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Preface

Systems Biology

The nineteenth and the twentieth century—a time during which our knowledge
about how organisms function on a cellular and molecular level started to explode—
witnessed the emergence of many new branches of biology such as cell biology,
developmental biology, evolutionary biology, biochemistry, genetics, epigenetics,
and molecular biology. Each of them focuses on a different aspect of the mecha-
nisms and principles governing living organisms.

Systems biology brings the findings of these disciplines together with the aim
to develop a holistic rather than reductionist understanding of cells, organisms,
and ecosystems. Its goal is to understand the networks of individual biological
components and to decipher how these networks and regulatory circuits interact
to form living systems. A deep understanding of biological systems is achieved by
gaining insight into their structure, dynamics, and control mechanisms. Systems
biology represents a highly integrative and interdisciplinary approach. In addition
to biology and medicine, it heavily relies on computer sciences and mathematics
while also involving chemistry and physics.

The concept of systems biology emerged during the early twentieth century,
when the notion became more and more accepted that biological systems follow
physical and mechanical laws, elegantly outlined in D’Arcy Thompson’s work
“On Growth and Form,” 1917. Other theories and discoveries contributed to the
refinement of this concept during the course of the twentieth century. Notable
examples include Conrad Waddington, who characterized networks of genes, cells,
and tissues as decision-making dynamical systems; Ludwig von Bertallanffy with
his “Outline of General Systems Theory” in 1950; Alan Lloyd Hodgkin and Andrew
Fielding Huxley, who in 1952 spearheaded mathematical modeling of biological
systems by describing how an action potential moves along the axon of a neuronal
cell; Jacques Jacob and Francois Monod, who, when conducting their famous
research on gene regulatory elements in the 1960s, concluded that mechanisms of
gene regulation could form a variety of networks endowed with any desired degree
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of stability; as well as Eric Davidson and Roy Britten, who in 1969 pioneered
the concept of gene regulatory networks. The term systems biology is attributed
to systems theorist Mihajlo Mesarovic. He coined it in 1966 when hosting the
international symposium “Systems Theory and Biology” at the Case Institute of
Technology in Cleveland, OH. With the Institute for Systems Biology in Seattle
and the Systems Biology Institute in Tokyo, the first systems biology institutes were
founded in the year 2000, and many others followed.

The rise of systems biology as a key biological discipline in the new millennium
was fueled by the preceding and concurrent development of high-throughput
technologies such as genomics, transcriptomics, proteomics, metabolomics, and
epigenomics. Omics technologies required novel specialized devices and experi-
mental workflows as well as accompanying computational tools and mathematical
models. The latter, which are needed to integrate the wealth of the generated data,
were made possible thanks to the simultaneous vast expansion of computing power.
Vice versa, systems biology continues to be a driving force behind the constant
development and improvement both of experimental techniques and equipment to
extract large amounts of qualitative and quantitative information from complex bio-
logical samples and of the bioinformatic pipelines necessary to obtain meaningful
biological insights. An example of a more recent technological advancement in
systems biology is represented by the development of single-cell omics technologies
over the last decade, which now permit us to study the molecular make-up and
dynamics of tissues and entire organisms at single-cell resolution.

A current challenge in systems biology is the integration of different regulatory
levels such as genetic, epigenetic, and posttranscriptional gene regulation and the
comprehension of the interplay between these levels. The long-term goal is the
deduction of predictive models that enable us to foresee how cells and organisms
change over time and in response to external stimuli or perturbations. Machine
learning and artificial intelligence are going to be essential in the development
of such multidimensional models that take spatial and temporal information into
account. Being able to predict the fate of cells, tissues, organs, and organisms would
be extremely powerful, since it would not only provide us with a fundamental
understanding of how life works on a molecular and cellular level, but would also
be a huge step forward for personalized medicine. It would allow us to foresee the
course of human diseases and to choose the most effective therapies for each patient.

This book illustrates how systems biology is instrumental in advancing our
knowledge about the principles of cellular and tissue organization. Themes cov-
ered include regulation of gene expression by genome structure, RNA-binding
proteins, RNA–RNA interactions, noncoding RNAs, transcriptomics, epigenomics,
metabolomics, posttranscriptional gene regulation, systems biology in health and
disease, experimental and computational tools for systems biology research, com-
putational methods for multidimensional data analysis, and integration as well as
the deduction of predictive models.
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The chapters will provide the reader with examples of how important scientific
questions are addressed in systems biology and of bioinformatic tools designed to
reach valuable conclusions from the abundance of the generated information.

Berlin, Germany Nikolaus Rajewsky
Berlin, Germany Verena Maier
Poznań, Poland Stefan Jurga
Poznań, Poland Jan Barciszewski
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Abstract Our view of the packed genome inside a nucleus has evolved greatly over
the past decade. Aided by novel experimental and bioinformatic analysis techniques
and detailed computational models, fundamental insights into the structure and
dynamics of chromosomes have been gained. This has revealed that genome
organisation has an essential role in controlling genome function during normal
growth, cellular differentiation, and stress response, showing that, overall, 3D
reorganisation is tightly linked to changes in gene expression. Chromatin, which
is composed of DNA and a large number of different chromatin-associated proteins
and RNAs, is often chemically modified, in patterns that affect gene expression.
It has become clear that this highly interconnected system requires computational
simulations to gain an understanding of the underlying system-wide mechanisms.

In this review, we describe different modelling approaches that are used to
investigate both the linear and spatial arrangement of chromatin. We illustrate how
dynamic computer simulations are used to study the mechanisms that control and
maintain genome architecture and drive changes in this structure. We focus on
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models of the dynamics of epigenetic modifications, of protein–DNA interactions,
and the polymer dynamics of chromosomes. These approaches provide reliable
frameworks to integrate additional biological data; enable accurate, genome-wide
predictions; and allow the discovery of new mechanisms.

Keywords Chromatin organisation · Computational model · Histone
modification · Facilitated diffusion · Polymer · Chromatin loop ·
Self-organisation

1 Background

Intensive studies over the past decades have revealed multiple levels of organisation
in eukaryotic genomes. The DNA wraps around eight histone proteins to make
a nucleosome, the fundamental subunit of the chromatin fibre (van Holde 1989;
Ramakrishnan 1997; Sewitz et al. 2017b). In mammals, the chromatin then folds
to build higher genomic structures of different scales such as sub-megabase
topologically associated domains (TADs), megabase A and B compartments, and
chromosomal territories (Bonev and Cavalli 2016; Sewitz et al. 2017b). The
nucleus is a highly crowded environment with efficiently packed and organised
chromatin and hundreds to thousands of protein species, engaged in various types
of interactions, such as protein–protein, DNA–protein, chromatin–chromatin, and
chromatin–lamina interactions. It is now known that these interactions play an
important role in controlling the organised structure and regulating the transcrip-
tional activity of the genome (Gómez-Díaz and Corces 2014; Long et al. 2016;
Flavahan et al. 2016) and that the structure changes upon differentiation and internal
and external conditions (Guidi et al. 2015; Javierre et al. 2016; Sewitz et al. 2017a;
Lazar-Stefanita et al. 2017). However, a comprehensive view of the mechanisms that
drive organisation and dynamics of this highly complex system remains elusive.

Many research projects have investigated the linear arrangement of DNA,
identifying the local regulatory elements that modulate transcription, such as
transcription factor binding sites and their consensus sequences (Levine and Tjian
2003), enhancers (Long et al. 2016), histone modifications (Smolle and Workman
2013), and sites of DNA methylation (Schübeler 2015). Activator and repressor
proteins recruit enzymes, such as histone acetyltransferase or histone deacetylase,
that modify histones. Histone modifications control gene expression by altering the
local chromatin structure and inhibiting or attracting DNA-binding factors (Dindot
and Cohen 2013). In addition, DNA methylation can repress transcription through
blocking the binding of transcription factors or mediating the binding of repressors
(Jaenisch and Bird 2003).

It has more recently become possible to quantitatively investigate 3D genome
architecture using live-cell microscopy, and chromosome conformation capture
techniques, such as 3C, 4C, 5C, Hi-C, and Capture Hi-C (Schmitt et al. 2016b).
This has greatly enhanced our understanding of gene regulatory mechanisms, by
showing how the three-dimensional organisation of the genome influences gene
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regulation (Babu et al. 2008; Cavalli and Misteli 2013; Zuin et al. 2014; Lupiáñez et
al. 2015; Dixon et al. 2016; Schmitt et al. 2016a). Many genes occupy preferred non-
random positions within the nucleus: in mammals, gene-poor or transcriptionally
inactive regions are located close to the nuclear envelope in most cell types, whereas
gene-rich or transcriptionally active regions prefer to localise at the borders of
chromosome territories, away from the nuclear periphery (Foster and Bridger 2005;
Nagano et al. 2013). Manipulating the position of genes can also affect their activity;
for human and mouse cells, it has been shown that relocating genes from their
normal position to regions close to the nuclear periphery results in gene silencing
(Reddy et al. 2008; Finlan et al. 2008). The single-celled eukaryote S. cerevisiae
displays a mosaic arrangement of heterochromatin and euchromatin at the nuclear
periphery, with active genes located close to nuclear pores (Casolari et al. 2004) and
inactive genes associated with other parts of the nuclear periphery and the nuclear
centre (Zimmer and Fabre 2011).

This organisation is achieved within a highly dynamic nucleoplasm (Misteli
2001; Vazquez et al. 2001; Lanctôt et al. 2007). For example, in mammalian cells,
GFP-tagged proteins were measured to diffuse with diffusion coefficients of 0.24–
0.53 μm2 s−1, taking 24–54 s to travel 5 μm, a distance almost equal to the radius
of the nucleus (Phair and Misteli 2000). Tagged chromosomal loci in living S.
cerevisiae cells move more than 0.5 μm, equivalent to half of nuclear radius, within
a few seconds (Heun et al. 2001). There is now evidence that the dynamics of the
heterogeneous chromatin fibre contributes to thermodynamically driven 3D self-
organisation (Sewitz et al. 2017a).

Investigation of chromatin organisation in space and time by novel experimental
techniques has unravelled some of the key features of this intricate system of
how genome structure relates to the function of the genome. To further study the
dynamics of chromosome structures, particularly aspects that are not amenable
to experimental analysis, scientists have adopted modelling approaches. Models
provide the most direct way to explore mechanisms, as all components, interac-
tions, reactions, and forces are defined, and any observed behaviour must be a
consequence of these. During recent years, a wide range of models of the full or
partial genome have been developed to analyse the interplay of genome structure
and function. In this review, we categorise these models into three major groups:
models of epigenetic modification dynamics, protein–DNA models, and polymer-
based models.

2 Models of Epigenetic Modification Dynamics

Histone proteins can be covalently modified on several residues after translation
(Allfrey et al. 1964), which leads to the recruitment of transcriptional regulatory
proteins and structural proteins over a local chromatin region. For example, the
combined deacetylation and methylation of the lysine at position 9 of histone
H3 (H3K9) is required to create a binding site for the Swi6/HP1 silencing factor
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(Nakayama et al. 2001; Shankaranarayana et al. 2003). Binding of silencing factors
facilitates the modification of histones on adjacent nucleosomes, and sequential
rounds of epigenetic modification and protein binding lead to the spreading of
heterochromatin over a chromatin region (Grewal and Moazed 2003). Specialised
boundary elements inhibit the heterochromatin extension and therefore separate
silent and active chromatin domains (West et al. 2002; Labrador and Corces 2002).

To understand the mechanisms behind the epigenetic memory of monostable
domains, predictive models have investigated the behaviour of H3K9 methylation
domains (Hathaway et al. 2012; Hodges and Crabtree 2012; Müller-Ott et al. 2014;
Erdel and Greene 2016). Simulations at single-nucleosome resolution showed that
confined and heritable steady states of histone marks can be achieved by modelling
linear propagation of histone modifications from nucleation sites to adjacent
nucleosomes. Turnover of modified nucleosomes could also happen simultaneously
(Hathaway et al. 2012; Hodges and Crabtree 2012). In contrast, another model
assumed loop-driven spreading of histone marks with sparse nucleation sites. By
adjusting parameters such as modification rates, the model was shown to be robust
against replication (Erdel and Greene 2016), and the response towards transient
perturbations was in line with experimental data (Müller-Ott et al. 2014).

Genomic regions of high epigenetic dynamics are bistable states, characterised
by the presence of both activating and repressive histone marks (Bernstein et al.
2006). They have been observed for confined chromatin domains in various cell
types (Rohlf et al. 2012; Tee et al. 2014). To study the features and dynamics
of these states, several computational models have been developed (Dodd et al.
2007; Sedighi and Sengupta 2007; David-Rus et al. 2009; Micheelsen et al. 2010;
Mukhopadhyay et al. 2010; Angel et al. 2011; Dodd and Sneppen 2011; Berry et
al. 2017). In these models, a region of chromatin is represented as a sequence of
nucleosomes. At every time step, each nucleosome has a state or a rate of histone
modification based on its histone marks, with rules that govern state transitions or
changes in rates. These models have shown that nonlinear positive feedback loops
are required for robust and heritable bistable epigenetic states. Positive feedback
loops arise when modifications of one nucleosome stimulate the modifications of
other nucleosomes. The required nonlinearity can be achieved in different ways:
(1) via the cooperativity of two or more nucleosomes with the same histone marks,
which recruit histone modifiers on other nucleosomes (Dodd et al. 2007; Sedighi and
Sengupta 2007; David-Rus et al. 2009; Micheelsen et al. 2010; Mukhopadhyay et al.
2010; Angel et al. 2011; Dodd and Sneppen 2011); (2) through two-step feedback
loops, where the switch of histone modification states of nucleosomes occurs via
an intermediate state, i.e. the state first changes to the intermediate state and then
to the favoured state (Dodd et al. 2007; Angel et al. 2011; Berry et al. 2017); (3)
through the local transcription rate, which can be affected by silencing, in turn
leading to a change in the local modification rate (Sedighi and Sengupta 2007);
and (4) through interactions with non-neighbour nucleosomes (Dodd et al. 2007).
Another mathematical model with a 1D array of nucleosomes has been formulated
to study the dynamics of histone modification in bivalent domains, where active and
repressive histone marks coexist on nucleosomes (Ku et al. 2013). These domains
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are important elements in stem cells, and according to the model’s prediction, their
formation process is generally slow. The model also suggested that a coordinated set
of parameters, such as recruitment and exchange rates of marks, leads to established
and maintained bivalent domains over several cell cycles.

3 Protein–DNA Models

Transcription factors (TF) affect the transcriptional activity of specific genes
through binding to specific DNA sequences (Ptashne and Gann 2002). It has been
proposed that these proteins search for their target sequences through facilitated
diffusion (Berg et al. 1981, 1982; Berg and von Hippel 1985), i.e. alternating rounds
of 3D diffusion in the solution, sliding along the DNA, short-range excursions called
hopping, and intersegmental transfer between DNA segments. The characteristics
of this search mechanism have been widely studied, and computational models of
different scales have brought new insights into its dynamics. All models discussed
in this section have focused on facilitated diffusion of TFs.

At the most detailed, atomistic level, molecular dynamics (MD) simulations have
been used to explain how, e.g. the lac repressor protein (LacI) moves along DNA
(Marklund et al. 2013) and how it identifies its target site (Furini et al. 2013).
LacI is modelled to take a helical path to probe the DNA, with its DNA-binding
interface being insensitive to modest bends in DNA conformation. The hydrogen
bonds formed between the DNA and the LacI interface are dynamic and flexible,
allowing fast sliding of the protein (Marklund et al. 2013). This was found to
enable the protein to probe the DNA quickly and reach the proximity of the target
site. Once the specific DNA sequence is bound, it becomes significantly slower,
resulting in the formation of a stable protein–DNA structure and a drop in enthalpy
(Iwahara and Levy 2013; Furini et al. 2013). Another fine-grained MD simulation
has proposed that binding of the CSL (CBF1/Suppressor of Hairless/LAG-1) protein
to the DNA can transmit a signal through the protein structure according to the
bound sequences. This influences the inter-domain dynamics of the protein and
consequently its functional activities (Torella et al. 2014).

The effects of DNA conformation on the dynamics of TF proteins probing the
DNA were explored via coarse-grained MD simulations, where proteins interact
with the DNA via electrostatic interactions (Bhattacherjee and Levy 2014a, b). The
geometry of DNA was tuned by two factors, curvature and the degree of helical
twisting. Highly curved or highly twisted DNA was seen to lead to a decrease
in sliding frequencies and an increase in hopping events (Bhattacherjee and Levy
2014a). In addition, introducing curvatures in the DNA conformation was found to
increase the frequency of jumping events of a multidomain protein between distant
DNA sites. However, curvature does not necessarily result in faster search kinetics
as sliding happens less often (Bhattacherjee and Levy 2014b). Hence, an optimal
DNA conformation can lead to a balanced number of searching events and maximal
probing of DNA.
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To investigate the role of nonspecific DNA–protein interactions during the
search for specific target sites, Monte Carlo simulations were adopted (Das and
Kolomeisky 2010; Tabaka et al. 2014; Mahmutovic et al. 2015). It was argued
that the binding of the LacI repressor to nonspecific DNA is controlled by either
activation or steric effects instead of being limited by diffusion (Tabaka et al.
2014; Mahmutovic et al. 2015). Furthermore, it was shown that for efficient
and fast probing of DNA, moderate ranges of nonspecific binding energies and
protein concentrations are required (Das and Kolomeisky 2010). The necessity
for moderate DNA–protein binding strength has been indicated for proteins with
different subdiffusive motions using simulations based on Brownian dynamics (Liu
et al. 2017).

Large-scale computer simulations have been performed to study the search
kinetics of transcription factors both in prokaryotic and eukaryotic cells. Software
called GRiP (Gene Regulation in Prokaryotes) (Zabet and Adryan 2012a) provides
a simulation framework for analysing the stochastic target search process of TF
proteins. In GRiP the DNA is modelled as a string of base pairs, and TFs are highly
diffusing components that interact with DNA sequences or with each other. This
framework has been utilised to build a detailed model of facilitated diffusion, where
TF orientation on the DNA, cooperativity of TFs, and crowding were incorporated
(Zabet and Adryan 2012b). A similar model was adopted to dissect the effects of
biologically relevant levels of mobile and immobile crowding on TF performance
in a bacterial cell (Zabet and Adryan 2013): immobile crowding fixed on the DNA
raises the occupancy of target sites significantly, whereas both mobile and immobile
crowding have negligible impacts on the mean search time. Another model of the
bacterial genome has taken two types of crowding molecules into account (Brackley
et al. 2013). Proteins which bind to and move along DNA (1D crowding) do not
change the search time significantly, even at very high densities. However, crowding
molecules diffusing freely in 3D space increase the frequency of 1D sliding of TFs
along DNA, while they enhance the robustness of the search time against any change
in protein–DNA affinity.

A different approach based on the Gillespie stochastic simulation algorithm
has been developed to analyse the influence of macromolecular crowding on gene
expression in stem cells (Golkaram et al. 2017). The crowding was assumed to
be correlated with the local chromatin density, which was calculated using Hi-
C data. Diffusive TFs and RNA polymerases were only moving in the proximity
of promoters, as crowding would not allow them to diffuse to other regions
between rebindings. The model predicted that an increase in chromatin density
during development leads to a rise in transcriptional bursting and subsequently
heterogeneous expression of genes in a cell population.

Our lab has developed a computational model of TF motions in eukaryotes
(Schmidt et al. 2014; Sewitz and Lipkow 2016) using the particle-based simulator
Smoldyn (Andrews et al. 2010). This model has considered different types of
movements for TFs: 3D diffusion, sliding, hopping, and intersegmental transfer.
Among others, it showed the importance of intersegmental transfer, and it provided
an explanation for the size of nucleosome-free regions on the DNA, which improve
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the process of TFs binding to their targets. Similar to a prokaryotic model (Tabaka
et al. 2014), inclusion of 1D diffusion reduced the time to find the target sites by one
and two orders of magnitude.

Finally, the complexity of gene regulation in higher eukaryotes has motivated the
study of evolutionary dynamics of the TF repertoire and their binding preferences.
A stochastic model based on duplication and mutation of genes suggested that more
complex organisms with higher number of genes have higher levels of redundancy
of TF binding (Rosanova et al. 2017).

4 Polymer-Based Models

The dynamic nature of the chromatin fibre lends itself to simulating chromatin as an
extended, highly mobile polymer. Several studies have extended concepts developed
in physics and applied them to the analysis of chromatin (Tark-Dame et al. 2011;
Koslover and Spakowitz 2014; Shukron and Holcman 2017). This has led to an
understanding of genome-wide data of chromosome folding and their interactions
with each other and with other nuclear elements. In all models presented here, the
chromatin fibre is a diffusing and self-avoiding chain of beads arranged in 3D space.

4.1 Models Based on Chromatin Loops

Chromatin loops have been observed in both eukaryotes and prokaryotes (Hofmann
and Heermann 2015), and their vital regulatory impact has been demonstrated. A
number of these models have suggested that chromatin loops are formed mainly by
interactions between specific protein complexes like condensin (Cheng et al. 2015)
or CTCF (Tark-Dame et al. 2014). These models have successfully reproduced
the experimentally observed genome compaction. In addition, the importance of
balance between short-range and long-range loops for controlling the changes
in chromosomes structure has been revealed (Tark-Dame et al. 2014). It has
furthermore been indicated that the dynamic bridges between condensin complexes
bring about the intrachromosomal interactions during both interphase and mitosis
in budding yeast (Cheng et al. 2015).

Other models have explored the general effects of protein interactions on
chromatin structure. A heteropolymer model incorporated proteins implicitly, by
mapping different epigenetic states onto the beads. Specific interactions between
beads of the same state were differentiated from nonspecific interactions between
any pair of beads (Jost et al. 2014). The model predicted that inter-TAD interactions
are highly dynamic, which was in line with Hi-C results. It also predicted the
fast formation of TADs, followed by a slow and long process of compaction
(Jost et al. 2014). The lattice version of this model (Olarte-Plata et al. 2016),
and another heteropolymer model (Ulianov et al. 2016) with active or inactive
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epigenomic states for beads, confirmed stronger self-attraction for inactive domains
(Ulianov et al. 2016; Olarte-Plata et al. 2016) and an increase in their compaction
as the domain size grows (Olarte-Plata et al. 2016). Other models based their
assignment on levels of gene activity, with highly active or less active states
assigned according to their expression levels (Jerabek and Heermann 2012). Highly
active chromatin sections had low interaction strength, while less active ones had
higher interaction affinity. The average distances between genomic loci, the average
volume ratio between highly active and less active regions, and the positioning of
highly active loci close to the boundary of chromosome territories were all in line
with experimental measurements. In another work the polymer model was informed
by protein binding sites and histone modifications (Brackley et al. 2016) and
produced a population of genome conformations, which predicted the 3D distances
between selected genomic sites on the globin locus in mouse ES cells.

In addition, polymer models based on protein interactions and without relying
on predetermined information for the state of chromatin beads were developed
(Giorgetti et al. 2014; Tiana et al. 2016; Chiariello et al. 2016). Using iterative
Monte Carlo simulations and comparisons to the measured contact frequencies,
the parameters of the models were optimised, and ensembles of chromatin con-
figurations were achieved (Giorgetti et al. 2014; Tiana et al. 2016; Chiariello et al.
2016). These models correctly estimated the contact frequencies of TADs (Giorgetti
et al. 2014; Chiariello et al. 2016) and the mean 3D distances between labelled loci
upon perturbations of specific sites (Giorgetti et al. 2014). Combined with live-cell
measurements, it has been suggested that changes in TAD conformations happen
fast enough (in a much shorter time frame than the cell cycle) to facilitate dynamic
interactions between regulatory elements, such as enhancer–promoter interactions
(Tiana et al. 2016). A homopolymer model (Doyle et al. 2014), which implemented
chromatin loops in the proximity of enhancer and promoter elements, indicated
that the loops can either facilitate or insulate the enhancer–promoter interactions
significantly. It was shown that the regulatory effect of the loop was dependant
on the relative positions of loop anchors. To minimise the reliance on specific
biological data, a heteropolymer model was built based on hierarchical folding and
statistical physics of disordered systems (Nazarov et al. 2015). This model has two
types of monomers that can interact with each other. By tuning the 1D sequence of
monomers and the temperature controlling the folding, the simulated contact maps
achieved a resemblance to Hi-C data.

Besides the notion that direct interactions between bound proteins shape chro-
matin loops, another mechanism, called loop extrusion, has been proposed (Nas-
myth 2001; Alipour and Marko 2012; Sanborn et al. 2015; Fudenberg et al. 2016).
This model calls for the action of extruding machines, possibly condensin or cohesin
complexes, to bind and move along the DNA in opposite directions (Nasmyth 2001;
Alipour and Marko 2012; Sanborn et al. 2015; Fudenberg et al. 2016). This leads to
the extrusion of DNA loops until domain boundaries, occupied by CTCF proteins,
are reached (Sanborn et al. 2015; Fudenberg et al. 2016). This mechanism can
account for the compaction and folding of mitotic chromosomes (Nasmyth 2001;
Alipour and Marko 2012). Furthermore, in combination with polymer physics,
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the model reproduced the observed decay of contact probabilities with increasing
genomic distance, leading to simulated contact maps consistent with Hi-C data. It
also predicted the changes in contact frequencies and 3D distances between loci due
to CTCF and cohesin perturbations (Sanborn et al. 2015; Fudenberg et al. 2016).

4.2 Models Based on Supercoiling

Different levels of unconstrained supercoiling have been observed for chromatin
(Kouzine et al. 2013; Naughton et al. 2013), and it has been reported that
transcription leads to supercoiling (Wu et al. 1988; Kouzine et al. 2008; Papantonis
and Cook 2011). To explore the effects of supercoiling on genome organisation
in both eukaryotic (Benedetti et al. 2014) and prokaryotic (Le et al. 2013) cells,
detailed polymer models have been employed. In a eukaryotic model, borders of
TADs were mapped to the chromatin fibre, and strong supercoiling was imposed to
the intervening chromatin (Benedetti et al. 2014). This led to the formation of TADs
and contact maps broadly consistent with 3C data. In a bacterial model, chromatin
was simulated as a dense array of plectonemes that were attached to a back bone
(Le et al. 2013). By inserting plectoneme-free regions in the model at the positions
of highly expressed genes, the contact frequencies observed for chromosomal
interaction domains were reproduced. Overall, supercoiling is essential for creating
chromosomal interaction domains (Le et al. 2013) and topologically associated
domains (Benedetti et al. 2014). Intriguingly, a recent model investigated the role of
supercoiling introduced by the transcribing RNA polymerase (Racko et al. 2017):
when both CTCF and cohesin were included in the simulation, cohesin rings were
seen to accumulate at CTCF sites demarking TAD borders. These observations are
also seen experimentally (Uusküla-Reimand et al. 2016). Under these conditions,
supercoiled DNA loops were extruded, and the supercoiling was the driving force
for extruding the DNA loops. This is interesting because until now it was unclear
how the energetically expensive loop extrusion could be achieved. Now, RNA
polymerase-generated supercoiling provides a credible and testable hypothesis.

4.3 Integrative Models and Self-Organisation

With significant amounts of genome-wide datasets becoming available, computa-
tional models of chromatin are becoming more sophisticated and feature-rich. Com-
putational models have explored the role of this heterogeneity in self-organisation
of the genome structure.

In budding yeast, highly expressed genes are less occupied by chromatin-
associated proteins, whereas genes that show lower overall expression are bound
more extensively (Sewitz et al. 2017a). Protein occupancy can affect the local
physical properties of the chromatin segment by means of a range of parameters
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such as changes in mass, diameter, local viscosity (Jirgensons 1958; Oldfield and
Dunker 2014), diffusion speed (Jerabek and Heermann 2012; Phillip and Schreiber
2013; Wollman et al. 2017), and electrical charge of chromatin. This has led
to the development of heteropolymeric models which incorporate some of the
underlying complexity and points towards protein occupancy being a causal factor
in determining self-organisation of genome structure in yeast (Sewitz et al. 2017a).

A significant challenge in this area is to continue to develop physical models
of heteropolymeric motion applicable to chromatin. In many instances, insights
are mainly qualitative and require physical parameters that are known to be
unphysiological. As an example, it was shown that two chromosomes that differed
in temperature-driven mobility would separate via a process akin to phase separation
(Loi et al. 2008). Chromatin segments that harboured more active genes were
given a higher temperature. This model reproduced the experimentally observed
chromosomal territories (Ganai et al. 2014), but only if a temperature difference
of 20-fold was assumed. Using much longer chromosomal segments, similar phase
separations could already be observed with much smaller differences in temperature,
bringing the model in closer proximity to real-life biological systems (Smrek and
Kremer 2017). Still, current models are not yet fully able to deal with the structural
complexity that is the hallmark of chromatin.

5 Conclusion and Outlook

It is now evident that the study of chromatin structure is at a stage where
computational models are not just an accessory but a required component of any
thorough investigation. The advent of pervasive high-performance computing has
made it possible to attempt whole genome simulations at moderate resolutions,
or smaller genomes at higher resolutions. Two future strands of development are
now visible. Firstly, an ever-increasing amount of relevant genomic data is making
its way into computational simulations. This will lead to more complex models
that incorporate genome-wide protein binding data, extended epigenetic data, and
measures of local chromatin conformation. This will also push the theoretical
descriptions in polymer physics, where we foresee that increased and intensive
collaboration and exchange is necessary. This will be mutually beneficial, as both
fields will fundamentally improve their understanding of an area of biological
physics that underpins questions of gene regulation during development, in response
to external changes, and, in cases of misregulation, disease. These efforts are just at
the beginning and will require the combined expertise of computational scientists,
physicists, and experimental biologists to fully unravel the complex dynamics that
lead to chromatin self-organisation.
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and the human beings has kept researchers far from a holistic understanding of
underlying biological processes. Over the past decade, there has been a rapid and
vast accumulation of large scale high-throughput biological data at physiological,
cellular, molecular, and submolecular levels. It includes genetic association stud-
ies of complex human diseases and traits, quantification of genome-wide RNA
expression patterns, comprehensive profiling of cellular proteins and metabolites,
gene regulatory information (DNA methylation, histone modifications, chromatin
accessibility, evolutionary constraint, etc.), and characterization of networks of
molecular interactions. The clinical utility of such enormous data demands inter-
pretation and understanding at the biological level to reveal mechanistic insights of
molecular etiology. An important element of this task is to complement the detailed
pieces of biological information with new advanced methods of system integration
and reconstruction. This requires conversion of actual biological systems into
computational models to make reliable predictions of biological responses following
targeted manipulation under untested conditions. The frequency at which signals are
presently being discovered mandates a systematic and integrative “omics” approach
to bridge the “genotype to phenotype” gap. The chapter highlights the fundamental
ways to integrate high-quality biological data that await systemic interpretations.

Keywords Complex systems · Common diseases · High-throughput data ·
Computational models · Systematic interpretation

1 Introduction to Systems Biology

1.1 Establishing the Need

The classic reductionist approach in biological sciences, generally known by
the terms like molecular biology and biochemistry, has led to generation of
enormous “parts-data.” The collection of data has been aided by the parallel
development of sequencing, structural, and expression measurement technologies.
From low-throughput data collection, the community has reached high-throughput
data collection, storage and analytical technologies.

The enormous success of reductionist approach has helped to determine the com-
position of the system and individual correlation of parts with a given phenotype, in
a large number of situations. However, it has also thrown up a major challenge, i.e.,
to understand collective behavior of thousands of parts working together to maintain
the functioning and robustness of a cell and an organism. The big challenge is to
construct a large virtual matrix where biological components interact virtually and
help understand biological decisions various scales and granularity.

Back in 1944, Norbert Weiner foresaw the need for a new approach that focused
on stitching individual parts to describe collective response and coined the term
“Systems Biology.” Though the idea was novel and path-building, the time was not
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yet ripe for launching a new approach, due to scarcity of data and computational
resources.

The idea of systems approach again picked up in the mid-1960s and 1970s, when
concepts like metabolic flux and control analysis gained traction. The aim was to
study the flow of metabolites through a certain path/pathway and identify choke
points that controlled the flux. A large body of literature during this time led to
emergence of a new Biochemical Systems Theory.

The situation remained somewhat unchanged for the next few decades, till a
new high-throughput technology of gene sequencing and expression measurement
arrived. Biological sciences suddenly changed the stick shift and went into a higher
gear of data gathering, management and analysis. The paradigm shift was greatly
helped by parallel technological advancement in the computer industry. The storage
got cheaper, processes got faster and algorithms were written to swim through
oceans of data to find patterns.

The speed, scale and variety of data breathed life into Nobert Weiner’s work
of 1940s and “Systems Biology” as a formal discipline was launched. For many
years the community debated on the concept, definition, scope and tools of the new
systems approach. However, what emerged as a common thread was the acceptance
that (a) collective behavior of biological parts was different than the sum-of-its-
parts and (b) modeling in biology was essential to understand biological decisions,
narrow down the range of experiments and generate hypothesis.

The biological community was beginning to sense the power of mathematics and
computation that played a major role in the origin and evolution of engineering from
physics. The need for modeling was also felt for the reasons that, on one hand, not
enough experiments could be performed to collect all kinds of data in all kinds of
contexts. On the other hand a lot of data in the published literature domain was
inaccurate.

Here it may be relevant to introduce a few definitions.

1.2 What Is a Model?

A model is a representation of a system in a certain form that looks closest to the
real life situation. The skeletal system of a model is made of components and their
interactions. It is somewhat easy to define a static system in terms of components
and interactions. However, the real challenge arrives when one moves from a static
to a dynamic description, i.e., creating a movie out of snapshots arranged along a
certain time series.

Modeling itself is an iterative process that goes on and on till experimental
results match the modeling predictions. A model may be rigorous with mathematical
representation or simply a sketch of nodes and arrows. It may depict a flow of
information (as in metabolic pathways) or direction invariant (as in protein–protein
interaction networks).
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Furthermore, mathematical models may be deterministic (responses are pre-
dictable) or stochastic (responses are determined by probability distribution).
Watching a model grow over an x-axis of time is called simulation. Adding
mathematical muscles to a bare bone model is both an art and a science. One needs to
be convinced of the flow of information in a certain way to adopt a certain modeling
approach. Also, the choice of modeling method is governed by the kind of question
one asks, the availability of data (qualitative to quantitative) and computational
resources.

1.3 Steps in Building a Model

1. Make a parts list data from literature and annotate every part by including
measurements, protocols, perturbations, constraints, and error bar. Here it is
important to know if the data were independently confirmed.

2. Draw a parts-interaction map in the form of pathways. The map may represent
translocation (ion channel), transformation (substrate–enzyme reaction), and
binding events (transcription factor) in the form of nodes (molecules) and edges
(interactions).

3. Use appropriate qualitative or quantitative methods to empower the power of
conversation. Build conceptual, analytical models for simulation.

Apply perturbations at predefined points where phenotypic assays are possible
and generate novel observations and hypothesis (Fig. 1).

1.4 Modeling Methods and Tools

Ever since the first conference of Systems Biology was held in Tokyo in 2000,
a large number of tools have come up addressing various needs of the modeling
community. Some of the most common resources and tools used are:

1. Pre Constructed Pathway Maps
Kyoto Encyclopedia of genes and genomes http://www.genome.ad.jp/kegg/

BioCyc http://www.biocyc.org
BioCarta https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways

2. Enzyme Databases
BRENDA http://www.brenda-enzymes.info/

ExPASy https://www.expasy.org/

3. Tools for Constructing, Simulating, and Analyzing Pathways
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

http://www.genome.ad.jp/kegg
http://www.biocyc.org
https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
http://www.brenda-enzymes.info
https://www.expasy.org
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
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Fig. 1 A general strategy of building pathway models

In general, for modeling metabolic pathways, where large number of molecules
interact (and data are frequently available) one uses ordinary differential equation
based approach. For modeling gene expression events, where numbers are very less
(transcription factor molecules) and fluctuations are high, the method of choice is
stochastic. Some people also use ODE approach, as it comes with less computational
cost. In situations where the large scale networks need to be modeled, rule based,
fuzzy logic based, Boolean based and petri net approaches have been used with
success. As the scale of the network increases in size the computational costs soar.
To find the right balance, one may use a combination of qualitative (Boolean, rule
based) and quantitative (ODE and stochastic) methods. Some of the issues that
often emerge in quantitative modeling approaches are parameter estimation and
optimization.

The need for a good parameter estimation method is felt more when the network
data is incomplete, i.e., there is a space of unknown that needs to be considered and
computed in the model. Several ODE and stochastic methods to estimate missing
parameters are available. However, none of the methods can absolutely guarantee
the accuracy of the output. One needs to feed in predicted data over and over again
for optimization purposes. A fully parameterized and computationally optimized
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pathway model is then examined over time, perturbations are applied and the output
is compared with the experimental data generated. One needs to iterate back and
forth, tinker the model till a good validated model emerges. Once we have an
experimentally validated model in hand, it can be used to generate predictions and
hypothesis, e.g., finding a good drug target or predicting off-target effects and so on.

Formulation of predictive computational models of regulatory biological net-
works in complex diseases demands an integrative research strategy to articulate
different large datasets collected across various physiological aspects of healthy and
diseased individuals. Present-day high-throughput techniques of molecular biology
facilitate large amounts of high quality data in exceptionally small time.

For effective integration of different datasets, it is intrinsically important to
understand high-throughput data generation at various cellular and molecular levels
that are valuable to sketch disease etiology.

2 Common Methods of High-Throughput Data Generation

Biological systems are complex dynamic processes consisting of several diverse
entities in which each unit has a definite function that changes over time. A complex
system can be easily simplified if studied as a whole. A car factory looks awfully
complicated to a layman but for an automobile engineer every small process on
the assembly line has a well-defined significance in proper functioning of a car.
Likewise, in biology, an assimilation of diverse molecular signatures can effectively
tackle the complexity of physiological systems in normal and perturbed conditions.
In lieu of sufficient data from a single individual, a comprehensive picture of
development of a disease needs procurement of many personal trajectories with
some in healthy range and others diverting towards disease. Today, a plethora of
large datasets encompassing several functional regulatory elements of complex
diseases (DNA, RNA, proteins, regulators, metabolites, etc.) exist for various human
populations. An introduction of systems concept in understanding complex disease
biology is insightful to identify early signs or biomarkers for regular screening of
healthy people for the disease (Fig. 2).

2.1 Genomic Data

Genomics aims to study the total DNA of a cell or organism. Human genome
comprises 3.2 billion nucleotide base-pairs and nearly 19,836 protein coding genes
(Harrow et al. 2012). Genes are basic units of inheritance across generations and
hotspots of variations and mutations. Several aberrations are known to exist at
DNA level—insertions, deletions, duplications, single nucleotide polymorphisms
(SNPs), nucleotide repeats, copy number variations, etc. SNPs are the most common
variations in DNA sequences among individuals. A SNP is a nucleotide variation at
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Fig. 2 An integrative approach for studying complex diseases

a single position in DNA that is altered in more than 1% of the population (NIH-
Genetics Home Reference 2017a). For example, at SNP rs6520015 on chromosome
22, some individuals have cytosine (C) and others show thymine (T). The altered
nucleotides are alleles of SNP. C and T are alleles of rs6520015. There are roughly
ten million SNPs in human genome occurring once in every 300 bases (NIH-
Genetics Home Reference 2017a).

Linkage analyses to identify causal variants in family based studies have been
extremely fruitful for many single gene disorders, but failed for complex diseases
(Altshuler et al. 2008). In consideration, a parallel approach for identification of
genetic risk factors for complex diseases is to assess the correlation between the
diseased status and frequency of alleles of specific genetic variant by comparing
affected individuals with unaffected controls (Association study) (Cordell and
Clayton 2005). Here, function of a gene important for the etiology of a disease may
be affected by associated SNPs residing within the gene or in a nearby regulatory
region. For instance, SNP rs599839 residing downstream of SORT1 gene, has
previously been reported to be associated with Coronary Artery Disease (CAD)
and LDL-cholesterol levels (Wang et al. 2011). Presence of minor allele G results in
increased levels of SORT1 mRNA that further leads to increased uptake of LDL into
cells. SNPs studies are preferably conducted in large human population sample sets
in order to pin down fundamental genes or genomic regions of considered disease.

Previously, association of a gene with a particular disease was studied and
analyzed individually (candidate gene approach). For instance, a research conducted
in 1656 unrelated Indians tested three SNPs residing in a transcription activator
gene-FOXA2 for association to type 2 diabetes (T2D) (Tabassum et al. 2008).
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However, over the recent years, microarray technology has advanced substantially.
DNA microarrays have been economical to capture difference in DNA sequence
of millions of SNPs simultaneously among thousands of individuals. In view of
this, Genome Wide Association Studies (GWAS) have incredibly transformed our
understanding of complex diseases over past decade. GWAS is a hypothesis-free
approach in which a person’s whole genome is scanned for disease associated
regions by genotyping tagged SNPs (McCarthy et al. 2008). By figuring which
SNPs co-occur with disease symptoms, a statistical estimate is made regarding the
level of risk associated with each SNP. Till date, 52,491 unique SNP associations
have been documented for a multitude of human diseases and physiological traits
(MacArthur et al. 2017). This approach has succeeded partially in understanding the
genetics of various common diseases—T2D, CAD, obesity, asthma, Alzheimer’s
disease, stroke, inflammatory bowel disease, cancers, and many more (Fuchsberger
et al. 2016; Tabassum et al. 2013; Nikpay et al. 2015; McPherson and Tybjaerg-
Hansen 2016; Locke et al. 2016; Torgerson et al. 2011; Bertram and Tanzi 2009;
Cauwenberghe et al. 2016; NINDS Stroke Genetics Network (SiGN) et al. 2016;
Lange et al. 2017; Chang et al. 2014).

NHGRI-EBI GWAS catalog is a manually curated collection of all published
GWAS for various diseases/traits conducted so far (MacArthur et al. 2017).
Besides, a worldwide effort—International HapMap Project seeks to determine
the frequency and common patterns of SNPs and other genetic variants in the
genomes of populations of African, Asian and European ancestry by whole genome
genotyping (The International HapMap Consortium 2003). Human populations are
considerably different from one another in terms of anthropometric parameters,
biochemical traits or resistance to a disease. There are disease SNPs that are
specific to one population but non-polymorphic in another. Besides whole genome
genotyping data, 1000 Genomes Project provides a comprehensive resource on
human genetic variation by sequencing entire genomes of 2504 unrelated people
from 26 different human populations (Sudmant et al. 2015). This integrated map
of structural variants—insertions, deletions, duplications, inversions, and SNPs—is
valuable for constructing personalized genomes.

2.2 Epigenomic Data

The epigenome of a cell constitutes a set of chemical modifications to the DNA
and DNA associated proteins that govern gene expression without changing the
DNA sequence (NIH-Genetics Home Reference 2017b). Human body has trillions
of cells that perform specialized function in muscle, brain, eye, bones, gut, etc.
Each of these cells carries basically the same DNA but drastically differ in terms
of what set of genes are turned on/off in various cell types. A person’s genome
is a storehouse of instructions, whereas an epigenetic mark regulates how cells
follow these instructions. Epigenetic signatures are inheritable but can get altered
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in response to environmental exposure or disease (NIH-Genetics Home Reference
2017b).

The most common and crucial epigenomic modification is methylation. A methyl
group (–CH3) is covalently added to the fifth carbon atom of cytosine ring of
DNA by DNA methyltransferases. Addition of methyl groups lead to silencing of a
gene and no protein is produced from that gene. Nearly 1.5% of human genomic
DNA contains modified cytosines (5-methylcytosine) (Lister et al. 2009). Apart
from transcription, DNA methylation regulates many cellular processes—chromatin
structure, stability, genomic imprinting, embryonic development, etc. (Schübeler
2015). Altered DNA methylation have been implicated in metabolic diseases—
obesity, T2D, atherosclerosis, non-alcoholic fatty liver disease, etc. (Zhao et al.
2012; Wahl et al. 2015; Sonne et al. 2017; Zaina et al. 2014; Ahrens et al. 2013;
Giri et al. 2017). DNA methylation marks are generally captured by whole-genome
bisulfite sequencing (Li and Tollefsbol 2011). Bisulfite treatment converts cytosines
to uracils; however, methylated cytosines do not get converted. The method nicely
isolates methylated cytosines in the genome.

Besides DNA methylation, posttranslational modifications of histone proteins
also occur frequently throughout the genome. Histone proteins (H2A, H2B, H3,
and H4) form the core of nucleosomes that represent the first level of chromatin
organization. Histone modifications—methylation, phosphorylation, acetylation,
ubiquitylation, and sumoylation—influence gene expression by altering chromatin
structure or recruiting histone modifier (Bannister and Kouzarides 2011). H3 histone
is the most modified histone that can dictate the type of chromatin (euchromatin
or heterochromatin), pinpoint functional genomic elements (gene body, promoters,
enhancers, or silencers) and whether these elements are in active or repressed state.
Histone H3 is largely acetylated at lysines 9, 14, 18, 23, 27, and 56, methylated
at arginine 2 and lysines 4, 9, 27, 36, and 79, and phosphorylated at serines
10, 28, and threonines 3, 11. Histone marks—H3K9ac, H3K27ac, H3K4me1,
and H3K4me3 are active marks found at transcriptional enhancers and gene
promoters. Tri-methylation of H3K36 is observed at the transcribed regions of a
gene. H3K9me3 and H3K27me3 are repressive histone marks spotted respectively
in heterochromatin and gene promoters. These marks are determined by chromatin
immunoprecipitation and sequencing (ChIP-seq) method (Raha et al. 2010). It
involves immunoprecipitation of formaldehyde cross-linked chromatin by specific
histone antibodies followed by sequencing.

NIH Roadmap Epigenomics Project houses epigenome maps (DNA methylation
and several histone modifications) of a large number of human tissues to facilitate
the role of epigenomics in human diseases (Bernstein et al. 2010).

2.3 Transcriptomic Data

The transcriptome is the total mRNA content of a cell or an organism that reflects
the genes expressed at any given moment. Unlike the genome of an organism,
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the transcriptome actively changes depending upon several cellular needs. There
are nearly 55,406 full-length protein coding RNAs that get transcribed from
merely 19,836 genes (Harrow et al. 2012). A gene may produce more than one
variant of mRNA due to alternative splicing or RNA editing mechanisms. A
comparison of transcriptomes of different cell types can help to understand how
a cell functions normally and what changes in gene activity are introduced under
diseased conditions. Like DNA microarrays, gene expression microarrays have
been indispensable to generate high-throughput expression profiles of thousands of
gene at the same time. In contrast to microarray based technology, sequence-based
methods directly determine the cDNA (reversely transcribed mRNA) sequence (i.e.,
SAGE or CAGE). These are tag-based methods that generate sequence library to
uniquely identify a transcript and its abundance (3′ short sequence tags used for
SAGE; 5′ caps used as tags for CAGE) (Yamamoto et al. 2001; de Hoon and
Hayashizaki 2008). Recently, the development of high-throughput next generation
sequencing—RNA-seq—has enabled far higher coverage and greater resolution of
the dynamicity of the transcriptome. RNA-seq involves deep sequencing of cDNA
to capture a detailed and quantitative picture of gene expression and allele-specific
expression to clearly differentiate physiological and pathological states (Wang et al.
2009).

Besides, protein-coding RNAs, eukaryotic genome codes for a plethora of
gene regulatory non-protein coding RNAs—largely—micro RNAs (miRNAs), short
interfering RNAs (siRNAs), piwi-interacting RNAs, and long noncoding RNAs
(lncRNAs). These RNAs regulate gene expression at transcriptional and posttran-
scriptional levels. Among various classes of different small noncoding RNAs, miR-
NAs are the largest class. There are 1881 human miRNAs that have been reported till
date (Harrow et al. 2012). MicroRNAs generally bind to a complementary sequence
of a specific target mRNA to induce cleavage and degradation thereby blocking
transcription. Next, lncRNAs form the largest class of noncoding RNAs. Nearly
27,908 lncRNAs have been documented till date (Harrow et al. 2012). LncRNAs
are key players of genome regulation with immense regulatory potential ranging
from transcription catalysis and remodeling to RNA mediated silencing of an entire
chromosome (Goff and Rinn 2015). Dysregulation of miRNAs and lncRNAs has
been implicated in a wide variety of diseases—diabetes, cardiovascular disease,
asthma, Alzheimer’s disease, kidney diseases, neurological disorders, and cancers
(Mendell and Olson 2012; Kantharidis et al. 2011; Martinez-Nunez et al. 2014; Sun
and Wong 2016; Akerman et al. 2017; Huarte 2015; Wapinski and Chang 2011;
Chen and Zhou 2017).

Genotype-Tissue Expression Project (GTEx) provides large-scale gene expres-
sion data in 53 different human tissues and its relationship to genetic variations
(The GTEx Consortium 2013). Besides, ENCODE project has yielded high-
throughput microarray and RNA sequencing data for analyzing human gene expres-
sion (ENCODE 2017).
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2.4 Regulomic Data

A regulome of the cell comprises DNA elements and proteins that regulate protein
gene expression. Here, chromatin accessibility is an important aspect that dictates
the activation and repression of genes. Transcriptionally active DNA represents open
chromatin that is easily accessible to transcription factors, enzymes and regulatory
proteins. In contrast, closed chromatin denotes densely packed inaccessible DNA.
Open chromatin is directly analyzed by DNase-seq and ATAC-seq. In DNase-seq,
chromatin is partially digested with DNase I endonuclease and size selection is used
to enrich for highly sensitive chromatin fragments (Song and Crawford 2013). In
ATAC-seq, instead of DNase I treatment, an engineered Tn5 transposase cleaves
DNA and integrates prime sequences into cleaved genomic DNA (Buenrostro
et al. 2015). Positioning of nucleosomes in genome can modify the availability
of binding sites for transcriptional machinery, chromatin remodelers and other
transcription factors. MNase-seq and FAIRE-seq are two widely used methods
to determine nucleosome positioning. Micrococcal nuclease (MNase), an endo-
exonuclease, progressively digests DNA until obstructed by a nucleosome (Cui and
Zhao 2012). However in FAIRE-seq, chromatin is cross-linked by formaldehyde
and the resulting sheared DNA is isolated by phenol–chloroform method (Giresi et
al. 2007).

In addition, transcription of a gene is delimited by recruitment of specific
transcription factor proteins at cis-regulatory elements—promoters and enhancers.
Bound transcription factors (TFs) engage certain co-regulators that alter histone
modifications. Transcription factor sites are globally determined by ChIP-seq
against specific transcription factor.

Furthermore, interactions of transcription factors with specific DNA sequences
within enhancer regions activate gene enhancers. Transcription factor binding site
and enhancer region may lie physically distant in linear genome but spatially prox-
imate in 3D cellular nucleus for interaction. Chromatin interactions in the genome
are commonly mapped by ChIA-PET and 5C method. Chromatin interaction analy-
sis with paired-end tag sequencing (ChIA-PET) generates RNA polymerase II and
CTCF binding sites (Li et al. 2014). Correspondingly, chromosome conformation
capture carbon copy (5C) maps 3D organization of chromatin domain through
digestion using various restriction enzymes (Dostie et al. 2006).

Human RegulomeDB is a comprehensive browser that provides annotated and
integrated information of the experimentally defined functional and biochemical
regulatory elements of the human genome (Boyle et al. 2012). Data regarding
chromatin accessibility, certain histone modifications, binding sites of various TFs,
ChIA-PET, 5C data for different human cell-lines is publicly available as a part of
ENCODE data (2017). Also, NIH Roadmap Epigenomics Project offers DNase I
hypersensitivity data for a large number of human tissues (Bernstein et al. 2010).
Transfac Matrix and Factor databases also provide free access to genomic binding
sites of various transcription factors (Wingender et al. 1996).
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2.5 Proteomic Data

The proteome comprises a set of all expressed proteins in a cell, tissue or organism.
It is a dynamic flow of information from genes to protein pathways and networks
within the cell and the organism. Proteomic investigation undoubtedly imparts
better understanding of molecular basis of variability to disease susceptibility.
However, it is complicated by proteome domain size (>100,000 proteins) and its
dynamic concentration range varying from pg/mL (cytokines) to mg/mL (albumin).
This problem results in a failure to detect less abundant proteins and inability to
analyze protein complexes. A wide range of proteomic approaches exist starting
from gel based 2D polyacrylamide gel electrophoresis (2D-PAGE) to modern high-
throughput mass spectrometry and protein chips.

2D-PAGE is a primary tool in proteomics research that separates a complex
mixture of thousands of proteins using two different properties (Issaq and Veenstra
2008). Proteins are separated due to difference in isoelectric point (pI) in first dimen-
sion and by relative molecular weight in second dimension. Taking into account,
limited resolution of gel electrophoresis and inability to identify expressed protein,
2D-PAGE is coupled with mass spectrometry. Mass Spectrometry (MS) is high-
throughput analytical technique that measures mass-to-charge (m/z) ratio of charged
particles and allows proteins to be analyzed rapidly, accurately, high reproducibility
and sensitivity at a relatively low cost (Baker 2010). Further advancements in
MS technology have made it possible to directly identify a protein. Depending
upon the pattern of peptide fragmentation and separation, various MS techniques
have been developed (MS/MS—Tandem MS, LC/MS—Liquid Chromatography
MS, GC/MS—Gas Chromatography MS) (Lee et al. 2012). Recently, a novel
MS-based approach—iTRAQ—has allowed flexibility to multiplex eight different
biological samples simultaneously in a single experiment. Isobaric Tag for Relative
and Absolute Quantification (iTRAQ) labels primary amino groups in intact proteins
and enables identification of differentially labeled proteins and accordingly their
proteolytic peptides as single peaks in MS spectra while retaining important
posttranslational modifications (Tweedie-Cullen and Livingstone-Zatchej 2008).

Besides identification and quantification of proteins, elucidation of underlying
biological process in a disease requires the study of plausible molecular interactions
of the dysregulated proteins. The most common method for detecting protein–
protein interaction is Yeast Two Hybrid (Y2H) method (Serebriiskii 2010). Here,
a protein is fused to a DNA binding domain and tested for interaction against a
panel of coding sequence constructs fused to a transcription activated domain in
living yeast cells. An activation of reporter gene records a positive protein–protein
interaction. Y2H has been automated on high-throughput scale to generate large
interactome maps in Drosophila, Arabidopsis, and Humans (Formstecher et al.
2005; Obrdlik et al. 2004; Stelzl et al. 2005; Rual et al. 2005). Apart from Y2H,
MS coupled with biochemical methods of affinity purification have been a powerful
tool to study interactomes at large scale level. In affinity purification MS (AP-MS),
a protein is fused to an epitope-tag and is either immunoprecipitated by specific
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antibody or purified by affinity columns recognizing the tagged epitope (Dunham
et al. 2012). In addition, protein microarrays have also contributed tremendously to
proteomic research. Protein arrays are not only valuable for analyzing defined set of
spotted proteins, but also essential to confirm a binary protein interaction (Sutandy
et al. 2014). The arrays have been an asset to screen thousands of small molecule
interactions with proteins to generate therapeutic drugs.

The Swiss-Prot section of UniProt knowledgebase houses manually annotated
and track able information of human proteins (Bairocha and Apweiler 2000).
Likewise, Protein Data Bank (PDB) provides information about 3D shapes of
42,523 proteins and complex assemblies (Berman et al. 2000). In addition, the
Human Protein Atlas (HPA) database is an integrated knowledge resource that
maps all proteins expressed in various cells, tissues and organs (Uhlén et al. 2005).
The data has been distributed into three sections: Tissue Atlas—details distribution
of proteins across all major human tissues and organs; Cell Atlas—subcellular
localization of proteins in single cells; and Pathology Atlas—impact of proteins
for survival of cancer patients. Another ongoing international project—Human
Proteome Project (HPP) aims to map and characterize human proteome following
systems approach (Legrain et al. 2011). The ProteomeXchange Consortium offers
global coordinated submission of mass spectrometric proteomic data to existing
proteomic repositories—PRIDE, Peptide Atlas, MassIVE, and jPost (Vizcaíno
et al. 2014).

Furthermore, a comprehensive resource—STRING is database of all known and
predicted, direct and indirect protein–protein interactions (Szklarczyk et al. 2015).
Interactions in STRING are derived from various sources such as high-throughput
lab experiments, genomic context predictions, co-expression data, automated data
mining and other primary databases—BIND, DIP, HPRD, MINT, and INTACT.

2.6 Metabolomic Data

Metabolomics refers to the study of identification and quantification of small
molecule metabolites and their interactions in a biological system (cell, tissue,
organ, body fluid, or organism) under a given set of conditions. Unlike other
“omics” measures, metabolome is the downstream product of gene transcription
and therefore, closest to the studied biological phenotype.

A person’s metabolome is extremely dynamic in nature and varies drasti-
cally with every moment in time, thus making sample profiling problematic and
laborious. Also, small alterations in the transcriptome and proteome at a given
time substantially amplify the changes in the metabolome. Presence of several
different biological molecules, makes a metabolome physically and chemically
more complex than other “omes.”

Metabolomic profiling is often done through mass spectrometry and NMR
spectroscopy. Unlike MS, nuclear magnetic resonance spectroscopy uses magnetic
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property of the atomic nucleus (spin) to determine its physical and chemical nature
in presence of electromagnetic radiations (Marion 2013).

The Human Metabolome Database (HMDB) is most comprehensive resource of
human small molecule metabolites (Wishart et al. 2007). There are nearly 114,100
metabolite entries including even highly abundant or relatively rare metabolites. In
addition to extensive literature mining, the HMDB data is derived from hundreds
of MS and NMR metabolomics analyses on urine, blood and cerebrospinal fluid
samples. Similarly, Madison Metabolomics Consortium Database also provides MS
and NMR data for metabolomics research (Cui et al. 2008). Besides, METLIN is
a largest MS/MS metabolite database of various lipids, steroids, small peptides,
carbohydrates, drug molecules, etc. (Smith et al. 2005).

2.7 Metagenomic Data

Microbes are the basic part of all life on earth. The conversion of key elements—
carbon, nitrogen, and oxygen—into biologically accessible forms is largely directed
by microbes. It has been estimated that nearly 90% of human cells are bacterial,
fungal or else nonhuman (Turnbaugh et al. 2007). Microbes inhabit various regions
of human body—buccal cavity, stomach, intestines, etc. A metagenome comprises a
collective genome of microorganisms from an environmental sample that determine
diversity and ecology of a particular environment. Metagenome drastically varies
between organs, individuals, diseased and healthy states, dietary conditions, etc.
Largely the metabolites of these metagenome interact with host metabolites in
various levels in given time and space.

A global initiative NIH Human Microbiome Project catalogs human metagenome
from different human body sites (Turnbaugh et al. 2007). Similarly, the Human
Pan-Microbe Communities (HPMC) database is a manually curated, searchable,
metagenomic resource that enables investigation of human gastrointestinal micro-
biota (Forster et al. 2016).

3 A Practical Example of Systems Biology Application

In recent times Type 2 Diabetes (T2D) is a global epidemic. As of year 2015, 415
million adult people were reported to diabetic worldwide leading to an expenditure
of 12% of global health budget on diabetes (IDF 2015). Diabetes is among the
foremost leading causes of death in most of the countries. It is characterized by
hyperglycemia that results due to body’s inability to produce and/or use insulin.
A long-standing and uncontrolled diabetes advances to several microvascular (neu-
ropathy, nephropathy, retinopathy) and/or macrovascular complications (coronary
artery disease, stroke, myocardial infarction, atherosclerosis, fatty liver disease,
etc.), thus contributing significantly to the disease burden.
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Fig. 3 A systems approach for selecting promising functional targets for type 2 diabetes

Over decades, ample amount of resources have been invested for T2D research,
yet we are far from sketching out a comprehensive picture of the disease. Taking into
account, the complex interplay of genetic and environmental factors in disease sus-
ceptibility, we envisage a systemic integration of publicly available high-throughput
data from diverse biological levels to effectively pinpoint plausible candidates that
could be easily tested for disease therapeutics.

At present, there are 318 reported T2D GWAS variants that were retrieved from
NGHRI-EBI GWAS Catalog (Fig. 3).

We first tested the association of alleles of these genetic variants with gene
expression levels (expression quantitative trait loci—eQTL). For this, single-tissue
eQTL dataset of GTEx Analysis Release V7 Portal was probed. We grounded 154
T2D GWAS variants that were associated with variable gene expression in different
human tissues. Keeping in mind that epigenomic and transcriptomic signatures
drastically vary among tissues, we continued our analysis with human blood tissue
only. So as a result of tissue specificity, we were left with 41 variants that served as
eQTL for various genes in human blood tissue.

To study human blood tissue, publicly available epigenetic gene regulatory data
is available for blood lymphocytes (peripheral blood mononuclear cells—PBMCs)
and blood borne human cell line—K562 (human chronic myeloid leukemia cells).
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Primarily, we checked the open or closed chromatin status by studying DNase I
hypersensitivity marks at these 41 loci. DNA methylation marks and histone mod-
ifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, and H3K27me3) were also
checked for PBMCs and K562 cells at Epigenome RoadMap Project and ENCODE.
Additionally, we searched ENCODE transcriptional factor binding site dataset to
identify putative functional candidates. In process we recovered 17 variants that
resided in active chromatin regions and 11 variants located in repressed genome
regions. Out of these variants, two variants (rs635634 and rs11257655) comprised
strong enhancer regions and two variants (rs7163757 and rs989128) constituted
Polycomb repressed chromatin. Transcription factor binding data revealed strong
binding of GATA, FOXA1, EP300, CEBPC, JUND, etc. at rs11257655; CEBPB,
GATA, EP300, FOS, STAT3, p_300, JUN D at rs7163757 and EZH2, EGR1 at
rs989128.

Further physical interaction chromatin data for K562 cells was retrieved from
ENCODE ChIA-PET and 5C datasets for these four variants. Finally, we obtained
two variants—rs635634 and rs989128 which surely interact and regulate their
respective eQTL associated genes—ABO and SPATA20 in 3D nucleus, thus
biologically justifying the observed eQTL association. Hence, it can be summarized
that the variant rs635634 resides within a robust enhancer element characterized by
strong H3K4me1 and H3K27ac histone marks upstream of ABO gene to regulate
its expression. Similarly, rs989128 is located in a CpG island downstream of
SPATA20 gene that is repressed (H3K27me3) by EZH2 protein, a regulator of DNA
methylation. Thus, a systematic integration of diverse biological datasets has aided
in prioritizing two functional candidates from 318 associated T2D variants for
successful therapeutic intervention.

This model was an example of systemic integration of trajectories from multiple
publicly biological high-throughput datasets. Additionally, a holistic overview of
T2D also requires multiple biological datasets for each studied personal trajectory.
For instance, for a particular individual, a combination of its own genetic, epige-
netic, transcriptomic, and metabolomic data would be highly fruitful to interpret
disease biology.

In summary, our understanding of complex diseases is currently limited by
lack of holistic overview of fundamental physiological processes. Systems biology
serves as a roadway for extracting, integrating and interpreting valuable biological
information from various large datasets to gain worthy insights into biology of
complex diseases. Such a qualitative analysis can synergize with prior knowledge
and predict what pathways/processes are disrupted—where and when to yield a
specific biochemical phenotype which otherwise cannot be determined if individual
datasets are studied. Subsequently, these findings can be used to assess suitability of
various therapies to maintain or restore normal biological function.
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4 Future Avenues

A total of 95 medicines were withdrawn from the US market (1960–1999) due to
serious drug safety concerns (The Academy of Medical Sciences and The Royal
Academy of Engineering 2007). Traditional methods of drug discovery are not
helping.

By integrating the experimental data from parts-to-pathways, building models,
and enabling targeted experiments, systems biology can help in reducing the drug
discovery costs, drug repositioning; predicting on-target and off-target effects;
shortening drug discovery life cycle; and finding new targets and effective drug
combinations.

Despite a large body, the evolution of molecular pathogenesis in complex
metabolic diseases like diabetes remains unknown. By building comprehensive
and integrative in-silico models from epigenomic, transcriptomic, proteomic,
metabolomic, and metagenomic data, an enhanced understanding of the disease
etiology, intervention points, and drug–target interactions can be achieved.
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Abstract Restriction-modification (R-M) and CRISPR-Cas are bacterial immune
systems which defend their prokaryotic hosts from invasive DNA. Understanding
how these systems are regulated is necessary for both biotechnology applications,
and for understanding how they modulate horizontal gene transfer (including
acquisition of virulence factors). We here review results on modeling these sys-
tems which point to common general principles underlying their architecture and
dynamical response, with particular emphasis on modeling methods. We show that
the modeling predictions are in a good agreement with both in vitro measurements
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of promoter transcription activity and the first in vivo measurements of gene
expression dynamics in R-M systems. Modeling induction of CRISPR-Cas systems
is challenging, as signaling which leads to their activation is currently unknown.
However, based on similarities between transcription regulation in CRISPR-Cas and
some R-M systems, we argue that transcription regulation of much simpler (and
better studied) R-M systems can be used as a proxy for CRISPR-Cas transcription
regulation, allowing to in silico assess CRISPR-Cas dynamical properties. Based on
the obtained results, we propose that mechanistically otherwise different bacterial
immune systems, presumably due to a common function, share the same unifying
principles governing their expression dynamics.

Keywords Thermodynamic modeling · Restriction-modification systems ·
CRISPR-Cas · Gene expression regulation · Regulatory dynamics

1 Introduction

Two types of prokaryotic “immune systems,” known as restriction-modification (R-
M) and CRISPR-Cas (Clustered, regularly interspaced short palindromic repeats-
CRISPR-associated proteins) systems, resemble the mammalian immune system in
their ability to actively and with high selectivity combat infectious elements (foreign
DNA) (Goldberg and Marraffini 2015). Apart from their immune function, these
systems significantly influence evolution and ecology of prokaryotes in a number of
ways and have a range of applications in biotechnology (Ershova et al. 2015; Hille
and Charpentier 2016).

In type II R-M systems, which are often found on plasmids, separate genes
code for two main system components: a restriction enzyme, which cuts specific
DNA sequences, and a methyltransferase, which methylates the same sequences
and thereby protects them from cutting (Nagornykh et al. 2008). It is widely
considered that the main condition for safely and efficiently establishing an R-
M system in a naïve host cell, is a delayed beginning of expression of restriction
enzyme with respect to methyltransferase. This delay provides enough time for a
methyltransferase to protect a host genome, so that restriction enzyme later targets
only invasive DNA. Apart from this constraint on their dynamics imposed by their
function, we propose other potentially common R-M system dynamical properties,
and ask if these can be achieved by a wide variety of R-M systems architectures and
regulatory features (Rodic et al. 2017b). These hypotheses are tested by analyzing
dynamical properties of different R-M systems, predicted by biophysical models
including thermodynamically modeled transcription regulation and dynamically
modeled transcript and protein expression.

Unlike R-M systems, which are considered rudimentary for their lack of ability to
memorize past infections, CRISPR-Cas are advanced, adaptive prokaryotic immune
systems, which store partial DNA sequences of former infectors as spacers flanked
by direct repeats in a so-called CRISPR array (Hille and Charpentier 2016). Another
constitutive part of a CRISPR-Cas system are genes coding for Cas proteins. In Type
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I-E CRISPR-Cas system in E. coli, which is a model system for studying CRISPR-
Cas regulation, CRISPR array is transcribed as a long pre-crRNA molecule which is
further cut by Cas6e protein into small crRNAs, containing separate spacers. These
crRNAs guide Cascade complexes constituted of Cas proteins to complementary
foreign DNA, which is consequently destroyed. Somewhat surprisingly, while
CRISPR-Cas is extensively used for designing various biotechnological tools,
its native function and regulation in bacterial cells are not well understood. In
particular, CRISPR-Cas is silenced in E. coli cells under standard conditions, which
hinders observing its expression dynamics (Pul et al. 2010). However, transcription
regulation of this system involves general features similar to those found in certain
R-M systems, which can be used to predict the main features of CRISPR-Cas
expression dynamics (Rodic et al. 2017a).

In this chapter, we aim to explain how a thermodynamic model of a given
promoter regulation is formulated, by briefly describing a theoretical basis of
thermodynamic modeling and showing how this approach is applied on examples of
R-M systems, AhdI and EcoRV. Further, thermodynamic modeling of transcription
is used as an input for dynamic modeling, predicting appropriate protein expression
in a cell in time, which is discussed on the example of Esp1396I R-M system,
for which protein expression dynamics were experimentally measured. We also
show how measures for dynamical properties of interest were defined to compare
expression dynamics of different R-M systems and to propose unifying principles
that characterize their regulatory dynamics. To in silico predict the main qualitative
properties of CRISPR-Cas dynamics, and to understand the significance of few
characteristic regulatory features found in CRISPR-Cas, we introduce the idea of
using a synthetic setup where R-M system transcription regulation with similar
features is used as a proxy for not–well understood CRISPR-Cas transcription
regulation. Based on the obtained results, we propose that regulatory dynamics
of CRISPR-Cas and R-M systems may be governed by similar design principles
imposed by their immune function.

2 Thermodynamic Modeling of Transcription Regulation

Thermodynamic modeling approach of gene transcription control is based on
principles of statistical mechanics. As an input it takes levels of transcription factors,
and patterns and affinities of their binding sites, while as an output it provides
predictions of promoter transcription activity (Dresch et al. 2013).

As regulation of transcription initiation, which is a rate-limiting step in gene
transcription, involves binding of protein molecules (RNA polymerase, transcription
factors) to DNA (promoter region), let us start with a simple scenario in which
one molecule of protein, present in some copy number in a cell, binds to one
binding site on DNA. From a thermodynamics point of view, the cell interior can
be approximated by a system exchanging energy with a much larger heat reservoir
(its surroundings) (Phillips et al. 2012). Protein molecules in this system, among
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which energy is distributed, are approximated by noninteracting particles randomly
moving in space confined to the cell volume. These particles can be arranged in a
number of different ways, and every unique arrangement of particles corresponds to
a particularmicrostate of the system. The probability of finding different microstates
is given by the Boltzmann distribution, which we derive below.

2.1 Derivation of the Boltzmann Distribution

Consider a system (s) in contact with a thermal reservoir (r), which together
constitute an isolated system with fixed total energy E = E(s) + E(r). According
to the second law of thermodynamics, such an isolated system evolves toward such
partition of energy between the system and the reservoir, which corresponds to the
largest number of microstates of the whole system (Phillips et al. 2012). Therefore,
the probability that the system has energy Ei

(s) is proportional to the number of the
corresponding microstates of the overall system, �(E,Ei

(s)) = �(s)(Ei
(s)) × �(r)(E–

Ei
(s)). System degeneracy is directly related to its entropy S = kB ln(�), where kB is

the Boltzmann constant, so the probability that the system has energy Ei
(s) reads:
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(1)

where in the second step, the reservoir entropy is expended about S(r)(E) (note
that this approximation is valid when a reservoir is much bigger than a system,
so Ei

(s) << E), while in the third step the thermodynamic definition of temperature
(∂S/∂E)V,N = 1/T is used. The first term in Eq. (1) gives the number of microstates
of a system with energy Ei

(s) (i.e., �(s)(Ei
(s))), while the second term is called

the Boltzmann factor, and represents the unnormalized probability of selecting one
particular system microstate at energy Ei

(s), i.e. it represents a statistical weight of
that microstate (Sneppen and Zocchi 2005).

2.2 Statistical Weights from Statistical Mechanics

In the problem of binding of a protein to its binding site considered above, all of
the microstates can be grouped in one of the two system macrostates: the one in
which the DNA binding site is occupied by the protein, or the one in which it is
empty, where binding sites in these two states are characterized by the energies εi

(bs)

(so that i corresponds to bound or unbound). Thereby, the energy of the system
(Ei

(s)) is a sum of the binding site energy and the kinetic energies of all unbound
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protein molecules. Since the probability of finding different microstates is given by
the Boltzmann distribution, the weight associated with the macrostate with energy
Ei

(s) is proportional to the corresponding number of the system microstates (�(s)),
multiplied by the Boltzmann factor (the numerator in the equation below):

P
(
E

(s)
i

)
=

�(s)
(
E

(s)
i

)
· e−E

(s)
i /(kB ·T )

∑
i

(
�(s)

(
E

(s)
i

)
· e−E

(s)
i /(kB ·T )

) . (2)

In the denominator of Eq. (2) is the so-called partition function, which represents
a sum of statistical weights of all possible system microstates.

To determine �(s) from Eq. (2), i.e. to count in how many ways protein
molecules can be arranged, one needs to know how many states are available to
one freely moving protein molecule with kinetic energy εk = p2/(2m) in a cell.
According to the uncertainty principle from quantum mechanics, this question
amounts to counting discrete cells of the size h (Planck’s constant) in the phase-
space containing three dimensions of particle position (r) and three dimensions of
its momentum (p) (Stowe 2007; Sneppen and Zocchi 2005).

Therefore, the statistical weight of the system macrostate with binding site
energy ε

(bs)
bound , where the protein binding site is occupied, is obtained by summing

through all possible arrangements (permutations) of N−1 indistinguishable protein
molecules (because 1 is bound) in a cell phase-space, with that sum weighted by a
corresponding Boltzmann factor (Phillips et al. 2012; Sneppen and Zocchi 2005):

ZON = 1
(N−1)!

(
∫
V

∫ d3r ·d3p

h3 e−p2/(2mkBT )

)N−1

e−ε
(bs)
bound/(kBT )

∝ kN−1ρ−(N−1)e−ε
(bs)
bound/(kBT ),

(3)

where k = (2mkBTπ /h2)3/2 and ρ = N/V (V is cell volume). Equivalently, a
statistical weight of a system macrostate in which all protein molecules are free
in a cell (with binding site energy ε

(bs)
unbound ) reads:

ZOFF = 1
N !

(∫
V

∫ d3r ·d3p

h3 e−p2/(2mkBT )

)N

e−ε
(bs)
unbound/(kBT )

∝ kNρ−N e−ε
(bs)
unbound/(kBT ).

(4)

Taking into account that the total statistical weight (partition function) of this
system is Z = ZON + ZOFF, one can express the ratio of probabilities of finding a
binding site in occupied and unoccupied state:

PON

POFF

= ZON

Z
·
(

ZOFF

Z

)−1

= ρ

k
e−�ε/(kBT ), (5)
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where �ε = ε
(bs)
bound − ε

(bs)
unbound is the binding energy. Conveniently, statistical

weights are expressed in terms of �ε (i.e., normalized with ZOFF). One should
have in mind that binding of a protein to DNA induces significant conformational
changes in both molecules, so �ε in the above equations corresponds to the (Gibbs)
free energy of binding (often written as �G, which we will adopt below).

2.3 Statistical Weights from Equilibrium Biochemical
Reactions

Binding of a protein present in a cell in concentration [P], to a binding site of
concentration [BS] is, alternatively, described by the following chemical reaction:

[P] + [BS] −−−−−−→←−−−−−−
Kd

[P ∼ BS] , (6)

characterized by the equilibrium dissociation constant Kd = [P]·[BS]/[P ∼ BS]. The
ratio of probabilities of finding a binding site occupied and unoccupied is then

PON

POFF

= [P ∼ BS]

[BS]tot
·
(

[BS]

[BS]tot

)−1

= [P]

Kd

, (7)

where [BS]tot = [BS] + [P ∼ BS] is a total binding site concentration. Equation
(7) is equivalent to Eq. (5) obtained using statistical mechanics, where [P] = ρ and
Kd = k·exp(�ε/(kBT)) (Sneppen and Zocchi 2005).

If a protein from the analyzed example is RNA polymerase (RNAP) binding to
a promoter site, the promoter transcription activity can be approximated through
a classical assumption that the transcription activity is proportional to equilibrium
binding probability of RNAP to the promoter (Shea and Ackers 1985). Transcription
from promoters with more complex regulation, including combinatorial binding of
multiple transcription factors which results in more than two promoter configura-
tions, can also be modeled in this way, as in the following example.

2.4 Modeling Transcription Regulation of AhdI R-M System

Thermodynamic modeling approach introduced above was applied in modeling
transcription regulation of the R-M system AhdI, which belongs to a large group
of R-M systems coding for an additional, control protein (C) which regulates
transcription of system genes (Bogdanova et al. 2008). In this system, an operon
containing control protein and restriction endonuclease genes (c and res), and a gene
coding for methyltransferase (met) are oriented convergently and transcribed from
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Fig. 1 Thermodynamic modeling of P.CR transcription regulation in AhdI R-M system. (a) Gene
organization in AhdI system. P.CR, DBS, PBS, and P.M mark relative positions of the P.CR
promoter, the distal and the proximal C protein binding site, and the P.M promoter, respectively.
(b) Allowed P.CR configurations with their statistical weights denoted on the right, expressed in
terms of the equilibrium dissociation constants (K) of reactions (8). Protein–DNA (below each
configuration) and protein–protein (above interacting proteins) binding free energies (�G, in units
of kBT) are related to the appropriate equilibrium dissociation constants following the equations
in (c). (d) P.CR transcription activity (ϕCR) is proportional to the fraction of statistical weights
corresponding to transcriptionally active configurations (those containing an arrow in b)

the promoters denoted as P.CR and P.M, respectively (Fig. 1a). Methyltransferase
methylates the P.M promoter, thereby repressing transcription of its own gene. On
the other hand, transcription of the operon genes is regulated by binding of C
protein dimers to the distal (DBS) and the proximal binding sites (PBS) in the P.CR
promoter region.

Prior experiments of in vitro transcription from a wild type P.CR showed that
transcription from this promoter is virtually inactive in the absence of C protein, and
that it becomes first activated and then repressed with increasing C protein concen-
tration (Bogdanova et al. 2008). This suggests that RNAP is presumably recruited
to the promoter through a protein-protein contact with a bound C protein which,
therefore, acts as a transcription activator. However, in the electrophoretic mobility
shift assay experiments, only free DNA and complexes comprised of C protein
tetramers bound to DNA were revealed in the whole range of varying C protein
concentrations (Bogdanova et al. 2008; McGeehan et al. 2006). Furthermore, it was
shown that DBS has a few orders of magnitude larger binding affinity than PBS,
indicating that binding of C dimers to DNA is highly cooperative, i.e., a C dimer
bound to DBS immediately recruits a second C dimer to PBS. As a bound C tetramer
prevents RNAP from binding to the P.CR and thereby represses transcription of c
and res genes, this raises a question of how transcription from the P.CR is activated.
Therefore, quantitative modeling was used to test the proposed mechanism: that
RNAP can passively outcompete a second C dimer from binding to PBS, which
results in activation of transcription from the P.CR (Bogdanova et al. 2008).
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The proposed thermodynamic model of the P.CR transcription regulation takes
into account the following chemical reactions, characterized by the appropriate
equilibrium dissociation constants (K):

[Mon] + [Mon] −−−−−−→←−−−−−−
K1

[D]

[RNAP] + [DNA] −−−−−−→←−−−−−−
K2

[RNAP ∼ DNA]

[D] + [DNA] −−−−−−→←−−−−−−
K3

[D ∼ DNA]

[D ∼ DNA] + [RNAP] −−−−−−→←−−−−−−
K4

[D ∼ RNAP ∼ DNA]

[D ∼ DNA] + [D] −−−−−−→←−−−−−−
K5

[T ∼ DNA] ,

(8)

where [RNAP], [Mon], [D] and [DNA] stand for concentrations of RNA poly-
merase, C protein monomers and dimers, and DNA containing the P.CR promoter
region, while [RNAP ∼ DNA], [D ∼ DNA], [D ∼ RNAP ∼ DNA] and [T ∼ DNA]
denote concentrations of established complexes of, respectively, RNAP bound to
the P.CR, a C dimer bound to DBS, RNAP recruited to the promoter by a bound C
dimer, and a bound C tetramer. This system of reactions describes establishing of the
allowed P.CR equilibrium configurations characterized by the following statistical
weights (Fig. 1b):

• 1—empty promoter;
• ZRNAP = [RNAP ∼ DNA]/[DNA]—only RNAP bound to the promoter, which

corresponds to basal transcription of the operon genes;
• ZD-RNAP = [D ∼ RNAP ∼ DNA]/[DNA]—RNAP recruited to the promoter by a

C dimer bound to DBS, resulting in transcription activation;
• ZT = [T ∼ DNA]/[DNA]—a second C dimer recruited to PBS by a C dimer

bound to DBS, with obtained C tetramer repressing transcription.

Note that the configuration representing only a C dimer bound to PBS was not
taken into account, as such a configuration was not observed in the experiments
and has a very low probability due to a large cooperativity in C dimers binding.
One should also note that this modeling approach involves the rapid equilibrium
assumption applied to the binding reactions, which is justified by the fact that
association and dissociation processes between a protein and a DNA molecule, or
two protein molecules, are much faster compared to transcription, translation and
protein/RNA degradation processes (Phillips et al. 2012). Consequently, the model
considers only the frequency of different promoter configurations in equilibrium and
cannot distinguish between different sequences of binding events leading to a given
configuration—e.g., whether protein A binds to DNA first and prevents binding of
protein B, or it displaces protein B when it is already bound to DNA.
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The measured value of C protein dimerization constant (K1) is by an order of
magnitude larger than the range of C protein concentrations used in experiments,
indicating that C protein is present in a cell in the form of monomers. Therefore,
statistical weights of the corresponding configurations are expressed in terms of C
monomer and RNAP concentrations and, either appropriate equilibrium dissociation
constants (Fig. 1b), or binding free energies (Fig. 1c). According to the assumption
introduced above, transcription activity of the P.CR is proportional to the fraction of
statistical weights that correspond to bound RNAP (Fig. 1d). Absorbing all constants
into few parameters (x, y, and z), P.CR transcription activity is obtained as a function
of C protein monomer concentration:

ϕCR (Mon) = α
x + y[Mon]2

1 + x + y[Mon]2 + z[Mon]4
, (9)

where α is a proportionality constant with units transcript amount over time.
Equation (9) was fitted to the experimentally measured data, obtained for a wild
type system (Fig. 2a), but also for systems in which mutations were introduced in
the DNA sequences of DBS or/and PBS (Fig. 2b–d), which corresponds to changing
�GD-DBS or/and �GD-PBS (see Fig. 1b) (Bogdanova et al. 2008). Fig. 2 shows that
the proposed model, with only three free parameters (x, y, and z; α was given the
value 1), is in very good agreement with the data for both the wild type and the
mutated systems. Furthermore, when fitted to the mutants data, parameter values
change as expected with respect to the wild-type case—e.g., decreasing the affinity
of DBS strongly negatively affects parameters y and z, while it has no effect on
parameter x (compare the Eq. (9) with statistical weights in Fig. 1b and c). All of
the above indicates that the modeling can realistically explain in vitro measured
transcription activities and, accordingly, that the proposed model appropriately
describes the P.CR transcription regulation in AhdI system.

Fig. 2 Fitting experimentally measured dependence of P.CR transcription activity on C protein
concentration in wild type and experimentally mutated systems, with a thermodynamic model of
this promoter transcription regulation. Transcription activity was measured in arbitrary units and
the values (grey circles) were normalized. Solid curves represent the fitted model Eq. (9). (a) Wild
type system, (b) DBS affinity decreased, (c) PBS affinity decreased, (d) Decreased affinity of both
DBS and PBS (Bogdanova et al. 2008)
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3 Dynamic Modeling of Protein Expression

Dynamic modeling is the most common approach to model molecular networks and
can be used to predict how protein amounts of interest—e.g. those of restriction
enzyme and methyltransferase—change with time. State variables of the model
represent concentrations (or numbers of molecules) of all mRNA and protein species
in the system. These quantities dynamically depend on the combination of all
processes that increase or decrease the corresponding amounts, characterized by
appropriately defined rates (Le Novère 2015).

Experimentally observing dynamics of protein expression in a cell is, however,
challenging due to a prerequirement for a synchronized cell population. Conse-
quently, such measurements have been conducted on R-M systems in only two
cases: for PvuII system, by introducing the system in a cell on a phage vector
(Mruk and Blumenthal 2008), and for Esp1396I system, by monitoring fluorescently
labeled R-M system proteins at the level of single cells (Morozova et al. 2016). In
the latter case, experimental measurements were compared with predictions of a
biophysical model of Esp1396I R-M system expression during its establishment in
a newly transformed host (Morozova et al. 2016).

Similarly to AhdI system, Esp1396I system contains c and res genes in an
operon, expressed from a promoter controlled by cooperative binding of two C
dimers (see Fig. 1a and b). In contrast to an autoregulated m gene in AhdI system,
in Esp1396I system, P.M is under control of C protein, where binding of one C
dimer to its single binding site in this promoter region represses transcription of
m gene (Bogdanova et al. 2009). P.CR and P.M regulation was thermodynamically
modeled as explained above, to obtain relations for their transcription activities (ϕi)
as functions of C protein concentration, which were further used as an input for a
dynamic model describing how appropriate transcript (mi) and protein (pi) amounts
change with time, for all three system components (i = C, Res, Met denoting C
protein, restriction enzyme, and methyltransferase, respectively):

dmi(t)

dt
= ϕi − λm

i · mi,
dpi(t)

dt
= κi · mi − λ

p

i · pi (10)

Equation (10) takes into account that transcript and protein amounts are increased
by transcription of the corresponding genes and translation of their transcripts (with
translation constants κ i), respectively, while these amounts are decreased with decay
constants λm

i and λ
p
i , which account for both degradation and dilution of molecules

due to cell division.
The proposed model of Esp1396I expression is minimal, in a sense that it takes

into account only the experimentally established regulatory mechanisms, and that
all model parameters are considered time-independent. Estimating the parameters
by fitting this model to the data (Fig. 3a and b), is a difficult task due to the relatively
large parameter space. This task is simplified by the fact that the parameters
related to restriction enzyme expression can be estimated separately from those
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Fig. 3 Fitting experimentally measured data of single cell Esp1396I R-M system expression
dynamics with a biophysical model. The zero time point corresponds to the plasmid entry in a naïve
cell. (a) Restriction enzyme expression dynamics, (b) Methyltransferase expression dynamics
(Morozova et al. 2016)

describing methytransferase expression, as methyltransferase does not control c
and res expression. The observed good agreement of the model with the data is
also supported by a subsequent experimental confirmation of very large restriction
enzyme stability, which is consistent with inferred parameter values. Moreover, this
minimal model can explain the main qualitative features of expression dynamics
observed for Esp1396I system and proposed for R-M systems in general (Fig. 3a
and b): a delayed beginning of restriction enzyme synthesis and high expression
of methyltransferase early upon transforming a naïve cell. Improved quantitative
agreement of the model with the data can likely be achieved by involving the
dependence of at least some parameter values with time, imposed by changing
conditions in a cell population or a desynchronization of cell and plasmid division.
Specifically, during the first ∼160 min cells in the culture divided with different
(faster) rate compared to the rest of the experiment (Morozova et al. 2016), which is
taken into account through decay parameters in the model, as previously explained.
Therefore, it is plausible to assume that population dynamics also has significant
effect on some other parameters of the model, which may be a subject of future
modeling.

4 Modeling Expression of EcoRV R-M System

In contrast to AhdI and Esp1396I systems presented above, in EcoRV R-M system
P.CR and P.M are oriented divergently and partially overlap causing mutually
exclusive binding of RNAP to these promoters (Fig. 4a), which represents the
most distinctive regulatory feature of EcoRV system (Semenova et al. 2005).
Consequently, P.CR and P.M control is strongly coupled, making transcription
regulation of this system more complex compared to AhdI system. Furthermore,
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Fig. 4 Thermodynamic modeling of EcoRV R-M system transcription regulation. (a) Scheme of
gene organization in EcoRV. Relative positions of operon and met promoters (P.CR and P.M) and
distal and proximal C dimer binding sites (DBS and PBS) are denoted. (b) Allowed configurations
of a DNA fragment separating met and c genes, with those transcriptionally active denoted with
an arrow. Overlapping of P.CR and P.M is emphasized by framing their common fragment. (c)
Chemical reactions in the model, with their equilibrium dissociation constants (K). Unlike in
modeling AhdI transcription regulation (Fig. 1), cooperativities in binding of a second C dimer to
PBS (ω ≡ exp (−�GT )) and of RNAP to P.CR (ω’ ≡ exp

(−�GCR
D∼RNAP

)
) are here introduced

as separate parameters, to enable perturbation of ω alone (see below in the text)

all characteristic AhdI regulatory features are absent from EcoRV. Namely: (1)
no cooperativity in C dimers binding to DBS and PBS was experimentally found
for EcoRV system, (2) c transcript is not leaderless in EcoRV, contrary to AhdI
system whose leaderless c transcript is translated less efficiently than res and met
transcripts, and (3) the equilibrium dissociation constant for a reaction of C protein
dimerization is significantly lower than in AhdI system, leading to mostly C dimers
in solution (Semenova et al. 2005).

To thermodynamically model EcoRV transcription regulation, one first needs
to determine the allowed configurations of a DNA region separating the two
divergent genes (Fig. 4b). Transcription regulation of the P.CR by C protein is
similar to that found in AhdI system, except that now an additional configuration,
consisting of only one C dimer bound to DBS, has to be included due to the
absence of cooperativity. Regarding the P.M regulation, contrary to AhdI where
it was C-independent, in EcoRV it is indirectly influenced by C protein, as it
dictates when RNAP can bind to P.M due to overlapping promoters. From the
equilibrium chemical reactions (Fig. 4c), which describe establishing of the allowed
configurations, statistical weights can be determined and further used to obtain the
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equations for P.CR and P.M transcription activities:

ϕCR (Mon) = α

(
1 + ω′ [Mon]2

K1K3

)

u

(
1 + [Mon]2

K1K3
+ ω [Mon]4

5K2
1K2

3

)
+
(

1 + ω
′ [Mon]2

K1K3

) , (11)

ϕM (Mon) = α

u

(
1 + [Mon]2

K1K3
+ ω [Mon]4

5K2
1K2

3

)

u

(
1 + [Mon]2

K1K3
+ ω

[Mon]4

5K2
1K2

3

)
+
(

1 + ω
′ [Mon]2

K1K3

) , (12)

relying, again, on the assumption that promoter transcription activity is proportional
to its equilibrium occupancy by RNAP. In deriving the above Eqs. (11) and (12),
the following information from the experiments was used: a C dimer binds to DBS
with approximately five times higher affinity compared to PBS, setting K4/K3 = 5,
and the P.CR is considerably weaker than the P.M (K2R >> K2L, u = K2R/K2L)
(Semenova et al. 2005). The thermodynamic model of EcoRV transcription reg-
ulation (Eqs. (11) and (12)) is incorporated in an appropriate dynamic model of
transcript and protein expression, of the form given by Eq. (10). Furthermore,
to estimate the model parameters, and since EcoRV expression dynamics has not
been experimentally measured, it is useful to reduce their number by rescaling the
appropriate variables. A detailed explanation of parameter estimation in the case of
EcoRV is available in (Rodic et al. 2017b). Overall, this presents to our knowledge
the first model of a divergent R-M system, which provides an opportunity to assess
the effect of regulatory features found in such a system on its expression dynamics,
by in silico introducing AhdI features in EcoRV system (see below).

5 Inferring Effects of R-M Systems Regulatory Features
on Their Dynamical Properties

As all R-M systems share the same function, namely, efficiently destroying foreign
DNA without harming the host cell, it is reasonable to hypothesize that their
expression dynamics, constrained by their function, should exhibit some universal
properties, regardless of the underlying regulation. Specifically, the following
common dynamical properties of R-M system establishment in a naïve host cell
have been proposed (Rodic et al. 2017b): (1) a time delay in expression of
restriction enzyme with respect to methyltransferase, which provides time for
genome protection, (2) a fast transition of restriction enzyme expression from
the OFF to the ON state, to ensure rapid cell protection from incoming foreign
DNA, and (3) a stable steady-state of the toxic molecule (restriction enzyme), as
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Fig. 5 Dynamical property observables. (a) Predicted restriction enzyme (R) and methyltrans-
ferase (M) expression dynamics upon system entry in a naïve bacterial host. Measures of R
expression time delay and transition velocity are graphically represented, (b) Dependence of
AhdI P.CR transcription activity on C protein concentration is provided by the full line, whose
intersection with the dash-dotted line determines the equilibrium C protein concentration. Slope of
the transcription activity curve at this equilibrium concentration (the dotted line) is related with the
steady state stability (Rodic et al. 2017b)

fluctuations in restriction enzyme amount not matched by appropriate fluctuations
in methyltransferase amount could lead to host cell death.

To quantify these properties, corresponding dynamical property observables
were defined, which are graphically represented on the example of predicted AhdI
wild type dynamics in Fig. 5 (Bogdanova et al. 2008; Rodic et al. 2017b). As a
measure of the time delay, the ratio of the shaded areas in a perturbed and in a
wild type system, spanning the first 10 min postinduction was introduced (Fig. 5a).
A maximal slope of the sigmoidal restriction enzyme expression curve (the dash-
dotted line in Fig. 5a) measures the transition velocity from the OFF (low restriction
enzyme amount) to the ON (high restriction enzyme amount) state. Finally, the third
dynamical property observable (�2) related with the slopes of the dash-dotted and
dotted curves shown in Fig. 5b quantifies stability of the restriction enzyme steady-
state (Rodic et al. 2017b).

From Fig. 5 it can be readily inferred that AhdI exhibits all the listed dynamical
properties. Moreover, perturbing characteristic AhdI regulatory features—i.e., large
cooperativity in C dimers binding, high dissociation constant for C dimerization
and low translation rate for the leaderless c transcript—abolishes these properties,
leading to, presumably, less optimal AhdI expression dynamics (Rodic et al. 2017b).
Thus, the requirement for the proposed dynamical properties might explain the
existence of these characteristic AhdI regulatory features.

Despite missing all regulatory features inherent to AhdI system, and having a
unique feature not present in AhdI (overlapping of P.CR and P.M), wild type EcoRV
system also meets the same three dynamical properties (see the darkest R and M
curves in Fig. 6a), arguing in favor of universality of these properties in different
R-M systems. Therefore, the question emerges: why are AhdI regulatory features,
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Fig. 6 In silico introducing AhdI-characteristic regulatory features in EcoRV system. Effect
of increasing C dimerization constant K1 on (a) dynamics of restriction enzyme (R) and
methyltransferase (M) and (b) the steady-state stability. Effect of increasing cooperativity ω in
C binding on (c) R OFF-ON transition velocity. Effect of decreasing the c translation constant kC
on (d) transition velocity and (e) steady-state stability (Rodic et al. 2017b)

apparently successful in optimizing this R-M system immune function, absent from
EcoRV? This question can be addressed by in silico introducing characteristic AhdI
regulatory features in EcoRV and observing their effect on the system dynamics
(Rodic et al. 2017b).

To that end, the equilibrium dissociation constant of C dimerization (K1 in Fig.
4c) was gradually increased toward an AhdI-characteristic value, which corresponds
to a transition from the case where the solution contains mostly C dimers to the case
where it contains mostly C monomers (Fig. 6a and b). This perturbation clearly
has an adverse effect on two dynamical properties: on the OFF-ON transition
velocity (note in Fig. 6a that the slope of R curves decreases as the dimerization
constant is increased) and on the steady-state stability (Fig. 6b). Transition velocity
of restriction enzyme expression is also decreased by introducing higher C binding
cooperativity (increasing ω), as can be seen from Fig. 6c, and by decreasing c
translation constant kC (Fig. 6d). Less efficient c translation additionally leads to
a less stable steady-state (Fig. 6e). Apparently, none of these three perturbations
affect an extent of the time delay in restriction enzyme expression.

Overall, the observation that perturbing of the characteristic regulatory features
abolishes one or more of the proposed dynamical properties for both AhdI and
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EcoRV R-M systems (that are characterized by two different architectures, con-
vergent and divergent), provides a possible unifying principle behind seemingly
different designs of these systems. Particularly, specific combinations of different
regulatory features found in these two systems appear to be optimized to meet the
same dynamical properties, related with their successful establishment in a new host
cell. Moreover, it seems that some regulatory features are specifically found together
in the same system because of their complementary effects on system expression
dynamics. Namely, high binding cooperativity in AhdI system is accompanied by a
large C dimer dissociation constant, which may be a consequence of the opposite
effects these features have on the steady-state level of restriction enzyme, thereby
balancing the amount of this toxic molecule, while at the same time providing more
optimal dynamical properties of system expression (Rodic et al. 2017b). In line with
this proposal is the absence of both features in EcoRV system, where their separate
introduction leads to abolishing of some of the dynamical properties and disrupting
the steady-state ratio of the amounts of methyltransferase and restriction enzyme
(see for example Fig. 6a). Furthermore, Esp1396I system with convergent gene
organization and C regulated transcription similar as in AhdI system, exhibits both
lower cooperativity in C binding and lower dissociation constant of dimerization
compared to AhdI (Bogdanova et al. 2009). It would be interesting to see if other R-
M systems, with different regulatory features, such as control by antisense RNAs or
by translational coupling (Nagornykh et al. 2008), are similarly constrained by the
proposed dynamical principles, and what are the roles of their regulatory features in
achieving these principles.

6 Assessing the Significance of CRISPR-Cas Regulatory
Features

Protection of a host bacterium by a CRISPR-Cas system requires its activation
upon infection by foreign DNA, or upon setting the right environmental conditions
(Ratner et al. 2015). However, expression dynamics of a native CRISPR-Cas have
not been observed experimentally because this system (Type I-E) is silent in cells
under standard conditions, even in the presence of an infecting phage, and signaling
resulting in system activation is unknown (Pul et al. 2010). To date, experimental
research on CRISPR-Cas transcription control in E. coli and S. enterica revealed
some elements and regulatory features involved in system activation (Pul et al. 2010;
Westra et al. 2010; Medina-Aparicio et al. 2011), specifically: (1) it is known that
both CRISPR array and (Cascade) cas genes promoters are repressed by highly
cooperative binding of global regulators, such as H-NS and LRP, (2) repressors can
be outcompeted in binding by some global activators (e.g., LeuO), when present at
elevated amounts. Therefore, highly cooperative repression, which is abolished by
transcription activators, can be considered as one of the major Type I-E CRISPR-
Cas regulatory features (Rodic et al. 2017a).
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Fig. 7 Scheme of the proposed setup for CRISPR-Cas activation. (a) Pre-crRNA processing
model scheme. Notation: ϕ—CRISPR array transcription rate (assumed constant in modeling),
λpre, k and λcrRNA—rates of the processes specified in the ovals (Djordjevic et al. 2012); (b)
Equations which correspond to the scheme under a and which describe time dependence of pre-
crRNA and crRNA amounts; (c) A schematic diagram of plasmid encoded c and cas genes under
control of the Cas promoter (P.Cas), with a transcription rate ϕCas. AhdI-like regulation of P.Cas by
C protein, as denoted by a dashed arrow, is included in the cooperative model; (d) Dependence of a
processing rate k on Cas6e amount is considered linear, in line with an experimentally determined
very low amount of its substrate (pre-crRNA; k*—processing constant) (Rodic et al. 2017a)

Furthermore, another key regulatory feature of CRISPR-Cas expression is the
fast nonspecific pre-crRNA degradation by an unidentified endonuclease (Djord-
jevic et al. 2012). Particularly, it was shown by modeling CRISPR transcript
processing upon artificial overexpression of Cas proteins (for a scheme of a model
and corresponding dynamic equations see Fig. 7a and b), that the main mechanism
responsible for a large increase in crRNA amount from a small decrease in substrate
(pre-crRNA) amount is the fast substrate degradation. Processing of pre-crRNA by
an elevated amount of Cas proteins diverts the whole molecule from the path of
nonspecific degradation, thereby amplifying the equilibrium crRNA amount for a
few orders of magnitude (Djordjevic et al. 2012).

However, to more realistically predict CRISPR-Cas expression dynamics and
to understand the significance of the established main regulatory features of
this system, an appropriate mathematical description of gradual expression of
a processing Cas6e protein upon system induction is also needed, as the pre-
crRNA processing rate (k) directly depends on the level of Cas6e (Fig. 7d). As
a detailed mechanism of Cas promoter (P.Cas) control is unknown, one possible
approach involves replacing transcription control (while keeping the CRISPR-Cas
pre-crRNA processing regulation) of a native P.Cas with that of a qualitatively and
mechanistically similar, but better explored system, and in silico analyzing expres-
sion dynamics of the obtained construct (Rodic et al. 2017a). Such an approach
would allow assessing the significance of CRISPR-Cas regulatory features, with a
minimum of guessing (if a system used as a proxy was already well-studied so that
all its major parameters are fixed). At the same time, in silico analysis would provide
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a much simpler and faster way of fulfilling the task of interest, in comparison to a
complementary experimental approach, which would require creating an artificial
gene circuit, extensive mutations of the system regulatory features and measuring in
vivo expression dynamics of pre-crRNA and crRNA.

Similarities in transcription regulation can be noted between a well-studied
AhdI R-M system, for which a biophysical model was already constructed and
evaluated (see Fig. 1) (Bogdanova et al. 2008), and Type I-E CRISPR-Cas. Strong
cooperative interactions are involved in both systems, in particular, in binding of C
dimers to the P.CR region and in binding of H-NS molecules to the P.Cas region,
thereby repressing transcription (Pul et al. 2010). This repression by H-NS can be
abolished by transcriptional activator LeuO (Westra et al. 2010; Medina-Aparicio et
al. 2011). Consequently, autoregulation (both positive and negative), similar to that
exhibited by C protein in AhdI system, is likely found in CRISPR-Cas regulation,
as LeuO activates, and also indirectly represses its own promoter (Chen et al.
2001; Stratmann et al. 2012). Thus, the main features of CRISPR-Cas transcription
regulation, namely, gradual synthesis of Cas proteins, cooperativity in transcription
regulation, and putative autoregulation, can be qualitatively mimicked by putting
cas genes under transcription control found in AhdI. More precisely, the proposed
setup for CRISPR-Cas activation analyzed in silico includes cas genes put under
control of the P.CR promoter from AhdI (see Fig. 1b), which are introduced in a cell
on a plasmid, marking the start of CRISPR-Cas activation (Fig. 7c); dynamics of
crRNA generation due to the Cas6e processing activity is monitored.

To understand the effect of cooperative transcription regulation of cas genes,
three (sub)models of cas genes regulation in the proposed setup are analyzed: (1) a
baseline model, in which P.Cas transcription activity acquires its equilibrium value
infinitely fast, (2) a constitutive model, with constant P.Cas transcription activity,
and (3) a cooperative model, where P.Cas is cooperatively regulated by C protein
in the same manner as the AhdI P.CR promoter. Figure 8 shows how the amount of
crRNA, determined 20 min after the start of system activation, depends on the level
of the processing rate k reached in equilibrium, in all three models. The crRNA

Fig. 8 Dependence of crRNA amount 20 min postinduction on the equilibrium value of a pre-
crRNA processing rate keq in the three models of CRISPR-Cas activation (Rodic et al. 2017a)
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amount at 20 min postinduction was specifically chosen, as this period is most
relevant for a successful cell defense against an incoming virus.

The most prominent characteristic of the cooperative model is its switch-like
behavior (Fig. 8), in contrast to much more gradual responses of the constitutive
and the baseline models. This feature enables keeping the system in the OFF state
in the case of possible leaks in P.Cas activity (corresponding to low keq values)
and, on the other side, rapidly generating a sufficient amount of crRNAs once
the induction signal is received, to efficiently combat viral infection. Furthermore,
taking into account that the amount of crRNAs sufficient to negatively affect phage
development was determined to be ∼10 molecules (Pougach et al. 2010), the models
predict that enough crRNAs is generated even at low (somewhat larger than 1 1/min)
keq values, corresponding to the activated system regime. Therefore, CRISPR-Cas
system expression regulation is probably mainly constrained by a requirement of
rapidly producing a large amount of crRNAs (Rodic et al. 2017a).

In line with its switch-like behavior, at low keq values the cooperative model
produces less crRNAs than the constitutive one. However, at high keq values an inter-
esting cross-over behavior is observed, where the cooperative model approaches
the limit of infinitely fast crRNA production (given by the baseline model). Even
more crRNAs can be generated by jointly activating transcription of both cas genes
and a CRISPR array, which relieves the saturation obtained when increasing only
cas expression (Djordjevic et al. 2012; Rodic et al. 2017a). As k values around
100 1/min were encountered in experiments with artificial overexpression of cas
genes (Pougach et al. 2010; Djordjevic et al. 2012), it is tempting to speculate that
such high rates of pre-crRNA processing may also be reached in the native system,
providing highly efficient protection to a bacterium.

Effect of abolishing the second major CRISPR-Cas regulatory feature, i.e., of
decreasing the pre-crRNA nonspecific degradation rate (λpre) in the cooperative
model, can be deduced from Fig. 9. Namely, the crRNA dynamics curve is gradually
deformed with respect to the standard Hill (sigmoidal) shape, indicating that fast

Fig. 9 Perturbing the fast nonspecific degradation of pre-crRNA. Effect of decreasing the pre-
crRNA degradation rate λpre on crRNA expression dynamics at three different keq values can be
seen in the figures under (a, b, and c). Native CRISPR-Cas is characterized by λpre = 1 1/min.
Zero time point corresponds to the start of system activation, i.e., to the moment of entrance of a
plasmid carrying cas genes in a cell (Rodic et al. 2017a)
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nonspecific pre-crRNA degradation is, together with cooperative transcription regu-
lation, responsible for the system switch-like behavior. Another effect of decreasing
λpre, which comes as a model prediction, is a decrease in the time delay of the
onset of crRNA generation, most pronounced at high keq values. It has been shown
previously that slow or delayed CRISPR interference (targeting of foreign DNA by
Cascade-crRNA complexes) facilitates the primed adaptation (Künne et al. 2016;
Musharova et al. 2017), i.e., the acquisition of invasive DNA fragments similar
to already possessed spacers, to be incorporated as new spacers in the CRISPR
array. This mechanism serves to minimize infection by phages with mutated genome
sequences, which would otherwise evade the interference (Sternberg et al. 2016).
The required delay could be achieved by a delay in crRNA generation, resulting
from fast pre-crRNA degradation, as predicted by the model (Rodic et al. 2017a).
Consequently, both main dynamical features, i.e., rapid transition of the system from
OFF to ON state and the delay in the expression of the effector molecules (restriction
enzyme and crRNAs), are observed in both R-M systems and mechanistically more
complicated CRISPR-Cas systems.

7 Summary and Conclusion

Seemingly very different architectures and regulatory properties of AhdI and
EcoRV systems can be explained by few common design principles, ensuring that
expression dynamics of every R-M system is optimized to serve its purpose—
namely, safe and efficient host cell protection from foreign DNA. Other R-M
systems, representative of different regulatory mechanisms, should be investigated
to test if unifying design principles can be defined at the level of the whole
group of these prokaryotic immune systems. Moreover, having the same immune
function, CRISPR-Cas systems may also obey similar design principles, as it was
theoretically predicted by using a synthetic system to bypass the unknown CRISPR-
Cas transcription control, while keeping the same transcript processing mechanism
as in native CRISPR-Cas. Thereby, thermodynamic modeling proved to be an
appropriate approach in describing R-M system transcription regulation, while in
combination with a dynamic model of protein expression, it can be used to describe
the main qualitative properties of R-M system dynamics of establishment in a
single, naïve host cell. Further experimental and theoretical studies of CRISPR-
Cas regulation may allow to more accurately understand its dynamics, in line
with what is already done for R-M systems. Overall, the studies on bacterial
immune systems summarized here underline a major goal of systems biology which
is to discover common design principles in mechanistically otherwise different
biological systems.
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Abstract Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable neurode-
generative disease. Although the precise pathogenesis of ALS remains unknown,
mutations in genes encoding RNA-binding proteins (RBPs) have been known as
a major culprit. RBPs are involved in almost every aspect of RNA metabolism
events from synthesis to degradation. Characteristic features of RBPs in neurode-
generation include misregulation of RNA processing, mislocalization of RBPs to the
cytoplasm, and unusual aggregation of RBPs. Modern advancement in technology
and computational capabilities suggests an optimistic future for deconvolution of the
pathological changes associated with ALS to identify the pathomechanisms of ALS.
Importantly, combination of highly multidimensional omic technologies involving
proteomics, microarray, and mass spectrometry with computational systems biology
approaches provides a systemic methodology to reveal novel mechanisms behind
ALS. In this chapter, we begin by summarizing the ALS and involvement of
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RBPs in ALS. Further, we provide a comprehensive overview of applications of
systems biology to study ALS. We imagine that the integration of highly efficient
computational tools with multiple omic analyses will help in the discovery of new
therapeutic interventions in ALS.

Keywords Amyotrophic lateral sclerosis · RNA-binding proteins · Systems
biology · Omics · Therapy

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disease char-
acterized by a progressive loss of motor neurons in the brain and spinal cord.
According to the National ALS Registry, almost 12,000 people in the USA are
diagnosed with ALS with a prevalence of 4.0 cases per 100,000 persons (Mehta
et al. 2016). Majority of ALS cases ( 90%) are sporadic (sALS) having no family
history of the disease, while the remaining 10% of cases are inherited and classified
as familial ALS (fALS) (Shaw 2005; Robberecht and Philips 2013). The aetiology
of ALS like other neurodegenerative diseases (NDs) is multifactorial, and the
pathophysiology is mediated by various cellular pathways including glutamate
excitotoxicity, oxidative stress, endoplasmic reticulum stress, neuroinflammation,
mitochondrial dysfunction, axonal deregulation, protein misfolding and aggrega-
tion, proteasomal dysfunction, and RNA processing defects (Dunkel et al. 2012;
Mancuso and Navarro 2015; Kumar et al. 2016a; Moujalled and White 2016).
Targeting these different pathophysiological aberrations remains a challenge in the
field of ALS (Pandya et al. 2013; Goyal and Mozaffar 2014; Bucchia et al. 2015;
DeLoach et al. 2015; Nicholson et al. 2015).

Frontotemporal dementia (FTD) is characterized by the focal neuronal loss in
the frontal and anterior temporal lobes of the brain. It is the second most common
cause of dementia after Alzheimer’s disease (AD). The prevalence of FTD in
old age people is 10–20 per 100,000 peoples, and the rate of incidence is 3.5–
4.2 per 100,000 peoples per year (Ratnavalli et al. 2002; Sieben et al. 2012;
Perry and Miller 2013). FTD and ALS have overlapping clinical symptoms and
molecular mechanism of pathological manifestation and are now being considered
as representatives of a continuum of a broad neurodegenerative disorder (Lomen-
Hoerth et al. 2002; Burrell et al. 2011; Kumar et al. 2016b). It has been estimated
that approximately 15% of FTD patients meet ALS criteria and as much as 15%
of ALS cases also display typical FTD symptoms like cognitive and behavioural
impairment (Ringholz et al. 2005; Wheaton et al. 2007).

In this chapter, we will begin by reviewing the involvement of RNA-binding
proteins (RBPs) in ALS. Finally, we will review some of the systems biology studies
from human tissues, mouse, and different animal and cell culture models in ALS.
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1.1 RNA-Binding Proteins in ALS

An increasing number of RBPs are linked to several NDs (Polymenidou et al. 2012;
Belzil et al. 2013; Nussbacher et al. 2015; Kapeli et al. 2017; Coyne et al. 2017),
which suggest the role of RBPs in preserving normal physiology of the nervous
system. Mutations in genes encoding RBPs have been identified in patients with
ALS, FTD, spinal muscular atrophy (SMA), and multisystem proteinopathy (MSP).
ALS-linked RBPs have been successfully isolated from human cells or tissues
as well as from model organisms like mouse, yeast, and drosophila that led to
significant understanding of normal and pathological functions in ALS.

More than hundred genes have been linked with ALS in which a handful
are RBPs that control RNA processing events (Wroe et al. 2008). Some exam-
ples are TAR DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated
in liposarcoma (FUS/TLS, referred to as FUS), chromosome 9 open reading
frame 72 (C9orf72), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1),
heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1), Ewing’s sarcoma
breakpoint region 1 (EWSR1), and TATA-box binding protein associated factor 15
(TAF15) (Table 1).

These RBPs share many common structural features such as the presence of RNA
recognition motifs (RRMs) and a disordered, Gly-rich prion-like domain (Fig. 1)
(He and Smith 2009). They are mainly nuclear and multifunctional proteins that are
present in the majority of cells and tissue types. The findings that complete loss of
TDP-43 or hnRNP A1 in mice is embryonic lethal (Kraemer et al. 2010; Liu et al.
2017) and complete loss of FUS or EWSR1 in mice is postnatal lethal (Hicks et al.
2000; Li et al. 2007) demonstrated the significance of these proteins.

Moreover, TDP-43, FUS, and C9orf72 show association with stress granules
under cellular stress condition (Bentmann et al. 2013; Daigle et al. 2013; Lee
et al. 2016; Maharjan et al. 2017). These stress granules sequester proteins and
RNAs leading to inhibition of translation of specific transcripts (Anderson and
Kedersha 2009; Buchan 2014; Protter and Parker 2016). As a consequence, defects
in RNA metabolism arise due to entrapment of proteins and mRNAs (Ramaswami
et al. 2013), and subsequently protein aggregation occurs as well (Dewey et al.
2012; Aulas and Vande Velde 2015). As ALS develops, different cellular events
are disrupted progressively leading to synaptic failure and muscle degeneration
(Robberecht and Philips 2013). Thus, a clear understanding of the primary defects in
RNA metabolism that triggers ALS pathogenesis is essential for our understanding
of disease manifestation, progression, and treatment.
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Table 1 RNA-binding proteins (RBPs) implicated in neurodegenerative diseases affecting RNA
metabolism at various steps

Affected RNA metabolism events RBPs Associated diseases

Transcription FUS, EWSR1, TAF15 ALS/FTD
Alternative splicing TDP-43, FUS, TAF15,

hnRNPA1, hnRNPA2/B1,
EWSR1

ALS/FTD

MBNL1/2, CUGBP DM
NOVA POMA
SMN SMA
RBFOX Epilepsy, ataxia

Alternative polyadenylation NOVA POMA
PABPN1 OPMD
MBNL1/2 DM

Localization, transportation,
and sequestration

TDP-43, FUS,
hnRNPA2/B1, TAF15,
EWSR1

ALS/FTD

ATXN2 SCA2, ALS
FMRP FXS, FXTAS
SMN SMA

Degradation and turnover hnRNPA1,hnRNPA2/B1 ALS/FTD
MATR3 ALS
FMRP, DGCR8, DROSHA FXS, FXTAS
MBNL1/2 DM
PARK7 PD
CELF4, HuR, ELAVL1 Epilepsy, PD

Abbreviations: DM, myotonic dystrophy; FXS, fragile X syndrome; FXTAS, fragile X-associated
tremor/ataxia syndrome; OPMD, oculopharyngeal muscular dystrophy; PD, Parkinson’s disease;
POMA, paraneoplastic opsoclonus-myoclonus ataxia; SCA2, spinocerebellar ataxia type 2; SMA,
spinal muscular atrophy

1.2 Application of Systems Biology to Unravel the Complexity
of ALS

The field of systems biology provides a large collection of computational tools
for investigating the mechanism of any biological processes based on modern,
highly multidimensional omics datasets. The systems biology-directed perturbation
analysis of in vitro or in vivo models helps to identify new pathomechanisms behind
NDs (Diaz-Beltran et al. 2013; Wood et al. 2015). Systems biology can be consid-
ered as a research tool that utilizes biological, physical, chemical, mathematical,
and computational methods to incorporate and analyse physiological and clinical
information from laboratory experiment.
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Fig. 1 ALS-associated RNA-binding proteins (RBPs)

To study ALS and other NDs, classical reductionist approaches have primarily
focused on crucial genes and their products, and thus did not provide a complete
understanding of these complex disorders. Therefore, although there are significant
informations about the pathology coming from cellular and molecular studies, a
systematic and comprehensive knowledge of pathomechanisms are still missing.

On the contrary, a systems biology perspective involves an integrative study of
the key pathways involved in the physiological or pathophysiological state within
the cells and organisms. A systems biology approach thus considered as a better and
effective strategy to untangle the complex pathomechanisms of these multifactorial
diseases.

Overall two different systems biology approaches were undertaken to investigate
the events of ALS. The first one considered as descriptive encompasses system-
wide analysis of biomolecular variations (mRNA, proteins, lipids, and metabolites)
and identification of crucial molecular players in signalling pathways and disease
process. The second one, which is more integrated and complex, identifies key
molecules or networks which elaborate topological features at different levels.
Through the analysis of structural properties and the network connectivity, we may
gain important insights on their dynamic behaviour and illustrates the nature of
healthy or diseased state (Fig. 2).
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Fig. 2 Schematic representation of a systems biology approach to ALS. The altered pathways
and protein–protein interaction (PPI) networks enable the integration of diverse information from
high-throughput molecular data sets, extracting the complex molecular ALS response into testable
hypotheses

2 Systems Biology of ALS

Structural and functional genomics, transcriptomics, proteomics, and metabolomics
are effective tools to discover various mechanisms of ALS and FTD pathogenesis
as well as for discovery of effective players in diagnosis and cure (Caballero-
Hernandez et al. 2016).

2.1 Genomics of ALS

Genomics techniques have mostly led to the finding of genes contributing to two-
thirds of fALS and almost 15% of sALS cases (Appel and Rowland 2012). The
findings from genomic studies have demonstrated the complex nature of ALS at
the genomic level and are now considered as a polygenic disease rather than a
monogenic disease (van Blitterswijk et al. 2012). Mutations in the SOD1 gene were
the first genetic abnormality associated with fALS and were identified by linkage
mutation analysis in 1993 (Rosen et al. 1993). To date more than 180 gain-of-
function mutations in SOD1 gene are described in ALS and opened up new research
opportunities. Later, TARDBP gene was discovered by genome sequence analysis
(Arai et al. 2006), and subsequently mutations in this gene were reported in both
ALS and FTD cases (Kabashi et al. 2008; Sreedharan et al. 2008). Also, mutations
in the FUS gene were recognized using the loss of heterozygosity mapping
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(Kwiatkowski et al. 2009). Recently, novel technique such as exome sequencing
has been successfully utilized for the identification of mutations in profilin 1 (PFN1)
(Wu et al. 2012), ubiquilin 2 (Deng et al. 2011), Tank-binding kinase 1 (Freischmidt
et al. 2015), hnRNPA1, and hnRNPA2B1 (Kim et al. 2013). An important success
of ALS genomics has led to the identification of hexanucleotide repeat expansion
(HRE) in the C9orf 72 gene, located in the non-coding region of chromosome 9
in ALS and FTD patient (DeJesus-Hernandez et al. 2011; Renton et al. 2011). The
HRE is observed in 25 to 40% of fALS and in FTD cases and proved that ALS and
FTD are inherited together and provide continuum.

2.2 Transcriptomics of ALS

Expression patterns of RNA in ALS have been investigated extensively in the search
for biomarker of disease progression that will be helpful to gain information of
ALS pathogenesis. Human tissues from patient such as the brain, spinal cord, and
blood and animal models including SOD1 G93A mouse, TDP43 mouse, and rat
model have been examined (Heath et al. 2013; Saris et al. 2013a, 2013b; Krokidis
and Vlamos 2018). In recent years, many microarray-based studies to characterize
the transcriptome alterations in ALS have been reported. These studies tried to
investigate the role of novel genes in ALS and certain other neurodegenerative
disorders. Using Mouse Genome 430 2.0 array from Affymetrix, oxidative stress-
induced death of neurons by NMDA or hydrogen peroxide in SOD1 G93A cortical
neurons has been reported (Boutahar et al. 2011). In another outstanding study
(Heath et al. 2013), differential gene expression was reported in both fALS and
sALS cases, elucidating the mechanism of motor neuronal death. The same research
group studies human gene expression profile in mixed-cell and peripheral tissue
samples, revealing the important genes in neuroinflammation, RNA splicing, and
cytoskeletal involvement. The pharmacological targeting of the modified pathways
and networks in ALS has also been studied using microarray-based transcriptomics
(Paratore et al. 2012; Henriques and Gonzalez De Aguilar 2011).

Furthermore, using GeneChip Mouse Gene 1.0 ST (Affymetrix) arrays on
C57BL/6J mouse brain, TDP-43 interacting genes involved in synaptic development
and functions were identified (Narayanan et al. 2013). A detailed microarray studies
on the brain of GMR-Gal4/UAS-TDP-43 transgenic drosophila model showed alter-
ations in genes involved in oxidative homeostasis and cell cycle regulation (Zhan et
al. 2013). Similarly, FUS-targeted genes were identified using GeneChip Mouse
Exon 1.0. ST exon array (Affymetrix) in FUS-deficient motor neurons, cerebellum,
cortical neurons, and glial cell (Fujioka et al. 2013). The same research group also
examined alterations in gene expression and alternative splicing patterns of TDP-
43-deficient primary cortical neurons (Honda et al. 2013) and compare with the
transcriptome patterns obtained in FUS-deficient neurons. They showed that almost
25% of genes with altered expression levels and 10% of genes with differentially
spliced exons were similar in the transcriptome profiles of TDP-43-deficient and
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FUS-deficient primary cortical neurons. These results suggest that TDP-43 and FUS
influence common downstream RNA-regulated events in ALS. The transcriptome
profile of another RBP, TIA-1 depleting mice’s spinal cord and cerebellum analysed
using the Affymetrix GeneChip HT Mouse Genome 430 2.0, reveals that TIA-1 acts
as a lipid homeostasis regulator (Heck et al. 2014).

Furthermore, sALS-linked epigenetic biomarkers were checked using Illumina
Human Methylation DNA BeadChip array (Figueroa-Romero et al. 2012). This
study provides an evidence of ALS-dependent methylation and misregulation of
genes involved in neural development and differentiation and thus enhances our
knowledge of disease pathogenesis and facilitates the finding of new targets. To
extend microarray experiment focussing on pathophysiological mechanisms of
ALS, next-generation sequencing technologies are employed to study the disease
at the genomic, transcriptomic, and epigenetic levels (Reis-Filho 2009; Morozova
and Marra 2008). RNA-Seq provides an extensive deep sequencing approach for the
accurate quantification of the transcript levels (Wang and Xi 2013; Reis-Filho 2009).
For instance, RNA-Seq analysis carried out by Illumina Genome Analyzer showed
alternative splicing patterns associated with wild-type or mutated or knocked down
FUS (van Blitterswijk et al. 2013). A significant number of differentially expressed
ribosomal- and spliceosomal-related genes have been reported in R521G and R522S
FUS mutations, indicating that misregulation of FUS might be responsible to the
disease (van Blitterswijk et al. 2013). Utilizing HITS-CLIP technology together
with RNA-Seq, the role of FUS as neuronal transcriptome regulators has been
revealed (Nakaya et al. 2013). RNA-Seq approach has also demonstrated the
significant role of TDP-43 in ion channel regulation and in synaptic transmission
(Hazelett et al. 2012).

2.3 Metabolomics of ALS

Metabolomics can be viewed as the final result of transcribed genome fine-regulated
by functional proteins. In ALS, brain metabolites have been non-invasively mea-
sured by the magnetic response spectroscopy (MRS) (Jones et al. 1995; Gredal
et al. 1997). The researcher observed decreased N-acetylaspartate (NAA) levels in
the motor cortex (Gredal et al. 1997), brainstem (Cwik et al. 1998), thalamus, and
cerebellum (Ikeda et al. 1998) of ALS patients.

First global metabolomics study utilizing high-performance liquid chromatogra-
phy on blood plasma of ALS patients was achieved in 2005 (Rozen et al. 2005).
Here, the authors measured almost 300 metabolites and illustrated that ALS is
connected to downregulation rather than the upregulation of metabolites level. They
also reported 12 metabolites that appreciably increased in the patients kept on
the riluzole medication. A similar study was performed recently in ALS patients
categorized as ‘possible’, ‘probable’, or ‘definite’ and showed that 32 metabolites
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were considerably changed in the plasma of ‘definite’ ALS patients (Lawton et
al. 2012). These metabolites were involved in neuronal loss, oxidative damage,
hypermetabolism, and mitochondrial dysfunction.

Blasco et al. (2010) measured 17 metabolites employing high-resolution 1H-
MRS and found lower concentration of acetate and higher concentration of ascor-
bate and pyruvate in ALS patients. Wuolikainen et al. (2011) measured approxi-
mately 120 metabolites using gas chromatography combined to mass spectrometry
(GS-TOFMS) and classified CSF samples with different ALS subtypes. They found
noteworthy differences in metabolites’ profile among fALS, sALS, and SOD1-
ALS patients, where fALS patients showed distinct and homogenous metabolomic
profile than sALS patients. Similarly, a different metabolomic pattern has also been
reported in ALS patients with a C9orf72 mutation when compared to sALS or FTD
patients (Cistaro et al. 2014). By using 18F-fluorodeoxyglucose-positron emission
tomography (PET) in specific areas of the brain, the authors showed that C9orf72
mutation carriers showed a larger involvement of CNS than that of sALS or FTD
patients (Cistaro et al. 2014).

Thus, metabolomic studies in human tissues and animal model have shown
neuronal alteration and degeneration. However, sufficient experimental evidences
in support of specific metabolomic profile (fingerprint) associated with disease are
lacking, although important efforts with hopeful results are being obtained (Lawton
et al. 2014; Wuolikainen et al. 2009).

2.4 Secretomics of ALS

Besides proteomics and metabolomics, secretomics could also tell pathological
pathway and biomarkers in ALS. Secretomics facilitate the study of cellular
secretion products from a variety of sources such as plasma, serum, urine, CSF,
and saliva plus relevant cell culture media (Dowling and Clynes 2011). The ALS
secretomes have been analysed by fewer studies where the role of mutant SOD1
and other ALS genes in various cell types involves non-cell autonomous mechanism
for neuronal defects (Boillee et al. 2006; Ilieva et al. 2009). Non-neuronal cells
such as astrocytes from either sALS or fALS cases have shown the secretion
of inflammatory mediators, revealing a general mechanism of non-cell-mediated
toxicity (Haidet-Phillips et al. 2011). Moreover, Gomes et al. (2010) demonstrated
that NSC-34 motor neuronal cells overexpressing wild-type and mutant SOD1
secrete exosomes containing SOD1, and this secretion could be enhanced by
chromogranin (Urushitani et al. 2006). Although in vivo role of SOD1 exosome
secretion is still unclear (Grad et al. 2014), it would be highly interesting to further
investigate the nature of exosome secretion in ALS.
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3 C9orf72 ‘Omics’ in FTD-ALS

In 2011, hexanucleotide repeat expansions of the G4C2 (HRE) in the non-coding
region of the C9orf72 gene (refereed here to C9) were found to be the common
familial cause of ALS and FTD (referred as C9-FTD/ALS) (Renton et al. 2011;
DeJesus-Hernandez et al. 2011) and were also found in sporadic cases later (Ling et
al. 2013). The size of the repeat in ALS and FTD cases ranges between 700 to 1600
as compared to 2–23 in controls (DeJesus-Hernandez et al. 2011).

Currently, the pathological mechanisms associated with C9-FTD/ALS includes
haploinsufficiency, RNA gain of toxicity, and dipeptide repeat (DPR) accumulation
via repeat-associated non-ATG (RAN) translation (Stepto et al. 2014; Gendron et al.
2014; Todd and Petrucelli 2016). The repeat expansions have been shown to form
RNA foci as well as five DPR species (poly-GA, poly-GR, poly-GP, ploy-PA, and
poly-PR), which contribute to toxicity by sequestering other proteins and RNAs
(Wen et al. 2017; Gendron and Petrucelli 2017). Since its discovery, significant
effort has been made towards the understanding of pathomechanisms associated
with C9 and a number of studies pointing towards dysregulation of RNA metabolism
as a major contributor to C9 pathogenesis (Kumar et al. 2016c). As an example of
how systems biology brings out important insights about the dynamics of ALS, in
the following section, we point out some recent achievement in the case of C9-
mediated ALS.

RNA-Seq experiments have revealed that C9 RNA foci sequester several mem-
bers of the hnRNP family of splicing factors (Lee et al. 2013; Mori et al. 2013;
Sareen et al. 2013; Cooper-Knock et al. 2014), resulting in altered splicing patterns
of their RNA targets. Cooper-Knock et al. (2015) reported the upregulation of ‘RNA
splicing’ genes in motor neurons and lymphoblastoid cell lines of patients with C9-
ALS. Upregulation of these genes is consistent with an effort to compensate for
sequestration of these proteins by RNA foci. Many of the differentially expressed
genes have been independently identified as repeat-binding proteins, including
hnRNPA3 and hnRNPH (Lee et al. 2013; Mori et al. 2013; Conlon et al. 2016).
These results suggest that the splicing defects in repeat expansion carriers are due
to RBP sequestration into foci.

To identify biologically relevant pathways, Satoh et al. (2014) used different
pathway analysis tools including Kyoto Encyclopedia of Genes and Genomes
(KEGG:www.kegg.jp), Ingenuity Pathways Analysis (IPA:www.ingenuity.com),
and KeyMolnet (www.km-data.jp/keymolnet) to study molecular networks engaged
in C9ALS by utilizing three different C9orf72 omics datasets. These data sets
were (i) proteome of C9orf72 HRE RBPs which provides the most important
biochemical information of C9-ALS (Haeusler et al. 2014; Cooper-Knock et al.
2014), (ii) transcriptome of iPSNs of patients with C9-ALS which represents the
most effective cell culture model (Sareen et al. 2013), and (iii) transcriptome of
motor neurons of C9-ALS patients acting as the most clinically appropriate in
vivo source (Highley et al. 2014). The results of this study reveal C9orf72 HREs
involvement in the ribosome, spliceosome, and post-transcriptional modification of

http://www.kegg.jp
http://www.ingenuity.com
http://www.km-data.jp/keymolnet
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RNA. Essentially, the proteome is enriched of RBPs having RNA recognition motifs
and prion-like domain. Similarly, network analysis of differentially expressed genes
in iPSNs of patients with C9-ALS shows that the majority of genes identified were
underexpressed, namely, the genes encoding for extracellular matrix proteins and
matrix metalloproteinases. Moreover, the authors did not observed any significant
differences in splicing patterns of C9-ALS patients and controls. In addition, the
authors also reported that the post-transcriptional RNA processing, cytoskeletal
dynamics, and intracellular molecular transport have been affected in C9-ALS
patients.

Recently, Petrucelli group (Prudencio et al. 2015) has also reported transcriptome
alterations in the frontal cortex and cerebellum of C9-ALS, sALS, and controls.
Their findings showed that a number of misregulated genes in C9-ALS were
approximately double than in sALS, demonstrating the differences between these
two forms of ALS. Gene ontology (GO) analyses showed that unfolded protein
response (UPR), intracellular protein transport, and localization pathway are mainly
affected in C9-ALS, while cytoskeleton organization, defence response, and synap-
tic transmission pathways are affected in sALS.

Furthermore, in induced pluripotent stem cell (iPSC) models of C9-ALS, TDP-
43 redistribution from the nucleus to the cytoplasm was reported, suggesting the
alteration of TDP-43 function. Also, mass spectrometry results indicating the
sequestration of RBPs involved in splicing, translation, and nuclear export in
C9RNA foci (Cooper-Knock et al. 2014; Rossi et al. 2015). Thus, C9 involvement
in disease could be due to either alteration in gene transcription and splicing events
or via RNA foci-mediated sequestration of proteins involved in RNA metabolism.
Table 2 summarizes the transcriptome alterations in C9-ALS pathology.

4 Concluding Remarks

During the last 25 years, research on ALS is flourishing, and the amount of data
has significantly increased. Defects in RNA metabolism have emerged as a crucial
event in the pathogenesis of ALS/FTD. RBPs such as TDP-43, FUS, and C9orf72
pathology share common alterations in gene expression and post-transcriptional
regulation. Given the significance of RNA and RBPs in cellular physiology, RNA
processing can be considered as a crucial target for therapeutic intervention to
patients not only with ALS/FTD but to a collection of neurodegenerative diseases.

Recent advances in microarray and next-generation sequencing technologies
enable us to study the global analysis of genome, transcriptome, proteome, and
metabolome, collectively termed as ‘omics’. These omics study enables the char-
acterization of the genome-wide molecular basis of diseases and identifies disease-
specific molecular biomarkers. In particular, systems biology approaches will be
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Table 2 Gene ontology (GO) terms based on analysis of up- or downregulated genes in C9-ALS
cases

Upregulated Downregulated References

Extracellular matrix Neuron differentiation (Sareen et al.
2013)

Cell adhesion Cell–cell signalling
Cell–cell signalling Synapse
Synaptic transmission
Neurological process

Motor neurons RNA Splicing Cholesterol biosynthesis (Cooper-Knock
et al. 2015)

Erythrocyte homeostasis Regulation of glucose
metabolism

Male sex differentiation Regulation of nuclear
division

Lymphoblastoid
cell lines

RNA splicing Inflammatory response

Protein catabolic process Regulation of action
potential in neuron

Synaptic transmission Striated muscle tissue
development

Positive regulation of
apoptosis

Cerebellum Pattern specification
process

G-protein coupled
receptor protein
signalling pathway

(Prudencio et al.
2015)

Skeletal system
development

Cognition

Embryonic
morphogenesis

Regulation of nucleotide
biosynthetic process

Response to unfolded
protein

Immune response

Inflammatory response Regulation of nucleotide
metabolic process

Frontal cortex Inflammatory response Gas transport
Response to wounding Oxygen transport
Defence response Haemoglobin metabolic

process
Response to unfolded
protein
Digestion

indispensable in understanding of the pathomechanisms and rational drug designing
for the debilitating diseases. In future, it will be exciting to see how the systems
biology data can be clinically translated.
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1 Introduction

RNA-binding proteins (RBPs) are a diverse class of proteins that control every
step of RNA processing and RNA function in the cell. They are characterized
by dedicated domains involved in RNA binding and can have accessory domains
engaged in protein-protein interactions or enzymatic activities.

In higher plants, RBP function so far has been best studied in the reference
plant Arabidopsis thaliana. Among the RBPs present in the Arabidopsis genome
are 197 proteins with an RNA recognition motif (RRM), the most abundant type
of RNA-binding domain, and 28 K homology (KH) domain proteins first identified
in mammalian heterogeneous nuclear protein hnRNP K (Silverman et al. 2013). In
addition, 26 Pumilio (PUM) domain proteins, nine DEAD-box helicases as well
as five proteins with cold shock domains (CSDs) have been identified (Silverman
et al. 2013). Another 450 proteins harbor pentatricopeptide repeat (PPR) domains.
PPR domains consist of multiple 35-amino acid repeats of which two are known
to be engaged in specific RNA recognition (Barkan and Small 2014). These
proteins are imported into mitochondria or chloroplasts and regulate all aspects of
RNA metabolism, e.g., RNA editing, splicing, RNA cleavage, and translation in
organelles (Schmitz-Linneweber and Small 2008; Barkan and Small 2014).

A suite of Arabidopsis RBPs have been experimentally characterized, mainly
through loss-of-function mutants and transgenic plants ectopically overexpressing
RBPs. These approaches revealed a crucial role for RBPs in development (Kalyna et
al. 2003; Ripoll et al. 2006; Kupsch et al. 2012; Völz et al. 2012; Ferrari et al. 2017;
Foley et al. 2017; Teubner et al. 2017), timing of plant reproduction (Macknight
et al. 1997; Streitner et al. 2008; Hornyik et al. 2010), responses to abiotic stress
(Kim et al. 2007b, c, 2008, 2010; Park et al. 2009), pathogen defense (Fu et al.
2007; Qi et al. 2010; Jeong et al. 2011; Lyons et al. 2013; Nicaise et al. 2013),
responses to phytohormones (Lu and Fedoroff 2000; Hugouvieux et al. 2001; Riera
et al. 2006; Carvalho et al. 2010; Hackmann et al. 2014; Löhr et al. 2014), and
circadian timekeeping (Heintzen et al. 1994; Staiger 2001; Jones et al. 2012; Schmal
et al. 2013; Perez-Santángelo et al. 2014). At the biochemical level, an impact of
defined RBPs on RNA processing including pre-mRNA splicing, 3′ end processing,
processing of microRNA precursors, and translation has been described (Lopato
et al. 1999; Simpson et al. 2003; Vazquez et al. 2004; Dong et al. 2008; Stauffer
et al. 2010; Ren et al. 2012; Rühl et al. 2012; Juntawong et al. 2013; Sorenson
and Bailey-Serres 2014; Staiger 2015; Carvalho et al. 2016). Recent attempts to
comprehensively identify RBPs, summarized in Sect. 2, provided experimental
evidence for RNA binding for most of the previously identified Arabidopsis RBPs
and identified a plethora of proteins with noncanonical RBDs.

Systems approaches to describe RNA–protein interactions globally come in two
main flavors (Fig. 1). In RNA-centric approaches, proteins associated with mRNAs
are recovered by RNA pull-down and identified by mass spectrometry, a technique
referred to as mRNA interactome capture (Baltz et al. 2012; Castello et al. 2012)
(Fig. 1a). In protein-centric approaches, the focus is laid on a particular RBP. The
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RNA complement associated with the RBP of interest, the ribonome, is identified
via immunoprecipitation of the RBP from cell lysates and identification of the
bound target RNAs, initially by microarrays (Tenenbaum et al. 2000; Galgano and
Gerber 2011; Guerreiro et al. 2014) or more recently via high throughput sequencing
(Licatalosi et al. 2008; König et al. 2010; Rossbach et al. 2014; Müller-McNicoll et
al. 2016) (Fig. 1b).

2 The Arabidopsis RBPome

Of all predicted RBPs in Arabidopsis, RNA binding has only been experimentally
confirmed for a limited number of them. A first attempt to globally identify proteins
based on their ability to interact with mRNAs in vivo was made for cultured
Arabidopsis cells (Schmidt et al. 2010). In this study, mRNAs and interactors
were recovered under native conditions by affinity chromatography on an oligo(dT)
cellulose column followed by two-dimensional gel electrophoresis. The protein
components were identified via Maldi-TOF. In the RNA-bound proteome were a
suite of RRM proteins including members of the family of glycine-rich RNA-
binding proteins like AtGRP2 (Arabidopsis thaliana glycine rich RNA-binding
protein 2), AtGRP7 and AtGRP8 (Lewinski et al. 2016), the two oligouridylate-
specific RBP45 and RBP47 proteins (Lorkovic et al. 2000), and CSD proteins.

In 2012, mRNA interactome capture was reported to comprehensively identify
proteins interacting with mRNAs in mammalian cells (Baltz et al. 2012; Castello
et al. 2012). This technique employs in vivo cross-linking of mRNA and bound
proteins by UV light irradiation. The RNA–protein complexes are recovered by
pull-down of polyadenylated RNAs using magnetic beads coated with oligo(dT).
Proteins are released by RNase treatment, subjected to tryptic digest and identified
via mass spectrometry (Fig. 1a). Following these pioneering studies, this technique
was applied to a wide range of organisms including yeast, Drosophila melanogaster,
Caenorhabditis elegans, Leishmania, trypanosomes, and Plasmodium (Mitchell et
al. 2013; Beckmann et al. 2015; Matia-Gonzalez et al. 2015; Bunnik et al. 2016;
Lueong et al. 2016; Sysoev et al. 2016; Wessels et al. 2016; Nandan et al. 2017).
A minimal core mRNA bound proteome occurring in both human and yeast was
defined by Beckmann and coworkers (Beckmann et al. 2015). Lately, mRNA
interactome capture has also been successfully applied to Arabidopsis (Marondedze
et al. 2016; Reichel et al. 2016; Zhang et al. 2016).

2.1 The mRNA Interactome of Arabidopsis Protoplasts

The first mRNA interactome capture experiments in Arabidopsis employed widely
differing tissues to catalog RBPs. Gueten and coworkers chose protoplasts, cells
without a cell wall, assuming that UV cross-linking should occur as efficiently as



80 M. Lewinski and T. Köster

RBP

AAA
TTT

RBP

RBP

RBP

RNA-centric Protein-centric

254 nm

RBP RBP

RBP

RBP RBP

254 nm

R B
P R

B
P

R
B

P

in
te

ns
ity

MS/MS-scan

mRNA interactome capture RIP-seq iCLIP

IP
IP
RNase digestion

De-cross-linking
RNA isolation
RT

Proteinase K
treatment
RT

RNase digestion

Oligo(dT) capture

Tryptic digest

Mass spectrometry
Bioinformatics

PCR
HITS

PCR
HITS

Enrichment
analysis

Peak calling

a b

O

HH
C

Fig. 1 Strategies to globally identify in vivo RNA–protein interaction in Arabidopsis. (a) RNA-
centric strategies such as mRNA interactome capture employ oligo(dT) affinity capture. RNA and
bound proteins are covalently linked in planta through UV irradiation. RNA–protein complexes
are recovered by oligo(dT) pull-down. Proteins are released by RNase treatment, subjected
to tryptic digest and identified via mass spectrometry. (b) Protein-centric methods focus on
a particular RBP and aim at identifying its in vivo RNA targets. Based on the cross-linking
agent, RIP using formaldehyde or CLIP technique using UV light are distinguished. Proteins
are immunoprecipitated. In RIP-seq cross-links are reversed by heat treatment, RNA is isolated,
subjected to reverse transcription and PCR amplification for HITS. Targets enriched upon RIP are
determined relative to mock IP controls, e.g., Xing et al. 2015, or relative to polyadenylated RNA,
e.g., Meyer et al. 2017. In iCLIP (König et al. 2010), RNA–protein complexes are subjected to
RNase treatment. Bound proteins are digested with proteinase, leaving a polypeptide at the cross-
link site. Reverse transcriptase stops there, allowing the detection of the cross-link site at the −1
position of the processed sequencing reads
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in mammalian cell monolayers (Zhang et al. 2016). Leaf mesophyll protoplasts are
also widely used in transient assays to study the regulation of gene expression.

A mesophyll protoplast mRNA interactome was defined with a total of 325
proteins based on enrichment in cross-linked samples vs. non-cross-linked controls
with a log2 fold change above 2 (Zhang et al. 2016). Of these, one class was
represented by 123 ribosomal proteins of which 52 were also present in the core
mRNA-bound proteome of human and yeast cells (Beckmann et al. 2015). The
second class comprised 70 proteins with a known RBD. For 41 of them, a role in
mRNA binding and RNA biology had already been described while the remaining
proteins had a potential role in mRNA processing. Moreover, 12 of the RBPs in the
second class overlapped with the RBPs identified in the native oligo(dT) affinity
chromatography approach (Schmidt et al. 2010). The third class comprised 132
candidate RBPs. Of these, 49 were metabolic enzymes, mainly oxidoreductases.
Moreover, numerous proteins related to photosynthesis were found. As these are
generally strongly expressed, their RNA binding activity and the domains involved
beg for an independent validation. One of the enzymes was the Arabidopsis ortholog
of phosphoglycerate kinase whose RNA binding capacity has previously been
validated in yeast and human cells (Beckmann et al. 2015).

2.2 The mRNA Interactome of Etiolated Arabidopsis Seedlings

Another mRNA interactome capture experiment employed 4-days-old etiolated
Arabidopsis seedlings (Reichel et al. 2016). This was based on the rationale that
UV-absorbing pigments present in green plant tissue may interfere with UV cross-
linking in planta and their absence in etiolated tissue may allow more efficient UV
cross-linking.

Around 300 of the 746 proteins identified altogether were significantly enriched
in UV cross-linked samples vs. non-cross-linked controls with a false discovery
rate below 1% and designated the “At-RBP set.” Eighty percent of these have a
known RBD, and 75% have been linked to RNA biology. More than 400 additional
proteins did not meet the significance criteria applied for the “At-RBP set” and were
classified as “candidate RBPs.”

Notably, of the 197 computationally predicted RRM proteins in Arabidopsis 160
were detected in the input fraction in etiolated seedlings (Silverman et al. 2013).
Half of these were recovered in the “At-RBD set” and another 50 were present
among the “candidate RBPs.” Similarly, seven of the predicted KH proteins were
present in the “At-RBD set” and 12 were among the “candidate RBPs.” Of the
predicted 450 members of the PPR protein family only 60 were detected in the input
fraction, likely due to low abundance (Schmitz-Linneweber and Small 2008; Reichel
et al. 2016). Only six PPR proteins were found in the “At-RBP set” and another
twelve in the “candidate RBPs,” likely because most RNAs in the organelles lack
poly(A) tails. A comparison of the identified proteins to the mRNA interactome in
other model organisms revealed that 52 were present in the interactomes of humans
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(Baltz et al. 2012; Beckmann et al. 2015), mice (Kwon et al. 2013; Liao et al. 2016),
and yeast (Beckmann et al. 2015) and were assigned to basic functions in RNA
metabolism such as translation, splicing, and RNA unwinding.

In addition to RBPs with known RBDs many Arabidopsis proteins emerged that
have not been linked to RNA binding so far. Among novel RBPs were proteins
harboring a YT521-B homology (YTH) domain (Li et al. 2014). YTH domain
proteins have been shown to bind N6 methyladenosine and thus serve as readers of
the m6A mark in mammals (Wang et al. 2014). In addition, Alba domain containing
proteins have been identified. Alba domain proteins are well characterized in
archaebacteria where they act as transcriptional repressors and in other eukaryotes
where they control translation (Goyal et al. 2016). In plants, they have not yet been
functionally characterized. The only observation pointing to RNA binding is the
recovery of an Arabidopsis Alba domain protein by RNA-affinity chromatography
(Gosai et al. 2015). WHIRLY domain containing proteins have been characterized
as single-stranded DNA binding proteins in organelles (Krause et al. 2009) and
in maize, association of a WHIRLY protein with chloroplast transcripts has been
observed (Prikryl et al. 2008). The identification of three WHIRLY proteins in
the etiolated seedling interactome (Reichel et al. 2016) and of WHIRLY1 upon
oligo(dT) affinity chromatography in Arabidopsis cells (Schmidt et al. 2010) now
provides evidence for global in vivo RNA binding.

In addition, a plethora of proteins with potential RNA binding activity have been
detected. To substantiate their RNA-binding properties, independent replication is
desirable. Among those are proteins with the Domain of unknown function 1296,
cytoskeletal proteins, and photoreceptors. The identification of plasma membrane
intrinsic proteins has led to the speculation that aquaporins may be involved in
transport of RNAs between cells (Reichel et al. 2016).

2.3 The mRNA Interactome of Arabidopsis Cultured Cells
and Leaves of Adult Plants

Another mRNA interactome capture experiment was performed on cell suspension
cultures generated from roots of the Arabidopsis accessions Col-0 and Landsberg
erecta. In parallel, leaves of four-weeks-old Arabidopsis Col-0 plants were investi-
gated (Marondedze et al. 2016). Of 1145 proteins identified altogether in these three
samples, 914 appeared only in UV cross-linked samples, and 233 proteins were
significantly enriched upon UV cross-linking relative to non-cross-linked samples.
More than 350 proteins were known RBDs whereas 736 were novel candidate RBPs
not previously assigned an RNA-related function or known RBD, including many
enzymes of intermediary metabolism, and thus await further experimental proof
(Marondedze et al. 2016).
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The discovery of many novel RBPs begs for further investigation of the RNA-
binding properties of these proteins. Accordingly, methods to define RNA targets
of candidate RBPs genome wide using protein-centric methods have recently been
adapted for the use in Arabidopsis, as discussed below.

3 Toward Arabidopsis Ribonomes

Approaches to globally identify in vivo targets of an RBP in Arabidopsis mostly rely
on transgenic plants expressing an epitope-tagged version of the RBP. Immunop-
urification is performed via an antibody directed against the epitope tag. To
mirror-image the endogenous expression pattern, authentic promoters are used and
the constructs are introduced into a loss-of-function mutant (Köster and Staiger
2014). Alternatively, endogenous RBPs can be recovered with dedicated antibodies.

To freeze the in vivo RNA–protein interactions before cell lysis, cross-linking
is performed by exposing plants to formaldehyde in RNA immunoprecipitation
(RIP) or by UV irradiation in UV cross-linking and immunoprecipitation (CLIP)
(Fig. 1b). Formaldehyde efficiently cross-links nucleic acids and proteins in vivo
but also cross-links proteins. Thus, not only direct targets are recovered. This is
circumvented by using 254 nm UV light that cross-links proteins directly binding to
nucleic acids in the neighborhood of the excited nucleobase but does not cross-link
proteins.

To date, a comprehensive determination of in vivo targets, the ribonome, has been
performed for only a few Arabidopsis RBPs, both nucleocytoplasmic proteins and
chloroplast-localized proteins with different tasks in posttranscriptional regulation.
In the subsequent sections, selected examples are presented.

3.1 HLP1, An hnRNP A/B-Like Protein Involved in Alternative
Polyadenylation

HLP1 is an Arabidopsis RBP resembling mammalian hnRNP A/B-like proteins
(Zhang et al. 2015). High throughput sequencing (HITS)-CLIP of HLP1 fused to
GFP and expressed under control of the strong, constitutive Cauliflower Mosaic
Virus 35S RNA promoter identified above 5500 transcripts bound in vivo (Zhang
et al. 2015). When endogenous HLP1 protein was precipitated by a specific
antibody, 6850 transcripts bound in vivo were detected with an overlap of above
3000 transcripts to the HLP1-GFP precipitation. The prevalence of cross-linked
regions near polyadenylation sites provoked the hypothesis that HLP1 may control
polyadenylation. Indeed, in more than 2000 transcripts the distal polyadenylation
site was preferred over the proximal polyadenylation site in hlp1 mutant plants.
Around 19% of these transcripts were also recovered by HLP1 HITS-CLIP, pointing
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to a role for HLP1 in the control of alternative polyadenylation, at least partly
by direct binding. In line with this, MEME motifs overrepresented in the cross-
link regions, namely A-rich (5′-AGAAAA-3′) and U-rich (5′-UUUUCU-3′) motifs,
resembled motifs enriched in the vicinity of the poly(A) site, 5′-AAAGAAAA-
3′ and 5′-UGUUUC-3′. The presence of cross-link regions in other parts of the
transcripts apart from the 3′ untranslated region (UTR) suggests that HLP1 may
also affect other aspects of pre-mRNA processing in addition to polyadenylation.

3.2 The Glycine-Rich RBP AtGRP7

AtGRP7 (Arabidopsis thaliana glycine rich RNA-binding protein 7) is another
hnRNP-like protein with an N-terminal RRM and a C-terminus enriched in con-
tiguous glycine residues. AtGRP7 is regulated by the circadian clock and negatively
autoregulates its own oscillations by alternative splicing and Nonsense-mediated
decay (Staiger et al. 2003; Schmal et al. 2013). Additionally, it is involved in several
steps of posttranscriptional regulation including alternative splicing, nucleic acid
chaperone function, and pri-miRNA processing (Kim et al. 2007a; Streitner et al.
2012; Köster et al. 2014). To gain insights into the breadth of its in vivo targets,
individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) and
RIP-seq were performed (Meyer et al. 2017). AtGRP7 fused to GFP was expressed
from its own promoter including all regulatory elements (5′ UTR, intron, and
3′ UTR) in the atgrp7-1 loss-of-function mutant. In parallel, transgenic plants
expressing GFP alone or an RNA-binding dead variant of AtGRP7 with a single
conserved arginine in the RRM mutated to glutamine (AtGRP7 R49Q) were used as
negative controls.

iCLIP identified 858 transcripts with significant iCLIP hits in four out of five
biological replicates for AtGRP7-GFP that were not present in the controls. RIP-seq
identified 2453 transcripts enriched by AtGRP7-GFP relative to total polyadenylated
RNA. The higher number may be due to the higher cross-linking efficiency of
formaldehyde compared to UV light, and the recovery of many indirect targets. 452
transcripts were common in both data sets, suggesting that they represent a set of
high confidence binders. The iCLIP cross-link sites were observed in all transcript
regions, the UTRs, coding sequence and introns. After correcting for the length of
the feature in the genome, cross-link sites in the 3′ UTR prevailed. Conserved motifs
in the vicinity of the cross-link sites generally were U/C rich.

To determine how AtGRP7 may impact its downstream targets, the binding
targets were cross-referenced against transcriptome data from AtGRP7 overexpress-
ing plants or loss-of-function mutants. In both, the AtGRP7 overexpressors or the
mutant, a similar number of transcripts was expressed at elevated or reduced levels
compared to wild-type plants. Notably, significantly more differentially expressed
iCLIP targets were downregulated in AtGRP7-overexpressors than upregulated. In
turn, more of the differentially expressed AtGRP7 iCLIP targets were expressed
at elevated in the mutant than at reduced levels. This indicates a predominantly
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negative effect of AtGRP7 on its targets. Among the targets were more circa-
dianly regulated transcripts than expected. In particular, elevated AtGRP7 levels
lead to damping of circadian oscillations of target transcripts including DOR-
MANCY/AUXIN ASSOCIATEDFAMILY PROTEIN2 andCCR-LIKE. This conforms
with the idea that the circadian clock regulated AtGRP7 functions as a molecular
slave oscillator, conveying temporal information from the core circadian clock
within the cell (Rudolf et al. 2004). In addition, changes in splicing patterns were
observed for iCLIP and RIP-seq targets upon misexpression of AtGRP7, confirming
a role for AtGRP7 in the control of alternative splicing.

3.3 The Splicing Regulator SR45

Arabidopsis thaliana serine/arginine rich (SR)-like protein SR45, the counterpart of
metazoan RNPS1, is an SR-like protein with two RS domains, flanking either side of
the RRM (Badolato et al. 1995; Golovkin and Reddy 1999). Notably, recombinant
Arabidopsis SR45 can activate splicing of a β-globin splicing reporter in HeLa cell
S100 extracts (Ali et al. 2007). SR45 occurs in two splice isoforms that arise through
differential usage of a 3′ splice site in intron 6. This leads to two protein isoforms
that differ by seven amino acid residues and in their function: SR45.1 is involved in
petal development in flowers, whereas SR45.2 is important for root growth (Zhang
and Mount 2009). Genome-wide targets for SR45.1 were determined during early
seedling development (Xing et al. 2015) and in inflorescences (Zhang et al. 2017),
respectively.

In seedlings, RIP-seq identified 4361 transcripts from 4262 genes that were
enriched upon precipitation of SR45.1-GFP from nuclei of transgenic plants
compared to mock precipitation from wild type plants (Xing et al. 2015). These
were designated SARs, for SR45 associated RNAs. A Gene Ontology term analysis
showed that 43 of 147 abscisic acid (ABA) signaling genes (30%) were among the
SARs, in line with a function for SR45 in the ABA signaling pathway (Carvalho
et al. 2010). Hundred and forty-eight of the SARs had an altered expression in the
sr45-1 mutant, suggesting that binding of SR45 has functional consequences.

A MEME search for SR45 binding motifs revealed four overrepresented motifs
within SAR genes. Two G/A rich motifs are largely positioned within exons and
show strong similarity to the binding motifs of two metazoan splicing regula-
tors Transformer 2 (Tra2) and serine/arginine-rich splicing factor 10 (SRSF10).
Furthermore, one G/A rich motif closely resembles the GAAG motif, a known cis-
regulatory element in regulating alternative splicing in plants. In contrast, two U/C
rich motifs peak within intronic regions near 5′ and 3′ splice sites, in line with the
observation that the majority of SARs were from intron-containing genes and the
known role as a splicing regulator (Xing et al. 2015).

To gain insights into a potential role of SR45 in flower development, RIP-seq
was performed for SR45.1-GFP in inflorescence tissue (Zhang et al. 2017). The
resulting reads were analyzed by two different bioinformatics pipelines, one based
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on mapping reads to the genome and one directly quantifying annotated transcripts.
SARs in inflorescence were defined based on a twofold enrichment compared to
GFP only controls and the identification by both pipelines. Of 1812 SARs in
inflorescence, 677 overlapped with the SARs in seedlings.

Notably, 19 transcripts encoding splicing factors were among the SARs including
SR45 itself, the three SR proteins SR30, SR34, and SCL35, the pre-mRNA process-
ing factors PRP39, PRP40A, PRP40B, and PRP2, and the RNA helicase RH42,
pointing to a hierarchical regulation of posttranscriptional regulators (Keene 2007).
Genes upregulated in the sr45-1 mutant are enriched for defense response genes.
Indeed, the sr45-1 mutant was more resistant to bacterial and fungal pathogens. Of
68 upregulated defense response genes in sr45-1, 10 were SARs. Thus, SR45 has
an additional role as a negative regulator of plant immunity.

Furthermore, 81 of the inflorescence SARs were aberrantly spliced in the sr45-
1 mutant. Determination of potential SR45 binding sites in inflorescence SARs
uncovered an overrepresentation of the purine-rich motifs GGNGG, GNGGA, and
GNGGNNG. Importantly, GGNGG and related motifs are enriched in introns and
exons that are alternatively spliced in the sr45-1 mutant, irrespective of the splicing
event is favored or suppressed by SR45. This led to the suggestion that SR45
identifies regions for alternative splicing and acts as a facilitator for other splicing
factors. However, the identified binding motifs for SR45 in inflorescences differ
from that in seedlings, which might be in part due to the different bioinformatic tools
used for motif determination. Both RIP-seq data sets nevertheless strengthen SR45’s
key role as an important splicing factor in Arabidopsis. However, in both RIP-seq
experiments intron-less transcripts were identified in addition to intron-containing
transcripts, pointing to functions of SR45 beyond its known role in pre-mRNA
splicing.

Interestingly, a comparison between the U/C-rich motifs of AtGRP7 and the U/C-
rich motifs of SR45 identified by MEME in seedlings revealed a high degree of
similarity (Meyer et al. 2017). The functional significance remains to be tested.

3.4 Cold Shock Protein 1

In bacteria, CSPs are upregulated upon cold stress and destabilize RNA secondary
structure at low temperatures (Sommerville 1999). To elucidate a potential involve-
ment of Arabidopsis CSPs in the regulation of cold responsive genes, RIP followed
by gene chip analysis was performed for CSP1 (Juntawong et al. 2013).

More than 6000 mRNAs were identified. Comparison of these CSP1-associated
transcripts in total RNA and RNA loaded onto polysomes revealed an enrichment
of mRNAs associated with ribosome biogenesis in the pool of actively translating
RNAs. The high GC content in 5′ UTRs of these mRNAs suggested that CSP1
is involved in removing secondary structures in the 5′ UTR to facilitate their
translation. Accordingly, these mRNAs were less efficiently loaded onto polysomes
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at low temperature in the atcsp1-1 mutant compared to wild type plants or CSP1
overexpressing plants (Juntawong et al. 2013).

3.5 The cpRNP Family

The highly abundant chloroplast ribonucleoproteins (cpRNPs) have been well char-
acterized for their role in regulating chloroplast transcripts (Ohta et al. 1995). The
cpRNPs comprise an acidic domain and two RRMs. They are encoded in the nucleus
and imported into chloroplasts. Mutants in distinct cpRNPs are widely affected
in processing of transcripts in the chloroplast, leading to defects in chloroplast
development and, consequently, plant performance owing to the essential role of
the chloroplast in photosynthetic energy (Ruwe et al. 2011). For example, mutants
deficient in CP29A (29 kDa chloroplast protein A) and CP31A (31 kDa chloroplast
protein A) showed gross defects at low ambient temperature. RIP performed
with antibodies against the endogenous proteins and subsequent hybridization of
coprecipitated RNAs on tiling arrays covering the Arabidopsis chloroplast genome
(RIP-Chip) showed that CP29A and CP31A associate with large overlapping sets of
chloroplast transcripts including strong enrichment for psbB, psbD, psaA/B, atpB,
ndhB and intermediate enrichment for almost all chloroplast mRNAs (Kupsch et
al. 2012). Both CP29A and CP31A are required for accumulation of chloroplast
mRNAs under cold stress. Furthermore, binding of CP31A to 3′ ends of certain
transcripts serves to protect these transcripts against 3′ exonuclease activity (Kupsch
et al. 2012). Together with the known role of CP31A in RNA (Tillich et al. 2009)
this points to multiple functions in posttranscriptional regulation in chloroplasts.

For CP33A (33 kDa chloroplast protein A), RIP-chip revealed an association
with a large body of chloroplast mRNAs (Teubner et al. 2017). A global reduction
in mRNAs and proteins making up the photosynthetic apparatus was found in the
cp33a mutant. In line with a crucial role for CP33A in the development of the
photosynthetic apparatus, cp33a null mutants have an albino phenotype and are not
able to survive without external sucrose supply (Teubner et al. 2017).

3.6 The PPR Protein AtCPR1

In contrast to the broad substrate specificity of the cpRNPs, a very narrow substrate
specificity was found for a representative of the PPR class of nuclear-encoded RBPs
that are imported into organelles. AtCPR1 (Arabidopsis thaliana CHLOROPLAST
RNA PROCESSING 1) is important for the production of subunits of the thylakoid
protein complexes (Ferrari et al. 2017). Atcpr1 mutants are yellow-white because
the subunits of the photosynthetic apparatus do not accumulate.



88 M. Lewinski and T. Köster

RIP-chip was performed for AtCPR1 under native conditions. Hybridization of
bound targets to chloroplast tiling arrays revealed specific binding of AtCPR1 to
only few transcripts, the psaC transcript encoding a photosystem I subunit, petB-
petD encoding Cytochrome b6 and the subunit IV of the cytochrome b6/f complex.
Because during RIP RNase was used to digest unprotected RNA, it was possible to
delineate the binding regions. Binding to the petB-petD intergenic region correlated
with a requirement for processing of the polycistronic transcript comprising petB
and petD (Ferrari et al. 2017), thus providing proof for the functional relevance of
the observed in vivo binding.

4 Combined Analysis of RNA–Protein Interaction and RNA
Secondary Structure Landscapes

In addition to RNA sequence, RNA secondary structure also strongly influences
the interaction of RBPs with their cognate RNA binding motifs (Cruz and Westhof
2009; Vandivier et al. 2016). RNA structure may facilitate binding of RBDs with a
preference for double-stranded RNA or inhibit binding of RBPs with a preference
for single-stranded RNA. Protein interaction profile sequencing (PIP-seq) allows
simultaneous delineation of in vivo RNA secondary structure and protein-protected
sites (PPSs) (Fig. 2) (Gosai et al. 2015). To identify PPSs, samples are treated with a
single-strand specific or double-strand specific RNase. Proteins are then denatured
before library preparation. To determine the RNA secondary structure, proteins are
denatured by SDS and removed by protease digestion to make sites protected by
proteins in vivo accessible for RNases. Collectively, motifs that are enriched in the
samples used to determine protein protected sites compared to the samples used for
structure determination are in vivo target sites of RBDs.

Gregory and coworkers applied PIP-seq to the nuclei of two specific cell
types in the Arabidopsis roots that derive from epidermal cells through distinct
differentiation, those cells bearing root hairs and those that do not (Foley et al.
2017). Distinct protein binding patterns were detected, and binding motifs either
specific to hair cells, non-hair cells or common to both cell types were determined.
To identify candidate proteins, RNA affinity chromatography was performed on
immobilized oligonucleotides derived from enriched motifs. A GGN repeat motif
enriched in sites protected in both hair cells and non-hair cells recovered SERRATE
(SE) from root lysates, a zinc finger containing RBP involved in processing of
miRNA precursors. A TG rich motif enriched in hair cell-specific protected sites
identified AtGRP2, AtGRP7 and AtGRP8. Subsequently, AtGRP8 was shown to
regulate root hair development at the posttranscriptional level.
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Fig. 2 Protein interaction profile sequencing (PIP-seq). (a) To identify protein binding sites,
i.e., sites that are protected from RNase digestion by interacting proteins (PPS), samples are
treated with an RNase specific for double-stranded RNA (left) or for single-stranded RNA (right).
Subsequently, proteins are denatured, leaving either target sites for proteins with a preference for
single-stranded regions (left), or target sites for proteins with a preference for double-stranded
regions (right). These sequences are used to generate libraries for HITS. (b) To determine the RNA
secondary structure, proteins are denatured in a first step. Subsequently, samples are treated with
RNase specific for double-stranded RNA (left) or for single-stranded RNA (right). Again, libraries
for HITS are prepared. Collectively, motifs that are enriched in the samples used to determine
protein binding sites compared to the samples used for structure determination are in vivo target
sites of RBDs

An advantage of PIP-seq is that it does not rely on an antibody to identify target
sites within bound transcripts. In contrast, subsequent identification of the cognate
binding proteins requires in vitro binding techniques. Thus, binding in vivo has to
be confirmed by independent means.
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5 Achievements and Limitations of Arabidopsis In Vivo
RNA–Protein Interaction

The recent mRNA interactome capture studies are very valuable in having estab-
lished UV cross-linking and oligo(dT) affinity capture to determine the mRNA
binding proteome also in Arabidopsis. A large number of previously predicted RBPs
in Arabidopsis were now identified experimentally and many novel proteins without
a previous assignment to RNA biology unearthed. Reichel and colleagues noticed a
bias toward proteins with higher abundance in the interactome compared to the input
(Reichel et al. 2016), suggesting that additional proteins with lower expression level
may still be identified in the future. Only few of the mRNA interacting proteins
were present in all three interactomes (Köster et al. 2017). This may partly be
attributed to the widely differing developmental stages investigated. Among the
commonly identified proteins are numerous cytoplasmic ribosomal proteins from
the small and large ribosomal subunits, likely due to their high abundance, as well
as the ubiquitously expressed glycine-rich RBPs AtGRP7 and AtGRP8 (Köster et
al. 2017).

Future applications are the dynamics of posttranscriptional networks in response
to endogenous and exogenous stimuli cues by describing changes in the mRNA
bound proteomes. Furthermore, as proteins binding to nonpolyadenylated RNAs
obviously remain elusive in these approaches, transcript-specific approaches have
to be developed.

Transcriptome-wide identification of target transcripts bound by selected RBPs
in vivo has overcome a major limitation in research on plant RNA-based regulation.
Nevertheless, except for the PPR proteins, we are still far from understanding the
exact binding specificity of most proteins and the consequences in vivo binding has
for the targets. To correlate in vivo binding with function, the impact of mutated
candidate binding motifs on RBP binding and target gene expression has to be
determined.

Most bioinformatics pipelines today discussing motif discovery are limited
to sequence data. Current efforts focus on developing bioinformatics pipelines
for identifying conserved motifs taking RNA structure context into consideration
(Maticzka et al. 2014). Molecular dynamics of RNA molecules are still compute
intensive but can shed light on possible interaction sites and three dimensional
structures (Tuszynska et al. 2015; Boniecki et al. 2016). Finally, heterogeneous
datasets and analyses, fusing several kinds of sources, can improve meta-analysis
with in silico and in vivo datasets. This is yet limited in Arabidopsis but will
improve the information quality in the near future. Additionally, it will be important
to have comprehensive databases on RBP target sites linked to the Arabidopsis
information portal (The International Arabidopsis Informatics Consortium 2012).
Such resources will be of great value to improve a systems understanding of RNA–
protein interaction.



Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana 91

Acknowledgments The work in Tino Köster’s lab is supported by the DFG through grant KO
5364/1-1. Martin Lewinski is supported by the DFG through grant STA653/6-1 to Dorothee
Staiger.

References

Ali GS, Palusa SG, Golovkin M et al (2007) Regulation of plant developmental processes by a
novel splicing factor. PLoS One 2:e471

Badolato J, Gardiner E, Morrison N et al (1995) Identification and characterisation of a novel
human RNA-binding protein. Gene 166:323–327

Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its
global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690

Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–
442

Beckmann BM, Horos R, Fischer B et al (2015) The RNA-binding proteomes from yeast to man
harbour conserved enigmRBPs. Nat Commun 6:10127

Boniecki MJ, Lach G, Dawson WK et al (2016) SimRNA: a coarse-grained method for RNA
folding simulations and 3D structure prediction. Nucleic Acids Res 44:e63–e63

Bunnik EM, Batugedara G, Saraf A et al (2016) The mRNA-bound proteome of the human malaria
parasite Plasmodium falciparum. Genome Biol 17:147

Carvalho RF, Carvalho SD, Duque P (2010) The plant-specific SR45 protein negatively regulates
glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol
154:772–783

Carvalho RF, Szakonyi D, Simpson CG et al (2016) The Arabidopsis SR45 splicing factor, a
negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. Plant
Cell 28:1910–1925

Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of
mammalian mRNA-binding proteins. Cell 149:1393–1406

Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136:604–609
Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate

in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975
Ferrari R, Tadini L, Moratti F et al (2017) CRP1 Protein: (dis)similarities between Arabidopsis

thaliana and Zea mays. Front Plant Sci 8:163
Foley SW, Gosai SJ, Wang D et al (2017) A global view of RNA-protein interactions identifies

post-transcriptional regulators of root hair cell fate. Dev Cell 41:204–220
Fu ZQ, Guo M, Jeong BR et al (2007) A type III effector ADP-ribosylates RNA-binding proteins

and quells plant immunity. Nature 447:284–288
Galgano A, Gerber AP (2011) RNA-binding protein immunopurification-microarray (RIP-Chip)

analysis to profile localized RNAs. Methods Mol Biol 714:369–385
Golovkin M, Reddy AS (1999) An SC35-like protein and a novel serine/arginine-rich protein

interact with Arabidopsis U1-70K protein. J Biol Chem 274:36428–36438
Gosai S, Foley Shawn W, Wang D et al (2015) Global analysis of the RNA-protein interaction and

RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell 57:829–845
Goyal M, Banerjee C, Nag S et al (2016) The Alba protein family: structure and function. Biochim

Biophys Acta Proteins Proteomics 1864:570–583
Guerreiro A, Deligianni E, Santos J et al (2014) Genome-wide RIP-chip analysis of translational

repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol 15:493
Hackmann C, Korneli C, Kutyniok M et al (2014) Salicylic acid-dependent and -independent

impact of an RNA-binding protein on plant immunity. Plant Cell Environ 37:696–706



92 M. Lewinski and T. Köster

Heintzen C, Melzer S, Fischer R et al (1994) A light- and temperature-entrained circadian clock
controls expression of transcripts encoding nuclear proteins with homology to RNA-binding
proteins in meristematic tissue. Plant J 5:799–813

Hornyik C, Terzi LC, Simpson GG (2010) The spen family protein FPA controls alternative
cleavage and polyadenylation of RNA. Dev Cell 18:203–213

Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates
early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

Jeong B, Lin Y, Joe A et al (2011) Structure function analysis of an ADP-ribosyltransferase type
III effector and its RNA-binding target in plant immunity. J Biol Chem 286:43272–43281

Jones MA, Williams BA, McNicol J et al (2012) Mutation of Arabidopsis SPLICEOSOMAL
TIMEKEEPER LOCUS1 causes circadian clock defects. Plant Cell 24:4907–4916

Juntawong P, Sorenson R, Bailey-Serres J (2013) Cold shock protein 1 chaperones mRNAs during
translation in Arabidopsis thaliana. Plant J 74:1016–1028

Kalyna M, Lopato S, Barta A (2003) Ectopic expression of at RSZ33 reveals its function in splicing
and causes pleiotropic changes in development. Mol Biol Cell 14:3565–3577

Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–
543

Kim JS, Park SJ, Kwak KJ et al (2007a) Cold shock domain proteins and glycine-rich RNA-binding
proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli.
Nucleic Acids Res 35:506–516

Kim JY, Park SJ, Jang B et al (2007b) Functional characterization of a glycine-rich RNA-binding
protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451

Kim YO, Pan S, Jung CH et al (2007c) A zinc finger-containing glycine-rich RNA-binding protein,
at RZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis
thaliana under salt or drought stress conditions. Plant Cell Physiol 48:1170–1181

Kim JS, Kim KA, Oh TR et al (2008) Functional characterization of DEAD-box RNA helicases in
Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49:1563–1571

Kim JY, Kim WY, Kwak KJ et al (2010) Glycine-rich RNA-binding proteins are functionally
conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Bot
61:2317–2325

König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing
at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

Köster T, Staiger D (2014) RNA-binding protein Immunoprecipitation from whole-cell extracts.
Methods Mol Biol 1062:679–695

Köster T, Meyer K, Weinholdt C et al (2014) Regulation of pri-miRNA processing by the hnRNP-
like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 42:9925–9936

Köster T, Marondedze C, Meyer K et al (2017) RNA-binding proteins revisited: the emerging
Arabidopsis mRNA interactome. Trends Plant Sci 22:512–526

Krause K, Herrmann U, Fuß J et al (2009) Whirly proteins as communicators between plant
organelles and the nucleus? Endocytobiosis Cell Res 19:51–62

Kupsch C, Ruwe H, Gusewski S et al (2012) Arabidopsis chloroplast RNA binding proteins CP31A
and CP29A associate with large transcript pools and confer cold stress tolerance by influencing
multiple chloroplast RNA processing steps. Plant Cell 24:4266–4280

Kwon SC, Yi H, Eichelbaum K et al (2013) The RNA-binding protein repertoire of embryonic
stem cells. Nat Struct Mol Biol 20:1122–1130

Lewinski M, Hallmann A, Staiger D (2016) Genome-wide identification and phylogenetic analysis
of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine
residues. Mol Gen Genomics 291:763–773

Li D, Zhang H, Hong Y et al (2014) Genome-wide identification, biochemical characterization, and
expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis
and Rice. Plant Mol Biol Report 32:1169–1186

Liao Y, Castello A, Fischer B et al (2016) The cardiomyocyte RNA-binding proteome: links to
intermediary metabolism and heart disease. Cell Rep 16:1456–1469



Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana 93

Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain
alternative RNA processing. Nature 456:464–469

Löhr B, Streitner C, Steffen A et al (2014) A glycine-rich RNA-binding protein affects gibberellin
biosynthesis in Arabidopsis. Mol Biol Rep 41:439–445

Lopato S, Kalyna M, Dorner S et al (1999) atSRp30, one of two SF2/ASF-like proteins from
Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev 13:987–1001

Lorkovic ZJ, Wieczorek Kirk DA, Klahre U et al (2000) RBP45 and RBP47, two oligouridylate-
specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells. RNA
6:1610–1624

Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding
protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366

Lueong S, Merce C, Fischer B et al (2016) Gene expression regulatory networks in Trypanosoma
brucei: insights into the role of the mRNA-binding proteome. Mol Microbiol 100:457–471

Lyons R, Iwase A, Gänsewig T et al (2013) The RNA-binding protein FPA regulates flg22-
triggered defense responses and transcription factor activity by alternative polyadenylation.
Sci Rep 3:2866

Macknight R, Bancroft I, Page T et al (1997) FCA, a gene controlling flowering time in
Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

Marondedze C, Thomas L, Serrano NL et al (2016) The RNA-binding protein repertoire of
Arabidopsis thaliana. Sci Rep 6:29766

Matia-Gonzalez AM, Laing EE, Gerber AP (2015) Conserved mRNA-binding proteomes in
eukaryotic organisms. Nat Struct Mol Biol 22:1027–1033

Maticzka D, Lange S, Costa F et al (2014) GraphProt: modeling binding preferences of RNA-
binding proteins. Genome Biol 15:R17

Meyer K, Köster T, Nolte C et al (2017) Adaptation of iCLIP to plants determines the binding
landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol 18:204

Mitchell SF, Jain S, She M et al (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol
20:127–133

Müller-McNicoll M, Botti V, de Jesus Domingues AM et al (2016) SR proteins are NXF1 adaptors
that link alternative RNA processing to mRNA export. Genes Dev 30:553–566

Nandan D, Thomas SA, Nguyen A et al (2017) Comprehensive identification of mRNA-binding
proteins of Leishmania donovani by interactome capture. PLoS One 12:e0170068

Nicaise V, Joe A, Jeong B et al (2013) Pseudomonas HopU1 affects interaction of plant immune
receptor mRNAs to the RNA-binding protein GRP7. EMBO J 32:701–712

Ohta M, Sugita M, Sugiura M (1995) Three types of nuclear genes encoding chloroplast RNA-
binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31
in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol 27:529–539

Park SJ, Kwak KJ, Oh TR et al (2009) Cold shock domain proteins affect seed germination and
growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 50:869–878

Perez-Santángelo S, Mancini E, Francey LJ et al (2014) Role for LSM genes in the regulation of
circadian rhythms. Proc Natl Acad Sci USA 111:15166–15171

Prikryl J, Watkins KP, Friso G et al (2008) A member of the Whirly family is a multifunctional
RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res
36:5152–5165

Qi Y, Tsuda K, Joe A et al (2010) A putative RNA-binding protein positively regulates salicylic
acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 23:1573–1583

Reichel M, Liao Y, Rettel M et al (2016) In planta determination of the mRNA-binding proteome
of Arabidopsis etiolated seedlings. Plant Cell 28:2435–2452

Ren G, Xie M, Dou Y et al (2012) Regulation of miRNA abundance by RNA binding protein
TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109:12817–12821

Riera M, Redko Y, Leung J (2006) Arabidopsis RNA-binding protein UBA2a relocalizes into
nuclear speckles in response to abscisic acid. FEBS Lett 580:4160–4165

Ripoll JJ, Ferrandiz C, Martinez-Laborda A et al (2006) PEPPER, a novel K-homology domain
gene, regulates vegetative and gynoecium development in Arabidopsis. Dev Biol 289:346–359



94 M. Lewinski and T. Köster

Rossbach O, Hung L-H, Khrameeva E et al (2014) Crosslinking-immunoprecipitation (iCLIP)
analysis reveals global regulatory roles of hnRNP L. RNA Biol 11:146–155

Rudolf F, Wehrle F, Staiger D (2004) Slave to the rhythm. Biochemist 26:11–13
Rühl C, Stauffer E, Kahles A et al (2012) Polypyrimidine tract binding protein homologs

from Arabidopsis are key regulators of alternative splicing with implications in fundamental
developmental processes. Plant Cell 24:4360–4375

Ruwe H, Kupsch C, Teubner M et al (2011) The RNA-recognition motif in chloroplasts. J Plant
Physiol 168:1361–1371

Schmal C, Reimann P, Staiger D (2013) A circadian clock-regulated toggle switch explains
AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. PLoS Comput Biol 9:e1002986

Schmidt F, Marnef A, Cheung M-K et al (2010) A proteomic analysis of oligo(dT)-bound mRNP
containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and
ATGRP8. Mol Biol Rep 37:839–845

Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle
gene expression. Trends Plant Sci 13:663–670

Silverman IM, Li F, Gregory BD (2013) Genomic era analyses of RNA secondary structure and
RNA-binding proteins reveal their significance to post-transcriptional regulation in plants. Plant
Sci 205-206:55–62

Simpson GG, Dijkwel PP, Quesada V et al (2003) FY is an RNA 3′ end-processing factor that
interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787

Sommerville J (1999) Activities of cold-shock domain proteins in translation control. BioEssays
21:319–325

Sorenson R, Bailey-Serres J (2014) Selective mRNA sequestration by OLIGOURIDYLATE-
BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc
Natl Acad Sci USA 111:2373–2378

Staiger D (2001) RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos
Trans R Soc Lond Ser B Biol Sci 356:1755–1759

Staiger D (2015) Shaping the Arabidopsis transcriptome through alternative splicing. Adv Bot
2015:13

Staiger D, Zecca L, Wieczorek Kirk DA et al (2003) The circadian clock regulated RNA-binding
protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-
mRNA. Plant J 33:361–371

Stauffer E, Westermann A, Wagner G et al (2010) Polypyrimidine tract-binding protein homo-
logues from Arabidopsis underlie regulatory circuits based on alternative splicing and
downstream control. Plant J 64:243–255

Streitner C, Danisman S, Wehrle F et al (2008) The small glycine-rich RNA-binding protein
AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J 56:239–250

Streitner C, Köster T, Simpson CG et al (2012) An hnRNP-like RNA-binding protein affects
alternative splicing by in vivo interaction with target transcripts in Arabidopsis thaliana.
Nucleic Acids Res 40:11240–11255

Sysoev VO, Fischer B, Frese CK et al (2016) Global changes of the RNA-bound proteome during
the maternal-to-zygotic transition in Drosophila. Nat Commun 7:12128

Tenenbaum SA, Carson CC, Lager PJ et al (2000) Identifying mRNA subsets in messenger
ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97:14085–14090

Teubner M, Fuß J, Kühn K et al (2017) The RRM protein CP33A is a global ligand of chloroplast
mRNAs and is essential for plastid biogenesis and plant development. Plant J 89:472–485

The International Arabidopsis Informatics Consortium (2012) Taking the next step: building an
Arabidopsis information portal. Plant Cell 24:2248–2256

Tillich M, Hardel SL, Kupsch C et al (2009) Chloroplast ribonucleoprotein CP31A is required for
editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci USA 106:6002–6007

Tuszynska I, Magnus M, Jonak K et al (2015) NPDock: a web server for protein–nucleic acid
docking. Nucleic Acids Res 43:W425–W430

Vandivier LE, Anderson SJ, Foley SW et al (2016) The conservation and function of RNA
secondary structure in plants. Annu Rev Plant Biol 67:463–488



Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana 95

Vazquez F, Gasciolli V, Crete P et al (2004) The nuclear dsRNA binding protein HYL1 is required
for microRNA accumulation and plant development, but not posttranscriptional transgene
silencing. Curr Biol 14:346–351

Völz R, von Lyncker L, Baumann N et al (2012) LACHESIS-dependent egg-cell signaling
regulates the development of female gametophytic cells. Development 139:498–502

Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger
RNA stability. Nature 505:117–120

Wessels H-H, Imami K, Baltz AG et al (2016) The mRNA-bound proteome of the early fly embryo.
Genome Res 26:1000–1009

Xing D, Wang Y, Hamilton M et al (2015) Transcriptome-wide identification of RNA targets of
Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding
protein in RNA processing. Plant Cell 27:3294–3308

Zhang X-N, Mount SM (2009) Two alternatively spliced isoforms of the Arabidopsis thaliana
SR45 protein have distinct roles during normal plant development. Plant Physiol 150:1450–
1458

Zhang Y, Gu L, Hou Y et al (2015) Integrative genome-wide analysis reveals HLP1, a novel RNA-
binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res
25:864–876

Zhang Z, Boonen K, Ferrari P et al (2016) UV crosslinked mRNA-binding proteins captured from
leaf mesophyll protoplasts. Plant Methods 12:42

Zhang X-N, Shi Y, Powers JJ et al (2017) Transcriptome analyses reveal SR45 to be a neutral
splicing regulator and a suppressor of innate immunity in Arabidopsis thaliana. BMC
Genomics 18:772



Systems-Level Analysis of Bacterial
Regulatory Small RNA Networks

Julia Wong, Ignatius Pang, Marc Wilkins, and Jai J. Tree

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2 Functional Consequences of Small RNA–mRNA Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.1 Mechanisms of Small RNA Repression of mRNA Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.2 Mechanisms of Small RNA Activation of mRNA Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Computational Prediction of sRNA–Target Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4 Experimental Approaches for Identifying sRNA–Target Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Chemical Cross-Linking of RNA Duplexes to Probe RNA–RNA Interactions . . . . . . . . . . . . . . . 111
6 Statistical Analysis of sRNA Interaction Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Sources of Background in sRNA Interaction Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Computational Pipelines and Statistical Analyses to Identify Chimeras. . . . . . . . . . . . . . . . . . 115

7 sRNA–RNA Interaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Abstract The RNA landscape of all sequenced bacteria is littered with regulatory
noncoding small RNAs (sRNA). Understanding the functions of these sRNAs has
lagged behind their identification, as few high-throughput approaches existed to
capture sRNA interactions in vivo. Recently, methodologies have been described
that allow for profiling of the sRNA interaction network facilitating systems-
level analysis sRNA regulation. This chapter discusses recent advances in our
understanding of sRNA function, technical advances that allow us to capture sRNA
interactions in vivo, and the computational tools that allow meaningful conclusions
to be drawn from these data.
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1 Introduction

Our understanding of the diverse functions of regulatory RNAs has accelerated with
recent advances in high throughput sequencing technologies, but were less apparent
when the first bacterial noncoding RNA was identified nearly half a century ago
(Brownlee 1971). Progress was initially gradual and the first example of a trans-
acting regulatory small RNA (sRNA) was not described until 13 years after the
initial discovery of 6S RNA, when MicF was proposed to regulate OmpF translation
by base-pairing with the ompF ribosomal binding site (Mizuno et al. 1984). The
general utility of regulatory small RNA regulation was recognized at the time and
these authors stated that an artificial trans-acting small RNA could repress Lpp
translation, shown 30 years later to be the target of an endogenous small RNA
generated from the 3′ UTR of cutC (MicL) (Guo et al. 2014). At first, examples of
trans-acting small RNAs were limited, with the next tranche of sRNAs (DsrA, DicF,
OxyS, GcvB, Spot42 and RprA) identified over the following 6–17 years (Altuvia et
al. 1997; Argaman et al. 2001). These studies predicted the existence of many more
small RNAs and an initial in silico analysis identified another 24 novel small RNAs
in the model prokaryote E. coli (Argaman et al. 2001). With the advent of tiled
DNA microarrays and RNA sequencing technologies it has become apparent that
small RNAs are abundant and ubiquitous, with well-studied bacteria like Salmonella
and E. coli transcribing hundreds of sRNAs (Barquist and Vogel 2015; Huang et al.
2009). The bottleneck has now become understanding the diverse functions of small
RNAs that have been shown to act at the level of transcription termination, transcript
stability/processing, and translation (Gottesman and Storz 2011; Sedlyarova et al.
2016).

Accumulating evidence indicates that transcriptional and posttranscriptional
gene regulatory networks are highly interleaved and small regulatory RNAs par-
ticipate in mixed transcriptional and posttranscriptional regulatory circuits. Mixed
circuits can have simple advantages like switching positive regulatory signals for
negative (Gogol et al. 2011). They may also have special properties, for example
two positive transcriptional regulators acting on a gene will create an OR logic gate
with respect to their stimuli. Because of the natural order enforced by transcription
and translation the equivalent circuit with a positive transcription factor and small
RNA establish an AND logic gate (Papenfort et al. 2015). Posttranscriptional
regulation by sRNAs may also have less noise and sharper kinetics that will be
particularly important for responding to acute stress (Feng et al. 2015; Levine
et al. 2007; Schu et al. 2015). Significantly, they expand the regulatory space
for signal input for gene expression and this will undoubtedly be exploited by
bacterial pathogens to adapt to complex environments like host tissues (Barquist
et al. 2016).

Over the last 5 years, RNA proximity-dependent ligation protocols have provided
high-throughput snapshots of noncoding RNA interaction networks in yeast, C.
elegans, and cultured cell lines. More recently, these have been applied to bacterial
small RNA networks and have begun to map out the structure of the small RNA
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regulatory network (sRNA interactome). These analyses identify interaction sites
between sRNA and target RNAs and because the RNA fragments recovered are
relatively short, predictions of base complementarity can be made with a reasonable
degree of confidence. These studies are not without sampling biases, but have
so far supported small RNA interactions with the ribosomal binding site as the
major, canonical pathway for regulation although a significant proportion of sRNA
interactions fall outside of the RBS and many interact with noncoding RNAs
suggesting that sponging interactions are prevalent, hinting at as yet uncharacterized
functions.

Within a given small RNA network each node represents a small RNA or mRNA
target and each edge represents an RNA–RNA interaction. It is already apparent
that an interaction may have many different regulatory outcomes depending on
the sequence, structure, and protein-binding context. In this sense, the regulatory
outcomes for many edges within the sRNA interactome are unknown and provide
fertile ground for exploration using emerging technologies for transcriptome-wide
analysis of RNA processing, termination, and ribosome recruitment. In this chapter,
we aim to provide an outline of recent work on systems-level analyses of sRNA
regulatory pathways. The mechanisms of sRNA regulation are increasingly diverse
and we review what the interaction edges may mean in the context of an interactome
and discuss methodologies for capturing these interactions. Statistical analysis
of high-throughput RNA–RNA interaction data is in its infancy and we review
statistical filters used to extract meaningful networks from interactome datasets.
Finally, we discuss some of the features of the sRNA–RNA interaction network
when viewed at a systems-level.

2 Functional Consequences of Small RNA–mRNA
Interactions

Transcription and translation of an mRNA is controlled by the secondary structure of
the RNA, codon usage, stability of the transcript, and interactions with ribosomes
and RNA binding proteins. Increasing evidence suggests that sRNA interactions
can modulate many of these processes and also participate in convoluted anti-
antisense derepression pathways. To complicate the matter, the sources of regulatory
small RNAs are expanding and it is now appreciated that these species can be
encoded as independent transcripts or be processed from larger RNAs including
mRNAs (reviewed in Kavita et al. 2017). In this section, we discuss some of
the varied functional consequences of sRNA–mRNA interactions with attention
to sequence context that may be used to identify them in sRNA interactome
data, and how these may generate different outputs from an sRNA regulatory
circuit.
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2.1 Mechanisms of Small RNA Repression of mRNA
Expression

Canonically, sRNA–mRNA interactions lead to translational repression and mRNA
degradation. From the initial work on MicF-ompF repression, it was evident that
sRNAs may be binding at the RBS and occluding 30S ribosomal subunit association
(Coleman et al. 1984). This activity is widely observed and was formalized in a
study demonstrating that sRNA binding within a five-codon window—correlating
well with the footprint of a ribosome—was able to repress 30S association (Bouvier
et al. 2008). More recently the five-codon window has been extended with the
discovery of translation activating stem loops starting at position +20 nt within the
CDS (Jagodnik et al. 2017). These stem loops appear to stabilize 30S association at
suboptimal ribosomal binding sites and may prevent 30S sliding along the mRNA
before an initiation complex can be assembled. The sRNA, OmrA, was shown to
prevent stem loop formation within the fepA mRNA and represses translation by
binding at +28 nt downstream of the start codon, extending the sRNA repression
window to nine codons.

Both initiating and elongating ribosomes are known to stabilize transcripts by
steric interference of RNase interactions with mRNA 5′ ends and internal cleavage
sites (Deana and Belasco 2005). This initially suggested that sRNA inhibition of
translation initiation might be a prerequisite for mRNA degradation simply by
displacing ribosomes and increasing RNase access to the transcript. Later work
demonstrated that the C-terminal domain of the sRNA chaperone Hfq interacts with
the major endoribonuclease RNase E and work on the sRNA–mRNA pairs RyhB-
sodB and MicC-ompD demonstrated that sRNAs can specifically direct RNase
E-dependent mRNA cleavage (Bandyra et al. 2012; Prévost et al. 2011). It is now
evident that, independent of translation inhibition, sRNAs can direct the cleavage
of a transcript 6–13 nt downstream of the sRNA–mRNA duplex (Bandyra et al.
2012; Waters et al. 2017) and also at more distal sites that promote mRNA turnover
(Lalaouna et al. 2015). Small RNAs themselves are also susceptible to RNase E
cleavage and may be coupled to degradation of their target mRNA (Massé et al.
2003). Importantly, processing of an sRNA by RNase E can change the kinetics
of its posttranscriptional regulation, by generating an active form that exposes the
sRNA seed region for base pairing with target mRNAs (Chao et al. 2017), and by
generating a 5′ monophosphorylated end that stimulates RNase E activity toward
the duplexed sRNA and mRNA (Bandyra et al. 2012; Chao et al. 2017). From these
studies, it is apparent that RNase E cleavage has highly context dependent effects
on sRNA regulation—being used to mature sRNAs, inactivate and degrade unpaired
sRNAs, cleave mRNAs 3′ of sRNA duplexes, and cleave mRNAs at more distal
sites. Each of these processes will have different effects on the kinetics of sRNA
regulation.

Subtle differences in base pairing have also been shown to determine some of the
differences in sRNA repression. Vibrio cholerae encodes five homologous sRNAs,
Qrr1-5, that regulate gene expression in response to quorum sensing signals. Using
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Qrr3 as a model, Feng et al. (2015) demonstrated that the base pairing pattern of
Qrr3 with it target mRNA can determine whether the sRNA is degraded with its
mRNA target (coupled degradation), released from the degraded mRNA (catalytic
degradation), or sequestered without triggering degradation (sequestration). This
differential regulation of mRNA targets seems at odds with the relative simplicity
of the 109 nt sRNA and suggests that the sRNA contains sequence or structures
that modulate the fate of the sRNA and mRNA. Indeed, Qrr3 is stabilized by a 5′
stem loop (SL1) and mRNA base pairing that destabilizes this stem leads to coupled
degradation of Qrr3 and its target mRNA. Base paring that does not destabilize
SL1, does not lead to degradation of Qrr3, allowing recycling of the sRNA and
catalytic degradation of the mRNA target. Extensive base pairing between Qrr3 and
a target mRNA that retains the SL1 structure also prevents degradation of the mRNA
target, leading to sequestration of both RNAs. Notably, each of these mechanisms
results in distinct regulatory kinetics with catalytic degradation providing potent
suppression of mRNA expression, coupled degradation leading to threshold-linear
response kinetics that are highly sensitive to the concentration of competing RNA
targets, and sequestration leading to more moderate control (Feng et al. 2015). This
study highlights that for an sRNA–mRNA pair, structures that stabilize each RNA
can be modulated by base pairing with significant impacts on expression kinetics.
Additional rules for predicting sRNA regulatory kinetics and whether such careful
tuning of sRNA–mRNA interactions is true of all sRNAs, will become apparent as
the sRNA interactome is explored further.

2.2 Mechanisms of Small RNA Activation of mRNA
Expression

Regulatory interactions (edges) between sRNAs and mRNAs can also positively
affect gene expression and may occur through a number of mechanisms. The
most common examples are dependent on anti-antisense interactions that involve
repressive structures encoded in cis or sponging repressive sRNA interactions
(reviewed in Papenfort and Vanderpool 2015). Posttranscriptional activation is best
characterized for the stationary phase sigma factor RpoS (σS) where the unusually
long 5′ UTR (576 nt) folds into an inhibitory stem loop structure that occludes
the ribosomal binding site (Soper et al. 2011). Hfq facilitates interactions with the
closed complex and allows at least 3 sRNAs, DsrA, RprA, and ArcZ, to base pair
with the leader at position +94 to +119 and destabilize the inhibitory stem loop.
This in turn allows 30S ribosomal subunits access to the ribosomal binding site and
translation of RpoS (Majdalani et al. 2002; Soper et al. 2010; Soper and Woodson
2008). Surprisingly, recent work has demonstrated these sRNAs also promote rpoS
transcription by inhibiting Rho terminator binding or translocation along the rpoS
leader (Sedlyarova et al. 2016). Small RNA interactions had previously been shown
to promote Rho interactions with the chiP mRNA by blocking translation, exposing



102 J. Wong et al.

a Rho utilization site (rut) within chiP, and leading to transcription termination. In
the case of rpoS, sRNA interactions have the opposite effect, displacing Rho and
allowing transcription. Whether sRNAs prevent initial binding or displace translo-
cating Rho remains to be determined, but clearly the position of sRNA binding
relative the rut site is critical for determining whether sRNA interactions promote
or prevent transcription termination. For rpoS, sRNAs activate both transcription
and translation and RNA-Seq analysis of transcripts similarly controlled by sRNAs
and the small molecule inhibitor of Rho, bicyclomycin, suggests that hundreds
of transcripts may be activated by a similar sRNA-dependent anti-termination
mechanism. Rho utilization sites consist of minimal sequence features: repeated
YC motifs separated by >6 nt of unstructured RNA spanning 60–90 nt, that make in
silico predictions of this mode of sRNA activation challenging. RNA-Seq analysis of
bicyclomycin treated cells or direct immunoprecipitation of Rho–RNA complexes
(RIP-Seq, CLIP-Seq, or CRAC) will likely provide the context that is critical for
predicting this regulation in a broad range of bacteria.

Small RNA recruitment of RNases facilitates degradation of a large number of
sRNA–mRNAs pairs; however, RNase interactions with an mRNA are also sensitive
to local RNA sequence and structure making them susceptible to sRNA regulation
through modulation of the RNA structure. The major E. coli endoribonuclease
RNase E is stimulated by interactions with unstructured monophosphorylated 5′
ends of transcripts and cleaves RNA at unstructured RNWUU motifs with a strong
preference for U at the +2 position (Chao et al. 2017). Small RNA interactions
with the 5′ end of a transcript—which can be mapped using a growing list of
high-throughput sequencing techniques—inhibits RNase E recruitment and RNase
E stimulation. This mechanism was demonstrated for the long cyclopropane fatty
acid synthase-encoding transcript cfa in Salmonella enterica where RydC inhibits
RNase E recruitment to the 210 nt cfa leader by binding between –109 and –99 nt
relative to the cfa start codon (Fröhlich et al. 2013). Slightly more striking is the
finding that recruitment of an sRNA–Hfq complex to the bicistronic transcript pldB-
yigL does not lead to cleavage and degradation of the transcript by RNase E but
inhibits processing. The critical determinant that decides the fate of the transcript
on interactions with sRNA–Hfq complex appears to be the relative proximity of
RNase E cleavage sites and, in this case the sRNA SgrS, base pairs with the
preferred RNase E cleavage site and blocks RNase E access (Papenfort et al.
2013).

A variant of the anti-antisense derepression pathways described for RpoS are
sRNA sponging interactions that positively activate mRNA translation by blocking
sRNA function. The genome of enterohemorrhagic E. coli is littered with cryptic
prophage elements and these were found to carry sRNAs that target sRNAs rather
than mRNAs (termed anti-sRNAs or sRNA sponges) (Tree et al. 2014). The sRNA
sponge, AgvB, represses the activity of GcvB through base-pairing with the R1 seed
region. AgvB binding appears to sequester GcvB rather than trigger degradation,
consistent with its binding site within an internal unstructured region (R1 seed) with
only minimal interactions with the long 5′ stem loop of GcvB. This is in contrast to
a 3′UTR derived sRNA, SroC, that also sponges GcvB and bases pairs with the
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5′ end (nts 13–19), at least partly destabilizing the 5′ stem loop and triggering
degradation of GcvB (Miyakoshi et al. 2015). Many Hfq-dependent sRNAs also
carry intrinsic terminators that protect the 3′ end from exonucleolytic attack.
Sponging interactions between the sRNA, ChiX (MicM), and an intergenic region
(IGR) within the chbBC transcript act to alleviate ChiX repression of chiP. Base-
pairing between the IGR and ChiX extends into the GC-rich stem of the intrinsic
terminator and destablizes ChiX, indicating that sRNA degradation can also be
targeted to stabilizing structures within 3′ end of an sRNA (Plumbridge et al. 2014).
The result of these sponging interactions is the derepression of sRNA repressed
transcripts (activation of mRNA translation) and demonstrates that recently defined
rules governing catalytic, coupled, or sequestered kinetics of sRNA regulation of
mRNAs also apply to sRNA sponging interactions.

An exciting development is the realization that stably transcribed RNA species
like tRNA spacers (that are presumably not regulated in response to environmental
signals) can also participate in sponging interactions with sRNAs and activate
gene expression. The 3′ external transcribed spacer (ETS) of tRNAleuZ interacts
with the sRNAs RybB and RyhB, and sets minimum criteria for sRNA and target
mRNA interactions—the interaction is subject to a stringency filter that prevents
low strength interactions, and the sRNA is subject to a concentration threshold set
by the abundance of the ETS and interaction strength of the target mRNA. Small
RNA sponging interactions with sRNA or pre-tRNA fragments appear exceedingly
common in sRNA interactome datasets (Helwak et al. 2013; Melamed et al. 2016;
Waters et al. 2017), suggesting that these interactions play an important role in
buffering the sRNA response.

Since the initial observations suggesting MicF is able to repress ompF translation
by occluding the ribosomal binding site, a complex picture of sRNA-dependent
regulation has emerged. Small RNA interactions are often heavily contextualized
by the local sequence, structure, and protein binding of both the sRNA and target
RNA. This presents unique challenges for deciphering the regulatory network from
high-throughput datasets as interactions may represent varying degrees of positive,
negative, sequestered, or sponged interaction. Combining sRNA interactome data
with many of the emerging techniques for transcriptome-wide profiling of RNA
structure and protein binding will likely provide the context required to interpret
the functions of sRNA interactions. In the next sections, we focus in approaches
that allow sRNA interactions to be predicted in silico or captured and sequenced in
vivo.

3 Computational Prediction of sRNA–Target Interactions

Trans-encoded sRNAs interact with their targets through short >6 nucleotide
regions of complementarity and this short seed sequence forms the basis for the
computational prediction of sRNA targets. Additional sequence features, like con-
servation and accessibility of the sRNA and mRNA seed sequences, have improved
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predictions of sRNA targets; however, they still yield a high rate of false positives
due to the relatively common occurrence of a given >6 nucleotide sequence in the
genome. Whether a complementary seed sequence is targeted in vivo depends on the
local mRNA structure and position of RNA chaperone binding sites, like the ARNx
motif used by Hfq. Programs such as IntaRNA (Busch et al. 2008) and TargetRNA2
(Kery et al. 2017) predict targets by looking for regions complementary to the sRNA
seed, but also account for the RNA structure and accessibility of mRNA and sRNA
seed sequences to calculate a minimal hybridization energy for the interaction. The
free energy is a composite of the hybridization energy for the RNA duplex combined
with the associated energy required to denature intramolecular duplexes of each
RNA species (Busch et al. 2008).

The seed regions in sRNAs are more highly conserved than the rest of the sRNA
and are often relatively free of secondary structure allowing them to remain accessi-
ble for regulatory interactions with targets (Peer and Margalit 2011). Two programs,
CopraRNA and TargetRNA2, consider not only the sequence complementarity and
hybridization energy between a specified sRNA and its potential targets but also the
conservation of the target sequence amongst user-specified bacterial species (Kery
et al. 2017; Wright et al. 2013). TargetRNA2 searches for sequences with homology
to the sRNA within the GenBank database and defines highly conserved regions
that are more likely to form the sRNA seed sequence. The sRNA and mRNA are
independently folded using RNAplfold (Bernhart et al. 2006) and the regions of
highest accessibility are used to predict sRNA–mRNA interactions. TargetRNA2
ranks to predicted mRNA targets using sRNA sequence conservation, sRNA and
mRNA accessibility, and hybridization strength. It is possible for the user to filter
for a subset of predicted targets, such as searching only for coexpressed genes in a
user-supplied set of RNA-seq data that can reduce the false-positive rate by as much
as half in E. coli (Kery et al. 2017).

Small RNAs are often expressed in response to discrete environmental stimuli
and their regulons form biologically coherent responses to the input. RNAPredator
(Eggenhofer et al. 2011) considers the accessibility of putative target sites, the
hybridization energy of the interaction, and includes the ability to search for
enrichment of gene ontologies in the predicted targets. The software uses RNAPlex
to search for putative seed sequences and target interaction sites and computes
the potential hybridization energies with an associated Z-score. RNAPlex does
not account for intramolecular interactions or their associated free energies and is
therefore faster than programs that account for these duplexes (Tafer and Hofacker
2008). Under the default settings, RNAPlex will include the coding regions of
potential targets across the genome, as well as the 5′ and 3′ UTRs (set as 200 bp
upstream or downstream of the coding regions, respectively). The user may specify
genomic coordinates and filter for hybrids with a specific region of potential
targets. Users can also select specific interactions of interest for postprocessing,
such as searching for gene ontology enrichments in the predicted targets or
accessing graphical depictions of structure around the RBS. The output of the
program is the top 100 interactions ranked according to the computed interaction
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energies or prioritized according to user-specified parameters (Eggenhofer et al.
2011).

Regardless of what program is selected to predict sRNA interactions, all of the
in silico target predictions must still be validated experimentally and even when
incorporating seed accessibility and conservation, the false positive rates (FPRs)
may be as high as 50% (Wright et al. 2013). One problem with computational
approaches is the limited amount of conserved sequences and structures required
for sRNA interactions to occur. Additionally, the algorithms have a limited ability
to predict new interactions that mediate new modes of regulation because their
algorithms use parameters that reflect known types of regulatory interactions.
To address this, high-throughput RNA-seq methodologies have been developed
to discover new regulatory RNA interactions. These datasets will likely identify
conserved features and rules that can be used to refine the power and accuracy of in
silico predictions.

4 Experimental Approaches for Identifying sRNA–Target
Interactions

One of the first transcriptome-wide experimental approaches for finding the targets
of a specific sRNA involves a short “pulse” of expression and microarray analysis
to identify differentially expressed transcripts. This was based on the observation
the sRNA targets are often rapidly degraded by recruitment of RNases, but has also
identified many transcripts that are stabilized by sRNAs. This approach successfully
identified multiple transcripts for the iron sparing response in E. coli as targets
of the bacterial sRNA RyhB (Massé et al. 2005). RyhB was overexpressed from
an arabinose-inducible promoter in cells lacking the chromosomal copy of RyhB
for 15 min to prevent recovery of indirect effects of RyhB expression on the
transcriptome. RNA was collected, reverse transcribed, labeled, and hybridized
to whole genome microarrays. Multiple transcripts related to iron metabolism,
including the Fe-S cluster containing succinate dehydrogenase subunit C (sdhC)
and superoxide dismutase (sodB) were identified as direct targets of RyhB (Massé
et al. 2005). These experiments provided evidence of a role of the sRNA RyhB
in regulating the expression of transcripts involved in cellular adaptation to iron
starvation and evidence that bacterial sRNAs control regulons that are biologically
and ontologically coherent. One disadvantage of this approach is that it depends
on (de)stabilization of the sRNA target and interactions that do not facilitate
degradation (e.g., sequestered interactions) will not be detected. Methodologies
that detect sRNA–mRNA interactions directly, rather than downstream sequelae
have recently been developed, although pulsed sRNA expression studies remain
a staple of sRNA research as they are comparatively inexpensive and easy to
perform.
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MS2-affinity purification and sequencing, or MAPS, can be used to identify
direct interactions between an sRNA and its target even if the target RNA is not
(de)stabilized. In MAPS, an sRNA is fused to the MS2 RNA aptamer at the 5′ end
and is expressed under the control of an arabinose-inducible promoter (Fig. 1). Cell
lysates from the sRNA-MS2 expressing cells are bound to an affinity column coated
with the MS2 phage coat protein. The MS2 aptamer has a high affinity for the MS2
phage coat protein and can be used to affinity purify MS2 tagged sRNA–target
RNA complexes. Bound sRNA–mRNA duplexes are washed extensively, eluted
from the column and sequenced on an Illumina platform (Lalaouna et al. 2015).
MAPS analysis has been used to capture sRNA–mRNA complexes in E. coli and
Staphylococcus aureus, demonstrating the broad utility of the technique (Lalaouna
et al. 2013, 2015; Tomasini et al. 2017). Notably, MAPS was used to capture the
interactome of the well-studied sRNA RyhB and recovered known and new targets
including the 3′ external transcribed spacer (ETS) of tRNAleuZ . The tRNAleuZ

ETS is stabilized by RyhB and acts as a sponge to buffer RyhB interactions
with target mRNAs, providing a critical stringency filter that limits unwanted
low affinity interactions (Lalaouna et al. 2015). Therefore, MAPS facilitates the
discovery of targets directly bound by an MS2-tagged sRNA or target in an unbiased
manner.

Recently, a number of techniques have been developed that profile sRNA–mRNA
interactions in vivo using RNA proximity-dependent ligation. In these approaches,
base-paired RNAs that have 5′ and 3′ ends in close proximity, can be ligated together
using RNA ligase to form a single contiguous RNA that can be sequenced as a
single read. The sequence reads that map to interacting RNAs are variously termed
chimeric, hybrid, or chiastic read. For consistency, we refer to the ligated RNA–
RNA molecule as a chimera, and the sequence reads that map discontiguously to a
genome or transcriptome as hybrids.

Global sRNA target identification by ligation and sequencing (GRIL-seq) is an
RNA proximity-dependent ligation protocol that identifies direct targets of an sRNA
but does not require aptamer tagging of the RNA and ligates the sRNA and target in
vivo before purification of the RNA duplexes and sequencing of the chimeras (Fig.
1). Small RNAs of interest are expressed from an inducible promoter and coex-
pressed with T4 RNA ligase 1 in order to ligate RNAs in close proximity. Primary
transcripts are “capped” with a triphosphate group that is not a substrate for T4 RNA
ligase; however, most Hfq-bound transcripts are enriched for 5′ monophosphory-
lated ends that can be ligated to free 3′-OH ends (Bandyra et al. 2012). These authors
reasoned that T4 RNA ligase would preferentially ligate small RNA 5′P ends and
the proximal 3′OH of mRNAs cleaved by recruited RNases. RNA–RNA chimeras
are captured using polyadenylated, sRNA-specific oligos that facilitate recovery of
sRNA–mRNA pairs using oligo d(T) conjugated magnetic beads, and sequenced
on an Illumina platform (Han et al. 2016). The authors used IntaRNA to examine
the predicted interaction sites on the targets of the Pseudomonas aeruginosa sRNA
PrrF1. IntaRNA predicted interactions with the 5′ end of putative targets, close to the
ribosome binding site, as expected for the majority of characterized sRNA–target
interactions. GRIL-seq also recovered interactions with 3′ ends of mRNAs and,
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Fig. 1 Techniques to investigate sRNA–target interactions. Top left panel: MAPS and GRIL-seq
find the targets of single overexpressed sRNAs. MAPS uses MS2-MBP-coated amylose resin
to capture transcripts that interact with an MS2-tagged sRNA expressed from an inducible
promoter. GRIL-seq also uses an inducible promoter to express a sRNA of interest but requires the
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though IntaRNA was unable to predict these interactions, the authors demonstrated
that PrrF1 binding to the 3′ end fragment of katA relieved the repression of full-
length katA expression, suggesting that PrrF1 is sponged by interactions with the 3′
end of katA (Han et al. 2016). Interestingly, GRIL-seq recovers interactions between
PrrF1 and aspartyl tRNAs, suggesting that tRNAs may buffer sRNA interactions
in a broad range of bacteria. Unlike MAPS, GRIL-seq does not require fusion
of a potentially structured affinity tag such as MS2 to the sRNA that may affect
RNA folding but uses oligo-d(T) conjugated magnetic beads to purify chimeras
from total RNA. The authors note that the expression of T4 RNA ligase affected
the viability of P. aeruginosa after 1 h of induction (Han et al. 2016), suggesting
that T4 RNA ligase expression may have detrimental effects on cell physiology.
Thus, using affinity purification of chimeras on either MS2 protein conjugated
resins or oligo-d(T) magnetic beads, MAPS and GRIL-seq provide a means to
assay the direct interaction between single sRNAs and their respective targets
(Fig. 1).

High-throughput RNA sequencing experiments have identified hundreds of
new regulatory RNAs in bacteria and there is a need for tools that analyze
sRNA function at a systems level. These techniques simultaneously capture
all sRNA–mRNA interactions within the cell and provide a snapshot of the
sRNA interactome. RNA interaction by ligation and sequencing (RIL-seq)
and RNase E cross-linking and sequencing of hybrids (RNase E-CLASH) are

Fig. 1 (continued) coexpression of T4 RNA ligase 1 to proximity ligate sRNAs to their targets
in vivo. The chimeras are enriched on oligo-d(T) coated magnetic beads in the presence of
polyadenylated sRNA-specific oligos and the captured chimeras are purified and sequenced. Top
right panel: RIL-seq and CLASH find the targets of sRNAs bound to an epitope-tagged RNA-
binding protein. In RIL-seq, UV irradiation cross-links sRNA–target duplexes to Hfq-FLAG
under native conditions and the duplexes are labeled, proximity ligated, and ligated to linkers.
The chimeras are deproteinated, rRNA is depleted, and the RNA is purified and sequenced.
RNase E-CLASH similarly utilizes UV cross-linking and proximity ligation, but includes a second
denaturing purification on Ni-NTA resins, radioactive labeling of RNA, and size selection of RNA–
protein complexes to stringently select for sRNA–target duplexes bound by RNase E. Bottom
left panel: MARIO combines UV and chemical cross-linking to capture RNA–RNA interactions.
During MARIO, UV irradiation cross-links nucleic acids and a combination of EthylGlycol bis
and formaldehyde (EGbf) cross-links protein–protein complexes and RNA–RNA interactions. The
cross-linked proteins are biotinylated and the complexes are captured on a streptavidin-coated
surface. The captured chimeras are proximity-ligated using biotinylated linkers, deproteinated,
and sequenced. Bottom right panel: LIGR-seq, PARIS, and SPLASH use psoralen derivatives to
capture RNA–RNA interactions. LIGR-seq relies on the reversible UV-induced intercalating agent
4AMT to cross-link interacting RNAs together, the RNA is proximity ligated using a circular
RNA ligase at high temperature, the RNA is purified, the cross-linking is photoreversed, and the
RNA is sequenced. Similarly, PARIS utilizes reversible 4AMT-mediated cross-linking of RNA–
RNA duplexes but selects for chimeras through a two-dimensional electrophoresis step. Excised
duplexes are proximity ligated, purified and sequenced. SPLASH uses biotinylated psoralen
(biopsoralen) to cross-link and affinity capture RNA duplexes on streptavidin-coated magnetic
beads. The cross-linking is reversed, the RNA complexes are purified and sequenced. See the text
for more details. “RT” denotes reverse transcription



Systems-Level Analysis of Bacterial Regulatory Small RNA Networks 109

techniques aimed at understanding the global regulatory network of sRNA
interactions by cross-linking sRNA–target RNA duplexes to an RNA-binding
protein (RBP) of interest (Fig. 1). Similar to GRIL-seq, both techniques rely
on proximity-dependent ligation but capture interacting RNAs by UV cross-
linking them to an affinity-tagged RBP expressed from its native chromosomal
promoter.

During RIL-seq, bacteria expressing a FLAG-tagged Hfq are exposed to UV
light to cross-link RNAs to Hfq. The Hfq–RNA complexes are immunoprecipitated
on anti-FLAG magnetic beads, trimmed with RNase A/T1, and treated with
polynucleotide kinase to convert 5′OH and 3′ P ends into 5′ P and 3′ OH ends that
are substrates for T4 RNA ligase. sRNA and mRNA ends that are in close proximity
are ligated using T4 RNA ligase, washed, and the ligated RNA duplexes released
by protease K digestion of covalently cross-linked Hfq-FLAG. The released RNA is
extracted, purified, and treated to deplete rRNA, before sequencing on an Illumina
platform (Fig. 1). Using this method, Melamed and colleagues recovered 2817
unique, statistically significant RNA–RNA interactions on Hfq, including 1631
unique sRNA–mRNA interactions and 56% of previously confirmed interactions.
RIL-seq analysis of Hfq-dependent sRNA interactions is performed under native
conditions that recover a broad range of interactions with low stringency that
are subsequently filtered for statistical significant in silico to reveal biologically
meaningful interactions. This approach recovered a novel sponging interaction
between PspH and Spot42, leading to derepression of Spot42 target transcripts
(Melamed et al. 2016). While MAPS and GRIL-seq can identify the targets of one
sRNA, RIL-seq can be used to profile Hfq-dependent sRNA–RNA interactions in
the cell.

RNA–protein complexes that are cross-linked with UV are attached by a
covalent bond that is stable under denaturing conditions. This allows stringent
purification of the RNA–protein complex and is exploited in UV cross-linking
and immunoprecipitation (CLIP-Seq) approaches like CRAC (UV cross-linking and
analysis of cDNA) that use denaturing purification steps (SDS-PAGE separation of
RNA–protein complexes and/or denaturing purification) to generate high confidence
maps of RNA binding protein sites throughout the transcriptome. This stringent
purification approach can also be used to capture RNA–RNA interactions and
was initially demonstrated for miRNA–RNA interactions mediated by Argonaute
2 in human embryonic kidney cells (Helwak et al. 2013). Conceptually similar
protocols that use stringent purification to reduce background have been reported
for yeast (Kudla et al. 2011), C. elegans (Sugimoto et al. 2015), and human cell
lines (Grosswendt et al. 2014). Recently, we have shown that RNase E forms an
appropriate scaffold for capturing sRNA–target RNA interactions by CLASH in
the human pathogen E. coli serotype O157:H7 (enterohemorrhagic E. coli). In
RNase E-CLASH, the scaffold protein of the E. coli RNA degradosome, RNase
E, is dual affinity-tagged at the C-terminus with a His6 and 3X FLAG tag linked
by a TEV protease cleavage site (HTF). The His6 tag allows purification under
stringent conditions. After UV cross-linking, RNA–RNase E–HTF complexes are
initially immunoprecipitated under native conditions on M2 anti-FLAG resin. The
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RNase E–HTF cross-linked to RNA is eluted from the M2 anti-FLAG resin by
digestion with TEV protease and the eluted RNA–protein complex (RNP) is
trimmed using an RNase A/T1 cocktail. To facilitate rapid washing and buffer
changes during successive enzymatic treatments, the RNP is bound to Ni-NTA
resin and washed under denaturing conditions. The RNA ends are then prepared
for intermolecular ligation as RNase A and T1 leave 5′OH and 3′P ends that
need to be prepared for intermolecular ligation by T4 RNA ligase 1. At this step
RNase E-CLASH differs from Ago2-CLASH in that miRNAs bare a 5′-P close
to the seed that is buried within Argonaute and is protected from trimming. This
is used to enrich miRNAs as ligation substrates as longer RNAs will carry a
cleaved 5′OH. Bacterial sRNAs are significantly longer than miRNAs and the 5′
ends require phosphorylation to generate ligation-competent ends. Hybrid reads
are generated by ligating one end of the duplexed RNAs together and ligating the
free 5′ and 3′ ends to RNA linkers that allow sequencing of the chimeric RNA.
We find that this can be achieved during ligation of the 5′ and 3′ linkers without
the need for a dedicated intramolecular ligation step. Both 5′ and 3′ ligations are
performed with T4 RNA ligase 1 and can be adenylated by preadenylated linkers
or can use ATP to energize ligation of the intraduplex RNA ends. The efficiency
of intraduplex ligation of RNAs with 5′ and 3′ sequencing linkers is typically 1–
2% (Helwak et al. 2013; Grosswendt et al. 2014; Sugimoto et al. 2015; Waters et
al. 2017). The RNA–RNase E–His6 complexes can then be eluted from the Ni-
NTA resins using imidazole and the RNP complexes are size-selected on an SDS
polyacrylamide gel that is transferred to nitrocellulose. The radioactive complexes
of the appropriate size are excised from the membrane and RNase E digested by
proteinase K. The released RNA is extracted, purified, and cDNA libraries are
constructed and sequenced on an Illumina platform (Fig. 1, Waters et al. 2017).
CLASH performed on enterohemorrhagicE. coliRNase E led to the identification of
1733 statistically significant, unique sRNA–mRNA interactions and 176 874 RNA–
RNA interactions in total. One of the sRNA–mRNA interactions identified included
the E. coli-specific sRNA Esr41 which binds and represses the expression of the
cirA transcript encoding an outer membrane ferric iron receptor. The expression
of cirA renders the cells susceptible to the bacterial colicin toxins involved in
interspecific competition between Salmonella and E. coli in the gut (Nedialkova et
al. 2014). Overexpression of Esr41 led to colicin resistance, providing evidence for
the biological significance of the Esr41–cirA interaction recovered from RNaseE-
CLASH (Waters et al. 2017). Both RIL-seq and RNaseE-CLASH rely on the
use of ultraviolet light to cross-link RNA to protein; however, RNaseE-CLASH
uses a second denaturing purification to stringently select for bound chimeras
(Fig. 1). Both techniques provide a snapshot of sRNA interactions occurring the
bait protein (either Hfq or RNase E) in the cell under specific conditions and a
means to find RNA–RNA interactions that regulate gene expression at a systems
level.
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5 Chemical Cross-Linking of RNA Duplexes to Probe
RNA–RNA Interactions

Recent studies have demonstrated that chemically cross-linked RNA–RNA interac-
tions can be purified and sequenced providing transcriptome-wide maps of the RNA
interactome that is independent of specific bait proteins. The cross-linking of RNA–
RNA species can be achieved by chemical cross-linking, the most common being
psoralen or its derivative 4-aminomethyltrioxsalen (4AMT). While psoralen cross-
linking techniques have not been used to probe bacterial sRNA–RNA interactions,
it has been used to probe RNA–RNA interactions in E. coli (Aw et al. 2016) and
may represent an innovative methodology for capturing the sRNA interactome
without the biases introduced by using a scaffolding protein (RNase E or Hfq) to
purify the interacting RNAs. Psoralen analysis of RNA interactions and structures
(PARIS) has been used to identify miRNAs and their targets, and can be used to
probe the structure of longer RNAs by identifying intramolecular RNA interactions.
The PARIS protocol was used to examine RNA–RNA interactions in human tissue
culture and mouse embryonic stem cells and employs the intercalating agent 4AMT
to reversibly cross-link RNA duplexes together after exposure to UV irradiation
at 365 nm. The cross-linked RNAs can be resolved by treating with UV light
at 254 nm. 4AMT preferentially cross-links RNA at staggered U residues and
provides a means to fix the duplexed RNA–RNA pair during purification. The
4AMT cross-linked RNA–RNA complexes are purified, trimmed, and deproteinated
before the RNA is separated by size on a native polyacrylamide gel. As cross-linked
RNA–RNA complexes migrate differently from ssRNA, RNA interactions can be
separated from non-cross-linked RNA using a second dimension of denaturing
polyacrylamide gel electrophoresis. Up to 0.5% of the input RNA is recovered as
dsRNA after the 2D gel electrophoresis step, suggesting that the elutions from the
gel are enriched for chimeric RNA. The dsRNA is extracted from the gel, proximity
ligated, and the 4AMT cross-links are reversed by irradiation at 254 nm. The RNA
is purified and sequenced on an Illumina platform (Fig. 1). Unlike RIL-seq or RNase
E-CLASH PARIS does not require a bait protein to capture RNA–RNA interactions
and can identify complex RNA structures such as pseudoknots. Each sequence
read corresponds to a single RNA–RNA interaction with less than 6% of the reads
corresponding to background. PARIS facilitated the discovery of structures and
interactions that spanned greater than 200 nucleotides and across multiple genomic
features, including the structures of RBP binding sites or repetitive elements such
as Alu, for which structures were previously unknown (Lu et al. 2016). In this
manner, PARIS uses the chemical cross-linking agent 4AMT to provide a snapshot
of abundant RNA interactions in the cell and the structures that comprise these
interactions without requiring the selection of an RNA bait protein.

Ligation of interacting RNA followed by high-throughput sequencing (LIGR-
seq) also uses 4-AMT to cross-link RNAs together upon irradiation with UV light
at 365 nm. The cross-linked RNA is extracted from cells, treated to deplete rRNA,
trimmed, and proximity ligated using circular RNA (circRNA) ligase that efficiently
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ligates proximal RNA ends and allows ligation at an elevated temperature (60◦C) to
prevent spurious hybridization and ligation events. Single-stranded RNA is removed
by RNase R treatment to enrich for ligated RNA chimeras and the cross-linking
is photoreversed. The RNA chimeras are washed, purified, and sequenced on an
Illumina platform. The controls for LIGR-seq omitted the cross-linker 4-AMT or
the proximity ligation step in order to identify and quantify any chimeras that
occurred spuriously (Fig. 1). Similar to PARIS, LIGR-seq is capable of detecting
interactions with highly structured RNA and employing LIGR-seq on 293T cells
detected known structures that comprise the 80S and 5S ribosomal subunits as
well as novel interactions been small nucleolar RNAs (snoRNAs) and other RNA
classes (Sharma et al. 2016). One disadvantage of LIGR-seq is that, while it can
detect RNA structure and long-range interactions with high specificity, it is unable
to recover short RNA sequences such as miRNAs because these small fragments
are inefficiently ligated by circRNA ligase (Sharma et al. 2016). Potentially, LIGR-
seq will require modification in order to be applied to the study of bacterial sRNA
interactions.

In contrast, sequencing of psoralen-cross-linked, ligated, and selected hybrids
(SPLASH) utilizes biotinylated-psoralen (biopsoralen) to cross-link RNA–RNA
interactions. Cross-linked RNAs from human tissue culture and yeast cells are
enriched by extracting biotin-labeled chimeras with streptavidin-conjugated mag-
netic beads. The extracted RNAs are proximity ligated and sequenced on an Illumina
platform (Fig. 1). The authors note that the entry of biopsoralen into human cells
is inefficient and requires the treatment of cells with the detergent digitonin for a
short period of time (5 min) prior to biopsoralen treatment. Additionally, ten times
the concentration of biopsoralen was required to achieve a similar cross-linking
efficiency in yeast and E. coli cells (Aw et al. 2016), suggesting that biopsoralen
labeling may be limited by the entry of biopsoralen into the cells of interest. The
authors also noted that RNA was damaged during the photoreversal of biopsoralen
cross-linking and the length of time for photoreversal needs to be optimized in
order to minimize RNA damage before sequencing. Despite these challenges,
employing SPLASH led to the identification of more than 8000 intermolecular
RNA interactions and more than 4000 intramolecular interactions across all of the
cells sampled. SPLASH was used to identify mRNA–mRNA interaction networks
that were correlated with similar subcellular locations and enrichment for similar
biological functions (Aw et al. 2016). Thus, SPLASH uses a biotinylated form of
the chemical cross-linker psoralen to cross-link and capture RNA–RNA interactions
and represents another systems-level approach to identifying all of the RNA
interactions in the cell.

RIL-seq and RNase E-CLASH require the dual-affinity tagging of the bait
protein and, even if the recombinant protein is expressed from its endogenous
chromosomal location, there may be unintended effects of tagging the protein on
the cell. Additionally, the use of the aforementioned techniques requires selection of
a single bait protein for each experiment. SPLASH depends on biopsoralen which,
as previously discussed, requires tissue treatment or high concentrations in order to
get efficient RNA labeling. The development of mapping RNA–RNA Interactome
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in vivo (MARIO) sought to address these issues by assaying protein-dependent
RNA interactions in vivo without epitope-tagging proteins or adding an exogenous
molecule like biopsoralen. MARIO requires a combination of UV cross-linking to
cross-link RNA to protein followed by a second EthylGlycol bis–formaldehyde
cross-linking to cross-link protein–protein complexes. UV cross-linking the RNA
to protein stabilizes the RNA–protein ternary complexes and allows a stringent
denaturing purification to be performed, thereby reducing background. The dually
cross-linked RNA is partially digested then ligated to 5′ biotinylated linkers. The
biotinylated chimeras are affinity purified on streptavidin magnetic beads and
purified under denaturing conditions to ensure specific recovery of chimeric RNA–
RNA complexes. A proximity ligation step is performed at a high volume overnight
to avoid spurious in vitro intermolecular ligation, the complexes are washed and
eluted from the magnetic beads, and sequenced on an Illumina platform (Fig.
1). The controls for MARIO were extensive and designed to help identify and
eliminate background signal: a non-cross-linked control that was not treated with
EthylGlycol bis–formaldehyde, a control that incorporated an unbiotinylated linker,
and a control that performed ligation between Drosophila and mouse DNA to
identify the amount of hybrids generated from RNA interactions occurring in vitro.
Incorporating information from all of the controls, the false positive rate for MARIO
was estimated to be 2.5–6.5% (Nguyen et al. 2016). MARIO performed in mouse
embryonic stem cells provided evidence for the scale-free and hierarchical nature
of the RNA networks, suggesting that RNA–RNA interactions are not random or
entirely promiscuous in nature (Nguyen et al. 2016). By combining UV cross-
linking and EthylGlycol bis–formaldehyde cross-linking, MARIO illuminates the
entire network of protein-assisted RNA interactions in the cell without adding
photoactivatable nucleosides or epitope-tagging proteins, providing insight into the
shape and structure of the networks that underlie the transcriptome.

The techniques to assay RNA–RNA interactions are increasingly dependent
on deep sequencing data. While the incorporation of biochemical steps to enrich
for chimeric RNA–RNA interactions can help decrease background signal and
increase the specificity of chimera recovery, these techniques increasingly rely on
the computational tools to analyze the sequencing data to separate biologically
meaningful interactions from background within these large datasets.

6 Statistical Analysis of sRNA Interaction Data

The computational analysis of high-throughput RNA interaction experiments
involves two basic steps: identifying hybrid reads that represent chimeric RNA–
RNA interactions and determining statistically significant RNA–RNA interactions.
Because each technique requires the incorporation and design of specialized
controls to minimize and aid in the identification of background signal, the
computational pipelines for each technique are custom-built. Similarly, the
statistical analysis for each dataset is customized to probe the variability of
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each experiment and the conditions dictated by each technique. The different
computational approaches for identifying and calling hybrid reads, and determining
statistical significance are explored here.

6.1 Sources of Background in sRNA Interaction Experiments

The task of identifying statistically significant hybrids depends on the ability to
minimize sources of background signal without removing low-abundance RNA–
RNA interactions. One of the most common sources of background is signal from
the highly abundant rRNAs and tRNAs. Techniques such as RIL-seq (Melamed et
al. 2016) and LIGR-seq (Sharma et al. 2016) deplete rRNA prior to sequencing
in order to circumvent the accumulation of signal at these highly expressed loci.
However, some of the interactions between rRNA and other classes of RNAs may
represent biologically significant interactions. The vast majority of the rRNA–
mRNA interactions captured by SPLASH, for example, is thought to be the capture
of mRNAs during translation (Aw et al. 2016). While these interactions are not the
regulatory interactions SPLASH was intended to capture, these interactions were
identified as statistically significant and are likely representative of a true biological
interaction.

In the case of RBP-mediated RNA–RNA interactions that are investigated by
RNase E-CLASH or RIL-seq, nonspecific associations between either RNA and
the RBP or RNA with the affinity resins can be sources of background. In RNase
E-CLASH, a control strain that lacked the dual affinity-tagged copy of rne was
used to control for nonspecific interactions (Waters et al. 2017). In RIL-seq, an
untagged E. coli strain was also used to control for nonspecific binding of RNA to
the resins. Melamed et al. (2016) also included a control where Hfq-HTF expressing
E. coli were not exposed to UV light to control for nonspecific associations between
RNA and Hfq, as well as a control where E. coli and Saccharomyces cerevisiae
lysates were mixed together after cross-linking and lysis and the frequency of cross-
species hybrids was calculated. Surprisingly, 3.2–3.8% of hybrids were recovered
without UV cross-linking under native conditions suggesting UV cross-linking is
dispensable. However, in the absence of UV cross-linking, control RNA spike-
in experiments demonstrated that nearly 4% of chimeras were hybrids between
E. coli and S. cerevisiae while less than 1% of the chimeras were cross-species
hybrids in the presence of cross-linking indicating that UV cross-linking prevents
in vitro RNA–RNA interactions during Hfq purification and library preparation
(Melamed et al. 2016). Even in the absence of a bait RBP, nonspecific interactions
with the affinity moieties can occur. In MARIO, a control experiment that omits
the biotinylated linker accounts for any interactions that occur with the streptavidin
magnetic beads (Nguyen et al. 2016). Even after accounting for both nonspecific
interactions with the affinity resins and spurious ligation, the false positive rate
for MARIO was estimated to be up to 6.5%, suggesting that there are as of yet
unidentified sources of background in these experiments.
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Finally, spurious ligation between proximal RNAs when ligated in small volumes
can produce RNA–RNA chimeras that serve as background signal. If the RNA–
RNA duplexes are free in solution (i.e., not bound to an affinity matrix), spurious
proximity ligation of RNAs may occur. Some studies have diluted free RNA–
RNA complexes to prevent random ligation of free RNAs to select only for those
interactions that are duplexed in vivo (Helwak et al. 2013; Nguyen et al. 2016).

While experimental controls can be designed to help identify the level of back-
ground for a particular experiment, computationally accounting for these sources
of background and filtering them before statistical analyses remains a significant
challenge for the field. As yet, there is no consensus on the best practices to analyze
RNA–RNA interaction data. The following section explores the computational
pipelines used to filter for significant RNA interactions.

6.2 Computational Pipelines and Statistical Analyses
to Identify Chimeras

The computational pipelines are custom-built to probe the particular RNA inter-
action of interest, and, due to the tendency for each technique to include unique
controls and slightly different approaches, there are custom statistical analyses
for each experimental design. However, the initial steps of computational analysis
are the same: quality filtering and trimming to remove low quality sequence,
demultiplexing of samples to parse the different experimental conditions or tissues
analyzed, merging of paired-end sequence reads (if applicable) and collapsing of
PCR duplicates. The sequence reads are then aligned to the transcriptome using
annotated genome files or custom-built databases that include transcript boundaries,
miRNA information, or other noncoding regulatory RNA. There are now a diversity
of tools to quality filter, demultiplex, trim, clip, and collapse PCR duplicates in
sequence reads. The hyb package (Travis et al. 2014) used in our RNase E-CLASH
study (Waters et al. 2017) makes use of Flexbar or the Fastx toolkit, PARIS uses
the Trimmomatic pipeline and removes PCR duplicates using readCollapse from the
icSHAPE package, while MARIOtools uses custom Python and R scripts to perform
these tasks (Nguyen et al. 2016). The subsequent steps involve alignment of reads to
the genome or transcriptome and identification of reads that map discontiguously to
the genome or a transcript database. Many read aligners have been used to call reads
that map discontiguously including BLAST, BLAT, PBLAT, bwa, STAR, bowtie,
and bowtie2. Comparison of quality filtering and read aligners using an Ago2-
CLASH dataset suggests that blastn/blastall alignment may yield 5–10% more
hybrid reads than bowtie2 but with a significantly longer run time, indicating that
minor improvements can be made to hybrid recovery at the expense of processing
time (Travis et al. 2014). After alignment, custom scripts are generally used to
identify hybrid reads representing RNA–RNA interactions, and varies depending
on whether “joining linkers” are used to connect the duplexed RNAs or the native 5′
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and 3′ ends of the RNAs are ligated. Overlapping hybrid reads can then be clustered
or merged to collate reads representing the same RNA–RNA interaction. The RNA–
RNA interactions must then be filtered for statistical significance and the method for
calculating statistical significance has yet to reach a consensus between protocols
and software packages. Visualization of RNA–RNA interaction data is challenging
and is often represented as links within circular interaction plots, network graphics,
overlaid on specific RNA structures of interest, or custom tracks (arcs) in genome
visualization tools like the UCSC or IGV genome browsers. Here we focus on the
computation pipelines used by RNase E-CLASH, RIL-Seq, MARIO, PARIS, and
LIGR-Seq as these more recent additions to the RNA interactome toolbox include
methodologies for quantifying statistical confidence.

6.2.1 Identifying RNA–RNA Interactions with Sequencing Datasets

MARIOtools (https://mariotools.ucsd.edu/html/) is a Python and R-based pipeline
that takes paired-end sequencing data and collapses PCR duplicates, demultiplexes
sequence read data, and removes linker sequences using custom Python scripts. The
resulting reads are aligned to the transcriptome using Bowtie and hybrid reads are
identified. Because MARIO uses a biotinylated linker to join proximal RNA ends,
mapping the linker sequence within the read easily identifies the hybrid read halves.
A similar strategy is used for hiCLIP and simplifies the identification of independent
RNAs. The software takes an input of a fasta file that contains all linker sequences
and the output will split all of the fragments into classes that either contain a linker
(Paired1 or Paired2), do not contain a linker (NoLinker), or contain only the linker.
The Paired1 and Paired2 files containing fragments that are part of putative hybrids
are then aligned to a user-supplied annotated transcriptome file using Bowtie and
the mapped chimeras are written to an output file.

RIL-seq employs a different approach to identify hybrid reads. Paired-end
sequencing is used the generate RIL-seq libraries and the last 25 nt of each paired
end sequence read is mapped to the genome using bwa. Mate pair reads that align to
the same transcript (concordantly or in reverse order), or within 1000 nt are called
“single mapping” (nonhybrid read). If the two ends of a mate pair map at least
1000 bp apart, then that mate pair is identified as a hybrid.

Aligater (https://github.com/timbitz/Aligater) is a package written in Julia (v0.4)
and Perl (v5) to identify hybrids in LIGR-seq data. To identify hybrid sequence
reads, aligater recursively chains blocks of alignment generated by bowtie2 for each
read and identifies regions of high quality alignment to determine whether it maps
to a single position or contains multiple RNAs. Gaps between alignment blocks are
penalized and the penalty can be adjusted for recovery of specific RNA species
or for low quality libraries. After penalty scoring, each hybrid read is assigned
a quality score (LIGQ). LIGR-Seq does not use a dedicated “joining linker” to
ligate duplexed RNAs and the ligation site, like RNase E-CLASH and PARIS, is
identified during alignment by discontiguous mapping. To verify that the ligation

https://mariotools.ucsd.edu/html/
https://github.com/timbitz/Aligater)
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site is correctly called and represents the junction of two interacting RNAs, the
ligation site is realigned to the transcriptome using BLAST (Sharma et al. 2016).

RNase E-CLASH identifies interactions using the hyb pipeline (Travis et al.
2014) originally developed for Ago2-CLASH data (Travis et al. 2014). Hyb trims,
collapses, aligns, identifies hybrids, counts and clusters overlapping interactions,
and provides information on interaction strength. Hyb can use BLAST, blat, or
bowtie to map reads to the transcriptome (or genome) and identifies reads that map
discontiguously and do not overlap or contain gaps greater than 4 bp. The putative
hybrids are then filtered by selecting hybrids with high confidence mapping scores.
The candidate hybrids are then folded in silico and the interaction sites are defined
by base-pairing between the hybrids halves to illustrate the seed-target interaction.
The corresponding hybridization energies are output into the resultant hyb file, as
well as information about the RNAs in each hybrid, such as start/end, strand, and
RNA subclass (Travis et al. 2014).

Hybrids from the PARIS (Lu et al. 2016) dataset are similarly called by filtering
for reads that map discontiguously to human transcriptome coordinates. Reads are
aligned to the genome using STAR and custom scripts cluster the mapped reads
into duplex groups which are then further filtered using a connection score to
identify hybrids with high confidence. Putative hybrids were also filtered for PCR
duplication, intramolecular interactions, and potential splicing products (Lu et al.
2016).

RNA–RNA interactions are identified from high-throughput sequencing data
after alignment to genomic or transcriptomic coordinates and successive filtering
steps to identify high quality reads that map to two unique positions within the
reference sequence. Once a candidate list of hybrid reads has been assembled, sta-
tistical analyses must be performed to determine which interactions are statistically
overrepresented.

6.2.2 Determining the Statistical Significance of RNA–RNA Interactions
in Sequencing Datasets

RNase E-CLASH, MARIO, and LIGR-seq utilize conceptually similar analyses to
identify statistically significant RNA–RNA interactions. These approaches estimate
the probability of recovering the hybrid based on hypergeometric or multinomial
distributions of the RNA’s relative abundance. To calculate the statistical signifi-
cance of RNA–RNA interactions recovered by LIGR-Seq, aligater assumes that any
two RNA fragments in the sequencing dataset can ligate and that random ligation
will be a function of RNA abundance. True RNA–RNA interactions should be
represented by significantly more hybrid reads than predicted for random ligation of
RNAs of the same abundance. The authors first accounted for the differences in read
recovery in each experiment by normalizing the transcript levels to reads per million
(RPM). The probability of recovering the observed number of hybrids (given the
abundance of each RNA in the dataset) is modeled as two independent draws from a
multinomial distribution. The p-values are adjusted for multiple testing (number
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of RNA–RNA interactions in the dataset) using a Bonferroni correction. These
authors also calculate a ratio of observed/expected interactions using AMT-treated
versus untreated samples. The final dataset is filtered for RNA–RNA interactions
represented by >10 hybrid reads, FDR < 0.1, and observed/expected ratio >1.1.
A false positive dataset can be generated from high quality interactions with
observed/expected ratios <0.9. For highly expressed transcripts, the estimated false
positive rate was up to 4.4% while the false positive rate for transcripts with low
levels of expression was up to 25% (Sharma et al. 2016) indicating that the false
positive rate is negatively correlated with the expression level of the respective
transcripts in the interaction.

RNase E-CLASH and LIGR-seq use essentially the same approach to determine
the statistical significance of an RNA–RNA interaction. For RNase E-CLASH the
number of single mapping, and hybrid read-halves, that map to a position within the
transcriptome are taken as the relative abundance of the hybrid read-half within
the pool of RNAs (again expressed as reads per million) and the probability of
recovering two interacting RNAs within the distribution is modeled as two draws
from a multinomial distribution. The p-values are corrected for multiple testing
using the Benjamini–Hochberg correction, and p-values from replicate experiments
are combined (Waters et al. 2017).

Conceptually, MARIO employs a similar method to determine the probability
that an RNA–RNA interaction was recovered by chance. The total number of RNAs
that map to a hybrid read-half is used to determine the abundance of the RNA in
the dataset and a hypergeometric distribution is used to model the probability of
randomly recovering an RNA–RNA interaction (Nguyen et al. 2016). The p-value is
then corrected for multiple testing using a Benjamini–Hochberg procedure. Though
these techniques differ in their approach to purifying chimeras from cells, the
statistical analyses to identify biologically significant RNA–RNA interactions are
similar and represent a conceptually simple way to identify statistically significant
RNA–RNA interactions from sequencing data.

An alternative approach is taken in RIL-Seq to identify statistically significant
RNA–RNA interactions. RIL-seq maps hybrid read-halves to genomic coordinates
that are divided into 100 nucleotide windows. Hybrids within pairs of windows
represented by more than 5 reads are counted. A Fisher’s exact test is used to
determine whether the window pairs occur more frequently than expected by
random (referred to as S-chimeras). The interaction window is extended up to
500 nt and lowest p-value is taken as the true value and corrected for multiple
testing using a Bonferroni procedure, and also by dividing by the number windows
with >10 hybrid reads. An odds ratio is calculated to determine the magnitude of
overrepresentation of a hybrid in the data (Melamed et al. 2016). Because RIL-
seq is performed under native purification conditions, the authors have applied
stringent statistical filters to identify statistically significant hybrids. RIL-Seq does
not include random nucleotides within the ligated RNA linkers, so PCR duplicates
cannot be differentiated from independent RNA–RNA interactions that occurred in
vivo. Nevertheless, this approach identifies a high number of experimental verified
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interactions and provides a valuable tool for profiling Hfq-dependent sRNA–mRNA
interactions.

The statistical analysis of PARIS data ranks interactions based using a connection
score. The connection score for the two hybrid-halves is calculated by dividing the
number of reads that connect the hybrid halves by the geometric mean of reads
mapping to each hybrid half. Thus, a high connection score indicates a large number
of reads that connect those RNAs relative to transcript abundance, and any hybrids
with a connection score of less than 0.01 are discarded ensuring that the dataset
is not dominated by low abundance hybrids in high abundance transcripts (Lu et al.
2016). The PARIS protocol also provides a method to view hybrids in the Integrative
Genomics Viewer whereby the interacting arms of the hybrids are connected by
arcs (Lu et al. 2016). Thus, PARIS relies on a unique connection score to normalize
hybrid read counts to transcript abundance and to assess the overrepresentation of a
putative interaction.

As the technologies to identify and analyze RNA regulatory circuits advance,
so do the computational pipelines to extract biological significance from these
datasets. For example, MARIO provides packages to dissect and visualize RNA
structure and understand the role of secondary structure in RNA–RNA interactions
(Nguyen et al. 2016). Once the RNA interactions have been identified and filtered
for statistical significance, the user can focus on particular interactions and their
contribution to a biological process. The ability to analyze these networks at
a systems level and understand the contribution of all of the sRNAs and their
interactions with target RNAs to bacterial adaptation and phenotypes remains a
significant challenge.

7 sRNA–RNA Interaction Networks

RNA–RNA interactions can be represented as an interaction network similar to
the analysis of pairwise protein–protein interaction networks (Vidal et al. 2011).
This makes them amenable to existing methods and tools which have been used
to analyze protein–protein and other biological networks. Network visualization
provides a powerful means for users to represent and interact with the network.
In these networks, each RNA is represented as a “node,” while pairwise RNA–RNA
interactions are referred to as an “edge,” represented by lines connecting nodes. The
network acts as a scaffold for which multiple sources of data can be integrated and
displayed using visual cues.

The overall characteristics of the interaction network can be described by a
number of network statistics (Barabasi and Oltvai 2004). The most commonly used
network statistic is the number of immediate interaction partners of each node,
also called the “node degree,” and is equivalent to the number of RNA binding
partners of each node (first neighbors) within the RNA–RNA interaction network.
Nodes with high degree are often represented as “hubs” within the network and are
likely to have important functions (Keller 2005). Nodes may also be centrally or
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peripherally placed within the network, termed the “node betweenness centrality.”
The node betweenness centrality measure is commonly used to describe the degree
of connectivity in the network and is based on the concepts of shortest paths.
Deletion of nodes with high betweenness centrality is likely to disconnect parts
of the network and can be used to identify bottlenecks in the flow of signals
in a signaling network (Breitkreutz et al. 2012). To calculate the “betweenness”
score, the shortest paths between every pair of nodes within a connected network
component is enumerated. The proportion of shortest paths that transverse the query
node out of the total number of shortest paths is the “betweenness” score. As may be
expected, the top 20 highest “betweenness” RNAs in our RNase E-CLASH data are
regulatory small RNAs, but unexpectedly this also includes eight pathogen-specific
sRNAs, suggesting that these play key roles in posttranscriptional regulation in the
pathogen.

It has been suggested that the distribution of node degrees within biological
networks follows a heavy tail distribution (Keller 2005). This led to the hypothesis
that many biological networks have node degree distributions that fit the “scale-
free power law” distribution (Barabasi and Albert 1999). Scale-free networks are
thought to be more robust as random deletion of a node through gene mutation is
more likely to affect nodes with a small number of interaction partners and thus will
have less impact on overall network connectivity (Barabasi and Albert 1999). The
node degree distribution of the RNase E-CLASH RNA–RNA interaction network
is presented in Fig. 2a and can be fitted to a power-law distribution suggesting that
the network is scale-free (Kolmogorov–Smirnov test of equality of distribution, p-
value = 1). Although the distribution does not span two orders of magnitude in
both the x- and y-axes required for strong statistical support, it has been suggested
that many biological networks do not pass this filter for being a scale-free network
(Barabasi and Albert 1999).

Barabasi and Albert (1999) hypothesized that preferential attachment is an
important mechanism for generating scale-free networks (Barabasi and Albert
1999). Preferential attachment describes the process where nodes with high number
of interaction partners tend to gain more interactions as the network continuously
expands. This general idea of network growth and preferential attachment may
be related to the evolutionary age of a sRNA within the sRNA interactome
dataset (Kacharia et al. 2017). Interestingly, analysis of the evolutionary age of
sRNAs within our interactome dataset (Ghadie et al. 2018) showed that relatively
“young” and “middle-aged” sRNAs have less interaction partners than “old” sRNAs
(Bonferroni adjusted p-value < 0.05, Fig. 2b). The above suggests that mRNAs
could be preferentially attached to older sRNAs, which have a higher number
of interaction partners. A power-law node degree distribution can arise from a
number of generative processes besides preferential attachment (Barabasi and
Albert 1999; Keller 2005) or by a combination of mechanisms (Ghadie et al.
2018). However, the high node degree of evolutionary old sRNAs suggests that
preferential attachment contributes to growth of the scale-free sRNA interaction
network.
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Fig. 2 Network analysis of the RNase E-CLASH RNA–RNA interaction network. (a) The
frequency of nodes versus the number of interaction partners (node degrees), represented with
a scatter plot in log-log scale. The node degree distribution could be fitted to a power-law
distribution with an exponent of 2.2 (blue line), the 95% confidence interval shaded in dark grey.
The Kolmogorov–Smirnov test did not reject the null hypothesis that the observed distribution
is equivalent to a power-law (p-value = 1). The above analyses were performed using the
“fit_power_law” function of the “igraph” library (Csardi and Nepusz 2006) of the R statistical
analysis software (Team 2013). (b) A dot plot comparing the node degrees of the sRNA versus
the evolutionary age of the sRNA (Ghadie et al. 2018). The node degrees is shown in log scale.
The “old” sRNA had significantly more interaction partners than young or middle-aged sRNA
(*Wilcoxon rank-sum test, Bonferroni adjusted p-value < 0.05). The number of interaction partners
of young and middle-aged sRNA was not significantly different (denoted by n.s.). EcOnc are
sRNAs that are specific to EHEC and therefore evolutionarily young. There were 12 sRNAs in
the network with no age information and these were not included in this analysis
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In the RNase E-CLASH RNA–RNA interaction network (Waters et al. 2017),
the 94 sRNAs had node degrees ranging from 1 to 70. Of these 94 sRNAs, 56
were connected in a single subnetwork, termed the largest connected component,
suggesting that the sRNA regulatory network is highly interconnected. A number
of sRNAs appear to constitute posttranscriptional regulatory “hubs” with high node
degrees including the sRNA, ChiX (MicM). It can also be observed in the network
that mRNAs also form hubs. In these, single mRNAs interact with many sRNAs,
potentially indicating that the mRNA is tightly regulated and therefore has an
important function. Similar to the way in which hubs in protein interaction networks
have greater functional importance or are involved in multiple biological functions
(Rolland et al. 2014; Yu et al. 2008), the node degree can be used to identify
sRNAs that likely have a disproportionate effect on the network. Examples of hubs
with diagnostic or therapeutic value include p53 (Collavin et al. 2010) and Ras
(Kauke et al. 2017), where mutation frequently leads to cancer, and interaction
hubs linked to antifungal resistance in the pathogenCryptococcus neoformans (Kim
et al. 2015). Network analysis has also yielded insights into the mechanisms of
complex diseases and putative drug targets in humans (Hofree et al. 2013; Isik
et al. 2015; Menche et al. 2015; Sahni et al. 2015). Importantly networks can
incorporate a diverse range of interaction data including protein and transcript levels
(coexpression networks), functional or gene ontology annotations (Carbon et al.
2017), essential genes (Gerdes et al. 2003; Kato and Hashimoto 2007), transcription
factor regulons (Gama-Castro et al. 2016), protein–protein interactions (Rajagopala
et al. 2014), and genetic interactions (Kumar et al. 2015). Integrative network
analysis allows layering of these diverse datasets to build a more complete picture
of cellular function. To this end, the sRNA–RNA interaction network may act as
a scaffold, to which additional biological data can be integrated, covisualized, or
coanalyzed.

The RNase E-CLASH RNA–RNA interaction network (Waters et al. 2017) is
visualized in Fig. 3 using the network visualization software Cytoscape (Kohl et al.
2011). Figure 3a visualizes all interactions that involve sRNAs, EcOncs (sRNAs
specific to enterohemorrhagic E. coli), and their mRNA targets (false discovery
rate < 0.05). Cytoscape enables the user to filter the network by node degree
and display subsets of the network that have two or more interaction partners
(Fig. 3b). This highlights a core subnetwork in which nodes are more tightly
connected, including sRNAs which have more than one target, and mRNAs which
are regulated by multiple sRNAs. Small RNA–sRNA, sRNA–EcOnc, and EcOnc–
EcOnc interactions likely represent sRNA sponging interactions within the RNase
E-CLASH dataset (Fig. 3c). Small RNAs that regulate essential genes can also be
identified within the network and may represent biologically significant nodes. In
Fig. 3d, essential genes have been manually curated from the EHEC str. Sakai
genome using essential genes from E. coli str. K12 substr. MG1655 (Ecoliwiki
2017) and are controlled by both “core” genome encoded and pathogen-specific
sRNAs.
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a) b)

c) d)

Fig. 3 Visualization of the RNase E-CLASH RNA–RNA interaction network using Cytoscape.
(a) This network visualizes all interactions involving sRNAs, EcOncs (EHEC-specific sRNAs),
and their mRNA targets (false discovery rate < 0.05). Subsequent panels show different subsets
of this network, with the position of the nodes fixed in order to facilitate comparisons. The high
abundance regulatory RNAs CsrB, tmRNA, and 6S RNA were removed from the network. The
RNAs AgvB1 and AgvB2 have the same sequence and their nodes are merged. (b) The largest
connected component showing only nodes which had 2 or more interaction partners in panel (a).
Only nodes with >1 interaction partners are shown in this network. (c) Subnetworks of sRNA–
sRNA, sRNA–EcOnc, and EcOnc–EcOnc interactions. (d) Subnetworks showing essential mRNA
transcripts targeted by sRNAs and EcOncs. Essential genes were identified in E. coli str. K12
substr. MG1655 and mapped to E. coli O157:H7 str. Sakai orthologs using sequence homology.
The sRNAs are represented as large orange nodes, the EcOncs are represented as red nodes, and
mRNA are represented in grey nodes. Essential genes are represented by blue colored node borders
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8 Conclusions

Systems-level analyses of sRNA interactions are broadening our understanding of
small RNA function. Further technical developments will undoubtedly increase the
sensitivity of these analyses beyond a snapshot of the sRNA interactome occur-
ring on single RNAs or proteins, to transcriptome-wide chaperone-independent
analyses. Approaches for processing RNA interactome data is still highly varied
but is expected to reach a consensus as more datasets become available. Finally,
small RNA interaction networks are interleaved with the transcriptional regulatory
network conferring unique properties and kinetics to regulatory circuits. Adding
additional layers of regulatory information to the sRNA interactome will likely
reveal many of these “mixed” regulatory pathways and identify regulatory hubs or
bottlenecks that may be exploited for therapeutic benefit.
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Abstract Next generation sequencing and systems biology have changed our
understanding of oncogenesis. Master regulators at the transcriptional and epige-
nomic level have the ability to affect how an entire network of cancer genes behaves,
and thereby taking on an oncogenic role. Further, epigenetic factors cooperate
and team up with transcription factors to control specific gene target networks.
Transcriptomics in combination with epigenomic profiling and measurement of
chromatin accessibility enables global detection of epigenetic modifications and
characterization of transcriptional and epigenetic footprints. Chromatin remodelers
and transcription factors are in close communication via recognition of posttrans-
lational histone modifications, DNA methylation marks, and sequence motifs to
coordinate dynamic exchange of chromatin between open transcriptionally active
conformations and compacted silences ones. Integration of complementary high-
throughput sequencing platforms (HiC, DNAseI-Seq, MNase-Seq, FAIRE-Seq,
ATAC-Seq, ChIP-Seq, ChIA-PET, TBS-Seq, WGBS-Seq, RNA-Seq, GRID-Seq)
including chromatin higher-order structures, DNase hypersensitive sites, chro-
matin accessibility, histone modification, chromatin binding, and DNA methylation
enables identification of cooperation and gene target networks. In cancer, due to the
ability to team up with transcription factors, epigenetic factors concert mitogenic
and metabolic gene networks claiming the role of a cancer master regulators or
epioncogenes.

Keywords ATAC-Seq · Cancer systems biology · ChIA-PET · ChIP-Seq ·
Chromatin accessibility · Coactivation · Cooperation · CpG · DNAseI-Seq ·
Epigenetics · Epigenome · Epigenomics · Epioncogene · FAIRE-Seq · Gene set
enrichment · GRID-Seq · HAT · HDAC · HiC · Histone modification · KDM ·
KMT · Master regulator · MNase-Seq · Motif enrichment · Multi-omics ·
Omics · Precision medicine · PRMT · Regulome · Resistance · Rewiring ·
RNA-Seq · Target gene · TBS-Seq · Transcription factor target ·
Transcriptomics · Upstream regulator · WGBS-Seq

1 Introduction

1.1 The Importance of the Epigenome in Development
and Disease

An altered epigenome is a novel hallmark of cancer influencing transcriptional
changes and contributing to oncogenic progression. The dynamic nature of the
epigenome represents a fascinating layer of information to gain mechanistic under-
standing of human development and disease patterns. Genome-wide studies have
identified chromatin and histone regulators as one of the most frequently dys-
regulated functional classes in a wide range of cancer types (Timp and Feinberg
2013; Filipp 2017a). Rightly so, clinical efforts are not ignorant to the informative
potential of the epigenome. Diagnostic and prognostic successes have proven
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power for disease stratification and molecular targeting in precision medicine
(Filipp 2017b). However, gene target networks of epigenomic factors remain poorly
characterized and require multi-level, big-data-type analyses demanding in data
volume, variety, and complexity. Here, we provide a logical framework on how to
interrogate epigenomic and transcriptomic regulation at a systems biology level in
order to gain insight into functional networks.

1.2 From Targeted Approaches and Biomarker Discovery
to Epigenome-Wide Profiling

Pioneering studies of epigenetic enzymes provided biochemical insights into key
factors and established a molecular code or language that governs regulatory
principles aside from information stored in the order of nucleotides (Turner 1993;
Strahl and Allis 2000). Initially, discovery of epigenetic biomarkers had to rely on
targeted approaches using individual gene loci known or suspected to be involved
in the etiology or progression of the disease or other phenotype under study (Issa
et al. 1994). Despite challenges due cell-specific nature of epigenomic states and
how these can vary with developmental stage and in response to environmental
factors, targeted approaches yielded a number of important epigenomic biomarkers
and effector genes (Sharrard et al. 1992; Hiltunen et al. 1997; Kondo et al. 2008).
However, targeted approaches require a priori knowledge for the selection of
candidate biomarkers.

2 High-throughput Sequencing Platforms for Epigenomics
and Chromatin Accessibility

2.1 Overview of Next Generation Sequencing Platforms

With the advent of next generation sequencing technology, DNA and chromatin
associated changes could be studied (Fig. 1). Genome-wide approaches includ-
ing chromatin immunoprecipitation (ChIP) in combination with next generation
sequencing (ChIP-Seq) (Barski et al. 2007; Johnson et al. 2007; Zheng et al. 2010),
chromosome conformation capture in combination with high-throughput sequenc-
ing (HiC-Seq) (Lieberman-Aiden et al. 2009), assay for transposase-accessible
chromatin using sequencing (ATAC-Seq) (Buenrostro et al. 2013, 2015; Corces et
al. 2017), or whole genome bisulfite sequencing (WGBS-Seq) (Maunakea et al.
2010) and others to characterize epigenomic states. Epigenomic profiling focused
on chromatin interactions, nucleosome accessibility, or DNA marks has the ability
to capture different aspects including chromatin modification and chromatin binding
factors, the spatial organization of chromosomes, open chromatin states, and DNA
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Fig. 1 Emerging high-throughput sequencing technologies have the ability to generate comple-
mentary epigenomic profiles. (a) The epigenomic and transcriptional landscape can be navigated
by interrogating the dynamic structure of chromatin and its impact on the functional realization
of the genome. (b) 3D chromatin interactions can be accessed by chromosome conformation
capture in combination with high-throughput sequencing (HiC-Seq). DNase I hypersensitive sites
sequencing (DNaseI-Seq) or assay for transposase-accessible chromatin using sequencing (ATAC-
Seq) are examples of platforms allowing for insights into chromatin accessibility and transcription
factor site occupancy. Chromatin immunoprecipitation in combination with next generation
sequencing (ChIP-Seq) offers a platform to understand the intracellular regulatory landscape of
the epigenome by determining signals from binding factors or chemical modifications of histones
via specific antibodies. DNA methylation can be quantified by whole genome bisulfite sequencing
(WGBS-Seq), targeted bisulfite sequencing (TBS-Seq), or methyl-arrays. The functional impact
of the epigenomic landscape is validated at the transcriptional level by high-throughput gene
expression experiments including RNA sequencing (RNA-Seq), microarrays, or global RNA
interactions with DNA by deep sequencing (GRID-Seq)
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methylation at base-pair resolution. In chromatin interaction analysis by paired-
end tag sequencing (ChIA-PET), by combining HiC with ChIP it is possible
to capture all chromatin interactions and map topologically associated domains
(Fullwood et al. 2009; Li et al. 2017a). Methodology focused on global RNA
interactions with DNA by deep sequencing (GRID-Seq) enables the comprehensive
identification of the entire repertoire of chromatin interacting RNAs and their
respective binding sites (Li et al. 2017b). Recent advancements include trimming of
sample requirements and pooling of patient samples to identify disease associations
and establish prognostic signatures compatible with clinical samples (Tehranchi et
al. 2016; Qu et al. 2017).

2.2 Identification of Transcriptional and Regulatory Networks

The field of genome-wide expression profiling, or transcriptomics, is a powerful
approach to capture the functionally realized genome at a certain time. The general
goal of high-throughput transcriptomics studies by complementary DNA (cDNA)
microarrays or RNA sequencing (RNA-Seq) is to quantify and compare gene
expression profiles in order to detect differentially expressed genes (Sultan et al.
2008; Pan et al. 2008). Historically, next-generation sequencing technology and
the availability of a comprehensive human genome annotation (Lander et al. 2001;
Venter et al. 2001) has greatly accelerated scope and resolution of transcriptome-
wide regulatory studies. Transcriptomics studies demonstrate the functional genome
and present an ideal complementary data platform to epigenome-wide sequencing
assays.

2.3 The Concept of Epigenomic and Transcriptomic
Cooperation

The epigenome and the transcriptome are closely intertwined. Therefore, mon-
itoring gene expression by RNA-Seq is a useful and necessary complement to
epigenomic profiling. Further, transcription factors sample their corresponding
cognate sites in a stochastic manner throughout the genome. Transcription factor
activity, transcription factor motif enrichment, and transcriptional networks provide
key insights into effects of epigenomic landscapes on gene expression. The concept
of epigenomic and transcriptomic cooperation was introduced (Wilson et al. 2017;
Wilson and Filipp 2018). A self-reinforcing, positive feedback enables a close
teamwork of the transcriptional and epigenomic machinery, where one component
opens the chromatin, another recognizes gene-specific DNA motifs, others scaffold
between histones, cofactors, and the transcriptional complex (Qi and Filipp 2017).
This highlights a close connection between the epigenomic and transcriptomic
machinery, albeit much of the underlying principles remain to be discovered.
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3 A Dynamic Epigenetic Code

3.1 Posttranslational Modifications Impacting Chromatin
Structure and Function

Distinct patterns of reversible, covalent histone marks introduced the idea of
an epigenetic language or code, a language edited and read by proteins and
communicated in addition to four-letter base-code of DNA (Turner 1993; Strahl and
Allis 2000). Posttranslational modification of histone proteins is part of the central
epigenetic code. It includes methylation, acetylation, phosphorylation, citrullina-
tion, propionylation, butyrylation, formylation, crotonylation, proline isomerization,
ubiquitination, sumoylation, glycosylation, and adenosine diphosphate-ribosylation
of solvent accessible lysine, arginine, serine, and threonine residues at the termini of
core histone proteins. Some of these modifications are understood to play important
roles in the regulation of chromatin structure and function (Zentner and Henikoff
2013). Others remain to be deciphered and integrated into the epigenetic code.

3.2 Close Collaboration of Chromatin Remodeling
with the Transcriptional Machinery

Coordination of the epigenetic program with transcription factors is key to success-
ful tissue formation. Modulation of gene expression is accomplished by controlling
initiation of transcription by assembly of the RNA polymerase II complex (POLR2,
in human the holoenzyme consists of gene products encoded by POLR2A-POLR2L,
GeneID: 5430-5441), general transcription factors (GTF2s, GeneID: 2957-2969),
TATA-box binding protein associated factor 1-15 (TAFs, GeneID: 6872-6883,
8148, 83860, 129685), promoter recognition, replacement of components of stalled
polymerase complexes by tissue-specific transcription factors, chromatin acces-
sibility, ATP-dependent chromatin remodeling factors, posttranslational histone
modifications, and DNA methylation.

3.3 Cross-talk Between Interconnected Epigenetic Forces

Histone modifiers are complementary but interconnected forces (Filipp 2017a) in
the network of different histone editing enzymes that write, erase, and read epige-
netic marks (Fig. 1). Hydrophobic modifications of distinct epigenetic marks may
lead to condensed, transcriptionally silent heterochromatin, whereas distinct polar
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epigenetic marks may cause local formation of transcriptionally active euchromatin.
For example, lysine histone methylation can compact chromatin, while acetylation
or histone lysine demethylation can open chromatin, despite many exceptions to
such simplified rules. Extensive data on chromatin accessibility and transcript abun-
dance are available, allowing for organizing, analyzing, and modeling regulatory
relationships of transcriptional control by epigenetic mechanisms (Kundaje et al.
2015; Fernandez et al. 2016).

3.4 Homeostasis Between Histone Writers, Erasers,
and Readers

The dynamic process of histone modifications is mediated by the balance between
opposing sets of enzymes in healthy cells (Fig. 1a). Histone writers chemically
modify solvent accessible amino acids of histone tails, while histone erasers
counteract. Further, reader domains determine state and type of posttranslational
histone modifications allowing to distinguish for example between acetylation,
monomethylation vs trimethylation of specific lysine residues (Taverna et al. 2007;
Musselman et al. 2012). Together, they provide a fine-tuned clockwork for regu-
lating chromatin structure and dynamics (Fig. 1a). Histone methylation is operated
by lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs)
(Rea et al. 2000), and demethylases (KDMs) (Shi et al. 2004; Yamane et al. 2006;
Whetstine et al. 2006), which were discovered to take key roles in gene expression
(Filipp 2017a). Histone methylation increases the hydrophobicity of altered nucle-
osomes and promotes compaction of chromatin. Histone acetyltransferases (HATs)
and deacetylases (HDACs) govern acetylation of histone lysine residues, influence
the plasticity of chromatin structure by changing the electrical properties of histones,
and improve the stability of many non-histone proteins by covering ubiquitination
sites. Non-degradative monoubiquitylation alters nucleosome stability, nucleosome
reassembly, and higher order compaction of the chromatin. Sumoylation of the
core histones is associated with transcriptional silencing, and transcription factor
sumoylation can decrease gene expression by promoting recruitment of chromatin
modifying enzymes. Histone phosphorylation is a transient histone modification
associated with local chromatin opening and transcriptional activation. Histone
phosphorylation marks are important for regulation of the DNA damage response.
Homeostasis between histone writers, erasers, and readers is vital for development
and maintenance of healthy tissue and—if lost—can lead to developmental defects,
autoimmunity, and uncontrolled proliferation.
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4 Discovery of Epigenomic and Transcriptomic Cooperation
Networks

4.1 Deciphering the Regulome by Complementary Functional
Genomics Technologies

The combination of both, transcriptomic and epigenomic sequencing platforms,
can resolve different levels of gene regulation, transcription factor binding motifs,
DNA and chromatin modifications, and how each component is coupled to a
functional output (Fig. 1b). Together, transcriptomic and epigenomic readouts
generate comprehensive data on regulatory interactions, the so-called regulome.
The regulome describes the interplay between genes and their products and defines
the control network of cellular factors determining the functional outcome of a
genomic component. The reconstruction of regulatory gene networks is stated
as one of the main objectives of systems biology (Filipp 2013a, b). Regulatory
networks in biology are intrinsically hierarchical and governed by interactions
and chemical modifications (Cheng et al. 2015; Ay et al. 2015). The hierarchical
nature can be accounted to the predominantly linear flow of information according
to the central dogma of biology (Crick 1970). However, an accurate description
of the regulome is a difficult task due to the dynamical nature of epigenetic,
transcriptional, and signaling networks. Systems biology has the ability to integrate
genome-wide epigenomic data recorded by ChIP-Seq, ATAC-Seq, WGBS-Seq,
and RNA-Seq to identify gene targets of a regulatory event (Zecena et al. 2018;
Wilson and Filipp 2018). The integrated analysis of such data—on the one hand
based on gene networks, on the other hand based on sequence features of high-
resolution sequencing data—captures cooperation among regulators (Wilson and
Filipp 2018). Effective experimental design and data analysis of complementary
epigenomic and transcriptomic platforms are required to decipher such epigenomic
and transcriptional cooperation that has profound impact in development and
disease.

4.2 Design of Coordinated Multi-omics Regulome Experiments

Gene expression is regulated by binding and modification of DNA and chro-
matin influencing RNA polymerase activity. Coordinated ChIP-Seq and RNA-Seq
experiments are well-equipped to capture different epigenomic and transcriptomic
levels governing the circuitry of a regulatory network (Fig. 2). A well-designed
experimental setup pinpoints upstream master regulators as well as the effector
network, streamlines data processing, facilitates prioritization of recorded informa-
tion, and generates hypotheses for follow-up studies. ChIP-Seq is the most direct
way to detect chromatin binding events and chemical modifications of histones.
In regulome studies, experimental goals of ChIP-Seq assays may focus on in vivo
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Fig. 2 The experimental design of regulome studies comprises multi-level controls to refine coop-
eration networks between epigenomic remodelers and transcription factors. Matched experiments
of (a) epigenomic and (b) transcriptomic profiles elucidate synergistic forces across different
regulatory levels and facilitate identification of effector networks. (c) Division of labor ascertains
target specificity at genome-wide reach. In an integrated but modular setting, enzymatic domains
of epigenomic factors control chromatin accessibility via histone modifications, while cooperating
transcription factors navigate accessible promotor motifs. (d) Epigenomic and transcriptomic
cooperation reinforces a specific effector network. Epigenomic master regulators have the ability
to coactivate gene targets by collaborating with tissue-specific transcription factors. In tumors,
epioncogenes support cell autonomy by preadaptation and promotion of cancer metabolism
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binding sites of an epigenomic master regulator and genome-wide association with
chromatin marks, transcription factors, recognition motifs, DNA-binding enzymes,
histones, chaperones, or nucleosomes. Importantly, assessment of complementary
data levels such as protein binding, posttranslational modifications, or transcription
factor binding sites is more informative than replicates of redundant data levels.
Antibodies recognizing different histone modifications or epigenetic regulators
can strengthen and cross-validate observations, while providing built-in matching
controls in an economic fashion. Immunoprecipitation experiments with specific
antibodies usually require genomic input controls or statistical models to be able
to subtract background noise. When allocating conditions of specimens, wealth
of complementary epigenomic information and statistical power vs number of
replicates and experimental cost have to be taken into consideration. Optimal
experimental design enables access to different layers of the regulatory network
by organizing complementary specimens and assays in an array of coordinated
experiments (Fig. 2a). By overlaying genomic binding events with tracks of epige-
nomic marks, associated with open or closed states of chromatin, the epigenomic
landscape can be effortlessly navigated. In addition, genomic editing offers tools to
conduct target-specific site-directed mutagenesis, knockouts by insertion-deletions,
transcriptional repression, or transcriptional activation via clustered, regularly
interspaced, short palindromic repeats (CRISPR) and the CRISPR-associated (Cas)
system (Ishino et al. 1987; Torres-Ruiz and Rodriguez-Perales 2017; Gasiunas
et al. 2012; Jinek et al. 2012; Cong et al. 2013; Mali et al. 2013; Wang et al.
2013). In addition, the CRISPR/Cas system has powerful applications in epigenome
editing and high-throughput screening of epigenomic regulators. Correspondingly,
conditions of loss of function, oncogenic transcriptional or copy number activation,
and hyperactivating somatic mutations (Tiffen et al. 2016a) can be monitored at the
transcriptional level (Fig. 2b). In a combined array of matching ChIP-Seq and RNA-
Seq experiments, the cooperative forces of epigenetic regulation and transcriptional
output can be studied.

4.3 Data Processing and Integration of Matched
Multi-omics Data

A ChIP-Seq assay utilizes chromatin epitope-recognizing antibodies, cross-links
chromatin via formaldehyde, fragments the chromatin, captures the DNA fragments
bound to chromatin using an antibody specific to it, and sequences the ends of the
captured fragments (Barski et al. 2007). The processing workflow (Kharchenko
et al. 2008) covers quality controls, genome alignment (Langmead et al. 2009),
data normalization, assessment of reproducibility, and peak calling (Zhang et al.
2008; Feng et al. 2011). ChIP-Seq data is information-rich and contains sequence
coordinates, genomic location, peak high, peak shape, event features, and signifi-
cance of the detected event. Such multidimensional genomic and epigenomic data
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is conveniently stored in browser extensible data (BED) format (Quinlan and Hall
2010) providing flexible ways to display wiggle (WIG) track formats in genome
browsers (Kent et al. 2002; Robinson et al. 2011). Similarly rich and complex—
despite often diminished in mainstream applications—RNA-Seq offers multiple
different perspectives on transcriptomic diversity such as alternative splicing, allele-
specific expression, or noncoding transcripts (Sultan et al. 2008; Pan et al. 2008).
Quantification and comparison of gene expression levels across conditions requires
alignment and mapping of read counts onto the genome, normalization of expression
levels, and identification of differentially expressed transcripts (Fonseca et al. 2014).
During the conversion from raw next-generation sequencing data in the file format
for sequences with quality scores (FASTQ) (Pearson and Lipman 1988; Cock et
al. 2010) to binary version of sequence alignment map (BAM) files, the output
of the differential expression analysis is consolidated into a single table file in
text format with gene ID, symbol, transcript ID, expression level, p value, and
q value. The aligned reads are passed to a quantification method to obtain gene
expression values, normalization, and in a comparative setting fold change, test vs
control expression (Mortazavi et al. 2008; Trapnell et al. 2012, 2013). Notably, such
platforms often do not output read counts but produce instead normalized reads
per kilobase of transcript per million fragments mapped (RPKM) (Mortazavi et al.
2008) in single-ended sequencing experiments and the corresponding fragments per
kilobase of transcript per million fragments mapped (FPKM) in paired-end RNA-
Seq, where two reads can correspond to a single fragment (Trapnell et al. 2010). In
an alternative workflow that facilitates a more direct comparison between ChIP-Seq
and RNA-Seq data, gene expression, differential expression, and differential binding
data values are quantified as read counts scaled via the median of the geometric
means of counts across all libraries. Such read counts are compatible with open tools
for statistical testing, differential gene expression, and binding analysis (Robinson
and Smyth 2007; Robinson et al. 2010; Anders and Huber 2010). The regulome
analysis workflow combines ChIP-Seq and/or ATAC-Seq and RNA-Seq data with
annotation of functional genomic context, differential binding analysis, differential
gene expression analysis, pathway enrichment, and motif analysis (Wilson et al.
2016, 2017; Wilson and Filipp 2018). A multi-omics precision medicine profile of
a malignant melanoma patient illustrates how multiple matched omics datasets can
be integrated and visualized for clinical diagnostics (Filipp 2017b). Conceptually,
data mapping in multi-omics medicine profiles mirrors the data flow according to
the central dogma of biology (Filipp 2013a).

4.4 Understanding Epigenomic Regulome Networks

The regulome study of KMTs and KDMs in cancer rationalizes a streamlined
workflow to connect epigenomic factors with transcriptional effector networks
(Fig. 2). ChIP-Seq experiments with antibodies against epigenomic remodelers
demonstrate absence of binding upon loss of function of the epigenetic target
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enzyme. Coherently, binding events of a lysine demethylase are associated with
gain of histone lysine methylation upon loss of function of the epigenetic eraser
enzyme (Fig. 2a). A comprehensive array of coordinated ChIP-Seq and RNA-
Seq experiments comprises epigenomic transitions, change of binding upon loss of
function, and differential expression of associated target genes in matching speci-
mens. Such unbiased design reveals functional implications of effector networks but
also shows non-enzymatic binding of epigenetic factors and multivalent scaffolding
functions (Wilson et al. 2017). In addition, both ChIP-Seq and RNA-Seq data can
be interrogated for enrichment of transcription factor motifs (Fig. 2b). Via genome-
wide annotation and integration of sequencing reads, it becomes apparent that
corresponding profiles of histone modifications are reversed upon loss of function
mirroring the enzymatic function of the epigenetic modifier (Wilson et al. 2017).
Cooperative epigenomic and transcription factor binding coincides with promoter
sites on meta-gene coordinates enriched for histone lysine demethylation—overall
indicators of transcriptionally activating epigenetic remodeling (Fig. 2c). Enriched
transcription factor motifs can be cross-examined in the ChIP-Seq data using
position site specific matrix models (Wilson et al. 2016). Conversely, direct
transcription factor binding can be assessed using specific antibodies and validate
overlapping sites. Detected motif enrichment and overlapping transcription factor
binding sites coinciding with epigenomic remodeling highlight a close teamwork of
the transcriptional and epigenomic machinery (Fig. 2d). Once more, the epigenomic
factor facilitates chromatin accessibility, while the transcription factor guides motif
recognition. Notably, a functional epigenetic protein complex constitutes several
individual recognition modules to interpret the epigenetic language. Efficiency of
protein domain architecture and gain of binding enthalpy via multi-component com-
plexes explain why multivalent interactions of writer, reader, and reader domains
emerge as a prevalent mechanism of epigenomic recognition. Rigid experimental
design and stringent data processing allow for unbiased genome-wide associations
of epigenomic networks. Thereby, the dynamic nature of chromatin remodeling,
biochemical hurdles of elusive complexes, and complexity of data structure, can be
overcome. In the field of epigenomics, simple, binary protein-protein interactions
may be intangible. This emphasizes how the phenomenon of chromatin accessi-
bility coordinates factors, facilitates multivalent, low-affinity associations, bridges
temporal disconnect, and makes direct contact needless. Sequencing experiments
focused on chromatin states are able to report on diverse aspects including chromatin
modifications, binding, cooperation, accessibility, or occupancy. By incorporating
complementary data levels into a hierarchical experimental layout, regulatory
instances, and the flow of biological information in normal and transformed cells
is revealed.
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4.5 Detecting Motif Enrichment of Epigenomic Cooperation

The detection of regulatory events can be accomplished by genomic or functional
genomic profiling (Guan et al. 2015; Edwards et al. 2016; Lanning et al. 2017).
The footprints of cooperating transcription factors are found in cognate sequence
motifs specific to their DNA binding domains (Wilson et al. 2016; Zecena et al.
2018). Such sequence motifs are pronounced in events of cooperating epigenomic
activity. Detected motif enrichment highlights modularity, versatility, and efficacy
of epigenomic cooperation providing target specificity at genome-wide reach. The
number of detected events in genome-wide epigenomic binding studies provides
statistical power for sequence motif discovery and gene target enrichment. As a
consequence, high-resolution epigenomic studies often arrive at multiple plausible
solutions, while each suggested interaction or association carries statistical signif-
icance. Enrichment scores reflect the degree to which a set is overrepresented of
a ranked list. By walking down the list the score increases when encounter an
element is encountered in the set but decreases if missing. Importantly, compu-
tations of enrichment scores can be performed at the gene or sequence level. In
addition, transcriptome studies provide directionality of regulation, transcriptional
activation or repression upon epigenomic activity—an important aspect lacking
in coordinate-based ATAC-Seq or ChIP-Seq experiments. Integration of different
sequence, gene, or network-based approaches priorities high-fidelity cooperation
partners in epigenomic regulation. By intersecting epigenomic and transcriptomic
data followed by analysis of motif enrichment (AME) and transcription factor target
(TFT), and upstream regulator analysis (URA) approaches, it is possible to gain
insights into gene networks associated with epigenomic regulators (Wilson and
Filipp 2018) (Fig. 3). Computational response element searching algorithms are able
to estimate a sequence’s likelihood in belonging to the response element of the query
transcription factor using position site specific matrices where each position in a
query transcription factor model gives each of the four letters in the DNA alphabet a
score based on the probability of that nucleotide being found at that position (Bailey
and Gribskov 1998). Motif discovery, motif enrichment, and motif scanning used the
multiple expectation maximization for motif elicitation (MEME) and discriminative
regular expression motif elicitation (DREME) suite software toolkits from a set of
user supplied unaligned sequences for ChIP-Seq regions (Bailey 2002; Bailey et al.
2015). De novo motif analysis programs MEME and DREME identify frequently
detected DNA sequences patterns and similarity matches of recurring ATAC-Seq or
ChIP-Seq sequences with DNA motifs of deposited studies in genomic sequence
databases (Grant et al. 2011). After a motif of interest is discovered the genomic
sequences of the ChIP sequenced data is scanned using the MEME suite software
find individual motif occurrences (FIMO) (Grant et al. 2011) for individual motif
occurrences using a position specific matrix to compute a log-likelihood ratio score
for each submitted sequence. The position specific matrix is used further to analyze
the sequenced data for motif enrichment for identifying potential coactivators within
the data (Wilson et al. 2016, 2017; McLeay and Bailey 2010). An important branch
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Fig. 3 Identification of transcriptional and epigenomic coactivation by complementary data
platforms and omics analysis techniques. Complementary epigenomic and transcriptomic data
serves as input for four different analysis platforms. Importantly, such genome-wide information
can be accessed at the sequence or gene level providing different level of depth and resolution.
Analysis of motif enrichment (AME) and transcription factor target (TFT), and upstream regulator
analysis (URA) approaches provide insights into gene networks associated with epigenomic
regulators, epioncogenes, and epigenomic cooperation

of epigenomic research is focused on the structural basis of chromatin interactions
and dynamics. Epigenetic factors contain structural domains that have evolved to
carry enzymatic chromatin remodeling functions. These include the royal family
of folds and plant homeodomain zinc fingers (Taverna et al. 2007). In contrast,
genomic approaches highlight DNA sequence associations and emphasize that
chromatin is organized around our genetic material. Integrative, data-driven science
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has the opportunity to overcome disciplinary boundaries and merge seemingly
opposite approaches from atomic observations to network insights.

5 Epigenomic Dysregulation in Cancer

5.1 Cross-talk of Chromatin-Associated Events

If the tightly controlled balance between histone writers and erasers is dysregulated,
cells respond with transcriptional changes and pathological features manifest.
Aberrant methylation of histones, in particular hypermethylation, is thought to
influence the pathobiology of cancer by disrupting the same pathways as are
affected by deleterious mutations and promoter cytosine-phosphate-guanine (CpG)
site DNA hypermethylation (Baylin et al. 1991; Laird et al. 1995). Additionally,
posttranslational modifications of non-histone chromatin remodeling enzymes can
influence interactions with other transcriptional regulators, and alter their enzymatic
activity. Importantly, posttranslational modification of histone proteins does lead not
only to the binding of specific reader proteins but also to changes in the affinity for
writers, erasers, or readers of other histone modifications. This induces a cross-
talk between different chromatin modifiers that allows a spatiotemporal control of
chromatin-associated events. Such a cross-talk is the focus of current investigations
contributing to our understanding of epigenomic and transcriptional cooperation.

5.2 Epigenomic Master Regulators in Cancer

Within the regulome, epigenetic master regulators (Filipp 2017a) position them-
selves at the top of cellular hierarchies and control distinct phenotypic programs
via chromatin modification without altering the core DNA sequence. Epigenetic
oncogenes or tumor suppressors can arise when an epigenetic master regulators is
somatically activated or lost, and contributes to cancer initiation and progression.
Epigenetic master regulators utilize reversible chemical modifications of chromatin,
histone or nucleotide marks, and affect gene activity without altering the core
DNA sequence. In cancer, such epigenetic master regulator are found at the top of
regulatory hierarchies, particularly in pathways related to cellular proliferation, sur-
vival, fate, and differentiation. For the manifestation of a genomic or non-genomic
aberration of an epigenetic master regulator, it is a necessity that its own activity is
affected by somatic mutation, copy number alteration, expression levels, protein
cofactors, or methylation status. Epigenetic master regulators often accomplish
target specificity of their phenotypic program by cooperation with members of the
transcriptional machinery and therefore may depend on tissue-specific expression
of such auxiliary factors. In cancer, an epigenetic master regulator populates an
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extreme state and is either permanently switched on or off. An epigenetic master
regulator will become a cancer driver, if it is not functionally neutral but contributes
to tumorigenesis or disease progression in its hyperactive or deactivated state.
Genomic profiling of cancer patients has the ability to identify coincidence or
mutual exclusivity of somatic alterations of epigenomic and transcription factors.
Extreme states of epigenetic master regulators by somatic loss or gain of function
in cancer may emphasize preexisting cooperative interactions with transcription
factors, which may be subtle and difficult to detect under normal circumstances.
A defined challenge in the field of epigenetic master regulators is to identify cancer-
specific vulnerabilities in gene targets and biological pathways that are frequently
and consistently perturbed under the control of an epigenetic driver.

6 The Power of Cancer Systems Biology

6.1 Multi-omics Support of Cooperation Networks

In a comprehensive genomic survey, the distribution of somatic alterations of
epigenetic modifiers in cancer was established (Filipp 2017a). Captivatingly, neither
activation nor loss of function dominated the landscape of epigenetic enzymes. It
was found that chromatin decondensation can cause transcriptional activation of
oncogenes but also histone hypermethylation can cause transcriptional repression
of tumor suppressor genes. Histone methylation and DNA methylation are tightly
linked and rely mechanistically on each other. Lysine methylation initiates, targets,
or maintains DNA methylation, and vice versa (Tiffen et al. 2016a). In addition,
there is a strong cooperation of epigenetic factors with the transcriptional complex.
Cooperation with transcription factors or other members of the epigenetic machin-
ery can target, amplify, or mute specific transcriptional responses. High-throughput
technology in combination with multi-omics systems biology is necessary to
decipher the dynamic interplay between epigenomics and functional output in
biological and biomedical settings (Filipp 2013b). In particular, solid bridges
between complementary next generation sequencing platforms have not yet been
established and remain a future opportunity to elucidate mechanism of epigenomic
cooperation.

6.2 Epioncogenes Are Cancer Drivers Concerting Mitogenic
Gene Networks

The ability of epigenomic regulators to team up and synergize with transcription
factors, facilitates control over specific gene networks and highlights their role as
epigenomic cancer driver, master regulator, or epioncogenes. Recent multi-omics
data has shown that the H3K9-JMJD family member, KDM3A (GeneID: 55818),
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is hyperactivated in epithelial and neuroektodermal cancers with poor prognosis
due to activation of cellular metabolism (Wilson et al. 2017). KDM3 and KMT1
family members focused on remodeling of H3K9 marks display a great range of
dysregulation in cancer. In melanoma, lung cancer, prostate cancer, and sarcoma
copy number and transcriptional upregulation of KDM3A enables a predominant
role as amplifier and epioncogene by transcriptionally activating oncogenic target
genes (Yamane et al. 2006; Wilson et al. 2017). Genome-wide assessment of how
epioncogenes control a mitogenic output requires matched epigenomic, chromatin
binding, and transcriptomic profiles paired with CRISPR/Cas9 genome editing
or stable hairpin RNA knockdown experiments (Fig. 2). Presence of ChIP-Seq
binding vs genomic input and knockout but loss of epigenomic mark due to
demethylation activity ensures bona fide identification of the detected signal. Loss
of the epigenetic modifier results in reduced histone lysine demethylase activity
and increases epigenomic H3K9 methylation in promotor region of target genes.
In addition, transcriptomics validates gene targets in glycolysis, lipid metabolism,
hypoxia, and anaplerosis that respond by differential expression upon targeted
genome editing (Filipp et al. 2012a, 2012b). Overlap of complementary data
platforms and analysis techniques identifies and cross-validates key transcriptional
regulators focused metabolic functions (Fig. 3). For cancer patients with specific
somatic activation of KDM3A, epigenomic rewiring is a profound contributor to
oncogenic progression and a rational therapeutic target. Taken together, precision
medicine efforts in combination with cancer systems biology have the ability to
elucidate genome- and epigenome-wide alterations and identify molecular pathways
suitable for drug targeting.

6.3 Gene Networks by Multi-omics Integration
of Complementary Data Platforms

Interestingly, KDMs cooperate with a network of transcription factors rather
than an isolated partner, while maintaining and accomplishing gene target and
DNA sequence specificity (Fig. 4). Removal of repressive histone marks results
in increased chromatin accessibility for transcription factors to recognize their
response elements and implement regulation of gene expression. Conversely, the
ability of transcription factors to recognize specific DNA motifs in promoter regions
of target genes is an attractive feature for histone modifiers to associate with,
since they often lack DNA specificity domains and depend on ternary complexes.
Such indirect, transient, and dynamic interactions are intrinsic to epigenomic
cooperation but can be narrowed down by acquisition of matching ChIP-Seq, ATAC-
Seq, or RNA-Seq datasets. Individual epigenomic and transcriptomic sequencing
experiments following enrichment analyses are able to delineate association of
transcription factors with epigenomic events. However, the degeneracy of motif
recognition mediated by structural domains of transcription factor families leaves
ambiguity despite base-level resolution and depth of sequencing data. Strategies that
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Fig. 4 Multi-omics integration of complementary data platforms and analyses yields well-
refined target networks. Prioritization of genome-wide profiles is challenging, since hundreds
of transcription factors are significantly associated with each individual data analysis platform
or high-throughput sequencing technology. (a) Big data challenges can be overcome by systems
biology analysis and integration of complementary but mutually supporting multi-omics data. (b)
Motif similarity is visualized by transcription factor family trees classifying superclass, class,
and family of transcription factors (from inward to outward) based on the characteristics of
their DNA-binding domains. Single epigenomic or transcriptomic datasets examined by different
analysis tools result in improved resolution but leave ambiguities. Gene target networks involved in
epigenomic and transcriptomic cooperation can be identified by intersecting complementary data
platforms and analysis techniques

take advantage of complementary point of views and integrate epigenomic coor-
dinates, motif enrichment of chromatin accessibility, and transcriptional changes
create a high-level mutual support network (Fig. 4a). By intersecting epigenomic
and transcriptomic data followed by regulome and enrichment analyses it is possible
to insights into transcriptional gene networks associated with epigenomic regulators
(Fig. 4b). In particular the direction of regulation based on the transcriptional
response is of complementary value to the coordinate-based epigenomic data.

6.4 Durable Genome-Wide Rewiring and Target Specificity
by Cooperative Networks

For the oncogenic nature and target specificity of epigenomic regulators cooperation
with transcription factors is key. KDMs cooperate with mitogenic basic helix-loop-
helix factors including MYC proto-oncogene (MYC, Gene ID: 4609), hypoxia
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inducible factor 1 alpha subunit (HIF1A, Gene ID: 3091), and sterol regulatory
element binding transcription factor 1 (SREBF1, Gene ID: 6720) and derive their
lipogenic program from association with nuclear receptors. By overlaying the
sequence and genomic data produced through matched experiment epigenomic
events can be correlated with the transcriptomic effect of histone remodelers and
transcription factors. Exploration into the cooperative roles of epigenetic histone
modifiers and transcription factor families in gene regulatory networks contribute
to our understanding of how promiscuous epigenomic and transcriptional programs
assist in oncogenesis.

6.5 Targeting Epigenomic Networks in Cancer

Epigenetic dysregulation contributes to cancer and is recognized as important factor
in controlling immune surveillance. Epigenomic master regulators carry not only
vital roles in tissue development and differentiation of the immune systems, they
also have the ability to down-regulate tumor suppressor genes, trigger uncontrolled
proliferation, and evade immune recognition by eliminating chemokines, cytokines,
and corresponding receptors involved in immune system activation (Tiffen et al.
2015, 2016a, b). Furthermore, epigenetic modifiers can activate many silenced
genes. Some of them are immune checkpoints regulators that control immune
responses. Drug inhibition studies in combination with epigenomic experiments
suggest that epigenetic drugs prime the immune response by increasing expression
of tumor-associated antigens and immune-related genes, as well as modulating
membrane surface receptors involved in immune system activation. Oncogenic
changes of the epigenome have profound regulatory consequences. Cooperative
interaction partners are recruited and recapitulated from healthy settings or may
be combined in novel ways that contribute to oncogenic progression. Therefore,
enhancing our understanding of regulatory chromatin landscapes is vital. Scientific
discoveries of epigenomic cooperation and rewiring have the potential to improve
the outcomes of cancer immunotherapy by combining epigenetic-targeting drugs
with immune checkpoint inhibitors.

7 Conclusion

Functional interactions between epigenomic and transcriptomic effector proteins
are generally complex, frequently transient, and often require the association of
additional scaffolding factors. Insights from complementary multi-omics platforms
across different biological level include chromatin accessibility, binding and mod-
ifications of chromatin, DNA methylation, and transcriptional activity. Therefore,
the high-resolution mapping of dynamic chromatin features such as nucleosome
positioning, histone modifications and histone variant composition are ideally com-
plemented by mapping the transcriptional machinery, histone modifying enzymes
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and histone modification binding proteins. Specific histone modification patterns are
commonly associated with open or closed chromatin states and genomic elements,
and are linked to distinct biological outcomes such as transcription activation or
repression. Disruption of patterns of histone modifications is associated with loss of
proliferative control and cancer. Therefore there is tremendous therapeutic potential
in understanding and targeting histone modification pathways. Thus, investigating
cooperation of chromatin remodelers and the transcriptional machinery is not only
important for elucidating fundamental mechanisms of chromatin regulation, but also
necessary for the design of targeted therapeutics.
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Abstract Recent development in high-throughput experiments has provided great
amount of data that is being used in translational personalized medicine. Data
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available in public databases is increasing exponentially as a result of the progress
in omics technologies including genomics, epigenomics, transcriptomics, pro-
teomics, and metabolomics. Advancements in computing power and machine
intelligence are affecting large-scale data analysis and integration. Two types of
data integration are often considered: horizontal and vertical meta-analysis. The
former integrates multiple studies of the same type, while the latter integrates
data at different biological levels. This integrative approach provides a better
understanding of systems complexity as a result of the global view that it offers
from a biological point of view. This chapter describes the different types of omics
analysis and discusses the methods of integrating multi-omics data using a case
study.

Keywords Omics · Integration · High-throughput · Large-scale · Systems
biology

1 Introduction

Omics is a rapidly developing, multidisciplinary, emerging field covering among
others genomics, transcriptomics, proteomics, epigenomics, and metabolomics.
High-throughput technologies permit simultaneous assessment of multiple cellular
components, providing functional outputs of key cellular pathways at different
hierarchical levels. The cellular components from which these omics data are
derived act as one unified system in vivo; thus, it is evident to integrate omics data.
No single omic analysis can fully unravel the complexities of fundamental biology,
as the regulation of the system certainly occurs at many levels (Tomescu et al. 2014).
Thus, incorporation of multi-omics information can provide a more comprehensive
analysis from a biological point of view. Integration aims to bridge the gaps between
vast amounts of data generated for systematic understanding of biology. Indeed,
information that is thoroughly gathered, but does not have significant findings on its
own, may find great value when combined. Studying biological phenomena at omics
and multi-omics levels will probably lead to significant progress in personalized
medicine (Chen et al. 2012). The revolution of omics profiling technologies will
considerably benefit health care, especially in disease mechanism elucidation,
molecular diagnosis, and personalized treatment (Fig. 1).

2 Genomics

Genomics is the first milestone in the omics era and the most established omics
field. Our genome encodes all the information needed to develop from a single cell
into a highly complex functional organism. Therefore, decoding the DNA sequence
is vital for almost all branches of biology. The breakthrough started in 1977 by
Frederick Sanger (Sanger and Coulson 1975) who developed first DNA sequencing



Coupling Large-Scale Omics Data for Deciphering Systems Complexity 155

1950s-1960s 1970s 1980s 1990s 2000s
1952 1975 1982 2000

Electrophoresis Southern blot shotgun sequencing NGS

Genomics
1953 1977 2005

DNA double helix DNA sequencing GWAS

1952 1988 2006
Electrophoresis ChIP DNA methylation maps

Epigenomics 2007
ChIP-Seq

2008
Dnase-Seq

Transcriptomics 1952 1995 2008
Electrophoresis DNA Microarrays RNA-Seq

1952 1970 1986 1990 2003
Electrophoresis SDS-PAGE LC-MS Liqiud chromatpgraphy MALADI-TOF

1956 1973 1987 1992 2015
Proteomics and Protein sequencing HPLC MALADI-MS Capillary electrophoresis AE-MS

Metabolomics
1959 1975 1989 1996

GC-MS 2DE ESI-MS LC-MS/MS

1966 1979 1999
Tandem MS Gas chromatography Protein microarray

Fig. 1 Time line of omics technologies

method, which became the basis for modern innovations (Shendure and Ji 2008).
Development of the polymerase chain reaction, the availability of high quality
nucleic acid modifying enzymes, and progress in automated DNA sequencing
enabled the Human Genome Project to be completed in 2003 (International Human
Genome Sequencing Consortium 2004). Since then, the landscape of genomics
has evolved significantly and outstanding progress has been made in genome
sequencing technologies. Further developments have led to the second generation
sequencing that overcame Sanger’s restrictions, allowing to sequence millions of
bases for several genomes in a relatively short time, which helped to accomplish
the 1000 Genomes Project (1000 Genomes Project Consortium et al. 2015). This
allowed easier detection of inter-individual variations in the genome, to understand
evolution, and most importantly, to identify genomic causes of disease development
(Eid et al. 2009). However, a relatively long time was still required to run the
machines to completion, which resulted in low read lengths. In less than a decade,
increased throughput of sequencing and dramatic reduction in costs have led to third
generation sequencing, also known as next generation sequencing (NGS), which
rely on highly advanced technologies such as Single Molecule Real-Time (SMRT)
and nanopore sequencing (Shendure and Ji 2008). Third generation sequencing
offers the advantage ofcost- and time-efficient generation of long reads with high
accuracy. NGS technologies with faster, cheaper, and more accurate sequencing
represent a principal shift in measuring genomic variants and interactions in the
entire genome (Table 1).
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Table 1 History of some
omics projects

Year Projects

1990 Human Genome Project initiated
2001 Draft of Human Genome Project
2002 HapMap Project launched
2003 Completion of Human Genome Project
2003 ENCODE Project launched
2004 ENSEMBL—an example of a gene annotation tool
2005 HapMap Project results
2007 Human metabolome draft
2008 1000 Genomes Project launched
2010 Phase 1 of 1000 Genomes Project completed
2012 1000 Genomes Project published 1092 genomes
2012 ENCODE Project initial results published

2.1 Single Nucleotide Polymorphisms (SNPs)

The current revolution in genomics makes it possible, not only to determine our
entire DNA sequence but also to understand how our specific genome can inform
our health. As high-throughput sequencing technologies provide a resolution at the
single nucleotide level, genetic variations can now be identified including rare single
nucleotide polymorphisms (SNPs) and copy number variations (CNVs) (Buermans
and den Dunnen 2014). SNPs, which correspond to changes in a single nucleotide
among a population, are the most common type of genetic variation, accounting
for 90% of the differences in the human genome. Some SNPs are associated with
predisposition to disease, how fast a disease progresses, the response of a disease to
a given treatment, and drug side effects. SNPs are among the most useful methods
for predicting the risk of disease development, which may help taking measures to
avoid certain conditions. In fact, knowing the specific genetic features of a patient’s
cancer will allow physicians to better match the treatment to the individual’s profile,
perhaps by increasing the effectiveness of therapy and minimizing serious side
effects.

2.2 Genome-Wide Association Studies (GWAS)

Genome-wide association studies (GWAS) were made possible owing to the
availability of microarrays and genotyping technologies. Millions of SNPs have
been mapped and linked to diseases (Klein et al. 2005). The first remarkable
success of GWAS arrived in 2005, with the identification of a variant in complement
factor H gene, which associated with age-related macular degeneration (Maraganore
et al. 2005). To date, more than 2000 loci of common human diseases have
been identified by GWAS, which made it possible to identify genetic traits from
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SNPs without sequencing the entire genome (Manolio and Collins 2009). GWAS
studies have clearly provided numerous recognized associations, which is helpful
in understanding complex diseases and identifying new potential drug targets.
However, GWAS did not significantly help in predicting the risk of common
diseases, drug efficacy or toxicity. In addition, false positive or false negative
findings are produced by GWAS studies due to participants’ heterogeneity (Ng et
al. 2009). Besides, common variants are not responsible for all disease risks and
thus GWAS will not detect all variants involved.

2.3 Next Generation Sequencing (NGS) and Whole Genome
Sequencing (WGS)

The arrival of high-throughput NGS has accelerated the discovery of genetic
variants and genome-wide profiling of expressed sequences and epigenetic marks,
allowing for systems-based analyses of diseases. Researchers can now obtain,
through this technology, the most comprehensive view of genomic information
and associated biological implications (Qin et al. 2010). The first proof of concept
that NGS technology could be used to detect genetic disorders was provided by
Shendure’s group in 2009 (Byron et al. 2016). Indeed, Whole Genome Sequencing
(WGS) is becoming one of the most widely used applications in NGS and has
quickly gained broad applicability in medicine. It is increasingly being applied in
clinical diagnosis, as it can identify genetic variations associated with diseases,
determine genes that cause cancer, and detect pathogens in patient samples or
isolates (Caskey et al. 2014). Moreover, WGS has the potential to accelerate the
early detection of disorders and the identification of pharmacogenetic markers to
customize treatments (DePristo et al. 2011). This technology is reshaping medicine
and is expected to improve health until reaching personalized medicine. Clinical
application of WGS revealed huge genetic differences among individuals including
DNA variations in coding and/or regulatory regions of genes implicated in drug
metabolizing enzymes, transporters, receptors, or drug targets (DePristo et al. 2011).

2.4 Whole Exome Sequencing (WES)

Whole exome sequencing (WES) has become a popular choice for genetic studies,
primarily for identification of disease-associated gene variants involved in disease
development and clinical diagnosis. The human exome consists of 1% of the
human genome but harbors 85% of disease-related variants (Stadler et al. 2010).
Sequencing of the complete coding regions could potentially uncover mutations
causing rare genetic disorders as well as variants predisposing to common diseases.
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WGS offers exciting new opportunities for the diagnosis and treatment of diseases
leading to a new era of personalized medicine (Cantor et al. 2010).

In summary, NGS technologies, in recent years, have generated tremendous
and complex genomic data sets that accumulated in the public domain, represent-
ing a major breakthrough in data acquisition (Anderson 1981). Human genetic
variations produced by the International Hap Map Project has provided a genome-
wide database that represents a radically new approach for searching for genetic
variants associated with complex diseases (Consortium 2010). HapMap and the
1000 Genomes Project produced extensive catalogs of human genetic variations
(ENCODE Project Consortium 2012) making it possible to investigate complex
phenotypes and multifactorial diseases using GWAS. Of importance, we are moving
forward in identifying all functional genomic elements through the ENCODE
Project (Carithers and Moore 2015) and in understanding the role of noncoding
variants in tissue-specific contexts through the GTEx Project (GTEx Consortium
2013). Moreover, NGS studies brought significant discoveries of new mutations in
most common cancers and contributed to the identification of key genetic variants
in oncology. Indeed, the Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) have performed genome and exome sequencing on
thousands of tumor–normal pairs. These studies have described the mutational land-
scapes for over 20 cancer types, demonstrating that tumors can vary dramatically in
both the type and number of mutations.

The future of genomic technologies holds great promise; however, we should
make an effort to link and integrate the information that is being generated in order
for genomic data to have a more meaningful impact on our understanding of biology
and diseases.

3 Epigenomics

In 1942, Waddington used the term epigenetics to denote changes in phenotype
without changes in genotype, in order to explain aspects of development for
which there was little mechanistic understanding (Waddington 1942). Chemical
modifications of DNA were detected as early as 1948 (Hotchkiss 1948). In the mid-
1960s, pioneering work of Allfrey (Allfrey et al. 1964) on histone modifications,
in particular histone acetylation, led to the hypothesis that acetylation is closely
linked to gene activity (Verdin and Ott 2014). The role of DNA methylation in gene
regulation was proposed in the mid-1970s by Holliday and Pugh (Holliday and Pugh
1975), among others. By 1980, the functional connection between DNA methylation
and gene repression was established, as was the existence of CpG islands (Bird
et al. 1985). Beginning 2003, Encyclopedia of DNA Elements (ENCODE) project
was the first international project to describe all the functional elements encoded
in the human genome by mapping epigenetic modifications and by using large-
scale epigenome profiling to identify regulatory elements in the human genome.
ENCODE became a member of the International Human Epigenome Consortium
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(IHEC), a project that was launched in 2010 that aimed to generate 1000 reference
epigenomes in primary tissues and cell types.

The DNA sequence was the core of genomic research until the emergence of
epigenomics when chemical compounds surrounding the DNA were shown to direct
the function of genome as a whole. Given its physical association with the genome,
the epigenome has been proposed to perform key roles in dictating genome structure
and function, including the timing, strength, and memory of gene expression
(Kouzarides 2007). Epigenomics has progressed over the past decade and has been
acknowledged as an explanation for interindividual and intraindividual diversity, as
well as a source of hidden information beyond genes, which can be influenced by
intrinsic and extrinsic factors. Epigenetic modifications are fundamental to cellular
differentiation and help determine cellular identity; for instance, what distinguishes
a skin cell from a brain or other cell types (Lister et al. 2011). Epigenomic profiling
was crucial in discovering many significant associations between chromatin features
and genomic function at the level of gene expression, gene regulation, cell identity,
ageing, and even disease development (Clark et al. 2016). Errors in epigenetic
modifications can cause abnormal gene activity or inactivity, leading to genetic
disorders. Conditions including cancer, metabolic and degenerative disorders have
all been found to be related to epigenetic errors. Their alterations have been
associated to early stages of cellular transformation in tumors (Kulis and Esteller
2010).

3.1 Histone and DNA Modifications

Epigenomes include both histone and DNA modifications, layered on top of the
genome, which are responsible for providing information to genes during particular
events. The epigenetic condition of a cell is affected by both developmental
and environmental factors including nutrients, toxins, infection and drugs. Thus,
epigenetics exhibits a close relationship between the environment and the genome.
The chromatin can be altered in different ways; however, only few chromatin
features have been shown to be functionally involved in gene expression. The first
chromatin mark to gain attention, in the late 1940s, was DNA methylation due to
its uneven distribution in the genome and its heritability (Hotchkiss 1948). DNA
methylation is vital to cellular processes including X chromosome inactivation,
gene suppression, genomic imprinting, and disease development. On the other hand,
certain proteins can indirectly alter the genome’s accessibility for transcription
factors by binding to histone proteins. Changes in these proteins influence distinctive
processes in the cell, including the activation or inactivation of transcription,
chromosome packaging, and DNA damage and repair. Histone modification is an
important posttranslational process that plays a key role in gene expression and
represents by far the largest category among known chromatin marks. To date, a total
of 12 chemical modifications have been described, which can occur at more than
130 posttranslational modification sites. The theoretical number of combinatorial
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possibilities is truly astronomical (Khare et al. 2012) and, consequently, our
knowledge of their functional roles is still limited (Tessarz and Kouzarides 2014).

3.2 Epigenetics and Diseases

For decades, research has focused on isolating genes that contribute to a particular
phenotype. Approaches such as genome-wide association studies (GWAS) identify
locations in the human genome at which variations in DNA sequence are linked
to specific phenotypes. However, variants located in a DNA region that does
not encode a protein will not provide insights into the regulatory mechanisms
underlying the association. In these cases, comprehensive epigenomic analyses can
provide the missing link between genomic variation and cellular phenotype (Welter
et al. 2014). A variety of diseases are triggered by alterations of epigenetic patterns,
including changes in DNA methylation, posttranslational histone modifications, or
chromatin structure. These changes represent an exceptionally interesting layer
of information for disease stratification and precision medicine (Dirks et al.
2016). Some health conditions, e.g., Beckwith Wiedemann syndrome, Prader–Willi
syndrome, and Angelman syndrome, are thought to be associated with a change in
genome imprinting. Accordingly, the nature of epigenomic imprinting and its impact
on the human genome could be connected in medical practice, i.e., in diagnosis and
treatment of related conditions. Indeed, Polak et al. (Polak et al. 2015) investigated
the distribution of cancer-associated genetic mutations in a set of diverse cancers and
correlated them with specific epigenomic features. Indeed, the mutation profile of
each cancer could be predicted from the epigenomic signature of the cell type from
which that cancer was originated. Remarkably, epigenomic signatures of cancer
cell lines were poor predictors of this profile; hence, the authors concluded that
the density and distribution of cancer mutations are strongly linked to a cell-type-
specific epigenomic signature. Compared to normal cells, the genome in tumor cells
has been shown to be hypomethylated, with hypermethylation happening onlyin
the genes engaged with tumor cell invasion, cell cycle control, DNA repair, and
processes for which silencing would induce the spread of cancer. For instance,
in colon cancer, hypermethylation acts as a biomarker in the progress of disease.
Epigenetic modifications of chromatin hold considerable promise for therapies since
most of them are reversible, owing to the adaptive nature of epigenetic control.
Researchers are now studying the link between DNA methylation and human
diseases such as malignancy, muscular dystrophy, and different congenital defects.
Their discoveries could be fundamental in helping the development of therapies
and in understanding conditions that develop during embryonic growth because of
abnormal methylation of the X chromosome and gene imprinting. Epigenetics has
been and will continue to be one of the most innovative research areas in modern
biology and medicine.
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4 Transcriptomics

Transcriptomics is one of the functional genomic approaches while the transcrip-
tome is a collection of all ribonucleic acids (RNA) present in a cell. RNAs are
macromolecules with diverse cellular and biological functions; for instance, they
are templates for protein synthesis and assist in gene regulation. The transcriptome
is dynamic, as the levels of RNA transcripts vary during developmental stages and
in response to certain conditions. The goal oftranscriptome analysis is to identify
differentially expressed genes in different conditions, thus, indicating the genes or
pathways associated with these conditions. Over the years, different methods have
been developed to study the transcriptional activity of genes from semiquantitative
methods such as northern blotting and quantitative-PCR (Weis et al. 1992), to high-
throughput methods like microarrays and RNA sequencing (Schena et al. 1995).
The first attempts to study the whole transcriptome began in the early 1990s (Adams
et al. 1991). In 1995, Serial Analysis of Gene Expression (SAGE) was developed,
based on Sanger sequencing (Velculescu et al. 1995). SAGE was instrumental in
profiling novel and known transcripts but was labor-intensive and had limited scope
and quantitative capability.

Transcriptomics offers a global view of the molecular transcriptional activity
in cells, which affects both human physiology and pathology. Predisease pre-
diction is not possible through transcriptomics because gene expression levels
vary considerably before disease initiation. However, it is very suitable for either
early identification of a disease or classifying patients into subgroups to predict
their health outcomes. Deregulation of long noncoding RNAs (lncRNA) has been
implicated in various diseases (Schmitz et al. 2016) such as myocardial infarction
(Ishii et al. 2006), diabetes (Arnes et al. 2016), and cancer (Gupta et al. 2010).
Gene expression profiling using microarrays is a swift approach to diagnose, via
biomarker genes, a wide range of diseases such as cancer, diabetes, arthritis,
and rheumatoid arthritis (Heller 2002). A significant promise was held with the
emergence of RNA-Seq technology for its application in diagnosis, prognosis, and
treatment of various disorders, including cancers and infectious diseases. RNA-Seq
analysis compares transcriptomes across different developmental stages, diseases, or
specific conditions. For example, comparing the transcriptomes of tumor and normal
cells and looking for copy number alterations or alternative spliced variants are
valuable methodologies that are missing in microarrays. Moreover, transcriptome
analysis may provide a comprehensive snapshot of active genes during various
stages of development. Besides, RNA-Seq approaches have allowed for the large-
scale identification of transcriptional start sites (TSS) in addition to uncovering
alternative promoter usage and novel splicing alterations. These regulatory elements
are important in human disease, and therefore, defining such variants is crucial to
the interpretation of disease-association studies. In addition, RNA-Seq can identify
disease-associated SNPs, allele-specific expressions, and gene fusions contributing
to our understanding of disease causal variants (Khurana et al. 2016). Moreover,
RNA-Seq could be used in the diagnosis and management of infectious diseases
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such as monitoring for drug-resistant populations during therapy and tracking the
origin and spread of the Ebola virus (Shabman et al. 2014).

Some of the accessible databases for transcriptomics is ArrayExpress (Parkinson
et al. 2007), hosted by the European Bioinformatics Institute (EBI) site, which
enables researchers to submit array data and conduct analysis. In addition, Gene
Expression Omnibus (GEO) is a public repository of microarray and RNA-Seq data
hosted by the NCBI site. These websites publish raw data to accompany a research
publication for public access (Barrett et al. 2013). A variety of cancer studies and
their profiling were performed using microarrays. A large fraction of this data can be
found integrated in Oncomine, a cancer microarray database and Web-based data-
mining platform (Rhodes et al. 2004, 2007).

Transcriptomics has revolutionized our understanding of how genomes are
expressed. Over the last three decades, new technologies have redefined what is
possible to investigate while integration with other omics technologies is giving an
increasingly combined view of the complexities of cellular systems (Fig. 2).

5 Proteomics

With the mapping of the human genome, proteomics has rapidly emerged as a
new field of research. Proteomics is complementary to genomics but encompasses
functional analysis. The twenty first century has been designated as the postgenomic
or proteomic era. Proteomics is the study, under defined set of conditions, of the
whole protein set and their interactions in a cell, tissue, or organism (Consortium
2001). Proteins within the cell provide structure, produce energy, as well as allow for
communication and movement. Highly specialized proteins regulate most biochem-
ical reactions in a cell. Hence, the identification, quantification, and characterization
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of all cellular proteins is of extreme significance in order to understand molecular
processes that mediate cellular functions.

The term proteoform, introduced in 2013, is a relatively new terminology to
designate all different molecular forms in which the protein product of a single
gene can be found (Smith et al. 2013). Human cells apparently have as few as
19,000 protein-encoding genes, representing less than 2% of the genome. However,
these genes specify more than 1,000,000 final products of proteoforms, including
the products of alternatively spliced RNAs (Roy et al. 2013), nonsynonymous
SNPs (Schaefer et al. 2012; Wu and Zeng 2012), and extensive posttranslational
modifications that add chemical moieties on amino acids or remove residues from
the protein (Farley and Link 2009; Abou-Abbass et al. 2016). Besides, proteins
change drastically as genes are turned on or off due to environmental changes.
Proteins are also pleotropic since they have numerous distinct functions. They are
not autonomous; instead, they act in complexes with other proteins. Indeed, protein–
protein interactions (PPIs) and multiprotein complexes underlie almost all of the
vital biochemical processes occurring in almost all living cells and tissues (Alberts
1998). Consequently, elucidating the role of proteins, especially on a large scale, is
more difficult than for nucleic acids.

Analysis of proteomes, performed through the highly accurate and sensitive
technology of mass spectrometry (MS), is promising for the introduction of
proteomics in precision medicine. MS can be used for screening and diagnosis of
disease and metabolic disorders, monitoring drug therapy, identifying drug toxicity,
and discovering new biomarkers. Protein sequencing by MS has increased due
to its ability to tolerate protein complexes and the possibility of high throughput
options. MS-based proteomics can reveal the proteome’s quantity and hence allows
understanding the biochemical state of cells or tissues. Platforms originating from
MS are unique in their potential to detect and quantify known and unknown
proteins on a large scale. This technology has significantly contributed to the
unraveling of cellular signaling networks, elucidation of the dynamics of PPIs
in different cellular states, and improved diagnosis and molecular understanding
of disease mechanisms. Interestingly, MS can also be applied to investigate the
posttranslational modifications of proteins. On the other hand, MS imaging (MSI)
is performed to localize panels of biomolecules in tissues and it can visualize the
spatial distribution of molecules such as biomarkers, proteins, and metabolites based
on their molecular masses. MALDI mass spectrometry imaging was used for the
analysis of whole body tissues. Indeed, the distribution of drugs and metabolites was
detected following drug administration that was useful to analyze novel therapeutics
and provide deeper insights into toxicological and therapeutic processes (Worrall et
al. 2001). Combining MSI to histology enables the extraction of molecular profiles
from specific tissue regions or histopathological entities. MSI can facilitate, with
high sensitivity and specificity, the classification of tumors during surgery (Balog et
al. 2013). MS has been implemented into clinical research since MALDI and ESI
approaches were developed 30 years ago. The main hurdle for the clinical adoption
of these assays is their complexity and cost.
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Developments in clinical high throughput MS made possible the publication of
the human proteome draft (Uhlén et al. 2015). By comparative clinical proteomics,
scientists can associate proteomic changes of patients in comparison to known
proteomes in the databases. Clinically, translation of these findings allows the
possibility of mass spectral analysis of patient proteomes. Physicians will eventually
be able to compare patients’ proteomes with their own healthy archived records
(Lindskog 2015). Today, the new field of clinical mass spectrometry proteomics
(cMSP) seeks to unify disparate basic science approaches and validate them for
clinical proteomics (Lehmann et al. 2017). The complete characterization of all
proteins has been the ultimate aim since the introduction of proteomics (Farrah et al.
2014). The Human Proteome Project focuses on characterizing the human proteome,
while the Human Protein Atlas Project attempts to produce antibodies for all human
encoded proteins. On the other hand, the Proteome X change consortium gathers
proteomic data (Vizcaíno et al. 2014). Finally, many public repositories for PPI
information have been created such as the Database of Interacting Proteins (DIP)
(Xenarios 2002), MIntAct (Orchard et al. 2014) and Molecular Interaction Database
(MINT) (Licata et al. 2012).

6 Metabolomics

Metabolomics is the comprehensive study of the metabolome, the repertoire of
biochemical moleculesfound in cells, tissues, or body fluids. It serves as bridging
the gap between genotype and phenotype, giving a complete view of how cells
function in addition to identifying new changes in certain metabolites (Fiehn 2002).
The latter are the end products of the processes that occur within a cell and provide
a molecular outline of cellular activity reflecting biochemical processes occurring in
a particular phenotype. The metabolome reacts to environmental stimuli or disease
long ahead the transcriptome or proteome. The study of metabolomics will help
understanding the physiological state of an organism and the functional changes in
metabolic pathways that drive a disease.

Metabolic processes are associated to several vital aspects of human health.
Metabolomics gives clues about one’s health status, which is encoded by the
genome and altered by environmental factors. The metabolic profile gives quan-
tifiable data of biochemical state from normal physiology to pathophysiology in a
way that is frequently not evident from gene expression studies. Over the years,
metabolomics has been commonly employed in the understanding of pathophys-
iological processes including cancer and diabetes for the identification of disease
onset predictive biomarkers, prognosis, and treatment monitoring (Friedrich 2012;
Kim et al. 2016). The metabolome is highly responsive to biological regulatory
mechanisms such as epigenetics, transcription, and posttranslational modification,
the analysis of which presents a unique approach to characterize the phenotype.
However, metabolomics by itself may not be sufficient to fully characterize complex
biological systems or pathologies like cancer. The significant connection between
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health and metabolome is powered by small alterations in biochemical pathways
to produce drastic changes in cell metabolites. For instance, metabolomics has
given crucial perceptions into disease pathogenesis in disorders with clear metabolic
causes such as diabetes and heart disease (Palmer et al. 2015). Nevertheless, when
metabolic perturbations do not cause the disease process, they can still stimulate
modifications in the metabolome. For example, inflammatory conditions (Jung
et al. 2013), neurodegenerative disease (Trushina and Mielke 2014), infections
(Schoen et al. 2014), and cancer (Kim et al. 2009) could change cell metabolism,
permitting to recognize and classifynovel biomarkers that assist in the prediction,
diagnosis, and comprehension of disease. Recently, metabolomics has been applied
to dermatology, where it was used to distinguish characteristic biomarker profiles in
metastatic melanoma (Abaffy et al. 2013), basal cell carcinoma (Mun et al. 2016),
intense intermittent porphyria (Carichon et al. 2014), and atopic dermatitis (Assfalg
et al. 2012).

Metabolomics efficiently integrates genetic and environmental factors and has
been applied in various studies including biomarker discovery (Crutchfield et al.
2016), disease mechanisms and drug activity (García-Cañaveras et al. 2015) and
metabolism (Das et al. 2016). MS metabolomics offers the possibility to create novel
noninvasive diagnostic and screening tests, and covers novel metabolic pathwaysthat
may enhance diagnosis and comprehension of pathologies. Various reports have
shown that metabolic phenotypes can give novel insights in the study of gene
function and pathogenic pathways other than diagnosis and prognosis (Guo et al.
2015). Indeed, in order to identify appropriate therapies to particular subgroups,
MS qualitative methods and their analysis are used to assess the complex metabolic
phenotypes of patients. A proficient approach for understanding the pathogenic part
of metabolite perturbations is to consolidate metabolomics datasets from different
omics fields. Integrated omics permits analyzing and inferring the influences from
genetics, environment and microbial factors helping to reach personalized medicine.
In fact, few approaches have been established for the integration of various omics
datasuch as transformation-based integration and model-based integration (Ritchie
et al. 2015). For instance, Bayesian networks are a link based integration technique
that can be utilized to show dependent conditions between gene expression, proteins,
and metabolites (Li et al. 2016). Recently, Guo et al. have utilized an assortment of
blood-based metabolomics to evaluate the biologic importance and penetrance of
genetic mutations in a group of healthy volunteers who were diagnosed disease-
free at the time of sampling (Guo et al. 2015). Interestingly, this study recognized
early abnormalities in metabolites engaged with lipolysis, glycolysis, and amino
acid metabolism in healthy subjects that possess genetic mutations related with
diabetes. These subjectswere later identified to have the disease. Guo’s study gives
a model of how metabolomics data can give perception into the clinical implication
of different omics data in early detection of disease (Guo et al. 2015).

Together with the other omics, metabolomics constitutes one of the building
blocks of systems biology. This fast-growing domain generates huge amounts of
valuable data that require integration with other omics data and comprehensive
analysis in order to be fully interpreted.
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7 Coupling Large-Scale Data: A Case Study on RAAS

The renin-angiotensin-aldosterone system (RAAS) is a “ubiquitous” system that
is expressed locally in various tissues and exerts multiple paracrine/autocrine
effects involved in tissue physiology and homeostasis. RAAS includes succes-
sive enzymatic reactions resulting in the conversion of the “inactive” substrate
angiotensinogen (AGT) into various active peptides that elicits cellular effects by
binding to specific membrane receptors (Atlas 2007). The system is considered
a hallmark in cardiovascular homeostasis and pathophysiology. However, RAAS
inhibitors that are currently used still can not reach their desired effects and hold
certain drawbacks such as adverse side effects, incomplete blockage, and poor end-
organ protection (Nehme and Zibara 2017a, b). This could be explained by the
fact that the system includes different pathways with alternative and synonymous
enzymes and receptors having tissue-specific expression and activity. Therefore,
treatments targeting RAAS components should be achieved in a disease- and tissue-
specific manner.

We recently integrated transcriptomic, genomics, proteomics, and metabolomics
data to reveal the tissue-specific organization of RAAS in atherosclerotic lesions.
Horizontal integration of multiple microarray datasets was first used to decipher
the RNA coexpression patterns of 37 RAAS genes in atheroma lesions, including
enzymes and receptors (Nehme et al. 2015, 2016a). Expression analysis and
hierarchical clustering was done to reveal the transcriptional map of extRAAS
in atheroma using six microarray datasets, available on gene expression omnibus
(GEO) database, containing 839 human atheroma samples. The map revealed highly
reproducible coexpression modules of extRAAS components displaying favored
pathways in atheroma. Interestingly, three main modules were identified showing
intramodule functional relationships, where one module included mostly receptor-
coding genes, while the other two included enzyme-coding genes. Interestingly,
similar results were obtained from GEO datasets containing mouse atherosclerotic
samples, but different from normal human arterial tissues (Nehme et al. 2016a).
Promoter and transcription factor (TF) enrichment analyses were then done to
identify candidate transcription regulators of the system in atherosclerotic lesions.
A total of 21 transcription factors with enriched binding sites in the promoters
of coordinated genes were extracted, showing specific positive and negative cor-
relations with each of the identified RAAS modules. Atheroma showed specific
correlations between RAAS and the identified TFs although some similarities in
atheroma RAAS organization were shared with kidney and adipose tissues (Atlas
2007; Nehme et al. 2016a). Since RNA is not functional on its own, we performed
a global proteomics study to identify expression levels of RAAS components at
the proteome level. Unfortunately, only five proteins from RAAS were among
the list of detectable and measured proteins. This could be either due to the fact
that measurement was not possible on the rest of the proteins because of the
low specificity achieved through global analysis, or that some of the unmeasured
proteins required special extraction protocols, such as receptors for example.
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Therefore, targeted study, taking into account special extraction procedures, should
be done in the future. Nonetheless, two of the RAAS measured proteins that were
upregulated at the RNA level were also highly upregulated at the protein level,
including the substrate of the system, angiotensinogen. On the other hand, the
system’s activity depends on the local levels of angiotensin peptides metabolites,
which in turn affects their rates of production and degradation. Therefore, we
used mass spectrometry to reveal the kinetics of labeled spiked-in angiotensin-I
metabolite (Ang-I) in paired early and advanced atherosclerotic lesions (Nehme et
al. 2016b). Our results suggested that progression of atherosclerosis could be related
to the increased production of the metabolite angiotensin-II peptide (Ang-II) along
with the decreased production of the atheroprotective angiotensin-(1-7) peptide
(Ang-(1-7)). However, Ang-II may exert proatherogenic and atheroprotective effects
depending on the available expressed receptor. Going back to transcriptomics
data, only the proatherogenic angiotensin type-1 receptor (AT1R) is expressed in
atheroma, both in human and mouse, whereas the atheroprotective angiotensin type-
2 receptor AT2R is not present (Nehme et al. 2016a), thus favoring proatherogenic
effects by Ang-II peptide. Interestingly, these results were in line with a previous in
vivo study that showed the benefits of using Ang-(1-7) along with blockers. Overall,
our study deciphered the organization of RAAS at the transcriptome and proteome
levels, showing its functionality at the metabolomic level and proposed candidate
transcription factors that can be used as therapeutic targets for the treatment of
atherosclerosis.

8 Conclusion and Perspectives

Genomics data provide important information of the biological identity of cells
and individuals. In fact, such data can be useful in hereditary, prognostic and
evolutionary, studies. However, they offer only little information on the molecular
mechanisms implicated in cellular physiology and pathophysiology. In fact, a
single gene mutation may lead to thousands of changes at the RNA, protein,
metabolic and signaling levels, which constitutes the basis for disease development.
Transcriptomic studies are usually the first line of evidence used to understand the
mechanisms of cellular pathophysiology. However, several studies have recently
demonstrated discrepancies in the expression levels between different molecular
techniques, which raises the importance of vertical integration of data (Maier et
al. 2009; Koussounadis et al. 2015). Interestingly, differentially expressed mRNAs
were found to correlate better with their protein product than nondifferentially
expressed mRNAs, which may raise the confidence in the use of differential
mRNA expression for biological discovery (Koussounadis et al. 2015). Nonetheless,
posttranslational modifications are indispensable for the function of a large array of
proteins, including transcription factors and signaling molecules. Therefore, protein
expression measurement remains very powerful for assessing the functionality of the
system. On the other hand, global cellular activity depends on the physicochemical
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status of the cell, including oxygen, glucose, and ions levels. In addition, enzymatic
efficiency depends on the concentrations of substrates and products, and the affinity
between the substrate and the enzyme. A substrate could be a protein or a nonprotein
molecule, considered nonbiological, such as glucose, reactive oxygen species
(ROS), and ionic metals. These molecules could be measured by high-throughput
metabolomics techniques that are providing insights for the treatment of various
cancers. Finally, the physicochemical status of the cell takes us back to the genomic
level by affecting epigenomic markers that in turn defines gene expression patterns.

Studies in genomics, transcriptomics, epigenomics, proteomics, and metabolom-
ics have shaped our understanding of cellular complexity and heterogeneity. Each
of them provides a one-dimensional insight view of cellular function. It is now
evident that single omics analysis does not provide enough information for the
understanding of a biological system; however, a complete view of a complex
biological system can be achieved by a unified and global integrative analysis.
Compared to single omics interrogations, multi-omics can offer researchers a more
noteworthy understanding of the flow of information, from the cause of disease
to the functional outcomes or relevant interactions (Civelek and Lusis 2013).
Multidimensional analysis is being considered crucial for completely understanding
the extent of traits architecture.
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Abstract The last few years have seen an explosion of experimental and compu-
tational methods for investigating RNA structures of entire transcriptomes in vivo.
Very recent experimental protocols now also allow trans RNA–RNA interactions to
be probed in a transcriptome-wide manner. All of the experimental strategies require
comprehensive computational pipelines for analysing the raw data and converting
it back into actual RNA structure features or trans RNA–RNA interactions. The
overall performance of these methods thus strongly depends on the experimental
and the computational protocols employed. In order to get the best out of both
worlds, both aspects need to be optimised simultaneously. This review introduced
the methods and proposes ideas how they could be further improved.

Keywords RNA secondary structures · trans RNA–RNA interactions · RNA
structure prediction · RNA–RNA interaction prediction · Transcriptomes ·
In vivo RNA structure probing · In vivo probing of trans RNA–RNA interaction ·
RNA structurome · RNA interactome

1 Introduction

The remarkable chemical properties of RNA allow transcripts in vivo to directly
interact with themselves (via so-called RNA structure) or in trans with other
transcripts, DNA and proteins. Many known RNA functions are expressed in terms
of RNA structure. Substantial insight into the potential functional roles of any RNA
can already be gained by studying its so-called RNA secondary structure, i.e. the
set of base-paired sequence positions that form base pairs via hydrogen bonds (the
consensus base pairs are {G,C}, {G,U} and {A,U}). Obviously, the functional
roles of any RNA can be encoded not only via RNA structure features, but also via
sequence signals such as the sequence of codons defining a contiguous open-reading
frame at messenger-RNA (mRNA) level or the sequence of nucleotides defining a
protein-binding site. As it turns out, many ways of encoding functional information
into a transcript are mutually compatible. For example, any given transcript may
have RNA structure while simultaneously interacting with other molecules such as
other transcripts, DNA or proteins. Or, one and the same stretch of RNA may encode
a functional RNA structure as well as codon information on protein synthesis.
Cases like these are not only found in viral genomes where space constraints
force different layers of information to overlap (Pedersen et al. 2004b; Watts
et al. 2009) but can also occur in otherwise perfectly ordinary coding transcripts
of model organisms such as human, mouse and fruit fly. Luckily, overlapping
layers of information can be detected in silico provided dedicated computational
methods are employed that are capable of explicitly dis-entangling them (Pedersen
et al. 2004a,b; Meyer and Miklos 2005). It is already known that RNA structure
features can act as exquisite sensors of the complex in vivo environment and
change according to sometimes subtle changes of intrinsic and extrinsic factors.
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Examples of these factors range from single-nucleotide modifications of the primary
RNA transcript (e.g. tRNAs and rRNAs require a range of well-defined chemical
modifications at distinct sequence positions in order to become functionally active
in vivo) and other changes of the primary transcript sequence (cleavage, splicing,
tail-adding, A-to-I RNA editing, etc.) to changes of the surrounding temperature,
changing trans interacting partners (ligands, other RNAs, proteins, DNA) and
changes of the transcription speed. A wealth of recent evidence supports the notion
of alternative RNA structure expression (Meyer 2017), i.e. that a single transcript
can encode and express not just one, but several distinct RNA structures which
are differentially expressed depending on the specific in vivo environment. Known
cases do include examples not only from bacteria, but also from model organisms
such as the fruit fly (Steif and Meyer 2012; Zhu et al. 2013; Zhu and Meyer 2015;
Mazloomian and Meyer 2015). There is, for example, strong statistical evidence for
differentially expressed, local RNA structure features near splice sites that define
tissue-specific splice isoforms (Mazloomian and Meyer 2015). The corresponding
RNA structure changes are mediated by tissue-specific A-to-I RNA editing of
these structural features (Mazloomian and Meyer 2015). Alternative RNA structure
expression allows one and the same (coding or non-coding) transcript to wear
a series of distinct functional hats throughout its cellular life depending on its
directly surrounding in vivo environment (extrinsic factors) and any modifications
it undergoes itself (intrinsic changes). Taken together, the transcriptome thus offers
exceptional potential to functionally link all layers of the central dogma of biology
in a well-regulated manner that depends on the specific in vivo environment, thereby
influencing gene expression and determining the organism’s overall complexity. For
better or worse, the days where we may silently assume the validity of the one-
sequence-one-structure dogma are over. This has far-reaching implications on how
we should experimentally probe RNA structures and trans RNA–RNA interactions
in vivo and how we should model these features computationally.

Whereas protein–protein, DNA–protein and protein–RNA interactions have
been the subject of intense experimental and computational research for a while,
transcriptome-wide investigations of RNA structures and general methods for
detecting trans RNA–RNA interactions in vivo have only emerged fairly recently.
On the experimental side, one major step forward was made very recently (2016)
via the publication of three experimental protocols that can directly probe both
RNA structure features and trans RNA–RNA interactions in a transcriptome-wide
fashion in vivo. On the computational side, ab initio methods for predicting truly
novel trans RNA–RNA interactions based on primary sequence data are only just
emerging (Lai and Meyer 2016). Even these most recent experimental methods
rely heavily on the computational analysis of their raw data to infer any actual
RNA structures or trans RNA–RNA interactions. Any biological insight gained
from experimental in vivo studies is thus a complex function of the combined
experimental and computational strategies employed. The purpose of this review is
therefore to describe, highlight and discuss key features of these experimental and
computational pipelines that contribute critically to the overall results. The focus
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here is thus almost exclusively on method development. We therefore refer the
reader to the respective original papers and recent reviews, e.g. (Bevilacqua et al.
2016), regarding the biological insights gained.

2 Transcriptome-Wide Experimental Methods
for Determining RNA Structures In Vivo
in a Nucleotide-Specific Way

In vivo, RNAs are surrounded by aqueous solution. Any experimental investigation
of RNA secondary structures and trans RNA–RNA interactions (RNA structures
and RNA–RNA interactions in the following) with potential relevance to biological
in vivo systems thus has to happen in solution (Ehresmann et al. 1987).

2.1 Brief Survey of Experimental In Vitro Methods

2.1.1 Physical Methods

Early experimental methods for RNA structure probing comprise physical
methods such as X-ray crystallography and nuclear magnetic resonance
spectroscopy (NMR) (Lengyel et al. 2014). Both methods take the RNA out
of its cellular context, especially so X-ray crystallography, where the ability to
crystallise implies the almost complete removal of the solvent. Even then, not all
RNAs crystallise equally well (some not at all), so that database of RNA structures
derived by X-ray crystallography has inherent biases. NMR imposes a considerable
limitation on the length of the RNAs that can be investigated. Both in vitro methods
are low-throughput in the sense that they typically investigate a single RNA at
a time. Especially NMR requires considerable human expertise to design and
interpret all experiments required to determine a RNA structure. Experiments
for different RNAs are considered on a case by case basis. These general
limitations none-withstanding, NMR and X-ray crystallography have generated
a wealth of important insights on RNA structure properties in vitro. Discrepancies
between the RNA structures derived from NMR and from X-ray crystallography
experiments give an early indication that RNA structure features are fairly context-
sensitive (Higgs 2000). Based on these early observations, differences between
RNA structures in vitro and in vivo could thus be expected.

2.1.2 Enzymatic Methods

RNA structure features can also be probed using RNases. These ribonucleases
correspond to naturally occurring proteins that cleave at specific paired (i.e.
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double-stranded (ds)) or unpaired (i.e. single-stranded (ss)) nucleotides. Each type
of RNase comes with distinct specificities (e.g. RNAse T1 (ssG), RNAse A (ssC/U),
RNAse S1 (ssRNA) and RNase V1 (dsRNA)). Probing the same RNA with different
RNases in separate experiments is a good way to independently assess complemen-
tary RNA structure features (and to also estimate the corresponding false positive
rates via consistency checks). The size of these proteins (> 10,000 Da) (Ehresmann
et al. 1987), however, prevents them from easily crossing cellular membranes and
from resolving smaller RNA structure details, e.g. small bulges. Their use has thus
been limited to in vitro studies so far (Ehresmann et al. 1987; Weeks 2010; Knapp
1989; Woese et al. 1980; Aultman and Chang 1982; Guerrier-Takada et al. 1983;
Kertesz et al. 2010).

In vitro experiments have the advantage of allowing to examine select aspects of
the complex in vivo environment in isolation, e.g. changes in the ion concentrations,
temperature or interaction partners. In vivo, however, many such effects including
those that cannot be easily replicated in vitro conspire to create a complex
environment that cannot be readily replicated in vitro. This is mostly due to the
fact in vivo, intrinsic and extrinsic changes to the transcript happen in a space-wise
and time-wise carefully orchestrated way which is often impossible to replicate in
vitro. Several experimental and theoretical studies have, for example, confirmed that
RNA structure formation in vivo can happen co-transcriptionally and that this yields
functional RNA structures that can differ significantly from the so-called minimum-
free-energy (MFE) RNA structures predicted for already synthesised transcripts
assuming thermodynamic equilibrium (Morgan and Higgs 1996; Meyer and Miklos
2004; Wiebe and Meyer 2010; Lai et al. 2013; Proctor and Meyer 2013). This effect
is particularly pronounced for transcripts longer than around 200 nt (Morgan and
Higgs 1996), i.e. a significant portion of any transcriptome.

Overall, it should not come as a surprise that RNA structures in vitro have
been found to differ from those in vivo (Kwok et al. 2013; Tyrrell et al. 2013;
Lai et al. 2013). This has major implications for how we should computationally
model RNA structures and RNA–RNA interactions that are functionally relevant
in vivo. As we will see in the following, many well-known and commonly-used
computational methods for predicting these features are based on the assumption
that the RNA in question is in thermodynamic equilibrium (and already fully
synthesised).

2.2 Experimental Methods for Determining RNA Structures
In Vivo

Many existing experimental methods for RNA structure determination in vivo rely
on small structure probing molecules (< 500 Da) that (a) can either be readily intro-
duced into living cells via the cellular membrane (Kwok et al. 2013; Zaug and Cech
1995; Wells et al. 2000; Moazed et al. 1986; Harris et al. 1995; Merino et al. 2005;
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Wilkinson et al. 2006; Mortimer and Weeks 2007; Watts et al. 2009; Steen et al.
2012; Rice et al. 2014; Spitale et al. 2015) or that (b) be generated directly inside the
cell (e.g. hydroxyl radicals generated by the high-flux photon beam of a synchrotron
source (Latham and Cech 1989; Sclavi et al. 1997)). One exception is RNA structure
probing via cryo-electron-microscopy (cryo-EM) (Lengyel et al. 2014) which shall
not be discussed here as it is a low-throughput. Similar to RNases, both strategies
((a) and (b)) can be used to probe many RNAs simultaneously, i.e. in a massively
parallel fashion. Unlike RNases which act by cutting the transcripts into shorter
sub-sequences, these strategies only modify individual nucleotides of the underlying
transcripts chemically. Compared to RNases, these chemical RNA structure probing
methods thus have the significant, strategic advantage of respecting the linear
identity of the underlying transcript. One significant disadvantage of these chemical
RNA structure probing methods, however, is that higher-dimensional information
on secondary and tertiary RNA structure features is converted into position-specific
information along the linear sequence of the transcript. This linearisation implies,
in particular, that any direct information on actual base pairs is entirely lost.

The main task of the computational interpretation is thus to convert the exper-
imental probing information for individual nucleotides back into RNA structures
involving actual base pairs. It is important to note here that all of these experimental
methods chemically modify single, individual nucleotides, but that the reason for
each such modification typically extends well beyond the confines of the modified
nucleotide itself. That is, the modified nucleotide captures its wider secondary and
tertiary RNA structure context. It is thus not entirely appropriate to say that these
chemical RNA structure probing methods have single-nucleotide resolution. We will
see later on that this has important implications for the computational interpretation
of the experimental structure probing data.

Depending on the chemical used for chemical RNA structure probing, these
methods can be sub-divided into those that target unpaired nucleotides in a
nucleotide-specific way and those that act in a ribose-specific way, see Table 1 for an
overview. The first group comprising DMS and CMCT modifies distinct positions
in a nucleotide-specific way, but unpaired nucleotides only, whereas reagents of
the second group (so-called SHAPE reagents) alkylate the C2’-hydroxyl group of
the ribose and thereby the group acts in a way which is neither nucleotide-specific
nor completely pairing-status-specific. SHAPE stands for selective 2’-hydroxyl
alkylation analysed by primer extension (McGinnis et al. 2012; Merino et al. 2005;
Weeks 2010). SHAPE reagents assess the flexibility of the RNA backbone and
thereby probe the local RNA structure environment of each type of nucleotide.
Raw SHAPE reactivity values thus have the advantage of covering both paired
and unpaired nucleotides in any given RNA. The downside, however, is that the
distributions of SHAPE values for paired and unpaired nucleotides typically have
a non-negligible overlap which requires carefully computational dis-entangling. An
additional complication arises due to the fact that all SHAPE reagents also react with
water. Different SHAPE reagents have different half-lives in water (t1/2 hydrolysis
at a specific temperature) spanning several orders of magnitude. These details have
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Table 1 Overview of reagents used for transcriptome-wide in vivo probing of RNA structures
(cis) and trans RNA–RNA interactions (trans)

Chemical Probing Specificity Sites of modification

(1) DMS cis Nucleotide-specific N1A, N3C, N7G

(2) CMCT cis Nucleotide-specific N3U, N1G

(3) NMIA cis Ribose-specific C′
2OH

(4) 1M7 cis Ribose-specific C′
2OH

(5) 1M6 cis Ribose-specific C′
2OH

(6) NAI-N3 cis Ribose-specific C′
2OH

(7) Hyroxyl radical cis Ribose-specific C′
4H

(8) AMT cis, trans Nucleotide-specific Base-pairing pyrimidine

(9) Biopsoralen cis, trans Nucleotide-specific Base-pairing pyrimidines

Chemical probing of transcriptome-wide RNA structure features (see cis above) in vivo has so
far been done utilising both nucleotide-specific (DMS and CMCT) and ribose-specific reagents
(NMIA, 1M7, 1M6, NAI-N3, hydroxyl radical (Latham and Cech 1989; Sclavi et al. 1997; Soper
et al. 2013)). The nucleotide-specific reagents modify only unpaired sequence positions in a
highly nucleotide-specific way. In contrast to this, most ribose-specific reagents act by alkylating
the C2’-hydroxyl group of the ribose of an individual sequence position and thereby assesses
the flexibility of the RNA backbone in the vicinity of the chemically modified nucleotide. In
contrast to the nucleotide-specific reagents, these so-called SHAPE reagents thus yield chemical
modifications of both, unpaired and base-paired nucleotides. These reagents ((1)–(6)) have been
used in transcriptome-wide screens of RNA structure features in vivo, see Table 2 and the text for
more information. AMT and biopsoralen are both psoralen-derivatives. They covalently cross-link
base-pairing pyrimidines in conjunction with UV-light at 365 nm. This cross-linking can be
reversed using UV-light at 254 nm. They have been used in recent, transcriptome-wide in vivo
experiments to probe both RNA structure features (see cis) and trans RNA–RNA interactions
(see trans), see Table 2 and the text for more information. Abbreviations used: DMS (dimethyl
sulfate) (Kwok et al. 2013; Zaug and Cech 1995; Wells et al. 2000), CMCT (1-cyclohexyl-
(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate) (Moazed et al. 1986; Harris et al.
1995), NMIA (N-methylisatoic anhydride) (Merino et al. 2005; Wilkinson et al. 2006), 1M7
(1-methyl-7-nitroisatoic anhydride) (Mortimer and Weeks 2007; Watts et al. 2009), 1M6
(1-methyl-6-nitroisatoic anhydride) (Steen et al. 2012; Rice et al. 2014), NAI-N3
(2-methylnicotinic acid imidazolide-azide) (Spitale et al. 2015), AMT (4’-aminomethyltrioxsalen)
(Calvet and Pederson 1979; Sharma et al. 2016; Lu et al. 2016) and biopsoralen (biotinylated
psoralen (psoralen-PEG3-biotin)) (Aw et al. 2016)

to be carefully considered for making the correct choice for each specific research
question, e.g. when trying to investigate RNA structure features as function of time.

In principle, it is also possible to probe RNA structure features with molecules
that occur naturally to some extent in living cells, e.g. hydroxyl radicals (Latham and
Cech 1989; Sclavi et al. 1997). Similar to SHAPE reagents, this chemical acts in a
ribose-specific manner and acts both on paired and unpaired nucleotides. Unlike
all SHAPE reagents, however, it modifies the C4’-H group (rather than the C2’-
hydroxyl group) of the ribose and thereby tends to probe the tertiary RNA structure
environment of individual sequence positions. In normal circumstances in vivo, the
concentration of hydroxyl radicals is too low for RNA structure probing. In order
to artificially increase the concentration for successful RNA structure probing in
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vivo, X-ray radiation can be used, e.g. generated by a synchrotron source which
can generate photon beams of sufficiently high flux. This has already allowed
RNA structure probing with high, time-wise resolution in vitro (Sclavi et al. 1997)
and in vivo (Soper et al. 2013).

2.3 Experimental Methods for Transcriptome-Wide Probing
RNA Structures In Vivo

The above methods for the chemical probing of RNA structures in vivo can naturally
probe many RNAs simultaneously. The key achievement of the last few years was
to realise that these methods can be combined with high-throughput transcriptome-
wide next-generation sequencing (NGS). For this, RNA structure information is first
converted into a linearised sequence signal. This is done for many transcripts in
parallel. In a second step, these linearised sequence signals are efficiently read out
using high-throughput sequencing (typically, NGS).

The corresponding experimental methods can be classified according to (a)
the chemical used for RNA structure probing and (b) the protocol employed for
converting structure probing information into sequence-based information that can
be read in a parallelised fashion using NGS techniques. The second step can
comprise a variety of different extraction, depletion and enrichment steps whose
features are also key determinants of the overall sensitivity and specificity of the
combined experimental protocol.

As the focus here is on in vivo methods, we review in vitro methods for
transcriptome-wide RNA structure only briefly. Historically, PARS (parallel analy-
sis of RNA structures) was the first to assess RNA structures in a massively parallel
fashion using RNases for enzymatic RNA structure probing (Kertesz et al. 2010;
Wan et al. 2012; Righetti et al. 2016; Wan et al. 2014, 2013; Del Campo et al.
2015). Other in vitro approaches have since included those based on enzymatic
structure probing (DS/SSRNA-SEQ (Zheng et al. 2010; Li et al. 2012a,b) and FRAG-
SEQ (Underwood et al. 2010) as well as approaches based on chemical probing
(DMS-SEQ (Rouskin et al. 2014) and RING-MAP (Homan et al. 2014) using
DMS, HRF-SEQ (Kielpinski and Vinther 2014) and MOHCA-SEQ (Cheng et al.
2015) using hydroxyl radicals, SHAPE-SEQ and SHAPE-SEQ 2.0 (Lucks et al.
2011; Loughrey et al. 2014; Watters et al. 2016b) (using SHAPE reagent 1M7)
and SHAPES (Poulsen et al. 2015) (using SHAPE reagent NPIA)). Some in vitro
methods employ two or more chemical reagents, e.g. CHEMMOD-SEQ (Hector et al.
2014) (DMS and SHAPE reagent 1M7), MAP-SEQ (Seetin et al. 2014) (DMS,
CMCT and SHAPE reagent 1M7) and CIRS-SEQ (Incarnato et al. 2014) (DMS and
CMCT). It is especially advantageous to combine nucleotide-specific with ribose-
specific chemical modifications as these complement each other and enable valuable
cross-checks. These in vitro methods are appropriate for RNA structure probing, if
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the artificial setting can be justified for addressing specific scientific questions. Care
has to be taken, however, not to simply generalise these in vitro results to various in
vivo settings.

All of the existing in vivo methods employ chemical probes for RNA structure
probing. In all cases, the raw structure probing data consists of probing values for
individual sequence positions, not base pairs. Most of the currently existing in vivo
methods employ DMS as structure probing reagent, such as STRUCTURE-SEQ (Ding
et al. 2014, 2015), DMS-SEQ (Rouskin et al. 2014), MOD-SEQ (Talkish et al. 2014;
Lucks et al. 2011) and targeted STRUCTURE-SEQ (Fang et al. 2015). In addition,
SHAPE-based approaches such as SHAPE-MAP (Smola et al. 2015a,b; Siegfried
et al. 2014; Lavender et al. 2015; Mauger et al. 2015) (SHAPE reagents: 1M7,
1M6 and NMIA) and ICSHAPE (Spitale et al. 2015; Flynn et al. 2016) (SHAPE
reagent: NAI-N3) now exist, as well as earlier in vitro approaches such as SHAPE-
SEQ (Lucks et al. 2011; Mortimer et al. 2012) (SHAPE reagent: 1M7) that were
extended to combine the earlier SHAPE-reagent with DMS-based probing in cell
SHAPE-SEQ (Watters et al. 2016a,b), see Table 2 for an overview. The major steps
of all currently existing in vivo RNA structure probing methods are

Table 2 Overview of methods used for transcriptome-wide in vivo probing of RNA structures
(cis) and trans RNA–RNA interactions (trans)

Name Probing Reagent

(a) STRUCTURE-SEQ cis DMS

(b) DMS-SEQ cis DMS

(c) MOD-SEQ cis DMS

(d) SHAPE-MAP cis 1M7, 1M6, NMIA

(e) ICSHAPE cis NAI-N3

(f) In cell SHAPE-SEQ cis 1M7, DMS

(g) Targeted STRUCTURE-SEQ cis DMS

(h) PARIS cis, trans AMT

(i) SPLASH cis, trans Biopsoralen

(j) LIGR-SEQ cis, trans AMT

The first few methods ((a)–(g)) probe RNA structure features by chemically modifying individual
nucleotides, either using reagents that act in a nucleotide-specific way on unpaired sequence
positions only (e.g. DMS) or using SHAPE-reagents that act in a ribose-specific way and thereby
assess base-paired and unpaired sequence positions (e.g. 1M7, 1M6, NMIA, NAI-N3), see Table 1
for more information. All of these methods convert RNA structure probing information into a
linearised sequence signal of position-specific chemical modifications that can be read out in
a massively parallel fashion using next-generation sequencing methods. In particular, none of
these methods retains direct information on specific base pairs. PARIS, SPLASH and LIGR-SEQ

simultaneously probe RNA structure features and trans RNA–RNA interactions by covalently
cross-linking individual duplexes, i.e. more or less contiguous stretches of base pairs involving
the same or two different RNAs. These duplexes are subsequently trimmed and their ends ligated,
thereby retaining information on both sub-sequences involved in a duplex, before the cross-linking
is reversed and the linearised duplexes are sequenced using next-generation sequencing
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2.3.1 Step 1: RNA Structure Probing

The goal of this step is to probe RNA structures using a reagent that induces
chemical modifications into individual nucleotides.

The key aspect to consider is: Could any step of the protocol for RNA structure
probing actually interfere with the in vivo RNA structures in a way which would
alter them before they are probed?

This is perhaps the most important aspect to optimise. If this fails, no subsequent
step in the experimental or computational analysis can fix it. (1) For this, the
chemical properties of the probing reagents need to considered and their potential
direct or indirect impact on RNA structure features be examined, e.g. in dedicated
in vitro experiments prior to the in vivo ones. These experiments have to be
conducted in a way that can distinguish reactions on different time-scales. (2) It
is also important to consider the possibility that the chemical modifications induced
during RNA structure probing alter the RNA structure while it is being probed. (3)
Lastly, if RNA structure probing is done by more than a single probing reagent, this
should happen in separate experiments keeping everything, but the probing reagent,
unchanged.

In terms of future developments, it would be beneficial to have fast and efficient
ways to stop RNA structure probing in vivo. This would help to conserve the RNA
structure probing signal and allow detailed investigations of RNA structures as
function of time.

2.3.2 Step 2: RNA Extraction, rRNA Depletion and RNA Enrichment

In this step, the pool of chemically modified transcripts of interest is extracted
and enriched and unwanted transcripts are removed to prevent them from being
sequenced (e.g. rRNAs which account for the majority of transcripts, yet are
typically not the focus of the investigation).

The key challenge here is to ensure that extraction and enrichment are done with
maximum specificity. Any true signal lost cannot be recovered later on.

For enrichment, a polyA RNA enrichment step is often applied. This implies,
however, that non-polyA transcripts (e.g. non-coding RNAs, circular RNAs) are
omitted from all subsequent steps of the analysis. The user needs to decide whether
this is actually wanted and otherwise adapt the original protocol.

2.3.3 Step 3: Library Preparation for High-Throughput Sequencing

Different in vivo RNA structure probing protocols differ substantially in how the
enriched pool of chemically modified transcripts is converted into a library for
NGS sequencing. As soon as the library has been sequenced, the corresponding
reads have to be mapped back to the underlying genome/transcriptome before the
computational analysis of RNA structure features can start. As this mapping comes
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with its own significant challenges, it is imperative to optimise the experimental
library preparation w.r.t. the subsequent computational analysis.

2.3.4 Key Aspects to Consider for Optimisation

(A) What is the expected average length of the final reads (excluding the length
of any primers and/or adapters that are removed in silico prior to mapping the
reads back to the genome/transcriptome)?

For those methods that detect RNA structure probing signals via chemical-
induced reverse transcriptase halting, e.g. STRUCTURE-SEQ and ICSHAPE, this
length is primarily determined by the average distance between the initiation site
of reverse transcription (RT) and the first chemically modified nucleotide upstream.
It thus depends both on the specificity of the chemical used for RNA structure
probing as well as the mechanism used for RT initiation (example: DMS (which
only probes unpaired nucleotides) and random hexamer primers for RT initiation
in case of STRUCTURE-SEQ). Note that the mechanism used for RT initiation
(e.g. random primers of different lengths may preferentially bind to single-stranded
regions of the transcript) may introduce its own biases that may be relevant to the
subsequent, computational RNA structure interpretation. The effective average read
length may also be influenced by additional RNA fragmentation steps, e.g. random
fragmentation by Mg2+-mediated hydrolysis in ICSHAPE. For these methods, a
well-chosen combination of probing reagent and RT initiation can thus optimise the
expected average read length.

For those methods that detect RNA structure probing signals via chemical-
induced reverse transcriptase read-through, e.g. SHAPE-MAP (Siegfried et al. 2014;
Smola et al. 2015a,b; Lavender et al. 2015; Mauger et al. 2015), the natural average
length of reads is primarily determined by the default fragmentation step of the
corresponding library preparation protocol (Nextera in case of SHAPE-MAP) and
not by the average distance between RT initiation and any nucleotides modified via
chemical RNA structure probing. This is a significant conceptual advantage over
methods that detect RNA structure probing signals via reverse transcriptase halting.

(B) How much RNA structure probing information is retained in a single read?

Ideally, we would like to retain structure probing information for entire, indi-
vidual transcripts. If we loose this information, e.g. during library preparation, we
cannot detect RNA structure diversity, i.e. the possibility that different copies of
the same transcript assume different RNA structures in vivo. Also, in order to
maximise the RNA structure information for each individual transcript, chemical
RNA structure probing should happen in a way that saturates each transcript with
structure probing signals (in a way which does not risk altering the underlying
RNA structure itself).

For most of the existing protocols for RNA structure probing in vivo, however,
the requirements for optimising the library preparation are not in line with the
above requirements for optimising the RNA structure probing information. The
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library preparation of STRUCTURE-SEQ and ICSHAPE, for example, is set up to
generate reads that correspond to one chemically modified nucleotide only, namely
the chemically modified sequence position that is first encountered upstream of
the RT initiation site (chosen by a hexamer primer in case of STRUCTURE-SEQ

and chosen by Mg2+-induced random fragmentation in case of ICSHAPE). Any
correlations between RNA structure probing information from the same transcript
are thereby lost. In addition, saturated RNA structure probing would have the
tendency to further lower the average read length, making the subsequent mapping
even harder.

The best way to circumvent this problem is to choose a library preparation
protocol that does not rely on RT transcriptase halting for detecting the RNA struc-
ture probing signal. This can, for example, be done using Mn2+ mediated reverse
transcriptase read-through of the modified nucleotide positions as in SHAPE-MAP.
This strategy, however, has the undesired side effect of introducing a generally
higher error rate for reverse transcription.

(C) What is the overall efficiency of all steps in the protocol?

Some protocols, e.g. ICSHAPE, incorporate a second enrichment step by chem-
ically treating the RNA-structure-probed transcripts in a second step in vivo to
prepare their subsequent biotinylation using click-chemistry (this happens after
RNA extraction, rRNA depletion and RNA enrichment). This second biotin-based
enrichment step has the advantage of further increasing the specificity.

Overall, protocols for in vivo RNA structure probing differ substantially in
the number of steps required for library preparation. Any additional steps in the
overall protocol, however, have the tendency of reducing the overall sensitivity and
efficiency as the inefficiencies and biases of each step add up. Generally, it is thus
advisable to minimise the total number of steps and to optimise each step in terms
of specificity and sensitivity.

3 Interpreting the Experimental RNA Structure Probing
Data In Silico

The above in vivo methods for transcriptome-wide RNA structure probing gen-
erate raw transcriptome sequencing data (reads) which must be computationally
processed and interpreted for any actual RNA structures to be inferred.

Basically, any computational analysis has to achieve the reversal of the
experimental protocol, namely to convert a purely sequence-based signal back
into RNA structures involving base pairs. This is challenging due to a number of
reasons:

(a) The sequence signals induced by chemically encoded RNA structure probing
can be noisy, biased and/or incomplete. For example, any particular SHAPE
values cannot be unambiguously interpreted as being derived from a paired or
unpaired nucleotide.
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(b) RNA structure probing information from any transcript is fragmented in the
existing experimental protocols, i.e. the full sequence identity of the RNA struc-
ture probing signal is lost and cannot be retrieved later computationally.
Correlated structure probing information is currently only retained within
individual reads.

(c) Next-generation sequencing itself introduces errors and biases, e.g. sequencing
errors whose rate depends on the position within each read.

(d) The mapping of sequenced reads to a reference genome/transcriptome is not
straightforward and can induce different kinds of errors, biases and missing
data. This is a particular concern for experimental protocols that encode
RNA structure probing information in terms of nucleotide changes, e.g.
SHAPE-MAP. There, sequenced reads cannot be readily mapped back to
their original transcripts without carefully considering SNP-like discrepancies.
This requires dedicated, probabilistic mapping methods such as those used
in transcriptome-wide RNA editing studies, see e.g. (Mazloomian and Meyer
2015).

(e) Only once the sequenced reads have been mapped to a reference transcriptome,
can the actual inference of RNA structures begin. This can be done using a
range of conceptually different computational strategies. These are introduced
in the following.

Most existing computational methods focus on utilising SHAPE reactivity values
as input information to infer RNA structure information. The following describes
different underlying conceptual strategies for converting raw SHAPE reactivity
values along one linear transcript into distinct RNA structure(s). These approaches
not only employ different strategies for RNA structure prediction, but also differ in
the (implicit or explicit) assumptions they make in interpreting the raw structure
probing data. Roughly, all existing computational approaches can be classified
according to how they address three main aspects:

(a) How the raw, sequence-position-specific RNA structure probing is processed.
Examples include re-scaling and normalisation procedures.

(b) How the raw, sequence-position-specific RNA structure probing is interpreted
and integrated into RNA structure prediction.

(c) How RNA structures are captured in a predictive model that utilises experimen-
tal RNA structure probing data. All of these methods model RNA structures at
secondary-structure level. These methods differ substantially in their implicit
and explicit assumptions. Examples include thermodynamic methods that
derive the thermodynamically most stable RNA secondary structure (so-called
minimum-free energy (MFE) methods), methods that consider Boltzmann
ensembles of RNA secondary structures in thermodynamic equilibrium and,
most recently, probabilistic methods for RNA secondary structure prediction
that predict the maximum likelihood RNA secondary structure, see Table 5.

As we will see in the following, early methods incorporate experimentally
derived RNA structure probing information into thermodynamic methods for
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RNA secondary structure prediction (MFE approach). More recently, RNA struc-
ture probing information has been integrated in a fully probabilistic manner
into probabilistic methods for RNA secondary structure prediction. These new
methods offer conceptually convincing ways of seamlessly combining experimental
RNA structure probing data with RNA structure prediction.

3.1 Interpreting SHAPE Reactivity Values as Pseudo-Energies
for Paired Sequence Positions

Many commonly used computational methods for RNA secondary structure predic-
tion, e.g. MFOLD (Zuker 2003) and RNAFOLD (Zuker and Stiegler 1981), utilise
a so-called thermodynamic model of RNA secondary structures. These methods
decompose any (pseudo-knot-free) RNA secondary structure into a sum of Lego-
like, structural RNA secondary structure building blocks and express the total free
energy of the RNA structure as sum of the free-energy contributions of these
structural building blocks. The underlying thermodynamic models, e.g. the well-
known Turner model (Mathews et al. 1999) on which MFOLD and RNAFOLD

are based, rely on many parameters that correspond to physical entities that have
been determined experimentally. For a given input RNA sequence, these models
employ efficient dynamic programming algorithms such as the Zuker–Stiegler
algorithm (Zuker and Stiegler 1981) to derive the RNA secondary structure with
the minimum overall free energy. The corresponding minimum-free-energy (MFE)
structure is reported as output. For any given input sequence, these methods
predict a single MFE RNA secondary structure. Thermodynamic methods for
RNA secondary structure prediction such as MFOLD and RNAFOLD make the
implicit assumptions that any given input sequence (a) is already fully synthesised
and (b) that it will assume an MFE RNA secondary structure. In particular, these
methods assume any input RNA to be in thermodynamic equilibrium and to be
naked, i.e. without any trans interaction partners such as ligands, proteins or other
RNAs. As we know, this assumption is generally not justified in in vivo settings.

Early efforts to integrate chemical RNA structure probing data into RNA struc-
ture prediction try to interpret these data as modifications to the default thermody-
namic model used for RNA secondary structure prediction. For this, experimentally
determined RNA structure probing values are somehow converted into free energy
contributions assigned to individual sequence positions.

Deigan et al. (2009) were the first to interpret the position-specific SHAPE
reactivity values αi as position-specific free-energy corrections �GD

i to the nominal
free energy terms in the thermodynamic model for RNA structure prediction:

�GD
i = m log(αi + 1) + b
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Here, αi denotes the experimentally determined SHAPE reactivity value for
sequence position i in the transcript (i.e. i ∈ {1, . . . , L} for a transcript of L

nucleotides length) and m and b are free parameters with default values m = 2.6
and b = −0.8 kcal mol−1, see Low et al. (2014), Qi et al. (2012) for other
parametrisations. In the dynamic programming recursion which derives the most
stable RNA secondary structures, these �GD

i values are added to the nominal
energy contribution for each base-paired sequence position i. Any contributions
from SHAPE reactivity values from un-paired sequence positions are completely
ignored.

This approach by Deigan was later extended to work on DMS input data (Cordero
et al. 2012a); pseudo-energies are derived from a log-likelihood ratio of a nucleotide
being unpaired versus paired. Eddy (2014) pointed out that base-pairing probabili-
ties for individual sequence positions, pi , can be linked to position-specific pseudo-
energies if one may assume that a naked, fully synthesised RNA is in thermodynamic
equilibrium. This can be achieved because pi(πi = 1) ∝ e−�Gi/RT . That is, the
probability that sequence position i is base-paired, i.e. pi(πi = 1), is proportional to
e−�Gi/RT , where �Gi is the pseudo-energy assigned to position i (here, R denotes
the universal Gas constant and T the absolute temperature in degrees Kelvin).

3.2 Interpreting SHAPE Reactivity Values as Pseudo-Energies
for Paired and Unpaired Sequence Positions

The above approach by Deigan introduces an unnatural bias into the interpretation
of SHAPE reactivity values. Even though experimentally determined SHAPE
reactivity values have a continuous spectrum, covering both paired and unpaired
nucleotides, SHAPE-derived pseudo-energies are effectively only assigned to paired
sequence positions.

Zarringhalam et al. (2012) propose a strategy which is symmetric w.r.t. paired and
unpaired sequence positions. Similar to Deigan, they interpret SHAPE reactivity
values αi along the transcript as position-specific corrections �GZ

i to the free
energy terms of the underlying transcript position i:

�GZ
i = β|πi − αr

i |

Here, αr
i denotes the (rescaled version of the) experimentally determined SHAPE

reactivity value and πi is the corresponding pairing status of sequence position i, i.e.
πi = 0 for an un-paired and πi = 1 for a paired sequence position. The rescaling of
the original SHAPE reactivity values αi is achieved via a piecewise-linear function
which re-scales the values so that the resulting values satisfy αr

i ∈ [0, 1]. The shape
of this function was chosen to fit to the empirical likelihood ratio distribution, i.e.
the paired-unpaired likelihood ratios as function of the SHAPE reactivity values.
The scaling parameter β affects all sequence positions equally and can be interpreted
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as a universal knob to decrease or increase the contribution of SHAPE values in the
thermodynamic model for RNA structure prediction.

The goal of the Zarringhalam approach is to minimise the overall difference
between the experimentally derived SHAPE data and the predicted RNA structure
as measured by the so-called Manhattan distance, i.e. to minimise

∑
i |πi − αr

i |.
Unlike the above approach by Deigan, this strategy can be mathematically shown to
yield a better fit of the predicted RNA structures to the SHAPE reactivities in terms
of Manhattan distance (Zarringhalam et al. 2012).

3.3 Introducing Pseudo-Energy-Like Free Parameters in a Fit
to a Thermodynamic Ensemble of RNA Secondary
Structures

Both above approaches implicitly assume that all SHAPE reactivity values cor-
respond to a single RNA secondary structure. Washietl et al. (2012) stick to the
assumption of a naked, already synthesised RNA sequence in thermodynamic equi-
librium but interpret the SHAPE reactivity values as ensemble-weighted average
values over many identical RNAs with different RNA secondary structures. Many
properties of this so-called Boltzmann distribution of RNA secondary structure in
thermodynamic equilibrium can be calculated analytically (McCaskill 1990; Miklos
et al. 2005).

Their method works as follows. In a first step, SHAPE values for each sequence
position i, αi , are translated into so-called pairing probabilities pi(αi) with pi(αi) =
0 if αi > 0.25 and pi(αi) = 1 if αi ≤ 0.25. Using this simple thresholding
procedure, SHAPE reactivity values are thus effectively interpreted as either being
paired or unpaired (with 100% probability, i.e. certainty). These position-specific
pi(αi) values should thus be viewed as pairing status indicators, e.g. denoted by
si := pi(αi), rather than pairing probabilities.

Any discrepancies between the position-specific pairing probabilities zi(θ, �e) as
they can be explicitly calculated from the Boltzmann ensemble of RNA structures
in thermodynamic equilibrium (where θ denotes the set of default parameters of
the underlying thermodynamic model and �e a vector of so-called pseudo-energy
corrections ei introduced for each individual sequence position i) and the position-
specific SHAPE-derived pairing status values si are assumed to be normally
distributed with a position-independent variance σ 2. Every sequence position i

in the transcript of L nucleotides length, i.e. i ∈ {1, . . . L}, is assigned a so-
called pseudo-energy term ei . In contrast to the above approaches by Deigan and
Zarringhalam, however, these ei values do not have a link to SHAPE reactivities.
Rather, they correspond to position-specific free parameters in a global optimisation
problem and have been artificially introduced. Also these ei terms are assumed to
come with a position-independent, overall variance of τ 2. Using a gradient descent
method, the method by Washietl et al. then tries to identify the vector of ei values
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that minimises the expression:

min
e

1

τ 2

∑
i

e2
i + 1

σ 2

∑
i

(zi(θ, �e) − si)
2

This optimisation can be expected to be mathematically challenging as the
optimisation procedure is not guaranteed to find the global minimum and can get
stuck in local minima. A priori, it is also not clear what the correct interpretation of
the resulting ei values should be. They have no obvious link to SHAPE reactivity
values nor to the free parameters of the underlying thermodynamic model (θ ). Also,
it should be noted that the number of free parameters ei increases linearly with
the length of the input sequence and that the optimisation is done for each input
sequence independently.

The current implementation of the Washietl approach into the VIENNAPACK-
AGE (Lorenz et al. 2016) allows users to explore different ways of converting
structure probing data into pi values and provides several optimisation techniques.

3.4 Using SHAPE Reactivity Values in a Sample and Select
Approach Using an Unperturbed Thermodynamic
Ensemble of RNA Secondary Structures

All of the above approaches hinge on the validity of the assumption that experi-
mental structure probing data can be interpreted as position-specific pseudo-energy
corrections to an underlying thermodynamic model. As the detailed discussion of
the above methods shows, even incorporating this assumption into a corresponding
strategy for RNA structure prediction is technically and conceptually not entirely
straightforward.

Some groups (Ouyang et al. 2013; Quarrier et al. 2010) have decided not to
interpret structure probing data as position-specific pseudo-energy corrections at all.
Instead, they assume that the in vivo environment introduces unknown changes to
the nominal RNA structure of the underlying thermodynamic model (i.e. the MFE-
structure as defined earlier) which cannot be modelled by tweaking the underlying
parameters of the thermodynamic model. This makes sense as some effects of
the in vivo environment, e.g. trans interaction partners, can conceptually not be
captured by tweaking the free energy parameters of the thermodynamic model for
RNA secondary structure prediction. Instead, they propose to address this challenge
by sampling RNA secondary structures from the (unperturbed) thermodynamic
ensemble of RNA secondary structure (Ding and Lawrence 2003; McCaskill 1990)
and re-ranking the sampled RNA structures according to how well they fit the
experimentally determined RNA structure probing data. This involves a distance
metric such as the Manhattan distance introduced above. For calculating the fit,
SHAPE reactivity values are first mapped to discrete paired/unpaired values for
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each sequence position using a simple thresholding approach before calculating the
Manhattan distance to the sampled RNA.

These methods effectively allow for more than a single RNA secondary structure
to correspond to one set of experimentally determined, position-specific RNA struc-
ture probing data, even though these RNA secondary structures conceptually
derive from the same Boltzmann ensemble of many identical RNA sequences in
thermodynamic equilibrium. By ranking the sampled RNA structures based on
fit to the probing data only (rather than the respective probability of the sampled
RNA structure in the Boltzmann ensemble), all sampled RNA secondary structures
are effectively assumed to have equal prior probability (provided they are sampled
at all). The obvious downside of this pragmatic approach is that RNA secondary
structure with low probability in the Boltzmann ensemble may never be sampled at
all, even if they could provide the best overall fit. Also, this approach only provides
limited feedback in terms of insight gained.

3.5 Probabilistic Integration of Experimental RNA Structure
Probing Data into Probabilistic Methods for RNA
Secondary Structure Prediction

RNA secondary structure prediction does not necessarily need to involve the
assumption that any input RNA folds into the minimum-free-energy structure and
is in thermodynamic equilibrium. Using probabilistic methods such as stochastic
context-free grammars (SCFGs) (Durbin et al. 1998) (or Markov Chain Monte
Carlo (MCMC) methods), it is possible to explicitly capture different hypotheses
on how RNA secondary structure may arise. This has given rise to a number
of RNA secondary structure prediction methods, e.g. PFOLD (Knudsen and Hein
2003), RNA-DECODER (Pedersen et al. 2004a,b), SIMULFOLD (Meyer and
Miklos 2007), that yield a high prediction performance for evolutionarily con-
served RNA secondary structures. These methods combine a probabilistic model
of RNA secondary structures with computationally efficient algorithms to derive
the maximum likelihood RNA structure given the underlying RNA structure
model. In terms of time-and-memory efficiency, they have the same complexity as
thermodynamic methods, e.g. MFOLD (Zuker 2003) and RNAFOLD (Zuker and
Stiegler 1981), but offer several conceptual advantages. First, the user can decide
the parametrisation of the model. Free parameters can thus be chosen to have a
straightforward biological interpretation. Second, given a training set of sufficient
size and complexity, the free parameters of the model can be explicitly trained.
Third, alternative parametrisations of the same model can be explicitly evaluated
and ranked based on likelihood fits to the data. Fourth, the predictive model for
RNA secondary structures can be readily extended to take into account additional
sources of input information, e.g. evolutionary information in terms of a multiple-
sequence alignment (MSA) or experimental RNA structure probing data.
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Technically, this can be achieved by replacing the so-called emission proba-
bilities of SCFGs by probabilistic emission models that, for example, read entire
alignment columns from an input MSA rather than individual nucleotides from
an input sequence. These emission models are probabilistic models that can, for
example, explicitly capture how we expect paired and unpaired nucleotides to evolve
as function of evolutionary time.

Most importantly, fully probabilistic models allow information of different types
(e.g. primary sequence features, RNA structure features, evolution) to be seamlessly
merged as the corresponding probabilities for different sources of information can
be readily combined in a single predictive framework. This elegantly avoids the
need for converting conceptually different sources of information (e.g. chemical
RNA structure probing data) into units with a physical interpretation (free energy
terms). More importantly, probabilistic models allow us to move beyond the
assumption of thermodynamic equilibrium.

3.5.1 Integration into Comparative Methods for RNA Secondary
Structure Prediction

PPFOLD 3.0 (Sükösd et al. 2012) (PPFOLD in the following) were the first to
integrate external RNA structure probing information into a fully probabilistic
model of RNA secondary structure prediction.

The model for RNA structure prediction is identical to PFOLD (Knudsen and
Hein 2003), a comparative RNA secondary structure prediction method. It takes as
input a multiple-sequence alignment (MSA) and a corresponding evolutionary tree
linking the sequences in the MSA and returns as output the maximum-likelihood
RNA secondary structure for the input alignment and input tree. PFOLD captures
the assumption that RNA secondary structures that have been conserved during
evolution are likely to be functional. As far as we know, this is overall a decent
assumption to make. In practice, the success of the comparative approach depends
on a decent choice of the appropriate evolutionary distances of the sequences in
the input alignment. The RNA structure predicted by PFOLD corresponds to the
maximum-likelihood RNA secondary structure given the input information and
the predictive model and its parameters. The evolutionary relationships of the
sequences in the input multiple-sequence alignment are explicitly modelled using
two probabilistic models of evolution that capture how unpaired and base-paired
nucleotides evolve as function of time, respectively.

The novelty of PPFOLD consists of combining comparative RNA secondary
structure prediction with experimental RNA structure probing information. In order
to do this, the user needs to specify a probability distribution P(H |σ) for a set
of experimental probing data H and secondary structures σ . PPFOLD generally
assumes that P(H |D,σ) = P(H |σ), i.e. that there is no dependence on the actual
observed nucleotides sequences of the input alignment D. As the discussion of the
more recently published method PROBFOLD (Sahoo et al. 2016) below shows, this
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is probably too simplistic: It can actually be shown that SHAPE-values typically do
depend on nucleotide identity. As an alternative to P(H |σ), the user can also specify
values P(Hi |iunpaired) and P(Hi |ipaired), i.e. likelihood values that sequence
position i in the input alignment is unpaired or paired given the experimental
probing value of Hi for that sequence position. Internally, PPFOLD uses these
likelihood values as follows to bias the nominal likelihood values of PFOLD for
each paired (i, j) (subscript d for double) and unpaired i (subscript s for single)
alignment column, Pd(i, j) and Ps(i):

P ′
s (i) = Ps(i) · P(Hi |i unpaired)

P ′
s (i, j) = Ps(i, j) · P(Hi |i paired) · P(Hj |j paired)

This assumes that the experimental probing values for the two sequence positions
involved in a base-pair are assumed to be independent. The validity of this assump-
tion has since been confirmed by the more recent investigations of PROBFOLD, see
below for details.

Similar to PFOLD, PPFOLD naturally reduces to a non-comparative RNA sec-
ondary structure prediction method if the input alignment consists of only a
single input sequence (although it should be stressed that this is not how PFOLD

nor PPFOLD are meant to be used). The authors of PPFOLD deliberately use it
with single input sequences in order to make it directly comparable to the non-
comparative RNA secondary structure program RNASTRUCTURE (Deigan et al.
2009; Mathews et al. 2004) which also utilises external RNA structure probing
data as additional input information. RNASTRUCTURE and PPFOLD (using single
sequences) have a similar performance in terms of F-value. The F-value is defined
as the harmonic mean of sensitivity and specificity. This is an impressive result
given that the RNA secondary structure model of PPFOLD is lightweight compared
to the full- fledged thermodynamic model underlying RNASTRUCTURE. PPFOLD

thus makes better use of the external RNA structure probing information than
RNASTRUCTURE. The performance of PPFOLD w.r.t. RNASTRUCTURE can be
further improved in terms of F-value when using PPFOLD with multiple sequence
input alignments. As with many comparative RNA secondary structure predic-
tion methods, however, the resulting performance in terms of F-value critically
depends on the quality of the input alignment. A poor input alignment (with or
without additional probing data) can lower the performance of PPFOLD below the
corresponding single-sequence performance with experimental probing data. That
is, a poor input alignment can provide more confusion than can be remedied by
additional RNA structure probing data.

Note that due to the scarcity of training and testing data, the authors of PPFOLD

could not avoid an overlap between their training set (16S and 23S rRNA structures
and SHAPE data for Escherichia coli) and their test data set (16S rRNA of E. coli).
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3.5.2 Integration into Non-comparative Methods for RNA Secondary
Structure Prediction

Most recently, Sahoo et al. (2016) proposed PROBFOLD, a probabilistic method for
non-comparative RNA secondary structure that can integrate information from one
or more chemical RNA structure probing experiments. PROBFOLD employs a fully
probabilistic stochastic context-free grammar (SCFG) for RNA secondary structure
predictions and combines this with probabilistic graphical models (PGMs) (Koller
and Friedman 2009) to capture experimental probing data. Compared to PPFOLD

PROBFOLD offers a more general modelling approach that is also more readily
extendible and more parameter-sparse. The SCFG employed by PROBFOLD is
based on the original grammar underlying PFOLD (Knudsen and Hein 2003) with
extensions that capture stacking interaction, i.e. correlations between pairs of
adjacent base pairs. Overall, the PROBFOLD grammar consists of six production
rules in total, three of which emit terminals, i.e. read information from the input
sequence. These three production rules require three corresponding emission models
called single, pair and stack that model single, pairs and two adjacent pairs of
sequence positions, respectively, see Fig. 2 in Sahoo et al. (2016) for a visualisation.
The integration of experimental probing data into the RNA secondary structure
prediction method happens via three corresponding PGMs that each specify a joint
distribution over the RNA primary sequence data and the experimental probing
data. Technically, each PGM corresponds to an undirected bipartite graph between
so-called factor nodes and so-called variable nodes. The variable nodes represent
random variables, whereas the factor nodes correspond to probability distributions
between neighbouring random variables. PROBFOLD uses discrete random variables
for the efficiency of the calculations. This is technically achieved by discretising the
two distributions P single and P paired which model the corresponding distributions of
experimental probing data. For this, probing data is first discretised into k bins using
normalised histogram models (i.e. multinomials). This implies k−1 free parameters
specifying the boundaries of these bins. These are chosen to maximise the difference
between the probing data distributions of paired and unpaired sequence positions
using Kullback Leibler (KL) divergence.

During the development of PROBFOLD, a hierarchy of increasingly complex,
fully probabilistic models with an increasing number of free parameters (ranging
from 18 to 408, for the final model) was investigated. The final model of PROBFOLD

has only a single user-specified meta-parameter, corresponding to the number
of bins used for discretising the two distributions P single and P paired of the
experimental probing data (default is six bins). All other free parameters can be
explicitly derived using a dedicated set of training set of known RNA secondary
structure with corresponding structure probing data. The final model captures
not only stacking interactions between neighbouring base pairs (so-called stack-
part of the model), but also correlations between the structure probing values of
neighbouring positions along the linear sequence (so-called cor-part of the model).
Due to the scarcity of the training data, the primary sequence and structure probing
values are modelled independently in order to keep the number of free parameters
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low. The trade-off between the sensitivity and the specificity of performance can be
explicitly adjusted via a parameter γ . Sahoo et al. carefully evaluate the performance
of PROBFOLD, using a dedicated test set which has no overlap with the training set
(they are actually the first to do this properly using a cross-evaluation procedure).
Reassuringly, they can conclude that over-fitting is not an issue, implying that their
method is sensibly parametrised and the number of free parameters in line with the
information content provided by their training set.

In terms of performance, they compare PROBFOLD to PPFOLD 3.0 (Sükösd et al.
2012), RNASTRUCTURE V5.6 (Deigan et al. 2009; Mathews et al. 2004), GTFOLD-
3.0 (Swenson et al. 2012) and RNAFOLD.ZAR (Lorenz et al. 2011, 2016) (this
is how they RNAFOLD in combination with the approach by Zarringhalam for
converting the raw SHAPE values) on an independent test data set of 11 RNA
structures on which neither of these methods were initially trained. The resulting
performance comparison thus allows a fair assessment of the prediction accuracy of
several key predictive programs, see Table 3.

The overall performance is measured in terms of F-value, i.e. the harmonic mean
of sensitivity and specificity with values of F ∈ [0, 1] with 1 corresponding to
perfect predictions. For PROBFOLD, this is done for a fixed value of γ . PROBFOLD

comes second in terms of overall F-value and accuracy across all structures after
RNAFOLD.ZAR (F-values 0.77 and 0.71, respectively), but first in terms of per-
formance gain w.r.t. purely sequence-based predictions without any SHAPE input
(�F = 0.29 (PROBFOLD) compared to �F = 0.12 (RNAFOLD.ZAR)). This is
impressive given that RNAFOLD employs the state-of-the-art thermodynamic model
for predicting RNA secondary structures, whereas PROBFOLD uses a fairly light-
weight SCFG with a significantly smaller number of parameters. (In that regard, it
is also instructive to compare the baseline performance for single-sequence-only
input between PROBFOLD and RNASTRUCTURE, see Table 4.) Of all methods

Table 3 Prediction performance of several computer programs that utilise individual sequences
and corresponding SHAPE data as input to make RNA secondary structure predictions (optimal
values highlighted in bold)

Performance PROBFOLD PPFOLD RNASTRUCTURE GTFOLD RNAFOLD.ZAR

F 0.71 0.55 0.67 0.66 0.77
�F 0.29 0.11 0.02 0.05 0.12

Results and figures from Sahoo et al. (2016). The performance of PROBFOLD, PPFOLD RNAS-
TRUCTURE, GTFOLD and RNAFOLD.ZAR is evaluated on a test set of 11 sequences with
corresponding SHAPE data (Cordero et al. 2012b; Rice et al. 2014) and specified in terms of
F-value. The F-value corresponds to the harmonic mean of sensitivity and specificity. The �F
values specify the change in F-value between predictions that are only based on sequence input and
predictions that are also based on SHAPE data. The test set consists of 11 small RNA secondary
structures comprising SHAPE data for 5S RNA, Adenine riboswitch, cidGMP riboswitch, Glycine
riboswitch, P4P6 domain (Tetrahymena ribozyme), Ribonuclease and tRNA phenylalanine (yeast)
from Cordero et al. (2012b) and the M-Box riboswitch, Lysine riboswitch, Group I Intron from
T. thermophila and Group II Intron from O. iheyensis from (Rice et al. 2014). Note that this test set
contains only rather short sequences (min: 116 nt, max: 425 nt, average: 210 nt)
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Table 4 Changes in prediction performance of PROBFOLD and RNASTRUCTURE as different
types of RNA structure probing are provided as combined input

PROBFOLD RNASTRUCTURE

Performance F �F F �F

seq 0.40 0.00 0.73 0.00

seq, CMCT 0.48 0.08 0.85 0.12
seq, CMCT, DMS 0.54 0.14 0.85 0.12

seq, CMCT, DMS, SHAPE 0.71 0.31 0.82 0.09

Results and figures from Sahoo et al. (2016). The performance of PROBFOLD and RNASTRUC-
TURE for predicting RNA secondary structures is evaluated as function of different kinds of
RNA structure probing data supplied as input information (here, seq refers to single-sequence-only
input). As in Table 3, the performance is specified in terms of F-value with the best performance
highlighted in bold. The test set here comprises only six sequences for which CMCT, DMS and
SHAPE probing data exist, namely 5S RNA, Adenine riboswitch, cidGMP riboswitch, Glycine
riboswitch, P4P6 domain (Tetrahymena ribozyme) and tRNA phenylalanine (yeast) from Cordero
et al. (2012a,b). Note that this reduced test set is a sub-set of the test set from Table 3 and contains
even shorter sequences (min: 116 nt, max: 202 nt, average: 157 nt)

assessed, PROBFOLD is found to be the most robust w.r.t. increasing levels of noise.
This is quantitatively assessed using different levels of simulated noise. Based on
these results, one can conclude that PROBFOLD makes best use of the external
RNA structure probing information. Using a slightly more complex SCFG for
modelling RNA secondary structures or employing a comparative approach such
as PFOLD should allow PROBFOLD’s baseline performance to be further improved
in the future.

Apart from the benchmark performance evaluation, the PROBFOLD study offers
several important biological insights. First, they find that the SHAPE reactivities
for paired and unpaired regions depend significantly on the primary nucleotide
sequence. Furthermore, they find that the SHAPE reactivities for neighbouring
sequence positions are significantly correlated, both for base-paired and especially
for unpaired nucleotides. This is to be expected given that the SHAPE reactivities
measure the backbone flexibility of the RNA transcript which is a notion that
extends beyond the confines of the single sequence position that ends up being
chemically modified. Based on these observations, Sahoo et al. decided to explicitly
capture these correlations within the probabilistic models of PROBFOLD. Somewhat
surprisingly, they find no evidence that the SHAPE reactivities between two base-
pairing nucleotides are correlated. They attribute this to the comparatively high level
of noise for low SHAPE reactivities. In PROBFOLD, this finding is captured by
modelling the emission models of the left- and right-pairing partner independently
using separate distributions.

One of the key advantages of PROBFOLD is that it can seamlessly integrate
more than one kind of experimental structure probing data, e.g. DMS and CMCT
probing data in addition to SHAPE reactivities. Initial performance results with a
model which assumes independence of the different kinds of experimental evidence
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show that the performance can indeed be significantly improved as more types of
experimental evidence are added, see the results in Table 4. Technically, PROBFOLD

can also be set up to work with SHAPE-seq data (Lucks et al. 2011).
Conceptually, the theoretical framework underlying PROBFOLD offers a mathe-

matically and conceptually convincing way of integrating experimental RNA struc-
ture probing data into models for RNA secondary structure prediction. Unlike most
existing methods that are based on thermodynamic models for RNA secondary
structure prediction, the number of free parameters in PROBFOLD that are used to
integrate experimental RNA structure probing information does not increase with
the length of the RNA. Instead, it only depends on the complexity (i.e. parametri-
sation) of the underlying predictive model. Moreover, these free parameters have a
straightforward interpretation in terms of the experimental RNA structure probing
data. By employing purely probabilistic concepts, different assumptions about
the dependence or independence between probing data and/or between sequence
positions can be made explicit and quantitatively assessed, so we can quantitatively
test different hypotheses and also learn something about our data from the model. In
addition, its free parameters can be readily retrained as more training data or novel
types of experimental RNA structure probing data become available. This is a pre-
requisite for cross-evaluating the performance and for examining if over-fitting is an
issue (Table 5).

Table 5 Characteristic features of the computer programs that predict RNA secondary structure
by combining sequence data and chemical RNA structure probing data

Features PROBFOLD PPFOLD RNASTRUCTURE GTFOLD RNAFOLD.ZAR

Seq input Single MSA Single Single Single

Probing input Multiple Single Multiple Single Single

Strategy Prob. Prob. Therm. Therm. Therm.

All methods (PROBFOLD (Sahoo et al. 2016), RNASTRUCTURE (Deigan et al. 2009; Mathews
et al. 2004), GTFOLD (Swenson et al. 2012) and RNAFOLD.ZAR (Lorenz et al. 2011, 2016))
apart from PPFOLD (Sükösd et al. 2012) use single RNAs as sequence input. Only PPFOLD works
in a comparative way by using a multiple-sequence alignment (MSA) as input. Technically, it
can still be forced to work in single-sequence mode if the input MSA comprises only a single
sequence, see the performance evaluation in Table 3, although it is not meant to be used in
that way. All methods can utilise SHAPE data as RNA structure probing input. PROBFOLD

and RNASTRUCTURE can handle multiple types of RNA structure probing data simultaneously,
e.g. SHAPE, DMS and CMCT probing data, see Table 4. Conceptually, all methods can be
classified according to the strategy they employ (a) for RNA secondary structure predictions and
(b) for integrating RNA structure probing data into the RNA structure predictions. PPFOLD and
PROBFOLD are the only programs to work in a fully probabilistic way (prob.). They employ
stochastic context-free grammars (SCFGs) as RNA secondary structure models and integrate
RNA structure probing information in a fully probabilistic way. RNASTRUCTURE, GTFOLD and
RNAFOLD.ZAR employ thermodynamic models for RNA secondary structure prediction (therm.)
and aim to predict minimum-free energy structures. They integrate RNA structure probing data into
the RNA structure prediction via different types of pseudo-energies
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4 Transcriptome-Wide Experimental Methods for Directly
Determining RNA Structures and trans RNA–RNA
Interactions In Vivo

The structural building blocks of RNA secondary structures and of trans RNA–
RNA interactions are base pairs. Yet, none of the transcriptome-wide methods for
chemically probing RNA structures in vivo described above retain direct informa-
tion on base pairs. Rather, information on RNA structure probing is linearised and
encoded in individual sequence positions. Any direct information on corresponding
pairing partners is lost. This is the main reason why major computational efforts
are required to covert the raw position-specific experimental data back into actual
RNA structures involving base pairs.

This recently changed as three groups simultaneously proposed experimental
protocols for directly determining RNA secondary structure features in vivo in a
transcriptome-wide fashion: PARIS (Lu et al. 2016), SPLASH (Aw et al. 2016)
and LIGR-SEQ (Sharma et al. 2016). PARIS stands for psoralen analysis of
RNA interactions and structures, SPLASH for sequencing of psoralen cross-
linked, ligated and selected hybrids and LIGR-SEQ for ligation of interacting
RNA followed by high-throughput sequencing. In constrast to earlier experimental
protocols for probing transcriptome-wide in vivo probing, these three new methods
allow to probe RNA structure features in a way which is not specific to any particular
RNA-binding protein, see Fig. 1 for an overview.

4.1 Experimental Protocols of PARIS, SPLASH
and LIGR-SEQ

All three new methods, i.e. PARIS (Lu et al. 2016), SPLASH (Aw et al. 2016) and
LIGR-SEQ (Sharma et al. 2016), directly probe so-called duplexes, i.e. stretches of
more or less consecutive base pairs. Each duplex can either involve the same or two
different RNAs and thus either correspond to an RNA structure feature or a trans
RNA–RNA interaction. It is important to note that all three experimental protocols
process both types of duplexes in an identical manner (and that it is up to their
respective, subsequent computational analysis pipelines to detect and distinguish
both cases). All three methods are thus methods for both direct RNA structure
probing as well as direct probing of trans RNA–RNA interactions. Conceptually,
all three protocols have common steps but differ in important details. Their overall
logical flow is as follows, see also Fig. 1.

4.1.1 Experimental Protocol of PARIS

In the first step of PARIS, duplexes corresponding to RNA structure features or
to trans RNA–RNA interactions are covalently cross-linked using the psoralen
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Fig. 1 Overview of the experimental protocols of PARIS, SPLASH and LIGR-SEQ. Lines in
yellow and dark blue denote different transcripts. The black dots represent hydrogen bonds
between transcripts. A red ellipse denotes the cross-linked psoralen derivative AMT. The complex
between psoralen and biotin is shown in pink and light green, see the SPLASH pipeline. In the
library preparation step, the red and green regions denote primers and adapters added, during
the corresponding preparation protocols. The main difference between the protocols lies in the
enrichment strategies for cross-linked duplexes. SPLASH focuses on biotin- dependent enrichment
after fragmentation. PARIS utilises 2D-electrophoresis. LIGR-SEQ relies on the fact that AMT-
cross-linked duplexes are more resistant to RNase R treatment. LIGR-SEQ requires additional
samples to be made, see the text for details. In this figure, we only outline the protocol for making
the +AMT+ligase sample

derivative 4’-aminomethyltrioxsalen (AMT) and UV-light at 365 nm. For this,
AMT intercalates between base pairs and covalently cross-links preferentially
juxtaposed pyrimidines (Calvet and Pederson 1979; Cimino et al. 1985). This
effectively staples the two base-pairing arms involved in each duplex together. In the
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second step, RNase S1 digestion is utilised to remove single-stranded regions of
RNA. Subsequently, ShortCut RNase III is used to make duplexes smaller and
complete proteinase digestion and RNA purification yield short, directly base-
pairing duplexes. In the third step, 2D-electrophoresis is employed for purification
and enrichment as cross-linked duplexes appear off-diagonal, corresponding to
0.2%–0.5% of the RNA used as input to the 2D electrophoresis. This step is likely to
reduce the overall sensitivity. In the fourth step, the ends of these selected duplexes
are proximity-ligated before the cross-linking of the duplexes is reversed using
UV-light at 254 nm. The efficiency of the cross-ligation is key for ensuring that
information on the base-pairing arms involved in one duplex is not lost. The ligation
step concatenates the two arms involved in one duplex into an artificial RNA in
which the linear ordering of the two arms is a priori not clear. Finally, pre-adenylated
adapters are added to the 3’ ends, the resulting RNAs are reverse-transcribed in an
adapter-specific way, circularised cDNA are generated and PCR amplification is
performed to generate the cDNA libraries for NGS.

PARIS was originally performed in HeLa, HEK293T and mouse embryonic
stem (mES) cells. Lu et al. conduct −AMT control experiments and observe no
detectable off-diagonal elements in the corresponding 2D electrophoresis.

4.1.2 Experimental Protocol of SPLASH

The overall logical flow of SPLASH is similar to PARIS. Unlike for PARIS,
cross-linking of duplexes in the first step is done using a biotinylated version of
psoralen (so-called biopsoralen) also using UV-light at 365 nm. The biotin group
is key for the subsequent enrichment step. Similar to AMT, biopsoralen also has a
preference for cross-linking pyrimidines (Garrett-Wheeler et al. 1984; Hearst 1981).
In contrast to AMT, however, biopsoralen typically requires the addition of a mild
detergent (e.g. digitonin) to sufficiently increase the cellular uptake. The details of
this (i.e. concentrations and duration of treatments with biopsoralen and digitonin)
have to be carefully adjusted for each cell type separately. In the second step,
cross-linked duplexes are extracted, randomly fragmented using Mg2+-mediated
hydrolysis and biotin enriched using streptavidin magnetic beads. Note that due
to the random nature of fragmentation procedure a nick can occur in the hybridised
region. Therefore, there is a chance that the detected length of the duplex does not
correspond to the full length of the original duplex. The enrichment step of SPLASH
is thus experimentally more efficient and conceptually more straightforward than the
enrichment step of PARIS involving the more loosely-defined off-diagonal in a 2D-
electrophoresis. In the third step, the ends of the resulting duplexes are ligated before
UV-light at 254 nm is used as in PARIS to reverse the cross-linking. Similarly to
PARIS, the fourth step involves the addition of pre-adenylated adapters the 3’ ends,
the reverse-transcription of the resulting RNAs in an adapter-specific way and the
generation of circularised cDNAs. Again, PCR amplification is performed to obtain
the final cDNA library for NGS.
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The SPLASH protocol was used to examine HeLa cells, human lymphoblastoid
cells, human embryonic stem (hES) cells, cells differentiated using retinoic acid and
two types of cells from S. cerevisiae, namely wild type cells and Prp43 helicase
mutant cells. Using between two to four biological replicates for each type of
cell, they measure a high correlation (R = 0.75–0.9). Aw et al. (2016) generate
several control libraries without cross-linking and without ligation in order to
confirm that the duplexes identified by SPLASH are indeed enriched for ligated,
cross-linked cases and not due to random background events. Furthermore, they
explicitly confirm that cross-linking using biopsoralen is largely independent of
solvent accessibility and show that SPLASH can detect RNA structure features with
similar precision as the proximity ligation-based approach by Ramani et al. (2015)
and has even higher sensitivity regarding trans RNA–RNA interactions.

4.1.3 Experimental Protocol of LIGR-SEQ

Conceptually, LIGR-SEQ has the same aims as PARIS and SPLASH, namely the
direct detection of duplexes formed via RNA structure features or via trans RNA–
RNA interactions. Unlike these two protocols, it uses a few features that set it
distinctly apart and that have a significant impact on the subsequent computational
interpretation of the raw reads.

Similar to PARIS, the first step of LIGR-SEQ consists of in vivo cross-linking
of duplexes using AMT and UV-light at 365 nm. In terms of the specificity of
the resulting, cross-linked duplexes, LIGR-SEQ is therefore comparable to PARIS
(AMT) and SPLASH (biopsoralen). In the second step, RNA is extracted from
cells and a limited digest with single-strand S1 endonuclease applied. The third
step employs a circRNA ligase to link RNA ends in proximity. The fourth step is
an enrichment step which utilises RNase R (a 3’-to’-5’ exoribonuclease) to digest
linear and structured RNAs whose duplexes have not been cross-linked (Vincent
and Deutscher 2006). The pool of surviving RNAs consists of fully circularised
RNAs and linear RNAs with cross-linked duplexes (as well as linear RNAs with
uncross-linked duplexes whose 3’ ends are too short for RNase R to latch on). Some
false positives may very well survive the RNase R treatment. The fifth step reverses
the cross-linking of duplexes using UV-light at 254 nm. Finally, the resulting RNAs
(so-called chimeras in the LIGR-SEQ paper) are used to prepare stranded libraries
for NGS. Unlike PARIS and SPLASH, the experimental protocol of LIGR-SEQ

includes as default the preparation of an −AMT sample without any AMT-induced
cross-linking. All samples are conceptually key for the subsequent computational
interpretation of the raw LIGR-SEQ data. Without these, it would be conceptually
impossible to define a dedicated probabilistic model which can assign estimated
p-values to the experimentally detected interactions. Out of the three methods,
LIGR-SEQ is currently the only method that is trying to experimentally estimate
significance values for its detected interactions. As we will see in the following
discussion of the computational analysis pipelines, it is also possible to assign



Deciphering the Universe of RNA Structures and trans RNA–RNA Interactions. . . 201

significance values or p-values to proposed RNA structure features based on purely
theoretical considerations, but these are conceptually different from the p-values
derived by LIGR-SEQ.

4.1.4 Summary of All Three Experimental Protocols

After NGS, the raw data from PARIS, SPLASH and LIGR-SEQ corresponds to reads
that each encode the sequence of the two arms involved in a formerly cross-linked
duplex. One key difference with respect to chemical RNA structure probing methods
is that any duplex can only be probed once as the molecules of the duplex itself
end up being examined by the protocol. In contrast to this, methods for chemical
RNA structure can probe any individual transcript multiple times and at different
time points as they do not consume the investigated molecule itself.

For any given duplex derived by PARIS, SPLASH or LIGR-SEQ, it is unclear if
the corresponding duplex derives from an inter- or from an intramolecular duplex,
i.e. from a trans RNA–RNA interaction or from RNA structure features. It is also
unclear in which linear order the two arms involved in the corresponding duplex
appear in the resulting RNA and where their boundary is. These are key challenges
to be addressed in the subsequent computational analysis of the raw data.

All three experimental protocols involve a stapler (i.e. AMT (PARIS and LIGR-
SEQ) or biopsoralen (SPLASH)) that has a significant bias towards intercalating
and cross-linking pyrimidines (Calvet and Pederson 1979; Cimino et al. 1985).
Perfectly ordinary duplexes such as those involving G–C base pairs only may thus
not be detectable at all using PARIS, SPLASH and LIGR-SEQ. Any absence of
detectable duplexes can therefore not necessarily be taken as experimental evidence
that the corresponding RNA structure feature of trans RNA–RNA interactions does
not exist.

In addition, all three experimental protocols involve many steps that each
introduce specific errors and biases that add up. As we will see in the following,
the overall sensitivity and specificity of the combined step of each experimental
protocol is further influenced by the errors and biases introduced by the computa-
tional analysis of the raw experimental data. It thus makes sense to consider and,
ideally, optimise both in parallel.

4.2 Computational Protocols of PARIS, SPLASH
and LIGR-SEQ

The main tasks of the computational analysis of the raw data from PARIS, SPLASH
and LIGR-SEQ are (1) to map the sequenced reads back to the corresponding
genome/transcriptome and (2) to figure out, for each read, if it corresponds to an
inter- or an intramolecular duplex. Conceptually, both tasks have to be addressed
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simultaneously which amounts to the key challenge of the in silico analysis of
these experimental data. In contrast to the sequenced reads derived from chemical
RNA structure probing experiments, the raw data generated by PARIS, SPLASH
and LIGR-SEQ do not correspond to a consecutive sub-sequence of any single
transcript. Rather, each read either encodes the two separate of a duplex within
the same transcript (if the duplex corresponds to an RNA structure feature) or a
duplex involving two transcripts (if the duplex corresponds to a trans RNA–RNA
interaction).

In case of an RNA structure duplex, mapping the corresponding read requires a
gapped alignment to a single transcript (with a gap inserted between the two base-
paired arms of the duplex encoded in the read) or a chimeric alignment in case
of the two parts being non-canonical due to circle formation. This is complicated
by the fact that the linear order of the arms in the read need not correspond to
the natural linear order of the two arms within the underlying transcript (so-called
chiastic reads). In case of a trans RNA–RNA duplex, mapping the read involves the
identification of a pair of transcripts to which either of the two base-paired arms in
the read map. This is conceptually and computationally challenging as the search
space of all pairs of transcripts is huge compared to the search space of individual
transcripts. Also here, the linear order in which the two arms appear in the read
need not correspond to the order in which the respective two transcripts appear
(chiastic reads). Furthermore, for both kinds of duplexes, the boundary between the
two arms, i.e. where the gap has to be inserted for mapping, is a priori not known.
To complicate matters further, it is up to the computational analysis to figure out for
each read whether it corresponds to an RNA structure duplex or a trans RNA–RNA
duplex.

The computational data analyses published in conjunction with the experimental
protocols of PARIS, SPLASH and LIGR-SEQ have some main features in common,
but differ in key details. As these differences are not exclusively due to the differ-
ences in experimental protocols, but partly due to different underlying strategies for
interpreting the raw data, we will discuss them here.

4.2.1 Computational Analysis of Raw PARIS Data

Raw PARIS reads are first pre-processed by removing adapters from the 3’ ends
and PCR duplicates. The latter is possible due to the insertion of a bar-code
(random hexamer) in the middle of the adapter. These reads are then mapped to
the corresponding genome using the computer program STAR (Dobin et al. 2013)
with a set of input parameters that explicitly allow gapped-reads as well as so-called
chiastic reads.

In a chiastic read, the linear order of the mappable parts (in our case, the two
arms of a duplex) needs to be inverted. So, a read encoding a 5’-R-L-3’ duplex
with a right (R) and left (L) arm of an RNA structure duplex needs to be mapped
as 5’-L-3’-gap-5’-R-3’ to the underlying transcript. These chiastic reads naturally
arise in all protocols whenever the ligation of a cross-linked, RNA structure-derived
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duplex happens to fuse the two base-pairing arms of the duplex in the wrong linear
order, i.e. 5’-R-L-3’ rather than 5’-L-R-3’. Chiastic reads can also arise in duplexes
corresponding to trans RNA–RNA interactions whenever the mapping of the 5’-
R-L-3’ read to the (linearly ordered) transcripts of the transcriptome requires the
reversal of the linear ordering of the two arms involved in the duplex. The correct
mapping of chiastic reads thus always implies the insertion of a gap.

Before the mapping with STAR can actually be performed, a corresponding
STAR index needs to be generated. This needs to be done with a carefully adjusted
parameter for genomeSAindexNbases whenever the index is generated for a
so-called mini-genome. The authors of PARIS utilise these mini-genomes in order
to artificially reduce the search space for mapping, in particular when searching
for specific trans RNA–RNA interactions, but also when investigating select genes
in terms of RNA structure features (e.g. Xist gene or sub-set of snRNAs only).
The parameters of STAR have to be explicitly adjusted whenever mini-genomes are
used.

Of all the resulting STAR-mapped PARIS reads, only gapped and chiastic ones
are retained. Of the gapped reads, only those are retained whose gap is not due to
splicing.

In the next step, the retained mapped reads are grouped into so-called duplex
groups (DGs). This is done using a greedy algorithm involving two steps. In the
first step, the mapped reads are clustered into initial DGs such that all reads in a
DG share at least 5 nt common overlap in both duplex arms (these two regions of
overlap define the so-called core regions of the DG). Any mapped read is thereby
either merged with an already existing DG or used to start a new DG. In the second
step, DGs are merged into single DGs if they are close to each other and “well-
defined” for both arms, see supplementary information of PARIS (Lu et al. 2016)
for details.

Once the DGs have been established, each duplex group DG is assigned
a so-called connection score which is defined as cs(DG) = Nspan(DG)/√

Nleft(DG) · Nright(DG), where Nspan(DG) is the number of reads spanning
the two duplex arms of DG and Nleft(DG) and Nright(DG) are the number of
unique reads overlapping the left and the right arm of DG, respectively. Note that
Nleft(DG) can be different from Nright(DG) as the reads covering each arm of the
DG can also be assigned to other duplex groups overlapping DG only in one arm.
Any duplex group DG with a connection score cs(DG) < 0.01 is then discarded
to focus the subsequent analysis on duplexes that are supported by a significant
portion of overlapping transcript reads.

The resulting duplexes typically involve two arms of 20–30 nt. The specific base
pairs involved in a duplex between these two arms can, however, not be directly
inferred from any DG. Rather, they have to be predicted based on the arms of the
DG.

Lu et al. (2016) find that known miRNA-mRNA interactions cannot be detected,
either because the duplex involved in the seed region is fairly short (around 5 nt
length) and/or because binding of the duplex by the Argonaute protein shields the
duplex from cross-linking.
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Lu et al. try to assign a statistical significance to each detected duplex (whether
corresponding to an RNA structure feature or a trans RNA–RNA interaction).
For this, they compare the free energy of the MFE structure predicted for a
multiple-sequence alignment underlying this DG to the corresponding, predicted
free energies for 100 randomised versions of this multiple-sequence alignment.
They thereby obtain a Z-score (Gesell and von Haeseler 2006). By utilising a
procedure which focuses on the multiple-sequence alignment underlying the DG
only, however, the Z-score cannot assess the statistical significance of seeing this DG
by chance within the same transcript, let alone within the entire transcriptome which
is what one would ideally like to know. Lu et al. evaluate the overall performance of
PARIS by examining select RNAs (rRNA, snRNA, microRNA, telomerase RNA).
This is done by visually comparing corresponding DGs to known features.

4.2.2 Computational Analysis of Raw SPLASH Data

Conceptually, the overall logical flow of the computational analysis of SPLASH is
similar to the above for PARIS. Key details, however, differ and these turn out to be
important.

To start with, transcriptomes for mapping purposes are generated by download-
ing the corresponding reference transcriptomes (taking the longest known isoform
for each coding or non-coding gene as representative transcript) and by manually
adding in select classes of non-coding genes. Any sequence duplicates from the
joint set are then removed.

In the first step, the raw SPLASH paired-end reads are pre-processed by remov-
ing adapters and merging overlapping paired-end reads into corresponding single
reads. In the next step, only these single merged reads are retained and mapped to
the respective reference transcriptome using BWA MEM (version 0.7.12) (Li and
Durbin 2010) using parameter -T 20 to lower the minimum length of mapped
regions to 20 nt. These mapped reads are then post-processed by sorting them and
converting them to BAM-format using SAMTOOLS. Reads are then filtered for
potential PCR duplicates by examining sets of reads with identical start coordinates
and identical CIGAR strings and by retaining only the first read in each such
set (Ramani et al. 2015).

In the original SPLASH analysis, the authors decide to deliberately focus their
entire subsequent analysis on long-range features, i.e. RNA structure features and
trans RNA–RNA interactions where the two arms involved in the corresponding
duplex are far apart in terms of the underlying search space. Technically, this is
achieved by retaining only split alignments more than 50 nt apart from the BAM-
file of mapped reads. The authors of SPLASH then apply several measures to
increase the quality of the retained, mapped reads. Reads with a mapping quality
below 20 are discarded. In addition, ambiguously mapped reads and mapped reads
with similarly scored second best hits are discarded (e.g. pseudo-genes). To lower
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the number of false positives, any read spanning a known splice-junction is removed
using STAR (Dobin et al. 2013) to map splits reads from the transcriptome back to
the corresponding genome. For this, reference sets of known splice junctions are
assumed to be correct and complete.

The quoted overall sensitivity of SPLASH of 78% is based on its performance
for the known RNA structure features of the 80S ribosome. The overall precision
is reported to be 75%. In order to estimate the false discovery rate, indepen-
dently cross-linked total RNAs from human yeast were pooled to prepare and
analyse SPLASH libraries for any human-yeast interactions. Based on this strategy,
SPLASH is reported to have a false discovery rate < 3.7%.

In order to assign a statistical significance or p-value to the interactions detected
by SPLASH, the free energy of the pairwise interaction in the detected duplex is
compared to the free energy of many shuffled randomised versions of the sequences
underlying the same pairwise interaction. The randomisation procedure keeps the
di-nucleotide content preserved. SPLASH thus employs the same strategy as PARIS
for estimating p-values to its detected interactions (in PARIS, this is done by
shuffling multiple-sequence alignments; in SPLASH this is done by randomising
only the sequences involved in the duplex). Both procedures are based on the
validity of the assumption that true interactions in vivo have a lower minimum-free
energy than interactions between corresponding randomised version of the same
sequences. This assumption, however, is generally not justified (Rivas and Eddy
2000). In any case, the resulting p-value could not be interpreted as the probability
of observing a corresponding RNA structure duplex or trans RNA–RNA interaction
feature by chance. For this, entire transcripts (in case of RNA structure features)
or pairs of transcripts (in case of trans RNA–RNA interactions) would need to be
examined.

This could, for example, be achieved using TRANSAT (Wiebe and Meyer
2010), a fully probabilistic method that takes a multiple-sequence alignment and
a corresponding evolutionary tree as input and detects evolutionarily conserved
duplexes (so-called helices) in the input alignment. Any predicted helices are
assigned a log-likelihood score as well as a p-value. This p-value corresponds to
the chance of observing the duplex in the same transcript by chance.

4.2.3 Computational Analysis of Raw LIGR-SEQ Data

Raw LIGR-SEQ data consists of stranded, single-end reads. Similar to the above
procedures for PARIS and SPLASH, these raw reads first need to be computation-
ally post-processed before their actual interpretation in terms of biological contents
can begin.

For this, LIGR-SEQ proposes a dedicated computational analysis pipeline called
ALIGATER consisting of several steps. Unlike PARIS and SPLASH, the pipeline
comprises a dedicated probabilistic model which is used to estimate p-values for
the detected interactions. The first step removes the random bar-codes from the
5’ ends. In the second step, these trimmed reads are mapped to the corresponding
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transcriptome using BOWTIE2 with a set of especially adjusted input parameters
that aim to maximise sensitivity while keeping the computational run-time of the
analysis reasonable. In the third step, these initial BOWTIE2 alignments in BAM-
format are re-analysed such that blocks for each read are recursively chained into
longer alignments in order to detect chimeras. This procedure can also handle
circular ligation products and identifies the best path through the read. This step
assigns a score to each chained alignment and is conceptually key for all of the
subsequent analysis. The key corresponding input parameter for this procedure (the
so-called chaining penalty) has to be carefully adjusted depending on the library
quality as well as the specs of the specific class of transcripts being investigated.
Reads with best-scoring chained alignments are then assigned an individual LIGQ
score which retains detailed information on the corresponding alignments.

These LIGQ scores are subsequently used to carefully address several potential
problems by either discarding or re-classifying chimeras. For example, artifacts due
the mis-mapping of spliced transcript and of near-identical sequence duplicates (due
to repeats, pseudo-genes or paralogues) are identified via near-identical matches to
contiguous stretches of the underlying genome overlapping the ligation site and
discarded. Other artifacts that incorrectly identify intra-molecular interactions as
inter-molecular ones are re-classified based on corresponding supporting evidence.
Overall, five different post-processing steps are executed, resulting in a strategy that
re-classifies events rather than simply discard them and that aims for high sensitivity.

Another significant, conceptual difference of LIGR-SEQ with respect to the two
other protocols, i.e. SPLASH and PARIS, is that it proposes an experimental strategy
for estimating the statistical significance of the detected duplexes. This is achieved
via a dedicated probabilistic model that judges the observed versus the expected
ratios of chimeric reads. Each observed to expected ratio (i.e. OE+AMT or OE−AMT)
corresponds to the corresponding experiments (i.e. +AMT or −AMT) with and
without ligase. For this, separate +AMT and −AMT control experiments are
performed without the ligation step in order to assess the expected background levels
of spurious ligation events. The resulting LIGR-SEQ reads are then computationally
processed as described above to detect interaction events (chimeras). Any pair of
genes gx and gy is assigned a probability for spurious trans interactions PB(gx, gy)

(using subscript B for background) which is assumed to only be a function of the
respective relative whole gene abundance P(gx) of gene gx and P(gy) of gene gy ,
respectively. Mathematically, it corresponds to the probability of two independent
draws from a multinomial distribution that is proportional to the relative abundance
of each gene in the transcriptome. This defines their so-called null model.

The relative whole gene abundance for each gene g is measured in terms of
reads per million without length adjustment (the RNase R treatment prevents this
normalisation) and denoted RPM(g). So, PB(gx, gy) ∝ P(gx)P (gy) if x = y

and if gx and gy have experimentally confirmed interactions events. In contrast,
PB(gx, gy) = 0 if x = y or if x = y and no interactions between these two genes
are detected. The normalised probability for spurious interactions between gene gx
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and gy , pB(gx, gy) is then written as (using P(gj ) = RPM(gj )/
∑

i RPM(gi)):

pB(gx, gy) = PB(gx, gy)∑
i

∑
j PB(gi, gj )

= RPM(gx)RPM(gy)∑
i

∑
j with j =i RPM(gi)RPM(gj )

This null model assumes that the probability of a direct, spurious trans RNA–
RNA interaction between two genes gx and gy in the transcriptome is only a
function of the abundance of the relative whole gene abundance for each gene in the
transcriptome. This model does not capture the primary sequence identity of each
gene which is likely to also influence the probability of spurious trans RNA–RNA
interactions. Assuming the validity of their null model, each experimentally detected
interaction between genes gx and gy can then be assigned a p-value based on the
number of observed reads k that are supporting it. This allows to explicitly filter for
significant, AMT-induced interactions. Technically, this is achieved by first defining
an enrichment score rAMT which is defined as the ratio between OE+AMT and
OE−AMT, i.e. rAMT = OE+AMT/OE−AMT. For real, AMT-induced interactions, we
expect OE+AMT > OE−AMT and require rAMT > 1.1, more than 2 reads (k > 2),
a p-value < α and an RPM of more than 10 in support. Similarly, interactions with
rAMT < 0.9 (and more than 2 reads (k > 2), a p-value < α and an RPM of more
than 10) are considered false positives and allow to explicitly estimate the false
positive rate of the overall protocol. In addition, LIGR-SEQ utilises two biological
replicates. These allow to assess the overall technical reproducibility of the protocol
(Spearman Rho = 0.38, p < 8 · 10−6).

Overall, the false discovery rate of LIGR-SEQ is estimated to range between
4.4% for highly expressed transcripts (> 250 RPM) and 25% for sparsely expressed
transcripts (> 10 RPM). These numbers can be viewed as worst-case estimates as
some known, stable interactions can be detected in both +AMT and -AMT samples.
The high sensitivity of LIGR-SEQ can be explicitly confirmed based on known
interactions in select groups of genes, e.g. known RNA structure features in the
80S ribosome (Anger et al. 2013) and trans RNA–RNA interactions between the
28S and 5S rRNA.

Overall, LIGR-SEQ is the only of the three protocols for measuring RNA struc-
ture features and trans RNA–RNA interactions in vivo that tries to assign exper-
imentally estimated significance values to the detected features. This is done
by proposing an explicit null model and by utilising dedicated, experimentally
determined control samples. As mentioned above, TRANSAT (Wiebe and Meyer
2010) could be readily used to assign p-values to any experimentally determined
duplexes in order to estimate their statistical significance in terms of the probability
of seeing each duplex in the underlying transcript by chance.
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5 Outlook

The last few years have seen an explosion of novel experimental and computational
methods for determining RNA structures and trans RNA–RNA interactions in
vivo. All experimental protocols require substantial computational strategies for
analysing and for converting the raw experimental data into actual RNA structures
or trans RNA–RNA interactions. Experimental and computational approaches are
closely intertwined and therefore require simultaneous optimisation in order to
optimise the overall performance.

Significant future improvements could be made in various ways.
First, we need to fully acknowledge the complexities of transcriptomes in vivo,

in particular on the computational side of things. Any transcript in vivo may be long
(long in this case meaning longer than 200 nt), may have various, unknown trans
interaction partners (which may introduce RNA structure changes, e.g. Mazloomian
and Meyer (2015)), may assume more than a single functional RNA structure or
trans RNA–RNA interaction throughput its cellular life (e.g. Zhu and Meyer 2015;
Lai et al. 2013) and, in particular, is unlikely to ever experience true thermodynamic
equilibrium as a naked RNA. In particular for long RNAs such as coding transcripts,
there is no reason to assume that they fold into a minimum-free energy structure
spanning the entire transcript.

As advances in the field of ab initio RNA structure prediction showed, we may
tackle this challenge best by employing a comparative strategy, i.e. by simply trying
to identify RNA structure features or trans RNA–RNA interactions that have been
conserved during well-chosen evolutionary times. Conceptually, this is currently
the only way to detect the overall effects of various complexities in vivo without
having to explicitly model them. Probabilistic methods are particularly well suited
to seamlessly integrating experimental probing data into RNA structure predictions.
In order for this line of research to flourish, we require gold-standard data sets
of experimental probing data from different experimental probing protocols that
examine the same in vivo situation using different methods. This needs, in particular,
to include transcripts longer than 200 nt (see the captions of Tables 3 and 4 for the
specs of the current data sets) from diverse biological classes of transcripts, not
only short and non-coding RNAs that are known to contain global RNA structures
spanning the entire transcript. There is, for example, by now ample evidence
that short- and long-range RNA structure features are involved in regulating key
cellular processes such as alternative splicing (Meyer and Miklos 2005; Raker
et al. 2009; Pervouchine et al. 2012; Mazloomian and Meyer 2015). These gold-
standard data sets thus have to be large and diverse enough to allow for parameter
training as well as cross-evaluation procedures to avoid and evaluate potential issues
due to over-fitting. The same applies to methods for predicting trans RNA–RNA
interaction, where the currently assembled benchmark set (Lai and Meyer 2016)
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could be significantly increased, diversified and complemented by different kinds of
experimental probing data.

On the experimental side of things, it would be beneficial to further reduce the
inherent biases and limitation that the current methods have. PARIS, SPLASH and
LIGR-SEQ are currently all based on psoralen-derivatives for cross-linking. This
makes them blind to duplexes without juxtaposed pyrimidines. It would thus be
great to remedy this by identifying intercalators that have complementary chemical
specificities. The mapping of raw duplexes could be significantly facilitated by
introducing artificial, known linker-sequences during the ligation of duplex-ends.
Conceptually, another major step forward could be made by devising experimental
protocols that are capable of detecting RNA structure diversity, i.e. cases where
different copies of the same transcript engage in different RNA structures or trans
RNA–RNA interactions in vivo. Right now, any RNA structure variation is mis-
interpreted as noise when interpreting chemical RNA structure probing data. Using
specific variants of SHAPE-MAP (Smola et al. 2015b) may be able to change this
conceptually by allowing structure probing information from individual transcripts
to be retained throughout the entire protocol. Overall, Smola et al. propose three
strategies. The standard Randomer workflow which uses random primers and
default fragmentation and library preparation for creating a map of SHAPE-induced
mutations, see Fig. 2. Due the fragmentation procedure, probing information on
entire transcripts is typically lost. They propose two other strategies for addressing
this problem. One is to perform size selection on RNAs with short lengths (< 500 nt)
in order to retain full probing information on their entire sequences. This will,
however, ignore a large proportion of typical transcriptomes (the average length for
human mRNAs is 2.7 kb). To specifically address transcripts longer than 500 nt, i.e.
particular isoforms of one gene, the so-called Amplicon workflow can be applied.
In that strategy, specific primers, unique to one isoform, can be used to amplify only
a region of the transcript. Then, multiple non-overlapping regions can be sequenced
similar to the Randomer strategy to produce isoform specific information. This
experimental strategy should in particular allow us to gain conceptually novel
biological insight into how long coding or non-coding transcripts in eukaryotic
genes use RNA structure features as mechanisms of gene regulation at RNA level.
In the long run, the most elegant way of retaining RNA structure information on
entire individual transcripts would be to combine chemical RNA structure probing
with single-molecule sequencing techniques. This, however, will require significant
changes of the currently existing protocols.

These are truly exciting times for in vivo transcriptome research, with many
significant recent contributions both on the experimental and the computational
side. Only by simultaneously optimising both experimental and computational
procedures, however, will we be able to combine the best of both worlds. Both
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Fig. 2 Overview of the strategies recently proposed by SHAPE-MAP (Smola et al. 2015b). Shown
here are two isoforms A and B of the same gene with partially overlapping sequences, where only
one isoform assumes an RNA structure. Black ellipses correspond to the adducts produced by the
SHAPE reagent. Black stars indicate mutations indicated during reverse transcription. The primer
used in the Randomer workflow is shown in dark green. Region-specific primers of the Amplicon
workflow are shown in orange and blue. The unpaired region that is paired in isoform A and
unpaired in isoform B is highlighted by a red circle. The addition of SHAPE reagents to isoform
B in combination with the Randomer workflow will produce a signal confirming that the region
is unpaired. To confirm the presence of the RNA structure feature in isoform A, an alternative
approach is required. This can be achieved with the Amplicon workflow using primers that are
specific for a region in isoform A. This ensures that the adduct that is specific to isoform B is not
amplified and thereby ignored

aspects currently come with a range of in-built assumptions and limitations.
Questioning and, ideally, further reducing those will be key to discovering truly
novel features
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Abstract The goal of this chapter is to provide evidence and justification for
the hypothesis that autogenous, posttranscriptional regulation of gene expression
is common. Several examples are known, mostly from bacteria, bacteriophage,
and yeast species. Each was identified either by accident or by a concerted
effort to understand the regulation of specific genes. The paucity of examples
from higher eukaryotes may be due to the difficulty of identifying them using
common approaches for uncovering regulatory interactions. An alternative approach
is proposed that can fill the gap.

Keywords Gene expression regulation · Autogenous regulation ·
Posttranscriptional regulation · Protein–RNA interactions · Feedback regulation

1 Introduction

The expression of proteins is a multistep process and every step can be regulated.
Most studies of gene regulation have focused on the initiation of transcription,
recruitment by transcription factors (TFs) of the RNA polymerase to the promoter,
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and beginning of transcription (Busser et al. 2008; Chasman and Roy 2017; Haraks-
ingh and Snyder 2013; Qu and Fang 2013). In fact, many papers on regulatory
elements and networks deal exclusively with transcriptional regulation (Bar-Joseph
et al. 2003; Elkon and Agami 2017; Wyrick and Young 2002). There is some
justification for the emphasis on the regulation of transcription initiation because
posttranscriptional regulation can only occur once an mRNA has been initiated.
But the number of posttranscriptional steps, each an opportunity for regulation,
suggests that the final protein synthesis levels may be most tightly controlled after
transcriptional initiation. In fact, several reports show that the levels of protein
expression and the corresponding mRNA are only weakly correlated for many
proteins (Liu et al. 2016; Lu et al. 2007; Schwanhausser et al. 2011; Vogel et al.
2010; Vogel and Marcotte 2012), and those studies often use steady-state levels
of mRNA, which already includes posttranscriptional regulatory events involved in
mRNA degradation.

While the initiation of transcription is essential to gene expression, the multiple
steps between that initiation step and the completion of the protein product allow for
a myriad of regulatory processes impacting alternative splicing and other processing
events, mRNA degradation rates, and translation efficiency, among others. Many
studies have examined posttranscriptional gene regulation, with primary emphases
on translational regulation (Cline and Bock 1966; Hinnebusch et al. 2016; Larsson
et al. 2013; Sonenberg and Hinnebusch 2009; Valencia-Sanchez et al. 2006),
regulation by microRNAs (Carthew 2006; Pasquinelli 2012; Valencia-Sanchez et
al. 2006), modifications of mRNA sequences (Gilbert et al. 2016), and very large
number of RNA-binding proteins (RBPs) that can influence many of those steps
(Dassi 2017; Dassi and Quattrone 2012; Matia-Gonzalez et al. 2015; Mitchell et
al. 2013) including localization and sequestering of mRNA (Holt and Bullock
2009; Martin and Ephrussi 2009; Yan et al. 2017). Much has been learned, and
it is currently a topic of extensive investigation, but most of the work is based on
RBPs and miRNAs that regulate many genes. The work often uses methods similar
to those applied to TFs that control many genes, such as localization approaches
that identify the locations of binding sites for DNA- and RNA-binding proteins on
genomic DNA and mRNA. A limitation of those studies is that they can easily miss
examples of autoregulation, in which one protein regulates its own expression, and
therefore has only one binding site because its primary role is not as a regulatory
factor.

Early studies of the regulation of gene expression found examples of autoregula-
tion (Cove 1974; Goldberger 1974; Savageau 1975). Similar to feedback regulation
of enzymatic pathways, where the product can limit to the activity of the pathway to
control the synthesis rate of the product, protein synthesis pathways were discovered
in which the product of the pathway, the protein itself, could regulate some step
in the pathway to control the intracellular concentration of the protein. The best
studied example was the lambda repressor which controls its own transcription
both positively and negatively as part of the genetic switch that determines the
fate of the infected cell (Ptashne et al. 1976, 1980, 1982). The repressor first
activates its own expression in the competition with the Cro protein to control the
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Fig. 1 Autoregulation of
gene X requires that its
activity and its expression are
anticorrelated

fate of the infection, and if it “wins” that competition it then represses its own
synthesis to limit its concentration within a narrow range. Since then many other
examples of transcriptional autoregulation have been discovered and mathematical
analyses demonstrating the advantages of autoregulation have been described (Alon
2007; Bateman 1998; Pinho et al. 2014; Wall et al. 2003). In the simplest sense,
autoregulation can be thought of as a direct means of the protein to control its own
expression so as to maintain a constant, and appropriate, level of activity in the cell.
In this context, activity may refer to an enzymatic function or simply the appropriate
concentration of the protein. The diagram in Fig. 1 shows feedback regulation
between protein X activity and expression such that they are anticorrelated, but that
could be accomplished in several ways. Autoregulation implies the direct interaction
between protein X and some step in its synthesis.

In the following section I describe several examples of posttranscriptional
autoregulation that have been discovered and studied in detail. I do not discuss
examples where the protein’s primary role is as a regulator of expression and it
simply includes its own synthesis among its targets. I also omit examples from
RNA phages and viruses that can only regulate expression from the RNA. I focus
on proteins that have a different primary function but exhibit autoregulation as well.
General principles can be extracted from the examples that illustrate why I suspect
posttranscriptional autoregulation may be common but difficult to detect.

2 Examples of Posttranscriptional Autoregulation

Proteins that are involved in the process of protein synthesis can easily evolve to
be autoregulated if their own translation is sensitive to their activity. Two examples
from E. coli are initiation factor 3 (IF3) and release factor 2 (RF2) (Betney et al.
2010). IF3 is a translation initiation factor whose primary function is to aid in the
selection of the start codon for translation, which is most frequently an AUG codon,
but other codons are used less commonly. IF3’s own start codon is uniquely AUU
so when IF3 activity is high its own mRNA is unlikely to be translated, but when
its activity is low its expression increases. RF2 is a release factor responsible for
releasing the protein chain when a UGA stop codon is encountered. The mRNA
for RF2 contains an in-frame UGA codon within the coding region, so when RF2
activity is high translation of the full-length protein is low, but when RF2 activity is
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low the expression increases due to frame-shifting by a ribosome stalled at the stop
codon but inefficiently released. These regulatory events are not on-off decisions,
but rather the effect on translation efficiency as a function of protein activity
allows for a “thermostat-like control” of protein levels (Betney et al. 2010). The
autoregulation mechanism involves the mRNA having evolved to take advantage of
the protein’s primary function; no evolution of the protein’s activity was required.

Ribosomal proteins are all RBPs with their primary binding site within the
ribosomal RNAs (rRNAs). In E. coli, the synthesis of many ribosomal proteins
was found to be regulated at the step of translational initiation (Nomura 2011;
Nomura et al. 1984). This was originally discovered because duplication of some
ribosomal protein operons led to overexpression of the mRNA, but not the proteins,
and could even be observed in vitro, ruling out rapid protein degradation as the
mechanism (Fallon et al. 1979; Nomura et al. 1984; Yates et al. 1980). A single
protein within an operon is often sufficient to inhibit expression from all of the
genes in that operon, because they are “translationally coupled,” whereby translation
of downstream genes requires translation of the gene preceding it in the operon.
So only a subset of the ribosomal proteins is sufficient to control the translation
of nearly all of them. This is accomplished by the ribosomal protein binding to
the translation initiation site of one gene, typically the first gene in the operon,
because that region of the mRNA has evolved to resemble the natural binding site
of the protein in the rRNA (Bellur and Woodson 2009; Draper 1989; Schlax et al.
2001; Wu et al. 1994). The binding site on the mRNA must have a lower affinity
than the primary rRNA-binding site to ensure that those primary sites are fully
occupied before expression of the protein is turned off. Although not as common,
similar autoregulatory functions are observed for some ribosomal proteins in yeast,
sometimes involving the regulation of splicing (Lu et al. 2015; Warner and McIntosh
2009).

Another example of intrinsic RBPs that also regulate their own synthesis
are tRNA synthetase genes (Yao et al. 2014). For example, the threonyl-tRNA
synthetase gene of E. coli was shown to inhibit its own translation by binding to its
mRNA at a structure that mimics the sequence and structure of the threonyl-tRNA
(Romby et al. 1990; Romby and Springer 2003; Springer et al. 1985; Torres-Larios
et al. 2002). When the activity of the protein is sufficient to charge all of the threonyl-
tRNAs in the cell, so that no more of the protein is needed, it binds to its secondary
ligand, its own mRNA, to repress its synthesis.

Both of these examples, ribosomal proteins and aminoacyl-tRNA synthetases,
have normal functions that require RNA binding, in one case to rRNA and in the
other tRNA. When those primary functions are fully satisfied the proteins become
autoregulatory repressors to inhibit further synthesis of themselves. As with IF3 and
RF2, this requires no evolution of the protein itself, just the evolution of the mRNA
sequence to mimic the normal RNA-binding site of the protein. The regulatory site
must be a somewhat weaker binder to the protein than the primary site, but better
than potential off-target RNAs in the cell. There are many other known examples
in bacteria, and a few in yeast, where proteins whose function involves binding to
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RNA have obtained a secondary function of controlling their own expression by a
simple co-opting of their normal activity through mRNA mimicry.

Three other examples from E. coli show specific autoregulation for proteins that
either do not bind RNA as their normal function or bind to it nonspecifically. The
SuhB gene is an inositol monophosphatase that also controls its own expression
by modulating the half-life of its mRNA (Inada and Nakamura 1996). The gene
for polynucleotide phosphorylase (Pnp) regulates its own synthesis through both
modulating an RNA-cleavage event and repressing translation (Carzaniga et al.
2015). SecA is involved in protein translocation across the plasma membrane and
also has domains for DNA and RNA helicase activity. It regulates its own translation
through binding to RNA structures in its mRNA, a function that does not require the
helicase activity (Kiser and Schmidt 1999; Schmidt et al. 2001).

Two other examples of posttranscriptional autoregulation that do not involve
RBPs were discovered in the bacteriophage T4 (Gold 1988; Uzan and Miller 2010).
The single-stranded DNA (ssDNA)-binding protein (gene 32) is required for DNA
replication, repair, and recombination and binds to ssDNA nonspecifically. Inactive
fragments of the protein were found to be much more highly expressed than the
wild-type protein, and that was shown to be due to loss of translational repression
by the wild-type protein (Russel et al. 1976). Although the protein will bind to
RNA, its affinity is about 200-fold lower than for DNA, and the ssDNA binding is
not sequence specific, so it was a surprise that it could specifically regulate its own
translation. An initial model proposed that its own mRNA is uniquely unstructured
around the ribosome-binding site, and due to gene 32’s highly cooperative binding
it would bind there before binding to any other mRNAs, providing the necessary
specificity (von Hippel et al. 1982). Further analysis proposed, and then showed,
that a pseudoknotted RNA structure at the 5’ end of the mRNA, conserved in other
T-even phages even though the sequences differ, provided a nucleation site for the
cooperative binding that contributed to the specificity of regulation (McPheeters
et al. 1988; Shamoo et al. 1993). The T4 DNA polymerase gene (gene 43) also
regulates its own synthesis by binding to a hairpin near the ribosome-binding site of
its own mRNA (Andrake et al. 1988; Petrov and Karam 2002; Tuerk et al. 1990).
The binding of the protein to its own mRNA occurs when no more DNA polymerase
is needed to complete replication of the phage genome.

3 Principles of Posttranscriptional Autoregulation

Evolution of autoregulation can be accomplished easily, only requiring modification
of the mRNA, not the protein. Furthermore, any step in the process between the
initiation of transcription and the completion of the protein product can be regulated,
offering many opportunities for autogenous control of expression. In examples like
IF3 and RF2, the mRNA has taken advantage of the normal function of the protein,
in one case to effect translation initiation and in the other termination, so that its
expression becomes lower when the protein’s activity becomes higher, providing
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a direct, but subtle, feedback to control the synthesis rate. For RBPs, the mRNA
simply has to evolve to mimic the normal ligand of the protein in such a way
as to alter translation or splicing or some other step in the synthesis process. For
other proteins whose function does not involve protein synthesis or RNA binding,
the evolution of autoregulation may seem more difficult. But in fact, RNA has an
enormous potential for binding with high affinity and specificity to a wide variety of
molecules. This was demonstrated with the invention of SELEX, first to identify
the sequence requirements for the gene 43 regulatory hairpin (Tuerk and Gold
1990), and then shown to be a general approach that could select RNA aptamers for
specific binding to essentially any target (Gold et al. 1995). Nature’s use of RNA
versatility is evident in the widespread occurrence of riboswitches (McCown et al.
2017). Based on the identification of an RNA structure involved in the regulation
of the genes for thiamin synthesis, and the lack of identification of a regulatory
protein after extensive search (Miranda-Rios et al. 2001), we speculated that the
mRNA may bind thiamin directly leading to an alteration in structure that could
control the synthesis of the proteins in the operon, and that such a mechanism may
be quite common (Stormo and Ji 2001). This was soon shown to be the case for
regulation of the thiamin operon (Winkler et al. 2002) and then discovered to be
a widespread mechanism in bacteria to regulate the expression of enzymes for the
synthesis of various small molecules (Breaker 2011; Mandal and Breaker 2004;
McCown et al. 2017; Mironov et al. 2002; Vitreschak et al. 2004). The versatility of
RNA to specifically bind essentially any target means that every protein is, at least
potentially, an RNA-binding protein. The extent to which this capability is used by
cells, for autoregulation or other functions, is unknown, but could be quite common.

Another principle evident from the known examples of posttranscriptional
autoregulation is that they are difficult to find. For the T4 proteins it was the
accidental observation that inactive versions of the proteins, either temperature
sensitive or premature chain termination mutants, were greatly overexpressed.
That could be seen because after infection only the T4 genes are expressed and
the inactive fragments are stable. In a complex mixture of proteins from cells,
especially when inactive versions are rapidly degraded, such an effect would not
be noticed. In the case of IF3 and RF2 the highly unusual features of the genes,
the unique AUU start codon for IF3 and the in-frame stop codon in RF2, led to
the search for the consequences of those features and the discovery of their use in
autoregulation. The ribosomal proteins were under intensive study to understand
how the expression of the rRNA and proteins was coordinated. Each of the other
cases was also discovered through concerted efforts to understand the regulation of
specific genes. Riboswitches are examples of feedback regulation by the end product
of an enzymatic pathway, but not by the direct action of a protein to regulate its own
synthesis that is the topic of this chapter. But it is informative to consider their
discovery. The regulatory mechanisms for those pathways had been under study
for several years, but only after the initial example of a riboswitch was identified
did it become clear that was a common mechanism and many more examples were
identified in rapid succession (Mandal and Breaker 2004; Vitreschak et al. 2004).
Only a few examples have been found in eukaryotes but that may be due to the
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challenges in finding them. Similarly, once miRNAs were discovered and found
to be more widespread than just C. elegans, there were directed searches for them
and many were rapidly identified, shown to be widely expressed and involved in
regulating large numbers of genes (Pasquinelli 2012). While some examples of
posttranscriptional autoregulation have been known for many years, there have
not been concerted efforts to find them. There are certainly efforts to identify
proteins that posttranscriptionally regulate gene expression, but they are primarily
focused on RBPs that are likely to have many targets (Matia-Gonzalez et al. 2015;
Mitchell et al. 2013), and would miss an autoregulatory protein that only binds to,
or effects the translation from, its own mRNA. Furthermore, even once a protein is
identified as being autoregulatory, determining the mechanism can be challenging.
In cases where the protein binds to the mRNA, specificity is often accomplished
by complex structural binding sites. And since there is only one example in the cell,
typical binding site motif discovery methods aren’t useful. One can, sometimes, take
advantage of phylogenetically conserved binding sites (see below), but the structural
complexity can still leave the problem challenging.

4 Strategies for Discovery

There are two strategies we imagine for identifying posttranscriptional autoreg-
ulatory genes, one a mixture of computational and experimental methods and
another that is purely experimental and more direct. One common feature of the
autoregulatory examples, except for IF3 and RF2 which are special cases that don’t
involve protein–mRNA binding, is that the binding site is composed of structure
and sequence that provide the specificity necessary for regulation of a single gene.
By looking for conserved structural motifs, overlapping or near the translation
initiation site of the mRNA, across a set of related bacterial species, we discovered
several significant examples in Shewanella species (Xu et al. 2009). Many of
them are almost certainly true cases of regulatory sites because they correspond
to known examples from other species, such as riboswitches, attenuator hairpins,
or ribosomal protein-binding sites. There were also several novel predictions that
have not, to my knowledge, been tested which would be required to verify their
existence and function. Their existence also doesn’t prove that they represent
autoregulatory events, as opposed to alternative functions, and that would have to
be shown experimentally. Currently we are working on an experimental approach
that takes advantage of resources in yeast. There is a collection of strains in which
green fluorescent protein (GFP) has been fused with nearly every yeast gene,
and when that gene is expressed the cells are green (Huh et al. 2003). We have
designed versions of the genes in which all of the potential cis-regulatory elements
(CREs) have been removed, which we refer to as CRE-less versions of the genes.
This is done by changing the promoter and the 5’ and 3’ untranslated regions
and the introns, which is where regulatory sites typically reside. We have also
shuffled the codons of the gene to maintain the same protein sequence but remove
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potential binding sites within the coding region. These CRE-less gene versions are
fused to red fluorescent protein (RFP) behind an inducible promoter. If a gene is
autoregulated, turning on the CRE-less version should downregulate the wild-type
protein and cells should go from green to red, which can be easily identified with
fluorescence sorting. This will allow us to test large libraries of CRE-less genes
and identify any that are autoregulated, as well as other examples of regulation.
The mechanism of regulation and the exact nature of the CREs will have to be
determined by further analysis, such as by replacing some of the potential CREs
to identify those required for regulation. We think this will identify new examples
of posttranscriptional autoregulation in yeast, and we speculate that there could be
many of them. Adapting this method to higher eukaryotes, without the resources
available in yeast, will be challenging and we are exploring alternative methods.
We think such tools, along with many other approaches to study posttranscriptional
regulation in general, will lead to much more comprehensive views of the true
regulatory networks in cells.

Acknowledgments I thank Drs. Michael White and Basab Roy for comments and suggestions on
the manuscript.
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Abstract Non-coding RNAs (ncRNAs) represent key molecular players in bio-
logical processes and human disease. Several ncRNA types have been discovered
including microRNAs (miRNAs) of around 23 nucleotides and long non-coding
RNAs (lncRNAs) that are above 200 nucleotides in length. One of the first functional
ncRNAs discovered was the lncRNA named X inactive specific transcript (XIST).
XIST is the main actor in a fundamental process called X chromosome inactivation
(XCI) where, in females, one of the two X chromosomes is silenced to balance
the extra gene expression dosage. In this book chapter, we present the emerging
evidence for the importance of XCI in diseases such as gastric and bladder
cancer and genetic pathologies such as Klinefelter (47,XXY) and Turner (45,X0)
syndromes. Furthermore, a new role for the crosstalk between XIST and miRNAs
is discussed. Finally, new evidence for sex bias of XCI in human tissues and
development of cancer is presented.
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1 Introduction

The central dogma of molecular biology describes the flow of information from
DNA passing through RNA to protein. Each step of this process is finely regulated
by a multitude of finely interconnected mechanisms. Gene expression regulation
can be modulated through many molecules including transcription factors and non-
coding RNAs (ncRNAs) such as microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs). miRNAs are a family of small, ncRNAs (around 21–23 nucleotides)
that regulate gene expression in a sequence-specific manner by binding mRNAs (or
other ncRNAs), usually leading to their down-regulation (Bartel 2009). Since their
first description (Lee et al. 1993), miRNAs changed the way researchers study the
central dogma. This new class of functional non-coding sequences in the genome
opened a new field in biology and new opportunities emerged for discovering
novel genes influencing molecular mechanisms in physiology and disease (Bartel
2004). Several studies showed the link between miRNAs and human pathologies,
especially in cancer (Calin et al. 2002, 2004, 2005; Iorio et al. 2005; Song et al.
2013). The first evidence of the involvement of miRNAs in cancer came in 2002
where it was shown that miR-15 and miR-16 are located at chromosome 13q14, a
region frequently deleted in chronic lymphocytic leukaemia (CLL), and that these
miRNAs were deleted or down-regulated in more than 60% of human CLL cases
(Calin et al. 2002). The deletion of miRNAs in cancer suggested their potential role
as tumour suppressors (Calin et al. 2002, 2004; Iorio et al. 2005; Lagana et al. 2010).
Further studies showed that miRNAs can also act as oncogenes (Zhang et al. 2007).
A typical example is miR-21, up-regulated in most cancer types where it regulates
cell proliferation, apoptosis and migration by suppressing the expression of tumour
suppressors (Pfeffer et al. 2015). Several other studies revealed the importance
of miRNAs in fundamental biological processes and in many diseases and it is
estimated that miRNAs regulate approximately 30% of the human protein-coding
genome (Filipowicz et al. 2008).

Another emerging class of ncRNAs is lncRNAs (>200 nucleotides in length).
They were also discovered in the early 1990s—the same period as miRNAs. The
first two examples of functional lncRNAs were H19 (Brannan et al. 1990) and XIST
(Brockdorff et al. 1992; Brown et al. 1992), key players in epigenetic regulation.
XIST is of particular interest for its role in X chromosome inactivation (XCI) and it
is located in the region named X inactivation centre (XIC) (Fig. 1).

This multistep process was discovered in 1961 by Mary Lyon (1961), where
one X chromosome is randomly silenced in females in order to balance gene
expression derived from the presence of two X chromosomes (Avner and Heard
2001). Recent work showed the involvement of XCI in the phenotype of diseases
caused by aneuploidies such as Klinefelter syndrome (47,XXY), where an extra
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Fig. 1 Location of XIST in the X chromosome in the X inactivation centre. Arrows indicate genes
and their direction of transcription

X chromosome mediates unbalanced gene expression genome-wide (Belling et al.
2017). Moreover, an emerging role for XCI has also been shown in several cancer
types (Chaligne and Heard 2014) and recent works underlined the importance of
sex bias of XCI in human tissues and development of cancer (Dunford et al. 2017;
Tukiainen et al. 2017).

In this book chapter, we discuss key concepts regarding the involvement of
ncRNAs in the regulation of XCI and related diseases with particular focus on
genetic diseases and cancer.

2 X Chromosome Inactivation

XCI evolved as a strategy for gene dosage compensation in mammals where, in
females, one X chromosome is inactivated. Both X and Y chromosomes originated
from autosomes, but X retained more than 95% of the ancestral genes while Y only
2% (Mueller et al. 2013; Soh et al. 2014), generating the gene dosage imbalance
between males and females. Two specific regions named pseudoautosomal region
1 (PAR1) and 2 (PAR2) have remained highly homologue (98–100%) between the
X and Y. These regions are located at the terminal ends of the chromosomes and
escape XCI (Raudsepp et al. 2012).

XCI consists of imprinted inactivation of the paternal X chromosome (Xp) (Kay
et al. 1993; Takagi et al. 1978) and then reactivation of Xp during the formation
of the blastocyst. At this point, random XCI of Xp or the maternal X chromosome
(Xm) is observed (Okamoto et al. 2005) and this status is inherited for the entire
process of cell division. During XCI, XIST forms a “coat” together with histones on
the X chromosome to be inactivated (Avner and Heard 2001). This event represents
the starting point of the gradual silencing of the complete chromosome and causes
chromatin remodelling (Avner and Heard 2001) and consequently the formation of
transcriptionally “silent” Barr bodies (Barr and Bertram 1949).

In the last years, additional knowledge regarding the regulation of XCI came
from the use of murine embryonic stem cells (ESCs). The control of XCI during
ESC differentiation involves several pluripotency genes. In undifferentiated female
ESCs, Xist has been shown to be occupied and transcriptionally suppressed by Oct4,
Sox2 and Nanog whereas Xite and Tsix genes (negative regulators of XCI (Lee
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2005)) are bound and transcriptionally activated by Oct4, Sox2, Klf4, Zfp42 and
cMyc (Minkovsky et al. 2013). Upon differentiation, XCI ensues through a multistep
process of the initiation, silencing and maintenance of the silenced X. The initiation
and onset of silencing are tightly linked with the down-regulation of pluripotency
factors and the concomitant up-regulation of chromatin regulators that mediate XCI,
such as Satb1 and PRC2. Furthermore, the introduction of Oct4, Sox2, Klf4 and
cMyc into differentiated cells gives rise to induced pluripotent stem cells, which is
accompanied by X chromosome reactivation in mouse (Okita and Yamanaka 2011).

XCI is not solely relevant in females; XCI also occur in males, where the single X
chromosome is active in all somatic cells, but is inactivated during spermatogenesis
and reactivated after fertilisation in female pre-implantation embryos (Epstein et al.
1978; Goto and Monk 1998; Kratzer and Gartler 1978; Monk and Harper 1978).

3 X Chromosome Inactivation in Human Tissues

For many years, it was unclear whether XCI is shared between cells and tissues
but a recent study performed by the GTEx consortium opened a new perspective
on the landscape of XCI across human tissues (Tukiainen et al. 2017). Tukiainen
and colleagues analysed over 5500 transcriptomes from 449 individuals spanning
29 tissues from GTEx and 940 single-cell transcriptomes combined with genomic
sequence data. They showed that incomplete XCI affects 23% of X-chromosomal
genes, underlining the importance of taking into account these sex biases in gene
expression as important variables for phenotypic diversity. This diversity might
represent a crucial aspect to consider in the light of personalised medicine, since
individuals can vary in their gene dosage due to different incompleteness of XCI and
therefore having different treatment outcomes. Overall, Tukiainen and colleagues
showed that the sex bias of XCI is specific to escape genes, but some genes had
an unexpected trend of gene expression (Tukiainen et al. 2017). In particular eight
genes not classified as full escapees followed a similar profile compared to well-
established escape genes. One gene, a lncRNA called RP11-706O15.3, without an
assigned XCI status and not characterised, showed a similar sex bias pattern to
escape genes. RP11-706O15.3 is located between the escape gene PRKX and the
variable escape gene NLGN4X (Tukiainen et al. 2017), and recently it was shown
to be up-regulated in Klinefelter syndrome patients compared to healthy individuals
(Belling et al. 2017), hypothesising that it potentially escapes XCI and/or might be
involved in the XCI process itself. Future analyses of the sequence, structure and
functions of this novel lncRNA could be useful in order to understand its role as
escape gene.
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4 X Chromosome Inactivation in Human Disease

Genomic instability leads to extra or fewer copies of (A) whole chromosomes (i.e.
aneuploidies), or (B) chromosome parts (chromosomal abnormalities) (Thompson
et al. 2010). This often occurs in cancer and causes increased DNA damage
and replication stress (Passerini et al. 2016). However, aneuploidy is not only a
hallmark of cancer, but also the basis of some genetic diseases such as Klinefelter
(47,XXY) and Turner syndromes (45,X0), which usually occur as a result of
incorrect segregation of chromosome pairs during meiosis (Theisen and Shaffer
2010).

Patients affected by aneuploidies have an increased risk of certain other diseases,
referred to as comorbidities (Belling et al. 2017) and defined as diseases that co-
occur on top of a primary disease of interest in an individual (Hu et al. 2016) (Fig. 2).

The occurrence and severity of comorbidities in patients affected by aneuploidies
are potentially influenced by the aneuploidy per se, the inter-individual genetic
variation and the presence of mosaicism (Bonomi et al. 2017). Moreover, XCI and
varying incompleteness of XCI and genes that escape this process could explain
the observed comorbidities and the variability of the phenotype observed in patients
affected by X chromosome abnormalities (Belling et al. 2017; Bonomi et al. 2017).

The advent of novel data and computational approaches allows researchers
to extract comorbidities population-wide by analysing National Patient Registries
(NPRs) (Belling et al. 2017; Hu et al. 2016; Jensen et al. 2014). The study of comor-
bidities extracted from the Danish NPR in a systems biology framework, integrating
several data types such as gene expression and protein–protein interaction networks,
led to increased understanding of genes and pathways involved in comorbidities of
patients affected by Klinefelter syndrome (Belling et al. 2017). XIST is up-regulated

Fig. 2 Graphical representation of comorbidities. Coloured dots in body shapes indicate specific
risk factors for diseases, including genetic background and environmental factors. Single-coloured
body shape (e.g. pink) indicates one patient with one disease, while multicoloured body shapes
(e.g. pink and green) indicate disease comorbidities. At time 0 patients affected by chromosomal
abnormality (in orange) can have the same or different risk factors. These patients can develop
additional diseases based on these risk factors and these additional diseases can be significantly
associated with the initial disease (the chromosomal abnormality) compared to the background
population
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in Klinefelter patients pointing to the fact that the extra X chromosome is silenced
presumably in a similar manner as in females (Belling et al. 2017). Moreover,
several genes located in PAR1 that escape the inactivation are aberrantly expressed
in Klinefelter patients compared to healthy individuals (Belling et al. 2017).

Genes escaping XCI seem to be crucial to understand the involvement of XCI
in human diseases. Surely, the importance of having two X chromosomes for the
normal development in females is clear, but less is known about the impact of having
only one X chromosome in patients affected by Turner syndrome (Goto and Monk
1998; Zinn et al. 1993). In a recent article, Zhang and colleagues showed the utility
of using “X-chromosome inactivation specific differentially methylated CpG sites”
(XIDMSs) that are highly methylated in inactive X chromosomes and unmethylated
in active X chromosomes for the early detection of Turner syndrome patients (Zhang
et al. 2017). This potential marker could help to limit the development of Turner
syndrome comorbidities and improve the treatment of these patients.

5 Xist, miRNAs and Cancer

An increasing evidence points to the involvement of XIST in diseases including
different cancer types.

In the last years XIST has been proposed as a biomarker for early detection of
gastric cancer (Lu et al. 2017) and non-small cell lung cancer (Tantai et al. 2015) and
to predict prognosis in colorectal cancer (Chen et al. 2017). Other studies shed light
on mechanisms of action of XIST in cancer and of particular interest is the crosstalk
between XIST, miRNAs and protein-coding genes. Mo and colleagues discovered
that XIST is involved in hepatocellular carcinoma cell proliferation where it exerts
its function through the miR-139-5p/PDK1 axis (Mo et al. 2017). They found that
XIST up-regulated in hepatocellular carcinoma tissues and cell lines and it promoted
cell cycle progression from G1 to S phase, protecting cells from apoptosis and
consequently causing cell growth. Similar results were obtained in gastric cancer
(Ma et al. 2017), where XIST exerted its function through the miR-497/MACC1
axis, and in bladder cancer (Xiong et al. 2017) where the XIST/miR-124/AR axis
was discovered to be crucial for modulating bladder cancer growth, invasion and
migration. This last study is also of interest as XIST was found to be a direct
target of miR-124 but also being able to inhibit its expression, consistent with recent
findings that lncRNAs can act as miRNA “sponges” to reduce miRNA abundance by
sequestering them (Ebert and Sharp 2010). However, XIST is considered a nuclear
lncRNA (Cerase et al. 2015), meaning that probably miRNAs are bound inside the
nucleus. Even though miRNAs are usually cytoplasmic, some studies showed that
they can cross the nuclear membrane (Hwang et al. 2007). A well-known example
is human miR-29b that contains additional sequence elements that control its post-
transcriptional behaviour (Hwang et al. 2007), and it is predominantly localised in
the nucleus, in contrast to many other miRNAs (Hwang et al. 2007).



The Interplay of Non-coding RNAs and X Chromosome Inactivation in Human Disease 235

Future studies are needed in order to elucidate the crosstalk between XIST and
miRNAs, and eventually other RNA classes.

6 X Chromosome Inactivation and Cancer Sex Bias

In the previous paragraphs, we showed the importance of XCI escape in the
potential development of diseases (Belling et al. 2017) and also the variability of
this phenomenon in different tissues, which contributes to defining a sex bias in
gene expression (Tukiainen et al. 2017). A recent work points out an additional
important aspect for escape genes defined as “Escape from X-Inactivation Tumor
Suppressor” (EXITS) genes (Dunford et al. 2017). By comparing somatic alterations
from >4100 cancers across 21 tumour types, Dunford and colleagues hypothesised
that EXITS genes would protect females from developing different cancer types and
could explain the male predominance in cancer incidence (≥2:1 male predominance
for some individual cancer types based on US data (Edgren et al. 2012)) that was
considered largely unexplained (Cook et al. 2009; Dunford et al. 2017). The idea
behind this hypothesis is that mutations in tumour-suppressor genes that escape
XCI could consist of a significant fraction of excess male cancers because males
would require only a single deleterious mutation (since only one X is present in
males) while females would require two. Moreover, an alternative situation in males
considers the presence of mutations in genes of X and Y chromosomes located in
PARs. Tumours with mutations in those genes have an increased probability to occur
in males who also have somatic loss of chromosome Y, a phenomenon that can be
explained with the age and lifestyle of patients (Dunford et al. 2017).

7 Conclusions

In this book chapter, we presented recent findings in the field of XCI and related
molecular mechanisms and diseases. Recently, XIST has been mentioned as a
candidate prognostic biomarker for cancer patients and a potential target for new
therapies. Additional studies are needed to improve our understanding of the role
of XIST to promote cancer cell growth, invasion, progression and metastasis. Future
studies are needed to discover additional molecular mechanisms behind XIST and
its role in chromosomal abnormalities and associated comorbidities.

Recent advance in manipulation of single genes led to testing the concept that
gene imbalance due to an extra chromosome can be corrected by manipulating
XIST (Jiang et al. 2013). In 2013, Jiang and colleagues (2013) were able to use
genome editing with zinc finger nucleases introducing an inducible XIST transgene
into the DYRK1A locus on chromosome 21 in Down syndrome pluripotent stem
cells. Surprisingly, XIST was able to act like in the traditional XCI process, causing
stable heterochromatin modifications, chromosome-wide transcriptional silencing
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and DNA methylation and forming a chromosome 21 Barr body. This amazing
result can lead to future interventions based on the new concept of “chromosome
therapy” through the use of RNA technology.
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Abstract Biology research has entered into the big data era. Systems biology
approaches, therefore, have become essential tools to elucidate the whole landscape
of how cells separate, grow, and resist different stresses. In 2009, a novel RNA
technology, termed ribosome profiling, was invented by Dr. Jonathan Weissman Lab
from UCSF. Ribosome profiling (Ribo-Seq) is a powerful tool which can provide
the most direct readout of the intracellular translation state of a protein including
information on the location of translation start/stop sites, ribosome distribution
pattern, and even the moving rate of the translating ribosome, at the whole-genome
scale and single-nucleotide resolution.

To date, many researchers including our lab have successfully applied ribosome
profiling method for diverse purposes. We thus review in this chapter the underlying
mechanism and recent advances as regards this fantastic tool. Firstly, we introduce
the working mechanism, advantages, and study history of ribosome profiling.
Secondly, we discuss the data analysis pipeline, also compare different statistical
algorithms and data visualization software. Finally, we review the extensive appli-
cations of Ribo-seq, for example, identification of uORF, computation of global
translation efficiency (TE), the study of the posttranscriptional regulatory role of
RNA binding protein and others. We hope this chapter would be useful for interested
systems biology researchers as well as RNA biologists.

Keywords Ribosome profiling · Ribo-Seq · RNA-Seq · Translation · Deep
sequencing · mRNA · Ribosome footprint

1 Introduction

In the classic “central dogma of molecular biology,” ribosome-operated mRNA
translation is the final step. This process is so crucial and thus it is tightly regulated
by the cell, by controlling the complex translational machinery which comprises
hundreds of ribosomal subunits and a series of regulatory factors (RNA binding pro-
teins and small RNAs). Previously, researchers have shown that dysregulation of this
process will trigger specific cell defects, and sometimes even cause severe human
disease. The recent advances in structural biology have significantly improved
the understanding of the 3D structure of the ribosome. However, the regulatory
mechanism, especially in a systematic way, remains largely unclear.

For a long while, genome-wide mRNA expression profiling has been utilized
as a tool for examining the cellular physiological states and for investigating the
regulatory mechanism of gene expression. Most of the abovesaid profiling was
conducted by expression microarray or RNA-seq approaches. The abovesaid two
assays can be used to quantify the steady abundances of the gene transcripts in cells.
Until now, mRNA expression profiling has been extensively applied in almost every
branch of biology and has already become the routine method for understanding
the complex gene expression pattern. However, many researchers have indicated
that endogenous protein synthesis rate is hard to be predicted by relying on
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mRNA abundance. In other words, transcript abundance is often poorly correlated
with protein abundance in vivo, suggesting the critical role of posttranscriptional
regulation.

The advance of mass spectrometry-based proteomics provides a straightforward
approach for systematically measuring the protein level in vivo. However, it can
only capture the steady protein abundance. Also, it is hard to reach the depth and
breadth of coverage provided by the deep sequencing-based method. A novel deep
sequencing-based technique, termed ribosomal profiling (Ribo-seq), was invented
to provide a way for quantitating translatome at both genome-wide scale and
single-nucleotide resolution (Ingolia et al. 2009). The biochemical mechanism of
Ribo-seq initially stems from the long-term observation that the moving ribosome
on a transcript can efficiently cover about 30 nucleotide-long mRNA fragments,
thus avoiding digestion by nuclease. The abovesaid ribosome-protected mRNA
fragments, also called ribosome footprints (RFPs), can be then sequenced, to
provide a landscape comprising the accurate record of the position of the ribosome
at the moment when the translatome is quenched. The quantitation of RFPs on a
specific mRNA strand, therefore, indicates the proxy for the efficiency of protein
synthesis. At the same time, the localization of RFPs allows us to globally map the
initiation and termination sites of each translation product and thus Ribo-seq also
provides a unique way to explore the whole ORF spectrum in a living cell.

In this chapter, we discuss the biochemical mechanism of Ribo-seq method,
its unique properties and strengths, and the varied versions of it. Secondly, since
Ribo-seq is a big data-based systems biology approach, we also review the relative
data analysis pipelines, available software, and public databases. We hope this
chapter would be useful for interested systems biology researchers as well as RNA
biologists.

2 The Experimental Design, Readout Type, and Data
Analysis Pipeline

For instantaneously snapshotting the translatome, cycloheximide (CHX, for eukary-
otes) or chloramphenicol (CHL, for prokaryotes) are typically used to treat ribo-
somes before sample collection (Ingolia et al. 2009; Oh et al. 2011). Both CHX
and CHL can bind the large subunit of ribosome and then cause the inhibition of
translational elongation. Afterward, the “frozen” ribosome–mRNA complexes are
separated by ultracentrifugation based on the molecular weights. Nuclease treatment
is then applied to remove all of the unprotected mRNA regions, so eventually,
around 30 nucleotide-long shelled RFPs can be obtained and purified. They are
then reverse-transcribed, barcoded, and a standard DNA library constructed for deep
sequencing. With the recent revolution in sequencing power, researchers now can
deeply profile all translating ribosomes. The budding yeast genome, for example,
encodes about 6000 proteins with an average mRNA coding region of approximately
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300 nucleotides in length. Nuclease digestion of ribosome–mRNA complexes will
yield more than 10 million RFPs per sample, which will be decoded accurately in a
state-of-the-art deep sequencing platform, such as the HiSeq system of Illumina.

The similarities between ribosome profiling and RNA-seq for analyzing gene
expression allow for the use of current bioinformatics tools with ribosome profiling
data. For example, we published a study which aimed to quantitate the regulatory
differences between a laboratory S. cerevisiae strain BY4742 and a pathogenic S.
cerevisiae strain YJM789 (Sun et al. 2016). After obtaining the Ribo-seq and RNA-
seq data sets, the raw reads from RFP and mRNA are cleaned by removing the
adaptors/barcodes and filtered by quality using custom Perl scripts. The cleaned
mRNA reads are mapped to the corresponding genome using SOAP, with no more
than two mismatches allowed. The uniquely aligned reads from both mRNA and
RFP are assigned to genomic features, such as coding sequence (CDS), intron, 5′-
UTR, or 3′-UTR, based on the position of the 5′-most nucleotide. To quantify the
mRNA and RFP reads, we first obtain the base level read coverage of all ortholog
genes from both species. A minimum of 50 reads mapping to the CDS region is
required to retain the gene for further transcriptional and translational analysis.
For testing the statistical significance of mRNA and RFP divergence, we sought
to generate a sequence-specific null distribution accounting for the influence of
sequencing bias and gene length for both mRNA and RFP. We let LB and LY
denote, respectively, the mappable lengths of BY4742 and YJM789 orthologs, and
let πB = [πB(A), πB(T), πB(G), πB(C)] and πY = [πY(A), πY(T), πY(G), πY(C)]
denote the corresponding marginal nucleotide frequencies of each ortholog. We
began to form the null ortholog pairs by resampling, with replacement, the base
level counts from either BY4742 or YJM789 ortholog using the same length and
nucleotide frequency from the orthologs (LB, πB or LY, πY). The resampling was
repeated 10,000 times and the null distribution of the log2-transformed ratio of
BY4742 to YJM789 was derived from two resamplings of both replicates. We
compared the observed base level counts log2-ratio of BY4742 to YJM789 with
the underlying null distributions to obtain two-sided P values.

3 Optimization and Varied Versions of Ribosome Profiling

3.1 Use Harringtonine to Define Translation Start Sites
and Monitor Translational Kinetics

In a standard ribosome profiling protocol, cycloheximide (for eukaryotes) or
chloramphenicol (for prokaryotes) are normally employed as elongation inhibitors.
Weissman and coworkers pioneered the use of drug harringtonine for ribosome
profiling (Ingolia et al. 2011). Harringtonine is a cephalotaxine alkaloid that inhibits
protein synthesis at low micromolar concentrations. They found that harringtonine
treatment causes a profound accumulation of ribosomes at the sites of translation



Novel Insights of the Gene Translational Dynamic and Complex Revealed. . . 243

initiation in mouse embryonic stem cells. They proposed that this pattern occurs
because harringtonine binds to free 60S subunits but not those that are joined into
an 80S ribosome. Therefore, the elongating ribosomes are resistant to harringtonine,
but a 60S subunit-bound drug will form an 80S at the initiation site without
moving forward. They then used a support vector machine (SVM)-based machine
learning strategy to systematically analyze harringtonine-treated ribosome profiling
and eventually identified 13,454 candidate translation initiation sites within ∼5000
transcripts that actively expressed in the mESCs. In the same study, they also
developed a ribosome profiling-based pulse-chase strategy for determining rates
of translation elongation, by combined application of harringtonine and cyclohex-
imide. The design is as follows: first treat the cell with harringtonine to stop the
translation initiation, then leave a short time for run-off elongation before applying
cycloheximide to halt translation by all active ribosomes, which will eventually
produce a series of snapshots that could be assembled into a moving picture of
translation in vivo. Interestingly, they found that the kinetics of elongation are
significantly consistent and are independent of mRNA length, protein abundance,
and codon usage. The last observation is especially surprising since it is usually
assumed that codons corresponding to low-abundance tRNAs are decoded more
slowly than those read by richly abundant tRNAs.

3.2 Optimization of Nuclease Digestion Process

Gene translation is a quite fast process (∼6 codons/s) and sensitive to a series
of biochemical factors, such as temperature, pH, and ionic strength. Therefore,
ribosome profiling has to be conducted carefully to avoid potential bias. A critical
issue in ribosome profiling is nuclease treatment of ribosome–mRNA complexes
since there is a dual requirement for maintaining the stability of ribosomal parti-
cles and converting polysomes to monosomes entirely. Gladyshev and coworkers
systematically compared the efficacy of ribonucleases I, A, S7, and T1, in various
species including E. coli, S. cerevisiae, C. elegans, D. melanogaster, and M.
musculus (Gerashchenko and Gladyshev 2017). Their result shows that although
RNase I is the nuclease of choice in the several published cases of yeast, it is
not necessarily the case with other species. S7 and T1 are less aggressive to the
ribosome and thus provide a valuable substitution. In the same year, Buskirk and
coworkers published their research on the endonuclease RelE (Hwang and Buskirk
2017). The in vivo data proves that RelE predominantly cleaves mRNA after the
second nucleotide in empty A sites. They then explored the possibility of using
RelE to replace MNase in the ribosome profiling preparation procedure. The result
is promising since RelE can yield precise 3′-ends and reveals a clear reading frame
which is hard to acquire in bacteria.
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3.3 Development of Simplified Protocols for Ribosome
Profiling

Until now, ribosome profiling is a time-consuming and expensive method. To
combat this challenge, several groups have been engaged in developing simplified
ribosome profiling protocols. Palsson and coworkers published a streamlined Ribo-
seq protocol for characterization of microorganisms (Latif et al. 2015). Without
using sucrose gradient fraction separation process, they directly treat with MNase
after repeated freeze–thaw lysis to E. coli cells. Monosomes are then recovered
using a size exclusion spin column analogous to those used for ARTseq (Epicenter,
Madison, WI). Next, the recovered ribosomes are treated with Qiazol (Qiagen,
Germantown, MD) to recover RNA footprints. Footprints are subsequently isolated
using kit-based purification assays and exclude the gel purification steps in the
previous protocol. Therefore, they reduced the total experimental time from 7–
8 days to 3–4 days. From one single simple, they successfully obtained ∼1.3
million reads, and the processed data sets show a strong linear correlation between
biological replicates analogous to those produced by the established protocol. With
a similar aim, Nicchitta’s group also published a simple and inexpensive pipeline for
preparing human lymphocyte samples (Reid et al. 2015). In this protocol, they skip
the ribosome purification step as well and directly use MNase to digest polysomes.
They estimate the cost of this simplified method from cell lysis to library completion
at about $50 per sample, and the protocol can reasonably be finished within 2 days.

3.4 The Proximity-Specific Ribosome Profiling

The localization of protein synthesis plays a key role in multiple processes, includ-
ing development, cellular motility, and synaptic plasticity. However, there are rare
molecular approaches suitable to accurately quantitate this spatial information. In
2014, Weissman’s group developed a novel tool termed proximity-specific ribosome
profiling which allows for precise characterization of localized protein synthesis
(Jan et al. 2014). The underlying mechanism of this superior method is to biotinylate
ribosomes in vivo in the subcellular location dependent way. They performed this
experiment in five steps: (1) inserting a non-perturbing ribosome tag (RPL16 and
RPS2 in yeast) composing of a tobacco etch virus (TEV) protease-cleavable AviTag;
(2) genetic targeting of a biotin ligase (BirA) to a subcellular location of interest,
such as endoplasmic reticulum (ER) membrane; (3) controlling the intracellular
ribosome biotinylation by giving brief biotin pulses; (4) preventing the post-lysis
biotinylation; and (5) separating the biotinylated ribosomes and purifying through
TEV cleavage. Weissman’s group first used this strategy to discover the principles
of ER cotranslational translocation in budding yeast S. cerevisiae and human
embryonic kidney-293 (HEK-293) cell line as well. They discovered that the vast
majority of secretory proteins conduct cotranslational targeting in vivo, independent
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of their dependence on signal recognition particle (SRP), and they then proposed
a model wherein a pioneering round of translation is in charge of recruiting the
ribosome-nascent chain (RNC) to the ER surface, after which the message remains
tethered to the ER by ongoing translation by downstream ribosomes. Their result
also reveals that the ER-associated ribosomes are highly dynamic since the bimodal
enrichment distribution is rapidly collapsed into a single population on the order
of just minutes. In another study, they used proximity-specific ribosome profiling
to study the targeting and plasticity of mitochondrial proteins in S. cerevisiae
(Williams et al. 2014). To mark ribosomes selectively on the mitochondrial surface,
they inserted BirA to the C terminus of OM45, a major component of the outer
membrane (OM). After a 2-min pulse of biotin, of the enriched genes, 87% were
annotated as mitochondrial. A significant subgroup of expressed mitop2 genes was
cotranslationally targeted. After comparing the mitochondrial and ER localization,
they demonstrated that the majority of proteins target to a specific organelle. Except
for fumarate reductase Osm1, they are known to localize into mitochondria, but
a conserved ER isoform of Osm1 was found in this study. This dual localization
mechanism is enabled by alternative translation initiation sites encoding distinct
targeting signals.

4 Specific Software and Databases for Ribosome Profiling

Along with the extensive application of ribosome profiling in different fronts,
much specific software for analyzing and visualizing Ribo-seq results have been
developed worldwide. Ohler’s group developed RiboTaper (https://ohlerlab.mdc-
berlin.de/software/) which majorly aims to identify translated regions by the char-
acteristic three-nucleotide periodicity of Ribo-seq data (Calviello et al. 2016). From
the dataset of HEK293 cells, they found the active translation that covered ORF
annotation for over 11,000 genes. They also reported several hundreds of uORFs and
ORFs in annotated noncoding genes (ncORFs). In 2016, Milles’s group published a
software named SPECtre (https://github.com/mills-lab/spectre) (Chun et al. 2016).
SPECtre is a spectral coherence-based classifier and shows a marked improvement
in accuracy for identifying active translation and exhibits overall high accuracy at
a low false discovery rate (FDR). Barbry’s group developed RiboProfiling (https://
www.bioconductor.org/packages/release/bioc/html/RiboProfiling.htm) (Popa et al.
2016), which is a Bioconductor package and provides a full pipeline to cover
all key steps for Ribo-seq analysis. Brierley’s group developed the riboSeqR R
package (http://www.bioconductor.org/packages/riboSeqR) (Chung et al. 2015).
This package parses data aligned to a transcriptome, providing frame-calling and
plotting functions. Baranov’s group developed GWIPS-viz browser (http://gwips.
ucc.ie) (Michel et al. 2014), which provides access to the genomic alignments of
Ribo-seq data and corresponding RNA-seq data along with relevant annotation
tracks— allowing for the cross-species comparison of orthologous genes. Based
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on GWIPS-viz, the same group then published the RiboGalaxy (http://ribogalaxy.
ucc.ie) which is a freely available Galaxy-based web server (Michel et al. 2016).
RiboGalaxy is a user-friendly and also powerful tool for Ribo-seq analysis. Relying
on it, people can compare their ribosome profiles to existing ribo-seq tracks from
published studies. Also, people can evaluate the quality of their ribo-seq data,
determine the strength of the three-periodicity signal, and generate meta-gene
ribosome profiles. Another Galaxy toolbox is RiboTools (https://testtoolshed.g2.
bx.psu.edu/view/rlegendre/ribo_tools) (Legendre et al. 2015) which is designed
for the accurate analysis of k-mer length distribution, translation ambiguities, and
translation read-through events. In 2017, Rätsch’s group published a statistical
framework and an analysis tool, RiboDiff (http://bioweb.me/ribodiff), to detect
genes with changes in translation efficiency across experimental treatments (Zhong
et al. 2017).

The more the number of ribosome profiling datasets decoded, the more the
realization of importance of sORFs. Many follow-up studies have shown that some
micropeptides could be translated from these sORFs, exhibiting critical functional
roles in cells. Therefore, comprehensive collection and analysis of these sORFs have
become a need in this field. In 2015, Menschaert’s group published a database
termed sORFs.org (http://www.sorfs.org) for sORFs identified using ribosome
profiling (Olexiouk et al. 2016). Currently, sORFs.org harbors 263,354 sORFs,
originating from three cells lines: HCT116 (human), E14_Mesc (mouse), and S2
(fruit fly). RPFdb (www.rpfdb.org) is another valuable database, developed by Xie’s
group (Xie et al. 2016). RPFdb is designed to comprehensively host, analyze, and
visualize RPF data, and presently it contains 777 samples from 82 studies in eight
species. RPFdb can be queried by keywords of studies or by genes. Meanwhile, it
also provides a genome browser to query and visualize context-specific translated
mRNAs.

5 Representative Applications of Ribosome Profiling
in Different Fields

5.1 Application of Ribosome Profiling for Decoding
the Functional Roles of Small RNA

MicroRNA (miRNA) is a small noncoding RNA molecule (containing about 22
nucleotides) found in plants, animals, and some viruses that functions in RNA
silencing and posttranscriptional regulation of gene expression. miRNAs play
the regulatory role by pairing to the target mRNAs to direct their repression—
which could happen at translational level or mRNA level. In 2010, Bartel and
Weissman’s group combined Ribo-seq and RNA-seq to understand the relative
contributions of the abovesaid two outcomes (Guo et al. 2010). They examined
the impact of introducing miR-1 or miR-155 in HeLa cells, and the impact of
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knocking out mir-223 in mouse neutrophil. The abovesaid miRNAs were selected
because they have been reported to regulate thousands of proteins. The result
shows that for both ectopic and endogenous regulatory interactions, only a small
fraction of repression observed by Ribo-seq (11%–16%) was attributable to reduced
translational efficiency. In other words, mRNA reduction consistently mirrored RPF
reduction.

5.2 Application of Ribosome Profiling for Analyzing
the Regulatory Roles of RNA Binding Protein

The concept of RNA regulons was proposed to specifically describe the observation
that mRNA-binding proteins (RBPs) usually bind and orchestrate the fate of target
mRNAs encoding functionally related proteins. It is increasingly clear that RNA
regulons play an essential role in determining the stability, subcellular localization,
and translation of their targets, and thus are vital for phenotypic outcomes and even
disease states in various organisms including humans.

A study for understanding the functional roles of the CCHC-type zinc finger
nucleic acid-binding protein (CNBP/ZNF9) has been published to describe its
essential role in embryonic development of mammals (Benhalevy et al. 2017) by
first using photoactivatable ribonucleoside-enhanced cross-linking and immunopre-
cipitation (PAR-CLIP) to identify ∼8000 CNBP binding sites on over 4000 mRNAs.
Furthermore, the G-rich elements are enriched among the CNBP’s binding sites. By
using Ribo-seq, they found that CNBP did not affect target mRNA abundance but
rather increased their translational efficiency, which could be explained by the fact
that CNBP improves translation by preventing G-quadruplex structure.

In the same year, Groβhans’s group reported the molecular mechanism of LIN41,
a well-known RBP that regulates animal development (Aeschimann et al. 2017).
Combing the RNA binding experiment and Ribo-seq assay, they found that LIN41
binds to the 3′-UTRs and regulate their degradation of mab-10, mab-3, and dmd-3.
Meanwhile, LIN41 binds to the 5′-UTR and repress the translation of the A isoform
of lin-29. This research thus presents an unusual case of an RBP exists position-
dependent dual activity-which could emerge as a common feature shared by other
RBPs.

5.3 Application of Ribosome Profiling for Exploring
the Molecular Mechanism of Cancer

The mammalian target of rapamycin (mTOR) kinase is a crucial regulator of protein
synthesis that links nutrient sensing to cancer. Earlier studies have shown that
4EBP1 and p70S6K1/2 are two major regulators of protein synthesis downstream of
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mTOR1, a subunit of mTOR complex. However, the detailed regulatory mechanism
of mTOR remains incomplete. Ruggero’s group first used Ribo-seq to discover the
translational landscape mTOR signaling during the procedure of prostate cancer
metastasis (Hsieh et al. 2012). In human prostate cells, mTOR is constitutively
hyperactivated. By treating cells with PP242-anmTOR ATP site inhibitor, three
primary downstream mTOR effectors 4EBP1, p70S6K1/2, and AKT are obviously
inhibited. Ribo-seq result then shows that 144 target mRNAs selectively decreased
at the translational level, with limited changes in transcription. Furthermore, they
also developed a clinically relevant ATP site inhibitor of mTOR, INK128. Its
selective decrease in the expression of YB1, MTA1, vimentin, and CD44 at the
translation level, therefore, provides a therapeutic way for cancer initiation and
progression.

Tumor growth is highly related to the availability of certain amino acids in the
environment for protein synthesis. Relying on the hypothesis that cytosolic global
occupancy of ribosome positions could be used as an index of alterations in the
availability of amino acid for protein synthesis, a Ribo-seq-based protocol termed
“diricore” (differential-ribosome-measurements-of-codon-reading) was developed.
“Diricore” analyzes the subsequence and 5′-end of the RPFs. The results show
diricore signals at asparagine codons and high levels of asparagine synthetase
(ASNS) (Loayza-Puch et al. 2016). When they applied diricore to kidney cancer,
it showed a clear signal representing the limitation of proline pool, which is then
proven to be biochemically linked to PYCR1, a critical enzyme that catalyzes the
last step in proline synthesis. In another study from the same group, they applied
diricore approach and successfully found that epithelial breast cells respond rapidly
to TGFβ1 and the specific restriction of leucine pool (Loayza-Puch et al. 2017).

Ribo-seq was also applied to an epidermis-specific in vivo model—a transgenic
mouse of inducible SOX2, which is extensively expressed in oncogenic RAS-
associated cancers (Sendoel et al. 2017). Surprisingly, when searched the 5′-UTR of
the top 10% of efficiently translated uORFs in SOX2+ epidermis, they discovered an
obvious correlation between improved translation, increased length, and decreased
minimum free energy of 5′-UTRs. Also, many of these SOX2-induced uORFs start
from CUG codon rather than the conventional AUG codon of canonical ORFs; this
unique pattern is consistent with another result that depletion of conventional eIF2
complexes has adverse effects on normal but not oncogenic growth.

5.4 Application of Ribosome Profiling for Studying Evolution

Understanding how gene regulation evolves is a crucial area in the current evolu-
tionary field. Gene regulation occurs at various levels. However, despite the higher
biofunctional importance of protein levels, our understanding of gene regulation is
still primarily based on studies of mRNA levels. In contrast, our knowledge of how
translational regulation evolves has lagged far behind.
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Excitingly, Ribo-seq currently provides an excellent tool for tracing the global
gene translation during evolution, thus allowing for the parallel comparison with
the universal changed pattern in mRNA level. Recently, several groups have applied
Ribo-seq and RNA-seq assays to closed yeast species and their interspecific hybrids,
for quantitating the relative contribution of changes in mRNA level and gene
translation to regulatory evolution (McManus et al. 2014; Artieri and Fraser 2014;
Wang et al. 2015). Surprisingly, we consistently found that translation is much more
conserved than transcription, mostly due to the buffering effect of translational
regulation for the transcriptional divergence. In this study, we also found that the
trans effects are more responsible than the cis effects for the discrepancy at both
levels of gene regulation. For genes whose transcription or translation are affected
by both the trans and cis factors (the CT genes), these factors usually function
in the opposite directions (the compensating CT effect), indicating the stability
of regulation for these genes. The results from our three groups have shown the
underappreciated complexity of posttranscriptional regulatory divergence. These
results thus demonstrate that surveys of various levels of gene regulation from
different genetic backgrounds can enable a more comprehensive understanding of
the gene regulation evolutionary modes in nature.

5.5 Application of Ribosome Profiling for Understanding
the Physiology of Pathogenic Bacteria

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), kills
more humans than any other bacterium, yet humans remain its only major natural
reservoir. However, until now functions of almost half of the Mtb genes are
still unclear. The first ribosome profiling study for understanding this ancient
pathogenic bacterium has been published in 2015 (Shell et al. 2015). Surprisingly,
one-quarter of the mycobacterial transcripts are leaderless, lacking a 5′-UTR
and Shine-Dalgarno ribosome-binding site. This result suggests that leaderless
translation is a major feature of mycobacterial genomes, which is not common
in many other bacteria, such as E. coli, but more like the way in some archaeal
species and mitochondria. Leaderless transcripts are likely recognized by 70S
ribosomes, rather than 30S subunits. These 70S ribosomes will be modified by
stress-induced endoribonuclease, which cleaves the 3′ end of the 16S rRNA, thus
removing the anti-Shine-Dalgarno sequence. Ribo-seq was also used to decode the
genome of Mycobacterium abscessus (Mab), another deadly respiratory pathogenic
non-tuberculous mycobacterial species (Miranda-CasoLuengo et al. 2016). They
identified 126 new ribosomally protected ORFs and 80% of which are ≤ 50 amino
acids in length. To test if these sORFs are likely to be coding, the fragment
length organization similarity score (FLOSS) of the abovesaid sORFs is calculated
to be compared with those of known coding regions within the genome. The
analysis indicates that some Mab sORFs are potential to be translated. With a
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similar aim, a study was published to identify the small unannotated genes in
Salmonella, an important foodborne pathogen (Baek et al. 2017). Based on Ribo-seq
data they uncovered 130 uORFs. Of them, 98% are sORFs putatively encoding
peptides/proteins≤ 100 amino acids and some of them are uniquely expressed in
the infection-relevant low Mg2+and/or low pH condition.

5.6 Application of Ribosome Profiling for Investigating
the Pathogen–Host Interaction

Many viruses take a common strategy called host shutoff to repress cellular mRNA
translation but allow the efficient translation of own viral mRNA at the same
time. Ribo-seq was used to discover the mechanisms that are being utilized by the
Influenza A virus (IAV) to induce host shutoff (Bercovich-Kinori et al. 2016). The
analysis shows that IAV genes transcripts are not preferentially translated during its
infection, indicated by the fact that viral genes translation efficiencies mainly fall
into the normal range of host gene translation. Instead, the host shutoff is driven
by the viral dominance over the mRNA pool. For example, at 8hpi IAV mRNAs
take over 53.8% of the translation activity in vivo as 57.3% of the mRNAs in the
cells are viral. Through Go enrichment analysis they then found that many genes
responsive to eIF2α phosphorylation are translationally induced after IAV infection.
It is not entirely unexpected because that eIF2α phosphorylation is a stress response
that will limit the overall protein synthesis rates but enhancing the translation of
specific genes that take part in the adaptive stress response.

Unlike IAV and many other viruses that suppress cellular protein synthesis,
host mRNA translation and polyribosome formation are stimulated by human
cytomegalovirus (HCMV). Furthermore, these key protein synthesis factors, includ-
ing eIF4A, eIF4E, eIF4F, eIF4G, and PABP1, increase in response to HCMV
infection. Ian Mohr’s group used polysome profiling to find that the translationally
activated cellular mRNAs of HCMV encode proteins critical for DNA damage
response, proliferation, ribosome biogenesis, chromatin organization, and so on
(McKinney et al. 2014). At the same time, the host mRNAs repressed by HCMV
include those involved in differentiation and acquired immune response. In an earlier
study, Weissman and coworkers used Ribo-seq to identify the range of HCMV-
translated ORFs and quantitate their temporal expression during its infecting human
foreskin fibroblasts (HFFs). They eventually identified a total of 751 translated
ORFs, corresponding to annotated 165–252 ORFs from previous genome sequenc-
ing data (Stern-Ginossar et al. 2012; Fields et al. 2015)

Bacteriophage lambda is one of the most extensively studied organisms and
provides a valuable model to understand the interaction of a virus with its host. In
2013, by collaborating with Jeffrey Robert’s group, we published a high-resolution
view of bacteriophage lambda gene expression in the process of its lytic growth, by
Ribo-seq (Liu et al. 2013a, b). Being consistent with several other ribosome profiling
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types of research, we determined numerous translated small proteins which might
be relevant to lysogen and phage growth, acting as intercell signaling factors, toxins,
and membrane components.

Legionella pneumophila is a gram-negative bacterium which is the causative
agent of Legionnaires’ disease. Previous studies have shown the Legionella pneu-
mophila infection causes the global pathogen-induced block of host translation.
However, a seemingly contradictory fact is that the host still can provoke the
production of specific pro-inflammatory cytokines during the infection stage. A
study was published to explain the abovesaid mystery (Barry et al. 2017). By
using Ribo-seq, RNA-seq, and ribosome run-off assays, they found that mRNA
superinduction, rather than selective mRNA translation, is the strategy by which host
cells produce inflammatory cytokines when facing the global translation inhibition.
To be successful, the magnitude of mRNA superinduction (1000-fold) has to exceed
the magnitude of the block in protein synthesis (20-fold).

5.7 Application of Ribosome Profiling for Studying
the Molecular Mechanism of the Cell Cycle

The cell cycle or cell-division cycle is the series of events that take place in a cell
leading to its division and duplication of its DNA to produce two daughter cells.
However, it has to be precisely programmed. Many fundamental research of cell
cycle and cell division have been performed in budding and fission yeasts because of
a number of their advantages: unicellularity, homologous to human, ease of genetic
manipulation, and others. Pioneering microarray and RNA-seq studies provided a
transcriptional landscape during yeast sexual reproduction progression but failed
to catch many informative modulations, especially in extensive posttranscriptional
regulation. Relying on Ribo-seq, Weissman’s group first measured the global
protein production through the budding yeast S. cerevisiae meiotic sporulation
program (Brar et al. 2012). By using the traditional synchronization procedures and
an estrogen-activatable derivative of the Ndt80 transcription factor guided assay,
they successfully separated yeast cells to 25 meiotic time points and found pervasive
translational controlling events in meiosis; thus, this work provided the molecular
landscapes of the broad restructuring of meiotic cells.

In a research work that has related aims, McAdams’s group monitored the
translational dynamic in Caulobacter cell cycle control (Schrader et al. 2016).
Caulobacter requires tightly temporal and spatial control of gene expression to
finish an asymmetric cell division, yielding distinct daughter cells. The authors
selected six key time points in a single cell cycle and performed Ribo-seq and RNA-
seq to find the global characteristics of Caulobacter transcription and translation.
The results show that the highly expressed proteins during cell cycle are typically
coordinately controlled between translation and transcription, suggesting that the
scheduling of translational regulation is organized by the same cyclical regulatory
circuit.
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5.8 Application of Ribosome Profiling for Engineering
Bioethanol Producers

Needless to say, microbially produced ethanol or other aliphatic alcohols have
been recognized as one of our critical sustainable energy sources. However,
these alcohols usually are toxic which limits their mass production in bacteria or
fungi. Dissecting the molecular mechanism of alcohol-imposed toxic effects and
understanding how microbes evolve resistance, therefore, become essential for both
fundamental research and application in bioenergy production.

Several vital mutations which determine the ethanol tolerance in E. coli (Haft et
al. 2014) have been successfully identified. Interestingly, many of the abovesaid
mutations are biochemically related to gene transcription and translation; for
example, RpsQ is a ribosomal protein involved in decoding, MetJ is a feedback
repressor of methionine biosynthesis, and Rho is a well-known transcription
factor. With the hypothesis that ethanol may induce compensatory changes in the
decoding center of the ribosome, they investigated the mechanism by multiple
Omics techniques including Ribo-seq assay (Haft et al. 2014). The result first
suggested that ethanol can induce toxic translational misreading, an effect which
can be further strengthened by adding streptomycin, an antibiotic that can cause
translational misreading. They then designed a Ribo-seq experiment to compare
three typical physiological conditions. The result indicated that ribosomes were
widely distributed across mRNAs before stress. During acute stress, the relative
ribosomal occupancy near the 3′ ends of genes decreased from ∼0.95 to ∼0.75,
suggesting a widespread aberrant termination of translation. Further analysis shows
that ethanol has weak effects on ribosome occupancy at most codons but sig-
nificantly takes effect on the occupancy at nonstart AUG codons. Nonstart AUG
occupancy dramatically increased during acute toxicity and only partially recovered
during chronic toxicity, which may be ameliorated by the adaptive inactivation of
the MetJ repressor of methionine biosynthesis genes. Together, relying on Ribo-seq
and other Omics assays, the authors elucidated that ethanol-induced inhibition and
uncoupling of mRNA and protein synthesis through direct effects on ribosomes and
RNA polymerase conformations are significant contributors to ethanol.

5.9 Application of Ribosome Profiling for Investigating Plant
Molecular Biology

To understand the molecular mechanism of translational regulation in photomor-
phogenic Arabidopsis thaliana, Ribo-seq was adopted to map the translatome in
Arabidopsis etiolated seedlings in the dark and after light exposure (Liu et al.
2013a, b). The results show that genes involved in the organization and function
of chloroplasts can be translationally enhanced by light. The uORG initiated by
ATG but not CTG mediated translational repression of the downstream main
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open reading frame. Later on, the translational regulation under hypoxia stress
in seedlings of Arabidopsis thaliana was investigated (Juntawong et al. 2014).
When the seedlings lacked enough oxygen, the frequency of ribosomes at the start
codon decreased, consistent with a widespread decline in translational initiation.
Interestingly, the abundance of mRNA of hypoxia-upregulated genes increased in
polysome complexes during the stress. However, the number of ribosomes per
transcripts was not enhanced compared to normoxic conditions. Ribo-seq was also
used to discover the phytohormone signal transduction pathway. A study unveiled
a new translation-based branch of ethylene response in Arabidopsis (Merchante et
al. 2015). By using Ribo-seq, they found that the signaling molecule EIN2 and the
nonsense-mediated decay proteins UPFs play a central role in an ethylene-induced
translational regulatory mechanism, which eventually targets to another ethylene
signaling component EBF2. These findings represent a typical example of gene-
specific regulation of translation responding to a critical growth regulator. Most
recently, a study optimized the buffer of RNase used in Ribo-seq (Hsu et al. 2016).
This improvement offers a significantly improved footprint precision in Arabidopsis
thaliana. This superresolution method can map over 90% of the footprints to the
main reading frame, and therefore help to uncover many small ORFs in annotated
noncoding RNAs and pseudogenes.

Except for Arabidopsis, a study reported the dynamic of chloroplast translation
during chloroplast differentiation in maize (Zoschke et al. 2013; Chotewutmontri
and Barkan 2016). The rate of protein production of most genes increases early
in development and declines when the photosynthetic apparatus is mature. The
differential gene expression in bundle sheath and mesophyll chloroplasts results
primarily from differences in mRNA abundance, but the divergence in translational
efficiency can keep amplifying the mRNA-level effects in some instances. They also
demonstrated that ACG does not serve as a start codon in maize chloroplasts since
editing of ACG to AUG at the rpl2 start codon is essential for translation initiation.

6 Concluding Remarks and Perspective

As discussed above, ribosome profiling has proved to be a fantastic innovation
with awesome power in systematically decoding translatome at single nucleotide
resolution. Depending on the depth of current sequencing capacity, ribosome
profiling has become a very sensitive method that allows for the measurement
of relatively rates of translation events. The highly parallel sequencing readout
of all ribosome positions yields more quantitative and detailed information than
alternative methods, such as the pulsed label-based approach. Ribosome profiling
also provides precise footprints of positional information, thus allowing for iden-
tifying a number of novel translational events: sORF, uORF, ncORF, ribosome
pausing, translational initiation at non-AUG codons. The abovesaid information
will provide the experimental evidence for revising the current in silico-based
genome annotations. Ribosome profiling can also offer instantaneous translation
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efficiency measurements which describe the real-time cell decision-making process,
and therefore has distinct biological significance at the steady-state translation level
(Brar and Weissman 2015).

Much remains to be learned from the complex and dynamic ribosome profiles.
For example, why do ribosomes pause at specific regions, and is there some
unique sequence/motif in charge of this? What are the in vivo functional roles of
individual translational initiation/elongation/termination factors, and can ribosome
profiling tell us about this? Why transcription and translation are not often changed
in a coordinated way, and what is the biochemical mechanism and functional
significance behind it? These interesting questions remain to be explored, and
ribosome profiling will be a critical tool in helping us understand these concepts.
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Abstract microRNAs (miRNAs) are short (∼22 nucleotides long) RNAs that are
encoded in the genome of species ranging from viruses to man. Together with pro-
teins of the Argonaute family, they form RNA-induced silencing complexes, which
bind target mRNAs, reducing their stability and translation rate. A miRNA typically
has hundreds of evolutionarily conserved binding sites across the transcriptome, and
frequently, a given mRNA carries binding sites for multiple miRNAs. In this chapter
we discuss behaviors that miRNA-containing regulatory networks can exhibit, with
specific examples from various experimental systems.
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1 Introduction

Since the discovery of the first microRNA (miRNA) more than 20 years ago (Lee et
al. 1993; Wightman et al. 1993), these molecules have been implicated in virtually
every aspect of multicellular organism biology, including development (Reinhart et
al. 2000), metabolism (Krützfeldt et al. 2005; Lynn 2009), and immune defense
(Xiao and Rajewsky 2009). Through base-pairing interactions, miRNAs direct
ribonucleoprotein effector complexes to mRNA targets. Computational analyses
were instrumental in unraveling determinants of miRNA-target interactions (Lewis
et al. 2005; Gaidatzis et al. 2007; Khorshid et al. 2013; Agarwal et al. 2015),
revealing their structural basis (Chandradoss et al. 2015), their effect on target gene
expression (Hausser et al. 2013; Eichhorn et al. 2014), and ultimately providing
genome-wide predictions of miRNA targets (Gumienny and Zavolan 2015; Agarwal
et al. 2015).

The posttranscriptional regulation of mRNAs by miRNAs is eminently combi-
natorial: a miRNA species interacts with hundreds of targets, and a given mRNA
carries binding sites for many miRNAs (Lewis et al. 2005). Although most genes
appear to be targeted by miRNAs, highly conserved and presumably optimized
miRNA binding sites are in transcripts encoding epigenetic regulators and tran-
scriptional factors (Gruber and Zavolan 2013). As these regulators have themselves
many targets, a perturbation in miRNA expression can be propagated through these
complex networks of primary and secondary targets. Thus, the changes in gene
expression and the phenotypic consequences of perturbations in miRNA expression
are difficult to predict. At the same time, the circuits that are composed of epigenetic,
transcriptional, and posttranscriptional regulators can exhibit complex behaviors in
which the ability of miRNAs and mRNAs to reciprocally titrate each other plays as
essential role (Hausser and Zavolan 2014). Attempts have been made to link specific
circuit topologies to specific types of cellular responses such as transitions between
cell states that occur in development or during disease-related transformations
(Shenoy and Blelloch 2014; Cora’ et al. 2017).

2 miRNA-Target Interaction

The first miRNA-target sites to be discovered, such as those of the let-7 miRNA in
the lin-14 and lin-41 genes (Reinhart et al. 2000), exhibit extensive complementarity
to the miRNA. Thus, the first generation of miRNA-target prediction programs was
based on the premise that target sites would have a high degree of complementarity
to the miRNA and would be predictable by programs akin to those used to predict
RNA secondary structure. However, it rapidly became clear that conserved sequence
elements, located in 3′ untranslated regions of mRNAs and implicated in translation
regulation, are perfectly complementary to 5′ halves of miRNAs only (Lai 2002).
This led to a new generation of miRNA-target prediction programs that strongly
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emphasized the miRNA “seed” region, which corresponds to nucleotides 2–7 of
the miRNA (Lewis et al. 2005). The structural basis of miRNA seed interaction
appears to be its pre-structuring in the Argonaute protein, which holds the 5′
end of the miRNA in a relatively rigid and accessible conformation, ready for
the interaction with the target (Wang et al. 2008). Indeed, a study employing
fluorescence resonance energy transfer demonstrated that Argonaute initially scans
mRNAs for regions complementary to the nucleotides 2–4 of the miRNA, the
interaction being then propagated to nucleotides 2–8 (Chandradoss et al. 2015). The
conformational changes induced by the initial interaction also exposed nucleotides
13–16 that can further establish bonds with the miRNA (Schirle et al. 2014). These
dynamical rearrangements in the interacting RNAs cannot be readily modeled to
predict functionally relevant miRNA-target interactions. However, by measuring
the impact of single point mutations on the dissociation constant, the relative
importance of individual nucleotides of the miRNA for the interaction with target
sites can be evaluated (Wee et al. 2012).

High-throughput approaches have been also developed to isolate the RNA
fragments to which miRNAs bind within cells. This has been done initially by
cross-linking RNAs to proteins with ultraviolet light, followed by the immuno-
precipitation of the Argonaute protein and the sequencing of RNA fragments that
are complexed with Argonaute (Chi et al. 2009; Hafner et al. 2010). These large
collections of miRNA binding sites can be used within probabilistic models to learn
parameters of miRNA-target interaction (Khorshid et al. 2013). These parameters
recapitulate remarkably well the relative importance of different regions of the
miRNA in target recognition. Modifications of this cross-linking immunoprecipi-
tation (CLIP) approach have been used to isolate not only miRNA-target sites but
also the interacting miRNA (Helwak et al. 2013). The resulting data surprisingly
revealed an abundance of sites that do not see to carry extensive complementarity
to the miRNA seed, and it remains unclear whether these are functional or rather
reflect transient interactions. Computational analyses of data obtained with the more
standard CLIP approaches showed that chimeric sequences, composed of a miRNA
and an interacting target site, can be readily identified, albeit with low frequency,
and they seem to largely reflect miRNA seed type of interactions (Grosswendt et al.
2014). These data too can be used to infer even miRNA-specific models of miRNA-
target interaction (Fig. 1), and these models are surprisingly accurate in predicting
the effect of mutations on the dissociation constants measured in vitro (Breda et al.
2015).

The energy of miRNA-target site interaction, however difficult to obtain, is still
insufficient for identifying mRNAs that respond to miRNAs within cells. This
is partly due to the fact that miRNAs seem to impact various aspects of target
dynamics, as will be described in more detail below. In addition, other aspects
that have been found relevant such as the structural accessibility of putative target
sites and their nucleotide composition need to be taken into consideration. That
much remains to be understood is underscored by the fact that the feature that
remains most predictive for the response of a miRNA target to miRNA perturbation
is the degree of evolutionary conservation of the miRNA seed-matching site. This
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Fig. 1 High-throughput identification and modeling of miRNA-target interactions. Shown are
cross-linking and immunoprecipitation-based approaches to isolate RNAs that bind miRNA-
containing Argonaute complexes. In the “standard” approach (shown on the left), miRNAs and
mRNA fragments are isolated and sequenced, while in more recent approaches, ligation of the
miRNA and mRNA fragments is carried out prior to sequencing. This results in the sequencing
of “chimeric” reads, composed of a miRNA part (in red) and a target part (in blue). These allow
identification of direct interactions. Computational approaches can be used to infer parameters of
miRNA-target interactions from these high-throughput data sets

effective parameter likely captures a host of factors that have not been explicitly
modeled so far.

3 Modeling the Effect of miRNA-Target Interactions
on Gene Expression

Mathematical models have been widely used to develop insights into the properties
that miRNAs confer to gene expression regulatory networks. The simplest model
of constitutive gene expression views the dynamics of an mRNA species as a
birth-death process, where transcription and degradation occur at fixed rates, km
and γm, respectively. Each mRNA molecule serves as template for proteins that
are synthesized at rate kp and degraded with rate γ p. This two-step model of
gene expression is sufficient to explain the observed gamma distribution of protein
molecule numbers per cell, which contrasts with the Poisson distribution, which
would be expected from a single-step birth-death process (Friedman et al. 2006;
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Fig. 2 Basic model of a miRNA regulating a single mRNA target. (a) Reaction scheme: the small
RNA is produced at rate ks and decays at rate γ s, while its target mRNA is produced at rate km
and decays at rate γm. The two molecules associate at rate kon and dissociate at rate koff . Proteins
are synthesized at rate kp per mRNA when the mRNA is free and rate αkpwhen the mRNA is
bound by a miRNA-containing silencing complex. In the latter case, the mRNA decays at rate
gγm. Finally, proteins decay at rate γ p. (b) Threshold-linear behavior in protein expression: protein
molecules only start accumulating once the mRNA level has reached a level that is sufficient for
saturating miRNA-silencing complexes. (c) Coefficient of variation of mRNA and protein levels
in single cells at steady state (mRNA, green; protein, red; miRNA-regulated targets, solid lines;
unregulated genes, dashed lines). Parameters: km = variable, γm = 0.1/h, g = 1.55, kon = 0.24/h,
koff = 0.16/h, γ p = 0.02/h, kp = 0.5/h, α = 0 (full translation inhibition), ks = 2/h, γ s = 0.02/h
(Hausser and Zavolan 2014). For the unregulated gene parameters were adjusted to yield the same
average mRNA and protein as for the regulated target, at each specific miRNA:target ratio

Taniguchi et al. 2010). Variants of this constitutive gene expression model have
been used to study miRNA-dependent gene regulation, which can be accounted for
by allowing the mRNA to bind a free miRNA [or, more precisely, a free, miRNA-
containing RNA-induced silencing complex (RISC)] and to decay and translate at
different rates than the unbound mRNA. In the model depicted in Fig. 2 (see also
Hausser and Zavolan 2014), binding of the miRNA enhances mRNA degradation
by a factor g and reduces translation by a factor α.

The change in the probability of observing specific numbers of various molecular
species (mRNA, protein, small RNA, small RNA-mRNA complex) per cell, as
a function of time, is described by the master equation (1). With a linear noise
approximation (LNA; Van Kampen 1992), the number of molecules of different
types at steady state can be obtained. Here the εstep operator (Van Kampen 1992)
gives the probabilities of states that can yield the current state, through the small
change (shown in the superscript) in the species indicated by the subscript.
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4 Linear Response and Threshold Behavior of miRNA
Targets to Transcriptional Induction

The mRNA and protein levels of the miRNA target that are obtained by vary-
ing the mRNA transcription rate are shown in Fig. 2b. The x-axis shows the
miRNA:target ratio, which we varied by maintaining the total miRNA level
constant, 100 molecules per cell, while the mRNA transcription rate decreased. The
figure clearly illustrates that, while the total mRNA level decreases linearly with
its transcription rate, the protein level follows the sigmoid curve. This is because
protein molecules can only accumulate when the mRNA level is at a sufficiently
high level to saturate the miRNA-containing silencing complexes. If the mRNA
transcription rate is lower than this specific threshold, the synthesized mRNAs are
bound (titrated) by the miRNA and degraded/silenced. Theoretical work showed
that the threshold is strictly dependent on the stoichiometry of miRNAs and their
targets (Bosia et al. 2013; Riba et al. 2014). As a cell typically expresses multiple
targets of a miRNA, each with its specific affinity, the context specificity of target
responses is immediately apparent.

That small RNAs enable a distinct model of gene regulation through their
ability to sequester targets, has been initially shown in the bacterium Escherichia
coli (Levine et al. 2007). Subsequent work proposed that molecular titration is
a pervasive mechanism underlying “ultrasensitive” (“all or none”) responses in
biological systems (Buchler and Louis 2008). Studies in whole organisms such as
the worm Caenorhabditis elegans (Reinhart et al. 2000) and the zebra fish Danio
rerio (Shkumatava et al. 2009) indicated that, just as the small RNAs in bacteria,
miRNAs also generate thresholds in the expression pattern of the targets, rendering
developmental processes more robust (Hornstein and Shomron 2006). Work using
fluorescent miRNA-target reporters indicated that molecular titration enables the
emergence of genetic circuits that are resistant to noise (Mukherji et al. 2011). The
slope of the transition toward the regime of protein accumulation depends on target
affinity, which can be modulated by changing the number of binding sites for a
specific family of miRNAs (Mukherji et al. 2011).

5 miRNA Effects on Target Noise

Analysis of a constitutive gene expression model (Ozbudak et al. 2002) revealed
that if the dynamics of the process is stochastic, as expected within cells, the
variance in the number of protein molecules within a cell (a measure of “noise”
in protein levels) is proportional to the number of protein molecules generated
from a mRNA during the mRNA’s lifetime, which is known as the “burst size,”
b = kp

γm
. Strikingly, the two rates that determine the burst size are precisely

those that miRNAs have been reported to influence and that also, coherently,
in the direction of decreasing the burst size. The situation is complicated by
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the expression of the miRNA regulator itself being stochastic. Thus, a miRNA
target will experience not only its own “intrinsic noise” but also the “extrinsic
noise” caused by fluctuations in the expression of the regulator. How the noise of
miRNA-regulated proteins compares to that of unregulated ones depends on the
balance of these two effects. This behavior is illustrated in Fig. 2c: at low rates
of target transcription (high miRNA:target ratio), the miRNA decreases the burst
size thus reducing the variability in its target expression compared to unregulated
genes with the same average mRNA/protein level expression. However, above
the threshold, where the miRNA is not effective anymore in repressing its target
(low miRNA:target ratio), the noise in miRNA expression propagates to the target,
increasing its variability relative to an unregulated target. This effect has also been
observed experimentally, with target reporters (Schmiedel et al. 2015).

A circuit especially suited for noise reduction is the so-called “incoherent” feed-
forward loop. It contains a transcription factor that induces both the expression
of a target and of a miRNA, the miRNA then repressing the target. It is called
“incoherent” because the transcription factor and the miRNA exert opposing effects
on the common target. Extensive theoretical work showed that this circuit reduces
target expression noise even in the presence of fluctuations of the regulator (Osella et
al. 2011) and is surprisingly abundant among mammalian gene regulatory networks
(Re et al. 2009).

The impact of miRNAs on cellular decision-making under noisy gene expression
has also been observed in a few in vivo systems. In particular, miR-7 has been
reported to buffer intrinsic noise in target expression during development of the
sensory organ precursor of the fly (Li et al. 2009). In contrast, the removal of
miRNAs in pluripotent stem cells drives cells into a low-noise ground state with
increased self-renewal (Kumar et al. 2014), which is consistent with an increase in
the noise of highly expressed targets in the presence of miRNAs.

6 Competing Endogenous RNAs and the Importance
of miRNA-Target Interaction
Affinity

The combinatorial nature of miRNA-target interactions prompted investigations into
possible crosstalks induced by miRNAs between their targets, whereby specific
miRNA targets that carry high affinity sites are highly susceptible to fluctuations in
the level of the pool of other targets (which have been called competing endogenous
RNAs = ceRNAs). The model shown in Fig. 3 and described by the master equation
(2) allows one to study these behaviors. Compared to the model from Eq. (1), here
we have additional terms corresponding to a “pool” of targets that compete for the
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Fig. 3 Model of a miRNA interacting with and regulating multiple targets at the same time.
(a) Reaction scheme showing the molecular species of this system. (b) Threshold behavior of
the targets in response to the induction in miRNA expression. (c) Pearson correlation coefficient
between “pool” and selected target mRNA levels as a measure of the crosstalk between miRNA
targets. (d, e) The fluctuations in mRNA (d) and protein levels (e) are maximal at the threshold.
Parameters: km = k

pool
m = 100/h, γm = 0.1/h, kon =k

pool
on = 0.24/h, koff = 0.0016/h, k

pool
off = 0.16/h,

g = 1.55 × 103, gpool= 1.55 × 10, γ p = 0.02/h, kp = 0.5/h, α = 1, ks = variable, γ s = 0.02/h
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Theoretical work showed that if the miRNA:target ratio is close to 1 (in the
regime of matched stoichiometries), the mRNAs and proteins of the different targets
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fluctuate together at the cost of increased noise (Figliuzzi et al. 2013; Bosia et
al. 2013; Riba et al. 2014). A target whose level increases through a stochastic
fluctuation will draw to itself free miRNA molecules, decreasing their availability to
other targets and thereby leading to a temporarily increased level of the other targets.
A negative fluctuation will have the opposite effect, and thus, targets of a specific
miRNA would fluctuate together in the same direction. If the translation rates of
individual mRNAs remain relatively unchanged, this mechanism may enable the
cell to maintain the relative proportions of target proteins in spite of stochastic
fluctuations in transcription (Riba et al. 2014; Martirosyan et al. 2017). However,
as fluctuations in the regulator’s level will similarly be propagated across the
network of targets, the noise in both mRNA and protein levels of the targets will
increase (Fig. 3d,e). For the figure, we have increased the values of the g and gpool

parameters, denoting the strength of miRNA downregulation, relative to Fig. 2, to
magnify the effect of crosstalk.

Demonstrating these behaviors in in vivo systems remains challenging, because
the interaction of individual targets with the miRNA depends on their relative
affinities (Jens and Rajewsky 2015). Binding sites are generally classified by the
degree of complementarity to the 5′ end of the miRNA (miRNA “seed”) (Bartel
2009), but seed complementarity alone is not sufficient to explain how miRNA
targets respond. Many other features such as the distance between the binding
sites and the stop codon, their structural accessibility and evolutionary conservation
(Hausser et al. 2009), as well as the abundance of other target sites (Arvey et al.
2010; Garcia et al. 2011) determine how strongly targets are downregulated by the
miRNA. Thus, the threshold, noise reduction, and crosstalk for individual targets
are difficult to observe beyond reporter constructs.

Although many cases of ceRNAs have been reported in the literature (e.g.,
Poliseno et al. 2010; Cesana et al. 2011; Wang et al. 2013; Liang et al. 2015; Laneve
et al. 2017), the evidence is strongly debated (Denzler et al. 2014, 2016). More
extensive measurements of mRNA, protein and miRNA copy numbers per cell, as
well as affinities of miRNA-target interactions will be needed to accurately interpret
the available data. The PTEN pseudogene, which has been reported to titrate
miRNAs from its PTEN paralog to significantly affect its expression (Poliseno et
al. 2010), appears to be a case where the two ceRNAs share extensive regulatory
inputs, as they both carry many binding sites for miRNAs of multiple families (miR-
20a, miR-19b, miR-21, miR-26a, miR-214). This is consistent with the idea that
ceRNAs are high affinity targets close to their specific miRNA-imposed threshold
of expression.
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7 Analysis of miRNA-Containing Regulatory Circuits
in In Vivo Systems

Having developed an intuition of the expected behaviors of miRNA-containing
regulatory networks, we review some of the best experimentally characterized
examples pertaining to different modes of regulation (Fig. 4). As transcription
factors and epigenetic regulators are frequently targeted by miRNAs (Gruber and
Zavolan 2013), it is perhaps expected that some of the best characterized miRNA-
containing circuits contain mixtures of these regulators.

In rare cases, the miRNA-containing regulatory circuits are very short negative
feedback loops, the miRNA being encoded in an intron of a target, with which it
is co-expressed, to then repress the target or a specific isoform (Bosia et al. 2012).
Examples are provided by miR-128b, encoded in the intron of a specific isoform
of the cyclic AMP-regulated phosphoprotein of 21 kD (ARPP-21) (Megraw et al.
2010) and important for target downregulation in the brain, and miR-26b, which
is encoded in the intron of the cytidine small phosphatase 2 (CTDSP2) (Dill et
al. 2012). CTDSP2 regulates the RNA polymerase II-dependent transcription by
modulating the phosphorylation status of RNAPII carboxy-terminal domain (CTD)
and is recruited by the REST complex to genes that are silenced in neurons. Five
potential binding sites are predicted in the 3′ UTR of CTDSP2, which is rather
uncommon but likely contributes to the robustness of target downregulation. The
reinforcement of inhibition from miR-124, which is expressed when the REST

Fig. 4 Examples of experimentally characterized miRNA-containing regulatory circuits. (a) The
intron-encoded miR-26b regulates its host gene CTDSP2. (b) Lin-41 is an essential let-7 target
in worm development. (c) A regulatory network involving let-7 leads to a stable switch in cell
state upon inflammation. (d) miR-200 family of miRNAs and ZEB1/2 transcription factors form
a toggle switch for the conversion between epithelial and mesenchymal cell types. (e) miR-139
and miR-24 increase the variability of vascular development of zebrafish. (f) miR-181a reduces
the population of cells with high CD69 expression, and thereby the cell-to-cell variability in CD69
protein. (g) miR-9a establishes a robust development of the sensory organ in fly. (h) Depletion
of miRNAs through deletion of DGCR8 leads to a low-noise state of pluripotent stem cells. (i)
Epigenetic regulation of lsy-6 miRNAs by the die-1 transcription factor is at the core of left-right
asymmetric development of chemosensory neurons in worm
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inhibition is released (Dill et al. 2012), further argues for the importance of robust
CTFSP2 downregulation.

A miRNA of very high biological (as well as historical) relevance is let-7, the
second discovered member of the miRNA class of posttranscriptional regulators
(Reinhart et al. 2000). Although computational analysis revealed from early on that
let-7 has many putative targets (Lewis et al. 2003; Johnson et al. 2005), very recent
data showed that the phenotype of the let-7 mutation in the worm can be fully
rescued by a complementary mutation in a single binding site, located in the 3′
UTR of the E3 ubiquitin protein ligase lin-41/TRIM71 mRNA (Ecsedi et al. 2015).
This is puzzling, because other predicted let-7 targets have also been validated
experimentally and found to influence developmental processes: let-60/RAS has
been found to partially rescue the developmental phenotype in the worm (Johnson
et al. 2005); hbl-1 affects the division of seam cells and their fusion during vulval
development of the worm (Abrahante et al. 2003); HMGA2 (worm homolog—smg-
3) promotes oncogenic transformation in mammalian cells (Mayr et al. 2007). Thus,
lin-41/TRIM71 may be the most limiting target in worm development rather than
the unique let-7 target. Another possibility, which needs to be explored with single-
cell analyses of various developmental stages, is that the pattern of miRNA and
target expression is such that different targets interact with the miRNA at different
developmental stages. The let-7 binding sites in lin-41 are unusual in that they do
not form perfect Watson-Crick base pairs with the miRNA seed region, but have
extensive complementarity to the region beyond the seed (Vella et al. 2004).

Another regulatory loop that involves the let-7 miRNA has been uncovered
in human breast cells: Src activation triggers NF-kB, which activates LIN28
transcription. As LIN28 inhibits the processing of the let-7 miRNA (Heo et al.
2008), the consequence of Src activation is a reduction in the repressive activity
of the let-7 miRNA on its interleukin 6 (IL6) target. IL6 activates NF-kB, thus
completing a positive feedback loop that is responsible for maintaining the cell state
triggered by Src activation even in the absence of the initial stimulus (Iliopoulos et
al. 2009). Thus, the transformation is inherited though not genetically, but rather
through a change in gene expression driven by a positive feedback loop. The
relationship between let-7 and LIN28 is likely more complex as well, because one
of the two LIN28 paralogs in human, LIN28B, is itself likely regulated by let-7.
This is because the LIN28B 3′ UTR has four predicted let-7 binding sites, which
are predicted to base pair not only with the let-7 seed region but also with the 3′ end
of the miRNA. Thus, LIN28B and let-7 likely form a double-negative feedback loop
(also known as toggle switch), LIN28 inhibiting the processing of the let-7 miRNA
and let-7 posttranscriptionally repressing LIN28 expression.

The toggle switch is a common type of genetic circuit, being in fact a minimal
system that allows a system to make a binary decision. Such a decision is made
by cells that switch between epithelial and mesenchymal cell states, either during
normal organ development, or during cancer progression (Thiery et al. 2009).
The transitions between these two states are known as mesenchyme-to-epithelium
transition or MET and, correspondingly, EMT. The two stable states are enforced by
a double-negative feedback loop involving the ZEB1/2 transcription factors, which
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stabilize the mesenchymal state, and miRNAs of the miR-141/200 family, which
promote the epithelial phenotype (Burk et al. 2008). Similar to other situations when
a strong miRNA-dependent phenotype can be linked to a specific gene, the ZEB1
3′ UTR has five binding sites for miR-141/200 miRNAs, two with complementarity
not only to the seed but also to the miRNA 3′ end. Theoretical analyses suggest
that the frequent involvement of miRNAs in multistable regulatory loops (such as
the toggle switch) which underlie cell fate decisions (Ivey and Srivastava 2010)
could be related to the specific noise properties of miRNA-mediated regulation.
Specifically, miRNAs can increase the stability of the alternative phenotypic states
that are regulated by the toggle switch to stochastic fluctuations (Osella et al. 2014).
The robustness of cell state transitions to stochastic fluctuations in gene expression
is presumably of very high importance during developmental processes.

A very recently described in vivo system where a miRNA influences phenotypic
variability is the vasculature development in zebra fish (Kasper et al. 2017). In
the wild-type zebra fish, miR-139 and miR-24 are expressed in the endothelium.
Loss of these individual miRNAs leads to increased variability in the structure of
the vascular tree and increased sensitivity to stress. Specifically, loss of miR-139
leads to an increased variance in the number of filopodia, as endothelial cells form
abnormal numbers (either more or less) of filopodia. In contrast, stepwise depletion
of miR-24 reduces the size of filopodia, a variation in a single direction. The
dual behavior of the miRNAs can be rationalized by the above-presented models.
Although the response to miR-24 depletion is still compatible with the derepression
of one or more targets, the response to miR-139 depletion suggests a more complex
response, whereby the wild-type miRNA expression corresponds to reduced target
expression noise.

The miRNA regulation of phenotypic heterogeneity has not only been described
in development but also in signaling. For example, miR-181a, whose expression
is downregulated as lymphocytes mature, regulates T-cell receptor (TCR)-induced
signal transduction (Li et al. 2007) and affects the noise of its target, CD69 (Blevins
et al. 2015). Deletion of miR-181a leads to an increased fraction of cells with high
CD69 expression, while the genomic deletion of the miRNA-processing enzyme
Dicer resulted in increased CD69 expression by 20–50% at the protein level. Two
other miRNAs, miR-17 and miR-20a, also regulate CD69, forming an incoherent
feed-forward loop with the transcriptional activator MYC. As discussed above,
incoherent feed-forward loops are typical noise reduction circuits.

miR-9a may also provide an example of noise regulation in development,
specifically during the sensory organ development in fly (Nolo et al. 2000). With
genomically integrated reporter constructs containing miR-9a sites, as well as
strains with different copy numbers of the miRNA, Cassidy et al. (2013) showed
that the interaction between miR-9a and its target, senseless, perturbs a switch in
cell fate. This experimental system, as presumable many others involving early
developmental transitions, is relatively difficult to test, because the number of cells
assuming a specific fate is very small (differences in cell numbers were generally
less than 1 on average, but nevertheless ∼20% of the maximum and statistically
significant).
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Finally, single-cell analyses of pluripotent stem cells showed that removal of
miRNAs through the knockout of the pri-miRNA processing factor DGCR8 drives
these cells into a low-noise state (Kumar et al. 2014). The mechanism is poorly
understood, although it seems to involve key miRNA regulators such as MYC and
LIN28, as well as key indirect targets of embryonically expressed miRNAs, such as
the de novo DNA methyltransferase DNMT3b.

A complex regulatory network controlling the left-right asymmetric development
of chemosensory neurons in the worm is controlled by lsy-6 and miR-273 (Chang et
al. 2004). The regulatory loop involving these miRNAs as well as two transcription
factors, die-1 and cog-1, is triggered by Delta/Notch signaling, which breaks
the symmetry by remodeling the chromatin at lsy-6 locus, which results in the
expression of lsy-6 in ASEL cells (Cochella and Hobert 2012). The two transcription
factors act antagonistically, through the miRNAs whose expression they regulate:
die-1 promotes the expression of lsy-6, which inhibits cog-1 in ASEL cells,
while cog-1 promotes the production of miR-273, which represses die-1. Both
transcription factor mRNAs have two noncanonical binding sites with extensive 3′
complementarity, mostly for miR-273.

8 Conclusions

As other regulators, be they epigenetic, transcriptional, and posttranscriptional,
miRNAs typically have many targets. Thus, predicting the effect of perturbations
in miRNA expression is challenging, particularly during processes that unfold over
some time, such as development. Nevertheless, simplified computational models can
provide important insights. In this chapter, we have started from a basic, two-step
model, of constitutive gene expression, and explored the expected dynamics first of
a single miRNA target and then of a population of targets, as the relative levels of
the miRNA and of the targets vary.

Owing to their ability to titrate their targets, miRNAs enrich their target dynamics
and modulate specific aspects of it. In particular, substantial computational as
well as experimental work demonstrates that miRNAs modulate the cell-to-cell
variability in their targets’ expression. The sign of this modulatory effect depends
on the specific concentration regime of miRNAs and targets. Targets that are
expressed spuriously, at low level, can be rapidly degraded in the presence of the
miRNA, which thereby reduces the “intrinsic” noise in target expression. This
mechanism may be important for enforcing specific target expression levels, in spite
of the stochasticity inherent in gene expression. However, for targets to be strongly
repressed, they need to have high affinity for the miRNA. Many of the examples that
we discussed indeed involve genes that carry multiple binding sites, with extensive
complementarity to a specific miRNA. Furthermore, for a target to undergo strong
repression, the miRNA should be expressed at a sufficiently high level and not be
entirely scavenged by other targets. In spite of these many constraints, numerous



270 A. Riba et al.

examples of miRNAs reducing the noise in their targets’ expression have been
uncovered.

The miRNA regulator also undergoes stochastic fluctuations in gene expression.
These fluctuations propagate to its targets having the effect of increased fluctuations
in the highly expressed compared to unregulated targets. This behavior may be
relevant for transitions between cellular states, and in this context, it is intriguing
that impairing miRNA biogenesis seems to lead to a low-noise, rather than a high-
noise state. One of the main challenges currently is to unravel the in vivo hierarchy
of miRNA targets, defined by their affinity as well as the decay rate in the presence
of the miRNA. miRNA-target responses have been mostly studied with reporter
constructs, which are generally expressed at high levels and are probably insensitive
to the presence of other targets. The progress of single-cell analyses may eventually
allow one to measure the expression of miRNAs as well as of their targets in
individual cells. This will enable the inference of dynamic parameters of individual
targets and ultimately more accurate predictions of gene expression dynamics.
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Abstract Gene expression is a fundamental cellular process by which proteins are
synthesized based on the information encoded in the genetic material. During this
process, macromolecules such as ribosomes or RNA polymerases scan the genetic
material in a sequential manner. We review several deterministic, continuous-time
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models for the flow of such macromolecules. These models are both easy to simulate
and amenable to rigorous mathematical analysis. We demonstrate how these models
can be used to predict the expression levels of genes and to study important
biological phenomena such as competition for finite resources, sensitivity of gene
expression to various biophysical factors, and optimization of the protein production
rate.

Keywords Ribosome flow model · Stability · Entrainment · Biotechnology ·
Gene expression · Synthetic biology

1 Introduction

Gene expression is the process that transforms the information encoded in the genes
into functional proteins. This is a tightly regulated process that is closely related to
cell activation and proliferation. Gene expression consists of several stages. During
transcription, instructions encoded in regions of the DNA called genes are copied
into molecules called messenger-RNA (mRNA), and during the translation process,
the information inscribed in the mRNA is translated into a chain of amino acids
that is folded co- and post-translationally to yield a functional protein (Alberts et al.
2007; Chandar and Viselli 2012). All cells, from bacteria to human, express their
genetic information in this way—a principle so fundamental that Francis Crick
called it the central dogma of molecular biology (Crick 1970).

The genetic information encoded in the DNA is composed of a sequence of
nucleotides. Four types of nucleotides, differing in their nitrogen-containing bases,
are used in the DNA: adenine (A), thymine (T), guanine (G), and cytosine (C).
When transcribed into mRNA, thymine is replaced by uracil (U). Each sequence
of three consecutive nucleotides in the mRNA, called a codon, corresponds to a
specific amino acid or to a control signal. Out of the 43 = 64 possible codons, one
(usually AUG, referred to as the “start-codon”) determines where protein synthesis
begins (i.e., it indicates the first amino acid in the protein), three codons (UAA,
UAG, and UGA, referred to as “stop codons”) signal the completion of protein
synthesis, and the remaining 61 codons are used to encode the standard 20 amino
acids (Alberts et al. 2007). This redundant genetic code is universal across all
present-day organisms.

During transcription [translation] complex molecular machines called RNA
polymerases (RNAPs) [ribosomes] scan the DNA [mRNA] and “read” the genetic
information. The flow of these molecular machines plays an important role in
gene expression. For example, in order to increase the protein production rate
several ribosomes may read the same mRNA molecule simultaneously. A ribosome
that is stalled may then lead to the formation of “traffic jams” behind it, and
consequently to depletion of the pool of free ribosomes. To prevent this, the cell
operates a surveillance and rescue system for stalled ribosomes (Mills and Green
2017). Translation undergoes selection for optimization, as it is known to be one
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of the most energy-consuming processes in the cell (Tuller et al. 2010; Alberts
et al. 2007). Another testimony of the importance of ribosome flow is the fact
that about half of the currently existing antibiotics target the bacterial ribosome by
interfering with translation initiation, elongation, termination, and other regulatory
mechanisms (Myasnikov et al. 2016; Johansson et al. 2014).

Mathematical models of the flow of biological machines are becoming more and
more important as new experimental techniques provide more and more data on the
location of such machines inside the cell (Ingolia 2014; Newhart and Janicki 2014;
Mayer and Churchman 2016), sometimes in real time (Iwasaki and Ingolia 2016).
Such models are particularly important in the context of synthetic biology and
biotechnology, as they can be used to obtain qualitative and quantitative predictions
of the effects of manipulating the genetic machinery.

Here, we review the ribosome flow model (RFM) that is a deterministic,
continuous-time mathematical model for the flow of interacting particles. This
model is highly amenable to analysis using tools from systems and control theory.
The RFM is a dynamic mean-field approximation of an important stochastic model
called the asymmetric simple exclusion process that is briefly reviewed in the next
section. Section 3 describes the RFM, and Sect. 4 analyzes its dynamical properties.
Extensions of the RFM that can be used to model more sophisticated features of
gene expression are reviewed in Sect. 5. Section 6 describes some of the biological
implications of the analysis results, and Sect. 7 describes how the RFM can be used
to integrate large-scale genomic data. The final section concludes and describes
several directions for further research.

2 Asymmetric Simple Exclusion Process

The standard model for the flow of molecular machines like RNAPs, ribosomes, and
biological motors is the asymmetric simple exclusion process (ASEP) (MacDonald
et al. 1968; MacDonald and Gibbs 1969; Spitzer 1970; Zia et al. 2011; Shaw et al.
2003). ASEP is a general stochastic model describing particles that can hop from
a site to a neighboring site along an ordered (usually 1D) lattice. Each site may
be either free or occupied by a single particle, and hops may take place only to a
free target site. This represents the fact that the particles have volume and cannot
overtake one another. Effectively, this generates interactions between the moving
particles. The motion is assumed to be directionally asymmetric, i.e., there is some
preferred direction of motion. In the totally asymmetric simple exclusion process
(TASEP), the motion is unidirectional.

TASEP has two main boundary configurations. In TASEP with open boundary
conditions, the two sides of the chain are connected to two particle reservoirs, and
particles can hop into the chain (if the first site is empty) and out of the chain (if the
last site is full). In TASEP with periodic boundary conditions the chain is closed,
so that a particle that hops from the last site returns to the first site. Thus, here the
particles hop around a ring, and the total number of particles is conserved.
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Fig. 1 TASEP with open boundary conditions

In the context of using TASEP to model mRNA transcription [translation],
the lattice models the DNA [mRNA] molecule that is coarse-grained to a set of
consecutive sites. The particles model the moving RNAPs [ribosomes]. Initiation
time and the time that an RNAP [ribosome] spends transcribing [translating] each
site are considered random and nucleotide [codon] dependent.

Figure 1 depicts TASEP with open boundary conditions. The input [exit] rate into
[from] the N-site chain is denoted by α [β], and γi is the hopping (or elongation)
rate from site i to site i + 1. During a short time interval [t, t + �T ], a particle can
enter the chain with probability α�T (but only if the first site is empty), exit the
chain with probability β�T (but only if site N is occupied), and hop from site i to
site i + 1 with a probability γi�T (but only if site i + 1 is empty).

TASEP with open boundary conditions exhibits nontrivial phenomena such as
boundary-induced phase transitions and shock fronts (Blythe and Evans 2007), and
has become a paradigmatic model for nonequilibrium statistical mechanics (Chou
et al. 2011; Blythe and Evans 2007; Evans and Blythe 2002; Derrida 1998). The
phase transitions represent situations where small changes in the rates yield a large
quantitative and qualitative change in the behavior. For example, a small increase
in the entry rate α may lead to a sharp increase in the density of particles along the
chain, and thus to a sharp decrease in the flow rate.

TASEP and its different variants have been used to model and analyze numerous
natural and artificial processes including traffic flow, pedestrian dynamics, molecu-
lar motor traffic, genome evolution, gene expression, the movement of ants along
a trail, and more (Schadschneider et al. 2011; Pinkoviezky and Gov 2013; Zur
and Tuller 2016). However, due to the indirect interactions between the particles,
analysis of TASEP is difficult, and closed-form results exist only for the case
of the homogeneous TASEP, i.e. when all the internal elongation rates γi are
assumed to be equal (Derrida et al. 1992, 1993). In the nonhomogeneous case, one
must resort to ad-hoc arguments and extensive and time-consuming Monte Carlo
simulations. This holds even in cases when only one or two rates differ from all
the others (Kolomeisky 1998; Chou and Lakatos 2004; Dong et al. 2007a; Tripathy
and Barma 1998). A model that is more amenable to analysis, and also easier to
simulate, is the RFM.

3 Ribosome Flow Model (RFM)

The RFM (Reuveni et al. 2011) is a deterministic, nonlinear, continuous-time
compartmental model for interacting particles flow that can be derived via a
dynamic mean-field approximation of TASEP with open boundary conditions
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Fig. 2 The RFM models unidirectional flow along a chain of n sites. The state variable xi(t) ∈
[0, 1] represents the density at site i at time t . The parameter λi > 0 controls the transition rate
from site i to site i + 1, with λ0 [λn] controlling the initiation [exit] rate. The output rate at time t

is R(t) := λnxn(t)

(Zarai et al. 2017e). The model includes n consecutive sites. The normalized occu-
pancy level (or density) of site i at time t is described by a state variable xi(t) :
R+ → [0, 1], i = 1, . . . , n, where xi(t) = 0 [xi(t) = 1] means that site i is
completely free [full] at time t .

The transition between sites i and site i + 1 is regulated by a parameter λi > 0.
In particular, λ0 [λn] controls the initiation [exit] rate into [from] the chain. The rate
at which particles exit the chain at time t is referred to as the production rate, and
is denoted by R(t) (see Fig. 2). Note that xi is dimensionless, and every rate λi has
units of 1/time.

When modeling the flow of biological machines like RNAPs [ribosomes] the
chain models a DNA [mRNA] molecule coarse-grained into n sites of nucleotides
[codons], and R(t) is the rate at which RNAPs [ribosomes] detach from the
molecule, i.e., the rate at which mRNAs [proteins] are produced. The values of
the λis can be determined based on biophysical properties. For example, in the con-
text of translation, these properties include the number of available free ribosomes
and nucleotide context surrounding initiation codons, the codon compositions in
each site, the tRNA pool of the organism, folding of the mRNA molecule, and the
interaction between the nascent peptide and the ribosomal exit tunnel (Reuveni et al.
2011; Tuller et al. 2011; Dana and Tuller 2012).

The dynamics of the RFM is given by n nonlinear first-order ordinary differential
equations:

ẋ1 = λ0(1 − x1) − λ1x1(1 − x2),

ẋ2 = λ1x1(1 − x2) − λ2x2(1 − x3),

ẋ3 = λ2x2(1 − x3) − λ3x3(1 − x4),

...

ẋn−1 = λn−2xn−2(1 − xn−1) − λn−1xn−1(1 − xn),

ẋn = λn−1xn−1(1 − xn) − λnxn. (1)
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If we define x0(t) := 1 and xn+1(t) := 0 then (1) can be written more succinctly as

ẋi = λi−1xi−1(1 − xi) − λixi(1 − xi+1), i = 1, . . . , n. (2)

This can be explained as follows. The flow of particles from site i to site i + 1
is λixi(t)(1 − xi+1(t)). This flow is proportional to xi(t), i.e., it increases with the
occupancy level at site i, and to (1 −xi+1(t)), i.e., it decreases as site i + 1 becomes
fuller. This corresponds to a “soft” version of the simple exclusion principle
in ASEP. Note that the maximal possible flow from site i to site i+1 is the transition
rate λi . Equation (2) thus states that the change in the state variable xi as a function
of time equals the flow entering site i from site i − 1, minus the flow exiting site i

to site i + 1.
A system where each state variable describes the amount of “material” in

some compartment, and the dynamics describes the flow of material between the
compartments and also with the surrounding environment, is called a compartmental
system (Jacquez and Simon 1993). Compartmental systems proved to be useful
models in various biological domains including physiology, pharmacokinetics,
population dynamics, and epidemiology (Brauer 2008; Holza and Fahrb 2001;
Jacquez 1996). The RFM is clearly a nonlinear compartmental system, with xi

denoting the normalized amount of “material” in compartment i, and the flow
satisfying a “soft” simple exclusion principle.

It turns out that the RFM enjoys a rich set of important dynamical properties.
Some of these properties are reviewed in the next section. Section 6 describes several
biological implications of these properties.

4 Dynamical Properties of the RFM

Let x(t, a) denote the solution of (1) at time t ≥ 0 for the initial condition x(0) = a.
Since the state variables correspond to normalized occupancy levels, we always
assume that a belongs to the closed n-dimensional unit cube: Cn := {x ∈ R

n : xi ∈
[0, 1], i = 1, . . . , n}. Let int(Cn) denote the interior of Cn, and let ∂Cn denote the
boundary of Cn.

4.1 Repelling Boundaries and Persistence

The next result shows in particular that both Cn and int(Cn) are invariant sets of
the RFM dynamics. In other words, if the initial condition at t = 0 corresponds to
a state with all densities in [0, 1] ((0, 1)) then the densities remain in [0, 1] ((0, 1))
for all time t ≥ 0.
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Proposition 1 (Margaliot and Tuller 2012; Margaliot et al. 2014) For any a ∈
Cn the solution of (1) satisfies x(t, a) ∈ int(Cn) for all t > 0.

4.2 Strong Monotonicity

For two vectors a, b ∈ R
n, we write a ≤ b if ai ≤ bi for all i, and a � b

if ai < bi for all i. A dynamical system is called cooperative if for any two
initial conditions a ≤ b the solutions x(t, a) and x(t, b) emanating from a and b

satisfy x(t, a) ≤ x(t, b) for all t ≥ 0 (Smith 1995). In other words, the flow
preserves the ordering between the initial conditions. The next result shows that
the RFM is a cooperative system.

Proposition 2 (Margaliot and Tuller 2012) For any a, b ∈ Cn, with a ≤ b, the
solutions of the RFM satisfy

x(t, a) ≤ x(t, b), for all t ≥ 0. (3)

Furthermore, if a ≤ b and a = b then

x(t, a) � x(t, b), for all t > 0. (4)

This has the following interpretation. We say that a density profile b is “more
occupied” than a if bi ≥ ai for all i, that is, the density at each site in profile b

is large than or equal to the density in the corresponding site in profile a. If this is
the case at time zero then the dynamics of the RFM guarantees that this relation
between the corresponding density profiles remains true for all time t ≥ 0.

4.3 Contractivity

A dynamical system is called contractive if there exists a vector norm | · | and γ > 0
such that for any two initial conditions a, b

|x(t, a) − x(t, b)| ≤ exp(−γ t)|a − b|, for all t ≥ 0.

In other words, the distance between any two trajectories contracts to zero at an
exponential rate. This also means that the initial condition is “quickly forgotten”.
Differential analysis and, in particular, contraction theory proved to be a powerful
tool for analyzing nonlinear dynamical systems (Lohmiller and Slotine 1998; Russo
et al. 2010; Aminzare and Sontag 2014).

The RFM satisfies a slightly weaker, but still quite useful, property. Let | · |1 :
R

n → R+ denote the L1 norm, i.e., for z ∈ R
n, |z|1 = |z1| + · · · + |zn|.
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Proposition 3 (Margaliot et al. 2014) For any ε > 0 there exists � = �(ε) > 0
such that the solutions of the RFM satisfy

|x(t, a) − x(t, b)|1 ≤ (1 + ε) exp(−�t)|a − b|1, (5)

for all a, b ∈ Cn and all t ≥ 0.

This is contractivity up to an arbitrarily small overshoot (1 + ε) (Margaliot et al.
2016).

4.4 Global Asymptotic Stability

Since the compact and convex set Cn is an invariant set of the dynamics, it contains
a steady-state point e. By Proposition 1, e ∈ int(Cn). Applying (5) with b = e yields
the following result.

Corollary 1 The RFM admits a unique steady-state point e ∈ int(Cn) that is
globally asymptotically stable, i.e.

lim
t→∞ x(t, a) = e, for all a ∈ Cn.

Thus, any set of rate values λi , i = 0, 1 . . . , n, induces a unique steady-state density
and any solution of the RFM converges to this density, regardless of the initial
density. In particular, the production rate R(t) = λnxn(t) converges to the steady-
state production rate:

R := λnen. (6)

At steady state, i.e., for x = e, the left-hand side of all equations in (1) is zero,
so R = λiei(1 − ei+1), i = 0, . . . , n, where e0 := 1 and en+1 := 0. It follows that
for any c > 0

R(cλ0, . . . , cλn) = cR(λ0, . . . , λn),

so R is positively homogeneous of order one with respect to (w.r.t.) the rates
λ0, . . . , λn. This means that if we multiply all the rates by a factor c > 0
then the steady-state production rate will also increase by the same factor c.
Similarly, ei , i = 1, . . . , n, is positively homogeneous of order zero w.r.t. the rates,
i.e., ei(cλ0, . . . , cλn) = ei(λ0, . . . , λn), for all i.

Solving the set of nonlinear equations that define the steady state is not trivial. It
turns out that there exists a better representation of the mapping from the rates to the
steady state. Let Rk++ denote the set of k-dimensional vectors with positive entries.
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4.5 Steady-State Spectral Representation

Consider the RFM with dimension n and rates λ0, . . . , λn. Define the (n+2)×(n+2)

Jacobi matrix

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 λ
−1/2
0 0 0 . . . 0 0

λ
−1/2
0 0 λ

−1/2
1 0 . . . 0 0

0 λ
−1/2
1 0 λ

−1/2
2 . . . 0 0
...

0 0 0 . . . λ
−1/2
n−1 0 λ

−1/2
n

0 0 0 . . . 0 λ
−1/2
n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

This is a symmetric matrix, so all its eigenvalues are real. Since A is (componen-
twise) nonnegative and irreducible, it admits a unique maximal eigenvalue σ > 0
(called the Perron eigenvalue or Perron root), and a corresponding eigenvector ζ ∈
R

n+2++ (the Perron eigenvector) (Horn and Johnson 2013).

Theorem 1 (Poker et al. 2014) Consider an RFM with dimension n and rates
λ0, . . . , λn. Let A be the matrix defined in (7). Then:

R = σ−2 and ei = λ
−1/2
i σ−1 ζi+2

ζi+1
, i = 1, . . . , n. (8)

This means that the steady-state density and production rate in the RFM can be
obtained from the spectral properties of A. In particular, this makes it possible to
determine R and e even for very large chains using efficient and numerically stable
algorithms for computing the eigenvalues and eigenvectors of a Jacobi matrix.

Theorem 1 has several more important implications. For example, it implies
that R = R(λ0, . . . , λn) is a strictly concave function on R

n+1++ (Poker et al. 2014).
Also, it implies that the sensitivity of the steady state w.r.t. a perturbation in the rates
becomes an eigenvalue sensitivity problem. Indeed, Theorem 1 implies that

∂

∂λi

R = 2

σ 3λ
3/2
i ζ ′ζ

ζi+1ζi+2, i = 0, . . . , n. (9)

This provides a spectral expression for the change in the steady-state production
rate caused by a small change in one of the rates. Note that (9) implies in particular
that ∂

∂λi
R > 0 for all i. In other words, an increase in any of the rates yields an

increase in R.

4.6 Entrainment

Many biological systems are excited by periodic signals, for example the 24 h solar
day or the periodic cell cycle division process. An important question is whether the
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system entrains (or phase-locks or synchronizes) to the excitation, that is, whether
its behavior converges to a periodic pattern with the same period as the excitation.
It is well-known that stable linear time-invariant systems entrain (Zadeh and Desoer
1963). Nonlinear systems, even seemingly simple, may not entrain. For example,
their trajectories may display a chaotic pattern rather than converge to a periodic
pattern (Nikolaev et al. 2017). There are however two important classes of nonlinear
systems that do entrain: contractive systems (Russo et al. 2010), and cooperative
systems that admit a first integral (see, e.g., Margaliot et al. 2017).

A function f : R → R is called T -periodic if f (t) = f (t + T ) for all t . For
example, sin(t) is 2πk periodic, for all integers k. Consider the RFM under the
following assumptions:

(1) The initiation rate λ0(t) and transition rate λi(t), i = 1, . . . , n, are con-
tinuous, strictly positive and uniformly bounded functions of time, i.e., there
exist δ1, δ2 ∈ R such that for all i ∈ {0, . . . , n}

0 < δ1 ≤ λi(t) ≤ δ2, for all t ≥ 0. (10)

(2) There exists a minimal T > 0 such that all the λi(t)s are T -periodic.

We refer to this case as the periodic ribosome flow model (PRFM). Note that this
includes in particular the case where some of the rates are constant, as a constant
function is T -periodic for every T . However, item (2) above implies that the case
where all the rates are constant is ruled out, as then the minimal T is zero. Indeed,
this case is just the RFM. The periodicity of the rate/s may be the result for example
of periodicity in the abundance of certain tRNA molecules.

Theorem 2 (Margaliot et al. 2014) The PRFM admits a unique periodic solu-
tion γ : R+ → int(Cn), with period T , and for any a ∈ Cn the trajectory emanating
from a at time t = 0 converges to γ as t → ∞.

This means that the RFM entrains to periodic excitations in its rates. In par-
ticular, the production rate R(t) = λn(t)xn(t) converges to the T -periodic
function λn(t)γn(t).

Example 1 Figure 3 depicts xi(t), i = 1, 2, 3, as a function of t , for a PRFM with
n = 3, λ0(t) ≡ 3/5, λ1(t) = 1 + 7

20 sin(πt
5 ), λ2(t) = 4

5 + 3
5 cos(πt

5 + 1
3 ), λ3(t) ≡

4/5, and initial condition xi(0) = 1/2, i = 1, 2, 3. Note that all the rates here are
periodic, with a minimal common period T = 10. It may be seen that each state
variable converges to a periodic function with period T = 10. ��

Some features of the flow of molecular machines are not captured by the RFM.
For example, the RFM, like ASEP, is based on the assumption that the particle
size is equal to the site size, yet it is known that every ribosome covers several
codons. Several extensions of the RFM have been introduced. These include (1) the
ribosome flow model on a ring (RFMR) (Raveh et al. 2015; Zarai et al. 2017f)
that is a mean-field approximation of TASEP with periodic boundary conditions;
(2) a model for bidirectional flow that can describe, for example, the motion of
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Fig. 3 Densities xi(t), i = 1, 2, 3, as a function of t , for the PRFM in Example 1

RNA Polymerases II during transcription (Edri et al. 2014); (3) an RFM with
positive feedback from the production rate to the initiation rate that can describe
mRNA circularization and ribosome cycling (Margaliot and Tuller 2013); and (4) a
generalization of the RFM that includes nearest-neighbor interactions between the
particles (Zarai et al. 2017a).

5 Extensions of the RFM

In this section, we review two models that are motivated by biological phenomena
that are not encapsulated by the RFM.

5.1 Bidirectional Flow with Langmuir Kinetics

The mean-field approximation of ASEP with Langmuir kinetics (MFALK) is a
deterministic flow model that encapsulates bidirectional flow along the chain and
also the possibility of particles to attach/detach from any site along the chain.



286 Y. Zarai et al.

The MFALK can be used to model and analyze several biological processes
including (1) ribosomes that detach from the mRNA molecule before reaching
the stop codon due to various reasons, e.g., ribosome stalling, depletion in the
concentration of tRNAs, or successive rounds of amino acid misincorporation (Sin
et al. 2016; Zhang et al. 2010; Kurland 1992; Alberts et al. 2007); (2) ribosomes
that attach to an ATG codon (or other codon) downstream the main start codon
(e.g., due to “leaky scanning” or via internal ribosome entry site (IRES)) (Alberts
et al. 2007); and (3) bidirectional flow of molecular machines like in the motion of
RNA Polymerases II during gene transcription (Nudler 2012; Cheung and Cramer
2011; Edri et al. 2014), and the movement of motor proteins like kinesin and dynein
along microtubules (Alberts et al. 2007).

The MFALK contains four sets of nonnegative parameters (see Fig. 4):

• λi , i = 0, . . . , n, controls the forward transition rate from site i to site i + 1,
• γi , i = 0, . . . , n, controls the backward transition rate from site i + 1 to site i,
• βi , i = 1, . . . , n, controls the attachment rate to site i,
• αi , i = 1, . . . , n, controls the detachment rate from site i.

Let x0(t) ≡ 1, xn+1(t) ≡ 0, and

zi(t) :=

⎧
⎪⎪⎨
⎪⎪⎩

0, i = 0,

xi(t), i ∈ {1, . . . , n},
1, i = n + 1.

Then, the dynamical equations describing the MFALK with n sites are given by

ẋi = λi−1xi−1(1 − xi) − λixi(1 − xi+1)

+γizi+1(1 − zi) − γi−1zi(1 − zi−1) + βi(1 − xi) − αixi, (11)

for all i ∈ {1, . . . , n}. The first two terms on the right-hand side of (11) are just like
in the RFM. The term γizi+1(1 − zi) − γi−1zi(1 − zi−1) represents backward flow

Fig. 4 Topology of the MFALK. The state variable xi(t) ∈ [0, 1] describes the density of site i

at time t . The parameter λi [γi ] controls the transition rate from site i [i + 1] to site i + 1 [i].
The parameter αi [βi ] controls the detachment [attachment] rate from [to] site i. R(t) denotes the
output rate at time t
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with soft simple exclusion. The term βi(1 − xi) represents attachment of particles
from the environment to site i, and αixi represents detachment from site i.

The output rate from site n at time t is the total flow from this site to the
environment:

R(t) : = (λn + αn)xn(t) − (γn + βn)(1 − xn(t)). (12)

Note that R(t) may be positive, zero, or negative.
The RFM is a special case of the MFALK with αi = βi = γi = 0 for all i.

Zarai et al. (2017c) have shown that some of the dynamical properties of the RFM
described in Sect. 4 hold also for the MFALK.

5.2 Ribosome Flow Model with Extended Objects

In the RFM and ASEP, the particle size is equal to the site size. This assumption
is not always satisfied in real biological flow. For example, each ribosome typically
covers between 9 and 11 codons, and the geometry (e.g., length of the exit tunnel)
can be longer than 30 codons (Alberts et al. 2007). Each RNAP typically covers
between 42 and 51 nucleotides (Rice et al. 1993). It is interesting to note that
the pioneering paper by MacDonald et al. (1968) already considered a version of
TASEP with extended objects as a model for ribosome flow during translation (see
also Lodish 1974).

The ribosome flow model with extended objects (RFMEO) describes the unidi-
rectional flow of particles that cover � site units, with 1 ≤ � ≤ n. The RFMEO is a
mean-field approximation of TASEP with extended objects (Zarai et al. 2017e).

Assume, without loss of generality, that the particle is “processing” (i.e.,
transcribing or translating) the left-most site it is covering, and refer to this part
of the particle as the reader. A similar assumption is used in TASEP with extended
objects (Dong et al. 2007b; Shaw et al. 2004a,b; Lakatos and Chou 2003; Shaw et al.
2003). Thus, the statement “the particle is at site i” means that the reader is located
at site i; the particle is processing site i; its corresponding transition rate is λi ; and
sites i, . . . , i + � − 1 are covered by this particle.

Let xi(t) denote the normalized reader occupancy level at site i at time t , and let
yi(t) denote the normalized coverage occupancy level at site i at time t , that is,

yi(t) :=
i∑

j=max{1,i−�+1}
xj (t), i = 1, . . . , n.

The dynamics of the RFMEO with n sites is given by n nonlinear first-order
ordinary differential equations:

ẋi = qi−1(x) − qi(x), i = 1, . . . , n, (13)
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where qi−1 [qi] is the flow into [out of] site i. This flow is given by

qi(x) := λixi(1 − yi+�), i = 0, . . . , n, (14)

with x0(t) ≡ 1, and yj (t) ≡ 0 for all j > n.
To explain (13), consider for example the equation for the change in the density

at site 1, namely,

ẋ1 = q0(x) − q1(x) = λ0(1 − y�) − λ1x1(1 − y�+1).

The term λ0(1 − y�) represents the entry rate into site 1. Indeed, since the entering
particle will cover sites 1, 2, . . . , �, this entry rate decreases with the coverage
density y� = x1 + · · · + x�. (In the literature on TASEP with extended objects this
is referred to as the “complete-entry” flow (Dong et al. 2007b)). The term λ1x1(1 −
y�+1) is the flow from site 1 to site 2. This increases with the occupancy at site 1 and,
similarly, decreases with the coverage occupancy y�+1. We note that the dynamical
equations describing the RFMEO are the same for any chosen reader location (e.g.,
choosing the reader at location �/2 results in exactly the same RFMEO equations).

The output rate of particles from the chain is denoted by R(t) := λnxn. Note that
in the special case � = 1 we have yi = xi for all i = 1, . . . , n, and then (13) reduces
to the RFM.

Some of the dynamical properties of the RFM described in Sect. 4 hold also for
the RFMEO (Zarai et al. 2017e).

The next section describes several biological implications of the dynamical
properties of the RFM.

6 Implications of the Analysis of the RFM to Gene
Expression Modeling and Engineering

Analysis of the RFM yields results that are relevant to modeling and engineering
gene expression. Some of these are reviewed in this section.

6.1 Constrained Maximization of the Steady-State Production
Rate

As mentioned above, translation is known to be one of the most energy-consuming
processes in the cell (Alberts et al. 2007; Tuller et al. 2010), and it is natural to
assume that evolution shaped this process to maximize protein production subject
to the limited biocellular budget. If this is indeed so then one can estimate various
parameters of the translation machinery by solving an appropriate mathematical
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optimization problem. The same problem also arises in the context of synthetic
biology, namely, re-engineering heterologous genes in order to maximize their
production rate in a host organism (Romanos et al. 1992; Moks et al. 1987; Binnie
et al. 1997).

To study this using the RFM, consider the problem of finding the rates λ0, . . . , λn

that maximize the steady-state production rate R subject to the constraint:∑n
i=0 wiλi ≤ b. Here the positive wis allow a different weighting of each rate,

and b > 0 is related to the limited biomolecular budget in the cell. The strict
concavity of R implies that this problem is a convex optimization problem (Boyd
and Vandenberghe 2004). It thus admits a unique solution λ∗

i , i = 0, . . . , n, that
can be determined using highly-efficient numerical algorithms that scale well
with n (Poker et al. 2014).

Example 2 Figure 5 depicts the optimal rates λ∗
i for an RFM with n = 8, and

with a homogeneous constraint, i.e., w0 = · · · = w8 = b = 1. The optimal
values were found numerically using a simple search algorithm that is guaranteed
to converge for convex optimization problems. It may be noticed that the optimal
rates are symmetric w.r.t. the center of the chain, and increase toward the center of
the chain. This implies that when considering a homogeneous constraint (i.e., when
assigning equal weighting to all the rates), the most important rates are those near
the center of the chain. ��

0 1 2 3 4 5 6 7 8
0.07

0.08

0.09

0.1

0.11
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0.13

Fig. 5 Optimal rates λ∗
i , as a function of i, for a RFM with n = 8 and the constraint

∑8
i=0 λi ≤ 1
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6.2 Optimal Down-Regulation of Translation

Down-regulation of translation is important in cell biology, medicine, and biotech-
nology. For example, in many organisms small RNA genes, such as microRNAs,
hybridize to the mRNA in specific locations (Ghildiyal and Zamore 2009; Inui et al.
2010) in order to down-regulate translation initiation or elongation (Fabian et al.
2010; Filipowicz et al. 2008) and/or promote mRNA degradation. Cancer cells are
often targeted via generating tumor-specific RNA interference (RNAi) genes that
down-regulate the oncogenes (Tavazoie et al. 2008; Zhang et al. 2003; Devi 2006).
Furthermore, many viral therapeutic treatments and viral vaccines are based on the
attenuation of mRNA translation in the viral genes (Ben-Yehezkel et al. 2015; Goz
and Tuller 2015; Wang et al. 2005; Coleman et al. 2008; Perez et al. 2009).

In order to study down-regulation of translation using the RFM, consider the
following problem.

Problem 1 Given an RFM with n sites, rates λ̄0, . . . , λ̄n, and a total reduction
budget b ∈ [0, mini{λ̄i}), define the set

�n+1(λ̄, b) :=
{
[
λ̄0 − ε0, . . . , λ̄n − εn

] : εi ≥ 0,

n∑
i=0

εi = b

}
.

Find a set of rates λ∗ ∈ �n+1 such that R(λ∗) = minλ∈�n+1 R(λ).

In other words, �n+1 is the set of all the rates that can be obtained by applying a
total reduction b to the given rates λ̄i . From a mathematical point of view, b provides
a bound on the total possible rate reduction. The problem then is to find the set of
rates corresponding to such a total reduction that provides the minimal stead-state
production rate.

Using the strict concavity of R, Zarai et al. (2017d) showed that the optimal
solution always corresponds to reducing all the reduction budget b from a single
rate. If there exists an index j ∈ {0, . . . , n}, such that ∂

∂λj
R(λ̄) > ∂

∂λi
R(λ̄), for

all i = j , then the optimal solution is to reduce b from λ̄j . In this case λ̄j is the
“bottleneck” rate, as the sensitivity of R w.r.t. this rate is maximal. Note that the
sensitivities here can be determined using efficient algorithms for computing the
Perron eigenvalue and eigenvector of the matrix A defined in Eq. (7). If such an
index j does not exist, one may use the spectral representation described in Sect. 4.5
to efficiently evaluate R after reducing b from each rate separately, and then select
the minimum of all these values (Zarai et al. 2017d).

6.3 Competition for Limited Resources

Biological evidence suggests that the competition for RNAPs and ribosomes, as
well as other various transcription and translation factors, plays a key role in the
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cellular economy of gene expression. The limited availability of these resources
is one of the reasons why gene, mRNA, and protein levels in the cell do not
necessarily correlate (Tuller et al. 2010; Sharp et al. 2010; Tuller and Zur 2015;
Richter and Smith 1981; Vind et al. 1993; Jens and Rajewsky 2015; Ceroni
et al. 2015; Brackley et al. 2011; Greulich et al. 2012), and should be taken into
account when designing gene expression circuits that involve heterologous gene
expression (Ceroni et al. 2015; Gyorgy et al. 2015; Dana and Tuller 2012). The
competition for these resources leads to an indirect coupling between the concurrent
gene expression processes in the cell. This is particularly relevant when many
identical intracellular processes, all using the same resources, take place in parallel
(Brackley et al. 2011).

In order to analyze the effect of competition for the limited resources in the con-
text of translation, Raveh et al. (2016) introduced a network of RFMs interconnected
via a dynamic pool of free ribosomes. The pool feeds the initiation sites in all the
RFMs, and the ribosomes exiting every RFM are fed back into the pool. The total
number of ribosomes in this network is conserved, so if more ribosomes bind to
some RFM the pool is depleted, and consequently the initiation rates in all the RFMs
decrease. This network can also be applied to study competition for resources in
other scenarios, e.g., competition for RNAPs during transcription.

It was shown in Raveh et al. (2016) that the network always converges to a steady
state. If we fix all the rates and the total initial density of ribosomes in the network
then this steady state is unique. This allows to address questions such as how do
these steady-state profiles change when one of the rates in one of the RFMs is
modified? Suppose, without loss of generality, that a rate λi in the first RFM in
the network is increased to a value λ̄i > λi . It was shown that in the modified
network the steady-state values change as follows. The production rate in the first
RFM increases, and the other production rates and the pool occupancy either all
increase or all decrease. This result has an intuitive biophysical interpretation: If
the modified transition rate is a bottleneck rate in the mRNA chain, then increasing
it leads to a faster flow of ribosomes through this mRNA molecule. This increases
the number of free ribosomes in the pool and, therefore, the production rates in
all other mRNAs as well. On the other-hand, if the modified transition rate is
located upstream of the bottleneck rate then increasing it worsens the “traffic jam”
of ribosomes along this mRNA, the pool is depleted, and the production rates in all
the other mRNAs decrease. These results highlight the importance of modeling the
translation of not only a single mRNA molecule, but rather a set of molecules that
are indirectly coupled by the competition for shared resources.

As noted above, new experimental procedures provide more and more data on
gene expression. Mathematical or computational models are needed to integrate and
explain this data. The next section reviews several applications of the RFM in this
context.
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7 Applications of the RFM to Studying Gene Expression
Based on Large-Scale Genomic Data

We describe several applications of the RFM to the process of gene expression based
on genomic data analysis.

7.1 Parameter Estimation for the RFM and Predictions
of Experimental Data

In order to analyze genomic data using the RFM, the various parameters of the
RFM, i.e., the λis, must be inferred and set to their intracellular values. The codon
decoding rates can be inferred from Ribo-seq experiments (Ingolia et al. 2009; Dana
and Tuller 2014a) or from computational algorithms that use transcript features (e.g.,
adaptation to the tRNA pool, local mRNA folding, and the interaction of the nascent
peptide with the ribosome exit tunnel (Tuller et al. 2011)) in order to predict the
RFM rates. Similarly, the elongation rates of the RNAP can be estimated based on
NGS experiments such as NET-seq (Edri et al. 2014; Churchman and Weissman
2011; Cohen et al. 2017).

Another fundamental parameter that must be estimated is the initiation rate λ0.
It is not trivial to experimentally measure initiation; however, there exist complex
models that enable the prediction of the translation initiation rate based on, for
example, the nucleotide composition of the transcript near the start codon or via
estimation from experimental data of ribosome densities (Salis et al. 2009; Zur and
Tuller 2013; Ciandrini et al. 2013). For example, the model of Salis et al. (2009)
for prokaryote is based on summing five free energy terms: (1) the folding energy
of the mRNA subsequence prior to binding with the 30S complex; (2) the energy
released when the last nine nucleotides of the 16S rRNA cofold and hybridize with
the mRNA subsequence at the 16S rRNA-binding site; (3) the energy released when
the tRNA(fMet) anticodon hybridizes to the start codon; (4) the energy released
when the standby site (near the 16S rRNA-binding site) folds; and (5) an energetic
penalty for a nonoptimal distance between the 16S rRNA-binding site and the
start codon. An eukaryotic translation initiation model should consider, among
others, the nucleotide composition surrounding the start codon, the additional AUGs
surrounding the start codon, and the strength of the mRNA folding surrounding the
start codon (Zur and Tuller 2013; Kozak 1986; Ben-Yehezkel et al. 2015).

Several papers compared predictions of the RFM with biological measure-
ments. For example, protein levels and ribosome densities in translation (Reuveni
et al. 2011), and RNAP densities in transcription (Edri et al. 2014). The results
demonstrate high correlation between gene expression measurements and the RFM
predictions. A publicly available application enables biologists to easily use the
RFM to derive such predictions (Zur and Tuller 2012).
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7.2 Effect of Ribosomal Drop-Off on Production Rate

Translation is the most energetically consuming process in the cell, and ribosome
drop-off before reaching the stop codon results in truncated, nonfunctional and
possibly deleterious proteins. Nevertheless, there seems to be a certain minimal
abortion rate even in non-stressed conditions (Sin et al. 2016; Kurland and Mikkola
1993). In recent years ribosome drop-off has been modeled and studied in several
interesting papers (Bonnin et al. 2017; Sin et al. 2016; Keiler et al. 1996; Keiler
2015; Zaher and Green 2011; Chadani et al. 2010; Subramaniam et al. 2014;
Gilchrist and Wagner 2006). It was suggested that in some cases ribosome drop-
off is important for proof reading (Zaher and Green 2009), and that ribosome
stalling and abortion play a role in ribosome homeostasis and thus translational
regulation (Shoemaker et al. 2010; Zupanic et al. 2014; Mills and Green 2017).

To analyze the effect of ribosomal drop-off on the protein production rate, Zarai
et al. (2017c) used the MFALK with backward and attachment rates set to zero
(i.e., βi = γi = 0, for all i). The detachment rates αi were estimated based on
biological data for S. cerevisiae using values from (Sin et al. 2016; Kurland and
Mikkola 1993). The transition rates λi were estimated using Ribo-seq data for the
codon decoding rates (Dana and Tuller 2014b).

The results show, for example, that as the drop-off rate per site increases
from 10−4 to 10−2, the average steady-state density decreases by about 30% and
the steady-state production rate decreases by about 50%. This demonstrates the
significant ramifications that ribosomal drop-off is expected to have on translation.

7.3 Coupling by Sharing Finite Intracellular Resources
and Entrainment

As noted above, oscillations in one or more of the RFM rates induce a periodic
solution γ of the RFM and every trajectory converges to γ . A more general question
is what will be the effect of oscillations in one or more rates in an RFM that is
connected, via the competition for shared resources, to other RFMs?

Zarai and Tuller (2017) studied this question using an RFM-based whole cell
simulation of translation in S. cerevisiae that includes competition for ribosomes
(see Fig. 6). It was shown that fluctuations in mRNA levels of a single gene or a
group of genes induce a global periodic behavior in the network: The ribosomal
densities and mRNA production rates of all S. cerevisiae mRNAs oscillate. By
numerically measuring the oscillation amplitudes, it was demonstrated that fluctu-
ations of endogenous and heterologous genes can cause a significant fluctuation of
up to 50% in the steady-state production rates of the rest of the genes. Furthermore,
oscillating mRNAs that experience high ribosomal occupancy (e.g., ribosomal
traffic jams) have the largest impact on the translation of the S. cerevisiae genome.
Synonymously mutating these oscillating mRNAs can alleviate the fluctuations in
all S. cerevisiae genes.
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Fig. 6 Flow diagram of the
translation network analyzed
in Zarai and Tuller (2017).
Dashed blocks specify
numerical measurements

8 Discussion

In his 1948 essay “Intelligent Machinery”, Turing described a machine that
consisted of: “. . . an unlimited memory capacity obtained in the form of an infinite
tape marked out into squares, on each of which a symbol could be printed. At
any moment there is one symbol in the machine; it is called the scanned symbol.”
(Turing 2004).

Evolution came up with a related idea a long time ago. Genetic information is
coded as an ordered list of symbols, and machines like RNAPs and ribosomes “read”
and process this information symbol by symbol. The relation between genetics and
the Turing machine is well-known. For example, Adleman (1994) states that “One
can imagine the eventual emergence of a general purpose computer consisting of
nothing more than a single macromolecule conjugated to a ribosomelike collection
of enzymes that act on it”. For another possible biomolecular embodiment of a
Turing machine, see Shapiro (2012) and the references therein. Shapiro (2012) also
points out that “Molecular machines such as DNA polymerase, RNA polymerase
and the ribosome are most naturally understood as simple finite-state transducers, a
special case of the Turing machine.”

The flow of these molecular machines along the genetic material is of great
importance in gene expression. We reviewed several deterministic continuous-time
models for the flow of biological machines based on the RFM. The RFM is both easy
to simulate and amenable to rigorous analysis using tools from systems and control
theory, which are not traditionally employed in the context of gene expression
modeling and analysis. This enables efficient modeling and analysis of large-scale
genomic data (Zur and Tuller 2016; Zarai and Tuller 2017). We furthermore showed
how the RFM can be used for rigorous analysis of processes such as translation and
transcription. This can decipher novel mechanisms in gene expression dynamics and
evolution. Recent large-scale experimental approaches enable fitting the parameters
of the RFM to the intracellular conditions; the fitted RFM provides not only basic
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predictions (such as production rate and ribosome densities, which can be measured
directly), but also more advanced predictions that currently cannot be fully measured
at a genomic level like optimality and sensitivity of translation, and the effect of
ribosome drop-off on the production rate.

There are many open problems related to the RFM dynamics and gene expression
regulation and evolution. For example, the proofs of entrainment in contractive
systems are based on implicit arguments and as such provide no information on
the periodic solution of the RFM (or network of RFMs), except for its period.
An important problem is obtaining more information on the geometry of the
periodic solution, its amplitude, average, and dependence on various parameters
((see Margaliot and Coogan 2017) for some related ideas). Another important
problem is to better understand the level of optimality of the translation process
in living cells and the evolution of this process.

Directions for further research can benefit from combining biological exper-
iments with analysis tools from systems and control theory. On the one hand,
important biological assertions on gene expression can be naturally addressed in the
framework of the RFM. One example from a recent review paper (Mills and Green
2017) is the statement: “Moreover, the translation of mRNAs with low initiation
rates is likely to be most negatively affected by changes in ribosome concentration.”
As another example, a “comparative genomics” analysis of the RFMs fitted to
various organisms may teach us about the evolution of translation.

On the other hand, many ideas and tools from systems and control theory applied
to the RFM may immediately lead to important biological ramifications. Examples
include applying systematic approaches for parameter estimation to deduce the
transition rates, as well as using tools from control theory to understand what density
profiles can be obtained by manipulating one or more of the RFM rates (Zarai
et al. 2017b). As another example, let us show how a classical topic from random
matrix theory is related to an important biological question. In practice, many
identical mRNA molecules undergo simultaneous translation in the cell and the
ribosomes translating these may experience different transition rates due to, say,
the variability of tRNA abundance in different locations in the cell. This can be
modeled by assuming that the RFM rates are not constant, but rather they are
random variables (RVs) with some known distribution supported over R++. A
natural question is what will be the average protein production rate? In the context
of the matrix A given in (7) this amounts to the following question: given the
distributions of the RVs λi what is the average value of the maximal eigenvalue
of A?

In addition, most of the research so far focused on using models like ASEP
and RFM to study translation [transcription] on a single, isolated mRNA [DNA]
molecule. We think that tools from the theory of networked systems can be applied
successfully to study networks of interconnected RFMs modeling the large-scale
concurrent cellular processes of gene expression.

Finally, one bottleneck in the field is related to our ability to directly and
accurately measure variables related to ribosome movement, e.g., initiation rate,
ribosome/RNAP abortions, ribosome/RNAP collisions over a single mRNA/DNA,
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etc. Such measurements are essential to validate analytical and computational
predictions. Current experimental procedures are very noisy, include various biases,
cannot directly measure some important translation variables, and are based on
average measurements over a pool of cells/mRNAs. In addition, developing experi-
mental approaches for high-resolution analysis of additional types of intracellular
machines (e.g., molecular motors movement on the cytoskeletal filaments) is
required in order to better understand the universality of the theories and compu-
tational models in this field.
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Abstract A computational technique is described to reduce the model search space
and construct an ensemble of models for systems biology using perturbation data.
While doing so, an effective way of representing a network model is developed
for computing purposes using adjacency matrix-like data structures. This allows
models to include Uni-Uni to Bi-Bi reactions in addition to enzymatic activation
and inhibition. It is demonstrated that the technique is effective, fast, and suggests
it can be used as an initial filtering step in conjunction with other computational
techniques. Finally, other potential methods to construct a set of reliable network
models using time-course data are explored.

Keywords Systems biology · Biochemical networks · Network reduction ·
Machine learning · Ensemble modeling

1 Introduction

Models in systems biology aim to simulate the dynamics of biochemical networks
such as signal transduction pathways, metabolic pathways, and gene regulatory
networks. These models are typically encoded with a set of ordinary differential
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equations (ODE) and visualized as network diagrams. Models can be solved and
simulated to make predictions under various conditions, furthering our under-
standing of the network and making them useful for the processes such as drug
discovery (Butcher et al. 2004; Kitano 2002a,b).

Systems biology today is heading towards multi-scale modeling, constructing
larger and more complex models (Natale et al. 2017). Examples include the whole-
cell model of Mycoplasma genitalium (Karr et al. 2012) and the central metabolism
model of E. coli (Millard et al. 2017). However, as the size and complexity of
a model grow, validation becomes more and more difficult. A large portion of
these models is composed of multiple submodels where each submodel should be
validated against the data.

One of the core goals of systems biology, or computational modeling in general,
is to construct reliable models. A reliable model is one having precision and
accuracy against observations as well as being able to reliably predict new behavior.
Thus the reliability of a model is dictated by how close the predicted outcome is
compared with measurements under similar conditions. Generally, the reliability
of a model can be increased by improving the model itself, collecting additional
measurements used for constructing the model (increase the size of the dataset) and
by implementing better algorithms (for example, parameter estimation).

There have been significant advances in both experimental and computational
techniques that might contribute to improving model reliability. On the experimental
side, we now have high-throughput data acquisition techniques for various types
of experimental data. Some of the examples include those involving CRISPR-
Cas9 (Qi et al. 2013; Cheng et al. 2013; Gilbert et al. 2014; Chavez et al.
2015), proteomics (Shi et al. 2016, 2012), metabolomics (Sévin et al. 2017),
genomics (Davey et al. 2011; Van Dijk et al. 2014), and etc., all of which now
have multiple ways to acquire large-scale experimental data.

One striking innovation comes from the advancement of CRISPR through the
introduction of CRISPRa/i (activation/inhibition) technique. CRISPRa/i screening
allows highly selective activation and inhibition of specific target genes (Qi et al.
2013; Cheng et al. 2013; Gilbert et al. 2014; Chavez et al. 2015). Proteomics is
another area where there has been significant progress in terms of experimental
techniques. These advances allow targeted proteomics to be ultra-sensitive and
quantitative, allowing the measurement of low levels of protein abundance (Shi et al.
2012, 2016).

Computational biology, in general, had experienced significant progress as well.
There have been numerous attempts to integrate various advanced and effective
computational approaches to solve biological problems, in the forms of ensemble
modeling (Henriques et al. 2017; Bonneau et al. 2006), information theory (Hen-
riques et al. 2017), machine learning (Bonneau et al. 2006; Yan et al. 2017;
Fisher and Woodhouse 2017), inference techniques (Oates et al. 2014; Daniels and
Nemenman 2015; McGoff et al. 2016), and others (Pan et al. 2016; Li et al. 2013).

In this chapter, we discuss how we can take advantage of these new ideas
and techniques to construct reliable models for systems biology. In particular, we
talk about a potentially powerful method to reduce the model search space using
perturbation data.
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2 Reducing the Search Space

One of the issues in systems biology is that the model search space can be
extraordinarily large especially when dealing with multi-scale models, although
small models can exhibit the same problem as well. Consider a metabolic network
model, for example. One must make sure that the stoichiometry of the network is
correct, that the various rate laws and associated regulatory loops for the enzymatic
reactions are accurate, and that the numerous parameters involved in rate laws are
reasonably accurate. When we consider a large scale model which could have more
than 60 metabolites and reactions (Millard et al. 2017), it is evident that modeling
efforts with limited prior knowledge of the system can be quite challenging. Thus,
for the scope of the problem we are dealing with, it would be immensely useful if
we could reduce the search space of models and potentially generate an ensemble
of likely models.

One way to achieve rapid, coarse-grained reduction of the model search space is
to use perturbation data, similar to what was proposed by Mangan et al. (2016). With
the advent of CRISPR-Cas9, we now have unprecedented control over selective acti-
vation/inhibition of specific genes for perturbation analysis. Specifically, utilizing
CRISPRa/i, one can selectively (and combinatorially) perturb the total amount of
species or individual reaction kinetics.

In this section, we present an algorithm that can be implemented to automatically
generate an ensemble of reliable models by reducing the model search space using
this type of perturbation data. But before doing so, we start by discussing a suitable
data structure for a network model, which is a necessary step for any kind of
computations. All computations presented in this chapter were done using Python.
In particular, the Tellurium (Choi et al. 2016) environment is used in conjunction
with the libRoadRunner solver (Somogyi et al. 2015) for model simulations and
Antimony language (Smith et al. 2009) for the model description.

2.1 Representation of Network Models

It is important to define how to represent a model for computing purposes, especially
when we have limited knowledge of the reaction steps present in a network. In
systems biology, pathway networks are usually described using a set of chemical
reactions from which a set of ordinary differential equations is derived. The
same model will be visualized through network diagram with arrows as reactions.
A model can have diverse types of motifs ranging from linear chains to dense
overlapping regulons (DOR). Reactions can range from simple Uni-Uni1 reactions
to enzyme kinetics.

1Uni-Uni refers to reactions of the type A → B.
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1 2 3 1

Fig. 1 Coherent type 1 feed-forward loop (C1-FFL). Xo and X1 represent the boundary species
in the model and are fixed during a simulation

The problem we would like to solve is how to reduce the model search space
and generate an ensemble of network models based on limited knowledge of the
network that is consistent with the experimental data. For our solution to be general,
it is essential to define a data structure that can describe a network with enough
flexibility to account for potentially diverse types of interactions. One of the easiest
ways to do this is using matrices where rows represent participants as reactants and
columns represent participants as products; a reaction exists between the species
specified on the row and column if the value is 1. There are no reactions between
the species specified on the row and column if the value is 0. This description is akin
to the adjacency matrix used in computer science and connectivity matrix used in
computational neuroscience, except in our case we need to also take directionality
into account (a directed graph). For a simple Coherent type 1 feed-forward loop (C1-
FFL) (Alon 2007) with three floating species and a boundary input/output (Fig. 1),
our description will result in the matrix shown in (1) (mc1ff l).

mc1ff l =

Xo X1 S1 S2 S3⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

Xo 0 0 1 0 0
X1 0 0 0 0 0
S1 0 0 0 1 1
S2 0 0 0 0 1
S3 0 1 0 0 0

(1)

The above description is sufficient to describe the majority of network motifs
with reversible/irreversible reactions, but there are certain types of reactions that
may not be easily expressed in this manner. We can expand the proposed notation
farther to incorporate more complex dynamics one might see in, e.g., nonlinear
kinetics found in enzyme-catalyzed reactions. One way to approach this is to
append the matrix with combinations of individual species. This does increase
the computational complexity of the problem. However, if we limit the scope of
searches to Bi-Bi2 reactions at maximum, which is a reasonable restriction to impose
in many systems, the increase in dimensionality might be acceptable, as we only
need to add a combination of selecting two species out of n total species, C(n, 2),
to the number of rows and columns. The total number of combinations of r samples

2Bi-Bi refers to reactions of the type A + B → C + D.
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out of n objects is given by:

C(n, r) = n!
r!(n − r)! (2)

From the equation, with r = 2, it is evident that when the total number of species
increases by one, only n rows and columns are added.

For example, consider a moderate-sized network with ten species in total. In this
case, our matrix will be a square matrix with 55 rows and columns (ten species
and 45 combinations). It is possible to add an additional row/column to consider
production/degradation (one to the number of rows/columns) of species as well.
Something to consider when defining the model is that the scope of a model is
arbitrary. If there are well-defined inputs and outputs, or the system has a steady-
state solution, it is entirely possible to break down a large model into small closed
systems to apply computational techniques.

The proposed notation is advantageous because it can represent enzymatic
reactions with only minor changes. Consider the simplest examples of enzymatic
activation and repression shown in Fig. 2. These reactions can be expressed as a
variation of the Bi-Bi reaction shown below.

S1 + X → S2 + X (3)

However, in order to account for both enzymatic activation and repression, we
cannot rely on the binary system (composed of 0s and 1s) where 0 will denote no
reaction and 1 will denote activation. Thus, it is inevitable to introduce an additional
state to our network representation. The additional state, with the value of −1, will
represent enzymatic repression. Then, we can represent enzymatic activation and
repression shown in Fig. 2 as the following set of matrices (4).

A S
1

S
2

A
+

S
1

A
+

S
2

S
1
+

S
2

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

A 0 0 0 0 0 0
S1 0 0 0 0 0 0
S2 0 0 0 0 0 0

A + S1 0 0 0 0 1 0
A + S2 0 0 0 0 0 0
S1 + S2 0 0 0 0 0 0

R S
1

S
2

R
+

S
1

R
+

S
2

S
1
+

S
2

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

R 0 0 0 0 0 0
S1 0 0 0 0 0 0
S2 0 0 0 0 0 0

R + S1 0 0 0 0 −1 0
R + S2 0 0 0 0 0 0
S1 + S2 0 0 0 0 0 0

(4)

Fig. 2 Simplest cases of
enzymatic activation by
activator A and repression by
repressor R
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Note that a reaction defined in the matrix will be interpreted as an enzymatic
activation or repression only when one of the reactants is also present in the
products. In the example above, both the reactant and the product contain either
an activator or a repressor. This means that only when a reaction with states +1 or
−1 defined in non-diagonal and non-antidiagonal (similar to a diagonal but runs
from top right to bottom left) of Bi-Bi specific quadrant of the network matrix
(bottom right) will be interpreted as an enzymatic activation or repression. In the
matrix above (4), bold entries indicate which reactions are treated as enzymatic
activation or repression. This also means that where the additional state of −1 can
be introduced is limited. −1 state can only be present in Uni-Uni reaction (as a type
of auto-regulation) or in Bi-Bi reaction (as an enzymatic repression). This way, we
can express diverse types of motifs and reactions through the network matrix.

This is very useful in representing complex signaling cascades. For example,
consider a simple example shown in Fig. 3. This model can be represented by a
10 by 10 square matrix as shown in Matrix (5) (mcascade) when using mass action
kinetics with boundary signal input So integrated into the reaction between species
S1 and S2 (which is possible since boundary input So is fixed) for the purpose of
simplification.

Now that we have a concrete structure to represent a network model, we introduce
a quick and simple algorithm to reduce the model search space and collect an
ensemble of network models that are always consistent with perturbation data.

mcascade =

S
1

S
2

S
3

S
4

S
1
+

S
2

S
1
+

S
4

S
1
+

S
4

S
2
+

S
3

S
2
+

S
4

S
3
+

S
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 3 A simple cascade
model involving four floating
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the reaction from species S3
to S4. Species S4 inhibits
activation by the boundary
input So
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2.2 Network Reduction Technique

Now that we have a way to represent a model, we describe a method to reduce
the search space using perturbation data. Perturbation data contain steady-state
solutions of the network in question with and without a specified perturbation on
certain reactions or species. We can then compare the steady-state solution in the
perturbed state against the unperturbed state for each and every floating species.
One can create an array of three-valued logic (trilean), i.e. +1 when the steady-
state solution with perturbation is higher than that without perturbation, −1 when
the steady-state solution with perturbation is lower than that without perturbation,
and 0 when the difference in steady-state solutions with and without perturbation
is smaller than a predefined threshold. One thing to keep in mind is that techniques
such as CRISPRa/i allow one to perturb combinations of reactions extracting extra
information about the network if there are two or more targets that can be perturbed.

Once arrays of trileans are obtained, random synthetic networks can be generated
through the use of the proposed network representation method above. An important
feature that is necessary for this step is preserving known information, i.e. keeping
reactions that are experimentally perturbed and any other reactions known to exist
in the network of interest in each and every randomly generated synthetic network.
That way, it is possible to compare the results from the real network and the
synthetic network. Known information includes any reactions that are known to
exist, but it also includes any reactions that are known to be non-existent, as
well as information on rate constants and initial species amount. Knowledge of
non-existent reactions is very helpful in removing unwanted reactions which will
reduce the search space significantly. After preserving known reactions (and non-
reactions) in the network matrix, other reactions are explored, randomly assigning
various states to the empty spots in the network matrix. There are also other rules
that are enforced when generating random synthetic networks in order to remove
meaningless and nonsensical solutions. First of all, we make sure all species in the
network are involved in at least one reaction, removing incomplete networks. Also,
direct reactions between input and output boundary species are not allowed. Finally,
input boundary species remain as inputs and output boundary species remain as
outputs.

Once a random synthetic network is generated under these rules, we calculate the
steady-state solutions with and without perturbations at known reactions to create
another set of arrays of trileans. Combinations of perturbations may be applied to
the network if the same was done experimentally. Finally, trileans obtained via
experimental measurement can be compared against trileans obtained from the
synthetic network. The synthetic network will be accepted if and only if the arrays
of trileans are identical and discarded otherwise. At this point, a single iteration is
completed and the process starting from the random network generation is repeated.
Figure 4 illustrates the general workflow of the network reduction technique.

So how well does this technique work? Consider a simple C1-FFL model shown
in Fig. 1. Suppose that we know that a single reaction between species S1 and S3
exists, which is the minimal information necessary to use this technique. 10,000
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Compare perturbed steady-state
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Fig. 4 Illustration of the network reduction technique. Perturbation data are compared with each
other to create an array of trileans. Similar steps are taken for synthetic networks, calculating
steady-state solutions with and without perturbations present. A synthetic network will be accepted
if and only if the array of trileans match with that of experimental results. Set of trileans for
combinations of perturbations may be compared if the same was done experimentally

iterations comparing unique and randomly generated networks result in less than
100 accepted networks, indicating more than 99% reduction in the potential network
space. The set of accepted networks contained the original network.

What of the cascade model shown in Fig. 3? In this case, let us assume that we
know a single reaction between two floating species but nothing else. After running
10,000 iterations, less than 20 networks are accepted, indicating more than 99%
reduction in the potential network space as before. The set of accepted networks
contained the original network. Figure 5 shows some of the other networks that
survived the selection process. In all of the cases, only the reaction between species
S1 and S2, complete with the repression from species S4, was given.

1 2

3 4

1 2

3 4

1 2

3 4

Fig. 5 Examples of various networks that survived the selection process. Only the reaction
between species S1 and S2, complete with repression from species S4, was given. In all of the
cases, perturbing the reaction between species S1 and S2 results in similar qualitative steady-state
floating species responses. Only mass action kinetics were used
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After testing on various types of networks, we suggest that the technique on
average can reduce the search space by more than 95% when an adequate amount
of information about the network is given. This technique is appealing for several
reasons. The technique makes qualitative comparisons of features. Therefore, it
is a coarse-grained way of reducing the search space but faster in the sense that
parameter optimization is unnecessary in any of the steps. The technique is also
continuous. In a highly modularized workflow, this kind of reduction technique can
be used as an initial screening step, continuously collecting and passing accepted
models down to its downstream processes. The performance is also reasonable.
Based on our experience, once parallelized, a million iterations can be carried out
in several hours on a typical modern CPU.

The main benefit of such an algorithm is that the resulting search space might
become small enough to run a regression analysis on accepted models to choose the
most conceivable model. Furthermore, this algorithm might be useful in conjunction
with other advanced computational techniques which might benefit from the
reduced model search space. Since we are collecting a number of acceptable models,
we can consider the output of the algorithm as an ensemble which will be true for
most of the cases where the amount of information given is limited. The size of the
ensemble will be determined by the amount of information given and every single
model inside the ensemble will be equally acceptable. This approach can help with
the robustness of the model when we consider an ensemble as a whole (Gosink et al.
2014). The ensemble resulting from the network reduction algorithm will certainly
be interesting to examine. It might be possible to extract a common set of motifs
from the resulting ensemble to gain insight on what makes a network acceptable.
Understanding the similarities between the accepted networks will help additional
endeavors to design the network model. Using synthetic toy models, it should also
be possible to quantify the prior knowledge as in which part of the network has
the most impact in terms of reducing the search space. Based on our experiences,
knowledge on upstream reactions tend to have the most impact on the outcome, but
further analysis is necessary for more complex networks. In the final section, we
will discuss other potential ways to generate an ensemble of reliable models.

3 Towards the Application of Machine Learning

The network reduction technique presented in the previous section can be a powerful
way to filter out a large portion of the model search space. However, there are other
types of experimental data we can use to generate an ensemble of networks and to
reduce the size of an ensemble further. For example, time-course data, in particular,
provide valuable information on the dynamics of the network over specific time
periods. As suggested in the previous section, one straightforward application of
using time-course data in conjunction with the network reduction technique would
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be the use of time-course data for parameter estimation to systematically rank
models according to the output of some objective function.

However, this type of analysis will not be ideal for multi-scale modeling, where
the number of parameters is large and can easily result in over-fitting. Then what
options do we have? Are there other ways to generate an ensemble of reliable
network models using perturbation and time-course data? One suggestion is to apply
machine learning. In particular, a multilayer neural network shows a lot of promise
since it can extract various features out of the input data. Extracted features such as
rates of change, curvature, etc. could be analyzed further to infer certain motifs
based on unique response characteristics. Another important feature will be the
relative changes between various species which will be important for identifying
activation and repression type of reactions.

When trying to implement machine learning, probably the easiest way for this
type of problem might be to use supervised machine learning. One can treat a
network as a class, training against the training and validation sets generated from
synthetic data to start with. Here, synthetically generated networks are necessary
because the workflow must be validated as well. Nevertheless, the result of a
supervised machine learning approach will be a single network model. This is not
ideal since our model is technically not a classification problem and there can be
multiple similar network models that can explain given data equally well. There
are types of machine learning processes that introduce stochastic elements and
thus obtain an ensemble of outputs. These techniques are typically designed for
computer vision problem where the input data is a matrix representation of an image.
For example, in imaging experiments, due to limitations in optics or in resolution,
systematic distortion in the input data can be introduced, such as the Airy disk.
This type of setup might be applicable to our problem if we decide to introduce
error in the measurement data. Expanding farther, convolutional neural networks
and reinforcement learning might provide even better performance in terms of
predictions. These are two techniques that are relatively under-utilized in the field
when attempting to apply machine learning to the experimental data we obtain but
have huge potential if properly implemented.

Due to the wide range of applications of machine learning, there is a multitude of
tools and libraries available, including Tensorflow (Abadi et al. 2015), Keras (Chol-
let et al. 2015), scikit-learn (Pedregosa et al. 2011), and so on. These libraries are
well-supported and easy to use, making it ideal for biologists who are not proficient
in computational work. Hopefully, we see continued interest and effort to design
workflow utilizing these powerful techniques to aid systems biology in constructing
reliable network models.
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Abstract Advances in biological sciences resulted in a data deluge, especially as
for gene, protein, and metabolite expression. The issue of computational power
needed to analyze such massive datasets is much less critical than the result
interpretation task. This work deals with the latter, proposing a soft, data-driven
approach, based on simple information theory concepts, as applied to classical
multidimensional statistical methods. The proposed approach allows for a strong
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interaction between the interpretative and computational aspects of the problem
fostering interdisciplinarity. The application of these methods on transcriptome data
relative to immune response and cellular development reveals insightful regulations,
not only on the key instructive local processes but also on the subtle, yet robust,
global-scale behavior. Furthermore, these techniques are swift in utility, as no
detailed a priori knowledge of the biological system in study is required, and avoid
“biased” expression cutoffs that are usually required for traditional/reductionist
approaches.

Keywords Transcriptome analysis · Information theory · Biostatistical
approaches · Single cell · Cellular variability · Physical laws

1 Introduction

The beginning of this millennium has witnessed significant progress made in
experimental biology, moving away from the single molecule approaches toward
monitoring “whole system” (genome, transcriptome, proteome, and metabolome)
response. The large-scale measurement techniques allowed researchers to view
the complexity of intracellular molecular concentration readouts and required
bioinformatics techniques to make sense of it. However, till today, due to the
challenge of machine or operator reliability issues, the low-abundance molecules
are often marred by technical or background noise, and consequently, a large chunk
of data is discarded (Sultan et al. 2008; Bottomly et al. 2011; Rau et al. 2013).

Initially, this was not a major problem as there has been a general belief that
lowly expressed genes may not have significant roles in cellular processes. For
example, in a high-throughput microarray study (monitoring gene expression levels
for over 22,000 Affymetrix probe IDs) on the toll-like receptor (TLR)4-stimulated
macrophages (Hirotani et al. 2005), only 148 genes were analyzed based on an
arbitrary, thus “biased,” threefold expression change cutoff. This was considered
sensible since TLRs are known to induce the expression of proinflammatory
cytokines, which numbers about a hundred or so (Dinarello 2007).

However, another study using similar conditions showed almost 3000 genes,
belonging to diverse cellular processes, such as cell proliferation, differentiation,
and DNA replication, which were induced by TLR4 (Nilsson et al. 2006). This
work challenged traditional immunology where only a few major proinflammatory
mediators were considered as relevant. Still more important, while a microscopic
explanation based on around 100 molecular players of the kind “gene A and gene
B are expressed then gene D . . . ” is still feasible, a microscopic description based
on 3000 interactors is totally out of scope and asks for a total rethinking of what we
consider as “an explanation” in biology.

From simple information theory considerations, it is evident that the expression
value of a single gene does not carry any relevant information on the system at
hand: it needs a context (Thomas and Cover 2006; Smith and MacArthur 2017). For
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example, when we are thirsty on a very hot day, it does not matter how many cafes
there are serving good quality coffee, it is usually water that one resorts to. In this
case, the abundance of different coffee brands, or even the theoretical abundance of
water in the region, is totally irrelevant; only the availability of water is important,
and this behavior is monotonic to most humans.

Mathematician Claude Elwood Shannon postulated that information (or entropy)
analysis requires three characteristics: monotonicity, independence, and branching
(Shannon 1948). Monotonicity has to do with the universality (context of indepen-
dence) of a given piece of information. This property is crucial because it reassures
us of the invariance of the “meaning” of a given information atom. Independence
holds when the information gain from two independent experiments is the sum of the
information gain from their combination. Branching breaks a question into parts and
bridges them in a tree structure, where following along the path, the information gain
should be additive (Bialek 2012; Bonchev and Trinajstić 1977). Thus, analyzing
high-throughput experimental data should not overly focus on the expression values
alone (i.e., analyzing only highly expressed data), but look out for the principles
used in information theory.

It is worth noting the strict analogy of these principles with spectral data
analysis techniques like principal component analysis (or analogously singular value
decomposition) whose aim is to represent a dataset in terms of mutually independent
information atoms (in the form of eigenvectors of the correlation/covariance matrix
of the studied variables). This analogy was aptly commented by Soofi (1994),
while the quantitative link between complexity and the information entropy of the
eigenvalue distribution across principal components of a dataset is demonstrated by
Giuliani et al. (2001).

In the following of the chapter, we will try to show how these information theory
principles and their statistical counterparts can shed light into transcriptome-wide
response of living cells to distinct environmental perturbation and allow generating
biological hypotheses on the observed phenomena.

Section 2 deals with the transcriptome-wide innate immune response to TLR4 in
macrophages. Section 3 describes CD4+ T-cell differentiation. Section 4 presents
the gene expression variability between single development cells and across their
stages, and Sect. 5 shows the reduction in gene expression noise across diverse cell
types following the law of large numbers. Notably, even with the looming technical
challenges, in all the presented works, simple information theoretic approaches are
able to detect novel global patterns across all gene expression levels.

2 Local Immune and Global Diverse Processes
in TLR4-Induced Macrophages

TLRs, currently 13 characterized, are transmembrane microbial pattern-recognition
receptors (O’Neill et al. 2013). The TLR4 recognizes Gram-negative bacteria,
through lipopolysaccharide (LPS), and triggers two branching (MyD88- and TRIF-
dependent) signaling pathways (Fig. 1a). Collectively, the pathways activate key
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Fig. 1 (a) Schematic topology of the toll-like receptor (TLR)4 signaling. Dotted line indicates
hypothetic pathways activating TLR4 signaling independent response. (b,c) Pearson auto- (b) and
cross-correlations (c) for whole transcriptome. (d–f) Pearson auto-correlations for 157 important
immune genes (d), a group of ten major cytokine genes (tnf, il1b, il12, il6, il8, ccl3, ccl4, socs3,
socs1, and cxc10) (e), and random selection of 100 genes (f)

transcription factors such as activator protein (AP)-1, nuclear factor-κB (NF-κB),
and interferon regulatory factors (IRF)-3, resulting in the induction of proinflamma-
tory cytokines and interferons.
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We analyzed LPS-stimulated murine macrophage transcriptome data using
Affymetrix microarray chips with 22,690 probe IDs in four experimental conditions
(wildtype (WT), MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double
KO or DKO) at three time points (0, 1, 4 h) (Tsuchiya et al. 2009a). After
performing intensity background adjustment and normalization using Robust Multi-
array Average (Irizarry et al. 2003), we applied temporal Pearson correlation metrics
(Appendix A) on the transcriptome profiles. The Pearson correlations are computed
between the vectors having as components the 22,690 gene expression levels at
different times with the vector correspondent to the initial state (t = 0 h, auto-
correlations, Fig. 1b). In the same way, correlations can be computed between
gene expression profile of the wildtype (WT) and other conditions (e.g., MyD88
KO) at the same time point (cross-correlations, Fig. 1c). These correlations were
calculated at different scales: whole transcriptome (n = 22,690), immune-related
genes (n = 157), selected cytokine-coding genes (n = 10), and randomly extracted
genes (n = 100) (Fig. 1d–f).

In principle, when two samples containing high-dimensional data (such as
microarray, RNA-Seq) are compared, the correlation analyses provide a measure
of deviation from unity as a source of difference between the samples. The
Pearson correlation coefficient R shows the average (compressed to single value)
information of the transcriptome-wide response. Briefly, two samples with identical
and completely nonidentical information will show unit (R = 1) and null (R = 0)
correlation, respectively. Perfect correlation (R = 1) is an idealized situation that
is far from reality, as technical or experimental noise alone interferes and reduces
correlation (and clearly the same holds true for R= 0 given the inescapable presence
of noise-induced apparent correlations). In the present situation, we obtained very
high correlation coefficient due to the presence of an ideal (and shared across
different samples) expression profile relative to the macrophage cell type.

For the whole transcriptome TLR4 response, in all four conditions, we observed
a monotonic deviation of R moving away from unity, with the most pronounced
response for cytokine genes. The most notable and worthy of the results is for
DKO. Prior to this study, DKO was expected to produce no noticeable transcriptome
response (Hirotani et al. 2005). However, we observed very similar global response
of DKO with MyD88 KO or TRIF KO (Fig. 1b). This is an indication that LPS
is able to invoke a gradual intracellular response independent of the key adaptor
molecules MyD88 and TRIF. The cross-correlations, on the other hand, showed
that DKO response, compared with WT, is the least similar, pointing to different
source of mechanisms for activation (Fig. 1c).

Next, comparing correlation coefficients of 157 immune-related and 10 cytokine
genes, the auto-correlation for DKO was almost unchanged with time, indicating
lack of response in DKO (Fig. 1d,e). However, when we analyzed random selection
of 100 genes, the DKO response was observed, similarly to the whole transcriptome
(Fig. 1f). Together, these data suggest that the source of DKO transcriptome-
wide response, although lacking the common immune-related processes, is most
distinct from WT compared to MyD88 KO or TRIF KO. Gene Ontology database
analysis indicated that DKO induced diverse cellular processes such as nucleotides
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metabolism, focal adhesion, mRNA transcriptional mechanism, etc. In other words,
the overall results suggested the presence of unknown pathways, independent of
MyD88 and TRIF, to activate novel genes and biological processes in DKO (Fig.
1a, dotted arrow).

Notably, subsequent works from other laboratories provided evidence for the pre-
dicted MyD88- and TRIF-independent response: Hagar et al. (2013) and Kayagaki
et al. (2011) showed that caspase-11, which plays a pivotal role in shaping inflamma-
some (a proinflammatory regulatory mechanism), is activated intracellularly without
the need for TLR4 for promoting interleukin-1 family of cytokines.

Thus, it is clear from this work that the simple statistical metric R can be used
successfully to observe major shifts in transcriptome-wide response to a given
stimulus under control and mutant conditions without entering in the microscopic
(and impossible to manage due to the huge number of genes) mechanistic details.

The major advantages for this methodology are that (i) it does not require
traditional biased threshold (e.g. two- or threefold expression change) cutoff,
thereby eliminating data that otherwise still show monotonic response, and (ii) it
detects novel global response arising from lowly expressed genes.

3 Adaptive T-Cell Differentiation Response

CD4+ T cells (also known as T helper cells) are adaptive immune cells that receive
antigens from the innate immune cells, such as macrophages or dendritic cells,
and differentiate into distinct effector subtypes: Th1, Th2, Th9, Th17, Th22, Treg,
and TFH. Depending on the co-stimulatory molecules, such as interleukin (IL)-4,
IL-6, IL-12, and IFN-γ, the diverse differentiation lineages are achieved (Smith-
Garvin et al. 2009; MacLeod et al. 2010; Zhu et al. 2010; Magombedze et al. 2013;
Kared et al. 2014). Previous studies largely monitored a limited subset of genes or
proteins to analyze the differential roles of the subtypes. However, more recent ones
are focusing on a larger spectrum of molecules using high-throughput technologies
(Ciofani et al. 2012; Tuomela et al. 2012; Bhairavabhotla et al. 2016).

Here, we analyzed RNA-Seq data based 10,307 non-zero gene expressions of
Th17 differentiation at 1, 3, 6, 9, 12, 16, 24, and 48 h and compared with Th1,
Th2, and Treg at end time point (48 h) (Simeoni et al. 2015). Unstimulated CD4+
T cells (Tnaive at t = 0, or Th0) were used as control cells for the experiments,
and it was measured at 1, 3, 6, 16, and 48 h. The Th0 subtype, with only T-cell
receptor stimulation with anti-CD3/CD28, is widely believed to be non-polarized or
undifferentiated and in some cases treated as naïve T cells (Calabresi et al. 2002;
Negishi et al. 2005; Verma-Gandhu et al. 2007; Newcomb et al. 2009; Swain et al.
2012; Ciofani et al. 2012; Touzot et al. 2014).

Firstly, we used power-law relationship to analyze the expression data since gene
expression distribution has been observed to follow this law (Furusawa and Kaneko
2003; Ueda et al. 2004), possibly due to their scale-free organization (Albert 2005).
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That is, any deviation from the power law indicates gene expressions that are biased
by machine/operator-induced variations or technical noise. Figure 2a shows the
fraction of genes versus their expression values in log scale for the different subtypes
and time points. It can be seen that the gene expression value scatter largely follows
the power law with exponent approximately equal to 1. Only below expression
(FPKM) value lower than 10 that the scatter deviates from the power law for all
cases (see Fig. S1 of Simeoni et al. 2015). This is conceivable as the lowly expressed
genes are more susceptible to noise, technical or biological in nature (Conesa et al.
2016); see also Sect. 5.

It is important to note that the exponent k ∼ 1 for all investigated T-cell
types is consistent with another T-cell differentiation dataset (see Fig. S2 of
Simeoni et al. 2015) and several other mammalian cell types we analyzed (Sect.
5). Thus, in contrast to a majority of studies that used arbitrary threshold values
for expression cutoff, we used the fundamental statistical power law to remove
unreliable expression data and, consequently, retained 6404 genes for analyses.

We next used the Pearson (auto- and cross-) correlation metrics, discussed in
the TLR4 study above, to track the global response of the T-cell differentiation
process. The auto-correlation analyses showed similar monotonic deviation from
unity at Tnaive state (t = 0 h) to stabilize at R ∼ 0.7 from 16 h onward for both
Th0 and Th17 (Fig. 2b). Th1, Th2, and Treg, measured only at 48 h, also showed
similar R ∼ 0.7. This result is surprising if Th0 is considered as undifferentiated
or non-polarized, as we would then expect the global gene expressions not to vary
significantly from Tnaive and the auto-correlations to remain close to 1. Although it
is well known that Th1, Th2, and Treg express a number of unique cytokines crucial
for their different phenotypes and functions, notably, their global averaged gene
expression responses are similar to Th0. In other words, on a local scale (referring to
a few crucial cytokines), all the subtypes are distinct, but on a global scale (majority
of genome), they show similar response (Tsuchiya et al. 2009b).

In checking for nonlinear monotonic response, we adopted Spearman rank
correlations (Appendix B) and observed similar decreasing profiles (Fig. 2c).
Similar temporal correlation values of Th1, Th2, Th17, and Treg differentiation were
also observed when analyzing another similar dataset (Hu et al. 2013). Thus, these
data reaffirm our observations for Th0 response. Cross-correlation revealed that Th0
global response is more similar to Th1, Th2, and Treg (R > 0.95) than Th17 (R∼ 0.85)
(Fig. 2d,e).

Evaluating Shannon entropy (Shannon 1948), which measures the disorder of
a high-dimensional system, where higher values indicate increasing disconnection
between variables and zero value indicates order (Appendix E), we observed
relatively low values for Tnaive, but entropy gradually increases for all subtypes and
stabilizes between 16 h and 48 h (Fig. 2f). Th17 showed the highest value among the
subtypes, while values for Th0, Th1, Th2, and Treg were very similar at 48 h. These
results not only show increasing diversity of transcriptome-wide expressions during
T-cell differentiation, but they also reveal global similarity between Th0, Th1, Th2,
and Treg, raising the question whether Th0 is control or another subtype.
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We next investigated the first two major principal components (PCs) accounting
for about 84% and 8% of the expression variance, respectively, and plotted them
against each other for all the subtypes at available time points (Fig. 2g). Notably, the
PC trajectories of Th0 and Th17 diverged most profoundly at 48 h (Fig. 2g, insert),
consistent with the observation from the cross-correlations. Moreover, at 48 h, the
PC values of Th0, Th1, Th2, and Treg are closely clustered and almost equidistant
from the Tnaive state. Thus, correlations, entropy, and principal component analyses
reinforce the fact that the global temporal response of Th0 is far from being that of
Tnaive or Th17 but is very close to that of Th1, Th2, and Treg.

To further probe the dynamic global response of Th0 and Th17, we performed
hierarchical clustering of the gene expression values (Appendix C). By setting at
least twofold change in gene expressions between any time points (t = 0, 1, 3, 6, 16,
and 48 h), we obtained 5704 genes with 4379 (or 77%) common between Th0 and
Th17. Hierarchical clustering analysis revealed eight major temporal groups of genes
for Th0 and Th17, of which three groups were distinctly different between them (Fig.
2h). Two of the three distinct groups were Th17-specific (largely involving immune
response, differentiation, and metabolic processes) and the remaining Th0-specific
(immune response, differentiation and cell cycle, replication). Investigating closer
into the function of the more pronouncedly expressed genes (threefold change with
at least 100 units), we picked out noncoding small rDNA-derived RNA (Mir715),
lymphocyte-specific protein 1 (Lsp1), heat shock protein 8 (Hspa8), cystatin C
(Cst3), inhibitor of DNA binding 3 (Id3), and adaptor-related protein complex 3,
beta 1 subunit (AP3B1), significantly upregulated in Th0, and interleukins (Il17f,
Il17a, Il21), basic leucine zipper transcription factor ATF-like (BATF), cytochrome
c oxidase (Cox4i1), and cofilin 1 (CFL1) were expressed, including novel genes
such as microRNA Mir686 and ribosomal protein-coding genes (e.g., Rpl24, Rpl28,
Rpl29, Rpl36, Rpl41) for Th17.

Overall, our simple yet robust statistical metrics have identified novel global
response for Th0, which is commonly treated as a control, undifferentiated, or non-
polarized. Our data also indicate that Th0 response is globally similar to that of Th1,
Th2, and Treg. Taking a closer look into the local Th0 response revealed 260 Th0-
specific genes largely involved in immune response and differentiation, cell cycle
and replication, stress and damage response, and apoptosis.

�

Fig. 2 (a) Gene expression units (x, FPKM) vs. fraction of genes (P(x)) for representative datasets.
Dotted red line: fitted power law. Dotted blue lines: expression threshold x ≥ 10 for power-law
fitting. (b,c) Pearson (b) and Spearman (c) auto-correlations between unstimulated naïve CD4+
T cell (Tnaive, t = 0 h) and other subtypes at each time point. (d,e) Pearson (d) and Spearman
(e) cross-correlations between Th0 and other subtypes. (f) Temporal Shannon entropy, H, of the
different T-cell subtype transcriptomes. (g) Transcriptome-wide expression principal component
trajectories for Th0 and Th17 (x-axis: PC1, 84% of total variance, y-axis: PC2, 8%). Th1, Th2, and
Treg at 48 h, and Tnaive are also shown at t = 0 h. Insert: Euclidean distance, D (a.u.) between
Th0 and Th17 PC trajectories and between Th0 and Th1, Th2, Treg, PC coordinates at 48 h. (h)
Eight major average temporal expression profiles (dotted lines, Th0; solid lines, Th17) of common,
Th17-specific, and Th0-specific groups
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It is worth noting that we did not impose any preconceived structure (or
biological hypothesis) to the data, allowing the internal correlation structure to
emerge and generate biological hypotheses (Giuliani 2017).

4 Single Cell Transcriptional Variability During Embryonic
Development

In contrast to cell population or bulk studies presented so far, single cells have
shown that individual molecules (transcripts, proteins, or metabolites), within a
homogenous cell population, display variable expression/abundance levels (Elowitz
et al. 2002; Chang et al. 2008). This variability has been linked to the stochastic
nature of molecular network regulations or biological noise (Elowitz et al. 2002;
Eldar and Elowitz 2010; Selvarajoo 2012, 2013) and has shown to play pivotal
roles for the survival of species to diverse environmental conditions or for cell fate
decisions (Maamar et al. 2007; Raj et al. 2010; Eldar and Elowitz 2010; Selvarajoo
2012, 2013).

Although the recent literature catalogues ample works in single cell studies
that embody the importance of single molecular variability, there is a general lack
of investigation for global regulatory properties at an omics-wide scale. Studying
global properties has been instrumental in interpreting collective mechanisms of
living organisms, for example, the innate immune response to invading pathogens
or the attractor states of cell differentiation process. Here, to understand the
global noise patterns of single developmental cells, RNA-Seq transcriptome-wide
expressions of oocytes to blastocysts in human and mouse were investigated (Piras
et al. 2014).

To better understand the variability and the effects of technical and biological
noises, we compared pairwise transcriptome-wide expressions of any two cells
taken from the same cell origin. Notably, despite large expression scatter, especially
for late developmental stages (Fig. 3a), the Pearson correlation coefficient R
between single cells of the same development stage is generally high (Fig. 3b, dotted
lines). However, the R between cells of distinct origins is significantly lower (Fig.
3b, solid lines).

We further investigated Spearman correlation, distance correlation (dependence,
Appendix D), and maximum information coefficient (association (Reshef et al.
2011)). Remarkably, all metrics revealed similar trends compared with Pearson
correlations (Fig 3b; see right panels, ρ, dCor and MIC). These results indicate that
the global transcriptional program of developmental cells clearly deviates along the
stages in time, with faster rate of deviation occurring for mouse when compared
with human.

Next, we assessed the diversity of single cell transcriptome using Shannon
entropy (Appendix E). For both human and mouse, Shannon entropy values
remained low in early stages but gradually increased from two-cell (human) or
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Fig. 3 (a) Gene expression values distributions (kernel density estimation) between pairs of single
cells in human and mouse, from oocytes to blastocysts. m, number of cells; n, number of genes. (b)
Pearson correlation between cells of the same stage (i.e., cross-correlations, dotted lines) and or
between zygote and other stages (i.e., auto-correlations, solid lines). Right panels: corresponding
spearman correlation (ρ), distance correlation (dCor) and maximum information coefficient (MIC).
(c) Shannon entropy, H, of single cell transcriptomes for each stage

four-cell (mouse) stage, to reach high values for morula and blastocyst (Fig. 3c).
This result, therefore, shows the disconnection or diversity of transcriptome-wide
expressions increases during mammalian development.

To further understand the effects of increasing entropy and diversity in single
cell transcriptomes during embryogenesis, we quantified single cells’ expression
scatter by computing transcriptome-wide average noise (a.k.a. total noise), η2tot,
i.e., summing the squared coefficient of variation, defined as the variance (σ 2) of
expression divided by the square mean expression (μ2), for all genes between all
possible pairs of single cells (Appendix F). We observed that η2tot is low during
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Fig. 4 (a,b) Total transcriptome noise, η2
tot, for each embryogenesis stage (a) and for single stem,

somatic, and cancer cells (b). Average for m cells, error bars: 1 s.d. (c) Single cell transcriptional
model. kon and koff : promoter dynamics, s: transcription rate, δ: RNA decay rate, ϕ: amplification
factor. (d) Simulated noise (η2) versus mean (μ) expression patterns for each stage using the single
cell transcriptional model. Noise is high for low expression genes (μ ∼ 0.1) and decreases for high
expression genes (μ > 100). Insert: η2 versus μ patterns from experimental data. Patterns for mouse
were also analyzed (Piras et al. 2014)

initial embryonic cell differentiation but increases at later stages with significant
increase from two- to four-cell stage onward (Fig. 4a). We also compared total noise
for embryonic stem, normal somatic, and cancer cells and found similar values as
obtained for later stages development cells (Fig. 4b). These data show total noise
stabilizes at ∼0.7 and may not increase further.
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In summary, by studying the distribution of gene expressions between single
cells, we observed that the expression scatter increased from two-cell to four-
cell stage onward in both human and mouse. Next, we examined the Pearson
correlation and Shannon entropy for each developmental stage. Again, we observed
that expressions become more variable from the two-cell stage. Subsequently, the
global noise character of single cells was investigated by quantifying the squared
coefficient of expression variations over mean expression values. Here, we observed
clear transition of noise patterns occurring between two-cell and eight-cell stage.

To understand the underlying mechanisms for noise transition along the devel-
opment, we built a stochastic transcriptional model (Fig. 4c). By estimating the
parameter values to match each developmental cell pattern (noise η2 vs. mean
expression μ, see Fig. 4d, compare panel—simulations vs. insert—experiments),
the model indicated that early developmental stages are mainly dominated by low
transcriptional activity. That is, the number of transcripts produced per activation
event is low (model parameter φ ∼ 6–9 for early stages, Fig. 4d). Note that the lower
overall transcription in oocytes and early zygote is consistent with (i) transcriptional
silencing and (ii) stochastic degradation of maternal RNA that has been observed
from oocytes to a four-cell stage in humans (Braude et al. 1988; Tadros and Lipshitz
2009). Transcriptional silencing is likely due to chromatin condensation state that
prevents transcriptional machinery from reaching gene promoters (Braude et al.
1988; Debey et al. 1993; De La Fuente 2006).

For the later-stage developmental cells, the model suggests that on top of high
transcriptional process (φ ∼ 200–500), the cells possess quantal (i.e., binary)
activation of most transcription factors (model parameters kon and koff = 0 for
later stages) or are subject to more extrinsic variability such as phenotypic diversity
among individual cells. These factors increase the general expression scatter and
noise levels. However, investigating expression-independent random noise in our
single cell transcriptional model simulations suggests that the levels of extrinsic
and/or technical noise in our RNA-Seq data for all cells are relatively low. That
is, the relatively high levels of noise for later stages stem from quantal activation
rather than technical biases, or in certain cases, such as blastocyst cells, may result
from phenotypic variability, as blastocysts consist of different cellular subtypes.
Conversely, since phenotypic variability among more homogenous eight-cell stage
is similar to blastocyst, we believe that quantal promoter activation is crucial for the
increase of noise scatter along development stages. Notably, such quantal promoter
activation has been noted to occur for single cell organisms such as E. coli (Eldar
and Elowitz 2010) and has been shown to be important for the cell fate decision of
B. subtilis (Maamar et al. 2007).

5 Single Cells to Population Study Reveals Statistical Laws

From recent single cell studies, cell-to-cell transcriptome-scale molecular variability
is now established (Islam et al. 2011; Ramsköld et al. 2012; Sasagawa et al. 2013;
Shalek et al. 2013; Picelli et al. 2014; Marinov et al. 2014; Zheng et al. 2017). It
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is, therefore, intriguing how heterogeneous single cells are able to execute well-
defined and coordinated biological processes such as cellular growth or immune
response. To probe into the question, we first approached a theoretical situation and
next compared the analysis with actual experimental data.

We theoretically generated the expression values of 20,000 genes, over a realistic
expression range, using a Poisson process (Piras et al. 2012; Raj and Oudenaarden
2009) for two single cells and obtained a high Pearson R ∼ 0.98 (Fig. 5a). Next, to
include extrinsic noise or variability, we added random fluctuations from a gamma

Fig. 5 (a,b) Simulated expression values of two single cells ((a) stochastic fluctuations only
(intrinsic noise), (b) stochastic fluctuations and variable (extrinsic) noise with gamma distribution).
(c,d) Simulated expression values of two-cell populations (average of 30 single cells; (c) stochastic
noise only, (d) stochastic and variable noise). (e,f) Noise (η2) versus mean expression (μ) for 100
pairs of simulated samples (2 × 100 single cells, or 2 × 100 populations of 30 cells; (e) stochastic
noise only, (f) stochastic and variable noise)
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distribution (Taniguchi et al. 2010) to the single cell data, which reduced R ∼ 0.63
(Fig. 5b). To simulate population-level gene expressions, we repeated the data
generation for 100 single cell pairs and took their averages for the two conditions
(Fig. 5c, stochastic only, and Fig. 5d, stochastic and variability). The averaging of
the samples resulted in an increase in R values (>0.99) for both conditions.

Next, we computed noise, (η2) (Appendix F), against mean expression values
(μ) for single cell and averaged samples and observed noise is initially high at
low expressions and progressively reduced when expression levels increased (Fig.
5e,f). These theoretical data suggest that (i) noise (stochastic only or stochastic and
variability) for single cells are higher compared to population average, (ii) stochastic
noise becomes negligible at higher expression levels (especially obvious for single
cells, i.e., η2 ≈ 0 for μ > 104, Fig. 5e), and (iii) noise from variability reaches finite
asymptotic values for single cells (η2 ≈ 0.7 for μ > 104, Fig. 5f), whereas it is
negligible for population averages (η2 ≈ 0, for μ > 104, Fig. 5f). In general, these
data indicate that single cells possess more noise compared to cell population, and
this is especially obvious for the lowly expressed genes, whether the variability in
gene expressions is low or high.

To test our statistical predictions, we investigated RNA-Seq datasets of single
cells and cell populations in six cell types (Piras and Selvarajoo 2015) (prostate
cancer LNCaP, embryonic kidney HEK293T, lymphoblastoid GM12878 cell lines
in human, and embryonic stem (ES), primary endoderm (PE), bone marrow-
derived dendritic cells (BMDC) in mouse) with consistent experimental protocols
(Ramsköld et al. 2012; Sasagawa et al. 2013; Shalek et al. 2013; Picelli et al. 2014;
Marinov et al. 2014).

The pairwise gene expression scatter plots, similar to the development cell
analysis above, showed a general decrease in variability for the middle and low
expression genes as we move from single cells to increasing cell population size for
all cell types (Fig. 6a). Notably, the highly expressed genes did not vary pairwise
across all cell population sizes. Globally, the Pearson R increases gradually as the
population size is increased (Table 1). Spearman’s rank (ρ) correlation coefficients
also showed a comparable increase when the population size is increased (Table 2).
These data reveal the emergence of correlated structure of transcriptomes for all
investigated cell types when single cells form into populations.

As described in Section 4, transcriptome-wide expression distributions are
expected to follow power law. Here, it can be seen for all samples, above 1
expression unit (RPKM, FPKM, or TPM), power-law distributions with exponent,
k ∼ 1 (Fig. 6b). In other words, removing genes with expression units below 1
(which shows no power-law structure) most likely reduces overall transcriptome-
wide noise. Next, we computed transcriptome-wide average noise (Appendix F)
for all available samples and observed noise is initially high for single cells and
progressively reduced when population size is increased (Fig. 6c, crosses). Notably,
reduction of noise matched the predictions from the law of large numbers (LLN)
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Table 1 Pearson correlation
values of transcriptomes.
Values are obtained by
averaging the correlation
obtained for all combinations
or pairwise samples

Cell type Population size (p)
1 5 10 25–50 ≥100

LNCaP 0.701 0.964 0.958 0.986
HEK293T 0.791 0.994 0.989 0.988
GM12878 0.831 0.977 0.997 0.997
ES 0.944 0.997
PE 0.924 0.989
BMDC 0.583 0.998

Table 2 Spearman
correlation values of
transcriptomes

Cell type Population size (p)
1 5 10 25–50 ≥100

LNCaP 0.707 0.859 0.885 0.916
HEK293T 0.824 0.954 0.960 0.962
GM12878 0.590 0.824 0.873 0.882
ES 0.738 0.952
PE 0.780 0.951
BMDC 0.599 0.951

(Fig. 6c, lines), indicating that the reduction of transcriptome-wide noise is actually
due to the averaging of expression values of each gene in the single cells forming
populations.

To further understand the origins of noise reduction when cell populations are
formed, we compared the average distributions of gene expressions obtained in
single cells and populations at different expression ranges, i.e., for genes whose
average expression values, μ, are order of 1 unit (low expression), 20 units (middle-
low), 100 units (middle-high), and 500 units (high).

�

Fig. 6 (a) Gene expression values between two representative samples in single cells and the
largest available populations. n, number of genes; m, number of available samples. Dotted
squares: low expression values x < 100. (b) Gene expression values versus fraction of genes
in a representative sample in single cells and largest available populations. Solid black lines:
fitted theoretical power law, P(x) = x−k(k−1)/xmin1–k, where k is the exponent and xmin (=1)
is the threshold below which power law fails. Thick red lines: fitted power law of the largest
available cell population, repeated in single cells plots by a red dotted line. (c) Transcriptome-
wide average (total) noise (η2

tot) versus population size (p) after removing genes with median
expression values lower than 1 unit. Crosses, experimental values; lines, values expected from the
law of large numbers; n, number of genes. (d) Average distributions (normalized kernel density)
of transcriptomes in single cells and populations, for four representative groups of 100 genes with
mean expression values ranging from μ ∼ 1 to μ ∼ 500. (e) Shapiro–Wilk test (W) for normality of
gene expression distributions. Average W is reported for eight representative groups of 100 genes
with mean expression values ranging from μ ∼ 1 to μ ∼ 500 in single cells and populations. W ∼ 1
indicates normally (Gaussian) distributed values. As the test requires at least three data samples
to be performed (m ≥ 3), we could only compare single cell versus cell population statistic for
HEK293T and BMDC
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For single cells, we observed three major patterns (Fig. 6d): (i) exponential-like
distributions for low expression genes with many off-cells (where genes are not
expressed) and few on-cells (where genes are expressed), (ii) bimodal distributions
for middle-low and middle-high expression genes with both off- and on-cells (note
that LNCaP and HEK293T displayed bimodality at lower range of expressions), and
(iii) gamma/Gaussian-like distributions for high expression genes with a majority
of on-cells (note that gamma distributions approximate Gaussians when the mean
increases (Peizer and Pratt 1963)). These observations are in consistency with
previous studies, which showed that individual genes transcript levels followed
gamma distributions (Bengtsson et al. 2005; Taniguchi et al. 2010; Wills et al. 2013),
or bimodal distributions (Shalek et al. 2013) in single cells.

In contrast to single cells, a unique unimodal and Gaussian-like distribution
pattern was observed for all cell populations at all ranges of expressions (Fig.
6d). This behavior reflects the central limit theorem (CLT), which states that the
distribution of sample mean converges to a Gaussian distribution when sample
size increases (Grinstead and Snell 2006). To assess the normality (Gaussian) of
expression distributions, we used the Shapiro–Wilk test (Royston 1983), which
provides a statistic, W, that equals to 1 when the data is normally distributed.

We performed the analysis for HEK293T and BMDC cells where at least three
data samples were available and observed that W increased close to 1.0 for single
cells with mean expressions above 5 for HEK293T and above 100 for BMDC.
However, for cell populations with p ≥ 10 cells, both cell types displayed W
close to 1.0 across all expression ranges (Fig. 6e). That is, high expression genes
are quasi-normally distributed in both single cells and populations, while genes
with exponential and bimodal expression distributions also attained quasi-normal
distributions when their population size increased. In summary, distributions of
gene expressions among samples approximate Gaussian at transcriptome-wide scale
when cell population size increases, following the statistical law of CLT.

To sum up, it is shown, for each investigated cell type, that the reduction of
expression variability from single cells to populations follows both statistical laws
of LLN and CLT. The result suggests that gene expression values observed in cell
populations are the average of the expression values of individual cells that form
the populations. Explicitly, the deterministic population average transcriptome-wide
structure of mammalian cells gradually emerges from single cell noisy expressions.
Thus, the study of individual cells may not necessarily be a direct representation
of population behavior where variability, especially, is concerned. On another
perspective, this result tells us of the presence of “phenotypic attractors” imposing
top-down rules to single cell expression allowing for an emergent global phenotype
behavior. The presence of microscopic (single cell-level) noise is instrumental to
cope with environment variability as well as for the onset of state transitions (e.g.,
epithelial–mesenchymal transition (EMT), linked to carcinogenesis (Lamouille et
al. 2014)). Again, these state transitions can be followed in terms of Pearson
correlation dynamics at both single cell and tissue levels (Mojtahedi et al. 2016).
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6 Final Remarks

In a fundamental paper that appeared in 1948 entitled “Science and Complexity,”
Warren Weaver (1948), one of the fathers of modern information science, working
together with Claude Shannon, proposed a tripartition of science styles. Scientific
themes can be subdivided into (1) problems of simplicity, (2) problems of disorga-
nized complexity, and (3) problems of organized complexity.

The first class (simplicity) collected all those problems faced in terms of
differential equations and thus well suited for deriving “general laws of nature.”
These “simple problems” were the ones solved by most “sophisticated” mathematics
because they were amenable to a high degree of abstraction (e.g., a planet could be
considered an abstract dimensionless “material point”).

Problems of disorganized complexity (class 2) allow for superior precision (and,
most importantly, for a higher degree of generalization) than class 1 problems.
These problems imply a somewhat opposite style of reasoning with respect to
the “problems of simplicity.” In this case, the efficiency does not stem from
the possibility to get an efficient abstract description of the involved players but
from totally discarding such “atomic” knowledge in favor of very coarse grain
macroscopic descriptors corresponding to gross averages on a transfinite number
of atomic elements. This is the case of thermodynamic parameters (e.g., pressure,
volume, temperature, etc.).

The two abovementioned approaches have drastic limitations of their applicabil-
ity range. Class 1 needs the presence of very few involved players interacting in
a stable way with a practically null effect of boundary conditions, whereas class 2
needs very large numbers of particles with only negligible interactions among them.

Problems of organized complexity (Weaver’s class 3) arise in all those situations
in which many (even if not so many as in class 2) are involved with non-negligible
interactions. This is the middle kingdom of complexity, where biological systems
live. The concept of network (or graph) is the archetypal form of organized
complexity: a set of nodes (e.g., genes) that are each other connected by mutual
correlations (edges). The wiring architecture of these graphs can vary in both
space and time; this is why focusing on quantitative statistical descriptors from
information theory concepts (like the one we referred in this chapter) is particularly
suited to get rid of biological regulation.

Appendix A

The Pearson correlation coefficient R(X,Y), or simply R for short, between two
transcriptome datasets, X and Y, containing n gene expression values, is obtained
by (for large n), R (X, Y ) =∑n

i=1 (xi − μX) (yi − μY ) /σXσY , where xi and yi are
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the expression value of the ith gene in the vectors X and Y, respectively; μX and μY ,
the average expression values of each transcriptome dataset; and σX and σ Y , the
corresponding standard deviations. Pearson correlation measures linear monotonic
relationship between two vectors, where R = 1 if the two vectors are identical and
R = 0 if there is no linear or monotonic relationships between the vectors.

Appendix B

Spearman rank correlation, which measures nonlinear monotonic response, is
defined by ρ (X, Y ) = 1 − 6

∑n
i=1

(
rxi − ryi

)2
/n
(
n2 − 1

)
, where rx,i and ry,i

are the ranks of the expression value of the ith gene xi and yi, in vectors X
and Y, respectively. In the context of cellular temporal responses, the decrease in
correlation, when comparing two expression vectors (transcriptomes), is a measure
of difference between the two vectors. Values close to 1 indicate identical vectors,
negative values show anticorrelated vectors, and null values denote absence of
nonlinear monotonic relationship between variables (Tsuchiya et al. 2009a, 2009b;
Felli et al. 2010; Giuliani et al. 2014).

Appendix C

Hierarchical clustering builds a hierarchy of clusters using two methods: agglomer-
ative and divisive algorithms. We used the former (Ward’s) where each observation
starts in its own cluster, and pairs of clusters are merged moving up the hierarchy.
The Ward’s method (Ward 1963) starts with n clusters of size 1 and continues until
all the observations are included into one cluster. It begins with the “leaves,” looks
for groups of leaves to form “branches,” and works its way to reach the “trunk.”

Here, 5704 genes in Th0 and Th17 differentiation at time t = 0, 1, 3, 6, 16,
and 48 h (with at least twofold difference between minimum and maximum values
and ten expression units) were used to form clusters using the normalized gene
expression standard scores, Zi,t = (

xi,t − xi

)
/σxi , where xi,t is the raw expression

value of the ith gene at time t in Th0 and Th17, xi is the mean value in all samples,
and σxi is the standard deviation.

In the first step, n−1 clusters are formed, one of size two and the remaining of
size 1. The pair of the ith gene in Th0 and Th17 that yield the smallest Zi,t forms the
first cluster and iterated until the algorithm stops when all sample units are combined
into a single large cluster of size n.
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Appendix D

Distance correlation (Szekely et al. 2007) measures the statistical depen-
dence between variables X and Y, which is dCor (X, Y ) = dCov (X, Y ) /√

dV ar(X)dV ar(Y ), where distance covariance of X and Y is divided by the
product of their distance standard deviations. Note that dCor(X,Y) = 0 if and only
if the two vectors are statistically independent.

Appendix E

Shannon entropy (Shannon 1948) measures the disorder of a high-dimensional
system, where higher values indicate increasing disorder. Entropy of each single
cell transcriptome, X, is defined as, H(X) = −∑n

i=1p (xi) log2p (xi), where
p(xi) represents the probability of gene expression value x = xi. Entropy values
were obtained through binning approach, and the number of bins, b = 26,
was determined from the data using Doane’s rule (Doane 1976), such as
b(X) = 1 + log2n + log2(1 + |gX|/σ g), where gX is the skewness of the expression
distribution of each sample and σg = √

6 (n − 2) / (n + 1) (n + 3).

Appendix F

The most widely adopted methodology to compute gene expression noise is the
squared coefficient of variation, η2, i.e., the variance in expressions among the
total number of cells (σ 2) divided by the squared mean expression (μ2) (Paulsson
2004; Pedraza and Paulsson 2008). This noise evaluation provides a dimensionless
and normalized measurement of the variation of a given variable among multiple
observations.

Transcriptome-wide average noise, a.k.a. total noise, for each cell type, is
defined as η2

tot = 1
n

∑n
i=1η

2
i , where n is the number of genes and η2

i is the
pairwise noise of the ith gene (variability between any two cells), defined as
η2

i = 2
m(m−1)

∑m−1
j=1

∑m
k=j+1η

2
ijk , where m is the number of cells and η2

ijk is the
expression noise of the ith gene, defined by the variance divided by the squared
mean expression (Rosner 2011) in the pair of cells (j,k), such as η2

ijk = σ 2
ijk/μ

2
ijk ,

where μijk = (xij + xik)/2 is the average value of the ith gene in the pair of single

cells (j,k) and σ 2
ijk = (xij − xik

)2
/2 is the corresponding variance.
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Abstract Genome-scale metabolic reconstructions have found widespread use in
scientific research as structured representations of knowledge about an organism’s
metabolism and as starting points for metabolic simulations. With few simplify-
ing assumptions, genome-scale models of metabolism can be used to estimate
intracellular reaction rates in any organism for which a well-curated metabolic
reconstruction is available. However, with the rapid increase in the availability
of genome-scale data, there is ample opportunity to refine the predictions made
by metabolic models by integrating experimental data. In this chapter, we review
different methods for combining genome-scale metabolic models with genome-
scale experimental data, such as transcriptomics, proteomics, and metabolomics.
Integrating experimental data into the models generally results in more precise and
accurate simulations of cellular metabolism.
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1 Reconstruction and Analysis of Metabolic Networks

It is essential to study metabolism in order to describe and understand the function-
ing of living cells. The chemical conversion of nutrients into energy, biomass and
secondary products is one of the main components of the cellular phenotype, and
a defining characteristic of life. Since the metabolic capabilities of an organism are
ultimately determined by its genotype, advances in genome sequencing technologies
during the last two decades have had a substantial impact on our knowledge about
metabolism. With a fully annotated whole genome sequence of an organism, it is
feasible to compile a database of all the biochemical reactions that can be catalyzed
inside the cell. Besides a list of reactions and their stoichiometries, such a database,
called a genome-scale metabolic reconstruction, often includes information that
links each reaction to the genes encoding the enzymes that catalyze it (Price et al.
2004). The earliest published genome-scale reconstructions were for organisms with
small genomes such as Haemophilus influenzae (Schilling and Palsson 2000) and
Escherichia coli (Edwards and Palsson 2000), but reconstructions for more complex
organisms including Saccharomyces cerevisiae (Förster et al. 2003), Arabidopsis
thaliana (de Oliveira Dal’Molin et al. 2010), and Homo sapiens (Duarte et al. 2007)
have followed. Revised versions of genome-scale metabolic reconstructions are
often published when new genes are discovered or annotated functions of known
genes are updated.

A genome-scale metabolic reconstruction allows systematic analysis of the
metabolic network of an organism, and can even form a starting point for whole-cell
simulations (Orth et al. 2010; Karr et al. 2012). In order to perform such analyses,
the genome-scale reconstruction must be formulated as a mathematical model, e.g.,
in the form of a system of differential equations,

dx

dt
= S · v (x, k) (1)

Here S denotes the stoichiometric matrix, derived from the genome-scale recon-
struction with element sij denoting the stoichiometric coefficient of metabolite i in
reaction j, and x is a vector of concentrations of all metabolites in the cell. Reaction
rates, v, are a function of current metabolite concentrations and kinetic parameters,
k. Given initial metabolite concentrations, the system of differential equations is
readily solved numerically. While the formulation is conceptually simple, its use on
the genome-scale is impeded by limited knowledge of the many kinetic parameters
(McCloskey et al. 2013).

To avoid the issue of unknown kinetic parameters, constraint-based metabolic
modeling methods are often used instead. Constraint-based modeling imposes
constraints on the system and finds metabolic reaction rates that are consistent
with these constraints. The most central constraint is the assumption of steady-state,
where the concentrations of internal metabolites are assumed to be constant. This
corresponds to setting the left-hand side of Eq. (1) to zero and results in a system of
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linear equations,

S · v = 0 (2)

that can be solved for the reaction rates or metabolic fluxes, v (Orth et al. 2010).
The kinetic parameters are not accounted for explicitly in constraint-based models,
which only require the stoichiometric matrix to be known. For most genome-
scale reconstructions, the system of equations is underdetermined, meaning that an
infinite number of flux solutions exist. One way to address this issue is to identify a
solution that optimizes a specific objective. This is based on an assumption that
the cell has evolved to maximize some biological objective, e.g., production of
ATP or production of biomass. Production of biomass is modeled through a bulk-
reaction that consumes biomass constituents such as nucleotides and amino acids
in empirically determined ratios (Orth et al. 2010). This method is known as flux
balance analysis (FBA) and has become the foundation of most work in constraint-
based metabolic modeling. Performing flux balance analysis requires the solution
of a linear optimization problem. The result is a set of reaction rates that satisfy the
constraints of the system and is consistent with the defined biological objective.

Despite the simple formulation and strong assumptions, FBA has proven useful
in a number of metabolic modeling applications, to predict the rates of metabolic
reactions, typically called the flux distribution (McCloskey et al. 2013). It can be
used for instance to predict essential metabolic genes, i.e., genes that are required
for the synthesis of one or more biomass constituents. This is done by simply
removing corresponding reactions from the model and performing FBA. If the
maximal biomass flux is zero in the knockout model, the gene is expected to be
essential. Comparisons with experimental data from single-knockout studies have
shown good correspondence with the results of FBA-based essentiality predictions
in E. coli and other bacteria such as Pseudomonas aeruginosa (Edwards and Palsson
2000; Oberhardt et al. 2008). In other organisms, e.g., S. cerevisiae, predictions of
essentiality are less accurate, and for multiple knockouts in particular there is only a
very low correlation between experimental data and FBA predictions (Heavner and
Price 2015).

The assumption of maximization of biomass production as a metabolic objective
is often reasonable for microorganisms during exponential growth, but it will
clearly not hold for most mammalian cells or other multicellular organisms whose
evolutionary pressure has selected for far more complex traits than simply growth at
the cellular level. As replacement for FBA, Markov chain Monte Carlo (MCMC)
methods can be used to uniformly sample the feasible steady-state flux space
described by Eq. (2). MCMC methods provide an estimate of the joint probability
distribution of fluxes and do not depend on a prespecified biological objective.
The applications of random sampling methods include the analysis of red blood
cells under storage conditions (Bordbar et al. 2016), aspirin resistance in platelets
(Thomas et al. 2015), transcriptional regulation in human adipocytes (Mardinoglu et
al. 2014) and in bacterial communities in the human gut (Shoaie et al. 2013), as well
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as the metabolic rewiring that takes place in epithelial to mesenchymal transition
during the development of breast cancer (Halldorsson et al. 2017).

2 Constraining Metabolic Models with Transcriptomics
and Proteomics Data

Although mass balance is an essential principle, metabolism is constrained by
other factors and physical principles as well. FBA assumes that the cell can use
all metabolic reactions at a given time in the combination that gives the highest
biomass production. However, this is contradicted by the fact that only a proportion
of an organism’s genes will be transcriptionally active at the same time. Thus
further constraints can be imposed on the model by leveraging information about
the transcriptional state of the cell. This can be used to create context-specific
models from generic models, such as the generic human reconstruction Recon1
(Duarte et al. 2007), as well as to improve the accuracy of flux predictions. The
simplest realization of this idea utilizes the fact that an enzyme cannot catalyze
any reaction flux if its encoding gene is not expressed. Reactions catalyzed by
genes with transcript levels below a defined threshold can thus be forced to be
inactive by removing them from the model. Flux distributions obtained with such
a constrained model were found to be more strongly correlated to experimentally
measured fluxes in S. cerevisiae compared to an unconstrained model (Åkesson et al.
2004). More sophisticated algorithms minimize the difference between the predicted
flux distribution and the gene expression data. The gene inactivity moderated
by metabolism and expression (GIMME) algorithm (Becker and Palsson 2008)
finds flux values which minimize the utilization of reactions with low expression
levels, in order to meet prespecified metabolic requirements such as growth. The
iMAT method developed by Shlomi and coworkers (2008) alleviates the need for
a prespecified cellular objective and is therefore suitable for analyzing mammalian
cells and tissues. The method partitions gene expression values into three groups,
corresponding to high, moderate and low expression and then maximizes the
number of reactions with flux levels in agreement with the expression states. This
enabled identification of tissue-specific metabolic activities in different human
tissues, and the construction of tissue-specific models of human metabolism. An
extension of iMAT was used to construct a model of cancer metabolism from
Recon1 and expression data from cancer cell lines in the NCI-60 collection. The
cancer model was then used to identify several cytostatic drug targets, and generate
a list of potential selective anticancer treatments (Folger et al. 2011).

Since Åkesson and coworkers first used gene-expression data to constrain
metabolic models, a large number of methods that integrate expression data and
flux predictions have been published. An evaluation of many of these methods, by
their ability to predict flux distributions in E. coli and S. cerevisiae, showed that
none of them performed significantly better than parsimonious FBA, an extension
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of FBA that finds the flux distribution with the smallest sum of fluxes that can
support the optimal objective value (Machado and Herrgård 2014). This suggests
that gene transcription levels do not correlate strongly with reaction fluxes, at least
in microbial cells, which is not surprising considering that translational efficiency,
posttranslational modifications, and allosteric regulation all have an effect on fluxes
as well.

A step closer to the actual reactions than mRNA abundance is protein concen-
tration. A certain correlation between mRNA and protein concentration is to be
expected (Gry et al. 2009), and several methods for integrating gene expression
data into metabolic models can indeed use protein abundance data with the same
algorithms, simply by replacing gene expression thresholds with protein abundance
thresholds (Becker and Palsson 2008; Machado and Herrgård 2014). However, there
have also been attempts to more explicitly incorporate proteomics data into the
modeling frameworks. A central component of enzyme kinetics is the concept of the
catalytic capacity of an enzyme. Each enzyme molecule can only perform a certain
number of conversions per second; an increased flux will therefore require a larger
number of enzymes at some point. The maximum possible flux, represented by
the Vmax parameter, can be calculated from the enzyme concentration and catalytic
turnover number, kcat

Vmax = kcat · [E] (3)

If the catalytic turnover parameters are known, this relationship can be used to
constrain fluxes using protein concentration data. In the GECKO modeling frame-
work (Sánchez et al. 2017), a constraint is added for each enzyme, representing
the enzyme’s degree of utilization, where the upper bound is set to the measured
enzyme concentration. The utilization of an enzyme is obtained by summing v/kcat
for all reactions catalyzed by that enzyme. Using GECKO with a proteomics dataset
for S. cerevisiae, Sanchez and coworkers showed that the space of possible fluxes
was reduced considerably by excluding all flux distributions that were not consistent
with the observed enzyme levels. On the other hand, the fluxes predicted for S.
cerevisiae grown in glucose limited minimal medium did not have a significantly
smaller error compared to experimentally measured fluxes than those predicted
with FBA. It is possible however, that the advantage of using proteomics data
will be larger in cases where the assumption of maximal growth is not valid, e.g.,
under stress conditions or in genetically perturbed strains. GECKO can also be
used in the absence of proteomics data by imposing a single overall constraint
on the total enzyme mass. This resulted in more accurate predictions of maximal
growth rates on a wide range of different carbon sources, for which FBA tends to
overestimate growth rate. Another interesting growth effect that was captured by
including an overall protein constraint is the shift from respiration to fermentation
at high growth rates. This overflow metabolism, also known as the Crabtree effect
in yeast (Crabtree 1929) and the Warburg effect in cancer cells (Warburg et al.
1927), cannot be captured by FBA, where simply the flux distribution with the
highest biomass yield is found, independently of growth rate. The overflow effect
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is most likely caused by respiratory enzymes having a higher proteome cost than
fermentative enzymes (Basan et al. 2015), which means that at high growth rates
protein allocation becomes limiting and fermentation becomes more efficient even
though it has a lower energy/carbon yield. Overflow metabolism has been modeled,
e.g., in E. coli (Basan et al. 2015), S. cerevisiae (Sánchez et al. 2017), and cancer
cells (Shlomi et al. 2011), by different models with the common trait of somehow
constraining the proteome.

The causes of the Warburg effect in cancer cells were studied using Recon1 by
placing a constraint on total enzyme concentration to account for enzyme solvent
capacity (Shlomi et al. 2011). To compute the contribution of each enzyme to the
total concentration, an estimate of the enzyme turnover number was required. Esti-
mates for 15% of the reactions could be obtained from biochemical databases, while
the rest were assigned a fixed value of 25 s−1. Using FBA and random sampling, the
Warburg effect was shown to be a consequence of metabolic adaptations to increase
biomass productivity. Further analysis revealed the preference of cancer cells to take
up glutamine instead of other amino acids.

Resource allocation between cellular processes in Bacillus subtilis was recently
analyzed using a method that incorporates genome-wide protein quantification
data and extracellular nutrient concentrations with a metabolic reconstruction
(Goelzer et al. 2015). The method, resource balance analysis (RBA), links flux to
enzyme abundance, assuming a relationship similar to Eq. (3), while incorporating
information on protein activity and protein localization. The use of RBA is fairly
involved compared to the methods described earlier and requires specification of
a large number of parameters. The parameters were partly obtained from Uniprot
and partly inferred from data. RBA accurately predicted the allocation of resources
in B. subtilis over a wide range of conditions. In vivo knockouts of enzymes that
were expressed but predicted to have zero flux in the model resulted in significantly
increased growth (Goelzer et al. 2015). This suggests that the method may be useful
for constructing minimal cell factories, e.g., for protein production.

3 Models of Metabolism and Macromolecular Expression

The previously described methods for combining omics data and metabolic models
are mostly based on heuristically formulated constraints and/or objectives. When the
measured quantities—such as mRNA and protein abundances—are not explicitly
accounted for in the modeling framework, they cannot be seamlessly integrated into
it. To address this problem, an extended modeling framework that explicitly models
the expression of macromolecules, such as RNA and protein, has been developed.
Construction of such models of metabolism and expression (ME-models) began with
the reconstruction of the macromolecular expression network of E. coli, analogously
to the metabolic network (Thiele et al. 2009). Transcription of a given gene to
produce mRNA is modeled as a reaction consuming nucleotides in proportions
consistent with the specific sequence, and similarly translation is modeled as a
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reaction consuming charged tRNAs while producing protein and uncharged tRNAs.
In order to model how metabolic catalysis is dependent on translation of a specific
protein and how translation of a protein is dependent on transcription of its gene to
mRNA, these different reactions must be coupled (Thiele et al. 2009; Lerman et al.
2012). A certain quantity of an enzyme can only catalyze a limited reaction flux and
Eq. (3) can be rearranged to enable calculation of the minimum amount of enzyme
required to catalyze a given flux

[E] ≥ v

kcat
(4)

Equation (4) represents a constraint that can be used to couple metabolic
reactions to the enzymes that catalyze them. Identical constraints can be formulated
for ribosomes and mRNA in translation reactions and for RNA-polymerase in
transcription reactions. A constraint-based modeling framework, however, does
not model concentrations of metabolites (or enzymes) and is thus not directly
compatible with such constraints. To circumvent this it is necessary to account for
growth-related dilution. In a growing cell, metabolite pools are continuously diluted,
because of the expanding intracellular volume, by a rate equal to the product of the
growth rate and metabolite concentration. This means that in steady-state, catalysis
of a reaction requires that the catalyzing enzyme be produced at a rate proportional
to the growth rate. Enzymatic conversion of compound A into compound B by
enzyme E thus becomes (Lloyd et al. 2017):

A + μ

kcat
E → B (5)

In FBA the requirement of enzyme production is modeled through the compo-
sition of the biomass reaction, but since this reaction is determined a priori, FBA
cannot model how biomass composition changes under different growth rates and
conditions. With ME-models the empirical biomass reaction is replaced by explic-
itly modeling the relationship between metabolism and macromolecular expression.
ME-models can thus directly predict the expression levels of different proteins,
which can be compared with omics datasets. A ME-model of the thermophilic
bacterium Thermotoga maritima (Lerman et al. 2012) found moderate correlations
between predicted and experimentally measured mRNA profiles (r = 0.54), protein
expression profiles (r = 0.57), as well as proteome amino acid composition
(r = 0.79). A ME-model of E. coli showed improved prediction of growth rates
in different nutrient conditions compared to FBA (Thiele et al. 2012), and could
accurately predict several internal fluxes (O’Brien et al. 2013). Additionally, since
ME-models explicitly include the cost of producing the enzymes required for
various pathways, they implicitly limit the total proteome size and thus also capture
metabolic overflow effects, such as the acetate overflow metabolism in E. coli
(O’Brien et al. 2013).
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Whereas traditional constraint-based metabolic models include, and can thus
directly predict, growth rate, uptake and secretion rates, and internal fluxes, ME-
models can additionally predict expression profiles and proteome composition,
and thus they can also be directly constrained by expression and proteomics data.
Because of this, ME-models represent an intuitive and theoretically justified method
of integrating transcriptomics and proteomics data into metabolic models. They
have not yet found broad usage in the metabolic modeling community, presumably
because of the time it takes to run simulations (several orders of magnitude higher
than with FBA), and the lack of related model and software infrastructure, but these
issues are continuously being addressed (Yang et al. 2016; Lloyd et al. 2017).

4 Augmenting Models with Metabolomics Data

In a discussion of data integration in metabolic models, it is impossible not
to mention metabolomics. Different analytical methods, e.g., enzymatic assays,
chromatography and mass spectrometry, can be used to take snapshots of the cellular
metabolism with varying resolution, coverage, precision and throughput. However,
they all provide useful information about the concentrations of metabolite pools
in the cell. One of the earliest uses of metabolomics data to improve metabolic
modeling was metabolic flux analysis (MFA), which utilizes time-course metabolite
concentration data from cultures fed with isotopically labeled substrates to infer flux
values in the metabolic network (Stephanopoulos 1999; Sauer 2006). This is done
by monitoring how the isotopes, e.g., 13C or 15N, spread to downstream metabolite
pools over time. The advantage of this method is that the resulting fluxes can be
used directly to constrain metabolic models or to compare the validity of different
simulation methods. However, MFA is labor- and cost-intensive and works best on
a smaller subset of the entire metabolic network, typically just the central carbon
metabolism (Antoniewicz 2015; Gopalakrishnan and Maranas 2015).

Changes in extracellular metabolite concentrations over time can be used to
estimate uptake and secretion rates and constrain the flux space. However, since
constraint-based modeling frameworks model fluxes under an assumption of steady-
state, internal metabolite concentration data at a single time point without isotopic
labeling cannot be directly utilized. Despite this, metabolomics data can still be
used to either constrain the models or to provide new insights in combination with
the simulation results. In order to model cells that are not in steady-state, such as
human blood cells undergoing physiological changes during storage, Bordbar and
coworkers devised a method called unsteady-state FBA (Bordbar et al. 2017). Using
time-course metabolomics they determined the rate of accumulation or depletion for
internal metabolites, which was then modeled by adding source and sink reactions
to the metabolic model. These reactions were then constrained to have fluxes
corresponding to the experimentally determined rates of concentration changes.
Subsequent MFA revealed that the fluxes predicted with this method were more
accurate than those obtained by regular FBA.
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Aside from enforcing steady-state, a commonly used constraint in constraint-
based models is to force certain fluxes to only go in one direction. This is
straightforward for some reactions whose thermodynamics make it practically
irreversible under biological conditions. Other reactions are closer to equilibrium
and can go in both directions depending on specific conditions. The spontaneous
direction of a reaction can be calculated by the following formula:

�rG = �rG
◦ + RT log(Q) (6)

If the left-hand side (the reaction Gibbs free energy) is negative, the reaction will
proceed spontaneously in the forward direction, while it will proceed spontaneously
in the reverse direction if the reaction Gibbs free energy is positive. �rG

◦
is

the reaction Gibbs free energy under standard conditions, RT is the gas constant
times the absolute temperature and Q is the reaction quotient, containing the
concentrations of the reaction products and substrates. The standard Gibbs free
energy must in principle be determined experimentally, but in most cases it can be
calculated from the structure of the participating metabolites and already known
reaction Gibbs free energies for other reactions (Noor et al. 2013). This means
that a dataset of metabolite concentrations can be used to constrain reactions to a
specific direction depending on the specific metabolic conditions, reducing the space
of feasible fluxes significantly (Soh and Hatzimanikatis 2014). In many simulated
growth conditions, it can be sufficient simply to constrain reaction directionalities
according to the most common mode of operation without regard to actual metabo-
lite concentrations. Some reactions however, occur in the unconventional direction
under extreme conditions, such as very high CO2 concentrations. In such cases
using thermodynamics and metabolite data to inform reaction directionalities will be
particularly beneficial and can lead to more accurate simulations (Soh et al. 2012).

Constraint-based simulations can also be combined with metabolomics data in
another way. In addition to calculating a flux distribution, simulating a constraint-
based model also provides the so-called shadow prices. Each shadow price is linked
to a metabolite and reflects how much the objective function, e.g., growth, could be
improved if the model were allowed to get some of that metabolite “for free.” In
other words, a shadow price is a measure of how limiting a given metabolite’s mass
balance is for the objective function. Depending on the algorithm used to solve the
FBA problem, shadow prices are either a byproduct of the solution process or can
be obtained with modest computational effort.

Zampieri and coworkers investigated the evolution of antibiotic resistance in E.
coli using adaptive laboratory evolution (Zampieri et al. 2017). By maximizing
and minimizing flux through each reaction in the model and calculating the
shadow prices, the authors could identify reactions, which, when maximized or
minimized, resulted in shadow prices that were consistent with the observed patterns
of metabolite concentration changes. Those reactions were hypothesized as being
targets of evolution, whose flux should be increased in order to increase antibiotic
resistance.
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Besides constraint-based modeling, the most common way to simulate cellular
metabolism is with kinetic models. This involves the solution of the system of
differential equations shown in Eq. (1) from given initial metabolite concentra-
tions. As previously described, one of the challenges with this approach is the
requirement of knowing the values of all the kinetic parameters of the system. For
small biochemical systems, the kinetic parameters can sometimes be determined
individually through in vitro experiments, but for genome-scale models this is not
feasible. Additionally there is no guarantee that the in vitro kinetic parameters are
representative of how an enzyme functions in vivo (Teusink et al. 2000). Instead of
the bottom-up approach of experimentally determining each parameter, a top-down
approach may be used, where the model parameters might initially be estimated
from prior information, such as in vitro data, but are predominantly selected by
fitting simulation results to genome-scale experimental data. This has long been
done for small-scale networks, using metabolomics and MFA data (Jamshidi and
Palsson 2008; Srinivasan et al. 2015); however, with continual increases in dataset
sizes and computing power, it has also become feasible to do this for genome-
scale networks. Recently, a genome-scale kinetic model of E. coli was published
along with estimated values for all kinetic parameters (Khodayari and Maranas
2016). The model parameters were fitted using experimental flux data and model
predictions were validated against metabolomics data. In addition, the model could
quantitatively predict product yields of 24 different compounds in 320 mutant
strains, which was considerably better than the constraint-based simulation methods
it was tested against. In another study, kinetic models of human red blood cells
were used to investigate individual variations in susceptibility to side effects of
the hepatitis B drug Ribavirin (Bordbar et al. 2015). By measuring intracellular
metabolite levels in red blood cells of 24 patients, they could determine individual
kinetic parameter values for each of the patients, and show that those parameters
were predictive of whether the patient was sensitive to side effects. Furthermore,
the identified relationships between kinetic parameters and sensitivity to drug side-
effect were consistent with known mechanisms of Ribavirin side effects. These
results show that kinetic modeling frameworks have the potential to significantly
outperform constraint-based simulations, and that with modern omics technologies
and computer power, it is feasible to parametrize them sufficiently to predict
metabolic behavior (Saa and Nielsen 2017).

5 Combining Metabolic Models and Machine Learning
Methods

The term machine learning covers a broad range of methods where large datasets
are used to infer relationships between variables or to predict various outcomes
from given input data. Often this is done without much consideration of specific
mechanisms of the studied phenomena. Such data-driven methods can of course be
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applied to metabolic data, but with limited connection to biological mechanisms,
the results are often difficult to interpret. Instead, machine learning methods can
be combined with domain-specific biological knowledge, such as the information
encoded within a genome-scale reconstruction, to create hybrid methods that also
take advantage of the metabolic network structure.

Plaimas and coworkers predicted gene essentiality in E. coli using a hybrid
method (Plaimas et al. 2008). Instead of using FBA to predict essentiality as
described previously, they defined a set of features for each reaction, including
metrics of network topology, gene expression data and predicted FBA fluxes. These
features were fed into a support vector machine classifier together with labels from
experimental essentiality data (Baba et al. 2006). The predictive accuracy of gene
essentiality was 92%, compared to 85% for FBA. Furthermore, the genes where
essentiality was not correctly predicted were retested experimentally, and in several
cases the authors identified errors in the original experimental dataset. By removing
single features from the input data one at a time, the authors could also identify
which features were most important for accurately predicting essentiality. Prediction
with FBA suffers mainly from two problems, namely that the metabolic network
might be incomplete, and that the assumption of growth optimality does not always
hold (O’Brien et al. 2015). A hybrid method can instead learn from data, utilizing the
biological context, e.g., in the form of a metabolic network, only when it improves
prediction performance. A similar method was recently used to predict drug side
effects (Shaked et al. 2016). A list of drugs known to inactivate one or more
enzymatic reactions was used as training data, with features corresponding to the
minimum and maximum possible FBA flux for each reaction after deactivating the
drug’s target reaction(s) in the Recon1 model. Support vector machine classifiers
were then trained to predict which (if any) side effects the drug would have. Using
a feature selection method it was also possible to find the features that were most
strongly associated with a given side effect. Many of the results were found to be
consistent with the published literature of these drug side effects.

A third example of a combination of machine learning with metabolic network
data was used to predict novel drug–reaction interactions for cancer therapy (Li et
al. 2010). The method requires the construction of a reaction flux similarity matrix.
This matrix was obtained using the GIMME algorithm to predict reaction fluxes
from gene expression data in 59 cancer cell lines. Reactions with the same flux
profile across the cell lines were said to have a high similarity, while reactions with
different flux profiles had a low similarity. The reaction flux similarity matrix was
combined with knowledge of existing drug–reaction interactions, using a K-nearest
neighbors algorithm, to predict new interactions.

Where purely model-based algorithms may suffer from lack of biological
knowledge such as kinetic parameters, the use of machine learning methods in
biomedical research is often hampered by difficulties in interpreting the results. The
examples above show that the two methodologies can be combined to achieve results
that are informed by experimental data, while maintaining biologically relevant
relationships between variables. Such hybrid methods can be used to build accurate
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predictive models, while also providing new biological insights and will without
doubt find widespread use in the future.

6 Conclusions

Genome-scale models of metabolism have found applications ranging from indus-
trial biotechnology to human health. These models can now be readily built
for any organism to predict metabolic phenotypes such as the effect of a gene
knock-out on cell growth. Advanced formulations of genome-scale models allow
integrating diverse omics data types including transcriptomics, proteomics and
metabolomics data into the models. Advanced genome-scale models make more
accurate condition-dependent model predictions, and expand the range of predicted
intracellular variables from metabolic fluxes to concentrations of metabolites and
proteins. Genome-scale mechanistic models can also be combined with purely data-
driven machine learning methods to obtain hybrid mechanistic/statistical models
with the potential for improving predictive performance. With increasing amounts
of different omics data types becoming available for all organisms, the modeling
approaches described in this chapter can be further improved and extended to obtain
highly predictive models of cellular processes.
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Abstract Strong efforts are invested in the field of cancer and other multi-
factorial diseases to evaluate the applicability of gene expression patterns for
identification of novel disease-relevant checkpoints and nomination of promising
biomarkers for disease and/or targets. Deciphering the disease complexity demands
the implementation of a holistic approach, which covers the levels of the biological
hierarchy from molecules to functional gene network(s) and biological pathways
and further to disease (patho)mechanisms and clinical relevance. In this chapter
we describe the systems biology-based integrative algorithm, named by us as
MuSiCO/from Multigene Signature to Patient-Orientated Clinical Outcome, and
discuss its applicability for translational research. This innovative approach is based
on the implementation of consecutive analytical modules integrating advanced gene
expression profiling of clinical patient specimens, prognostic/predictive modeling,
digital pathology, and systems biology. It consolidates in-depth expertise from
diverse scientific and medical disciplines and hereby bridges systems biology and
systems medicine to maximize the benefit of the patient.

Keywords MuSiCO algorithm · Multigene signature · Gene expression
profiling · Statistical modeling for survival prediction and therapy response ·
AID/APOBEC gene family · Sphingolipid system · Systems biology · Next
generation digital pathology · Personalized medicine

List of Abbreviations

AICDA Activation-induced cytidine deaminase
CRCLM Colorectal cancer metastasis in the liver
EMT Epithelial to mesenchymal transition
MuSiCO from Multigene signature to patient-orientated clinical outcome
ROIs Regions of interest

1 Introduction

The implementation of innovative technological solutions and analytical tools for
dissecting the pathobiology of complex multifactorial diseases—among those are
chronic inflammation, immune disorders, and cancer—and then reconstituting the
system networks is a prerequisite for understanding the underlying checkpoints
and for developing of novel targeting and clinical decision-making strategies.
The complexity of underlying pathomechanisms demands the implementation
of integrative, systems biology-based approaches, which cover the levels of the
biological hierarchy from molecules to functional gene network(s) and biological
pathways and further to the pathobiology of diseases and clinical relevance. Herein
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we describe the innovative analysis algorithm named by us as MuSiCO/from
Multigene Signature to Patient-Orientated Clinical Outcome, which is based on
consecutive analytical modules integrating advanced gene expression profiling of
patient specimens, prognostic/predictive modeling, next-generation digital pathol-
ogy, and systems biology. The cornerstone and the starting point of the integrative
MuSiCO algorithm is the assembling and application of multigene signature(s) for
gene expression profiling of patient material that is well-characterized in terms
of clinicopathological parameters. The obtained patient-specific transcriptional
profiles are taken as the basis for understanding the relevance of gene perturbations
and gene-gene associations in complex, multifactorial disorders. To address the
clinical relevance of profiling-derived data sets, we developed a novel strategy
for patient stratification and risk assessment/survival prediction based on multi-
variable modeling. For evaluating the model performance in respect of predictive
accuracy and discriminative ability, we propose to use a parameter set enabling
the comparison of individual models within and across studies. As outcome, novel
survival models, implementing both the patient-specific, profiling-derived variables
as well as clinical risk factors, are developed including the nomination of top-ranked
candidate/target genes. Within the next module, we explore the advantage of the
innovative computerized microscopy-based technology, the TissueFAXS cytometry
platform, to assess the magnitude and localization of nominated top candidate
molecules in tissue sections in a patient-specific manner. The dissection of complex
diseased tissue to individual functional parts allows accounting for tissue anatomy.
As a final step, to analyze the data in the context of current knowledge and to
get an overview of the underlying pathomechanisms, we apply a systems biology
approach using the power of GENEVESTIGATOR, a web-based analysis platform
for manually curated transcriptomic data sets, and the Ingenuity Pathway Analysis
software, the web-based application for analysis and interpretation of complex
“omics” data. We extend the signature-derived knowledge by comparative/similarity
analysis of transcriptional profiles with public transcriptomic data sets and by
extracting top genes co-expressed with modeling-derived candidate molecules
across various physiological/pathophysiological and cell perturbation conditions.
Overall, consolidation of the individual modules of MuSiCO algorithm provides
a unique and advantageous, comprehensive overview, allowing the nomination of
novel biomarkers and therapeutic directions as well as patient stratification strategies
(Fig. 1). This concept bridges systems biology and systems medicine and is aiming
to maximize the benefit of the patient.

Of particular importance is the broad applicability of MuSiCO—it can be
applied for any biologically relevant gene signature and any disease or
perturbation condition.
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2 A Multigene Signature Approach to Assess Patient-Specific
Transcriptional Profiles

We and others propose that the multigene signature approach represents an advan-
tageous strategy for addressing the relevance of transcriptional profiles/gene alter-
ations under (patho)physiological circumstances (examples in Mechtcheriakova et
al. 2011, 2012, Meshcheryakova et al. 2016; Svoboda et al. 2016; Gillet et al. 2012).

A multigene signature is a biologically relevant, meaningful composition
of genes. The composition of the expert-designed multigene signature(s) is
knowledge- and biology-driven; it may be assembled around one gene of
interest designated as the “core” node gene, cover a particular interconnected
gene network, and/or being process- and pathway-focused.

The multigene signature can be applied for expression profiling of clinical
specimens to dissect patient-specific transcriptional profiles as well as for character-
ization of disease-relevant transcriptional programs using in vitro cell-based models.
Being performed via real-time PCR-based analysis, it has incontestable advantage
of high sensitivity and reproducibility and does not need further methodological
validation. It is the most suitable solution for genes showing low expression on the
mRNA level and thus being below the detection limit of microarray technology;
this also applies to multicomponential/multicellular complex tissue, where a gene
of interest might be specifically expressed in a particular cell subpopulation present
at low abundance. Additionally, it gives advantage for genes within a family
characterized by strong sequence similarity.

The multigene signature approach is a superior solution for understanding of
disease complexity, which has indisputable advantage over the concept of “one
gene – one outcome” that might lead to an oversimplification.

To give concrete examples, we next describe multigene signatures developed and
successfully applied by us both for profiling of patient material and for assessing
perturbations in cell-based models.

2.1 AID-Associated Multigene Signature

The signature was assembled around AICDA (encoding activation-induced cytidine
deaminase, AID) as a core gene. AID has the distinguishing ability to introduce
point mutations or other types of DNA damages. Under physiological circum-
stances, when expressed in B cells, AID functions as a “good”, health-protecting
factor, being the molecule responsible for the diversity of antibody repertoire
directed against infectious agents by targeting immunoglobulin genes and driving



356 A. Meshcheryakova et al.

somatic hypermutations and class switch recombination events (Muramatsu et al.
2000; Conticello 2012). However, under pathophysiological conditions such as
chronic inflammation, an aberrant AID expression might be triggered in non-B
cells including epithelial cells. In that case, AID may target cancer-related genes
genome-wide and thus act as an extremely “bad” factor (Okazaki et al. 2003). The
complexity is multiplied by the existence of ten other functionally related molecules,
which together compose the AID/APOBEC gene family. The self-designed AID-
associated multigene signature includes the entire AID/APOBEC family as well as
genes involved in their regulation, functional cofactors, and target genes.

A multigene signature can be easily adapted for a particular scientific and/or
medical question.

In the study where we assessed the role of AID and APOBECs in ovarian cancer
pathobiology, we upgraded the signature with (1) ESR1 and ESR2 (encoding the
estrogen receptors) based on two reasons, the hormone-dependent nature of ovarian
cancer and the contribution of estrogen to the transcriptional regulation of AID,
and (2) B-cell identity markers enabling the differentiation between the B-cell- and
non-B-cell-attributed events in the follow-up analyses (Svoboda et al. 2016).

When we analyzed the impact of AID in the etiology of nasal polyposis
(Mechtcheriakova et al. 2011)—a disease with inflammatory/allergic background—
the core signature was complemented with genes encoding classical immune cell
markers and thus allowing to detect various immune populations within the complex
tissue, IgG and IgE mature transcripts to investigate the local AID activity, and
genes encoding the low- and high-affinity IgE receptors, which mediate numerous
responses of the AID/IgE axis. Thus, in this particular case, we were able to assess
not only the expression of the molecule of interest but also prove its functional
activity.

2.2 Sphingolipid-/EMT-Associated Multigene Signature

The designed sphingolipid-/EMT-associated 41-gene/23-gene signature covers the
cellular sphingolipid system and the key players of the epithelial to mesenchymal
transition (EMT) program. This is an example of a gene network- and process-
derived multigene signature. It was applied to denote gene alterations in an in
vitro cell-based model of a cancer-related, pathological EMT (Meshcheryakova
et al. 2016). The signature includes genes encoding (1) the key players of the
sphingolipid machinery, the enzymes synthesizing/modifying/degrading various
sphingolipid mediators as well as the sphingolipid-specific receptors and trans-
porters, and (2) the key players of the EMT program including cell adhesion
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molecules, cytoskeleton components, different families of transcriptional regulators,
and pluripotency markers. This two-component signature allowed us to explore
the multidimensional contribution of the sphingolipid machinery to pathological
EMT in lung cancer and to nominate novel sphingolipid-related, disease-relevant
checkpoints (Meshcheryakova et al. 2016).

3 Patient-Specific Transcriptional Data Sets as Basis for
Prognostic/Predictive Models

3.1 Prerequisites

We assume the situation where a number of features (signature-derived gene
expression values) have been obtained by the profiling steps explained above. In
this subchapter we explain how to relate this gene set to survival outcomes in order
to assess its prognostic and/or predictive value.

The methods can be applied to any field of medicine where survival outcomes
and/or treatment responses are of interest.

We assume that a sample of patients, randomly selected from a well-defined
population, is available, from which gene expression values of the genes of
interest have been measured, and clinicopathological parameters, outcome values
(survival times), and treatment response parameters have been assessed. It should
be emphasized that gene expression values and clinicopathological parameters have
to be taken at baseline, i.e., at the time point at which predictions should be made
for a patient (e.g., at cancer diagnosis), and not later during follow-up, which
could incur immortal time bias (Gleiss et al. 2017). A particular proportion of
survival times in a cohort are usually censored, as a study can terminate before
all patients have died or some patients may have been lost to follow-up. We
assume that among n patients, m events (deaths) were observed during follow-up.
Cox regression is the method of choice to estimate statistical models that relate
explanatory variables to survival outcomes. These associations are expressed as
hazard ratios for the explanatory variables, expressing the ratio of mortality hazards
between two hypothetical patients differing in an explanatory variable by one unit
with all other explanatory variables being equal.
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3.2 Challenges and Solutions

3.2.1 Challenge 1: Many Variables, Few Events

It has been recognized that when the number of variables approaches the number of
events, asymptotic properties of estimators do no longer hold and predictions may be
highly unreliable (Peduzzi et al. 1995). As a rule of thumb, the events-per-variable
ratio can be computed, and alternatives to the standard maximum likelihood method
should be considered if there are less than ten events per explanatory variable
(Vittinghoff and McCulloch 2007; Courvoisier et al. 2011; Heinze et al. 2018).

3.2.2 Solution 1: Penalized Likelihood Methods

Such alternatives to estimate statistical models, termed “penalized likelihood meth-
ods,” subtract a penalty term that is a function of the magnitude of regression
coefficients from the log likelihood, i.e., they penalize large regression coefficients.
Finally, the penalized log likelihood is maximized with respect to the regression
coefficients. Typical choices for such penalties are the ridge penalty, proportional to
the sum of squared regression coefficients, or the Lasso penalty proportional to the
sum of absolute values of the regression coefficients (Verweij and Van Houwelingen
1994; Tibshirani 1997). The ridge penalty usually leads to regression coefficients
being shrunken toward (but not exactly to) zero (i.e., hazard ratios toward 1)
which introduces a downward bias but stabilizes the variance. The Lasso penalty
is particularly interesting as it shrinks some of the coefficients exactly to 0, thus
providing variable selection.

The relative impact of the penalty, the so-called tuning parameter, can be chosen
freely but is usually optimized by means of cross-validating the log likelihood (Van
Houwelingen and Le Cessie 1990). In cross-validation, data is randomly divided
into, say, ten blocks. Models are fit with a prespecified grid of tuning parameters on
9/10 of the data, and predictions are made for the tenth block which is not used
for model estimation, and a cross-validated log likelihood is computed for that
block. This is done ten times in turn such that each subject finally has been used
nine times in the “training set” and once in the “validation set.” By averaging the
cross-validated log likelihood at each value of the tuning parameter, one can easily
determine the optimal tuning parameter value. Finally, the model is reestimated on
the full data set fixing the tuning parameter at its optimal value.

3.2.3 Challenge 2: Validation of a Model if No Test Set Is Available

If an independent test cohort is available, the final model could be evaluated in that
test cohort in order to assess model performance. For evaluating model performance,
measures of discrimination (c-index or area under the ROC), predictive accuracy
(the deviation of predictions from observed survival), and explained variation
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(which proportion of the observed variation of survival times can be explained by
the model) can be computed. However, the usual case is that a test set is not available
and the data set at hand is too small to save a test set. Moreover, if the data is not
very large, a particular training-test split can be quite arbitrary, and different splits
may lead to different results. Therefore, we suggest to use bootstrap resampling for
validation.

3.2.4 Solution 2: Bootstrap Validation

Bootstrap validation relies on the simple idea that in the same way that our study
cohort was sampled from a population, we could (re)sample data from our study
cohort. If a model is then trained on such resampled data and validated in the original
study cohort, we obtain values for model performance (c-index, predictive accuracy,
explained variation, see Table 1) that resemble those that would be obtained if the
model trained in our study cohort was validated in the full population. With the use
of computer software, we can easily draw a large number of resamples to get rid
of random noise in resampling, taking the average of the performance measures. A
refined method of bootstrap validation is the so-called .632+ bootstrap for binary
outcome data (Efron and Tibshirani 1997). For Cox regression it has been noticed
that resampling without replacement (i.e., subsampling) could be more appropriate
(De Bin et al. 2016). The resampling validation procedure is schematically depicted
in Fig. 2. Other strategies for internal validation to correct optimism in model
performance indices are the enhanced bootstrap, tenfold cross-validation, and leave-
pair-out or leave-one-out cross-validation (Harrell 2001; Smith et al. 2014).

Table 1 Concepts for evaluating a model’s performance

Concept Description References

Concordance
(c-)index

Expresses the probability that a patient
who died earlier has a higher gene
expression score than a patient who died
later. Also known as area under the ROC.
Can be computed for a particular
prediction horizon (e.g., for 5 years) or
cumulative over time

C-index specific to a particular
prediction horizon: Heagerty et al.
(2000)
Cumulative C-index: Uno et al.
(2011)

Predictive
accuracy

Describes the discrepancy of observed
and predicted survival, averaged over all
patients. Can be computed for a
particular prediction horizon or
cumulative over time

Schemper (2003)

Explained
variation

Expresses the relative improvement in
predictive accuracy by the gene signature
score

Gleiss et al. (2016)
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Fig. 2 Schematic model development and validation strategy

3.2.5 Challenge 3: Evaluating the Added Value of a Gene Signature
on Top of Established Clinicopathological Predictors

Of particular interest is the ability of gene expression values to add predictive
value to routinely assessed clinicopathological parameters. For example, in ovarian
cancer variables such as age, grading, histology, and FIGO stage, the presence of
residual tumor after operation can already explain a significant part of the outcome
variation. Therefore, the costs of evaluating gene expressions only pay off if this
improves model performance. Often the added value of gene expression on top
of such established variables is low; therefore evaluating added value is of crucial
importance (Dunkler et al. 2007).

3.2.6 Solution 3: Model Performance Improvement by Considering
the Gene Signature on Top of Established Clinicopathological
Predictors

To evaluate the added value of gene signature, one could compare the performance
of a model including only clinicopathological parameters (model 1) with that of
a model also including genes (model 2). The relevance of the gene signature can
then easily be defined as the difference between model performance of model 2
and model 1. These measures should be evaluated in an independent or bootstrap
validation and can be expressed in terms of c-index increment, predictive accuracy
improvement, and increase in explained variation.
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3.2.7 Challenge 4: Assessing Significance of the Gene Signature

Testing is not the ultimate goal in assessing the added value of a gene signature, as
p-values will always decrease with larger sample sizes (unless the null hypothesis
strictly applies). Nevertheless, some evidence is needed to guard against findings
entirely caused by random variation. Unfortunately, classical Wald or likelihood
ratio tests are not available if penalized likelihood is used for model estimation.

3.2.8 Solution 4: Bootstrap Testing

A bootstrap procedure can also be used to test the added value of the gene signature
as follows (De Bin et al. 2014). In a bootstrap resample, we estimate regression
coefficients for the clinicopathological parameters and the gene expressions using
the penalized likelihood approach, with or without variable selection, as explained
above. We now compute a new “gene signature score” variable for each subject in
the original data set, which is just the sum of a subject’s gene expression values
multiplied by their regression coefficients. In the full study cohort, a standard Cox
regression model can then be estimated with all clinicopathological parameters and
the gene signature score as a single summary variable. The regression coefficient
of the gene signature score (adjusted for the clinicopathological parameters) is
estimated in the study cohort, and from the distribution of regression coefficients
over all bootstrap models, a p-value can be derived (see Table 1). Note that the
mean of those regression coefficients can be interpreted as calibration slope, which
ideally should assume a value of 1. The same set of resamples and the same models
estimated in the resamples as in “solution 2” can be reused, with only slightly
different subsequent computational steps when applying those models in the original
study cohort.

3.2.9 Challenge 5: How to Report a Model?

Having many explanatory variables to deal with, concise reporting of an
estimated model becomes a challenging task.

We propose to present quantities, which describe the overall performance of a
model, and quantities, which describe the model itself, making it applicable for
future outcome prognostication.
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3.2.10 Solution 5: Report Pre-transformations, Effect Sizes, Importance,
and Stability

In absence of a test cohort, the prognostic performance of the estimated model
itself cannot be assessed. However, bootstrap validation can be used to describe the
performance of the model building strategy (i.e., the algorithm that was applied to
the data in order to arrive at a final model). One can then assume that applying this
strategy to resamples and evaluating the performance of the resulting models in the
study cohort are equivalent to applying the strategy to the data of the study cohort
and the impossible task of evaluating its performance in the full target population.
As model performance descriptors, which allow comparisons of model within
and across studies, we propose the discrimination index (c-index), the predictive
accuracy, and the explained variation.

To describe the model itself, we propose to report any transformation steps that
were performed prior to analysis. For example, a logarithmic transformation to base
2 is often useful to reduce the disproportional impact of high gene expression values
and still leads to a straightforward interpretation of regression coefficients as the
increase in log hazard per doubling of an original gene expression value. For each
variable in the gene signature score, regression coefficient and hazard ratio (both
expressed per doubling of gene expression) and standardized regression coefficients
(per standard deviation) should be reported. The latter allow to easily rank variables
by their importance. It should be kept in mind that penalized likelihood methods
are particularly designed for prediction, not for unbiased hazard ratio estimation,
and therefore do not supply reliable confidence intervals. In case that the Lasso
was used, bootstrap selection frequencies for all variables, including those that were
finally not selected for the model, inform about model stability. Further bootstrap-
based measures were proposed by Heinze et al. (2018).

The study cohort is a random sample of the population. A model building strategy
is chosen, and a model including a gene signature score is estimated using the data
from the study cohort. To optimize the model, tenfold cross-validation is applied.
The model should be validated in the population, but this is not possible as the
population is usually inaccessible. Resamples are taken from the study cohort, and
the model building strategy is repeatedly applied to each resample, including tuning
by cross-validation. Each of the resampled models is then validated in the original
study cohort to evaluate their performance. The averaged model performance is used
as estimate of the model performance in the population.

4 Expanding Gene Expression Data to Context-Based Image
Cytometry and to a System Approach

To link gene expression data to the visualization of the molecules of interest
within diseased tissue, we established a computerized microscopy-based algo-
rithm using the TissueFAXS cytometry platform. We assume that the obtained
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information is complementary to gene profiling-derived knowledge and gives an
additive value to the understanding of pathobiological mechanisms in a patient-
specific and patient-orientated manner. Analysis is performed on the basis of
whole-slide paraffin-embedded tissue sections from a clinically well-characterized
patient cohort. Similarly to the patient-specific transcriptional profiles, the obtained
staining- and tissue anatomy-derived data sets can be used as variables for building
up the prognostic/predictive models. To maximize the outcome of the digital
imaging approach, we consolidate diverse expertizes such as molecular and cellular
biology, clinical pathology, programming, and modeling. In this subchapter we
describe methodological advantages and application examples.

4.1 Next-Generation Digital Pathology as Novel Platform
in Translational Research: Superior Solutions for
Unbiased, Standardized, and Quantitative Analysis

With the emergence of automated and increasingly reliable slide scanning tech-
nologies, the discipline of digital pathology has slowly spread out into the research
market, even less so into clinical routine. The emergence of digital pathology started
in the early 1990s, and technologies are still being further developed and improved.
Up to today, the main focus of classical digital pathology has been to digitize
histological sections mounted on glass slides and to generate digital or virtual
slides, with the vast majority of analyses still being performed visually. In other
words, visual analysis can be performed on the monitor and not only through the
microscope’s oculars.

Current efforts, both in academia and industry, are directed toward next-
generation digital pathology, which has its focus on digital analysis and extraction
of numerical data. Such data shall describe molecular/functional parameters with
the aim to provide an alternative to observer-biased image interpretation in form of
observer-independent quantification. Instead of verbal descriptions by experienced
observers, computerized analyses are performed that as outcome deliver various
parameters (e.g., percentage of positive/negative cells, cellular density, staining
intensity, size of histological structures) to be used as variables for statistical
analysis and complex modeling. The need to complement human experience
and the human brain’s interpolation power (which is the strength of a human
observer) with quality-controlled and standardized tools to quantify multiple optical
patterns in parallel and determine statistical interdependencies among and between
them (which is the strength of a computer) has already been recognized with the
emergence of digital pathology (Baak 1991).
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The current ongoing efforts are directed to push digital pathology from
image to data sets by developing novel technologies for the next-generation
digital pathology platforms, with solutions ranging from high-throughput
slide scanning, over automated color reproduction on display monitors, to
diagnostic apps using contextual tissue cytometry as well as current machine
and deep learning approaches.

The TissueFAXS platform-based module within the MuSiCO algorithm enables
(1) automated scanning of slides in fluorescence and bright-field mode; (2) auto-
mated detection of single cells within their native tissue environment by using
nuclear markers as master channel; (3) quantification of the stained marker of
interest per single cell (cytoplasmic and/or nuclear); (4) automated identification of
tissue anatomy-based structures, for instance, epithelial structures including glands
or tumor foci, or immune cell-based structures, for instance, immune aggregates or
ectopic lymphoid structures; and (5) measurement of 20+ parameters per cell and
color channel or marker.

The TissueFAXS platform allows to investigate the relationships between all
multicellular meta-structures, single cells, and markers.

The readout is provided in form of numerical data—primary measurements and
derived statistical values.

The next two subchapters are intended to illustrate the power of the TissueFAXS-
based module to conduct patient-orientated translational research within the emerg-
ing field of tumor immunology.

4.2 Tissue Image Cytometry to Determine the Patient-Specific
Immunological Imprint in the Context of Tumor Anatomy

Breaking discoveries in the field of tumor immunology highlight the strong impact
of the immunological imprint of tumor and tumor microenvironment on develop-
ment, progression, and clinical outcome in several cancer types. To describe best the
cancer type-attributed and patient-orientated immunological imprint, several param-
eters have to be considered including (1) the immune landscape, characterizing the
distribution and organization pattern of immune cells within tumor tissue; (2) the
immune contexture, describing the immune cell composition; and (3) the tumor
anatomy, representing the morphological complexity of malignant tissue (Becht et
al. 2016; Fridman et al. 2012; Galon et al. 2006). In our study (Meshcheryakova
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et al. 2014), we utilized the power of the computerized image analysis platform to
assess the patient-specific B-cell-attributed immunological imprint of patients with
colorectal cancer metastasis in the liver (CRCLM). Digitalization of the whole-
slide CRCLM sections of the entire cohort of patients allowed us to perform
patient-to-patient comparison and by this to define the right strategy for setting
of tumor anatomy- and immune landscape-attributed regions of interest (ROIs),
thus unifying and standardizing the quantitative analysis algorithm (Fig. 3). We
detected the accumulation of B cells, in the form of immune aggregates/ectopic
follicular structures, at the tumor-liver interface and quantified their magnitude
for each specimen (ranging from 0.3% to 13% with a median value of 2%). The
magnitude of B cells, used as variable, showed strong prognostic effect with highly
significant patient stratification into low-risk (above median) and high-risk (below
median) groups. Detection of such fine inter-patient differences in B-cell numbers
would not be possible by an observer-based image interpretation and demands the
power of next-generation digital pathology.

4.3 Biomarker and/or Target Proposal and Validation:
Immune-Based and Beyond

Comprehensive analyses of gene profiling-derived data such as hierarchical cluster-
ing and/or multivariable modeling contribute to the nomination of novel disease-
relevant checkpoints and thus propose potential biomarkers and/or targets. To
consider, transcriptional profiling of patient material is often done on the basis of
whole tissue homogenates of multicomponential diseased tissue.

How can one define the cell type which contributes the most to the measured
gene expression value?

This question is particularly relevant in the field of tumor biology, where the
tumor microenvironment, including various infiltrating immune cell populations,
plays a decisive role in disease progression and influences treatment regiments.
Correlation analysis- and clustering-based identification of close gene-gene asso-
ciations between the gene of interest and cell identity marker(s) gives a strong
indication for expression in a particular cell type within heterogeneous biological
sample. Alternatively, cell type deconvolution offers an attractive approach and
aims at extracting the cell subpopulation information directly from heterogeneous
samples (Shen-Orr and Gaujoux 2013). A prerequisite is to have knowledge about
the expression characteristics of individual cell types or their proportions in a given
mixed sample. For purpose of verification, the tissue-level expression of a candidate
gene can be easily extracted using the GENEVESTIGATOR tool (see Sect. 5).
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a Definition of Regions of Interest

Original image Automatic recognition; 
green, negative cells;
red, positive cells
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b Quantitative Analysis
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Fig. 3 Software-based qualitative and quantitative analyses of the whole-slide image in respect
of resident and/or infiltrating immune cells at the CRCLM site. (a) First step of analysis is the
definition of regions of interest (ROIs) accounting for tumor anatomy and immune landscape,
which are defined and drawn manually or automatically recognized. Shown is the staining of
CD20, the classical B-cell marker. Defined ROIs are the tumor-liver border (indicated by a purple
line) and immune aggregates/ectopic follicular structures (indicated by an orange line); brown
color, CD20 staining; blue color, nuclear counterstaining with hematoxylin. Scale bar: 200 μm. (b)
For the software-based quantitative analysis, marker-specific profiles are designed; quantification
algorithm is based on single-cell recognition strategy and allows simultaneous recognition of
various cell types within their complex native tissue environment. The setting of the sample/patient-
specific cutoff ensures the proper identification of positively stained cells. Shown is the staining
of CD20 within CRCLM tissue (original image) and the software-based recognition of each cell
as an individual object, based on the nuclear staining, and the recognition of the specific staining
(automatic recognition); setting of the cutoff/gating allows the discrimination between positive
cells (indicated in red) and negative cells (indicated in green). Result of quantitative analysis is
displayed by scattergram, which shows the percentage of CD20-positive cells detected within the
ROI. The forward/backward connection algorithm allows to link each individual cell within the
acquired image with the corresponding dot in the scattergram (yellow dot). Scale bar: 100 μm
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The tissue image cytometry provides a superior solution to explore the
expression in the context of tissue (e.g., tumor) anatomy with the possibility
for quantitative assessment.

Thus, the digital pathology and computerized image analysis module within the
MuSiCO algorithm allows to dissect the cell type- and tissue anatomy-attributed
localization and expression pattern of any nominated candidate molecule in any
type of diseased tissue under investigation.

5 Dissecting Novel Breakpoints in Disease Pathobiology
Using Compendium-Wide Analysis

Organisms grow and survive in their environment by activating specific transcrip-
tional programs. The tissues of any complex eukaryotic organism are generated
during its life cycle via temporally and spatially regulated processes. Concurrently,
transcriptional programs are launched in response to perturbations and diseases to
ensure stability, defense, fitness, and ultimately survival. The study of the regulation
of these programs is important to further our understanding about the genetic
regulatory mechanisms that direct growth and survival but also response to diseases,
eventually leading to novel applications in medicine.

5.1 GENEVESTIGATOR: Integrating and Analyzing Public
and Proprietary Expression Data

Research on a given disease is most often carried out on data generated specifically
to study the disease. However, complementing an analysis with data from other
diseases is of increasing interest because it helps interpreting one’s own results and
enhances our understanding of a particular disease under investigation. To achieve
this, data from a broad range of diseases must be readily available in a format,
scaling, and transformation that makes them comparable. Although significant
efforts have been carried out to make genomic and gene expression experiments
publicly available, the heterogeneity of formats, the different levels of quality, and
the lack of use of standards for describing them make it very difficult to explore and
exploit the data. The purpose of GENEVESTIGATOR is to curate and integrate gene
expression data from a wide set of diseases, genotypes, and experimental conditions
and to offer analysis tools for single-study, cross-study, and cross-disease analysis.
To achieve this, public gene expression studies are thoroughly curated, quality
controlled, and annotated by experts using controlled vocabularies and standard
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operating procedures. Additionally, the measurement data is processed in a way
that results can be compared (to a certain degree) between various studies. There
are hundreds of different technology platforms for transcriptomic measurement
(mainly based on microarray or sequencing technology), and some of them were
used for only a few studies. Setting up an entire curation pipeline for a platform is
tedious; therefore, a choice must be made on which platforms to perform curation.
Figure 4a shows the diversity of deeply curated content in GENEVESTIGATOR (as
of October 2017) for mammalian species. The presence of data for over 500 diseases
from 19 therapeutic areas allows powerful data interpretation and generation of new
hypotheses.

Once the data is curated and integrated, they can be aggregated and displayed
in different ways depending on the particular research question (see Fig. 4b). For
example, one can visualize expression by sample, or alternatively, by tissue type,
in which case all samples from a given tissue are grouped together to deliver a
representative expression level (meta-profile). The same aggregation approach can
be applied for multiple dimensions of biology, such as organs/tissues/cell types, cell
lines, cancers, diseases, genotypes, or other parameters, coming from either in vivo
or in vitro studies.

Understanding the spatial (“Anatomy” tool), developmental (“Development”
tool), and response (“Perturbations” tool) characteristics of a target gene is crucial
for exploring its role and involvement in the disease under study. Moreover,
identifying other genes co-regulated with the gene of interest helps identifying
pathways affected in the disease.

Using simple but powerful visualizations, GENEVESTIGATOR allows to
easily understand the regulatory context of genes in various biological dimen-
sions, and via enrichment analysis, to correlate them to canonical pathways
or biological processes.

An extension of this approach is to compare a multigene disease-relevant
signature with an entire compendium of studies to identify diseases, drugs, or
other conditions causing similar or opposite results. Such approaches can be used
to validate a hypothesis (i.e., a result is confirmed by other studies) or to find
connections between the disease of interest and other diseases, drugs, or disease
models based on, e.g., mouse knockouts, patient-derived xenografts, or cell lines.

In the next two subchapters, we will illustrate the power and applicability of the
GENEVESTIGATOR tool in translational research in two of our studies.
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Fig. 4 (a) Composition of the GENEVESTIGATOR database (October 2017), without counting
the LINCS data sets. The total number of deeply curated studies (i.e., quality controlled,
normalized, and described in detail) was 2530 comprising a total of 150,900 expression data sets.
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5.2 From Patient-Specific Transcriptional Profiles
to Disease-Relevant Gene Networks and Pathways

In the study where we aimed to define novel AID/APOBEC-associated events in
ovarian cancer (Svoboda et al. 2016), we used the profiling-derived data sets and
the routinely assessed clinicopathological parameters for building of multivariable
survival models (as discussed in Sect. 3). The top candidate genes—in that case
APOBEC3G, ESR1, ID2, ID3, and PTPRC/CD45—were selected based on the
ranking within the model according to their impact to the prognostic effect.
These candidate genes were next subjected to GENEVESTIGATOR-based analysis
to identify genes showing co-expression across public transcriptomic data sets
attributed to ovarian cancer. The capability of GENEVESTIGATOR to specify
the filters allowed us to perform the analysis in conditions/samples with clinico-
pathological characteristics similar to our initial cohort of patients. On the basis of
the extracted co-expressed gene sets, we were able to identify the AID/APOBEC-
associated, disease-relevant biological pathways, biological functions, and upstream
regulators and to reconstruct the regulatory network using the Ingenuity Pathway
Analysis tool. The applied systems biology approach represents an innovative
strategy to link the patient-specific transcriptional profiles to survival prediction/risk
assessment and delineate the relevant pathways/pathobiological events.

5.3 From In Vitro Cellular Model-Based Gene Perturbations
to Disease Pathobiology

The study addressing the role of sphingolipid machinery within the pathological
EMT program in lung cancer (Meshcheryakova et al. 2016) can be taken as an
additional example of how the integrative, multigene signature-driven analysis is
used to explore novel aspects of disease pathobiology. Therein we started from
the assessment of gene alterations in a lung cancer cell-based model using the
sphingolipid-related multigene signature (described in the Sect. 2.2) and answered
the question whether the cell-based findings are relevant for diseased conditions.
For that we used the power of the signature tool of GENEVESTIGATOR to
identify conditions which show similarities with the transcriptional perturbations

Fig. 4 (continued) From this data, representative expression values (meta-profiles) could be
generated for over 560 different tissue and cell types, 1800 different cell lines, 730 different
cancer types, and over 5000 different types of contrasts. (b) Schematic representation of curated
gene expression data sets and the generation of either contrasts or meta-profiles. Each sample
is described in detail on each of the levels (anatomy, cell line, cancer or disease type, genotype,
stimulus, stage of development, patient characteristics, and clinical parameters). In addition, data is
aggregated to form either contrasts or meta-profile, which are used to characterize existing targets
or to identify novel, highly specific targets and biomarkers by global search
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defined in the in vitro model. The analysis was performed across various neoplasms
(over 600 different neoplasm categories; from more than 24,000 arrays) and
demonstrated for the first time that the sphingolipid-associated events do occur
in lung adenocarcinoma tissue of patients with non-small cell lung cancer. Thus,
the applied strategy allowed us to extend our cell model-based findings to novel
disease-relevant sphingolipid-associated checkpoints. Given the druggability of the
sphingolipid machinery, this may yield new biomarkers and therapeutic targets in
lung cancer.

6 Conclusions

Each individual module of the herein described MuSiCO algorithm deepens our
understanding of the disease relevance of transcriptional profiles; their consolidation
in turn provides a unique and advantageous, comprehensive overview allowing
the nomination of novel biomarkers and therapeutic directions as well as patient
stratification strategies. We would like to emphasize that the presented algorithm is
universal in the sense that it can be applied for any biologically relevant signature
and any type of complex multifactorial disorder. Given the multidisciplinary nature
of the multimodular analysis strategy, we hope that the chapter is of interest for spe-
cialists of diverse disciplines – scientists at research, oncologists and pathologists,
biostatisticians, and systems biologists.
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Abstract Bioinformatics techniques allow the monitoring of large-scale inter-
action data such as gene expression changes. We explain suitable algorithms
and databases for the analysis of direct regulatory interactions of RNA, such as
micro (mi)RNA–mRNA, long non-coding (lnc)RNA, and RNA–protein complexes.
Network analysis and dynamic simulations of RNA interaction networks are
described next. RNA interactions probed by experiments are then described. For
these interactions, nanocellulose provides a strong scaffolding platform; we evaluate
different application modes regarding such uses of nanocellulose. Nanocellulose
also provides options with which to probe biomedical RNA interactions. Future
perspectives of nanocellulose use in various fields are discussed.
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1 Introduction

This chapter introduces a new and versatile tool for RNA systems biology
research—nanocellulose (NC). NC is the molecular form of cellulose, which is
particularly easy to modify, as an NC composite, and hence, in particular, it can
easily be brought into contact with RNA.

First we provide a basic outline of the useful classical tools we use in RNA
research for our special focus, network analysis. In networks, RNA interacts with
partner molecules and, hence, these interactions have to rely on the sequence,
structure, and stability of the RNA—all of which features can be recognized by
specific software and useful tools. However, a systems biological look at regulatory
networks also involves a number of tools that are specifically geared to analyze
network connections, molecular classifications (e.g., gene ontology terms), and the
network’s inherent dynamics. The novelty here is the connection, the emergent
systems behavior of an RNA-mediated network response. As such interactions
can have important biomedical implications and translational features, we also
give examples of these interactions. Throughout, we stress eukaryotic examples
and, as innovative RNA types are becoming increasingly important as more of
their functions are elucidated, we focus on long non-coding (lnc)RNAs and micro
(mi)RNAs.

We are aware, of course, that there are other exciting RNAs mediating metabolic
effects; for example, prokaryotic riboswitches. A tool to recognize this type of RNA
interaction with a metabolic network is the riboswitch finder (http://riboswitch.
bioapps.biozentrum.uni-wuerzburg.de/server.html). It best identifies high-affinity
guanosine riboswitches (Bengert and Dandekar 2004). Moreover, RNA-network
interactions are also evident from bacterial small (s)RNAs of regulatory types and
new types of protein–RNA interactions (Smirnov et al. 2017), but this is not the
focus of this chapter.

The question we ask is: how can you find an experimental platform for such
RNA-network interactions? We supply some answers to the question under the
headings: “2. Systems Biology of Networks and Key Tools for RNA Research in
this Field” and “3. Introducing Nanocellulose as a New Tool for Studying RNA
Interactions”.

The text under heading 2 explains why there is a convincing case for establishing
this link by using NC as a new platform and tool for RNA interaction studies and
similar investigations.

The text under heading 3 embeds these considerations in an up-to-date overview
of the methodological capacities of NC and the multitude of applications currently
available for NC.

http://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/server.html
http://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/server.html
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2 Systems Biology of Networks and Key Tools for RNA
Research in This Field

With advances in high-throughput technologies, several classes of RNAs that show
a fundamental role in biology have been identified. However, although several
thousand RNAs have been annotated, most of them are not well understood,
as experimental functional characterization is challenging and RNAs often show
complex regulatory effects on transcriptional and translational regulation. In this
regard, systems biology analysis can help to obtain a comprehensive functional
understanding from experimental datasets. How can we perform a systems biology
analysis to understand the complex interplay of RNAs with the genome? Such
an analysis should follow three steps: (1) data collection, (2) data integration and
analysis, and (3) data modeling (Fig. 19.1). Table 19.1 summarizes important
resources for systems biology analysis. For more details, see our recent RNA
analysis reviews (Kunz et al. 2014, 2016a).

1. RNA datasets can be used from own experiments or downloaded from databases
such as Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
and GENEVESTIGATOR (https://genevestigator.com/gv/). Information regard-
ing the genomic position and sequences can be obtained from genome browsers
such as Ensembl (https://www.ensembl.org/index.html). More specific informa-
tion about RNAs can be obtained from the LNCipedia (Volders et al. 2013)
and miRBase databases (Kozomara and Griffiths-Jones 2014). Publication and
further information such as sequences can be derived from the Medline (https://
www.ncbi.nlm.nih.gov/) database. All this information builds the basis for the
analysis.

2. Programs such as R (https://www.r-project.org/), Perl (https://www.perl.org/),
and mySQL (https://www.mysql.com/de/) help in data integration and analysis.
For instance, the program language R allows graphical representations of items

Fig. 1 Overview of systems biology analysis to understand the complex interplay of RNAs with
the genome

https://www.ncbi.nlm.nih.gov/geo
https://genevestigator.com/gv
https://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.r-project.org
https://www.perl.org
https://www.mysql.com/de
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Table 1 Overview of important databases and software tools for systems biology analysis

Resource Usage References

Alggen PROMO Promoter analysis Messeguer et al. (2002)
BLAST Sequence analysis Altschul et al. (1990)
catRAPID RNA-interaction analysis Agostini et al. (2013)
ClueGO Functional analysis Bindea et al. (2009)
CPC coding potential
calculator

Coding analysis Kong et al. (2007)

Cytoscape Network visualization/analysis http://www.cytoscape.org/
DrumPID Interaction analysis Kunz et al. (2016b)
Ensembl Genome browser https://www.ensembl.org/index.html
Gene Expression
Omnibus (GEO)

Experimental datasets https://www.ncbi.nlm.nih.gov/geo/

GENEVESTIGATOR Experimental datasets https://genevestigator.com/gv/
Jimena Network simulations Karl and Dandekar (2013)
KEGG Interaction analysis Kanehisa et al. (2010)
LNCipedia lncRNA database Volders et al. (2013)
LocARNA package Sequence structure analysis Hofacker (2003)
Medline (NCBI) Database https://www.ncbi.nlm.nih.gov/
microRNA.org/
miRanda

miRNA database Enright et al. (2003)

miRBase miRNA database Kozomara and Griffiths-Jones (2014)
MySQL Programming/data warehouse https://www.mysql.com/de/
Npinter RNA-interaction analysis Wu et al. (2006)
Panther Functional analysis Mi et al. (2016)
Perl Programming/analysis https://www.perl.org/
R Programming/analysis https://www.r-project.org/
Reactome Interaction analysis Croft et al. (2011)
STRING Interaction analysis Szklarczyk et al. (2015)
SQUAD Network simulations Di Cara et al. (2007)
Wikipathway Interaction analysis Kutmon et al. (2016)

such as a heatmap, but also allows data clustering and statistical analysis, e.g.,
for differentially expressed RNAs. The Perl program helps in genome annotation
and comparisons. A specific algorithm for sequence analysis is the Basic Local
Alignment Search Tool (BLAST) (Altschul et al. 1990), whereas the secondary
structure can be investigated using the LocARNA package (Hofacker 2003).
Besides focusing on sequence and structure, the RNA analysis should focus
on the promoter and interaction context. The AlggenPROMO software tool
is based on position weight matrices from the TRANSFAC database (release
version 8.3) and analyzes a promoter for potential transcription factor binding
sites (Messeguer et al. 2002). A useful systems biology tool is Cytoscape (http://
www.cytoscape.org/index.html), which contains several plugins for visualization
and analysis (Saito et al. 2012). RNA interaction partners can be derived from

http://www.cytoscape.org
https://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/geo
https://genevestigator.com/gv
https://www.ncbi.nlm.nih.gov
https://www.mysql.com/de
https://www.perl.org
https://www.r-project.org
http://www.cytoscape.org/index.html
http://www.cytoscape.org/index.html
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Fig. 2 Overview of in silico modeling. Different steps are sketched. They build on an iterative
cycle of theory and experiments

databases such as Wikipathway (Kutmon et al. 2016), KEGG (Kanehisa et al.
2010), Reactome (Croft et al. 2011), and STRING (Szklarczyk et al. 2015). A
more specific database that focuses on the drug-target interaction context is the
DrumPID database (Kunz et al. 2016b), whereas databases such as Npinter (Wu
et al. 2006) and catRAPID (Agostini et al. 2013) focus on non-coding (nc)RNA
interactions. The analysis (1) should form the basis for the data modeling (3). In
silico modeling is an important step in systems biology research. This can help
to model the data and get new insights; for instance by finding correlations and
new targets and making model-based predictions. In this context, the in silico
modeling should build on an iterative cycle of theory and experiments (see Fig.
19.2) and should include: (a) network establishment, (b) network validation and
optimization, and (c) simulation. For more details see our previously developed
systems biology analysis approaches (Gottlich et al. 2016; Kunz et al. 2016a,
2017).

(a) Based on data from experiments and the literature (e.g., GEO; https://
www.ncbi.nlm.nih.gov/geo/), differentially regulated genes can be identified
and used as a basis to set up an in silico network. The required protein-protein
interactions can be derived from KEGG (Kanehisa et al. 2010) and DrumPID
(Kunz et al. 2016b). An in silico network should be a simplified view of the
cell, e.g., a cancer cell or a cardiac cell, and should reflect the underlying
mechanism of the interacting components, e.g., the RNA signaling cascade.

(b) The network should next be iterative, validated by large-scale data such
as transcriptome and interactome data (e.g., RNA-Seq, mRNA targets) to
optimize the network connectivity and to reduce the complexity (refine and
reduce).

https://www.ncbi.nlm.nih.gov/geo


378 E. Bencurova et al.

(c) Based on a network which is validated and optimized to mirror the biological
system (steps (a) and (b)), the dynamics of the network can be simulated by
using three different mathematical modeling approaches. Boolean models
describe the nodes (e.g., RNAs) of a network, using logical operators (AND,
OR, NOT). Nodes can be either inactive (OFF/not expressed = 0) or active
(ON/expressed = 1) and are assigned the value 0 or 1 according to their
activation state. This qualitative network description is useful for gene
regulatory networks (Schlatter et al. 2012; Thakar and Albert 2010). On
the other hand, dynamic network modeling approaches allow a quantitative
network description, e.g., descriptions of signal transductions or enzymatic
reactions. However, these approaches require exact kinetic concentrations
(e.g., time-resolved western blot data) of the network nodes, which can be
modeled using ordinary differential equations (Maiwald and Timmer 2008;
Wangorsch et al. 2011; Schlatter et al. 2012). A combination of both the
above modeling approaches is the semi-quantitative modeling approach. This
approach allows an intuitive description of the network without accurate
kinetic data (Schlatter et al. 2012; Philippi et al. 2009; Di Cara et al. 2007).
Example modeling software such as SQUAD (Di Cara et al. 2007) and
Jimena (Karl and Dandekar 2013) combine Boolean and dynamic modeling
using a mathematical transformation for interpolation between full active and
passive nodes (SQUAD: exponential function; Jimena: exponential function,
steep Bool cube interpolation or sigmoidal hill cube interpolation between
on and off state as well as other possibilities). Interestingly, such software
calculates the steady states of the network that describe the stable states
of the network to which it can return after stimulation (Di Cara et al.
2007). These steady states are of importance, as they may show how a
network can therapeutic return from a disease state to a normal cellular
state. The modeling approach, similar to experimental and clinical data,
allows us to model the network to get functional insights, e.g., insights
into how tumors grow or how cardiac hypertrophy occurs. Furthermore, the
network modeling approach also allows us to explore the in silico network
changes, e.g., those that occur after drug administration, in order to develop
the best therapeutic strategy or to perform in silico knockouts, e.g., by
investigating the effect of a mutation (also an iterative process validated
by transcriptome and interactome literature data). This modeling approach
allows us to design experiments and to pre-evaluate, in silico, the potential
effects of a therapy, for example. Subsequently, the model-based predictions
can be tested experimentally and used for additional model analysis. This
approach not only reduces the number of unnecessary experiments but also
reduces costs and saves time.

Nevertheless, experiments are required to validate the predictions and to mini-
mize failures. Such prediction failures are possible, as the network does not consider
all components and interactions of the cell. For instance, the cell system contains
different biochemical entities, such as metabolites (e.g., RNAs such as iron response
elements, riboswitches, and sRNAs) and lipids (Czakai et al. 2017).
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However, for already known RNAs and their network components, such model-
ing approaches are very helpful. Nevertheless, what can we do for newly annotated
RNAs, e.g., new RNA players such as non-coding RNAs (ncRNAs), without any
knowledge about the functional interaction context? In the following section we
demonstrate an example of systems biological modeling of lncRNAs.

Non-coding RNAs such as miRNAs and lncRNAs are important RNAs that
regulate biological processes and pathways associated with several diseases, such
as cancers and heart disease (Kunz et al. 2014, 2016a). However, although miRNAs
for cardiac disease are well characterized, lncRNAs are not well studied (Viereck et
al. 2016). lncRNAs (multi-exonic, >200 nt) show complex genomic regulation (e.g.,
transcriptional and translational regulation, chromatin modifier) (Kunz et al. 2016a;
Fiedler et al. 2015; Viereck et al. 2016). Therefore, the systems biology analysis
should cover genomic localization, phylogenetic sequence–structure conservation,
and functional interaction partners (mRNA, miRNA, protein) (Kunz et al. 2016a)
(Fig. 19.3). For example, using bioinformatics, we characterized the lncRNA
Chast (cardiac hypertrophy-associated transcript) that has been shown to promote
cardiac remodeling (Viereck et al. 2016). As experimental lncRNA profiling shows
thousands of deregulated transcripts, a combined bioinformatics screening and
experimental validation strategy for lncRNA selection is required. Experimental
lncRNA profiling (19,427 of 31,423 transcripts) from pressure-overloaded mice
revealed 2860 (1237 up-regulated, 1623 down-regulated) differentially expressed

miRNA

Sequence-structure
conservation

Interaction partnersTranscription factors

Promoter

Biological
processes/pathways

Comprehensive
functional understanding

Fig. 3 Overview of systems biology analysis of long non-coding (lnc)RNAs (Fig. from M. Kunz
et al. 2016a, with permission from the Creative Commons Attribution (CC-BY) license (http://
creativecommons.org/licenses/by/4.0/).)
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lncRNAs (logFC), in which four lncRNAs (one up-regulated and three down-
regulated) showed significant deregulation in the heart by further quantitative
polymerase chain reaction (qPCR) analyses. Additional analysis regarding the
protein-coding potential, using the coding potential calculator (CPC; Kong et
al. 2007), showed no potential for the up-regulated lncRNA (its identifier is
ENSMUST00000130556). The lncRNA received the new name Chast. Chast is
positioned in the antisense region with the two protein-coding genes Arhgap27
and Plekhm1. Interaction analysis using the IntaRNA program (Busch et al. 2008;
locally installed) shows a potential interaction of Chast with Plekhm1. Interestingly,
experimental validation shows inverse expression of Plekhm1 and Chast.

Next, the analysis flow should investigate sequence–structure conservation.
Owing to their sequence length, lncRNAs are often not conserved, which limits their
experimental characterization in model organisms, as well as their potential clinical
applications. Sequence analysis using the BLAST algorithm (http://blast.ncbi.nlm.
nih.gov/Blast.cgi; BLASTn, nucleotide blast) shows several homologous mam-
malian sequences (e.g., human, pig, and rat) with a threshold E-value of ≤ 0.05 and
identity ≥80%. Moreover, the LocARNA alignment and folding tool implemented
in the ViennaRNA package (Hofacker 2003; parameter: alignment type, global;
alignment mode, standard) shows sequence–structure conservation for the homol-
ogous sequences in mammals. More interestingly, the human sequence–structure
homolog was experimentally validated (66% homology, Chast chromosome 17
NC_000017.11|64783199–64783552; Homo sapiens chr17, GRCh38.p2 primary
assembly), highlighting its potential clinical relevance. Promoter analysis of Chast
using the Allgen PROMO tool shows potential binding sites for cardiac and
prohypertrophic transcription factors. For example, we found a potential binding site
for NFAT (nuclear factor of activated T cells), which was experimentally validated.
Additional bioinformatics analysis should include analysis for potential protein
interaction partners using the software catRAPID (Agostini et al. 2013), in which we
found a potential interaction of Chast with STAT1 (signal transducer and activator
of transcription 1).The proteomes used in the tool are gathered from the UniProtKB
database (release 2012_11), in which the predictions are performed using full-length
proteins, or are restricted to nucleic acid binding regions detected with HMMscan
(probabilistic statistical profile hidden Markov models). The miRNAs potentially
bound by Chast were predicted using the miRanda algorithm (Enright et al. 2003;
locally installed; parameter: mouse miRNA release 17; gap open penalty: −2, gap
extend: −8, score threshold: 80, energy threshold: −21 kcal/mol, scaling parameter:
2; miRNA sequences from miRBase database). Since we want to illuminate here
the functional role of a novel lncRNA Chast in cardiac hypertrophy, the potential
interaction partners can be filtered for such associations using a biological process
and pathway enrichment analysis. This relies on Panther (ProteinAnalysis THrough
Evolutionary Relationships; Mi et al. 2016) and the Cytoscape plugin ClueGO
(Bindea et al. 2009). Alternatively, the interaction partners can be manually mapped
against cardiac and hypertrophy pathway data from the databases Reactome (Croft
et al. 2011), WikiPathway (Kutmon et al. 2016), and KEGG (Kanehisa et al. 2010).
All these results indicate that Chast is predicted to function in transcriptional

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Fig. 4 Systems biology analysis of the lncRNA Chast (cardiac hypertrophy-associated transcript).
Sketched is the transcription of Chast lncRNA (red box), its regulation by NFAT4 (nuclear factor
of activated T cells 4), and key interaction partners STAT1 (signal transducer and activator of
transcription 1) and Plekhm1 (blue boxes), as well as further heart- and stress-associated modifiers

regulation through (i) the mRNA targeting of Plekhm1, and/or (ii) Chast can
directly bind transcription factors and guide them to the promoter to regulate
transcription, e.g., for heart and stress-induced genes, and/or (iii) it can regulate its
own transcription in a feedback loop with NFAT (Fig. 19.4). Finally, experimental
in vivo inhibition of Chast reverses experimental cardiac hypertrophy (for details
see Viereck et al. 2016).

In conclusion, these examples highlight the importance of combined bioinfor-
matic analysis and experiments and how they synergistically help in the character-
ization of new RNAs and RNA interactions; in particular, this is exemplified by
looking at new lncRNAs with novel biological functions.

3 Introducing Nanocellulose as a New Tool for Studying
RNA Interactions

3.1 Overview

Nanocellulose (NC) has attracted increasing attention during the past few years. To
use it for RNA interactions we first of all need the raw material. Potential sources
include refined cellulose from bulk production (e.g., from Innventia, Stockholm,
Sweden), as well as bacterial NC produced by sophisticated continuous fermenta-
tion, supplied from companies such as JeNaCell (Jena, Germany). Cellulose itself
is easily furnished, being the most abundant bioorganic molecule on the planet.
However, for molecular interactions and use with RNA, the NC form is required.
In particular, to achieve good interaction with RNA, modified forms, such as hairy
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cellulose nanocrystalloids (van de Ven and Sheikhi 2016), as well as strong, self-
standing oxygen barrier films from NCs are available (Sirvio et al. 2014).

Most interaction studies integrate different molecules with NC, thus forming so-
called NC composites; i.e., the studies use the NC as a platform or chassis to which
further molecules can be attached, and this is exactly the form advocated here for
RNA interaction studies.

Moreover, as a natural substance, NC does not damage cells or interfere with
biological processes, and this includes RNA in all its different forms [mRNA,
miRNA, lncRNA, ribosomal (r)RNA, transfer (t)RNA, sRNA]. This is definitely an
advantage and as long as the required care in handling the RNA alone is observed,
NC does not destroy RNA molecules and leaves them intact. NC forms that can
be used to study RNA interactions include laser-structured bacterial NC (BNC)
hydrogels (Ahrem et al. 2014) and three-dimensional (3D) porous BNC scaffolds
(Krontiras et al. 2015). These NC platforms can also be used in screening, replacing
cytokine profiling (Bhattacharya et al. 2017) by a suitable RNA screen.

As screening can, of course, be done also regarding RNA and RNA-RNA
interactions, NC is a very precise and innovative tool with which to study RNA
molecules and the processes and interactions these molecules are involved in.
Often the direct focus is on the resulting mRNA response and gene expression
profiling; for example, regarding the differentiation of liver progenitor cell lines
and the establishing of organotypic functionality in nanofibrillar cellulose hydrogels
(Malinen et al. 2014) or other cartilage regeneration studies (Pretzel et al. 2013).

However, it is our aim in this book on modern RNA technologies to advocate
for the employment of the full potential of the NC compound platform. RNA and
DNA can be readily anchored at the NC surface or incorporated in its porous interior
(Razaq et al. 2011; Xu et al. 2016). Furthermore, there is a powerful new technique
that systematically generates high variation of different RNA molecules—digital
PCR technology. Hatch et al. (2011) introduced one-million droplet arrays, together
with wide-field fluorescence imaging, for massive analysis of digital PCR products.
As in their study, we advocate using the NC chassis as a microfluidic droplet
platform. In particular, high-throughput droplet processing arrays are available “on
the chip”, and these RNA arrays can subsequently be screened, or, using fluorescent
labels, be scanned by a low-cost 21-megapixel digital camera and macro lens with
an 8- to 12-cm2 field of view at 1× to 0.85× magnification.

Furthermore, multiplexing is also possible (Zhong et al. 2011). Instead of using
standard qPCR together with a first reverse transcriptase (RT) step regarding
the RNA, this new multiplex digital PCR method can be applied after the RT
step as a new, powerful, and highly sensitive method for the analysis of RNA.
Digital PCR starts from mass-synthesized specific primers and the amplification of
single-target DNA molecules in thousands of separate reactions. For this purpose,
a microstructured surface (Zhong et al. 2011), as available with NC, is highly
advantageous and provides a modern method to synthesize, screen, and evaluate
thousands, and even millions of RNA molecules. Multiplexing starts from picoliter
droplets within emulsions and continues by varying the concentrations of different
fluorogenic probes of the same color. This process opens up the attractive possibility
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of identifying different PCR products on the basis of their fluorescence intensity.
Different colors further increase the number of PCR reaction products that can be
discerned.

A further attractive option of this combination, RNA and an NC scaffold, is
the use of optogenetics to control molecules in transcription or translation. For
example, the Rippe group recently reported real-time observation of light-controlled
transcription in living cells (Rademacher et al. 2017). They used an optogenetic
tool termed BLInCR (Blue Light-Induced Chromatin Recruitment) and, with it,
controlled the activity of a reporter gene cluster. This tool can also be applied to
in vitro translation systems, and an NC composite carrying different mRNA species
can be embedded in such in vitro translation systems.

A number of suitable in vitro translation techniques have been summarized by
Steinle et al. (2017) and they also discuss exciting medical applications for such
in vitro translated mRNAs, providing helpful mRNAs for diseased cells (Steinle
et al. 2017). Even better for our purpose, i.e., studying RNA in a controlled and
directed way, is the new tool reported by Baumschlager et al. (2017). It features
an artificial blue light-responsive gene construct, T7 RNA polymerase (“Opto-
T7RNAPs”). These constructs are not leaky, but are engineered to be almost shutoff
in the dark state and they show high RNA expression strength after induction by blue
light. Their range of induction is up to more than 300-fold that of baseline intensity.
Moreover, screening allows one to obtain a variant that returns to the inactive dark
state within minutes once the blue light is turned off. Again, the NC chassis here
is highly advantageous, as control of the induction of the RNAs of interest can
be studied completely in vitro without any bacterial or other cellular background
transcription.

Similarly, specific RNA molecules such as lncRNAs, miRNAs, and sRNAs can
be studied advantageously using NC as a scaffold. Suitable treatment options and
modifications of NC for this purpose include the magnetic functionalization of
bacterial nanocellulose (BNC) (Echeverry-Rendon et al. 2017), the development of
NC scaffolds with tunable structures (Liu et al. 2016), the direction of biomimetic
composite scaffolds using a combination of mineralization and electrospinning (Si
et al. 2016), and even real cellular networks, such as neuronal networks, anchored
on the NC (Jonsson et al. 2015). Table 19.1 provides a nice overview of suitable
databases from which you can pick your favorite RNA, e.g., miRNA or lncRNA, to
be anchored and studied on the NC scaffold.

Next, RNA interactions can be favorably studied on the NC chassis, and novel
powerful techniques are available for this purpose. In particular, microfluidic
proximity ligation assays allow the profiling of signaling networks with single-
cell resolution (Blazek et al. 2015). Moreover, modern printing techniques allow
us to rapidly not only print but also to well separate different RNA species (or,
applying an RT step, DNA) on a compatible surface or scaffold (Stumpf et al.
2015). Of note, a protocol for self-biotinylation of DNA/RNA quadruplexes has
recently been published (Einarson and Sen 2017). The biotinylated DNA/RNA can
then be used in a PCR for amplification, and can be fixed to NC, but it can also
be used for identifying, labeling, and pulling down further cellular RNA and DNA.
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Finally, surface plasmon resonance can be applied to detect specific RNAs, using,
for example, the protocol reported by Li et al. (2016).

This part of our chapter, hence, conveys the vision of bringing NC and RNA-
network interactions together. As the cited references testify, a number of already
available protocols and discoveries will allow us to profit from the combination.
These protocols are also given here so that they can be readily applied to our NC
composite as a platform to study RNA. We have to stress that there are, of course,
many more “lab on a chip” concepts, including, in particular, perhaps the main
class of “lab on chip” instruments employing microfluidics, such as acoustic droplet
splitting and steering, using a disposable microfluidic chip and doing this on demand
(Park et al. 2018).

We are convinced that NC composites have, apart from the examples given here,
high potential for even more studies on RNA. Many of the alternative “lab on chip”
concepts have the drawback that they do not consist of biocompatible material.
Also in many other aspects (price, versatility, long-term durability) NC is an almost
ideal component for an “RNA lab on a chip” and is described here in detail. The
whole section “3. Introducing Nanocellulose as a New Tool for Studying RNA
Interactions” provides an overall reference to support the advantages of NC in all
these application aspects.

3.2 Nanocellulose: Structure and Properties

NC is one of the most investigated materials of the past decade. Cellulose is
commonly distributed across the world; it can be found in both terrestrial and
aquatic environments, and has been detected in bacteria, fungi, and plants. NC
can occur in the form of cellulose nanocrystals and cellulose nanofibrils, both of
which are derived from plant cellulose, such as wood, bark, cotton, and wheat
straw; algae; and bacteria. In nature, BNC plays a key role in the protection
of bacteria in their natural environment. Bacteria, mainly Gram-negative types,
secrete extracellular pure cellulose, which acts as a self-immobilization tool that
is essential for protection from desiccation, ultraviolet (UV) radiation, and also
for protection against other microorganisms. BNC also facilitates the effective
transport of nutrients and oxygen, and several studies mention its role in virulence
modulation (Castiblanco and Sundin 2016; El Haga et al. 2017). NC is non-toxic
and hypoallergenic; it is fully biodegradable, biocompatible, cheap to produce, and
easy to modify to obtain the desired structure and properties that are crucial for
many medical and biological applications. The high stability of BNC allows extreme
manipulation, such as treatment with hot acid and alkaline substances, boiling for
up to 120 min (depending on the thickness of the cellulose product), and pressing.
NC fibers have extreme water-holding capacity, more than 99 wt%, by which they
form a hydrogel, and they have a high degree of polymerization, with up to 10,000
repeating cellulose units. Thanks to its unique properties, BNC can be used in very
creative ways—as a gel-like material (hydrogel, aerogel), hot-pressed sheet, dry
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sheet (paper-like form), or freeze-dried sheet, or even in combination with another
material. Moreover, BNC can be molded into forms of any shape and size, such as
fleeces, foils, tubes, aggregates, or irregularly formed shapes. In its dry form, NC
sheets form a thermostable and slightly hydrophilic material with a decomposition
temperature of 360◦C (Gea et al. 2011).

3.2.1 Structure of NC

NC is a natural polymer containing β-(1,4)-glucan chains of different lengths,
which can vary among species, production process, and post-production treatment.
Although the molecular formula of cellulose from bacteria is identical to that of
cellulose from plants, BNC is often preferred, owing to its ease of production and,
mainly, purification. The production of wood-originated NC requires additional
purification steps to remove lignin, pectin, and hemicellulose, while bacteria
produce NC as a pure product without any contaminants. The typical length of a pure
BNC fibril is around 100–700 μm, with a diameter of 100 nm. After biosynthesis,
fibrils aggregate into sub-fibrils with a width of about 1.5 nm. The typical distance
between the junction points of nanofibrils in the dry form is 523 ± 0.273 μm,
with the orientation of the nanofibrils being 85.64◦ ± 0.56◦ (Grande et al. 2008).
However, the morphology and geometry of the network can differ dramatically
according to the source of BNC, as well as the life cycle of the bacteria and their
growth rate.

The mechanical properties of NC are strongly determined by the source,
form, and treatment of the BNC. A study by Grande et al. reported an ultimate
tensile strength (UTS) value of 241.42 ± 21.86 MPa, a maximum elongation of
8.21 ± 3.01%, and Young’s modulus of 6.86 ± 0.32 GPa for hot-pressed BNC in
combination with starch (Grande et al. 2008). However, recently, the tensile strength
of BNC was determined as 200–300 MPa, its Young’s modulus was 15–35 GPa,
and its maximum elongation was up to 2%. Compared with common cellulose
materials such as cellophane, BNC in the dry state shows more than three times
better tensile strength, but 20 times lower elasticity, which can be beneficial for
various purposes, such as biological applications or membranes for loudspeakers
and headphones (Gatenholm and Klemm 2010), or even as transparent displays
and computer chips (Dandekar 2016). A combination of BNC with polyester
resulted in a maximum UTS of 26.7 MPa for three sheets of BNC–polyester
material; the modulus of elasticity of the BNC–polyester was significantly increased
compared with that of pure polyester. Higher numbers of sheets resulted in lower
elasticity, owing to defects such as porosities and micro cracks in the material
(Abral and Mahardika 2016). Pure BNC, even in small amounts, can enhance the
properties of other cellulose-based materials. A mixture of 10% BNC used as an
additive for a birch chemithermomechanical pulp paper sheet resulted in an increase
of more than 1.5 MNm/kg in tensile stiffness, and paper sheets containing the
additive also showed a 140 % increase in the tear index, with almost no effect
on the weight or thickness of the paper sheets (G. Q. Chen et al. 2017). Of note,
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BNC hydrogels have significantly lower tensile strength than dry BNC films; the
maximum tensile strength was observed in the work of Scionti, with a UTS of
0.9 MPa and an elongation of 64% (Scionti 2010). The cultivation medium also
plays a role in the properties of BNC. A BNC hydrogel obtained by the fermentation
of Gluconacetobacter xylinus from casein hydrolysate medium showed a higher
UTS (0.04 MPa) than that of a glucose-based medium [0.03 MPa (Cavka et al.
2013)].

The optical properties of BNC make it a novel prospect for the research of
optically functional materials. The first study of reinforcement using nanofibers of
electrospun nylon-4,6 showed that a fiber content of only 3.9% was sufficient to
build a transparent film (Bergshoef and Vancso 1999); however, for many applica-
tions, a higher nanofiber content is necessary. Nowadays, it is possible to construct
optically transparent and flexible composites from BNC with a fiber content as high
as 70%, with five times the mechanical strength of engineered plastics, and with
a low thermal expansion coefficient (Yano et al. 2005). Transparency of BNC can
also be obtained using several post-production processes. It was demonstrated that
the treatment of dry BNC with acetic anhydride resulted in a decreased cellulose
refractive index and lower hygroscopicity compared with findings in the non-treated
substrate. Acetylation of BNC was shown to reduce water absorption to less than
0.5%, and the surface became highly transparent without any collapsing of the
crystal structure—this occurred with a fiber content of 68% (Ifuku et al. 2007). Also,
the treatment of BNC with 2,2,6,6-tetramethylpiperidine-1-oxyl radical-mediated
oxidation resulted in the production of a transparent film with low thermal expansion
(Wu and Cheng 2017). The development of such treated BNC in the near future is
a promising technology for emerging flexible devices, such as displays for smart
watches and solar cell substrates.

3.3 Biosynthesis of Nanocellulose

Microbial NC can be derived from different species as extracellular secreted fibers
(Table 19.2). With respect to species, the cultivation conditions, yield, and purifi-
cation processes make the species Komagataeibacter (syn. Gluconacetobacter,
Acetobacter) preferable for the commercial production of BNC. However, many
other species have been studied and optimized as alternative sources of BNC. The
synthesis of BNC has been described in detail for several species; however, the best
studied is the production of BNC by Komagataeibacter. The production of BNC is
a multistep process that is regulated and synthesized by the bcs operon, involving
several enzymes, catalytic complexes, and regulatory units (Fig. 19.5). Exhaustive
research on the bcs operon has identified two fundamental genes in almost all of the
cellulose-producing bacteria: cellulose synthase encoded by bcsA (the nomenclature
differs according to species; also named acsA, yhjO, and celA), and the bis-(3′–
5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) protein encoded by bcsB
(also named acsB and celB).
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Table 2 Typical sources of nanocellulose and technologies for its extraction

Nanocellulose source Manufacturing process References

Wood Mechanical/chemical pulping,
steam explosion, acid
hydrolysis, ultrasonication

Abraham et al. (2011), Brinchi
et al. (2013), Chakraborty et al.
(2005), Jiang and Hsieh (2013),
Li et al. (2011)

Cotton Acidic hydrolysis Morais et al. (2013)
Fungi (e.g., Trichoderma
sp., Aspergillus sp.)

Hydrolysis Vigneshwaran and Satyamurthy
(2016)

Green algae (e.g.,
Cladophora sp.)

Microfluidization Xiang et al. (2016)

Red algae (Gelidium
elegans)

Alkali treatment, bleaching,
and acid hydrolysis

Chen et al. (2016)

Kombucha Microfluidization/atomization Dima et al. (2017)
Komagataeibacter
xylinus (syn.
Gluconacetobacter)

Biosynthesis via fermentation Vazquez et al. (2013)

Komagataeibacter
rhaeticus

Cultivation Machadoa et al. (2016)

Komagataeibacter
medellinensis

Biosynthesis via fermentation Molina-Ramirez et al. (2017)

Acetobacter xylinum Biosynthesis via fermentation Chao et al. (2000)
Gluconacetobacter
hansenii

Cultivation Costa et al. (2017)

The bcsA gene is highly conserved among the cellulose-producing species and
it is essential for the production of cellulose in vitro in a complex with the BcsB
subunit (Omadjela et al. 2013). Crystallographic studies have revealed that BcsA
consists of eight transmembrane helices, four of each N- and C-terminal, and
the PilZ domain and GT domain, which are located between the fourth and fifth
transmembrane helixes (Morgan et al. 2013). The role of the PilZ domain (Pfam
domain PF07238) is essential for the functionality of the protein, while it serves as a
binding site for the c-di-GMP. PilZ occurs in the C-terminal, consists of six-stranded
β-barrels, and recognizes c-di-GMP. The PilZ: c-di-GMP interaction activates the
synthesis of bacterial cellulose (Amikam and Galperin 2006; Morgan et al. 2014).
Sequence analysis of several bacterial species has also suggested the role of the PilZ
domain in regulation and signaling (Amikam and Galperin 2006).

The BcsB protein is an essential catalytic subunit of cellulose synthase, with a
membrane-anchored periplasmic domain and membrane-associated transmembrane
anchor (Fig. 19.2). This protein is associated with indirect interaction with c-di-
GMP (Mayer et al. 1991), and with the transport of the β-glucan chains. Mutation
of bcsB resulted in the disordered organization of glucan fibrils (Omadjela et al.
2013). Despite the fact that subunits BcsA and BcsB are sufficient for the in vitro
cellulose expression of K. xylinus, BNC production in live bacteria requires the
activation of four genes from the operon bcsABCD. Subunits BcsC and BcsD are
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Fig. 5 Simplified schema of multicomponent subunits involved in bacterial nanocellulose (BNC)
synthesis

necessary for the export of the glucan molecules and for loading them at the cell
surface. A bcsC mutant exhibited dysfunction of cellulose production, whereas a
bcsD mutant produced about 40% less cellulose than the wild-type cells (Wong et
al. 1990). The next necessary component to be elaborated in BNC production in vivo
is periplasmic AlgK protein, which interacts with the peptidoglycan layers. AlgK is
involved in secretion processes and mediates protein–protein interactions (Keiski
et al. 2010). The bcsZ gene (also named acsC, celC) encodes an endoglucanase
that is indirectly involved in the c-di-GMP regulation of cellulose biosynthesis;
however, a bcsZ mutation showed no significant changes in cellulose production
(Castiblanco and Sundin 2016). Finally, the bcsQ gene (syn. yhjQ, ccp) encodes
cellulose-complementing factor (Ccp) in K. xylius; however, its exact function
remains unclear. The Ccp protein is very small, with a molecular weight of 8 kDa,
and it seems to be conserved among the genus Acetobacter (Sunagawa et al. 2013).

The biosynthesis of cellulose is divided into four steps: (1) phosphorylation
of glucose to glucose-6-phosphate catalyzed by glucokinase, (2) isomerization of
glucose-6-phosphate to glucose-1-phosphate, a reaction catalyzed by phosphoglu-
comutase, (3) synthesis of uridine diphosphate (UDP)-glucose from glucose-1-



Nanocellulose: A New Multifunctional Tool for RNA Systems Biology Research 389

phosphate (catalyzed by UGPase (UDP-Glucose-Pyrophosphorylase)), and, finally
(4) the conversion of UDP-glucose to cellulose in the presence of c-di-GMP. The
cellulose fibers are next formed in two intermediary phases; in the first phase, 1,4-
β-glucan chains are formed, and in the second phase, nascent chains are assembled
and crystallized (reviewed in Lee et al. 2014).

3.4 Production of Nanocellulose

BNC can be produced commercially by several techniques—as a static (stationary)
culture (cultivation in plastic plates); by agitated cultivation in a fermentation jar
or horizontal fermenter; or by cultivation in internal loop airlift reactors (Chao
et al. 2000; Machadoa et al. 2016; Vazquez et al. 2013), with the typical yield
being 2–15 g/l in 50 h of cultivation. The choice of cultivation method can be
critical for the final properties of BNC. Static culture leads to the production of
a gelatinous layer with a 3D network on the surface of the culture medium. BNC
obtained from a static culture has a high water content and high crystallinity level,
as well as significant mechanical strength; however, the yield is lower than that
from agitated cultivation, which can be a restrictive point for some commercial
applications. Agitated cultivation is the most commonly used approach for bulk
BNC production. During the agitation, bacteria benefit from the direct contact with
oxygen, which directly influences their growth and metabolism. With agitation
methods, the BNC is produced in the form of pellets/granules; the BNC thus
produced has poorer mechanical properties and crystallinity than the BNC produced
by stationary cultivation (Czaja et al. 2004). Nevertheless, the efficiency of BNC
expression can be increased by optimization of the cultivation conditions. The
composition of the medium has a critical impact on the growth of bacteria and
their cellulose production. Glucose is typically used as a source of carbon, but
alternative sources such as fructose, xylose, arabitol, galactose, sucrose, mannitol,
and some other reducing sugars can be used (Cavka et al. 2013). It was shown that
mannitol, glucose, and fructose were most effectively metabolized by G. xylinus.
On the other hand, sucrose and galactose seem to be very unprofitable carbon
sources, owing to inefficient uptake from the medium through the bacterial cell
membrane. Sucrose and galactose need to first be hydrolyzed to glucose or fructose;
otherwise, bacteria are not able to benefit from their use in cellulose biosynthesis
(Mikkelsen et al. 2009; Velasco-Bedran and Lopez-Isunza 2007). However, the
preference for a certain carbon source is related to the exact species. As an example,
sucrose cannot be utilized by Gluconacetobacter; however, sucrose was shown to
be the preferred substrate for BNC production by Acetobacter sp. (Son et al. 2001).
The second essential component of the cultivation medium is the nitrogen source.
The most commonly recommended nitrogen source for agitated cultivation is corn
steep liquor, at a concentration 0.15–2 (v/v)%, while yeast extract, peptone soybean
meal, glycine, casein hydrolysate, and glutamic acid have been described as the
most effective for stationary cultures (Coban and Biyik 2011; Ramana et al. 2000).
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Bacteria can also utilize amino acids, vitamins, and mineral salts (Matsuoka et al.
1996; Ramana et al. 2000). The yield of BNC can also be increased by the addition
of glycerol, which positively influences cell growth (Mikkelsen et al. 2009); ethanol
(Park et al. 2003); sodium alginate; lignosulfonate; and other substances (Ramana
et al. 2000). The crucial factor for the proper growth of bacteria is the pH of the
medium. Depending on the strain, pH 4–7 is recommended. The pH of the medium
changes during the cultivation time because of the accumulation of secondary
metabolites; ergo, continuous control of pH is necessary during the cultivation (Zeng
et al. 2011). The production of BNC is also influenced by the speed of agitation
(Jeon et al. 2014), temperature (Czaja et al. 2004), and salt concentration.

3.5 Nanocellulose in Biomedical Applications

In the past few years, several NC-based materials with huge potential for medical
applications have been created. As early as1986, BNC was proposed as an ideal
wound-healing material, in the form of a liquid-loaded pad (Ring et al. 1986),
and until now, most NC-based biomedical applications have been related to the
development of wound plasters and intelligent skins. Bacterial contamination is
a serious problem in wound healing. More and more pathogens are becoming
resistant to traditional antibiotics, which are being used for prolonged treatment
of skin injuries, but are inappropriate for this purpose. In order to increase the
effectiveness of such treatment, it is necessary to develop innovative therapeutic
methods. BNC has been used in several studies to deliver antimicrobial compounds
that promote the acceleration of healing. Silver is a traditional and very effective
antibacterial agent. In a study by Berndt et al., BNC was prepared as a porous
3D network with immobilized silver nanoparticleson the top and bottom of the
BNC surface. This hybrid exhibited strong antibacterial activity against Escherichia
coli, and, further, the special design of the wound plaster avoided the release of
the BNC into the wound (Berndt et al. 2013). In a recent study, wound dressing
material comprising BNC and zinc oxide was tested in vivo on a skin burn mouse
model. The BNC-zinc oxide nanocomposite showed 66% higher healing activity
than BNC only, and histological analysis showed the regeneration of hair follicles
and the development of new blood vessels. Moreover, strong antibacterial activity
was observed againstE. coli, Pseudomonas aeruginosa, Staphylococcus aureus, and
Citrobacter freundii (Khalid et al. 2017). BNC has also been tested for possibile
use in long-term wound treatment. Poloxamers together with an octenidine were
loaded onto BNC and gradual release of the octenidine was observed; the material
showed high compression stability and water-binding capacity, as well as strong
antimicrobial activity against S. aureus and P. aeruginosa (Alkhatib et al. 2017).
Similarly, material consisting of BNC and chitin nanocrystals presented excellent
mechanical properties and bacteriostatic activity (Butchosa et al. 2013).

As BNC promotes chondrocyte adhesion and proliferation, several groups have
tested BNC in cartilage tissue engineering and in the production of bioactive
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implants. Nimeskern et al. (2013) showed that an implant material for ear cartilage
replacement based only on native BCN did not have efficient mechanical properties;
however, when they implemented chemical modification before or after the implan-
tation, relaxation kinetics and fluid flow resistance were improved. In another study,
Svensson et al. (2005) found that chemically modified BNC exhibited no effect on
chondrocyte proliferation, while native BNC significantly promoted cell growth.
Bodin et al. (2007) assessed BNC-based meniscus implants and found that the
material had excellent mechanical properties, better than those of collagen-based
implants. Material consisting of BNC was also used as an effective approach for
the design of artificial blood vessels (Andrade et al. 2010), for bone regeneration
(Grande et al. 2009), and even as a substrate for artificial tears (Mencucci et al.
2015). In this context, owing to its low cost, flexibility, and excellent biological
properties, such as its promotion of cell migration and proliferation, BNC can be
considered as an effective material for regenerative medicine and implants.

Bioprinting is a method of 3D-printing of biological materials, living cells,
and functional components with high accuracy, resulting in surprising properties:
biomimicry, autonomous self-assembly units, and mini-tissue building blocks. To
date, flat tissues such as skin, as well as complex organs such as the liver,
have all been bioprinted (reviewed in Dodziuk 2016). One of the challenges in
obtaining functional bioprinted material is to fabricate the appropriate biological
ink (‘bioink’). A mitogenic hydrogel system based on alginate sulfate was shown
to be an appropriate candidate for promoting chondrocyte proliferation (Ozturk et
al. 2016); however, owing to its rheological properties, the hydrogel could not be
printed. Conversion of the alginate sulfate into a bioink was accomplished by the
addition of NC. After this, the produced bioink exhibited very good printability. As
a non-printed matrix, this material also promoted cell proliferation and the synthesis
of collagen II by encapsulated cells (Muller et al. 2017).

NC in the form of nanocrystals was tested as a potential drug delivery vector.
Ideal drug delivery vectors must have several properties, such as good absorption
of the functional molecule, controlled release of the drug, and penetration through
the membranes to reach the target. Ethyl cellulose-methyl cellulose (EC–MC) was
shown to be a material with excellent absorption properties. In the work of Pan-In
et al. (2015), an EC–MC polymer was loaded with α-mangosin, a pharmaceutical
molecule used in wound healing, eczema, and skin infections. The polymer was then
tested on 20 human volunteers in a patch test against Propionibacterium acnes, the
causative agent of acne vulgaris. The 4-week treatment revealed that the patch had
a therapeutic effect, with minimal skin irritation, suggesting a new method for the
treatment and prevention of acne (Pan-In et al. 2015). The capacity of BNC for use
as a transdermal drug delivery medium was tested by a Portuguese research group.
They used ibuprofen and lidocaine hydrochloride bound to native BNC and tested
delivery of the drug in vitro. The lidocaine-BNC membrane was permeated at a
lower rate than the classical forms; however, the ibuprofen-BNC membrane showed
three times higher delivery compared to the native gel or polyethylene glycol (PEG)
400 usage (Trovatti et al. 2012).
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3.6 Nanocellulose and RNA

Small interfering RNAs (siRNAs) are short (20–25 nt) double-stranded RNA
molecules that can induce the degradation of specifically targeted RNA. Specifically
designed siRNAs represent new drug types for use against viral diseases, cancer,
and neurodegenerative diseases, as well as for stem cell research. Several methods
have been developed as delivery systems for siRNAs; for example, using viruses,
cyclodextrins, and nanoparticles. However, finding the ideal candidate that has high
transfection efficiency and minimal toxicity remains challenging. NC, thanks to its
biocompatibility, low toxicity, and biodegradability can act as a promising delivery
substrate. However, the negatively charged surface of NC can limit the binding of
siRNA. To increase the interaction capacity of NC, cellulose nanocrystals (CNC)
originating from cotton were mixed with polyethylene imines (PEIs), resulting in
positively charged particles. Thanks to electrostatic interactions, siRNA killer was
bound to the PEI–CNC matrix. These complexes showed efficient uptake of siRNA
in C2C12 murine myoblasts and an in-vitro study demonstrated the inhibition of
tumor cell proliferation (Ndong Ntoutoume et al. 2017).

3.7 Nanocellulose in the Food Industry

NC can be used as an effective additive to enhance the properties of various food
products. The major reason for using NC as a direct food ingredient is its high
viscosity at low concentrations; also, it is low in calories and is heat stable up
to 180◦C. At a low concentration, the addition of NC does not influence taste,
aroma, or texture and it stabilizes water-in-oil emulsions and foams. Bread dough
containing native BNC showed increased volume and moisture retention compared
with bread dough that did not contain BNC, although the surface of the BNC-
containing bread had a reduced browning index and showed reduced firmness of
the breadcrumbs (Corral et al. 2017). BNC has also been added to a meat emulsion
(sausage) to produce a low-lipid, low-sodium meat product with appropriate sensory
characteristics and storage stability (Marchetti et al. 2017). BNC can also be found
in other foods, such as the popular desserts Nata de Coco, whipped creams, and
waffles.

NC can be combined with various polymers and substances to produce bioactive
packaging material, which can potentially eliminate pathogens in ready-to-eat food
packaging. Methylcellulose, a chemically derived cellulose-ether, forms strong and
clear films with excellent stability in cold conditions. In a study by Piccirillo et
al. (2013), methylcellulose was combined with a natural extract from the stems
of Ginja cherry (Prunus cerasus L.), which contains various polyphenols and
terpenes possessing antibacterial activity. The resulting NC film was tested for
different Gram-negative and Gram-positive bacteria, and showed positive inhibition
of the growth of both groups of bacteria (Campos et al. 2014). A food packaging
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membrane fabricated of NC, chitosan, and S-nitroso-N-acetyl-D-penicillamine also
showed effective inhibition of the growth of E. faecalis, S. aureus, and Listeria
monocytogenes, as well as excellent water-barrier properties; however, the mem-
brane showed a decreased Young’s modulus (Sundaram et al. 2016).

3.8 Nanocellulose as a Support Material for Transient
Electronics

Printed electronics (PE) is an emerging area of research that has exhibited strong
development in the past 15 years, combining printing processes and ink chemistry
for the manufacturing of microelectronic devices. The substrate for PE must comply
with specific requirements, such as flexibility, transparency, a smooth and non-
porous surface, and a low coefficient of thermal expansion (CTE). The sintering
temperature for the production of PE is usually very high, up to 250◦C, and thus the
substrate must withstand this thermal burden without any deformation. Classical
synthetic polymers and plastics have a high CTE and thus, high temperature can
lead to damage of the plastic substrate and even the destruction of the functional
electronic parts. For this reason, researchers are on the hunt for an ideal material
with a low CTE that can replace the classical plastic substrates. Sheets of densely
packed cellulose nanofibrils, with a width of 15 nm and CTE of 8.5 ppm/K (the CTE
of plastic is approximately 40–120 ppm/K), were tested as a prospective material;
the tensile strength was as high as 223 MPa and adequate optical transparency was
obtained (Nogi et al. 2009). This novel flexible material can be used not only as an
electrically conductive material, but also as a gas barrier film or a hard coating.

The role of NC in PE dominates in two areas: the use of NC as a flexible
substrate for PE, and the direct incorporation of NC in functional ink containing
conductive polymers, metal particles and flakes, and carbon particles. Ummartyotin
et al. (2012) studied the use of BNC in organic light-emitting diode (OLED)
technology. A nanocomposite film with BNC at 10- to 50-wt%, combined with
a polyurethane-based resin, was manufactured, resulting in a thermally stable
substrate for flexible OLED display, with a minimal CTE of less than 20 ppm/K,
yet with a visible light transmittance of 80% (Ummartyotin et al. 2012). Similarly,
light transmittance of above 75% was obtained by a combination of cellulose
nanofibers with indium tin oxide. However, together with the excellent conductivity
of indium tin oxide comes its very high cost, a disadvantage for the standard use of
this material. Alternatively, vacuum filtration of Ag-nanowire mixed with bamboo
cellulose resulted in the production of a transparent nanopaper with even higher light
transmittance than that obtained with indium tin oxide, demonstrating the potential
role of NC in optoelectronic devices as a low-cost material with remarkably strong
adhesion and mechanical flexibility (Song et al. 2015). Moreover, as NC is eco-
friendly, complete biological degradation and further recovery of the electronic
components is possible. Jung et al. (2015) have demonstrated full fungal degradation



394 E. Bencurova et al.

of a substrate of cellulose nanofibers coated with epoxy after 84 days, suggesting
a promising way to replace plastic substrate. In other works, an NC substrate was
successfully tested for energy storage devices, as a binding agent for the production
of flexible self-standing graphite anodes, and for lithium-ion battery applications
based on NC-graphite nanocomposites (Gerbaldi et al. 2010; Jabbour et al. 2010),
as well as for flexible thin transistors (Fujisaki et al. 2014). Several authors have also
suggested the use of NC in solar cells; however, the performance of these cells was
lower than that of conventional solar cells, with up to 3% power conversion, while
the low-cost conventional polymer solar cells achieved 10–15% efficiency (Nogi et
al. 2015; Zhou et al. 2013, 2014).

BNC can also be used as a substrate for the immobilization of DNA and
proteins, as described by Uth et al. (2014) and Xu et al. (2016). Sensor and actuator
molecules, as well as cells and other components, can be integrated with the BNC
matrix to produce a novel computer chip or smart card for the active storage of
information in DNA or RNA. Alternatively, this information can be processed in an
“intelligent plaster” for monitoring wound healing (Dandekar 2016).

Another field where NC can be an alternative to classical materials is in
piezoelectric measurements. Piezoelectric materials are typically ceramic elements
used in PE. However, these novel applications require a highly flexible, thermally
stable, and biocompatible material with optical transparency and low manufacturing
cost. Mangayil et al. (2017) tested BNC films expressed by K. xylinus to investigate
piezoelectric sensitivity. They genetically engineered bacteria with high production
of BNC, resulting in a thick film. The film constructed by genetically engineered
bacteria was thicker than from the wild type bacteria, with a high crystallinity index
of up to 97.5%, and most importantly, with a significant piezoelectric response of up
to 20 pC/N. Interestingly, the response depended on the orientation of the bacterial
cellulose crystal region. Besides the astonishing mechanical, optical, and sensing
properties of BNC, its production cost is far lower than that of classical piezoelectric
materials, and it has better flexibility than wood-based cellulose (Mangayil et al.
2017).

4 Perspectives of Nanocellulose-RNA-composites

In many cells RNA-interaction networks are sophisticated regulatory circuits.
To elucidate RNA interactions in a systematic way, a combination of high-
power bioinformatics and modern experimental approaches is required. Next-
generation sequencing techniques provide a number of such approaches, including
RNA immunoprecipitation combined with microarray analysis (RIP–ChIP) and
UV cross-linking and immunoprecipitation (CLIP), leading to high-throughput
sequencing CLIP (HITS-CLIP); alternatively, another approach is photoactivatable
ribonucleoside-enhanced CLIP (PAR-CLIP) (see X. Li et al. 2014 for details). For
the detailed investigation of RNA-interaction networks, we have identified here the
strong scaffolding capacities of NC as an attractive anchor technique, powerfully
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combined with modern large-scale analysis techniques from bioinformatics. We
have also shown the dynamic modeling of such identified interactions.

5 Conclusions

Investigating RNA in systems biology has a clear focus on RNA-mediated inter-
actions. For such investigations, we have presented a number of bioinformatics
techniques that can be used to monitor large-scale interaction data, such as gene
expression changes; as well, we have presented algorithms and databases for the
analysis of the direct regulatory interactions of RNA, such as miRNA–mRNA,
lncRNAs, and RNA–protein complexes. In this complex network analysis, dynamic
simulations of RNA-interaction networks have been established, and these have
been described here. To validate and probe RNA interactions, NC provides a strong
scaffolding platform. After evaluating the different application modes for which NC
can be employed for investigating RNA interactions, we have placed these against
the background of other biomedical uses and applications of NC. Future work will
try to broaden such approaches and techniques to improve the methodology used to
study the systems biology of RNA-interaction networks.
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