
Chapter 2
Small-Angle X-Ray Scattering
to Analyze the Morphological Properties
of Nanoparticulated Systems

Oscar Moscoso Londoño, Pablo Tancredi, Patricia Rivas, Diego Muraca,
Leandro M. Socolovsky, and Marcelo Knobel

2.1 Introduction

This chapter provides a global overview of the small-angle X-ray scattering (SAXS)
theory and related concepts. The main goal of this document is to provide useful
tools to analyze, fit, and simulate the SAXS data obtained from sets of different
nanoparticulated systems. The emphasis will be placed on systems composed by
single nanoparticles, as well as on those with a more complex morphology, standing
out how the scattering intensity changes with nanoparticle size, with interparticle
distance, or with nanoparticle morphology.

The structural nature of nanoscale materials can be studied by different
techniques, including electron microscopy, X-ray diffraction, scattering, electron
energy-loss spectroscopy, or neutron scattering, among others. All of these
techniques are based on the scattering, absorption, or diffraction processes due
to the interaction of an incoming radiation with matter. Basically, the structural
information depends on the radiation source and its wavelength; for example,
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the use of radiation beams of X-rays, electrons, or neutrons, with wavelengths
around 0.1 nm, permits the study of matter down to atomic resolution [1]. At
these wavelengths it is possible to determine the crystal structure or the interplanar
spacing of crystalline materials. By using neutron diffraction techniques, the atomic
and magnetic structure of a material can also be studied. However, for a complete
structural characterization, the study of the structure at the atomic level must
be accompanied with morphological information. In this case, it is necessary to
use X-ray or neutrons beams with wavelengths from 1 nm to thousands or even
more [1]. Especially, for nanoscale systems composed by nanoparticles with size
ranging between a few nanometers and ∼100 nm, the knowledge of the shape, the
interparticle distance, the size nanoparticle distribution, the arrangement into a host
matrix, as well as other information at superatomic scale are extremely relevant in
order to obtain a complete picture of the structural features of the studied material.
Fundamental morphological information can be accomplished by using the small-
angle X-ray scattering (SAXS) technique. In nanoparticle research, a suitable data
processing obtained from a SAXS measurement allows obtaining an overall picture
of the nanoparticle sizes, shapes, and/or relative position of nanoparticles [2, 3]. In
SAXS data treatment for a nanoparticulated system, it is generally assumed that
each nanoparticle has a simple geometrical shape, such as sphere, ellipse, or rod,
among others. Despite this simple geometric assumption, the SAXS technique has
proven to be a powerful tool to determine the mean size of the nanoparticle, its size
distribution, the shape, and the surface structure [3]; it is even possible to define
the pair potential if the relative positions of the nanoparticles are known [4]. For
other shapes, it is possible to compute a form factor that can be used in the SAXS
equations.

The framework behind the SAXS technique is exploited in both scientific and
industrial fields. These studies involve several branches, covering the metal alloys,
polymers, biological macromolecules, emulsions, or porous materials, among
others [2].

2.2 Small-Angle X-Ray Scattering

2.2.1 General Phenomenology

Small-angle X-ray scattering (SAXS) is a technique where the elastic scattering of
X-rays by a sample is recorded at very low angles (typically 0.1–10◦ measured from
the beam axes). This angular range contains information regarding the structure of
scatterer entities, like nanoparticles and micro- and macromolecules, among others.
Depending of the studied systems, SAXS technique could provide information of
the distances between partially ordered materials, pore sizes, as well as other data
[5]. Besides, depending on the experimental setup, SAXS is capable of delivering
structural information of objects whose size ranges between ∼0.5 and ∼100 nm.
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Fig. 2.1 Basic schematic SAXS setup

The limits depend on the photon energy, sample-to-detector distance (SDD), the
pixel size and geometry of the X-ray detector, and size of the beam stopper (a SAXS
setup is shown in Fig. 2.1) [6]. For example, larger objects, whose size is around
∼1 μm, just produce perceptible scattering only at extremely small angles that
means that the beam stopper size must be as small as possible; if not, the scattering
waves hit the stopper and are not recorded by the detector [6].

To understand how the X-ray is scattered at low angles by a particle, it is
necessary to know what happens when the X-rays irradiate a particle. In a very
general way, it is possible to say that two phenomena occur: absorption and
scattering. At the moment in which the X-rays hit the particle, one part of these
will pass through the sample. Another part will be absorbed and transformed into
heat and/or fluorescence radiation. The remaining fraction will be scattered into
another direction of propagation [2]. The absorption processes occur with more
probability at the absorption edges. At these edges, the electrons of the materials
can be expelled leaving the atoms in an unstable state (with a hole). When the atom
recovers its natural configuration, fluorescence radiation is emitted, with a given
wavelength. The scattering processes can take place with or without energy loss,
i.e., the scattered waves can have similar or different wavelength, compared to the
incident radiation.

To analyze a scattering experiment, it is suitable to start assuming a fixed entity
(or particle), with an arbitrary structure that can be represented by an electronic

density function ρ
(−→

r
)
. Assuming that a monochromatic radiation beam, with

−→
k0

as wave vector, hits this particle, the scattered wave direction will be defined by

wave vector
−→
k , as shown in Fig. 2.2.

Since scattering is assumed as an elastic process, the scattered wave has the same
modulus of the incident wave, whose absolute value, in both cases, is given by 2π /λ,
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Fig. 2.2 Representation of
the scattering process by a
fixed particle

being λ the wavelength of the used radiation. This fact makes possible to establish
the difference between the incident and scattered beams, which is given by:

−→
q = −→

k − −→
k 0, (2.1)

where −→
q is the scattering vector. Rewriting the scattering vector can be defined

as −→
q = 2π/λ

(−→
u − −→

u 0
)
, being −→

u 0 and −→
u the unitary vectors defining the

incident and scatter beam directions, respectively. Since 2θ is the angle formed by
the incident and scattered beams, then the magnitude of the scattering vector is:

q = 4π/λ sin θ (2.2)

In a SAXS experiment, the scattering intensity I is measured as a function of q.
It is well known that I

(−→
q
)

can be obtained by calculating the quadratic modulus
of the amplitude function, defined in the reciprocal space (q space), of those
waves scattered over the whole volume [6], i.e., I

(−→
q
) = A

(−→
q
) · A

(−→
q
)∗

/V =
∣
∣A
(−→

q
)∣∣2/V . The scattering amplitude A

(−→
q
)

is given by the Fourier transform of
the electronic density, ρ

(−→
r
)
:

A
(−→

q
) =

∫ 0

V

ρ
(−→

r
)

exp
(−i

−→
q · −→

r
)
dr (2.3)

Consequently, applying the inverse Fourier transformation on Eq. 2.3, the
electron density can be derived.

ρ
(−→

r
) = 1/(2π)3

∫
A
(−→

q
)

exp
(
i
−→
q · −→

r
)
dq (2.4)
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Notice that −i
−→
q · −→

r is proportional to the phase shift �ϕ = 2π�S/λ =
−
(−→

k · −→
r − −→

k0 · −→
r
)

, being �S the optical paths of two waves scattered by two

volume elements, which in our case are represented by point O and P shown in Fig.
2.2. Using Eq. 2.1, the phase shift can be written as �ϕ = −−→

q · −→
r . Additional

details of this procedure can be found in a recent chapter [6].
Once A

(−→
q
)

is determined, the dispersion intensity can be written as:

I
(−→

q
) =

∫ 0

V

a

∫ 0

V

ρ
(−→

r
′)

ρ
(−→

r
′ − −→

r
)

exp
(−i

−→
q · −→

r
)
drdr ′ (2.5)

Here, it is possible to introduce the so-called correlation function, γ
(−→

r
)

[7], which
is particularly important in non-particulated systems, such as microemulsions or
metal alloys, since it describes the variation of density as a function of the distance
measured from a reference point. This function is defined as:

γ
(−→

r
) = 1

V

∫ 0

V

ρ
(−→

r
′)

ρ
(−→

r
′ − −→

r
)

dr = 1

V
P (r), (2.6)

where P(r) is a similar function to those obtained from crystallographic methods,
which is called the Patterson function. Crystallographically speaking it is basically
a map of all atom-to-atom vectors in a crystal, which can be expressed as.
P(u, v, w) = ∫

ρ(x, y, z)ρ(x + u, y + v, z + w)dxdydz, being −→
u , −→v, and −→w the

vectors formed between positions x and x + u, y and y + v, and z and z + w,
respectively. This function contains information regarding all vectors between every
two atoms of all the molecules within the crystal [8]. In a scattering experiment of
a macromolecule, for example, the P(r) function takes the name of pair-density
distribution function or simply pair-distribution function. In this case, P(r) provides
information of the electron distances of the scattering entities; in others words, it
is the probability of finding another scatterer entity at a position −→

r with respect
to the one placed at the origin [9]. The main difference between the Patterson
function and the pair-distribution function lies on that P(r) provides a radial average
and does not give rise to vectors between scattering entities. In that sense, P(r)
can be determined if the electronic density ρ

(−→
r
)

is known. Therefore, P(r) =
r2

〈
0∫

V

�ρ
(−→

r
)
�ρ

(−→
r + −→

r
′)

d
−→
r

′
〉

[8]. The brackets 〈0〉 represent an average over

the analyzed sample volume V, and �ρ
(−→

r
)

is the average electron density, which
can be defined as �ρ

(−→
r
) = ρ

(−→
r
)−ρS. Here, ρ

(−→
r
)

is the electron density of the
molecules of interest, and ρS is assumed to be constant that represents the electron
density of the host medium, which can be, for example, pure water (∼0.33 e− Å−3).
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Then, using Eqs. 2.5 and 2.6, the scattering intensity can be can be rewritten as:

I
(−→

q
) =

∫ 0

V

γ
(−→

r
)

exp
(−i

−→
q · −→

r
)
dr = 1

V

∫ 0

V

P
(−→

r
)

exp
(−i

−→
q · −→

r
)
dr

(2.7)

As can be noted, γ
(−→

r
)

can be indirectly determined by the inverse Fourier
transformation of the experimental scattering function:

γ
(−→

r
) = 1

(2π)3V

∫
I
(−→

q
)

exp
(
i
−→
q · −→

r
)
d
−→
q (2.8)

This procedure is regularly used in order to avoid problems of the discrete
sampling of the scattering intensity curve over a finite range [10].

In this first section, the main concepts related to the scattering processes from
non-particulated entities have been introduced. Some of them are defined in the real
space, such as electron density ρ

(−→
r
)
, which is directly linked to the correlation

function γ
(−→

r
)
, as well as with the pair-distribution function P(r). While, in the

reciprocal space, the scattering amplitude A
(−→

q
)

and the scattering intensity I
(−→

q
)

were defined. Some of these parameters can be connected mathematically by the
Fourier transformations. For example, the electron density ρ

(−→
r
)

with the scattering
amplitude A

(−→
q
)

as well as the autocorrelation function γ
(−→

r
)

with the scattering
intensity I

(−→
q
)

(see Fig. 2.3). However, there are a series of facts/restrictions,
whether mathematical or instrumental, that must be taken into account in order to
correctly determine and connect the mentioned quantities, for instance, the function
γ
(−→

r
)

can be determined from ρ
(−→

r
)

(Eq. 2.5), but inversely ρ
(−→

r
)

cannot
be calculated [6]. Similarly situation happens withA

(−→
q
)

and I
(−→

q
)
, where the

scattering intensity can be determined by squaring the scattering amplitude, but not
in the opposite direction, as shown in Fig. 2.3. On the other hand, the mathematical
properties of the Fourier transformations allow to connect the expressions of the
real space with the reciprocal ones, as mentioned above. Here, the challenge lies
on choosing the suitable reciprocal resolution for the desired scattering experiment.
For instance, it is well known that in a scattering experiment at low angles (SAXS),
the scattering amplitude A

(−→
q
)

is obtained for a small volume in the q space [6],
and hence, the structural features that can be extracted from ρ

(−→
r
)

will be restricted
to those at low resolution.1 On the other hand, if A

(−→
q
)

is determined for a large
volume in the q space and the structure of the studied material is sufficiently ordered,
then it is possible to obtain an expression for the electron density, containing
structural information of high resolution1.

1Notice that high or low resolution refers to those structural properties at atomic or superatomic
level, respectively.
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Fig. 2.3 Pathways between
the main expressions derived
from a scattering framework.
(Graph adapted from
Amemiya and
Shinohara [11])

In a SAXS experiment, a one- or two-dimensional (1-D or 2-D) detector collects
the experimental information by counting the scattered photons as a function of the
distance to the beam axes, measured as an angular position to subsequently form
a 1-D or 2-D scattering pattern. It can be expressed as a function of the scattering
vector q, or by using Eq. 2.2, it is also possible to express the position of each
pixel in terms of the scattering angle (2θ ). In isotropic systems, a 2-D graph can
be azimuthally averaged to give a one-dimensional scattering curve. Especially, for
colloidal systems containing randomly oriented nanoparticles, the majority of the
obtained 2-D patterns have isotropic scattering features, which can be azimuthally
averaged [3]. Anisotropic systems, such as lamellar structures or ordered polymers
[12], among others, cannot be azimuthally averaged because the 2-D pattern is not
isotropic along the azimuthal direction [3]. On these cases, the scattering profiles
can be represented using other coordination systems.

As can be noticed, the scattering intensity I
(−→

q
)

is obtained instead of the
scattering amplitude2 A

(−→
q
)
. This condition implies that Eq. 2.4 cannot be applied

in order to determine the electron density function, which, in fact, contains the
structural information. To obtain accurate low-resolution structural features of
nanosystems, including nanoparticles, nanowires, and nanopillars, among others,
this obstacle is often overcome by proposing a model that includes shapes, sizes
and its distributions, distances between nanoparticles, as well as other features
at superatomic level, whose initial conditions can be refined by means of a SAS
software package. Depending on the studied systems or if the scattering entities
are interacting, it will be necessary to introduce a function to correlate them.

2Experimentally it is not possible to obtain the amplitude and phase of the scattering amplitude
A
(−→

q
)
. Experimental SAXS data allows determining the modulus of A

(−→
q
)
, but the phase remains

unknown.
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This procedure requires a previous knowledge of the system. Some of these features
can be initially determined using other techniques, as, for example, X-ray diffraction
(XRD) and scanning or transmission electron microscopy (SEM/TEM).

2.2.2 Small-Angle X-Ray Scattering from Isotropic
and Non-fixed Nano-objects

Considering a centrosymmetric, randomly oriented and non-fixed particle and
assuming a constant electron density within the particle (γ

(−→
r
) = γ (r)) and null

outside it, then the obtained scattering intensity will be isotropic, and it will contain
the scattering information of all possible orientations. Under these assumptions, the
factor exp

(−i
−→
q · −→

r
)

can be averaged as
〈
exp

(−i
−→
q · −→

r
)〉 = sin(qr)

qr
[1, 6]. Thus,

the scattering intensity for this particle (Eq. 2.7) becomes:

Ip

(−→
q
) = 4πV

∫ ∞

0
γ (r)

sin qr

qr
r2dr, (2.9)

being V the particle volume. From this result, it is possible to infer that for a
set of identical and uncorrelated particles, the total scattering intensity can be
expressed as:

I (q) = NIp(q) (2.10)

where N is the number of particles per unit volume and Ip(q) is the scattering
intensity produced by a single particle. Notice that the solution of Eq. 2.10 depends
on the q range. For example, when solving this equation at low-q range, the so-
called Guinier law is obtained, sometimes expressed as Guinier approximation [13].
While at high-q values, the solution takes the name of Porod law [14].

2.2.2.1 Low-q Regime: Guinier Law

According to the Guinier approximation, the scattering intensity at low-q depends
on the radius of gyration of the particle. To develop the solution for Eq. 2.10 at
small-q values, it is necessary to look back to Eq. 2.3, which describes the scattering
amplitude in terms of the electron density function. Thus, expanding the exponential
factor of this equation, it becomes:

A(q) =
∫

ρ(r)dV − i

∫
qrρ(r)dV − 1

2!
∫

(qr)2ρ(r)dV . . . (2.11)
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Assuming an isotropic system (ρ(r) = ρ0) with r taken from the center of the
mass, then the first integral becomes ρ0V, and the second one will be null. Therefore,
Eq. 2.11 can be rewritten asA(q) = ρ0V − 1

2 (qr)2 ∫ ρ(r)dV . . . or also:

A(q) = ρ0V

[
1 − 1

2
(qr)2 . . .

]
(2.12)

Remembering that the scattering intensity can be obtained by squaring A(q), then:

I (q) = (ρ0V )2
[

1 − (qr)2 + 1

2
(qr)4 . . .

]
(2.13)

At low-q values, it is clear that (qr)2 
 (qr)4, whereby the scattering intensity at
low-q turns into:

I (q → 0) ∼= (ρ0V )2
[
1 − (qr)2 . . .

]
(2.14)

A simple way to relate r with the radius of gyration Rg is bearing in mind that

vector r written in the Cartesian coordinate system is r = −→
x

2 + −→
y

2 + −→
z

2 +
2−→

x
−→
y +2−→

x
−→
z +2−→

y
−→
z and then (qr)2 = q2

x
−→
x

2+q2
y
−→
y

2+q2
z
−→
z

2+2q2
xq2

y
−→
x

−→
y +

2q2
xq2

z
−→
x

−→
z +2q2

yq2
z
−→
y

−→
z . As the system was assumed to be isotropic, then −→

x
−→
y =

−→
x

−→
z = −→

y
−→
z = 0 and −→

x
2 + −→

y
2 + −→

z
2 = 1

3Rg [15]. With this tools at hand, the

scattering intensity acquires the form of I (q → 0) ∼= (ρ0V )2
[
1 − q2 1

3R2
g . . .

]
or

well, reduced to an exponential form, I(q → 0):

I (q → 0) ∼= (ρ0V )2 exp

(
−q2 1

3
R2

g

)
(2.15)

The latter equation is known as the Guinier law, which for ideal particle systems
provides the most simple and accurate method to determine the size of a particle
using SAXS [3]. Notice that this equation can be applied on experimental data
to obtain the radius of gyration of the scattered objects. Basically, the procedure
consists in plotting the log[I(q)] against q2 for the data obtained at low-q values
and whose trend is more or less linear. However, when determining Rg from the
Guinier plot, the accuracy of Rg is limited by the minimum q value, which in fact
is determined by the minimum scattering angle at which the scattering radiation is
detected [1]. The nonlinearity of I(q) against q2 at low-q can be mainly attributed
to two factors, the measured q range and possible interference effects of those
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Fig. 2.4 (a) Comparison between four experimental SAXS curves at low-q for a set of 10 nm
nanoparticles loaded in four different concentrations in a non-conductive polymer matrix and the
simulated SAXS curve for a set of noninteracting and monodisperse 10 nm nanoparticles. (b)
Simulated SAXS curves for ideal systems composed for spherical nanoparticles with different
diameters

waves scattered by neighboring particles. The first case commonly occurs on particle
systems whose size ranges around 100 nm; for these kinds of objects, it is necessary
to record the experimental scattering intensities at extremely low-q values. On the
other hand, if the studied system is composed of densely packed particles, such
as concentrated nanoparticle solution or percolated samples, the relative distances
between the scattering particles will be in the same order of the particle size,
or it could even be smaller. On these materials, interference effects between the
scattered waves take place, producing deviations of the Guinier trend. To model
these interference effects, a structure factor S(q) must be added to the scattering
intensity, whose framework will be discussed in the next sections.

Figure 2.4 presents the experimental and simulated SAXS curves at low-q
representing the effects of size and agglomeration on the Guinier law. From Fig. 2.4a
it is possible to appreciate the effects of the nanoparticle concentration on the
SAXS pattern linearity at low-q. Here, four experimental SAXS curves are shown,
which correspond to systems composed of nanoparticles of mean size ∼10 nm,
loaded in a polymer matrix with concentrations of 0.5 wt%, 3 wt%, 15 wt%, and
30 wt%. As can be noticed, the increase in the nanoparticle concentration generates
a greater deviation from the Guinier behavior. For comparison purposes it is also
presented the simulated SAXS curve for a system composed by noninteracting and
monodisperse spherical nanoparticles of 10 nm of diameter, where the linearity of
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Table 2.1 Radius of gyration for particles of known geometry

Sphere of radius R R2
g = 3

5 R2 [1]

Thin rod with length L R2
g = L2

12 [15]

Thin circular disk with radius R R2
g = R2

2 [15]

Spherical shell with inner radius RA and outer radius RB R2
g = 3

5
R5

B−R5
A

R3
B−R3

A
[1]

Ellipse with semiaxes a and b R2
g = a2+b2

4 [1]

Ellipsoid with semiaxes a, b, and c R2
g = a2+b2+c2

5 [1]

Circular cylinder with radius R and height L R2
g = L2

12 + R2

2 [16]

Hollow circular cylinder with inner radius RA, outer radius RB,
and height L

R2
g = R2

A+R2
B

2 + L2

12 [1]

Elliptical cylinder with semiaxes a and b and height L R2
g = a2+b2

4 + L2

12 [1]

Squared platelets with thickness T and length L R2
g = L2

6 + T 2

12 [16]

Gaussian chain of N+1 segments connected by N bonds of fixed
length l

R2
g = Nl2

6 [15]

the SAXS pattern is clearly observed at low-q. In Fig. 2.4b, the scenario is different;
here six simulated SAXS curves for ideal spheres with diameters ranging between
10 and 150 nm are presented. Each curve represents the SAXS intensity behavior
at the Guinier zone; from these curves it is clear that the Guinier trend is lost at
lower-q values as the size of the scattering objects is greater; hence the Guinier
approximation is only valid for the interval qMIN to q in which the linear dependence
is followed [1]. Summarizing, it must be noticed that for a correct estimation of the
radius of gyration, it is necessary to take into account effects like the aggregation.
Also it is crucial to propose a precise ratio between the measuring q range and the
particle size.

Assuming the most typical case, in which the scattering objects are considered
solid spheres, the radius of gyration can be directly estimated by determining Rg
from the slope of the log[I(q)] vs. q2 plot, which is equal to R2

g/3. For non-spherical
particles but of known geometric like cylinders, ellipses, or platelets, for example,
the employment of a generalized Guinier plot, it is also useful to determine the
radius of gyration of these objects [5]. Some expressions to derive the radius of
gyration through the geometric dimensions of their bodies are listed in Table 2.1.

The previous expressions were developed for highly ideal systems, i.e., they
neglect features existing in any real sample, such as particle size distribution
effects. In order to consider the distributed properties found in almost all of
the real samples, it is necessary to consider the individual contribution of each
scattering object. If the studied sample is composed of particles with a narrow size
distribution, the distributed properties can be taken into account by considering the
averaged parameters at the Guinier law (Eq. 2.15). Then, the Guinier law becomes

I (q → 0) ∼= ρ2
0

〈
V 2
〉
exp

(
−q2 1

3

〈
Rg
〉2), where 〈V〉 is the volume average of all
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scattered particles contained in the sample and 〈Rg〉 is the so-called Guinier average
approach (weighted average [6]), which is defined as:

〈
Rg
〉2 =

∫ (
V Rg

)2
dRg∫

V 2dRg
, (2.16)

Solving Eq. 2.16 for a set of spherical uncorrelated nanoparticles with a narrow
size distribution, the radius of gyration can be determined by 〈Rg〉2 = 〈R8〉/〈R6〉.
It is extremely important to keep in mind that the above expression comes from
averaging operations, where the statistical weight of those larger particles will be
greater in comparison to the small ones. In that sense, if the studied sample is
highly polydisperse or if this is composed by several sets of particles, each one
with different mean size, then the estimation of the radius of gyration will be biased
toward Rg values linked with larger scattering particles. This effect is commonly
attended by proposing different sets of scattering contributions as necessary. For
example, if we have a sample composed of ni sets of particles, each one with mean
size 〈D〉i, then, the total scattering intensity can be expressed as the sum of all
contributions; therefore I(q) = N1I1(q) + N2I2(q) + · · · , being Ni the number of
particles belonging to each family.

2.2.2.2 High-q Regime: Porod Law

The Porod law describes the behavior of the scattering intensity at the high-q
region. As mentioned in the previous section, the scattering intensity (I(q)) and
the correlation function (γ

(−→
r
)
) are mathematically connected by the Fourier

transform properties. Analyzing the properties of these functions, one can establish
that for high-q values (q → ∞), the smallest values of r have prevalence in γ

(−→
r
)
.

Mathematically speaking, it means that for small r, the correlation function can be
expanded in Taylor series [13], obtaining the following equivalence:

γ (r) = γ (0)

[
1 + 1

4

S

V
r + · · ·

]
(2.17)

being S the specific surface of the scattering particle in the illuminated sample
volume V′ or well S/V′ can be interpreted as the illuminated area per unit volume.
Replacing the expanded expression for the correlation function (γ

(−→
r
)
) in Eq. 2.9

and solving the integral for q → ∞, the scattering intensity expression becomes:

I (q → ∞) = 2πρ2S

q4
(2.18)

Then, it can be noticed that Eq. 2.18, named the Porod law, indicates the asymp-
totic behavior of I(q) when the scattering vector q tends to be large values. As an
important point to highlight, the dependence of I(q → ∞) with S can be harnessed
to examine the surface of those particles illuminated in a SAXS experiment. As
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Fig. 2.5 (a) Schematic representation of a set of polydisperse and uncorrelated particles loaded
in a matrix with a constant electron density. (b) SAXS-simulated spectra for a set of polydisperse
particles with 10 nm as the mean size. Here, a lognormal size distribution was proposed (σ = 0.05)

in any real sample, the scattering particles are surrounded by a specific medium
(as is shown in Fig. 2.5), with a different electronic density; due to this fact, it is
convenient to express the Porod law taking into account both electron densities.
Then, assuming that both the electron densities of the particles and surrounding
media are isotropic, the Porod law is rewritten as I(q → ∞) = 2π (ρP − ρM)2S/q4,
being ρP and ρM the constant electronic densities of the scattering particles and the
surrounding medium, respectively. Additional details of this procedure are found in
a recent chapter book [6].

The Porod law can also be applied for systems composed of nanobodies
with other simpler geometric shapes, for example, cylinders or planar objects.
Independently of the shape of the scattering particles, the Porod law is applicable if
a sharp interface between the particle and the medium is present.

2.2.2.3 Intermediate-q Regime: The Role of the Polydispersity

The supposition that a sample is constituted by a set of identical particles is
rarely real. In most real samples, naturally occurring or lab synthesized, there is
a combination of particles with different sizes and shapes. In these cases, SAXS
is a powerful technique from which information as regards the shape and/or the
size distribution can be obtained [17, 18]. We are going to start proposing a sample
composed by N particles of the same shape and isotropic electronic density but
whose sizes oscillates moderately around a mean value, to then analyze the main
alterations on a set of SAXS patterns produced by ensembles of spherical particles
with different polydispersities. Despite in this section, we focus the discussion on
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Fig. 2.6 (a) Simulated SAXS curves for spherical particles varying the degree of polydispersity.
These simulations were carried out proposing a size distribution that follows a lognormal
function. (b) Representative zoom of the intermediate-q region. (c) Simulated lognormal-type size
distributions

particles with the simplest shape (spheres); one of the main challenges derived from
a SAXS study is to determine the particle shape, an issue that can be overcome
employing shape-independent modeling methods [19, 20].

Figure 2.6 shows seven simulated SAXS curves; these curves were constructed
assuming a scattering entity of known shape, spheres in this case (form factors will
be introduced in next section). Each scattering intensity curve is related to a set of
particles with mean diameter of 10 nm whose size distribution follows a lognormal-
type size distribution f (d), except for that curve representing a monodisperse system
(black curve). As can be noted in Fig. 2.6a, b, the curve silhouette is extremely
sensitive to the polydispersity degree (controlled via the lognormal standard devia-
tion σ ), especially on the oscillatory behavior of the curve at intermediate-q values.
Here one can also note that for monodisperse samples, as well as for those samples
with low polydispersity (σ < 0.05), the oscillatory behavior is perfectly perceived at
intermediate-q values.

Despite that in this example a lognormal function was adopted to represent the
particle polydispersity, there are other functions which depend on the polydispersity
nature of the studied sample and can represent this feature very well. Some of
these are the Schultz-Zimm and the Gaussian distributions, among many others.
A few expressions often used to represent the polydispersity in samples composed
by nanoparticles are listed in Table. 2.2.

As discussed for previous regions (Guinier and Porod regimes), there are a series
of cautions that necessarily need to be considered in order to correctly determine the
polydispersity of a real sample from an experimental SAXS pattern. For instance, if
the studied sample is highly diluted, the collected scattered intensities coming from
the smallest particles will have poor data statistics, especially at intermediate- and
high-q values [3, 21, 22]. As a consequence statistical weight will be skewed to those
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Table 2.2 Most commonly used probability density functions to represent the polydispersity in
nanoparticulate samples

Lognormal f (r) = 1
σr

√
2π

e− ln (r/r0)2/2σ Being σ the lognormal standard
deviation and r0 the mean particle radius

Gaussian g(r) = 1
σ
√

2π
e−(r−r0)2/2σ 2

Being σ the standard deviation and r0
the mean particle radius

Schultz-Zimm n(r) = [(z+1)/r0](z+1)rz


(z+1)
e−[(z+1)/r0]r Being z = (r/σ )2 − 1, r0 the

number-averaged radius, and σ the
root-mean-square deviation. 
 being the
gamma function

Fig. 2.7 Experimental
scattering curves from
non-aggregate gold
nanoparticles recorded at
exposure times of 5 s (red
curve) and 240 s (black
curve)

Colloidal gold nanoparticles
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particles of larger sizes. Experimentally, this obstacle can be addressed by increasing
the exposure time (τE), i.e., the time in which the X-ray beam illuminates the sample
and the detectors are counting photons. However, one needs to be cautious with the
increase of τE; larger values of this could lead to saturation of the detectors,3 thereby
losing information or inducing serious damage to them [23]. Figure 2.7 presents
two experimental SAXS patterns collected from colloidal gold nanoparticles (of
spherical shape and ∼5 nm as the mean size). As can be perceived, the scattering
intensity curve recorded with an exposure time of 5 s is noisier in almost the whole
measuring range. However, by increasing the exposure time, until 240 s in this case,
the statistical quality of the scattered signal was improved, making this curve a better
candidate to be modeled.

Data collection time must be adjusted based on the nature of the sample and
taking into account the radiation source. For instance, to examine the superatomic

3Every detector has a specific saturation value expressed in counts [2].
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structure of biological samples, such as proteins, it is required to use radiation
sources with high photon flux. If the X-ray radiation is extremely intense, as those
coming from a synchrotron source (∼1011 photons per second), exposure times
ranging between few seconds and 1 or 2 min are used. If the SAXS experiment
is performed employing X-ray sources with smaller photon flux instead (benchtop
devices or as those sources placed on crystallography laboratories), it will be neces-
sary to increase the data collection time in order to obtain an optimal SAXS pattern.

2.3 Diluted Sets of Nano-objects: Experimental Data
Modeling Assuming a Known Particle Shape

From a SAXS point of view, to catalog a system as diluted, it is necessary to ensure
that the relative distances between particles are greater than their diameter. On the
contrary case, the scattering intensity is affected by interference effects, and it will
therefore contain contributions from neighboring particles. The simplest way to
confirm that a system is diluted is to examine the scattering pattern linearity at the
Guinier region (Sect. 2.2.2.1). If the diluted condition is satisfied, one can say that
spatially uncorrelated objects compose the sample. Under this condition the total
scattering intensity is given by I(q) = NIp(q); recalling Eq. 2.10, here N represents
the number of particles per unit volume, and Ip(q) is the scattering intensity of a
single particle.

2.3.1 Dilute Sets of Uncorrelated Spherical Nanoparticles

The simplest case is to assume a set of monodisperse spherical particles of radius R
with constant electronic density ρP, which are embedded in a homogeneous matrix
(e.g., colloidal, solid dispersion, or polymeric matrices), whose electronic density
is also constant (ρM). In this context, the total scattering intensity (I(q)) can be
obtained by solving the following equation:

I (q) = N

⎡

⎣�ρ

R∫

0

4πr2 sin(qr)

qr
dr

⎤

⎦

2

, (2.19)

whose solution for the particular case of monodisperse spheres, according to several
references, including [17, 18], is:

I (q) = N(�ρ)2V 2
P 3

[
sin(qR) − qr cos(qR)

(qR)3

]2

(2.20)
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Fig. 2.8 Simulated SAXS
curves for monodisperse
spherical particles
constructed following Eq.
2.20 and varying radius
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Here, the factor 3
[

sin(qR)−qR cos(qR)

(qR)3

]2
is the form factor or the amplitude form

factor for particles with spherical morphology P(q), Δρ is the electronic density
diference between the particles and the surronding medium (ρP − ρM), and VP is the
particle volume. Figure 2.8 displays a series of simulated SAXS curves constructed
following Eq. 2.20 and assuming different radius ranging between 2 and 20 nm.
In all curves the same tendency is evidenced, a linear trend at the Guinier region
followed by an oscillatory behavior at intermediate-q values.

As already mentioned, a nanoparticulate system can rarely be classified as
monodisperse. On the contrary, most of the times, it presents polydispersity.
This behavior can be examined knowing the polydispersity nature (lognormal,
Gaussian, among others) or proposing a distribution function to model it. Under this
circumstance, the total scattering intensity cannot be expressed as the sum of the
individual contribution of each identical particle; rather particles with different size
must be considered. Thus, the total scattering from a set of polydisperse particles
is given by I(q) = ∫

N(r)Ip(q, r)dr, where N(r) symbolizes a proper distribution
function (some of these are listed in Table 2.2). Notice that the scattering intensity
of a single particle not only depends on q (or the angle) but also of their specific
size. Following the same protocol used for monodisperse spheres, an expression to
determine the total scattering can be achieved, resulting in:

I (q) = N(�ρ)2

∞∫

0

V 2
P

[
3

sin(qr) − qr cos(qr)

(qr)3

]2

N(r)dr (2.21)
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2.3.1.1 Application of the Model That Describes the Scattering Intensity
of Uncorrelated Spherical Nanoparticles: Gold Nanoparticles
Diluted on Organic Solvents

Following the model discussed above, we have fitted two experimental SAXS
curves obtained from a set of non-aggregated gold nanoparticles. Experimental
(black curve) and fitted (red curve) results are presented in Fig. 2.9a, d. To test the
scope of this model, none of the parameters involved in the model was restricted.
Those structure parameters, derived from the SAXS fitted results, show an excellent
agreement to those obtained by a direct method, like the transmission electron
microscopy (TEM) (Fig. 2.9b, e). The small differences in the mean size as well as
in the standard deviation can be linked to several causes, for example, the statistical
contribution associated to each technique. While from TEM the counts are limited
to hundreds or in the best of the cases to a few thousands of particles, from SAXS
the illuminated portion of the sample may contain ∼1012 particles or even more.
The quality of the SAXS data, especially at high-q values may generate errors in the
obtained distribution. Furthermore, polydispersity errors are extremely sensitive to
increasing particle interaction [24].

Fig. 2.9 Experimental SAXS curves, TEM images, SAXS and TEM size distribution functions
from non-aggregate gold nanoparticles with diameters of ∼5 nm (a–c) and ∼12 nm. SAXS fitted
curves are presented as red continuous lines. Both TEM histograms were obtained by counting
more than 500 particles from several TEM images
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2.3.2 Dilute Sets of Uncorrelated Nanoparticles of Simple
Geometrical Shape

A direct and simple approach to model a scattering curve is by starting from the
knowledge or assumption of the particle shape. In Table. 2.3 some expressions for
scattering intensity of particles with simple shapes are listed. Also, simulated SAXS
patterns under specific geometrical considerations are displayed.

As can be noted, this approach is very useful if the shape of the scattering objects
is known. Also, with this approach, it is possible to combine contributions from
particles of different shapes, e.g., if the studied sample contains more than one
family of objects with different shapes. Moreover, there are several form factors
for complex morphologies, including core/shell spheres, bilayered or multilayered
vesicle, and core/shell structures of elliptical or cylindrical shape [25, 26], among
others. Some of this form factors have been successfully employed to characterize
the growth of rare earth multilayers in magnetic nanoparticles [27] or well to analyze
the size and shape effects on several physicochemical properties of the iron oxide
nanoparticles [28]. The use of an analytical expression has numerous advantages;
perhaps one of the most relevant is the reduced number of parameters, which make
this approach a convenient tool to fit experimental data at low computational cost.

There are several cases where the irregular geometry of the scattering objects is
difficult in the analytical calculation and the fitting process. Under this circumstance
it is possible to use a method to approximate the particle geometry using subparticle
units, whose shape may be spherical, elliptical, or cylindrical [29]. This approach
packs small simple geometrical subunits to construct more complex ones [30].
For instance, the construction of these complex structures from spherical subunits
can be done from finite element methods, to use then the Debye formulation to
determine the intensity [5]:

I (q) =
N∑

i,j=1

fi(q)fj (q)
sin
(
qrij

)

qrij
(2.22)

where N is the number of scattering particles, rij is the distance between atoms i and
j, and fi(q) is the scattering factor for atom i. This approach allows the calculation
and optimization of complex systems admitting, if necessary, the use of additional
terms to take into account possible particle interaction effects [31, 32].

2.4 Densely Packed Sets of Particles: Correlated Particles

The approaches discussed in the previous section have been founded on a common
underlying assumption, which is that the investigated system is composed by diluted
particles hosted in a matrix. Fundamentally, this means that the particle spatial
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arrangement effect on the total scattering intensity is negligible. However, in a
densely packed system, the positions and orientations of their particles can be
ordered or aligned following a preferential configuration, i.e., they can interact with
each other [2]. Also, interacting particles can form clusters with a particular shape.
Commonly, these systems are simply called interacting or correlated. A good exam-
ple of these kinds of systems is those composed of magnetic or metallic nanopar-
ticles, where the large surface/volume ratio plus intrinsic magnetic and/or ionic
forces promotes the formation of clusters, as it is shown in these references [33–
35]. The scattering intensity from this kind of systems not only carries the scattered
information coming from a single particle but also contains the effects produced by
the interference of those waves scattered by neighboring particles. To consider this
additional interference, it is necessary to modify the scattering intensity expression
determined from a set of non-correlated particles by adding the structure factor4

S(q), which contains the information about the spatial position of the particles.
The total scattering intensity for a system composed of N spatially correlated

particles is given by:

I (q) = NIp(q)S(q) (2.23)

Recalling that Ip(q) = (�ρ)2V 2
P P(q), with P(q) being the form factor (associ-

ated to the scattering amplitude A(q)), then Eq. 2.23 can be rewritten as:

I (q) = NP(q)S(q) (2.24)

Assuming that the particles are close to each other but non-percolated, the
structure factor S(q) for a monodisperse system is given by [29]:

S(q) = 1 + N

V

∫ ∞

0
4πr2 (P (r) − 1)

sin(qr)

qr
dr, (2.25)

where P(r) is the pair-distribution function mentioned above and the integral∫∞
0 4πr2 (P (r) − 1)

sin(qr)
qr

dr is the Ornstein-Zernike integral, which is in fact the
expression that carries the information of the pair distance among the particles in a
system.

As mentioned before, the correlated effects between nanoparticles are
\hbox{particularly} appreciable at the Guinier region (low-q values) as shown
in Fig. 2.4a. This can be analyzing well from the asymptotic behavior of S(q). For
instance, at high-q values, this factor tends to be 1, while at low-q values, S(q)
exclusively depends on the nature of the interaction. Furthermore, it can be noticed
that for a set of non-correlated particles, S(q) takes a value of 1, and thus Eq. 2.25
turns into Eq. 2.10.

4In crystallography it is known as the lattice factor.
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The solution of Eq. 2.25 depends on the nature of the interactions as well as on
the type of the formed aggregate, i.e., of P(r). When a structure factor is introduced
in the scattering intensity equation, one tries to establish what kind of interaction
potential is present in the sample. Some of the most used interaction potentials,
developed for globular particles, are the hard sphere, the sticky hard sphere [36],
the squared-well potential, or the rescaled mean spherical approximation (based on
spheres with Coulomb interaction) [37]. To solve the Ornstein-Zernike integral,
there must be a closure relationship between the correlation function and the
potential [29]. Some of the most common closure relationships are the Percus-
Yevick approximations [38], which have been successfully used to find an analytical
solution for the Ornstein-Zernike integral for a hard sphere and sticky hard sphere
potentials. There are several closure relations reported to solve the Ornstein-Zernike
integral, such as the mean spherical approximation, the Roger-Young (RY) closure
[39], and the zero separation theorem-based closure (ZSEP) [40], among others.
A complete list can be consulted in reference [25]. Once it is determined, which
potential will be employed and the respective closure relation, the Ornstein-Zernike
integral equation can be solved, and thus the correlation function can be obtained.
Then, the structure factor is determined by using Eq. 2.25. This methodology can
be followed to introduce other interaction forms as well as to insert, if necessary,
suitable size distribution functions.

In this chapter, our objective is not focused on analyzing the solutions of the
Ornstein-Zernike integral from different closure relations or demonstrating how
some structure factors are obtained; rather we will focus our efforts on two particular
approaches often employed to obtain valuable information from experimental data
obtained from a nanoparticulate system. These are the fractal aggregate model and
the unified exponential power law model (Beaucage model).

2.4.1 Fractal Aggregate Model

The fractal aggregate model (FA) was postulated by Chen and Teixeira in the mid-
1980s [41], since then it has been widely applied to investigate structural features
of diverse systems, including biological and nanoparticulated systems. Particularly
speaking of nanoparticulated materials, the aggregation dynamics is related to the
nature of the nanoparticle components. For example, metallic nanoparticles, such
as silver or gold, hosted in water tend to form aggregates due to ionic forces, while
for magnetic nanostructures, including nanoparticles of iron, cobalt, nickel, or their
respective oxides, magnetic interaction can promote the formation of aggregates
[42]. In these two cases, the interacting forces depend on several factors, such as
the size of the nanoparticles, the polarity of the host solvent, and the nanoparticle
functionalization, among others.

The application of the FA model for correlated nanoparticles has been founded
assuming that N primary nanoparticles (of radius r0) can be spatially arranged
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Fig. 2.10 (a) Schematic representation of a mass fractal structure. This structure is made out of
primary particles of radius r0 that are aggregated. (b) Schematic representation of a surface fractal
structure of moderated roughness

forming aggregates of mass M and size ξ . These quantities are directly related
through a power law, as follows:

M ∼ ξDF (2.26)

where DF is the fractal dimension that depends on the nature of the aggregation
mechanism [6]. Those aggregates whose mass increase follows Eq. 2.26 are known
as mass fractals [43]. A mass fractal aggregate can be understood as a large structure
with branches cross-linked by the effect of certain forces, as is shown in Fig.
2.10a. Notice that the concept behind DF is consistent with the common notion
of Euclidean objects, i.e., for objects with homogeneous shapes, such as globular,
planar, or elongated 1-D objects, DF takes values of 3, 2, and 1 [44], respectively.
While, for objects with mass fractal features, DF takes semi-integer values. On the
other hand, the surface of the aggregates can also have fractal topographies, in this
case referred as surface fractals (see Fig. 2.10b). Here, the proportional relationship
between fractal surface S and aggregate size ξ is given by:

S ∼ ξDS (2.27)

where the exponent DS carries the aggregate roughness information, being 2 for
smooth surfaces and taking values ranging between 2 and 3 for surfaces with fractal
topographies [9].

Using the above information, one can generalize the Porod law, which becomes:

I (q → ∞) ∼ q−2DF+DS (2.28)
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Notice that for a globular aggregate (DF = 3) with smooth surface (DF = 2), the
Porod law keeps its power dependence with q−4.

Remembering, the structure factor S(q) for a set of correlated monodisperse
nanoparticles can be determined by solving Eq. 2.25. Certainly this implies
determining first a suitable pair-distribution function P(r). Thus, one can start from
the fact that the primary particle number density inside a sphere of radius r is given
by [6, 9].

N(r) = (r/r0)
DF (2.29)

Note that Eq. 2.29 is valid if the number of primary particles is calculated
from the center of the mass fractal aggregate. Moreover, from the pair-distribution
function definition, it is also possible to determine the primary particle number
density [45], as follows:

N(r) = N

V

∞∫

0

4πr2P(r)dr (2.30)

From Eqs. 2.29 and 2.30, the following equivalence is reached:

(r/r0)
DF = N

V

∞∫

0

4πr2P(r)dr (2.31)

Then, Eq. 2.31 can be solved to find the expression for the pair-distribution
function:

P(r) = 1

r
DF
0

1

4πN
DFrDF−3 (2.32)

Finally, introducing the obtained result from the Eq. 2.32 into Eq. 2.25, and then
solving it, the structure function for a fractal object is given by [45]:

S(q) = 1 + 1

(qr)DF

DF
 (DF − 1)
[
1 + 1/(qξ)2](DF−1)/2

sin
[
(DF − 1) tan−1 (qξ)

]
(2.33)
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From the asymptotic behavior of Eq. 2.33, one can also find valuable information.
For example, analyzing the expression at the Guinier region (S(q → 0)), one can find
an expression for the radius of gyration of the mass fractal aggregate:

R2
g = DF (DF + 1) ξ2

2
(2.34)

A complete procedure to obtain the radius of gyration of the mass fractal is
available in [9, 45].

In the case of a system composed by monodisperse correlated nanoparticles, one
can select the sphere form factor (listed in Table. 2.3) and thus apply Eq. 2.24
(I(q)∼P(q)S(q)) to finally determinate an expression for the scattering intensity
produced by a system with fractal aggregate architecture, which is:

I (q) = N(�ρ)2V 2
P 3

[
sin (qr0) − qr0 cos (qr0)

(qr0)
3

]2

{

1 + 1

(qr0)
DF

DF
 (DF − 1)
[
1 + 1/(qξ)2](DF−1)/2

sin
[
(DF − 1) tan−1 (qξ)

]}

(2.35)

being 
 the gamma function. For systems composed by polydisperse correlated
nanoparticles, it is necessary to introduce a suitable distribution function f (r) to
then integrate the expression I(q)∼ ∫

P(q)S(q)f (r)dr.
In Fig. 2.11 we present a series of representative SAXS curves of fractal

structures composed by primary particles of spherical shape. To construct Fig.
2.11a, we decided to carry out the simulation keeping constant two of the structural
parameters, r0 and ξ , but varying the fractal dimension DF. On simulation displayed
in Fig. 2.11b, a Gaussian size distribution g(r) was introduced in order to consider
the polydispersity effect. Also, r0 and ξ were kept constant, while DF was
changed, choosing values ranging between 1.1 and 3. On these figures, one can
see different characteristic regions. Notice that for the fractal structures constructed
with monodisperse spheres, the Porod trend (at high-q values) is screened, because
the SAXS intensity exhibits the oscillatory behavior even at large-q values. Each
region carries specific information. This means:

1. The first region, defined for the small-q range (q � ξ ), is known as the Guinier
region for the aggregate. For this q range, I(q) behaves accordingly to the Guinier
law. Note that depending on the aggregate size, it becomes necessary to record
the scattering intensity at extremely small-q values, which from an experimental
point of view represents a big challenge. From this region it is possible to
determine the aggregate size as well as their radius of gyration (Eq. 2.34).

2. The second region is described over the intermediate-q region and can be defined
when 1/ξ < q < 1/r0. In this region the scattering intensity falls, following a power
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Fig. 2.11 Simulated SAXS curves according to the FA model for a set of (a) monodisperse and
(b) polydisperse nanoparticles. For each five SAXS curves were simulated varying the fractal
dimension

law of I (q) ∼ qDF . Since this region comprises the aggregated Porod zone and
the primary particle Guinier zone, then the fractal dimension of the aggregate
and the size of the primary particles can be determined.

3. The third region or the oscillatory one is defined at q > 2/r0. Since this oscillatory
behavior is related to the size distribution of the primary particles, one can
determine the degree of polydispersity of the primary particles.

4. Finally, the last region, better defined in Fig. 2.11b, describes the scattering
intensity behavior at large-q values. This is associated to the Porod zone of the
primary particles, which means that the scattering intensity decreases following
a power law of I(q)∼q4.

There are several papers where this model is applied in order to determine
the most important structural parameters linked to the formation of aggregates.
Specially, when working with magnetic nanoparticles, it is extremely important to
take them into account, since their degree of aggregation and the aggregate features
can modify the macroscopic magnetic response of the system. Some examples of
this behavior can be found in these references [27, 33–35, 46].

On Sect. 2.4.3 we will present some examples where this model is applied in
order to structurally characterize nanoparticulated systems.
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2.4.2 Unified Exponential/Power Law Model (Beaucage Model
Based on Hierarchical Structures)

The unified exponential/power law model postulated by Beaucage describes the
scattering intensity produced by an aggregate of fractal dimension DF and radius of
gyration Rg [47]. Basically, this model combines the Guinier and Porod regimes into
a unified expression to describe the scattering intensity behavior of any morphology
of complex systems containing multiple levels of related structural features [34,
35, 47, 48]. As in the FA model, the aggregates are considered as constituted by
single subunits (primary particles), which has a radius of gyration rS. This model
establishes a semiempirical expression for I(q). For two structural levels (aggregates
and single subunits), the equation for I(q) is given by:

I (q) = G exp

[

−q2R2
g

3

]

+ B exp

[

−q2r2
S

3

]

([
erf

(
qRg√

6

)]3

/q

)DF

+ GS exp

[

−q2r2
S

3

]
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([
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(
qrS√

6

)]3

/q

)P

(2.36)

where erf is the error function and P is the Porod exponent, which usually takes
a value of 4. G and B are, respectively, the Guinier and Porod pre-factors for the
aggregate, while GS and BS are the respective pre-factors for the primary particles.
Thus, the first term describes the aggregate structure, while the second one carries
the information of the mass fractal structure [25]. The last two terms contain
the structural information of the single subunits. For aggregates formed by solid
particles of globular form, the mentioned pre-factors are given by [34, 44]:

G = Nξ�η2
(

4π

3

)2(
ξ

2

)6

(2.37)

B = 2πNPP�η2S (2.38)

Gs = NPP�η2
(

4π

3

)2

r6
S (2.39)

BS = 8πNPP�η2r2
S (2.40)
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being Nξ the number of aggregates per unit volume, Δη the scattering length
density difference between the particles and the host matrix, NPP the number of
small subunits within each aggregate, and S the specific surface. For a set of
experimental SAXS data, one can use Eq. 2.36 to fit the data and obtain the three
parameters of importance, being these ξ , rs, and DF. With these information, other
valuable structural information can be indirectly obtained, for example, the number
of aggregates per unit volume Nξ [34]:

Nξ = G

�η2
(

4π
3

)2(
ξ
2

)6
(2.41)

Besides, if the aggregate is composed by polydisperse single primary particles,
the structural parameters involved in Eqs. 2.37–2.40 can be replaced by their
averaged expressions, i.e., ξ and rs can be substituted by 〈ξ 〉 and 〈rS〉, respectively.
According to Ref. [44], the averaged expressions can be merged to determine the
polydispersity index (PI) of the primary particles, resulting in:

PI = BSr4
S

1.62GS
(2.42)

being PI = 1 for monodisperse primary particles.
As can be noted, the approach above discussed has been founded on the

assumption that the investigated system contains two structural levels (aggregates
and primary particles). However, the Beaucage model can also be extended to
describe the scattering intensity of an arbitrary number or structural levels [25];
thus Eq. 2.36 becomes:
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where n is related to the number of structural levels and being i = 1 for the largest
one.

In the next section, we will present some examples where the Beaucage model
is applied to structurally characterize systems conformed by nanoparticles hosted in
colloids or in solid polymeric matrices.
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2.4.3 Application of the Fractal Aggregate and Beaucage
Models on Specific Systems with Correlated
Nanoparticles

In this section we will show the application of the FA and Beaucage models on
particular samples. The samples presented here were synthesized by our research
group. For the first example (colloidal silver nanoparticles), the SAXS patterns
were recorded in the Brazilian Synchrotron Light Laboratory while for the second
example (Fe oxide nanoparticles loaded in polymeric matrices) already published
in [34]. Essentially, we will focus in analyzing the most important regions of the
SAXS pattern, as well as in briefly discussing the most interesting results.

2.4.3.1 Correlated Nanoparticles: Silver Nanoparticles Diluted
on Organic Solvent

The Ag nanoparticles studied here were prepared following the thermal-assisted
reduction procedure. According to TEM images (not shown here), the nanoparticles
present a moderate aggregation degree, and their sizes are framed in a lognormal-
type distribution with a mean diameter of ∼4 nm. According to the experimental
SAXS pattern, displayed in Fig. 2.12 (black symbols), the scattering intensity
follows a power -law behavior for the low-q range instead of the Guinier behavior;
this is a first signal of the existence of nanometric scale aggregates. In the
intermediate-q region (0.16 nm−1 < q < 0.26 nm−1), the scattering intensity seems
to follow a power law dependence with ∼qα (with α = 2) suggesting the presence
of aggregates with a fractal structure. After this region, the absence of an oscillatory
behavior confirms the existence of a size distribution of moderate width. For the
high-q values (Porod region), the scattering intensity falls according to a power
law of ∼q−4, characteristic of elementary particles with smooth surface. This first
semiquantitative analysis leads us to think that a model of correlated particles must
be applied in order to get the suitable structural information. In that sense, we decide
to use the previously discussed model to fit the experimental data. Figure 2.12a, b
shows the fitting results by following the FA and Beaucage models. According to
the results, from the FA model, a mean primary diameter of ∼4.1 nm and a fractal
dimension DF of ∼1.90 were obtained, while following the Beaucage expression,
values of 4.4 nm and 1.92 were calculated for primary particle diameter and fractal
dimension, respectively. Comparing the values obtained from both models, one
can note that the slight differences are in the same magnitude order than the
experimental error. Thus, it can be concluded that the two employed models are
suitable to obtain the desired morphological information. It is noteworthy that the
primary particle size determined from both approaches is in good agreement to
those obtained from microscopy techniques. These results suggest the formation
of aggregates with a two-dimensional structure. The size of this structure was
directly obtained from the FA model, being ξ ≈ 14 nm. Despite that from the
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Fig. 2.12 Experimental SAXS pattern (black symbols) obtained from a set of silver colloidal
nanoparticles. (a) Best fitting results according to the fractal aggregate model. (b) Best fitting result
following the extended Beaucage expression described in the text. Contribution of the Guinier and
Porod for aggregates and primary particles are presented as dotted lines

Table 2.4 Structural information derived from the fitting procedure according to the FA and
Beaucage models

FA model Beaucage model
〈D〉 (nm) σ ξ (nm) DF DS (nm) DF Rg (nm) DAgg (nm)

∼4.1 0.2 ∼14 1.96 ∼4.4 2.01 ∼14.8 ∼11

DS was calculated using DS = 2rs. DAgg is the aggregate diameter; this was indirectly determined
using the radii of gyration (Rg) of the aggregates and assuming their 2-D morphology as something

close to a thin circular disk with radius R (R2
g = R2

2 ), i.e.,
DAgg

2 = (
2Rg

)1/2

Beaucage model the aggregate size cannot be directly obtained, we assume a 2-D
structure, with a morphology similar to a thin circular disk. Under this assumption
the aggregate size was determined, obtaining a value of approximately 11 nm. A
complete list with the fitting results is presented in Table 2.4.

2.4.3.2 Correlated Iron Oxide Nanoparticles Loaded in Nonconducting
Polymeric Matrices: The Role of the Nanoparticle Concentration

With this example we show how the previously discussed models (Sects. 2.4.1
and 2.4.2) can be applied to follow the nanoparticle agglomeration degree on
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magnetic polymer nanocomposites. With this intention we have retaken part of a
work already published [34] but solely focused the discussion on the most relevant
information obtained from the SAXS technique. According to the mentioned work,
the studied samples are prepared by loading four different concentrations of iron
oxide nanoparticles (0.5 wt.%, 3 wt.%, 15 wt.%, and 30 wt.%,) on polymeric
matrices of polyvinyl alcohol (PVA). Synthesis details can be consulted on [34].

Regarding the cited work, the SAXS intensities were well fitted following the
extended Beaucage expression for two structural levels (Eq. 2.36). Among the most
important results, this work stresses that the aggregate size (ξ ) and the fractal
dimension (DF) increase as the nanoparticle concentration rises, indicating the
formation of larger and most compact aggregates for those systems with larger
amounts of Fe oxide nanoparticles. These features are reflected also on their
magnetic properties [49] (Fig. 2.13).

2.5 Small-Angle X-Ray Scattering Instrumentation

An X-ray source, a collimation system, a sample holder, a beam stopper, and a detec-
tion system basically compose every SAXS instrument. In a typical experiment, the
sample is irradiated by a very narrow, collimated beam of fixed diameter, and the
elastic, coherent scattered radiation is detected at very low angles, requiring in first

Fig. 2.13 (a–d) SAXS curves of the magnetic composites. The experimental data represented by
symbols. Guinier and Porod contributions for the two structural levels are presented as doted lines.
(e) Number density of magnetic aggregates (Nξ) as a function of nanoparticle concentration (Figure
reprinted with permission from [34])
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instance that the detector is placed a few meters away from the sample, since the
scattered intensity decays as the inverse of the squared distance. It is noteworthy
that the main instrumental challenge is separating the weak scattered radiation from
the strong main beam, which travels through the sample and reaches the detector
directly, making the beam stop indispensable.

The X-ray source constrains the entire equipment design and construction; it
divides the instruments in two big groups, the laboratory or benchtop SAXS
instruments, equipped with conventional X-ray sources, e.g., X-ray tubes of the
characteristic wavelength of the anode material [5]. Secondly, the synchrotron
SAXS instruments obtain X-rays from the electromagnetic radiation emitted from
charges accelerated at relativistic velocities, usually electrons or positrons. These
instruments combine great advantages like high intensity, narrow angular diver-
gence, and broad spectral range, extending the possibilities of SAXS applications
[1], e.g., time-resolved and anomalous SAXS measurements.

A second classification of the instruments can be done regarding the collimation
mechanism, which must contemplate two main challenges: the beam size, directly
related to the resolution, which must be balanced by larger divergence to ensure
sufficient intensity and the parasitic scattering caused by the process of beam
reduction, which must be minimized. A high-power density of an incident X-ray
beam will be a waste if these aspects are ignored [50]. Three main classes of
instruments can be defined:

(a) Slit-collimated instruments: using parallel slits is the simplest and reasonably
the first historically employed solution to collimate a SAXS instrument beam.
The resolution can be improved with narrower slits and longer inter-slit
distances, but it is limited by the parasitic scattering emitted at low angles. The
latter can be avoided introducing additional slits in the appropriate configura-
tion. In these instruments, also known as Kratky cameras, the primary beam
is usually emitted with a line-shaped cross section; hence the superposition
of intensity contributions from various scattering points along the line-shaped
beam can occur, causing distorted or blurred patterns that must be properly
corrected before being analyzed.

(b) Pinhole-collimated instruments: the growing technological development of
point-source X-ray generators as well as 2-D focusing optics augmented the
popularity of these instruments over slit-collimated, due to sample versatility
and easy availability of data reduction and analysis procedures. In a pinhole-
collimated instrument, the pinhole selects a highly coherent part of the beam
and produces a finite illumination area, with a circular or elliptical shape.
Thus, the scattering pattern is a centrosymmetrical distribution formed by
concentric circles around the illuminated spot of the primary beam, useful for
investigations on orientation distributions.

Compared to slit-collimated instruments, the illuminated volume in the
sample is small and so will be the scattered intensity, comprising the resolution.
The latter can be improved increasing the sample-to-detector distance, resulting
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in larger instruments (up to few meters) and lower intensity at the detector,
increasing the needed measurement time up to hours.

(c) Bonse-Hart instruments: taking advantage of the high angular selectivity of
crystalline reflections, an intense, large cross-sectional X-ray beam, with very
small angular divergence, can be obtained. For this purpose a first fixed crystal is
placed between the source and the sample to collimate the incident beam, so that
the radiation from the source strikes it at the Bragg angle. A second rotatable
crystal placed after the sample is responsible for the analysis of the angular
distribution of the scattered radiation, since the highest reflectivity is only for
radiation impinging upon it at the Bragg angle [51]. The novelty introduced
by Bonse and Hart was an increase in the angular resolution by increasing the
number of reflections in each of the crystals, preserving the main beam intensity
and reducing its tails [52]. With conventional X-ray sources, these instruments
have low efficiency in the mid-q range, because the point-taking technique
excludes the use of position-sensitive detectors, limiting these instruments to
systems of rather large scatterers. Conversely, the point-by-point measurement
limitations can be compensated using higher flux synchrotron radiation [53]. A
third crystal may be added parallel to the second, expecting to diminish even
more the beam tails.

The sample holder is a key component of the instrument; it must be versatile
enough to adapt to many sample preparations and SAXS modes, i.e., transmission
mode and reflection/grazing angle (GISAXS). The sample-to-detector beam path
should be free of scatterers to minimize background scattering, this includes air
molecules, and hence vacuum is required ideally. In most experiments, samples are
destroyed when subjected to vacuum conditions and require control over parameters
such as temperature, pressure, flow/shear rate, humidity, strain, projection angle,
etc. As a consequence, completely homemade or variants of commercially available
sample holders are often used. Most common sample preparations are described in
[2]:

(a) Liquids are usually measured in transmission mode in thin-walled capillaries
of variable thickness, according to the absorbance of the solvents, i.e., heavy
atoms composed of solvents require thinner walls. Suspensions must be stable
over time and sufficiently diluted.

(b) Pastes, rubbers, powders, and vacuum-sensitive materials are usually mounted
on sample holders of removable windows. A commonly used window material
is a polymide or a beryllium film, characterized for being transparent to X-rays,
with high mechanical and thermal stability.

(c) Solids can be fixed to frames; the same film can be used for protection and
stabilization. Thickness must be controlled to ensure sufficient transmittance
for the measurement.

(d) Materials on a substrate can be measured on transmission mode if the substrate
is sufficiently thin and X-ray transparent; otherwise it must be measured in
reflection mode, as long as the thin film material scattering is stronger than
the scattering of the substrate.
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In many cases if samples require a controlled atmosphere or are sensitive to
vacuum, they are placed in a small compartment that is inserted into the vacuum. It
must be kept in mind that the windows and air or gas volume of this compartment
can contribute to background scattering.

The beam stop is responsible for protecting the detection system of the direct
intense main beam or the possible overhanding of the scattered signal caused by
strong backscatter from the detector material when reached by the intense beam.

The main beam can be completely blocked with an opaque, dense material like
lead or tungsten or attenuated with a transparent material to a manageable intensity.
When attenuated, the main beam profile and the zero-angle position can be acquired
directly in each measurement, but possible background scattering caused by the
beam stop material must be taken into account. A third option is to substitute or
condition the beam stop with a PIN diode in order to characterize the transmitted
beam.

In X-ray free-electron lasers (XFEL), the focused primary X-ray beam has
sufficient energy to ablate most materials; small primary beam stops cannot be used
in front of the detectors, as is customary at storage ring sources. Therefore, the X-
ray imaging detectors in the forward scattering direction need to have a central hole
to let the direct beam through.

SAXS parameters of interest are the flux and position of the incident photons.
The detection system employs a mechanism that absorbs the energy from an X-ray
photon and transforms it into an electrical signal. Some of these mechanisms are
the ionization of a gas, liquid, or solid; the excitation of optical states, known as
scintillation; and the excitation of lattice vibrations (phonons).

To this aim, the most commonly employed detectors are [2]:
Wire detectors consist of one or an array of parallel wires to produce a 1-D or

2-D scattering patterns, respectively, placed inside an absorbing gas atmosphere (Xe
or Ar/methane) in the presence of an applied high voltage bias. An entering X-ray
photon ejects an electron from the gas molecules, which accelerates toward a wire
and induces an electrical pulse that propagates in both directions of the wire. The
arrival of the pulse to both of the wire ends is recorded, and the time difference can
be related to the position where the impulse was generated. This technique has a
rather poor spatial resolution but a high sensitivity to different wavelengths.

(a) Charge-coupled device (CCD) detectors, like conventional cameras, detect
visible light which is emitted from a fluorescence screen when an X-ray photon
impacts. A glass fiber plate is placed between the screen and the video chip
to conduce the light with minor distortions. Each pixel consists of a capacitor
that charges with the incident radiation; hence no pulses can be filtered. The
resolution and quality of the acquisition will be dependent on the number, size,
and quality of the chips, on an efficient cooling system, and on the ability of on-
chip binning, which interconnects chip information to increase the precision.

(b) Imaging plates detectors consist of photostimulable composite structures (e.g.,
BaF(Br,I) Eu2+ micrometer-sized crystals coating a plastic plate) capable of
storing a fraction of the absorbed X-ray energy as excited electrons. Posterior
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exposure to visible light liberates the stored energy as luminescence, pro-
portional to the absorbed X-ray intensity. The photostimulated luminescence
wavelength differs from that of the stimulating radiation and can be collected
with photomultiplier tubes or avalanche photodiodes, amplified and converted
to a digital image. The plate can be reused after exposed to visible light to
remove any residual stored energy [54]. The resolution mainly depends on the
readout system.

(c) Solid-state detectors or CMOS (complementary metal-oxide-semiconductor)
are based on a semiconductor crystal, commonly silicon or germanium, sub-
jected to a bias. When an X-ray photon is absorbed, a number of electron-hole
pairs are created proportional to the energy of the incident X-ray photon divided
by the energy required to produce an electron-hole pair, reflected in high-energy
resolution. The applied bias induces a current by the movement of the positive
and negative charge carriers, and the charge, proportional to the energy of the
incident photon, is collected.

The whole instrumental selection and design must be engineered to maximize
the achievable resolution, defined by the length of the flight tube, the beam size
and divergence, and the point spread function of the detector. It must be kept in
mind that each of the components can originate pattern smearing as a consequence
of effects like finite collimation, finite detector resolution, and wavelength spread.
Equilibrium can be looked for between high-quality equipment (costs/facilities) and
manageable data analysis.

2.5.1 Small-Angle X-Ray Scattering and Transmission
Electron Microscopy

In the last section of this chapter, we want to highlight the importance of microscopy
experiments as a complementary technique to determine the structure features in
nanoparticulate systems. Both transmission electron microscopy (TEM) and small-
angle X-ray scattering (SAXS) are the most used techniques to determine the
morphology features of a set of nanoparticles. Both techniques (as well as others
that use radiation) create an output signal by taking advance of the electron density
function difference between the studied objects and surrounding medium. Basically
SAXS and TEM techniques are based on the same physical principle, but, at
the end, the obtained information is recorded in a different way. For example, in
microscopy the scattering pattern is treated by a set of lens, from which the image
is reconstructed. Instead, in a SAXS experiment, the scattering pattern is recorded,
and a potential image must be reconstructed mathematically.

Certainly TEM and SAXS have advantages and disadvantages. It is clear that
the greatest advantage of TEM is the direct generation of real images of the studied
object. However, this technique is restricted to a small portion of the sample, a fact
that, for example, can limit the construction of an accuracy size distribution curve.
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For nanoparticles composed of atoms of low molecular weight (such as carbon,
sulfur, phosphorous, among others), it is also common to have problems identifying
the nanoparticle boundaries. On the other hand, in the SAXS technique, a larger
volume of the sample can be illuminated, a fact that leads to the estimation of
more precisely average values. Despite that the SAXS pattern is obtained from
over all particles oriented in all directions, the structural features are determined
in an indirect way, an issue that could lead to ambiguous results and wrong
interpretations. The previous facts indicate that in order to obtain a complete picture
of the structural features at superatomic scale, it is recommendable to combine both
TEM and SAXS.
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