySNj −delay − r ≤ 0,
but rPerj ·k−2·dPC > 0 by our assumption and 2·dPC+delaySNj−delay−r > 0.

7 Related Work

Because of the importance of network protocols there have been many case
studies on the application of formal methods to the verification and study of
network protocols. Some of the early work included the use of finite automata,
Petri nets and symbolic execution to verify the absence of deadlock and liveness
properties, see [19]. It is impossible here to give a complete survey of the field,

Exploring Properties of a Telecommunication Protocol 251

(see [17] for a recent survey) instead we will concentrate on the use of theorem
provers based on type theory, such as Coq or Isabelle [16] to verify non-trivial
properties of network protocols.

One advantage of using a theorem prover over a model checker is that it
is easier to reason about infinite objects and hence prove properties that are
satisfied by every possible run of a protocol. In [9] a novel use of co-inductive
types, which correspond to infinite streams of data, was used to model and verify
the alternating bit protocol. While [9] used a process calculus that characterises
possible computation steps that can be performed in a protocol, the work in [5]
uses an algebraic approach that captures when two processes are equivalent.
In order to automate a hand-written proof of the alternating bit protocol, an
encoding of a rich and widely used algebraic specification language for concurrent
systems with data, µCRL [12] was formalised in Coq.

More recent work (see [3] and the references therein) on process calculi
in Isabelle has resulted in generic framework, the Psi-Calculus, that captures
many different process calculi. The resulting formalisation is over 32, 000 lines
of Isabelle code. In [7] an extension of the Psi-calculus was given to capture
the broadcast of messages and applied to a non-trivial wireless sensor network
protocol.

The use of interactive theorem proving for high-level constraint models in
languages similar to MiniZinc has been considered in [4,8]. In [4], the authors
show that almost all interesting properties of a constraints model, such as model
equivalence, are undecidable in general for languages as expressive as MiniZinc.
However, they illustrate that properties can be automatically verified when a
restricted language is considered. In [8] interactive theorem proving was used to
derive symmetry breaking constraints of models. The work in [4,8] considers the
general problem of reasoning about any model, while we consider a specific case
study where undecidability is not a problem.

All of the cited work so far has been concerned with protocols that do not
have a time component. In our application the timing of messages is of crucial
importance to the correct operation of the protocol. In [13] a real time protocol
is verified using HOL (closely related to Isabelle [16]). Further resulting formal-
isation is then used in conjunction with the theorem analyse the qualitative soft
real-time behaviour of the protocol. This is similar in spirit our derivation of
message delays.

8 Conclusion

We used Coq to discover a formula for message delay in a 4G protocol and proved
correctness of the formula.

We analyzed real logs from [11] with derived delays. However, there was an
impact on performance of large generated log analysis. We still can analyze logs
with large number of errors, but with a size smaller than in [11].

We found that Coq is a useful tool. It would be hard to do such proofs by
hand and the tool helped to construct formula for delay. We want to emphasize

252 C. Dubois et al.

that interactive feature of Coq was very important, since the formula in the
initial model was not correct. Proofs are about 6500 lines, but we believe that
number of lines can be reduced by improving our use of tactics. Our proofs are
based on the structure of the constraint model used in [11]. The proofs could
also be done with Isabelle/HOL or PVS. In this formal development we rely on
Coq features related to inductive types and first order logics and last but not
least on Coq standard library (for modulo). We also used intensively the omega
tactic to solve some arithmetic subgoals. Why3 [6] could be an alternative for our
work, offering a large choice of automatic solvers and proof assistants. However
it depends on the way these solvers support the modulo operator. A perspective
is to apply this approach to other protocols with message delay to create more
efficient constraint model. An interesting question to explore is how to convert
automatically constraint models into Coq.

Acknowledgments. The second author was supported by Swedish Foundation for
Strategic Research. The third author is partially support by the Swedish Research
Council VR.

References

1. 3GPP. Public warning system (PWS) requirements. TS 22.268, 3rd Generation
Partnership Project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/22268.
htm

2. Barras, B., Werner, B.: Coq in Coq. Technical report, INRIA-Rocquencourt (1997)
3. Bengtson, J., Parrow, J., Weber, T.: Psi-Calculi in Isabelle. J. Autom. Reasoning

56(1), 1–47 (2016)
4. Bessiere, C., Hebrard, E., Katsirelos, G., Kiziltan, Z., Narodytska, N., Walsh, T.:

Reasoning about Constraint Models. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI
2014. LNCS (LNAI), vol. 8862, pp. 795–808. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-13560-1 63

5. Bezem, M., Bol, R., Groote, J.F.: Formalizing process algebraic verifications in the
calculus of constructions. Formal Aspects Comput. 9(1), 1–48 (1997)

6. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: Workshop on Intermediate Verification Languages (2011)

7. Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Pohjola, J.Å.,
Parrow, J.: Broadcast psi-calculi with an application to wireless protocols. Softw.
Syst. Model. 14(1), 201–216 (2015)

8. Cadoli, M., Mancini, T.: Using a theorem prover for reasoning on constraint prob-
lems. Appl. Artif. Intell. 21(4&5), 383–404 (2007)

9. Giménez, E.: An application of co-inductive types in Coq: verification of the alter-
nating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol.
1158, pp. 135–152. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
61780-9 67

10. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: 8th Asian
Symposium of Computer Mathematics, p. 333. ASCM (2007)

11. Grinchtein, O., Carlsson, M., Pearson, J.: A constraint optimisation model for
analysis of telecommunication protocol logs. In: Blanchette, J.C., Kosmatov, N.
(eds.) TAP 2015. LNCS, vol. 9154, pp. 137–154. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21215-9 9

http://www.3gpp.org/ftp/Specs/html-info/22268.htm
http://www.3gpp.org/ftp/Specs/html-info/22268.htm
https://doi.org/10.1007/978-3-319-13560-1_63
https://doi.org/10.1007/978-3-319-13560-1_63
https://doi.org/10.1007/3-540-61780-9_67
https://doi.org/10.1007/3-540-61780-9_67
https://doi.org/10.1007/978-3-319-21215-9_9
https://doi.org/10.1007/978-3-319-21215-9_9

Exploring Properties of a Telecommunication Protocol 253

12. Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. In: Ponse, A., Verhoef,
C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes. Workshops in
Computing. Springer, London (1995). https://doi.org/10.1007/978-1-4471-2120-
6 2

13. Hasan, O., Tahar, S.: Performance analysis and functional verification of the stop-
and-wait protocol in HOL. J. Autom. Reason. 42(1), 1–33 (2009)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

16. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

17. Qadir, J., Hasan, O.: Applying formal methods to networking: theory, techniques,
and applications. IEEE Commun. Surv. Tutorials 17(1), 256–291 (2015)

18. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, New York (2006)

19. Sunshine, C.A.: Survey of protocol definition and verification techniques. SIG-
COMM Comput. Commun. Rev. 8(3), 35–41 (1978)

20. The Coq Development Team. The Coq proof assistant reference manual version
8.6 (2016)

https://doi.org/10.1007/978-1-4471-2120-6_2
https://doi.org/10.1007/978-1-4471-2120-6_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Automated Validation of IoT Device
Control Programs Through

Domain-Specific Model Generation

Yunja Choi(B)

School of Computer Science and Engineering,
Kyungpook National University, Daegu, South Korea

yuchoi76@knu.ac.kr

Abstract. The IoT is a networked system of physical devices controlled
by embedded software whose validity is a pre-requisite to ensuring the
correct behavior of the entire system. To automate the verification and
validation process of such control software, this work constructs a valida-
tion model by composing pre-defined behavioral patterns of an operating
system that is compliant with the OSEK/VDX international standard
and models of application programs abstracted w.r.t. interactions with
the underlying operating system. This validation model is used to per-
form property checking using the model checker SPIN to ensure that the
behavior of the control program complies with the original intention of
the program design. We automated the model generation process and
applied it to 9 benchmark programs for the open source IoT OS Erika.

1 Introduction

Verification and Validation (V&V) of embedded control software has been an
active research area, especially for software controlling safety-critical systems [10,
23]. The importance of rigorous and efficient V&V methods and tools cannot be
over-emphasized in safety-critical domains. Especially in the era of IoT systems,
which connect everything in our daily lives - from simple devices, such as sensors
and actuators, to complex machines such as cars, drones, and home electronics
-, the importance of the quality assurance for each device controller is increasing
ever more. The bottom line is that the correct behavior of the whole IoT system
cannot be assured without assuring each contributing device.

Numerous approaches have been suggested for comprehensive and rigorous
verification of control software, represented by formal modeling and formal ver-
ification [3,14], model-based test generation [2,6,22], and model-driven code
generation [15], with many visible achievements in practice. Nevertheless, exist-
ing approaches are not very suitable for IoT device control software because

This research was supported by Basic Science Research Program through
National Research Foundation of Korea (NRF) funded by the Ministry of Edu-
cation (NRF-2016R1D1A3B01011685) and the Ministry of Science, ICT (No.
2017M3C4A7068175).

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 254–268, 2018.
https://doi.org/10.1007/978-3-319-92970-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_16&domain=pdf

Automated Validation of IoT Device Control Programs 255

of several reasons, including: (1) Existing approaches generally do not take the
underlying operating systems into account, even though it is an inseparable
part of the small-scale control software; (2) model construction for each device
controller requires domain and modeling experts; and (3) rigorous and compre-
hensive verification typically requires formal verification techniques and experts
in this field. Experts in these areas are quite rare in practice, and, even when
they are available, it is time-consuming and impractical to apply manual mod-
eling and verification to potentially hundreds of devices contributing to an IoT
system.

This work proposes the first step towards quick and easy formal verification
through automated model generation for device control software written in the
C language. Given a control program and its configuration information, our app-
roach auto-constructs a validation model by composing a set of service patterns
of a standard operating system and the target control software. The service pat-
terns defined in parameterized statemachines [5] are written in PROMELA, the
input language of the model checker SPIN [17]. The control software written in
C is embedded in the PROMELA application model, which interacts with the
OS model only through API function calls. We introduce two major components
in our model construction approach, the OS model written in PROMELA and
the application model embedded in the PROMELA interaction model.

The validation model is a formal representation of the device controller focus-
ing on the interactions between the control program and its underlying operating
system while abstracting from the implementation details. This model is used
to simulate the control software and to rigorously validate the correct behavior
of the control program using model checking. As long as each device controller
works on an operating system that is compliant with the same international stan-
dard, our approach fully automates the construction of the model from control
software written in C and enables automated formal validation of the control
logic using model checking. The suggested approach is applied to nine Erika
benchmark programs [1] to perform comprehensive property verification as a
means for validating the behavior of each control program w.r.t. the correct
sequence of task executions.

The remainder of this paper is organized as follows. Section 2 explains the
characteristics of the development of IoT device controllers and provides a brief
overview of SPIN and PROMELA. Section 3 introduces our approach for config-
urable model construction. Section 4 shows the result of the case study where the
suggested approach was applied to a set of benchmark programs of the Erika. We
conclude with a brief summary of related work (Sect. 5) and a discussion (Sect. 6).

2 Background

Our approach is a domain-specific implementation of the pattern-based V&V
framework introduced in [5], using the modeling language PROMELA and the
model checker SPIN. This section provides a brief overview of our target domain
and some basic knowledge about PROMELA and SPIN to help understand the
essentials of the suggested approach.

256 Y. Choi

2.1 Elements of Device Control Software

The control software of an IoT device is typically running on top of an operat-
ing system. A typical set of services commonly required by IoT devices includes
services for task management, resource management, event management, alarm
management, interrupt handling, and task scheduling. Contiki, RIOT, FreeR-
TOS, Zephyr, and Erika are representative examples of operating systems spe-
cialized for small-scale IoT devices.

One thing to note is that a control program is inseparable from its underlying
operating system by construction. The software part of the device controller is
produced by compiling a selected subset of operating system services together
with the application program, where the selection of required services is deter-
mined by the configuration of each application program such as the numbers and
types of tasks, alarms, and ISRs. Therefore, validation of such device controllers
also requires considering configuration-dependent operating system services and
the interaction behavior among the operating system and application programs.
This is not a trivial task as the same control logic may behave differently in
different system configurations.

2.2 Model Checker SPIN and C Code Embedding

SPIN [17] is one of the most widely used software model checkers. It is quite
accessible to engineers as it uses the C-like modeling language PROMELA and
its checking mechanism is based on explicit statespace search, providing numer-
ous options for optimizing the speed of the search. In particular, it supports
embedding of C program code directly into the model, making it possible to
smoothly integrate application source code written in C with high-level models.

Processes and Message Passing in PROMELA. The syntax of PROMELA
is similar to the C language, supporting most primitive data types plus arrays
and structures in C; its semantics, however, is based on CSP [16]. Major con-
structs of PROMELA include proctype, which defines the type of a process,
and chan, which defines a communication channel used to pass messages among
processes. The following is an example of a process that communicates through
the channel api ch consisting of four message fields. The size of the channel is
declared as five, meaning that up to five messages are buffered in the channel.

chan api_ch = [5] of {byte, mtype, byte, byte};

proctype OSEK_OS(){

// wait StartOS message

api_ch?[_,eval(StartOS),_,_]; api_ch?_,_,_,_;

// start OS logic goes here

api_ch!tid, RT, 0,0;

...

}

Automated Validation of IoT Device Control Programs 257

Processes use the channel to check whether a specific message arrives and to
selectively receive the message by evaluating its value. Unlike C, each statement
in PROMELA is executed if the evaluation of the statement is true, but is blocked
otherwise until it becomes true. For example, api ch?[,eval(StartOS), ,]
is executed when the api ch channel receives a message where the value of
the second field of the message is equal to StartOS. PROMELA also supports
nameless reception of messages, such as api ch? , , , , for cases where specific
values of the messages are not of interest.

C Code Embedding in PROMELA. PROMELA is a modeling language spe-
cialized for rigorous verification of communicating processes using SPIN. Though
it is supposed to be easy to use in practice due to its C-like syntax, modeling
before programming is not a common practice in the development of embed-
ded software, especially in the development of control software for small devices.
PROMELA provides a bypass for this issue by allowing embedding of program
source code directly into PROMELA models, thus saving time and effort for
model construction. There are two major constructs for C code embedding,
c decl and c code. c decl is for the declaration of types and variables that
are used inside the c code block. Statements in a c code block are executed
according to the control flow, but value changes are not traced by the model
checker, unlike the values of variables in a PROMELA model. It is also possible
to trace a specific variable inside a c code block, using a c track construct,
meaning that we can control the level of abstraction of the model by tracing
only those values that are relevant for the verification goal.

3 Configurable Model Construction in Promela

As shown in Fig. 1, our validation model is a SPIN-executable PROMELA model,
which is a composition of an OS model constructed from a set of pre-defined
OS patterns and an application model abstracted from C source code. This
section introduces OS patterns defined in PROMELA and the interaction model
between an OS model and an application model. The way application programs
are embedded in the interaction model is also explained.

3.1 OS Patterns in PROMELA

A minimal set of OS patterns are modeled in PROMELA by referencing the pat-
terns defined as parameterized statemachines in [5], including models of kernel
variables, basic API functions, alarms and ISRs.

OS Kernel Variables and Basic Operations. The patterns for minimal OS
services are designed for priority-based FIFO scheduling and resource priority-
ceiling protocol as required by the OSEK/VDX international standard and many
other IoT operating systems. To maintain information regarding static and

258 Y. Choi

Parameterized OS
patterns (API.h, sysds.h,

error.h, OS.pml)

Application model using
C code embedding

(app.h, config.h, initial.h,
lib.h, alarm.h, main.pml)

Application
Configuration

 (OIL file)

SPIN
executable
verification

model

Concrete OS models

Application Code
 (.c, .h files)

Platform-specific library
functions (lib_man.h)

Fig. 1. PROMELA model generation

dynamic configurations of the system, the OS patterns include essential data
structures as follows:

1. A priority queue: A priority queue is defined as a two-dimensional array whose
elements are <identifier, priority> of a task.

2. Static configuration of tasks: An array of static information of tasks whose
elements consist of initial task priority and Boolean values indicating whether
a task is preemptable, auto-start, or extended.

3. Dynamic task information: An array of dynamic task information including
the number of current activations and the dynamic priority of a task.

4. Resource table: A two-dimensional array that maps a resource to a task that
allocates the resource.

5. Event table: A two-dimensional array that maps a task to events that the
task is setting or waiting for.

We also modeled basic operations common to all operating systems that use
priority queues, such as pushing tasks to the priority queue and getting the
information of a task from the queue.

Basic API Functions. An operating system provides a set of API functions to
be used by application programs to fulfill their specific tasks. In this respect, we
define an OS as a set of basic API functions that are modeled as inline functions
in PROMELA.

Table 1 shows the list of major API functions that require task scheduling and
corresponding headers of inline functions specified in PROMELA1. The behavior
of each API function is modeled by referencing the formal models defined in
parameterized statemachines in our previous work [5], where the caller of the API
function tc is specified explicitly. For example, inline activate task(param0,
param1) shown in the left part of Fig. 2 models the activation behavior of task
param1 requested by task param0. It first checks whether the current number
of activations of task param1 is within the maximum number of activations and
1 The names of these API functions may differ among OSes, but most OSes specialized

for IoT devices offer the same functionalities under different names.

Automated Validation of IoT Device Control Programs 259

Table 1. API functions in PROMELA

API function PROMELA Usage

ActivateTask(t) inline activate task(tc, t) tc requests the activation of
task t

TerminateTask() inline terminate task(tc) tc requests the termination of
itself

ChainTask(t) inline chain task(tc, t) tc requests the activation of task
t and the termination of itself

GetResource(r) inline get resource(tc, r) tc requests an allocation of
resource r

ReleaseResource(r) inline release resource(tc, r) tc requests deallocation of
resource r

WaitEvent(e) inline wait event(tc, e) tc requests waiting for event e

SetEvent(t, e) inline set event(tc, t, e) tc requests setting an event e for
task t

Schedule() inline schedulet(tc) tc requests rescheduling

pushes the task into the priority queue, setting the state of the task Ready. It
then checks whether rescheduling is required, i.e., whether the newly activated
task has higher priority than the currently running task param0. If so, it preempts
the currently running task by pushing it into the priority queue and gets a task
with the highest priority from the priority queue.

Alarms and ISRs. An alarm used in embedded software is declared in the
configuration file, but details of its behavior can be specified either in the con-
figuration file as an autostart alarm or in the application source code using API
function calls, such as SetAbsAlarm or SetRelAlarm. Below is a typical config-
uration specification for an alarm written in the OIL configuration language. It
specifies that the testalarm is an auto-start alarm, meaning that it automat-
ically starts when the OS starts, and activates the task my periodic task at
every 2000 ms. If the AUTOSTART flag is FALSE, then the alarm is not started until
the application program calls SetAbsAlarm or SetRelAlarm with the parameters
specifying the ALARMTIME and CYCLETIME.

ALARM testalarm {

COUNTER = SystemCounter;

ACTION = ACTIVATETASK { TASK = my_periodic_task; };

AUTOSTART = TRUE { APPMODE = std;

ALARMTIME = 100; CYCLETIME = 2000; };

};

An alarm is used to perform a task or to set events periodically, but does
not contain control logic on its own. It does not have its own priority, nor is it
scheduled by the scheduler, and thus it does not go through the priority queue

260 Y. Choi

inline activate_task(param0, param1){
 atomic{
 if
 :: task_dyn_info[param1].act_cnt <
 task_static_info[param1].max_act_cnt ->
 task_dyn_info[param1].act_cnt++;
 prio = task_static_info[param1].prio
 push_task_into_readyQ(param1,prio,0);
 task_state[param1] = Ready;
 :: else -> e_code = E_OS_LIMIT;
 fi;

 if
 :: task_dyn_info[run_tid].dyn_prio < max_prio
 -> prio = task_static_info[run_tid].prio;

 push_task_into_readyQ(run_tid,prio,1);
 task_state[run_tid] = Ready;
 get_task_from_readyQ(tid, prio);

 task_state[tid] = Running;
 run_tid = tid;

 :: else -> skip;
 fi;
 }
}

1 : proctype Alarm(){
2 : //local variables here
3 : init_state:
4 : api_ch?[_, eval(SetRelAlarm),_,_];
5 : api_ch?ctid,_,_,cycle;
6 : api_ch!tid, RT, ctid, 0;
7: i =0;
8 : timer:
9 : if
10: :: i == cycle ->
 api_ch!run_tid,ActivateTask,2,0;
11: api_ch?[_, eval(RT), eval(run_tid),_];
12: api_ch?_,_,_,_;
13: i=0;
14: :: i < cycle -> i++;
15: :: else -> i=0;
16: fi;
17: goto timer;
}

Fig. 2. Patterns in PROMELA: activate task inline function and Alarm proctype

to perform its work. Therefore, we modeled the alarm as an independent process
rather than a kind of task that needs to be maintained and scheduled by the
task manager and the scheduler. The right part of Fig. 2 is a pre-defined model
of an alarm in PROMELA that is not autostart. Once instantiated, the alarm
waits for SetRelAlarm, which sets the timer and the cycle (lines 4–6). Lines 8–16
are for modeling a timer and the action performed at each end of the cycle. The
model is auto-generated depending on the configuration of the alarm, which is
parameterized by whether it is an autostart alarm or not; lines 3–6 are included
in the model only if the alarm is not autostart. The action to be performed
by the alarm at each end of the cycle (e.g. ActivateTask in line 10) is also
parameterized in the model generation process. The value of the parameter is
determined by the system configuration.

On the other hand, the model for Interrupt Service Routines (ISRs) is defined
as a kind of task, as ISRs and tasks share similar characteristics: They are
allowed to contain application logic, have their own priorities, and are scheduled.
A major difference between an ISR and a task is that an ISR is triggered by
external signals while a task is executed according to the task execution sequence
determined by the scheduler. There are minor differences between them, e.g.,
ISRs are restricted to calling certain API functions. The left side of Fig. 4 is
an example code of an ISR. Models of tasks and ISRs are not predefined, but
auto-constructed from the source code by using code embedding. Details will be
explained in the subsequent sections.

Automated Validation of IoT Device Control Programs 261

3.2 Interaction Model

OS kernel variables, basic API functions, and basic system operations are pre-
defined and selectively composed to construct an OS model depending on the
choice of system configuration. This OS model is again composed with appli-
cation code written in C after it is embedded into the PROMELA interaction
model. The left part of Fig. 3 shows an overview of the model representing the
interaction between the OS model and an application program.

API handler

Kernel data

Kernel data
Operation

Application Program in C

API function
API function

API function

OS Model in PROMELA

Embedded in PROMELA

Message passing

API function call Return of control

Execute

call

Check & manipulate

return

return

Request service
& wait

Result of service &
resume

proctype API_handler(){
 // declaration of local variables
 Off:
 api_ch?[_,eval(StartOS),_,_]; api_ch?_,_,_,_;
 goto On;
 On:
 if
 :: d_step{ api_ch?[_,eval(ActivateTask),_,_]
 -> api_ch?param0,_,param1,_; }
 activate_task(param0,param1);
 api_ch!0,RT,param0,0;
 :: d_step{ api_ch?[_,eval(Schedule),_,_]
 -> api_ch?param0,_,_,_; }
 schedule(param0);
 api_ch!0,RT,param0,0;
 :: ...
 fi;
 goto On;
}

Fig. 3. IModel of interaction between application code and OS model

The API handler in the PROMELA model is an independent process that
receives requests from other processes (mainly from the application program)
and calls the inline API function corresponding to the request. The right part
of Fig. 3 is a skeleton of the API handler in PROMELA: It waits for messages
through the message channel api ch. Once a message arrives, it checks whether
the message corresponds to the API function it has been waiting for; if so, it
removes the message from the channel, and performs the specified services. For
example, once the OS starts, the API handler is in the On state and waits for
API function calls such as ActivateTask or Schedule. If it receives a message
for ActivateTask, it executes the pre-defined inline function activate task,
returns the control to the application program, and goes back to the On state
waiting for other messages.

Application programs are embedded into the PROMELA interaction model
by wrapping the application logic with c code blocks. Figure 4 is an example

262 Y. Choi

of embedding an application program source code into the interaction model.
The left side of the figure shows an interrupt handler named TEST IRQ2. By
constructing a CFG (Control Flow Graph), the C code is analyzed w.r.t. the call
to API functions in order to identify code blocks that do not contain API function
calls. The code blocks are embedded into the PROMELA interaction model by
enclosing them within c code. Parts that call API functions are converted into
message passing statements in PROMELA.

We note that the model checker SPIN does not trace the execution of a
c code block unless it is explicitly specified to be traced. Therefore, code blocks
wrapped with c code are not accounted for in terms of verification cost.

ISR(TEST_IRQ2){
isr1_fired++;
if(isr1_fired == 1){

EE_assert(EE_ASSERT_ISR_FIRED, isr1_fired ==1,
EE_ASSERT_INIT); }

SetRelAlarm(testalarm, 10, 20);
while(!(isr2_fired%10));
while (isr2_fired %10);
printf(“End of Test ISR \n”);
TerminateTask();

}

inline ISR_TEST_IRQ2(tid){
task_state[tid] == Running;
c_code{

isr1_fired++;
if(isr1_fired == 1){

EE_assert(EE_ASSERT_ISR_FIRED, isr1_fired ==1,
EE_ASSERT_INIT); }

};
task_state[tid] == Running;
api_ch!tid,SetRelAlarm,10,20;
api_ch?[_,eval(RT),eval(tid),_]; api_ch?_,_,_,_;
task_state[tid] == Running;
c_code{

while(!(isr2_fired%10));
while (isr2_fired %10);
printf(“End of Test ISR \n”);

};
task_state[tid] == Running;
api_ch!tid,TerminateTask,0,0;
api_ch?[_,eval(RT),eval(tid),_]; api_ch?_,_,_,_;

}

Fig. 4. An example of application code embedding

3.3 CFG Annotation for C Code Embedding

In order to embed C code into the PROMELA interaction model, we perform an
analysis on the CFG of the program source code in order to identify code blocks
that do not contain API function calls and to annotate the interaction points
with PROMELA message passing statements. We first merge consecutive nodes
that do not contain API function calls into one state block, which becomes the
unit of code embedding.

Figure 5 illustrates our CFG annotation method for each unit function where
each node that calls an API function is annotated as an interaction point and
the maximal code blocks that do not contain API function calls are annotated
as c code blocks. If a task or a user-defined function does not contain any API
function call, the entire function can be annotated with c code. Nevertheless,
as an application program may consist of several tasks, ISRs, and user-defined
functions, with non-trivial call structure, we first analyze the call graph to check
whether a function containing a call to an API-function exists in the call hierar-
chy before annotating each unit function. Below is the overall annotation process.

Automated Validation of IoT Device Control Programs 263

int
a,b,c

GetResource
(r1)

a=a+b;

b=3;

ReleaseResource
(r1)

if(a==0 &&
b==0) TerminateTask()

c_code interaction
point

interaction
point

interaction
 point

c_code

Fig. 5. CFG annotation for C code embedding

1. Construct a CFG for each task, ISR, and the main function. Store them in a
set of CFGs, say CFGset.

2. For each task/ISR/main, perform call graph analysis to identify all functions
(callees) directly or indirectly called by the task/ISR/main and store their
CFGs in CFGset. In this process, the head node of each callee is annotated
with APIcall if it contains an API function call. If a callee is annotated with
APIcall, all direct/indirect callers of the callee are also annotated in the same
way.

3. For each CFG in CFGset, perform annotation for C code embedding if the
head node of the CFG is annotated with APIcall; otherwise, embed the entire
function.

After the CFG annotation, each unit function is translated into a PROMELA
model by converting statements annotated with c code and interaction point
into c code blocks and PROMELA message passing statements, respectively.
The right part of Fig. 4 is an example of the conversion. c code blocks are
embedded as they have no syntactic changes. The interaction points, however,
are translated into PROMELA interaction statements for sending requests and
receiving the result of the request. We also note that the interaction statements
are preceded by the checks for the current state of the caller task or ISR request-
ing the service. The PROMELA statement task state[tid]==Running is to
ensure that the task with the identifier tid is currently in the Running state in
order to call an API service. If this is not the case, the task is blocked until it
gets executed.

4 Case Study: Applications to Erika Programs

We applied our approach to nine benchmark programs of the Erika OS for the x86
platform. Erika [1] is an open-source free RTOS compliant with the OSEK/VDX
standard and the MISRA 2004 coding standard. It supports hard real time with
fixed-priority scheduling, immediate priority ceiling, as well as Earliest Dead-
line First scheduling. As our patterns are modeled based on the basis of the
OSEK/VDX standard, Erika applications can be considered a good starting
point for validating our approach.

Table 2 shows some characteristics of these nine programs. From left to right,
each column represents the name of the program, the lines of source code (exclud-
ing comments, library functions, and configuration files), the numbers of tasks,

264 Y. Choi

Table 2. Erika benchmark programs

Name LOC T A I R Characteristics

EEtest00 36 1 0 0 0 Used for testing the priority-based scheduling of a
task

EEtest01 57 2 0 0 0 Used for testing an application that activates a task
from the main function

EEtest02 82 2 1 0 0 Sets an alarm in the main function and activates a
task in the alarm handler

EEtest03 106 3 0 1 0 Activates a task in the main function and the task
triggers an interrupt whose handler activates another
task

EEtest04 112 3 1 1 0 Activates a task in the main function that sets a
periodic alarm. The alarm activates another task

EEtest05 140 3 1 1 0 Activates a task in the main function that triggers an
interrupt in the presence of a periodic alarm

EEtest06 135 3 1 0 0 Uses nested user-defined functions in addition to
typical tasks and ISRs

EEtest07 123 3 1 1 0 A task activates itself over the maximum number of
activations allowed

EEtest08 145 3 1 1 1 Two tasks access the same resource

alarms, ISRs, and resources used in the programs, and the key characteristics of
each program.

It is difficult to be sure how each program behaves, especially in the pres-
ence of periodic alarms and interrupts. Simulation has been a major means for
ensuring the validity, but it is difficult to consider it comprehensive. For more
comprehensive and automated validation of the behavior of each application pro-
gram, we have identified a list of properties that specify the expected execution
sequences of tasks in the given application program. Some properties are com-
mon to all application programs, such as properties for ensuring mutual exclu-
siveness of multiple tasks or deadlock-freeness. Some are application-specific, as
each application program has its own design of task execution sequences. Below
are shown some of the identified properties.

S1. Task1 and Task2 shall not run at the same time.
S2. Running tasks shall terminate in the end.
S3. The number of activations of a task shall not exceed the specified maximum

number of activation counts of the task.
S4. Once tasks are activated, the control shall never return to the main function

(EEtest05).
S5. Task1 always triggers the interrupt handled by its corresponding ISR

(EEtest05).
S6. Activation of the ISR always triggers the periodic alarm that activates Task2

(EEtest05).

Automated Validation of IoT Device Control Programs 265

S1 to S3 are common properties that must be satisfied by any application
programs. S4 to S6 are examples of application-specific properties. These prop-
erties are formally specified in LTL (Linear Time Logic), which can be checked
using the model checker SPIN.

P1. [] !((task state[i] == Running) && (task state[j] == Running)) (for i �= j)
P2. [] ((task state[i] == Running) → <> (task state[i] == Suspended)) (∀i)
P3. [] (task dyn info[i].act cnt ≤ task static info[i].max act cnt) (∀i)
P4. [] (task state[1] == Running → ! <> ((task state[0] == Running)))
P5. [] (task state[1] == Running → X <> (task state[3] == Running))
P6. [] (task state[3] == Running → (TRUE U (task state[2] == Running)))

LTL is a propositional logic with a temporal operator, which mainly includes
the [], <>, X, and U operators. It is recursively defined for any temporal logic
φ: []φ means that φ is always true; < > φ means that φ is true sometime in
the future; X φ means that φ is true in the next state. U is a binary operator:
ψ U φ means that ψ is true until φ is true. For example, property P2 says that
“It is always the case that if taski is running, it will be suspended eventually”,
and property P5 says that “It is always the case that if task1 is running, from
the next state, the ISR will run eventually”. Here, task state[0] and task state[3]
represent the states of the main function and the ISR, respectively.

About 8 to 10 properties were validated on each application program using
the model checker SPIN. Validating each property took less than 400 MBytes and
6 s. Table 3 shows the validation cost when the six properties were checked for
EEtest05 using SPIN. From left to right, each column represents the name of the
property, the memory consumed in mega bytes, the time needed for validation in
seconds, the depth of the search performed by SPIN, and the numbers of states
and transitions searched while the model checking was performed. All properties
were validated using the model checking.

Table 3. Performance of validation using the model checker SPIN

Property Memory Time Depth States Transitions

P1 317.69 3.20 2,793 1,696,494 2,613,928

P2 228.63 1.68 2,793 805,025 1,289,853

P3 260.66 2.32 2,793 1,236,665 1,876,919

P4 129.02 0.01 335 2,745 4,435

P5 228.63 1.77 2,793 805,025 1,289,853

P6 393.57 5.15 2,793 2,771,009 4,056,731

5 Related Work

There are a number of tools and approaches for model checking C pro-
grams [8,18,19,23]. CBMC [8] is one of the representative C code model checkers

266 Y. Choi

with many applications and case studies [4,9,21]. It is based on bounded model
checking techniques using SAT or SMT solvers, and can be applied directly to
ANSI-C programs without performing abstractions or model extraction. How-
ever, it suffers from a couple of drawbacks when it is to be applied to IoT device
controllers. First, its performance on multi-threaded programs is quite low, and
IoT device controllers typically consist of multiple tasks. Second, it is difficult
to handle the behaviors of operating systems as this requires handling of con-
text switching and access to hardware memory. Modeling of context switching
behavior is necessary to verify behaviors affected by the operating system, but
how to model the context switch and how to combine this model with C source
code are not trivial problems.

SPIN [17] is a more natural choice as it supports specification of multiple
processes, but it requires modeling using PROMELA to apply the model check-
ing engine. Applying SPIN model checking to C programs has been an active
research issue [18,19,23], including tools for automatic model extraction from
C source code [19,20]. In particular, reference [19] converts C programs into
PROMELA models through code embedding. It is fully automated, but has sev-
eral problems as it is designed as a general model extractor. For example, it is
difficult to understand the extracted models as well as the verification result due
to the changes and additions of variable names2, and complex data structures
and nested calls are not handled properly. As the model extraction focuses on
application programs without considering the underlying operating system, how
to integrate the extracted models with operating system models is also an issue.

There are other approaches for extracting models from C source code for
model checking purposes [11–13,20], but they rarely consider interactions with
operating systems in the model extraction process. Most of the approaches faith-
fully translate each statement of a C program into the target modeling language
with minor abstractions, which is highly likely to cause a statespace explosion
problem in model checking due to the implementation-specific characteristics of
the C language. Some other approaches tried to address the issues related to
concurrency and scheduling by modeling the operating system using C [7] or
through translation into sequential programs [24,25]. The former approach is
limited to the capability of CBMC, which is not efficient in dealing with loops
and multiple threads; the latter approach heavily depends on language transla-
tion, leaving very little room for applying abstractions.

6 Discussion

We have presented a domain-specific model generation approach for rigorously
validating device control programs. The proposed approach can be fully auto-
mated so that any control programs compliant with the international stan-
dard OSEK/VDX can be auto-translated into a validation model. The mod-
ular structure of the suggested framework also supports flexible adaptation for
IoT operating systems that are not compliant with OSEK/VDX, because it is
2 The names of the variables are changed to ensure the uniqueness of the names.

Automated Validation of IoT Device Control Programs 267

straightforward to change the models of API services without affecting other
components of the interaction model.

The major difference between the suggested framework and existing
approaches is two-fold: (1) Our approach is based on pre-defined service pat-
terns of operating systems, which are used to generate configurable OS models;
and (2) a specialized abstraction is applied through embedding C code into
the interaction model, abstracting statements irrelevant to interactions with the
underlying operating system, and thus, avoiding searches of uninteresting exe-
cution traces while model checking. The abstraction through C code embedding
applies minimum modification of the C source code by identifying code blocks
independent of API function calls and by annotating only interaction points.
This approach not only saves verification cost but also provides high readability
of the application model and verification result as the original code is rarely
changed. The abstraction is sound w.r.t. the properties to be verified because
interaction behavior is preserved before and after abstraction.

The current approach aggressively abstracts all implementation-specific
details, focusing only on the sequence of task executions. Our next step is
to extend the approach for checking the correctness of application programs
through property-based data tracing. We are currently working on property-
based data dependency analysis and automated tracing of variables in the depen-
dency relation, a kind of property-based model refinement.

References

1. Erika realtime operating system. http://erika.tuxfamily.org/drupal/
2. Artho, C., Gros, Q., Rousset, G., Banzai, K., Ma, L., Kitamura, T., Hagiya, M.,

Tanabe, Y., Yamamoto, M.: Model-based API Testing of Apache ZooKeeper. In:
Proceedings of 10th IEEE International Conference on Software Testing, Verifica-
tion and Validation, pp. 288–298 (2017)

3. Berry, G.: Synchronous design and verification of critical embedded systems using
SCADE and Esterel. In: 12th International Conference on Formal Methods for
Industrial Critical Systems (2007)

4. Bucur, D., Kwiatowska, M.Z.: Poster abstract: software verification for TinyOS.
In: 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks (2010)

5. Choi, Y.: A configurable V&V framework using formal behavioral patterns for
automotive control software. J. Syst. Softw. 137, 563–579 (2018)

6. Choi, Y., Byun, T.: Constraint-based test generation for automotive operating
systems. Softw. Syst. Model. 16(1), 7–24 (2017)

7. Chung, Y., Kim, D., Choi, Y.: Modeling OSEK/VDX OS requirements in C. In:
24th Asia-Pacific Software Engineering Conference (2017)

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
10th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (2004)

9. Cordeiro, L., Fischer, B., Chen, H., Marques-Silva, J.: Semiformal verification of
embedded software in medical devices considering stringent hardware constraints.
In: International Conference on Embedded Software and Systems (2009)

http://erika.tuxfamily.org/drupal/

268 Y. Choi

10. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2012)

11. DuVarney, D.C., Purushothaman Iyer, S., Wolf, C.: A toolset for extracting mod-
els from C programs. In: 22nd IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems, pp. 260–275 (2002)

12. Gallardo, M.M., Joubert, C., Merino, P., Sanan, D.: A model-extraction approach
to verifying concurrent C programs with CADP. Sci. Comput. Program. 77, 375–
392 (2012)

13. Gong, X., Ma, J., Li, Q., Zhang, J.: Automatic model building and verification
of embedded software with UPPAAL. In: International Joint Conference of IEEE
TrustCom/IEEE ICESS/FCST, pp. 1118–1124 (2011)

14. Graf, S.: OMEGA: correct development of real time and embedded systems. Softw.
Syst. Model. 7, 127–130 (2008)

15. Hili, N., Dingel, J., Beaulieu, A.: Modelling and code generation for real-time
embedded systems with UML-RT and Papyrus-RT. In: IEEE 39th International
Conference on Software Engineering Companion (2017)

16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

17. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Publishing Company, Reading (2003)

18. Holzmann, G.J., Joshi, R., Groce, A.: Model driven code checking. Automa. Softw.
Eng. 15, 283–297 (2008)

19. Holzmann, G.J., Ruys, T.C.: Effective bug hunting with Spin and Modex. In:
Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, p. 24. Springer, Heidelberg (2005).
https://doi.org/10.1007/11537328 3

20. Ichii, M., Myojin, T., Nakagawa, Y.: A rule-based automated approach for extract-
ing models from source code. In: 19th Working Conference on Reverse Engineering,
pp. 308–317 (2012)

21. Kim, Y., Kim, M.: SAT-based bounded software model checking for embedded
software: a case study. In: 21st Asia-Pacific Software Engineering Conference, pp.
737–748 (2014)

22. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite
generation for time-continuous simulink models. In: IEEE/ACM 38th International
Conference on Software Engineering, pp. 595–606 (2016)

23. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmueller, T.:
Incremental bounded model checking for embedded software. Formal Aspects Com-
put. 29, 911–931 (2017)

24. Wu, X., Wen, Y., Chen, L., Dong, W., Wang, J.: Data race detection for interrupt-
driven programs via bounded model checking. In: IEEE 7th International Confer-
ence on Software Security and Reliability Companion, pp. 204–210 (2013)

25. Zhang, H., Aoki, T., Chiba, Y.: Yes! you can use your model checker to verify
OSEK/VDX applications. In: IEEE 8th International Conference on Software Test-
ing, Verification, and Validation (2015)

https://doi.org/10.1007/11537328_3

Shape Analysis and Reuse

Graph-Based Shape Analysis Beyond
Context-Freeness

Hannah Arndt, Christina Jansen, Christoph Matheja(B), and Thomas Noll

RWTH Aachen University, Aachen, Germany
matheja@cs.rwth-aachen.de

Abstract. We develop a shape analysis for reasoning about relational
properties of data structures. Both the concrete and the abstract domain
are represented by hypergraphs. The analysis is parameterized by user-
supplied indexed graph grammars to guide concretization and abstrac-
tion. This novel extension of context-free graph grammars is power-
ful enough to model complex data structures such as balanced binary
trees with parent pointers, while preserving most desirable properties of
context-free graph grammars.

One strength of our analysis is that no artifacts apart from grammars
are required from the user; it thus offers a high degree of automation.
We implemented our analysis and successfully applied it to various pro-
grams manipulating AVL trees, (doubly-linked) lists, and combinations
of both.

1 Introduction

The aim of shape analysis is to support software verification by discovering pre-
cise abstractions of the data structures in a program’s heap. For shape analyses
to be effective, they need to track detailed information about the heap configura-
tions arising during computations. Although recent shape analyses have become
quite potent [1,6,8,13,20], discovering abstractions that go beyond structural
shape properties remains far from fully solved. For example, this is the case
when considering balancedness properties of data structures, such as the AVL
property: A full binary tree is an AVL tree if and only if for each of its inner
nodes, the difference between the heights of its two subtrees is −1, 0, or 1. In this
setting, reasoning about constraints over lengths of paths or sizes of branches in
a tree is required. However, as already noted in [8], inference of shape-numeric
invariants “is especially challenging and is not particularly well explored.”

We develop a shape analysis that is capable of inferring relational prop-
erties, such as balancedness, from a program and an intuitive data structure
specification given by a graph grammar. Context-free graph grammars [14] have
previously been successfully applied in shape analyses [15]. They are, however,

Matheja, C.—Supported by Deutsche Forschungsgemeinschaft (DFG) Grant NO
401/2-1.

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 271–286, 2018.
https://doi.org/10.1007/978-3-319-92970-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_17&domain=pdf

272 H. Arndt et al.

not expressive enough to capture typical relational properties of data struc-
tures. Hence, we lift the concept of indexed grammars — a classical exten-
sion of context-free string grammars due to Aho [2] — to graph grammars.
More concretely, we attach an index, i.e. a finite sequence of symbols, to each
nonterminal. This information can then be accessed by the graph grammar to
gain a fine-grained control over the applicable rules. For example, by using indices
to represent the height of trees, a context-free graph grammar modeling binary
trees can easily be lifted to a grammar representing balanced binary trees.

One strength of indexed graph grammars is that they offer an intuitive for-
malism for specifying data structures without requiring deep knowledge about
relational properties. Furthermore, all key aspects of shape analysis (using the
terminology of [20]) have natural correspondences in the theoretically well-under-
stood domain of graph transformations: Materialization, an operation to par-
tially concretize before performing a strong update of the heap, corresponds to
the common notion of grammar derivations. Concretization then means exhaus-
tively applying derivations. Conversely, abstraction (or canonicalization) coin-
cides with applying inverse derivations as long as possible. In particular, effective
versions of the above operations can be derived automatically from a grammar
through existing normal forms [17]. Finally, checking for subsumption between
two abstract states is an instance of the language inclusion problem for graph
grammars. While this problem is undecidable in general [5], we present a frag-
ment of indexed graph grammars with a decidable language inclusion problem
that is well-suited for shape analysis.

We implemented our shape analysis and successfully verified Java programs
manipulating AVL trees, (doubly-linked) lists and combinations of both.

Missing proofs as well as supplementary material to formalization and imple-
mentation are found in an extended version of this paper [4].

2 Informal Example

Our analysis is a standard forward abstract interpretation [11] that approximates
for each program location the set of reachable memory states. It thus applies an
abstract program semantics to elements of an abstract domain capturing the
resulting sets until a fixed point is reached. The analysis is parameterized by
a user-supplied indexed hyperedge replacement grammar : For any given gram-
mar, we automatically derive an abstract program semantics from the concrete
semantics of a programming language. Moreover, we obtain suitable abstraction
and concretization functions. In this section we take a brief tour through the
essentials of our approach by means of an example.

Example Program. We consider a procedure searchAndSwap (see Fig. 1) that
takes an AVL tree n with back pointers and an integer value key. It consists of
two phases: First, it performs a binary search in order to find a node in the tree
with the given key (l. 9). If such a node is found, it moves back to the root of
the tree (l. 13). However, before moving up one level in the tree, the procedure
swaps the two subtrees of the current node (l. 12).

Graph-Based Shape Analysis Beyond Context-Freeness 273

1 class AVLTree {
2 AVLTree left;

3 AVLTree right;

4 AVLTree parent;

5 int key;

6 // ...

7 }

8 void searchAndSwap(AVLTree n, int key) {
9 n = binarySearch(n, key);

10 while (n != null && n.parent != null) {
11 // swap subtrees of n

12 AVLTree t = n.left; n.left = n.right; n.right = t;

13 t = null; n = n.parent;

14 }
15 }

Fig. 1. Essential fields of class AVLTree and example code.

Abstract Domain. We assume a storeless model that is agnostic of concrete
memory addresses. Memory states are then naturally modeled as graphs —
more precisely indexed heap configurations (IHC) (Sect. 3). That is, an edge
may be connected to an arbitrary number of nodes and is additionally
labeled with an index that indicates, for instance, the height of a tree. Con-
sider the IHC depicted in Fig. 2: A node (drawn as a circle) either repre-
sents an object or a literal, such as null, true, false, etc. The black cir-
cle denotes the special location null.1 Pointers between objects are drawn
as directed edges between two nodes that are drawn to indicate the corre-
sponding field of its source object (left (dashed), right (dotted), and parent
(solid) for AVL trees). For example, the parent pointer of the topmost node
in Fig. 2 points to null. Furthermore, IHCs contain program variables and
nonterminal edges. Program variables are drawn as diamonds that are labeled

n

B,X B, sX

2 2

1 1

Fig. 2. An IHC

with the variable name and are attached to the unique
node representing the value of the variable. Hence, vari-
able n points to the rightmost node in Fig. 2. Nonterminal
edges model a set of abstracted heap shapes, such as linked
lists or balanced trees. They are drawn as gray boxes and
attached to one or more nodes. Figure 2 contains two of
these edges. Their label, B, indicates that both model a
set of balanced binary trees. Further, their indices, X and
sX, denote that they model balanced binary trees of height
X and X+1, respectively, where X stands for an arbitrary
non-negative value. Hence, the IHC in Fig. 2 models the
set of all balanced binary trees with back pointers in which the height of the
right subtree of the root is the height of its left subtree plus one. Moreover,
variable n points to the right child of the root.

Abstraction and Concretization. The set of heaps described by an IHC is
determined by an indexed hyperedge replacement grammar whose rules map non-
terminal edges to an IHC. An example of a rule is provided in Fig. 3 (inside the
gray box; above step (1)). Its left-hand side is (B, sν), where ν is a variable.
The rule allows to replace any edge that is labeled with B and whose index

1 We often draw multiple black circles, but they all correspond to the same location.

274 H. Arndt et al.

starts with an s by the IHC below. In that case, variable ν is substituted by
the remainder of the index of the replaced hyperedge. The IHC on the rule’s
right-hand side contains two external nodes (labeled 1 and 2) that indicate how
two IHCs are glued together when replacing a hyperedge (Sect. 3).

Example Execution. Let us assume we are given a suitable grammar in which
nonterminal B represents balanced binary trees and index sX stands for a height
of X +1. We consider one execution sequence in detail. The individual execution
steps are illustrated in Figs. 3, 4, and 5, respectively. Notice that the full analysis
explores all abstract executions.

Step (1). Starting with the leftmost IHC in Fig. 3, we first execute a binary
search (Fig. 1, l. 9). Assuming that the searched key is not at the root, we move
to the children of n. Since these are currently hidden in the hyperedge labeled
with (B, sX), we apply materialization [21] (partial concretization). For our
analysis, materialization corresponds to forward derivations using the supplied
graph grammar, i.e. we replace an edge by an IHC according to a rule of the
grammar. Here, we used the rule above step (1) in Fig. 3. To apply this rule,
we first remove the original hyperedge labeled (B, sX). After that we paste the
graph belonging to the rule into the original graph. Finally, we identify the nodes
originally attached to the removed hyperedge with the external nodes of the rule
(as indicated by gray dashed and dotted lines in Fig. 3).

n

B, sX

2

1

B, sν

2

B, ν B, ν

1

2 2

1 1

materialize

step (1)

n

B, X B, X

2 2

1 1

n

B, X B, X

2 2

1 1n = n.right

step (2)

Fig. 3. Materialization and a possible execution of the binary search.

B, ssν

2

B, ν B, sν

1

2 2

1 1

materialize

step (3)

n

B, ssX B, ssX

2 2

1 1

n

B, ssX

B, X B, sX

2

1
1

2

1

2

n

B, ssX

B, sX B, X

t

2

1
1

2

1

2

swap subtrees

step (4)

Fig. 4. Index materialization and swapping subtrees.

Graph-Based Shape Analysis Beyond Context-Freeness 275

B, ssν

2

B, sν B, ν

1

2 2

1 1

abstraction

step (5)

n
t

B, ssX B, ssX

2

1

2

1

n
t

B, ssX

B, sX B, X

2

1
1

2

1

2

n
t

B, sssX

2

1

abstraction

step (6)

n
t

B,X

2

1

index abstraction

step (7)

Fig. 5. Graph-based abstraction and index abstraction.

Step (2). After materialization, executing one step of the concrete program
semantics amounts to a simple graph transformation (moving variable n to a
child). To keep the example small, assume the binary search has already explored
the left subtree without finding the key. It thus returned to the root and the next
step is to move variable n to its right child. That is, we execute n = n.right. This
leads to the rightmost graph depicted in Fig. 3. In our example execution, we
assume n now carries the searched key, i.e. n.key equals key. Hence, the binary
search returns the current position of n and we move to the while-loop of our
example program (Fig. 1, l. 10). Since neither variable n is attached to null nor
its parent pointer points to null, we enter the loop.

Step (3). Before we can climb up the tree to the root again, we have to
swap the subtrees of n (Fig. 1, l. 12). Again, these are hidden in a hyperedge
labeled with (B,X), i.e. we have to materialize again. As part of the example
execution, we apply the rule in Fig. 4 (above step (3)). However, this rule requires
the index of a hyperedge to be of the form ssν. Intuitively, this means the rule
models balanced trees of height at least two. Since X is a placeholder for trees
of arbitrary height, we apply index materialization to the IHC first. That is, we
replace X by ssX in all hyperedges2 and move to the leftmost hypergraph in
Fig. 4. After that, we apply materialization as illustrated in the third step.

Step (4). We apply the concrete semantics to execute a sequence of assign-
ments in order to swap the left and right subtree of n (Fig. 1, l. 12). This results
in the rightmost IHC of Fig. 4, in which variable t has not been set to null yet.
After executing the remaining two assignments, i.e. t = null and n = n.parent,
we end up in the leftmost IHC in Fig. 5.

Notice that both the abstract semantics as well as materialization are derived
automatically from the grammar and the concrete program semantics (Sects. 3
and 4). In particular, materialization corresponds to forward derivations using
the grammar. Analogously, the abstraction function corresponds to applying
backward derivations. Each occurrence of an IHC used as the right-hand side of
a grammar rule is replaced by a hyperedge labeled with the rule’s left-hand side.

2 Again, note that we consider a single execution path in this example. The full analysis
also explores the cases in which X is substituted by z and sz.

276 H. Arndt et al.

Step (5). After executing n = n.parent (Fig. 1, l. 13), abstracted is performed
before moving on to the next loop iteration. We abstract using a rule symmet-
ric to the one applied in step (3) for materialization. This corresponds to first
detecting the IHC in the rule as a subgraph of the given IHC. This subgraph
is deleted except for those nodes identified with the external nodes (labeled by
numbers) of the rule graph (see gray dash-dotted lines in Fig. 5). Then a hyper-
edge attached to the latter nodes is added to the remaining IHC.

Step (6). The IHC obtained after step (5) can be further abstracted. This
time, we employ the rule that has been applied for materialization first (Fig. 3,
above step (1)). The resulting graph is found in Fig. 5 next to step (6). Note
that the indices of both hyperedges to be abstracted are ssX whereas the rule
used for abstraction contains hyperedges with indices ν. The variable ν is used
as a placeholder to restore the original indices after the replacement. The result-
ing hypergraph (Fig. 5 following step (6)) contains a single hyperedge labeled
(B, sssX). Hence, the result of our example execution is a balanced binary tree
(of height at least three) again.

Step (7). As a final operation, we apply the converse of index materialization
in step (3): index abstraction. For this purpose, we replace sssX by X, i.e.
we generalize from trees of height at least three to trees of arbitrary height.
Proceeding with the analysis, we evaluate the loop guard (Fig. 1, l. 10) to false,
because n.parent equals null. Hence, the analysis terminates this branch of its
execution with a final hypergraph that covers the initial one. The problem of
checking whether a hypergraph covers another one is addressed in Sect. 5.

3 Program States and Indexed Grammars

As outlined in Sect. 2, it is intuitive to model heaps as graphs. In this section, we
formalize heap configurations as a model for program states and their seman-
tics in terms of a graph grammar. These grammars guide concretization and
abstraction in our analysis, which is presented subsequently in Sect. 4.

3.1 Program States

To set the stage for our analysis, we consider program states to consist of a heap
and a stack. We assume the heap to contain records with a finite number of
reference fields that are collected in Fields. Apart from the heap, a program
state is equipped with a stack mapping program variables in Var to records.

Furthermore, our abstract domain equips graphs with nonterminal hyper-
edges that act as abstract placeholders for sets of graphs, e.g. all (balanced)
binary trees. These hyperedges are labeled with a nonterminal taken from a
finite set N and an index taken from a finite set I, respectively. Throughout
this paper, we fix a set Types = Fields∪Var∪ N . Every element of Types is
ranked by a function rank : Types → N, where fields always have rank two, i.e.
rank(Fields) = {2} and variables always have rank one, i.e. rank(Var) = {1},
respectively. Program states are then formally modeled as follows:

Graph-Based Shape Analysis Beyond Context-Freeness 277

Definition 1. An indexed heap configuration (IHC for short) is defined as a
tuple H = (V,E, lab, att, ind, ext), where

– V and E are finite sets of nodes and hyperedges, respectively,
– lab : E → Types is a hyperedge labeling function,
– att : E → V ∗ maps each edge to a sequence of attached nodes that respects

the rank of hyperedge labels, i.e. for all e ∈ E, we have rank(lab(e)) = |att(e)|.
– ind : E → I+ assigns a non-empty index sequence to each edge in E, and
– ext ∈ V + is a repetition-free sequence of external nodes.3

Throughout this paper, we do not distinguish between the terms graph and
hypergraph nor between edge and hyperedge. Furthermore, we refer to the com-
ponents of a graph H by VH , EH , etc. If an edge e is attached to exactly two
nodes, say att(e) = uv, we interpret e as a directed edge from node u to node v.
Notice that all graphs in Sect. 2 are examples of IHCs.

To simplify the technical development, we impose a few sanity conditions on
IHCs: We require that (1) every variable x ∈ Var occurs at most once in H and
(2) for every field f ∈ Fields every node has at most one outgoing edge e labeled
with f (recall that rank(f) = 2). The special location null is treated as a global
variable. Hence, we assume a unique node vnull representing null which is the
first external node and the first node attached to every nonterminal edge.4

3.2 Indexed Grammars

The semantics of edges labeled with a nonterminal, is specified by an indexed
graph grammar — an extension of context-free graph grammars. As it is common
in graph rewriting, we do not distinguish between isomorphic graphs. Thus, all
sets of graphs in this paper are to be understood up to isomorphism.

Definition 2. Let ν be a dedicated index variable and I ′ = I ∪{ν} be the set of
index symbols. An indexed hyperedge replacement grammar (IG) is a finite set
of rules G of the form X,σ → H mapping a nonterminal X ∈ N and an index
σ ∈ I∗(I ∪ {ν}) to an IHC H such that rank(X) = |extH |. Moreover, if σ does
not contain the variable ν then H does not contain ν either, i.e. indH(EH) ⊆ I+.

Example 1. Figure 6 depicts an IG G with six rules that each map to an IHC
whose first external node is null and whose second external node is the root of
a tree-like graph. Indices of edges not labeled with B are omitted for readability.

The sets of graphs modeled by IGs are defined similarly to languages of
context-free word grammars (CFG) in which a nonterminal is replaced by a
finite string: An IG derivation replaces an edge, say e, that is labeled with a
nonterminal by a finite graph, say K. However, since arbitrarily many nodes
may be attached to edge e, we have to clarify how the original graph and K are
glued together. Hence, we identify each node attached to edge e with an external
node of K (according to their position in both sequences). Formally,
3 External nodes are needed to define the semantics of nonterminal edges.
4 I.e., vnull = ext(1) and for each e ∈ E with lab(e) ∈ N , we have att(e)(1) = vnull.

278 H. Arndt et al.

B, sν

2

B, ν B, ν

1

2 2

1 1

B, ssν

2

B, sν B, ν

1

2 2

1 1

B, ssν

2

B, ν B, sν

1

2 2

1 1

B, sz

2

B, z

1

2

1

B, sz

2

B, z

1

2

1

B, z

2

1

Fig. 6. An indexed hyperedge replacement grammar for balanced binary trees

Definition 3. Let H,K be IHCs with pairwise disjoint sets of nodes and edges.
Moreover, let e ∈ EH be an edge with rank(labEH

(e)) = |extK |. Then the replace-
ment of e in H by K is given by H [e �→ K] = (V,E, att, lab, ind, ext), where

V = VH ∪ (VK \ extK) E = (EH \ {e})
︸ ︷︷ ︸

=E′

∪ EK

lab = (labH � E′) ∪ labK ind = (indH � E′) ∪ indK
att = (attH � E′) ∪ (attK � mod) ext = extH

where mod replaces each external node by the corresponding node attached to e.5

The above is the standard definition of hyperedge replacement in which
indices and edge labels are treated the same (cf. [14]). It is then tempting to
define that an IG G derives K from H if and only if there exists an edge e ∈ EH

and a rule (labH(e), indH(e) → R) ∈ G such that K is isomorphic to H [e �→ R].
However, this notion is too weak to model balanced trees. In particular, since an
index is treated as just another label, we cannot apply a derivation if the index
of an edge does not exactly match an index on the left-hand side of an IG rule.

Instead, we use a finite prefix of indices in derivations and hide the remainder
in variable ν. For example, assume an IG contains a rule B, ssν → R. Given an
edge with label B and index σ = sssz, an IG derivation may then hide sz in ν.
The resulting index is ssν and a derivation as defined naively above is possible.
Finally, all occurrences of ν are replaced by the hidden suffix sz again.

To formalize indexed derivations, two auxiliary definitions are needed: Given
a set M ⊆ Types, we write EM

H to refer to all edges of H that are labeled with
a symbol in M , i.e. EM

H = {e ∈ EH | labH(e) ∈ M}. We write H [ν �→ ρ] to
replace all occurrences of ν in (the index function ind of) H by ρ.6

Definition 4. Let G be an IG and H,K be IHCs. Then G directly derives K
from H, written H ⇒G K, if and only if either

– there exists a rule (X,σ → R) ∈ G and an edge e ∈ E
{X}
H such that

indH(e) = σ and K is isomorphic to H [e �→ R], or
5 f � M denotes the restriction of function f to domain M and (f � g)(s) = g(f(s)).

Moreover, function mod = {extK(k) �→ attH(e)(k) | 1 ≤ k ≤ |extK |} ∪ {v �→ v | v ∈
V \ extK} is lifted to sequences of nodes by pointwise application.

6 H [ν �→ ρ] = (VH , EH , attH , labH , ind, extH) with ind = {indH(e) [ν �→ ρ] | e ∈ EH}.

Graph-Based Shape Analysis Beyond Context-Freeness 279

– there exists a rule (X,σν → R) ∈ G, an edge e ∈ E
{X}
H , and a sequence

ρ ∈ I+ such that indH(e) = σρ and K is isomorphic to H [e �→ R [ν �→ ρ]].

The reflexive, transitive closure of ⇒G is denoted by ⇒∗
G. The inverse of ⇒G is

given by G⇐. Finally, H G� iff there exists no K such that H G⇐K.

The language of an IG and an IHC H is the set of all graphs that can be
derived from H and that do not contain nonterminals. Conversely, the inverse
language of H is obtained by exhaustively applying inverse derivations to H.

Definition 5. The language LG and the inverse language L−1
G of IG G are given

by the following functions mapping indexed graphs to sets of indexed graphs:

LG(H) = {K | H ⇒∗
G K and EN

K = ∅}, and

L−1
G (H) = {K | H G⇐∗K and K G�}.

For instance, the language of the IG in Fig. 6 for an IHC consisting of one
edge labeled with B, ssz is the set of all balanced binary trees of height two.

To ensure existence of inverse languages and thus termination of abstraction,
we assume that all rules of an IG G are increasing, i.e. for each rule (X,σ →
H) ∈ G it holds that |VH | + |EH | > rank(X) + 1. As an example, notice that
all rules of the IG in Fig. 6 are increasing. This amounts to a syntactic check on
all rules that is easily discharged automatically. We conclude our introduction
of IGs with a collection of useful properties.

Theorem 1. Let G be an IG and H be an IHC over N and I. Then:

1. H ⇒∗
G K implies LG(K) ⊆ LG(H).

2. LG(H) =

{

{H} if EN
H = ∅

⋃

H⇒GK LG(K) otherwise.

3. It is decidable whether LG(H) = ∅ holds.
4. The inverse language L−1

G (H) of an increasing IG G is non-empty and finite.

The first two properties are crucial for proving our analysis sound. The
remaining properties ensure that we can construct well-defined (inverse)
languages.

4 Abstract Domain

Our analysis is a typical forward abstract interpretation [12] that is parameter-
ized by a user-supplied IG G. Its concrete domain consists of all IHCs without
nonterminals. The abstract domain contains all IHCs to which no inverse IG
derivation is applicable. The order of our abstract domain is language inclusion.
Concretization γ and abstraction α correspond to computing the language and
the inverse language of G, respectively. Our setting is summarized in Fig. 7.

280 H. Arndt et al.

Fig. 7. Concretization, abstraction and the respective domains for a given IG G. Here,
� is given by H � K iff γ(H) ⊆ γ(K). P(M) is the powerset of M . This setting
yields a Galois connection for backward confluent IGs (cf. Sect. 5).

The concrete semantics of common imperative programs amounts to straight-
forward graph transformations. Let us assume that Progs is the set of all pro-
grams. Moreover, assume the concrete semantics of each program P ∈ Progs is
given by a (partial) function C�P � : IHC → IHC that captures the effect of
executing P on an IHC. For example, step (2) in Sect. 2 computes C�n = n.right�.

As is standard, our analysis performs a fixed-point iteration of the abstract
semantics that overapproximates the concrete semantics. Following the termi-
nology of [20], our abstract semantics consists of three phases: materialization,
execution of the concrete semantics, and canonicalization. That is, our abstract
semantics is a function of the form A�.� : Progs → Abs → Abs that is defined
inductively on the structure of programs. In particular, for an atomic program
P ∈ Progs, we have A�P � = materialize�P � � C�P � � canonicalize�P �.7

Although materialization and canonicalization naturally depend on the user-
provided grammar G, for readability we tacitly omit adding G as a parame-
ter. Materialization ensures applicability of the concrete semantics by partially
concretizing an IHC. It is thus a function materialize�.� : Progs → IHC →
Pfinite(IHC) that, for a given program, maps an IHC to a finite set of IHCs.
Intuitively, materialization applies derivations ⇒G until the concrete semantics
can be applied (cf. Theorem 1.2). A detailed discussion of suitable materializa-
tions that are derived from a grammar G is found in [15,17]. In this paper, we
consider a sufficient condition to ensure soundness.

Definition 6. For every atomic program P ∈ Progs, we require a materializa-
tion function materialize�.� such that γ � C�P � ⊆̇materialize�P � � C�P � � γ.

Here, ⊆̇ denotes pointwise application of ⊆. Examples of applying material-
ization are provided in steps (1) and (3) of Sect. 2.

Conversely to materialization, canonicalization takes a partially concretized
program state and computes an abstract program state again. It is thus a func-
tion of the form canonicalize�.� : Progs → IHC → Abs.

Definition 7. For every program P ∈ Progs, we require a canonicalization
function canonicalize�.� such that γ ⊆̇ canonicalize�P � � γ.

By Theorem 1(1), inverse IG derivations as well as the abstraction function α are
suitable candidates for canonicalization. Examples of applying canonicalization
are provided in steps (5) and (6) of Sect. 2.
7 f � g denotes sequential composition of f and g, i.e. (f � g)(s) = g(f(s)).

Graph-Based Shape Analysis Beyond Context-Freeness 281

Assuming suitable materialization and canonicalization functions as of Defi-
nitions 6 and 7, our abstract semantics A�.� computes an overapproximation of
the concrete semantics C�.�:

Theorem 2 (Soundness). For all P ∈ Progs, γ � C�P � ⊆̇ A�P � � γ.

The quality of our analysis depends, naturally, on the quality of the user-defined
grammar. That is, the better our grammar matches the data structures employed
by a program, the more precise the results obtained from our analysis. In particu-
lar, our analysis does not necessarily terminate. For example, we cannot analyze
a program working on doubly-linked lists if the user-supplied IG models trees
only. As usual, termination has to be ensured by some sort of widening. In the
simplest case, termination is achieved by fixing a maximal size of IHCs a priori.
Whenever an IHC exceeds the fixed size, the analysis stops.

5 Backward Confluent IGs

Two components of our analysis are particularly involved: First, the inverse
language of an IHC with respect to an IG has to be computed repeatedly dur-
ing canonicalization, i.e. we have to exhaustively apply inverse IG derivations.
Applying inverse derivations in turn requires finding isomorphic subgraphs in
an IHC that can be replaced by a hyperedge. Since the subgraph isomorphism
problem is well-known to be NP-complete, canonicalization is expensive.

Second, computing a fixed point requires us to check for language inclusion.
However, the language inclusion problem for IGs is undecidable as it is already
undecidable for context-free string grammars [5]. Undecidability of inclusion is
common in the area of shape analysis, where supported data structures are either
severely restricted to obtain decidability, or approximations are used.

We now discuss a subclass of IGs that addresses both problems:

Definition 8. An IG G is backward confluent iff for all IHCs H the inverse
language L−1

G (H) is a singleton set, i.e. |L−1
G (H)| = 1.

The definition of backward confluent IGs is, admittedly, rather semantics-
driven. In particular, it solves the problem of expensive canonicalizations
directly: Since the inverse language of an IHC is unique it suffices to exhaus-
tively apply inverse derivations instead of trying all possible combinations. For-
tunately, as shown in [19], backward confluence can be checked automatically.
In particular, we constructed backward confluent IGs for singly- and doubly-
linked, (a)cyclic lists, (balanced) trees (w/o back pointers), in-trees, lists of lists,
and (in-)trees with linked leaves. In general, however, the class of graph lan-
guages generated by backward confluent IGs is strictly smaller than the class of
languages generated by arbitrary IGs.

We now turn to our second desired property: a decidable inclusion prob-
lem. This property relies on the observation that two IHCs H,K that can-
not be abstracted further, i.e. H,K G�, are either isomorphic or have disjoint
languages.

282 H. Arndt et al.

Theorem 3. Let G be a backward confluent IG. Moreover, let H,K ∈ IHC
such that K G�. Then it is decidable whether LG(H) ⊆ LG(K) holds.

To conclude this section, we remark that, for backward-confluent IGs, our
concrete and abstract domain (cf. Fig. 7) form a Galois connection, i.e. our anal-
ysis falls within the classical setting of abstract interpretation [11].

6 Global Index Abstraction

The goal of our shape analysis is to enable reasoning about complex data struc-
tures, such as balanced binary trees. However, we might encounter infinitely
many IHCs that vary in their indices only, thus preventing termination (cf. steps
(1) and step (6) in Sect. 2). Our abstraction is thus often too precise.

To capture that an IHC models balanced trees, however, it suffices to keep
track of the differences between indices: Assume, for example, that a node has
two subtrees specified by nonterminal edges with indices sz and ssz. If we replace
these indices by ssz and sssz, the underlying trees remain balanced.

Hence, we propose an index abstraction on top of IG-based abstraction.
Intuitively, this abstraction removes a common suffix from all indices and
replaces it by a placeholder. Apart from balancedness, it is applicable to prop-
erties such as “all sublists in a list of lists have equal length”. The abstrac-
tion is again formalized by grammars; right-linear context-free word gram-
mars (CFG) to be precise. Thus, let I = IN ∪ IT be a finite set of index
symbols that is partitioned into a set of nonterminals IN and a set of ter-
minals IT including the end-of-index symbol z. We call an index σ ∈ I+

well-formed if σ ∈ (IT \ {z})∗(IN ∪ {z}). That is, a well-formed index
always ends with a nonterminal or the end-of-index symbol z. Accordingly,
an IHC is well-formed if all of its indices are. We assume all indices —
including indices in CFG rules — to be well-formed. Hence, all considered CFGs
are right-linear and thus generate regular languages. We do not allow nonter-
minal index symbols in IGs, i.e. we assume for each IG rule X,σ → H that
indH(EN

H) ⊆ I∗
T {z, ν}, where ν has been introduced in Definition 2.

To maintain relationships between indices, such as their difference, we require
that all indices ending with the same nonterminal of an IHC are modified simul-
taneously. This leads us to a notion of global derivations and global languages.

Definition 9. Let H,K ∈ IHC. A CFG C globally derives K from H, written
H ⇒C K, if and only if there exists a rule (X → τ) ∈ C such that indH(EN

H) ⊆
I∗
T IN and K is isomorphic to H [X �→ τ], i.e. H in which all occurrences of

X are replaced by τ . Again, ⇒∗
C the reflexive, transitive closure of ⇒C . C ⇔

denotes inverse derivations and C
⇔ that no inverse derivation is possible.

Definition 10. The global language and the inverse global language of a right-
linear CFG C over I are given by:

GLC : IHC → P(IHC), H �→ {K | H ⇒∗
C K and indK(EN

K) ⊆ I+T }
GL−1

C : IHC → P(IHC), H �→ {K | H C⇔∗ K and K C
⇔}

Graph-Based Shape Analysis Beyond Context-Freeness 283

Global derivations enjoy the same properties as IG derivations (Theorem1).
These properties are crucial to ensure soundness and termination of abstraction.

To combine global derivations and IG derivations, we consider a new deriva-
tion relation of the form (⇒G ∪ ⇒C)∗. We can further simply this relation,
because global derivations and IG derivations enjoy an orthogonality property:

Theorem 4. H (⇒G ∪ ⇒C)∗ K if and only if H (⇒∗
C � ⇒∗

G)K.

Thus, for materialization, it suffices to first apply global derivations and then
apply IG derivations. Conversely, for abstraction, it suffices to first apply inverse
IG derivations and then apply inverse global derivations.

It is then straightforward to refine our analysis from Sect. 4 by using the
above derivation relation. To conclude this section, we remark that all results
from Sects. 4 and 5 can be lifted to the refined analysis.

7 Implementation

We implemented our analysis in Attestor [3] to analyze Java programs. The
source code and our experiments are available online.8

Input. Attestor supports a fragment of Java that includes recursive proce-
dure calls, but no arithmetic. Apart from programs and grammars, linear tem-
poral logic (LTL) specifications over execution paths can be supplied. Atomic
propositions include heap shapes and reachability of variables (cf. [18]).

Output. Attestor generates a transition system in which each state consists
of a program location and an IHC representing the abstract program state,
i.e., a set of reachable heaps. This state space can also be explored graphically.
Collecting the IHCs of all states with the same program location then coincides
with the result of the abstract semantics presented in Sect. 4. Moreover, the tool
applies LTL model-checking to verify provided LTL specifications.

Experimental Results. We evaluated our implementation against common
challenging algorithms on various data structures and multiple LTL specifica-
tions. The results are shown in Table 1. Experiments were performed on an
Intel Core i7-5820K at 3.30 GHz with the Java virtual machine limited to 2 GB
of RAM. Program inputs covered all instances of the respective data structure
through nonterminal edges for each employed data structure. In particular, list
to AVLTree traverses a singly-linked list while inserting each of its elements into
an (initially empty) AVL tree including all rebalancing procedures. Our imple-
mentation successfully verifies that the result is a balanced binary tree and the
list has been completely traversed. This demonstrates that our analysis is capa-
ble of precisely reasoning about combinations of multiple data structures.

8 https://github.com/moves-rwth/attestor-examples/releases/tag/v0.3.5-
SEFM2018. Also confer the extended version [4].

https://github.com/moves-rwth/attestor-examples/releases/tag/v0.3.5-SEFM2018
https://github.com/moves-rwth/attestor-examples/releases/tag/v0.3.5-SEFM2018

284 H. Arndt et al.

Table 1. An excerpt of our experimental results. Provided verification times are in sec-
onds including model-checking. Verified properties include memory safety, correct heap
shape (including balancedness), correct return values, every element has been accessed,
and the input data structure coincides with the output data structure. Properties refers
to the worst runtime for verified LTL specifications.

Program Mem. safety Shape Program Mem. safety Properties

AVL trees with parent pointers Data structure traversals/other algorithms

binary

search

0.089 0.153 List of

cyclic lists

0.115 0.115

min. value 0.128 0.204 Tree

(Lindstrom)

0.084 11.60

search and

back

0.140 0.158 Skip list 0.117 0.117

search and

swap

0.823 1.106 Tree

(recursive)

0.080 8.700

rebalance 1.500 1.769 Zip list

(recursive)

0.118 0.118

insert 1.562 3.079 DLL reversal 0.054 0.126

list to

AVLTree

1.784 1.892 DLL

insertion

sort

0.369 1.134

8 Related Work

Graph Transformations. Our work is an extension of an existing analysis based
on context-free graph grammars [15]: From a theoretical perspective, IGs allow
covering infinitely many context-free rules by a single nonterminal with an index
variable. Covering infinitely many rules is essential when reasoning about rela-
tional properties, e.g. balancedness. From a practical perspective, our analysis is
a standard forward abstract interpretation in contrast to previous approaches.

Separation Logic. The class of graphs described by context-free graph gram-
mars is equivalent to a fragment of symbolic heap separation logic (SL) [16]. In
contrast to SL, graph grammars give us access to a rich set of theoretical results
from string and graph rewriting. For example, the concept of IGs is derived from
Aho’s indexed string grammars [2]. Moreover, the notion of backward confluence
is well-studied in the context of graph rewriting (cf. [19]) and provides us with
a decidable criterion to discharge entailments (language inclusion). Hip/Sleek
uses SL enriched with arithmetic to specify size constraints on data structures (cf.
[10]). Their focus is on program verification with user-supplied invariants. In con-
trast, our approach synthesizes invariants automatically. Furthermore, we pro-
vide decidable criteria for good data structure specifications whereas Hip/Sleek
relies on heuristics to discharge entailments.

Static Analysis. [7,9] introduce a generic framework for relational inductive
shape analysis based on user-supplied invariants. Applicability to red-black trees

Graph-Based Shape Analysis Beyond Context-Freeness 285

is demonstrated in an example, but not covered by experiments. In [1], forest
automata are extended by constraints between data elements associated with
nodes of the heaps. The authors conjecture that their method generalizes to
handle lengths of branches in a tree, which are needed to express balancedness
properties. The details, however, are not worked out.

9 Conclusion

We developed a shape analysis that is capable of proving certain relational prop-
erties of data structures, such as balancedness of AVL trees. Our analysis is
parameterized by user-supplied indexed graph grammars — a novel extension
of context-free graph grammars. We implemented our approach and successfully
applied it to common algorithms on AVL trees, lists, and combinations thereof.

References

1. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Ver-
ification of heap manipulating programs with ordered data by extended forest
automata. Acta Inf. 53(4), 357–385 (2016)

2. Aho, A.V.: Indexed grammars - an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

3. Arndt, H., Jansen, C., Katoen, J.P., Matheja, C., Noll, T.: Let this graph be your
witness! an attestor for verifying Java pointer programs. In: CAV (2018, to appear)

4. Arndt, H., Jansen, C., Matheja, C., Noll, T.: Heap abstraction beyond context-
freeness. CoRR abs/1705.03754 (2017). http://arxiv.org/abs/1705.03754

5. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Sprachtypologie und Universalienforschung 14, 143–172 (1961)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

7. Chang, B.E., Rival, X.: Relational inductive shape analysis. In: POPL 2008, pp.
247–260. ACM (2008)

8. Chang, B.E., Rival, X.: Modular construction of shape-numeric analyzers. EPTCS
129, 161–185 (2013)

9. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 24

10. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM (1977)

12. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

13. Ferrara, P., Fuchs, R., Juhasz, U.: TVAL+ : TVLA and value analyses together.
In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol.
7504, pp. 63–77. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33826-7 5

http://arxiv.org/abs/1705.03754
https://doi.org/10.1007/978-3-540-74061-2_24
https://doi.org/10.1007/978-3-642-33826-7_5
https://doi.org/10.1007/978-3-642-33826-7_5

286 H. Arndt et al.

14. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

15. Heinen, J., Jansen, C., Katoen, J., Noll, T.: Juggrnaut: using graph grammars for
abstracting unbounded heap structures. Form. Method. Syst. Des. 47(2), 159–203
(2015)

16. Jansen, C., Göbe, F., Noll, T.: Generating Inductive predicates for symbolic execu-
tion of pointer-manipulating programs. In: Giese, H., König, B. (eds.) ICGT 2014.
LNCS, vol. 8571, pp. 65–80. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09108-2 5

17. Jansen, C., Heinen, J., Katoen, J.-P., Noll, T.: A local Greibach normal form for
hyperedge replacement grammars. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C.
(eds.) LATA 2011. LNCS, vol. 6638, pp. 323–335. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21254-3 25

18. Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified reasoning about
robustness properties of symbolic-heap separation logic. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 611–638. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54434-1 23

19. Plump, D.: Checking graph-transformation systems for confluence. In: ECEASST,
vol. 26 (2010)

20. Reps, T.W., Sagiv, M., Wilhelm, R.: Shape analysis and applications. In: Srikant,
Y.N., Shankar, P. (eds.) The Compiler Design Handbook, 2nd edn. CRC Press,
Boca Raton (2007)

21. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL 1999, pp. 105–118. ACM (1999)

https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/978-3-319-09108-2_5
https://doi.org/10.1007/978-3-319-09108-2_5
https://doi.org/10.1007/978-3-642-21254-3_25
https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-662-54434-1_23

Facilitating Component Reusability
in Embedded Systems with GPUs

Gabriel Campeanu(B)

Mälardalen Real-Time Research Center, Mälardalen University, Väster̊as, Sweden
gabriel.campeanu@mdh.se

Abstract. One way to fulfill the increased requirements (e.g., perfor-
mance) of modern embedded systems is through the usage of GPUs.
The existing embedded platforms that contain GPUs bring several chal-
lenges when developing applications using the component-based devel-
opment methodology. With no specific GPU support, the component
developer needs to encapsulate inside the component, all the information
related to the GPU, including the settings regarding the GPU resources
(e.g., number of used GPU threads). This way of developing components
with GPU capability makes them specific to particular contexts, which
negatively impacts the reusability aspect. For example, a component
that is constructed to filter 640× 480 pixel frames may produce erro-
neous results when reused in a context that deals with higher resolution
frames. We propose a solution that facilitates the reusability of compo-
nents with GPU capabilities. The solution automatically constructs sev-
eral (functional-) equivalent component instances that are all-together
used to process the same data. The solution is implemented as a state-
of-the-practice component model (i.e., Rubus) and the evaluation of the
realized extension is done through the vision system of an existing under-
water robot.

1 Introduction

Modern embedded systems deal with huge amount of information that usually
originates from the interaction with the environment. For example, the Google
autonomous car1 receives from its various sensors (e.g., camera, LIDAR, radar,
ultrasound) an amount of 750 MB of data per second. This data is processed with
enough performance in order for the car to be coordinated with the environment
changes, such as moving pedestrians.

The embedded boards with Graphics Processing Units (GPUs) are feasible
solutions for tackling the stringent requirements of modern embedded systems.
Through its thousands of computational threads, the GPU is more efficient than
the CPU when dealing with parallel data processing. For instance, a stereo
matching application developed for embedded systems, delivers an increased
frame rate processing when is executed on the GPU [9].

1 https://waymo.com.

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 287–301, 2018.
https://doi.org/10.1007/978-3-319-92970-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_18&domain=pdf
https://waymo.com

288 G. Campeanu

Another trend in the embedded systems domain is the usage of the
component-based development (CBD) for construction of systems [5]. This soft-
ware engineering methodology promotes the development of systems through the
composition of already existing software units called software components. CBD
is successfully adopted by industry through various component models such as
AUTOSAR [13], Rubus [8] and IEC 611-31 [10].

The existing component models for embedded systems development offer
no specific GPU support. One way to develop components with GPU capabili-
ties, is to encapsulate inside the components, all the GPU-related information.
This leads to constructing components that are specific to particular contexts.
A challenge appears when (re-)using the same component (that has particular
GPU specifications encapsulated inside) in different applications. For instance,
assuming we have a component that converts color frames into the grayscale for-
mat and has encapsulated a number of 640× 480 GPU threads to use (i.e., one
thread per pixel). When this component is (re-)used in applications that deal
with 1024× 960 pixel color images, it may result in providing erroneous results.

In this work, we provide a solution to increase the reusability of components
with GPU capabilities, by constructing multiple instances of the same compo-
nent in order to handle data of any size specification. For example, our solu-
tion generates three more instances of a component that filters 640× 480 pixel
frames in order to handle images with 2560× 1920 pixels. The solution divides,
via specific artifacts, an initial input data into several parts that are indepen-
dently handled by the generated component instances. Based on the application
design, the required artifacts and component instances are automatically gener-
ated into code during the system generation stage. We implement our solution
as an extension of an existing industrial component model (i.e., Rubus) and
evaluate it using an existing underwater robot case study.

The remainder of the paper is divided as follows. The background informa-
tion covering GPUs and embedded system is presented in Sect. 2. The prob-
lem description (Sect. 3) and solution overview (Sect. 4) are presented using a
running-case example. Section 5 describes the solution realization, while its eval-
uation is enclosed in Sect. 6. After we describe the related work (Sect. 7), we
conclude the paper with a discussion section.

2 GPUs in Embedded Systems

The two main environments to develop GPU applications are CUDA2 and
OpenCL3. While CUDA is developed by NVIDIA to specifically address their
hardware (i.e., NVIDIA GPUs), OpenCL is a general framework that addresses
different processing units (e.g., mCPUs, GPUs, FPGAs) produced by various
vendors. In this work, due to the fact that most of the existing embedded
platforms with GPUs (developed by e.g., Intel, AMD, NVIDIA, Altera, IBM,

2 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
3 https://www.khronos.org/opencl/.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.khronos.org/opencl/

Facilitating Component Reusability in Embedded Systems with GPUs 289

Samsung, Xilinx) support OpenCL, we utilize this particular environment for
development of GPU functionality.

When using OpenCL to create GPU functionality, the developer needs to
construct several hierarchical steps, as follows. At the highest level is the plat-
form that contains the drivers. The platform addresses the existing devices, such
as the GPU and the CPU. One of the device should be selected to execute the
functionality. Memory buffers should be allocated in order to hold the input
and/or output data of the functionality. The functionality, also know as the
kernel may be constructed at any time, regardless of the required hierarchical
steps. The arguments of the kernel are defined using the allocated input and
output buffers. The number of threads used to execute the functionality are
specified in such a way to match the platform characteristics, i.e., to not exceed
the available thread resources. Furthermore, the threads are organized in partic-
ular groups (e.g., tiles of 8× 8 threads) that directly influence the performance
of the kernel execution.

Nowadays, the GPU is successfully integrated on various embedded plat-
forms. Various vendors such as Intel, NVIDIA, Xilinx and AMD provide different
embedded solutions with different characteristics, suitable for different domains.
For example, while the NVIDIA Condor GR24 is utilized in high-performance
solutions due to its high resources, the Mali-470 GPU with a low computation
and energy consumption is employed in the construction of smart watches.

Component-based development is a software engineering methodology that
promotes the development of applications through the composition of existing
software units called components [5]. A core principle of CBD is the (re-)use
of components in different contexts, which enhances the development efficiency.
The communication between components is done through interfaces, which are
specifications of the components’ access points. In our work, we use port-base
interfaces for sending/receiving data of different types.

An important aspect of CBD is the encapsulation fundamental, where all the
component data and operations are encapsulated inside and hidden from any-
thing outside. The only way to access the encapsulated information is through
the component access points referred as interfaces. The way a component is
constructed (alongside with its interfaces) is specified by a component model.
Moreover, the component model defines the manner in which components com-
municate with each other, when composed into a system [4].

CBD is successfully adopted in industry through various component models.
For real-time and embedded systems, the domain which we focus in this work,
component models such as AUTOSAR [13], Rubus [8] and IEC 611-31 [10] are
currently used in the development of applications. Particular interaction styles
are employed by these component models when used for particular type of appli-
cations [6]. For example, the pipe-and-filter style, which is considered in this
work, is suitable for streaming-of-events type of applications and adopted by
e.g., Rubus and IEC 611-31 component models [6].

4 http://www.eizorugged.com/products/vpx/condor-gr2-3u-vpx-rugged-graphics-
nvidia-cuda-gpgpu/.

http://www.eizorugged.com/products/vpx/condor-gr2-3u-vpx-rugged-graphics-nvidia-cuda-gpgpu/
http://www.eizorugged.com/products/vpx/condor-gr2-3u-vpx-rugged-graphics-nvidia-cuda-gpgpu/

290 G. Campeanu

C1
C2

Legend:

Data port

Trigger port
Software circuit

Output ports
of C2

Input ports
of C1

Output
trigger port

Output
data port

Fig. 1. Two connected Rubus components

As the Rubus component model is used in this work to realize our solu-
tion and for evaluation purposes, we introduce more details regarding it. The
name of a Rubus component is software circuit. Each component is equipped
with one input and output trigger port and one or several input and output
data ports. Through these distinct types of ports (i.e., control and data ports),
the component model provides a separation between control and data flow of
the system, which allows an easy mapping between the control specifications of
real-time and embedded systems, and the interaction model. Figure 1 illustrates
two connected Rubus components characterized by input and output (trigger
and data) ports. A Rubus component follows the Read-Execute-Write execution
model. For example, C1 is initially in an idle state. After receives the control
of execution through its input trigger port, it Reads the input information via
its two input data ports, Executes its functionality and Writes the result in the
out data port. Finally, it passes the execution control to C2 through the output
trigger port and re-enters in the idle mode.

3 Problem Description

The existing component models used in the development of embedded sys-
tems provide no specific GPU support. Accordingly, the component developer,
when constructing components with GPU functionality, needs to encapsulate all
the GPU-related information inside the components. In this work, we focus on
the encapsulated GPU settings regarding the GPU computation resources. For
instance, for a component that filters frames of 640× 480 pixels, the developer
needs to hard-code inside the component a number of 640 * 480 GPU threads,
where each thread processes a pixel. Moreover, the specified threads need to be
grouped in a particular way (e.g., tiles of 8 by 8 threads) in order to match the
size of the processed data. The grouping settings have a direct impact over the
system performance.

A challenge comes when a component that contains hard-coded GPU settings
is (re-)used in different contexts. Due to its encapsulated settings, the component

Facilitating Component Reusability in Embedded Systems with GPUs 291

may produce erroneous results when dealing with data of different characteris-
tics. For example, assuming there is a component that filters images and has
encapsulated settings corresponding to 640× 480 pixel frames. When the com-
ponent is (re-)used in an application that handles 1024× 1024 pixel images, it
would be able to process only a part of the system data. An alternative would
be to construct a component encapsulating the same functionality, but different
GPU settings corresponding to 1024× 1024 pixel images. Constructing compo-
nents that can be used only in certain contexts, would significantly decrease the
benefits of adopting CBD for construction of embedded systems with GPUs.

Merge
And

Enhance

Convert
Grayscale

Edge
Detection

Legend:

Data port

Trigger port

Component with
GPU capability

Fig. 2. Fragment of the component-based vision system of an underwater robot

To exemplify the challenge discussed in this work, we introduce a running-
case example. We use a part of the vision system of an underwater robot, as
described by Fig. 2. The vision system is constructed using the Rubus compo-
nent model. The underwater robot is equipped with two cameras which provide
a continuous flow of frames. Each pair of frames is received by the MergeAn-
dEnhance component that merges and reduces the frames’ noise. The resulted
merged frame is converted to a grayscale format by ConvertGrayscale compo-
nent and forwarded to EdgeDetection component that outputs a black-and-white
frame, where objects are delimited by while lines.

We assume that the components were reused from different applications, and
they were initially constructed with different GPU settings, as follows:

– MergeAndEnhance processes two 300× 400 pixel frames and produces one
600× 400 pixel frame,

– ConvertGrayscale converts 300× 300 pixel frames, and
– EdgeDetection filters 600× 500 pixel frames.

In the current example, the physical cameras provide frames with 300× 450
pixels. The flow of the frames through the system including the (erroneous)
outputs are illustrated in Fig. 2. We notice that the output of EdgeDetection is
actually a portion of the (merged) frame produced by the MergeAndEnhance
component.

292 G. Campeanu

4 Solution Overview

In order to facilitate reusability of components with GPU functionality in differ-
ent contexts, we provide the following solution. Based on the design information,
a component is instantiated with a number of identical instances in order to
process data of various sizes. Each instance independently handles a part of the
original data. The output processed data from all the instances are automati-
cally merged together into a single one that the component communicates to its
connected components.

data port

component with
GPU functionality

Legend:

component
instance

Fig. 3. Overview of the proposed solution

The overview of the proposed solution is illustrated in Fig. 3, where a com-
ponent is duplicated into several more instances (illustrated in dashed lines) in
order to handle income data with characteristics that are not supported by the
component. The proposed solution automatically:

– decides on how many component instances are required,
– distributes data to each instance, and
– gathers the outcome of each instance into a single output data.

The instances are automatically generated, in a transparent way.

Convert
Grayscale

Convert
Grayscale
instance

Convert
Grayscale
instance

Convert
Grayscale
instance

Fig. 4. Instances of the ConvertGrayscale component

Facilitating Component Reusability in Embedded Systems with GPUs 293

Using the vision system running case, we describe our solution applied on the
ConvertGrayscale component, as illustrated in Fig. 4. The solution automatically
constructs three more component instances in order to correctly process the
input received frame. The output grayscale frames provided by the used instances
are merged together into a single frame which represents the conversion output
of the ConvertGrayscale component.

5 Realization

In this work, we use white-box components, i.e., components with readable
source code such as Rubus and IEC 61131 components. Furthermore, we target
component models that follow the pipe-and-filter architecture style due to the
embedded systems targeted by our solution (e.g., real-time, control-type appli-
cations). In this context, we provide a solution to automatically facilitate the
(re-)use of components with GPU capability in different contexts. The solution
is implemented as an extension of a state-of-the-practice component model (i.e.,
Rubus). Moreover, we use the OpenCL environment to implement components
with GPU capability.

For each component with GPU capability, our solution checks the application
design, i.e., the characteristics of the input ports and their received data. When
a mismatch appears, the solution computes the number of required instances
to handle the received data, and realize them inside the component, using the
existing Rubus generation rules.

In order to divide the data, we introduce an artifact called fork. When a
component is instantiated (i.e., differences between the income data attributes
and component capabilities) a fork element is created. In order to not introduce
additional component model elements, we use the existing Rubus framework
and realize the fork artifact as a regular component equipped with input and
output (trigger and data) ports. Based on the number of the input data ports of
a component with GPU capability, the connected artifact will be equipped with
an appropriate number of (input and output) data ports to handle all the data
connections.

Similarly, the system generates an artifact called join to gather the outcomes
from all component instances into one single outcome. Based on the number of
output data ports of the component with GPU capabilities, the join artifact will
be equipped with an appropriate number of ports to carry out the component
communication. The join component is realized as a Rubus component, in an
automatic and transparent manner. The fork and join are generated for each
component with GPU capabilities, when needed.

Our solution handles the re-wiring between the introduced join/fork arti-
facts and the component and its created instances. The existing Rubus rules
regarding component wiring are modified, and we introduce new rules that link
the interfaces of the join/fork components with the generated interfaces of the
component instances, and rest of the system. Moreover, in order to not intro-
duce additional overhead for the system designer, the introduced components
and their connections are transparently generated.

294 G. Campeanu

Merge
And

Enhance

Convert
Grayscale

Fork

Join

Merge
And

Enhance Sync

Fork

Convert
Grayscale

Convert
Grayscale

Convert
Grayscale

Join

Sync

Edge
Detection

Fig. 5. The solution realization of the vision system

Figure 5 describes the solution realization of the vision system running-case.
For the MergeAndEnhance component, a fork component is automatically gen-
erated and divides the input data into two parts which are provided to the
MergeAndEnhance component and its instance. In order to connect to the two
component instances5, the fork component is equipped with:

– two input data ports that correspond to the number of MergeAndEnhance
input data ports, and

– four output data ports through which it provide data to the two connected
instances.

To gather all the outcomes, a join component is generated to copy the two
results into one single location. The join component has:

– two input data ports, where each one receives the output data of the two
generated component instances, and

– one output data port through which it sends the (gathered into one) result
to the ConvertGrayscale component.

In a similar way, a fork component is created to divide and provide the correct
data to the four ConvertGrayscale instances, and a join component to gather
all the four results into a single frame. The system does not need to create
any fork/join components for EdgeDetection due to its specifications, i.e., its
functionality can handle the inputed data frame.

5.1 Implementation

The solution, based on the design of the system, constructs the proposed artifacts
at the generation system stage, presented in the following paragraphs.

A Rubus software component is characterized by a header and several C
source files that contain the definitions and declarations for:

5 For simplification, we use the term of instances to refer to a component and its
instance(s).

Facilitating Component Reusability in Embedded Systems with GPUs 295

– an interface that contains structures used to define the input and output data
ports,

– a constructor that initiate the resource requirements of the component,
– a behavior function that defines the component functionality, and
– a destructor that releases the allocated resources of the component.

The same Rubus rules that generate regular components (with GPU capa-
bility) are followed when implementing the component instances. For example,
the implementation of the MergeAndEnhance component is identical with its
instance.

In the next paragraphs, we describe the implementation of the join and
fork components. The existing Rubus rules regarding generation of compo-
nent interface are used to implement the interface of fork elements, as fol-
lows. Located in the header file, the interface contains a structure declaration
that is composed of two (structure) elements corresponding to the input and
output data ports. Figure 6 presents the interface of the fork component, i.e.,
SWC fork MergeAndEnhance (lines 34–37). The interface contains two elements:

– IP SWC - a structure with two elements that correspond to the input data
ports, and

– OP SWC - a structure with four elements corresponding to the output data
ports of the fork component.

The two input ports receive the input data of MergeAndEnhace component, i.e.,
data locations and width and height dimensions of the input images. The output
ports will contain, after the execution of the behavior function, the details of the
data sent to each of the component instance. In a similar way, the interface of
the join MergeAndEnhance component will be automatically constructed.

In general, we let the system to generate the constructor for the fork com-
ponent as it does not have distinctive requirements. On the other hand, the join
component constructor needs special attention due to the artifact purpose, i.e.,
to copy several data into one location. Therefore, the join constructor needs to
manage the allocation of a memory space to hold all of the combined data. This
is realized with the OpenCL function clCreateBuffer6 that allocates memory
space on the GPU. The generation of the join MergeAndEnhance constructor is
described in Listing 1.1, where the width and height sizes of the outcome image
are calculated using the corresponding values of the frames received through
each input port (i.e., lines 3 and 8). The computed width and height sizes are
used to allocate a memory space (i.e., line 11) that is big enough to contain all
of the received data.

The behavior function of a fork component, based on the information of
the input data and the number of connected component instances and their
characteristics, computes the characteristics (i.e., location, width and height)
of the data that will be processed by each component instance. For the

6 https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/
clCreateBuffer.html.

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateBuffer.html

296 G. Campeanu

ID1

ID2

OD1_inst1

OD2_inst1

OD1_inst2

OD2_inst2

fork_MergeAndEnhance

1 typedef struct {
2 GPU_unsigned_char *ptr;
3 }data_type;
4
5 typedef struct {
6 int size;
7 }dim1;
8
9 typedef struct {

10 int size;
11 }dim2;
12
13 typedef struct {
14 data_type *place;
15 dim1 width;
16 dim2 height;
17 }img_format;
18
19 /* input ports */

20 typedef struct {
21 img_format *ID1;
22 img_format *ID2;
23 }IP_SWC;
24
25 /* output ports */

26 typedef struct {
27 img_format OD1_inst1;
28 img_format OD2_inst1;
29 img_format OD1_inst2;
30 img_format OD2_inst2;
31 }OP_SWC;
32
33 /* the interface declaration */

34 typedef struct {
35 IP_SWC IP;
36 OP_SWC *OP;
37 }SWC_fork_MergeAndEnhance;

Fig. 6. The interface of a fork component

fork MergeAndEnhance component, the behavior function calculates two point-
ers that direct to two memory locations corresponding to two parts of the initial
image. The output data ports are set with the computed pointers, alongside with
the corresponding image dimensions (i.e., width and height).

Listing 1.1. The constructor of a join component

1 int width = 0;
2 <foreach input port p>
3 int width += args ->IP.p->width.size;
4 <endforeach >
5
6 int height = 0;
7 <foreach input port p>
8 int height += args ->IP.p->height.size;
9 <endforeach >

10
11 void *location = clCreateBuffer(contex , CL_MEM_WRITE_ONLY , 3* width*height , NULL , NULL);

The behavior function of the join component copies all the income data into
a single memory location (allocated by the constructor). For our vision system
example, the join MergeAndEnhance behavior function copies two images using
the OpenCL function clEnqueueCopyBuffer7. The specifications of the input

7 https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/
clEnqueueCopyBuffer.html.

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueCopyBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueCopyBuffer.html

Facilitating Component Reusability in Embedded Systems with GPUs 297

data (determined through the input port characteristics) and the memory loca-
tion (allocated by the constructor) to hold the two images, are used as parameters
for the copying activity. Listing 1.2 describes one of the copy activities done by
the behavior function, i.e., the copy of the image received through the input port
ID1. Similarly, another copy activity corresponding to the data received by the
second input port, is generated inside the behavior function.

Listing 1.2. A part of the behavior function of a join component

clEnqueueReadBuffer(command_queue, args->IP.ID1->place->ptr, (unsigned char*) location, 0, 0, 3*(args->IP.ID
->width.size)*(args->IP.ID->height.size) * sizeof(unsigned char), 0, NULL, NULL);

Regarding the destructors, we do not include specific instructions for the fork
destructor and let the system to handle it using the existing Rubus framework
rules. For the join component, the destructor needs to release the memory allo-
cated by the constructor. Therefore, for the generation of join MergeAndEnhance
destructor, we use the clReleaseMemObject8 function to release the memory allo-
cated by the constructor, as depicted in Listing 1.3.

Listing 1.3. The destructor of a join component

clReleaseMemObject(location);

6 Evaluation

In this section, we examine the feasibility of our solution using the introduced
running case, i.e., the vision system of the underwater robot. Moreover, we ana-
lyze: (i) the execution overhead, and (ii) memory overhead introduced by the
generation of the fork and join components, and the component instances.

We constructed two Rubus versions of the vision system, where one is con-
structed using our solution and the other, referred as the custom version, is con-
structed using regular components with hard-coded settings to explicitly handle
the system input images. In all of the experiments, we make comparisons between
the two versions. Furthermore, the GPU functionality of each component in both
versions is constructed in such a way to handle also input frames that have lower
(width and height) attributes than the component specifications. The platform
used for the experiments in an embedded platform with an AMD Kabini SoC9.

Listing 1.4 presents a part of the ConvertGrayscale functionality. For simpli-
fication purposes, we define three variables (i.e., lines 1–3) to hold the attributes
of the input data (i.e., location, width and height). These variables are used as
arguments for the ConvertGrayscale fct function (referred as the GPU kernel)
that contains the conversion-to-grayscale GPU functionality. The hard-coded
settings, that correspond to the GPU thread index, are accessed from the kernel
function using specific calls (i.e., get global id) in lines 10 and 11, and checked

8 https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/
clReleaseMemObject.html.

9 https://unibap.com/product/advanced-hetereogeneous-computing-modules.

https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/clReleaseMemObject.html
https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/clReleaseMemObject.html
https://unibap.com/product/advanced-hetereogeneous-computing-modules

298 G. Campeanu

against the received kernel arguments (i.e., line 12). When the arguments values
do not match (i.e., less than) the number of utilized threads, the extra threads
are discarded (i.e., they do not execute).

Listing 1.4. Part of the ConvertGrayscale GPU functionality

1 unsigned char* in = args ->IP.ID1 ->place ->ptr;
2 int width = args ->IP.ID ->width.size;
3 int height = args ->IP.ID ->height.size;
4
5 __kernel void ConvertGrayscale_fct(__global const unsigned char *in, int width , int

height , __global unsigned char *out)
6 {
7 /* compute absolute image position (x, y) */

8 int x = get_global_id (0);
9 int y = get_global_id (1);

10
11 /* relieve threads that are outside of the received image */

12 if (x >= width || y >= height) return;

The execution of the two vision system versions produced results (i.e., frames)
that were identical. The introduced artifacts and activities (i.e., dividing and
merging data) did not influence the system’s outcomes.

In the second experiment, we focused on the execution time overhead of
the introduced solution. Our solution introduces: (i) four artifacts (i.e., fork
and join components), (ii) one additional MergeAndEnhance instance, and (iii)
three more ConvertGrayscale instances. To examine the introduced overhead,
we calculate the end-to-end execution of the two vision system versions. The
execution time for the version implemented with our solution was 9.4 ms, while
the custom version had 4.6 ms.

As the memory characteristic is a sensible topic in the embedded systems
domain, in the last part of the evaluation we analyzed the memory overhead
introduced by our solution. For the custom version of the vision system, the total
memory requirement is of 494.2 kB, where MergeAndEnhance requires 177.6 kB
of memory, ConvertGrayscale requires 175.6 kB of memory, and EdgeDetection
requires 130.8 kB of memory. For the version that uses our solution, where there
are two MergeAndEnhance instances, four ConvertGrayscale instances and one
EdgeDetection instance, the total system requirement is of 722 kB of memory.
We mention that a MergeAndEnhance instance that processes two 300× 400
pixel frames requires 158.6 Kb of memory and a ConvertGrayscale instance that
processes (at a time) one 300× 300 pixel frame, requires 63.7 kB of memory.
We notice that the custom version requires with 227 kB less memory than the
version constructed with our solution.

Although the custom version has an improved execution time and requires
less memory than the version that uses our solution, the components are specif-
ically constructed for this application and platform, and have a low reusability
in other (software and hardware) contexts.

7 Related Work

The increased requirements of modern applications lead to the adoption of het-
erogeneity in embedded systems. AUTOSAR component model, utilized in the

Facilitating Component Reusability in Embedded Systems with GPUs 299

automotive industry, was extended with multi-core ECUs support [11]. Another
solution to satisfy the increased demands of modern applications is to use accel-
erator hardware. The FPGA is one of the feasible solutions to be used as co-
processor for data demanding applications. Andrews et al. proposes a way to use
COTS components, referred as hybrid components, to develop applications for
CPU-FPGA hardware [1].

The GPU in the context of embedded systems is addressed by Campeanu et
al. which facilitate the development of applications for CPU-GPU hardware [3].
The authors proposed to enrich each component (with GPU capability) with a
specific configuration interface. Through this interface, the component receives
from e.g., the system designer, individual GPU settings regarding the number of
GPU threads used by the functionality. We consider this as a possible solution to
tackle the challenge discussed in this work, but it comes with two disadvantages,
as follows. The system developer needs to have, at the time when designing
the system, detailed information (i.e., the physical GPU threads limitation) of
the hardware platform that will host the applications. The detailed hardware
platform is not always known at design time. Another downside is that the
system designer needs to: (i) have knowledge about GPU development, or (ii)
correspond with the component developer (breaking the separation-of-concern
CBD principle), in order to provide good/best GPU thread settings for the
components with GPU capability. Although there is an overhead introduced
by our solution (i.e., memory usage and execution time), we believe that our
work increases the reusability aspect while preserving the separation-of-concern
principle.

Some component models develop traditional (CPU-based) systems by hard-
coding inside the components the specific characteristics of the hardware. Led-
nicki et al. introduce an additional layer (i.e., mapping layer) to address the flex-
ibility of components [12]. The introduced mapping layer connects software and
hardware platforms allowing them to be independently developed. We consider
that new architectural elements (e.g., software layers) would greatly increase the
overhead of Rubus solutions. Therefore, we constructed our solution using the
existing elements of the Rubus framework.

It is worth to mention the work of Dastgeer et al. that introduce the PEP-
PHER framework that uses a component-based development approach to con-
struct CPU-GPU systems [7]. They refer to a software component as a block that
encapsulates one or several implementation variants. All the variants are com-
putationally equivalent and have the same interface. Whenever the component
is executed, a proper variant is selected based on the software call parameters
and available hardware resources. In our work, we also use multiple instances of
the same component; however, all of the instances are used in order to produce
the correct output.

8 Discussion

The existing component models have no specific GPU support in development
of embedded systems. This leads to constructing components, with hard-coded

300 G. Campeanu

settings, that are specific to certain contexts. To tackle this challenge, we pro-
pose a solution to improve the reusability of components with GPU capability,
for different contexts. The solution introduces two types of artifacts, i.e. fork and
join artifacts, that are automatically generated to divide and merge data. More-
over, the solution instantiates each component with GPU functionality with a
number of instances in order to handle data of any size.

There are other solutions (e.g., see Sect. 7, second paragraph) to tackle the
challenge discussed in this work. As presented in the evaluation, a component
with GPU capability may be hard-coded with (high number of) GPU threads
settings to handle images of different sizes. There are two limitations of this
solution, as follows:

– each GPU platform has a limited number of threads
(e.g., CL DEVICE MAX WORK GROUP SIZE for OpenCL contexts).
Hard-coding large thread resources inside components will make them specific
to certain GPU platforms, with large available resources.

– Imposing large GPU thread usage for components with GPU capability used
to process data of small-to-medium sizes, leads to waste of GPU resources.

Another downside of the proposed solution is the memory overhead. For
each component that cannot handle the received data, we generate a num-
ber of instances, alongside the join and fork components. The vision system
version implemented with our solution has generated four more component
instances (i.e., one for MergeAndEnhance and three for ConvertGrayscale) and
four fork/join components. We consider that the memory overhead is a major
downside of our solution, due to the domain targeted of our work (i.e., real-time
and embedded systems) where the system is characterized by limited resources
(e.g., available memory). Therefore, one future work direction is to reduce the
introduced memory overhead by grouping all the created instances in a con-
ceptual component. Another future work direction is to increase the GPU par-
allelism level by simultaneous executing the instances of the same component.
Using the existing approaches for parallel execution of components on GPU [2],
we may improve the system performance, while delivering an increased compo-
nent reusability.

Besides the overhead introduced by our solution (i.e., increased memory usage
and execution time), we consider that our solution decreases the existing gap of
component-based development for embedded systems with GPUs, facilitating
the reusability of components with GPU capabilities.

Acknowledgment. The work is partially supported by the Knowledge Foundation
through the ORION project (reference number 20140218).

Facilitating Component Reusability in Embedded Systems with GPUs 301

References

1. Andrews, D., Niehaus, D., Ashenden, P.: Programming models for hybrid CPU/F-
PGA chips. Computer 37(1), 118–120 (2004)

2. Campeanu, G.: Parallel execution optimization of GPU-aware components in
embedded systems. In: The 29th International Conference on Software Engineering
and Knowledge Engineering, SEKE 2017, 5–7 July 2017, Pittsburgh, USA (2017)

3. Campeanu, G., Carlson, J., Sentilles, S., Mubeen, S.: Extending the Rubus com-
ponent model with GPU-aware components. In: 2016 19th International ACM
SIGSOFT Symposium on Component-Based Software Engineering (CBSE). IEEE
(2016)

4. Chaudron, M., Crnkovic, I.: Component-based software engineering. In: van Vliet,
H. (ed.) Software Engineering: Principles and Practice. Wiley, Chichester (2008)

5. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems.
Artech House Inc., Norwood (2002)

6. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.: A classification framework
for software component models. IEEE Trans. Softw. Eng. 37, 593–615 (2011)

7. Dastgeer, U., Li, L., Kessler, C.: The PEPPHER composition tool: performance-
aware dynamic composition of applications for GPU-based systems. In: 2012
SC Companion High Performance Computing, Networking, Storage and Analy-
sis (SCC). IEEE (2012)

8. Hanninen, K., Maki-Turja, J., Nolin, M., Lindberg, M., Lundback, J., Lundback,
K.-L.: The Rubus component model for resource constrained real-time systems.
In: International Symposium on Industrial Embedded Systems, SIES 2008. IEEE
(2008)

9. Humenberger, M., Zinner, C., Weber, M., Kubinger, W., Vincze, M.: A fast stereo
matching algorithm suitable for embedded real-time systems. Comput. Vis. Image
Underst. 114, 1180–1202 (2010)

10. John, K.-H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation
Systems: Concepts and Programming Languages, Requirements for Programming
Systems, Decision-Making Aids. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-662-07847-1

11. Kluge, F., Gerdes, M., Ungerer, T.: AUTOSAR OS on a message-passing multicore
processor. In: SIES, pp. 287–290 (2012)

12. Lednicki, L., Feljan, J., Carlson, J., Zagar, M.: Adding support for hardware devices
to component models for embedded systems. In: The Sixth International Confer-
ence on Software Engineering Advances (2011)

13. AD Partnership: Technical overview v4.2. http://www.autosar.org. Accessed 14
Apr 2018

https://doi.org/10.1007/978-3-662-07847-1
https://doi.org/10.1007/978-3-662-07847-1
http://www.autosar.org

Author Index

Ábrahám, Erika 89
Arndt, Hannah 271

Babaee, Reza 205
Balasubramanian, Daniel 139
Barbon, Gianluca 173
Bendík, Jaroslav 189

Campeanu, Gabriel 287
Carlsson, Mats 239
Černá, Ivana 189
Chen, Tzu-Chun 73
Choi, Yunja 254
Cleaveland, Rance 37

Dagnat, Fabien 54
Din, Crystal Chang 73
Dubois, Catherine 239

Fischmeister, Sebastian 205

Ghassabani, Elaheh 189
Golra, Fahad Rafique 54
Grinchtein, Olga 239
Guerin, Sylvain 54
Gurfinkel, Arie 205

Hallerstede, Stefan 21
Harman, Mark 3
Hasan, Osman 223
Hasanagić, Miran 21

Jansen, Christina 271

Karsai, Gabor 139
Kersten, Rody 139
König, Jürgen 105

Kostyuchenko, Dmitriy 139
Krings, Sebastian 21

Larsen, Peter Gorm 21
Le Goues, Claire 155
Leroy, Vincent 173
Leuschel, Michael 21
Lindvall, Mikael 37
Luckow, Kasper 123, 139

Matheja, Christoph 271

Noll, Thomas 271

Păsăreanu, Corina S. 123
Pearson, Justin 239

Rashid, Adnan 223

Salaün, Gwen 173
Sayar, Imen 54
Schellhorn, Gerhard 105
Schlatte, Rudolf 73
Schulze, Christoph 37
Schupp, Stefan 89
Siddique, Umair 223
Souquières, Jeanine 54

Travkin, Oleg 105

van Tonder, Rijnard 155
Visser, Willem 123

Wedel, Monika 105
Wehrheim, Heike 105
Whalen, Michael 189

	Message from the STAF Organizers
	Message from the SEFM Program Chairs
	Organization
	Contents
	Invited Keynote
	We Need a Testability Transformation Semantics
	1 Introduction
	2 Formal Definition of Testability Transformation
	3 Testability Transformation and Abstract Interpretation
	4 Testability Transformation and Metamorphic Testing
	5 Testability Transformation Research Questions to Be Tackled Using Formal Methods
	6 Conclusion
	References

	Specification
	From Software Specifications to Constraint Programming
	1 Introduction
	2 Refinement and Constraint Programming
	3 Translation and Constraint Solving
	3.1 Translation in ProB
	3.2 Translation to OscaR

	4 Solving the N-Queens Problem
	5 Conclusion
	References

	Automated Specification Extraction and Analysis with Specstractor
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Mealy Machines
	2.2 Mealy Systems

	3 Specstractor
	4 Numerical Variables and Range Miner
	4.1 Range Miner
	4.2 Discretization via Fixed Point Binning
	4.3 Association Rule Mining and Merging of Invariants
	4.4 Improving the Test Generator
	4.5 Invariant Extension

	5 Experimental Evaluation
	5.1 Comparison with Given Specifications
	5.2 Range Miner Evaluation

	6 Related Work
	7 Conclusion
	References

	Bridging the Gap Between Informal Requirements and Formal Specifications Using Model Federation
	1 Introduction
	2 The Gap
	3 Model Federation
	4 Linking Requirements to Specifications
	4.1 Requirement Virtual Model
	4.2 Specification Virtual Model
	4.3 Glossary Virtual Model

	5 Process Driven Approach
	6 Lessons Learned
	7 Related Work
	8 Conclusion and Future Work
	References

	Concurrency
	Program Verification for Exception Handling on Active Objects Using Futures
	1 Introduction
	2 A Short Introduction to ABS
	2.1 A Brief Example
	2.2 Asynchronous Method Calls, Scheduling Points, and Object Groups

	3 Exception Recovery in ABS
	3.1 Exception Modeling in the Functional Layer
	3.2 Exception Handling in the Imperative Layer
	3.3 Recovery in the Object Layer
	3.4 Session Blocks

	4 Program Analysis of Session Blocks with Exception Handlers
	4.1 Session Contracts
	4.2 Proof System

	5 Related Work
	6 Conclusion
	References

	Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems
	1 Introduction
	2 Preliminaries
	2.1 Hybrid Automata
	2.2 Reachability Analysis Based on Flowpipe Construction
	2.3 Counterexample-Guided Parameter Refinement

	3 Parallel Reachability Analysis
	3.1 Sequential Analysis
	3.2 Parallel Analysis
	3.3 Implementation

	4 Experimental Results
	5 Conclusion
	References

	FastLane Is Opaque – a Case Study in Mechanized Proofs of Opacity
	1 Introduction
	2 The FastLane Algorithm
	2.1 The FastLane Mode

	3 Proof Method
	4 Proving FastLane Refinement of TMS2
	5 Combining FastLane with Other Implementations
	6 Conclusion
	References

	Program Analysis
	Monte Carlo Tree Search for Finding Costly Paths in Programs
	1 Introduction
	2 Background
	3 MCTS with Symbolic Execution
	4 Example
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	A Cloud-Based Execution Framework for Program Analysis
	1 Introduction
	2 Background
	3 Cloud Framework
	3.1 Bridge-Daemon Subsystem
	3.2 Dispatcher-Worker Subsystem
	3.3 Adding a New Analysis

	4 Benchmarks and Results
	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Cross-Architecture Lifter Synthesis
	1 Introduction
	2 Overview and Problem Definition
	3 Synthesis Model
	3.1 Comparing Executions
	3.2 Operational Semantics

	4 Synthesis Approach
	4.1 Sketches from Term Deconstruction
	4.2 Synthesis
	4.3 Operand Permutations and One-To-Many Translation

	5 Evaluation
	5.1 Analysis Reuse
	5.2 Synthesizing the MIPS Lifter
	5.3 Generalizing Across Architectures
	5.4 Discussion

	6 Related Work
	7 Conclusion
	References

	Model Checking and Runtime Verification
	Counterexample Simplification for Liveness Property Violation
	1 Introduction
	2 Preliminaries
	3 Counterexample Simplification
	3.1 Prefixes and Suffixes
	3.2 Prefixes and Suffixes Calculation
	3.3 Neighbourhoods
	3.4 Simplification Techniques

	4 Illustration on Case Studies
	5 Related Work
	6 Conclusion
	References

	Online Enumeration of All Minimal Inductive Validity Cores
	1 Introduction
	2 Preliminaries
	3 Existing Techniques
	4 Grow-Shrink Algorithm
	4.1 Shrink Procedure
	4.2 Grow Procedure
	4.3 Solve Procedure
	4.4 Complete Algorithm
	4.5 Symbolic Representation of Unexplored Subsets
	4.6 Implementation

	5 Example Execution of the Grow-Shrink Algorithm
	6 Experiment
	6.1 Experimental Results

	7 Conclusion
	References

	Prevent: A Predictive Run-Time Verification Framework Using Statistical Learning
	1 Introduction
	2 An Overview of Prevent
	3 Preliminaries
	4 Monitor Construction
	4.1 Training HMM
	4.2 The Product of the Prediction Model and the Specification
	4.3 Constructing Monitor with Bounded Prediction Horizon

	5 Run-Time Monitoring with Viterbi Approximation
	6 Prediction Evaluation
	6.1 Prediction Error
	6.2 Empirical Evaluation Using Hypothesis Testing

	7 Case Studies
	7.1 Randomized Dining Philosopher
	7.2 Hexacopter Flight Control

	8 Related Work
	9 Conclusion
	References

	Applications
	Formal Verification of Platoon Control Strategies
	1 Introduction
	2 Preliminaries
	2.1 Theorem Proving and Proof Assistant
	2.2 Multivariable Calculus and Laplace Transform Theories

	3 Formal Modeling of Platoon Controller and Stability
	3.1 Formalization of Platoon Controller
	3.2 Formalization of the Platoon Stability

	4 Formal Verification of the Platoon Control Strategies
	4.1 Autonomous Unidirectional Controller
	4.2 Generalized Platoon Controller

	5 From Verified Controller to Stability Monitors
	6 Conclusion and Future Work
	References

	Exploring Properties of a Telecommunication Protocol with Message Delay Using Interactive Theorem Prover
	1 Introduction
	2 Preliminaries
	3 Protocol Overview
	4 Constraint Model
	5 A New Constraint Model for Delays
	5.1 A Property of the Protocol
	5.2 Constraints for Delay

	6 Proofs in Coq
	7 Related Work
	8 Conclusion
	References

	Automated Validation of IoT Device Control Programs Through Domain-Specific Model Generation
	1 Introduction
	2 Background
	2.1 Elements of Device Control Software
	2.2 Model Checker SPIN and C Code Embedding

	3 Configurable Model Construction in Promela
	3.1 OS Patterns in PROMELA
	3.2 Interaction Model
	3.3 CFG Annotation for C Code Embedding

	4 Case Study: Applications to Erika Programs
	5 Related Work
	6 Discussion
	References

	Shape Analysis and Reuse
	Graph-Based Shape Analysis Beyond Context-Freeness
	1 Introduction
	2 Informal Example
	3 Program States and Indexed Grammars
	3.1 Program States
	3.2 Indexed Grammars

	4 Abstract Domain
	5 Backward Confluent IGs
	6 Global Index Abstraction
	7 Implementation
	8 Related Work
	9 Conclusion
	References

	Facilitating Component Reusability in Embedded Systems with GPUs
	1 Introduction
	2 GPUs in Embedded Systems
	3 Problem Description
	4 Solution Overview
	5 Realization
	5.1 Implementation

	6 Evaluation
	7 Related Work
	8 Discussion
	References

	Author Index

