
Chapter 1
Mathematical Framework

The theory of scalar- and tensor-valued functions constitutes the mathematical
framework based on which modeling of the elasticity, plasticity, and damage in
polycrystalline metallic materials is built. In this chapter, we provide the basic
concepts and key mathematical results to be used in the rest of the book.

We begin by presenting a concise survey of the basic results of vector algebra.
This is also a natural starting point for the development of tensor algebra.

1.1 Elements of Vector Algebra

From elementary geometry, we know that to every three-dimensional point space,
E, we can associate a vector space, V. An element of E is a point in space and a free
vector connects any two points. A free vector is characterized by direction, mag-
nitude, and sense. Free vectors can be added together and multiplied by numbers.

The generalization of the properties of free vectors of elementary geometry led to
the general concept of vector space.

Definition of a Vector Space

A set V is called a vector space over the field R of real numbers, and its elements are
called vectors, if the following conditions are fulfilled:

(I) To any pair of vectors u; v 2 V ; corresponds a vector uþ v 2 V ; called the
sum of these vectors, such that:

(V:1) uþ v ¼ vþ u (commutativity),
(V:2) For any three vectors u; v;w : uþ vþwð Þ ¼ uþ vð Þþw (associativity),
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(V:3) There exists an element of V, called the zero vector (or null vector),
denoted by 0 such that for any vector u 2 V :u ¼ uþ 0.

(V:4) For any vector u, there exists another vector, denoted –u, such that
uþ �uð Þ ¼ 0:

(II) The product of any vector u 2 V with a real number a is also a vector. It has
the following properties:

(V:5) For any a; b 2 R; a buð Þ ¼ abð Þu (associativity),
(V:6) aþ bð Þu ¼ auþ bu (distributivity relative to number addition),
(V:7) a uþ vð Þ ¼ auþ av (distributivity relative to vector addition),
(V:8) 1u ¼ u:

Using the above axioms, it can be shown that the following relations hold:

0u ¼ 0; �1ð Þu ¼ �u; a0 ¼ 0:

The difference between any two vectors u and v is defined as:

u� v ¼ uþ �vð Þ:

Linear Independence of Vectors

Definition A set of n vectors u1;u2; …, un is said to be linearly independent if the
relation:

a1u1 þ a2u2 þ � � � þ anun ¼ 0;

with a1; . . .; an 2 R; can take place if and only if: a1 ¼ a2 ¼ � � � ¼ an ¼ 0:
Otherwise, the set of vectors is said to be linearly dependent.

Dimension of a Vector Space

Definition A vector space V is called n-dimensional, if in V there exists at least one
set of n linearly independent vectors, and any set containing n + 1 vectors is
linearly dependent.

Basis of a Vector Space

Definition In an n-dimensional vector space V, any set of n linearly independent
vectors is called a basis of V.
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Inner Product

Definition Let V be a vector space. An application which associates to any vectors
u and v 2 V a real number, denoted u � v; is called an inner product if it satisfies the
following properties:

(I1) u � v ¼ v�u (commutativity);
(I2) For any a 2 R: auð Þ � v ¼ a u � vð Þ (associativity with respect to multiplication

with real numbers);
(I3) u � vþwð Þ ¼ u � vþ u � w (distributivity with respect to vector addition);
(I4) u � u� 0;
(I5) u � u ¼ 0 if and only if u ¼ 0:

The scalar product can then be used to define the norm (or magnitude) of any
vector u 2 V . The norm of the vector u is defined by:

uj j ¼ ffiffiffiffiffiffiffiffiffi
u � up

; ð1:1Þ

and a vector with unit norm is termed a unit vector. By definition, two vectors are
said to be orthogonal if their inner product is zero.

Euclidean Vector Space

Definition A vector space V endowed with an inner product is called a Euclidean
vector space.

Einstein Summation Convention

In this book, we adopt the Einstein summation convention which states that
whenever the same letter subscript occurs twice in a term, that subscript is to be
given all possible values and the results added together. For example, if i = 1,…, 3,
then, u2i ¼ u21 þ u22 þ u23

Components of a Vector

Theorem 1.1 Let g1; g2; …, gn be a basis for the n-dimensional vector space V.
Any vector u 2 V may be uniquely represented as a linear combination of the basis
vectors gi, i = 1, …, n, i.e.,

u ¼ u1g1 þ � � � þ ungn; ð1:2Þ

The numbers (or scalars) ui are called the components of u relative to this basis.
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Proof Since V is a n-dimensional vector space, the set of n + 1 vectors
g1; g2; . . .; gn; uf g is linearly dependent. Hence, there exist a set of real numbers

a; a1, …, an, not all of them zero, such that

auþ a1g1 þ � � � þ angn ¼ 0; ð1:3Þ

Note that a ought to be nonzero. Indeed, if a ¼ 0 the above equation reduces to
a1g1 þ � � � þ angn ¼ 0, and since g1; g2, …, gn are linearly independent, this would
imply that all ai ought to be zero. Since a 6¼ 0, from Eq. (1.3) it follows that
u ¼ ukgk, with uk ¼ �ak=a, k = 1, …, n.

Therefore, u is a linear combination of the base vectors. Furthermore, the
numbers uk are uniquely determined. Indeed, u may also be expressed as

u ¼ u0kgk; ð1:4Þ

by subtracting Eq. (1.2) from Eq. (1.4), we obtain

u0k � uk
� �

gk ¼ 0:

Given that vectors gk form a basis, it follows that necessarily u0k ¼ uk .
Using Theorem 1.1 in conjunction with the properties (I2) and (I3), it can be

easily shown that the inner product between any two vectors u and v can be
expressed in component form as:

u � v ¼ gkmukvm; with gkm ¼ gk � gm; k;m ¼ 1; . . .; n ð1:5Þ

Obviously, due to the commutativity of the inner product (i.e., property (I1)),

gkm ¼ gmk:

Given that gkf g form a basis, it can also be easily shown that the determinant of
the matrix gkm½ � is nonzero.

Orthonormal Basis

A basis e1; e2; . . .; enf g of the n-dimensional vector space V is called orthonormal,
if any two vectors of the basis are mutually orthogonal and of unit length, i.e.,

ei � ej ¼ dij; ð1:6Þ
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where dij denotes the Kronecker delta symbol,

dij ¼ 1; if i ¼ j
0; otherwise:

�
ð1:7Þ

Note that in view of the orthonormality condition (1.6), the components of a
vector u relative to the orthonormal basis e1; e2; . . .; enf g are:

uk ¼ u � ek: ð1:8Þ

Let u and v be an arbitrary pair of vectors having components uk; vk relative to
the same basis. Then, using Eqs. (1.5) and (1.6), we obtain:

u � v ¼ ukvk: ð1:9Þ

Cross Product

Definition An application which associates to any vectors u and v 2 V a vector
denoted u� v, is called the cross product (or vector product) of u and v if it satisfies
the following properties:

(C1) u� v ¼ �v� u for any u; v 2 V (anti-commutativity);
(C2) avþ bwð Þ � u ¼ a v� uð Þþ b w� uð Þ for any u; v;w 2 V and a; b 2 R;
(C3) u � u� vð Þ ¼ 0 for any u; v 2 V ;
(C4) u� vð Þ � u� vð Þ ¼ u � uð Þ v � vð Þ � u � vð Þ2 for any u; v 2 V :

Using the above properties, it can be easily shown that u� v ¼ 0 if and only if u
and v are linearly dependent.

Scalar Triple Product

The scalar triple product of three vectors u; v;w, denoted by u; v;w½ �, is defined by:

½u; v;w� ¼ u � v � wð Þ: ð1:10Þ

Properties of the Scalar Triple Product

• The scalar triple product is invariant under a circular permutation of the
members of the product, i.e., ½u; v;w� ¼ ½v;w; u� ¼ ½w; u; v�:

• The sign of scalar triple product is reversed when the second and third members
of the product are reversed, i.e., ½u; v;w� ¼ �½u;w; v� ¼ �½v; u;w� ¼ �½w; v; u�:

• The scalar triple product is equal to zero if and only if u; v and w are linearly
dependent.

• For any u; v; t;w 2 V and a; b 2 R: ½auþ bv; t;w� ¼ a½u; t;w� þ b½v; t;w�:
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In a three-dimensional vector space, there exists an orthonormal basis
ekð Þk¼1;...;3. Based on the properties of the cross product and scalar triple product, it
follows that:

e2 � e3 ¼ e1; e2; e3½ �e1; e3 � e1 ¼ e1; e2; e3½ �e2; e1 � e2 ¼ e1; e2; e3½ �e3 ð1:11Þ

e1; e2; e3½ � ¼ �1 ð1:12Þ

Let eijk designate the Ricci symbol, which takes the value 1 when (i, j, k) is a
cyclic permutation of 1, 2, 3, and the value (−1) when (i, j, k) is a anticyclic
permutation of 1, 2, 3, and it is otherwise zero. Therefore,

ei � ej ¼ �eijkek: ð1:13Þ

Two bases are said to be similar if their triple products have the same sign.
A basis e1; e2; e3f g is said to be positively oriented if e1; e2; e3½ �[ 0:
The formula for the cross product between any two vectors in terms of their

components relative to the orthonormal basis ekð Þk¼1;...;3 is found by using the
axioms (C1)–(C2) and Eq. (1.13):

u� v ¼ �eijkuivjek; ð1:14Þ

Also, using Eq. (1.14) one obtains the formula for the scalar triple product of
any three vectors u; v;w to be:

u; v;w½ � ¼ �eijkuivjwk: ð1:15Þ

If the basis is positively oriented, the scalar triple product is the determinant of
the matrix having on the first row the components of u, on the second row the
components of v, and on the third row the components of w. In elementary
geometry, the scalar product of any two nonzero free vectors u and v is designated
by u � v and is defined as:

u � v ¼ uj j vj jcos hð Þ; ð1:16Þ

where uj j and vj j designate the magnitude (or length) of each vector and h is the
angle between the two vectors. If one of the two vectors is zero, their inner product
is, by definition, zero.

By definition, the cross product u� v of two free vectors u and v which are
linearly independent is a vector that is orthogonal to both u and v, and therefore
normal to the two-dimensional plane containing them. The magnitude of u� v is
given by,
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u� v ¼ uj j vj j sin h for ð0\h\pÞ ð1:17Þ

where h is the angle between the vectors u; v:
It can be easily shown that the free vector space is three-dimensional (any three

vectors which are not coplanar form a basis) and that the scalar product defined by
Eq. (1.16) satisfies the properties (I1)–(I5) and the cross product defined by
Eq. (1.17) satisfies the axioms (C1)–(C4), i.e., the space of free vectors is endowed
with an inner product and a vector product.

Therefore, the 3-D physical space is a Euclidean vector space. In this space, the
scalar triple product is the volume of the parallelepiped defined by the respective
vectors. If this volume is nonzero, then the three vectors are linearly independent. If
u; v;w are linearly independent, then the triad u; v;wf g forms a basis.

Cartesian Coordinate Frame

A Cartesian coordinate frame for the three-dimensional Euclidean space consists of
a reference point O called the origin together with a positively oriented orthonormal
basis e1; e2; e3f g. Being positively oriented, the basis vectors satisfy:

ei � ej ¼ dij; and ei; ej; ek
� � ¼ eijk:

So far, we have provided a concise survey of basic results of vector algebra.
A vector is also referred to as a first-order tensor, while a scalar is a tensor of order
zero. In the next section, we shall introduce the concept of a second-order tensor
and their properties.

1.2 Elements of Tensor Algebra

1.2.1 Second-Order Tensors

Definition A second-order tensor is a linear transformation of the vector space
V into itself. Specifically, a second-order tensor T assigns to an arbitrary vector v a
vector denoted by Tv in such a way that for any vectors u and v, and any real
number a, and b:

T auþ bvð Þ ¼ a Tuð Þ þ b Tvð Þ ð1:18Þ
The set of second-order tensors on the three-dimensional Euclidean vector space is
denoted by L. From here on, a second-order tensor will be simply called tensor.
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We say that two tensors T and U are equal if,

Tv ¼ Uv; 8v 2 V :

The null tensor, denoted by O assigns to any vector v the zero vector and the
identity tensor I assigns to v the vector v itself:

Ov ¼ 0; Iv ¼ v 8v 2 V :

The sum TþU of tensors T and U and the product aT of a tensor T and a real
number (scalar) a are defined as follows,

TþUð Þv ¼ TvþUv 8v 2 V

aTð Þv ¼ a Tvð Þ; 8v 2 V ; a 2 R:

Moreover, for any tensor T, there exists another tensor, denoted �T, such that:

�Tð Þv ¼ �Tv � Tþ �Tð Þ¼ O:

It can be easily shown from their definitions that I;O; �Tð Þ;TþU; aT are
actually linear transformations [i.e., satisfy the requirement (1.18)].

On the basis of the same definitions, it can be readily established that the set of
all tensors L, endowed with the addition and scalar multiplications is a vector space
(i.e., the axioms (V1)–(V8) concerning the addition and scalar multiplication and
existence of a null element are satisfied, see Sect. 1.1). It will be later shown that
L is nine-dimensional.

Multiplication of Tensors

The rule for multiplication (or composition) of tensors is:

ABð Þu ¼ AðBuÞ 8A;B 2 L and 8u 2 V ð1:19Þ

We leave to the reader to establish that:

a ABð Þ ¼ aAð ÞB ¼ A aBð Þ 8A;B 2 L and a 2 R

A BþCð Þ ¼ ABþAC

AþBð ÞC ¼ ACþBC

A BCð Þ ¼ ABð ÞC
AO ¼ OA ¼ O; AI ¼ IA ¼ A

ð1:20Þ

In order to construct bases in the vector space of all second-order tensors, L, we
now introduce the concept of tensor product of two vectors.
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Tensor Product (Dyadic Product) of Two Vectors

Definition The tensor product or dyadic product of two vectors u; v is a tensor,
denoted by u� v, and defined by:

ðu� vÞ wð Þ ¼ uðv � wÞ 8w 2 V ð1:21Þ

The proof that u� v is actually a second-order tensor follows from the prop-
erties of the inner product (see axioms (I1)–(I5)). Furthermore, the properties

ða1w1 þ a2w2Þ � u ¼ a1 w1 � uð Þþ a2 w2 � uð Þ
u� ða1w1 þ a2w2Þ ¼ a1 u� w1ð Þþ a2 u� w2ð Þ; ð1:22Þ

can be easily deduced from (1.21) by using the properties of commutativity and
distributivity with respect to addition of the inner product of two vectors [i.e.,
axioms (I1) and (I2)].

Let e1; e2; e3f g be a positive-oriented orthonormal basis of the three-dimensional
space. We have the following identity:

ei � ei ¼ I: ð1:23Þ

Proof Note that for any vector v,

ei � eið Þv ¼ v � eið Þei ¼ v ¼ Iv:

Theorem 1.2 The set of tensors ek � emf g with k, m = 1, …, 3 are a basis of L,
which is thus a nine-dimensional vector space. Moreover, any tensor T admits the
representation

T ¼ Tkmek � em with Tkm¼ek � Tem; k;m ¼ 1; . . .; 3: ð1:24Þ
Proof Assuming that there exist the real numbers kkm, with k, m = 1, …, 3 such
that,

kkmek � em ¼ 0;

we get,

0 ¼ 0el ¼ kkmek � emð Þel ¼ kkmekð Þ em � elð Þ ¼ kkmekdml ¼ kklek: ð1:25Þ

Since ekf g is a basis, it follows that kkl ¼ 0, for any k, l = 1, …, 3.
Consequently, ek � emf g, k, m = 1,…, 3 are a linearly independent set of tensors in
the space L.

Let us consider now an arbitrary tensor T and denote by Tkm the components
relative to the orthonormal basis ekf g of the vector Tem, so that,
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Tem ¼ Tkmek and Tkm¼ek � Tem:

Using the orthonormality of the basis ekf g, the properties of the tensor product
and the above relation, it follows that for an arbitrary vector v of components vs
relative to this basis, we have:

T� Tkmek � emð Þv ¼ T� Tkmek � emð Þ vsesð Þ ¼ vsTes � vsTkmek em � esð Þ
¼ vs Tksek � Tkmekdmsð Þ ¼ vs Tksek � Tksekð Þ ¼ 0

ð1:26Þ

Hence, T admits the representation given by Eq. (1.24).
The nine real numbers Tkm, uniquely defined by Eq. (1.24), are called the

Cartesian components of the tensor T relative to the basis e1; e2; e3f g: If v ¼ Tu,
we also have by Eq. (1.24)

v ¼ Tkmek � emð Þu ¼Tkmumek;

and hence,

vk ¼ Tkmum: ð1:27Þ

Based on the representation given by Eq. (1.24), it follows that:

ABð Þkm¼ AkpBpm:

Transpose of a Tensor

Definition Associated with any tensor T, there is a unique tensor denoted TT ,
called the transpose of T, defined as:

TTu
� � � v ¼ u � Tv for any u; v 2 V : ð1:28Þ

The above rule defines in a unique way TT . At the same time, using the above
definition, the linearity of T, and the properties of the scalar product in V, it can be
shown that TT is a linear mapping, hence, a second-order tensor. Denoting by Tkm
and TT

km, the components of T and TT in the basis ek � emf g k, m = 1, …, 3,
according to the definition of the components of a tensor given by Eq. (1.24),

TT
km ¼ ek � TTem ¼ em � Tek ¼ Tmk;

Hence, TT ¼ Tmkek � em:
In other words, the matrix of the Cartesian components of the transpose tensor

TT is the transpose of the matrix of the components of the tensor T: Also, it follows
from the definition of the transpose of a tensor that,
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TT
� �T¼ T; TUð ÞT¼ UTTT for any T;U 2 L

and,

u� vð ÞT¼ v� u for any u; v 2 V :

Definition A tensor T is called symmetric if,

TT ¼ T
and skew or antisymmetric if,

TT ¼ �T

If the tensor T is symmetric, the matrix of its components is also symmetric; if
the tensor T is antisymmetric, the matrix of its components is also antisymmetric.
Consequently, in the three-dimensional vector space, a symmetric tensor has six
independent components, and an antisymmetric tensor has three independent
components.

Moreover, if X is an antisymmetric tensor, all its diagonal components are zero,
and there exists a unique vector x such that,

X u ¼ x� u for any u 2 V : ð1:29Þ

If T is an arbitrary tensor, the symmetric part, TS, of T and the skew-symmetric
part, TA, of T are defined as:

TS ¼ 1
2

TþTT� �
;TA ¼ 1

2
T� TT� �

;

such that,

T ¼ TS þTA ð1:30Þ

The above identity demonstrates that an arbitrary tensor T can be uniquely
expressed as the sum of a symmetric tensor and an antisymmetric tensor. Moreover,
on the basis of (1.29)–(1.30) it follows that the set of symmetric tensors, denoted LS,
forms a six-dimensional subspace of L while the set of all skew-symmetric tensors,
denoted LA, forms a three-dimensional subspace of L.
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Trace of a Tensor

Definition The trace of the tensor T, denoted tr Tð Þ, is the real number given by,

trðTÞ ¼ Tkk; k ¼ 1; . . .; 3: ð1:31Þ
where Tkm are the components of T in the basis ekf g:
It can be easily seen that the trace is a linear function from L to R, and that,

tr u� vð Þ ¼ u � v for any u; v 2 V ;

tr TT� � ¼ tr Tð Þ; trðABÞ ¼ trðBAÞ for any tensors A;B;T 2 L:
ð1:32Þ

Inner Product (Contracted Product) of Two Tensors

Definition The inner product (contracted product) of any two tensors T and U,
denoted by T : U is the real number:

T : U ¼ tr TUT
� � ð1:33Þ

It is easily seen that this operation defined on the Cartesian product L � L and
having values in R, satisfies the axioms (I1)–(I5) of a scalar product over the vector
space of second-order tensors. Moreover, if Tkm and Ukm are the components of T
and U relative to the basis ekf g, then,

T:U ¼ TkmUkm: ð1:34Þ

This scalar product can be used to define the norm (also called the magnitude) of
any tensor T, as the real number,

Tk k ¼ T : Tð Þ1=2¼ TkmTkm: ð1:35Þ

From the definition of the scalar product of second-order tensors, it follows that
for any vectors u; v; a; b 2 V ,

a� bð Þ : u� vð Þ ¼ a � uð Þ b � vð Þ ð1:36Þ

In particular, if ekf g with k = 1, …, 3 is an orthonormal basis in V,

ei � ej
� � � ek � emð Þ ¼ ei � ekð Þ ej � em

� � ¼
dikdjm ¼ 1; if i ¼ k; j ¼ m

0; otherwise

� ð1:37Þ
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Hence, ek � emf g with k, m = 1, …, 3 is an orthonormal basis in the space L of
second-order tensors.

In many computations, it is useful to present the components Tkm of a tensor T
relative to a given Cartesian basis ekf g k = 1, …, 3 as the 3 � 3 matrix:

T ¼ Tkm½ � ¼
T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5:

Determinant of a Tensor

Definition The determinant of a tensor T, denoted by det T is defined by:

detT ¼ det Tkm½ � ¼ epqrT1pT2qT3r; ð1:38Þ
where Tkm½ � denotes the matrix of the Cartesian components of T in the basis

ekf g and p, q, r = 1, …, 3. From this definition, it follows that for any tensors T;U
and real number a:

det aTð Þ ¼ a3 det Tð Þ; detTT ¼ detT; det TUð Þ ¼ detTð Þ detUð Þ ð1:39Þ

If det T = 0, the tensor T is said to be singular.

Inverse of a Second-Order Tensor

If detT 6¼ 0, the tensor T is said to be invertible (or non-singular) since there exists
a unique tensor, called the inverse of T, and denoted by T�1 such that

TT�1 ¼ T�1T ¼ I: ð1:40Þ

From Eqs. (1.39) to (1.40), it follows that

detT�1 ¼ detTð Þ�1; TUð Þ�1¼ U�1T�1; TT
� ��1¼ T�1� �T ð1:41Þ

Orthogonal Tensors

A special class of tensors has as a defining property the invariance of the scalar
product of any two vectors.

Definition A tensor Q is orthogonal if,

Qu �Qv ¼ u�v for any u; v 2 V : ð1:42Þ

Taking u ¼ v in the above equation, it follows that
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Quj j ¼ uj j;

so an orthogonal tensor applied to any vector u preserves its length. Furthermore,
from Eq. (1.42) we obtain

Qu �Qv
Quj j Qvj j ¼

u�v
uj j vj j ;

so the angle between two vectors u and v is preserved whenever u and v are
transformed by an orthogonal tensor Q: Since by definition of the transpose of a
tensor [see Eq. (1.28)],

Qu �Qv ¼ u� QT Qvð Þ� 	 ¼ u� QTQ
� �

v
� 	

;

making use of Eq. (1.42) we obtain that a necessary and sufficient condition for
Q to be orthogonal is

QTQ ¼ I: ð1:43Þ

From Eq. (1.43), it follows det QTQ
� � ¼ detQð Þ2, hence,

detQ ¼ �1; QT ¼ Q�1: ð1:44Þ

Q is said to be a proper orthogonal tensor if detQ ¼ 1 and an improper
orthogonal tensor if detQ ¼ �1.

Note also that from Eq. (1.42), it follows that if ekf g is an orthonormal basis, the
set Qekf g also forms an orthonormal basis.

Change of Coordinate System: Transformation Matrix and Transformation Rules of
Vector and Second-Order Tensor Components

Let us assume now that e1; e2; e3f g and e	1; e
	
2; e

	
3

� 	
are three-dimensional positive-

oriented orthonormal bases of the three-dimensional space. Relative to these bases,
an arbitrary vector u has the components ui and respectively u	i , i = 1, …, 3. Then,

uj ¼ qjiu
	
i with qji ¼ ej � e	i ; i; j ¼ 1; . . .; 3 ð1:45Þ

or, in matrix form:

uðeiÞ ¼ Quðe	
i
Þ

where Q ¼ qij
� �

is the transformation matrix from the basis e	1; e
	
2; e

	
3

� 	
to the basis

e1; e2; e3f g, and uðeiÞ ¼ u1; u2; u3ð Þ; uðe	
i
Þ ¼ u	1; u

	
2; u

	
3

� �
are the components of u in

the respective basis.
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Proof First, let’s express each of the vectors of the basis e	1; e
	
2; e

	
3

� 	
relative to the

basis e1; e2; e3f g: For i-fixed,

e	i ¼ e	i � ej
� �

ej ¼ qjiej ¼ q1ie1 þ q2ie2 þ q3ie3 ð1:46Þ

i.e., the column “i” of the matrix Q contains the components of e	i relative to the
basis e1; e2; e3f g: Therefore, relative to the basis given by e	1; e

	
2; e

	
3

� 	
, the vector u

can be expressed as:

u ¼ u	i e
	
i ¼ u	i qjiej ð1:47Þ

In view of Theorem 1.1, the representation of a vector as a linear combination of
the vectors of a given basis is unique. Thus from Eq. (1.47), it follows that for j-
fixed, the component uj of the vector u is:

uj ¼ qjiu
	
i or uðeiÞ ¼ Quðe	

i
Þ:

As already mentioned, the transformation matrix Q is orthogonal, and accord-
ingly, Q�1 ¼ QT [Eq. (1.44)], thus,

uðe	
i
Þ¼QTuðeiÞ:

In a similar manner, it can be shown that the transformation rule for tensor
components is:

Tkm ¼ qkrqmsT
	
rs and T	

rs ¼ qkrqmsTkm; k; r;m; s ¼ 1; . . .; 3;

or

T ¼ QT	QT and T	 ¼ QTTQ ð1:48Þ

Orthogonal tensors and their properties are of great importance for the
description of the mechanical response of polycrystalline materials. For instance,
intrinsic crystal symmetries are characterized by various orthogonal tensors or
transformations (see Chap. 3).

Remark It is important to note that the trace and determinant of a tensor are
invariants, i.e., have the same value irrespective of the Cartesian coordinate system
in which the tensor is described. Indeed, using the transformation rule given by
Eq. (1.48), it follows that:

trðTÞ ¼ Tkk ¼ qkrqksT
	
rs ¼ drsT

	
rs ¼ trðT	Þ;

det T	ð Þ ¼ det QT
� �

det TQð Þ ¼ det Q�1� �
det Tð Þ det Qð Þ ¼ detðTÞ ð1:49Þ
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Invariants of a second-order tensor and Spectral Theorem

In the mechanics of deformable bodies, an important role is played by the eigen-
values and eigenvectors of various second-order tensors, such as Cauchy’s stress
tensor. Thus, we briefly present the definitions of eigenvalues, eigenvectors, and
invariants highlighting some important properties of symmetric tensors.

Eigenvalues and Eigenvectors of Second-Order Tensors

Definition A scalar k is said to be an eigenvalue of a tensor T if there exists a
nonzero vector u, such that

Tu ¼ ku; ð1:50Þ
where, u is called eigenvector of T associated to the eigenvalue k. Reciprocally,
a nonzero vector u is said to be an eigenvector of T if there exists a real number k
such that Eq. (1.50) holds. Note that in this case k is an eigenvalue of T associated
to u.

The set of all vectors u satisfying the Eq. (1.50) forms a subspace of V, which is
called the characteristic space of T corresponding to the eigenvalue k. A unit
eigenvector of T is called a principal direction of the tensor T. Equation (1.50)
implies that k is an eigenvalue of T if and only if it is a real root of the algebraic
equation,

detðT� kIÞ ¼ 0 ð1:51Þ

The above equation is called the characteristic equation of T:
Let ekf g, k = 1, …, 3 be an orthonormal basis. By expanding the determinant in

Eq. (1.51), the characteristic equation can be written as a third-order algebraic
equation for k:

k3 � ITk
2 � IITk� IIIT ¼ 0; ð1:52Þ

where

IT ¼ T11 þ T22 þ T33 ¼ trT; ð1:53Þ

IIT ¼ � T22 T23
T32 T33










� T11 T13

T31 T33










� T11 T12

T21 T22










 ¼ 1

2
tr T2
� �� trTð Þ2

h i
ð1:54Þ

IIIT ¼ det½Tkm� ¼ detT: ð1:55Þ

The scalars IT ; IIT ; IIIT are referred to as principal invariants of T, with IT being
called the first invariant, IIT the second invariant, and IIIT third-invariant of the
tensor T, respectively.
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It is important to recall that since the trace and determinant of any tensor do not
depend on the basis ekf g [see Eq. (1.49)] IT ; IIT ; IIIT have the same values irre-
spective of the basis ekf g used to write the characteristic equation, i.e., they are
invariants relative to a change of basis in V.

Let k1; k2; k3 be the roots of the third-order characteristic Eq. (1.52). Classical
linear algebra results in conjunction with Eqs. (1.53)–(1.55) lead to

IT ¼ trT ¼ k1 þ k2 þ k3

IIT ¼ 1
2

tr T2� �� trTð Þ2
h i

¼ � k1k2 þ k2k3 þ k3k1ð Þ;
IIIT ¼ detT ¼ k1k2k3:

ð1:56Þ

The next result, whose proof we omit, is a central theorem of linear algebra and
one of great importance in modeling the behavior of materials.

Cayley–Hamilton Theorem

A symmetric second-order tensor T satisfies its own characteristic equation, i.e.,

T3 � ITT2 � IITT� IIITI ¼ 0: ð1:57Þ

It can also be shown (see, e.g., Halmos [3]) that:

Spectral Theorem

A symmetric second-order tensor T has three real eigenvalues (not necessarily
distinct) and an orthonormal basis n1; n2; n3f g such that:

T ¼ k1n1 � n1 þ k2n2 � n2 þ k3n3 � n3: ð1:58Þ

• If k1; k2 and k3 are distinct, the characteristic spaces of T are one-dimensional
vector subspaces of V, generated by the principal directions n1; n2 and n3,
respectively.

• If two principal values are equal, k1 6¼ k2 ¼ k3;T has only two distinct char-
acteristic spaces, namely the line generated by n1 and the plane perpendicular to
n1 and the representation (1.58) reduces to:

T ¼ k1n1 � n1 þ k2 I� n1 � n1ð Þ: ð1:59Þ

• If k1 ¼ k2 ¼ k3, then T has a single characteristic space, and:
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T ¼ k1I: ð1:60Þ

The relations (1.58)–(1.60) give the spectral decomposition of the tensor T:

Proof To prove that the eigenvalues of a symmetric tensor T are all real, we will
show that if k is a root of the characteristic Eq. (1.52), then k ¼ �k: Indeed, if
k ¼ aþ ib, i ¼ ffiffiffiffiffiffiffi�1

p� �
, there exist u ¼ vþ iw nonzero such that Tu ¼ ku:Writing

this latter equation in component form relative to the basis ekf g and separating the
real and imaginary parts, we have:

Tkmvm � avk þ bwk ¼ 0; and Tkmwm � awk � bvk ¼ 0; with k;m ¼ 1. . .3

ð1:61Þ
Since Tkm ¼ Tmk, by multiplying the first Eq. (1.61) by wk and the second one by

�vkð Þ and then subtracting one from another, we obtain:

b vkvk þwkwkð Þ ¼ b vj j2 þ wj j2
� �

¼ 0:

Since u is nonzero, from the above equation it follows that b = 0, and thus
k 2 R: On the other hand, the characteristic equation is of order 3, and it has three
roots (not necessarily distinct).

Assuming that the eigenvalues k1; k2; k3 are distinct, and denoting by n1; n2; n3
the corresponding principal directions of the respective eigenvalues, we have:

Tn1 ¼ k1n1;Tn2 ¼ k2n2;Tn3 ¼ k3n3: ð1:62Þ

It can be easily shown that the proper vectors of a symmetric tensor T corre-
sponding to two distinct eigenvalues are reciprocally orthogonal, hence n1; n2 and
n3 form an orthonormal basis. Next, using successively Eqs. (1.23) and the defi-
nition of the dyadic product, we can express:

T ¼ TI ¼ T ni � nið Þ ¼ Tnið Þ � ni ¼
X3
i¼1

ki ni � nið Þ:

The proof for the other two cases (i.e., repeated roots) can be obtained in a
similar manner.

Equation (1.58) is referred to as the spectral decomposition of a symmetric
second-order tensor. The spectral theorem is of great importance for the theory of
elasticity and plasticity.
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Positive-Definite Tensor, Polar Decomposition Theorem

Definition A tensor T is said to be positive semi-definite if for any vector u:

u � Tu� 0:
If the stronger requirement,

u � Tu[ 0 8u 6¼ 0 ð1:63Þ

is fulfilled, T is said to be positive-definite. Using the above definition, it follows
that the eigenvalues of a symmetric positive-definite tensor are strictly positive.
Hence,

detT[ 0;

and, QTQT is symmetric and positive-definite for any proper orthogonal tensor Q:
This implies that any symmetric positive-definite tensor T admits an inverse.
Moreover, from the spectral theorem [Eq. (1.58)], it follows that the inverse of T
has the following spectral representation:

T�1 ¼
X3
i¼1

k�1
i ni � nið Þ;

where ki are the eigenvalues of T and n1; n2; n3f g are the associated eigenvectors
(with corresponding representations deduced from Eqs. (1.59) and (1.60), respec-
tively, if the eigenvalues ki are not distinct).

Another important result in the mechanics of materials, obtained using the
spectral theorem, concerns the existence of the square root of a positive-definite
tensor. It can be shown that given a symmetric positive semi-definite tensor T, there
exists a unique symmetric and positive semi-definite tensor U, called the square
root of T, and denoted

ffiffiffiffi
T

p
, such that

U2 ¼ T: ð1:64Þ

Indeed, if T ¼ k1n1 � n1 þ k2n2 � n2 þ k3n3 � n3, with k1 � 0;k2 � 0; k3 � 0
then the tensor, defined by

ffiffiffiffi
T

p ¼ P3
i¼1

ffiffiffiffi
ki

p
ni � nið Þ is symmetric,

positive-definite, and satisfies the requirement (1.64).

Polar Decomposition Theorem

Any invertible tensor A with detA[ 0 has two unique multiplicative
decompositions,
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A ¼ RU and A ¼ VR;

with U and V symmetric and positive-definite, and R orthogonal.

Deviator of a Symmetric Tensor

Definition The deviator of a nonzero symmetric tensor T, denoted T0, is defined as:

T0 ¼ T� trT
3

I: ð1:65Þ
To simplify writing let us denote, trTð Þ=3 ¼ p:
Note that T0 is symmetric and traceless (trT0 = 0) and, its second and

third-invariants can be expressed in terms of the invariants of T as:

IT0 ¼ 0

IIT0 ¼ 1
2

tr T02� �� � ¼ IIT þ 3p2;

IIIT0 ¼ det T0ð Þ ¼ IIIT þ p IITð Þþ 2p3:

ð1:66Þ

Lemma 1.1 Let T be a symmetric second-order tensor, and ki, i = 1, …, 3, its
principal values. Let Cn ¼ kn1 þ kn2 þ kn3, where n is a positive integer. Then, the
following recurrence relation holds:

Cnþ 1 ¼ 3pð ÞCn þ IITCn�1 þ IIITCn�2 for n� 2 ð1:67Þ
Proof Let us note that by definition, C0 ¼ 3, and from Eq. (1.56) we have:

C1 ¼ IT ¼ 3p;

C2 ¼ k1 þ k2 þ k3ð Þ2�2 k1k2 þ k1k3 þ k2k3ð Þ ¼ 3pð Þ2 þ 2IIT

C3 ¼ k31 þ k32 þ k33 ¼ 3pð ÞC2 þ IITC1 þ 3IIIT ¼ 27p3 þ 9pIIT þ 3IIIT
On the other hand,

Cnþ 1 ¼ kn1 þ kn2 þ kn3
� �

k1 þ k2 þ k3ð Þ � kn1 k2 þ k3ð Þ � kn2 k1 þ k3ð Þ
� kn3 k1 þ k2ð Þ

Therefore,

Cnþ 1 ¼ 3pð ÞCn � k1k2 þ k2k3 þ k3k1ð Þ kn�1
1 þ kn�1

2 þ kn�1
3

� �
þ k1k3k

n�1
2 þ k2k3k

n�1
1 þ k1k2k

n�1
3

� �

or,
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Cnþ 1 ¼ 3pð ÞCn � k1k2 þ k2k3 þ k3k1ð Þ Cn�1ð Þ
þ k1k2k3 kn�2

1 þ kn�2
2 þ kn�2

3

� �

Further substitution of Eq. (1.56) leads to the recurrence relation Eq. (1.67).
Another useful result of importance in defining yield criteria for isotropic materials
with the same behavior in tension–compression is given below.

Lemma 1.2 For any integer n� 1, the following recurrence relation holds:

C2nþ 4 ¼ C2nþ 2 k21 þ k22 þ k23
� �� C2n k21k

2
2 þ k21k

2
3 þ k22k

2
3

� �
þC2n�2 k21k

2
2k

2
3

� � ð1:68Þ

Proof

C2nþ 4 ¼ k2nþ 4
1 þ k2nþ 4

2 þ k2nþ 4
3

� � ¼ k2nþ 2
1 þ k2nþ 2

2 þ k2nþ 2
3

� �
k21 þ k22 þ k23
� �

� k2nþ 2
1 k22 þ k23

� �� k2nþ 2
2 k21 þ k23

� �� k2nþ 2
3 k21 þ k22

� �

or,

C2nþ 4 ¼ C2nþ 2 k21 þ k22 þ k23
� �� C2n k21k

2
2 þ k21k

2
3 þ k22k

2
3

� �
þ k21k

2
2k

2n
3 þ k21k

2
3k

2n
2 þ k22k

2
3k

2n
1

Further collecting the last three terms in the above expression, we obtain,

C2nþ 4 ¼ C2nþ 2 k21 þ k22 þ k23
� �� C2n k21k

2
2 þ k21k

2
3 þ k22k

2
3

� �þ k21k
2
2k

2
3C2n�2

1.2.2 Higher-Order Tensors

Tensor of Order n

Definition A tensor of order n (or nth-order tensor) is a linear mapping that
assigns to each vector u a tensor of order (n–1), for n� 3: This definition, in
conjunction with that of a second-order tensor given in the previous subsection,
allows the iterative introduction of tensors of an arbitrary order. We denote by Ln
the set of all tensors of order n, n� 3: The sum AþB of any two nth-order tensors
A and B, and the product aA ¼ Aa of a nth-order tensor and a real number a are
defined by the equations:
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AþBð Þv ¼ AvþBv; aAð Þv ¼ a Avð Þ: ð1:69Þ

As in the case of second-order tensors, it is easy to see that Ln endowed with the
above operations and similar definitions for the zero tensor and opposite tensor
�Að Þ, respectively, form a vector space.

Definition The tensor product or dyadic product of n vectors ui, with i = 1, …, n,
is a tensor of nth-order, denoted by u1 � u2. . .� un and is defined by:

ðu1 � u2. . .� unÞ wð Þ ¼ u1 � u2. . .� un�1ðun � wÞ 8w 2 V : ð1:70Þ

Note that for n = 2 the above definition reduces to the definition of a dyadic
product of any two vectors given by Eq. (1.21). In particular, the tensor product of
three vectors u1; u2; u3 2 V is a third-order tensor u1 � u2 � u3, which assigns to
any vector a the second-order tensor u1 � u2ð Þ u3 � að Þ, so:

ðu1 � u2 � u3Þa ¼ u1 � u2ð Þ u3 � að Þ 8a 2 V ð1:71Þ

In the mechanics of deformable bodies, the role of the third-order tensors is
relatively reduced. However, in order to introduce the gradient of a second-order
tensor field, and to obtain in this way the divergence of a second-order tensor field,
we must use third-order tensor fields.

In general, the products ek1 � ek2 . . .� ekn ; k1; . . .; kn ¼ 1; . . .; 3 form a basis of
Ln. Hence, Ln the vector space of nth-order tensors is 3n dimensional, and every
tensor A can be uniquely written in the form:

A = Ak1...knek1 � ek2 . . .� ekn ; ð1:72Þ

where the scalars Ak1...:kn are the Cartesian components of A in the considered basis.
Furthermore, if T ¼ Av and T = Tk1...kn�1ek1 � ek2 . . .� ekn by applying the defini-
tion (1.70), we obtain the expression of the components of the (n − 1)th-order
tensor T in terms of the components of A and of the vector v as:

Tk1...kn�1 ¼ Ak1...knvkn :

Fourth-Order Tensors

The dimension of the vector space of fourth-order tensors, L4, is 34 ¼ 81, and any
fourth-order tensor U can be expressed in a unique way as a linear combination of
fourth-order dyads ek � el � em � en, k, l, m, n = 1, …, 3; i.e.,

U ¼ Uklmnek � el � em � en; ð1:73Þ
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the numbers Uklmn, k, l, m, n = 1, …, 3 being the components of U in the con-
sidered basis; if A = U v the components of the third-order tensor A are:

Aklm ¼ Uklmnvn: ð1:74Þ

Transformation Rules for the Components of Fourth-Order Tensors

If e	1; e
	
2; e

	
3

� 	
are three-dimensional positive-oriented orthonormal bases of the

three-dimensional space V, then the components of the fourth-order tensor in the
basis e	1; e

	
2; e

	
3

� 	
are:

Urstu ¼ qkrqlsqmtqnuUklmn; ð1:75Þ

where Q ¼ qij
� �

is the transformation matrix from the new basis e	1; e
	
2; e

	
3

� 	
to the

old basis e1; e2; e3f g and r, s, t, u = 1, …, 3.
Relative to any orthonormal basis, the fourth-order identity tensor I4 has the

components:

I4 ¼ dkmdlnek � el � em � en: ð1:76Þ

Contracted Products Between Tensors

In the previous section, we defined the inner product (contracted product) of any
two second-order tensors [see Eq. (1.33)]. In the following, we introduce contracted
products between various nth-order tensors, which will be later used to define
anisotropic yield criteria in terms of transformed tensors (see Chap. 5).

Definition The left dot product and right dot product (contracted product) of a
vector v and a second-order tensor T is the vector defined as:

v � T ¼ TTv

T � v ¼ Tv
ð1:77Þ

Relative to an orthonormal basis e1; e2; e3f g,

v � T ¼ vkTklel; T � v ¼ Tklvlek ð1:78Þ

with k, l = 1, …, 3.

Definition The left dot product and right dot product (contracted product) of a
vector v and a third-order tensor A is the second-order tensor defined as:

v � A ¼ ATv ¼ vkAklmel � em;

A � v ¼ ATv ¼ Aklmvmek � el:
ð1:79Þ

with k, l, m, n = 1, …, 3.
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Definition The contracted product of a fourth-order tensor U and a second-order
tensor T is a second-order tensor defined as:

UT ¼ UklmnTmnek � el: ð1:80Þ

Using the transformation rules of the components of vectors, second-order,
third-order, and fourth-order tensors [see Eqs. (1.45), (1.48), (1.74)–(1.75)], it can
be shown that these contracted products are independent of the basis used.

Remark Note that if U ¼ UT then the inner product of U with any second-order
tensor B ¼ Bklek � el is given by:

B � U ¼ UklmnBklTmn ð1:81Þ

and in particular the norm of U is:

Uk k2¼ U � U ¼ U �UT ¼ UklmnUklTmn ð1:82Þ
Remark On the basis of the definition and properties of the contracted product between
a fourth-order tensor and a second-order tensor, it can be concluded that a fourth-order
tensor can be considered as being a linear mapping of the vector space L of second-
order tensors onto itself. Therefore, we can introduce the product or composition of
two fourth-order tensors using the usual rule of composition of functions.

Product (Composition) of Fourth-Order Tensors

Definition The product (or composition) of any fourth-order tensors U and W is
the fourth-order tensor defined as:

UWð Þ Tð Þ ¼ U WTð Þ for any T 2 L: ð1:83Þ
Let e1; e2; e3f g be an orthonormal basis, the product L ¼ UW has the

components:

Lklmn ¼ UklrsWrsmn; with k; l;m; n ¼ 1; . . .; 3:

It can be easily shown that fourth-order identity tensor I4 [see Eq. (1.76)] has the
following properties:

I4T ¼ T; for any second-order tensor T and for any fourth-order tensor U,

I4U ¼ UI4 ¼ U:

Given the above properties of I4 and of the product of fourth-order tensors, the
inverse and transpose of a fourth-order tensor are defined in the same manner as the
inverse and transpose of second-order tensors [see definitions and Eq. (1.40)].
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Transpose of a Fourth-Order Tensor

Definition Associated with any fourth-order tensorU, there is a fourth-order tensor
called the transpose of U, denoted by UT such that:

A : UTB
� � ¼ B : UA; 8A;B 2 L ð1:84Þ

It can be easily shown that the above requirement uniquely defines the transpose
UT and that it is indeed a fourth-order tensor, its components relative to an
orthonormal basis being:

UT
klmn ¼ Umnkl ð1:85Þ

Symmetric Fourth-Order Tensors

Definition A fourth-order tensor U is symmetric if,

UT ¼ U: ð1:86Þ

Therefore, it follows that if U is symmetric its components satisfy the
requirements:

Uklmn ¼ Umnkl; with k; l;m; n ¼ 1; 2; 3: ð1:87Þ

We shall denote by LS4 the set of all symmetric fourth-order tensors. From
Eq. (1.87), it follows that a symmetric fourth-order tensor has only 45 independent
components (dimension of LS4 = 45). When introducing anisotropy using the linear
transformation approach (see Chap. 5), an important role is played by those sym-
metric fourth-order tensors which also satisfy the additional symmetry property:

UTT ¼ UT; 8T 2 L. ð1:88Þ

Denoting by Uklmn the components of the symmetric fourth-order tensor U, it
follows that the requirements (1.87) and (1.88) imply that:

Uklmn ¼ Ulkmn ¼ Uklnm ¼ Umnkl; with k; l;m; n ¼ 1. . .3; ð1:89Þ

so the tensor U has only 21 independent components. Note that the above sym-
metry requirements imply

UTð ÞT¼ UT; 8T 2 L

so,
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UT ¼ UTS;

where TS denotes the symmetric part of the second-order tensor T [see Eq. (1.30)].
An immediate consequence is that:

UX ¼ 0; for any skew tensor X: ð1:90Þ

Thismeans that a symmetric fourth-order tensorU, having the additional symmetry
properties of Eq. (1.89) is not a one-to-one mapping of L, the space of second-order
tensors. However, a symmetric tensor U satisfying the symmetry conditions of
Eq. (1.89) may admit an inverse in the space of symmetric fourth-order tensors.

Let us first note that the tensor Î defined as:

Îklmn ¼ 1
2

dkmdln þ dkndlmð Þ; ð1:91Þ

is indeed a fourth-order symmetric tensor and satisfies the additional symmetry
requirements of Eq. (1.89). Moreover, it has the following property:

ÎU ¼ UÎ ¼ U; for any symmetric tensor U: ð1:92Þ

In other words, Î is the unit tensor in the space of symmetric fourth-order
tensors. Similarly with the definitions of positive-definiteness of second-order
tensors [see Eq. (1.63)], we say that a fourth-order tensor U 2 L4 is
positive-definite if:

T : UT� 0; for any symmetric tensor T ð1:93Þ

and,

T:UT ¼ 0 if and only if T ¼ 0:

It can be easily seen that if a symmetric fourth-order tensor U is
positive-definite, there exists a fourth-order symmetric tensor W such that:

UW ¼ WU ¼ Î: ð1:94Þ

This result is of great importance for the theory of elasticity, since it ensures that
the inverse of the stiffness tensor exists and it is positive definite. In the mathe-
matical theory of plasticity use is also made of the deviator of Î. This fourth-order
symmetric deviatoric tensor is generally denoted by K, and its components with
respect to any Cartesian coordinate system are given by:

Kijkl ¼ 1=2 dikdjl þ dildjk
� �� 1=3 dijdkl

� � ð1:95Þ
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1.3 Elements of Vector and Tensor Calculus

In this section, we provide a brief review of differentiation of functions of a scalar
variable t (e.g., time). Differentiation of a scalar function of a tensor and ensuing
identities are essential in calculating the plastic strain-rate tensor once the expres-
sion of the plastic potential is known.

In this section, components of vectors and tensors are relative to a fixed
orthonormal basis ekf g, k = 1, …, 3. The position vector of a point M in space will
be denoted by x ¼ xkek , with x1; x2; x3 being the Cartesian coordinates of M in the
Cartesian coordinate system O; e1; e2; e3ð Þ:

Derivative of a Point Function of a Scalar

Definition The derivative of a point function x tð Þ of a scalar variable t, denoted
_x tð Þ, is a vector function defined as:

_x tð Þ ¼ lim
h!0

x tþ hð Þ � x tð Þ
h

ð1:96Þ
Given a scalar f, vector v, or second-order tensor function T of the scalar

variable t, we write:

_f tð Þ ¼ df ðtÞ
dt

¼ lim
h!0

f tþ hð Þ � f tð Þ
h

;

_v tð Þ ¼ _vi tð Þei;
_T tð Þ ¼ _Tij tð Þei � ej; i; j ¼ 1; . . .; 3:

Using the above definition, it can be shown that for any nonzero tensor function
TðtÞ,

d
dt

TðtÞk k ¼ TðtÞ : _TðtÞ
TðtÞk k : ð1:97Þ

Boundaries of the regions in the three-dimensional Euclidean space where these
functions are defined are assumed to have continuity and differentiability properties
sufficient to ensure that the boundary-value problems are well-posed. Thus, the
domain of definition is the bounded open set D, the boundary of D, denoted @D,
being a closed regular surface (i.e., unit normal fields over the bounding surface are
well-defined).
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Definition A function that assigns to each point of a region D a scalar, vector, or
tensor function is called scalar, vector, or tensor field on D, respectively.

A vector or tensor field is said to be of class Cn on D if its components with
respect to a fixed coordinate system are continuous on D together with their partial
derivatives up to the nth-order.

Additionally, it is important to note that these regularity properties are inde-
pendent of the chosen basis.

Gradient of a Scalar, Vector, or Tensor Field

Consider a scalar field / : D ! R of class C1. The gradient of /, denoted gradu, is
the vector field:

gradu xð Þ ¼ @u
@xi

ei; i ¼ 1; . . .; 3: ð1:98Þ

To differentiate a function f xðtÞð Þ, where x tð Þ is a point function with real
values, the chain rule in conjunction with the above definition is used:

d
dt

f xðtÞð Þð Þ ¼ grad f xð Þ � _x tð Þ ¼ @f
@xi

_xi:

Gradient, Curl, Divergence of a Vector Field

Definition Let u xð Þ be a vector field of class C1 in D. The gradient of u xð Þ is the
second-order tensor field,

grad u xð Þ ¼ @ui
@xj

ei � ej;

the curl of u xð Þ is a vector field defined as:

curl u xð Þ ¼ emrs
@ur xð Þ
@xs

em; ð1:99Þ

and the divergence of u xð Þ is the scalar:

div u xð Þ ¼ trðgrad u xð ÞÞ ¼ ukk xð Þ: ð1:100Þ
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We define the Laplace operator D for scalar and vector fields as:

Du xð Þ ¼ div gradu xð Þð Þ; ð1:101Þ

and,

Du xð Þ ¼ div grad u xð Þð Þ: ð1:102Þ

The operators grad, curl, div, D are linear mappings and therefore they are
independent of the coordinate system (for proof, see, e.g., Malvern [5]).

Gradient, Curl, Divergence of a Tensor Field

Definition Let T : D ! L be a second-order tensor field of class C1 on D. The
gradient of T is the third-order tensor field defined as follows:

gradT xð Þ ¼ @Tlm xð Þ
@xk

ek � el � em; ð1:103Þ

the curl of T xð Þ is the second-order tensor field,

curlT xð Þ ¼ eijk
@Tlj xð Þ
@xk

el � ei; ð1:104Þ

the divergence of T xð Þ is the vector field:

divT xð Þ ¼ @Tij xð Þ
@xj

ei;

while the Laplacian of T xð Þ is the tensor field:

DT xð Þ ¼ @2Tij
@xk@xk

ei � ej: ð1:105Þ

Differentiation of a Scalar Function of a Tensor

Definition For a scalar function UðAÞ of a second-order tensor variable A; the
derivative @UðAÞ=@A is the tensor function defined such that:

@UðAÞ
@A

: B ¼ lim
s!0

UðAþ sBÞ � UðAÞ
s

8B 2 L: ð1:106Þ
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It follows that:

@UðAÞ
@A

 �
ij
¼ @UðAÞ

@Aij
: ð1:107Þ

Note that if A is a symmetric second-order tensor,
@UðAÞ
@A

is a symmetric

second-order tensor. The following result is central to the theory of plasticity.

1.4 Elements of the Theory of Tensor Representation

1.4.1 Symmetry Transformations and Groups

We will use the following notations:

L the set of second-order tensors on V;
L+ the set of all second-order tensors A with det Að Þ > 0;
Sym the set of all symmetric second-order tensors;
PSym+ the set of all symmetric and positive-definite second-order tensors;
Orth the set of all orthogonal tensors on V;
Orth+ the set of all rotations (proper orthogonal group).

Definition Let D 
 L and G a group of Orth. We say that a scalar function U:D !
R is invariant relative to the group G, if for any T 2 D and for any Q 2 G, we have:

U Tð Þ ¼ U QTQT� �
: ð1:108Þ

Similarly, a vector function h:V ! R is invariant relative to the group G, if for
any v 2 V and for any Q 2 G, we have:

h Qvð Þ ¼ Qh vð Þ ð1:109Þ

A tensor function S : D ! R is invariant relative to the group G, if for any T 2 D
and for any Q 2 G, we have:

S QTQT� � ¼ QS Tð ÞQT ð1:110Þ

Definition An isotropic function is a function invariant relative to the full
orthogonal group.

In Sect. 1.2, we have shown that:

(a) The determinant, det, and the trace function, tr, are isotropic functions;
(b) The principal invariants
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IT ¼ trT; IIT ¼ 1
2

trTð Þ2�trðT2Þ
h i

; IIIT ¼ detðTÞ ð1:111Þ

of a symmetric tensor T are isotropic functions.

Representation Theorems for Isotropic Scalar Functions

Let us denote by I Dð Þ ¼ IT T 2 Djf g the set of all possible lists of invariants for
symmetric tensors. Next, we present several representation theorems for scalar
functions which are due to Cauchy and Wang [6].

Representation Theorem for Isotropic Scalar Function of a Symmetric Tensor

A scalar function U : D ! R, where D 
 Sym, is isotropic if and only if there exists
a function Û : I Dð Þ ! R such that,

U Tð Þ ¼ Û ITð Þ for any T 2 D ð1:112Þ

Proof That Eq. (1.112) defines an isotropic function is a direct consequence of
Theorem 1.1. To prove the converse statement, let us assume that U is isotropic. It
is sufficient to prove that if any two symmetric tensors T1 and T2 have the same
spectrum, i.e., the same invariants [see Eq. (1.111)] then U T1ð Þ ¼ U T2ð Þ: Indeed,
if IT1 ¼ IT2 then T1 and T2 have the same eigenvalues ki, i = 1, …, 3. By the
spectral theorem, there exist orthonormal bases eif g and f if g such that T1 ¼P

i kiei � ei and T2 ¼
P

i kif i � f i. Let Q be the orthogonal transformation from
one basis to the other, i.e., Q f ið Þ ¼ ei. Then,

QT2Q
T ¼

X
i

kiQ f i � f ið ÞQT ¼
X
i

ki Qf ið Þ � Qf ið Þ ¼
X
i

kiei � ei ¼ T1

ð1:113Þ
But since U is isotropic, U T2ð Þ ¼ U QT2Q

T
� �

; thus by Eq. (1.113) we obtain
that U T1ð Þ ¼ U T2ð Þ. So, if U is an isotropic scalar function, it depends on T only
through its invariants. Representation theorems for isotropic scalar-valued functions
of an arbitrary number of symmetric tensors, skew-symmetric tensors, and vectors
have been derived by Wang [6].

Representation Theorem for Isotropic Scalar Function

A scalar function U T1;T2; . . .;Ta;W1;W2; . . .;Wb; v1; v2; . . .; vkð Þ, where
Ti;Wj; vk are respectively an arbitrary number of symmetric tensors,
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skew-symmetric tensors, and vectors, is isotropic if and only if there exists a scalar
function Û IT1;T2;...;Ta;W1;W2;...;Wb;v1;v2;...;vk

� �
such that

U T1;T2; . . .;Ta;W1;W2; . . .;Wb; v1; v2; . . .; vkð Þ
¼ Û IT1;T2;...;Ta;W1;W2;...;Wb;v1;v2;...;vk

� � ð1:114Þ

where, IT1;T2;...;Ta;W1;W2;...;Wb;v1;v2;...;vk is an irreducible set of invariants for the
arguments of the function U .

By definition, a set of invariants is called “functional basis” for the list of
arguments if any arbitrary scalar function of these arguments can be expressed in
terms of these basic invariants. A functional basis is called irreducible if none of its
elements can be expressed as a function of the others. The complete list of
invariants for the set of arguments T1;T2; . . .;Ta;W1;W2; . . .;Wb; v1; v2; . . .; vk is
obtained considering all the (unordered) combinations of one, two, three, and four
variables given in Table 1.1.

For example, the representation for an isotropic scalar function of two symmetric
second-order tensors, T1;T2 involves ten invariants, i.e.,

Table 1.1 Irreducible isotropic functional bases

Arguments Set of invariants

T tr(T), tr(T2), tr(T3)

W tr(W2)

v v � v
T1;T2 trðT1T2Þ; trðT2

1
T2Þ; trðT1T2

2
Þ; trðT2

1T
2
2
Þ

T, W tr TW2
� �

; tr T2W2
� �

; tr T2W2TW
� �

T, v v � Tv; v � T2v
W1;W2 trðW1W2)

W, v v �W2v
v1; v2 v1 � v2
T1;T2;T3 trðT1T2T3Þ
T1;T2;W trðT1T2WÞ; trðT2

1T2WÞ; trðT1T2
2WÞ; trðT1W2T2WÞ

T, W1;W2 trðTW1W2Þ; trðTW2
1W2Þ; trðTW1W2

2Þ
W1;W2;W3 tr W1W2W3ð Þ
T1;T2; v T1v � T2v
T, v1; v2 v1 � Tv2; v1 � T2v2
W1;W2, v W1v �W2v;W2

1 v �W2v;W1v �W2
2v

W, v1; v2 v1 �Wv2; v1 �W2v2
T, W, v Tv �Wv;T2v �Wv;TWv �W2v
T1;T2v1; v2 T1v1 � T2v2 � T1v2 � T2v1
T, W, v1; v2 Tv1 �Wv2 � Tv2 �Wv1
W1;W2; v1; v2 W1v1 �W2v2 �W1v2 �W2v1
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IT1;T2 ¼ ftrðT1Þ; trðT2
1Þ; trðT3

1Þ; trðT2Þ; trðT2
2Þ; trðT3

2Þ; trðT1T2Þ;
trðT2

1T2Þ; trðT1T2
2Þ; trðT2

1T
2
2Þg:

To establish representation theorems for isotropic tensor functions, we need to
first prove the following lemma given by Wang [6].

Lemma 1.3 Let I be the second-order unit tensor, T be a symmetric tensor,
k1; k2; k3 its eigenvalues with e1; e2; e3 corresponding eigenvectors.

(a) If all the eigenvalues ki are distinct, then I;T;T2
� 	

are linearly independent;
(b) If T has exactly two distinct eigenvalues, then I;Tf g are linearly independent.

Proof

(a) To prove that the set I;T;T2
� 	

is linearly independent, we must show that,

aT2 þ bTþ cI ¼ 0; ð1:115Þ

only if a ¼ b ¼ c ¼ 0: Since T eið Þ ¼ kiei and T2 eið Þ ¼ kið Þ2ei, from
Eq. (1.115) it follows that,

ak2i þ bki þ c
� �

ei ¼ 0; so that ak2i þ bki þ c ¼ 0 for any i ¼ 1; 2; 3: ð1:116Þ
The determinant of the homogeneous algebraic system (1.116) in the unknowns

a; b, and c is:

D ¼
k21 k1 1
k22 k2 1
k23 k3 1














 ð1:117Þ

Since the eigenvalues ki are distinct, D 6¼ 0; thus the unique solution of (1.116)
is: a ¼ b ¼ c ¼ 0. Thus, I;T;T2

� 	
are linearly independent.

(b) To establish the linear independence of I;Tf g we must show that,

aIþ bT ¼ 0; ð1:118Þ

only if a ¼ b ¼ 0: Since T ¼ k1e� eþ k2 I� e� eð Þ, from Eq. (1.118) it fol-
lows that,

aþ bk1 ¼ 0
aþ bk2 ¼ 0

�
: ð1:119Þ

The eigenvalues k1 and k2 being distinct, Eq. (1.118) holds only if a ¼ b ¼ 0:
Thus, I and T are linearly independent.
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1.4.2 Representation Theorems for Orthotropic Scalar
Functions

Certain anisotropic materials such as transversely isotropic materials as well as
some crystalline solids (for detailed discussion of crystal classes and respective
symmetry groups, see Chap. 3) can be characterized by preferred directions and
planes, i.e., by certain vectors m1,m2; . . .;mp and some tensors M1;M2; . . .;Mq.
The symmetry group G of such materials preserves these characteristics and is of
the form:

G ¼ Q 2 OjQm1 ¼ m1; . . .;Qmp ¼ mp;QM1QT ¼ M1; . . .;QMqQT ¼ Mq
� 	

ð1:120Þ

Theorem 1.3 A function f is invariant relative to the symmetry group G if and only
if it can be represented by an isotropic function f̂ :

f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ
¼ f̂ ðv1; v2; . . .; va;A1;A2; . . .;Ab,m1; . . .;mp;M1; . . .;MqÞ

ð1:121Þ

Proof While in the theorem, the function f can be either scalar-valued,
vector-valued, or tensor-valued, we will present the proof only for scalar-valued
functions. The proof for vector-valued and tensor-valued functions is similar and for
both proofs, we refer the reader to the paper of I-Shih [4].

Assume that f admits the representation given by Eq. (1.121). We need to show
that f is invariant relative to G, i.e.,

f ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

TÞ ¼ f ðv1; v2; . . .; va;A1; . . .;AbÞ 8Q 2 G:

Since,

f ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

TÞ
¼ f̂ ðQv1; . . .Qva;QA1Q

T; . . .;QAbQ
T;m1; . . .;mp;M1; . . .;MqÞ

¼ f̂ ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

T;QQTm1. . .QQTmp;QQTM1QQT; . . .QQTMqQQTÞ

and f̂ is isotropic, it follows that:

f ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

TÞ
¼ f̂ ðv1; . . .va;A1; . . .Ab;QTm1; . . .;QTmp;QTM1Q; . . .;QTMqQÞ

Given that Q 2 G, so we have: Qm1 ¼ m1, …, Qmp ¼ mp and QM1Q
T ¼ M1,

…, QMqQ
T ¼ Mq .
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Therefore,

f̂ ðv1; . . .va;A1; . . .;Ab;QTm1; . . .;QTmp;QTM1Q; . . .;QTMqQÞ
¼ f̂ ðv1; . . .; va;A1; . . .;Ab;m1; . . .;mp;M1; . . .;MqÞ ¼ f ðv1; . . .; va;A1; . . .;AbÞ:

Transverse isotropy is characterized by a preferred direction n. Its symmetry
group is:

GT ¼ Q 2 OjQn ¼ nf g: ð1:122Þ

(See also Chap. 5). By the above theorem, we have the following result:
A transversely isotropic function f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ can be repre-

sented as:

f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ ¼ f̂ ðv1; v2; . . .; va;A1;A2; . . .Ab; nÞ

where f̂ is an isotropic function.
Orthotropy is characterized by reflections on three mutually orthogonal planes.
Another important result is given by:

Theorem 1.4 Any orthotropic function f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ can be
represented as:

f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ ¼ f̂ ðv1; v2; . . .; va;A1;A2; . . .;Ab;N1;N2Þ
ð1:123Þ

where f̂ is an isotropic function, N1 ¼ n1 � n1 and N2 ¼ n2 � n2 (see I-Shih
[4]).

The above results were used by Cazacu and Barlat [1, 2] to derive yield criteria
for orthotropic and transversely isotropic metallic materials (see Chap. 5).
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