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Preface

Advances in the theory of plasticity and damage of metallic materials are driven by
the demand to improve performance and safety of structures and machine parts
while reducing the environmental impact and manufacturing cost. While the last
decade has seen increased efforts in the automotive, aerospace, and energy indus-
tries toward development of new lightweight and high-strength alloys, the chal-
lenges associated with predicting the mechanical behavior of these materials can be
overcome only by development of new and more realistic models that are appli-
cable to general three-dimensional loadings.

Designed as a well-balanced blend of theory and applications, the book presents
a unified and rigorous framework for description of the main dissipative phenomena
in metallic materials: plasticity and damage. Being based on the theory of repre-
sentation of tensor functions, and theorems for scale bridging, this framework
enables development of constitutive models that account for the influence of the
crystallographic structure and deformation mechanisms on the macroscopic
behavior. Recent constitutive models developed by the authors that are currently
accessible only in journal articles widely scattered through the literature are pre-
sented in this book. The emphasis is on providing the reader with a clear under-
standing of the range of applicability of any given model, its capabilities, and its
limitations. Furthermore, for any given model procedures for the identification
of the parameters are provided along with key concepts necessary to numerically
solve boundary-value problems.

While this book is based on the research of the authors in the field of plasticity
and ductile damage, we made a point to give detailed explanations completed with
mathematical proofs and numerous examples such as to facilitate the application
of the constitutive models presented and their transition to industry. We trust that
the book will be useful to engineers, scientists, and graduate students alike.

In Chap. 1 of the book are introduced the key mathematical concepts and the-
orems that will be used to develop constitutive models along with the constitutive
assumptions that are at the foundation of the theory of plasticity. While in the
literature, there is ample exposure of elastic–plastic models formulated in the stress
space, the dual formulations in the strain-rate space are less known. Chapter 2
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presents both approaches to modeling plasticity along with the numerical integra-
tion algorithms for solving boundary-value problems within the framework of the
finite-element method.

Chapter 3 is devoted to constitutive relations for metallic single crystals. After
introducing the key concepts of crystallography, an overview of the experimental
evidence of plastic deformation mechanisms is presented. The yield criteria for
description of the onset of plastic deformation in cubic crystals are introduced.
Application of the most recent single crystal yield criterion to the prediction of the
directionality of the macroscopic tensile properties of polycrystalline sheets are also
provided.

Chapter 4 is devoted to modeling the plastic behavior of isotropic polycrystalline
metallic materials. A review of the classic yield criteria and corresponding
stress-based plastic potentials with discussion concerning the predicted mechanical
response for various three-dimensional loadings is presented along with the most
recent contributions devoted to the description of the behavior of incompressible
materials displaying tension–compression asymmetry. On the basis of these new
models, a new interpretation and explanation of the Swift phenomenon occurring in
monotonic and cyclic free-end torsion are provided.

Chapter 5 is devoted to modeling the elastic–plastic behavior of anisotropic
polycrystalline metals. After introducing the only two rigorous methodologies for
extending isotropic formulations such as to account for anisotropy, the most ver-
satile three-dimensional orthotropic yield criteria for materials with the same
response in tension and in compression are presented. While the need for analytic
yield criteria that account for both anisotropy and tension–compression asymmetry
in the plastic deformation of hexagonal materials such as magnesium, zirconium,
and titanium alloys has long been recognized, only recently models that describe
these key features have been developed. These contributions along with applica-
tions for a variety of loadings are discussed.

Although the existence of strain-rate-based potentials which are work-conjugate
of given stress potentials has been theoretically demonstrated, analytical expres-
sions of strain-rate potentials are only known for a very few cases. In Chap. 6,
closed-form expressions for strain-rate based plastic potentials are derived for both
isotropic and anisotropic fully-dense polycrystalline materials. Besides their
intrinsic importance in design and optimization of metal forming processes, these
analytic strain-rate potentials enable the development of closed-form expressions of
plastic potentials for porous metallic materials that are presented in Chaps. 7 and 8.

Specifically, key contributions toward elucidating the role of the plastic deforma-
tion on damage evolution for both isotropic (Chap. 7) and anisotropic metallic
materials (Chap. 8) are introduced. The ductile damage models presented are derived
using rigorous upscaling techniques and limit-analysis methods. Along with classical
models for porous metals, the latest research work done on this subject is presented.
Special attention is given to the contributions toward solving open problems posed in
the mechanics community in the late 1960s concerning modeling the plastic behavior
of porous materials, notably on the manner in which the matrix plastic behavior
influences the rate of damage evolution under given loading conditions. In view
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of their importance for the prediction of plasticity–damage couplings in hcp-Ti, recent
models that account for both anisotropy and tension–compression asymmetry on
yielding and damage evolution are discussed. Moreover, new single crystal models
accounting for the combined effects of the stress path and crystal orientation on
porosity evolution under creep loadings are described.

As the reader may see from the foregoing presentation, this book gathers
numerous mathematical models developed to predict the plastic behavior and
plasticity–damage couplings for a large range of materials from single crystals to
anisotropic polycrystalline materials. However, the book is far more than a col-
lection of constitutive models. The rationale for adopting the respective constitutive
hypotheses is provided for each constitutive model, so the readers will have
appreciation of the importance of using the appropriate model for each type of
material and gain full understanding of the range of applicability of each model.

We are grateful to our teachers and collaborators who have influenced and con-
tributed to our research. Research funding on plasticity provided to Oana Cazacu by
NSF, US Air Force, and US Army, over the years, is gratefully acknowledged.
Funding provided by the Army Research Office, grant W911NF-16-1-0159, has
greatly facilitated writing of this book.

Shalimar, USA Oana Cazacu
Benoit Revil-Baudard

Nitin Chandola
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Chapter 1
Mathematical Framework

The theory of scalar- and tensor-valued functions constitutes the mathematical
framework based on which modeling of the elasticity, plasticity, and damage in
polycrystalline metallic materials is built. In this chapter, we provide the basic
concepts and key mathematical results to be used in the rest of the book.

We begin by presenting a concise survey of the basic results of vector algebra.
This is also a natural starting point for the development of tensor algebra.

1.1 Elements of Vector Algebra

From elementary geometry, we know that to every three-dimensional point space,
E, we can associate a vector space, V. An element of E is a point in space and a free
vector connects any two points. A free vector is characterized by direction, mag-
nitude, and sense. Free vectors can be added together and multiplied by numbers.

The generalization of the properties of free vectors of elementary geometry led to
the general concept of vector space.

Definition of a Vector Space

A set V is called a vector space over the field R of real numbers, and its elements are
called vectors, if the following conditions are fulfilled:

(I) To any pair of vectors u; v 2 V ; corresponds a vector uþ v 2 V ; called the
sum of these vectors, such that:

(V:1) uþ v ¼ vþ u (commutativity),
(V:2) For any three vectors u; v;w : uþ vþwð Þ ¼ uþ vð Þþw (associativity),
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(V:3) There exists an element of V, called the zero vector (or null vector),
denoted by 0 such that for any vector u 2 V :u ¼ uþ 0.

(V:4) For any vector u, there exists another vector, denoted –u, such that
uþ �uð Þ ¼ 0:

(II) The product of any vector u 2 V with a real number a is also a vector. It has
the following properties:

(V:5) For any a; b 2 R; a buð Þ ¼ abð Þu (associativity),
(V:6) aþ bð Þu ¼ auþ bu (distributivity relative to number addition),
(V:7) a uþ vð Þ ¼ auþ av (distributivity relative to vector addition),
(V:8) 1u ¼ u:

Using the above axioms, it can be shown that the following relations hold:

0u ¼ 0; �1ð Þu ¼ �u; a0 ¼ 0:

The difference between any two vectors u and v is defined as:

u� v ¼ uþ �vð Þ:

Linear Independence of Vectors

Definition A set of n vectors u1;u2; …, un is said to be linearly independent if the
relation:

a1u1 þ a2u2 þ � � � þ anun ¼ 0;

with a1; . . .; an 2 R; can take place if and only if: a1 ¼ a2 ¼ � � � ¼ an ¼ 0:
Otherwise, the set of vectors is said to be linearly dependent.

Dimension of a Vector Space

Definition A vector space V is called n-dimensional, if in V there exists at least one
set of n linearly independent vectors, and any set containing n + 1 vectors is
linearly dependent.

Basis of a Vector Space

Definition In an n-dimensional vector space V, any set of n linearly independent
vectors is called a basis of V.
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Inner Product

Definition Let V be a vector space. An application which associates to any vectors
u and v 2 V a real number, denoted u � v; is called an inner product if it satisfies the
following properties:

(I1) u � v ¼ v�u (commutativity);
(I2) For any a 2 R: auð Þ � v ¼ a u � vð Þ (associativity with respect to multiplication

with real numbers);
(I3) u � vþwð Þ ¼ u � vþ u � w (distributivity with respect to vector addition);
(I4) u � u� 0;
(I5) u � u ¼ 0 if and only if u ¼ 0:

The scalar product can then be used to define the norm (or magnitude) of any
vector u 2 V . The norm of the vector u is defined by:

uj j ¼ ffiffiffiffiffiffiffiffiffi
u � up

; ð1:1Þ

and a vector with unit norm is termed a unit vector. By definition, two vectors are
said to be orthogonal if their inner product is zero.

Euclidean Vector Space

Definition A vector space V endowed with an inner product is called a Euclidean
vector space.

Einstein Summation Convention

In this book, we adopt the Einstein summation convention which states that
whenever the same letter subscript occurs twice in a term, that subscript is to be
given all possible values and the results added together. For example, if i = 1,…, 3,
then, u2i ¼ u21 þ u22 þ u23

Components of a Vector

Theorem 1.1 Let g1; g2; …, gn be a basis for the n-dimensional vector space V.
Any vector u 2 V may be uniquely represented as a linear combination of the basis
vectors gi, i = 1, …, n, i.e.,

u ¼ u1g1 þ � � � þ ungn; ð1:2Þ

The numbers (or scalars) ui are called the components of u relative to this basis.
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Proof Since V is a n-dimensional vector space, the set of n + 1 vectors
g1; g2; . . .; gn; uf g is linearly dependent. Hence, there exist a set of real numbers

a; a1, …, an, not all of them zero, such that

auþ a1g1 þ � � � þ angn ¼ 0; ð1:3Þ

Note that a ought to be nonzero. Indeed, if a ¼ 0 the above equation reduces to
a1g1 þ � � � þ angn ¼ 0, and since g1; g2, …, gn are linearly independent, this would
imply that all ai ought to be zero. Since a 6¼ 0, from Eq. (1.3) it follows that
u ¼ ukgk, with uk ¼ �ak=a, k = 1, …, n.

Therefore, u is a linear combination of the base vectors. Furthermore, the
numbers uk are uniquely determined. Indeed, u may also be expressed as

u ¼ u0kgk; ð1:4Þ

by subtracting Eq. (1.2) from Eq. (1.4), we obtain

u0k � uk
� �

gk ¼ 0:

Given that vectors gk form a basis, it follows that necessarily u0k ¼ uk .
Using Theorem 1.1 in conjunction with the properties (I2) and (I3), it can be

easily shown that the inner product between any two vectors u and v can be
expressed in component form as:

u � v ¼ gkmukvm; with gkm ¼ gk � gm; k;m ¼ 1; . . .; n ð1:5Þ

Obviously, due to the commutativity of the inner product (i.e., property (I1)),

gkm ¼ gmk:

Given that gkf g form a basis, it can also be easily shown that the determinant of
the matrix gkm½ � is nonzero.

Orthonormal Basis

A basis e1; e2; . . .; enf g of the n-dimensional vector space V is called orthonormal,
if any two vectors of the basis are mutually orthogonal and of unit length, i.e.,

ei � ej ¼ dij; ð1:6Þ
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where dij denotes the Kronecker delta symbol,

dij ¼ 1; if i ¼ j
0; otherwise:

�
ð1:7Þ

Note that in view of the orthonormality condition (1.6), the components of a
vector u relative to the orthonormal basis e1; e2; . . .; enf g are:

uk ¼ u � ek: ð1:8Þ

Let u and v be an arbitrary pair of vectors having components uk; vk relative to
the same basis. Then, using Eqs. (1.5) and (1.6), we obtain:

u � v ¼ ukvk: ð1:9Þ

Cross Product

Definition An application which associates to any vectors u and v 2 V a vector
denoted u� v, is called the cross product (or vector product) of u and v if it satisfies
the following properties:

(C1) u� v ¼ �v� u for any u; v 2 V (anti-commutativity);
(C2) avþ bwð Þ � u ¼ a v� uð Þþ b w� uð Þ for any u; v;w 2 V and a; b 2 R;
(C3) u � u� vð Þ ¼ 0 for any u; v 2 V ;
(C4) u� vð Þ � u� vð Þ ¼ u � uð Þ v � vð Þ � u � vð Þ2 for any u; v 2 V :

Using the above properties, it can be easily shown that u� v ¼ 0 if and only if u
and v are linearly dependent.

Scalar Triple Product

The scalar triple product of three vectors u; v;w, denoted by u; v;w½ �, is defined by:

½u; v;w� ¼ u � v � wð Þ: ð1:10Þ

Properties of the Scalar Triple Product

• The scalar triple product is invariant under a circular permutation of the
members of the product, i.e., ½u; v;w� ¼ ½v;w; u� ¼ ½w; u; v�:

• The sign of scalar triple product is reversed when the second and third members
of the product are reversed, i.e., ½u; v;w� ¼ �½u;w; v� ¼ �½v; u;w� ¼ �½w; v; u�:

• The scalar triple product is equal to zero if and only if u; v and w are linearly
dependent.

• For any u; v; t;w 2 V and a; b 2 R: ½auþ bv; t;w� ¼ a½u; t;w� þ b½v; t;w�:
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In a three-dimensional vector space, there exists an orthonormal basis
ekð Þk¼1;...;3. Based on the properties of the cross product and scalar triple product, it
follows that:

e2 � e3 ¼ e1; e2; e3½ �e1; e3 � e1 ¼ e1; e2; e3½ �e2; e1 � e2 ¼ e1; e2; e3½ �e3 ð1:11Þ

e1; e2; e3½ � ¼ �1 ð1:12Þ

Let eijk designate the Ricci symbol, which takes the value 1 when (i, j, k) is a
cyclic permutation of 1, 2, 3, and the value (−1) when (i, j, k) is a anticyclic
permutation of 1, 2, 3, and it is otherwise zero. Therefore,

ei � ej ¼ �eijkek: ð1:13Þ

Two bases are said to be similar if their triple products have the same sign.
A basis e1; e2; e3f g is said to be positively oriented if e1; e2; e3½ �[ 0:
The formula for the cross product between any two vectors in terms of their

components relative to the orthonormal basis ekð Þk¼1;...;3 is found by using the
axioms (C1)–(C2) and Eq. (1.13):

u� v ¼ �eijkuivjek; ð1:14Þ

Also, using Eq. (1.14) one obtains the formula for the scalar triple product of
any three vectors u; v;w to be:

u; v;w½ � ¼ �eijkuivjwk: ð1:15Þ

If the basis is positively oriented, the scalar triple product is the determinant of
the matrix having on the first row the components of u, on the second row the
components of v, and on the third row the components of w. In elementary
geometry, the scalar product of any two nonzero free vectors u and v is designated
by u � v and is defined as:

u � v ¼ uj j vj jcos hð Þ; ð1:16Þ

where uj j and vj j designate the magnitude (or length) of each vector and h is the
angle between the two vectors. If one of the two vectors is zero, their inner product
is, by definition, zero.

By definition, the cross product u� v of two free vectors u and v which are
linearly independent is a vector that is orthogonal to both u and v, and therefore
normal to the two-dimensional plane containing them. The magnitude of u� v is
given by,
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u� v ¼ uj j vj j sin h for ð0\h\pÞ ð1:17Þ

where h is the angle between the vectors u; v:
It can be easily shown that the free vector space is three-dimensional (any three

vectors which are not coplanar form a basis) and that the scalar product defined by
Eq. (1.16) satisfies the properties (I1)–(I5) and the cross product defined by
Eq. (1.17) satisfies the axioms (C1)–(C4), i.e., the space of free vectors is endowed
with an inner product and a vector product.

Therefore, the 3-D physical space is a Euclidean vector space. In this space, the
scalar triple product is the volume of the parallelepiped defined by the respective
vectors. If this volume is nonzero, then the three vectors are linearly independent. If
u; v;w are linearly independent, then the triad u; v;wf g forms a basis.

Cartesian Coordinate Frame

A Cartesian coordinate frame for the three-dimensional Euclidean space consists of
a reference point O called the origin together with a positively oriented orthonormal
basis e1; e2; e3f g. Being positively oriented, the basis vectors satisfy:

ei � ej ¼ dij; and ei; ej; ek
� � ¼ eijk:

So far, we have provided a concise survey of basic results of vector algebra.
A vector is also referred to as a first-order tensor, while a scalar is a tensor of order
zero. In the next section, we shall introduce the concept of a second-order tensor
and their properties.

1.2 Elements of Tensor Algebra

1.2.1 Second-Order Tensors

Definition A second-order tensor is a linear transformation of the vector space
V into itself. Specifically, a second-order tensor T assigns to an arbitrary vector v a
vector denoted by Tv in such a way that for any vectors u and v, and any real
number a, and b:

T auþ bvð Þ ¼ a Tuð Þ þ b Tvð Þ ð1:18Þ
The set of second-order tensors on the three-dimensional Euclidean vector space is
denoted by L. From here on, a second-order tensor will be simply called tensor.

1.1 Elements of Vector Algebra 7



We say that two tensors T and U are equal if,

Tv ¼ Uv; 8v 2 V :

The null tensor, denoted by O assigns to any vector v the zero vector and the
identity tensor I assigns to v the vector v itself:

Ov ¼ 0; Iv ¼ v 8v 2 V :

The sum TþU of tensors T and U and the product aT of a tensor T and a real
number (scalar) a are defined as follows,

TþUð Þv ¼ TvþUv 8v 2 V

aTð Þv ¼ a Tvð Þ; 8v 2 V ; a 2 R:

Moreover, for any tensor T, there exists another tensor, denoted �T, such that:

�Tð Þv ¼ �Tv � Tþ �Tð Þ¼ O:

It can be easily shown from their definitions that I;O; �Tð Þ;TþU; aT are
actually linear transformations [i.e., satisfy the requirement (1.18)].

On the basis of the same definitions, it can be readily established that the set of
all tensors L, endowed with the addition and scalar multiplications is a vector space
(i.e., the axioms (V1)–(V8) concerning the addition and scalar multiplication and
existence of a null element are satisfied, see Sect. 1.1). It will be later shown that
L is nine-dimensional.

Multiplication of Tensors

The rule for multiplication (or composition) of tensors is:

ABð Þu ¼ AðBuÞ 8A;B 2 L and 8u 2 V ð1:19Þ

We leave to the reader to establish that:

a ABð Þ ¼ aAð ÞB ¼ A aBð Þ 8A;B 2 L and a 2 R

A BþCð Þ ¼ ABþAC

AþBð ÞC ¼ ACþBC

A BCð Þ ¼ ABð ÞC
AO ¼ OA ¼ O; AI ¼ IA ¼ A

ð1:20Þ

In order to construct bases in the vector space of all second-order tensors, L, we
now introduce the concept of tensor product of two vectors.
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Tensor Product (Dyadic Product) of Two Vectors

Definition The tensor product or dyadic product of two vectors u; v is a tensor,
denoted by u� v, and defined by:

ðu� vÞ wð Þ ¼ uðv � wÞ 8w 2 V ð1:21Þ

The proof that u� v is actually a second-order tensor follows from the prop-
erties of the inner product (see axioms (I1)–(I5)). Furthermore, the properties

ða1w1 þ a2w2Þ � u ¼ a1 w1 � uð Þþ a2 w2 � uð Þ
u� ða1w1 þ a2w2Þ ¼ a1 u� w1ð Þþ a2 u� w2ð Þ; ð1:22Þ

can be easily deduced from (1.21) by using the properties of commutativity and
distributivity with respect to addition of the inner product of two vectors [i.e.,
axioms (I1) and (I2)].

Let e1; e2; e3f g be a positive-oriented orthonormal basis of the three-dimensional
space. We have the following identity:

ei � ei ¼ I: ð1:23Þ

Proof Note that for any vector v,

ei � eið Þv ¼ v � eið Þei ¼ v ¼ Iv:

Theorem 1.2 The set of tensors ek � emf g with k, m = 1, …, 3 are a basis of L,
which is thus a nine-dimensional vector space. Moreover, any tensor T admits the
representation

T ¼ Tkmek � em with Tkm¼ek � Tem; k;m ¼ 1; . . .; 3: ð1:24Þ
Proof Assuming that there exist the real numbers kkm, with k, m = 1, …, 3 such
that,

kkmek � em ¼ 0;

we get,

0 ¼ 0el ¼ kkmek � emð Þel ¼ kkmekð Þ em � elð Þ ¼ kkmekdml ¼ kklek: ð1:25Þ

Since ekf g is a basis, it follows that kkl ¼ 0, for any k, l = 1, …, 3.
Consequently, ek � emf g, k, m = 1,…, 3 are a linearly independent set of tensors in
the space L.

Let us consider now an arbitrary tensor T and denote by Tkm the components
relative to the orthonormal basis ekf g of the vector Tem, so that,
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Tem ¼ Tkmek and Tkm¼ek � Tem:

Using the orthonormality of the basis ekf g, the properties of the tensor product
and the above relation, it follows that for an arbitrary vector v of components vs
relative to this basis, we have:

T� Tkmek � emð Þv ¼ T� Tkmek � emð Þ vsesð Þ ¼ vsTes � vsTkmek em � esð Þ
¼ vs Tksek � Tkmekdmsð Þ ¼ vs Tksek � Tksekð Þ ¼ 0

ð1:26Þ

Hence, T admits the representation given by Eq. (1.24).
The nine real numbers Tkm, uniquely defined by Eq. (1.24), are called the

Cartesian components of the tensor T relative to the basis e1; e2; e3f g: If v ¼ Tu,
we also have by Eq. (1.24)

v ¼ Tkmek � emð Þu ¼Tkmumek;

and hence,

vk ¼ Tkmum: ð1:27Þ

Based on the representation given by Eq. (1.24), it follows that:

ABð Þkm¼ AkpBpm:

Transpose of a Tensor

Definition Associated with any tensor T, there is a unique tensor denoted TT ,
called the transpose of T, defined as:

TTu
� � � v ¼ u � Tv for any u; v 2 V : ð1:28Þ

The above rule defines in a unique way TT . At the same time, using the above
definition, the linearity of T, and the properties of the scalar product in V, it can be
shown that TT is a linear mapping, hence, a second-order tensor. Denoting by Tkm
and TT

km, the components of T and TT in the basis ek � emf g k, m = 1, …, 3,
according to the definition of the components of a tensor given by Eq. (1.24),

TT
km ¼ ek � TTem ¼ em � Tek ¼ Tmk;

Hence, TT ¼ Tmkek � em:
In other words, the matrix of the Cartesian components of the transpose tensor

TT is the transpose of the matrix of the components of the tensor T: Also, it follows
from the definition of the transpose of a tensor that,

10 1 Mathematical Framework



TT
� �T¼ T; TUð ÞT¼ UTTT for any T;U 2 L

and,

u� vð ÞT¼ v� u for any u; v 2 V :

Definition A tensor T is called symmetric if,

TT ¼ T
and skew or antisymmetric if,

TT ¼ �T

If the tensor T is symmetric, the matrix of its components is also symmetric; if
the tensor T is antisymmetric, the matrix of its components is also antisymmetric.
Consequently, in the three-dimensional vector space, a symmetric tensor has six
independent components, and an antisymmetric tensor has three independent
components.

Moreover, if X is an antisymmetric tensor, all its diagonal components are zero,
and there exists a unique vector x such that,

X u ¼ x� u for any u 2 V : ð1:29Þ

If T is an arbitrary tensor, the symmetric part, TS, of T and the skew-symmetric
part, TA, of T are defined as:

TS ¼ 1
2

TþTT� �
;TA ¼ 1

2
T� TT� �

;

such that,

T ¼ TS þTA ð1:30Þ

The above identity demonstrates that an arbitrary tensor T can be uniquely
expressed as the sum of a symmetric tensor and an antisymmetric tensor. Moreover,
on the basis of (1.29)–(1.30) it follows that the set of symmetric tensors, denoted LS,
forms a six-dimensional subspace of L while the set of all skew-symmetric tensors,
denoted LA, forms a three-dimensional subspace of L.
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Trace of a Tensor

Definition The trace of the tensor T, denoted tr Tð Þ, is the real number given by,

trðTÞ ¼ Tkk; k ¼ 1; . . .; 3: ð1:31Þ
where Tkm are the components of T in the basis ekf g:
It can be easily seen that the trace is a linear function from L to R, and that,

tr u� vð Þ ¼ u � v for any u; v 2 V ;

tr TT� � ¼ tr Tð Þ; trðABÞ ¼ trðBAÞ for any tensors A;B;T 2 L:
ð1:32Þ

Inner Product (Contracted Product) of Two Tensors

Definition The inner product (contracted product) of any two tensors T and U,
denoted by T : U is the real number:

T : U ¼ tr TUT
� � ð1:33Þ

It is easily seen that this operation defined on the Cartesian product L � L and
having values in R, satisfies the axioms (I1)–(I5) of a scalar product over the vector
space of second-order tensors. Moreover, if Tkm and Ukm are the components of T
and U relative to the basis ekf g, then,

T:U ¼ TkmUkm: ð1:34Þ

This scalar product can be used to define the norm (also called the magnitude) of
any tensor T, as the real number,

Tk k ¼ T : Tð Þ1=2¼ TkmTkm: ð1:35Þ

From the definition of the scalar product of second-order tensors, it follows that
for any vectors u; v; a; b 2 V ,

a� bð Þ : u� vð Þ ¼ a � uð Þ b � vð Þ ð1:36Þ

In particular, if ekf g with k = 1, …, 3 is an orthonormal basis in V,

ei � ej
� � � ek � emð Þ ¼ ei � ekð Þ ej � em

� � ¼
dikdjm ¼ 1; if i ¼ k; j ¼ m

0; otherwise

� ð1:37Þ
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Hence, ek � emf g with k, m = 1, …, 3 is an orthonormal basis in the space L of
second-order tensors.

In many computations, it is useful to present the components Tkm of a tensor T
relative to a given Cartesian basis ekf g k = 1, …, 3 as the 3 � 3 matrix:

T ¼ Tkm½ � ¼
T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5:

Determinant of a Tensor

Definition The determinant of a tensor T, denoted by det T is defined by:

detT ¼ det Tkm½ � ¼ epqrT1pT2qT3r; ð1:38Þ
where Tkm½ � denotes the matrix of the Cartesian components of T in the basis

ekf g and p, q, r = 1, …, 3. From this definition, it follows that for any tensors T;U
and real number a:

det aTð Þ ¼ a3 det Tð Þ; detTT ¼ detT; det TUð Þ ¼ detTð Þ detUð Þ ð1:39Þ

If det T = 0, the tensor T is said to be singular.

Inverse of a Second-Order Tensor

If detT 6¼ 0, the tensor T is said to be invertible (or non-singular) since there exists
a unique tensor, called the inverse of T, and denoted by T�1 such that

TT�1 ¼ T�1T ¼ I: ð1:40Þ

From Eqs. (1.39) to (1.40), it follows that

detT�1 ¼ detTð Þ�1; TUð Þ�1¼ U�1T�1; TT
� ��1¼ T�1� �T ð1:41Þ

Orthogonal Tensors

A special class of tensors has as a defining property the invariance of the scalar
product of any two vectors.

Definition A tensor Q is orthogonal if,

Qu �Qv ¼ u�v for any u; v 2 V : ð1:42Þ

Taking u ¼ v in the above equation, it follows that
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Quj j ¼ uj j;

so an orthogonal tensor applied to any vector u preserves its length. Furthermore,
from Eq. (1.42) we obtain

Qu �Qv
Quj j Qvj j ¼

u�v
uj j vj j ;

so the angle between two vectors u and v is preserved whenever u and v are
transformed by an orthogonal tensor Q: Since by definition of the transpose of a
tensor [see Eq. (1.28)],

Qu �Qv ¼ u� QT Qvð Þ� 	 ¼ u� QTQ
� �

v
� 	

;

making use of Eq. (1.42) we obtain that a necessary and sufficient condition for
Q to be orthogonal is

QTQ ¼ I: ð1:43Þ

From Eq. (1.43), it follows det QTQ
� � ¼ detQð Þ2, hence,

detQ ¼ �1; QT ¼ Q�1: ð1:44Þ

Q is said to be a proper orthogonal tensor if detQ ¼ 1 and an improper
orthogonal tensor if detQ ¼ �1.

Note also that from Eq. (1.42), it follows that if ekf g is an orthonormal basis, the
set Qekf g also forms an orthonormal basis.

Change of Coordinate System: Transformation Matrix and Transformation Rules of
Vector and Second-Order Tensor Components

Let us assume now that e1; e2; e3f g and e	1; e
	
2; e

	
3

� 	
are three-dimensional positive-

oriented orthonormal bases of the three-dimensional space. Relative to these bases,
an arbitrary vector u has the components ui and respectively u	i , i = 1, …, 3. Then,

uj ¼ qjiu
	
i with qji ¼ ej � e	i ; i; j ¼ 1; . . .; 3 ð1:45Þ

or, in matrix form:

uðeiÞ ¼ Quðe	
i
Þ

where Q ¼ qij
� �

is the transformation matrix from the basis e	1; e
	
2; e

	
3

� 	
to the basis

e1; e2; e3f g, and uðeiÞ ¼ u1; u2; u3ð Þ; uðe	
i
Þ ¼ u	1; u

	
2; u

	
3

� �
are the components of u in

the respective basis.
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Proof First, let’s express each of the vectors of the basis e	1; e
	
2; e

	
3

� 	
relative to the

basis e1; e2; e3f g: For i-fixed,

e	i ¼ e	i � ej
� �

ej ¼ qjiej ¼ q1ie1 þ q2ie2 þ q3ie3 ð1:46Þ

i.e., the column “i” of the matrix Q contains the components of e	i relative to the
basis e1; e2; e3f g: Therefore, relative to the basis given by e	1; e

	
2; e

	
3

� 	
, the vector u

can be expressed as:

u ¼ u	i e
	
i ¼ u	i qjiej ð1:47Þ

In view of Theorem 1.1, the representation of a vector as a linear combination of
the vectors of a given basis is unique. Thus from Eq. (1.47), it follows that for j-
fixed, the component uj of the vector u is:

uj ¼ qjiu
	
i or uðeiÞ ¼ Quðe	

i
Þ:

As already mentioned, the transformation matrix Q is orthogonal, and accord-
ingly, Q�1 ¼ QT [Eq. (1.44)], thus,

uðe	
i
Þ¼QTuðeiÞ:

In a similar manner, it can be shown that the transformation rule for tensor
components is:

Tkm ¼ qkrqmsT
	
rs and T	

rs ¼ qkrqmsTkm; k; r;m; s ¼ 1; . . .; 3;

or

T ¼ QT	QT and T	 ¼ QTTQ ð1:48Þ

Orthogonal tensors and their properties are of great importance for the
description of the mechanical response of polycrystalline materials. For instance,
intrinsic crystal symmetries are characterized by various orthogonal tensors or
transformations (see Chap. 3).

Remark It is important to note that the trace and determinant of a tensor are
invariants, i.e., have the same value irrespective of the Cartesian coordinate system
in which the tensor is described. Indeed, using the transformation rule given by
Eq. (1.48), it follows that:

trðTÞ ¼ Tkk ¼ qkrqksT
	
rs ¼ drsT

	
rs ¼ trðT	Þ;

det T	ð Þ ¼ det QT
� �

det TQð Þ ¼ det Q�1� �
det Tð Þ det Qð Þ ¼ detðTÞ ð1:49Þ
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Invariants of a second-order tensor and Spectral Theorem

In the mechanics of deformable bodies, an important role is played by the eigen-
values and eigenvectors of various second-order tensors, such as Cauchy’s stress
tensor. Thus, we briefly present the definitions of eigenvalues, eigenvectors, and
invariants highlighting some important properties of symmetric tensors.

Eigenvalues and Eigenvectors of Second-Order Tensors

Definition A scalar k is said to be an eigenvalue of a tensor T if there exists a
nonzero vector u, such that

Tu ¼ ku; ð1:50Þ
where, u is called eigenvector of T associated to the eigenvalue k. Reciprocally,
a nonzero vector u is said to be an eigenvector of T if there exists a real number k
such that Eq. (1.50) holds. Note that in this case k is an eigenvalue of T associated
to u.

The set of all vectors u satisfying the Eq. (1.50) forms a subspace of V, which is
called the characteristic space of T corresponding to the eigenvalue k. A unit
eigenvector of T is called a principal direction of the tensor T. Equation (1.50)
implies that k is an eigenvalue of T if and only if it is a real root of the algebraic
equation,

detðT� kIÞ ¼ 0 ð1:51Þ

The above equation is called the characteristic equation of T:
Let ekf g, k = 1, …, 3 be an orthonormal basis. By expanding the determinant in

Eq. (1.51), the characteristic equation can be written as a third-order algebraic
equation for k:

k3 � ITk
2 � IITk� IIIT ¼ 0; ð1:52Þ

where

IT ¼ T11 þ T22 þ T33 ¼ trT; ð1:53Þ

IIT ¼ � T22 T23
T32 T33










� T11 T13

T31 T33










� T11 T12

T21 T22










 ¼ 1

2
tr T2
� �� trTð Þ2

h i
ð1:54Þ

IIIT ¼ det½Tkm� ¼ detT: ð1:55Þ

The scalars IT ; IIT ; IIIT are referred to as principal invariants of T, with IT being
called the first invariant, IIT the second invariant, and IIIT third-invariant of the
tensor T, respectively.
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It is important to recall that since the trace and determinant of any tensor do not
depend on the basis ekf g [see Eq. (1.49)] IT ; IIT ; IIIT have the same values irre-
spective of the basis ekf g used to write the characteristic equation, i.e., they are
invariants relative to a change of basis in V.

Let k1; k2; k3 be the roots of the third-order characteristic Eq. (1.52). Classical
linear algebra results in conjunction with Eqs. (1.53)–(1.55) lead to

IT ¼ trT ¼ k1 þ k2 þ k3

IIT ¼ 1
2

tr T2� �� trTð Þ2
h i

¼ � k1k2 þ k2k3 þ k3k1ð Þ;
IIIT ¼ detT ¼ k1k2k3:

ð1:56Þ

The next result, whose proof we omit, is a central theorem of linear algebra and
one of great importance in modeling the behavior of materials.

Cayley–Hamilton Theorem

A symmetric second-order tensor T satisfies its own characteristic equation, i.e.,

T3 � ITT2 � IITT� IIITI ¼ 0: ð1:57Þ

It can also be shown (see, e.g., Halmos [3]) that:

Spectral Theorem

A symmetric second-order tensor T has three real eigenvalues (not necessarily
distinct) and an orthonormal basis n1; n2; n3f g such that:

T ¼ k1n1 � n1 þ k2n2 � n2 þ k3n3 � n3: ð1:58Þ

• If k1; k2 and k3 are distinct, the characteristic spaces of T are one-dimensional
vector subspaces of V, generated by the principal directions n1; n2 and n3,
respectively.

• If two principal values are equal, k1 6¼ k2 ¼ k3;T has only two distinct char-
acteristic spaces, namely the line generated by n1 and the plane perpendicular to
n1 and the representation (1.58) reduces to:

T ¼ k1n1 � n1 þ k2 I� n1 � n1ð Þ: ð1:59Þ

• If k1 ¼ k2 ¼ k3, then T has a single characteristic space, and:
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T ¼ k1I: ð1:60Þ

The relations (1.58)–(1.60) give the spectral decomposition of the tensor T:

Proof To prove that the eigenvalues of a symmetric tensor T are all real, we will
show that if k is a root of the characteristic Eq. (1.52), then k ¼ �k: Indeed, if
k ¼ aþ ib, i ¼ ffiffiffiffiffiffiffi�1

p� �
, there exist u ¼ vþ iw nonzero such that Tu ¼ ku:Writing

this latter equation in component form relative to the basis ekf g and separating the
real and imaginary parts, we have:

Tkmvm � avk þ bwk ¼ 0; and Tkmwm � awk � bvk ¼ 0; with k;m ¼ 1. . .3

ð1:61Þ
Since Tkm ¼ Tmk, by multiplying the first Eq. (1.61) by wk and the second one by

�vkð Þ and then subtracting one from another, we obtain:

b vkvk þwkwkð Þ ¼ b vj j2 þ wj j2
� �

¼ 0:

Since u is nonzero, from the above equation it follows that b = 0, and thus
k 2 R: On the other hand, the characteristic equation is of order 3, and it has three
roots (not necessarily distinct).

Assuming that the eigenvalues k1; k2; k3 are distinct, and denoting by n1; n2; n3
the corresponding principal directions of the respective eigenvalues, we have:

Tn1 ¼ k1n1;Tn2 ¼ k2n2;Tn3 ¼ k3n3: ð1:62Þ

It can be easily shown that the proper vectors of a symmetric tensor T corre-
sponding to two distinct eigenvalues are reciprocally orthogonal, hence n1; n2 and
n3 form an orthonormal basis. Next, using successively Eqs. (1.23) and the defi-
nition of the dyadic product, we can express:

T ¼ TI ¼ T ni � nið Þ ¼ Tnið Þ � ni ¼
X3
i¼1

ki ni � nið Þ:

The proof for the other two cases (i.e., repeated roots) can be obtained in a
similar manner.

Equation (1.58) is referred to as the spectral decomposition of a symmetric
second-order tensor. The spectral theorem is of great importance for the theory of
elasticity and plasticity.
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Positive-Definite Tensor, Polar Decomposition Theorem

Definition A tensor T is said to be positive semi-definite if for any vector u:

u � Tu� 0:
If the stronger requirement,

u � Tu[ 0 8u 6¼ 0 ð1:63Þ

is fulfilled, T is said to be positive-definite. Using the above definition, it follows
that the eigenvalues of a symmetric positive-definite tensor are strictly positive.
Hence,

detT[ 0;

and, QTQT is symmetric and positive-definite for any proper orthogonal tensor Q:
This implies that any symmetric positive-definite tensor T admits an inverse.
Moreover, from the spectral theorem [Eq. (1.58)], it follows that the inverse of T
has the following spectral representation:

T�1 ¼
X3
i¼1

k�1
i ni � nið Þ;

where ki are the eigenvalues of T and n1; n2; n3f g are the associated eigenvectors
(with corresponding representations deduced from Eqs. (1.59) and (1.60), respec-
tively, if the eigenvalues ki are not distinct).

Another important result in the mechanics of materials, obtained using the
spectral theorem, concerns the existence of the square root of a positive-definite
tensor. It can be shown that given a symmetric positive semi-definite tensor T, there
exists a unique symmetric and positive semi-definite tensor U, called the square
root of T, and denoted

ffiffiffiffi
T

p
, such that

U2 ¼ T: ð1:64Þ

Indeed, if T ¼ k1n1 � n1 þ k2n2 � n2 þ k3n3 � n3, with k1 � 0;k2 � 0; k3 � 0
then the tensor, defined by

ffiffiffiffi
T

p ¼ P3
i¼1

ffiffiffiffi
ki

p
ni � nið Þ is symmetric,

positive-definite, and satisfies the requirement (1.64).

Polar Decomposition Theorem

Any invertible tensor A with detA[ 0 has two unique multiplicative
decompositions,
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A ¼ RU and A ¼ VR;

with U and V symmetric and positive-definite, and R orthogonal.

Deviator of a Symmetric Tensor

Definition The deviator of a nonzero symmetric tensor T, denoted T0, is defined as:

T0 ¼ T� trT
3

I: ð1:65Þ
To simplify writing let us denote, trTð Þ=3 ¼ p:
Note that T0 is symmetric and traceless (trT0 = 0) and, its second and

third-invariants can be expressed in terms of the invariants of T as:

IT0 ¼ 0

IIT0 ¼ 1
2

tr T02� �� � ¼ IIT þ 3p2;

IIIT0 ¼ det T0ð Þ ¼ IIIT þ p IITð Þþ 2p3:

ð1:66Þ

Lemma 1.1 Let T be a symmetric second-order tensor, and ki, i = 1, …, 3, its
principal values. Let Cn ¼ kn1 þ kn2 þ kn3, where n is a positive integer. Then, the
following recurrence relation holds:

Cnþ 1 ¼ 3pð ÞCn þ IITCn�1 þ IIITCn�2 for n� 2 ð1:67Þ
Proof Let us note that by definition, C0 ¼ 3, and from Eq. (1.56) we have:

C1 ¼ IT ¼ 3p;

C2 ¼ k1 þ k2 þ k3ð Þ2�2 k1k2 þ k1k3 þ k2k3ð Þ ¼ 3pð Þ2 þ 2IIT

C3 ¼ k31 þ k32 þ k33 ¼ 3pð ÞC2 þ IITC1 þ 3IIIT ¼ 27p3 þ 9pIIT þ 3IIIT
On the other hand,

Cnþ 1 ¼ kn1 þ kn2 þ kn3
� �

k1 þ k2 þ k3ð Þ � kn1 k2 þ k3ð Þ � kn2 k1 þ k3ð Þ
� kn3 k1 þ k2ð Þ

Therefore,

Cnþ 1 ¼ 3pð ÞCn � k1k2 þ k2k3 þ k3k1ð Þ kn�1
1 þ kn�1

2 þ kn�1
3

� �
þ k1k3k

n�1
2 þ k2k3k

n�1
1 þ k1k2k

n�1
3

� �

or,
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Cnþ 1 ¼ 3pð ÞCn � k1k2 þ k2k3 þ k3k1ð Þ Cn�1ð Þ
þ k1k2k3 kn�2

1 þ kn�2
2 þ kn�2

3

� �

Further substitution of Eq. (1.56) leads to the recurrence relation Eq. (1.67).
Another useful result of importance in defining yield criteria for isotropic materials
with the same behavior in tension–compression is given below.

Lemma 1.2 For any integer n� 1, the following recurrence relation holds:

C2nþ 4 ¼ C2nþ 2 k21 þ k22 þ k23
� �� C2n k21k

2
2 þ k21k

2
3 þ k22k

2
3

� �
þC2n�2 k21k

2
2k

2
3

� � ð1:68Þ

Proof

C2nþ 4 ¼ k2nþ 4
1 þ k2nþ 4

2 þ k2nþ 4
3

� � ¼ k2nþ 2
1 þ k2nþ 2

2 þ k2nþ 2
3

� �
k21 þ k22 þ k23
� �

� k2nþ 2
1 k22 þ k23

� �� k2nþ 2
2 k21 þ k23

� �� k2nþ 2
3 k21 þ k22

� �

or,

C2nþ 4 ¼ C2nþ 2 k21 þ k22 þ k23
� �� C2n k21k

2
2 þ k21k

2
3 þ k22k

2
3

� �
þ k21k

2
2k

2n
3 þ k21k

2
3k

2n
2 þ k22k

2
3k

2n
1

Further collecting the last three terms in the above expression, we obtain,

C2nþ 4 ¼ C2nþ 2 k21 þ k22 þ k23
� �� C2n k21k

2
2 þ k21k

2
3 þ k22k

2
3

� �þ k21k
2
2k

2
3C2n�2

1.2.2 Higher-Order Tensors

Tensor of Order n

Definition A tensor of order n (or nth-order tensor) is a linear mapping that
assigns to each vector u a tensor of order (n–1), for n� 3: This definition, in
conjunction with that of a second-order tensor given in the previous subsection,
allows the iterative introduction of tensors of an arbitrary order. We denote by Ln
the set of all tensors of order n, n� 3: The sum AþB of any two nth-order tensors
A and B, and the product aA ¼ Aa of a nth-order tensor and a real number a are
defined by the equations:
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AþBð Þv ¼ AvþBv; aAð Þv ¼ a Avð Þ: ð1:69Þ

As in the case of second-order tensors, it is easy to see that Ln endowed with the
above operations and similar definitions for the zero tensor and opposite tensor
�Að Þ, respectively, form a vector space.

Definition The tensor product or dyadic product of n vectors ui, with i = 1, …, n,
is a tensor of nth-order, denoted by u1 � u2. . .� un and is defined by:

ðu1 � u2. . .� unÞ wð Þ ¼ u1 � u2. . .� un�1ðun � wÞ 8w 2 V : ð1:70Þ

Note that for n = 2 the above definition reduces to the definition of a dyadic
product of any two vectors given by Eq. (1.21). In particular, the tensor product of
three vectors u1; u2; u3 2 V is a third-order tensor u1 � u2 � u3, which assigns to
any vector a the second-order tensor u1 � u2ð Þ u3 � að Þ, so:

ðu1 � u2 � u3Þa ¼ u1 � u2ð Þ u3 � að Þ 8a 2 V ð1:71Þ

In the mechanics of deformable bodies, the role of the third-order tensors is
relatively reduced. However, in order to introduce the gradient of a second-order
tensor field, and to obtain in this way the divergence of a second-order tensor field,
we must use third-order tensor fields.

In general, the products ek1 � ek2 . . .� ekn ; k1; . . .; kn ¼ 1; . . .; 3 form a basis of
Ln. Hence, Ln the vector space of nth-order tensors is 3n dimensional, and every
tensor A can be uniquely written in the form:

A = Ak1...knek1 � ek2 . . .� ekn ; ð1:72Þ

where the scalars Ak1...:kn are the Cartesian components of A in the considered basis.
Furthermore, if T ¼ Av and T = Tk1...kn�1ek1 � ek2 . . .� ekn by applying the defini-
tion (1.70), we obtain the expression of the components of the (n − 1)th-order
tensor T in terms of the components of A and of the vector v as:

Tk1...kn�1 ¼ Ak1...knvkn :

Fourth-Order Tensors

The dimension of the vector space of fourth-order tensors, L4, is 34 ¼ 81, and any
fourth-order tensor U can be expressed in a unique way as a linear combination of
fourth-order dyads ek � el � em � en, k, l, m, n = 1, …, 3; i.e.,

U ¼ Uklmnek � el � em � en; ð1:73Þ
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the numbers Uklmn, k, l, m, n = 1, …, 3 being the components of U in the con-
sidered basis; if A = U v the components of the third-order tensor A are:

Aklm ¼ Uklmnvn: ð1:74Þ

Transformation Rules for the Components of Fourth-Order Tensors

If e	1; e
	
2; e

	
3

� 	
are three-dimensional positive-oriented orthonormal bases of the

three-dimensional space V, then the components of the fourth-order tensor in the
basis e	1; e

	
2; e

	
3

� 	
are:

Urstu ¼ qkrqlsqmtqnuUklmn; ð1:75Þ

where Q ¼ qij
� �

is the transformation matrix from the new basis e	1; e
	
2; e

	
3

� 	
to the

old basis e1; e2; e3f g and r, s, t, u = 1, …, 3.
Relative to any orthonormal basis, the fourth-order identity tensor I4 has the

components:

I4 ¼ dkmdlnek � el � em � en: ð1:76Þ

Contracted Products Between Tensors

In the previous section, we defined the inner product (contracted product) of any
two second-order tensors [see Eq. (1.33)]. In the following, we introduce contracted
products between various nth-order tensors, which will be later used to define
anisotropic yield criteria in terms of transformed tensors (see Chap. 5).

Definition The left dot product and right dot product (contracted product) of a
vector v and a second-order tensor T is the vector defined as:

v � T ¼ TTv

T � v ¼ Tv
ð1:77Þ

Relative to an orthonormal basis e1; e2; e3f g,

v � T ¼ vkTklel; T � v ¼ Tklvlek ð1:78Þ

with k, l = 1, …, 3.

Definition The left dot product and right dot product (contracted product) of a
vector v and a third-order tensor A is the second-order tensor defined as:

v � A ¼ ATv ¼ vkAklmel � em;

A � v ¼ ATv ¼ Aklmvmek � el:
ð1:79Þ

with k, l, m, n = 1, …, 3.
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Definition The contracted product of a fourth-order tensor U and a second-order
tensor T is a second-order tensor defined as:

UT ¼ UklmnTmnek � el: ð1:80Þ

Using the transformation rules of the components of vectors, second-order,
third-order, and fourth-order tensors [see Eqs. (1.45), (1.48), (1.74)–(1.75)], it can
be shown that these contracted products are independent of the basis used.

Remark Note that if U ¼ UT then the inner product of U with any second-order
tensor B ¼ Bklek � el is given by:

B � U ¼ UklmnBklTmn ð1:81Þ

and in particular the norm of U is:

Uk k2¼ U � U ¼ U �UT ¼ UklmnUklTmn ð1:82Þ
Remark On the basis of the definition and properties of the contracted product between
a fourth-order tensor and a second-order tensor, it can be concluded that a fourth-order
tensor can be considered as being a linear mapping of the vector space L of second-
order tensors onto itself. Therefore, we can introduce the product or composition of
two fourth-order tensors using the usual rule of composition of functions.

Product (Composition) of Fourth-Order Tensors

Definition The product (or composition) of any fourth-order tensors U and W is
the fourth-order tensor defined as:

UWð Þ Tð Þ ¼ U WTð Þ for any T 2 L: ð1:83Þ
Let e1; e2; e3f g be an orthonormal basis, the product L ¼ UW has the

components:

Lklmn ¼ UklrsWrsmn; with k; l;m; n ¼ 1; . . .; 3:

It can be easily shown that fourth-order identity tensor I4 [see Eq. (1.76)] has the
following properties:

I4T ¼ T; for any second-order tensor T and for any fourth-order tensor U,

I4U ¼ UI4 ¼ U:

Given the above properties of I4 and of the product of fourth-order tensors, the
inverse and transpose of a fourth-order tensor are defined in the same manner as the
inverse and transpose of second-order tensors [see definitions and Eq. (1.40)].
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Transpose of a Fourth-Order Tensor

Definition Associated with any fourth-order tensorU, there is a fourth-order tensor
called the transpose of U, denoted by UT such that:

A : UTB
� � ¼ B : UA; 8A;B 2 L ð1:84Þ

It can be easily shown that the above requirement uniquely defines the transpose
UT and that it is indeed a fourth-order tensor, its components relative to an
orthonormal basis being:

UT
klmn ¼ Umnkl ð1:85Þ

Symmetric Fourth-Order Tensors

Definition A fourth-order tensor U is symmetric if,

UT ¼ U: ð1:86Þ

Therefore, it follows that if U is symmetric its components satisfy the
requirements:

Uklmn ¼ Umnkl; with k; l;m; n ¼ 1; 2; 3: ð1:87Þ

We shall denote by LS4 the set of all symmetric fourth-order tensors. From
Eq. (1.87), it follows that a symmetric fourth-order tensor has only 45 independent
components (dimension of LS4 = 45). When introducing anisotropy using the linear
transformation approach (see Chap. 5), an important role is played by those sym-
metric fourth-order tensors which also satisfy the additional symmetry property:

UTT ¼ UT; 8T 2 L. ð1:88Þ

Denoting by Uklmn the components of the symmetric fourth-order tensor U, it
follows that the requirements (1.87) and (1.88) imply that:

Uklmn ¼ Ulkmn ¼ Uklnm ¼ Umnkl; with k; l;m; n ¼ 1. . .3; ð1:89Þ

so the tensor U has only 21 independent components. Note that the above sym-
metry requirements imply

UTð ÞT¼ UT; 8T 2 L

so,
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UT ¼ UTS;

where TS denotes the symmetric part of the second-order tensor T [see Eq. (1.30)].
An immediate consequence is that:

UX ¼ 0; for any skew tensor X: ð1:90Þ

Thismeans that a symmetric fourth-order tensorU, having the additional symmetry
properties of Eq. (1.89) is not a one-to-one mapping of L, the space of second-order
tensors. However, a symmetric tensor U satisfying the symmetry conditions of
Eq. (1.89) may admit an inverse in the space of symmetric fourth-order tensors.

Let us first note that the tensor Î defined as:

Îklmn ¼ 1
2

dkmdln þ dkndlmð Þ; ð1:91Þ

is indeed a fourth-order symmetric tensor and satisfies the additional symmetry
requirements of Eq. (1.89). Moreover, it has the following property:

ÎU ¼ UÎ ¼ U; for any symmetric tensor U: ð1:92Þ

In other words, Î is the unit tensor in the space of symmetric fourth-order
tensors. Similarly with the definitions of positive-definiteness of second-order
tensors [see Eq. (1.63)], we say that a fourth-order tensor U 2 L4 is
positive-definite if:

T : UT� 0; for any symmetric tensor T ð1:93Þ

and,

T:UT ¼ 0 if and only if T ¼ 0:

It can be easily seen that if a symmetric fourth-order tensor U is
positive-definite, there exists a fourth-order symmetric tensor W such that:

UW ¼ WU ¼ Î: ð1:94Þ

This result is of great importance for the theory of elasticity, since it ensures that
the inverse of the stiffness tensor exists and it is positive definite. In the mathe-
matical theory of plasticity use is also made of the deviator of Î. This fourth-order
symmetric deviatoric tensor is generally denoted by K, and its components with
respect to any Cartesian coordinate system are given by:

Kijkl ¼ 1=2 dikdjl þ dildjk
� �� 1=3 dijdkl

� � ð1:95Þ
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1.3 Elements of Vector and Tensor Calculus

In this section, we provide a brief review of differentiation of functions of a scalar
variable t (e.g., time). Differentiation of a scalar function of a tensor and ensuing
identities are essential in calculating the plastic strain-rate tensor once the expres-
sion of the plastic potential is known.

In this section, components of vectors and tensors are relative to a fixed
orthonormal basis ekf g, k = 1, …, 3. The position vector of a point M in space will
be denoted by x ¼ xkek , with x1; x2; x3 being the Cartesian coordinates of M in the
Cartesian coordinate system O; e1; e2; e3ð Þ:

Derivative of a Point Function of a Scalar

Definition The derivative of a point function x tð Þ of a scalar variable t, denoted
_x tð Þ, is a vector function defined as:

_x tð Þ ¼ lim
h!0

x tþ hð Þ � x tð Þ
h

ð1:96Þ
Given a scalar f, vector v, or second-order tensor function T of the scalar

variable t, we write:

_f tð Þ ¼ df ðtÞ
dt

¼ lim
h!0

f tþ hð Þ � f tð Þ
h

;

_v tð Þ ¼ _vi tð Þei;
_T tð Þ ¼ _Tij tð Þei � ej; i; j ¼ 1; . . .; 3:

Using the above definition, it can be shown that for any nonzero tensor function
TðtÞ,

d
dt

TðtÞk k ¼ TðtÞ : _TðtÞ
TðtÞk k : ð1:97Þ

Boundaries of the regions in the three-dimensional Euclidean space where these
functions are defined are assumed to have continuity and differentiability properties
sufficient to ensure that the boundary-value problems are well-posed. Thus, the
domain of definition is the bounded open set D, the boundary of D, denoted @D,
being a closed regular surface (i.e., unit normal fields over the bounding surface are
well-defined).
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Definition A function that assigns to each point of a region D a scalar, vector, or
tensor function is called scalar, vector, or tensor field on D, respectively.

A vector or tensor field is said to be of class Cn on D if its components with
respect to a fixed coordinate system are continuous on D together with their partial
derivatives up to the nth-order.

Additionally, it is important to note that these regularity properties are inde-
pendent of the chosen basis.

Gradient of a Scalar, Vector, or Tensor Field

Consider a scalar field / : D ! R of class C1. The gradient of /, denoted gradu, is
the vector field:

gradu xð Þ ¼ @u
@xi

ei; i ¼ 1; . . .; 3: ð1:98Þ

To differentiate a function f xðtÞð Þ, where x tð Þ is a point function with real
values, the chain rule in conjunction with the above definition is used:

d
dt

f xðtÞð Þð Þ ¼ grad f xð Þ � _x tð Þ ¼ @f
@xi

_xi:

Gradient, Curl, Divergence of a Vector Field

Definition Let u xð Þ be a vector field of class C1 in D. The gradient of u xð Þ is the
second-order tensor field,

grad u xð Þ ¼ @ui
@xj

ei � ej;

the curl of u xð Þ is a vector field defined as:

curl u xð Þ ¼ emrs
@ur xð Þ
@xs

em; ð1:99Þ

and the divergence of u xð Þ is the scalar:

div u xð Þ ¼ trðgrad u xð ÞÞ ¼ ukk xð Þ: ð1:100Þ
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We define the Laplace operator D for scalar and vector fields as:

Du xð Þ ¼ div gradu xð Þð Þ; ð1:101Þ

and,

Du xð Þ ¼ div grad u xð Þð Þ: ð1:102Þ

The operators grad, curl, div, D are linear mappings and therefore they are
independent of the coordinate system (for proof, see, e.g., Malvern [5]).

Gradient, Curl, Divergence of a Tensor Field

Definition Let T : D ! L be a second-order tensor field of class C1 on D. The
gradient of T is the third-order tensor field defined as follows:

gradT xð Þ ¼ @Tlm xð Þ
@xk

ek � el � em; ð1:103Þ

the curl of T xð Þ is the second-order tensor field,

curlT xð Þ ¼ eijk
@Tlj xð Þ
@xk

el � ei; ð1:104Þ

the divergence of T xð Þ is the vector field:

divT xð Þ ¼ @Tij xð Þ
@xj

ei;

while the Laplacian of T xð Þ is the tensor field:

DT xð Þ ¼ @2Tij
@xk@xk

ei � ej: ð1:105Þ

Differentiation of a Scalar Function of a Tensor

Definition For a scalar function UðAÞ of a second-order tensor variable A; the
derivative @UðAÞ=@A is the tensor function defined such that:

@UðAÞ
@A

: B ¼ lim
s!0

UðAþ sBÞ � UðAÞ
s

8B 2 L: ð1:106Þ
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It follows that:

@UðAÞ
@A

 �
ij
¼ @UðAÞ

@Aij
: ð1:107Þ

Note that if A is a symmetric second-order tensor,
@UðAÞ
@A

is a symmetric

second-order tensor. The following result is central to the theory of plasticity.

1.4 Elements of the Theory of Tensor Representation

1.4.1 Symmetry Transformations and Groups

We will use the following notations:

L the set of second-order tensors on V;
L+ the set of all second-order tensors A with det Að Þ > 0;
Sym the set of all symmetric second-order tensors;
PSym+ the set of all symmetric and positive-definite second-order tensors;
Orth the set of all orthogonal tensors on V;
Orth+ the set of all rotations (proper orthogonal group).

Definition Let D 
 L and G a group of Orth. We say that a scalar function U:D !
R is invariant relative to the group G, if for any T 2 D and for any Q 2 G, we have:

U Tð Þ ¼ U QTQT� �
: ð1:108Þ

Similarly, a vector function h:V ! R is invariant relative to the group G, if for
any v 2 V and for any Q 2 G, we have:

h Qvð Þ ¼ Qh vð Þ ð1:109Þ

A tensor function S : D ! R is invariant relative to the group G, if for any T 2 D
and for any Q 2 G, we have:

S QTQT� � ¼ QS Tð ÞQT ð1:110Þ

Definition An isotropic function is a function invariant relative to the full
orthogonal group.

In Sect. 1.2, we have shown that:

(a) The determinant, det, and the trace function, tr, are isotropic functions;
(b) The principal invariants
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IT ¼ trT; IIT ¼ 1
2

trTð Þ2�trðT2Þ
h i

; IIIT ¼ detðTÞ ð1:111Þ

of a symmetric tensor T are isotropic functions.

Representation Theorems for Isotropic Scalar Functions

Let us denote by I Dð Þ ¼ IT T 2 Djf g the set of all possible lists of invariants for
symmetric tensors. Next, we present several representation theorems for scalar
functions which are due to Cauchy and Wang [6].

Representation Theorem for Isotropic Scalar Function of a Symmetric Tensor

A scalar function U : D ! R, where D 
 Sym, is isotropic if and only if there exists
a function Û : I Dð Þ ! R such that,

U Tð Þ ¼ Û ITð Þ for any T 2 D ð1:112Þ

Proof That Eq. (1.112) defines an isotropic function is a direct consequence of
Theorem 1.1. To prove the converse statement, let us assume that U is isotropic. It
is sufficient to prove that if any two symmetric tensors T1 and T2 have the same
spectrum, i.e., the same invariants [see Eq. (1.111)] then U T1ð Þ ¼ U T2ð Þ: Indeed,
if IT1 ¼ IT2 then T1 and T2 have the same eigenvalues ki, i = 1, …, 3. By the
spectral theorem, there exist orthonormal bases eif g and f if g such that T1 ¼P

i kiei � ei and T2 ¼
P

i kif i � f i. Let Q be the orthogonal transformation from
one basis to the other, i.e., Q f ið Þ ¼ ei. Then,

QT2Q
T ¼

X
i

kiQ f i � f ið ÞQT ¼
X
i

ki Qf ið Þ � Qf ið Þ ¼
X
i

kiei � ei ¼ T1

ð1:113Þ
But since U is isotropic, U T2ð Þ ¼ U QT2Q

T
� �

; thus by Eq. (1.113) we obtain
that U T1ð Þ ¼ U T2ð Þ. So, if U is an isotropic scalar function, it depends on T only
through its invariants. Representation theorems for isotropic scalar-valued functions
of an arbitrary number of symmetric tensors, skew-symmetric tensors, and vectors
have been derived by Wang [6].

Representation Theorem for Isotropic Scalar Function

A scalar function U T1;T2; . . .;Ta;W1;W2; . . .;Wb; v1; v2; . . .; vkð Þ, where
Ti;Wj; vk are respectively an arbitrary number of symmetric tensors,
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skew-symmetric tensors, and vectors, is isotropic if and only if there exists a scalar
function Û IT1;T2;...;Ta;W1;W2;...;Wb;v1;v2;...;vk

� �
such that

U T1;T2; . . .;Ta;W1;W2; . . .;Wb; v1; v2; . . .; vkð Þ
¼ Û IT1;T2;...;Ta;W1;W2;...;Wb;v1;v2;...;vk

� � ð1:114Þ

where, IT1;T2;...;Ta;W1;W2;...;Wb;v1;v2;...;vk is an irreducible set of invariants for the
arguments of the function U .

By definition, a set of invariants is called “functional basis” for the list of
arguments if any arbitrary scalar function of these arguments can be expressed in
terms of these basic invariants. A functional basis is called irreducible if none of its
elements can be expressed as a function of the others. The complete list of
invariants for the set of arguments T1;T2; . . .;Ta;W1;W2; . . .;Wb; v1; v2; . . .; vk is
obtained considering all the (unordered) combinations of one, two, three, and four
variables given in Table 1.1.

For example, the representation for an isotropic scalar function of two symmetric
second-order tensors, T1;T2 involves ten invariants, i.e.,

Table 1.1 Irreducible isotropic functional bases

Arguments Set of invariants

T tr(T), tr(T2), tr(T3)

W tr(W2)

v v � v
T1;T2 trðT1T2Þ; trðT2

1
T2Þ; trðT1T2

2
Þ; trðT2

1T
2
2
Þ

T, W tr TW2
� �

; tr T2W2
� �

; tr T2W2TW
� �

T, v v � Tv; v � T2v
W1;W2 trðW1W2)

W, v v �W2v
v1; v2 v1 � v2
T1;T2;T3 trðT1T2T3Þ
T1;T2;W trðT1T2WÞ; trðT2

1T2WÞ; trðT1T2
2WÞ; trðT1W2T2WÞ

T, W1;W2 trðTW1W2Þ; trðTW2
1W2Þ; trðTW1W2

2Þ
W1;W2;W3 tr W1W2W3ð Þ
T1;T2; v T1v � T2v
T, v1; v2 v1 � Tv2; v1 � T2v2
W1;W2, v W1v �W2v;W2

1 v �W2v;W1v �W2
2v

W, v1; v2 v1 �Wv2; v1 �W2v2
T, W, v Tv �Wv;T2v �Wv;TWv �W2v
T1;T2v1; v2 T1v1 � T2v2 � T1v2 � T2v1
T, W, v1; v2 Tv1 �Wv2 � Tv2 �Wv1
W1;W2; v1; v2 W1v1 �W2v2 �W1v2 �W2v1
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IT1;T2 ¼ ftrðT1Þ; trðT2
1Þ; trðT3

1Þ; trðT2Þ; trðT2
2Þ; trðT3

2Þ; trðT1T2Þ;
trðT2

1T2Þ; trðT1T2
2Þ; trðT2

1T
2
2Þg:

To establish representation theorems for isotropic tensor functions, we need to
first prove the following lemma given by Wang [6].

Lemma 1.3 Let I be the second-order unit tensor, T be a symmetric tensor,
k1; k2; k3 its eigenvalues with e1; e2; e3 corresponding eigenvectors.

(a) If all the eigenvalues ki are distinct, then I;T;T2
� 	

are linearly independent;
(b) If T has exactly two distinct eigenvalues, then I;Tf g are linearly independent.

Proof

(a) To prove that the set I;T;T2
� 	

is linearly independent, we must show that,

aT2 þ bTþ cI ¼ 0; ð1:115Þ

only if a ¼ b ¼ c ¼ 0: Since T eið Þ ¼ kiei and T2 eið Þ ¼ kið Þ2ei, from
Eq. (1.115) it follows that,

ak2i þ bki þ c
� �

ei ¼ 0; so that ak2i þ bki þ c ¼ 0 for any i ¼ 1; 2; 3: ð1:116Þ
The determinant of the homogeneous algebraic system (1.116) in the unknowns

a; b, and c is:

D ¼
k21 k1 1
k22 k2 1
k23 k3 1














 ð1:117Þ

Since the eigenvalues ki are distinct, D 6¼ 0; thus the unique solution of (1.116)
is: a ¼ b ¼ c ¼ 0. Thus, I;T;T2

� 	
are linearly independent.

(b) To establish the linear independence of I;Tf g we must show that,

aIþ bT ¼ 0; ð1:118Þ

only if a ¼ b ¼ 0: Since T ¼ k1e� eþ k2 I� e� eð Þ, from Eq. (1.118) it fol-
lows that,

aþ bk1 ¼ 0
aþ bk2 ¼ 0

�
: ð1:119Þ

The eigenvalues k1 and k2 being distinct, Eq. (1.118) holds only if a ¼ b ¼ 0:
Thus, I and T are linearly independent.
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1.4.2 Representation Theorems for Orthotropic Scalar
Functions

Certain anisotropic materials such as transversely isotropic materials as well as
some crystalline solids (for detailed discussion of crystal classes and respective
symmetry groups, see Chap. 3) can be characterized by preferred directions and
planes, i.e., by certain vectors m1,m2; . . .;mp and some tensors M1;M2; . . .;Mq.
The symmetry group G of such materials preserves these characteristics and is of
the form:

G ¼ Q 2 OjQm1 ¼ m1; . . .;Qmp ¼ mp;QM1QT ¼ M1; . . .;QMqQT ¼ Mq
� 	

ð1:120Þ

Theorem 1.3 A function f is invariant relative to the symmetry group G if and only
if it can be represented by an isotropic function f̂ :

f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ
¼ f̂ ðv1; v2; . . .; va;A1;A2; . . .;Ab,m1; . . .;mp;M1; . . .;MqÞ

ð1:121Þ

Proof While in the theorem, the function f can be either scalar-valued,
vector-valued, or tensor-valued, we will present the proof only for scalar-valued
functions. The proof for vector-valued and tensor-valued functions is similar and for
both proofs, we refer the reader to the paper of I-Shih [4].

Assume that f admits the representation given by Eq. (1.121). We need to show
that f is invariant relative to G, i.e.,

f ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

TÞ ¼ f ðv1; v2; . . .; va;A1; . . .;AbÞ 8Q 2 G:

Since,

f ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

TÞ
¼ f̂ ðQv1; . . .Qva;QA1Q

T; . . .;QAbQ
T;m1; . . .;mp;M1; . . .;MqÞ

¼ f̂ ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

T;QQTm1. . .QQTmp;QQTM1QQT; . . .QQTMqQQTÞ

and f̂ is isotropic, it follows that:

f ðQv1; . . .;Qva;QA1Q
T; . . .;QAbQ

TÞ
¼ f̂ ðv1; . . .va;A1; . . .Ab;QTm1; . . .;QTmp;QTM1Q; . . .;QTMqQÞ

Given that Q 2 G, so we have: Qm1 ¼ m1, …, Qmp ¼ mp and QM1Q
T ¼ M1,

…, QMqQ
T ¼ Mq .
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Therefore,

f̂ ðv1; . . .va;A1; . . .;Ab;QTm1; . . .;QTmp;QTM1Q; . . .;QTMqQÞ
¼ f̂ ðv1; . . .; va;A1; . . .;Ab;m1; . . .;mp;M1; . . .;MqÞ ¼ f ðv1; . . .; va;A1; . . .;AbÞ:

Transverse isotropy is characterized by a preferred direction n. Its symmetry
group is:

GT ¼ Q 2 OjQn ¼ nf g: ð1:122Þ

(See also Chap. 5). By the above theorem, we have the following result:
A transversely isotropic function f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ can be repre-

sented as:

f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ ¼ f̂ ðv1; v2; . . .; va;A1;A2; . . .Ab; nÞ

where f̂ is an isotropic function.
Orthotropy is characterized by reflections on three mutually orthogonal planes.
Another important result is given by:

Theorem 1.4 Any orthotropic function f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ can be
represented as:

f ðv1; v2; . . .; va;A1;A2; . . .;AbÞ ¼ f̂ ðv1; v2; . . .; va;A1;A2; . . .;Ab;N1;N2Þ
ð1:123Þ

where f̂ is an isotropic function, N1 ¼ n1 � n1 and N2 ¼ n2 � n2 (see I-Shih
[4]).

The above results were used by Cazacu and Barlat [1, 2] to derive yield criteria
for orthotropic and transversely isotropic metallic materials (see Chap. 5).
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Chapter 2
Constitutive Equations for
Elastic–Plastic Materials

In this chapter, we present a brief historical outline followed by the governing
equations for a plastically deformable metallic material and the time integration
algorithms developed in order to solve boundary-value problems in the context of
the finite-element method. Detailed discussions of numerical aspects are beyond the
scope of this review, the primary objective here is to present the key constitutive
hypotheses and their relevance with respect to experimental observations.

The earliest evidence of metal working dates back to about 4500 B.C. During that
time period the ability of metals to undergo permanent change in shape, i.e., plastic
deformation was primarily exploited for the production of hand tools and weapons.
While metal shaping processes (e.g., forging, rolling, extrusion) and alloying tech-
niques have constantly evolved since that time, the first theoretical developments
and mathematical relations relating stresses and strains in a metallic material
undergoing permanent deformation were proposed toward the end of the eighteenth
century. On the basis of experimental observations on torsion of iron wires and
bending of iron blades, respectively, Coulomb [13] concluded that permanent
changes in shape occur when the applied load becomes equal to or greater than a
certain critical value. For example, during torsion of iron wires, Coulomb [13]
reported that when the angle of rotation exceeds 180°, the angle of recovery becomes
smaller than the angle of twisting. Moreover, using an analogy with frictional
phenomena, he attributed the occurrence of permanent deformation to breaking of
adhesion between particles and subsequent glide inside the metal. Almost eighty
years later, at a time when the theory of elasticity flourished due to the fundamental
advances in mathematics made by Poisson (1781–1840), Cauchy (1789–1857), and
Lame (1795–1870), Tresca [48] conducted experiments on extrusion of metals
through dies of different shapes and concluded that for the materials studied the
extrusion force depends only on the shear stress. Although in these tests the stress
distribution is non-uniform, Tresca arrived at the conclusion that the material studied
“flows under a constant maximum shear stress” (see also Hill [26], who suggests that
in formulating the yield criterion Tresca may have been guided by a failure criterion
proposed in 1773 by Coulomb).
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The first theory relating stresses and strains in a metallic material that undergoes
plastic deformation was proposed by Saint-Venant [42] for plane-strain conditions.
Neglecting elastic strains, Saint-Venant [42] assumed that: (a) plastic deformation is
not accompanied by any change of volume; (b) in the domain where plastic
deformation occurs, the maximum shear stress at each point is equal to a certain
constant value (this last assumption is known as the Tresca yield criterion), and
(c) the increment of the total strain and the applied stress have the same principal
directions. Levy [31] generalized the Saint-Venant [42]’s theory to arbitrary
three-dimensional loadings and pointed out the intrinsic difference between the
stress–strain relations for an elastic material (proportionality between stresses and
strains) and those of a plastically deformable material, namely proportionality
between the strain increments and deviatoric stresses. However, the 3-D general-
ization proposed by Levy [31] based on Tresca’s yield criterion is not correct, as it
was made clear in 1913 when von Mises [51] independently arrived at the same
relations on the basis of his yield criterion. The von Mises [51] model states that
for an isotropic metallic material, plastic flow occurs when the second-invariant
of the stress deviator, J2, attains a critical value. Later on, von Mises introduced
the concept of a plastic potential in the stress space, i.e., a scalar function of stress
(e.g., J2) such that the plastic strain increments are calculated upon differentiation
of this potential with respect to stresses, when the yield condition is satisfied.
He further proposed that the plastic potential should be taken the same as the yield
function.

Hencky [24] demonstrated that J2 is a measure of the elastic energy of distortion
(i.e., the elastic energy less the energy required to produce volume changes) while
Nadai [32] showed that J2 is proportional to the shear stress acting on a plane
whose normal makes equal angles with the eigenvectors of the stress (i.e., the
octahedral plane, see also Chap. 4).

Nevertheless, as Prager and Hodge [38] pointed out: “Mises’ yield criterion
condition derives its importance in the mathematical theory of plasticity not from
the fact that the invariant J2 appearing therein can be interpreted physically in this
or that manner, but from the fact that it has the simplest mathematical form com-
patible with the general postulates which any field condition must fulfill”.

The experimental verification of the fact that the plastic behavior of metallic
materials is not accompanied by volume changes was provided by Bridgman [7]
(see also experimental results of Polanyi and collaborators (see [35]) on single
crystals subjected to uniaxial tensile tests on which hydrostatic pressure was
superposed). However, later on Bridgman [8] showed that if the hydrostatic stress is
several orders of magnitude greater than the tensile yield stress, permanent volume
changes may be expected.

An important step in the development of the discipline is the generalization of
the von Mises [51] relations between the total strain increments and the stress
deviators proposed by Prandtl [39] for the plane-strain case, and by Reuss [41] for
general loadings. These authors assumed that the total strain increment is the sum of
an elastic strain increment and a plastic strain increment, the plastic strain increment
being proportional to the stress deviator. It was also pointed out that in contrast to
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elastic behavior, the ratio between plastic strain increments and stresses is not a
constant.

A completely different type of plasticity theories, called deformation theories,
originated with Hencky [24] (see also Ilyushin [30]). The key constitutive
hypothesis of theses theories is that the stress is directly related to the plastic strain.
The deformation theories have been widely used, particularly in the Russian lit-
erature (see Cristescu [14]). However, it was clearly demonstrated that all defor-
mation theories violate the basic requirement that the plastic strain should be
dependent on the loading path by which it was produced. For example, Hill [26],
Hodge and White [28] and Goodier and Hodge [22] demonstrated rigorously the
inadequacy of all such theories for most non-proportional loadings. These authors
also clearly showed that while deformation theories may seem appealing due to
their mathematical simplicity, the fact that in such theories, load-path effects are
neglected means that the plastic behavior is modeled as nonlinear elastic behavior.
Therefore, plasticity theories of the Hencky-type will not be discussed in this book.

W. Prager and collaborators (see, e.g., Handelman et al. [23], Hodge and Prager
[27], Prager [36], and Prager and Hodge [38]) introduced the fundamental
assumptions concerning the form of the stress–strain relationships governing plastic
deformation of metallic materials. First, it was assumed that during loading the
relation between the increment of plastic strain Dep and the stress increment Dr
should be linear, i.e.,

Dep ¼ CepDr; ð2:1Þ

where Cep is a function of the mechanical state of the material, but not of the stress
increment. The assumptions of continuity, which is associated with the concept of
neutral loading (limiting case of either loading or unloading), consistency, which
ensures that loading leads from one plastic state to the other, and uniqueness of
the solution to boundary-value problems, complete the specification of the evolu-
tion of the plastic strain, i.e., Eq. (2.1). Moreover, the condition or postulate of
irreversibility was introduced. It states that unloading can only be elastic.

D.C. Drucker introduced postulates (see [16–20]) that have been playing a vital
role in ensuring that the elastic/plastic problem is well-posed for work-hardening
materials. Based on these postulates, it can be shown that a sufficient condition for
the uniqueness of solution to a stated boundary-value problem for work-hardening
materials is that the plastic strain-rate tensor is along the outward normal direction
of the yield surface. Specifically, Drucker’s postulates ensure the convexity of the
yield surface and the normality of the plastic strain-rate to an evolving yield surface
(for an in-depth discussion on Drucker postulates, the reader is referred to the
monograph [21]). As already mentioned, the historical outline presented here gives
just a brief overview of the main developments, for a thorough description of the
history of plasticity, the reader is referred to the recent review paper of Osakada
[34].
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Before proceeding to the formal introduction of the concepts of yield function/
surface, flow rule, and hardening, we will illustrate the main features of the plastic
response of metallic materials that are modeled with these concepts. For this pur-
pose, we discuss the stress–strain response of a metallic material in uniaxial tension.

Consider a specimen subject to uniaxial tension. For metallic materials, the
stress–strain response is nonlinear beyond a certain level of the applied load.
However, for sufficiently small values of the load the test specimen will resume its
initial shape upon unloading (i.e., removal of the applied load). The elastic regime
of behavior is defined by the range of stress–strain for which upon complete
unloading the material recovers its initial state. The plastic regime of the behavior is
defined by the states of stress and strains beyond the elastic range. The transition
from elastic to plastic response can be abrupt (e.g., mild steels) or gradual (e.g.,
titanium materials; see, e.g., Chap. 5). The stress level corresponding to this tran-
sition is called yield stress.

The results of a uniaxial tension test are represented as a measure of stress
against some measure of the total strain. Let l0 denote the initial length of the
specimen and l its current length. The amount of deformation is customarily cal-
culated as:

e ¼ l� l0ð Þ=l0; ð2:2Þ

where e is called engineering strain, or as:

e ¼ ln
l
l0

� �
; ð2:3Þ

where e is called logarithmic or natural strain.
Therefore, in uniaxial tension the relation between these two measures of

deformation is:

e ¼ ln ð1þ eÞ: ð2:4Þ

As concern stresses, the commonly used measures are the engineering stress or
nominal stress calculated as the ratio between the applied axial force F and the area
of the initial cross-section, A0, i.e.,

S ¼ F
A0

, ð2:5Þ

and the true stress r defined as the ratio of the axial force F to the current area of
cross-section, A, i.e.,

r ¼ F
A
: ð2:6Þ
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Plastic incompressibility results in l0A0 ¼ lA; so that the true stress is expressed
in terms of the engineering stress–strain as:

r ¼ S(1þ e). ð2:7Þ

As an example, Fig. 2.1 shows for an AA2024-T4, the two ways of representing
the test results. When the change in length is small, e and e are approximately
identical, but e becomes less than e with increasing load. Likewise, for small-applied
loads r and S are practically identical, but r diverges more rapidly from S for larger
applied loads [see Eq. (2.7)]. The ultimate tensile strength (UTS) is defined as the
maximum nominal stress S at the relative maximum point on the nominal stress–
strain curve (point U in Fig. 2.1), so it is the stress corresponding to the maximum
axial load that the specimen can withstand [see Eq. (2.5)]. Note that the true stress–
strain curve continues to increase beyond the maximum load point, but this is an
unstable region of the tensile test, since further deformation can continue with
decreasing load; the strain localizes as manifested by the local necking of the
specimen. Therefore, to estimate the true stress beyond this point necessitates taking
local measurements. However, any measurements beyond this point are not very
useful since the stress state cannot be approximated as uniaxial.

Remark It is important to note that in uniaxial compression of a specimen of initial
height h0 and current height h, using the same definitions, the engineering strain is
e ¼ h0 � hð Þ=h0 while the natural strain is e ¼ ln h0=hð Þ: So for this loading e ¼
� lnð1� eÞ: Therefore, comparison between the mechanical response in uniaxial
tension and uniaxial compression cannot be based on engineering stress versus
engineering strain curves since when e ¼ 1; the length of the tensile specimen has
only been doubled while the compression specimen height has approached zero
(see also the discussion in Hill [26]).
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Fig. 2.1 Uniaxial tension of an AA2024-T4: comparison between the true stress-true strain curve
and the engineering stress-engineering strain curve
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In summary, to compare the response of a material for different loadings, only
experimental true stress-true strain curves should be considered. Unless otherwise
stated, throughout this book only true stress-true strain curves are presented.

The main characteristics of the mechanical response of a plastically deformable
material are evident from the hypothetical stress–strain curve shown in Fig. 2.2.
When a gradually increasing load F is applied, the specimen experiences changes in
length and cross-sectional area. The specimen first deforms elastically, i.e., the
strain is proportional to the applied stress and the specimen regains its original
dimensions upon unloading. The stress level at which the strain is no longer pro-
portional to the applied stress is called the proportional limit. The elastic range
generally extends beyond this limit, and the stress, at which an appreciable amount
of permanent deformation is observed, is known as the yield stress point. As already
mentioned, in the case when the transition from elastic to plastic behavior is
gradual, the location of the yield point on the stress–strain curve is a matter of
convention. To compare the mechanical response of different materials, the yield is
defined by an offset method as illustrated in Fig. 2.2: A line AA0 is drawn parallel to
the initial elastic slope E offset to the right from the origin by a distance e0 ¼ 0:2%;
where this line intersects the stress–strain curve determines the yield stress, denoted
rY or Y.

Concerning the post-yield behavior, in most metals, the applied force must be
continually increased to produce further deformation, a phenomenon called
work-hardening. Such behavior is illustrated in Fig. 2.2. Note that beyond the yield
point A, the stress–strain curve rises (i.e., dr=de[ 0Þ. If after yielding has
occurred, the load is reduced from its current value (e.g., at point B in Fig. 2.2), the
change in length of the specimen is at first elastic, the unloading stress–strain curve
following approximately a straight line parallel to the original elastic slope E as
illustrated by the unloading lines BC and DM in Fig. 2.2. For unloading from the
point D, the elastic strain recovered is: ee ¼ rD=E; represented by the length MN on
the strain axis, while the plastic strain or permanent strain, ep, is represented by the
length MO, and it is given by: ep ¼ e� rD=E: If the unloading process is stopped
anywhere along DM and the load is increased again, ideally the stress–strain path is
elastic until point D, where yield occurs again followed by plastic deformation

Strain - ε

Stress - σ

C

B D

A

Plastic strain εp εe

MA’

Y

O N

Fig. 2.2 Schematic of the
tensile true stress–strain curve
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along the same curve which would have been followed if the monotonically
increasing load would have never been interrupted. In uniaxial tests on real
materials, the loading curve may deviate slightly from a straight line. In addition,
the unloading path DM is not perfectly straight either, so the unloading-reloading
curves form a so-called hysteresis loop.

The discussion of the mechanical response under uniaxial tension has allowed to
put into evidence the following key features of the mechanical response of plasti-
cally deformable materials:

(i) If the loading does not reach a certain threshold (yield point), the mechanical
behavior is purely elastic, i.e., the specimen will return to its initial shape
upon unloading.

(ii) After yielding, if the material is unloaded it will follow an elastic path and as
such only part of the strain that it had undergone is recovered, while other
part of the strain will remain as permanent or plastic strain.

(iii) Post-yield, there is energy dissipation.
(iv) Plastic deformation is stress path-dependent or history-dependent. In other

words, in the plastic range there is no unique relation between the stresses
and strains; to know the strains associated to a given stress state, one needs to
know the loading path that the material has undergone to reach the given
stress state.

In summary, the main characteristic difference between elastic behavior and
plastic behavior is that plastic deformation depends on the loading path. Therefore,
a simple uniaxial tension test is not sufficient to fully characterize the mechanical
behavior. To quantify the influence of the sense of loading on the mechanical
response, uniaxial compression tests are performed. Generally, to characterize the
response under shear, torsion tests on thin-walled cylinders are carried out.
Experimental data can also be obtained with combined loadings tests such as
tension-torsion or compression-torsion, but this type of data is rarely available (see
also Chap. 4).

Therefore, one of the greatest challenges that a researcher in the field of the
mathematical theory of plasticity faces is that of formulating a general theory, i.e.,
general mathematical relations between stresses and strains in a plastically
deformable material that are applicable to any loading, although information is
available mainly from 1-D tests. Another task of the researchers in this field is to
recommend and design experiments or numerical tests to verify the theories
developed and further demonstrate their validity through applications to industrial
processes. In the following, the basic constitutive assumptions and the general
framework of stress-based and strain-rate based theories of plasticity are presented.
Description of temperature effects and rate-effects on the plastic behavior is outside
the scope of this book. The constitutive equations presented in this book are
rate-insensitive, therefore invariant with respect to timescale (the rate-form and
incremental form are equivalent to each other).

2 Constitutive Equations for Elastic–Plastic Materials 43



2.1 Stress-Based Formulation of Elastic–Plastic Models

A general theory of plasticity should capture the main features of the mechanical
response observed in a uniaxial tension test. Therefore, it should describe the
conditions for the onset of plastic deformation, or initial yielding, the equations for
the evolution of the plastic strain and the manner in which the accumulated plastic
strains influence subsequent yielding after unloading and subsequent reloading. For
the purpose of describing the mechanical state at a point in a material subject to
general three-dimensional loadings, the state of stress is represented by a point in
the six-dimensional stress space rij; i; j ¼ 1; . . .; 3.

Before presenting the governing equations that describe the deformation response
of work-hardening materials, we will first consider ideal plastic behavior, i.e., the
case when yielding depends only on the state of stress. That such an assumption and
ensuing theory of plasticity, called ideal plasticity, is a reasonable representation of
the behavior of certain engineering materials will be discussed later. For now, let us
note that the assumption of ideal plastic behavior or perfectly plastic behavior has led
to the formulation of the general framework and the formal definition of the key
“ingredients” that should constitute a general theory of plasticity.

2.1.1 Ideal Plasticity

The basic assumption is that there exists a continuous scalar yield function f ðrÞ
which has the following properties:

(I1) For stress states such that:

f ðrÞ\0 or when f ðrÞ ¼ 0 and
@f ðrÞ
@r

: _r\0 ð2:8Þ

the material behavior is elastic (see also Fig. 2.3).

σ22

σ11Purely elastic

Inelastic 

( ) 0f <σ

( ) 0f =σFig. 2.3 Projection in a 2-D
plane of a 6-D yield surface in
the stress space
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(I2) The plastic strain-rate tensor, dp, can be nonzero only in the region where
f ðrÞ ¼ 0.

(I3) No physical meaning is associated with stress states with f ðrÞ[ 0.

As already mentioned, D.C. Drucker introduced postulates [16–20], collectively
known as the Drucker’s uniqueness and stability postulates, that have been vital in
ensuring that initial- and boundary-value problems are well-posed, and that plastic
structural problems admit unique solutions and exhibit stable equilibrium config-
urations. According to Drucker’s hypotheses, neglecting work-hardening means
that:

dr : dp ¼ 0 ð2:9Þ

when plastic deformation occurs. Since the yield function is assumed to be a
function of stresses only, any changes in stresses during plastic deformation must
satisfy the relation:

df ¼ @f ðrÞ
@r

: dr ¼ 0; ð2:10Þ

also called the condition of consistency for ideal plasticity.
From the above relations, it follows that:

dp ¼ _k
@f ðrÞ
@r

; ð2:11Þ

the sign of _k being restricted by the condition that plastic deformation always
involves dissipation, i.e.,

r : dp [ 0: ð2:12Þ

Remark

(i) Equation (2.11) gives the plastic flow rule in ideal plasticity.
(ii) In Eq. (2.11), _k is not a material constant and may vary during the defor-

mation. If f ðrÞ has the dimension of stress, say 1 Pa, then _k has the dimension
of s�1.

The equation f ðrÞ ¼ 0 defines a closed surface in the six-dimensional stress
space with rij; i; j ¼ 1; . . .; 3 as coordinates. The interior of this surface defines the
elastic domain of behavior (see also Fig. 2.3 for the 2-D projection of a generic

yield surface). The outward normal vector to this surface is
@f
@r

: Hence, as pointed

out by Prager, the plastic strain-rate tensor is directed along the normal to the yield
surface. The geometric interpretation of Eq. (2.8) is that during unloading the stress
increment is pointing inward from the yield surface. On the other hand, during
further loading or neutral loading:
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f ðrÞ ¼ 0 and
@f ðrÞ
@r

: _r ¼ 0;

i.e., the stress-rate _r is on the tangential plane at a stress point on the yield surface.
Note also that for uniaxial tensile loading, the condition for the onset of plastic

deformation is: r ¼ Y ; the concept of a yield surface thus extends the definition of
the yield point to general stress states.

Generally, the yield surface is expressed in the form:

f ðrÞ ¼ uðrÞ � Y ¼ 0; ð2:13Þ

where Y is a positive material constant.
The function uðrÞ is also called the yield criterion. A detailed discussion of yield

criteria for isotropic and anisotropic metallic materials will be given in Chaps. 4
and 5, respectively.

2.1.2 Elastic–Plastic Work-Hardening Materials

As discussed in the introduction, the results of uniaxial tension tests indicate that for
certain metallic materials the yield limit is not a constant, but depends on the loading
path. Therefore, the yield surface cannot be defined by a function that depends solely
on the stress tensor. Since the shape of the yield surface may evolve during the
deformation process, the yield function may depend on other variables, for example,
the plastic strain itself. Such variables are collectively termed “internal variables.”

As already mentioned, the constitutive assumptions and ensuing restrictions on
the form of the yield function and flow rule of work-hardening materials are due to
W. Prager and D.C. Drucker, and their collaborators. On the basis of Drucker’s
definition of work-hardening and its postulates, it can be proven that:

(P1) the yield surface and all subsequent yield surfaces must be convex (see
Fig. 2.4);
(P2) the plastic strain increment vector must be normal to the yield surface at a
regular point, and it must lie between the adjacent normals to the yield surface at a
corner of the surface;
(P3) the plastic strain-rate must be a linear function of the stress-rate [see Eq. (2.1)].

Therefore, for a work-hardening material the yield function f r; nkð Þ; with nk
designating the set of internal variables, is also playing the role of plastic potential
[see also (P2)], i.e.,

dp ¼ _k
@f r; nkð Þ

@r
ð2:14Þ
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where _k is a scalar positive factor, which can be a function of strain, or strain
history.

Note that the flow rule is of the same form as for ideal plastic materials.
Moreover, only states such as f r; nkð Þ� 0 are admissible (see also hypothesis P3
and the definition of the domain of elastic–plastic deformation for an ideal plastic
material).

The evolution laws for the internal variables nk defining hardening are consid-
ered to be of the general form:

_nk ¼ _kh r; nkð Þ ð2:15Þ

The plastic multiplier is determined by enforcing that as plastic deformation
proceeds,

_f ¼ @f r; nkð Þ
@rij

_rij þ @f r; nkð Þ
@nk

_nk ¼ 0 ð2:16Þ

Equation (2.16) expresses the consistency condition for work-hardening
materials.

As seen on the stress–strain diagram obtained for a uniaxial tensile test, the total
strain e can be decomposed into an elastic part ee and a plastic part ep (see Fig. 2.2).
For small strains, the strain-rate tensor d can be decomposed into an elastic part, de ,
and a plastic part, dp such that,

d ¼ de þ dp: ð2:17Þ
Generally, linear elastic and isotropic behavior governed by Hooke’s law is

considered, so that

_r ¼ Ce : d� dpð Þ, ð2:18Þ

with Ce is the constant elastic fourth-order tensor,
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Fig. 2.4 Illustration of convexity
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Ce ¼ 2G Is4 þK I� I

where K and G are the bulk and shear modulus, respectively; or

Ce
ijkl ¼

Em
ð1þ mÞð1� 2mÞ
� �

dijdkl þ E
2ð1þ vÞÞ
� �

dikdjl; ð2:19Þ

where E and m are the Young’s modulus and Poisson coefficient, respectively.
Also,

ee ¼
Z
t

de dt and ep ¼
Z
t

dp dt: ð2:20Þ

As mentioned, metallic materials deform plastically without change of volume, i.e.,

tr dpð Þ ¼ 0 ð2:21Þ

Further substitution in Eq. (2.14) leads to the restriction that the yield function
depends on stress only through its deviator, s ¼ r� rmI (see proof in Chap. 4).

The manner in which the yield surface shape changes as the plastic deformation
proceeds is described by specifying the nature and type of the hardening variables
(i.e., scalar or tensorial) and evolution laws for these variables, known as hardening
laws.

The first hardening model was introduced by Odqvist [33], who assumed that as
the deformation proceeds the loading surfaces are self-similar and affine with regard
to the origin. This model is called isotropic hardening because it implies a uniform
expansion of the initial yield surface.

The constitutive assumptions for an elastic/plastic material with isotropic hard-
ening are the following:

(H1) Hardening is described by a scalar variable, denoted as n
(H2) The yield function is represented as:

f r; nð Þ ¼ uðrÞ � YðnÞ ¼ �rðsÞ � YðnÞ� 0; ð2:22Þ

where YðnÞ is a monotonically increasing function.
(H3) f 0; nð Þ\0:

The function �r is called effective stress or equivalent stress, and it is taken to be
homogeneous of degree one in stresses (see Chap. 4). The specific form of �rðsÞ
dictates the shape of the yield surface; since the hardening variable is a scalar, only
the size of the surface changes with accumulated plastic deformation, and as
deformation proceeds, the yield surface expands in a self-similar manner. As
concerns the choice or definition of the scalar variable, in the early 1920s, it was
recognized that in order to capture the main features of the plastic response, a
measure of the hardening of a material must be either some scalar measure of the
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plastic strains experienced by the material or some measure of the dissipation
associated with plastic deformation. Most importantly, efforts have been undertaken
to derive hardening laws that are general, i.e., applicable to any loadings.
Comparison of the stress–strain curves in uniaxial tension, uniaxial compression,
and torsion has led to the idea that a “universal measure” of hardening can be
considered, for example, WI , the total plastic work per unit volume expended over
the actual strain path from some initial state of the material, i.e.,

WI(t) ¼ WI t0ð Þþ
Z t

t0

r : dp ð2:23Þ

For example, Taylor and Quinney [46] considered as a universal measure of
stress, the von Mises effective stress, defined as: �r ¼ ffiffiffiffiffiffiffi

3J2
p

(for more details see
Chap. 4). To model work-hardening of a given material, Taylor and Quinney [46]
first established the relationship between �r and WI based on uniaxial tension data,
and then checked the applicability of the respective relation to the description of
hardening during torsional loadings (for more details, see Hill [26]). Later on,
hardening laws expressed as relationships between �r and �ep were proposed with

_�ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
dp : dp

r
:

Remark It is to be noted that for uniaxial tension, �r reduces to the applied axial
stress while �ep given by the above equation reduces to the natural plastic strain, so
that the relation between �r and �ep can be easily determined from the true stress–
strain diagram.

The most widely used isotropic hardening laws are the Swift [45] law

Y �epð Þ ¼ K0 e0 þ�epð Þn ð2:24Þ

where K0; e0 and n are material parameters, and the Voce [50] exponential law,
given by,

Y ¼ Y0 þRsat 1� exp �n�epð Þð Þ ð2:25Þ

where Y0; Rsat and n are parameters.
It is worth noting that if the yield function [see Eq. (2.22)] is homogeneous of

degree one in stresses, in the case of plastic loading use of the flow rule [see
Eq. (2.14)] leads to:

_k ¼ _�ep and _WI ¼ �r _�ep ð2:26Þ

Isotropic hardening is widely used for description of the plastic behavior under
monotonic loadings or loadings that do not involve stress path changes.
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Kinematic Hardening
Bauschinger [5] found that if a specimen is stretched beyond its initial yield limit in
tension, its elastic limit in compression is reduced, or reciprocally if the specimen is
first compressed beyond its yield limit, the yield limit in tension is reduced. In order
to account in a quantitative manner for the Bauschinger effect, Prager [37] intro-
duced the concept of kinematic hardening. Prager [37]’s kinematic hardening model
implies that the yield surface undergoes a translation in the stress space without
change in size and shape.

Suppose that the initial yield surface is f ðrÞ ¼ 0: According to Prager’s
assumption, the subsequent yield surfaces should be of the form:

f r� Xð Þ ¼ 0;

where X is a second-order symmetric tensor, called the back-stress. Formulation of
a kinematic hardening model amounts to specifying the evolution of the hardening
variable X. Prager assumed a linear kinematic hardening law,

X ¼c _kdp,

where c is a constant. Armstrong and Frederick [1] introduced a nonlinear term in
Prager’s evolution law. Further developments were proposed by Chaboche et al.
[9]. Combined isotropic and kinematic hardening laws as well as more involved
hardening laws accounting for stress-path changes under combined loadings have
also been proposed (e.g., Teodosiu and Hu [47]).

As mentioned, in this book the emphasis is placed on the description of plastic
behavior under monotonic loadings, so that only isotropic hardening models will be
considered in conjunction with yield criteria for isotropic and anisotropic materials
(see Chaps. 4 and 5). It is worth summarizing the set of equations for rate-
independent elastic–plastic models that will be considered:

d ¼ de þ dp

_r ¼ Ce : de

f r,�epð Þ ¼ u(r)� Y �epð Þ� 0

dp ¼ _k
@u
@r

_�ep ¼ _k

8>>>>><
>>>>>:

ð2:27Þ

In the next section, we present a general implicit time integration algorithm
developed in order to solve boundary-value problems for elastic–plastic materials
described by the set of constitutive equations given by Eq. (2.27). This algorithm
was developed in the framework of corotational algorithms established by Hughes
[29]. Specifically, the constitutive equations are written in an appropriate orthog-
onal rotating frame. This allows the description of large deformations and trans-
formations, in a form identical to their simpler small strains counterpart while
verifying the objectivity principle (objectivity of the time derivatives). For a
detailed discussion, the reader is referred to the recent review paper by Balan [3].
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The algorithm presented can serve for the implementation of general elastic–plastic
constitutive models in a finite-element (F.E.) code, or can be used as a stand-alone
code outside a F.E. code.

2.1.3 Time Integration Algorithm for Stress-Based
Elastic–Plastic Constitutive Models

The algorithm discussed in this section is generic such that it can be applied to any
of the yield criteria that are presented in this book. While the algorithm allows the
F.E. implementation of elastic–plastic constitutive models, the F.E. framework is
not described, the reader being referred to the seminal books of Zienkiewicz et al.
[54] and of Belytschko et al. [6]. The time integration scheme is based on the
method proposed by Simo and Taylor [44]. Concerning the yield function, one
needs to calculate its first and second derivatives such that quadratic rate of con-
vergence is achieved. For a more exhaustive list of integration algorithms and
further discussion, the reader is referred to the books of Simo and Hughes [43] and
of de Souza Neto et al. [15].

As discussed, due to the fact that for an elastic–plastic material the response
depends on the loading path, the constitutive equations are in incremental form.
The F.E. implementation requires a time integration algorithm of these rate equa-
tions over the time interval Dt ¼ tnþ 1 � tn when a total strain increment De is
imposed. The backward Euler time integration scheme is the most widely applied
scheme in implicit F.E. solvers. It consists in using the time derivatives at the end of
the increment, i.e., incremental variation of a variable, say Da, is defined as,

Da ¼ _anþ 1Dt; ð2:28Þ

where, _anþ 1 is the value of the rate of change of the variable a at the end of the time
increment. In addition to a very good accuracy, the backward Euler method was
shown to be unconditionally stable with respect to the size of the strain increment
(see Simo and Taylor [44]).

The application of this scheme, to the set of constitutive equations of an elastic–
plastic model, written in incremental form [see Eq. (2.27)] leads to the following set
of equations that needs to be solved:

rnþ 1 ¼ rn þCe : Dee

De ¼ Dep þDee

u rnþ 1ð Þ � Y �epn þD�ep
� �� 0

Dep ¼ Dk
@u rnþ 1ð Þ
@rnþ 1

rnþ 1 : Dep ¼ u rnþ 1ð ÞD�ep

8>>>>>><
>>>>>>:

ð2:29Þ

where rnþ 1 and the equivalent plastic strain �epnþ 1 ¼ �epn þD�ep are unknowns, while
rn and �epn are known at the beginning of the increment.
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The main difficulty consists in updating the stresses, which requires checking
whether the incremental deformation is elastic or elastic–plastic, i.e., whether
plastic loading conditions were fulfilled. Given that the plastic multiplier is nonzero
only for plastic loadings, the conditions to be verified are the so-called Kuhn–
Tucker conditions:

Dk u rnþ 1ð Þ � Y �epn þD�ep
� �� � ¼ 0:

The method to update the state of the material is the so-called elastic predictor/
plastic corrector method. First, it is assumed that the incremental deformation De is
purely elastic, and a trial stress tensor rtrialnþ 1 is calculated as,

rtrialnþ 1 ¼ rn þCe : De ð2:30Þ

If u rnþ 1ð Þ � Y �epn
� �

\0, the incremental deformation is indeed elastic and
therefore the updated stress is: rnþ 1 ¼ rtrialnþ 1. Otherwise, the material deforms
plastically during the increment. In this case, one needs to solve the following
nonlinear system of two equations with unknowns Dk and rnþ 1

u rnþ 1ð Þ � Y �epn þDk
� � ¼ 0

Ce½ ��1: rtrialnþ 1 � rnþ 1

� �� Dk
@u rnþ 1ð Þ
@rnþ 1

¼ 0

8<
: ð2:31Þ

Note that use was made of the fact that uðrÞ is a first-order homogenous
function in stresses, which implies Dk ¼ D�ep , so that �epnþ 1 ¼ �epn þDk [see also
Eq. (2.26)]. This latter system of equations is solved using a Newton–Raphson
method. Let m denote the iteration counter for the Newton–Raphson algorithm. If
r0nþ 1 ¼ rtrialnþ 1 and Dk0nþ 1 ¼ 0 (i.e., m ¼ 0 corresponds to the elastic trial state), the
plastic multiplier and the stress increment are updated as follows:

Dkmþ 1 ¼ Dkm þ dkmþ 1

rmþ 1
nþ 1 ¼ rmnþ 1 þ drmþ 1

nþ 1 ;
ð2:32Þ

where d denotes the variation of the respective variable between iterations m and
mþ 1: The incremental variation of the plastic multiplier dkmþ 1 is given by:

dkmþ 1 ¼

u rmnþ 1

� �� Y �epn þDkm
� �þ @u rmnþ 1

� �
@rmnþ 1

� �
: ½P� : Ce½ ��1: rtrialnþ 1 � rmnþ 1

� �� Dkm
@u rmnþ 1

� �
@rmnþ 1

� �� �
@u rmnþ 1

� �
@rmnþ 1

� �
: ½P� : @u rmnþ 1

� �
@rmnþ 1

� �
þ @Y �epn þDkm

� �
@Dkm

� �

ð2:33Þ
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where P denotes the fourth-order tensor expressed as:

P ¼ I4 þDkmnþ 1 Ce @
2u rmnþ 1

� �
@ rmnþ 1

� �2
 !�1

Ce: ð2:34Þ

and I4 is the fourth-order identity tensor. The variation of the stress increment
drmþ 1

nþ 1 is,

drmþ 1
nþ 1 ¼ ½P� : Ce½ ��1: rtrialnþ 1 � rmnþ 1

� �� Dkmþ 1
nþ 1

@u rmnþ 1

� �
@rmnþ 1

� �� �
ð2:35Þ

The incremental variation of the plastic multiplier and the stress tensor are
obtained through a Taylor expansion of Eq. (2.31) about the current state. The
stresses and the plastic strains are then updated until a specified tolerance is met.
Once convergence is reached, i.e., U rnþ 1ð Þ � Y �epn þDk

� �		 		� tol, the updated
stresses and strains are accepted as the current state.

To implement an elastic–plastic constitutive model in an implicit finite-element
code, a consistent tangent modulus Cep that relates the current stress increment Dr ¼
rnþ 1 � rn to the current total strain increment De should be determined. For the time
integration scheme adopted here, the consistent tangent modulus is given by,

Dr ¼ Cep : De ð2:36Þ

For a purely elastic deformation during the increment, the consistent tangent
modulus is Cep ¼ Ce, while if elastic–plastic deformation occurs the consistent
tangent modulus is

Cep ¼ P�
@u rnþ 1ð Þ
@rnþ 1

� �
: P� P :

@u rnþ 1ð Þ
@rnþ 1

� �
@u rnþ 1ð Þ
@rnþ 1

� �
: P :

@u rnþ 1ð Þ
@rnþ 1

� �
þ @Y �epn þDk

� �
@Dk

� � ð2:37Þ

2.2 Strain-Rate-Based Formulation for Elastic–Plastic
Models

2.2.1 Mathematical Framework

To model an elastic–plastic material, it is essential to accurately describe the plastic
dissipation, i.e., the part of the mechanical work which is irreversible. Ziegler [53]
and Hill [25] have shown that a plastic strain-rate potential w dpð Þ can be associated
to any convex stress potential represented by a homogeneous function of degree
one in stresses, uðrÞ: Indeed,
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_WI ¼ _kr :
@uðrÞ
@r

¼ _kuðrÞ ð2:38Þ

so that

_WI ¼ uðrÞw dpð Þ ð2:39Þ

with

w dpð Þ ¼ _k: ð2:40Þ

Equation (2.39) shows that w dpð Þ and uðrÞ are work-conjugated. Hence, the
strain-rate potential can be used instead of the stress potential uðrÞ to describe the
plastic response of materials. If a strain-rate based potential is used, during plastic
deformation the stress tensor is calculated as:

r ¼ �r
@w dpð Þ
@dp

ð2:41Þ

It is worth noting that for certain plastically deformable materials that display the
same response in tension–compression, Eq. (2.41) writes,

s ¼ �r
@w dpð Þ
@dp

ð2:42Þ

where s is the Cauchy stress deviator (see Chap. 6 for examples). Thus, the elastic–
plastic behavior of a metallic material can also be described using a strain-rate
based formulation instead of the classical formulation in the stress space presented
in Sect. 2.1. It is worth noting that the plastic stress potential coincides with the
yield function and thus defines the boundary between the elastic and plastic
domains. The strain-rate potential [Eq. (2.40)] does not provide any information
about this boundary. Therefore, the plastic loading/unloading condition cannot be
determined in terms of w dpð Þ:

However, a strain-rate based formulation could be advantageous for design
optimization problems [10–12]]. From an experimental point of view, use of a
strain-rate formulation can also be advantageous, given that what we measure in
experiments are strains and strain-rates. A lot of progress has been achieved in
the development of digital image correlation techniques that allow the measure-
ments of local strain fields. Note that the use of strain-rate based formulations
would allow the determination of the stress field from the strain-rate fields using
Eq. (2.42) and thus lead to information on the local stresses. If isotropic hardening
is considered, with the equivalent plastic strain as a hardening variable, the set of
constitutive equations of a strain-rate based formulation of an elastic–plastic model
consists of:
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d ¼ de þ dp

_r ¼ Ce : de

w dP
� � ¼ _�ep

r ¼ Y �epð Þ @w dpð Þ
@dp

8>>><
>>>:

ð2:43Þ

2.2.2 Time Integration Algorithm for Strain-Rate-Based
Elastic–Plastic Models

In order to solve boundary-value problems, implementation of the constitutive
model into a F.E. framework needs to be conducted. The set of constitutive
equations given by Eq. (2.43) should be discretized. Using the backward Euler
scheme, i.e., stating that the plastic strain-rate tensor dp is constant over the time
increment Dt; and taking into account that the strain-rate potential is a first-order
homogeneous function of the strain-rate tensor, one can write:

snþ 1 ¼ Y �epn þw Depð Þ� � @w Depð Þ
@Dep

ð2:44Þ

where snþ 1; D�ep and Dep is the stress deviator at tnþ 1, the increment in equivalent
plastic strain and the increment of the plastic strain tensor that have to be deter-
mined at the end of the time increment, respectively, while �epn is the equivalent
plastic strain at tn. It follows that the set of equations to be solved are:

snþ 1 ¼ sn þCe : Dee � 1
3
trðDeÞI

� �

pnþ 1 ¼ pn þ
1
3
trðDeÞCe : I

w Depð Þ ¼ D�ep

snþ 1 ¼ Y �epn þw Depð Þ� � @w Depð Þ
@Dep

De ¼ Dee þDep

8>>>>>>>>><
>>>>>>>>>:

ð2:45Þ

In the strain-rate space, the definition of the boundary surface between the elastic
domain and the inelastic one is not explicit. Unlike the stress-based formulation
where loading–unloading conditions are defined in terms of the plastic potential
uðrÞ; in the case of strain-rate based formulations, knowledge of w dpð Þ is not
sufficient to determine whether an incremental deformation De will produce plastic
strains. Alternative solutions need to be considered, as proposed by Van Houtte
et al. [49]. Here, let’s define the function,

kðNÞ ¼ wðNÞ � rtrialnþ 1

Y �epnð Þ : N ð2:46Þ
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where N ¼ Dep= Depk k is the normalized plastic strain increment and rtrialnþ 1 ¼
rn þCe : De the trial stress. Loading/unloading conditions can be defined based on
the principle of maximum work as,

Min
N

kðNÞ
\0 if rtrialnþ 1 is outside the yield surface,
¼ 0 if rtrialnþ 1 is on the yield surface,
[ 0 if rtrialnþ 1 is inside the yield surface:

8<
: ð2:47Þ

[see also Bacroix and Gilormini [2]]. Plastic incompressibility requires that
tr epð Þ ¼ 0; so the tensor N has five independent components. Since Nk k ¼ 1, the
components of N can be written as:

N1 ¼ N11 � N22ð Þ= ffiffiffi
2

p ¼ sin h1 sin h2 sin h3 sin h4
N2 ¼

ffiffiffi
3

p
N11 þN22ð Þ= ffiffiffi

2
p ¼ cos h1 sin h2 sin h3 sin h4

N3 ¼
ffiffiffi
2

p
N12 ¼ cosh2 cos h3 sin h4

N4 ¼
ffiffiffi
2

p
N23 ¼ cosh3 sin h4

N5 ¼
ffiffiffi
2

p
N31 ¼ cos h4

ð2:48Þ

with 0� h1 � 2p and 0� hi � p for i = 2,3 and 4. Therefore, the minimization of
k(N) with respect to h ¼ h1; h2; h3; h4ð Þ requires the solution of the equation
@k=@h ¼ 0: Minimizing the function k(N) can be avoided for specific cases. For
example, during plastic loading, when the initial stress rn is already on the yield
surface, the condition rtrialnþ 1 � rn

� �
:Nn � 0; guarantees that the trial stress is outside

the yield surface [29], where Nn is the normalized plastic strain for the previous
increment, which can be stored at each increment for future use. However, when the
minimization of k(N) is required, it can be stopped as soon as a tensor N gives
k(N)\0: Indeed, in this case, the minimum of k(N) is guaranteed to be negative;
therefore, the increment is elastic–plastic. In practice, several simple initializations
for N already fulfill this condition in most cases (see Rabahallah et al. [40], Balan
and Cazacu [4]). In the case of min

N
kðNÞ[ 0; the incremental deformation is purely

elastic, therefore we update the stress as rnþ 1 ¼ rtrialnþ 1. Otherwise, the incremental
deformation for the given time increment is elastic–plastic and the system of
Eq. (2.45) should be solved. Solving this system reduces to finding the unknown
plastic increment such that q Depð Þ ¼ 0;

where

q Depð Þ ¼ Y �epn þw Depð Þ� � @w Depð Þ
@Dep

� Ce: De� 1
3
trðDeÞI� Dep

� �
� sn ð2:49Þ

Generally, the equation qðDepÞ ¼ 0 is solved using a Newton–Raphson proce-
dure. An initial value Dep0 for the plastic strain increment is calculated and then
corrected at each iteration “m” with the correction term given as,
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dDepmþ 1 ¼ � @q Depm
� �
@Depm


 ��1

: q Depm
� � ð2:50Þ

This correction is carried out until a given numerical tolerance is met (usually a
tolerance value of 10−8 is used). In Eq. (2.50), the derivative of the residual
function q are

@q Depj
� 
@Depj

¼
@Y �epn þw Depj ; vi

� � 
@w Depj ; vi
�  @w Depj ; vi

� 
@ðDepj Þ

0
@

1
A�

@w Depj ; vi
� 
@ðDepj Þ

þ Y �epn þw Depj ; vi
� �  @2w Depj ; vi

� 
@ðDepj Þ2

þCe : K

ð2:51Þ

with K the fourth-order symmetric deviatoric unit tensor. In the Newton–Raphson
procedure, the initial estimate Depð0Þ is taken proportional to the unit length tensor

normal to the von Mises yield surface passing through the elastic trial stress (see
Rabahallah et al. [40], Yoon et al. [52]). Thus, solving Eq. (2.49) requires the
calculation of w Depð Þ as well as its first and second-order derivatives.

The implementation of a strain-rate based elastic–plastic formulation into an implicit
finite-element code also requires the calculation of a consistent tangent modulus Cep

that relates the current stress increment Dr ¼ rnþ 1 � rn to the current total strain
increment De:While for a purely elastic incremental deformation, Cep ¼ Ce , for an
elastic–plastic increment further calculations are necessary to determine Cep .

To obtain the expression of Cep, one can write

Dr ¼ Ce : De� Depð Þ ð2:52Þ

Then differentiation of the dual form of the flow rule [i.e., Equation (2.44)] leads
to:

Ds ¼ @Y �epn þw Dep; vi
� �� �

@ðDepÞ � @w Dep; vi
� �
@ðDepÞ þ Y �epn þw Dep; vi

� �� � @2w Dep; vi
� �

@ðDepÞ2
 !

: Dep

ð2:53Þ

Denoting,

Cp ¼ @Y �epn þw Dep; við Þ� �
@ðDepÞ � @w Dep; við Þ

@ðDepÞ þ Y �epn þw Dep; við Þ� � @2w Dep; við Þ
@ðDepÞ2

 !

ð2:54Þ
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From Eq. (2.53), it follows that,

Dep ¼ Cpð Þ�1: Ds ¼ Cpð Þ�1: K : Dr ð2:55Þ

Substituting Eq. (2.55) into Eq. (2.52) and after some algebraic manipulations,
we get:

Cep ¼ Ceð Þ�1 þ Cpð Þ�1: K
h i�1

ð2:56Þ

Note that calculation of the consistent elastoplastic modulus using Eq. (2.56)
involves two matrix inversions. The consistent tangent modulus can be rewritten in
a way such as to avoid doing matrix inversion. Indeed, differentiation of Eq. (2.49)
leads to:

@q Depð Þ
@Dep

: Dep � Ce : De� 1
3
trðDeÞI

� �
¼ 0 ð2:57Þ

It follows that,

Dep ¼ @q Depð Þ
@Dep


 ��1

: Ce : K : De ð2:58Þ

Substituting Eq. (2.58) into Eq. (2.52) leads to,

Cep ¼ Ce � Ce :
@q Depð Þ
@Dep


 ��1

: Ce : K ð2:59Þ

This time integration algorithm for implementing a strain-rate based formulation
of an elastic–plastic model into the F.E. framework has been used for orthotropic
materials by Rabahallah et al. [40], Yoon et al. [52]. Isotropic and orthotropic
strain-rate potentials for metallic materials are presented and discussed in Chap. 6.
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Chapter 3
Plastic Deformation of Single Crystals

3.1 Elements of Crystallography

A crystalline material is one in which the atoms are situated in a pattern that repeats
itself periodically in three dimensions. The actual arrangement of atoms that defines
the crystal structure is described with respect to a three-dimensional lattice formed
by three straight lines (see Fig. 3.1). In describing the crystal structure, we must
distinguish between the pattern of repetition (lattice type) and what is repeated (i.e.,
the unit cell). The first direct experimental proof of the lattice structure was made
possible by von Laue, who in 1912 diffracted X-ray from copper sulfate crystals.
Following the first determination of the internal structure for ionic crystals made by
H. Bragg and W. L. Bragg in 1913 and their discovery that the reflection of X-rays
differs from ordinary optical reflection, significant progress has been made in the
following decade, leading to detailed documentation of the crystal structures
together with numerical values of the lattice dimensions of various metals and ionic
crystals (for a detailed account of the early history and the distribution of the
various structures among the elements of the periodic table, the reader is referred to
the English translation of the monograph by Schmid and Boas [95] due to
F. A. Hughes & Co. Limited, London, 1950).

It is also worth noting that long before the discovery of X-rays, the structural
symmetries have been studied and classified by examining the shapes of the crystals
formed naturally in the process of crystallization of various materials. Most
importantly, all the possible symmetries were described mathematically. In fact, the
classification of the symmetries and the arrangement of crystals in thirty-two classes
and crystal systems that is in use today dates back to Hessel [46] and Bravais [15]
(see also [70]).

Specifically, it was recognized that for a crystal there exist, in the undeformed
state, preferred directions of deformation. Associated with each crystal class is a
group of symmetry transformations, G. When subjected to one of these transfor-
mations, the crystal is carried into a configuration which is indistinguishable from

© Springer International Publishing AG, part of Springer Nature 2019
O. Cazacu et al., Plasticity–Damage Couplings: From Single Crystal to
Polycrystalline Materials, Solid Mechanics and Its Applications 253,
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its initial one. Obviously, the identity is a symmetry transformation. If the sym-
metry group of a crystal consists of the identity I alone, the corresponding material
has no symmetry, and it is called triclinic. If the symmetry group contains besides
the identity I only the inversion (�I), the symmetry of the corresponding material is
described as central. It was later proved rigorously that any other symmetry group
G can be represented as a direct product of the minimal symmetry group �I; If g
and another group Gþ , which consists only of proper orthogonal transformations
(i.e., transformations for which the determinant is equal to unity; see also Chap. 1).
Therefore, the symmetry group of a crystal is completely characterized by Gþ , and
it is sufficient to determine the generators of Gþ , which are defined as the set of
transformations of Gþ with the property that any transformation of Gþ can be
represented as a product of generators, and possibly of their inverses (see also
[104]). Moreover, it can be proven that even if an infinite number of subgroups of
the proper orthogonal group Orthþ exist, only twelve of them exhaust the kind of
symmetries occurring in the materials known to man. Eleven of these subgroups
correspond to exactly the thirty-two crystal classes identified in the late nineteenth
century, while the last type of anisotropy, called transverse isotropy (say with
respect to a unit direction e), is characterized by the symmetry group consisting of
the identity I and all the rotations R e; hð Þ of angle h with 0\h\2p about an axis
along e (see Chap. 1 for more discussion on basic concepts and definition of Orthþ ;
for yield criteria and plastic potentials for fully-dense and porous transversely
isotropic metallic materials, see Chaps. 5 and 8, respectively). Further arrangements
of the crystal classes into six crystal systems was undertaken on the basis of the
symmetry axes and/or planes that a crystal may possess.

Symmetry axis

Definition 3.1 A crystal possesses an m-gonal symmetry axis of unit vector n, if

Gþ contains the right-handed rotation R2p=m
n .

Note that an axis of symmetry of order m converts the lattice points into
m equivalent positions, and so covers the plane at right angles to the axis with an
unbroken series of points which form regular polygons of order m. As shown in

A1 A2

A3A4

A5
A6

A7
A8

Fig. 3.1 General lattice
space
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Fig. 3.1, all points on a plane must also appear as the corners of a net of paral-
lelograms. The only angles of rotation which fulfill both conditions are 2p (or 0), p,
2p=3, p=2, and p=3, corresponding to m = 1, 2 (diagonal), 3 (trigonal), 4 (tetrag-
onal), or 6 (hexagonal) or sixfold axes of symmetry, respectively.

Reflection

Definition 3.2 Reflection with respect to a plane of unit normal n is specified by:

Qn ¼ I� 2n� n ð3:1Þ
Note that Qe ¼ �R e; pð Þ. For example, if Oxyz is a Cartesian coordinate system

and e ¼ ez, the matrix of the reflection Qez has the following form:

Qez ¼
1 0 0
0 1 0
0 0 �1

2
4

3
5:

It can be easily seen that Qezex ¼ ex and Qezey ¼ ey, and that if Qez belongs to the
symmetry group, then the plane z = 0 is a plane of symmetry. In general, a crystal
possesses a plane of symmetry of unit normal n, if G contains the reflection Qn. It
can also be demonstrated that the existence of a digonal axis at right angles to a
m-gonal axis implies the existence of m such axes. The existence of a plane of
symmetry passing through an m-gonal axis implies the existence of m such planes.
Based on these elements of symmetry, crystals are further grouped in the following
systems: triclinic, monoclinic, tetragonal, rhombic, cubic, and hexagonal.

Although the geometrical nature of each of the thirty-two types of crystal classes
is absolute, and their arrangements in the six systems is generally accepted, there is
a great diversity in the terminology used by different authors and communities (e.g.,
spectroscopy, crystallography, or engineering sciences community). Table 3.1
shows the names of the classes of crystals and their grouping in systems, the
symbols of the corresponding symmetry groups of transformations used by
Schoenflies [95], and the set of generators of the respective groups. For the gen-
erators of various crystal classes, in this book, we follow Green and Adkins [41]
and Teodosiu [104], who in turn used the terminology of Smith and Rivlin [96].
Thus, we denote by R/

n the proper rotation (i.e., det R/
n ¼ 1) through an angle /

about an axis in the direction of the unit vector n; ex; ey; ez
� �

denote a right-handed

orthonormal basis and f ¼ ðex þ ey þ ezÞ=
ffiffiffi
3

p
.

Unit cell

The unit cell is the smallest unit of volume that contains all the structural and
symmetry information (e.g., the parallelepiped A1A2A3A4A5A6A7A8 in Fig. 3.1; see
also [54]), the crystal being constructed by stacking identical unit cells face to face
in perfect alignment in three dimensions. In this book, the discussion will be
restricted to cubic and hexagonal structures. The unit cell for a cubic crystal is
shown in Fig. 3.2a with reference to the three principal axes x; y; z (a crystal is said
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to have a principal axis if every axis of symmetry other than the principal axis is at
right angles with that axis and each plane of symmetry either passes through the
principal axis or is at right angles to that axis). For example, in the body-centered
cubic (bcc) structure, the atoms are situated at the corners of the cubic unit cell and
at its center (Fig. 3.2a), where a indicates the cell dimension. In the face-centered
cubic (fcc) structure, the atoms are situated at the corners of the cubic unit cell and
at the centers of all cube faces (Fig. 3.2b).

The hexagonal close-packed (hcp) unit cell with lattice parameters a, a, c is
shown in Fig. 3.2c. There are two atoms per lattice site. The atomic planes per-
pendicular to the c-axis are close-packed. If the atoms are considered as rigid
spheres, the c=a ratio is

ffiffiffi
8

p � ffiffiffi
3

p ¼ 1:633. In practice, this ratio varies from 1.57 to
1.89. For hcp Ti, the c/a ratio is 1.587, while for pure Zn this ratio is 1.86.

Representation of the orientation of crystallographic planes and directions

The symmetry groups of the crystals belonging to the cubic and hexagonal systems
have been defined in Table 3.1, while the most suitable coordinate systems asso-
ciated to theses symmetries were described in Fig. 3.2. In the following, we suc-
cinctly present and illustrate the methods by which lattice planes and directions are
indexed. For a more detailed discussion, the reader is referred to the relevant
crystallographic literature. Let us first note that in a cubic crystal, any plane, say
A2B2C2 in Fig. 3.3, can be defined by the intercepts OA2, OB2, OC2 that it makes
with the three principal axes x; y; z. Thus, it is sufficient to indicate the ratios of
these intercepts to describe its orientation. Haüy discovered the law of rational

Table 3.1 Generators for the symmetry groups of various crystal classes (after [28])

Crystal system Class symbol
[Schoenflies]

Proper orthogonal generators of the
symmetry group

Triclinic C1 I
Monoclinic S, C2, C2h Rp

ez

Rhombic or prismatic C2v, D2, D2h Rp
ex ;R

p
ey

Tetragonal C4h, S4, C4 Rp=2
ez

C4v;D26;D4;D4h Rp=2
ez , Rp

ex

Cubic
tetratoidal
diploidal

� � T ;Th Rp
ex ;R

p
ey ;R

2p=3
f

hextetrahedral, gyroidal
hexoctahedral

� �
Td ;O;Oh Rp=2

ex ;Rp=2
ey

Hexagonal C3;C3i R2p=3
ez

C3v;D3;D3d Rp
ex , R

2p=3
ez

C6;C3h;C6h Rp=3
ez

C6v;D6;D3h;D6h Rp
ex ;R

p=3
ez
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indices which states that if three non-coplanar edges of a crystal are taken to define
the directions of three axes of a coordinate system, then the ratios of the axial
intercepts of two crystal faces are always found to be rational fractions (see [45]).
Therefore, if for a plane A1B1C1 the ratios of the axial intercepts are a1 : b1 : c1
while for another plane A2B2C2 of the same crystal the ratios of the axial intercepts
are a2 : b2 : c2, then there exist mi; ni; pi (i = 1, 2) integers such that:

m1a1 : n1b1 : p1c1 ¼ m2a2 : n2b2 : p2c2; ð3:2Þ

It follows that if the plane A1B1C1 is chosen to be the unit plane (i.e.,
a1 ¼ b1 ¼ c1 ¼ 1), the numbers m1=m2, n1=n2 and p1=p2 express the multiple of
the unit distance at which the three axes are intersected by the plane A2B2C2.
Therefore, the plane A2B2C2 can be defined by the three indices h ¼ m2=m1,
k ¼ n2=n1, and l ¼ p2=p1 reduced to prime whole numbers. Theses indices are
called Miller indices and are calculated as follows: First, the axial intercepts are
normalized by the corresponding cell dimensions, the reciprocals of these numbers
are taken, and these numbers are then reduced to the smallest integers. For example,
if OA2 ¼ 3a, OB2 ¼ 2a and OC2 ¼ 3a, the Miller indices hklð Þ of the plane A2B2C2

(b)

(c)

(a)

x

z

ya a

a

a a

a

x

z

y

a3

c

a1

a2a

Fig. 3.2 Unit cells showing positions of principal axes and atoms and cell dimensions:
a body-centered cubic, b face-centered cubic, and c hexagonal close-packed

3.1 Elements of Crystallography 65



or of other planes parallel to it are obtained by reducing to the smallest integers
a
3a

;
a
2a

;
a
3a

� 	
, and these planes are designated (232).

The minus sign above an index [e.g., �101ð Þ] indicates that a plane intersects the
axis on the negative side of the origin. A plane with a zero index is parallel to the
corresponding axis (i.e., intercepts the axis at 1). Consequently, planes of coor-
dinates, which contain two axes parallel to the principal axes, are designated by two
zero indices (see also Fig. 3.4).

Directions are also described by three indices. The procedure is as follows: Take
the line parallel to the given direction that passes through the origin O of the

a a

a

3a 2a

3a

A2

C2

B2A1
B1

C1

x y

z

O

Fig. 3.3 Cubic unit-cell and
the method of describing the
orientation of crystallographic
planes

(b)(a)

(d)(c)

(001)

(100) (010)

(001)

(100)
(010)

(001)

(100) (010)

(001)

(100) (010)

Fig. 3.4 Cubic cells illustrating the method of describing the orientation of planes and cube faces
(pink) and normal directions (blue): a (100); b (110); c (112); d (111)
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coordinate system, resolve this line along the three principal axes, and then reduce
to the three smallest integers the ratios of the lengths of these projections to the
corresponding cell dimensions. The indices for directions are distinguished from the
indices for planes by being placed in square brackets, i.e., uvw½ �. A zero index
indicates that the direction is parallel to one of the coordinate planes. Thus, the
coordinate axes (or principal axes of symmetry) are designated by indices [100],
[010], and [001], respectively.

It is important to note that for cubic crystals, the Miller indices of a plane hklð Þ
are related to the indices of the direction normal to that plane uvw½ � by u ¼ h, v ¼ k
and w ¼ l. This is also shown in Fig. 3.4, which illustrates the indexing method for
describing planes and directions, and the indices of some important planes of cubic
crystals. The cube faces being parallel to the coordinates planes have indices (100),
(010), and (001), respectively. Of the four octahedral planes contained in the cubic
unit cell, the one shown in Fig. 3.4d has the indices (111), while the others have
indices ð11�1Þ;ð1�11Þ and ð�111Þ, respectively. The plane (112) represented in
Fig. 3.4c makes equal intercepts on the [100] and [010] axes and half of that
intercept on the [001] axis. Of the directions represented in Fig. 3.4, [100] desig-
nates one of the three edges of the cube (see Fig. 3.4a), [110] is one of the six face
diagonals (see Fig. 3.4b), [112] direction is one of twelve directions which connects
a corner of the cube with a face center on the opposite side (see Fig. 3.4c), and
[111] is one of the four cube diagonals (see Fig. 3.4d).

In the following and throughout this book, brackets [ ] and ( ) imply specific
directions and planes, respectively, while h i and { } refer, respectively, to direc-
tions and planes of the same type (or family). For example, the cube diagonals,
namely ½11�1�, ½�111�, ½�11�1�, and ½�1�1�1�, belong to a group of directions of the same
type (i.e., closed-packed directions, see also Figs. 3.2a, b, and 3.4d) and are
described collectively as h111i, while the planes normal to these directions are
designated as {111}.

Indexing of planes and directions in hexagonal crystals can also be based on the
Miller–Bravais method. To describe the orientation of a plane, first, the reciprocal
intercepts of the plane on the four symmetry axes a1; a2; a3, and c used in the
hexagonal system (see Fig. 3.2) are found and then reduced to the smallest integers
(see also [50]). Given that the three axes a1; a2; a3 are equivalent and lie in the same
plane, called the basal plane, the indices associated to these symmetry axes are not
independent. If a plane is specified by ðhkilÞ, the first three indices which refer to
the a1; a2; a3 axes are such that i ¼ � hþ kð Þ (i.e., the third index is always the
negative of the sum of the first two). Equivalent planes are obtained by inter-
changing the position and sign of the first three indexes.

For the hexagonal unit cell, several planes of interest have been given specific
names. The (0001) plane (of normal [0001]) is the basal plane, as shown in Fig. 3.5a.
The planes parallel to the c-axis and of normal 10�10h i are called prismatic planes of
type I. As an example, in Fig. 3.5b are plotted the prismatic planes of type I defined
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by the indices ð10�10Þ; ð01�10Þ; ð�1100Þ and their normals. The planes parallel to the
c-axis and of normal 11�20h i are called prismatic planes of type II, the plane ð11�20Þ
being represented in Fig. 3.5c, the planes which pass through the edges of the basal
hexagon and that are not parallel to the c-axis are called pyramidal planes of type I
and are indexed by ð10�1lÞ [see Fig. 3.5d that shows the plane ð10�11Þ and the plane
ð10�12Þ]. The family of planes 11�2lð Þ is called pyramidal planes of type II, the planes
ð11�21Þ and ð11�22Þ being plotted in Fig. 3.5e. Among the important directions, the c-
axis (hexagonal axis) is designated by the direction 0001½ �, while the axes a1; a2; a3
defining the basal plane are denoted by the indices ½2�1�10�; ½�12�10� and ½�1�120�,
respectively.
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(d)(c)
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c
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(10 10)
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Fig. 3.5 Hexagonal cells
illustrating the Miller–Bravais
indices and the designation of
specific planes and directions.
a Basal plane 0001ð Þ;
b prismatic plane of type I:
10�10ð Þ, �1100ð Þ and 01�10ð Þ;
c prismatic plane of type II:
11�20ð Þ; d pyramidal plane of
type I: ð10�11Þ and ð10�12Þ;
e pyramidal plane of type II:
ð11�21Þ and ð11�22Þ
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3.2 Plastic Deformation Mechanisms in Crystals:
Experimental Evidence

3.2.1 Crystallographic Slip

While it has long been known that crystals can undergo permanent or plastic
deformation, experimental evidence of the mechanisms responsible, namely glide
and mechanical twinning, was first provided by Reusch [84]. For detailed reviews
of the early studies and methods of investigation, we refer to the classical mono-
graphs of Elam [33] and Schmid and Boas [94]. Here, we just mention the
remarkable studies of Ewing and Rosenhain [36] who by microscopic examination
of the surfaces of deformed crystals have put into evidence the existence of lines
that they called slip bands and concluded that “when the metal is strained beyond its
elastic limit, yielding takes place by finite amounts of slip at a limited number of
places.” Moreover, these authors hypothesized that there must exist planes inside
the crystal along which slip occurs and that the slip bands would then be made up of
the lines of intersection of the face of the specimen with these crystal planes (see,
e.g., the optical micrograph of deformed lead specimens reported in [36]).
However, only after the discovery of X-ray diffraction and the possibility of the
analysis of crystals by X-rays, proof of the structure of crystals and verification of
the assumptions concerning the planes of slip could be made (e.g., [99, 100]).

The work of Carpenter and Elam [22] has enabled the production of crystals of
Al sufficiently large such that specimens in the form of bars of square cross-section
and dimensions of 1 � 1 � 20 cm could be cut. This enabled a systematic analysis
of strains that develop under uniaxial tension. These test results were published in
1925 by Taylor and Elam (although the results were presented at a Bakerian lecture
delivered by G.I. Taylor in 1923). Detailed measurements of various strains (axial
strain, angles between cross marks and longitudinal marks on each face of the
specimen, the thickness of the specimen between pairs of opposite faces) at dif-
ferent stages of the tests corresponding to 5%, 10%, 15%, 20%, 30%, 40%, and
60% extension were reported. Taylor and Elam [99] assumed that homogenous
deformation occurs by slip on certain crystallographic planes and in certain crys-
tallographic directions, as X-ray analyses showed that the symmetry of the crystal
was not changed by the test. Therefore, it is geometrically necessary that there
exists a set of parallel planes that should remain undeformed (i.e., the length of any
lines contained in these planes must not change during the deformation). These
planes are called slip planes. Therefore, it is possible to experimentally identify a
slip plane from the change in the geometry of the faces of the specimen, a method
called “the unstretched cone method” (for more details, see [33]). Based on this
thorough analysis, these authors provided a quantitative description of the slip
phenomenon and the interpretation of the kinematics of the plastic deformation in
terms of the crystal structure. After identifying the slip planes and the slip directions
and observing that slip occurs preferentially, it was concluded that “when a single
crystal bar of Al is stretched the whole distortion during a large part of stretching is
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due to a simple shear parallel to the octahedral (111) plane and in the direction of
one of the three dyad h110i axes lying in that plane. Of the twelve crystallo-
graphic similar possible modes of shearing, the one for which the component of
shear stress in the direction of shear was greatest was the one along which slip
actually occurred” (see also Fig. 3.6). In the last stages of the tests (extension of
62% and 78%), it was put into evidence that slip occurs simultaneously on two
octahedral planes, which are at nearly equal angles to the axis of the specimen.
Moreover, the measurements indicated that the central portion of each specimen
was uniformly strained, especially in the early stages of the test.

Based on measurements of slip bands on the surface of the specimen, Mark et al.
[72] established that in hcp Zn crystals subjected to uniaxial tension slip or glide
(the synonymous terminology preferred by Schmid and collaborators) occurs more
readily in the basal plane and that the slip direction is the digonal axis h�2110i (see
also Fig. 3.5; for photographs showing slip bands of deformed Zn and Cd crystals,
see [94]). It is worth noting that at this stage of discovery of the plastic deformation
mechanisms at the single crystal scale, hcp materials, like Zn or Cd, were con-
sidered because the phenomena are easier to understand. This is due to the fact that
these materials primarily slip on the (0001) basal plane, and slip bands and cleavage
plane are clearly marked. For other materials where slip takes place on more than
one plane (e.g., Al), the method of Mark et al. [72] is inapplicable (see [33]).

In 1924, on the basis of experimental studies of the relationship between the
yield stress and the angle between the slip plane and the direction of the tensile axis
in hexagonal crystals, Schmid established that irrespective of the orientation of the
tensile axis, “a critical value of the resolved shear stress is required for the initi-
ation of glide.” This is Schmid’s law of the critical shear stress. Specifically, for a
cylindrical crystal under uniaxial tensile load P, if k and u are the angles between
the tensile axis and the slip direction, and slip plane normal, respectively (see
Fig. 3.6), then the resolved shear stress is:

Fig. 3.6 Schematic of a
single crystal sample
subjected to an applied tensile
force
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s ¼ P
A
cosu cos k; ð3:3Þ

where A is the current area of the cross-section. Therefore, according to Schmid’s
law, ðP=AÞ varies inversely with the orientation factor, cosu cos k, also known as
Schmid factor. As pointed out by Schmid and Boas [94], the verification of the law
is much simpler in the case of crystals of the hexagonal system than in the case of
cubic crystals. For example, owing to the fact that Zn has hexagonal symmetry and
as such there is only one most probable slip plane, the examination of a large range
of the Schmid factor was possible. Comparisons between the theoretical relation-
ship between the yield stress ðP=AÞ and the orientation of the slip system given by
Eq. (3.3) and data on hcp Cd, Zn, Mg can be found in Schmid and Boas [94]. The
agreement with the experimental observations was found satisfactory. Moreover,
Schmid reported that the “normal stress operating on the respective glide plane is
of no importance” thus confirming the conclusion reached earlier by Polanyi and
Schmid [80] on the basis of results of tensile tests under hydrostatic pressure.

As already mentioned, Taylor and Elam [99, 103] studies on pure Al single
crystals contributed to the conclusion that the Schmid law is applicable to pure
single crystals with fcc structure. As concerns fcc crystals containing alloying
elements, the experimental data also agree well with the Schmid law, deviations
occurring only when the tensile axis orientation is such that the simultaneous
operation of several slip systems is favored (see Elam [33]; for a-brass containing
72% Cu, see Masima and Sachs [73]; for a Cu-Al single crystal, see Karnop and
Sachs [58], etc.).

In summary, based on the experimental evidence, it can be concluded that plastic
deformation in fcc single crystals occurs through slip on the {111} octahedral
planes along the close-packed directions h110i.

As concerns bcc single crystals, Taylor and Elam (see [100]) experimental study
of the plastic behavior of a-iron single crystal (bcc structure) under tension revealed
a completely different kinematics of slip than that observed in the fcc single
crystals. To this day, we rely on Taylor and Elam explanation of how slip in a-iron
single crystal can occur parallel to a crystal axis, but on a plane which is related to
the direction of applied stress rather than to the orientation of the crystal axes.
While slip in fcc crystals may be represented by a model consisting of a pack of
cards sliding over one another, Taylor and Elam hypothesized that the model for
representing slip in bcc-iron crystals might be that of a bundle of rods sheared in the
direction of their length; these rods ought to be hexagonal in section in order to
respect the threefold symmetry about their axes. This led to the model coined “h111i
pencil glide” where the slip surface is considered to be a prismatic cylinder made
of strips of slip planes bounded by the common slip direction h111i.

To verify the validity of this explanation, Taylor (see [101]) conducted similar
tests on a b-brass single crystal. The results show that the plane of slip varies
depending on the relative orientation of the crystal axes with respect to the direction
of the principal stress. However, there were noticed differences in the plastic behavior
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of b-brass single crystal with respect to that of the a-iron single crystal. While Taylor
and Elam (see [100]) determined that the planes {110} and {112} are slip planes for
the a-iron single crystal, for the b-brass single crystal, Taylor concluded that {110}
are slip planes, and that there must be other slip planes that he could not clearly
identify; however none of them are the {112} planes. Most importantly, Taylor has
reported that in b-brass, “resistance to slipping in one direction on a given plane of
slip is not the same as the resistance offered to slipping in the opposite direction.”
Therefore, for a bcc single crystal the resistance to shear depends not only on the
component collinear with the slip direction of the projected stress on the slip plane,
but also on the component orthogonal to the slip direction (component of shear
transverse to the slip direction). This means that the plastic behavior of bcc single
crystal cannot be described by the Schmid law (see Eq. 3.3).

For bcc crystal structure, this controversy dating from the 1920s concerning
what happens inside a crystal when subject to uniaxial tension–compression is
still ongoing; the quantitative description of the physics of plastic deformation
remains a subject of intense research (e.g., see [18]). Although at present it is
generally accepted that the dominant slip directions are the h111i directions and that
slip may occur on the high-density planes {110}, {112}, and {123} depending on
temperature (see, e.g., [51]), it is not definitively elucidated how the slip activity
switches between these systems. For example, for single crystal bcc Mo, Luft, and
Ritschel [71] reported slip only on the {112} and {110} planes along the h111i
directions, while Yoo and collaborators (e.g., see [110]) showed that up to a plastic
strain of about 10% the dominant slip system is {123}h111i, and that the {110}
h111i and {211}h111i systems become operational only beyond this plastic strain
level. Moreover, the applicability of Schmid law for the description of yielding in
bcc crystals is severely questioned from an experimental standpoint (for evidence of
the breakdown of Schmid law for several bcc materials, see, e.g., [52, 60, 61]).
Specifically, it was shown that contrary to Schmid law and as reported early by
Taylor (e.g., see [101]) for b-brass, plastic flow exhibits tension–compression
asymmetry and that slip may occur on planes on which the shear stress is not the
largest. The tension–compression asymmetry in flow stresses of bcc Mo single
crystals (mm size) has been reported in several studies (e.g., [49]). Moreover, in
experimental studies of the tensile and compressive behavior of h001i oriented Mo
micropillars of nanometer dimensions (smallest size *200 nm diameter), it was
reported that the flow stresses in compression are approximately 67% greater than
in uniaxial tension (e.g., [60]). Atomistic simulations studies have also provided
confirmation of these characteristics of the plastic flow of bcc metals. For example,
the results of Gröger and collaborators (e.g., [42]) show deviations from Schmid
law for Mo and W, which were explained by the influence of normal stresses (i.e.,
stress components who are not along the slip plane) on the onset of plastic flow.
However, these authors considered that slip occurs only on {110} planes.

For hcp crystals, based on experiments on Zn,Mg, and Cd (see [72, 92, 94]), it was
concluded that the basal plane is a slip plane with the three axes h11�20i as slip
directions (see Fig. 3.5a). Further studies on hcpMg single crystals conducted, either
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at higher temperatures [93] or at loadings along specific orientations such as to
suppress basal slip [83], allowed to determine that the prismatic 10�10f gh11�20i (see
Fig. 3.5b) and pyramidal 10�11f gh11�20i (see Fig. 3.5c) slip systems could also be
operational in hcp crystals. Furthermore, experimental work on Zn [87] led to the
conclusion that the direction h11�23i (or hc+ai) can also be a slip direction when slip
takes place on the pyramidal plane 11�22f g (see Fig. 3.5e). The independent modes of
slip in hcp single crystals are summarized in Table 3.2. Note that hcp metals show a
large variation in terms of the slip systems that can be operational, the slip activity of
any given system depending on the type of loading and its relative orientation to the
crystal axes. Nowadays, it is commonly accepted that the two most common primary
slip systems are: basal slip for metals with a high c=a ratio and prismatic slip for the
ones with a low c=a ratio. As an example, Cd (c=a ¼ 1:886), Zn (c=a ¼ 1:856), Mg
(c=a ¼ 1:624) crystals deform primarily by slip on the basal slip plane, while Ti
(c=a ¼ 1:599) and Zr (c=a ¼ 1:593) crystals deform more readily on the prismatic
plane. It has been experimentally established that for Ti (see [2]) and Zr (see [81]),
the resolved shear stress on the 10�10f g prismatic plane was lower than the one on the
0001f g basal plane. However, for Be (c=a ¼ 1:568), the lowest critical resolved

shear stress is obtained on the basal plane. Therefore, the primary slip systems of hcp
metals cannot be inferred solely based on the c=a ratio.

Of particular interest is the activation of slip along the h11�23i (or hc+ai)
direction through glide on the 11�22f g pyramidal II plane. This is because only slip
along the hc+ai directions can provide five independent deformation modes for an
hcp crystal and thus satisfy Taylor requirement (see [102]). Indeed, Taylor stated
that for a polycrystalline material to accommodate general deformation without
producing cracks, at least five independent slip systems should be available.
Furthermore, the pyramidal hc+ai slip is the only slip mechanism that could
produce deformation of the c-axis. This particular slip system can be activated in a
material that has the basal slip system as primary slip system (e.g., Cd, Zn, Mg);
however, it is also known that 11�22f g is a twinning plane for Ti and Zr (see
discussion on twinning later in this section). For more details on the slip systems in
hcp materials, the reader is referred to Rosenbaum [88].

Table 3.2 Slip planes and
directions for the common
crystal structures

Structure Slip direction Slip plane

Fcc 110h i 111f g Fig. 3.4d

Bcc 111h i 110f g Fig. 3.4b

111h i 112f g Fig. 3.4c

111h i 123f g
Hcp

Basal 11�20h i 0001f g Fig. 3.5a

Prismatic 11�20h i 10�10f g Fig. 3.5b

Pyramidal I 11�20h i 1�101f g Fig. 3.5d

Pyramidal II 11�23h i 11�22f g Fig. 3.5e
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As stated previously, Schmid law has been developed based on observations on
Zn single crystal, which deforms primarily by slip on the basal plane followed by
slip on the prismatic plane. Later studies have confirmed that in general the Schmid
law (Eq. 3.3) is applicable for hcp metals that deform primarily on the basal plane
and secondary on the prismatic plane [38], but it does not describe well the plastic
deformation in materials for which the primary slip system is prismatic (e.g., Ti)
(see [90]).

The slip systems for each lattice structure are summarized in Table 3.2. It is
worth noting that only in the case of the fcc lattice, there exists a unique slip system
that is potentially active for all the materials. For the bcc and hcp lattices, the slip
systems that may be operational vary among materials; whether a system is active
depends on the orientation of the applied loading with respect to the crystal axes.

3.2.2 Deformation Twinning

The other deformation mechanisms by which single crystals can be plastically
deformed is called mechanical twinning or deformation twinning. First observations
of deformation twins were made in 1859 by Pfaff (see [79]) who investigated how
the mechanical pressure influences the birefringence of crystals of quartz and cal-
cite. This author attributed the change in the optical properties of the crystal to a
change of the lattice orientation. Based on these data and his own observations,
Dove [32] realized that twinning can also be induced by mechanical deformation.

Formalization and description of deformation twinning were made possible by
the findings of Kelvin and Tait [59] who proved the existence of a type of defor-
mation, that they called simple shear, which allows two planes to remain unde-
formed. Moreover, these authors described precisely what is meant by simple shear
deformation: “the plane of shear is a plane perpendicular to the undistorted planes,
and parallel to the line of their relative motion. It has: (1) the property that one set
of parallel planes remain each unaltered in itself; (2) that another set of parallel
planes remains each other unaltered in itself” and that “the plane of no distortion in
simple shear are clearly the circular sections of the strain ellipse.”

Being aware of the work of Kelvin and Tait [59], Liebisch [68] made the link
between simple shear and the experimental observations of mechanical twinning.
This link was further investigated by Mügge [77] who concluded that twinning
deformation is a simple shear deformation and further described and classified the
deformation twins by means of two planes, the K1 plane and the associated shearing
direction g1 and the K2 plane and its characteristic direction g2 (see Fig. 3.7). This
description of deformation twinning is still used today. For more details about the
history of the discovery of mechanical twinning, the reader is referred to Hardouin
Duparc [43, 44].

From the description of Mügge [77], it follows that during twinning deforma-
tion, the shear plane K1 does not change its shape or its position (first undeformed
plane). On the other hand, all the other planes are tilted such that the second
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twinning plane K2 remains undeformed, but it is tilted to K 0
2 (see Fig. 3.7). Also, the

amount by which a point at a unit distance of the twinning plane is sheared is
termed the shear strain s, the amount of shear strain being fully determined by the
crystallographic properties of the two undeformed planes K1 and K2.

It is important to compare the two deformation mechanisms for plastic defor-
mation, namely slip and twinning. While neither induces volume change, slip and
twinning are totally different. Figure 3.8 illustrates the lattice movement during slip
and twinning, respectively. Concerning the slip mechanism, each atom cannot
move less than an interatomic distance in the direction of slip (identity translation),
while for deformation twinning, the magnitude of displacement of each atom is no
more than a small fraction of the lattice spacing.

Another important difference between deformation twinning and crystallo-
graphic slip is that twinning is polarized; i.e., reversal of the g1 direction will not
produce a twin. It follows that for a given single crystal some twin mode should
operate only in tension, whereas other twin mode should operate only in com-
pression, depending on the relative orientation between the crystal orientation and
the loading orientation.

As seen previously, a twinning mode is completely defined by crystallography. It
induces a change of the lattice orientation of the twin part with respect to the rest of
the single crystal. As a consequence, for a long time, twinning has been mainly
studied by mineralogists, while metallurgists focused mainly on the description of

Fig. 3.7 Geometrical
description of mechanical
twinning

IIK1
η1

(a) (b)

Fig. 3.8 Illustration of the movement of lattice point during a slip along the direction t,
b deformation twinning in the plane K1 along the direction g1
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slip mechanisms. Furthermore, most studies have been performed on fcc metals,
which have been long believed incapable of twinning. While the first suggestion
that twinning can be a deformation mechanism in fcc metals was made in the
beginning of the twentieth century [74, 91], the occurrence of twinning in fcc cubic
metals was first characterized by Blewitt et al. [14] in copper at low temperature
(4.2 K). These authors also observed that twinning in copper can also be active at a
higher temperature (77.3 K), but only when the crystal is loaded in tension along an
orientation close to the 111½ � direction. Blewitt et al. [14] found that the primary
twinning plane is 11�1ð Þ and the associated shearing direction is the 112½ � direction,
while the conjugate twinning plane is 1�11ð Þ with shearing along the 121½ � direction.
Based on crystallographic and geometric considerations, Bevis and Crocker [12]
have determined the possible twin modes for cubic single crystals and their asso-
ciated shear strain s. Assuming that the primary twinning mode is the mode
associated with the smallest possible homogenous shear, it was shown that the
primary twin mode should be 111f gh11�2i for a fcc single crystal, as observed by
Blewitt et al. [14], and 112f gh1�1�1i for a bcc single crystal. It is worth noting that
for bcc metals, a large diversity of twin systems apart from the well-known
112f gh1�1�1i mode have been observed. For an in-depth discussion on twinning in

fcc metals, the reader is referred to Venables [107], while for an overview of the
experimental evidence on twinning in bcc metals, see Richman [86] and Reed-Hill
et al. [82] monograph.

While in fcc and bcc metals, twinning occurs as a secondary deformation
mechanism due to the large number of slip planes available in the respective lattice
structure, this is not generally the case with hcp metals where the number of
potential slip systems is not so numerous (see Table 3.2). Specifically, in hcp
metals, deformation twinning is often competitive with slip. It follows that
understanding which twin modes operate and the conditions to be met for the onset
of twinning are of great importance for hcp metals.

Mathewson and Phillips [75] reported that deformation twinning occurs in Be,
Mg, Zn, and Cd in the 10�12f g planes. Nowadays, it is well established that
twinning on the plane 10�12f g 10�1�1h i is the most common mode for hcp crystals and
that almost all hcp materials twin on this plane.

As seen previously in the case of slip, the possible slip systems vary from
material to material. This is also the case for twinning. The most commonly
observed twins systems in hcp metals are summarized in Table 3.3. Following Yoo
[109], in Fig. 3.9 is plotted the variation of the twinning shear with respect to the
ratio c=a for the four twinning systems listed in Table 3.3. It can be seen that the

Table 3.3 Twins systems in
hcp structure

Twin systems K1 g1 K2 g1
1 10�12f g 10�1�1h i 10�1�2f g 10�11h i
2 10�11f g 10�1�2h i 10�1�3f g 30�32h i
3 11�22f g 11�2�3h i 11�2�4f g 22�4�3h i
4 11�21f g �1�126h i 0002f g 1120h i
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twinning system 10�12f g 10�1�1h i is active for all the listed metals. However,
depending on the slope of the twinning shear curve, the twin is either called
“compression” twin for a positive slope or “tension” twin for a negative slope. In
other words, a “compression” twin will allow a compression deformation along the
c-axis, while a “tension” twin will produce a tensile deformation along the c-axis.
As an example, for hcp metal such Be, Ti, Zr, Re, and Mg, the twin system
10�12f g 10�1�1h i is a “tension” twin, while for Zn and Cd, 10�12f g 10�1�1h i is a

“compression” twin. As pointed out by Yoo [109], the most ductile hcp metals
(e.g., Ti, Zr) twin profusely by both tension–compression twin modes, while the
hcp metals with low ductility (e.g., Mg, Zn, Cd) twin only by the most common
type, the 10�12f g 10�1�1h i system.

3.3 Yield Criteria for Single Crystals

In order to accurately model the plastic behavior of single crystals, it is essential to
account for their intrinsic symmetries and develop models applicable to general
three-dimensional loadings. For fcc single crystals, the primary deformation
mechanism for plastic deformation is crystallographic slip on the 111f g crystal-
lographic planes along the 100½ � crystallographic directions. As shown earlier,
according to the Schmid law, slip initiates when the resolved shear stress on any
given slip system reaches the critical resolved shear stress for that particular system.
For uniaxial tensile loading, the expression of the critical resolved shear stress was
given in Eq. (3.3).

In the following, we first present the expression of Schmid law in terms of the
Cauchy stress for general loadings. Next, the so-called generalized Schmid criterion
proposed by Arminjon [3] (see also [30]) is introduced. This criterion is a differ-
entiable and convex approximation of the Schmid law with a nth order homogenous
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function of stresses. The effect of the loading orientation on yielding in uniaxial
tension predicted by this criterion is discussed in detail, with emphasis on assessing
its predictive capabilities for various single crystals. Lastly, a very recent yield
criterion for fcc single crystals applicable to any loading that was recently devel-
oped by Cazacu et al. [26] is presented. We conclude with comparisons between the
predictions of the generalized Schmid criterion and this new yield criterion.

3.3.1 Generalized Schmid Yield Criterion

As shown in the previous section, according to Schmid’s law, a critical value of the
resolved shear stress is required for the initiation of slip. For uniaxial loadings, the
expression for the resolved shear stress ss acting along the slip direction of unit
vector bs in a plane of unit normal ns is given by Eq. (3.3) (see also Fig. 3.6), and
the slip system (s) defined by bs and ns is active (operational) if and only if ss ¼ ssc,
with ssc being the critical resolved shear stress for the respective slip system (s). For
multiaxial loadings, the resolved shear stress for the slip system (s) is:

ss ¼ Ms : rj j ¼ Ms : sj j; ð3:4Þ

where Ms denotes the Schmid tensor of the slip system (s), defined as:

Ms ¼ bs � ns þ ns � bsð Þ=2; ð3:5Þ

In Eq. (3.4), s denotes the deviator of the applied Cauchy stress tensor r (i.e.

s ¼ r� 1
3
tr rð ÞI) while “:” stands for the scalar product between two second-order

tensors, and “�” for the dyadic product between any two vectors (see also Chap. 1
for the definitions of these products and the trace operator “tr” relative to any given
Cartesian coordinate system).

If the critical resolved shear stress is considered to be the same for all potential
slip systems (i.e., ssc ¼ sc for any system (s)), then for multiaxial loadings the
Schmid law states that of all potentially active slip systems, slip begins on the slip
system (s) for which

ss ¼ Ms : rj j ¼ Ms : sj j ¼ sc; ð3:6Þ

The generalized Schmid criterion is a differentiable and convex approximation
of the Schmid law (see Eq. 3.6) with an nth order homogenous function of stresses
(see [3]). The generalized Schmid yield criterion is expressed as:

X
s

s : Ms

sc











n

 !1=n

¼ 1; ð3:7Þ
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the exponent n being an integer such that 1\n\1, and sc being the critical
resolved shear stress, which is considered to be the same for all potentially active
slip systems.

As already mentioned, at room temperature for fcc single crystals, there are
twelve slip systems corresponding to the 111f g planes and the h110i directions (see
Table 3.2). Note that the yield function given by Eq. (3.7) is arbitrarily close to the
inner envelope of the Schmid hyperplanes, s : Msj j ¼ sc. In the Oxyz coordinate
system with axes along the h100i directions of the crystal, the generalized Schmid
criterion is expressed as:

ryy � rzz þ rxy � rxz


 

n þ rzz � rxx � rxy þ ryz



 

n þ rxx � ryy þ rxz � ryz


 

n

þ ryy � rzz þ rxy þ rxz


 

n þ rzz � rxx � rxy � ryz



 

n þ rxx � ryy � rxz þ ryz


 

n

þ ryy � rzz � rxy þ rxz


 

n þ rzz � rxx þ rxy þ ryz



 

n þ rxx � ryy � rxz � ryz


 

n

þ ryy � rzz � rxy � rxz


 

n þ rzz � rxx þ rxy � ryz



 

n þ rxx � ryy þ rxz þ ryz


 

n

¼ 4snc :

ð3:8Þ

According to this yield criterion, the yield stresses in uniaxial tension along the
[110], [111], [112], and [210] directions, respectively, are given by:

Y110
Y100

¼ 21=n;

Y111
Y100

¼ 3
2

4
3

� �1=n

;

Y112
Y100

¼ 41=n

1þ 2 2=3ð Þn þ 1=3ð Þnð Þ1=n
;

Y210
Y100

¼ 41=n

3
3
5

� �n

þ 6
5

� �n

þ 1
5

� �n

þ 2
5

� �n �1=n

ð3:9Þ

It is worth noting that according to the generalized Schmid criterion, the ratios
between the uniaxial tensile yield stresses along different orientations are completely
determined by the value of the coefficient n. Furthermore, for any integer n[ 1:

1� Y110
Y100

�
ffiffiffi
2

p
and Y110\Y111: ð3:10Þ

Therefore, irrespective of the value of the exponent n, the generalized Schmid
criterion (Eq. 3.7) predicts that the yield stress in the [111] direction should be
larger than the yield stress in the [110] direction, which in turn should be greater
than the yield stress along the [100] direction:
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Y111 [ Y110 � Y100: ð3:11Þ

Moreover, for very large values of the exponent n in Eq. (3.7), i.e., n ! 1, the
yield stresses in the [110] and [112] directions should be the same and equal to
the yield stress in the [100] directions, while the ratio between the yield stresses in
the [111] direction should be exactly (3/2) larger than in the [100] direction, i.e.,

Y111 ¼ 3
2
Y100: ð3:12Þ

3.3.2 Cazacu et al. [26] Yield Criterion

The regularized form of the Schmid law involves a single parameter, n. As dis-
cussed in the previous section, irrespective of the value of this parameter, this yield
criterion (see Eq. 3.7) predicts that the yield stress in uniaxial tension along the
direction 100½ � is lower than or equal to the one along the 110½ � direction and that
the highest yield stress is always along the direction 111½ �. Therefore, this yield
criterion cannot capture the plastic deformation of a Cu single crystal, which
exhibits the lowest yield stress in uniaxial tension along 110½ � (see [98]). Another
example where the limitations of the generalized Schmid yield criterion are high-
lighted is that of Ni-based superalloys. For example, Lall et al. [64] showed that for
Ni3 (Al, Nb) single crystals at room temperature, the yield stress in uniaxial tension
along the direction 110½ � is greater than the yield stress in uniaxial tension along the
direction 111½ �, which in turn is greater than the yield stress in uniaxial tension
along the direction 100½ �. Additionally, while for large values of the parameter n,
the generalized Schmid yield criterion (Eq. 3.8) is able to capture the yielding
response of certain materials such as Al; it is represented by a function only of class
C0, the corresponding yield surface having singularities.

The main idea put forward in Cazacu and Barlat [23] and Cazacu et al. [26] is
that in order to describe accurately the effect of the crystal structure on plastic
deformation for general loading conditions, the analytical function, say UðrÞ, that
describes the onset of yielding should be form-invariant with respect to any proper
orthogonal transformation Q belonging to the symmetry group Gþ (see also
Sect. 3.1 for the definition of Gþ ), i.e.,

U QrQT� � ¼ UðrÞ: ð3:13Þ

To obtain the general form of the yield function UðrÞ that contains the minimum
number of coefficients such as to automatically satisfy these symmetry require-
ments, these authors developed generalizations of the classic isotropic stress
invariants such as to account for cubic symmetries. In the following, we will present
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the derivation of the expressions of these generalized cubic invariants and the
single crystal yield criterion of Cazacu et al. [26] that is expressed in terms of these
invariants.

The main idea that enabled the derivation of the generalized cubic stress
invariants is that the cubic systems constitute a subset of the rhombic system (see
Table 3.1). Relative to the Oxyz coordinate system associated with the symmetry
axes of the rhombic system, the set of irreducible invariants of the stress tensor is:

rxx; ryy; rzz; r
2
xy; r

2
yz; r

2
xz; rxyrxzryz: ð3:14Þ

Thus, any rhombic (or) orthotropic polynomial PðrÞ must be of the form:

P ¼ P rxx; ryy; rzz; r
2
xy; r

2
yz; r

2
xz; rxyrxzryz

� 	
ð3:15Þ

Let J2 ¼ trs2=2, and J3 ¼ trs3=3 denote the second and third-invariant of s,
respectively. Using Smith and Rivlin’s representation theorem, Cazacu and Barlat
[24] derived orthotropic generalizations of the isotropic invariants J2, and J3,
respectively. These generalized invariants, denoted Jo2 and Jo3 , were required to be:
homogeneous polynomials of degree two and three in r, respectively,
pressure-insensitive (i.e., P rþ pIð Þ ¼ PðrÞ for any r and scalar p), and orthotropic.
Therefore, relative to the Cartesian coordinate system Oxyz associated with the axes
of symmetry, the orthotropic generalization of J2 must be of the form:

Jo2 ¼ a1
6

rxx � ryy
� �2 þ a2

6
ryy � rzz
� �2 þ a3

6
rxx � rzzð Þ2 þ a4r

2
xy þ a5r

2
xz þ a6r

2
yz

ð3:16Þ

while the orthotropic generalization of J3 must be of the form:

Jo3 ¼ 1
27

b1 þ b2ð Þr3xx þ
1
27

b3 þ b4ð Þr3yy þ
1
27

2 b1 þ b4ð Þ � b2 � b3½ �r3zz
� 1
9

b1ryy þ b2rzz
� �

r2xx �
1
9

b3rzz þ b4rxxð Þr2yy

� 1
9

b1 � b2 þ b4ð Þrxx þ b1 � b3 þ b4ð Þryy
� �

r2zz

þ 2
9

b1 þ b4ð Þrxxrzzryy �
r2xz
3

2b9ryy � b8rzz � 2b9 � b8ð Þrxx
� �

� r2xy
3

2b10rzz � b5ryy � 2b10 � b5ð Þrxx
� �� r2yz

3
b6 þ b7ð Þrxx � b6ryy � b7rzz

� �
þ 2b11rxyrxzryz

ð3:17Þ
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In the above expressions, ai, i = 1…6 and bk , k = 1…11 are constants. If each of
these constants ai ¼ 1, Jo2 reduces to J2; and if each of the constants bk ¼ 1, Jo3
reduces to J3. Any function U Jo2 ; J

o
3

� �
is pressure-insensitive and automatically

satisfies the form-invariance requirements with respect to any transformation
belonging to the symmetry group of any class of the rhombic system (see
Table 3.1). For the mathematical proofs and details of the derivations of the above
expressions for the orthotropic generalizations of the classic isotropic invariants, the
reader is referred to Chap. 5.

Generalized invariants for cubic symmetries

For the crystals belonging to the five cubic crystal classes, the axes of symmetry
parallel to the h100i directions have threefold symmetry (see Table 3.1 for the
proper orthogonal generators characterizing the respective group of symmetry of
each of the five cubic crystal classes; in this table f ¼ 1

� ffiffiffi
3

p� �
ex þ ey þ ez
� � ¼

½111�). Note that for each of the tetratoidal and diploidal classes, Rp
ex and Rp

ey are
generators. It follows that for a polynomial PðrÞ to fulfill the symmetries associated
with these crystal classes, it should be of the form given by Eq. (3.15) and in
addition be invariant to circular permutations, i.e.,

P rxx; ryy; rzz; r
2
xy; r

2
yz; r

2
xz; rxyrxzryz

� 	
¼ P ryy; rzz; rxx; r

2
yz; r

2
xz; r

2
xy; rxyryzrzx

� 	
¼ P rzz; rxx; ryy; r

2
xz; r

2
xy; r

2
yz; rxyryzrzx

� 	 ð3:18Þ

Proposition 3.1 For all crystal classes of the cubic system, the generalized
second-invariant of the stress deviator should involve only two independent
parameters, and its expression with respect to the Cartesian system associated with
the crystal axes should be of the form:

Jc2 ¼
m1

6
rxx � ryy
� �2 þ rxx � rzzð Þ2 þ rzz � ryy

� �2h i
þm2 r2xy þ r2xz þ r2yz

� 	
ð3:19Þ

where m1 and m2 are material constants.

Proof The extension of the isotropic second-invariant of the stress deviator J2 to
cubic symmetries should be a polynomial of second-order, homogeneous in
stresses, pressure-insensitive, and should satisfy the symmetries associated to the
respective crystal classes. It follows that for the tetratoidal and diploidal classes of
the cubic system, the generalized J2 should be of the form given by Eq. (3.16), and
in addition satisfy the constraints given by Eq. (3.18), which lead to:
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a1 ¼ a2 ¼ a3 and a4 ¼ a5 ¼ a6: ð3:20Þ

It means that Jc2, the generalized second-invariant of the stress deviator depends
on only two independent constants, say m1 and m2, and in the reference frame
associated with the h100i axes, it has the expression given by Eq. (3.19). The proof
that for the remaining three classes of the cubic system, the generalized
second-invariant of the stress deviator should also be of the form given by
Eq. (3.19) is straightforward. Indeed, for the hextetrahedral, gyroidal, and hexoc-
tahedral classes, the generators of the symmetry group are the rotations by p=2 with
respect to each of the crystal axes (see Table 3.1) and Jc2 given by Eq. (3.19) is
invariant under these transformations.

Note also that for m1 ¼ m2 ¼ 1, i.e., isotropic conditions, the generalized
second-invariant Jc2 given by Eq. (3.19) reduces to J2.

Proposition 3.2 For the tetratoidal and diploidal crystal classes of the cubic
system, the generalized third-invariant of the stress deviator should involve five
independent parameters, and its expression with respect to the Cartesian system
associated with the crystal axes should be of the form:

JC3 ¼ 2
27

n1 r3xx þ r3yy þ r3zz

� 	
þ 4

9
n1rxxryyrzz

þ 1
9

3n2 � 4n1ð Þ rxxr
2
zz þ ryyr

2
xx þ rzzr

2
yy

� 	
þ 2n4rxyrxzryz

þ 1
9

2n1 � 3n2ð Þ rxxr
2
yy þ ryyr

2
zz þ rzzr

2
xx

� 	

þ r2xy
3

�2n3rzz þ 4n3 � 3n5ð Þrxx þ 3n5 � 2n3ð Þryy
� �

þ r2xz
3

�2n3ryy þ 4n3 � 3n5ð Þrzz þ 3n5 � 2n3ð Þrxx
� �

þ r2yz
3

�2n3rxx þ 4n3 � 3n5ð Þryy þ 3n5 � 2n3ð Þrzz
� �

;

ð3:21Þ

while for the hextetrahedral, gyroidal, and hexoctahedral classes, the general-
ized third-invariant of the stress deviator should involve three independent
parameters, its expression being:

Jc3 ¼
n1
27

2rxx � ryy � rzz
� �

2ryy � rzz � rxx
� �

2rzz � rxx � ryy
� �þ 2n4rxyrxzryz

� n3
3

r2yz 2rxx � ryy � rzz
� �þ r2xz 2ryy � rzz � rxx

� �þ r2xy 2rzz � rxx � ryy
� �h i

:

ð3:22Þ
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Proof The generalization of the third-invariant of the stress deviator should be a
polynomial of third-order, homogeneous in stresses, pressure-insensitive, and
should satisfy the symmetries associated to the respective crystal classes. It follows
that for the tetratoidal and diploidal crystal classes of the cubic system, the gen-
eralization of the third-invariant of the stress deviator that satisfies the symmetries
associated to these crystal classes should be of the form given by Eq. (3.17), and
subject to the additional constraints given by Eq. (3.18), which result in:

b1 ¼ b3; b2 ¼ b4; b5 ¼ b7;

b6 ¼ b8; b9 ¼ b10 ¼ b7 þ b6
2

:
ð3:23Þ

Therefore, the generalized third-invariant of the stress deviator JC3 should
involve only five independent parameters, b1; b2; b5; b6; b11. Alternatively, the
following five coefficients nk , k = 1…5, which are linearly independent combina-
tions of b1; b2; b5; b6; b11 can be considered,

n1 ¼ b1 þ b2ð Þ=2; n2 ¼ b1 þ 2b2ð Þ=3; n3 ¼ b5 þ b6ð Þ=2
n4 ¼ b11; n5 ¼ 2b5 þ b6ð Þ=3; ð3:24Þ

resulting in the expression of JC3 given by Eq. (3.21). It should be noted that if each
of the coefficients nk is set to unity (i.e., isotropy is imposed), JC3 reduces to J3.

Next, form-invariance of a polynomial with respect to each of the hextetrahedral,
gyroidal, and hexoctahedral classes imposes that the generalized third-invariant of
the stress deviator should be of the form given by Eq. (3.17), and fulfill the
additional restrictions:

JC3 rxx; ryy; rzz; r
2
xy; r

2
yz; r

2
xz; rxyrxzryz

� 	
¼ JC3 rxx; rzz; ryy; r

2
xz; r

2
yz; r

2
xy; rxyrxzryz

� 	
¼ JC3 ryy; rxx; rzz; r

2
xy; r

2
xz; r

2
yz; rxyrxzryz

� 	
¼ JC3 rzz; ryy; rxx; r

2
yz; r

2
xy; r

2
xz; rxyrxzryz

� 	
¼ JC3 ryy; rzz; rxx; r

2
yz; r

2
xz; r

2
xy; rxyrxzryz

� 	
¼ JC3 rzz; rxx; ryy; r

2
xz; r

2
xy; r

2
yz; rxyrxzryz

� 	
ð3:25Þ

which result in:

n1 ¼ n2 and n3 ¼ n5: ð3:26Þ

Thus, for these classes of the cubic systems, the expression of the generalized
third-invariant of the stress deviator, denoted hereafter Jc3, involves only three inde-
pendent coefficients n1, n3, and n4, and its expression is given by Eq. (3.22). It should
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be noted that if each of these coefficients is set to unity (i.e., isotropy is imposed), Jc3
reduces to J3. Using these generalized cubic invariants, one can construct yield criteria
that are pressure-insensitive and satisfy the invariance requirements associated with
the symmetries of the crystal classes of the cubic system.

It is worth noting that most of the face-centered cubic metals (e.g., copper; Al)
belong to the hextetrahedral, gyroidal, and hexoctahedral cubic classes (e.g., see
Dana and Ford [29] textbook on mineralogy). Any function U Jc2; J

c
3

� �
with Jc2 and

Jc3 given by Eqs. (3.19) and (3.22), respectively, is independent of the hydrostatic
pressure and automatically respects the intrinsic symmetries of any crystal
belonging to these classes. Moreover, for fcc crystals, it is generally assumed that
the mechanical response in tension–compression is the same; therefore, the yield
function should be an even function of stresses.

The following yield criterion was proposed in Cazacu et al. [26]:

ðJc2Þ3 � cðJc3Þ2 ¼ k6; ð3:27Þ

with c being a material constant that controls the relative importance of the gen-
eralized invariants on yielding of the single crystal and k being the yield limit in
simple shear in any of the crystallographic planes 100f g. Using Eqs. (3.19),
(3.22) and (3.26), respectively, it can be easily seen that in the coordinate system
Oxyz associated with the h100i crystal axes, the yield criterion given by Eq. (3.27)
is expressed as:

m1

6
rxx � ryy
� �2 þ rxx � rzzð Þ2þ rzz � ryy

� �2h i
þm2 r2xy þ r2xz þ r2yz

� 	n o3

� c
27

n1 2rxx � ryy � rzz
� �

2ryy � rzz � rxx
� �

2rzz � rxx � ryy
� �þ 2n4rxyrxzryz

�9n3 r2yz 2rxx � ryy � rzz
� �þ r2xz 2ryy � rzz � rxx

� �þ r2xy 2rzz � rxx � ryy
� �h i

8<
:

9=
;

2

¼ k6:

ð3:28Þ

Alternatively, using Eq. (3.28), one can obtain the expression of the yield cri-
terion in terms of the components of the stress deviator s as:

m1

2
s2xx þ s2yy þ s2zz
� 	

þm2 s2xy þ s2xz þ s2yz
� 	h i3

� c n1sxxsyyszz � n3 szzs
2
xy þ sxxs

2
yz þ syys

2
xz

� 	
þ 2n4sxysxzsyz

h i2
¼ k6:

ð3:29Þ

In summary, Cazacu et al. [26] yield criterion for cubic single crystals involves
five anisotropy coefficients, m1;m2; n1; n3; n4, and the constant c. All these
parameters can be determined from uniaxial tension tests along several crystallo-
graphic directions. In the following subsection, an identification procedure based on
such data is presented. Moreover, the capabilities of this criterion to account for the
effect of the loading orientation on yielding in several crystallographic planes of
interest are also examined.
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3.3.2.1 Effect of Loading Orientation on Yielding

The most widely used method to visualize and represent the deformation of fcc
crystals is by projections on a sphere (see [33, 94]). The most convenient of these is
the stereographic projection, which is the projection from a point on the surface of
the sphere on the plane through the center parallel to the tangent plane at the point
of projection, the northern hemisphere being viewed from the South pole. The
stereographic projection of a cubic crystal is shown in Fig. 3.10; the square, circle,
and triangular symbols represent the points at which the fourfold, threefold, and
twofold symmetry axes of the crystal intersect the surface of the unit sphere. Also as
an example, the stereographic projection of an arbitrary direction d ¼ OP, whose
orientation with respect to the crystal axes is given by (h;u), on the equatorial plane
is shown in Fig. 3.10.

Due to the symmetries of the fcc single crystal, to quantify the influence of the
loading orientation on yielding under uniaxial tension, it is sufficient to perform and
analyze tests along directions contained in the basic stereographic triangle with
corners along [001], [101], and [111] (see also Fig. 3.10). Note also that for a
direction d to be in this stereographic triangle, its latitude angle u and its longitude
angle h should be in the following range: 0�u� p=4 and 0� h� arctan 1=cosuð Þ,
respectively, (see Fig. 3.11).

Let us denote by Yd the yield limit in uniaxial tension along any given direction
d. In the Oxyz system with axes along the h100i directions of the crystal (e.g., see
Fig. 3.11):

d ¼ sin h cosuex þ sin h sinuey þ cos hez ð3:30Þ

Fig. 3.10 Stereographic
projection of a cubic crystal
also showing the basic
stereographic triangle of
corners [001], [101], and
[111]. The square, circle, and
triangular symbols represent
the points at which the
fourfold, threefold, and
twofold symmetry axes of the
crystal intersect the surface of
the unit sphere
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Under uniaxial tension along the direction d, the applied stress tensor is
r ¼ Yd d� dð Þ, and it is expressed in the Oxyz coordinate system as:

r ¼ Yd
sin2 h cos2 u sin2 h cosu sinu cos h sin h cosu

sin2 h sin2 u cos h sin h sinu
cos2 h

2
4

3
5

ex;ey;ezð Þ
ð3:31Þ

Substituting Eq. (3.31) into the expression of Cazacu et al. [26] yield criterion
given by Eq. (3.28), we obtain that Yd , the yield stress in uniaxial tension along any
direction d, is:

Yd ¼ k

m1

3
þ m2 � m1ð Þ sin2 h cos2 hþ sin2 h sin2 u cos2 u

� �h i3

� c
2n1
27

þ n3 � n1
3

sin2 h cos2 hþ sin2 h sin2 u cos2 u
� �þ

n1 � 3n3 þ 2n4ð Þ sin4 h cos2 h sin2 u cos2 u

2
4

3
5
2

8>>>><
>>>>:

9>>>>=
>>>>;

�1=6

ð3:32Þ

In particular, Y100 the yield stress in uniaxial tension along 100½ �, which corre-
sponds to u ¼ 0; and h ¼ p=2 (see also Fig. 3.10), is:

Y100
k

¼ 3

27m3
1 � 4cn21

� �1=6 ð3:33Þ

It can be easily verified that the yield criterion respects the symmetries of the
cubic single crystal. Using Eq. (3.32) to calculate the yield limit under uniaxial
tension along the 010½ �, 001½ �, �100½ �, 0�10½ �, and 00�1½ � directions, respectively, it can
be seen that these limits coincide with the expression of the normalized Y100 given
by Eq. (3.33). Moreover, according to the criterion (i.e., Eq. (3.32) with
u ¼ p=4; h ¼ p=2Þ, Y110, the yield stress along the [110] direction, is given by:

Fig. 3.11 Stereographic
projection of a direction d of
latitude 0� h� p and
longitude 0�u� 2p; S
denotes the South pole
(h ¼ p), the northern
hemisphere being viewed
from S; ðex; ey; ezÞ are the unit
vectors of the crystal axes
[100], [010], and [111],
respectively
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� �2
" #1=6 ð3:34Þ

The fact that the yield criterion predicts the same value of the yield limit in
uniaxial tension along any of the h110i orientations (see Eq. 3.32) is a direct
consequence of the criterion being form-invariant to the crystal symmetries. In the
same manner, one can determine the theoretical yield limit under uniaxial tension
along any other orientations in the basic stereographic triangle, (see also Fig. 3.12
which shows some specific directions in this stereographic triangle). Moreover, it
means that all the parameters involved in the Cazacu et al. [26] criterion have
physical meaning and can be determined from simple uniaxial tension tests. The
identification procedure is outlined in the following.

3.3.2.2 Procedure for Identification of the Yield Criterion

If we impose that the Cazacu et al. [26] single crystal yield surface (see Eq. 3.27)
passes through the yield point in uniaxial tension along h100i, the yield criterion is
expressed as:

272

27m3
1 � 4cn21

ðJc2Þ3 � cðJc3Þ2
h i

¼ Y6
100; ð3:35Þ

Fig. 3.12 Specific directions of a FCC single crystal along which tensile data are generally
reported
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or,

272

27m3
1 � 4cn21

m1 s2xx þ s2yy þ s2zz
� 	

=2þm2 s2xy þ s2xz þ s2yz
� 	h i3

�c n1sxxsyyszz � n3 szzs2xy þ sxxs2yz þ syys2xz
� 	

þ 2n4sxysxzsyz
h i2

8><
>:

9>=
>;

¼ Y6
100;

ð3:36Þ

with Jc2 and Jc3 given by Eqs. (3.19) and (3.22), respectively.
Given that the criterion is represented by a homogeneous function in stresses, the

yield limit is the same if the coefficients m1;m2; n1; n3; n4 are replaced by
am1; am2; an1; an3; an4, with a being an arbitrary positive constant. Therefore,
without loss of generality one of the parameters, for example m1, can be set equal to
unity. Note also that the coefficient cn21 has a clear physical significance being
directly expressible in terms of the ratio between the yield limits in uniaxial tension
along h100i, i.e., Y100 and the yield limit in simple shear, i.e., k (see Eq. 3.33). The
remaining coefficients m2; n3; n4, and c can be determined from the tensile yield
stresses along four different loading orientations. Indeed, from Eq. (3.32), it follows
that:
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� �1=6
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� 	3
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 �1=6

Y210
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¼ 27m3
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m1 þ 4
25

m2
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14
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Alternatively, if tensile data in other four different loading orientations are
available, those data could be used to determine the coefficients m2; n3; n4 and c.
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3.3.3 Application to the Description of Yielding in Cu
and Al Single Crystals

3.3.3.1 Cu Single Crystal

Experimental data reported in the literature show that for certain fcc single crystals
such as Cu the initial yield limit along the 100½ � orientation is greater than the yield
limit along the 110½ � orientation; moreover, the hardening rate is also greater along
the 100½ � orientation (see [98]). From the experimental uniaxial tension stress–strain
curves at −195 °C reported, one cannot infer the exact ratios between the tensile
yield stresses along various crystal directions just their ordering, namely that:
Y111 [ Y100 [ Y112 [ Y210 [ Y110, with the yield limits along the 110½ � and 120½ �
orientations being close. Assuming that Y111=Y100 ¼ 1:5; Y110=Y100 ¼ 0:7;
Y211=Y100 ¼ 0:8; Y210=Y100 ¼ 0:75, and using the procedure for identification of
the material parameters outlined in Sect. 3.3.2.2, the numerical values of the
parameters of Cazacu et al. [26] criterion are: m2 ¼ 1:92, n1 ¼ 2:16, n3 ¼ 0:37,
n4 ¼ 0:98, c ¼ 0:48. In Fig. 3.13, the isocontours of the normalized yield stresses
in uniaxial tension according to the yield criterion of Eq. 3.36 are represented in
the stereographic triangle. Note that this criterion is able to describe the data of
Takeuchi [98] and it predicts that the yield stress for the orientation 101½ � is smaller
than that for the orientation 001½ �.

It is also of interest to compare the anisotropy in uniaxial yield stresses in the
crystallographic planes of normal h100i and h1�10i, respectively, predicted by
the criterion and data of Takeuchi [98].

Let Yh be the yield stress in uniaxial tension along an axis at orientation h to the
crystallographic axis 001½ � (i.e., axis of equation d1 ¼ sin hex þ cos hez in the plane
u ¼ 0) (see also Fig. 3.11). According to the criterion:

Fig. 3.13 Anisotropy in
yield stress ratio in uniaxial
tension for a Cu single crystal
according to Cazacu et al.
[26] criterion
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Y100

¼ 27� 4cn21
� �1=6

3
1
3
þ m2 � 1ð Þ sin2 h cos2 h

� �3

� c
2n1
27

þ n3 � n1ð Þ
3

sin2 h cos2 h
� �2

" #1=6

ð3:38Þ

Note that the material symmetry is correctly described. Indeed, Eq. (3.38) is
invariant by the transformation h ! p=2� hð Þ, so the yield stress remains identical
under rotations of p=2 about the z-axis (see Fig. 3.11 for the definition of the
Cartesian system Oxyz associated with the h100i crystal axes). Moreover, for c[ 0,
in the variation of the yield limit Yh with the loading axis h, there should be only
one peak at p=4. For the Cu single crystal, c = 0.48 and the theoretical predictions
using Eq. 3.38 are in good agreement with data (see Fig. 3.14a).

On the other hand, if Yh110i hð Þ denotes the yield stress in uniaxial tension along

an arbitrary axis t ¼ sin h=
ffiffiffi
2

p
ex þ sin h=

ffiffiffi
2

p
ey þ cos hez in the plane of normal

h1�10i (see also Fig. 3.11) according to the criterion (Eq. 3.32 with u ¼ p=4),
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Fig. 3.14 Comparison
between the anisotropy in
yield stress ratio in uniaxial
tension for a Cu single crystal
predicted by Cazacu et al.
[26] criterion and data
of Takeuchi [98]: a in the
plane of normal h100i; b in
the plane of normal h1�10i (for
the definition of the angle u;
see Fig. 3.11)
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For the Cu single crystal, comparison between the theoretical predictions
according to Eq. (3.39) and data is shown in Fig. 3.14b. Note that the Cazacu et al.
[26] yield criterion is flexible enough to capture the difference in yield stresses
along the 100½ �, 101½ �, and 111½ � orientations. On the other hand, irrespective of the
value of the exponent n, the generalized Schmid criterion [see Eqs. (3.7) and (3.10)]
cannot capture the observed behavior. This is also clearly seen in Fig. 3.15a, b
which show quantitative comparisons between data and the variation of the yield
stress in tension with the loading orientation in the crystallographic planes of

(a)

(b)

Fig. 3.15 Comparison
between the anisotropy in
yield stress ratio in uniaxial
tension for a Cu single crystal
as predicted by the
generalized Schmid criterion
corresponding to n = 2,
n = 4, and n = 300 (inf),
respectively, and data ([99]):
a in the plane of normal
h100i; b in the plane of
normal h1�10i (for the
definition of the angle u, see
Fig. 3.11)
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normal h100i and h1�10i, respectively, predicted by the generalized Schmid criterion
corresponding to n = 2, n = 4, and n = 300, respectively.

In Fig. 3.16, the isocontours of the normalized yield stresses in uniaxial tension
according to the generalized Schmid yield criterion (see Eq. 3.7) for the same
values of the parameter n are represented in the basic stereographic triangle.
Comparison between Figs. 3.12 and 3.15 also highlights that in contrast to the
generalized Schmid criterion, the recent criterion of Cazacu et al. [26] can capture
the behavior of single crystals for which Y110 < Y100.

As already mentioned, if we consider the 1�11ð Þ 011½ � slip system to be active in
the stereographic triangle with corners along 001½ �, 101½ �, and 111½ �, the anisotropy
in uniaxial yield stresses predicted by the Schmid law [see Eqs. (3.4)–(3.6)] is the
same for any cubic crystal. This is also clearly seen by substituting the expression
of the applied stress tensor r given by Eq. (3.31) in Eqs. (3.4)–(3.6), which gives:

Yd=sc ¼
ffiffiffi
6

p

� sin2 h sin2 uþ cos2 hþ sin2 h sinu cosuþ cos h sin h cosu


 

 ð3:40Þ

Thus, the predicted uniaxial tensile yield stress normalized by the value of the
critical resolved shear stress sc does not depend on any material parameter.
Irrespective of the single crystal, the isocontours of Yd=sc in the basic stereographic
triangle are the same.

To enable direct comparison between the isocontours for Cu single crystal
according to Cazacu et al. [26] and the generalized Schmid criterion (see Figs. 3.13
and 3.16, respectively), in Fig. 3.17 are shown the predictions based on the Schmid
law. As mentioned, the Schmid law is not valid for cubic single crystals for which
Y110\Y100.
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Fig. 3.16 Isocontours in the basic stereographic triangle of the normalized yield stress in uniaxial
tension predicted by the generalized Schmid criterion for different values of the exponent n:
a n = 2; b n = 300 (After Cazacu et al. [26])
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3.3.3.2 Al 5% Cu Single Crystal

Karnop and Sachs [58] reported room-temperature uniaxial yield stress data for a
single crystal of Al containing a small fraction of alloying elements (95% Al, 5%
Cu). Figure 3.18a shows in the basic stereographic triangle these experimental
values normalized by Y100 ¼ 235:4 MPa. Note that for this material, the maximum
uniaxial tensile yield stress is along the [111] direction and that no experimental
data were reported for orientations close to [110]. The parameters of the Cazacu
et al. [26] yield criterion determined using the available experimental data in
conjunction with Eq. (3.32) are: m2 = 1.39, n1 = 2.42, n3 = 0.37, n4 = 6.8,
c = 0.35, whereas m1 ¼ 1 (see identification procedure outlined in previous sec-
tion). The predicted yield stresses are shown in Fig. 3.18b. For comparison,
Fig. 3.18c shows the predicted yield stresses according to the generalized Schmid
criterion (Eq. 3.8) corresponding to a large value of the exponent n (n = 300).

Note that the agreement between the yield criterion and data is satisfactory. The
evolution of the yield stress in uniaxial tension Y hð Þ=Y100 with the angle h in the
plane of normal h100i and h1�10i, respectively, (Fig. 3.18a, b) reveal the main
differences between the Cazacu et al. [26] yield criterion (solid line) and the gen-
eralized Schmid criterion with n very large. Note that the latter criterion is not
differentiable for some orientations, e.g., [101] and [111] directions, while the
Cazacu et al. [26] predicts a smooth variation of the yield stress with the loading
orientation.
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Fig. 3.17 Isocontours of the yield stress ratio Yd=Y100 according to Schmid law
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Fig. 3.18 Yield stresses for a Al 5% Cu single crystal in uniaxial tension: a experimental data [58],
b predictions according to Cazacu et al. [26] yield criterion; c theoretical predictions using the
generalized Schmid criterion with n = 300. Yield stresses normalized by the yield stress along [100]
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It is important to note that although for this Al 5% Cu single crystal the pre-
dictions of the Cazacu et al. [26] yield criterion and the generalized Schmid cri-
terion are similar in uniaxial tension (e.g., see results of Figs. 3.18 and 3.19), for
more complex loadings the mechanical response predicted by this criterion and the
generalized Schmid criterion is completely different.

For example, for biaxial loadings in the crystallographic plane of normal 100½ �
(i.e., only rxx, ryy and rxy are different from zero), the projections in the (rxx, ryy)
plane of the yield surfaces according to the new criterion and the generalized
Schmid criterion are very different irrespective of the level of shear, rxy=Y100 (see
Fig. 3.20a, b for the projections of the yield surfaces corresponding to
rxy=Y100 ¼ 0; 0:11; 0:23; 0:34, respectively).

Also, in Fig. 3.21 are shown the projections in the plane (rxz, rxy) corresponding
to different fixed values of the normal stress rxx according to both yield criteria.
Note that irrespective of the type of loading, the yield surface according to the new
yield criterion is smooth, whereas the yield surfaces according to the generalized
Schmid criterion have singularities. Moreover, according to the generalized Schmid
criterion, small changes in either the level of shear (see Fig. 3.20b) or the level of
normal stress (see Fig. 3.21b) result in drastic changes in the shape of the
isocontours.
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Fig. 3.19 Comparison
between the anisotropy in
yield stress under uniaxial
tension for a Al 5% Cu single
crystal predicted by Cazacu
et al. [26] (solid line) criterion
and the generalized Schmid
criterion (dashed line),
respectively: a in the plane
(100); b in the plane of
normal h1�10i (for the
definition of the angle u, see
Fig. 3.11)
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3.3.4 Application of Cazacu et al. [26] Single Crystal
Criterion to Deep Drawing

Cup drawing is one of the forming processes where the influence of anisotropy of
the metal sheet is most evident. If the material were isotropic, the height of the cup
would be uniform. In contrast, anisotropic material behavior has pronounced effects
on the strain distribution in the sheet metal during deep drawing resulting in a
non-uniform cup height with maxima and minima, commonly known as “ears,”
along the rim. Modeling and simulation of the formation of ears in deep drawing of

Fig. 3.20 Projection in the (rxx, ryy) plane of the yield surface of the single crystal Al alloy
obtained with: a the Cazacu et al. [26] criterion, and b the generalized Schmid criterion with
n = 300. The constant normalized shear stress contours correspond to rxy=Y100 ¼
0; 0:11; 0:23; 0:34, respectively. Stresses are normalized by Y100, the uniaxial yield limit along
[100]. Note that irrespective of the loading the yield surface according to the criterion is smooth

Fig. 3.21 Projection in the (rxz, rxy) plane of the yield surface of the single crystal Al alloy
obtained with: a the Cazacu et al. [26] yield criterion, and b the generalized Schmid criterion with
n = 300. The constant normalized shear stress contours correspond to rxx=Y100 ¼
0; 0:25; 0:50; 0:95, respectively. Stresses are normalized by Y100, the uniaxial yield limit along
[100]. Note that irrespective of the loading the yield surface according to the proposed criterion is
smooth
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polycrystalline metal sheets have been a subject of intense research since the late
1970s (e.g., [40]). At present, F.E. simulations based on advanced orthotropic yield
criteria for polycrystalline metals (see Chap. 5 for the presentation of these criteria)
describe with great accuracy earing formation during deep drawing of strongly
textured Al and steel alloys (e.g., see [9, 111, 112]).

In contrast, simulation of earing development during forming of single crystal
sheets has received little attention. To the best of our knowledge, only F.E. sim-
ulations of the cup height for single crystal sheets in the 100f g 001h i orientation
have been reported (see [1, 10]).

In the following, we present a numerical F.E. study on the influence of the single
crystal orientation on the earing profile of single crystal Al sheets using Cazacu
et al. [26] single crystal yield criterion (see Eq. 3.27). The experimental informa-
tion available in the open literature on forming single crystals is scarce.
Nevertheless, the results of cup drawing tests conducted by Tucker [106] for sin-
gle crystal pure Al sheets indicate that the number of ears that develop depends on
the orientation of the single crystal; for some single crystal sheets, formation of six
or eight ears is reported. Most importantly, these ears are not equally spaced or of
equal height. It should be noted that Tucker study does not include any experi-
mental characterization of the uniaxial tensile properties of the pure Al single
crystals sheets used for conducting the cup drawing tests. Therefore, the data
necessary for the identification of the material parameters involved in the yield
criterion are lacking. Nevertheless, the experimental earing profiles are invaluable
and serve as verification for the trends predicted by constitutive models.

The F.E. analyses presented hereafter were performed with ABAQUS/Standard
F.E. code using a user material subroutine (UMAT) developed for the elastic/plastic
model with yielding described by the Cazacu et al. [26] single crystal yield criterion
and associated flow rule. An implicit time integration algorithm was used. For more
details about this time integration algorithm used in the F.E. implementation, the
reader is referred to Chap. 2.

In all the F.E. simulations of cup drawing tests, the same values for the
parameters involved in the single crystal yield criterion are used, namely m1 ¼ 1,
m2 ¼ 1:39, n1 ¼ 2:42, n3 ¼ 0:37, n4 ¼ 6:8, c = 0.35 (see Eq. 3.27). These
numerical values correspond to an Al single crystal (with 5% Cu) for which uni-
axial yield stress data were reported by Karnop and Sachs [58] (for these data and
details on the identification procedure used for the determination of the material
parameters, see Sect. 3.3.3.2). The single crystal behavior is assumed isotropic in
the elastic regime, with E = 69 GPa and m ¼ 0:3, and an isotropic hardening
governed by a Swift-type law is considered [K0 ¼ 478 MPa, e0 ¼ 0:0004 and
n ¼ 0:17 in Eq. (2.24)].

The schematic view of the cup drawing process is shown in Fig. 3.22a, and the
tool dimensions used in the simulations are given in Table 3.4. Due to geometrical
and material symmetries (i.e., the cubic symmetry of the single crystal), only a
quarter of the cup needs to be modeled. The blank is discretized with C3D8H
elements in ABAQUS (eight-node brick elements with constant pressure).
Figure 3.22b shows the F.E. mesh used in all the simulations; it is composed of a
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total of 4200 elements. The blank sheet is circular in shape with a diameter of
79 mm and an initial thickness of 0.813 mm. The blank holder force used has a
value of Fh = 1000 N.

Simulations are presented for three single crystal sheets of different hklf g uvwh i
orientations. For any given sheet, hklf g designates the Miller indices of the rolling
plane, and uvwh i denotes the rolling direction. The crystal orientations analyzed
are: 100f g 001h i, 111f g 1�10h i, and 122½ � 1�10h i, respectively.

Before proceeding with the discussion of the results, let us recall that for
polycrystalline sheets it has been established that the height profile of a drawn cup
can be correlated to the directionality in r-values and yield stresses in the plane of
the blank (e.g., see mechanical tests and cup drawing tests on AA 2008-T4 poly-
crystalline sheets reported by [66]).

For the case of single crystal sheets, such correlations will also be discussed. For
this purpose, for each single crystal sheet analyzed, the theoretical variation in
uniaxial yield stress and Lankford coefficients with respect to the orientation a
between the tensile loading direction and the rolling direction are also presented.
While complete proofs are given later (see Sect. 3.4.1), it is important to note here
that all these theoretical predictions of the anisotropy in uniaxial tensile properties
of single crystal sheets were calculated with simple analytical formulas.

Cup drawing simulations of a 100f g 001h i single crystal sheet

For this 100f g 001h i single crystal sheet, the rolling (RD), transverse (TD), and
normal direction (ND) of the sheet coincide with the h100i axes of the crystal. Let
rðaÞ denote the yield stress of the single crystal under uniaxial tension in a direction

Fig. 3.22 a Details of deep drawing experiment geometry; b finite elements mesh for the blank

Table 3.4 Dimensions of
deep drawing experiment
geometry (see also Fig. 3.22)

Punch diameter Dp = 41.27 mm

Punch radius Rp = 4.57 mm

Die diameter Dd = 44.07 mm

Die radius Rd = 5.08 mm

Drawing ratio LDR = 1.91
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at angle a with respect to RD and rðaÞ the corresponding Lankford coefficient,
which is defined as the ratio between the in-plane transverse strain-rate and the
through-thickness strain-rate. Figure 3.23a shows the predicted evolution of yield
stress ratio r að Þ=r0 and Lankford coefficients r að Þ with the loading orientation a
(for the analytical expressions see Eqs. (3.43) and (3.45), respectively). It is worth
noting that for this Al-5% Cu single crystal, both the rðaÞ versus a and the rðaÞ
versus a curves admit an extremum at 45° to RD and that the predicted response is
symmetric with respect to the 45° orientation to the rolling direction. Furthermore,
r 0�ð Þ ¼ r 90�ð Þ ¼ 1; while for all other orientations rðaÞ[ 1 (Fig. 3.23b).

Figure 3.24a shows the deformed shape of a completely drawn cup of the
100f g 001h i crystal sheet and the isocontours of the equivalent plastic strain

associated with the yield criterion. The simulated evolution of the cup height with
the angle from RD is shown in Fig. 3.24b.

Note that for this 100f g 001h i initial orientation of the single crystal sheet, the
fully drawn cup displays fours ears with the maximum height located at 45° from
RD, in agreement with the experimental observations of Tucker [106]. Figure 3.25
presents the thickness evolution along the cup as a function of the initial radial
coordinate.

Since Cazacu et al. [26] yield criterion accounts for the single crystal cubic
symmetry, it correctly predicts that the thickness strain distribution along RD and
TD should be the same. A reduction in thickness is predicted for an initial radial
coordinate of about 20 mm (corresponding to the punch radius) while thickening
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Fig. 3.23 a Predicted
variation of the yield stress
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100f g 001h i Al 5% Cu single
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occurs from about 30 mm onward. Note that for this fully drawn cup, the maximum
thickness strain is along the rolling and transverse directions, while the minimum
thickness strain corresponds to the 45° orientation to the rolling direction. Those
results are consistent with the cup height predictions (see Fig. 3.24b); the larger the
cup height is in a given direction, the more thinning occurs in that direction.

Cup drawing simulations of a 111f g 1�10h i single crystal sheet

Next, the results of the F.E. analyses carried out for a 111f g 1�10h i crystal orien-
tation are discussed. In this case, the RD of the sheet is along 1�10½ �, TD is along
11�2½ �, while the ND coincides with the 111½ � direction. The evolution of the yield
stress and Lankford coefficients in the plane of the sheet according to the Cazacu
et al. [26] yield criterion is shown in Fig. 3.26. It should be noted that for this
crystal orientation, the normalized yield stress ratio r að Þ=r0 and Lankford coeffi-
cients, r að Þ, variation with the loading direction a display four maxima and minima.
Note the striking difference in terms of the in-plane anisotropy of this sheet as
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Fig. 3.24 a Deformed shape of a fully drawn cup of a 100f g 001h i Al 5% Cu single crystal sheet
showing the isocontours of the equivalent plastic strain associated with the Cazacu et al. [26]
single crystal yield criterion; b predicted cup height versus the angle from the [100] direction (RD)
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Fig. 3.25 Predicted
evolution of the thickness
(mm) along the RD, TD and
45° to the RD direction,
respectively, as a function of
the initial radial coordinate
(mm) for the Al 5% Cu single
crystal sheet in the
100f g 001h i orientation. F.E.

results based on the Cazacu
et al. [26] criterion
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compared to that of the 100f g 001h i single crystal sheet (see Fig. 3.23 showing two
extrema at a ¼ 0� and a ¼ 45� for the 100f g 001h i sheet).

Specifically, for the 111f g 1�10h i sheet, the in-plane r að Þ versus a curve admits
two maxima, one at a = 30° and the other one at a = 90° (TD), while the minima
are located at a = 0° (RD) and at a = 60°. The reverse holds true for the evolution
of the Lankford coefficients; i.e., minima are at a = 30° and a = 90°, respectively,
and maxima are at a = 0° and a = 60°, respectively. It is also worth noting that
for the 111f g 1�10h i sheet, irrespective of the in-plane tensile loading direction
a: rðaÞ\1.

For the 111f g 1�10h i single crystal sheet, the fully drawn cup displays six ears
located at 30° from RD and TD, respectively, (see Fig. 3.27). Note that the cup
height at 90° is a little larger than that at 30° from RD (i.e., the ears along TD are
more pronounced). It is also worth noting that the location of the ears correlates
with the minima for the Lankford coefficients (see Fig. 3.27b). The evolution of the
cup thickness along the three directions of interest (i.e., RD, TD and 45° to RD) is
shown in Fig. 3.28. As a general observation, let us note that due to the strong
in-plane anisotropy, there is a clear difference in the thickness strains along these
directions, with most thickening occurring along [1�10] (RD). These results correlate
with the predicted cup height profile and r-values variation (see Figs. 3.26
and 3.27).

(a)

(b)

Fig. 3.26 a Predicted
variation of the yield stress
ratios r(a)/r(0) and
b Lankford coefficients r(a)
with respect to the angle
between the loading axis and
the [1�10] direction (RD) in the
plane of the 111ð Þ of the
111f g 1�10h i Al 5% Cu single

crystal sheet obtained with the
Cazacu et al. [26] yield
criterion
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So far, it has been shown that the Cazacu et al. [26] yield criterion predicts either
four or six ears depending on the orientation of the single crystal sheet. In the
following are presented simulation results for a 122f g 1�10h i single crystal sheet.

Cup drawing simulations of a 122f g 1�10h i single crystal sheet

For this crystal orientation, the RD of the sheet coincides with 0�11½ �, TD with 4�1�1½ �,
and ND with 122½ �. The evolution of the normalized yield stresses and Lankford
coefficients in the 122ð Þ plane according to Cazacu et al. [26] yield criterion is
shown in Fig. 3.29. Note that according to this single crystal criterion the variation
of the tensile yield stresses r að Þ=r0 and Lankford coefficients, r að Þ, with the
loading direction a displays four extrema located at RD, 30°, 50°, and ND,
respectively. Note also the strong anisotropy in r að Þ, the value of the Lankford
coefficient varying from r = 0.18 at a = 30° to r = 1.22 at a = 50°.
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Fig. 3.27 a Deformed shape of a fully drawn cup of 111f g 1�10h i Al 5% Cu single crystal sheet
showing the isocontours of the equivalent plastic strain associated with the Cazacu et al. [26]
single crystal yield criterion. b Predicted cup height versus the angle from the rolling direction
[1�10]
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Fig. 3.28 Evolution of the
thickness (mm) for the RD,
TD and 45° to the RD
direction, respectively, as a
function of the initial radial
coordinate for a full drawn
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For this 122f g 1�10h i single crystal sheet, the fully drawn cup displays eight ears,
four large ears located at 30° and 150° from 1�10½ � (i.e. RD), and four small ears
located at 80° and 100° from RD, as shown in Fig. 3.30. The same number of ears
has been observed experimentally. The evolution of the cup thickness along the
three directions of interest (i.e., RD, TD and 45° to RD) is shown in Fig. 3.31. Note
the pronounced influence of the crystal anisotropy on the thickness distribution,
which correlates to the Lankford coefficients variation in the plane 122ð Þ of the
sheet.

In summary, it has been shown that using Cazacu et al. [26] yield criterion for
cubic single crystals, it is possible to account for the influence of the crystal ori-
entation on the number and location of ears that develop during deep drawing.

As an example, for an Al 5% Cu single crystal sheet, using the same set of
parameters, it was predicted that four ears develop for the 100f g 001h i single crystal
sheet, six ears for the 111f g 1�10h i sheet and eight ears for the 122f g 1�10h i sheet, as
observed in the cup drawing tests on single crystal sheets of Al conducted by
Tucker [106]. Furthermore, it was predicted that the ears are not necessarily equally
spaced or of equal height.

It is important to note the significant influence of the choice of the yield criterion
on the prediction of the cup height profile. Only if the combined anisotropy and
third-invariant effects on the yielding behavior of the single crystal are taken into
account, it is possible to predict the occurrence of more than four ears with different
heights and locations along the cup edge. Specifically, the use of a quadratic yield

(a)

(b)

Fig. 3.29 a Predicted
variation of the normalized
yield stress r(a)/r(0) and
b Lankford coefficients r(a)
with loading direction a in the
122ð Þ plane of the Al 5% Cu
122f g 1�10h i single crystal

sheet according to the Cazacu
et al. [26] yield criterion
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criterion (c = 0 in the Cazacu et al. [26] yield criterion) would lead to predictions of
four ears irrespective of the single crystal orientation. Moreover, those ears would
be located either at 45° from RD or at TD.

3.4 Modeling of Plastic Anisotropy of Polycrystalline
Textured Sheets Based on Cazacu et al. [26] Single
Crystal Criterion

Controlling the mechanical behavior is essential when developing new materials.
Substituting mechanical tests by simulation studies to evaluate the mechanical
performance of alloys is highly desirable as it enables a significant reduction of
resource allocation in the alloy design process. However, in order to get reliable
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Fig. 3.30 a Deformed configuration of a fully drawn cup from a Al 5% Cu single crystal
122f g 1�10h i sheet showing the isocontours of the equivalent plastic strain associated with the

Cazacu et al. [26] single crystal yield criterion. b Predicted cup height as a function of the angle
with the rolling direction 1�10½ �
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Fig. 3.31 Evolution of the
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results, the models need to accurately predict the mechanical behavior. Description
of the plastic deformation of materials which display strong texture components is
particularly challenging. Generally, in industrial applications, macroscopic analytic
yield criteria are used (e.g., [6]). Examples of such yield criteria for textured
polycrystalline materials that are defined for three-dimensional loadings and capture
with accuracy the anisotropy in mechanical response of the metal in bulk are
presented in Chap. 5.

Modeling the plastic anisotropy of polycrystalline textured sheets based on the
single crystal description of plastic deformation is mainly done assuming that the
plastic deformation of the constituent grains is described by Schmid law (see
Eq. 3.4) or regularized forms of the Schmid law such as the generalized Schmid law
(see Eq. 3.7) or a viscoplastic power-law [4, 5].

For a comprehensive presentation of the theory and recent advances, the reader
is referred to the monographs of Hosford [50], Kocks et al. [62], and review papers
of Tomé and Lebensohn [105], Wenk and Van Houtte [108]. Here, we mention
only the main assumptions and very early contributions that laid the foundation of
crystal plasticity theory.

Assuming homogeneous stress in the polycrystal and Schmid law at grain level,
Sachs [89] calculated the uniaxial yield stress of an isotropic fcc polycrystal
(polycrystal of randomly oriented single crystals). Later on, Taylor [102] predicted
the stress–strain relation of an fcc polycrystal on the basis of the following
assumptions:

i. Rigid-plastic behavior of the constituent crystals is governed by Schmid law,
ii. The critical shear stress sc is the same for all twelve slip systems (see Eq. 3.6).
iii. Any given constituent crystal undergoes hardening according to the following

law:

sc ¼ h
X12
s¼1

csj j
 !

;

where cs is the shear due to slip in the system (s). The specific mathematical
form of the function h in the above equation should be determined based on
measurements.

iv. Each constituent crystal undergoes the same strain (homogeneous strain
assumption).

This model was extended to multiaxial loadings by Bishop and Hill [13]. Lin
[69] proposed an extension of the Taylor model such as to account for elastic
deformations. An additive decomposition of the total strain of the crystal into an
elastic and plastic part was considered (for the small-strain formulation of an elastic/
plastic model for fcc single crystals and calculation of the stress–strain response of
a polycrystal on the basis of this model, see Payne [78]). A general kinematics of
the finite-deformation of elastic-plastic single crystals deforming by slip according
to Schmid law which includes lattice rotations was developed by Rice [85].
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Budiansky and Mangasarian [16] used the solution given by Eshelby [35] for the
elasticity problem of an ellipsoidal inclusion embedded in an unbounded matrix
loaded uniformly at infinity to obtain the stress–strain in a spherical crystal
embedded in an elastic matrix. Kroner [63] modified the Eshelby solution to include
the effect of plastic strain in the surrounding matrix and, thus, to account for plastic
grain interactions. The self-consistent approach and model of interaction between
single crystals undergoing slip was proposed by Budiansky and Wu [17]. In this
model, the stress–strain in a single crystal surrounded by its plastically deformed
neighbors are obtained by considering the deformation of a spherical single crystal
embedded in an infinite matrix. The matrix is subject to a stress at infinity which is
equal to the stress of the polycrystal, and the plastic strain in the matrix is con-
sidered uniform and equal to the polycrystal plastic strain. The stress and plastic
strain in the spherical grain are related through a modified form of the Eshelby [35]
solution. For detailed investigations of the capabilities of this model for isotropic
fcc and bcc polycrystalline materials subject to various loading scenarios as well as
discussion and comparison with the Lin [69] model, the reader is referred to
Hutchinson [55, 56].

Hill [47] demonstrated that the self-consistent method developed for polycrystal
elasticity can be extended such as to account for nonlinear behavior by performing
incremental linearization. As an alternative method, Berveiller and Zaoui [11]
proposed a secant method, while Molinari et al. [76] and Lebensohn and Tomé [65]
developed a tangent approach. The latter applied this nonlinear extension of the
self-consistent method to polycrystals with hcp structure. An evaluation of various
nonlinear extensions of the self-consistent approach can be found in Gilormini [39].
The basic assumption of the classical self-consistent approach that each grain in a
polycrystal is surrounded by the homogeneous equivalent medium means that
heterogeneous intragranular deformation cannot be described. To overcome this
limitation, Canova [20] developed an N-site self-consistent model, which considers
that the deformation of a grain cannot be deduced using a homogeneous effective
surrounding only, and at least one neighboring grain must also be taken into
account. This implies that the Eshelby [35] solution cannot be used directly so
complex numerical schemes need to be considered. The complexity and number of
unknowns further increase when passing from only one neighbor (as in [21]) to the
case when each grain is subdivided into smaller homogeneously deformed units (as
originally described in Canova et al. [19]). The theory was applied to dual-phase
materials with sharp contrast between the phases (see also [62]).

While increasingly complex homogenization schemes have been proposed (e.g.,
see [105]), use of such models for solving large-scale boundary value problems is
still limited, mainly due to the prohibitive computational cost (e.g., see [37]).

Recently, Cazacu et al. [25] and Chandola et al. [26] modeled the polycrystalline
mechanical response using the Cazacu et al. [26] criterion for the description of
yielding of the constituent crystals. We begin by presenting the predicted poly-
crystalline yielding response for ideal texture components reported by Cazacu et al.
[25] (see Sect. 3.4.1). For the case of strongly textured sheets containing a spread
about the ideal texture components, the polycrystalline response obtained
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numerically on the basis of the same single crystal criterion is presented in
Sect. 3.4.2. It is shown that for textures obtained with rotationally symmetric
misorientations of scatter width of up to 35° from the ideal orientation, the
numerical predictions have the same trend as those obtained analytically for ideal
textures, but the anisotropy is less pronounced. Furthermore, irrespective of the
number of grains in the sample, Lankford coefficients have finite values for all
loading orientations. Illustrative examples for sheets with textures containing a
combination of few ideal texture components are also presented. The numerical
simulation results are also compared to analytical estimates obtained using the
closed form formulas for the ideal components in conjunction with simple laws of
mixtures. Section 3.4.2.3 presents applications of this polycrystalline model to the
prediction of the directionality of macroscopic tensile properties of steel and Al
sheets.

3.4.1 Analytical Expressions for the Yield Stress
and Lankford Coefficients of Ideal Texture
Components

Generally, in polycrystalline sheets, grains are not randomly oriented, but are
distributed along preferred orientations that result from rotations during processing.
For a given fabrication process, the textures that develop contain either one or a
relatively small number of ideal components (e.g., see [31, 48, 62]). It is therefore
of great interest to estimate the effect of each individual texture component on the
plastic anisotropy at minimum computational cost. Cazacu et al. [25] have shown
that using the single crystal yield criterion given by Eq. (3.27) in conjunction with
associated flow rule, it is possible to obtain analytical expressions for the variation
of the uniaxial flow properties of polycrystalline sheets with ideal textures. Indeed,
in the coordinate system Oxyz associated with the h100i crystal axes, the effective
stress, �r, associated with the Cazacu et al. [26] single crystal yield criterion given
by Eq. (3.27) is:

�r ¼ 3

27� 4cn21
� �1=6 s2xx þ s2yy þ s2zz

� 	
=2þm2 s2xy þ s2xz þ s2yz

� 	h i3
� c n1sxxsyyszz � n3 szzs2xy þ sxxs2yz þ syys2xz

� 	
þ 2n4sxysxzsyz

h i2
8><
>:

9>=
>;

1=6

ð3:41Þ

Assuming associated flow rule, the plastic strain-rate tensor of each grain, dp,
can be easily calculated as:
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dp ¼ _k
@�r
@r

; ð3:42Þ

where _k is the plastic multiplier. Assuming that the polycrystalline sheet of interest
displays a single ideal texture whose Miller indices are {hkl} huvwi (i.e., all the
grains in the sheet material are oriented such that their {hkl} planes are nearly
parallel to the rolling plane and their huvwi directions are parallel to the rolling
direction), let rðaÞ denote the yield stress of the polycrystalline sheet under uniaxial
stress in a direction at angle a with respect to the rolling direction and rðaÞ the
corresponding Lankford coefficient, which is defined as the ratio between the
in-plane transverse strain-rate and the through-thickness strain-rate. The Cartesian
coordinate system associated with the loading frame is denoted e1; e2; e3ð Þ.
Analytical expressions for the evolution of rðaÞ and rðaÞ with the orientation a are
deduced for the following ideal texture components: 100f gh001i (cube),
110f gh001i (Goss), 112f gh11�1i (copper), f�21�1gh011i and 100f gh011i (rotated

cube). It is worth noting that irrespective of the texture component considered, the
expressions of rðaÞ and rðaÞ should depend only on the parameters m2; n1; n3; n4; c
that characterize the plastic behavior of the constituent crystals. Illustration of the
predicted evolution of r að Þ and rðaÞ for each texture component will be done with
the following numerical values of the parameters: m2 ¼ 0:38, n1 ¼ 0:98, n3 ¼ 0:04,
n4 ¼ 0:08, c = 2.3 of the yield criterion.

3.4.1.1 Cube Texture

The first ideal texture component that is discussed is the 100f gh001i (cube). For
this texture, the rolling (RD), transverse (TD), and normal direction (ND) of the
sheet coincide with the h100i axes of each of the constituent crystals (see
Fig. 3.32a). Under uniaxial tension in the (RD, TD) plane, the only nonzero stress
components are the in-plane stresses: rxx ¼ r að Þ cos2 a, ryy ¼ r að Þ sin2 a and
rxy ¼ r að Þ sin a cos a, with r að Þ being the yield stress in a direction a with respect
to the rolling direction in the plane of the sheet. Further substitution in Eq. (3.41)
leads to the following evolution of the yield stress ratio r að Þ=r 0ð Þ:

r að Þ
r 0ð Þ ¼

27� 4cn21
� �1=6

27 1þ 3 m2 � 1ð Þ sin2 a cos2 a� �3� c 2n1 þ 9 n3 � n1ð Þ sin2 a cos2 a� �2n o1=6

ð3:43Þ

Note that the symmetry of the cube-textured sheet is correctly described. Indeed,
Eq. (3.43) is invariant by the transformation a ! ð90� � aÞ, so the yield stress
remains identical under rotations of p=2 about the normal to the sheet. In particular,
r 0ð Þ ¼ r 90ð Þ; i.e., the yield stress in uniaxial tension along TD should be the same
as the yield stress in uniaxial tension along the reference direction, RD. Moreover, it
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can be easily shown that there are at most five extrema for r að Þ. Irrespective of the
values of the parameters m2; n1; n3; n4; c that describe the single crystal behavior,
three of these extrema are located at 0°, 45°, and 90° with respect to RD, and:

r 45�ð Þ
r 0ð Þ ¼ 27� 4cn21

� �1=6
2 27 3m2 þ 1ð Þ3 � 4c 9n3 � n1ð Þ2
h i1=6 : ð3:44Þ

It is worth noting that if c = 0, then 0°, 45°, and 90° are the only extrema.
Furthermore, if m2 ¼ 1 and n1 [ 9n3 [ 0, irrespective of the value of c there
should be additional extrema at a1 ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n1=9ðn1 � n3Þ

p� �
=2 and

a2 ¼ 90� � a1. Under equibiaxial tension, yielding occurs at the same yield stress
as along RD and TD, i.e., rb ¼ r 90�ð Þ ¼ r 0�ð Þ.

(a) (b)

(c) (d)

(e)

Fig. 3.32 System of coordinate axes for ideal texture components: a 100f gh001i (cube),
b 110f gh001i (Goss), c 112f gh11�1i (copper), d f�21�1gh011i (brass), and e 100f gh011i (rotated
cube)
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For a cube-textured sheet, use of the flow rule given by Eq. (3.42) leads to the
following expression for the variation of the strain-rate ratios rðaÞ with the loading
orientation, a,

rðaÞ ¼ �
sin2 a

@�r
@rxx

� sin 2a
@�r
@rxy

þ cos2 a
@�r
@ryy

@�r
@rxx

þ @�r
@ryy

; ð3:45Þ

with �r being the effective stress given by Eq. (3.41). The partial derivatives of �r are
expressed in terms of those of the generalized cubic invariants Jc2 and Jc3 given by
Eqs. (3.19) and (3.22), respectively. It can be easily seen that

@Jc2
@r

¼ m2s;

while the partial derivatives of the generalized third-invariant Jc3 are expressed as:

@Jc3
@rxx

¼ n1 2s2xx � s2yy � s2zz
� 	

=3þ n3 s2xy þ s2xz � 2s2yz
� 	

=3

@Jc3
@ryy

¼ n1 2s2yy � s2xx � s2zz
� 	

=3þ n3 s2xy þ s2yz � 2s2xz
� 	

=3

@Jc3
@rzz

¼ n1 2s2zz � s2xx � s2yy
� 	

=3þ n3 s2xz þ s2yz � 2s2yx
� 	

=3

@Jc3
@rxy

¼ �n3szzsxy þ n4sxzsyz

@Jc3
@ryz

¼ �n3sxxsyz þ n4sxysxz

@Jc3
@rxz

¼ �n3syysxz þ n4sxysyz

ð3:46Þ

First, let us note that for c[ 0, irrespective of the values of the parameters m2

and n1, the variation of the Lankford coefficient rðaÞ with the orientation a is
continuous, and rðaÞ ¼ rð90� � aÞ. Moreover, in the evolution of the Lankford
coefficients with orientation, there are extrema at 0°, 45°, and 90°. In particular, the
Lankford coefficients along RD and TD should be identical and equal to unity,

r 0�ð Þ ¼ r 90�ð Þ ¼ 1; ð3:47Þ

and

r 45�ð Þ ¼ 27ð3m2 þ 1Þ2ð3m2 � 1Þþ 4c n1 � 9n3ð Þ n1 þ 3n3ð Þ
54 3m2 þ 1ð Þ2� 8c n1 � 9n3ð Þ n1 � 3n3ð Þ ð3:48Þ
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As an example, in Fig. 3.33 is shown the plane-stress yield locus (rxy ¼ 0) of the
cube-textured sheet and the predicted evolution of yield stress ratio r að Þ=r 0ð Þ and
r að Þ with the loading direction a corresponding to m2 = 0.38, n1 = 0.98, n3 = 0.04,
n4 = 0.08, c = 2.3.

3.4.1.2 Goss Texture 110f gh001i

For a Goss-textured 110f gh001i polycrystalline sheet (see Fig. 3.32b), uniaxial
tension along the direction x1 at orientation a to RD corresponds to:

r ¼ r að Þ x1 � x1ð Þ;with x1 ¼ sinaffiffiffi
2

p ex � ey
� �þ cos aez ð3:49Þ

Fig. 3.33 a Plane-stress yield surface; b predicted yield stress ratios r að Þ=r 0ð Þ; and c Lankford
coefficients r að Þ versus loading direction a in the plane of the cube-textured sheet. Single crystal
material parameters: m2 = 0.38, n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3
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Thus, in the crystallographic axes (x, y, z), the components of the applied stress
tensor are:

rxx ¼ ryy ¼ �rxy ¼ ra sin2 a
2

; rzz ¼ ra cos2 a; rxz ¼ �ryz ¼ ra sin 2a

2
ffiffiffi
2

p : ð3:50Þ

Next, substituting Eq. (3.50) into Eq. (3.41), we obtain that the yield stress ratio
r að Þ=r 0ð Þ variation with the loading direction a in the plane (RD, TD) of the sheet
is:

r að Þ
r 0ð Þ ¼

2 27� 4cn21
� �1=6

12þ 9 m2 � 1ð Þ 1þ 3 cos2 að Þ sin2 a� �3
�c 16n1 þ 54 n1 � 3n3 þ 2n4ð Þ sin4 a cos2 aþ 18 n3 � n1ð Þ sin2 a 1þ 3 cos2 að Þ� �2

( )1=6

ð3:51Þ

It can be easily shown that extrema for r að Þ are along RD (a = 0°) and TD
(a = 90°). If 4n1 n1 � n3ð Þcþ 27ðm2 � 1Þ\0 and 4 n1 � 9n3ð Þ n1 � 7n3 þ 6n4ð Þcþ
27ðm2 � 1Þð3m2 þ 1Þ2 [ 0, the minimum is along RD and the maximum along TD,
and vice versa. For this Goss-textured sheet, the variation of the Lankford coeffi-
cients with the loading orientation a is given by:

rðaÞ ¼
3 cos2 a� 2ð Þ @�r

@rxx
þ @�r

@ryy

� �
� 2 cos2 a

@�r
@rxy

�
ffiffiffi
2

p
sinð2aÞ @�r

@rxz
@�r
@rxx

þ @�r
@ryy

þ 2
@�r
@rxy

ð3:52Þ

with �r being the effective stress of Eq. (3.41) and the derivatives being calculated
using Eq. (3.46) with s being the deviator of the applied stress, r, which in the Oxyz
system has the nonzero components given by Eq. (3.50). Note that since for this
texture, RD is along the 001½ � direction of the constituent grains, it follows that
irrespective of the values of the material parameters m2; n1; n3; n4; c, we have:
r 0�ð Þ ¼ 1. Making use of Eq. (3.52), it follows that the expressions of the Lankford
coefficients along 45° and TD (90°) directions are given by:

rð45�Þ ¼ 27 15m2 þ 1ð Þ2 9m2 � 1ð Þþ 4c n1 � 27n3 � 18n4ð Þ
54 15m2 þ 1ð Þ2 3m2 þ 1ð Þ � 8c n1 þ 9n3 þ 18n4ð Þ n1 þ 45n3 þ 54n4ð Þ ;

rð90�Þ ¼ 54 3m2 þ 1ð Þ2�8c n1 � 9n3ð Þ n1 � 3n3ð Þ
27 3m2 � 1ð Þ 3m2 þ 1ð Þ2 þ 4c n1 � 9n3ð Þ n1 þ 3n3ð Þ

ð3:53Þ
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Note that for c = 0, rð90�Þ[ 1 if and only if 1=3\m2\1. For c 6¼ 0, a very
high value of the Lankford coefficient in the transverse direction can be obtained.
As an example, for a material with m2 ¼ 0:38, n1 ¼ 0:98, n3 ¼ 0:04, n4 ¼ 0:08,
c = 2.3, the predicted value of r(90°) = 10.69.

To enable analysis of the effect of the crystal orientation on the uniaxial plastic
properties of this ideal Goss-textured sheet, in Fig. 3.34 are shown the theoretical
plane-stress yield surface (RD-TD plane; shear stress zero), the predicted yield
stress ratios, and Lankford coefficients variation with the orientation a.

3.4.1.3 Brass Texture f�21�1gh011i

For an ideally textured f�21�1gh011i sheet (see Fig. 3.32d), uniaxial tension along an
axis at orientation a to the rolling direction corresponds to:

Fig. 3.34 a Plane-stress yield surface; b predicted yield stress ratios r að Þ=r 0ð Þ; and c Lankford
coefficients r að Þ versus loading direction a in the plane of a Goss-textured sheet. Single crystal
material parameters: m2 = 0.38, n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3
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r ¼ r að Þ y1 � y1ð Þ; with y1 ¼
sinaffiffiffi
3

p ex þ cosaffiffiffi
2

p þ sinaffiffiffi
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p
� �
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ez

ð3:54Þ

The applied stress tensor given by Eq. (3.54) is expressed in the crystallographic
frame (x, y, z), as:

rxx ¼ ra sin2 a
3
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ð3:55Þ

The variation of the yield stress ratio r að Þ=r 0ð Þ with the loading direction a in
the plane of the sheet is deduced by substituting the respective stress components
given by Eq. (3.55) in Eq. (3.41). When this is done the following relation is
obtained:

r að Þ
r 0ð Þ ¼

9m2 þ 3ð Þ3�256cn21
h i1=6

12þ 3 m2 � 1ð Þ 3 cos4 aþ 4 sin4 a
� �� �3�

c 16n1 þ 2 n1 � 3n3 þ 2n4ð Þ 5 cos2 a� 2ð Þ sin2 aþ 6 n3 � n1ð Þ 3 cos4 aþ 4 sin4 a
� �� �2

( )1=6

ð3:56Þ

Irrespective of the values of the parameters m2; n1; n3; n4; c, there is an extremum
in the yield stress variation with orientation at a = 0° (RD). The predicted ratio
between the yield stresses along TD and RD is:

r 90�ð Þ
r 0�ð Þ ¼

1þ 3m2

12

� �3

� c
9n3 � n1

108

� �2
" #1=6

27m3
2 � 4cn24

� �1=6
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On the other hand,

r 45�ð Þ
r 0�ð Þ ¼

1þ 3m2
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� c
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� �2
" #1=6 :

Moreover, for the f�21�1gh011i textured sheet, the variation of the Lankford
coefficients with orientation is given by:
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ð3:57Þ

where �r is the effective stress given by Eq. (3.41). The expression of rðaÞ depends
only on the loading orientation a and the single crystal parameters m2; n1; n3; n4; c,
and it is found by substituting in the expression of the derivatives of �r [see Eq. (3.46)]
the stresses given by Eq. (3.55). In particular, the Lankford coefficient along RD is:

r 0�ð Þ ¼ 54m2 3m2 þ 1
� �2 þ 16cn3 n1 � 9n3ð Þ

27 m2 þ 1
� �

3m2 þ 1
� �2� 4c n1 � 9n3ð Þ n1 � 5n3ð Þ

ð3:58Þ

and along TD is:

r 90�ð Þ ¼ 243m3
2 � 4c 3n4 � 2n3ð Þ 2n3 þ 3n4ð Þ

243m3
2 � 4c 3n4 þ 6n3ð Þ 2n3 þ 3n4ð Þ : ð3:59Þ

Note that if the parameter c = 0, irrespective of the value of the parameter m2,
r 90�ð Þ ¼ 1. It means that with a quadratic yield criterion for the constituent crystals,
the Lankford coefficient corresponding to TD for a f�21�1gh011i textured poly-
crystalline sheet should be necessarily equal to unity. If c 6¼ 0 and n3 6¼ 0, the
predicted Lankford coefficient along TD is not unity, as should be the case since
the mechanical response in the 100½ � and �21�1½ � crystallographic directions is not the
same. The plane-stress yield surface (RD-TD plane projection) and the predicted
yield stress ratios and Lankford coefficients variation with the orientation a
according to Eqs. (3.56) and (3.57), respectively, and corresponding to m2 = 0.38,
n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3 are shown in Fig. 3.35.
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3.4.1.4 Copper Texture 112f gh11�1i

For a copper 112f gh11�1i textured sheet (see Fig. 3.32c) under uniaxial tension
along a direction at an orientation a to RD in the plane of the sheet, the stress tensor
in the loading frame is:

r ¼ r að Þ z1 � z1ð Þ;

with z1 ¼ cosaffiffiffi
3

p � sinaffiffiffi
2

p
� �

ex þ cosaffiffiffi
3

p þ sinaffiffiffi
2

p
� �

ey � cosaffiffiffi
3

p ez
ð3:60Þ

To obtain the variation of the yield stress ratio r að Þ=r 0ð Þ with the loading
direction a in the plane of the sheet, first, the stress tensor given by Eq. (3.60) is
referred to the crystallographic frame, and then the respective components are
substituted in Eq. (3.41). The following relation is obtained:

Fig. 3.35 a Plane-stress yield surface; b predicted yield stress ratios r að Þ=r 0ð Þ; and c Lankford
coefficients r að Þ versus loading direction a in the plane of the f�21�1gh011i textured sheet. Single
crystal material parameters: m2 = 0.38, n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3

3.4 Modeling of Plastic Anisotropy of Polycrystalline … 117



r að Þ
r 0ð Þ ¼

2 27� 4cn21
� �1=6

12þ 3 m2 � 1ð Þ 4 cos4 aþ 3 sin4 a
� �� �3

�c 16n1 þ 2 n1 � 3n3 þ 2n4ð Þ sin2 a 5 sin2 a� 2
� �þ 6 n3 � n1ð Þ 4 cos4 aþ 3 sin4 a

� �� �2
( )1=6

ð3:61Þ

As concerns the variation of the Lankford coefficients rðaÞ with orientation, the
relation is given by:
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In the above equation, the derivatives of �r are calculated using the expressions
given by Eq. (3.46) and substituting for the appropriate stresses. In particular, the
Lankford coefficients along RD, 45°, and TD are:

r 0�ð Þ ¼ 243m3
2 � 4c 4n3 þ 3n4ð Þ 2n3 þ 3n4ð Þ

243m3
2 � 12cn4 3n4 þ 2n3ð Þ

r 45�ð Þ ¼ 243 m2 þ 7ð Þ 7m2 þ 9ð Þ2� 4c 27n1 þ 47n3 þ 18n4ð Þ 69n1 þ 121n3 þ 6n4ð Þ
486 3m2 þ 1ð Þ 7m2 þ 9ð Þ2� 8c 69n1 þ 121n3 þ 6n4ð Þ 21n1 þ 37n3 � 6n4ð Þ

r 90�ð Þ ¼ 54m2 3m2 þ 1ð Þ2
27 3m2 þ 1ð Þ2 m2 þ 1ð Þ � 4c n1 � 9n3ð Þ2

ð3:63Þ

Theplane-stress yield surface for the copper-textured sheet (projection in theRD-TD
plane; shear stress = 0) and the predicted yield stress ratios and Lankford coefficients
variation with the orientation a according to Eqs. (3.61) and (3.63), and corresponding
to m2 ¼ 0:38, n1 ¼ 0:98, n3 ¼ 0:04, n4 ¼ 0:08, c = 2.3 are shown in Fig. 3.36.

3.4.1.5 Rotated Cube Texture 100f gh011i

The ideal texture component 100f gh011i is the cube texture rotated by 45° around
the normal to the sheet plane (see Fig. 3.32e). Therefore, the variation of the yield
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stress and the Lankford coefficient with the orientation h in the sheet plane (h = 0°
being the yield stress in the RD direction) is obtained by setting a ¼ h� 45� in
Eqs. (3.43) and (3.45), respectively. It follows that for the 100f gh011i textured
sheet,

r hð Þ
r 45ð Þ ¼

2 27� 4cn21
� �1=6

27 4þ 3 m2 � 1ð Þ cos2 2h½ �3� 4c 8n1 þ 9 n3 � n1ð Þ cos2 2h½ �2
n o1=6

ð3:64Þ

Fig. 3.36 a Plane-stress yield surface; b predicted yield stress ratios r að Þ=r 0ð Þ; and c Lankford
coefficients r að Þ versus loading direction a in the plane of the copper-textured sheet. Single crystal
coefficients m2 = 0.38, n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3
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with

r 0�ð Þ ¼ rcube 45�ð Þ ¼ 27� 4cn21
� �1=6

Y½100�

2 27 3m2 þ 1ð Þ3� 4c 9n3 � n1ð Þ2
h i1=6

r 0�ð Þ ¼ rcube 45�ð Þ ¼ 27ð3m2 þ 1Þ2ð3m2 � 1Þþ 4c n1 � 9n3ð Þ n1 þ 3n3ð Þ
54 3m2 þ 1ð Þ2� 8c n1 � 9n3ð Þ n1 � 3n3ð Þ

r 45�ð Þ ¼ 1:

Obviously, the same mechanical response is predicted along the RD and TD
orientations, respectively. The plane-stress yield surface for the rotated
cube-textured sheet and the predicted yield stress ratios and Lankford coefficients
variation with the orientation a corresponding to m2 = 0.38, n1 = 0.98, n3 = 0.04,
n4 = 0.08, c = 2.3 are shown in Fig. 3.37.

Fig. 3.37 a Plane-stress yield surface; b predicted yield stress ratios r að Þ=r 0ð Þ; and c Lankford
coefficients r að Þ versus loading direction a in the plane of the rotated cube-textured sheet.
Single crystal coefficients m2 = 0.38, n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3
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It is worth noting that the predicted trends in yield stresses and Lankford
coefficient evolution with loading orientation for all the ideal textures shown are in
good qualitative agreement with those expected for the given texture components.
Moreover, finite values for the yield stresses and Lankford coefficients are predicted
irrespective of the in-plane orientation considered. Most importantly, an estimate of
the trends to be expected in terms of anisotropy of the plastic properties of the
polycrystalline sheet can be obtained without using any numerical code.

Although the textures most commonly observed experimentally contain a spread
of orientations around the ideal texture components, the estimates obtained with the
analytical formulas should be useful for assessing very rapidly how the initial
texture will influence the anisotropy in the macroscopic plastic flow properties.
Another added advantage is that once the single crystal behavior is known, no
additional calibration or macroscopic mechanical tests are needed in order to obtain
an estimate of the r-values and yield stress anisotropy. It is also to be noted that
these analytical formulas provide insights into the height profiles to be expected for
full drawn cups of single crystal sheets (see also the F.E. results and discussion
presented in Sect. 3.3.4).

3.4.2 Prediction of Plastic Anisotropy of Textured
Polycrystalline Sheets with Several Texture
Components

As already mentioned, experimentally, a spread is generally observed around the
various ideal texture components. Furthermore, several texture components may be
present. Thus, in order to describe the polycrystalline response, Chandola et al. [27]
used the single crystal model of Cazacu et al. [26] and the assumption of uniform
stress in each grain. Thus, the effective stress �rpoly of the polycrystalline material as
a function of the applied stress tensor r, expressed in the loading frame, is:

�rpoly rð Þ ¼ 1
N

XN
i¼1

�rigrain RT
i rRi

� �
; ð3:65Þ

with N being the number of grains considered in the polycrystalline material, �rigrain
is the effective stress associated with the single crystal criterion computed for any
given grain i using Eq. (3.41), and Ri is the transformation matrix for passage from
the crystal axes of the grain i to the loading frame axes. The plastic strain-rate
deviator dp of the polycrystalline material, expressed in the loading frame, is:

dp ¼
_k
N

Xn
i¼1

Ri
@�rigrain RT

i rRi
� �

@ RT
i rRi

� � RT
i ð3:66Þ
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The predictive capabilities of the polycrystal model given by Eqs. (3.65) and
(3.66) were used to predict the anisotropy of the plastic flow properties in uniaxial
tension of textured steel sheets (see [27]).

In the following, this polycrystalline model will be used to investigate the
influence of the effect of the spread about ideal texture components.

3.4.2.1 Effect of the Spread About Ideal Textures on the Uniaxial
Plastic Properties

The polycrystalline model given by Eqs. (3.65) and (3.66) is used to predict the
plastic properties of strongly textured sheets containing a spread about the ideal
texture components. These predictions are also compared to the model predictions
for ideal texture components obtained with the analytical formulas given in
Sect. 3.4.1. For this purpose, following Lequeu et al. [67], a rotationally symmetric
Gaussian distribution of misorientations x0 about a given ideal orientation is
considered. The rotation angle x for the spread is specified as:

pðxÞ ¼ pð0Þ exp � 1
2
x2=x2

0

� �
; ð3:67Þ

Cube-textured sheets

For polycrystalline sheets with textures of scatter widths of x0 = 25° and x0 = 35°
from the ideal 100f gh001i cube texture (see Fig. 3.38 for the 111ð Þ pole figures of
the textures considered), simulation results obtained using the polycrystal model
Eqs. (3.65) and (3.66) for samples of 400 crystals are presented in Fig. 3.39. On
this figure are also superposed the predictions for the ideal cube texture (x0 ¼ 0�)

Fig. 3.38 (111) pole figures for 100f gh001i texture corresponding to a series of Gaussian
distributions of increasing scatter width: a x0 = 25° and b x0 = 35°
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obtained with the analytical formulas [Eqs. (3.43)–(3.45)] for the same values of
the parameters describing the constituent grain behavior, m2 = 0.38, n1 = 0.98,
n3 = 0.04, n4 = 0.08, c = 2.3. Note that irrespective of the scatter width x0 about
the ideal texture both the predicted macroscopic yield stresses and r-values vary
smoothly with the loading orientation (see Fig. 3.39). Additionally, irrespective of
the scatter width, for the given values of the parameters characterizing the grains
behavior, minima in yield stresses are along the 0° and 90° orientations and there is
only one minimum which corresponds to uniaxial loading at 45° in-plane direction.
Also, note that for the rotationally symmetric Gaussian distribution of misorienta-
tions with x0 = 25° and x0 = 35°, the directional dependence of the macroscopic
plastic properties in the plane of the sheet is similar to that predicted analytically for
an ideal texture (x0 ¼ 0�), but the anisotropy is less pronounced. As already
mentioned, for an ideal (x0 ¼ 0�) 100f gh001i texture, the yield stress variation
with the loading orientation according to the Taylor-Bishop-Hill model displays
two cusps, while the Lankford coefficients are not defined for the 0° and 90° tensile
loadings (e.g., see [67]); i.e., r 0�ð Þ and r 90�ð Þ have infinite values. Additionally,
with TBH model, only when the texture is characterized by a larger spread, the
predicted variation in both the macroscopic yield stresses and Lankford coefficients
is smooth.

Goss texture

The effect of the spread x0 with respect to the ideal Goss texture on the directional
dependence of the same macroscopic properties (yield stresses, plastic strain ratios)
simulated with the polycrystalline model is shown in Fig. 3.41. Note that for the
ideal Goss texture (x0 ¼ 0�) the results were obtained using the analytical formulas
[see Eqs. (3.51) and (3.52)]. For the texture obtained from rotationally symmetric
Gaussian distribution of misorientation with x0 up to 35° (see Fig. 3.40 for the

Fig. 3.39 Numerical simulations, using Chandola et al. [27] model, of the anisotropy in a yield
stress ratio r að Þ and b strain-ratio r að Þ in the plane of the 100f gh001i textured polycrystalline
sheet. The textures for different scatter width x0 are shown in Fig. 3.38. The results for ideal
texture were obtained with the analytical formulas [Eqs. (3.43)–(3.45)], respectively
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respective (111) pole figures), the anisotropy in r að Þ=r 0ð Þ versus a and r að Þ versus
a variations is much less pronounced than the respective curves for the ideal Goss
texture. For example, for x0 = 35°, the value of r 90�ð Þ is about five times smaller
than that for (x0 ¼ 0). Nevertheless, the nature of the r að Þ variation is similar
irrespective of the spread, with a point of inflection at around 55° from the reference
direction (see Fig. 3.41).

It is also worth noting that the use of this polycrystalline model leads to finite
values for the Lankford coefficients irrespective of the in-plane loading direction.
This is not the case if the TBH model is applied. It is well documented (e.g., see [8])
that in order to obtain a smooth variation in r-values with the TBH model, in the
polycrystalline sample a large percentage of the grains should be taken with random
orientations. For example, by considering as much as 50% of the total volume

Fig. 3.40 (111) pole figures for 110f gh001i texture considered in the simulations corresponding
to a series of Gaussian distributions of increasing scatter width: a x0 = 25°, b x0 = 35°,
c x0 = 45°

Fig. 3.41 Numerical simulation results using the polycrystal model [Eqs. (3.65) and (3.66)]:
a yield stress ratio r að Þ and b strain-ratio r að Þ variation with the orientation a in the plane of the
110f gh001i textured polycrystalline sheets of various scatter width. The results for ideal texture

were obtained with the analytical formulas [Eqs. (3.51) and (3.52)], respectively
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fraction of grains having isotropic orientations and 50% having almost ideal texture
(i.e., x0 very small *5°), Barlat and Richmond [8] obtained a smooth variation of
the r-values with loading direction. However, the predicted r að Þ versus a curve has
a vertical asymptote at a 	 70°. As concerns the predictions of the Cazacu et al.
[26] in terms of yield stress anisotropy, the absolute maximum in yield stresses is at
a loading orientation of about 55�. Note that this holds true for both the ideal Goss
texture and for rotationally symmetric texture with scatter widths of x0 = 25° and
x0 = 35° about the ideal Goss orientation.

�21�1f gh011i Texture
For strongly �21�1f gh011i (brass) textured polycrystalline sheets for the given set of
numerical values of the single crystal parameters, the predicted variation obtained
with the polycrystalline model is shown in Fig. 3.43. For textures with spreads

Fig. 3.42 (111) pole figures for �21�1f gh011i texture corresponding to a series of Gaussian
distributions of increasing scatter width: a x0 = 25°, b x0 = 35° and c x0 = 45°

Fig. 3.43 Numerical simulations using the polycrystalline model [Eqs. (3.65) and (3.66)]:
a anisotropy in yield stress ratio r að Þ and b anisotropy of strain-ratios r að Þ in the plane of the
�21�1f gh011i textured polycrystalline sheets of different scatter width x0 in comparison with the

predictions for ideal texture x0 = 0 based on the analytical formulas [Eqs. (3.55) and (3.57)]
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x0 = 25° and x0 = 35° (see Fig. 3.42 for the (111) pole figures), the trends in the
directional dependence of the macroscopic plastic properties are similar to the ideal
orientation case obtained with the analytical formulas [see Eqs. (3.55) and (3.57),
respectively]. Irrespective of the spread, the maximum value for the Lankford
coefficients is obtained in uniaxial tension at an orientation a
 50� from the ref-
erence direction while the maximum uniaxial yield stress is at a ¼ 90�.

Copper texture

In Fig. 3.45 are shown the predicted macroscopic mechanical properties in uniaxial
tension for the material with ideal texture calculated using the analytical formulas
[Eqs. (3.61) and (3.62)] and the polycrystalline simulation results obtained with the
polycrystalline model [Eqs. (3.65) and (3.66)] for the textures corresponding to
Gaussian distributions of scatter width of x0 = 25° and 35° with respect to the ideal
112f gh11�1i copper texture (see Fig. 3.44 for the (111) pole figures of these tex-

tures). First, let us note that for x0 = 25° and x0 = 35°, a very moderate anisotropy
in yield stresses is predicted, the variation of the yield stresses with the loading
orientation being almost the same, with a minimum at a 
 45° loading orientation,
and a maximum at a = 0°. As concerns the predicted anisotropy in Lankford
coefficients (see Fig. 3.45b) irrespective of x0 the trends are the same, the aniso-
tropy becoming less pronounced as the width spread x0 increases.

In summary, irrespective of the texture component considered, the analytical
formulas provide a very good estimate of the trend in anisotropy in macroscopic
plastic properties. Next, using the Cazacu et al. [26] yield criterion for the
description of the plastic behavior of the constituent grains, it is investigated the
predicted mechanical response of strongly textured polycrystalline materials con-
taining various combinations of ideal texture components.

Fig. 3.44 (111) pole figures for 112f gh11�1i texture corresponding to a series of Gaussian
distributions of increasing scatter width: a x0 = 25°, b x0 = 35° and c x0 = 45°
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3.4.2.2 Predictions of Anisotropy of Yield Stresses and Lankford
Coefficients for Textured Sheets

Let us first consider a polycrystalline sheet with components spread around the
100f gh001i (80% volume fraction) and 110f gh001i (20% volume fraction) ideal

orientation, respectively. The texture of the polycrystalline sheet is shown in
Fig. 3.46. The results of numerical simulations using the polycrystalline model
[Eqs. (3.65) and (3.66)] are compared with the macroscopic yield stress and plastic

Fig. 3.45 Numerical simulations, using the polycrystal model [Eqs. (3.65) and (3.66)] of the
anisotropy in: a yield stress ratio r að Þ; b strain-ratio r að Þ in the plane of the 112f gh11�1i textured
polycrystalline sheet. The textures for different scatter width x0 are shown in Fig. 3.44. The results
for ideal texture were obtained with the analytical formulas Eqs. (3.61) and (3.62), respectively

Fig. 3.46 Pole figures for a sheet with mixture of 100f gh001i component (80%) and 110f gh001i
component (20%). a (111). b (100)
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strain ratios obtained by using the analytical formulas for 100f gh001i [Eqs. (3.43)–
(3.45)] and 110f gh001i ideal textures [Eqs. (3.51) and (3.52)] in conjunction with
simple laws of mixtures (Fig. 3.47).

Note that the analytical estimates are very close to the numerical polycrystalline
simulations results obtained using the same criterion (i.e., [26]) for the description
of the plastic behavior of the constituent grains. The shapes of both the r að Þ=r 0ð Þ
and r að Þ curves are similar to those corresponding to the cube texture (compare
Fig. 3.47 with Fig. 3.33). However, the presence of the Goss component (20%
volume fraction) results in r 90�ð Þ larger than r(0°), and the minimum r-value is
slightly larger than in the case of the ideal cube texture. Specifically, for the given
values of the coefficients characterizing the behavior of the constituents grains,
r 90�ð Þ ¼ 1:27[ r 0�ð Þ ¼ 1 and the minimum r-value corresponds to a = 39°. Note
also that r 39�ð Þ ¼ 0:21, whereas the minimum r-value for an ideal cube texture is
r 45�ð Þ ¼ 0:1 (see Fig. 3.33b); the minimum value is almost double that of an ideal
cube texture.

For a polycrystalline sheet with texture containing copper and Goss components
in the same proportion (see pole figures in Fig. 3.48), the results of the polycrys-
talline numerical simulations and analytical estimates obtained using the formulas
for each ideal texture component in conjunction with laws of mixtures are shown in
Fig. 3.49. Note that the analytical predictions are very close to the numerical
predictions.

It is interesting to note that the predicted r að Þ=r 0ð Þ curve is almost flat indi-
cating little variation in yield stresses for loading orientation a between 0° and 20°,
the anisotropy becoming slightly more pronounced for loading directions between
20° and 70°, with a peak in yield stress around 50°, and very little difference
between yield stresses for loadings between 70° and 90°. While the shape of the

Fig. 3.47 Numerical simulations of anisotropy in a yield stress ratio and b strain-ratio in the plane
of the polycrystalline sheet predicted by the polycrystal model [Eqs. (3.65) and (3.66)] for a
strongly textured polycrystal with components spread around the 100f gh001i (80%) and
110f gh001i (20%) orientation. The texture is shown in Fig. 3.46
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r að Þ=r 0ð Þ curve is concave down thus closer to that of the ideal Goss component
(see also Fig. 3.34a), the anisotropy is much less pronounced and similar to that of
the ideal copper component (compare with Fig. 3.36). It is interesting to note that
r 0�ð Þ ¼ 1 as it is the case for an ideal Goss component, and in the r að Þ versus a
curve, there is an inflexion point between 40° and 50°, also observed in the r-value
variation for the ideal Goss component (see Fig. 3.34b). However, the r-value
predicted for tensile loading at a = 90° is much lower. The presence of the copper

Fig. 3.48 Pole figures for a sheet with mixture of 112f gh11�1i component (50%) and 110f gh001i
component (50%). a (111). b (100)

Fig. 3.49 Numerical simulations of anisotropy in a yield stress ratio and b strain-ratio in the plane
of the polycrystalline sheet predicted by the polycrystal model [Eqs. (3.65) and (3.66)] for a
strongly textured polycrystal with components spread around the f112gh11�1i (50%) and
f110gh001i (50%) orientation. The texture is shown in Fig. 3.48
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component in the texture lowers the r 90�ð Þ value from about r 90�ð Þ 
 8, in the case
of an ideal Goss component (see Fig. 3.34b) to r 90�ð Þ ¼ 1:57.

Next, we consider a polycrystalline sheet with texture shown in Fig. 3.50. While
the dominant texture component (70% volume fraction) has a spread about
110f gh001i Goss texture, this texture also contains a component with a spread

about f�21�1gh011i (30% volume fraction). Figure 3.51 presents the predicted
evolution of the macroscopic yield stresses and plastic strain ratios for this material

Fig. 3.50 Pole figures for a sheet with mixture of �21�1f gh011i component (30%) and 110f gh001i
component (70%). a (111). b (100)

Fig. 3.51 Numerical simulations of anisotropy in a yield stress ratio and b strain-ratio in the plane
of the polycrystalline sheet predicted by the polycrystal model [Eqs. (3.65) and (3.66)] for a
strongly textured polycrystal with components spread around the �21�1f gh011i (30%) and
110f gh001i (70%) orientation. The texture is shown in Fig. 3.50
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obtained on the basis of the same yield criterion for the constituent grains, i.e., the
analytical estimate (based on the analytical formulas for each ideal component
present in the texture) and the results of polycrystalline simulations.

The analytical r að Þ=r 0ð Þ versus a variation is very close to the numerical one.
The analytical r að Þ versus a and the polycrystalline simulation results are similar
with r 0�ð Þ ¼ 1, very little variation in r-values for loading orientations a between
0° and 40°, an inflection point at a
 45� and a sharp upward trend as in the case of
the ideal Goss component. Let us also recall that the point of inflection is at a = 39°
for an ideal Goss texture.

It is to be noted that although analytically a higher r-value is predicted in the
transverse direction (a = 90°) than the numerically predicted value, the analytical
estimate captures the influence of the f�21�1gh011i component. Namely, it predicts
that the f�21�1gh011i component contributes to a significant decrease in anisotropy
of the material. For example, the predicted r-value in the transverse direction is
significantly lower than that predicted for the ideal Goss component (compare
Fig. 3.51b with Fig. 3.34b).

3.4.2.3 Applications to Polycrystalline Al and Steel Sheets

Chandola et al. [27] reported applications to the description of plastic anisotropy of
steel sheets of the polycrystalline model given by Eqs. (3.65) and (3.66), each
crystal being modeled using the Cazacu et al. [26] yield criterion. Therefore, the
only parameters involved in the polycrystalline model are those characterizing the
plastic behavior of the constituent crystals, i.e., m2, n1, n3, n4 and c (see Eq. 3.41).

The first example presented concerns a cold rolled-annealed low-carbon steel
sheet. The model parameters were identified using as input the room-temperature
yield stress data on single crystal Fe–3.25% Si for different crystallographic
directions in the plane of normal h100i, reported by Hull [53] in conjunction with
Eq. (3.41). These numerical values are: m2 = 0.41, n1 = 1.13, n3 = 0.03, n4 = 0.11,
c = 1.85. The texture and plastic strain-rate ratios obtained from tension tests on
samples taken in the longitudinal (RD), diagonal (45°), and transverse direction
(TD) of the sheet were reported in Elias et al. [34]. The texture measurements
indicate that the sheet displays two dominant texture components: 111f gh11�2i and
100f gh011i. A set of 400 grains was considered in the simulations. The distribution

of orientations was weighted according to the intensity of the poles observed
experimentally. Specifically, the contributions of pole areas of random intensity
were neglected, and it was assumed that half of the crystals have 111f gh11�2i
orientation and half have 100f gh011i orientation. Comparison between the model
predictions and the r-values determined from the respective tension tests is shown
in Fig. 3.52. The simulated results show a smooth variation with the in-plane
orientation, with a peak at 45° to the rolling direction.

The polycrystalline model was also applied to the description of the plastic
anisotropy of the in-plane tensile properties of a steel sheet for which the
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experimental r-values and yield stresses in several in-plane orientations were
obtained by Ito et al. [57]. As concerns the texture, no pole figure data were available,
only the information given by Lequeu et al. [67] which states that the 100f gh011i
Goss component is dominant (>70% volume fraction) and that the �21�1f gh011i
component is also present (volume fraction > 20%). Thus, for this material, in the
simulation it was considered the following distribution of grain orientations: 70%
Goss and 30% brass (f�21�1gh011i). The predicted yield stress anisotropy, shown in
Fig. 3.53a, indicates a gradual rise in yield stresses as the test direction a deviates
from the rolling direction, with a peak between 50° and 60°, followed by a gradual
decrease, with a local minimum corresponding to the transverse direction. Note the
excellent agreement between experimental (symbols) and predicted yield stresses
(solid line). As concerns the simulated anisotropy in r-values, it is predicted that the
Lankford coefficient in the rolling direction r 0�ð Þ is slightly less than unity (recall
r 0�ð Þ ¼ 1 for ideal Goss texture), and that there is very little difference in r-values for
loading orientations a between 0° and 35°. The predicted r að Þ versus a curve has an
inflection point at a
 35�, followed by a sharp increase (see Fig. 3.53b). Note the
close agreement between the measured and predicted experimental results. In
Fig. 3.34 are plotted the directional dependence of the plastic properties for an ideal
Goss texture obtained with the analytical expressions and the same set of values of
the single crystal parametersm2, n1, n3, n4, and c. Note that for the material with 70%
volume fraction of the grains having Goss texture, the general trends in macroscopic
plastic anisotropy are similar to those of an ideally textured Goss material, but the
degree of anisotropy in r-values is significantly reduced (compare Fig. 3.53 with
Fig. 3.34 for an ideal Goss texture).

Next, the same polycrystalline model is applied to Al sheets. The first example
concerns a 10 pct. rolled-annealed Al sheet (data after Svensson [97]) for which it
was reported that 60% of the total volume fraction of grains have random orien-
tations, while 40% have 100f gh001i orientation. Simulation results of the variation

Fig. 3.52 Comparison
between experimental and
predicted variation of
Lankford coefficients r að Þ
with the angle a between the
tensile loading axis and the
rolling direction using the
polycrystalline model
[Eqs. (3.65) and (3.66)]
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in yield stresses with the orientation of the tensile loading direction are shown in
Fig. 3.54. The numerical values for the single crystal coefficients used are:
m2 = 0.38, n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3. The polycrystalline model
predicts a smooth variation with the in-plane orientation, with a peak at 45° to the
rolling direction (characteristic of the ideal cube texture, compared with Fig. 3.33a).
However, the presence of the random texture component contributes to a significant
decrease in anisotropy. The simulations results agree well with the available data.

Another example concerns a AA 2024-T3 sheet (data after Barlat et al. [7]).
Figure 3.55 shows the (111) pole figure with 1000 discretized crystallite orienta-
tions while in Fig. 3.56 is presented a comparison between the experimental and
predicted variation of the Lankford coefficients with the tensile loading orientation
obtained using the polycrystalline model given by Eqs. (3.65) and (3.66) with the

Fig. 3.53 a Simulated in-plane anisotropy of the yield stress ratio; b Lankford coefficients with
the orientation a between the loading axis and the rolling direction of a steel sheet in comparison
with mechanical test data of Ito et al. [57]

Fig. 3.54 Comparison
between the experimental
yield stress ratio in the plane
of a annealed polycrystalline
Al sheet and the numerical
simulations using the
polycrystal model. Data after
Svensson [98]
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same values for the m2; n1; n3; n4; c as in the previous example (i.e., m2 = 0.38,
n1 = 0.98, n3 = 0.04, n4 = 0.08, c = 2.3). Note that the predictions using the poly-
crystalline model are in good quantitative agreement with the experimental r-values.

In summary, it can be concluded that using the single crystal model of Cazacu
et al. [26] for the description of the individual constituent grains, the effect of
texture on r-values and consequently formability is reasonably described. The
added advantage is that for ideal texture components, analytical formulas for the
variation of the macroscopic yield stress and Lankford coefficients with the in-plane
loading direction exist. For the case of strongly textured materials with a distri-
bution of grain orientations with various spreads about the ideal texture compo-
nents, irrespective of the number of grains in the sample, Lankford coefficients have
finite values for all loading orientations even for ideal texture components; i.e.,
there is no need to add random texture components to gauge the plastic properties
of the polycrystal. Moreover, for textured materials with rotationally symmetric
grain orientations spread around one ideal texture component x0 � 35�, the

RD

TD

Fig. 3.55 (111) pole figure
of a cold rolled AA 2024-T3
(after data reported in Barlat
et al. [7])

Fig. 3.56 Comparison of
experimental and predicted
variation of r-values with a
according to a polycrystalline
model [Eqs. (3.65) and
(3.66)], b experiments [7]

134 3 Plastic Deformation of Single Crystals



simulation results obtained with samples of 400 grains show that the anisotropy in
plastic properties is much less pronounced but still similar in nature to those
obtained analytically for ideal orientations. Irrespective of the texture component
considered, the analytical formulas provide a good estimate of the in-plane aniso-
tropy and its trends at a very low calculation cost.

When more than one ideal texture component exists in the material, polycrys-
talline simulations based on the new description of the plastic behavior of the con-
stituent grains capture the influence of individual texture components on the overall
plastic anisotropy of the polycrystal. Additionally, it was shown that the use of the
analytical formulas for each ideal component in conjunction with laws of mixtures
provides an adequate estimate of the in-plane anisotropy. The analytical estimates
show the same trends as the simulation results in terms of both yield stress ratio and
r-value variation. Therefore, the trends in plastic anisotropy of the macroscopic
properties and most importantly how the predominant texture components affect the
deformation can be adequately estimated analytically using the approach presented.
Finally, the good agreement between the experimental and theoretical predictions of
the anisotropy in r-values obtained with the polycrystalline model for AA 2024-T3
demonstrates the predictive capabilities of the model.
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Chapter 4
Yield Criteria for Isotropic Polycrystals

4.1 General Mathematical Requirements

4.1.1 General Form of Isotropic Yield Criteria

Characterization of the plastic response requires the specification of the onset of
plastic deformation or yielding, and a flow rule by which the subsequent plastic
deformations can be calculated for given loadings and displacements. In this
chapter, we present yield criteria for isotropic fully dense metallic materials.

A yield criterion is represented by a scalar-valued function of the Cauchy stress
r, say F rð Þ (see also Chap. 2). Let’s denote by r1; r2; r3 the principal values of r.

Proposition 4.1 The most general form of the yield function of an isotropic
material is:

F rð Þ ¼ f r1;r2; r3ð Þ ð4:1Þ
such that

f r1; r2; r3ð Þ ¼ f r2; r3; r1ð Þ ¼ f r3; r1; r2ð Þ: ð4:2Þ

Proof According to Wang [45] representation theorem (see also Chap. 1) for iso-
tropic scalar functions of a single symmetric tensor argument, F rð Þ must depend on
the stress r only through its invariants, namely:

tr rð Þ ¼ r1 þ r2 þ r3; tr r2
� � ¼ r21 þ r22 þ r23; tr r3

� � ¼ r31 þ r32 þ r33 ð4:3Þ

Using the Cayley–Hamilton theorem (see Chap. 1), it is possible to express the
principal-stress values r1; r2;r3 in terms of the invariants given by Eq. (4.3) and
obtain the representation of the yield function given by Eq. (4.1). Moreover, since
each stress invariant is a symmetric function of r1; r2; r3 [see Eq. (4.3)], it follows
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that the yield function f r1; r2; r3ð Þ should also be a symmetric function of the
principal stresses.

Remark Note that the requirement in Eq. (4.2) that f is a symmetric function of
r1; r2; r3 is a direct consequence of the fact that for an isotropic material f cannot
depend on the orientation of the principal axes of stress with respect to the material
(the material cannot distinguish which principal stress is labeled 1, which is labeled
2, and 3, respectively).

Let rm denote the mean normal stress, i.e.,

rm ¼ 1
3
tr rð Þ ¼ 1

3
r1 þ r2 þ r3ð Þ: ð4:4Þ

As already mentioned, the stress tensor r can be written as the sum of a spherical
tensor and the stress deviator s, i.e.,

r ¼ sþ rmI ð4:5Þ

with I the second-order identity tensor. Note that the stress deviator s and the stress
tensor r have the same principal directions, ei, i = 1,…, 3, and the principal values,
s1, s2, s3 of s are expressed in terms of the principal-stress values as:

s1 ¼ 2r1 � r2 � r3ð Þ=3
s2 ¼ 2r2 � r1 � r3ð Þ=3
s3 ¼ 2r3 � r1 � r2ð Þ=3

:

In terms of s1, s2 and s3, J2, and J3, the second and third-invariant of the stress
deviator s, respectively, are expressed as:

J2 ¼ tr s2=2 ¼ 1
2

s21 þ s22 þ s23
� � ¼ 1

6
s1 � s2ð Þ2 þ s1 � s3ð Þ2 þ s2 � s3ð Þ2

h i
;

J3 ¼ tr s3=3 ¼ 1
3

s31 þ s32 þ s33
� � ¼ s1s2s3:

ð4:6Þ

Therefore, the yield function of an isotropic material can be represented as:

FðrÞ ¼ g rm; J2; J3ð Þ: ð4:7Þ

Indeed, using the definition (4.5) of s, it follows that:

tr r2
� � ¼ 2J2 þ 3r2m

tr r3
� � ¼ 3J3 þ 6J2rm þ 3r3m

Thus, the yield function of an isotropic material should be represented by an
arbitrary function of rm, J2, and J3.
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If the mechanism of plastic deformation at the single crystal level is a shear
mechanism, plastic deformation of a randomly oriented polycrystal should be
insensitive to the mean stress, rm (see Chap. 2). Hence, using the representation
given by Eq. (4.7) it follows that

Proposition 4.2 The most general form of the yield condition of a pressure-
insensitive isotropic material is:

FðrÞ ¼ g J2; J3ð Þ: ð4:8Þ

4.1.2 Representation of the Yield Surface of Isotropic
Materials in the Octahedral Plane

Since for an isotropic material, the yield function is represented by a function of the
principal stresses (see Proposition 4.1), the yield condition equation f r1; r2; r3ð Þ ¼ 0
can be represented and visualized graphically in the three-dimensional principal
stress space. Most importantly, the yield stresses corresponding to any type of
loadings can be recorded on this surface. It is to be noted that for an anisotropic
material such a three-dimensional representation is only possible for loadings that
do not involve shear stresses.

Consider an isotropic material subjected to an arbitrary state of stress. Let
e1; e2; e3ð Þ denote the Cartesian frame associated with the principal directions of the
stress tensor, r. Since yielding depends only on the principal values, the stress state
at yielding is fully determined by the vector r1e1 þ r2e2 þ r3e3. In this
three-dimensional space, the hydrostatic axis is represented by the line: r1 ¼ r2 ¼
r3 of unit vector n ¼ e1 þ e2 þ e3ð Þ= ffiffiffi

3
p

. The plane which passes through the origin
and is perpendicular to the hydrostatic line is called the deviatoric or octahedral p
plane.

Proposition 4.3 Consider an arbitrary stress state represented by a point
P r1; r2; r3ð Þ. The projection of the vector OP onto the hydrostatic line is pro-
portional to the mean stress, rm ¼ r1 þ r2 þ r3ð Þ=3, while its projection on the
octahedral plane is Q s1; s2; s3ð Þ.
Proof The projection of the stress vector OP onto the hydrostatic line (see also
Fig. 4.1a) is:

QP ¼ OP � nð Þn ¼ r1 þ r2 þ r3ð Þ=
ffiffiffi
3

p
n ¼

ffiffiffi
3

p
rmn:

4.1 General Mathematical Requirements 143



while

OQ ¼ OP�QP ¼ r1e1 þ r2e2 þ r3e3ð Þ �
ffiffiffi
3

p
rmn ¼ s1e1 þ s2e2 þ s3e3

Proposition 4.4 The yield surface of any pressure-insensitive material is a prism
or right cylinder with generators perpendicular to the octahedral plane.

Proof According to Proposition 4.3, the stress deviator s is the same for all points
on any line normal to the octahedral plane. The assumption that the yield condition
is pressure-insensitive, requires that if r1; r2; r3ð Þ is on the yield surface, then so is
r1 þ p; r2 þ p; r3 þ pð Þ for any value of p. In other words, if the yield criterion is
satisfied by r1; r2; r3ð Þ, it will be satisfied along any line parallel with the
hydrostatic line. Hence, the yield surface of any pressure-insensitive material is a
prism or right cylinder with generators perpendicular to the octahedral plane.

In summary, in order to specify the shape of the yield surface of any
pressure-insensitive material, it is sufficient to determine its intersection with the
octahedral plane. For this purpose, it is convenient to introduce the Oxyz Cartesian
frame of unit vectors ex; ey; ez

� �
, which are related to the stress eigenvectors

e1; e2; e3ð Þ by the following relations:

ex ¼ n ¼ 1ffiffiffi
3

p e1 þ e2 þ e3ð Þ; ey ¼ � 1ffiffiffi
2

p e1 � e2ð Þ; ez ¼ 1ffiffiffi
6

p 2e3 � e1 � e2ð Þ:

ð4:9Þ

Since ex is along the hydrostatic line, ey and ez belong to the octahedral plane.
Let f i be the projections of the stress eigenvectors ei, i = 1, …, 3 on the octahedral
plane. Obviously, f3 ¼ ez [see Eq. (4.9) and Fig. 4.1b]. Since ei, i = 1, …, 3 are

(a) (b)

Fig. 4.1 a Projection of a stress vector OP on the deviatoric p-plane; b definition of the polar
coordinates R,cð Þ in the p-plane
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mutually orthogonal; for any i 6¼ j, the angle between f i and f j is 2p=3, and ey is the
bisector of the angle formed by �f1; f2ð Þ.

Thus, f1 ¼ 1ffiffiffi
6

p 2e1 � e2 � e3ð Þ; f2 ¼ 1ffiffiffi
6

p �e1 þ 2e2 � e3ð Þ: Moreover, for any

stress state characterized by ðr1; r2; r3Þ where the principal values are not neces-
sarily ordered, we have

rx ¼ r � ex ¼
ffiffiffi
3

p
rm

ry ¼ r � ey ¼ r2 � r1ð Þ= ffiffiffi
2

p
rz ¼ r � ez ¼ 2r3 � r1 � r2ð Þ= ffiffiffi

6
p

8<
: ð4:10Þ

Therefore, the intersection of the yield surface f ¼ f r1; r2; r3ð Þ ¼ 0 with the
octahedral plane rm ¼ 0 is obtained simply by substituting in the expression of the
yield function the principal stresses by their expressions in terms of rx; ry; rz and
imposing rx ¼

ffiffiffi
3

p
rm ¼ 0. Alternatively, any point Q s1; s2; s3ð Þ belonging to the

intersection of the yield surface with the octahedral plane is characterized by two
polar-type coordinates, R, cð Þ (see also Fig. 4.1b):

R ¼ OQj j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ s23

q
¼

ffiffiffiffiffiffiffi
2J2

p
ð4:11Þ

while c denotes the angle between ey and OQ, so

tan cð Þ ¼ rz
ry

¼
ffiffiffi
3

p s3
s2 � s1

: ð4:12Þ

Further using s1 þ s2 þ s3 ¼ 0 in conjunction with Eqs. (4.11) and (4.12), we
obtain that the unordered eigenvalues of the stress deviator have the following
expressions in terms of R cð Þ and c:

s1 ¼ 2R cð Þffiffiffi
6

p sin c� 2p
3

� �

s2 ¼ 2R cð Þffiffiffi
6

p sin cþ 2p
3

� �

s3 ¼ 2R cð Þffiffiffi
6

p sinc

8>>>>>><
>>>>>>:

ð4:13Þ

Using Eq. (4.13), it follows that s1s2s3 ¼ � 8R3

6
ffiffiffi
6

p sin cð Þ sin c� p
3

� �
sin c� 2p

3

� �
, or

sin 3 cð Þ ¼ �J3
2

3
J2

� �3
2: ð4:14Þ
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Note that Eqs. (4.11) and (4.14) also provide a physical interpretation of the
invariants J2 and J3 of the stress deviator. The second-invariant is the norm of the
stress deviator while J3 gives the “position” of the stress deviator in the octahedral
plane. Furthermore, the intersection of the yield surface f ¼ f r1; r2; r3ð Þ ¼ 0 with
the octahedral plane is given by the curve: R = R cð Þ: Isotropy requires that
f r1;r2; r3ð Þ must be symmetric in r1; r2; r3, i.e., Equation (4.2) holds. Thus, the
section of the yield surface in the octahedral plane must be symmetric with respect
to each of the projected axes ei. In other words, it means that the yield locus has
three axes of symmetry f1, f2, f3 (see Fig. 4.1b). Therefore, it is sufficient to
determine the shape of the cross-section, i.e., R = R cð Þ; in the sector
�p=6� c� p=6 alone, the shape in all the other sectors being obtained by sym-
metry arguments. Using Eq. (4.12), we obtain that for �p=6� c� p=6, we have
s2 � s3 � s1, and in this domain, the maximum principal stress is always positive
while the minimum principal stress is always negative. The states on the line of unit
vector f2 (i.e., c ¼ �p=6) correspond to loadings such that s3 ¼ s1\0 (in partic-
ular, uniaxial tension); shear loadings with s3 ¼ 0 correspond to c ¼ 0 (line of unit
vector ey) while axisymmetric loadings s2 ¼ s3 [ 0 (in particular, uniaxial com-
pression) correspond to c ¼ p=6 (line of unit vector ð�f1Þ). In the subsector
�p=6� c\0: s2 [ 0[ s3 � s1, so the third-invariant J3 [ 0; for c ¼ 0: J3 ¼ 0; in
the subsector 0\c� p=6: s2 � s3 [ 0[ s1, so the third-invariant J3\0. In par-
ticular, uniaxial tension corresponds to c ¼ �p=6.

A measure of the effect of the intermediate principal stress on yielding is Lode
stress parameter, l, defined as the ratio of the difference between the intermediate
principal stress and the average of the largest and smallest principal stresses to half
the difference between the largest and smallest principal stresses (see [33]). Using
Eq. (4.13), it follows that for �p=6� c� p=6, Lode’s parameter is expressed as

l ¼ 2r3 � r1 � r2
r2 � r1

¼ 3s3
s2 � s1

¼
ffiffiffi
3

p
tan cð Þ: ð4:15Þ

Note that l ¼ �1 ðc ¼ �p=6Þ corresponds to axisymmetric loadings at J3 [ 0
(in particular, uniaxial tension); l ¼ 0 ðc ¼ 0Þ corresponds to pure shear, while
l ¼ 1 ðc ¼ p=6Þ corresponds to axisymmetric loadings at J3\0 (in particular,
uniaxial compression). If the assumption that the onset of yielding does not depend
on the sense of loading is made, i.e., f rð Þ ¼ f �rð Þ, then the yield surface is
symmetric with respect to the origin, hence the yield locus has sixfold symmetry,
meaning that it is sufficient to determine its cross-section only in the �p=6� c\0
sub-sector. Insensitivity to the sense of loading means equal yield stresses in ten-
sion–compression. In most elastic-plastic models for isotropic materials, the specific
expressions of f ¼ f r1; r2; r3ð Þ have this requirement built-in. A review of classic
yield criteria for isotropic metallic materials is presented in the following.
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4.2 Yield Criteria for Isotropic Metallic Materials
Displaying the Same Response in Tension–
Compression

4.2.1 Classical Yield Criteria

The two most widely used isotropic yield criteria are the Tresca maximum shear
criterion and von Mises yield criterion. According to Tresca’s criterion, the inter-
mediate principal stress has no effect on yielding while the von Mises yield criterion
gives equal weight to all principal stresses.

4.2.1.1 von Mises [44] Yield Criterion

The von Mises yield criterion is of the form:

J2 � k2 ¼ 0; ð4:16Þ

where k is a material parameter, which is assumed constant in the case of ideal
plastic behavior (see also Chap. 2). For general three-dimensional loadings, with
respect to any Cartesian coordinate system, this criterion writes:

1
6

rxx � ryy
� �2 þ rxx � rzzð Þ2 þ ryy � rzz

� �2h i
þ r2xy þ r2xz þ r2yz ¼ k2: ð4:17Þ

In terms of principal stresses, the criterion is expressed as:

1
6

r1 � r2ð Þ2 þ r1 � r3ð Þ2 þ r2 � r3ð Þ2
h i

¼ k2: ð4:18Þ

The only parameter involved in the von Mises criterion can be specified by
performing a unique test. For uniaxial tension, yielding occurs when r1 ¼ rT,
r2 ¼ 0, and r3 ¼ 0, so according to the criterion:

k ¼ rTffiffiffi
3

p ; ð4:19Þ

where rT is the yield stress in uniaxial tension. Under uniaxial compression (i.e.,
r1 ¼ �rC, r2 ¼ 0, and r3 ¼ 0), it is predicted that k ¼ rC

	 ffiffiffi
3

p
. So according to

the criterion, rC ¼ rT, where rC is the yield stress in uniaxial compression.
Moreover, the von Mises criterion predicts that the ratio between the yield stress

in pure shear, sY, and the yield stress in uniaxial tension, rT is fixed:
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rT ¼
ffiffiffi
3

p
sY: ð4:20Þ

Substituting Eq. (4.19) into Eq. (4.18) we obtain:

r1 � r2ð Þ2 þ r1 � r3ð Þ2 þ r2 � r3ð Þ2¼ 2r2T: ð4:21Þ
The distance between any stress state s1; s2; s3ð Þ belonging to the intersection of

the von Mises yield surface with the octahedral plane, and the origin is:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ s23

q
¼ rT

ffiffiffi
2
3

r
:

Therefore, in the space of principal stresses the von Mises yield surface (4.21) is

a right cylinder of circular cross-section and radius rT

ffiffiffi
2
3

r
(see also Fig. 4.2).

For plane-stress loadings, one of the principal stresses is zero. The r3 ¼ 0
section of the von Mises yield locus is the ellipse defined by:

r21 þ r22 � r1r2 ¼ r2T ð4:22Þ

Isotropy dictates that the major axis of this ellipse is inclined at 45° to the r1 axis
(see Fig. 4.3). Note also that according to the von Mises yield criterion the yield
stress under equibiaxial loading (r1 ¼ r2, r3 ¼ 0) is the same as the yield stress in
uniaxial tension.

Generally, the assumption of an associated flow rule is made (see Chap. 2).
Thus, the plastic potential associated with the von Mises yield function is:

Fig. 4.2 von Mises [44]
yield surface in the
three-dimensional
principal-stress space, with
rx;ry; rz given by Eq. (4.10)
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uMises rð Þ ¼
ffiffiffiffiffiffiffi
3J2

p
ð4:23Þ

Accordingly, the plastic strain-rate tensor, dp, is expressed as:

dp ¼ _k
@uMises

@r
¼ 3

2rT

� �
_ks ð4:24Þ

where _k� 0 stands for the plastic multiplier. It means that for a von Mises material,
the plastic strain rate is always proportional to the stress deviator. In the coordinate
system associated with the principal directions of stress,

dpi ¼
3

2rT

� �
_ksi; i ¼ 1; . . .; 3: ð4:25Þ

It follows that for a material governed by the von Mises criterion and associated
flow rule, equibiaxial loadings produce equibiaxial stretching. Moreover, under
plane-stress loadings ðr3 ¼ 0Þ, plane-strain deformation occurs ðdp2 ¼ 0Þ, only if
r2=r1 ¼ 1=2.

4.2.1.2 Tresca [42] Yield Criterion

According to Tresca [42] yield criterion, plastic deformation will occur when the
maximum shear stress reaches a critical value k0. If r1; r2; r3 are principal stresses,
not necessarily ordered, then the maximum shear stress condition is:

Fig. 4.3 Representation in
the r1;r2ð Þ plane of the yield
locus according to the von
Mises [44] yield criterion.
Stresses are normalized by rT,
the yield stress in uniaxial
tension
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max
r1 � r2j j

2
;
r2 � r3j j

2
;
r1 � r3j j

2

� �
¼ k0: ð4:26Þ

Note that this yield function is independent of hydrostatic pressure, it is sym-
metric in the principal stresses r1; r2; r3 and predicts that yielding is the same in
tension–compression. The material parameter k0 can be determined from simple
tests. For uniaxial tension, it is predicted k0 ¼ rT=2. Therefore, for the von Mises
and Tresca criteria to agree in uniaxial tension–compression, Tresca yield criterion
should be taken of the form:

u rð Þ ¼ max r1 � r2j j; r2 � r3j j; r1 � r3j jð Þ ¼ rT : ð4:27Þ

Accordingly, the yield stress in pure shear should be exactly half of the yield
stress in uniaxial tension, i.e.,

rT ¼ 2sY; ð4:28Þ

while the yield stress under equibiaxial tension and uniaxial tension should be
equal.

To obtain the intersection of the Tresca yield surface with the octahedral plane, it
is sufficient to determine the curve R = R cð Þ only in the sector 0� c� p=6 [see
Eq. (4.13)]. Since in this sector s2 � s3 [ s1 by Eq. (4.26), we have: s2 � s1 ¼ rT .
Using Eq. (4.10), it follows that ry¼

ffiffiffi
2

p
rT, which is the equation of a line parallel

to f3 (see Fig. 4.2) situated at a distance equal to
ffiffiffi
2

p
rT from the origin.

Given that the intersection curve with the octahedral plane has sixfold symmetry,
it follows that it is a regular hexagon of side equal to rT

ffiffiffiffiffiffiffiffi
2=3

p
. Therefore, this

hexagon is inscribed in the von Mises circle (see Fig. 4.4). In summary, in the
three-dimensional space of principal stresses, the Tresca yield surface u rð Þ ¼ 0
[see Eq. (4.27)] is a hexagonal prism inscribed in the von Mises cylinder.

Fig. 4.4 Octahedral plane
projections of the yield locus
according to Tresca [42] and
von Mises [44] yield criterion.
Principal stresses are
normalized by the uniaxial
yield in tension, rT
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For plane-stress loadings (e.g., r3 ¼ 0), either r1 or r2 may be the major
principal stress, depending on which quadrant the point ðr1; r2Þ occupies. Thus, the
section of the Tresca yield locus is an irregular hexagon (see Fig. 4.5) of equations:

r1j j ¼ rT; ð4:29Þ

r2j j ¼ rT; ð4:30Þ

r1 � r2j j ¼ rT: ð4:31Þ

Its intersections with the axes r1 ¼ 0 ðr2 [ 0Þ, and r2 ¼ 0 ðr1\0Þ are the
points corresponding to uniaxial stress in tension rT and compression �rTð Þ,
respectively. The intersection with the line r1 ¼ �r2 corresponds to pure shear.
Note that the von Mises ellipse is exterior to the Tresca yield locus, so for general
biaxial loadings Tresca criterion is more conservative than von Mises criterion; the
two criteria coincide for uniaxial tension, uniaxial compression, and equibiaxial
loadings (see Fig. 4.5).

Plastic Potential Associated with the Tresca Criterion
Although Tresca’s yield surface [see Eq. (4.27)] is not smooth, plastic flow is
considered to be associated and the normality rule is used wherever the normal to
Tresca’s yield surface is unambiguously defined (i.e., everywhere except at ver-
tices). To define the plastic strain-rate at a vertex, Koiter [29] first explicitly wrote
the yield condition given by Eq. (4.27) for any possible ordering of the principal
stresses r1; r2; r3, i.e., represented the yield surface by the six smooth planes each
defined by an equation: uk ¼ 0 (k = 1, …, 6). The elastic region is the intersection
of the regions defined by uk\0, the stress state is on the yield surface if at least one

Fig. 4.5 Representation in
the r1;r2ð Þ plane of the yield
locus according to Tresca [42]
and von Mises [44] yield
criterion. Principal stresses
are normalized by the yield
stress in uniaxial tension, rT
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of the uk vanishes there; and a singular point (vertex) corresponds to the case when
two of the uk vanish. The plastic flow rule is defined as:

dp ¼
X6
k¼1

_kkNk; ð4:32Þ

where Nk is the normal to the corresponding plane, uk ¼ 0 for the multifaceted
Tresca yield surface and the _kk (k = 1, …, 6) are nonnegative scalars. Loading–
unloading conditions are defined as: uk � 0; _kk � 0; and uk

_kk ¼ 0, with no sum-
mation on the repeated index. Due to the isotropy and the symmetry with respect to
the origin of the Tresca yield surface, it is sufficient to describe the flow rule given
by Eq. (4.32) only for one sextant of the principal-stress states, say for r1 � r2 � r3
(see also Fig. 4.4). In this case, there are three possibilities, corresponding to the
three zones in the principal-stress space into which the stress may be located:

(1) If r1 [ r2 [ r3, u1 r1; r2; r3ð Þ ¼ r1 � r3j j � rT ¼ 0, and u1 is differentiable,
so:

dp ¼ _kNI; NI ¼ e1 � e1 � e3 � e3 ð4:33Þ

or in component form: dp1 ¼ _k; dp2 ¼ 0; dp3 ¼ � _k.
(2) Right corner: The direction of the rate of plastic strain is a linear combination

with nonnegative coefficients of the normals to the two intersecting planes at
this point, i.e.,

dp ¼ _k1NI þ _k2NII ð4:34Þ

where NI ¼ @u1

@r
defined by Eq. (4.33) is the normal to the main plane

r1 � r3j j ¼ rT while NII ¼ e1 � e1 � e2 � e2 ¼ @u2

@r
, with u2 r1; r2; r3ð Þ ¼

r1 � r2j j � rT ¼ 0: In other words, NII is the normal to the plane of the yield
surface: r1 � r2j j ¼ rT, which is on the right of the main plane.

(3) Left corner: The direction of the rate of plastic strain is a linear combination
with nonnegative coefficients of the normals to the two intersecting planes at
this point

dp ¼ _k1NI þ _k3NIII; ð4:35Þ

where NIII ¼ e2 � e2 � e3 � e3 ¼ @u3

@r
is the normal to the plane of the yield

surface with u3 r1; r2; r3ð Þ ¼ r2 � r3j j � rT ¼ 0; which is on the left of the
main plane.
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4.2.2 Drucker [15] Yield Criterion

A yield criterion that involves both invariants of the Cauchy stress deviator was
proposed by Drucker [15] in the form:

f � J32 � cJ23 ¼ s6Y; ð4:36Þ

where sY is the yield stress in pure shear and c is a material constant. For c ¼ 0, the
von Mises yield criterion is recovered.

For uniaxial tension (r1 ¼ rT, r2 ¼ 0, and r3 ¼ 0), the Drucker [15] yield
criterion becomes

r6T 27� 4cð Þ ¼ 729 s6Y; ð4:37Þ

or

c ¼ 27
4

1� sY
ffiffiffi
3

p

rT

� �6" #
:

Therefore, the ratio between the yield stress in uniaxial tension and the yield
stress in pure shear depends on the value of the parameter c. For c[ 0:
rT [

ffiffiffi
3

p
sY; while for c\0, rT\

ffiffiffi
3

p
sY.

Proposition 4.5 (Convexity of the Drucker yield function)

For the Drucker [15] yield surface (4.36) to be convex, c 2 � 27
8
; 2:25


 �
.

Proof A function f is convex if its Hessian matrix H of components

Hij ¼ @2f
@ri@rj

ð4:38Þ

is positive semi-definite (i.e., its principal values are not negative). Since
@J2
@ri

¼ si,

@J3
@ri

¼ ti ¼ s2i �
2
3
J2, i = 1, …, 3, we obtain:
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H11 ¼ 6J2 � s21 þ 2J22 � 2ct21 �
4c
3
J3 � s1

H12 ¼ 6J2 � s1s2 � J22 � 2ct1t2 � 4c
3
J3 � s3

H13 ¼ 6J2 � s1s3 � J22 � 2ct1t3 � 4c
3
J3 � s2

H22 ¼ 6J2 � s22 þ 2J22 � 2ct22 �
4c
3
J3 � s2

H23 ¼ 6J2 � s2s3 � J22 � 2ct2t3 � 4c
3
J3 � s1

H33 ¼ 6J2 � s23 þ 2J22 � 2ct23 �
4c
3
J3 � s3

ð4:39Þ

From Eq. (4.39), it follows that

H11 þH12 þH13 ¼ 0

H12 þH22 þH23 ¼ 0

H13 þH23 þH33 ¼ 0

Thus, IIIH ¼ det Hð Þ ¼ 0 and the principal values of H are: k1, k2, and k3 ¼ 0.
Thus, the yield function is convex if: IH � 0 and IIH � 0 (see Chap. 1 for the
definition of the invariants IH , IIH , IIIH of a second-order tensor). Furthermore,
using Eq. (4.39), we obtain:

IH ¼ k1 þ k2 ¼ 2J22 9� 2c
3

� �
; ð4:40Þ

IIH ¼ �k1 k2 ¼ 40
3
J23

� �
c2 � Ec� 45J32 ; ð4:41Þ

with E ¼ 72J23 � 4J32 � 4 s2 � s3ð Þ2 s3 � s1ð Þ2 s1 � s2ð Þ2.
To study the sign of IIH , it is convenient to express the principal values of the

stress deviator s in terms of its invariants [see Eqs. (4.13) and (4.14)].
Straightforward calculations show that

s2 � s3ð Þ2 s3 � s1ð Þ2 s1 � s2ð Þ2¼ 4J32 sin
2ð3a1Þ

And

E ¼ � 80
3
J32 sin 3a1 þ p

6

� �
sin 3a1 � p

6

� �
;
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where a1 is the angle satisfying 0� 3a1 � p whose cosine is given by:

cos 3a1 ¼ J3
2

3
J2

� �3=2

: ð4:42Þ

Next, it is worth noting that for:

(i) J3 ¼ 0: IIH ¼ � 20
3
cþ 45

� �
J32 so IIH � 0 for c� � 27=4.

(ii) J3 6¼ 0: IIH is a second-order polynomial in c having a positive root cp and a
negative root cn:

cp ¼ 27
80

� 1
cos2ð3a1Þ 3Pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9P2 þ 200 cos2ð3a1Þ

p� �
ð4:43Þ

cn ¼ 27
80

� 1
cos2ð3a1Þ 3P�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9P2 þ 200 cos2ð3a1Þ

p� �
ð4:44Þ

with P ¼ 20
3

cos2ð3a1Þ � 3
4

� �
. Therefore, IIH � 0 for c 2 cn; cp

� �
.

Using Eqs. (4.43) and (4.44), it follows that:

• The minimum value of cp (as a function of a1) is 9/4.
• The maximum value of cn is −27/8.

Hence, if c 2 �27=8; 2:25½ �, IIH � 0 for any applied stress r. Also, from

Eq. (4.40), it follows that IH � 0 for c� 27
2
. Therefore, it follows that for

c 2 �27=8; 2:25½ �, the yield function is convex.
Biaxial Loadings
For plane-stress loadings (i.e., one of the principal stresses of the applied Cauchy

stress r is zero), say r3 ¼ 0, the Drucker [15] yield criterion writes:

1
3

r21 � r1r2 þ r22
� �
 �3

� c

27ð Þ2 2r31 þ 2r32 � 3 r1 þ r2ð Þr1r2
� 2¼ s6Y: ð4:45Þ

As an example, Fig. 4.6 shows the r3 ¼ 0 section of the Drucker [15] yield
surfaces corresponding to c ¼ �27=8 and c ¼ 2:25, in comparison with the von
Mises ellipse (c ¼ 0). The stresses are normalized by rT, the yield stress in uniaxial
tension. Note that for c[ 0, the yield locus is interior to the von Mises ellipse,
while for c\0, it is exterior to it.

Representation of the Drucker [15] yield surface in the space of principal stresses
For the Drucker [15] criterion and the von Mises criterion to agree in uniaxial
tension (and uniaxial compression), we express the Drucker [15] yield criterion as:
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ffiffiffi
3

p

1� 4c=27ð Þ1=6
ðJ32 � cJ23Þ1=6 ¼ rT:

To obtain the intersection of the yield surface with the octahedral plane, we
substitute Eq. (4.13) in the above equation. Thus, in the sextant 0� c� p=6:

R cð Þ ¼ rT
ffiffiffi
6

p
27� 4cð Þ1=6

3 27� 4c sin2 3cð Þ� �1=6 ð4:46Þ

Figure 4.7a shows the representation of the Drucker [15] yield surface for c ¼
2:25 (interrupted line) in comparison with the Tresca yield locus (solid line), while
Fig. 4.7b shows the comparison with von Mises yield locus (which corresponds to
c ¼ 0). Note that for c ¼ 2:25, the Drucker [15] yield locus is close to Tresca’s
yield locus.

As already mentioned in Sect. 4.1.2, a measure of the effect of the intermediate
principal stress was introduced by Lode [33]. If r1 � r2 � r3, Lode’s stress
parameter [see Eq. (4.15)] writes:

l ¼ 2r2 � r1 � r3
r1 � r3

¼ 3s2
s1 � s3

Note that according to the von Mises criterion [see Eq. (4.18)], at yielding the
difference between the major and minor principal stresses has a parabolic depen-
dence on l, i.e.,

Fig. 4.6 Representation in
the plane r1;r2ð Þ of the yield
locus according to the
Drucker [15] isotropic yield
criterion for: c ¼ þ 2:25 and
c ¼ �27=8, in comparison
with the von Mises yield
criterion, which corresponds
to c ¼ 0. Principal stresses are
normalized by rT, the yield
stress in uniaxial tension
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r1 � r3
rT

¼ 2

3þ l2ð Þ1=2
ð4:47Þ

Obviously, according to Tresca’s criterion [see Eq. (4.27)], there is no influence
of the intermediate principal stress on yielding, and therefore on l, and for
r1 � r2 � r3 the criterion writes:

r1 � r3
rT

¼ 1: ð4:48Þ

Using the expression (4.15) of l and Eq. (4.36), it follows that according to the
Drucker [15] criterion, at yielding the difference of the major and minor principal
stresses should have the following variation with l:

r1 � r3
rT

¼ 64 ð27� 4cÞ
27 l2 þ 3ð Þ3�4cl2 l2 � 9ð Þ2
 !1=6

: ð4:49Þ

A judicious choice of the parameter c in the Drucker [15] yield criterion allows a
very good relative weighting of all principal stresses. As an example, Fig. 4.8
shows the results of the tests on thin-walled tubes of iron under combined axial
tension and internal pressure covering the range of l from −1 to 1 performed by
Lode [33]. On the same figure is plotted the variation of ðr1 � r3Þ=rT versus l
given by the Tresca, von Mises, and Drucker yield criterion with c ¼ 1:09,
respectively. Given that all three criteria were identified such as to agree for uniaxial
tension–compression, respectively, (i.e., for l ¼ �1 and l ¼ 1), the maximum

Fig. 4.7 Cross-section in the octahedral plane of the Drucker [15] yield surface [Eq. (4.46)]
corresponding to c ¼ 2:25 in comparison with: a Tresca’s cross-section, and b von Mises
cross-section [which corresponds to c ¼ 0 in Eq. (4.46)]. Principal stresses are normalized by the
uniaxial yield in tension, rT
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difference between the predictions of these criteria obviously occurs for pure shear
loading when l ¼ 0: the difference between the Tresca and von Mises criteria is
2=

ffiffiffi
3

p
, while the difference between the Tresca and Drucker criteria is

2ffiffiffi
3

p 1 � 4c
27

� �1=6

. The test results correlate best with Drucker [15] criterion, von

Mises criterion gives a better agreement than Tresca’s, although systematic devi-
ations are observed for other loadings.

Plastic potential associated with Drucker [15] yield condition
The plastic potential associated with Drucker [15] criterion is of the form:

uDrucker rð Þ ¼
ffiffiffi
3

p

1� 4c=27ð Þ1=6
ðJ32 � cJ23Þ1=6 ð4:50Þ

Accordingly, the plastic strain tensor is:

dp ¼ _k
@uDrucker

@r
ð4:51Þ

where _k� 0 stands for the plastic multiplier. A suitable choice of the parameter
c allows increased accuracy not only in the prediction of yield data but also for
post-yield deformation.

Drucker [15] has introduced a measure of the effect of the third-invariant on
plastic strain, defined as the ratio between the intermediate principal value of the
plastic strain-rate to the difference between the major and minor principal values,
respectively. If dp1 � dp2 � dp3 are the ordered principal plastic strain-rates, this
parameter, denoted as m, is:

1

1.05

1.1

1.15

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Mises

Tresca

Drucker (1949)

Fig. 4.8 Effect of the Lode parameter l (or intermediate principal stress) on yielding of
thin-walled steel tube according to the Tresca, von Mises, and Drucker [15] yield criterion for
c = 1.09, and data of Lode [33] (symbols) on iron. Principal stresses r1 � r2 � r3 are
normalized by the uniaxial yield in tension, rT
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m ¼ 3dp2
dp1 � dp3

ð4:52Þ

In the case of the von Mises yield criterion (c = 0) and associated flow rule, m
coincides with the Lode stress parameter l. Indeed, using Eq. (4.24), it follows that

m ¼ 3dp2
dp1 � dp3

¼ 3s2
s1 � s3

¼ l;

On the other hand, since the Drucker [15] yield criterion with c 6¼ 0 involves
both invariants of the stress deviator [see Eq. (4.51)],

m ¼ l
27 l2 þ 3ð Þ2�4c l2 � 9ð Þ l2 � 3ð Þ

27 l2 þ 3ð Þ2�8c l2 � 9ð Þl2 :

Consideration of c 6¼ 0, i.e., third-invariant effects, enables a better correlation of
the experimental l versus m curve obtained in experiments on thin-walled tubes (see
also Drucker [15]).

4.2.3 Hershey–Hosford Yield Criterion

As mentioned in Chap. 3, self-consistent calculations of the limit yield surface of
macroscopically isotropic polycrystalline aggregates composed of randomly ori-
ented, plastically deforming fcc single crystals were performed by Hershey [19],
Budiansky and Wu [7], Kröner [30], and Hutchinson [26] among others. For
polycrystalline aggregates comprised of randomly oriented bcc single crystals,
self-consistent calculations were reported by Hutchinson [27]. An isotropic yield
criterion that describes well the numerical yield points of Hutchinson [27] and
Bishop and Hill [5] was introduced by Hershey [19], and further used by Hosford
[22]. Its expression is given by:

u r1; r2; r3ð Þ ¼ r1 � r2j ja þ r2 � r3j ja þ r3 � r1j ja
2


 �1=a
¼ rT; ð4:53Þ

where the exponent a is such that 1� a\1. Note that this yield function is
independent of hydrostatic pressure, and it is symmetric in the principal stresses
r1; r2; r3. If a is an even integer, it predicts that yielding is the same in tension–
compression. If a ¼ 1 or a ¼ 2, the Tresca and von Mises yield criterion are,
respectively, recovered.

The ratio between the yield stress in uniaxial tension and in pure shear is
controlled by the parameter a, i.e.,
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rT ¼ sY 1þ 2a�1� �1=a
; ð4:54Þ

while the yield stress under equibiaxial tension and uniaxial tension should be equal
irrespective of a. If 1� a� 2 or 4� a\1, the plane-stress yield locus according to
this criterion is given as,

r1 � r2j ja þ r2j ja þ r1j ja¼ 2 rTð Þa; ð4:55Þ

and it is located between the Tresca hexagon and the von Mises ellipse. As an
example, Fig. 4.9 shows a comparison between the Hershey [20]–Hosford [22]
plane-stress yield locus for a = 8 and the von Mises yield locus, respectively.

The cross-section of the Hershey [20]–Hosford [22] yield surface corresponding
to a ¼ 8 in the octahedral plane is shown in Fig. 4.10. Note the strong departure
from the von Mises circle, indicating a very strong effect of the third-invariant J3 on
yielding for this value of the parameter a. Comparison between the yield points of
an isotropic fcc polycrystal with plastic deformation of the constituents crystals
governed by Bishop and Hill [5] model and the yield surface according to Hershey–
Hosford criterion for a ¼ 6 shows an excellent agreement (see Fig. 4.11).

Plastic potential associated with Hershey [20]–Hosford [22] yield condition
The flow potential associated with Hershey [20]–Hosford [22] yield condition is

generally taken to have the same form as the yield function, i.e.,

u r1; r2; r3ð Þ ¼ r1 � r2j ja þ r2 � r3j ja þ r3 � r1j ja
2


 �1=a
:

Fig. 4.9 Representation in
the r1;r2ð Þ plane of the yield
locus according to Hershey
[20]–Hosford [22] criterion
corresponding to a ¼ 8, in
comparison with the von
Mises yield criterion, which
corresponds to a ¼ 2 in
Eq. (4.53). Principal stresses
r1; r2 are normalized by the
uniaxial yield in tension, rT
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Since this function is expressed in terms of differences between principal values,
it has the following property:

u r1; r2; r3ð Þ ¼ u s1; s2; s3ð Þ; ð4:56Þ

so for any stress state,
@u
@r

¼ @u
@s

.

Fig. 4.10 Octahedral plane
projections of the Hershey
[20]–Hosford [22] yield
surface corresponding to
a ¼ 8, and the von Mises
yield surface [which
corresponds to a ¼ 2 in
Eq. (4.53)]. Principal stresses
r1; r2 ; r3 are normalized by
the uniaxial yield in tension,
rT

Fig. 4.11 Projection in the
octahedral plane of the
Hershey [20]–Hosford [22]
yield surface corresponding to
a ¼ 6, and the numerical
yield points for isotropic fcc
polycrystal according to
Bishop and Hill [5]. Principal
stresses r1; r2 ; r3 are
normalized by the uniaxial
yield in tension, rT
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4.3 Yield Criteria for Isotropic Metallic Materials
Showing Asymmetry Between the Response
in Tension–Compression

4.3.1 Cazacu and Barlat [8] Yield Criterion

The stress–strain response in uniaxial tension–compression of isotropic maraging
streel and HY-80 steel were reported by Spitzig et al. [38]. The test results indicated
that these materials display strength differential effects, the ratio between the uniaxial
yield stress in tension–compression, rT=rC, averaging 0.98 and 0.93, respectively.
Most recently, test results on high-strength steel ES-1 indicate rT=rC of the order of
0.93 (see Bartlett [1]). Vitek et al. [43] demonstrated that a significant tension–
compression asymmetry effect is obtained at the polycrystal level, if non-planar
spreading of individual dislocations takes place. Also, crystallographic twinning is a
directional shear deformation mechanism, and if it occurs yielding will depend on
the sign of the applied stress [23]. Early simulation results by Chin et al. [12], who
analyzed deformation by mixed slip and twining in fcc crystals, predicted a yield
stress in uniaxial tension 25% lower than that in uniaxial compression. Hosford and
Allen [24] performed the same type of calculations for other biaxial loadings. Based
on their simulation results, these authors concluded that yield loci with a strong
asymmetry between tension–compression should be expected in any isotropic
pressure-insensitive material that deforms by twinning or directional slip. If the
internal shear mechanism of plastic deformation is sensitive to the sign of the stress,
then the macroscopic yield function ought to be represented by an odd function of
the principal values of the Cauchy stress deviator s. To account for strength dif-
ferential effects in isotropic materials that are insensitive to hydrostatic pressure,
Cazacu and Barlat [8] proposed the following isotropic criterion:

g � J2ð Þ32�cJ3 ¼ s3Y; ð4:57Þ

where sY is the yield stress in pure shear and c is a material parameter. The physical
significance of the constant c may be revealed from uniaxial tests. Indeed,
according to this yield criterion:

rT ¼ sY
27

3
ffiffiffi
3

p � 2c

� �1
3

: ð4:58Þ

Yielding in uniaxial compression occurs when r1 ¼ �rC, r2 ¼ r3 ¼ 0.
Substituting these values in Eq. (4.57) one obtains,

rC ¼ sY
27

3
ffiffiffi
3

p þ 2c

� �1
3

; ð4:59Þ
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Hence,

c ¼ 3
ffiffiffi
3

p
r3T � r3C
� �

2 r3T þ r3C
� � : ð4:60Þ

Therefore, the material parameter c depends solely on the ratio between the yield
stress in tension–compression ðrT=rCÞ for the given material. Furthermore, for a
material for which the yield stress in tension is larger than in compression, i.e.,
ðrT=rC [ 1Þ the parameter c should be positive ðc[ 0Þ. On the other hand, for a
material which has the yield in compression larger than yield in tension,
i.e., rT\rC, it follows that c\0. It is worth noting that if a material has the same
yield stresses in tension–compression, c ¼ 0, and the criterion reduces to the von
Mises yield criterion.

Proposition 4.6 (Convexity of the isotropic Cazacu and Barlat [8] yield function)
For the yield function g given by Eq. (4.57) to be convex, the parameter c is

limited to the following numerical range:

c 2 � 3
ffiffiffi
3

p

2
;
3
ffiffiffi
3

p

4

� �
:

Proof Isotropy dictates threefold symmetry of the yield surface, so it is sufficient to
prove its convexity for stress states corresponding to: r1 � r2 � r3. Let M be the
Hessian matrix, i.e.

Mij ¼ @2g
@ri@rj

;

where i, j = 1, …, 3 and ri are the principal stresses. It can be easily seen that the
determinant of M is zero and the principal values are n1, n2 and n3 ¼ 0.

Furthermore,

IM ¼ 9
2

ffiffiffiffiffi
J2

p
;

IIM ¼ �n1n2 ¼
4
9

s1 � s3ð Þ s2 � s3ð Þc2 � s3
2
ffiffiffiffiffi
J2

p s1 � s3ð Þ s2 � s3ð Þc

� 9
16J2

8 J22 þ s23 s1 � s2ð Þ2
h i ð4:61Þ

The function g is convex if and only if IM � 0 and IIM � 0. From Eq. (4.61), it
follows that IM � 0. To study the sign of IIM , it is convenient to express the
principal values of the stress deviator in terms of J2 and J3. As already mentioned, if
s1 � s2 � s3, these principal values can be given alternatively by:
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sk ¼ 2 cosðakÞ
ffiffiffiffiffi
J2
3

r
; ð4:62Þ

with a1, the solution in the interval 0� a1 � p=3 of Eq. (4.42) while
a2 ¼ a1 � 2p=3. Further substitution into Eq. (4.61) leads to:

IIM ¼ � 243
16

s22; if s2 ¼ s3

IIM ¼ �A c2 � Bc� D; if s1 � s2 [ s3;

with A ¼ � 16
9
J2 sin a1ð Þ sin a1 þ p

3

� �
B ¼ 4ffiffiffi

3
p J2 sin a1ð Þ sin a1 þ p

3

� �
cos a1 þ 2p

3

� �
; and

D ¼ 9
2
J2 þ 3J2 sin2 a1 � p

3

� �
cos2 a1 þ 2p

3

� �

Note that for any 0\ a1\ p=3: A\0 and D[ 0. Thus, IIM\0 for
c 2 c1 a1ð Þ; c2 a1ð Þ½ �, where c1 a1ð Þ is the negative root and c2 a1ð Þ is the positive
root of IIM ¼ 0. These roots are:

c1 a1ð Þ ¼
1ffiffiffi
3

p sinða1Þ sin a1 þ p
3

� �
cos a1 þ 2p

3

� �
�

ffiffiffiffi
D

p

8
9
sinða1Þ sin a1 þ p

3

� � ; ð4:63Þ

c2ða1Þ ¼
1ffiffiffi
3

p sinða1Þ sin a1 þ p
3

� �
cos a1 þ 2p

3

� �
þ

ffiffiffiffi
D

p

8
9
sinða1Þ sin a1 þ p

3

� � ; ð4:64Þ

where D ¼ sinða1Þ sin a1 þ p
3

� �
2þ cos2 a1 þ 2p

3

� �
1
4
þ sin2 a1 � p

3

� �� �� �
is

greater or equal to zero for any 0� a1 � p=3. Using Eqs. (4.63) and (4.64), we
obtain that

min c1 a1ð Þð Þ ¼ c1
p
3

� �
¼ 3

ffiffiffi
3

p

4
; max c2 a1ð Þð Þ ¼ c2

p
3

� �
¼ �3

ffiffiffi
3

p

2
:

Therefore, if c 2 � 3
ffiffiffi
3

p

2
;
3
ffiffiffi
3

p

4

� �
then IIM\0 for any stress state r1 � r2 � r3.

Yielding Predictions for Biaxial Loadings
For plane-stress loadings ðr3 ¼ 0Þ according to the criterion [Eq. (4.57)]

yielding occurs when:
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1
3

r21 � r1r2 þ r22
� �
 �3=2

� c
27

2r31 þ 2r32 � 3 r1 þ r2ð Þr1r2
�  ¼ s3Y: ð4:65Þ

For any c 6¼ 0, Eq. (4.65) represents a “triangle” with rounded corners. For
c [ 0, the equibiaxial yield stress is larger than the yield stress in simple tension
(triangle points toward the tension–tension quadrant). The reverse holds true for
c\ 0 (see also Fig. 4.12). Note that according to the criterion, the yield stress under
equibiaxial tension, rb is given by:

rb ¼ sY
27

3
ffiffiffi
3

p þ 2c

� �1
3¼ 3

ffiffiffi
3

p � 2c

3
ffiffiffi
3

p þ 2c
rT ð4:66Þ

Equation (4.66) indicates that the yield stress under equibiaxial tension is the
absolute value of the yield stress in simple compression [see Eq. (4.59)]. This is a
direct consequence of the yield function being independent of the hydrostatic pressure.
Indeed, if the stress point (rb, rb, 0) is on the yield surface then the point (0, 0, �rb)
is also on the yield surface. Isotropy then dictates that rb ¼ rC: As an example, in
Fig. 4.12 are shown the plane-stress yield loci corresponding to rT=rC ¼ 2=3
ðc ¼ �1:41Þ, 1 (c ¼ 0, i.e., von Mises), and 3/2 ðc ¼ 1:41Þ, respectively. The
principal stresses are normalized by rT. Irrespective of the value of the parameter c,
the criterion predicts the same yield stress in pure shear [see Eq. (4.57)].

As already mentioned, the effect of the third-invariant J3 on yielding is readily
observed in combined tension and torsion tests (e.g., Taylor and Quinney [40]). If a
normal stress is set equal to r, a shear stress is set equal to s, and all other stress
components are set equal to zero, using Eq. (4.57), we obtain the Cazacu and Barlat
[8] yield locus cross-section in the r; sð Þ plane as

1
3

r2 þ 3s2
� �
 �3=2

� c
27

2r3 þ 9s2r
�  ¼ s3Y ð4:67Þ

Fig. 4.12 Plane-stress yield
loci according to the Cazacu
and Barlat [8] criterion for
different values of the ratio
rT=rC between the yield
stress in tension–
compression, in comparison
with the von Mises yield
locus. The principal stresses
are normalized by the yield
stress in uniaxial tension, rT
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Note also that the cross-section of the Tresca yield criterion in the r; sð Þ plane is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p
¼ rT; ð4:68Þ

and that of von Mises’ surface is given by Eq. (4.67) with c = 0. The representation
in the tension–torsion plane r=rT; s=rTð Þ of the Tresca yield locus, and the Cazacu
and Barlat [8] yield locus corresponding to rT=rC ¼ 3=4; 1 (von Mises), and 5/4 is
shown in Fig. 4.13.

Comparison with the theoretically derived yield loci for isotropic polycrystalline
aggregates
To illustrate the predictive capabilities of the isotropic criterion proposed by Cazacu
and Barlat [8], we compare the yield loci obtained using this criterion with the theo-
retical yield loci for randomly oriented isotropic aggregates computed using different
descriptions of the single crystal plastic deformation and various upscaling methods.
As already mentioned, Hosford and Allen [24] computed the limit yield surface of
isotropic fcc aggregates deforming by slip and crystallographic twinning. Each twin
system (s) was considered to be characterized by a vector ns, the normal to the
twinning plane, and a vector bs, the twinning shear direction. As discussed in Chap. 3
for fcc crystals, crystallographic twinning may occur along the {111} crystallo-
graphic planes in the 〈112〉 crystallographic directions. Twining is unidirectional,
i.e., if it occurs in the (111) plane along the 〈211〉 direction, reversing the applied
shear stress cannot cause twinning in the 〈211〉 direction. Of the twelve potentially
active twin systems, the ones that are operative were found by minimizing the plastic
work. The calculated yield points of the isotropic aggregate comprised of fcc crystals,
deforming solely by twining are shown in Fig. 4.14 (open circles). The yield locus
according to the Cazacu and Barlat [8] criterion (dashed curve) is superposed on the
same figure. The only parameter involved in the criterion is c, which is expressible in
terms of the rT=rC ratio [see Eq. (4.60)]. Hosford and Allen [24] reported a calcu-
lated value of this ratio as 0.78 which corresponds to a value of c = −0.92. The yield
stresses (open circles) reported in Hosford and Allen [24] are also superimposed on

Fig. 4.13 Section of the
yield loci in the ðr; sÞ plane
(tension–torsion;
compression-torsion)
predicted by the Tresca and
Cazacu and Barlat [8]
isotropic yield criterion
(Eq. (4.57) for rT=rC ¼
3=4; 1 (von Mises) and 5/4,
respectively. The stresses are
normalized by the yield stress
in uniaxial tension, rT
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the same figure. Note that the yield locus generated with the Cazacu and Barlat [8]
criterion coincides with the yield locus obtained by polycrystalline calculations.

Also, Fig. 4.14 shows a comparison between the yield locus predicted by the
Cazacu and Barlat [8] criterion (solid line) and the Hosford and Allen [24] pre-
dictions (full symbols) for an isotropic aggregate comprised of bcc crystals
deforming solely by {112}〈111〉 twinning. For the isotropic bcc polycrystal, the
ratio rT=rC obtained by Hosford and Allen [24] is rT=rC ¼ 1:28; hence, the value
of the parameter c for bcc polycrystals is: c ¼ 0:92. Comparison between the yield
surface according to the Cazacu and Barlat [8] criterion [Eq. (4.60)] and the
numerical yield points shows an excellent agreement for all stress states. This is
remarkable given that only two data points (i.e., the values of rT, and rC) were used
for identification of the Cazacu and Barlat [8] criterion.

On the basis of atomistic calculations, Vitek et al. [43] showed that in sin-
gle crystal molybdenum, the critical resolved shear stress depends on the orienta-
tion of the maximum resolved shear stress plane and proposed the following
criterion for the onset of slip:

sSchmid þ b s 011ð Þ ¼ s0 ð4:69Þ

Here, sSchmid is the Schmid resolved shear stress (see also Chap. 3), sð0�11Þ is a
non-glide stress (shear stress parallel to the Burgers vectors in the (011) plane), s0 is
a constant threshold value, which is considered to be the same for each slip system
and b is a constant. Furthermore, the same authors calculated the yield surface for
an isotropic aggregate comprised of bcc crystals for which the plastic deformation is
governed by Eq. (4.69) with b ¼ 0:6. Of the twelve {110}〈1�11〉 slip systems, the
ones considered active correspond to the ones which minimize the plastic work [5].

Fig. 4.14 Comparison
between plane-stress yield
surfaces according to the
isotropic Cazacu and Barlat
[8] criterion and
the polycrystalline model
of Hosford and Allen [24] for
isotropic bcc polycrystals
ðrT=rC ¼ 1:28Þ and isotropic
fcc polycrystals
ðrT=rC ¼ 0:78Þ, respectively
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The calculated biaxial yield surface for the isotropic bcc polycrystal is represented
in Fig. 4.15 by symbols. A strong tension–compression asymmetry was
observed: rT=rC ¼ 1:22 to which corresponds a value of c ¼ 1:109 in the Cazacu
and Barlat [8] isotropic criterion [see Eq. (4.60)]. Note the excellent agreement
between the predictions according to the criterion and the polycrystalline simulation
results. The same authors have also reported simulations using the method of
Bishop and Hill [5] in conjunction with the classic Schmid law [i.e., setting b ¼ 0
in Eq. (4.69)]. The resulting yield surface of the randomly oriented bcc polycrystal
is represented in Fig. 4.16. As expected, no strength differential effects are observed

Fig. 4.15 Comparison
between the yield surface for
an isotropic bcc molybdenum
polycrystal obtained with the
Bishop and Hill [5] model in
conjunction with the
single crystal yield criterion
(4.69) with b ¼ 0:6 (after
Vitek et al. [43]) and
the theoretical yield surface
according to the isotropic
Cazacu and Barlat [8]
criterion with c = 1.109 (solid
line)

Fig. 4.16 Comparison
between the yield surface for
an isotropic bcc molybdenum
polycrystal (symbols)
obtained with the Bishop and
Hill [5] model in conjunction
with Schmid criterion at
single crystal level (i.e.,
criterion given by Eq. (4.69)
with b ¼ 0) and the
theoretical yield surface
according to Drucker [15]
criterion with c = 0.288
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for the polycrystal. It is interesting to note that the polycrystalline results are very
well approximated by the Drucker [15] isotropic yield criterion given by Eq. (4.36)
(represented in Fig. 4.16 by a solid line) for c ¼ 0:288. In Fig. 4.16, stresses are
normalized by the uniaxial yield in tension, rT.

4.3.2 Cazacu et al. [9] Isotropic Yield Criterion

Cazacu et al. [9] proposed the following isotropic yield criterion:

F s1; s2; s3ð Þ ¼ s1j j � ks1ð Þa þ s2j j � ks2ð Þa þ s3j j � ks3ð Þa; ð4:70Þ

where si, i = 1, …, 3 are the principal values of the stress deviator. In Eq. (4.70),
the exponent a is considered to be a positive integer, k is a material constant. Note
that this yield function is symmetric in the principal values of the stress deviator
s1; s2; s3, therefore it is isotropic and pressure-insensitive. It is important to note that
for k 6¼ 0, F s1; s2; s3ð Þ 6¼ F r1; r2; r3ð Þ. This is unlike all the classic yield functions
such as von Mises, Tresca, and Hershey–Hosford, which have the same expression
whether these criteria are written in terms of r1; r2; r3 or s1; s2; s3. Furthermore,
since F is an odd function in s1; s2; s3, yielding depends on the sense of loading, and
F �s1;�s2;�s3ð Þ ¼ �F s1; s2; s3ð Þ. As a consequence, the projection of the yield
surface in the octahedral plane has threefold symmetry. The physical significance of
the material parameter k may be revealed from simple uniaxial tests. Indeed,
according to Eq. (4.70), the ratio of tensile to compressive uniaxial yield stress is
given by:

rT
rC

¼
2
3
� 1þ kð Þ

� �a

þ 2 � 1
3
� 1� kð Þ

� �a

2
3
� 1� kð Þ

� �a

þ 2 � 1
3
� 1þ kð Þ

� �a

8>><
>>:

9>>=
>>;

1
a

ð4:71Þ

Hence,

k ¼
1� h

rT
rC

� �

1þ h
rT
rC

� � ; ð4:72Þ

with

h xð Þ ¼ 2a � 2xa

2xð Þa�2


 �1
a ð4:73Þ
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It follows that for a fixed value of the coefficient a, the parameter k is expressible
solely in terms of the ratio rT=rC [see Eqs. (4.72) and (4.73)]. Note that for any
value of a� 1, where a is an integer, if k ¼ 0, there is no difference between the
response in tension–compression. In particular, for k ¼ 0 and a ¼ 2, the criterion
given by Eq. (4.70) reduces to the von Mises yield criterion. Also, from Eq. (4.72),
it follows that for a given value of the exponent a, for the parameter k to be real, the
ratio between the uniaxial yield stresses in tension–compression is bounded,

2

1� a
a � rT

rC
� 2

a� 1
a ð4:74Þ

Specifically,

• for 2

1� a
a � rT=rC � 1 ) �1� k� 0,

• for 1� rT=rC � 2

a� 1
a ) 0� k� 1

Given that the yield function given by Eq. (4.70) is pressure-insensitive, the
yield stress under equibiaxial tension is the absolute value of the yield stress in
simple compression:

rb ¼ rT
2a 1� kð Þa þ 2 1þ kð Þa
2a 1þ kð Þa þ 2 1� kð Þa
� �1

a¼ rC: ð4:75Þ

For thin-sheet materials, for which it is difficult to conduct compression tests to
determine rC, the parameter k should be identified from measurements done in
equibiaxial tensile tests in conjunction with Eq. (4.75).

Since the yield criterion (4.70) depends on the sign of each of the principal
values of the stress deviator s1, s2, and s3, for any biaxial loadings ðr3 ¼ 0Þ,
yielding depends on the location of the stress state with respect to the lines s1 ¼ 0,
s2 ¼ 0, and s3 ¼ 0, respectively. Note that in the biaxial plane r3 ¼ 0, stress states
such that s1 ¼ 0 are on the line of equation r2 ¼ 2r1, stress states for which s2 ¼ 0
are on the line of equation r2 ¼ r1=2 while states for which s3 ¼ 0 are on the line
of equation r2 ¼ �r1 (see Fig. 4.17a). For direct comparison with the von Mises
yield criterion predictions, in the following we deduce and represent the projection
of the yield surface (4.70) corresponding to a ¼ 2.

In the domain Z1 ¼ r1; r2ð Þj � r1 � r2 � r1=2; r1 � 0f g delimited by the lines
of equations s3 ¼ 0 and s2 ¼ 0, and r1 positive (see Fig. 4.17a), we have:
and s3 � 0. Therefore, the yield condition (4.70) writes:

r21 þ
3k2 þ 4kþ 3
3k2 � 2kþ 3

r22 � r1r2 ¼ r2T ð4:76Þ
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Similarly, we obtain:

• In the domain Z2 ¼ r1; r2ð Þj0�r1=2�r2 � 2r1f g

3k2 � 4kþ 3
3k2 � 2kþ 3

r21 þ r22
� �� 3k2 � 10kþ 3

3k2 � 2kþ 3
r1r2 ¼ r2T; ð4:77Þ

• In the domain Z3 ¼ r1; r2ð Þj2r1 �r2 � � r1;r2 � 0f g

3k2 þ 4kþ 3
3k2 � 2kþ 3

r21 þ r22 � r1r2 ¼ r2T; ð4:78Þ

• In the domain Z4 ¼ r1; r2ð Þj � r1 �r2 �r1=2; r1 � 0f g

r21 þ
3k2 � 4kþ 3
3k2 � 2kþ 3

r22 � r1r2 ¼ r2T; ð4:79Þ

• In the domain Z5 ¼ r1; r2ð Þjr1=2�r2 � 2r1 � 0f g

3k2 þ 4kþ 3
3k2 � 2kþ 3

r21 þ r22
� �� 3k2 þ 10kþ 3

3k2 � 2kþ 3
r1r2 ¼ r2T; ð4:80Þ

• In the domain Z6 ¼ r1; r2ð Þj2r1 �r2 � � r1; r2 � 0f g

3k2 � 4kþ 3
3k2 � 2kþ 3

r21 þ r22 � r1r2 ¼ r2T; ð4:81Þ

It is worth noting that if k ¼ 0 each of the above equations [Eqs. (4.76)–(4.81)]
reduces to Eq. (4.22), i.e., the von Mises ellipse in the r1; r2ð Þ plane. However, for

Z2

Z1

Z6Z5

Z4

Z3

(a) (b)

Fig. 4.17 a Representation of the different domains of the yield locus in the biaxial plane ðr3 ¼
0Þ for a material characterized by rT=rb ¼ 1:13 (k = 0.2). b Comparison between the plane-stress
yield loci according to the quadratic form of the Cazacu et al. [9] criterion [see Eq. (4.70)] for
materials characterized by k = 0.2 ðrT=rb ¼ 1:13Þ and k = −0.2 ðrT=rb ¼ 0:88Þ
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k 6¼ 0, the yield function accounts for the asymmetry of the mechanical behavior
between tension–compression, so unlike the projection of the von Mises yield
criterion in the biaxial plane [Eq. (4.22)], the yield curve defined by the
Eqs. (4.76)–(4.81) admits only one reflection plane defined by the line r2 ¼ r1 and
is no longer invariant by the transformation r1; r2ð Þ ! �r1;�r2ð Þ [e.g., compare
the Eq. (4.78) with (4.80)]. In other words, the only symmetry of the yield curve is
dictated by isotropy (invariance to permutations between r1 and r2).

It is also worth noting that h 1=xð Þ ¼ 1=hðxÞ; therefore,

k
rT
rb

� �
¼ �k

rb
rT

� �
: ð4:82Þ

[see Eqs. (4.72) and (4.73)]. As a consequence, the biaxial yield surface cor-
responding to a given value of k is the mirror image with respect to the origin of the
yield surface corresponding to �kð Þ. Although this property holds true irrespective
of the value of the exponent a, to facilitate comparison with the predictions of the
von Mises criterion, in Fig. 4.17b, we show the plane-stress yield loci according to
the isotropic Cazacu et al. [9] criterion with a ¼ 2 for materials characterized by
rT=rb ¼ 1:13 (k = 0.2) and rT=rb ¼ 0:88 (k = −0.2), respectively. It is clearly
seen that a change in the sign of k results in a mirror image of the yield surface
Eq. (4.70) with respect to the origin [see also Eqs. (4.76)–(4.81)].

As an example, in Fig. 4.18 are shown the representation of the plane-stress
yield loci ðr3 ¼ 0Þ according to the quadratic form of Cazacu et al. [9] yield
criterion [i.e., a = 2 in Eq. (4.70)] for materials characterized by rT=rb ¼

ffiffiffi
2

p
, 1.26,

1.13, and 1, respectively. Note that the higher is the ratio between the yield stress in
tension–compression, the greater is the departure from the von Mises ellipse; for the

Fig. 4.18 Plane-stress yield
loci according to the quadratic
form of the Cazacu et al. [9]
criterion [see Eq. (4.70)] for
different values of the ratio
rT=rb between the yield
stress in simple tension and
equibiaxial tension
(rT=rb ¼

ffiffiffi
2

p
, 1.26, 1.13

corresponding to k = 0.2,
k = 0.4, k = 1) in comparison
with the von Mises yield
locus (rT=rb ¼ 1 and k = 0).
Principal stresses are
normalized by the uniaxial
yield stress in tension, rT
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highest admissible rT=rb ratio, which corresponds to k ¼ 1, the biaxial projection
of the yield surface given by Eq. (4.70) is a triangle with rounded corners.

Proposition 4.7 (Convexity of Cazacu et al. [9] criterion)
For any integer a� 1 and for �1� k� 1, the Cazacu et al. [9] yield function

given by Eq. (4.70) is convex.

Proof The yield function F s1; s2; s3ð Þ given by Eq. (4.70) being isotropic, it is
sufficient to prove its convexity for stress states corresponding to: s1 � s2 � s3.
However, due to the fact that F s1; s2; s3ð Þ is an odd function, its expressions are
different depending on the sign of the principal stresses. Hence, in the calculation of

the Hessian matrix, Uij ¼ @2F
@ri@rj

, i, j = 1, …, 3, the following loading scenarios

need to be considered separately: (i) s1 [ 0; s2 � 0; s3\0, and
(ii) s1 [ 0; s2 [ 0; s3\0. It follows that:

(i) For s1 [ 0; s2 � 0; s3\0:

U11 ¼ aða� 1Þ
9

4ð1� kÞasa�2
1 þð1þ kÞa �1ð Þaðsa�2

2 þ sa�2
3 Þ� �

U22 ¼ aða� 1Þ
9

ð1� kÞasa�2
1 þð1þ kÞa �1ð Það4sa�2

2 þ sa�2
3 Þ� �

U33 ¼ aða� 1Þ
9

ð1� kÞasa�2
1 þð1þ kÞa �1ð Þaðsa�2

2 þ 4sa�2
3 Þ� �

U12 ¼ aða� 1Þ
9

�2ð1� kÞasa�2
1 � ð1þ kÞa �1ð Það2sa�2

2 � sa�2
3 Þ� �

U13 ¼ aða� 1Þ
9

�2ð1� kÞasa�2
1 � ð1þ kÞa �1ð Það�sa�2

2 þ 2sa�2
3 Þ� �

U23 ¼ aða� 1Þ
9

ð1� kÞasa�2
1 þð1þ kÞa �1ð Það�2sa�2

2 � 2sa�2
3 Þ� �

ð4:83Þ

Using Eq. (4.83), we obtain that
P3

j¼1 Uij ¼ 0 for any i = 1, …, 3. Thus, the
determinant of U is zero and its principal values are b1, b2, and b3 ¼ 0.
Furthermore,

IU ¼ b1 þ b2 ¼
6 aða� 1Þ

9
1� kð Þasa�2

1 þ 1þ kð Það�1Þaðsa�2
2 þ sa�2

3 Þ� �
IIU ¼ �b1b2 ¼ � a2 a� 1ð Þ2

9
1� kð Þ2a s21

� �a�2 þ 1þ kð Þ2a s22
� �a�2 þ 1� k2

� �ah
s1ð Þa�2 �s2ð Þa�2 þ 3 1� k2

� �a
s1ð Þa�2 �s3ð Þa�2 þ 3 1þ kð Þ2a �s2ð Þa�2 �s3ð Þa�2

i
:

Since s1 [ 0; s2\0; s3\0, it follows that for k 2 �1; 1ð Þ and any integer
a� 1 both IU ¼ b1 þ b2 � 0 and IIU ¼ �b1b2 � 0, i.e., the Hessian is always
positive semi-definite.
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For the case (ii) s1 [ 0; s2 [ 0; s3\0, we have:

U11 ¼ aða� 1Þ
9

ð1� kÞað4sa�2
1 þ sa�2

2 Þþ ð1þ kÞa �1ð Þasa�2
3

� �
U22 ¼ aða� 1Þ

9
ð1� kÞaðsa�2

1 þ 4sa�2
2 Þþ ð1þ kÞa �1ð Þasa�2

3

� �
U33 ¼ aða� 1Þ

9
ð1� kÞaðsa�2

1 þ sa�2
2 Þþ 4ð1þ kÞa �1ð Þasa�2

3

� �
U12 ¼ aða� 1Þ

9
�2ð1� kÞaðsa�2

1 þ sa�2
2 Þþ ð1þ kÞa �1ð Þasa�2

3

� �
U13 ¼ aða� 1Þ

9
ð1� kÞað�2sa�2

1 þ sa�2
2 Þ � 2ð1þ kÞa �1ð Þasa�2

3

� �
U23 ¼ aða� 1Þ

9
ð1� kÞaðsa�2

1 � 2sa�2
2 Þ � 2ð1þ kÞa �1ð Þasa�2

3

� �

ð4:84Þ

so the determinant of U is zero and

IU ¼ 6aða� 1Þ
9

1� kð Þaðsa�2
1 þ sa�2

2 Þþ 1þ kð Það�1Þasa�2
3

� �
IIU ¼� b1b2 ¼ � a2 a� 1ð Þ2

9
	

1� k2
� �a

s22
� �a�2 þ 1� kð Þ2a s22

� �a�2 þ 1� kð Þ2a s1ð Þa�2 s2ð Þa�2
h
þ 3 1þ kð Þ2a s2ð Þa�2 �s3ð Þa�2 þ 3 1þ kð Þ2a s1ð Þa�2 �s3ð Þa�2

i

Since s1 [ 0; s2 [ 0; s3\0, it follows that for k 2 �1; 1ð Þ and any integer
a� 1:

IU � 0 and IIU � 0:

Thus, for any k 2 �1; 1½ � and any integer a� 1, the yield function given by
Eq. (4.70) is convex.

Representation of the Cazacu et al. [9] yield surface in the octahedral plane
For the Cazacu et al. [9] criterion and the von Mises criterion to agree in uniaxial
tension, we express the Cazacu et al. [9] yield condition as:

B s1j j � ks1ð Þa þ s2j j � ks2ð Þa þ s3j j � ks3ð Þa½ �1a ¼ rT; ð4:85Þ

with

B ¼ 3a

2a 1� kð Þa þ 2 1þ kð Þa

 �1

a

: ð4:86Þ
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Note that, for a ¼ 2 and k ¼ 0, B takes the value of
ffiffiffiffiffiffiffiffi
3=2

p
and the criterion

reduces to the von Mises yield criterion. To obtain the intersection of the yield
surface with the octahedral plane, we substitute Eq. (4.13) in Eq. (4.85). As already
mentioned, for k 6¼ 0, the projection of the yield surface has threefold symmetry, so
to determine its shape, we need to determine R cð Þ only in the sector
�p=6� c� p=6. For example, the projection of the yield surface corresponding to
a ¼ 2 is given by:

R cð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rT
3

� �
3ð1þ k2Þ � 2k

3ð1þ k2Þþ 8k sin c cos c� p=6ð Þ

s
; �p=6� c\0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rT
3

� �
3ð1þ k2Þ � 2k

3ð1þ k2Þþ 8k sin c cos cþ p=6ð Þ

s
; 0� c\p=6

8>>>><
>>>>:

ð4:87Þ

Figure 4.19 shows the cross-section in the octahedral plane of the yield surface
(4.70) with a ¼ 2 [i.e., Eq. (4.87)] for materials characterized by rT=rC [ 1 (i.e.,
k[ 0) and rT=rC ¼ 1 (i.e. k ¼ 0, von Mises) and Tresca’s yield surface for
comparison. As the value of k increases, the ratio rT=rC increases, and the Cazacu
et al. [9] yield loci depart drastically from the von Mises circle.

The expression of the isotropic yield criterion given by Eq. (4.70) was inspired
by the shape of the yield loci for isotropic fcc and bcc polycrystals deforming by
slip and twinning reported by Hosford and Allen [24]. As mentioned earlier, these
authors calculated the respective yield loci using an extension of the Bishop and
Hill [5] model and Taylor’s assumption that the plastic strain in each constituent
grain equals the imposed macroscopic strain. In view of comparison with the yield
criterion given by Eq. (4.70), in Cazacu et al. [9], the crystal plasticity yield loci for
isotropic fcc, bcc, and hcp polycrystals were also calculated using the one-site
viscoplastic self-consistent polycrystal (VPSC) model of Lebensohn and Tomé (see
Lebensohn and Tomé [31]; Lebensohn et al. [32]) which assumes a less rigid
interaction between each grain and its surroundings (i.e., each grain is treated as an

Fig. 4.19 Projection of the
quadratic Cazacu et al. [9]
yield surface (Eq. (4.70) with
a = 2) in the octahedral plane
for materials characterized by
k > 0 in comparison with the
von Mises cross-section
(Eq. (4.70) with k = 0 and
a = 2) and Tresca’s
cross-section. Principal
stresses are normalized by the
uniaxial yield stress in
tension, rT
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anisotropic, viscoplastic, ellipsoidal inclusion embedded in a uniform matrix which
has the average constitutive behavior of the polycrystal). First, let us compare the
yield loci obtained using Cazacu et al. [9] criterion Eq. (4.70) with the yield loci for
isotropic fcc polycrystals deforming by slip and {111}〈112〉 twinning calculated
using the VPSC model. The yield condition (4.70) involves two parameters: the
exponent a and the parameter k, which for a fixed value of the parameter a is
expressible solely in terms of the rT=rC ratio [see Eq. (4.72)]. The VPSC model
predicts a ratio of 0.83 between the yield stress in tension–compression; Hosford
and Allen [24] reported a value of 0.78 for the same ratio. Assuming a ¼ 2, we
obtain k ¼ �0:3098. Figure 4.20a, b show the yield stresses (open symbols)
obtained using the VPSC model and the projection of the yield locus predicted by
the criterion for k ¼ �0:3098 (solid line) in the biaxial plane ðr3 ¼ 0Þ and in the
octahedral plane, respectively. It is clearly seen that the isotropic criterion (4.70)
describes very well the polycrystalline results (see Fig. 4.20).

On the same figure are shown the comparison between the yield loci obtained
with the VPSC model for isotropic bcc polycrystals deforming by slip and {112}
〈�1�11〉 twinning (solid symbols) and the yield loci according to the isotropic crite-
rion given by Eq. (4.70) with a ¼ 2 and k ¼ 0:3098 (which correspond to a ratio
between the yield stress in tension–compression which is the reciprocal of the value
for the fcc polycrystals). Figure 4.21a, b show a comparison between the yield loci
obtained using the criterion with a ¼ 3 and k ¼ �0:0645 and the yield loci for
isotropic hcp polycrystals deforming solely by tensile twinning 10�12f g〈10�11〉 and
compressive twinning 11�22f g〈11�2�3〉 calculated using the VPSC model. Again, the
strength differential effect is well captured (for more details see [9]).

Fig. 4.20 Comparison between the VPSC yield locus for isotropic fcc (open symbols) and bcc
(closed symbols) polycrystals deforming by slip and twinning and the predictions of the quadratic
Cazacu et al. [9] criterion (with k = −0.3098 and k = 0.3098, respectively): a in the biaxial plane
ðr3 ¼ 0Þ; b in the octahedral plane. Principal stresses are normalized by the uniaxial yield stress in
tension, rT
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Plastic potential associated with the isotropic form of the Cazacu et al. [9] yield
condition
Assuming associated flow rule, the plastic potential associated with the isotropic
form of Cazacu et al. [9] criterion given by Eq. (4.70) is of the form:

u rð Þ ¼ �r rð Þ¼ B s1j j � ks1ð Þa þ s2j j � ks2ð Þa þ s3j j � ks3ð Þa½ �1a ð4:88Þ

where B is given by Eq. (4.86).

4.4 Application of the Cazacu et al. [9] Yield Criterion
to the Description of Plastic Deformation Under
Torsion

4.4.1 Monotonic Torsion: Analytical Results

Swift [39] reported that specimens made of various isotropic materials with cubic
crystal structure (e.g., stainless steel, aluminum, copper) and different geometries
(solid rods or tubes) elongate in the direction of the axis about which the respective
specimen is being twisted. At the time, Swift [39] attributed the occurrence of these
plastic axial effects to strain hardening. This explanation was later invalidated by
the experiments of Billington (e.g., Billington [2–4]). Hill [21] hypothesized that
for initially isotropic materials the cause of this phenomenon is grains reorientation
along preferred directions leading to texture development. This remained the

Fig. 4.21 Comparison between the VPSC yield locus for randomly oriented hcp polycrystals
deforming solely by twinning (open symbols) and the predictions of Cazacu et al. [9] criterion
[a = 3 and k = −0.0645 in Eq. (4.70)]: a in the biaxial plane; b in the octahedral plane
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prevalent view until very recently. In most models, whether phenomenological
(e.g., [6, 13, 14]) or crystal plasticity-based (e.g., [16, 34, 41]) plastic anisotropy is
considered a precondition for observing/predicting plastic axial deformation
occurring in monotonic torsion.

As concerns the occurrence of plastic axial deformation during combined ten-
sion–torsion loading, one of the earliest experimental studies were conducted by
Taylor and Quinney [40]. This phenomenon has received considerable attention in
the early 1960s and renewed interest in the 1990s (e.g., experimental studies
reported in [18]).

Recently, in Cazacu et al. [10] and Revil-Baudard et al. [37], analytical results
and numerical simulations of the torsional response of isotropic materials conducted
with an elastic/plastic model with yielding described by the isotropic and quadratic
form (a = 2) of Cazacu et al. [9] criterion [see Eq. (4.70)] and isotropic hardening
were reported, and new interpretations and explanations of this phenomenon were
provided. The set of constitutive equations are summarized below. The usual
decomposition of the total rate of deformation d into an elastic part and a plastic
part, dp was considered. The elastic response was described as:

_r ¼ Ce : ðd� dpÞ; ð4:89Þ

where _r is the Green-Naghdi rate of the Cauchy stress tensor r (e.g., see [17, 35]),
Ce is the fourth-order stiffness tensor. The reasons for using the Green-Naghdi rate
were twofold. First, it has been proved to have superior performance in simple shear
(see Hughes [25]). Secondly, the Green-Naghdi rate is the objective rate used in the
commercial F.E. code ABAQUS where the elastic/plastic model with yielding
described by the isotropic form of the Cazacu et al. [9] yield criterion given by
Eq. (4.70) was implemented. Nevertheless, the choice of objective stress rate is not
significant for isotropic hardening (see Hughes [25]), which is the case treated in
Cazacu et al. [10] and Revil-Baudard et al. [37]. Linear isotropic elasticity was
assumed, i.e.,

Ce
ijkl ¼ 2G dikdjl � K � 2

3
G

� �
dijdkl ð4:90Þ

with i, j, k, l = 1, …, 3, dij being the Kronecker unit delta tensor while G and K are
the shear and bulk moduli, respectively. As mentioned, the plastic potential is given
by Eq. (4.88), so

dp ¼ _k
@�r
@r

ð4:91Þ

where _k is the plastic multiplier. Isotropic hardening dictates that

�rðr;�epÞ ¼ Yð�epÞ ð4:92Þ
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where the equivalent plastic strain �ep is the work-equivalent measure of the effective
stress �r associated with the criterion, i.e.,

�ep ¼ r : dp

�r
ð4:93Þ

A power-law-type hardening law was considered, i.e.,

Y �epð Þ ¼ a e0 þ�epð Þm ð4:94Þ

where a, e0, and m are material parameters. In order to gain understanding of the
phenomenon, these authors first studied the case of combined axial-torsion load-
ings, for which analytical results can be obtained.

Analytical Results
Consider a rod, loaded axially by a force F and sheared due to a given twist

applied at its end. For simplicity, the cross-section is assumed to be circular with
initial radius denoted R0. In a cylindrical coordinate system ðr; h; zÞ, the Cauchy
stress tensor is given by:

r ¼
0 0 0
0 0 s rð Þ
0 s rð Þ r

2
4

3
5
r;h;z

ð4:95Þ

The principal values of the stress deviator, not necessarily ordered, are:

s1 ¼ r
6
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p
; s2 ¼ � r

3
; s3 ¼ r

6
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p
ð4:96Þ

while the transformation matrix from the cylindrical coordinate system to the
Cartesian system associated with the principal-stress directions is:

Q ¼
0 1 0

a=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
0 b=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p
2
4

3
5 ð4:97Þ

where, a ¼ 2s

r� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p and b ¼ 2s

rþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p .

The material being isotropic, the principal directions of the stress r are also
principal directions of the plastic strain-rate tensor, dp. Let us denote by d1, d2, d3
the principal values of dp. Using the associated flow rule [Eq. (4.91)] in conjunction
with the quadratic form of the yield criterion [i.e., the parameter a = 2 in
Eq. (4.88)], it follows that the eigenvalues di, i = 1, …, 3, are:
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di ¼ _k
9

2 3k2 � 2k þ 3ð ÞrT si 1þ k2
� �� 2k sij j þ 2k

3
s1j j þ s2j j þ s3j jð Þ


 �
ð4:98Þ

Making use of Eq. (4.91), dp is expressed in the cylindrical coordinate system
as:

dp ¼

d2 0 0

0
a2

a2 þ 1
d1 þ b2

b2 þ 1
d3

� �
a

a2 þ 1
d1 þ b

b2 þ 1
d3

� �

0
a

a2 þ 1
d1 þ b

b2 þ 1
d3

� �
d1

a2 þ 1
þ d3

b2 þ 1

2
66664

3
77775

r;h;zð Þ

ð4:99Þ

Thus, in order to calculate the axial plastic strain along the rod axis, dpzz, one
needs to estimate the eigenvalues d1 and d3. For tension–torsion loading, r[ 0, so:
s1 [ 0, s2\0 and s3\0. Further substituting Eq. (4.96) into Eqs. (4.98)–(4.99),
one obtains the expressions of the eigenvalues of dp in terms of the applied com-
bined torque-axial loading r; sð Þ as:

d1 ¼ 9 _k
2 3k2 � 2kþ 3ð ÞrT 3k2 þ 10kþ 3

� � r
18

� 3k2 þ 2kþ 3
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4s2
p

6

" #

ð4:100Þ

d2 ¼ 9 _k
2 3k2 � 2kþ 3ð ÞrT � 3k2 þ 4kþ 3

� � r
9

þ 2k
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p
 �
ð4:101Þ

d3 ¼ 3 _k
4rT

r
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4s2

p� �
: ð4:102Þ

It follows that the axial plastic strain, dpzz, is:

dpzz ¼
9 k

:

2 3k2 � 2k þ 3ð ÞrT r
3k2 þ 10k þ 3

18 a2 + 1ð Þ +
3k2 � 2k þ 3

18 b2 + 1
� �

" #(

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + 4s2

p
� 3k2 þ 2k þ 3

6 a2 + 1ð Þ +
3k2 � 2k þ 3

6 b2 + 1
� �

" #)
;

ð4:103Þ

with a and b depending only on the ratio between the applied axial and shear
stresses, r/s [see Eq. (4.97)]. In the following, we present predictions of the plastic
deformation under pure shear and free-end torsion according to the model.
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4.4.2 F.E. Simulations of Monotonic Free-End Torsion

The analytical calculations presented in the previous subsection have shown that if
k 6¼ 0, axial plastic deformation occurs, i.e., dpzz 6¼ 0. Let’s first note that under pure
shear (i.e., axial stress r ¼ 0), we have a ¼ �1 and b ¼ 1 [see Eq. (4.97)], so
Eq. (4.103) becomes:

dpzz ¼
d1 þ d3

2
¼ � d2

2
¼ � _k

6k
3k2 � 2kþ 3ð Þ

s
rT

ð4:104Þ

Thus, if k 6¼ 0, axial plastic deformation under pure shear occurs. Furthermore,

sgn dpzz
� � ¼ �sgn kð Þ; sgn dprr

� � ¼ �sgn dpzz
� � ð4:105Þ

This means that according to the model, under pure shear:

(i) For materials characterized by rT\rC (k < 0) lengthening of the specimen
occurs dpzz [ 0

� �
, while the radial strain is negative (contraction);

(ii) For materials characterized by rT [ rC (k > 0) shortening of the specimen
takes place, i.e., dpzz\0

� �
while the radial strain is positive (expansion).

(iii) For rT ¼ rC, k ¼ 0, so: dpzz ¼ 0 [see Eq. (4.104)] and the isotropic form of
the Cazacu et al. [9] criterion with a ¼ 2 coincides with the von Mises
criterion [see also Eq. (4.70)]. The same conclusions hold even for a
rigid-plastic material with isotropic hardening, since the plastic axial strains
result from k 6¼ 0.

Next, F.E. simulations are presented for boundary conditions close to those
achieved experimentally in free-end torsion. Such calculations are useful to verify
the predictions of the model, namely the correlation between the sign of the
parameter k and the occurrence of either lengthening or shortening in the axial
direction with respect to the direction in which the specimen is twisted. The sim-
ulations are carried out using the ABAQUS user subroutine UMAT that was
developed for the implementation of the isotropic elastic-plastic model with yielding
described by the isotropic form of the Cazacu et al. [9] yield criterion and isotropic
hardening [see Eqs. (4.88) and (4.94)]. A fully implicit integration algorithm (see
Sect. 4.2.1 of Chap. 2) was used for integration of the governing equations.

A simple test geometry consisting of a circular tube of 1.93-mm inner radius and
2.07-mm outer radius was considered. A wall thickness of 0.14 mm and specimen
height, L0, of 1 mm were assumed. The F.E. mesh consisted of 10 layers of 43
hexahedral elements with reduced integration (ABAQUS C3D8R) as shown in
Fig. 4.22. Only one element was considered in the thickness of the tube such allow
comparison with polycrystalline simulations where only simple shear can be
imposed (see Eq. (4.108) later on). The rationale for carrying out the crystal
plasticity simulations was to verify the trends predicted by the model. The lower
nodes ðz ¼ 0Þ were pinned, i.e., no displacement was allowed, while the upper
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nodes ðz ¼ L0Þ were tied to a rigid tool. Torsion was imposed by the rotation of this
tool around the tube axis. The use of a rigid tool ensured that all the upper nodes
experience the same boundary conditions. Note that free displacement along the
tube axis was allowed, but all the other displacements (i.e., in-plane displacements)
and rotations were constrained. In the F.E. calculations, only the parameter k [see
Eq. (4.72)] was varied in order to investigate its effect on the torsional response. All
the other input parameters were kept the same, namely the elastic properties
(E=rT ¼ 300, m ¼ 0:3), the homogeneity parameter a (a = 2) which is involved in
the expression of the yield criterion, and the isotropic hardening coefficients
[a=rT ¼ 1:8; e0 ¼ 0:0027; m ¼ 0:1 in Eq. (4.94)].

The usual definitions (see Toth et al. [41]; Duchêne et al. [16]) of the axial and
shear strains were used, namely:

eaxial ¼ ln 1þ u
L0

� �
and c ¼ Ur

L0
; ð4:106Þ

where r is the current radius, L0 is the initial length, u is the axial displacement, and
U is the twist angle.

In all the F.E. simulations, equal-sized time increments D t ¼ 10�3 s were con-
sidered. Between five and six iterations per increment were necessary for conver-
gence in the return mapping algorithm, the tolerance in satisfying the yield criterion
was set to 10−7 (0.1 Pa). First, simulations were carried out assuming a constant
value of the parameter k such as to allow verification of the general trends predicted
by the analytical results [see Eq. (4.104)]. As an example, in Fig. 4.23 is shown the
axial strain as a function of the torsional shear strain according to the model for
isotropic materials characterized by k ¼ �0:9, k ¼ 0, and k ¼ 0:9, respectively.
For the material with k ¼ 0, which is a von Mises material, no length changes take
place. For k different from zero, a clear correlation between the sign of k and the
occurrence of either lengthening or shortening is observed. Indeed, for k ¼ �0:9,
lengthening of the specimen takes place, while for a positive value of k ðk ¼ 0:9Þ,
shortening occurs.

Fig. 4.22 Sample geometry and dimensions (mm) and finite-element mesh for free-end
torsion (after Cazacu et al. [10])
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In both the analytical and F.E. simulations presented so far, the internal variable
k was considered constant. However, in some engineering materials due to
microstructural changes that occur during loading, the parameter k may not be
constant. As an example, the torsional response is also examined for the case when
the parameter k varies with the equivalent plastic strain according to the following
law:

kð�epÞ ¼ b
1� exp(�ep � �e1Þ=�e2 ð4:107Þ

with b = 0.466, �e1 ¼ 0:0767 and �e2 ¼ 0:0067 (see Fig. 4.24a). Such an evolution
law corresponds to a material that initially has the compressive yield stress lower
than its tensile yield stress (k ¼ 0:46).

As the material deforms further, k tends toward zero (same yield in tension–
compression). Such an evolution may describe materials for which twinning satu-
rates at a certain level of accumulated plastic strain (see for example, data on pure
Mg of Kelley and Hosford [28]). It is very interesting to note that according to
Eq. (4.107) k is positive, the F.E. simulations show that continuous shortening of
the specimen occurs. Yet, since k tends toward zero, the axial effects saturate, hence
the horizontal asymptote of the axial strain versus shear strain curve (see
Fig. 4.24b). In summary, the analytical solution of the simplified boundary-value

Fig. 4.23 F.E. axial strain versus shear strain c for materials characterized by different values of k
according to an elastic/plastic model based on yielding according to the quadratic form of the
Cazacu et al. [9] criterion (Eq. (4.70) with a = 2) for k = −0.9 and k = 0.9, respectively, in
comparison with the response of a von Mises material (k = 0) (after Cazacu et al. [10])
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problem as well as the F.E. results show that Swift effects during monotonic tor-
sional loading of isotropic materials are related to the sign of the scalar internal
variable k. A nonzero value of k corresponds to a slight tension–compression
asymmetry of the yield surface (see for example Fig. 4.19 for the representation of
such yield surfaces in the octahedral plane).

Comparison with the predictions of plastic deformation of an isotropic hexagonal
polycrystal obtained with a self-consistent crystal plasticity model
As already mentioned in Cazacu et al. [10], the VPSC polycrystal model and VPSC
code (version 6) was also used to simulate the simple shear response of an isotropic
hcp polycrystal consisting of 1000 randomly oriented grains. It was assumed that
crystallographic slip occurs on prismatic 1�100f g 〈11�20〉 and pyramidal 〈c+a〉 slip
systems (see also Chap. 3 for the illustration of these crystallographic planes and
systems).

With VPSC, torsion conditions cannot be imposed. A similar boundary-value
problem, corresponding to simple shear needs to be considered. Thus, the velocity
gradient imposed in the local Cartesian coordinate reference system was:

L ¼
0 0 0
0 0 _c
0 0 0

2
4

3
5
ðx;y;zÞ

ð4:108Þ

where z corresponds to the tube axis. The calculations were terminated when the
shear strain reached the value of c ¼ 1.

For this material, the parameters involved in the elastic/plastic model [see
Eq. (4.91) and the hardening law given by Eq. (4.94)] were determined based on
virtual experiments using VPSC. Specifically, using the stress–strain curve in
uniaxial tension calculated with the VPSC model, Eq. (4.94) was approximated, the
numerical values obtained being: a ¼ 531:8MPa, e0 ¼ 0:1 and m = 0.456. For an
equivalent plastic strain of 0.5, the VPSC model predicts a tensile flow stress, rT, of

Fig. 4.24 a Evolution of the internal variable k with the plastic strain; b axial strain versus shear
strain c for a material with evolving microstructure according to Eq. (4.107) (after Cazacu et al.
[10])
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415.8 MPa while the compressive flow stress is rC ¼ 452:2 MPa. Thus, for this
material the tensile flow stress is slightly smaller than the compressive flow stress,
the tension–compression asymmetry ratio being 1.09. For a = 2, we obtain
k = −0.128 [see Eq. (4.72)]. Next, F.E. simulations were carried out. The geometry
and F.E. mesh for the specimen is that shown in Fig. 4.22. With only one element
in the wall thickness, the velocity gradient is close to that imposed in the VPSC
simulation. Since the boundary conditions are similar, simulations results can be
compared (see Fig. 4.25). Note that both simulations show continuous lengthening
of the specimens and the same overall trends.

It is worth noting that even a very slight tension–compression asymmetry ratio
ðrT=rC ¼ 0:92Þ may contribute to the occurrence of Swift effects. Although the
example considered is for a model material (hcp metals are generally strongly
textured), the simulation results presented are still useful because they reveal that
the tension–compression asymmetry in the plastic flow induces axial effects even in
an untextured material. Furthermore, these results demonstrate that in order to
capture the particularities of the large strain torsional response of hexagonal
materials, it is critical to account for both the anisotropy and the tension–com-
pression asymmetry of the plastic flow.

Fig. 4.25 Axial strain versus shear strain for an untextured hcp polycrystal: comparison between
the predictions obtained using the self-consistent viscoplastic crystal plasticity model VPSC
(symbols) and F.E simulation using the quadratic isotropic Cazacu et al. [9] criterion (Eq. (4.70)
with k = −0.128) (after Cazacu et al. [10])
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4.4.3 Application to Commercially Pure Al

The simulations presented in the previous section concern idealized materials. The
specimen geometry and F.E. element mesh were chosen such as to ensure that
similar boundary conditions are imposed in the analytical, VPSC, and F.E. simu-
lations. In this section, F.E. simulations using Cazacu et al. [9] yield criterion
[Eq. (4.91) and the hardening law given by Eq. (4.94)] are performed and com-
pared to the experimental free-end torsion response of a commercially pure Al
(99.26%) reported by Billington [2–4]. For this material, both uniaxial tension–
compression stress–strain curves were reported. Using the data, the parameter k was
determined for several levels of accumulated plastic strain. The corresponding
biaxial yield surfaces according to the Cazacu et al. [9] yield criterion (Eq. (4.91)
with a = 2) along with the experimental data (symbols) are shown in Fig. 4.26.

Next, the evolution of the material parameter k with plastic strain in the interval
�ep ¼ 0:05 to �ep ¼ 0:3 was approximated by the following equation:

kð�epÞ ¼ a1�e
p þ b1ð Þ 1� exp �c1�e

pð Þð Þþ d1 exp �c1�e
pð Þ; ð4:109Þ

with a1 ¼ �23:51, b1 ¼ 18:50, c1 ¼ 0:0458, and d1 ¼ �0:161, while for strains
larger than �ep ¼ 0:3, k was considered constant. This was done to eliminate any
inaccuracies that may arise when extrapolating uniaxial data. The parameters

Fig. 4.26 Comparison between the theoretical yield surfaces according to the quadratic Cazacu
et al. [9] isotropic criterion and data (symbols) for a commercially pure Al alloy. Data from
Billington [3] (after Cazacu et al. [10])
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involved in the isotropic hardening law were estimated based on the uniaxial tensile
stress–strain curve, the numerical value being a ¼ 264:44MPa, e0 ¼ 0:039 and
m = 0.413 [see Eq. (4.94)] while the Young modulus and the Poisson coefficient
were assumed to be E = 70 GPa and t ¼ 0:3, respectively. The geometry of the
specimen used in the free-end torsional experiments reported by Billington was
originally proposed by Nicholas [36]. The sample dimensions (in mm) are shown in
Fig. 4.27 (the length of the minimal section zone is 25.4 mm, the inner radius and
the outer radius are, respectively, 3.18 and 6.36 mm; and the wall of the tubular
specimen is 3.18 mm thick). The initial F.E. mesh used in the calculations consisted
of 6040 hexahedral elements with reduced integration (ABAQUS C3D8R). The
initial minimal section was meshed with 26 layers of elements and four elements
were used along the wall thickness (see also Fig. 4.27).

Figure 4.28 shows a comparison between the experimental results reported by
Billington [3] and the numerical predictions using the model. Beyond �ep ¼ 0:3, the
internal variable k was considered constant; hence, the model predicts saturation.
However, the experimental trends are very well captured and the agreement
between theoretical and experimental results for a shear strain below 0.3 is
excellent.

Fig. 4.27 Torsion specimen geometry and dimensions (mm) and F.E. mesh used for the free-end
torsion test on an Al alloy
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4.5 Cyclic Torsional Loading

In the previous section, it was shown that an isotropic elastic/plastic model
involving the isotropic Cazacu et al. [9] yield function in conjunction with isotropic
hardening predicts the occurrence of axial effects during monotonic free-end tor-
sion. Lengthening or shortening of the specimen was correlated with the sign of the
parameter k. The analytic results presented in Sect. 4.4.1 indicate that for mono-
tonic shearing under constant tensile loading (axial stress r[ 0 and r constant),
irrespective of the material (i.e. any value of the parameter k), the sign of the axial
strain, dpzz, that develops, depends on the ratio between the applied shear and axial
stress [see Eq. (4.103)]. It is important to note that even in a von Mises material,
axial effects ðdpzz 6¼ 0Þ may occur. For combined shear-compression loading with
axial stress r\0 and r constant, in a similar manner, it can be shown that

dpzz ¼
9 _k

2 3k2 � 2kþ 3ð ÞrT r
3k2 � 10kþ 3
18 a2 þ 1ð Þ þ 3k2 þ 2kþ 3

18 b2 þ 1
� �

" #(

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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Fig. 4.28 Variation of the axial strain with the shear strain during free-end torsion of a
commercially pure Al: comparison between experimental data and the numerical predictions
obtained with the quadratic isotropic Cazacu et al. [9] criterion [Eq. (4.88) with k evolving
according to Eq. (4.109)] (after Cazacu et al. [10])
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In conclusion, the analytical calculations show that there exists a specific value
of the axial load, for which axial plastic strains do not develop.

As concerns the accumulation of axial plastic strains from cycle to cycle under
combined axial-torsional loadings, Cazacu et al. [11] provided a new explanation of
this phenomenon. Note that for cyclic torsion under constant axial stress, an iso-
tropic material with a slight difference between uniaxial yield in compression and
tension may accumulate axial strains from cycle to cycle. This can be clearly seen
from the shape of the yield locus in the biaxial loading plane (axial stress-shear
stress plane). As an example, in Fig. 4.29 is shown the projection onto the
ðr11; r12Þ plane of the yield surface corresponding to k = −0.4 ðrT=rC ¼ 0:79Þ and
a = 2. Note that in pure shear ðr11 ¼ 0Þ, the normal to the yield surface (i.e., the
plastic strain-rate vector) has an axial component. This explains qualitatively the
reason for cumulative Swift effects. Since for cycling loading analytical calculations
become intractable, numerical simulations were conducted by Cazacu et al. [11].
The results of this study are presented in the following.

Prediction of plastic deformation under cyclic loadings at constant strain amplitude
A simple specimen geometry consisting of a circular tube of 6.35-mm inner radius
and 7.62-mm outer radius was considered. A wall thickness of 1.27 mm and initial
specimen length, L0, of 10 mm were assumed. The F.E. mesh consisted of 15 layers
of 264 hexahedral elements with reduced integration (ABAQUS C3D8R). Cyclic
torsion was imposed by the rotation of this tool around the tube. Note that free
displacement along the tube axis was allowed but all the other displacements (i.e.,
in-plane displacements) and rotations were constrained. In the F.E. calculations,
only the parameter k was varied in order to investigate its effect on the predicted
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Fig. 4.29 Representation in
the shear-normal stress plane
of the yield locus according to
the isotropic Cazacu et al. [9]
yield criterion (Eq. (4.70)
with a = 2 and k = −0.4 for
which rT=rC ¼ 0:79). Note
that in pure shear ðr11 ¼ 0Þ,
the normal to the yield surface
has a tangential component
i.e. axial plastic strain develop
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response. Specifically, three materials were considered: a material with k = 0 (von
Mises material, same uniaxial yield in tension–compression), one with k = 0.4
(uniaxial yield in tension larger than in compression), and another one characterized
by k = −0.4 (uniaxial yield in tension smaller than in compression). All the other
properties were kept the same, namely the elastic properties (E=rT ¼ 300,
m ¼ 0:3), the homogeneity parameter a (a = 2) which is involved in the expression
of the yield criterion, and the isotropic hardening coefficients [a=rT ¼ 1:8;
e0 ¼ 0:0027; m = 0.1 in Eq. (4.94)].

Cyclic torsion tests (axial stress r ¼ 0)
We begin by presenting the results for cyclic torsion at constant strain amplitude.
Figure 4.30 shows the predicted axial strain as a function of the number of cycles.

Note that for the material characterized by k ¼ 0, which is a von Mises material,
no axial effects occur. For k different from zero, accumulation of axial plastic strain
during loading is observed. It is very interesting to note that depending on the ratio
between the uniaxial yield stresses in tension–compression, the specimen either
keeps lengthening (k ¼ �0:4, which corresponds to rT=rC ¼ 0:79) or shortening
(k ¼ 0:4, which corresponds to rT=rC ¼ 1:26) with increasing number of cycles.
However, irrespective of the sign of the parameter k, the rate at which axial strains
accumulate is continuously decreasing, the incremental axial strain tends to zero
within the first few cycles (see Fig. 4.31).

Fig. 4.30 Axial strain versus number of cycles for cyclic torsion under strain control at constant
strain amplitude (torsional rotation between constant Umax and �Umax is applied) according to the
Cazacu et al. [9] criterion and power-law isotropic hardening for materials characterized by
k = −0.4 ðrT=rC ¼ 0:79Þ, k = 0.4 ðrT=rC ¼ 1:26Þ and k = 0 (von Mises material, rT ¼ rC)
(after Cazacu et al. [11])
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Prediction of plastic deformation under cyclic loadings at constant axial stress
The loading imposed is depicted in Fig. 4.32. First, an axial load F is applied and
the axial strain is monitored. Next, the axial load is maintained constant and cyclic
torsional loading under strain control (constant total strain amplitude) is applied. To
achieve constant total shear strain amplitude, the torsional rotation sinusoidally
varies between Umax and �Umax (see Eq. (4.106) for the definition of the twist
angle). The maximum applied load, Fmax, was chosen such that the imposed axial
stress was less than the yield limit of any given material. The main objective was to
investigate the accumulation of axial plastic strain in the second phase of the test,
specifically to analyze the influence of the value of the applied constant axial stress,
Fmax, on the rate at which the axial strains accumulate.

Cyclic Swift effects in a von Mises material ðrT ¼ rC; k = 0)
We begin by presenting simulation results for a von Mises material (k = 0). The
maximum levels of the axial load applied in the first phase of the numerical tests
were chosen such that the material does not reach yielding under uniaxial loading.
The initial yield for the material is 1 MPa while the numerical values for the
parameters involved in the hardening law given by Eq. (4.94) are kept the same as
in the simulations at r ¼ 0. Figures 4.33 and 4.34 show results of simulations of
cyclic torsion under constant axial stress r ¼ 0 (no axial load), r ¼ 0:5MPa
(tensile load), and r ¼ �0:5MPa (compressive load), respectively. Note the
occurrence of accumulated plastic elongation under constant tensile axial stress and
plastic axial contraction under constant compressive load. Indeed, according to

Fig. 4.31 Rate of axial plastic strain versus the number of cycles in cyclic torsion under strain
control at constant strain amplitude (torsional rotation between constant Umax and �Umax is
applied) predicted by the isotropic Cazacu et al. [9] criterion in conjunction with power-law
isotropic hardening for materials characterized by k = −0.4 ðrT=rC ¼ 0:79Þ, k = 0.4
ðrT=rC ¼ 1:26Þ, and k = 0 (von Mises material, rT ¼ rC) (after Cazacu et al. [11])
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Fig. 4.32 Loading path imposed in the test: first, an axial load F is applied, next the load is kept
constant ðF ¼ FmaxÞ and strain control cyclic torsion between constant cmax and �cmax is applied

Fig. 4.33 Axial strain versus number of cycles under strain control cyclic torsion between
constant cmax and �cmax at constant axial stress, r ¼ 0, 0.5 MPa, and −0.5 MPa, respectively, for
a von Mises material (rT ¼ rC, so k = 0) and isotropic power-law hardening. Note that under
constant tensile axial stress, plastic elongation occurs while under constant compressive axial
stress plastic contraction takes place (after Cazacu et al. [11])
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Eq. (4.103) under constant tensile axial stress r[ 0, axial plastic strain develops,
i.e., dpzz [ 0, while for cyclic torsion under constant compressive axial stress, i.e.,
r\0, we obtain dpzz\0. Thus, the sign of the constant axial stress determines the
sign of the axial strain that develops. However, the absolute value of the axial strain
is the same, if the axial stress has the same absolute value (see Fig. 4.33 and
Eq. (4.103), respectively).

Moreover, the rate of axial plastic strain is the same if the axial stress r has the
same absolute value (see Fig. 4.34).

Cyclic Torsion in materials with tension-compression asymmetry (k 6¼ 0)
Next, we present F.E. simulation results for a material with uniaxial yield in tension less
than its uniaxial yield in compression ðrT=rC ¼ 0:79Þ corresponding to k ¼ �0:4 in
Eq. (4.88). Results for cyclic torsion without axial preload r ¼ 0, cyclic torsion
under constant compressive axial stress (r = −0.2 MPa, and r = −0.8 MPa), and
constant tensile axial stress (r = 0.2 MPa and r = 0.8 MPa), respectively, are
presented in Figs. 4.35 and 4.36. It is very interesting to note that if the constant axial
stress is positive, i.e., r > 0 (tension), then plastic lengthening occurs, and the axial
strain keeps accumulating with each cycle. The material is strongly deformed as
compared to the case of cyclic torsion under zero axial load (r = 0).

Indeed, the axial strain after 30 cycles reaches 2.1, 3.5, and 8.7% at r = 0, 0.2,
and 0.8 MPa, respectively. Comparison of the respective axial strain-rates is shown
in Fig. 4.36. However, if the constant applied axial stress is compressive, i.e.,
r < 0, accumulation of axial strain may be eliminated, or the axial strain may
change sign. For example, for r = −0.2 MPa, the axial strain after 30 cycles is only

Fig. 4.34 Rate of axial plastic strain under strain control cyclic torsion between constant cmax and
�cmax at constant axial stress, r = 0, 0.5 MPa, and −0.5 MPa, respectively, for a von Mises
material (rT ¼ rC, so k = 0) and isotropic power-law hardening. Note that the rate of axial plastic
strain is the same if the axial stress r has the same absolute value (after Cazacu et al. [11])
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Fig. 4.35 Axial strain versus number of cycles under strain control cyclic torsion between
constant cmax and �cmax at constant axial stress, r = −0.8, −0.2, 0 (no axial load), 0.2 and
0.8 MPa, respectively, according to the Cazacu et al. [9] criterion and power-law isotropic
hardening for a material with uniaxial yield in tension less than in compression [rT=rC ¼ 0:79,
k = −0.4 in Eq. (4.88)]. Note the very strong influence of the sign of the constant axial stress on
the sign of the axial strains (after Cazacu et al. [11])

Fig. 4.36 Rate of axial plastic strain under strain control cyclic torsion between constant cmax and
�cmax at constant axial stress r = −0.8, −0.2, 0 (no axial load), 0.2 and 0.8 MPa according to
Cazacu et al. [9] criterion and power-law isotropic hardening for a material with uniaxial yield
stress in tension greater than in compression (rT=rC ¼ 0:79, k = −0.4) (after Cazacu et al. [11])
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0.5%, thus much reduced as compared to cyclic torsion under zero load, while in
the case when r = −0.8 MPa, the axial strain is of opposite sign and the total axial
strain accumulated in 30 cycles is −3.2%. These trends are also evident by
examining the analytical results (see Eq. (4.103), respectively) for k = −0.4 and the
fixed values of r shown in Fig. 4.36.

On the other hand, for the material with uniaxial yield stress in tension larger
than in compression, i.e., k = 0.4 ðrT=rC ¼ 1:26Þ, if r < 0 (compression) the rate
at which axial strains accumulate is faster than in the case when r = 0 (no axial
load). Furthermore, the specimen is shortening (see Fig. 4.36). The axial strain after
30 cycles attains, respectively, −1.6, −2.9, and −6.5% for r = 0, −0.2, and
−0.8 MPa, respectively. However, if the constant axial stress r is positive (tension),
axial effects may be quasi-eliminated or the axial strain may change signs. For
example for r = 0.8 MPa, the axial strain after 30 cycles is of 4.7% (see Figs. 4.37
and 4.38).

Note the strong influence of the sign and value of the imposed constant axial
stress r: the rate is faster under constant compressive axial stress (r < 0) than when
no axial load is imposed (r = 0) while under constant tensile stress r > 0, the rate
at which axial strains accumulate is much slower; the sign of axial plastic strains
can be reversed or axial effects can be quasi-eliminated.

Fig. 4.37 Axial strain versus number of cycles under strain control cyclic torsion between
constant cmax and �cmax at constant axial stress, r = −0.8, −0.2, 0 (no axial load), 0.2 and
0.8 MPa, respectively, according to Cazacu et al. [9] criterion and power-law isotropic hardening
for a material with uniaxial yield stress in tension smaller than in compression
(rT=rC ¼ 1:26� k ¼ 0:4) (after Cazacu et al. [11])
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Prediction of plastic deformation under high number of cyclic shear loadings at
constant strain amplitude
The F.E. results presented show that a slight difference between the uniaxial yield
stresses in simple tension–compression leads to cyclic Swift effects in isotropic
metals subjected to low-cycle loading under strain control. Next, it is examined the
response for a large number of cycles (1000 cycles) under strain control simple
shear cycling. The constant shear strain amplitude applied is C ¼ 2 e12 ¼ 4	 10�3.
Simulations were conducted for materials which have only a very slight tension–
compression asymmetry, namely rT=rC ¼ 0:94, which corresponds to k = −0.1
and rT=rC ¼ 1:07, which corresponds to k = 0.1. It is supposed that in uniaxial
tension the two materials have the yield stress, ðrTÞ and hardening behavior,
described by an isotropic Voce-type hardening law, i.e.,

Y �epð Þ ¼ M � N expð��ep=~e0Þ ð4:111Þ

with M = 500 MPa, N = 400 MPa, while the normalization constant ~e0 is set to
0.1.

Since the two materials studied have identical tensile behavior, any differences in
response are due solely to the differences in the ratio rT=rC (see Fig. 4.39).

The evolution of the shear stress and axial strain as a function of the number of
cycles is shown in Fig. 4.40.

Because hardening is isotropic, the stress saturates within a few cycles.
However, the axial plastic strain continues to accumulate even after 1000 cycles.

Fig. 4.38 Rate of axial plastic strain under strain control cyclic torsion between constant cmax and
�cmax at constant axial stress r = −0.8, −0.2, 0 (no axial load), 0.2, and 0.8 MPa, respectively,
according to Cazacu et al. [9] criterion and power-law isotropic hardening for a material with
uniaxial yield stress in tension less than in compression (rT=rC ¼ 1:26, i.e., k = 0.4) (after Cazacu
et al. [11])

196 4 Yield Criteria for Isotropic Polycrystals



The ratio between the uniaxial yield stresses in tension–compression of the material
dictates whether permanent shortening or lengthening of the specimen occurs. In
summary, the key issue investigated by Cazacu et al. [10, 11] is whether sources
other than texture-induced anisotropy may cause Swift effects under monotonic and

Fig. 4.39 Representation in
the shear-normal stress plane
of the Cazacu et al. [9] yield
locus for materials with the
same yield stress in tension
but different yield stresses in
compression, characterized by
k = −0.1 ðrT=rC ¼ 0:94Þ and
k = 0.1 ðrT=rC ¼ 1:07Þ,
respectively (after Cazacu
et al. [11])

Fig. 4.40 a Evolution of the
shear stress versus number of
cycles and b evolution of the
axial plastic strain for strain
control cyclic shearing at
constant strain amplitude
C = 4 	 10−3 according to
Cazacu et al. [9] criterion and
Voce-type isotropic hardening
for materials characterized by
k = −0.1 ðrT=rC ¼ 0:94Þ and
k = 0.1 ðrT=rC ¼ 1:07Þ,
respectively (after Cazacu
et al. [11])
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cyclic loadings. Specifically, the effect of tension–compression asymmetry in uni-
axial yielding (i.e., rT=rC 6¼ 1) on the mechanical response in monotonic combined
tension–torsion as well as strain-controlled cyclic torsion, and strain-controlled
cyclic torsion under constant axial stress was investigated. For monotonic loadings,
new analytical solutions show that a slight difference between the uniaxial yield in
tension ðrTÞ, and the uniaxial yield in compression ðrCÞ results in Swift effects
under monotonic biaxial loadings. F.E. simulations for strain-controlled cyclic
loadings, show that accumulation of axial plastic strain (cyclic Swift effects) can
occur. The sign and rate at which axial effects accumulate depends strongly on the
ratio ðrT=rCÞ. Specifically, under strain-controlled cyclic torsion with no axial load:
• If the material has uniaxial yield in tension greater than in compression

ðrT [ rCÞ, the axial strain is positive (specimen is lengthening).
• If the material has an uniaxial yield in tension smaller than in compression

ðrT\rCÞ, the axial strain is negative (specimen is shortening).
• Irrespective of the ratio between the uniaxial yield in tension and the uniaxial

yield in compression, the rate at which the axial strain accumulates is contin-
uously decreasing, axial effects tend to saturate within a few cycles.

For strain-controlled cyclic torsion under constant axial stress (tension or
compression):

• Axial effects occur even in a material for which the plastic behavior is described
by the von Mises yield function (k = 0) and isotropic hardening. Specifically, it
is predicted that during cyclic torsion under constant tensile load there is
lengthening of the specimen while cyclic torsion under constant compressive
loads leads to shortening of the specimen.

• For materials with the uniaxial yield in tension larger than the uniaxial yield in
compression ðrT [ rCÞ, if the applied constant axial stress is negative (com-
pression), axial effects are reinforced. However, if the applied constant axial
stress is positive (tension) the sign of axial strain is negative and the rate at
which it accumulates is much slower than under cyclic torsion without axial
load.

• For materials with uniaxial yield in tension smaller than the uniaxial yield in
compression ðrT\rCÞ, if the applied constant axial stress is negative (com-
pression) axial effects are reduced, the rate at which they accumulate being
much slower than in cyclic torsion without any axial load. However, if the
applied constant axial stress is positive (tension), the axial strain is negative and
accumulates faster.

In summary, the results presented show that for any given material it is possible
to control both the sign of the axial strain and the rate at which it accumulates by
applying an appropriate constant axial load. It is worth noting that even if this
applied prestress is less than the yielding threshold rT (or rC), its influence on how
axial plastic strains accumulate with increasing number of cycles is very strong.
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Most importantly, it is possible to estimate the value of the constant load and the
amplitude of the cycles that need to be applied such as to suppress cumulative Swift
effects. Finally, the predicted response for a large number of cycles also indicates
the role played by the tension–compression asymmetry of the material.
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Chapter 5
Yield Criteria for Anisotropic
Polycrystals

5.1 General Methods for Extending to Anisotropy
Yield Criteria for Isotropic Materials

Yield functions aimed at describing the characteristics of the plastic behavior of
metallic materials are of great importance in the design and analysis of forming
processes specifically intended for these materials. There are two rigorous
methodologies for description of yielding anisotropy. These methodologies can be
used to extend any given isotropic yield function such as to account for the specific
material symmetries.

Linear Transformations methodology

One methodology is based on the use of one or several linear transformations
applied to the stress tensor or its deviator (e.g., [4, 7, 8, 18]). Specifically, in the
expression of the respective isotropic criterion f ðsÞ; the stress deviator s is replaced
with a transformed stress tensor ~S; defined as:

~S ¼ Cs ¼ CKr ¼ Lr ð5:1Þ

Thus, the anisotropy is introduced by means of the anisotropic fourth-order
tensor C; while K denotes the fourth-order symmetric deviatoric unit tensor that
transforms the Cauchy stress tensor r to its deviator s: Specifically, with respect to
any Cartesian coordinate system:

Kijkl ¼ dikdjl þ dildjk
� �

=2� dijdkl
� �

=3 ð5:2Þ

where dij denotes the Kronecker delta and i, j, k, l = 1, 2, 3. (see also Chap. 1)
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Generalized Invariants’ Methodology

As shown in Chap. 4 (see Proposition 4.2), any isotropic yield function ought to
depend on stress only through the principal invariants J2 and J3 of the stress
deviator. The methodology developed by Cazacu and Barlat [11, 12] to extend any
isotropic criterion such as to account for anisotropy is based on the concept of
generalized invariants. Specifically, these authors developed generalizations of the
principal invariants J2 and J3 that satisfy the following requirements:

(i) The anisotropic generalization of J2 should be a second-order homogeneous
polynomial in stresses that is invariant to any transformation belonging to the
symmetry group of the material; it is insensitive to hydrostatic pressure, and
for isotropic conditions reduces to J2;

(ii) The anisotropic generalization of J3 should be a third-order homogeneous
polynomial that is form-invariant under any transformation belonging to the
symmetry group of the material; it is insensitive to hydrostatic pressure, and
reduces to J3 for isotropic conditions.

Based on these generalized invariants, it is possible to extend any isotropic yield
criterion simply by replacing in its expression J2 and J3 by their respective ani-
sotropic generalizations.

Although this approach is general, in the sense that the same methodology can
be used to extend any isotropic yield function to include any type of material
symmetry, in the following, we present the expressions of the generalized invariants
corresponding to two types of symmetry that are prevalent for textured metallic
materials, namely orthotropy and transverse isotropy.

5.1.1 Generalized Orthotropic Invariants

Let us first consider the case of orthotropic symmetry and define x; y; zð Þ the
reference frame associated with this symmetry. For example, for a rolled sheet, x; y;
and z denote the rolling, transverse, and normal directions, respectively. The
material anisotropy is fully described by the following structural tensors (see also
Chap. 1):

N1 ¼ x� x ¼
1 0 0

0 0 0

0 0 0

0
B@

1
CA; N2 ¼ y� y ¼

0 0 0

0 1 0

0 0 0

0
B@

1
CA;

N3 ¼ z� z ¼
0 0 0

0 0 0

0 0 1

0
B@

1
CA

ð5:3Þ
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According to the theorem of representation for orthotropic scalar functions of a
second-order symmetric tensor (see Theorem 1.4), it follows that for a polynomial
P rð Þ to be invariant with respect to the orthotropic group, it must be expressible as
a polynomial in the following arguments:

tr ðN1rÞ; trðN2rÞ; trðN3rÞ; tr ðN1r
2Þ; trðN2r

2Þ; trðN3r
2Þ; trðr3Þ ð5:4Þ

Therefore, relative to the x; y; zð Þ Cartesian frame associated with the axes of
orthotropy, any orthotropic polynomial P rð Þ has the following arguments:

P ¼ P rxx; ryy; rzz; r
2
xy; r

2
yz; r

2
xz; rxyrxzryz

� �
ð5:5Þ

Using the above result and the requirements (i)–(ii), Cazacu and Barlat [11]
derived orthotropic generalizations of the invariants J2, and J3, respectively.

Proposition 5.1 (J2 orthotropic)
For an orthotropic material, the generalized second-invariant of the stress deviator
should involve exactly six independent parameters, and its expression with respect
to the Cartesian system associated with the orthotropic axes should be of the form:

J02 ¼ a1
6

rxx � ryy
� �2 þ a2

6
ryy � rzz
� �2 þ a3

6
rxx � rzzð Þ2

þ a4r
2
xy þ a5r

2
xz þ a6r

2
yz

ð5:6Þ

where ak (k = 1, …, 6) are constants.

Proof The general form of a second-order homogeneous polynomial in rxx, ryy,
rzz, r2xy, r

2
yz, r

2
xz, and rxy � rxz � ryz, is:

P2 ¼ a1r
2
xx þ a2r

2
yy þ a3r

2
zz þ a4rxxryy

þ a5rxxrzz þ a6rzzryy þ a7r
2
xy þ a8r

2
xz þ a9r

2
yz;

ð5:7Þ

where ai, i = 1, …, 9 are constants. Imposing P2 to be insensitive to pressure, i.e.,
P2 rþ pIð Þ ¼ P2 rð Þ for any scalar p and any stress state r results in the following
relations between the constants ai:

a1 ¼ � a4 þ a5ð Þ=2; a2 ¼ � a4 þ a6ð Þ=2 and a3 ¼ � a5 þ a6ð Þ=2:

For convenience, we denote a1 ¼ �3 a4, a2 ¼ �3 a5, a3 ¼ �3 a6,
a4 ¼ a7, a5 ¼ a8, a6 ¼ a9. Thus, relative to the Cartesian coordinate system
with axes along the directions of orthotropy, the orthotropic generalization of J2 is
given by Eq. (5.6).
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Proposition 5.2 (J3 orthotropic)
For an orthotropic material, the generalized third-invariant of the stress deviator
should involve exactly eleven independent parameters, and its expression with
respect to the Cartesian system associated with the orthotropic axes should be of
the form:

J03 ¼ 1
27

b1 þ b2ð Þr3xx þ
1
27

b3 þ b4ð Þr3yy þ
1
27

2 b1 þ b4ð Þ � b2 � b3½ �r3zz
� 1
9

b1ryy þ b2rzz
� �

r2xx �
1
9

b3 rzz þ b4rxxð Þr2yy

� 1
9

b1 � b2 þ b4ð Þrxx þ b1 � b3 þ b4ð Þryy
� �

r2zz

þ 2
9

b1 þ b4ð Þrxxrzzryy �
r2xz
3

2b9ryy � b8rzz � 2b9 � b8ð Þrxx
� �

� r2xy
3

2b10rzz � b5ryy � 2b10 � b5ð Þrxx
� �� r2y z

3
b6 þ b7ð Þrxx � b6ryy � b7rzz

� �
þ 2b11rxyrxzryz

ð5:8Þ

where bk, k = 1, …, 11 are constants.

Proof The general form of a third-order homogeneous polynomial in the stated
quantities rxx, ryy, rzz, r2xy, r

2
yz, r

2
xz, and rxy � rxz � ryz is:

P3 ¼ a1r
3
xx þ a2r

3
yy þ a3r

3
zz þ r2xx a4ryy þ a5 rzz

� �þ r2yy a6rzz þ a7 rxxð Þ
þ r2zz a8rxx þ a9 ryy

� �þ a10 rxx rzzryy þ rxx a11 r
2
xy þ a12 r

2
y z þ a13 r

2
xz

� �
þ ryy a14 r

2
xy þ a15 r

2
y z þ a16 r

2
xz

� �
þ rzz a17 r

2
xy þ a18 r

2
y z þ a19 r

2
xz

� �
þ a20rxy ryz rxz;

ð5:9Þ

where ai, i = 1, …, 20 are constants.
Imposing the requirement of insensitivity to hydrostatic pressure, i.e.,

P3 rþ pIð Þ ¼ P3 rð Þ for any scalar p and stress r results in the following relations:

a1 ¼ � a4 þ a5ð Þ=3; a2 ¼ � a6 þ a7ð Þ=3;
a3 ¼ a5 þ a6ð Þ � 2 a4 þ a7ð Þ½ �=3; a8 ¼ a4 � a5 þ a7;

a9 ¼ a4 þ a7 � a6; a10 ¼ �2 a4 þ a7ð Þ; a11 ¼ � a14 þ a17ð Þ;
a12 ¼ � a15 þ a18ð Þ and a13 ¼ � a16 þ a19ð Þ:
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For convenience, we denote b1 ¼ � 9a4, b2 ¼ �9 a5, b3 ¼ �9 a6,
b4 ¼ �9 a7, b5 ¼ 3 a14, b6 ¼ 3 a15, b7 ¼ 3 a18, b8 ¼ 3 a19, b9 ¼ �3 a16=2,
b10 ¼ �3 a17=2, and b11 ¼ a20=2:

Further substituting in Eq. (5.9) leads to the form (5.8) of J03 .
Note that if each of the constants ai ¼ 1, J02 reduces to J2; and if each of the

constants bk ¼ 1, J03 reduces to J3 (see Eqs. (5.6) and (5.8), respectively).
Note that any function U J02 ; J

0
3

� �
is pressure-insensitive and automatically sat-

isfies the form-invariance requirements with respect to any transformation
belonging to the orthotropic group. Yield criteria in terms of J02 , J

0
3 were proposed

by Hill [22], Cazacu [10] and Cazacu and Barlat [11–13] to model textured fcc and
hcp polycrystalline materials, respectively.

5.1.2 Generalized Transversely Isotropic Invariants

Consider a material exhibiting transverse isotropy and take as coordinate system,
associated with this symmetry, x; y; zð Þ, z being the axis of rotational symmetry, and
let us define N3 ¼ z� z.

According to the Smith and Rivlin [44] theorem of representation of scalar
transversely isotropic polynomials of a second-order symmetric tensor (or alter-
natively Theorem 1.3), it follows that for a polynomial in r to be invariant with
respect to rotations about the z axis, it must be expressible as a polynomial in:

tr rð Þ; tr N3rð Þ; tr r2
� �

; trðN3r
2Þ; tr ðr3Þ

Imposing the requirement of insensitivity to hydrostatic pressure, i.e.,
PT rþ pIð Þ ¼ PT rð Þ for any r and scalar p, Cazacu and Barlat [12] obtained the
following results:

Proposition 5.3 (Generalized Transversely Isotropic Invariants)
For a transversely isotropic material, the generalized second-invariant of the stress
deviator should involve only three independent parameters, and its expression with
respect to the Cartesian system associated with the axes of material symmetry (with
z being the axis of rotational symmetry) should be of the form:

JT2 ¼ h1
6

rxx � ryy
� �2 þ h2

6
ryy � rzz
� �2 þ rxx � rzzð Þ2
h i

þ h2 þ 2h1
3

r2xy þ h3 r2xz þ r2yz

� �
;

ð5:10Þ

with hk being constants (k = 1, …, 3); JT3 , the generalization to transverse isotropy
of the third-invariant of the stress deviator, J3 should involve four constants and
ought to be of the form:
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JT3 ¼ ð3d2 � d1Þ
27

r3xx þ r3yy

� �
þ 2

27
4d1 � 3d2ð Þr3zz �

1
9
d1 rxxr

2
yy þ ryyr

2
xx

� �
� 1
9

3 d2 � 2d1ð Þ rzz r2yy þ r2xx

� �
þ 1

9
3d2 � 4d1ð Þr2zz rxx þ ryy

� �
� d2

r2xy
3

2rzz � rxx � ryy
� �þ r2x z

3
d3rxx � d3 þ d4ð Þryy þ d4rzz
� �

þ r2y z
3

� d3 þ d4ð Þrxx þ d3ryy þ d4rzz
� �þ 4

9
d1rxxryyrzz

þ 2
3

2d3 þ d4ð Þrx yrx zry z;
ð5:11Þ

where di (i = 1, …, 4) are constants. If the coefficients hk ¼ 1, (k = 1, …, 3), JT2
reduces to J2, while if di ¼ 1, (i = 1, …, 4), JT3 reduces to J3:

Any function U JT2 ; J
T
3

� �
is pressure-insensitive and automatically satisfies the

form-invariance requirements with respect to any transformation belonging to the
transverse isotropy group (see Table 3.1). For example, a transversely isotropic
criterion in terms of JT2 ; J

T
3 was developed by Cazacu and Barlat [12] and applied to

the description of the anisotropy in yield stresses of Al alloy extruded bars.

5.2 Orthotropic Generalization of von Mises Isotropic
Criterion Due to Hill [22]

The most widely used orthotropic yield criterion for describing the directionality in
plastic properties (yield stresses, strains) of sheets and plates is due to Hill [22]. In
the coordinate system x; y; zð Þ associated with the axes of orthotropy, this yield
criterion is expressed as:

F ryy � rzz
� �2 þG rzz � rxxð Þ2 þH rxx � ryy

� �2 þ 2Lr2yz þ 2Mr2xz þ 2Nr2xy ¼ �r2

ð5:12Þ

where F, G, H, L, M, and N are material constants, and �r is the equivalent stress
associated with this criterion.

Proposition 5.4 Hill [22] orthotropic yield criterion is the extension to orthotropy
of the isotropic von Mises yield criterion obtained using the generalized invariants
approach. Specifically, it can be expressed in the form:

3J02 ¼ �r2;
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where J02 is the generalized second-invariant of the stress deviator given by
Eq. (5.6) and �r is the equivalent stress associated with the criterion (i.e., it coin-
cides with the uniaxial tensile yield stress in the x-direction).

Proof Let us recall that the expression of the von Mises yield criterion is:

3J2 ¼ r2T ; ð5:13Þ

the associated plastic stress potential being

uMises rð Þ ¼
ffiffiffiffiffiffiffi
3J2

p
ð5:14Þ

with rT the yield stress in uniaxial tension in any direction (see also Sect. 4.2.1).
Using the generalized invariants’ methodology, the orthotropic generalization of the
von Mises criterion is obtained by replacing in the expression (5.13), J2 by J02 given
by Eq. (5.6), i.e.,

3J02 ¼ �r2;

�r being the equivalent stress associated with the orthotropic criterion. Next, by
denoting:

F ¼ a2=2; G ¼ a3=2; H ¼ a1=2;

L ¼ 3a6=2; M ¼ 3a5=2; N ¼ 3a4=2
ð5:15Þ

the above expression reduces to the classical expression of Hill [22] given by
Eq. (5.12).

It is important to note that Hill [22] orthotropic yield function can be also written
in the form:

�r2 ¼ r : Mr; ð5:16Þ

where M is an orthotropic fourth-order tensor satisfying both major and minor
symmetries, i.e., Mijkl ¼ Mklij ¼ Mjikl for i, j, k, l = 1, …, 3.

Indeed if in Voigt notation the stress tensor is represented by the six-dimensional
vector r ¼ rxx; ryy; rzz; ryz; rxz; rxy

� �
and the fourth-order orthotropic tensor M is

represented in the coordinate system x; y; zð Þ associated with the axes of orthotropy
by the 6 � 6 matrix is given as:

M ¼

HþG �H �G 0 0 0
�H FþH �F 0 0 0
�G �F FþG 0 0 0
0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N

2
6666664

3
7777775
; ð5:17Þ

5.2 Orthotropic Generalization of Von Mises Isotropic … 207



then subsitution of Eq. (5.17) into Eq. (5.16) leads to the classical form of Hill [22]
criterion (Eq. 5.12). Note that the sum of the components on the first row of M is
equal to the sum of the components on the second row which is equal to the sum of
the components on the third row, i.e.,

Miikl ¼ 0: ð5:18Þ

Thus according to Eq. (5.18), M is deviatoric, and consequently, Hill [22] cri-
terion is pressure-insensitive. Note that for isotropy, the coefficients satisfy: F ¼
G ¼ H ¼ L=3 ¼ M=3 ¼ N=3: It can be easily shown that the generalization to
orthotropy of the von Mises yield criterion using the linear transformation
methodology [see Eq. (5.1)] also leads to the classical expression of Hill [22]
criterion given by Eq. (5.12).

Proposition 5.5 Hill [22] orthotropic yield function can also be expressed in the
form:

�r ¼ 3
2
tr~S

2
	 
1

2

; ð5:19Þ

where ~S ¼ Cs, with C being an orthotropic symmetric fourth-order tensor. For the
proof of the above mathematical result, the reader is referred to Appendix 2 of
Cazacu and Barlat [11].

Generally, the assumption of an associated flow rule is made. Thus, the plastic
potential associated with Hill [22] yield criterion is:

uHill rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r : Mr

p
¼

ffiffiffiffiffiffiffi
3J02

q
; ð5:20Þ

with M given by Eq. (5.17) and J02 given by Eq. (5.6) (see also relations (5.15)
defining coefficients F, G, H, L, M, N in terms of ai). Accordingly, the plastic
strain-rate tensor, dp, is expressed as:

dp ¼ _k
@uHill

@r
¼

_k
�r
Ms: ð5:21Þ

where _k� 0 stands for the plastic multiplier. It means that for a material governed
by Hill [22] criterion, the plastic strain-rate is always proportional to the stress
deviator. In the coordinate system x; y; zð Þ associated with the axes of orthotropy,
the following linear relations hold between the plastic strain increments and the
stresses:
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dpxx ¼
_k
2�r

HþGð Þrxx � Hryy � Grzz
� � ¼ _k

�r
H rxx � ryy
� �� G rzz � rxxð Þ� �

dpyy ¼
_k
2�r

FþHð Þryy � Hrxx � Frzz
� � ¼ _k

�r
F ryy � rzz
� �� H rxx � ryy

� �� �
dpzz ¼

_k
2�r

FþGð Þrzz � Grxx � Fryy
� � ¼ _k

�r
G rzz � rxxð Þ � F ryy � rzz

� �� �
dpyz ¼ dpzy ¼

_k
�r
Lryz

dpxz ¼ dpzx ¼
_k
�r
Mrxz

dpxy ¼ dpyx ¼
_k
�r
Nrxy

ð5:22Þ

For isotropy, Eq. (5.22) reduces to Eq. (4.25) for the plastic strain-rate of a von
Mises material.

5.2.1 Yield Stress Anisotropy Predicted by the Hill [22]
Criterion

For an orthotropic material, in order to characterize the effect of the loading ori-
entation on yielding in uniaxial tension, it is sufficient to perform tests along
directions contained in the planes x; yð Þ, x; zð Þ, and y; zð Þ, respectively. For a rolled
plate, let x be the rolling direction (RD), y the transverse direction (TD) in the plane
of the plate, and z the normal direction (ND), i.e., the direction along the thickness
of the plate. Let us denote by rh the yield limit in uniaxial tension along a direction
d at an angle h to the x-axis (see Fig. 5.1) in the plane x; yð Þ: In the Oxyz coor-
dinate system associated with the RD, TD, ND axes, d ¼ cos hex þ sin hey, so the
applied stress tensor is r ¼ rh d� dð Þ, which has the nonzero components:

Fig. 5.1 Orientation of
a tensile specimen along a
direction at an angle h to the
RD
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rxx ¼ rh cos2 h

ryy ¼ rh sin2 h

rxy ¼ ryx ¼ rh sin h cos h

ð5:23Þ

Next, substitution of (5.23) in the expression of the Hill [22] yield function
given by Eq. (5.12) leads to the following result:

Anisotropy in uniaxial yield stresses in the (RD–TD plane):

According to Hill [22] yield criterion, in the (RD, TD) plane the dependence of the
normalized uniaxial yield stress rh=�r on the loading angle h to the rolling direction
(RD) is:

rh
�r

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F sin4 hþG cos4 hþH cos2 h� sin2 h

� �2 þ 2N sin2 h cos2 h
q ð5:24Þ

It is clearly seen that the evolution of rh with the in-plane loading orientation
admits at most three extrema. Irrespective of the values of the coefficients F, G, H,
and N, the maxima and minima of the yield stress occur along RD and TD (i.e., at
0° and 90°, respectively). If N is intermediate to F + 2H and G + 2H, those are the
only extrema. Otherwise, there exists an additional minimum or maximum in the
direction

h1 ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � G� 2Hð Þ=N � F � 2H

p� �
:

The values of F, G, H, and N can be deduced from the observed dependence of
the yield stress on orientation in the (RD, TD) plane. Indeed, according to
Eq. (5.24):

– for uniaxial tension in the RD (x direction or h ¼ 0�),

GþHð Þr20 ¼ �r2 ð5:25Þ

– for uniaxial tension in the TD (y direction or h ¼ 90�),

FþHð Þr290 ¼ �r2 ð5:26Þ

– for uniaxial tension at h ¼ 45� from the RD (x),

FþGþ 2Nð Þr245 ¼ 4�r2 ð5:27Þ

210 5 Yield Criteria for Anisotropic Polycrystals



– for uniaxial tension at h ¼ 30� from the RD (x),

Fþ 9Gþ 4Hþ 6Nð Þr230 ¼ 16�r2 ð5:28Þ

Note that for equibiaxial tension, the stress components are: rxx ¼ ryy ¼
rTb ; rxy ¼ 0 and the yield criterion predicts that:

FþGð Þ rTb
� �2¼ �r2 ð5:29Þ

Generally, the system of four Eqs. (5.25)–(5.27) and (5.29) is solved for F, G, H,
and N

2F ¼ �r=r90ð Þ2 þ �r
�
rTb

� �2� �r=r0ð Þ2

2G ¼ �r
�
rTb

� �2 þ �r=r0ð Þ2� �r=r90ð Þ2

2H ¼ �r=r0ð Þ2 þ �r=r90ð Þ2� �r
�
rTb

� �2
2N ¼ 4 �r=r45ð Þ2� �r

�
rTb

� �2
ð5:30Þ

As an example, in Fig. 5.2a is shown the predicted yield stress variation in the
plane (RD, TD) according to Hill [22] corresponding to F = 0.603, G = 0.397,
H = 0.603, and N = 2.537 in comparison with the measured yield stresses for a
2090-T3 Al Li alloy (data from [4]). The projection of the yield surface according to
the Hill [22] criterion in the rxx; ryy

� �
plane corresponding to fixed levels of the

shear stress rxy=r0 ¼ 0, 0.25, 0.3, and 0.4 is shown in Fig. 5.2b. The stresses are
normalized by the uniaxial tensile yield stress in the rolling direction, r0. The
numerical values of the coefficients F, G, H, and N were calculated based on the
experimental yield stresses along the 0�, 45�, 90� orientations and the tensile
equibiaxial yield stress rTb (see Table 5.1) in conjunction with the system of
equations (5.30).

Anisotropy of yield stresses in the (RD–ND) plane

According to Hill [22] yield criterion, in the (RD, ND) plane the dependence of
the normalized uniaxial yield stress ra=�r on the loading angle a to the rolling
direction is:

ra
�r

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F sin4 aþH cos4 aþG cos2 a� sin2 a

� �2 þ 2M sin2 a cos2 a
q ð5:31Þ

Irrespective of the values of the coefficients F, G, H, and M, maxima and minima
of the uniaxial yield stress occur along the orthotropic axes RD and ND (a ¼ 0�, or
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Fig. 5.2 a Normalized uniaxial yield stress for AA2090-T3 alloy sheet versus the tensile
direction according to Hill [22] yield criterion (symbols represent experimental data). b Projection
of the yield surfaces in the plane rxx;ryy

� �
corresponding to fixed levels of the shear stress

rxy=r0 ¼ 0, 0.25, 0.3, and 0.4 according to Hill [22] yield criterion

Table 5.1 Mechanical properties for a AA2090-T3 sheet and Hill [22] coefficients calculated
using the experimental normalized yield stresses

Property Normalized yield stress r-value F G H N

Uniaxial tension 0° 1.000 0.212 0.603 0.397 0.603 2.537

Uniaxial tension 45° 0.811 1.577

Uniaxial tension 90° 0.910 0.692

Equibiaxial tension 1.01
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a ¼ 90�) and depending on the relation of M to the quantities F + 2G and
H + 2G, an extremum may occur in the direction a1 ¼ arctanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M � H � 2Gð Þ= M � F � 2Gð Þp� �
:

It is worth noting that Eq. (5.31) for a = 90� reduces to Eq. (5.29) for rTb , i.e.,
Hill [22] yield criterion predicts that the yield stress in uniaxial tension in the ND
direction (a = 90�) is equal the yield stress in equibiaxial tension rTb in the (RD–
TD) plane.

Also, substitution in the Eq. (5.12) of the criterion and comparison with the
expression given by Eq. (5.26) for r90 shows that according to Hill [22] yield
criterion, the yield stress in equibiaxial tension in the plane (RD–ND) is equal to the
yield stress in uniaxial tension along TD, i.e., r90. Furthermore, making use of
Eq. (5.31) it follows that the coefficient M can be determined based on the formula:

2M ¼ 4 �r
.
rRD�ND

45

� �2
� �r=r90ð Þ2; ð5:32Þ

where rRD�ND
45

denotes the uniaxial tensile yield stress in a direction at 45° to RD in
the (RD, ND) plane.

As an example, in Fig. 5.3a is shown for the same 2090-T3 Al alloy the pre-
dicted yield stress variation in the (RD, ND) plane according to Hill [22] while in
Fig. 5.3b is presented the projection of the yield surface according to Hill [22]
criterion in the rxx; rzzð Þ plane for different fixed levels rxz=r0 ¼ 0, 0.25, 0.3, and
0.4 for the same numerical values of the coefficients F, G, H given in Table 5.1, and
a value of M = 3/2, which corresponds to the value when the Hill [22] criterion is
reduced to isotropy (see Eq. 5.15).

Anisotropy of yield stresses in the (TD–ND) plane

According to Hill [22] yield criterion, in the (TD, ND) plane the dependence of the
normalized uniaxial yield stress rb

�
�r on the loading angle with respect to trans-

verse direction, b, is:

rb
�r

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G sin4 bþH cos4 bþF cos2 b� sin2 b

� �2 þ 2L sin2 b cos2 b
q ð5:33Þ

Irrespective of the values of the coefficients F, G, H, and L, maxima and minima
of the uniaxial yield stress occur along the orthotropic axes TD and ND (b = 0� or
b = 90�) and depending of the relation of L to the quantities G + 2F and
H + 2F, an extremum may occur in the direction b1 ¼ arctanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L� H � 2Fð Þ= L� G� 2Fð Þp� �
:

It can be easily shown that according to the [22] yield criterion the yield stress in
uniaxial tension in the RD direction, r0, is equal to the yield stress in equibiaxial
tension in the (TD–ND) plane. Therefore, if rTD�ND

45
denotes the uniaxial tensile
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yield stress in a direction at 45° to TD in the (TD, ND) plane, then from Eqs. (5.33)
and (5.26) it follows that the coefficient L can be determined based on the formula:

2L ¼ 4 �r
.
rTD�ND

45

� �2
� �r=r0ð Þ2: ð5:34Þ

As an example, in Fig. 5.4a is shown for the same 2090-T3 Al alloy the pre-
dicted yield stress variation in the (TD, ND) plane according to Hill [22] while in
Fig. 5.4b is presented the projection of the yield surface in the ryy; rzz

� �
plane for

different fixed levels of ryz=r0 ¼ 0, 0.25, 0.3, and 0.4, for the same numerical
values of the coefficients F, G, H given in Table 5.1, and a value of L = 3/2, which
corresponds to the isotropic value (see Eq. 5.15).
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It is also worth noting that if sRD�TD, sND�RD, and sTD�ND are the yield stresses
in pure shear in the planes, (RD–TD), (RD–ND), and (TD, ND), respectively, then
according to Hill [22] criterion:

2N ¼ �r2=s2RD�TD; 2M ¼ �r2=s2RD�ND; 2L ¼ �r2=s2TD�ND ð5:35Þ

The relations (5.35) show that the coefficients L,M, N should always be positive.
Furthermore, given that the same coefficients are also expressible in terms of the
equibiaxial tensile yield stresses and the uniaxial yield stresses along 45° direction
in the same plane [see Eqs. (5.30), (5.32), and (5.34), respectively], it can be
concluded that Hill [22] criterion imposes the following restrictions on the yield
stresses:
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to Hill [22] yield criterion
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experimental data).
b Projection of the yield
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corresponding to fixed levels
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0.25, 0.3, and 0.4 according to
Hill [22] yield criterion

5.2 Orthotropic Generalization of Von Mises Isotropic … 215



r0 [
rTD�ND
45

2
; r90 [

rRD�ND
45

2
; rND [

r45
2

: ð5:36Þ

In other words, the yield stress along an orthotropic axis should be larger than
half of the yield stress along a diagonal direction in the plane normal to the
respective orthotropic axis.

Hill [22] criterion imposes that the yield stresses in pure shear in any given
orthotropic plane are completely determined by the yield stress values in uniaxial
tension along specific directions, i.e.,

s2RD�TD ¼ 4

rRD�TD
45

� �2 � 1
r2ND

" #�1

s2TD�ND ¼ 4

rTD�ND
45

� �2 � 1
r20

" #�1

s2RD�ND ¼ 4

rRD�ND
45

� �2 � 1
r290

" #�1

ð5:37Þ

Note that for isotropic conditions, each of the three relations given in Eq. (5.37)
reduces to:

r2T ¼ 3s2Y ;

which expresses that the von Mises yield criterion predicts a fixed ratio between the
yield stresses in uniaxial tension and pure shear (see also Sect. 4.2.1).

Remark Another important aspect concerns the predicted yield stresses under
equibiaxial tension. It was shown that according to Hill [22] criterion, the yield
stresses under equibiaxial tension in the (RD–TD), (RD–ND), and (TD, ND) planes
are completely determined by the uniaxial yield stress values along the orthotropic
axes. However, this statement holds true for any orthotropic criterion represented by
a yield function which is even in stresses. Specifically, if rRD�TD

b
, rRD�ND

b
and

rTD�ND
b

denote the yield stresses in under equibiaxial tension in the planes, (RD–
TD), (RD–ND), and (TD, ND) respectively, then:

rRD�TD
b

¼ rND; rRD�ND
b

¼ r90; rTD�ND
b

¼ r0: ð5:38Þ
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5.2.2 Variation of the Lankford Coefficients with the Tensile
Loading Direction According to Hill [22] Criterion

As already mentioned, the ratio between the in-plane transverse strain and
through-thickness plastic strain increments, that a material undergoes when sub-
jected to uniaxial tension in a direction at angle h in the RD–TD plane has been
linked to the formability of thin sheets (see also Chap. 3). Assuming associated flow
rule, this ratio, denoted by rh, is given by:

rh ¼ � sin2 h dpxx � sin 2hð Þ dpxy þ cos2 h dpyy
dpxx þ dpyy

ð5:39Þ

Substituting Eq. (5.22) into Eq. (5.39), we obtain (see [22]):

rh ¼ 2N � G� Fð Þ sin2 h cos2 hþH cos2 2hð Þ
F sin2 hþG cos2 h

: ð5:40Þ

Note that irrespective of the values of the coefficients F, G, H, and N, the
maxima and minima in the variation of the Lankford coefficients occur along RD
and TD (i.e., at 0° and 90°, respectively). Depending on the relative ordering of
these coefficients, there could be an additional minimum or maximum for
0�\h\90� (see also [22]). The trends in the Lankford coefficients’ variation with
loading orientation, in particular the number of minima and maxima, are indicative
of the drawing performance of a given material. On the basis of Eq. (5.40) for a
material with yielding according to Hill [22], a maximum of four ears can be
expected when drawing a cylindrical cup (see [18]).

In particular, Eq. (5.40) leads to:

r0 ¼ H
G
; r90 ¼ H

F
; r45 ¼ 2N � G� F

2 GþFð Þ : ð5:41Þ

5.2.3 Comments on the Identification Procedure

Using Eq. (5.39) one can obtain the following expressions for the coefficients F, G,
H, N of Hill [22] criterion in terms of the r-values:
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F ¼ r0
r90 1þ r0ð Þ

�r
r0

� 2

G ¼ 1
1þ r0

�r
r0

� 2

H ¼ r0
1þ r0

�r
r0

� 2

N ¼ r0 þ r90ð Þ 2r45 þ 1ð Þ
2r90 1þ r0ð Þ

�r
r0

� 2

ð5:42Þ

As already mentioned, the in-plane coefficients F, G, H, N can be determined
using as input the experimental yield stresses in the 0°, 45°, 90° directions and rTb
in conjunction with Eq. (5.30).

For the same Al–Li alloy 2090-T3 for which the experimental yield stresses and
r-values are given in Table 5.1, in Fig. 5.5a, b is shown the r-value variation with
the orientation in the plane (RD–TD) obtained using formula (5.40) for two sets of
values of the coefficients F, G, H, and N. The first set of values are: F = 0.603,
G = 0.397, H = 0.603, N = 2.537, which were obtained previously using as input
the experimental yield stresses, and Eq. (5.30) (see Table 5.1). The second set of
values are F = 0.252, G = 0.825, H = 0.175, N = 2.238 obtained using as input the
experimental r-values and the uniaxial tensile yield stress along RD, in conjunction
with Eq. (5.42). For this latter set of values, in Fig. 5.5c it is also presented the
predicted yield stress anisotropy in (RD, TD) calculated using Eq. (5.24).
Examination of Fig. 5.5a and b shows that the stress-based and r-value-based
anisotropic coefficients do not lead to the same variation in r-values. It is clearly
seen that if the stress-based coefficients are used, the predicted yield stress aniso-
tropy is in good agreement with the measured yield stress anisotropy (see Fig. 5.2a)
while the experimental r-values are underpredicted (see Fig. 5.5a). If the r-values
based coefficients are used, the yield stress anisotropy is not well described (see
Fig. 5.5c) while the predicted r-value variation is in good agreement with the
experimental data.

The fact that Hill [22] yield criterion cannot capture both the yield stress and r-
values’ anisotropy with the same accuracy is a direct consequence of the fact that
the yield function is quadratic in stresses. As demonstrated, for a function quadratic
in stresses to be orthotropic and pressure-insensitive, there should be exactly six
independent anisotropy coefficients. As a consequence, Hill [22] yield criterion
imposes very specific couplings between the yield stresses and r-values in the (RD–
TD) plane. Indeed, from Eqs. (5.25), (5.26), and (5.41), it follows that:

r0
r90

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 1þ r90ð Þ
r90 1þ r0ð Þ

s
: ð5:43Þ
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Therefore, Hill [22] criterion cannot account for the experimentally observed
behavior of certain Al alloys and brass (see for example, [35, 45] for which
r0 ¼ r90, but r0 6¼ r90, and r0 ¼ r90, but r0 6¼ r90, respectively).

As demonstrated, Hill [22] criterion predicts that the yield stresses in pure shear in
any given orthotropic plane are completely determined by the yield stress values in
uniaxial tension along specific directions (see Eq. 5.37). To describe simultaneously
the anisotropy in yielding and Lankford coefficients with improved accuracy, more
anisotropy coefficients need to be included in the expression of the yield function. As
discussed, orthotropic symmetries’ requirements impose clear restrictions concern-
ing the number of independent anisotropy coefficients that should appear in the
expression of any yield criterion. Therefore, non-quadratic formulations need to be
considered. For an overview of plane-stress (2-D) non-quadratic orthotropic yield
criteria, the reader is referred to [8] and the excellent overview presented in the
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Fig. 5.5 Evolution of the Lankford coefficients versus tensile direction for AA2090-T3
alloy sheet according to Hill [22] yield criterion identified based on: a uniaxial yield stresses
(Eq. 5.30) or b Lankford coefficients (Eq. 5.42). c Normalized uniaxial yield stress versus tensile
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monograph of [6]. In this chapter, we will only present non-quadratic orthotropic
yield criteria that are defined for any three-dimensional loadings.

5.3 Non-quadratic Three-Dimensional Yield Criteria
for Materials with the Same Response in Tension–
Compression

As demonstrated in Sect. 5.1, in order to respect the restrictions imposed by the
orthotropic symmetries a non-quadratic orthotropic yield criterion should be
expressed as a function of J02 and J03 , the orthotropic generalizations of the second
and third-invariant of the stress deviator given by Eqs. (5.6) and (5.8), respectively.
Therefore, to be well-defined, a 3-D orthotropic yield criterion should involve at
most 17 independent anisotropy coefficients. Likewise, to ensure that the coeffi-
cients of anisotropy involved in the yield criterion are independent, when using the
linear transformation methodology to account for plastic anisotropy, at most two
linear transformations should be considered. We begin by presenting the orthotropic
yield criteria defined explicitly in terms of J02 and J

0
3 proposed by Cazacu and Barlat

[11] and Cazacu [10]. We will proceed with the presentation and discussion of the
orthotropic extensions of the Hershey [21]–Hosford [25] isotropic yield criterion
(see Chap. 4) developed by Barlat and collaborators at Alcoa Corporation that
involve one or two linear transformations. Furthermore, it will be demonstrated that
explicit expressions for these criteria in terms of the stress components can be
obtained.

5.3.1 Cazacu and Barlat [11] Orthotropic Criterion

Cazacu and Barlat [11] proposed an orthotropic yield criterion in terms of J02 and J
0
3 ,

which extends the isotropic yield criterion of Drucker [16] (see also, Sect. 4.2.2).
The expression of this criterion is:

f 0 rð Þ ¼ J02
� �3�c J03

� �2
; ð5:44Þ

with J02 and J
0
3 being given by Eqs. (5.6) and (5.8), respectively, and c being amaterial

parameter, which ensures a proper weighting of the influence of these anisotropic
invariants on yielding. Given that this criterion is represented by a homogeneous
function in stresses, the yield stress is the same if the coefficientsak, k = 1,…, 6 and bj,
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j = 1, …, 11 are replaced by aa1, aa2, aa3, aa4, aa5, aa6, ab1, ab2, …, ab11 where
a is an arbitrary positive constant. Therefore, without loss of generality one of
these parameters, for example, b6 can be set equal to unity, and for full 3-D stress
conditions, the criterion involves 17 coefficients. The effective stress, �r, associated to
this criterion is:

�r ¼ A J02
� �3�c J03

� �2h i1=6
; ð5:45Þ

with A being a constant defined such that for uniaxial tension in one of the
orthotropic axes [e.g., for a rolled plate or sheet, the rolling direction (RD)] the
effective stress reduces to the yield stress, i.e.,

A ¼ 3
ffiffiffi
2

p

27 a1 þ a3ð Þ3�8c b1 þ b2ð Þ2
h i1=6 ð5:46Þ

Assuming associated flow rule, the plastic strain-rate tensor, dp, can be easily
calculated as:

dp ¼ _k
@�r
@r

; ð5:47Þ

where _k is the plastic multiplier, and �r is given by Eq. (5.45). Therefore,

@�r
@rij

¼ A=6ð Þ 3 J02
� �2@J02

@rij
� 2c J03

� � @J03
@rij

	 

J02
� �3� c J03

� �2n o�5=6
: ð5:48Þ

with i, j = 1, …, 3. Therefore, we have:

@J02
@rxx

¼ a1 þ a3ð Þsxx=3� a1syy=3� a3szz=3

@J02
@ryy

¼ �a1sxx=3þ a1 þ a2ð Þsyy=3� a2szz=3

@J02
@rzz

¼ �a3sxx=3� a2syy=3þ a3 þ a2ð Þszz=3
@J02
@ryz

¼ a6syz;
@J02
@rxz

¼ a5sxz;
@J02
@rxy

¼ a4sxy

ð5:49Þ
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The partial derivatives of the orthotropic third-invariant J03 are expressed as:

@J03
@rxx

¼ b1
9

rxx � ryy
� �2 þ b2

9
rxx � rzzð Þ2� b1 þ b4

9
ryy � rzz
� �2

� 1
3

b6 þ b7ð Þr2y z � 2b9 � b8ð Þr2xz � 2b10 � b5ð Þr2xy
h i

@J03
@ryy

¼ b4
9

rxx � ryy
� �2� b1 þ b4

9
rxx � rzzð Þ2 þ b3

9
ryy � rzz
� �2

� 1
3

2b9r2xz � b5r2xy � b6r2y z
h i

@J03
@rzz

¼ � @J03
@rxx

� @J03
@ryy

@J03
@ryz

¼ � ry z
3

b6 þ b7ð Þrxx � b6ryy � b7rzz
� �þ b11rxyrxz

@J03
@rxz

¼ � rxz
3

2b9ryy � b8rzz � 2b9 � b8ð Þrxx
� �þ b11rxyryz

@J03
@rxy

¼ � r2xy
3

2b10rzz � b5ryy � 2b10 � b5ð Þrxx
� �þ b11rxzryz

ð5:50Þ

Note that for isotropy, i.e., each of the constants ai ¼ 1 and if each of the
constants bk ¼ 1, we have:

@J02
@rij

¼ @J2
@rij

¼ sij;
@J03
@rij

¼ @J3
@rij

¼ s2
� �

ij�
2
3
J2dij; i; j ¼ 1; . . .; 3;

and the Eq. (5.50) reduces to the relationships given in Sect. 4.2.2 between the
plastic strain increments and the deviatoric stresses for a material with yielding
governed by the isotropic Drucker [16] yield criterion.

In the plane of the rolled plate or sheet (RD, TD), the Cazacu and Barlat [11]
orthotropic yield criterion predicts the following dependence of the normalized
uniaxial yield stress rh=�r on the angle h between the direction of loading and the
rolling direction (see also Fig. 5.1):

A
rh
r0

� 
¼

1
6

a1 þ a3ð Þ cos4 hþ a4 � a1=3ð Þ cos2 h sin2 hþ 1
6

a1 þ a2ð Þ sin4 h
� �3

�c

1
27

b1 þ b2ð Þ cos6 hþ 1
27

b3 þ b4ð Þ sin6 h

� 1
9

b1 þ 3b5 � 6b10ð Þ cos2 hþ b4 � 3b5ð Þ sin2 h� �
sin2 h cos2 h

2
64

3
75
2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�1=6

ð5:51Þ

with the constant A being given by Eq. (5.46).
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In particular,

r30
r0

¼ 4
ffiffiffi
3

p

A
4a1 þ a2 þ 9a3 þ 18 a4ð Þ3

8
� c
27

27b2 þ b3 � 8b4 þ 54 3b10 � b5ð Þð Þ2
" #�1=6

ð5:52Þ

r45
r0

¼ 2
ffiffiffi
3

p

A
ða2 þ a3 þ 6a4Þ3

8
� c
27

�2b1 þ b2 þ b3 � 2b4 þ 18b10ð Þ2
" #�1=6

ð5:53Þ

r90
r0

¼ 1
A

a1 þ a2
6

� �3
�c

b3 þ b4
27

� 2
" #�1=6

: ð5:54Þ

Yielding under equal-biaxial tension in the plane (RD–TD) occurs when rxx ¼
ryy ¼ rTb where:

rT
b

r0
¼ 1

A
a2 þ a3

6

� �3
�c

2b1 � b2 � b3 þ 2b4
27

� 2
" #�1=6

ð5:55Þ

Yielding under pure shear in the (RD, TD) plane is equal to

sRD�TD ¼ r0
A
ffiffiffiffiffi
a4

p : ð5:56Þ

The Lankford coefficients rh are calculated based on the formula:

rh ¼ �
sin2 h

@�r
@rxx

� sin 2hð Þ @�r
@rxy

þ cos2 h
@�r
@ryy

@�r
@rxx

þ @�r
@ryy

; ð5:57Þ

with the specific expressions for
@�r
@rij

given by Eq. (5.48).

Therefore,

r0 a3 � a1ð Þ a1 þ a3ð Þ2� 8c
27

b1 þ b2ð Þ b2 r0 � b1ð Þ ¼ 0

r90a2 � a1ð Þ a1 þ a2ð Þ2� 8 c
27

b3 þ b4ð Þ b3 r90 � b4ð Þ ¼ 0

b 2 r45 þ 1ð Þ � 6a4½ � bþ 6a4ð Þ2
8

� c
27

aþ 18 b6ð Þ 2 r45 aþ 6 b10ð Þ � aþ 6b10½ � ¼ 0

ð5:58Þ

with a ¼ �2b1 þ b2 þ b3 � 2 b4, b ¼ a2 þ a3:
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In summary, for description of plastic properties in the (RD–TD) plane the
criterion involves ten anisotropy coefficients: a1, a2, a3, a4, b1, b2, b3, b4, b5, b10 and
the parameter c. Generally, uniaxial tension and bulging test data are available.
Therefore, the most commonly used procedure for parameters identification is
based on the following system of equations:

• Five equations of the type (5.51) to be satisfied by the yield stresses corre-
sponding to different orientations h,

• One equation to be satisfied by rTb measured in a bulge test,
• Five equations of the type (5.57) and (5.58) to be satisfied by the strain ratios rh

corresponding to several different orientations h:

5.3.1.1 Predicted Anisotropy in Yield Stresses and Lankford
Coefficients

The significance of any yield criterion ultimately lies in its ability to describe the
behavior of real materials. In this section, the plastic anisotropy of thin rolled steel
and Al alloys exhibiting orthotropic symmetry is predicted by the Cazacu and
Barlat [11] yield criterion.

As an example, in Fig. 5.6a, b are shown the predicted variation of the yield
stresses and r-values in the (RD, TD) plane according to the Cazacu and Barlat [11]
and Hill [22] criterion, respectively, in comparison with measured yield stresses for a
DC06 steel sheet (data from [20, 34]). The coefficients involved in the criterion were
determined from the experimental yield stresses and r-values for h = 0�, 30�, 45�, 60�,
90� and the equibiaxial tensile yield stress rTb (see Table 5.2), and their numerical
values are: a1 = 1.303, a2 = 0.968, a3 = 0.9822, a4 = 1.0471, b1 = 1.531,
b2 = 2.247, b3 = 2.399, b4 = 0.6070, b5 = 1.6540, b10 = 1.248, and c = 1.30 (for
more details on the identification procedure, see [2]). The numerical values of
Hill [22] criterion coefficients for this material, calculated using the experimental r-
values at h = 0�, 45�, 90� are: F = 0.263, G = 0.284, H = 0.716, and N = 1.28.

Note that the Cazacu and Barlat [11] criterion can describe with accuracy both
the anisotropy in yielding and r-values of this steel sheet. The projection in the
rxx; ryy
� �

plane of the yield surface corresponding to rxy ¼ 0, according to
the Cazacu and Barlat [11], and Hill [22] yield criterion, respectively, is shown in
Fig. 5.6c. Also, in Fig. 5.7 is shown a comparison of the yield surface according to
Cazacu and Barlat [11] with the corresponding isotropic yield surface to which this
orthotropic yield surface reduces when the anisotropy coefficients are set to unity
(i.e., for a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = b5 = b10 = 1 and c = 1.30).

For the 2090-T3 Al alloy (data given in Table 5.1), the anisotropy coefficients
are: a1 = 1.358, a2 = 1.848, a3 = 1.075, a4 = 1.709; b1 = 5.357, b2 = −0.623,
b3 = −4.386, b4 = −3.654, b5 = −6.046, and b10 = −0.882, while c = 0.857. The
theoretical yield surfaces corresponding to the normalized shear stresses rxy=ro of
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Fig. 5.6 DC06 alloy sheet: a Normalized uniaxial yield stress versus tensile direction according
to Cazacu and Barlat [11] and Hill [22] (dashed line) yield criterion. b Evolution of the Lankford
coefficient versus tensile direction according to Cazacu and Barlat [11] and Hill [22] (dashed line)
yield criterion (symbols represent experimental data). c Projection of the yield surfaces in the plane
rxx;ryy
� �

according to the two criteria

Table 5.2 Experimental data
for a DC06 steel sheet
(after [20, 34])

Property Normalized yield stress r value

Uniaxial tension 0° 1.000 2.53

Uniaxial tension 15° 1.007 2.06

Uniaxial tension 30° 1.006 1.88

Uniaxial tension 45° 1.010 1.84

Uniaxial tension 60° 1.011 2.22

Uniaxial tension 75° 1.028 2.62

Uniaxial tension 90° 1.026 2.72

Equibiaxial tension 1.208
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0, 0.1, 0.2, 0.3, and 0.4 are depicted in Fig. 5.8. The stresses are normalized with
the experimental tensile yield stress in the rolling direction. The experimental
variation of the normalized uniaxial yield stress and r-ratio with the orientation and
the predictions of Hill [22] yield criterion and Cazacu and Barlat [11] yield criterion
is shown in Fig. 5.9a, b. It can be seen that the agreement between the prediction
with Cazacu and Barlat [11] yield criterion and the experimental results is very
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Fig. 5.7 Projection of the
yield surfaces for DC06 alloy
sheet in the plane rxx;ryy

� �
according to the Cazacu and
Barlat [11] yield criterion:
Comparison of the orthotropic
yield surface with the
corresponding isotropic yield
surface (c = 1.30)
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Fig. 5.8 Projection of the
yield surfaces for AA2090-T3
alloy sheet in the plane
rxx;ryy
� �

corresponding to
fixed levels of the shear stress
ryz=r0 ¼ 0, 0.1, 0.2, 0.3, and
0.4 according to Cazacu and
Barlat [11] yield criterion
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good. Furthermore, this yield criterion predicts the variation in height (earings)
observed for a fully drawn cylindrical cup of this AA2090-T3 sheet (see [9]).

It is worth pointing out that the shape of the Cazacu and Barlat [11] yield surface
strongly depends on the experimental data used for the identification. The param-
eters are determined through the minimization of an objective function, which is
defined according to the experimental data available. It is advised that the tar-
get application for the material should carefully considered when assigning weights
to various input data in the objective function.

5.3.1.2 Extension of Drucker [16] Isotropic Yield Criterion
to Transversely Isotropic Materials

Cazacu and Barlat [12] proposed the following extension to transverse isotropy of
the isotropic Drucker [16] yield criterion:
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Fig. 5.9 AA2090-T3 alloy
sheet: a Normalized uniaxial
yield stress versus tensile
direction according to
the Cazacu and Barlat [11]
and Hill [22] (dashed line)
yield criterion. b Evolution of
the Lankford coefficient
versus tensile direction
according the two yield
criteria (symbols represent
experimental data)
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f T ¼ JT2
� �3 � c JT3

� �2
; ð5:59Þ

where JT2 and JT3 are the generalized transversely isotropic invariants of the stress
deviator [see Eqs. (5.10) and (5.11)]. For 3-D stress conditions, this criterion
involves seven anisotropy coefficients. As an example, this criterion was applied to
a laboratory-processed 2026-T3511 Al alloy. This material was extruded at elevated
temperature up to a true strain of about 3.0, but did not recrystallize after annealing
due to the presence of very fine Zr particles that pin the grain boundaries. As a
result, the material exhibited a strong deformation texture consisting of a mixture of
〈111〉 and 〈100〉 fibers, i.e., grains with 〈111〉 and 〈100〉 crystal axes aligned with
the extrusion axis, respectively. Duplicate uniaxial tension tests were conducted in
different directions from the extrusion direction to the radial direction in 15°
intervals to measure the yield stress anisotropy. The data indicated that the material
is transversely isotropic with respect to the extrusion direction.

If rb is the tensile yield stress along an axis at angle b to the extrusion direction
z, then according to the yield criterion given by Eq. (5.59) it follows that:

rb=r0
� � ¼ k

h2
3
cos4 bþ h3 � h2=3ð Þ cos2 b sin2 bþ 1

6
h1 þ h2ð Þ sin4 b

� �3

�c

2
27

4d1 � 3d2ð Þ cos6 bþ 1
27

3d2 � d1ð Þ sin6 b

þ 1
9

�4d1 þ 3d2 þ 3d4ð Þ cos2 b
þ 2d1 � 3d2 þ 3d3ð Þ sin2 b

" #
sin2 b cos2 b

2
664

3
775
2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�1=6

where k ¼ 1=3ð Þ 27h3
2
� c 9d4 þ 3d2 � 4d1ð Þ2

h i1=6
.

Setting c ¼ 2:25, the anisotropy coefficients hi and dj with i = 1,…, 3 and j = 1,
…, 4 can be estimated using the available uniaxial tensile data in conjunction with
the above equation. The numerical values of these coefficients are: h1 = 1.871,
h2 = 1.4, h3 = 2.05, whereas d1 = 0.3, d2 = −0.424, d3 = 5.92, and d4 = −2.28.
The variation of the tensile yield stress with orientation as described by the proposed
criterion in comparison with the data and polycrystal predictions using the
Taylor-Bishop-Hill (TBH) model (see Chap. 3 for more details on this model) is
shown in Fig. 5.10. Note the very good agreement between the predictions of the
yield criterion given by Eq. (5.59) and data. The TBH model results lead to good
trends compared to experiments, but they underestimate the amplitude of anisotropy.

5.3.2 Cazacu [10] Orthotropic Yield Criterion

To describe plastic anisotropy of rolled sheets, Cazacu [10] proposed the following
yield criterion:
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F J02 ; J
0
3

� � ¼ J02
� �4�a J02

� �
J03
� �2

; ð5:60Þ

where J02 ; J
0
3 are the orthotropic invariants of the stress deviator given by Eqs. (5.6)

and (5.8), respectively. The effective stress, �r, associated to this criterion is:

�r ¼ B J02
� �4�a J02

� �
J03
� �2h i1=8

; ð5:61Þ

with B being a constant defined such that for uniaxial tension in one of the
orthotropic axes [e.g., for a rolled plate or sheet, in the x axis or the rolling direction
(RD)], the effective stress �r reduces to the yield stress. Therefore, B is defined as:

B ¼ 3
ffiffiffi
2

p

27 a1 þ a3ð Þ3 � 8a b1 þ b2ð Þ2
h i

3a1 þ 3a3ð Þ
n o1=8

: ð5:62Þ

Note that according to this criterion, the yielding response is the same if the
anisotropy coefficients bk (k ¼ 1; . . .; 11) involved in the expression of J03 and the
anisotropy coefficients ai (i ¼ 1. . .6) involved in the expression of J02 are replaced
by bai, bbk, with b being an arbitrary positive constant. Therefore, without loss of
generality one of the parameters, for example b6, can be set equal to unity, and for
full 3-D stress conditions, the criterion involves 17 coefficients. Assuming associ-
ated flow rule, the plastic strain-rate tensor can be easily calculated as:

dp ¼ _k
@�r
@r

; ð5:63Þ

Fig. 5.10 Normalized
uniaxial yield stress versus
tensile direction according to
the Cazacu and Barlat [12]
yield criterion and TBH model
(dashed line) for an extruded
2026-T3511 Al alloy
(transverse isotropic material)
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where �r is given by Eq. (5.61). Therefore,

@�r
@rij

¼ B
8

� 
4 J02
� �3�a J03

� �2h i @J02
@rij

� 2a J03
� �

J02
� � @J03

@rij

	 


� J02
� �4�a J02

� �
J03
� �2h i�7=8

;

ð5:64Þ

with i, j = 1, …, 3. Relative to the coordinate system x; y; zð Þ associated with the
orthotropic axes, the expressions of the partial derivatives of the orthotropic
invariants J02 and J03 are given by Eqs. (5.49) and (5.50), respectively.

5.3.2.1 Anisotropy in Lankford Coefficients and Uniaxial Yield
Stresses in the Plane (RD, TD)

In the plane x; yð Þ [i.e., the plane of the rolled plate or sheet (RD, TD)], the
orthotropic yield criterion given by Eq. (5.60) predicts the following dependence of
the normalized uniaxial yield stress rh=�r on the angle h between the direction of
loading and the x direction (or RD):

B rh=r0ð Þ ¼
a1=6þ a3=6ð Þ cos4 hþ a4 � a1=3ð Þ cos2 h sin2 hþ a1=6þ a2=6ð Þ sin4 h� �4

�a

cos6 h b1 þ b2ð Þ=27þ sin6 h b3 þ b4ð Þ=27
� sin2 h cos4 h b1 þ 3b5 � 6b10ð Þ=9
� sin4 h cos2 h b4 � 3b5ð Þ=9

2
64

3
75
2

�
a1=6þ a3=6ð Þ cos4 h
þ a4 � a1=3ð Þ cos2 h sin2 h

þ a1=6þ a2=6ð Þ sin4 h

2
64

3
75

8>>>><
>>>>:

9>>>>=
>>>>;

�1=8

ð5:65Þ

with the constant B being given by Eq. (5.62). In particular,

r30
r0

¼ 4
ffiffiffi
3

p

B
4a1 þ a2 þ 9a3 þ 18 a4ð Þ4=16
�a 27 b2 þ b3 � 8b4 þ 54 3b10 � b5ð Þð Þ2 4a1 þ a2 þ 9a3 þ 18a4ð Þ=54
� ��1=8

ð5:66Þ

r45
r0

¼ 1
B

a2 þ a3 þ 6a4
24

� 4

�a
�2b1 þ b2 þ b3 � 2b4 þ 18b10

216

� 2 a2 þ a3 þ 6a4
24

� " #�1=8

ð5:67Þ

r90
r0

¼ 1
B

a1 þ a2
6

� �4
�a a1 þ a2ð Þ b3 þ b4

27

� 2
,

6

" #�1=8

ð5:68Þ
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Yielding under equibiaxial tension in the plane x; yð Þ occurs when rxx ¼ ryy ¼
rTb with

rTb
r0

¼ 1
B

a2 þ a3
6

� �4
�a

2b1 � b2 � b3 þ 2b4
27

� 2

a2 þ a3ð Þ
,

6

" #�1=8

ð5:69Þ

Yielding under pure shear in the (RD, TD) plane is equal to:

sRD�TD ¼ r0
B
ffiffiffiffiffi
a4

p : ð5:70Þ

The Lankford coefficients rh are calculated based on Eq. (5.57), with the specific

expressions for
@�r
@rij

being given by Eq. (5.64).

In summary, for description of plastic properties in the plane x; yð Þ or (RD–TD)
the criterion involves ten anisotropy coefficients a1; a2; a3; a4; b1; b2; b3; b4; b5; b10
and the parameter a. Using Eqs. (5.65) and (5.69), these parameters can be deter-
mined by minimizing an error function of the form:

E a1; a2; a3; a4; b1; b2; b3; b4; b5; b10; að Þ¼
Xn
i

gi 1� rhð Þthi
rhð Þdatai

 !2

þ
Xm
j

cj 1� rhð Þthj
rhð Þdataj

 !2

þ d 1� rTb
� �th

i

rTb
� �data

i

 !2 ð5:71Þ

In the above equation, “n” and “m” represent the number of experimental yield
stresses and r-values, respectively, corresponding to different orientations h that are
available, the superscript indicates whether the respective value is experimental or it
is calculated using the expressions (5.65), (5.69), (5.57), while gi, cj, and d are
weight factors. As an example, in Fig. 5.11a, b are shown the predicted variation of
the yield stresses and r-values in the plane of the plate or sheet [i.e., x; yð Þ or (RD,
TD)] according to the Cazacu [10] and Hill [22] criterion, respectively, in com-
parison with the measured yield stresses for an AA 6022-T4 sheet (data after [5]).
The stresses are normalized by the uniaxial tensile yield stress in the rolling
direction. The numerical values of the coefficients involved in the criterion that
were determined from the experimental yield stresses and r-values for h = 0�, 30�,
45�, 60�, 90�, and the tensile equibiaxial yield stress rTb are: a1 = 0.709, a2 = 1.36;
a3 = 1.18, a4 = 0.96, b1 = 0.2, b2 = −1.334, b3 = −1.53,b4 = 0.94, b5 = 1.18,
b10 = 0.988, and a = 1.5. The numerical values of Hill [22] coefficients for this
material calculated based on the experimental r-values at h = 0�, 45�, 90� are:
F = 0.706, G = 0.587, H = 0.413, and N = 1.27.

Note that only the Cazacu [10] criterion describes with accuracy both the aniso-
tropy in yielding and r-values for thisAl sheet. The projection in the rxx; ryy

� �
plane of

the yield surface corresponding to rxy = 0, according to Cazacu [10] criterion
and Hill [22] criterion, respectively, is shown in Fig. 5.12. Note that in contrast to
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Fig. 5.11 Predicted
anisotropy according to
Cazacu [10] orthotropic
criterion (interrupted line)
and Hill [22] criterion for an
AA 6022-T4 sheet.
a Uniaxial yield stress
variation. b Lankford
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Fig. 5.12 Projection of the
yield surface in the plane
rxx;ryy
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(with rxy ¼ 0) for
AA 6022-T4 sheet as
predicted by the orthotropic
Cazacu [10] yield criterion
and Hill [22] criterion
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the Hill [22] criterion, the Cazacu [10] criterion captures with accuracy both the
anisotropy in yield stresses and r-values. Moreover, Hill [22] criterion underpredicts
the experimental equibiaxial yield stress.

5.3.2.2 Anisotropy in Yield Stresses in the Other Symmetry Planes

It is also of interest to understand the effects of anisotropy in plastic properties for
out-of-plane loadings. Moreover, examination of the predicted anisotropy in yield
stresses in the x; zð Þ and y; zð Þ symmetry planes provides insights on the shape of
the yield locus and the relationships between the yield stresses in uniaxial tension
and pure shear imposed by a given 3-D yield criterion. Using Eq. (5.61), it follows
that in the x; zð Þ plane the dependence of the normalized uniaxial yield stress ru=r0
on the loading angle u to the x direction [or rolling direction (RD)] is:

B
ru
r0

¼
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6

þ a3
6

� �
cos4 uþ a5 � a3

3
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6
þ a3

6

� �
sin4 u
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27
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27
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� 1
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" #
sin2 u cos2 u
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664
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775
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6
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6
þ a3
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� �
sin4 u
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8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

�1=8

ð5:72Þ

where the constant B is given by Eq. (5.62), and r0 is the uniaxial tensile yield
stress in the x direction (u = 0). In particular, the yield stress in uniaxial tension
along a direction at 45° to RD in the (RD–ND) plane is:

rRD�ND
45

r0
¼ 1

B
a1 þ a2 þ 6 a5

24

� 4

�a
18 b9 � b3 � b4

216

� 2 a1 þ a2 þ 6a5
24

� " #�1=8

ð5:73Þ

The yield stress under pure shear in the (RD, ND) plane is:

sRD�ND ¼ r0
B
ffiffiffiffiffi
a5

p : ð5:74Þ

The above relations provide the procedure to be used for identification of the
coefficient b9. Indeed, once the coefficients a1; a2; b3; b4 are determined based on
the yield stresses in the (RD–TD) plane [see Eqs. (5.66)–(5.69)] and a5 is obtained
using the yield stress in pure shear [in conjunction with Eq. (5.74)], the coefficient
b9 can be obtained using relation (5.73). For example, for the same AA 6022-T4
material if we assume sRD�ND=r0 = 0.55 and rRD�ND

45
=r0 = 0.96, we obtain

b9 = 0.597. It is also worth noting that if a = 0 (which is the value of the parameter
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a for which the proposed criterion reduces to [22]), the yield stress in pure shear
parallel to the plane (RD, ND), sRD�ND, is completely determined by the uniaxial
yield stresses r0 and r90 along RD and TD, respectively, and the yield stress in a
direction 45° to RD in the (RD, ND) plane, i.e.,

s2RD�ND ¼ 4

rRD�ND
45

� �2 � 1
r290

" #�1

; ð5:75Þ

or alternatively, the predicted yield stress in a direction at 45° to RD in the (RD,
ND) plane is completely determined by sRD�ND and r90:

For the same AA 6022-T4 material assuming sRD�ND=r0 = 0.55, it follows that
the Hill [22] anisotropy coefficient M = 1.67. As an example, in Fig. 5.13a is
shown the predicted variation of the yield stresses in the (RD, ND) plane according
to the Cazacu [10] orthotropic criterion (Eq. 5.72) and Hill [22]. Figure 5.13b
shows the projection of the respective yield surfaces in the rxx; rzzð Þ plane (with
rxz = 0). Stresses are normalized by the tensile uniaxial yield stress along RD. Note
that Hill [22] criterion underpredicts the uniaxial tensile yield stress along ND. This
is consistent with the results presented in Fig. 5.12, i.e., with the fact that Hill [22]
criterion underpredicts the experimental equibiaxial yield stress in the (RD–TD)
plane. Indeed, given that the [22] criterion predicts the same yielding response in
tension–compression and it is pressure-insensitive, the tensile yield stress along ND
should be equal to the equibiaxial yield stress in the (RD, TD) plane. In general, if
data for identification of the coefficients of anisotropy b8 and b9 are not available,
the recommendation is either to set the value of these parameters to unity (i.e.,
isotropic values) or to set the b8 = b9 = b10.

Using Eq. (5.61), it follows that in the y; zð Þ plane, the proposed yield criterion
predicts the following variation of the normalized yield stress rb

�
r0 with the

loading angle b to the transverse direction, TD (or y):

B
rb
r0

� 
¼

1
6

a1þ a2ð Þ cos4 bþ a6 � a2=3ð Þ cos2 b sin2 bþ 1
6

a3 þ a2ð Þ sin4 b
� �4

� a
272

cos6 b b3 þ b4ð Þþ sin6 b 2b1 � b2 � b3 þ 2b4ð Þ
� 3 sin2 b cos4 b b3 � 3b6ð Þ � 3 sin4 b cos2 b b1 � b3 � b4 � 3b7ð Þ

� �2
� 1

6
a1 þ a2ð Þ cos4 bþ a6 � a2=3ð Þ cos2 b sin2 bþ 1

6
a3þ a2ð Þ sin4 b

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�1=8
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It follows that according to the proposed yield criterion, the normalized uniaxial
yield stress in uniaxial tension along ND is:

rND
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¼ 1
B

a2 þ a3
6

� �4
�a

2b1 � b2 � b3 þ 2b4
27

� 2 a2 þ a3
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ð5:77Þ
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Let ~b7 ¼ b6 þ b7ð Þ=2: Therefore, the yield stress in uniaxial tension along a
direction at 45° to TD in the (TD–ND) plane is:

rTD�ND
45

r0
¼ 1

B
a1 þ a3 þ 6a6

24

� 4

�a
18~b7 � b1 � b2

216

� 2
a1 þ a3 þ 6a6

24

� " #�1=8

ð5:78Þ

According to the criterion [see Eq. (5.61)], the yield stress under pure shear in
the (TD, ND) plane is:
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Fig. 5.13 a Predicted
variation of the yield stresses
for AA 6022-T4 in the (RD,
ND) plane according to the
orthotropic Cazacu [10] yield
criterion and Hill [22]
criterion. b Projection of the
yield surface in the plane
rxx; rzzð Þ (with rxz = 0) as
predicted by these criteria.
Stresses are normalized by the
uniaxial tensile yield stress
along RD

5.3 Non-quadratic Three-Dimensional Yield Criteria … 235



sTD�ND ¼ r0
B
ffiffiffiffiffi
a6

p : ð5:79Þ

Note that the above relations provide the procedure to be used for identification
of the coefficient ~b7. Indeed, once the coefficients a1; a3; b1; b2 are determined based
on the yield stresses in the (RD–TD) plane [see Eq. (5.66)–(5.69)] and a6 is
obtained using the yield stress in pure shear [in conjunction with Eq. (5.79)], the
coefficient ~b7 can be calculated using the relation (5.78). For example, for the same
AA 6022-T4 material if we assume sTD�ND=r0 = 0.54 and rTD�ND

45
=r0 = 0.95, we

obtain ~b7 = 0.179. It is also worth noting that only if a = 0 (i.e., the value of the
parameter a for which the criterion reduces to Hill [22] criterion), the yield stress in
pure shear in the plane (TD, ND), sTD�ND, is completely determined by the uniaxial
yield stresses along RD, TD, and the yield stress in a direction at 45º to TD in the
(TD, ND) plane,

s2TD�ND ¼ 4

rTD�ND
45

� �2 � 1
r20

" #�1

; ð5:80Þ

or alternatively, the predicted yield stress in a direction at 45° to TD in the (TD,
ND) plane is completely determined by sTD�ND and r0:

For the same AA 6022-T4 material assuming sRD�ND=r0 = 0.54, it follows that
the Hill [22] anisotropy coefficient L = 1.713. As an example, in Fig. 5.14a is
shown the predicted variation of the yield stresses in the (TD, ND) plane according
to the Cazacu [10] criterion and Hill [22], respectively. Figure 5.14b shows the
projection of the yield surfaces in the ryy; rzz

� �
plane (with ryz = 0) according to

these criteria, respectively. Stresses are normalized by, r0, the tensile uniaxial yield
stress along RD. The results presented are consistent with the results presented in
Figs. 5.12 and 5.13.

It is also worth noting that for a yield criterion constructed such as to have the
same mechanical response in tension–compression, the yield stresses under
equibiaxial tension in the (RD, TD), (RD, ND), and (TD, ND) planes are com-
pletely determined by the uniaxial yield stress values along the orthotropic axes.
Therefore, if rRD�TD

b
, rRD�ND

b
, and rTD�ND

b
denote the yield stresses under equib-

iaxial tension in the planes, (RD–TD), (RD–ND), and (TD–ND), respectively, then
according to Cazacu [10] criterion:

rRD�TD
b

r0
¼ 1

B
a2 þ a3

6

� �4
�a

2b1 � b2 � b3 þ 2b4
27

� 2 a2 þ a3
6

� �" #�1=8

ð5:81Þ

rRD�ND
b

r0
¼ 1

B
a1 þ a2

6

� �4
�a

b3 þ b4
27

� 2 a1 þ a2
6

� �" #�1=8

ð5:82Þ
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rTD�ND
b

r0
¼ 1 ð5:83Þ

Standard uniaxial tension and biaxial tensile tests carried out on cruciform
specimens for a nominal 1.2 mm thick AA 3103-O sheet were presented in [6]. The
parameters of the Cazacu [10] orthotropic yield function [see Eq. (5.61)] deter-
mined from the experimental yield stresses and r-values for h = 0�, 30�, 45�, 75�,
90� and the tensile equibiaxial yield stress rTb using the cost function given by
Eq. (5.71) are: a1 = 1.133, a2 = 1.5; a3 = 2.1, a4 = 1.3, b1 = 0.107, b2 = 3.52,
b3 = −0.4, b4 = −2.32, b5 = −1.96, b10 = −1.18, and a = 1.2.

(a)

(b)
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Fig. 5.14 a Predicted
variation of the yield stresses
for AA 6022-T4 in the (TD,
ND) plane according to the
orthotropic Cazacu [10] yield
criterion and Hilll [22].
b Projection of the yield
surface in the plane ryy;rzz

� �
(with ryz = 0) as predicted by
these criteria. Stresses are
normalized by the tensile
uniaxial yield stress along RD
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The projection in the rxx; ryy
� �

plane of the yield surface according to Cazacu
[10] criterion in comparison with data is shown in Fig. 5.15a for rxy ¼ 0: Also, in
Fig. 5.15b are presented the isocontours of the yield surface corresponding to
rxy=r0 = 0, 0.3, 0.5, and 0.6. Comparisons between the theoretical predictions of
the r-values and uniaxial yield stress anisotropy in the plane of the sheet and the
mechanical data are shown in Fig. 5.16a, b. A good agreement between the
experimental and simulation results is observed.

Fig. 5.15 a Yield surface in the rxx;ryy
� �

plane (with rxy ¼ 0) of AA 3103-O as predicted by
the Cazacu [10] yield criterion in comparison with data (symbols). b Predicted isocontours of the
yield surface corresponding to rxy=r0 ¼ 0; 0:3; 0:5; and 0:6. Stresses are normalized by the
tensile uniaxial yield stress along RD
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5.3.3 Explicit Expression of the Barlat et al. [4] Orthotropic
Yield Criterion in Terms of Stresses

The 3-D extension to orthotropy of Hershey [21]-Hosford [25] isotropic criterion

/1 s1; s2; s3ð Þ ¼ s1 � s2j jm þ s2 � s3j jm þ s3 � s1j jm¼ 2rmT ; ð5:84Þ

where m is an even integer (see also Chap. 4; Sect. 2.3) was developed for the first
time by Barlat et al. [4]. The Barlat et al. [4] orthotropic yield function, denoted
Yld91, can be expressed as:

/ ¼ / ~S
� � ¼ ~S1 � ~S2

�� ��m þ ~S2 � ~S3
�� ��m þ ~S3 � ~S1

�� ��m¼ 2�rm; ð5:85Þ

Fig. 5.16 Predicted
anisotropy according to
Cazacu [10] orthotropic
criterion of AA 3103-O.
a Uniaxial yield stresses.
b Lankford coefficients. Data
(symbols) from [6]. Stresses
are normalized by the uniaxial
yield stress in tension in the
rolling direction
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where ~Sk are the principal values of the transformed stress tensor ~S ¼ Cs [see also
Eq. (5.1)] with the fourth-order order tensor C being orthotropic, symmetric, and
deviatoric.

If x; y; zð Þ denote the coordinate system associated with the orthotropic axes, and
if in Voigt notations the stress tensor is represented by the 6-dimensional vector
r ¼ rxx; ryy; rzz; ryz; rxz; rxy

� �
, the fourth-order orthotropic tensor C is represented

by the 6 � 6 matrix:

C ¼ 1
3

bþ�c ��c �b 0 0 0
��c �cþ a �a 0 0 0
�b �a aþ b 0 0 0
0 0 0 3f 0 0
0 0 0 0 3g 0
0 0 0 0 0 3h

2
6666664

3
7777775
; ð5:86Þ
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Fig. 5.17 Predicted
anisotropy according to the
Yld91 [4] and Hill [22] yield
criteria for an AA2090-T3
sheet. a Uniaxial yield
stresses. b Lankford
coefficients. Stresses are
normalized by the uniaxial
yield stress in tension along
the rolling direction
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where a, b, �c; f ; g; h are independent parameters (see also [8]). When all these
coefficients are equal to unity, ~S reduces to the stress deviator s, and / ¼ /1, i.e.,
the isotropic Hershey [21]-Hosford [25] criterion is recovered. To apply this yield
criterion for general 3-D loadings, the principal values of the transformed tensors
~S ¼ Cs need to be calculated, i.e., one needs to solve a third-order algebraic
characteristic equation. It is important to note that if the fourth-order orthotropic
tensor C is given by Eq. (5.86), ~S is deviatoric, i.e., ~S1 þ ~S2 þ ~S3 ¼ 0, and the
principal values of ~S can be expressed as:

~Sk ¼ 2 cosðhkÞ
ffiffiffiffiffi
~J2
3

s
; k ¼ 1; . . .; 3; ð5:87Þ

with ~J2 ¼ tr ~S
2

� �
=2 and ~J3 ¼ tr ~S

3
� �

=3 being the second-invariant and

third-invariant of ~S, and h1 the solution in the interval 0	 h	 p=3 of the equation:

cos 3h ¼
~J3
2

3
~J2

� 3=2

; ð5:88Þ

h2 ¼ h1 þ 2p
3

and h3 ¼ h1 � 2p
3

for ~S1 � ~S2 � ~S3:

In the expression of Yld91, the recommended value for the exponent is m ¼ 6
for textured bcc materials, and m ¼ 8 for textured fcc materials (see [4]). Since no
explicit expressions of Yld91 criterion in terms of the components of the stress
deviator are available, identification of the anisotropy parameters a, b, �c; f ; g; h and
its F.E. implementation is rather complex. This contributes to the limited use of
Yld91 as compared to Hill [22] criterion and Yld89, the 2-D orthotropic extensions
of the same isotropic criterion (see [3, 6]) for which analytical expressions for the
principal values of ~S in terms of stresses exist.

It can be shown that the Yld91 yield criterion for bcc and fcc materials, denoted

hereafter Yld91FCC and Yld91BCC, are expressible in terms of ~J2 ¼ tr ~S
2

� �
=2 and

~J3 ¼ tr ~S
3

� �
=3, the second and third-invariant of the transformed tensor ~S, as:

Yld91FCC ¼ ~S1 � ~S2
� �8 þ ~S2 � ~S3

� �8 þ ~S1 � ~S3
� �8¼ 258~J42 � 648~J2~J23 ð5:89Þ

with the associated equivalent stress being: �r ¼ 1:836 ~J42 � 2:511 ~J2~J23
� �1=8

while,

Yld91BCC ¼ ~S1 � ~S2
� �6 þ ~S2 � ~S3

� �6 þ ~S1 � ~S3
� �6¼ 66~J32 � 81~J23 ; ð5:90Þ

with the associated equivalent stress being: �r ¼ 1:746 ~J32 � 1:227~J23
� �1=6

.
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Obviously, the quadratic form (m ¼ 2) of Yld91 depends only on ~J2 and it
expressed as:

Yld91m¼2 ¼ ~S1 � ~S2
� �2 þ ~S2 � ~S3

� �2 þ ~S1 � ~S3
� �2¼ 2~J22 ð5:91Þ

Note that the invariants ~J2 and ~J3 of the transformed tensor ~S can be easily
expressed in terms of the components of the stress deviator s using the definition of
~S in conjunction with Eq. (5.86). Thus,

~J2 ¼ f 2s2yz þ g2s2xz þ h2s2xy þ bþ�cð Þsxx � �csyy � bszz
� �2

=18

þ ��csxx þ �cþ að Þsyy � aszz
� �2

=18þ �bsxx � asyy þ aþ bð Þszz
� �2

=18 ð5:92Þ

~J3 ¼ 2 fghð Þsxysxzsyz þ 1
27

bþ�cð Þsxx � �csyy � bszz
� � � ��csxx þ �cþ að Þsyy � aszz

� ��
� �bsxx � asyy þ aþ bð Þszz
� ��

� f 2s2yz
3

bþ�cð Þsxx � �csyy � bszz
� �� g2s2xz

3
��csxx þ �cþ að Þsyy � aszz
� �

� h2s2xy
3

�bsxx � asyy þ aþ bð Þszz
� � ð5:93Þ

Most importantly, the closed-form expressions of Yld91FCC and of Yld91BCC in
terms of the invariants ~J2 and ~J3 allow us to recognize that Yld91 yield criterion is a
particular case of other orthotropic yield criteria.

Proposition 5.6 The Yld91 yield criterion for bcc materials [m ¼ 6 in
Eq. (5.85)] is a particular case of the orthotropic yield criterion of Cazacu and
Barlat [11] corresponding to c ¼ 81/66; the Yld91 yield criterion for fcc materials
[m ¼ 8 in Eq. (5.85)] is a particular case of the orthotropic yield criterion of
Cazacu [10] corresponding to a = 648/258, and involving only six independent
anisotropy coefficients a, b, �c, f, g, h.

Proof Indeed, comparing the expression of ~J2 [see Eq. (5.92)] with Eq. (5.6) for
the orthotropic second-invariant J02 , it is evident that ~J2 is a particular case of J02
which involves only 6 anisotropy coefficients, the expressions of the coefficient ai,
i = 1, …, 6 in terms of a, b, �c , f, g, h being:

a1 ¼ �cð2�cþ aþ bÞ � ab
3

; a2 ¼ að2aþ bþ�cÞ � b�c
3

; a3 ¼ bð2bþ aþ�cÞ � a�c
3

;

a4 ¼ h2; a5 ¼ g2; a6 ¼ f 2

ð5:94Þ
As demonstrated in Cazacu and Barlat [11], ~J3 is a particular form of J03 [see also

Eq. (5.8) and Eq. (5.93)] which involves only six independent coefficients. The
expressions of the parameters bk , k = 1, …, 11 in terms of a, b, �c, f, g, h are:
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b1 ¼ a b2 � �c2
� �

=3þ b�c 2�cþ bð Þ=3; b2 ¼ b�c bþ�cð Þ � b1;

b3 ¼ b �c2 � a2
� �

=3þ a�c 2aþ�cð Þ=3; b4 ¼ a�c aþ�cð Þ � b3;

b5 ¼ ah2; b6 ¼ �cf 2; b7 ¼ bf 2; b8 ¼ ag2; b9 ¼ g2 aþ bð Þ=2;
b10 ¼ h2 aþ bð Þ=2; b11 ¼ fgh

ð5:95Þ

Comparison between the expression of Yld91BCC in terms ~J2 and ~J3 [see
Eq. (5.90)] and the expression of Cazacu and Barlat [11] criterion [see Eq. (5.44)]
shows that Yld91BCC is a particular form of the latter corresponding to c ¼ 81/66,
and with parameters ai, i = 1, …, 6 and bk, k = 1, …, 11 expressible in terms of the
six independent coefficients a, b, �c, f, g, h [see Eqs. (5.94) and (5.95)].

Similarly, comparison between the expression of Yld91FCC in terms ~J2 and ~J3
[see Eq. (5.89)] and the expression of the Cazacu [10] criterion [see Eq. (5.60)]
shows that Yld91FCC is a particular form of the latter corresponding to a ¼ 648/
258, and involves only six independent anisotropy coefficients a, b, �c, f, g, h.

For m ¼ 2, Yld91 reduces to the Hill [22] orthotropic criterion [see also
Eq. (5.91)], and the relations between the coefficients F, G, H, L, M and N of Hill
[22] and the anisotropy coefficients a, b, �c; f ; g; h can be easily deduced either by
direct comparison between Eqs. (5.12) and (5.92), or by making use of Proposition
5.4 and Eq. (5.94):

F ¼ að2aþ bþ�cÞ � b�c
18

;G ¼ bð2bþ aþ�cÞ � a�c
18

;H ¼ �cð2�cþ aþ bÞ � ab
18

;

L ¼ f 2=2;M ¼ g2=2;N ¼ h2=2

As an example, in Fig. 5.18a, b are shown the predicted variation of the yield
stresses and r-values in the (RD, TD) plane according to Yld91 criterion and Hill
[22] (identified on the basis of experimental r-values, F = 0.252, G = 0.825,
H = 0.175, N = 2.238) in comparison with the experimental measurements for the
same AA2090-T3 sheet (data given in Table 5.1). The value of the exponent m was
set equal to eight. The numerical values of the anisotropy coefficients a, b, �c, f, g,
h involved in the Yld91 criterion were determined from the experimental yield
stresses and r-values for h = 0�, 30�, 45�, 60�, 90�, and the tensile equibiaxial yield
stress rTb by minimizing a cost function of the form given by Eq. (5.71). These
values are: a = 1.11, b = 1.224, �c = 0.835, f ¼ g ¼ h ¼ 1.238.

Note that Yld91 predictions are in better agreement with data than Hill [22].
Although the yielding anisotropy is modeled with the same number of independent
coefficients as in Hill [22], the improved predictive capabilities of Yld91 are due to
the presence of ~J3 in its expression and the imposed relative weight between ~J2 and
~J3 in the formulation [see Eq. (5.89)]. Furthermore, this imposed relative weight
ensures the convexity of the yield locus. The respective projection of the yield
surfaces in the (RD, TD) plane is depicted in Fig. 5.17.
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5.3.4 Explicit Expression of the Karafillis and Boyce [28]
Orthotropic Yield Criterion in Terms of Stresses

Using the linear transformation approach, Karafillis and Boyce [28] developed an
extension to orthotropy of the following generic isotropic yield function:

FKB s1; s2; s3ð Þ ¼ ð1� vÞ/1 s1; s2; s3ð Þþ vð Þ 3m

2m�1 þ 1
/2 s1; s2; s3ð Þ; ð5:96Þ

where m is an even integer and 0	 v	 1, /1 s1; s2; s3ð Þ is the Hershey [21]-Hosford
[25] yield function [see also Eq. (5.84)] and

/2 s1; s2; s3ð Þ ¼ s1j jm þ s2j jm þ s3j jm: ð5:97Þ

Thus, the orthotropic form of the Karafillis and Boyce [28] yield function is:

F0
KB

~S
� � ¼ ð1� vÞ/1

~S1; ~S2; ~S3
� �þ vð Þ 3m

2m�1 þ 1
/2

~S1; ~S2; ~S3
� � ¼ 2�rm:

Note that this yield function contains an additional coefficient, v, compared to
Yld91 [see Eq. (5.85)]. For an isotropic fcc material, Karafillis and Boyce [28] rec-
ommend (m ¼ 30 and v ¼ 0:835) or (m ¼ 12 and v ¼ 0:3). For isotropic bcc mate-
rials, it was recommended that (m ¼ 30 and v ¼ 0:948) or (m ¼ 6 and v ¼ 0:17).

It can be easily demonstrated that for m ¼ 6, both /1 s1; s2; s3ð Þ and /2 s1; s2; s3ð Þ
reduce to the Drucker [16] yield function with c = 1.227 and c = −3/2, respectively.
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Fig. 5.18 Yield surface in
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AA2090-T3 as predicted by
the Yld91 and Hill [22] yield
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Noting that the isotropic form of Karafillis and Boyce [28] yield function
FKB s1; s2; s3ð Þ is obtained by interpolation between /1 s1; s2; s3ð Þ and /2 s1; s2; s3ð Þ
[see Eq. (5.96)], it follows that for m ¼ 6, this yield criterion is in fact Drucker [16]
yield function corresponding to:

c ¼ cKB ¼ 1792v� 3
1456vþ 2

: ð5:98Þ

Remark Note that for the value recommended in Karafillis and Boyce [28], namely
v = 0.17, using Eq. (5.98) we obtain cKB = 1.209. This explains why Hershey [21]-
Hosford [25] /1 s1; s2; s3ð Þ for m ¼ 6 and Karafillis and Boyce [28] yield surfaces
for isotropic bcc materials are very close. Most importantly, this result shows that
for orthotropic bcc materials, the yield surfaces Yld91 and the Karafillis and Boyce
[28] surface are practically the same.

It can also be shown that if m ¼ 12, the isotropic yield functions /1 s1; s2; s3ð Þ
and /2 s1; s2; s3ð Þ can be expressed as polynomials in terms of the invariants J2 and
J3, i.e,

/2;m¼12 s1; s2; s3ð Þ ¼ s121 þ s122 þ s123 ¼ 2J62 þ 24J32J
2
3 þ 3J43 ; ð5:99Þ

/1;m¼12 s1; s2; s3ð Þ ¼ s1 � s2ð Þ12 þ s2 � s3ð Þ12 þ s1 � s3ð Þ12
¼ 4098J62 � 18144J32J

2
3 þ 2187J43

ð5:100Þ

Therefore, we obtain the following general result:

Proposition 5.7 For bcc and fcc orthotropic materials, the equivalent stress
associated with the Karafillis and Boyce [28] criterion is expressed in terms of the
second and third-invariant of the transformed tensor ~S, as:

– bcc orthotropic materials:

�r ¼ 2:235 ~J32 � 1:209~J23
� �1=6 ð5:101Þ

– fcc orthotropic materials:

�r ¼ 1:84 ~J62 � 3:5822~J32~J
2
3 þ 0:5834~J43

� �1=12
; ð5:102Þ

with the explicit expressions of ~J2 and ~J3 in terms of the applied stress components
being given by Eqs. (5.92) and (5.93), respectively.
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5.3.5 Explicit Expression of Yld 2004-18p Orthotropic Yield
Criterion in Terms of Stresses

The orthotropic yield function, denoted Yld 2004-18p, developed by Barlat et al.
[7] involves two linear transformations. This yield function is expressed as:

f ðX;YÞ ¼ f ðxi; yiÞ ¼ x1 � y1ð Þm þ x2 � y1ð Þm þ x3 � y1ð Þm
þ x1 � y2ð Þm þ x2 � y2ð Þm þ x3 � y2ð Þm
þ x1 � y3ð Þm þ x2 � y3ð Þm þ x3 � y3ð Þm¼ 4�rm; ð5:103Þ

where xk and yk, k = 1, …, 3, are the principal values of the transformed stress
tensors X and Y that are defined as:

X ¼ C0s
Y ¼ C00s;

ð5:104Þ

with the fourth-order tensors C0 and C00 being orthotropic. It is recommended to
take m = 6 for bcc materials and m = 8 for fcc materials.

In the coordinate system x; y; zð Þ associated with the orthotropic axes, the
fourth-order tensors C0 and C00 are expressed in matrix form using Voigt notations
as:

C0 ¼

0 �c012 �c013 0 0 0
�c021 0 �c023 0 0 0
�c031 �c032 0 0 0 0
0 0 0 c044 0 0
0 0 0 0 c055 0
0 0 0 0 0 c066

2
6666664

3
7777775

and

C00 ¼

0 �c0012 �c0013 0 0 0
�c0021 0 �c0023 0 0 0
�c0031 �c0032 0 0 0 0
0 0 0 c0044 0 0
0 0 0 0 c0055 0
0 0 0 0 0 c0066

2
6666664

3
7777775

ð5:105Þ

with c0ij; c
00
ij being material parameters (see [7]). It is important to note that the

tensors C0 and C00 are neither symmetric nor deviatoric. Therefore, the transformed
stress tensors X and Y involved in the expression of Yld 2004-18p are not
deviatoric.
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Let us denote as px; I2x; I3x the first, second, and, third-invariants associated with
the tensor X, i.e.,

px ¼ trXð Þ=3 ¼ Xxx þXyy þXzz
� �

=3

I2x ¼ tr X2� �� trXð Þ2
h i

=2

I3x ¼ detðXÞ
ð5:106Þ

and the associated invariants of the tensor Y by py; I2y; I3y. In Barlat et al. [7], the
principal values xk and yk, k = 1, …, 3 of the tensors X and Y are obtained by
solving the respective characteristic equations, i.e., the third-order algebraic
equations:

k3 � 3pxk
2 � I2xk� I3x ¼ 0 and k3 � 3pyk

2 � I2yk� I3y ¼ 0 ð5:107Þ

No explicit expressions of Yld 2004-18p in terms of the components of the stress
deviator s and the anisotropy coefficients c0ij; c

00
ij were given. In the following, we

will first provide the explicit expressions of the invariants of the transformed ten-
sors X and Y in terms of the stress components.

As already mentioned, in general, the transformed tensors X and Y are not
deviatoric, i.e., px 6¼ 0 and py 6¼ 0 [see Eq. (5.106)]. The invariants of X0, the
deviator of X, will be denoted J2x and J3x. Thus,

J2x ¼ I2x þ 3p2x ; J3x ¼ I3x þ pxI2x þ 2p3x ; ð5:108Þ

with similar relationships for the invariants J2y and J3y ofY0, the deviator ofY. Using
Eq. (5.104) it follows that the expressions of the invariants px; J2x; J3x in terms of the
components of the stress deviator s and the anisotropy coefficients c0ij are:

px ¼ � sxx c021 þ c031
� �þ syy c012 þ c032

� �þ szz c013 þ c023
� �� �

=3 ð5:109Þ

J2x ¼ d13szz þ d12syy
� �2.

2þ d23szz þ d21sxxð Þ2
.
2þ d31sxx þ d32syy

� �2.
2

þ d244s
2
yz þ d255s

2
xz þ d266s

2
xy ð5:110Þ

J3x ¼ � syyd12 þ szzd13
� �

sxxd21 þ szzd23ð Þ sxxd31 þ syyd32
� �

þ d244s
2
yz syyd12 þ szzd13
� �þ d255s

2
xz sxxd21 þ szzd23ð Þþ d266s

2
xy sxxd31 þ syyd32
� �

þ 2d44d55d66sxysxzsyz ð5:111Þ
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with the coefficients dij being expressed in terms of c0ij as:

d12 ¼ 2c012 þ c021 þ c031 � c032
� �

=3; d13 ¼ 2c013 þ c021 þ c031 � c023
� �

=3; d44 ¼ c044
d21 ¼ c012 þ 2c021 � c031 þ c032

� �
=3; d23 ¼ c012 � c013 þ 2c023 þ c032

� �
=3; d55 ¼ c055

d31 ¼ c013 � c021 þ 2c031 þ c023
� �

=3; d32 ¼ c013 � c012 þ c023 þ 2c032
� �

=3; d66 ¼ c066
ð5:112Þ

The expressions for py; I2y; I3y are obtained from Eqs. (5.109)–(5.112) by
replacing c0ij with c00ij. Further substitution in Eq. (5.103) leads to the following
result.

Theorem 5.1 The yield function Yld 2004-18p for bcc materials is a polynomial of
order 6 in stresses, and it is expressed in terms of the invariants of the transformed
tensors X and Y as:

Yld-18pBCC ¼ 9 px � py
� �6 þ 90 px � py

� �4
J2x þ J2y
� �

þ 90 px � py
� �2

J22x þ J22y þ 4J2xJ2y
� �

þ 180 px � py
� �3

J3x � J3y
� �

þ 90 px � py
� �

4J3xJ2y � 4J2xJ3y þ J2xJ3x � J2yJ3y
� �

þ 9J23x þ 6J32x
� �þ 9J23y þ 6J32y

� �
þ 60ðJ2xJ22y þ J2yJ

2
2x
� 3J3yJ3xÞ

¼ 4�r6:

ð5:113Þ
Proposition 5.8 The expression of Yld-18pBCCgiven by Eq. (5.113) allows us to
recognize that the 18 material parameters are not independent.

Proof Indeed, the yielding response according to the criterion is the same if the
coefficients c0ij, c

00
ij are replaced by bc0ij, bc

00
ij with b being an arbitrary positive

constant [see also Eqs. (5.110) and (5.111)]. Therefore, without loss of generality
one of these parameters, for example, c012 can be set equal to unity.

Proposition 5.9: If the orthotropic extension of the Hershey [21]-Hosford [25]
yield function [see Eq. (5.84)] is done by means of only one linear transformation
and the fourth-order tensor associated with this linear transformation is deviatoric,
Yld-18pBCCreduces to Yld91BCC:

Proof Indeed, if C0 = C00 is deviatoric then X ¼ Y and px ¼ py ¼ 0, so Eq. (5.113)
becomes:

Yld-18pBCC ¼ 2 66J32x � 81J23x
� � ¼ 4�r6;

i.e., /1 x1; x2; x3ð Þ ¼ 2�r6 for m ¼ 6 [see also expression of Yld91BCC given by
Eq. (5.90)]. Let us also note that the condition px ¼ 0 imposes three additional
constraints for the coefficients of C0, so this tensor has only six independent
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coefficients, with the expressions of the coefficients c0ij and c0kk in terms of the
anisotropy coefficients a, b, �c; f ; g; h appearing in the original formulation of Yld91
[see Eq. (5.86)] being:

c012 ¼ 2�cþ b; c013 ¼ 2bþ�c; c021 ¼ 2�cþ a; c023 ¼ 2aþ�c;

c021 ¼ 2�cþ a; c023 ¼ 2aþ�c; c031 ¼ 2bþ a; c032 ¼ 2aþ b;

c044 ¼ f ; c055 ¼ g c044 ¼ h:

ð5:114Þ

Using Eq. (5.114), it can be easily seen that the expressions of J2x, J3x reduce to
~J2 and ~J3, respectively, i.e., the expression of Yld91BCC given by Eq. (5.90) is
recovered.

This result also has important consequences in terms of the identification of
Yld-18pBCC. To speed up the convergence of the optimization procedure used for
determination of the anisotropy coefficients, the initial guess values should be taken
such that c0ij ¼ c00ij, and the respective numerical values should be calculated using
Eq. (5.114) and the values of the anisotropy coefficients a, b, �c; f ; g; h of Yld 91 for
the given material.

Theorem 5.2 Yld 2004-18p for fcc materials is a polynomial of order 8 in stresses,
and its expression in terms of the invariants of the transformed tensors X and Y is:

Yld-18pFCC ¼ 9 px � py
� �8 þ 168 px � py

� �6
J2x þ J2y
� �

þ 504 px � py
� �5

J3x � J3y
� �þ 420 px � py

� �4
J22x þ J22y þ 4J2xJ2y
� �

þ 840 px � py
� �3 4J3xJ2y � 4J2xJ3y þ J2xJ3x � J2yJ3y

� �
þ px � py
� �2

1680 J2xJ
2
2y þ J2yJ

2
2x

� �
� 5040J3yJ3x

h
þ 252ðJ23x þ J23yÞþ 168 J32y þ J32x

� �i
þ 168 px � py

� �
J22xJ3x � J22yJ3y þ 10J2xJ2y J3x � J3y

� �h
þ 10 J3xJ

2
2y � J3yJ

2
2x

� �i
þ 6 J42x þ 4J2xJ23x
� �þ 6 J42yþ 4J2yJ23y

� �
þ 56 3 J2yJ

2
3x þ J2xJ

2
3y

� �
þ 2 J32xJ2y þ J32yJ2x
� �h

þ 5J22yJ
2
2x � 15J3yJ3x J2y þ J2x

� �i
¼ 4�r8

ð5:115Þ
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Proposition 5.10 If C0 ¼ C00, i.e., the Yld18pFCC involves only one linear trans-
formation, and C0 is also deviatoric, Yld18pFCC reduces to Yld91FCC.

Proof Indeed, if C0 ¼ C00 and this fourth-order tensor is also deviatoric, then
X ¼ Y, px ¼ py ¼ 0 and Eq. (5.115) becomes:

Yld-18pFCC¼2ð258J42x � 648J2xJ23xÞ ¼ 4�r8;

i.e., /1 x1; x2; x3ð Þ ¼ 2�r8 for m ¼ 8 [see also the expression of Yld91FCC given by
Eq. (5.89)].

Another advantage of formulating Yld18pFCC and Yld18pBCC in terms of the
stress components is the fact that it becomes evident that these formulations do
not involve 18 independent anisotropy parameters.

5.3.6 Explicit Expression of Yld 2004-13p Orthotropic Yield
Criterion in Terms of Stresses

The orthotropic yield function denoted Yld 2004-13p, developed by Barlat et al.
[7], is of the form:

gðX;YÞ ¼ gðxi; yiÞ ¼ x1 � x2ð Þm þ x2 � x3ð Þm þ x1 � x3ð Þm
� xm1 þ xm2 þ xm3
� �þ ym1 þ ym2 þ ym3

� � ¼ 2�rm;
ð5:116Þ

where the exponent m ¼ 6 for bcc materials, and m ¼ 8 for fcc materials,
respectively; xi and yi for i = 1, …, 3 are the principal values of the transformed
stress tensors X and Y defined by Eq. (5.104) with the fourth-order order tensors C0

and C00 given by Eq. (5.105) and subjected to the additional constraints:

c012 ¼ c031 ¼ c032 ¼ 1 and c0031 ¼ c0032 ¼ 1 ð5:117Þ

Let us first note that when all the anisotropy coefficients are set to unity, i.e.,
c0ij ¼ c00ij ¼ 1 (isotropy), Yld 2004-13p reduces to:

gisotropic ¼ /1 s1; s2; s3ð Þ;

which is Hershey [21]-Hosford [25] isotropic yield function [see Eq. (5.84)].

Theorem 5.3 For bcc materials, Yld 2004-13p is a polynomial of order 6 in
stresses, and it is expressed in terms of the invariants of the transformed tensors X
and Y as:
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Yld-13pBCC ¼ 64J32x � 84J23x þ 2J32y þ 3J23y

þ 3 p6y � p6x
� �

þ 30 p4yJ2y � p4xJ2x
� �

þ 60 p3yJ3y � p3xJ3x
� �

þ 30 p2yJ
2
2y � p2xJ

2
2x

� �
þ 30 pyJ2yJ3y � pxJ2xJ3x

� � ð5:118Þ

The proof follows along the same arguments as Theorem 5.1.

Remark In contrast to Yld 2004-18pBCC, the orthotropic yield function Yld
2004-13p does not contain any mixed terms involving the invariants of both
transformed tensors X and Y

In particular, when the formulation accounts for only one linear transformation,
i.e., C0 ¼ C00 and this tensor is deviatoric, Yld-13pBCC reduces to Yld91BCC [see
Eq. (5.90)].

Theorem 5.4 For fcc materials, Yld 2004-13p is a polynomial of order 8 in terms
of stresses, and it is expressed in terms of the invariants of the transformed tensors
X and Y as:

Yld-13pFCC ¼ 256J42x � 656J2xJ23x þ 2J42y þ 8J2yJ23y

þ 3 p8y � p8x
� �

þ 56 p6yJ2y � p6xJ2x
� �

þ 168 p5yJ3y � p5xJ3x
� �

þ 140 p4yJ
2
2y � p4xJ

2
2x

� �
þ 280 p3yJ2yJ3y � p3xJ2xJ3x

� �
þ 28 p2y 2J32y þ 3J23y

� �
� p2x 2J32x þ 3J23x

� �h i
þ 56 pyJ

2
2yJ3y � pxJ

2
2xJ3x

� �
ð5:119Þ

5.4 Yield Criteria for Textured Polycrystals
with Tension–Compression Asymmetry

Basal or near-basal textures are common for cold-rolled hcp materials (see for
example, [1, 17, 25, 32] etc.). Due to this strong basal pole alignment in the
thickness direction, as seen in Chap. 3, a twinning system can be easily activated by
compression perpendicular to this direction, but the same twinning system is not
active in tension within the plane of the sheet (e.g., the 10�12f gh10�1�1i twinning
mode which is activated during the compression of the c-axis for Ti, Zr, and Mg,
see Sect. 3.2.2 for more details). Because of the directionality of twinning, a very
pronounced strength differential (SD) effect is observed. Furthermore, the strong
crystallographic texture, exhibited by these hcp materials, leads to a pronounced
anisotropy. Hence, the yield loci of rolled hcp metals are highly asymmetrical in
shape. Although very versatile anisotropic criteria exist in the literature (e.g., the
anisotropic criteria presented in Sects. 5.2 and 5.3), they were all intended to model
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metals with cubic crystal structure and as such were represented by even functions
of stresses. Therefore, none of these anisotropic yield criteria can capture tension–
compression asymmetry in yielding. In a first attempt to account for SD effects,
Hosford [24] modified the Hill [22] criterion by adding terms linear in stresses:

Arxx þBryy þ �B� Að Þrzz þF ryy � rzz
� �2

þG rzz � rxxð Þ2 þH rxx � ryy
� �2¼ 1

ð5:120Þ

where A, B, F, G, H are constants. This criterion predicts elliptical yield loci with
the center given by the values of the two new added constants. This formulation
could describe correctly the behavior of hcp metals having elliptical yield loci of
low eccentricity. However, the Hosford [24] yield criterion is not homogenous in
stresses, which leads to the inapplicability of the flow rule (derivatives w.r.t.
stresses do not have the dimension of strain-rates). In order to describe the highly
asymmetric yield loci of hcp alloys, other formulations should be considered.
Obviously, anisotropic formulations that describe asymmetry in yielding due to
hydrostatic effects (e.g., criteria for soils and rocks) cannot be applicable to hcp
metals, which are essentially pressure-insensitive. Nevertheless, in most studies on
hcp metals, the tension–compression asymmetry is neglected, and Hill [22] crite-
rion is used (see for example [46]). Very recently, macroscopic yield criteria that
could accurately describe both anisotropy and SD effects in such pressure-
insensitive metals have been developed by Cazacu and Barlat [13], Cazacu et al.
[14] and these yield functions are presented in the following section.

5.4.1 Orthotropic Yield Criterion of Cazacu and Barlat [13]

As discussed in Sect. 4.3, to account for SD effects in isotropic metals, Cazacu and
Barlat [13] developed a yield criterion which is an odd function. Its expression is:

f sð Þ 
 J2ð Þ32�c J3 ¼ s3Y ; ð5:121Þ

where J2, J3 are the invariants of the stress deviator and sY is the yield stress in pure
shear; c being a material parameter (for a detailed presentation and discussion of this
isotropic criterion, the reader is referred to Chap. 4). To describe both the anisotropy
and tension–compression asymmetry of hcp metals, these authors also proposed an
orthotropic extension of this criterion using the generalized invariants approach (see
Sect. 5.1). The expression of this orthotropic and asymmetric yield criterion is:

/ ¼ J02
� �3=2�c J03

� �
; ð5:122Þ

with the expressions of the orthotropic invariants J02 and J
0
3 being given by Eqs. (5.6)

and (5.8), respectively. Since the criterion is a homogeneous function in stresses
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thus, for 3-D loadings it involves 17 independent coefficients. In the case of a sheet,
where the only nonzero stress components are the in-plane stresses rxx; ryy; rxy

� �
,

the orthotropic criterion given by Eq. (5.122) involves 10 material parameters (9
anisotropy coefficients and the value of the constant c), and it is written as:

f 02 
 1
6

a1 þ a3ð Þr2xx �
a1
3
rxxryy þ 1

6
a1 þ a2ð Þr2yy þ a4r

2
xy

� �3=2

� c

1
27

b1 þ b2ð Þr3xx þ
1
27

b3 þ b4ð Þr3yy �
1
9

b1rxx þ b4ryy
� �

rxxryy

� 1
3
r2xy b5 � 2b10ð Þrxx � b5ryy
� �

8><
>:

9>=
>; ¼ s3Y :

ð5:123Þ

If rTh and rCh denote the absolute values of the yield stress in uniaxial tension–
compression, respectively, along an axis at orientation h to the rolling direction x, it
follows that

rTh ¼ sY

1
6

a1 þ a3ð Þ cos4 hþ a4 � a1=3ð Þ cos2 h sin2 hþ 1
6

a1 þ a2ð Þ sin4 h
� �3=2

�c

1
27

b1 þ b2ð Þ cos6 hþ 1
27

b3 þ b4ð Þ sin6 h
� 1
9

b1 þ 3b5 � 6b10ð Þ cos2 hþ b4 � 3b5ð Þ sin2 h� �
sin2 h cos2 h

2
64

3
75

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

�1=3

ð5:124Þ

and

rCh ¼ sY

1
6

a1 þ a3ð Þ cos4 hþ a4 � a1=3ð Þ cos2 h sin2 hþ 1
6

a1 þ a2ð Þ sin4 h
� �3=2

þ c

1
27

b1 þ b2ð Þ cos6 hþ 1
27

b3 þ b4ð Þ sin6 h
� 1
9

b1 þ 3b5 � 6b10ð Þ cos2 hþ b4 � 3b5ð Þ sin2 h� �
sin2 h cos2 h

2
64

3
75

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

�1=3

ð5:125Þ

In particular, if rT0 and rC0 denote the absolute values of the yield stress in
tension–compression along the rolling direction, it follows that

rT0 ¼ sY
1
6

a1 þ a3ð Þ
� �3=2

� c
27

b1 þ b2ð Þ
( )�1=3

rC0 ¼ sY
1
6

a1 þ a3ð Þ
� �3=2

þ c
27

b1 þ b2ð Þ
( )�1=3 ; ð5:126Þ
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Similarly, defining rT90 and rC90 the absolute values of the yield stress in tension–
compression along the transverse direction, according to the orthotropic Cazacu and
Barlat [13] criterion we have:

rT90 ¼ sY
1
6

a1 þ a2ð Þ
� �3=2

� c
27

b3 þ b4ð Þ
( )�1=3

rC90 ¼ sY
1
6

a1 þ a2ð Þ
� �3=2

þ c
27

b3 þ b4ð Þ
( )�1=3 ; ð5:127Þ

Yielding under equibiaxial tension occurs when rxx ¼ ryy ¼ rTb and all the other
stress components are zero, the expression of rTb being:

rTb ¼ sY
a2 þ a3

6

� �3=2
� c

�2 b1 þ b2 þ b3 � 2b4
27

� � ��1
3

ð5:128Þ

while yielding under equibiaxial compression occurs when rxx ¼ ryy ¼ �rCb

rCb ¼ sY
a2 þ a3

6

� �3=2
þ c

�2 b1 þ b2 þ b3 � 2b4
27

� � ��1
3

ð5:129Þ

Note that plastic incompressibility results in: rTb ¼ rCND and rCb ¼ rTND, where
rTND and rCND denote the absolute values of the yield stress in tension–compression
along the normal direction, or z axis, respectively.

Further, let rT
h
and rC

h
denote the r-value [see Eq. (5.39)] under uniaxial tension

or uniaxial compression loading in a direction at angle h to the x-axis or rolling
direction. The r-values can be calculated by making use of the associated flow rule
in conjunction with Eq. (5.122) (for the expression of the partial derivatives of J02
and J03 , see Eqs. (5.49) and (5.50)). In particular,

rT0 a3 � a1
� � a1 þ a3

6

� �1=2
� 2 c

9
b2 r

T
0 � b1

� � ¼ 0 ð5:130Þ

rC0 a3 � a1
� � a1 þ a3

6

� �1=2
þ 2c

9
b2 r

C
0 � b1

� � ¼ 0 ð5:131Þ

rT90 a2 � a1
� � a1 þ a2

6

� �1=2
� 2c

9
�b4 þ b3 r

T
90

� � ¼ 0 ð5:132Þ

rC90a2 � a1
� � a1 þ a2

6

� �1=2
� 2c

9
b4 � b3 r

C
90

� � ¼ 0 ð5:133Þ
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�b 2 rC45 þ 1
� � þ 6a4

� �
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 6a4

p
� 4ffiffiffi

6
p ca 1þ 2 rC45

� � ¼ 0 ð5:134Þ

b �2 rT45 þ 1
� � � 6a4

� �
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 6a4

p
� 4ffiffiffi

6
p ca 1� 2 rT45

� � ¼ 0 ð5:135Þ

with a ¼ �2b1 þ b2 þ b3 � 2 b4 þ 6 b10, b ¼ a2 þ a3:
In the following, applications of the Cazacu and Barlat [13] orthotropic criterion

[see Eq. (5.122)] to the description of the anisotropy and asymmetry of the
experimental yield loci of textured pure Mg and binary Mg–Th and Mg–Li alloys
are presented. The data on these materials were reported in [29].

Pure Mg

For pure Mg plane-strain compression, results were reported in six orientations that
correspond to the six combinations of the rolling direction (RD or x-direction),
transverse direction (TD or y-direction), and thickness direction (ND or z-direction).
Three duplicate specimens were tested in each of these six orientations. Uniaxial
compression tests were performed in the RD, TD, and ND directions, respectively,
while uniaxial tension tests were carried out in the RD and TD directions. Based on
the data, the experimental yield loci corresponding to several constant levels (1%,
5%, and 10%) of the equivalent plastic strain were constructed (see Fig. 5.19 where
the experimental points are represented by symbols).

The 1% yield locus for the textured pure Mg has a highly asymmetrical shape.
Note the much greater strength in tension than in compression and the higher tensile
strength in the transverse direction than in the rolling direction. This is due to the
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Fig. 5.19 Comparison
between the plane stress yield
loci for a Mg sheet predicted
by the Cazacu and Barlat [13]
orthotropic criterion and
experiments (data after [29])
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texture that presents strong basal pole alignment in the thickness direction,
10�12f gh10�1�1i twinning is easily activated by compression perpendicular to this

direction, but is not active in tension within the plane. This results in much lower
compressive strengths as compared to the tensile strengths. The greater spread of
the texture about the transverse direction allows more widespread operation of basal
slip for loading in the rolling direction; hence, the tensile strength is significantly
lower in the rolling direction than in the transverse direction (see [29]). The yield
locus at 5% strain shows asymmetry similar to that of the locus at 1% strain. Since
10�12f gh10�1�1i twinning is still operational, the yield strength in compression is

much lower than in tension. At 10% strain, the third quadrant strengths are com-
parable to the first quadrant strengths, owing to the exhaustion of 10�12f gh10�1�1i
twinning at about 6% strain. Figure 5.19 shows the theoretical yield loci in the
plane rxx; ryy

� �
together with the experimental data reported in [29]. The param-

eters involved in the 2-D form of the Cazacu and Barlat [13] yield loci were
determined using Eqs. (5.125)–(5.129) and the data. The values of the anisotropy
coefficients obtained at 1%, 5%, and 10% strain are given in Table 5.3. Note that
the proposed theory reproduces very well the observed asymmetry in yielding.

Mg–0.49% Th alloy

Because of the relatively symmetric texture and the solution-hardening effect of
thorium, the experimental yield loci for Mg–Th alloy plates reported by Kelley and
Hosford [29] are much more elliptical than those for pure Mg. The compressive
yield strengths are 60–65% of the tensile yield strengths, while for pure Mg the
compressive yield strengths are only 20–40% of tensile values. The yield strengths
for the transverse and rolling directions are essentially identical. The parameters
involved in the 2-D form of the Cazacu and Barlat [13] criterion [see Eq. (5.123)]
corresponding to different strain levels were calculated using Eqs. (5.125)–(5.129)
and the available data (see Table 5.4). Good agreement is obtained between the
theoretical surfaces and available data for Mg–Th (see Fig. 5.20).

Table 5.3 Parameters involved in the Cazacu and Barlat [13] criterion for textured Mg

Strain (%) a1 a2 a3 b1 b2 b3 b4 c

1 −0.014 0.611 0.718 −0.338 1.428 1.164 −0.065 0.74

5 −0.018 0.67 0.906 −0.319 2.156 1.434 −0.219 0.712

10 0.586 0.85 1.513 0.132 0.112 0.548 −0.071 1.4

Table 5.4 Parameters involved in the Cazacu and Barlat [13] criterion for Mg–0.5% Th alloy

Strain (%) a1 a2 a3 b1 b2 b3 b4 c

1 0.178 1.213 1.325 −0.145 1.453 1.449 −0.362 1.436

5 0.391 1.739 1.784 −0.107 2.685 2.662 −0.537 1.466

10 4.527 5.828 5.841 −1.93 6.27 3.955 −0.917 1.594
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Mg–4% Li alloy

The experimental yield loci for Mg–Li alloy plates reported by Kelley and Hosford
[29] are similar in shape to those for the Mg–Th alloy but with much reduced yield
stresses due to the occurrence of prism slip and to the weaker crystallographic
texture. The effect of 10�12f gh10�1�1i twinning is evident in the low compressive
strengths at 1% and 5% strains. The values of the anisotropy coefficients corre-
sponding to 1, 5, and 10% were calculated using the procedure outlined in the
previous section and are given in Table 5.5. Figure 5.21 shows the theoretical yield
loci together with the experimental data of [29]. Again, the agreement between
the Cazacu and Barlat [13] yield criterion and experiments is very good.

5.4.2 Orthotropic Yield Criterion of Nixon et al. [36]

5.4.2.1 Yielding Formulation

The 3-D orthotropic and asymmetric yield criterion of Cazacu and Barlat [13] [see
Eq. (5.122)] is written in terms of orthotropic invariants. Therefore, it involves 17
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between the plane stress yield
loci for a Mg–0.5% Th sheet
predicted by the Cazacu and
Barlat [13] orthotropic
criterion and experiments
(data after [29])

Table 5.5 Parameters involved in the Cazacu and Barlat [13] criterion for Mg–4% Li alloy

Strain (%) a1 a2 a3 b1 b2 b3 b4 c

1 0.896 3.371 3.509 −1.591 5.414 3.957 0.259 2.01

5 1.254 2.07 2.109 0.128 0.875 0.995 −0.354 5.262

10 3.032 3.735 3.922 −0.829 0.895 0.741 −0.327 5.85
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independent parameters and as such can account for yielding behavior for complex
loadings involving tension-shear couplings and compression-shear couplings.
However, if fewer experimental data are available, the orthotropic extension of the
same isotropic criterion using one linear transformation applied to the Cauchy stress
tensor may be used. This methodology was used by Nixon et al. [36], the
expression of this orthotropic and asymmetric yield criterion being:

G ~S
� � ¼ ~J2

� �3=2�c ~J3
� �

; ð5:136Þ

where ~J2 ¼ tr ~S
2

� �
=2 and ~J3 ¼ tr ~S

3
� �

=3 are the second and third-invariant of the

transformed tensor ~S ¼ Lr ¼ Ls, with L a fourth-order tensor, orthotropic and
symmetric. If in the Cartesian coordinate system x; y; zð Þ associated with the
orthotropic axes, the stress tensor is represented in Voigt notations by the
six-dimensional vector r ¼ rxx; ryy; rzz; ryz; rxz; rxy

� �
, and the fourth-order ortho-

tropic tensor L is represented by the 6 � 6 matrix:

L ¼ 1
3

a2 þ a3 �a3 �a2 0 0 0
�a3 a3 þ a1 �a1 0 0 0
�a2 �a1 a1 þ a2 0 0 0
0 0 0 3a4 0 0
0 0 0 0 3a5 0
0 0 0 0 0 3a6

2
6666664

3
7777775
; ð5:137Þ

Fig. 5.21 Comparison
between the plane stress yield
loci for a Mg–4% Li sheet
predicted by the Cazacu and
Barlat [13] orthotropic
criterion and experiments
(data after [29])
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with ai (i = 1, …, 6) being anisotropy parameters, the expressions of the invariants
~J2 and ~J3 of the transformed tensor ~S in terms of the components of the stress
deviator s are given by equations similar with Eqs. (5.92) and (5.93). Therefore, the
equivalent stress �r associated to the Nixon et al. [36] yield criterion (5.136) is:

�r ¼ A1 ~J3=22 � c~J3
� �1=3

; ð5:138Þ

where A1 is a constant defined such �r reduces to the tensile yield stress along RD,
i.e.,

A1 ¼ 3

a22 þ a23 þ a2a3
� �3=2� c a2 þ a3ð Þa2a3
h i1=3 ð5:139Þ

The effective stress �r is homogeneous of degree one in its arguments. Thus, if
we replace ai by xai, with x being any positive number, the expression for the
effective stress remains unchanged. Hence, we can scale the anisotropy coefficients
by a1, or equivalently, set a1 ¼ 1: The anisotropy coefficients, aj with j = 2, …, 4,
and the parameter c associated with the tension–compression asymmetry of the
material can be determined using the experimentally determined uniaxial tensile
and compressive flow stresses along the axes of orthotropy of the material.

If rTh and rCh are the absolute values of the yield stress in uniaxial tension–
compression, respectively, along an axis at orientation h to the rolling direction x,
according to Nixon et al. [36] criterion, we have:

rC0 =r
T
0 ¼ 1

A1
a22 þ a23 þ a2a3
� �3=2 þ c a2 þ a3ð Þa2a3
h i�1=3

ð5:140Þ

Similarly, this criterion predicts that the tensile and compressive yield stress
along the transverse direction y are:

rT90=r
T
0 ¼ 1

A1
a21 þ a23 þ a1a3
� �3=2�c a1 þ a3ð Þa1a3
h i�1=3

ð5:141Þ

and

rC90=r
T
0 ¼ 1

A1
a21 þ a23 þ a1a3
� �3=2 þ c a1 þ a3ð Þa1a3
h i�1=3

ð5:142Þ

Moreover, the tensile and compressive yield stresses along the normal direction
z are:
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rTz =r
T
0 ¼ 1

A1
a21 þ a22 þ a1a2
� �3=2� c a1 þ a2ð Þa1a2
h i�1=3

ð5:143Þ

rCz =r
T
z ¼ 1

A1
a21 þ a22 þ a1a2
� �3=2 þ c a1 þ a2ð Þa1a2
h i�1=3

ð5:144Þ

Plastic incompressibility implies that yielding under equibiaxial tension occurs
when rxx ¼ ryy ¼ rTb and all the other stress components are zero, the expression of
rTb being:

rTb ¼ rCz

while yielding under equibiaxial compression occurs when rxx ¼ ryy ¼ �rCb ¼ �rTz
and all other stress components are zero.

Further, let rT
h
and rC

h
be the r-value [see Eq. (5.39)] under uniaxial tension stress

or uniaxial compression in a direction at angle h to the x-axis. According to
the Nixon et al. [36] orthotropic yield criterion,

3 rT0 3a1 þ a2 � a3ð Þ � a3 � a2 � a1ð Þ� � ffiffiffiffiffi
a1

p � 2c 3b1 � b3ð ÞrT0 � b3
� � ¼ 0

ð5:145Þ

3 rC0 3a1 þ a2 � a3ð Þ � a3 � a2 � a1ð Þ� � ffiffiffiffiffi
a1

p þ 2c 3b1 � b3ð ÞrT0 � b3
� � ¼ 0

ð5:146Þ

3 rT90 3a2 þ a1 � a3ð Þ � a3 � a2 � a1ð Þ� � ffiffiffiffiffi
a2

p � 2c 3b2 � b4ð ÞrT90 � b3
� � ¼ 0

ð5:147Þ

3 rC90 3a2 þ a1 � a3ð Þ � a3 � a2 � a1ð Þ� � ffiffiffiffiffi
a2

p þ 2c 3b2 � b4ð ÞrC90 � b3
� � ¼ 0

ð5:148Þ

In the above equations, ai, i = 1, …, 3, and bj, j = 1, …, 4 are constants which
have the following expressions in terms of the anisotropy coefficients ai, i = 1,…, 3:

a1 ¼ a22 þ a23 þ a2a3
� �

=9; a2 ¼ a21 þ a23 þ a1a3
� �

=9; a3 ¼ a21 þ a22 þ a2a1
� �

=9;

b1 ¼ a2a3ð Þ a2 þ a3ð Þ=27; b2 ¼ a1a3ð Þ a1 þ a3ð Þ=27;
b3 ¼ b1 þ a2a

2
3 þ a22a1 � a23a1

� �
=27; b4 ¼ b2 þ a1a

2
3 þ a22a1 � a23a2

� �
=27

ð5:149Þ

In summary, using Eqs. (5.140)–(5.149) with a1 = 1, the coefficients aj, j = 2,
…, 4 and the tension–compression parameter c can be determined by minimizing
the cost function
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E a2; a3; a4; cð Þ ¼
X
j

wj r
T
h=r

exp
h � 1

� �2 þ X
k

zk rCh =r
exp
h � 1

� �2
þ
X
jj

tjj r
T
h =r

exp
h � 1

� �2 þ X
kk

mkk rCh =r
exp
h � 1

� �2
;

ð5:150Þ

where the range of j, k, jj, kk is given by the number of experimental tensile yield
stresses, experimental compressive yield stresses, tensile Lankford coefficients, and
the compressive ellipticity ratio available, while wj, zk, tjj, and mkk are weights given
to the respective experimental values. The remaining anisotropy coefficients a4 and
a5, which are associated with out-of-plane properties may be determined using data
such as the yield stress in simple shear in the y; zð Þ and x; zð Þ planes, respectively.

5.4.2.2 Applications: Tension, Compression, and Bending of hcp-Ti

Pure Ti has a hcp structure with a c/a ratio of 1.587, i.e., lower than the ideal c/
a ratio of 1.633 (see also Chap. 3). There are three principal types of Ti alloys: a or
near a phase alloys, a–b phase alloys and b phase alloys. Ti alloys in the low- and
medium-temperature regime mainly consist of the hcp a-phase. These hcp materials
are known to display plastic anisotropy and a strong tension–compression asym-
metry (see, for example, [43]). Numerous studies (e.g., [30, 33]) have shown that
classic yield criteria, such as Hill [22] are unable to capture this asymmetry.

Nixon et al. [36, 37] have reported the results of a comprehensive experimental
study on the quasi-static mechanical response of a high-purity a-Ti. This material
was supplied in the form of a 15.87 mm thick cross-rolled disk of 254 mm
diameter. Optical microscopy showed that the as-received material has equiaxed
grains with an average grain size of about 20 lm. The basal plane (0001) pole
figures measured by X-ray diffraction show that the plate exhibits orthotropic
texture. The basal plane aligns maximally in the normal-transverse plane at 30°–40°
from the plate normal direction (ND) towards the transverse direction (TD). This
result was also confirmed by neutron diffraction measurements of the initial texture
carried out in the neutron time-of-flight (TOF) diffractometer High-Pressure-
Preferred Orientation at Los Alamos Neutron Science Center (for more details on
the initial texture, see [36]).

Quasi-static characterization tests consisted of uniaxial tension–compression
tests that were conducted at room temperature and at a nominal strain-rate of 0.001/s.
To characterize the anisotropy of the material, standard tensile specimens were
machined such that the tensile direction was either parallel to the rolling direction
(RD) or the transverse direction, while a specialized miniature test specimen was
used for the through-thickness (TT or ND) tensile tests. The uniaxial tensile test
results (see Fig. 5.22) show that the material displays orthotropic behavior, the
material being weakest in the rolling direction and strongest in the through-thickness
direction.

5.4 Yield Criteria for Textured Polycrystals with Tension–Compression Asymmetry 261



To examine the effect of the loading orientation on the mechanical response,
cylindrical compression specimens were machined such that the axes of the
cylinders were either along RD, TD, or TT directions. The test results showed that
the tension–compression asymmetry of this material is highly directional; the most
pronounced asymmetry being observed for specimens cut along RD (see Fig. 5.23).
It is worth analyzing in more detail, the compressive and tensile true stress–strain
response along the rolling direction shown in Fig. 5.24. Although, initially there is
no significant difference in yielding behavior (at 0.02% strain offset, the yield stress
in tension or compression is about 175 MPa), a very pronounced tension–com-
pression asymmetry is observed after about 10% strain. Note the especially sharp
difference in hardening rate. While in tension, the material hardens gradually until
plastic localization (necking) occurs at about 30% strain, in compression
strain-hardening is strongly non-linear, with a very pronounced increase in hard-
ening rate observed at about 10% strain. This change in hardening may be
indicative of deformation twinning. This hypothesis was verified by the analysis of
the textures of the deformed specimens (see [36]).

Nixon et al. [36] applied the orthotropic and asymmetric yield criterion given by
Eq. (5.136) to model the observed anisotropy and asymmetry in yielding of this a-
Ti. Since r-values were not measured, the experimental data used in the cost
function given by Eq. (5.150) consisted of the measured tensile and compressive
flow data in the RD, TD, and TT directions, respectively. Equal weights were given
to the experimental data (i.e., wj = zk = 1, tjj = mkk = 0). The coefficient a1 was set
equal to unity while the numerical values of the coefficients a2, a3 and a6 corre-
sponding to fixed levels of the equivalent plastic strain, �ep are given in Table 5.6.
Note that �ep was calculated using the work-equivalence principle in conjunction
with Eq. (5.138) for the equivalent stress �r associated to the yield criterion (5.136).
No data were available for the determination of the coefficients a4 and a5.

Fig. 5.22 Uniaxial tensile
test results along the rolling
(RD), transverse (TD), and
through-thickness direction
(TT) of the high-purity a-Ti.
Experimental data from [36]
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Therefore, in the simulations of the mechanical response these values were set equal
to the isotropic values (i.e., unity).

The corresponding theoretical yield loci along with the experimental values
(represented by symbols) are shown in Fig. 5.25. The orthotropic yield criterion
given by Eq. (5.136) captures with accuracy both the asymmetry and anisotropy in
yielding exhibited by this high-purity a-Ti material. Note that for �ep below 10%
strain, the predicted yield loci have an elliptical type shape, which is typical for
slip-dominated plastic deformation. Beyond this strain level, the criterion predicts
that the yield loci have a triangular shape and that the tension–compression
asymmetry is very pronounced. It is worth noting that this change in shape occurs at

Fig. 5.23 Comparison
between the stress–strain
response in tension–
compression and
experimental data for a rolling
(RD) and transverse
(TD) directions, respectively.
b Rolling (RD) and normal
(TT) directions, respectively
of the high-purity a-Ti.
Experimental data from [36]
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Fig. 5.24 Comparison
between the uniaxial
compression and tension
response in the rolling
direction of the high-purity
a-Ti. Experimental data from
[36]

Table 5.6 Nixon et al. [36]
yield function coefficients
for high-purity a-Ti
corresponding to the onset of
yielding (�ep = 0) and at fixed
values of the equivalent
plastic strain

�ep (%) a2 a3 a6 c

0 0.92 1.99 1.33 −0.217

2.5 0.92 1.73 1.4 −0.220

5 0.834 1.648 1.366 −0.229

7.5 0.86 1.62 1.41 −0.260

10 0.89 1.606 1.45 −0.2754

20 0.944 1.425 1.426 −0.5908

Fig. 5.25 Projection in the
biaxial plane (RD, TD) of
Nixon et al. [36] yield
criterion for a high-purity a-Ti
and experimental data
(symbols) corresponding to
fixed values of the equivalent
plastic strain �ep. Stresses are
in MPa
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the strain level associated with twin activation in the RD direction. For comparison
purposes, the Hill [22] criterion was also applied to the same material. The coef-
ficients F, G, and H were calculated using the analytic expressions of these coef-
ficients in terms of the flow stresses along the axes of symmetry of the material [see
Eq. (5.30)] corresponding to an equivalent plastic strain of 20%, the numerical
values being: F = 0.2251, G = 0.2639, and H = 0.7361. In Fig. 5.26 are shown the
theoretical yield loci according to the Hill [22] criterion along with the yield locus
according to the orthotropic and asymmetric yield criterion given by Eq. (5.136) for
�ep ¼ 0:2: As expected, Hill [22] yield criterion cannot capture the observed yielding
behavior while the proposed model describes very well the pronounced strength
differential effects displayed by the material.

For hcp materials and in particular this a-Ti material even for monotonic load-
ings, the tension–compression asymmetry and the texture evolve with accumulated
plastic deformation (see Figs. 5.23 and 5.24 and the texture measurements reported
in [36]). However, specifying the expression of the yield function in the form:

Fðr;�epÞ ¼ �rðr;�epÞ � Yð�epÞ ð5:151Þ

where �r is given by Eq. (5.138) and Yð�epÞ is the effective stress–effective plastic
strain relationship in a given direction (e.g., the tensile rolling direction). Even if the
components of the fourth-order tensor L given by Eq. (5.137) and of the coefficient
c, for a given level of strain can be determined based on the available experimental
data, establishing analytical expressions for the evolution of all these parameters in
terms of �ep is very challenging. Therefore, Nixon et al. [36] used the methodology
proposed in Plunkett et al. [38] for the description of the evolution of the anisotropy
and tension–compression asymmetry. Specifically, using the experimental yield
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Fig. 5.26 Theoretical yield
loci according to Hill [22]
criterion and the Nixon et al.
[36] criterion in comparison
with experimental flow
stresses (symbols) on
high-purity a-Ti for an
equivalent plastic strain of
�ep ¼ 0:2: Stresses are in MPa
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stress data, the coefficients involved in the yield criterion corresponding to initial
yielding and a set of values of the equivalent plastic strain, say �ep1\�ep2\ � � �\�epm
were identified and then the effective stress ~r j ¼ �rfr; aið�epj Þ; cð�epj Þg according to
the criterion [see Eq. (5.138)] as well as Y j ¼ Yð�epj Þ corresponding to the each of
the individual strain level �epj , j = 1, …, m were calculated. To obtain the yield
surface corresponding to any given level of accumulated strain, an interpolation
procedure was used. Specifically, for a given arbitrary level of �ep, the anisotropic
yield function was taken of the form:

Fðr;�epÞ ¼ Cðr;�epÞ �Pð�epÞ; ð5:152Þ

with

C ¼ nð�epÞ~r j þð1� nð�epÞÞ~rjþ 1 ð5:153Þ

and

P ¼ nð�epÞ � Y j þð1� nð�epÞÞ � Yjþ 1 ð5:154Þ

for any �epj 	�ep 	�epjþ 1, j = 1, …, m − 1. For a linear interpolation scheme, the
weighting parameter nð�epÞ appearing in Eqs. (5.153) and (5.154) is defined as:

nð�epÞ ¼ �epjþ 1 � �ep

�epjþ 1 � �epj
ð5:155Þ

such that nð�epj Þ ¼ 1 and nð�epjþ 1Þ ¼ 0:
For a detailed discussion of the F.E. implementation of an elastic-plastic model,

the reader is referred to Chap. 2. In the following, are presented the F.E. simulations
for uniaxial loadings using the orthotropic and asymmetric Nixon et al. [36] yield
criterion in conjunction with Eqs. (5.152)–(5.155) and associated flow rule carried
out with the explicit F.E. code EPIC [27]. The F.E. simulations shown in Figs. 5.27,
5.28 and 5.29 involve a single element with eight nodes and a single integration
point. The cell was stretched uniaxially and the stress versus strain results obtained
were compared to the appropriate experimental data. For each simulation, four
nodes on one face of the element were restrained and the four nodes on the opposite
face were given a constant velocity in either the tensile or compressive direction.
Note that the model accurately reproduces the data for each loading condition (see
Fig. 5.29).

Moreover, the asymmetric and orthotropic yield criterion given by Eq. (5.138) in
conjunction with the interpolation procedure described by Eqs. (5.152)–(5.155) was
benchmarked against beam bending test results reported in [37]. The reason for
choosing the bending test is that it provides validation for the theoretical description of
the tension–compression asymmetry in yielding. The bending tests were carried out on
rectangular bars of square cross-section. Four beams were cut from the plate: two with
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the long axis along the rolling direction (RD) and two with the long axis along the
transverse direction (TD). These four test configurations are shown in Fig. 5.30a.

Along one side of each beam tested, a speckle pattern was sprayed and digital
image correlation (DIC) was used to determine the strain field after deformation
(see Fig. 5.30b). The grid and subsequent strain field did not cover the entire
speckle field (see [37]). The deformed specimens were cut at the midpoint along the
axis to examine the final deformed cross-sections. Measurements at this
cross-section were taken for comparison to the F.E. simulations. The simulated final

Tension Compression

Fig. 5.27 Comparison between finite element simulation results using the Nixon et al. [36] model
(Eq. 5.138) and experimental data corresponding to uniaxial loading in the rolling direction
(RD) of a high-purity a-Ti. Symbols are simulation results

Tension Compression

Fig. 5.28 Comparison between finite element simulation results using the Nixon et al. [36] model
(Eq. 5.138) and experimental data corresponding to uniaxial loading in the transverse direction
(TD) of a high-purity a-Ti. Symbols are simulation results
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cross-sections for the four configurations shown in Fig. 5.31 confirm that the model
captures the major features of the mechanical behavior of the high-purity Ti tested.
Indeed, it accurately predicts that when the TT direction is perpendicular to the
loading direction i.e., Case 1 and Case 3 in Fig. 5.30, the cross-sections of the

Tension Compression

Fig. 5.29 Comparison between finite element simulation results using the Nixon et al. [36] model
and experimental data corresponding to uniaxial loading in the through-thickness direction (TT) of
a high-purity a-Ti. Symbols are simulation results

Fig. 5.30 Four point beam bending test a specimen configurations: in Cases 1 and 2 the long axis
of the specimen is aligned with the rolling direction of the a-Ti-plate (x-axis = RD); for Cases 3
and 4, the long axes of the respective specimens are aligned with the transverse direction of the
plate (y-axis = TD); TT designates the through-thickness direction of the plate. b Four point beam
bending test jig with test specimen

268 5 Yield Criteria for Anisotropic Polycrystals



deformed beams are nearly square. This is because the hardest to deform direction
is the TT direction (or z-axis).

On the other hand, for the bending tests where the loading direction is along the
TT direction (Case 2 and Case 4 in Fig. 5.30a), it is predicted that the deformed
cross-sections are wedge-shaped. This is because the material deforms much more
in the TD direction and RD direction than along the TT direction (Case 2). In Case
4, there is more lateral strain than in Case 2, which is consistent with the material
being harder in the TD than the RD as revealed by the results of the uniaxial loading
tests (see Fig. 5.23). A comparison between the photographed cross-sections and
F.E. simulations is shown in Fig. 5.32. Excellent agreement is observed.

In what follows, comparisons between F.E. axial strains obtained with the Nixon
et al. [36] model and the experimental axial strains obtained by DIC are discussed.
The axial strain is defined as the strain along the long axis of the given beam
specimen. Thus, for Case 1 loading the axial strain is along the x-axis (RD) of the
plate (see also Fig. 5.30a). For this loading case, the comparison of the respective
strain contours is shown in Fig. 5.33a. Figure 5.33b presents a comparison between
the experimental and theoretical predictions of the variation of the axial strain along
the height of this beam (y-axis which corresponds to the TD direction of the plate
from which the beam specimen was cut) at the mid-section of the beam. Note again

Fig. 5.31 F.E. simulated cross-section of the bent bars using the Nixon et al. [36] model for the
four loading configurations shown in Fig. 5.30 (after Nixon et al. [37])
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that the data from the experiment does not cover the entire area, due to the DIC
technique used. A very good agreement between the experimental and simula-
tion results is observed. In particular, the model captures very well the upward shift
of the neutral axis of the beam (i.e., the point at which the longitudinal strain
vanishes is above the beam midpoint in the vertical direction). The reason for this
shift is that the material is softer in tension than in compression. Let us recall that in
the model (Eq. 5.138), the anisotropy coefficients a2, a3, a6 and the strength dif-
ferential parameter c were considered functions of the accumulated plastic strain
(see Table 5.6). The accuracy of the F.E. results also shows that for this material,
the model captures accurately the evolution of the tension–compression asymmetry
of this material. Figure 5.34a shows the comparison of the respective strain con-
tours for Case 2 (see Fig. 5.30a) while a plot of the axial strain versus the height of
the beam is shown in Fig. 5.34b. Again, there is very good agreement between
experimental data and simulated results. Figure 5.35a shows the comparison

(a) (b)

(c) (d)

Fig. 5.32 Comparison of the photographed cross-sections of the bent bars and F.E. simulation
using Nixon et al. [36] model (symbols) for the four loading configurations shown in Fig. 5.30:
a Case 1. b Case 2. c Case 3 and d Case 4; x-axis designates the rolling direction (RD); y-axis
denotes the transverse direction (TD), and z-axis the through-thickness (TT) direction of
the high-purity a-Ti plate from which the specimens were cut (after Nixon et al. [37])
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between experimental and simulated strain contours for Case 3. Note the good
agreement between the experimental and simulation results; in particular, the model
(see Fig. 5.35b) describes very well the upward shift of the neutral axis. Finally,
Fig. 5.36a shows the comparison of the simulated and experimental axial strain
contours in Case 4, while Fig. 5.36b shows that for this loading scenario, once
again, the model correctly predicts the shift of the neutral axis. In summary, the
model correctly predicts that for the bent a-Ti beams, the larger is the rT/rC ratio
along the beam longitudinal direction, the larger is the upward shift of the neutral
axis becomes.

Fig. 5.33 Case 1 loading: a Comparison of the F.E. axial strain contours (ex) obtained with Nixon
et al. [36] model against experimental data. b Axial strain ex versus height at the centerline
(x = rolling direction, y = transverse direction) of the high-purity a-Ti plate (after Nixon et al.
[37])

Fig. 5.34 Case 2 loading: a Comparison of the F.E. axial strain contours (ex) obtained with Nixon
et al. [36] model against experimental data. b Axial strain ex versus height at the centerline
(x = rolling direction, z = through-thickness direction) of the high-purity a-Ti plate (after Nixon
et al. [37])
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5.4.3 Orthotropic and Asymmetric Yield Criterion of Cazacu
et al. [14]

5.4.3.1 Yielding Description

To model the observed anisotropy and tension–compression asymmetry of textured
polycrystalline metallic materials, Cazacu et al. [14] used the linear transformation
approach (see Sect. 5.1) to extend to orthotropy the isotropic and asymmetric yield
criterion

Fig. 5.35 Case 3 loading: a Comparison of the F.E. axial strain contours (ey) obtained with Nixon
et al. [36] model against experimental data. b Axial strain ey versus height at the centerline
(x = rolling direction, y = transverse direction) of the high-purity a-Ti plate (after Nixon et al. [37])

Fig. 5.36 Case 4 loading: a Comparison of the F.E. axial strain contours (ey) obtained with Nixon
et al. [36] model against experimental data. b Axial strain ey versus height at the centerline
(y = transverse direction, z = through-thickness direction) of the high-purity a-Ti plate (after
Nixon et al. [37])
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F s1; s2; s3ð Þ ¼ s1j j � ks1ð Þa þ s2j j � ks2ð Þa þ s3j j � ks3ð Þa ð5:156Þ

(see Chap. 4 for the detailed presentation of this isotropic criterion) where a and
k are material parameters and si, i = 1, …, 3 are the principal values of the stress
deviator s. Specifically, a single linear transformation L was applied to the stress
deviator s, i.e., in the above expression s1, s2, s3 were substituted by r_1, r

_

2, r
_

3, the
principal values of the transformed tensor,

r_ ¼ Ls. ð5:157Þ

Thus, the Cazacu et al. [14] orthotropic yield condition is of the form:

gðr_1; r
_

2; r
_

3Þ ¼ r_1

�� ��� kr_1

� �a
þ r_2

�� ��� kr_2

� �a
þ r_3

�� ��� kr_3

� �a
: ð5:158Þ

It is important to note that the only restriction imposed on the fourth-order
symmetric tensor L is to be invariant with respect to any transformation belonging
to the orthotropic group (see Chap. 3). Thus, the tensor L is represented in the
x; y; zð Þ coordinate associated to the orthotropic axes and in Voigt notation by the
following 6 � 6 matrix:

L ¼

L11 L12 L13 0 0 0
L12 L22 L23 0 0 0
L13 L23 L33 0 0 0
0 0 0 L44 0 0
0 0 0 0 L55 0
0 0 0 0 0 L66

2
6666664

3
7777775

ð5:159Þ

Due to the homogeneity in stresses of the yield function given by Eq. (5.158),
we can scale the anisotropy coefficients by L11, or equivalently, set L11 = 1.
Therefore, for 3-D stress conditions the Cazacu et al. [14] orthotropic yield criterion
involves eight anisotropy coefficients, the homogeneity parameter a, and a
parameter k associated with strength differential effects in plastic flow. For untex-
tured (i.e., isotropic materials) L ¼ I4, where I4 is the fourth-order symmetric
identity tensor (for the definition of I4, see Chap. 1).

It is very important to note that in general for orthotropic symmetry, the tensor L
is not deviatoric, and therefore, the transformed tensor r_ is not traceless.
Nevertheless because of the specific expression of gðr_1; r

_

2; r
_

3Þ, the orthotropic
Cazacu et al. [14] yield criterion is insensitive to hydrostatic pressure and as such
the incompressibility condition is satisfied (for the mathematical proof, the reader is
referred to [14]). Given that for �1	 k	 1 and any a� 1, the isotropic form of the
criterion is convex (for the mathematical proof, see Chap. 4), the orthotropic yield
function gðr_1; r

_

2; r
_

3Þ is also convex in the variables r_1, r
_

2, r
_

3.
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It was shown that for most textured polycrystalline materials (e.g., Mg, Ti, Zr, Al
alloys), the quadratic form of the Cazacu et al. [14] orthotropic yield criterion [i.e., the
coefficient a ¼ 2 in Eq. (5.158)] and only one linear transformation L, describes
with accuracy the yielding behavior (see for example, [14, 38, 41]). For this reason,
in the following we present the key properties and the procedure for identification of
the parameters for the quadratic form of this criterion. The effective stress associated
with the quadratic form of the Cazacu et al. [14] orthotropic yield criterion is:

~re ¼ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

r_i

�� ��� kr_i

� �2vuut ; ð5:160Þ

where ~m is a constant defined such that the equivalent stress, ~re, reduces to the
tensile flow stress along the x (or RD) direction. Thus, ~m is expressed in terms of
the anisotropy coefficients Lij with i, j = 1, …, 3 and the material parameter k as
follows:

~m ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1j j � kU1ð Þ2 þ U2j j � kU2ð Þ2 þ U3j j � kU3ð Þ2

q
ð5:161Þ

where

U1 ¼ 2L11 � L12 � L13ð Þ=3; U2 ¼ 2L12 � L22 � L23ð Þ=3;
U3 ¼ 2L13 � L23 � L33ð Þ=3 ð5:162Þ

Let rTx denote the uniaxial tensile yield stress along the x-axis (RD direction).
The strength differential parameter k and the anisotropy coefficients Lij, with i,
j = 1, …, 3 and L44 can be determined from the experimental normalized tensile
flow stress values ~rTh ¼ rTh=r

T
x and the absolute values of the compressive flow

stresses ~rCh ¼ rCh =r
T
x and Lankford coefficients rh, where h represents the angle

between the uniaxial loading direction and the rolling direction (see also [14]).
Indeed, let us first note that for in-plane loadings (i.e., the only nonzero stress
components rxx, ryy, rxy), the only nonzero components of the transformed stress

tensor r_ [see Eq. (5.157)] are:

r_xx¼U1rxx þW1ryy; r_yy¼U2rxx þW2ryy; r
_

zz¼U3rxx þW3ryy;

and r_xy = L66rxy;
ð5:163Þ

with

W1 ¼ �L11 þ 2L12 � L13ð Þ=3; W2 ¼ �L12 þ 2L22 � L23ð Þ=3;
W3 ¼ �L13 þ 2L23 � L33ð Þ=3; ð5:164Þ
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Hence, the principal values of the transformed tensor r_ are given by:

r_1;2¼ r_xx þ r_yy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r_xx�r_yy

� �2
þ 4r_

2
xy

r !
=2 and r_3¼r_zz ð5:165Þ

Using Eqs. (5.163)–(5.165), it follows that according to the quadratic form of
the Cazacu et al. [14] criterion (Eq. 5.160),

rTh ¼ rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1j j � kU1ð Þ2 þ U2j j � kU2ð Þ2 þ U3j j � kU3ð Þ2

A1 hð Þj j � k A1 hð Þj jð Þ2 þ A2 hð Þj j � k A2 hð Þj jð Þ2 þ A3 hð Þj j � k A3 hð Þj jð Þ2

s

ð5:166Þ

where

A1;2 hð Þ ¼ cos2 h U1 þU2ð Þ=2 + sin2h W1 þW2ð Þ=2�
ffiffiffiffi
D

p

A3 hð Þ ¼ U3 cos2 hþW3 sin2 h;

with

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h U1 � U2ð Þ=2þ sin2 h W1 �W2ð Þ=2� �2 þ L266 sin

2 h cos2 h
q

: ð5:167Þ

For uniaxial compressive loadings in the plane of the plate,

rCh ¼ rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1j j � kU1ð Þ2 þ U2j j � kU2ð Þ2 þ U3j j � kU3ð Þ2

A1 hð Þj j þ k A1 hð Þj jð Þ2 þ A2 hð Þj j þ k A2 hð Þj jð Þ2 þ A3 hð Þj j þ k A3 hð Þj jð Þ2

s

ð5:168Þ

Note that for uniaxial loadings in the normal direction (z-axis) of the plate, the
respective yield stresses in uniaxial compression and tension are:

rC
z ¼ rT

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1j j � kU1ð Þ2 þ U2j j � kU2ð Þ2 þ U3j j � kU3ð Þ2

X1j j þ k X1j jð Þ2 þ X2j j þ k X2j jð Þ2 þ X3j j þ k X3j jð Þ2

s

rT
z ¼ rT

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1j j � kU1ð Þ2 þ U2j j � kU2ð Þ2 þ U3j j � kU3ð Þ2

X1j j � k X1j jð Þ2 þ X2j j � k X2j jð Þ2 þ X3j j � k X3j jð Þ2

s ; ð5:169Þ

where

X1 ¼ L11 þ L12 � 2L13ð Þ=3; X2 ¼ L12 þ L22 � 2L23ð Þ=3;
X3 ¼ L13 þ L23 � 2L33ð Þ=3; ð5:170Þ
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Moreover, plastic incompressibility results in: rTb ¼ rC
z and rCb ¼ rT

z , where r
T
b

and rCb denote the absolute values of the yield stress in equibiaxial tension–com-
pression, respectively.

The plastic strain ratio, rh, under uniaxial loading in a direction at angle h with
the rolling direction in the plane x; yð Þ is:

rh¼ �
sin2h

@~re
@rxx

� sinð2hÞ @~re
@rxy

þ cos2h
@~re
@ryy

@~re
@rxx

þ @~re
@ryy

; ð5:171Þ

with ~re is given by Eq. (5.160).
In particular, it follows that:

rT0 ¼ � ð1� kÞ2U1W1 þð1þ kÞ2ðU2W2 þU3W3Þ
ð1� kÞ2U1ðW1 þU1Þþ ð1þ kÞ2ðU2W2 þU3W3 þU2

2 þU2
3Þ

rT90 ¼ � ð1� kÞ2W2U2 þð1þ kÞ2ðW1U1 þW3U3Þ
ð1� kÞ2W2ðU2 þW2Þþ ð1þ kÞ2ðW1U1 þW3U3 þW2

1 þW2
3Þ

rC0 ¼ � ð1þ kÞ2U1W1 þð1� kÞ2ðU2W2 þU3W3Þ
ð1þ kÞ2U1ðW1 þU1Þþ ð1� kÞ2ðU2W2 þU3W3 þU2

2 þU2
3Þ

rC90 ¼ � ð1þ kÞ2W2U2 þð1� kÞ2ðW1U1 þW3U3Þ
ð1þ kÞ2W2ðU2 þW2Þþ ð1� kÞ2ðW1U1 þW3U3 þW2

1 þW2
3Þ

ð5:172Þ

with U1 to U3 given by Eq. (5.162), W1 to W3 given by Eq. (5.164), and the
superscripts T and C designating tensile and compressive states, respectively.

In conclusion, using the above equations, the strength differential parameter k
and the anisotropy coefficients Lij, with i, j = 1, …, 3 and L66 can be determined by
minimizing an error function of the form

E L12; L13; L22; L23; L33; L66; kð Þ ¼
Xn
i

gi 1� rTh
� �th

i

rTh
� �data

i

 !2

þ
Xm
j

cj 1� rthj
rdataj

 !2

þ
Xp
l

al 1� rCh
� �th

l

rCh
� �data

l

 !2

ð5:173Þ

In the above equation, the variable “n” (respectively, m and p) represents the
number of experimental directional tensile flow stresses (respectively, r-ratios and
directional compressive flow stresses) available, the superscript indicates whether
the respective value is experimental or calculated using the above expressions while
the constants gi, cj, and al are weight factors. The remaining anisotropy coefficients
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L44 and L55 which are associated with out-of-plane properties may be determined
using data such as the yield stress in simple shear in the y; zð Þ and x; zð Þ planes,
respectively (see [14]).

It is worth noting that the use of the Cazacu et al. [14] yield criterion has
contributed to an improved understanding of the plastic behavior of hcp alloys. In
particular, the capabilities of the Cazacu et al. [14] model to capture the anisotropy
and tension–compression asymmetry of hcp materials have been clearly demon-
strated. For example, excellent quantitative agreement between the finite-element
axial strain and bending tests results has been obtained for Zr specimens by
Plunkett et al. [38], the shift of the neutral axis (i.e., during bending test, the neutral
axis is no longer at mid-height), and the final shape of the cross-section being
accurately predicted. Furthermore, Revil-Baudard [40] has shown that an accurate
prediction of strain localization prior to failure in a commercially pure Ti (T40) can
only be achieved using a yield criterion that accounts for both the tension–com-
pression asymmetry and the anisotropic behavior of this material. By comparing the
F.E. predictions using the Cazacu et al. [14] and Hill [22] yield criteria to the DIC
measurements of hydroforming tests, Revil-Baudard [40] concluded that the strain
localization zone and the sudden drop of the thickness of the respective specimens
are directly correlated to the tension compression asymmetry of the commercially
pure Ti alloy. The predictive capabilities of the Cazacu et al. [14] yield criterion
have also been assessed for Taylor impact tests on Zr ([39]) and Ti ([42]), and
excellent quantitative agreement was obtained between the model predictions and
the measured minor and major profiles of the impacted specimens.

In the next section, we present only few applications of this criterion [see
Eq. (5.160)]. Specifically, it will be used to describe the anisotropy and tension–
compression asymmetry of high-purity Ti and Mg AZ31 for uniaxial loadings.
Furthermore, on the basis of an elastic-plastic model based on this yield criterion, it
is shown that there is a correlation between Swift effects and the stress–strain
behavior in uniaxial tension–compression of hcp metals. Moreover, following [41]
it is shown that it is possible to explain and predict the strikingly different Swift
effects in Ti- and Mg-based alloys.

5.4.3.2 Applications: Tension, Compression, and Torsion of hcp-Ti
and Mg AZ31

Orthotropic high-purity a-Ti

First, it is presented the application of the quadratic form of the orthotropic yield
criterion of Cazacu et al. [14] criterion to the description of the mechanical response
of a high-purity a-Ti material for which quasi-static mechanical test data have been
reported in [37] and were summarized in Sect. 5.4.2. To capture the experimentally
observed difference in strain hardening rates between tension–compression load-
ings, all the material parameters involved in the expression of the Cazacu et al. [14]
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yield function, namely the anisotropy coefficients as well as the parameter k were
considered to evolve with the equivalent plastic strain, �ep. The equivalent plastic �ep

strain associated with the criterion was calculated using the expression of ~re given
by Eq. (5.160) and the work-equivalence principle (see also [23]). The procedure
used for the identification of the parameters is that detailed in the preceding section.
The numerical values of the parameter k and that of the anisotropy coefficients Lij
corresponding to initial yielding and four other individual levels of equivalent
plastic strains (up to 0.3 strain) determined in this manner are listed in Table 5.7
while the values corresponding to any given intermediate level of plastic strain
�epj 	�ep 	�epjþ 1 were obtained by linear interpolation, i.e.,

Lij �e
pð Þ ¼ a �epð ÞLij �epj

� �
þ 1� a �epð Þð ÞLij �epjþ 1

� �
k �epð Þ ¼ a �epð Þk �epj

� �
þ 1� a �epð Þð Þk �epjþ 1

� � ð5:174Þ

The interpolation parameter a involved in Eq. (5.174) is defined as:

a ¼ �ep � �epj
�epjþ 1 � �epj

:

In Fig. 5.37 are represented in the plane rxx; ryy
� �

the theoretical yield surfaces
for the orthotropic a-Ti material according to the Cazacu et al. [14] yield criterion
(Eq. 5.160) for several individual strain levels �epj , j = 1,…, 6. It is worth noting that
although at initial yielding and for strains under 10%, the tension–compression
asymmetry is small (compare the tension–tension–compression–compression
quadrants) and the surfaces have an elliptical shape, at 20% strain and beyond, the
surfaces have a triangular shape, and the difference in response between tension–
compression is pronounced (see also Fig. 5.38).

The Young modulus and Poisson coefficient for this high-purity a-Ti material
are: E = 110 GPa and m ¼ 0:3, respectively. Also, for this material, a Voce-type
effective stress-effective plastic strain law of the form:

Table 5.7 Cazacu et al. [14] yield function coefficients for high-purity a-Ti corresponding to the
onset of yielding (�ep ¼ 0) and several fixed values of the equivalent plastic strain �ep

�ep L22 L33 L12 L13 L23 L44 L55 L66 k

0 0.850 0.836 0.281 0.388 0.439 0.476 0.527 0.639 −0.024

0.025 0.981 1.013 0.847 0.885 0.904 0.128 0.120 0.154 −0.070

0.05 0.971 1.009 0.750 0.801 0.824 0.218 0.206 0.259 −0.061

0.075 0.917 0.985 0.374 0.478 0.516 0.555 0.528 0.657 −0.084

0.2 0.975 0.898 −0.018 0.034 0.052 1.050 0.986 1.285 −0.392

0.3 1.032 0.954 −0.024 0.001 0.010 1.161 1.063 1.436 −0.650

Data after [37]. For any strain level L11 ¼ 1 and a = 2
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Yð�epÞ ¼ A0 � A1 exp �A2�e
pð Þ; ð5:175Þ

where A0, A1, A2 are constants approximates well the data in uniaxial tension along
RD. The numerical values of the constants are: A0 = 341 MPa, A1 = 170 MPa and
A2 = 7.03.

Next, the stress–strain response in uniaxial tension along RD, TD, and ND
directions was simulated and compared to the experimental stress–strain curves (see
Fig. 5.38). All the simulations were carried out using the commercial F.E. code
ABAQUS and a user material routine (UMAT) that was developed for this
orthotropic elastic-plastic model. A fully implicit integration algorithm was used for
solving the governing equations (for more details, see Chap. 2). It is worth noting
that the quadratic form of Cazacu et al. [14] yield criterion in conjunction with the
isotropic hardening law given by Eq. (5.175) identified from the RD data is able to
capture precisely the key features of the plastic behavior of high-purity a-Ti (see
Fig. 5.38); specifically, the strength differential between tension–compression is
correctly predicted for all the three orthotropic directions.

Although no data were available concerning the response in torsion of the
material, it is worth analyzing the material response according to the model and thus
to provide insights on the behavior of the material. For more details about this
initial and boundary problem, the reader should refer to Sect. 4.4.2. Here, we only
recall the usual definitions of the axial and shear strains (see also Chap. 4) used, i.e.,

e ¼ ln 1 þ u
L0

� 
and c ¼ Ur

L0
ð5:176Þ

where r is the current radius, L0 is the initial length, u is the axial displacement, and
U is the twist angle. Simulation of the torsional response of the high-purity a-Ti is
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presented in Fig. 5.39. Note that irrespective of the direction about which the
specimen is twisted, axial elongation is predicted. The nature of the axial strains
(Swift effects) that develop correlates with the tension–compression asymmetry
ratio in each direction. Indeed, for both RD and ND, the material is harder in
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compression than in tension, so elongation of the specimen occurs. The Swift
effects are more pronounced in the ND direction, which correlates with this
direction being that of most pronounced tension–compression asymmetry. It is
worth noting that the F.E. prediction for the plastic behavior of Ti under free-end
torsion, i.e., lengthening of the specimen, has been recently confirmed experi-
mentally for a different high-purity Ti (see [48]).

Orthotropic AZ31-Mg alloy

Data concerning the monotonic quasi-static tension–compression responses of a Mg
alloy AZ31 have been recently reported by Khan et al. [31]. Results of the tests on
specimens cut along the RD, TD directions, and at 45° (DD) from RD have shown
that the plastic response of this material is highly directional. The compression
stress–strain curves exhibit a concave-up shape and steadily increasing hardening
rate while the tensile curves have the standard concave-down appearance.
Concerning the through-thickness direction (ND), only results in uniaxial com-
pression were reported in [31]. Based on the experimental data provided in tension–
compression, the parameters involved in the quadratic form of the orthotropic yield
criterion of Cazacu et al. [14] criterion were identified using the procedure sum-
marized in the preceding section. To describe the evolving anisotropy and tension–
compression asymmetry observed experimentally, all the material parameters
involved in the expression of the yield function were considered to evolve with
accumulated plastic deformation. Specifically, using the experimental flow stress
data, the parameter k and the anisotropy coefficients Lij corresponding to initial
yielding and several individual levels of equivalent plastic strains were determined.
The numerical values of these parameters are listed in Table 5.8. Next, to obtain the
values of these parameters corresponding to any given level of accumulated plastic
strain �epj 	�ep 	�epjþ 1, linear interpolations were used [see Eq. (5.174)].
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The Young modulus and Poisson coefficient for this material are: E = 45 GPa
and m ¼ 0:3, respectively. The isotropic hardening law was identified from the
uniaxial tension stress–strain response along the RD direction, the numerical values
of the parameters involved in Eq. (5.175) being: A0 = 315.4 MPa,
A1 = 140.6 MPa, A2 = 16.3.

For Mg AZ31, the yield surfaces associated with the yield criterion corre-
sponding to different levels of plastic strain are plotted in Fig. 5.40. Note that the
criterion predicts that the shape of the surface evolves from a triangular shape to an
elliptical shape. This evolution of the shape of the yield surfaces with accumulated
plastic deformation is completely different than that for Ti materials (compare with
Fig. 5.37). Nevertheless, with the same criterion it is possible to account for these
strikingly different yielding evolutions in hcp Ti and hcp Mg-based materials.

The stress–strain response in uniaxial tension along RD, TD, and ND directions
was simulated and compared to the experimental stress–strain curves available (see
Fig. 5.41). It is worth noting that the yield criterion in conjunction with isotropic
hardening captures precisely the unusual features of the plastic behavior of Mg
AZ31 alloy, notably the S-shape of the experimental stress–strain curve in uniaxial

Table 5.8 Cazacu et al. [14] yield function coefficients for Mg AZ31 alloy corresponding to the
onset of yielding (�ep ¼ 0) and several fixed values of the equivalent plastic strain �ep

�ep L22 L33 L12 L13 L23 L44 L55 L66 k

0.03 1.090 3.342 −0.168 0.098 0.243 7.30 7.74 0.730 −0.625

0.05 1.090 3.342 −0.168 0.098 0.243 7.30 7.74 0.730 −0.625

0.06 1.072 2.905 −0.595 −0.279 −0.096 10.39 11.02 1.039 −0.520

0.08 1.099 1.439 −0.817 −0.516 −0.350 11.28 11.95 1.128 −0.215

0.10 1.082 0.885 −0.762 −0.657 −0.509 10.12 11.21 1.058 −0.169

Data after [31]. For any strain level L11 ¼ 1 and a = 2
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compression along RD and TD directions. Moreover, it predicts that in uniaxial
tension along ND, the material should also display a sigmoidal shaped stress–strain
curve. While in [31] are not provided any experimental data for tensile loading
along ND, these predictions of the Cazacu et al. [14] criterion reported in [41] have
been later confirmed by Guo et al. [19], namely these authors reported that for a Mg
AZ31 material under ND uniaxial tension loading, the stress–strain curve has a
S-shape.

For an isotropic material, the tension–compression asymmetry is the same for
any direction. As demonstrated in [15], the sign of the axial strains that develop
during free-end torsion depends on whether the ratio rT=rC is greater than or less
than 1 (see also the discussion presented in Chap. 4). For an anisotropic material,
the tension–compression asymmetry is dependent on the direction of loading.

In Revil-Baudard et al. [41], it was hypothesized that the nature of the axial
strains that develop in free-end torsion (i.e., whether elongation or contraction of
the specimen occurs) should also depend on the direction about which the material
is twisted. This correlation appears to be true for Mg AZ31.

Indeed, comparisons between F.E. simulations and experiments performed by
Guo et al. [19] for Mg AZ31 under free-end torsion (see Fig. 5.42) show that if the
twist axis is along the RD direction shortening occurs, but if torsional loading is
applied along the ND direction, lengthening is observed. The model predictions are
in excellent agreement with the experimental observations. In particular, irrespec-
tive of orientation the calculated initial slope which is a physical parameter that
depends little on texture evolution, is almost in perfect agreement with the exper-
imental one. An even more remarkable result is that the model correctly reproduces
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Fig. 5.42 Variation of the axial strain with the shear strain during free-end torsion along RD and
ND directions for a Mg–AZ31 alloy: Comparison between experimental data by Guo et al. [19]
and the numerical predictions obtained with the Cazacu et al. [14] yield criterion. Note that
depending on the direction of torsion, the axial strain is either positive (torsion along ND direction)
or negative (torsion along RD direction) (after Revil-Baudard et al. [41])
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the fact that the sign of the axial strain depends on the direction of twist (RD, or
ND). Moreover, the sign of the axial strain can be correlated to the tension–
compression asymmetry for the respective direction. In the RD direction, the
strength is higher in uniaxial tension than in compression, so shortening of the
specimen occurs during free-end torsion along this direction. On the other hand, in
the ND direction, the material has higher strength in compression than in tension,
which results in lengthening of the specimen during torsion. Thus, the sign of the
axial strain that develops (elongation or contraction) under free-end torsion depends
on the ratio between uniaxial tension–compression in the given direction.

To further explain why a negative axial strain develops during free-end torsion
for the RD specimen, it is worth examining the projection of the Cazacu et al. [14]
yield criterion in the tension-shear planes. Due to the tension–compression asym-
metry of the material along RD, the normal to the rxx; rxy

� �
and rxx;rxzð Þ sur-

faces for states corresponding to pure shear loading (i.e., rxx ¼ 0) is pointed such
that the axial strain is negative. Therefore, according to the Cazacu et al. [14] yield
criterion for torsion of a specimen with the long axis along RD shortening of the
specimen occurs. On the other hand, because in the ND direction the yield stress in
tension is smaller than in compression, the predicted shape of the yield surface in
rzz; rxzð Þ and rzz; ryz

� �
(see Fig. 5.44) is such that for pure shear (i.e., rzz ¼ 0), the

normal is pointed such that positive axial strain develops.
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Chapter 6
Strain-Rate-Based Plastic Potentials
for Polycrystalline Materials

Although the existence of a potential in the strain-rate space which is the
work-conjugate of the stress potential u rð Þ of a plastically deformable solid has been
theoretically demonstrated (see [23]), analytical expressions for strain-rate potentials
are only known for a very few cases. However, without knowledge of the closed-
form expressions for the strain-rate potential associated with a given u rð Þ, it is
impossible to derive the plastic potential of a porous solid with matrix behavior
described by u rð Þ. While in this chapter, we focus on deriving analytic expressions
of strain-rate potentials for fully dense materials, in Chap. 7, all these potentials will
be used to model the response of porous materials. Moreover, we demonstrate that
due to the duality between the stress-based potential and the strain-rate-based
potential, the tensors that account for plastic anisotropy in the respective spaces
should be inverse of each other.

6.1 Isotropic Strain-Rate Plastic Potentials

We begin with the discussion of isotropic strain-rate potentials. First, let us note that
isotropy dictates that the most general form of a strain-rate potential is:

wðdpÞ ¼ gðd1; d2; d3Þ ð6:1Þ

such that

gðd1; d2; d3Þ ¼ g d2; d3; d1ð Þ ¼ g d3; d1; d2ð Þ: ð6:2Þ

In the above equations, ðd1; d2; d3Þ are the principal values of the plastic
strain-rate tensor dp. Given that for a fully dense isotropic metallic material, plastic
deformation is not accompanied by changes in volume, i.e., tr dpð Þ ¼ 0 or
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d1 þ d2 þ d3 ¼ 0, the use of the Wang [22] representation theorems (see also
Chap. 1) leads to the following alternative general form of the strain-rate potential
(SRP):

wðdpÞ ¼ g j2; j3ð Þ; ð6:3Þ

where j2 and j3 denote the second and third-invariant of the plastic strain-rate tensor
dp, respectively. In terms of the principal values d1; d2; d3:

j2 ¼ tr dpð Þ2=2 ¼ 1
2

d21 þ d22 þ d23
� �

¼ 1
2

2d1 � d2 � d3
3

� �2

þ 2d2 � d1 � d3
3

� �2

þ 2d3 � d2 � d1
3

� �2
" #

;

j3 ¼ tr dpð Þ3=3 ¼ 1
3

d31 þ d32 þ d33
� � ¼ d1d2d3:

Let ei, i = 1, …, 3, be the eigenvectors of the plastic strain-rate tensor dp. Any
isosurface wðdpÞ = constant can be visualized graphically in the three-dimensional
space of the principal strain-rates ðd1; d2; d3Þ. Given that isotropy implies that ei are
also the eigenvectors of the stress deviator s, using the same arguments as in the
proof of Proposition 4.4 in Chap. 4, it follows that the SRP of an isotropic material
is either a prism or a right cylinder with generators normal to the octahedral plane
(i.e., the plane passing through the origin and of normal ex ¼ 1ffiffi

3
p e1 þ e2 þ e3ð Þ).

Moreover, if the unit vectors ex; ey; ez
� �

are defined in terms of the eigenvectors
e1; e2; e3ð Þ as:

ex ¼ 1ffiffiffi
3

p e1 þ e2 þ e3ð Þ; ey ¼ � 1ffiffiffi
2

p e1 � e2ð Þ; ez ¼ 1ffiffiffi
6

p 2e3 � e1 � e2ð Þ; ð6:4Þ

then any point P d1; d2; d3ð Þ belonging to the intersection of the SRP with the
octahedral plane is characterized by two polar-type coordinates, R; cð Þ, such that:

R ¼ OPj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

q
¼

ffiffiffiffiffiffi
2j2

p
; ð6:5Þ

and c which denotes the angle between ey and OP is given as:

tan cð Þ ¼
ffiffiffi
3

p d3
d2 � d1

: ð6:6Þ

The intersection of any isosurface wðdpÞ = constant with the octahedral plane is
thus defined by the curve:
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R ¼ R cð Þ: ð6:7Þ

To simplify the writing, in the following, we denote the plastic strain-rate tensor
simply by d.

6.1.1 Strain-Rate Potentials for Isotropic Metallic Materials
with the Same Response in Tension–Compression

6.1.1.1 Exact Duals of the von Mises and Tresca Stress Potentials

Strain-rate potential associated with the von Mises stress potential

As shown in Chap. 4, the stress potential associated with the von Mises yield
criterion can be represented by the following function, homogeneous of degree one
with respect to positive multipliers,

uMises rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2ð Þs:s

p
¼ rT; ð6:8Þ

where s is the deviator of the Cauchy stress tensor r and rT denotes the yield stress
in uniaxial tension. Hence, according to the flow rule:

d ¼ @uMises

@r
¼ _k

3s
2rT

; ð6:9Þ

where _k� 0 stands for the plastic multiplier. Substitution of Eq. (6.9) into Eq. (6.8)
leads to

d:d ¼ 9 _k
� �2 s:s

4r2T
¼ 3

2
_k
� �2

Therefore, the strain-rate potential associated with the von Mises stress potential
[see Eq. (6.8)] is:

wMises dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þd:d

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þ d21 þ d22 þ d23

� �q
¼ _�e; ð6:10Þ

where _�e is the axial strain-rate in uniaxial tension.

Remark Note that in virtue of the duality between the stress-based and
strain-rate-based formulations, the only parameter involved in the von Mises
strain-rate potential given by Eq. (6.10) can be specified by performing a unique
test, e.g., uniaxial tension. Obviously, according to the von Mises SRP, the plastic
response is the same in tension–compression [see Eq. (6.10)]. Since the von
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Mises SRP depends only on j2, its projection in the octahedral plane is the circle
given by R cð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

p
¼ constantð¼ ffiffiffiffiffiffiffiffi

3=2
p

_�eÞ. Moreover, in the space of
the principal strain-rates, the von Mises SRP is a right cylinder, as shown in
Fig. 6.1.

Strain-rate potential associated with the Tresca stress potential

The stress potential associated with the Tresca yield criterion is expressed as (see
Sect. 4.2.1):

uTresca rð Þ ¼ max r1 � r2j j; r2 � r3j j; r1 � r3j jð Þ;

with r1, r2, and r3 being the principal values of the Cauchy stress r. If the principal
stresses are all distinct, and ordered such that r1 [ r2 [ r3, then:

d1 ¼ _k; d2 ¼ 0; d3 ¼ � _k ð6:11Þ

On the other hand, if r1 ¼ r2 [ r3,

d1 ¼ 1
2
_k 1þ bð Þ; d2 ¼ 1

2
_k 1� bð Þ; d3 ¼ � _k; ð6:12Þ

where b is any real number between −1 and 1. The expression of _k for all other
loadings can be obtained by symmetry arguments. Thus, for any stress state,

x md 3 D=

d y
d z

Fig. 6.1 The von Mises
strain-rate potential in the
three-dimensional space of
the principal values of the
strain-rate tensor d;
ex; ey; ez
� �

given by Eq. (6.4)
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_k ¼ 1
2

d1j j þ d2j j þ d3j jð Þ;

and the Tresca strain-rate potential is expressed as:

wTresca dð Þ ¼ d1j j þ d2j j þ d3j jð Þ=2: ð6:13Þ

Given the isotropy and tension–compression symmetry of the Tresca SRP given
by Eq. (6.13), to obtain its intersection with the octahedral plane, it is sufficient to
find the expression of the curve R ¼ R cð Þ [see Eqs. (6.5)–(6.7)] only in the
�p=6� c� p=6 sector, the expression in any other sector being obtained by
symmetry arguments. Since in this sector, the principal values of the strain-rate
tensor are:

d1 ¼ 2R cð Þffiffiffi
6

p sin c� 2p
3

� �

d2 ¼ 2R cð Þffiffiffi
6

p sin cþ 2p
3

� �

d3 ¼ 2R cð Þffiffiffi
6

p sin c

8>>>>>>><
>>>>>>>:

; ð6:14Þ

(for more details, the reader is referred to Sect. 4.1.1), it follows that the expression
of the curve R ¼ R cð Þ for the Tresca SRP is:

R cð Þ ¼ _�e
ffiffiffi
6

p

2
1ffiffiffi

3
p

cos cð Þ � sin cð Þ

 !
if � p=6� c� 0

R cð Þ ¼ _�e
ffiffiffi
6

p

2
1ffiffiffi

3
p

cos cð Þþ sin cð Þ

 !
if 0� c� p=6;

ð6:15Þ

which represents a regular hexagon (see also Fig. 6.2). Let us recall that the von
Mises yield surface is an upper bound for Tresca’s, so in the octahedral plane the
von Mises circle circumscribes the Tresca hexagon (see also Chap. 4, Fig. 4.4).
Since each SRP is the exact conjugate of the respective stress potential, it follows
that the Tresca SRP is an upper bound of the von Mises SRP. Therefore, in the
space of the principal strain-rates, the projection of the Tresca strain-rate potential
circumscribes the von Mises SRP projection (see also Fig. 6.2).

In Fig. 6.3 are represented the Tresca SRP and the von Mises SRP in the biaxial
plane d1; d2ð Þ. These projections are obtained using Eqs. (6.10) and (6.13),
respectively, and imposing: d3 ¼ � d1 þ d2ð Þ. It is important to note that in this
space, the Tresca SRP is a hexagon that circumscribes the von Mises SRP, which is
an ellipse.
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6.1.1.2 Hershey–Hosford Pseudo-Strain-Rate Potential

As previously mentioned, for non-quadratic stress potentials, their work-conjugate
potentials in the strain-rate space cannot be determined explicitly. In particular, the
expression of the strain-rate potential associated with the Hershey [12] and Hosford
[13] stress potential (see also Chap. 4) given by

f2f1

f3
Tresca

vonMises

Tresca SRP

von Mises 
SRP

Fig. 6.2 Cross-section of the
von Mises strain-rate potential
[Eq. (6.10)] and the Tresca
SRP [Eq. (6.13)] in the
octahedral plane. f i are the
projections of the eigenvectors
of the plastic strain-rate tensor

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

d1

von Mises
Tresca

∋/ −.

d 2

∋ /−

Fig. 6.3 Representation in
the biaxial plane d1; d2ð Þ of
the strain-rate potentials
associated with the von Mises
and the Tresca stress
potentials, respectively
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uHershey�Hosford r1; r2; r3ð Þ ¼ r1 � r2j ja þ r2 � r3j ja þ r3 � r1j ja
2

	 
1=a
¼ �r

ð6:16Þ

is not known.
Barlat et al. [2] proposed a strain-rate potential of the form,

wHH dð Þ ¼ 2d1 � d2 � d3
3

����
����
b

þ 2d2 � d3 � d1
3

����
����
b

þ 2d3 � d1 � d2
3

����
����
b

¼ 2_�eb; ð6:17Þ

where b is a material constant and _�e denotes the axial strain-rate in uniaxial tension.
Making use of the plastic incompressibility condition, Eq. (6.17) becomes

wHH dð Þ ¼ d1j jb þ d2j jb þ d3j jb¼ 2_�eb: ð6:18Þ

It is worth noting that for b ¼ 1, the isotropic Barlat et al. [2] SRP reduces to the
Tresca SRP [see Eq. (6.13)], while for b ¼ 2, the von Mises SRP [Eq. (6.10)] is
recovered. Indeed,

wHH dð Þ b¼2 ¼
ffiffiffiffiffiffiffiffi
3=4

p
wMises dð Þ

��� : ð6:19Þ

Also, for 1 \ b \ 2, the Barlat et al. [2] SRP is in between the Tresca SRP and
the von Mises SRP (see Fig. 6.4).

Remark Barlat et al. [2] have shown that for b ¼ 4=3 and b ¼ 3=2, the strain-rate
potential givenbyEq. (6.17) approximateswell thenumerical strain-rate potentials for
isotropic fcc and bcc polycrystals, respectively, that were obtained using the
Taylor-Bishop-Hill (TBH) polycrystal model (see Chap. 3 for more details on this
model). Moreover, Barlat et al. [2] have verified numerically that the particular

Mises SRP  Tresca SRP

f1 f2

f3 Tresca SRP
Mises SRP
Barlat et al.(1993) SRP

Fig. 6.4 Cross-section in the
octahedral plane of the
isotropic form of Barlat et al.
[2] strain-rate potential
[Eq. (6.18)] corresponding to
b ¼ 1:5 in comparison with:
a the Tresca SRP, and b the
von Mises SRP
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expression of wHH dð Þ corresponding to b ¼ 4=3 and b ¼ 3=2, respectively, is the
work-conjugate of uHershey�Hosford r1; r2; r3ð Þ corresponding to a = 6 and a = 8,
respectively.

In Fig. 6.5 is shown the representation in the biaxial plane d3 ¼ � d1 þ d2ð Þ of
the Barlat et al. [2] isotropic SRP corresponding to b ¼ 3=2 and b ¼ 4=3,
respectively, along with the von Mises SRP and the Tresca SRP. Note that the
Barlat et al. [2] isotropic SRP lies between the von Mises SRP and the Tresca SRP,
the Tresca SRP surface being an upper bound to the Barlat et al. [2] isotropic SRP.
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-0.5

0

0.5

1
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d 2

b=3/2
von Mises
Tresca
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d 2

b=4/3
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∋−.
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d1 ∋−.

(a)

(b)

Fig. 6.5 Representation in
the biaxial plane d1; d2ð Þ of
Barlat et al. [2] isotropic
strain-rate potential
corresponding to: a b ¼ 3=2
and b b ¼ 4=3 along with the
von Mises SRP and the
Tresca SRP
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6.1.1.3 Strain-Rate Potential of Cazacu and Revil-Baudard [7]

Cazacu and Revil-Baudard [7] have proposed an isotropic strain-rate potential that
involves both invariants j2 and j3 of the plastic strain-rate tensor. The expression of
this strain-rate potential is:

w dð Þ ¼
ffiffiffiffi
j2

p
B

1þ b
j23
j32

 !
; ð6:20Þ

where b is a parameter and

B ¼ 1þ 4b=27ffiffiffiffiffiffiffiffi
4=3

p : ð6:21Þ

The constant B appearing in the expression of this SRP is defined such that for
uniaxial tension, w dð Þ is equal to the axial strain-rate. It is worth noting that for
b ¼ 0, this strain-rate potential reduces to the von Mises SRP [see Eq. (6.10)].
Indeed, for b ¼ 0:

w dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4j2=3

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þd:d

p
ð6:22Þ

If b 6¼ 0, the Cazacu and Revil-Baudard [7] SRP accounts for the combined
effects of j2 and j3 on the plastic behavior.

Proposition 6.1 Convexity of the Cazacu and Revil-Baudard [7] strain-rate
potential

For w dð Þ to be convex, the range of variation of b is:

�9
24

� b� 27
68

: ð6:23Þ

Proof In terms of the principal values di (i = 1, …, 3) of the plastic strain-rate
tensor d, the strain-rate potential is expressed as:

wðd1; d2; d3Þ ¼ 1þ b
8d21d

2
2d

2
3

d21 þ d22 þ d23
� �3

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23
� �

2

s
ð6:24Þ

Since wðd1; d2; d3Þ given by the above equation is an isotropic and even function
(the same response in tension–compression), any isosurface wðdÞ ¼ A, with
A being a constant, has sixfold symmetry. Therefore, it is sufficient to prove its
convexity in one sector, say the one corresponding to d2 � d3 [ d1. In this
sector, the expressions of the principal values of the strain-rate tensor in terms of the
polar coordinates R and c are given by Eq. (6.14). Note that shear loadings cor-
respond to c ¼ 0 (for which d3 ¼ 0), while axisymmetric loadings correspond to
c ¼ p=6 ðd2 ¼ d3 ¼ �d1=2Þ, and c ¼ �p=6 ðd1 ¼ d3 ¼ �d2=2Þ, respectively.
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Substituting Eq. (6.14) into Eq. (6.24), we obtain that the cross-section of the
isosurface wðdÞ ¼ constant in the octahedral plane is represented in polar coordi-
nates as:

x cð Þ ¼ R cð Þ cos c
y cð Þ ¼ R cð Þ sin c

(

with

R cð Þ ¼ A
ffiffiffi
2

p

1þ 4b=27ð Þ sin2 3cð Þ ð6:25Þ

The curvature of the surface can be expressed as:

j cð Þ ¼ 2 R0 cð Þð Þ2�R cð ÞR00 cð ÞþR2 cð Þ
R0 cð Þð Þ2 þR2 cð Þ

� �3=2 ð6:26Þ

Note that the denominator of the above relation (6.26) is always positive,

j cð Þ� 0 , 2 R0 cð Þð Þ2�R cð ÞR00 cð Þþ R2 cð Þ� 0

Substituting relation (6.25) into (6.26), lengthy but straightforward calculations
lead to:

j cð Þ� 0 , �9
24

� b� 27
68

In particular,

• for shear loadings ðc ¼ 0Þ: j cð Þ� 0 if and only if 1þ 24b=9ð Þ� 0

• for axisymmetric loadings: j cð Þ� 0 if and only if 1� 72b
27þ 4b

� �
� 0.

It is thus proven that for b ¼ 27=68, the curvature of the cross-section is zero for
axisymmetric states; if b ¼ �9=24, the curvature is zero for shear loading.
Therefore, convexity is ensured for �9=24� b� 27=68.

As an example, in Fig. 6.6 is shown the representation in the octahedral plane of
the strain-rate potential given by Eq. (6.20) for b ¼ �0:35, −0.15, and b ¼ 0:38,
respectively. Note that for b ¼ 0:38, the cross-section is a hexagon with rounded
corners exterior to the von Mises SRP (which corresponds to b ¼ 0). On the other
hand, for b ¼ �0:35, the Cazacu and Revil-Baudard [7] strain-rate potential is
interior to the von Mises SRP.

It is also worth comparing the Cazacu and Revil-Baudard [7] strain-rate potential
with the Tresca SRP [Eq. (6.13)] and the von Mises SRP [Eq. (6.10)]. Let us first
compare the cross-sections of these potentials in the octahedral plane (see Fig. 6.7).
It is to be noted that irrespective of the value of the parameter b, the Tresca SRP is
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an upper bound (exterior to the other surfaces). For b[ 0, the Cazacu and
Revil-Baudard [7] strain-rate potential lies between the von Mises SRP ðb ¼ 0Þ and
the Tresca SRP (see also Fig. 6.7a). On the other hand for b\0, the von Mises SRP
is exterior to the Cazacu and Revil-Baudard [7] strain-rate potential, and the smaller
the value of b, the stronger is the deviation of the projection of this SRP from the
von Mises circle (e.g., compare the cross-section corresponding to b ¼ �0:15
shown in Fig. 6.7b with that corresponding to b ¼ �0:35 given in Fig. 6.7c).

Comparisons between the projections of the same potentials in the biaxial plane
d1; d2ð Þ (with d3 ¼ � d1 þ d2ð Þ) are shown in Fig. 6.8. The upper-bound character
of the Tresca SRP is clearly seen. However, depending on the value of b, the
Cazacu and Revil-Baudard [7] SRP can be either interior or exterior to the von
Mises SRP. It is also important to note that the Cazacu and Revil-Baudard [7] SRP
is the only potential that is expressed by an even function in strain-rate for which
the von Mises SRP is not a lower bound.

6.1.2 Strain-Rate Potentials for Isotropic Metallic Materials
with Asymmetry Between Tension–Compression

6.1.2.1 Exact Dual of the Isotropic Cazacu et al. [5] Stress Potential

The strain-rate potentials presented so far are applicable only to isotropic materials
with the same response in tension–compression. As discussed in Chaps. 4 and 5,
certain metallic materials are pressure-insensitive and exhibit tension–compression

Fig. 6.6 Representation in
the octahedral plane of the
Cazacu and Revil-Baudard [7]
strain-rate potential
[Eq. (6.20)] corresponding to:
b ¼ �0:35, b ¼ �0:15, and
b ¼ 0:38, respectively
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asymmetry in the plastic response even for monotonic loading. This strength dif-
ferential effect is due to the activation of specific single crystal deformation
mechanisms such as twinning or slip with pronounced non-Schmid effects (see also
Chap. 3).

Recently, Cazacu et al. [8] have derived a strain-rate potential that can capture
both anisotropy and tension–compression asymmetry. Furthermore, this strain-rate
potential is the exact dual of the quadratic form of the stress potential of Cazacu
et al. [5] (see Chap. 5). The derivation of the isotropic form of Cazacu et al. [6] SRP
is presented in the following, while the derivation of the orthotropic form of this
SRP is presented in Sect. 6.2.2.

(a) (b)

(c)

Fig. 6.7 Comparisons of the von Mises strain-rate potential (dotted line), the Tresca strain-rate
potential (dashed line), and the Cazacu and Revil-Baudard [7] strain-rate potential corresponding
to several values of the parameter b: a b ¼ 0:38, b b ¼ �0:15, and c b ¼ �0:35
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Let us note that in the case when the degree of homogeneity a ¼ 2, the isotropic
form of the Cazacu et al. [5] stress potential (see also Sect. 4.3.2) can be rewritten as:

g s;m; rTð Þ ¼ m
ffiffiffiffiffiffiffiffi
f sð Þ

p
� rT ¼ 0 ð6:27Þ

where

f sð Þ ¼
X3
i¼1

sij j � ksið Þ2; and

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9
2 3k2 � 2kþ 3ð Þ

s
:

ð6:28Þ
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Fig. 6.8 Representation in the biaxial plane d1; d2ð Þ of the Cazacu and Revil-Baudard [7]
strain-rate potential for several values of the parameter b: a b ¼ 0:38, b b ¼ �0:15, and
c b ¼ �0:35 along with the von Mises SRP and the Tresca SRP
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Moreover, the material constant k has the following simple expression in terms
of the ratio between the uniaxial yield in tension, rT, and the uniaxial yield in
compression, rC

k ¼
1� h

rT
rC

� �

1þ h
rT
rC

� � with h xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2

2x2 � 1

r
ð6:29Þ

As mentioned previously, if there is no difference between the response in
tension–compression (i.e., rT ¼ rC), then k ¼ 0 and the quadratic isotropic form of
the Cazacu et al. [5] criterion reduces to the von Mises yield criterion.

Because for k 6¼ 0 the isotropic Cazacu et al. [5] criterion is represented by an
odd function in stresses [see Eq. (6.27)], the projection of the yield surface in the
octahedral plane has only threefold symmetry. Consequently, its projection is fully
determined once its shape is known on any of the domains Z1, Z2, or Z3 shown in
Fig. 6.9. Specifically, the domain Z3 is delimited by the straight line T1 ðs1 ¼ 0Þ
and the straight line T2 ðs2 ¼ 0Þ, i.e.,

Z3 ¼ Z þ
3 [ Z�

3 ð6:30Þ

Fig. 6.9 Representation of the domains Z1, Z2, Z3 of the isotropic Cazacu et al. [5] yield surface
(k ¼ �0:4) in the octahedral plane (after Cazacu et al. [6])
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where Z þ
3 ¼ s1; s2; s3ð Þjs3 � 0; s2 � 0; s1 � 0f g and Z�

3 ¼ s1; s2; s3ð Þjs3 � 0;f
s1 � 0; s2 � 0g, with similar definition for the domains Z1 and Z2, respectively (for
the detailed discussion and analytical expressions of this criterion in each of these
domains, see Sect. 4.3.2).

Using Eq. (6.27), the eigenvalues di (i = 1, …, 3) of the plastic strain-rate tensor
d are expressed as:

di ¼ _k
m2

rT
sið1þ k2Þ � 2k sij j þ 2k

3
s1j j þ s2j j þ s3j jð Þ

	 

: ð6:31Þ

It is important to note that since the stress potential involves all principal values
of the stress deviator s, its associated SRP should also depend on all the principal
values of d and should also display tension–compression asymmetry.
Consequently, the projection of this SRP in the octahedral plane has threefold
symmetry. Thus, it is sufficient to determine its expression on only one of the
domains Di, i = 1, …, 3 (see Fig. 6.10), Di being the image of Zi onto the
strain-rate space by the flow rule, i.e., s1; s2; s3ð Þ 2 Zi , d1; d2; d3ð Þ 2 Di, where
di, i = 1, …, 3, are given by Eq. (6.31).

As an example, in the following, we will derive the expression of the SRP in the
domain D3; the expressions on the others domains can be obtained by symmetry.
The first step consists in describing the domain D3.

Fig. 6.10 Representation of the domains D1, D2, D3 of the strain-rate potential (SRP) isosurface
associated with the isotropic Cazacu et al. [5] stress potential (k ¼ �0:4) in the octahedral
plane (after Cazacu et al. [6])
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Expression of the domain D3

Recall that f i, i = 1…3, denote the projections in the octahedral plane of the
strain-rate eigenvectors ei and that Z þ

3 is delimited by the half-lines T þ
1 and T þ

2 ,
which are at p=6 and �p=6 with respect to the axis f3; similarly, Z�

3 is delimited by
the half-lines T�

1 and T�
2 [see Fig. 6.9 and Eq. (6.30)].

Since s1; s2; s3ð Þ 2 T þ
1 , s1 ¼ 0; s3 � 0; s2 ¼ �s3 � 0, using Eq. (6.31), it

follows that:

d1 ¼ 4k
3k2 � 2kþ 3

d3

d2 ¼ � 3k2 þ 2kþ 3
3k2 � 2kþ 3

d3

8>><
>>: ð6:32Þ

Note that Eq. (6.32) is the equation of a straight line that passes through the
origin; it will be denoted Lþ

1 (see Fig. 6.10). Similarly, it can be shown that T þ
2 is

mapped on the half-line of equation:

d1 ¼ � 3k2 þ 2kþ 3
3k2 � 2kþ 3

d3

d2 ¼ 4k
3k2 � 2kþ 3

d3

8>><
>>: ð6:33Þ

that will be denoted Lþ
2 . In conclusion, the image of Z þ

3 is the domain Dþ
3

delimited by the half-line Lþ
1 and Lþ

2 . Comparison between Eqs. (6.32) and (6.33)
shows that Lþ

1 and Lþ
2 are symmetric with respect to the axis f3 (see Fig. 6.10). Let

hþ be the angle between Lþ
1 and f3.

This angle can be determined using Eq. (6.32) as:

cos hþ ¼

ffiffiffi
3
2

r
d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21 þ d22 þ d23
p ¼ 1

2
3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k4 þ 10k2 þ 3

p d3
d3j j � ð6:34Þ

Since for any point on T þ
1 : s3 � 0 using Eq. (6.32), we obtain that

sgnðd3Þ ¼ sgnðs3Þ ¼ 1. Thus,

cos hþ ¼ 1
2

3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k4 þ 10k2 þ 3

p

and

tan hþ� � ¼
ffiffiffi
3

p

3k2 � 2kþ 3
kþ 1ð Þ2: ð6:35Þ
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Note that from Eq. (6.35), it follows that: hþ � p=3. By geometric consider-
ations, it can be shown that the subdomain Z þ

3 of the isotropic Cazacu et al. [5]
yield surface maps onto the domain Dþ

3 of the associated SRP, given by:

Dþ
3 ¼ d1; d2; d3ð Þj d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21 þ d22 þ d23
p � 3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 k2 þ 3ð Þ 3k2 þ 1ð Þp
( )

ð6:36Þ

Indeed, d ¼ d1; d2; d3ð Þ 2 Dþ
3 if and only if: h� hþ , where h denotes the angle

between the projection of d on the p-plane and f3. Since 0� h� p=3, then
cos h[ cos hþ , and consequently,

d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

p � 3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

Similarly, it can be shown that the subdomain Z�
3 maps onto the domain D�

3
delimited by the half-lines L�1 and L�2 (see Fig. 6.10). The angle between L�2 and
ð�f3Þ is given by:

tan h�ð Þ ¼
ffiffiffi
3

p

3k2 � 2kþ 3
k � 1ð Þ2 ð6:37Þ

while the domain D�
3 is:

D�
3 ¼ d1; d2; d3ð Þj d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21 þ d22 þ d23
p � � 3k2 þ 2kþ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 k2 þ 3ð Þ 3k2 þ 1ð Þp
( )

ð6:38Þ

and s1; s2; s3ð Þ 2 Z�
3 if and only if d1; d2; d3ð Þ 2 D�

3 . In conclusion, the domain
D3 ¼ Dþ

3 [D�
3 is described by Eqs. (6.36) and (6.38), respectively (see also

Fig. 6.10). Furthermore, using Eqs. (6.35) and (6.37), it can be easily shown that:

h� þ hþ ¼ p
3
; ð6:39Þ

which is a consequence of the material’s isotropy.

Remark

• Only for k ¼ 0 (i.e., von Mises material), h� ¼ hþ ¼ p=6, and the domain D�
3

is the symmetric with respect to the origin of the subdomain Dþ
3 . In other

words, only for a material obeying the von Mises yield criterion: si ¼ 0 if and
only if di ¼ 0.

• If a material displays tension–compression asymmetry (i.e., k 6¼ 0), then h� 6¼
hþ and the domains Dþ

3 and D�
3 are no longer symmetric about the origin (see

also Fig. 6.10).
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Expression of the Cazacu et al. [6] strain-rate potential in the subdomain D3

Let us first determine the expression of _k in the subdomain Dþ
3 of the SRP. Since

d1; d2; d3ð Þ 2 Dþ
3 if and only if s1; s2; s3ð Þ 2 Z þ

3 (i.e., s3 � 0; s1 � 0; s2 � 0), from
the flow rule [Eq. (6.31)], it follows that in the domain Dþ

3

s1 ¼ rT
m2 _k

d1 � 4k
3
s3

	 

1

1þ kð Þ2

s2 ¼ rT
m2 _k

d2 � 4k
3
s3

	 

1

1þ kð Þ2

s3 ¼ rT
m2 _k

3
3k2 � 2kþ 3

� �
d3

ð6:40Þ

and the yield condition is satisfied, i.e.,

m2 s21 1þ kð Þ2 þ s22 1þ kð Þ2 þ s23 1� kð Þ2
h i

¼ r2T : ð6:41Þ

Substitution of the expressions (6.40) for si into Eq. (6.41) leads to:

_k ¼ w dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
9

3k2 � 2kþ 3ð Þ
1þ kð Þ2 d21 þ d22

� �þ 3k2 þ 10kþ 3ð Þ
3k2 � 2kþ 3ð Þ d23

	 
s
ð6:42Þ

for any d1; d2; d3ð Þ 2 Dþ
3 . Similar arguments are used to deduce the expression of

the strain-rate potential in the domain D�
3 .

In summary, the expression of the exact dual of the isotropic Cazacu et al. [5]
quadratic stress potential [Eq. (6.27)] is the strain-rate potential w dð Þ given by:

w dð Þ ¼
1

m 1� kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ

3k2 � 10kþ 3
3k2 þ 2kþ 3

	 

d23

s
; if d1; d2; d3ð Þ 2 D�

3 ;

1
m 1þ kð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ

3k2 þ 10kþ 3
3k2 � 2kþ 3

	 

d23

s
; if d1; d2; d3ð Þ 2 Dþ

3 ;

8>>>><
>>>>:

ð6:43Þ

with the domains Dþ
3 and D�

3 described by Eqs. (6.36) and (6.38), respectively.
The expressions of the other branches of w dð Þ, corresponding to the domains Dþ

j

and D�
j (j = 1, 2), are obtained from Eq. (6.43) by symmetry (see also Fig. 6.10 for

the geometric representation of these domains in the octahedral plane).

Remark Note that if there is no difference between the plastic response in tension–
compression, i.e., k ¼ 0, then the Cazacu et al. [8] strain-rate potential reduces to:

w dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 d21 þ d22 þ d23
� �q

[i.e., the von Mises SRP given by Eq. (6.10)]. As an

example, in Fig. 6.11 is shown the representation in the octahedral plane of the
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strain-rate potential given by Eq. (6.43) corresponding to k ¼ �0:4 ðrT=rC ¼
0:79Þ and k ¼ 0:4 ðrT=rC ¼ 1:26Þ along with the von Mises SRP (k ¼ 0 or
rT=rC ¼ 1), respectively. Note a clear difference in shape between this SRP and the
von Mises SRP (circle). This strong difference is a result of the tension–compres-
sion asymmetry of the plastic flow.

It is worth representing side-by-side the plastic potentials in the two dual spaces,
i.e., the strain-rate space and the stress space. Figure 6.12a shows the Cazacu et al.
[6] strain-rate potential for k ¼ 0:3, k ¼ �0:3, and k ¼ 0, respectively, while
Fig. 6.12b shows the representation of the associated stress potential in the dual
space, i.e., the stress space. It is worth noting that while the Cazacu et al. [6] SRP
corresponding to k ¼ 0:3 is the outer surface in the strain-rate space, on account of
plastic energy equivalence, it becomes the inner surface in the stress space.

Figures 6.13 and 6.14 show the representation in the biaxial plane d1; d2ð Þ with
d3 ¼ �d1 � d2 of the Cazacu et al. [6] isotropic SRP corresponding to k ¼ 0:4
(rT=rC = 1.26), k ¼ �0:4 (rT=rC = 0.79) along with the von Mises SRP (k ¼ 0 or
rT=rC = 1), respectively. It is clearly seen that a change in the sign of the parameter
k results in a mirror image of the strain-rate potential.

6.1.2.2 Application to Fixed-End Torsion

In Chap. 4, it was presented the application of the isotropic and quadratic form of
the Cazacu et al. [5] stress potential in conjunction with an isotropic hardening law
to the description of shear and monotonic combined axial-torsional loadings. In
particular, for the case of free-end torsion of a rod, the analytical calculations have
shown that for an isotropic material with yielding displaying tension–compression
asymmetry ðk 6¼ 0Þ axial plastic deformation should occur.

k=-0.4 

  k=0.4 

f1 f2

f3

k = -0.4
k = 0.4
k=0 (von Mises SRP)

Fig. 6.11 Representation in
the octahedral plane of the
Cazacu et al. [6] isotropic
strain-rate potential
[Eq. (6.43)] corresponding to
k ¼ �0:4, k ¼ 0:4; and k ¼ 0
(the von Mises SRP),
respectively
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For fixed-end torsion loadings, the strain-rate-based formulation of the
elastic-plastic response (see Chap. 2 for the general form of the governing equa-
tions) is more suitable to analytical calculations.

Consider a rod, sheared due to a given twist applied at its end. Fixed-end
boundary conditions are imposed, i.e., the axial length of the rod cannot change.
For simplicity, the cross-section is assumed to be circular. In the cylindrical

(a) Strain-rate space (b) Stress space

k=-0.3 

  k=0.3 

f1 f2

f3

k = -0.3
k = 0.3
k=0 (von Mises SRP)

 k=-0.3

k=0.3 

f1 f2

f3

k=-0.3
k=0.3
k=0 (von Mises)

Fig. 6.12 Representation in the octahedral plane of the exact work-conjugate dual: a the Cazacu
et al. [6] isotropic strain-rate potential [Eq. (6.43)], b the Cazacu et al. [5] stress potential
corresponding to k ¼ 0:3, k ¼ �0:3, and k ¼ 0, respectively

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5
k = -0.4

k = 0.4

d1 ∋−.

d 2

∋ /−

Fig. 6.13 Representation in
the biaxial plane of the
Cazacu et al. [6] isotropic
strain-rate potential
corresponding to k ¼ 0:4 and
k ¼ �0:4, respectively
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coordinate system ðer; eh; ezÞ, the plastic strain-rate tensor is of the form d ¼
c ez � eh þ eh � ezð Þ and its principal values are:

d1 ¼ � _c; d2 ¼ 0; d3 ¼ _c: ð6:44Þ

The plastic behavior is described by the isotropic form of the Cazacu et al. [6]
SRP given by Eq. (6.43), and the stress is given by the gradient of this potential.
Given that the material is isotropic, the principal directions of the stress r are also
principal directions of the plastic strain-rate tensor, d, and the eigenvalues ri, i = 1,
…, 3, have the following expressions:

• For
�1ffiffiffi
2

p � � 3k2 þ 2kþ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp ;

r1
rT

¼ � _c 3k2 � 10kþ 3ð Þ
m 1� kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 3k2 � 4kþ 3ð Þ 3k2 þ 2kþ 3ð Þp ;

r2
rT

¼ 0

r3
rT

¼ _c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 2kþ 3

p

m 1� kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3k2 � 4kþ 3ð Þp

8>>>>>>>><
>>>>>>>>:

ð6:45Þ
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k = 0.0

k = 0.4

d1 ∋−.

d 2

∋ /−

Fig. 6.14 Representation in
the biaxial plane of the
Cazacu et al. [6] isotropic
strain-rate potential
corresponding to k ¼ 0:4 in
comparison with the von
Mises SRP (k ¼ 0)
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• For
1ffiffiffi
2

p � 3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp ;

r1
rT

¼ � _c
m 1þ kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 � 2kþ 3

2 3k2 þ 4kþ 3ð Þ

s
;

r2
rT

¼ 0

r3
rT

¼ _c 3k2 þ 10kþ 3ð Þ
m 1þ kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 3k2 þ 4kþ 3ð Þ 3k2 � 2kþ 3ð Þp

8>>>>>>>><
>>>>>>>>:

ð6:46Þ

Making use of Eqs. (6.45) and (6.46), the Cauchy stress tensor can be expressed
in the cylindrical coordinate system as:

r ¼
0 0 0
0 0 s
0 s r

2
4

3
5

r;h;zð Þ

ð6:47Þ

where the axial stress is given by:

r ¼
12k _cð Þ

m 1� kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3k2 þ 2kþ 3ð Þ 3k2 � 4kþ 3ð Þp if

�1ffiffiffi
2

p � � 3k2 þ 2kþ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

12k _cð Þ
m 1þ kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 3k2 � 2kþ 3ð Þ 3k2 þ 4kþ 3ð Þp if
1ffiffiffi
2

p � 3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

8>>><
>>>:

ð6:48Þ

and the ratio between the axial and shear stresses is:

r
s
¼

12kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 2kþ 3ð Þ 3k2 � 10kþ 3ð Þp if

�1ffiffiffi
2

p � � 3k2 þ 2kþ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

12kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 � 2kþ 3ð Þ 3k2 þ 10kþ 3ð Þp if

1ffiffiffi
2

p � 3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

8>>><
>>>:

ð6:49Þ

Therefore, if k 6¼ 0, axial stress r develops under fixed-end torsion, and
sgn rð Þ ¼ sgn kð Þ. This means that according to the model, under fixed-end torsion:

(i) For materials characterized by rT\rC for which k\0 [see Eq. (6.29)], the
axial stress that develops is negative (compression).

(ii) For materials characterized by rT [ rC for which k[ 0 [see Eq. (6.29)], the
axial stress that develops is positive (tension).

(iii) Only if rT ¼ rC ðk ¼ 0Þ, no axial stress develops during the test.

This predicted evolution of the ratio r=s as a function of the parameter k is also
illustrated in Fig. 6.15.

310 6 Strain-Rate-Based Plastic Potentials for Polycrystalline …



-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

k

Fig. 6.15 Evolution of the
ratio between the axial stress
and the shear stress in a
fixed-end torsion test as a
function of the tension–
compression parameter k
predicted by the isotropic
Cazacu et al. [6] SRP

In summary, the analytical solutions based on the isotropic and quadratic form of
the Cazacu et al. [5] stress potential and its SRP, respectively, lead to the conclusion
that even a slight difference between the uniaxial yield in tension, rT, and the
uniaxial yield in compression, rC, results in Swift effects, i.e., development of axial
strains under free-end torsion (see Chap. 4) and uniaxial stresses under fixed-end
torsion, respectively. The sign of the axial strain, or stress depends on the ratio
rT=rC. Specifically, if rT=rC > 1, the axial strain that develops under free-end
torsion is negative (shortening of the specimen occurs) and the uniaxial stress that
develops under fixed-end torsion is tensile. On the other hand, if rT=rC < 1, the
axial strain is positive (lengthening of the specimen) and the uniaxial stress is
negative (compression), respectively.

6.2 Orthotropic Strain-Rate Plastic Potentials

6.2.1 Strain-Rate Potentials for Orthotropic Materials
with the Same Response in Tension–Compression

In this section are presented the most widely used strain-rate potentials for aniso-
tropic metallic materials that have the same mechanical response in tension–com-
pression. It is demonstrated that the quadratic orthotropic Hill [15] strain-rate
potential is the exact dual of the orthotropic stress potential of Hill [14]. The
complete proof is given in Sect. 6.2.1.1. Moreover, using arguments similar to the
ones that were used for demonstrating Proposition 5.4 in Chap. 5, it is shown that
the extension to orthotropy of the von Mises SRP [see Eq. (6.10)] obtained using
the generalized invariants approach is in fact the Hill [15] orthotropic strain-rate
potential. Next, non-quadratic orthotropic strain-rate potentials that involve one or
several linear transformations applied to the plastic strain-rate tensor d are dis-
cussed. While none of these strain-rate potentials are exact work-conjugate of the
respective non-quadratic stress potentials, it is shown that these strain-rate formu-
lations describe the plastic anisotropy of textured polycrystalline metals with a
degree of accuracy comparable to that obtained using the stress potentials.
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6.2.1.1 Exact Dual of the Hill [14] Stress Potential

Using the work-equivalence principle (see Sect. 2.2), Hill [15] derived the
expression of a three-dimensional orthotropic strain-rate potential that is the exact
dual of the orthotropic stress potential that this author had proposed in Hill [14] (see
Sect. 5.2).

In the coordinate system x; y; zð Þ associated with the axes of orthotropic sym-
metry, this strain-rate potential is expressed as:

w dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F
D
d2xx þ

G
D
d2yy þ

H
D
d2zz þ

2
L
d2yz þ

2
M

d2xz þ
2
N
d2xy

r
; ð6:50Þ

where F, G, H, L, M, and N are anisotropy coefficients and D ¼ FHþFGþGH. In
the following, we present the proof provided in Hill [15].

Proposition 6.2 Hill [15] orthotropic strain-rate potential (SRP) can be expressed as:

w dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d : Ud

p
; ð6:51Þ

where U is an orthotropic constant fourth-order tensor satisfying both major and
minor symmetries, i.e., Uijkl ¼ Uklij ¼ Ujikl for i, j, k, l = 1, 2, 3 and Uiikl ¼ 0 (sum
over i). Moreover, this SRP is the exact dual of Hill [14] orthotropic stress
potential.

Proof As shown in Sect. 5.2, the Hill [14] orthotropic stress potential can be
written as:

uHill rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r : M r

p
; ð6:52Þ

where M is a fourth-order orthotropic constant tensor satisfying both major and
minor symmetries, i.e., Mijkl ¼ Mklij ¼ Mjikl for i, j, k, l = 1, 2, 3, and the additional
constraints:

Miikl ¼ 0 ð6:53Þ

Therefore, according to the flow rule and making use of Eq. (6.53),

d ¼ _k
@uHill

@r
¼

_k
s

Msð Þ ð6:54Þ

with uHill rð Þ ¼ s defining the yield surface and s a positive scalar with the
dimension of stress.

Let K be the fourth-order symmetric deviatoric unit tensor (see Chap. 1 for the
expressions of its components with respect to any Cartesian coordinate system), and
U a fourth-order symmetric tensor such that: UM ¼ MU ¼ K. Making use of
Eq. (6.54), we obtain:
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Ud ¼ _k
s
s
: ð6:55Þ

Therefore, s ¼ s
_k
Udð Þ, and the work-rate per unit current volume is given by:

_W
I ¼ r : d ¼ s

_k
Udð Þ : d ¼ _ks: ð6:56Þ

It follows that _k can be expressed as:

_k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d : Ud

p
:

In conclusion, it was demonstrated that the strain-rate potential w dð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
d : Ud

p
is the exact work-conjugate of the Hill [14] stress potential uHill rð Þ given by
Eq. (6.52). Furthermore, the expression given by Eq. (6.51) of this SRP allows us
to recognize that w dð Þ is the orthotropic generalization of the second-invariant of
the strain-rate tensor d (see also the proof of Proposition 5.4 of Chap. 5).

To determine the components of U in the coordinate system x; y; zð Þ associated
with the axes of orthotropy, let us first recall that with respect to these axes and in
Voigt notations, the fourth-order orthotropic and symmetric tensorM is represented
by the 6 � 6 symmetric matrix (see also Sect. 5.2):

M ¼

HþG �H �G 0 0 0
�H FþH �F 0 0 0
�G �F FþG 0 0 0
0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N

2
6666664

3
7777775

ð6:57Þ

Since UM ¼ MU ¼ K, with respect to the same coordinate system, the
fourth-order tensor U is represented by the following matrix:

U ¼

4FþGþH
9D

H � 2F � 2G
9D

G� 2F � 2H
9D

0 0 0

H � 2F � 2G
9D

4GþFþH
9D

F � 2G� 2H
9D

0 0 0

G� 2F � 2H
9D

F � 2G� 2H
9D

4HþGþF
9D

0 0 0

0 0 0 1
L 0 0

0 0 0 0 1
M 0

0 0 0 0 0 1
N

2
66666666666666664

3
77777777777777775

ð6:58Þ

where D ¼ FHþFGþGH. Note that U is orthotropic and satisfies Uiikl ¼ 0 (sum
over i).

By substituting U given by Eq. (6.58) into Eq. (6.51), and taking into account
that the plastic strain-rate tensor d is traceless, we obtain the expression of the
strain-rate potential given by Eq. (6.50).
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Proposition 6.3 The Hill [15] orthotropic strain-rate potential is the extension to
orthotropy of the von Mises strain-rate potential given by Eq. (6.10).

Proof The Hill [15] orthotropic strain-rate potential can be expressed as

w dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3ð Þj02

q
;

where j02 is the orthotropic second-invariant of d, i.e.,

j02 ¼
a1
6

dxx � dyy
� �2 þ a2

6
dyy � dzz
� �2 þ a3

6
dxx � dzzð Þ2

þ a4 d
2
xy þ a5d

2
xz þ a6d

2
yz:

ð6:59Þ

In the above equation, aj, j = 1, …, 6, are constants. Their expressions in terms
of the anisotropy coefficients F, G, H, L, M, and N can be easily obtained from
Eq. (6.50) using Eq. (6.59) and the plastic incompressibility condition
ðdxx þ dyy þ dzz ¼ 0Þ.

Note also that for isotropic materials, the tensor M should be proportional to the
fourth-order symmetric and deviatoric tensor K, i.e., F ¼ G ¼ H ¼ L=3 ¼ M=3 ¼
N=3 [see Eq. (6.57)]. Therefore, for isotropic materials, the Hill [14] stress potential
reduces to the von Mises stress potential, and consequently, the Hill [15] SRP
reduces to the von Mises SRP.

In closing, let us note that if the plastic behavior is described using the Hill [14]
stress potential, the plastic strain-rates (or plastic strain increments) are proportional
to the gradient of uHill rð Þ [see Eq. (7.22)]. Alternatively, if the plastic behavior is
modeled with the strain-rate potential given by Eq. (6.50), the stresses are calcu-
lated by taking the gradient of this SRP. Specifically, using the Hill [15] strain-rate
potential, we obtain that in the coordinate system associated with the axes of
orthotropy, the components of the stress deviator are:

sxx ¼ s
@w
@dxx

¼ 2s
9Dw

2Fdxx � Gdyy � Hdyy
� 

syy ¼ s
@w
@dyy

¼ 2s
9Dw

2Gdyy � Fdxx � Hdzz
� 

szz ¼ s
@w
@dzz

¼ 2s
9Dw

2Hdzz � Fdxx � Gdyy
� 

syz ¼ s
@w
@dyz

¼ 2s
3Dw

dyz
L

;

sxz ¼ s
@w
@dxz

¼ 2s
3Dw

dxz
M

;

sxy ¼ s
@w
@dxy

¼ 2s
3Dw

dxy
N

:

ð6:60Þ

It is also important to note that if the plastic behavior is described with Hill’s
SRP given by Eq. (6.50), we obtain Eq. (5.40), which is the expression for the
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Lankford coefficients deduced using Hill [14] stress-based potential. This is a direct
consequence of the fact that the Hill [15] SRP is the exact dual of the Hill [14] stress
potential. The complete proof is given in the following.

Uniaxial tension: variation of the Lankford coefficient with tensile direction
obtained using Hill [15] orthotropic SRP

Let us denote as 1; 2; 3ð Þ the loading frame. In this frame, for uniaxial tension
along the direction 1 at an angle n from the rolling direction x, the plastic strain-rate
tensor is:

d ¼ d11
1 d12=d11 0

d12=d11 �r nð Þ= 1þ r nð Þð Þ 0
0 0 �1= 1þ r nð Þð Þ

0
@

1
A ð6:61Þ

where r nð Þ denotes the Lankford coefficient. Therefore, in the reference frame
x; y; zð Þ associated with the axes of orthotropy, the only nonzero plastic strain-rate
components are:

dxx=d11 ¼ cos2 n� r nð Þ
1þ r nð Þ sin

2 n� d12=d11ð Þ sin 2n

dyy=d11 ¼ sin2 n� r nð Þ
1þ r nð Þ cos

2 nþ d12=d11ð Þ sin 2n

dxy=d11 ¼ 1þ 2r nð Þ
1þ r nð Þ sin n cos nþ d12=d11ð Þ cos 2n

ð6:62Þ

and dzz ¼ � dxx þ dyy
� �

, while the only nonzero stress components are:

rxx ¼ r nð Þ cos2 n
ryy ¼ r nð Þ sin2 n
rxy ¼ r nð Þ sin n cos n

ð6:63Þ

Since rzz ¼ 0, it follows that the mean stress rm ¼ trrð Þ=3 is equal to �szzð Þ or:

rm ¼ �szz ¼ �s
@w
@dzz

¼ r nð Þ
3

ð6:64Þ

and consequently,
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rxx ¼ s
@w
@dxx

� @w
@dzz

� �
¼ r nð Þ cos2 n

ryy ¼ s
@w
@dyy

� @w
@dzz

� �
¼ r nð Þ sin2 n

rxy ¼ sxy ¼ s
@w
@dxy

¼ r nð Þ sin n cos n

ð6:65Þ

Therefore, for n 6¼ 0� and n 6¼ 90� (i.e., uniaxial tension along a direction other
than the rolling or transverse directions)

ryy cos2n� rxx sin2n ¼ 0; ð6:66Þ

which upon substitution in Eq. (6.60) leads to:

Gdyy � Hdzz
� �

cos2 n ¼ Fdxx � Hdzzð Þ sin2 n ð6:67Þ

Next, substituting in the above equation the expressions of dxx, dyy, dzz given by
Eq. (6.62), we obtain the expression of d12 in terms of the anisotropy coefficients
and r nð Þ, i.e.,

d12
d11

¼ F sin2 n cos2 nþ r nð Þ cos 2nð Þð ÞþG cos2 n � sin2 nþ r nð Þ cos 2nð Þ� �� H cos 2nð Þ
1þ r nð Þð Þ F sin2 nþG cos2 n

� �
sin 2nð Þ

ð6:68Þ

Substituting Eq. (6.68) in Eq. (6.62), leads to:

dxx
d11

¼ G cos2 nþH cos 2n

1þ r nð Þð Þ F sin2 nþG cos2 n
� �

dyy
d11

¼ F sin2 n� H cos 2n

1þ r nð Þð Þ F sin2 nþG cos2 n
� �

dxy
d11

¼ r nð Þ
sin 2n r nð Þþ 1ð Þ þ

FþGð Þ sin2 n cos2 n� H cos2 2n

1þ rnð Þ F sin2 nþG cos2 n
� �

sin 2n

ð6:69Þ

To obtain the expression of the Lankford coefficient r nð Þ as a function of the
angle n, we need to minimize the plastic work-rate per unit of the current volume
_W
I ¼ s w dð Þ with respect to r nð Þ. This amounts to minimizing d:Udf g1

2 with
respect to r nð Þ. For this purpose, Eq. (6.69) are substituted in the expression of the
SRP given by Eq. (6.50), and then the differential with respect to r nð Þ is set to zero,
leading to the following equation:
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r nð Þ
sin 2n

þV nð Þ ¼ NX nð Þ ð6:70Þ

where

V nð Þ ¼ FþGð Þ sin2 n cos2 n� H cos2 2n

sin 2n F sin2 nþG cos2 n
� �

X nð Þ ¼ F G cos2 nþH cos 2nð Þ2 þG F sin2 n� H cos 2n
� �2

2D �V nð Þþ 1= sin 2nð Þ F sin2 nþG cos2 n
� �2

þ H
2D �V nð Þþ 1= sin 2nð Þ

and D ¼ FHþFGþGH.
After further simplifications, we obtain:

r nð Þ ¼ 2N � G� Fð Þ sin2 n cos2 nþH cos2 2nð Þ
F sin2 nþG cos2 n

; ð6:71Þ

which is exactly the same expression of the Lankford coefficient obtained based on
the Hill [14] stress potential [see Chap. 5, Eq. (5.40)].

As an example, for the AA2090-T3 for which uniaxial tensile data and the
anisotropy in the plastic behavior were discussed in Chap. 5, Fig. 6.16 shows the
projections in various biaxial planes of the SRP isosurfaces according to Hill [9]
with coefficients F = 0.252, G = 0.825, H = 0.175, N = 2.238 obtained using as
input the experimental r-values. Also, for the same AA2090-T3, in Fig. 6.17 are
represented the strain-rate isosurfaces, plotted for several fixed levels of the shear
strain-rate dxy=_�e ¼ 0; 0:5; 0:75; 1; and 1:05, respectively. As expected, according to
the Hill [15] quadratic SRP, all the cross-sections are elliptical.

6.2.1.2 Orthotropic Strain-Rate Potential of Barlat et al. [2]: SRP93

Barlat et al. [2] have extended to orthotropy the isotropic strain-rate potential given
by Eq. (6.18) by making use of the linear transformation approach (see also the
discussion in Chap. 5 about this rigorous methodology for introducing anisotropy in
any given isotropic formulation). The expression of the orthotropic Barlat et al. [5]
strain-rate potential, denoted SRP93, is

wBC dð Þ ¼ 1
2

~E1

�� ��b þ ~E2

�� ��b þ ~E3

�� ��b� �� �1=b

ð6:72Þ
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with b = 4/3 for fcc polycrystals and b = 3/2 for bcc polycrystals. In Eq. (6.72), ~E1,
~E2, and ~E3 denote the principal values (not necessarily ordered) of the transformed
strain-rate tensor ~E defined as:

~E ¼ Ld;

where L is an orthotropic fourth-order symmetric and deviatoric tensor. If in Voigt
notations, the plastic strain-rate tensor is represented by the six-dimensional vector
d ¼ dxx; dyy; dzz; dyz; dxz; dxy

� �
in the coordinate system associated with the ortho-

tropy axes, the fourth-order orthotropic tensor L is represented by the 6 � 6 matrix:
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Fig. 6.16 Representation in the biaxial planes of the Hill [15] strain-rate potential for an
AA2090-T3 for loadings such that dxy ¼ dxz ¼ dyz ¼ 0: a cross-section in the plane dxx; dyy

� �
,

b cross-section in the plane dxx; dzzð Þ, c cross-section in the plane dyy; dzz
� �
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L ¼ 1
3

c3 þ c2 �c3 �c2 0 0 0
�c3 c1 þ c3 �c1 0 0 0
�c2 �c1 c1 þ c2 0 0 0
0 0 0 3c4 0 0
0 0 0 0 3c5 0
0 0 0 0 0 3c6

2
6666664

3
7777775

ð6:73Þ

where ci, i = 1, …, 6, are independent anisotropy coefficients.
It can be easily seen that for b ¼ 2, the SRP93 reduces to the Hill [15] strain-rate

potential given by Eq. (6.51).
It is also worth noting that the SRP93 has been applied to numerous anisotropic

metallic sheets, the general consensus being that it is as performant as the Yld 91
orthotropic stress potential of Barlat et al. [1] (for an in-depth presentation and
discussion of the Barlat et al. [1] yield function and stress potential, the reader is
referred to Sect. 5.3.3). Although in Barlat et al. [2] it was shown numerically that
for certain materials the SRP93 given by Eq. (6.72) and the Yld 91 stress potential
are work-conjugate, a formal proof has not yet been given. Most importantly, no
general relationships have been established between the fourth-order anisotropy
tensors involved in the expression of Yld 91 and that of SRP93, respectively. For
this reason, even if the anisotropy coefficients involved in Yld 91 stress potential are
known for a given material, when the plastic behavior is described using SRP93, an
additional identification of the anisotropy coefficients, i.e., components of L given
by Eq. (6.72), is generally done. The procedure for the identification of the coef-
ficients ci, i = 1, …, 6, uses as input the experimental yield stresses and the
Lankford coefficients for several loading orientations in the plane of the sheet (at
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-1.5

-1

-0.5

0

0.5

1

1.5

dxx ∋−.

d y
y

∋−

Fig. 6.17 Projection of the
yield surfaces for AA2090-T3
sheet in the plane dxx; dyy

� �
corresponding to fixed levels
of the shear strain dxy=_�e ¼
0; 0:5; 0:75; 1; and 1:05
according to Hill [15]. The
outer curve corresponds to
dxy ¼ 0
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least the data for RD, 45°, and TD orientations). For example, for the same
AA2090-T3, Rabahallah et al. [20] reported the following numerical values of the
coefficients involved in the SRP: c1 ¼ 0:9056, c2 ¼ 0:9138, c3 ¼ 1:0606,
c4 ¼ c5 ¼ 1:0, c6 ¼ 0:8245 and b ¼ 4=3 while for a DP 600 steel alloy (me-
chanical data given in Table 6.1) c1 ¼ 0:8072, c2 ¼ 0:9663, c3 ¼ 1:0129,
c4 ¼ c5 ¼ 1:0, c6 ¼ 0:9958 and b ¼ 4=3. For AA2090-T3, the corresponding SRP
cross-sections in several biaxial planes are shown in Fig. 6.18. The strain-rates are
normalized by the equivalent strain-rate in uniaxial tension along the rolling (x)-
direction.

For the same materials, the coefficients F, G, H, N associated with the Hill [14]
potential and the Hill [15] SRP were F = 0.252, G = 0.825, H = 0.175, N = 2.238
for AA2090-T3, and F = 0.493, G = 0.511, H = 0.489, N = 1.307 for DP600,
respectively. Figure 6.19 shows a comparison of the isocontours in the biaxial plane
dxx; dyy
� �

of the strain-rate isosurface according to Hill [15] and Barlat et al. [2],
respectively, for these materials. Note that for either material, the Hill [15] surface is
circumscribed by the Barlat et al. [2] one. While the Hill [15] cross-section is of
elliptical shape, the cross-section according to the Barlat et al. [2] strain-rate
potential is a hexagon with rounded corners. Note that the models predict different
values of the Lankford coefficient along RD (x-direction) and the TD (y-direction),
respectively. Moreover, there is a strong difference in the predicted response for
equibiaxial states (i.e., for states such that dxx ¼ dyy).

6.2.1.3 Orthotropic Strain-Rate Potential of Barlat and Chung [4]:
SRP2004-18p

The orthotropic strain-rate potential SRP 93 was used in the framework of the ideal
forming theory (see Chung and Richmond [9–11]) to determine the initial blank
shape necessary to obtain a full drawn cup with uniform height. For the orthotropic
AA2090-T3 material (see Table 5.1 for the material’s plastic properties), the pre-
dictions based on the SRP93 were reported in [3]. These predictions were partially
successful, the departure from the data was attributed to the inability of SRP93 to
capture the anisotropy of the Lankford coefficients for this material. In an effort to

Table 6.1 Experimental data
for a DP600 steel alloy
reported in Kim et al. [17]

Property Normalized yield stress r value

Uniaxial tension 0° 1.000 0.86

Uniaxial tension 15° 0.977 0.87

Uniaxial tension 30° 1.000 1.01

Uniaxial tension 45° 1.031 1.15

Uniaxial tension 60° 0.987 1.20

Uniaxial tension 75° 0.987 1.10

Uniaxial tension 90° 0.997 1.04

Equibiaxial tension 0.961
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keep the characteristics of the SRP93 while improving the description of the plastic
anisotropy, Barlat and Chung [4] proposed a 3-D anisotropic strain-rate potential,
denoted SRP2004-18p, which involves two linear transformations.

The expression of the SRP2004-18p is:

w ¼ w ~E0
i; ~E

00
j

� �
¼ ~E0

1

�� ��b þ ~E0
2

�� ��b þ ~E0
3

�� ��b
þ ~E00

2 þ ~E00
3

�� ��b þ ~E00
3 þ ~E00

1

�� ��b þ ~E00
1 þ ~E00

2

�� ��b ð6:74Þ
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Fig. 6.18 Representation of the cross-sections in the biaxial planes with dxy ¼ dxz ¼ dyz ¼ 0 of
the strain-rate surface for an AA2090-T3 according to Barlat et al. [2]: a cross-section in the plane
dxx; dyy
� �

, b cross-section in the plane dxx; dzzð Þ, c cross-section in the plane dyy; dzz
� �
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where ~E0
i and ~E00

i are the principal values of the tensors ~_e
0
and ~_e

00
defined as:

~_e
0 ¼ B0d

~_e
00 ¼ B00d

ð6:75Þ

In the coordinate system associated with the axes of orthotropy, using Voigt
notations, the fourth-order orthotropic tensors B0 and B00 are represented by the
following 6 � 6 matrices:

B0 ¼

0 �b012 �b013 0 0 0
�b021 0 �b023 0 0 0
�b031 �b032 0 0 0 0
0 0 0 b044 0 0
0 0 0 0 b055 0
0 0 0 0 0 b066

2
6666664

3
7777775

ð6:76Þ

B00 ¼

0 �b0012 �b0013 0 0 0
�b0021 0 �b0023 0 0 0
�b0031 �b0032 0 0 0 0
0 0 0 b0044 0 0
0 0 0 0 b0055 0
0 0 0 0 0 b0066

2
6666664

3
7777775

ð6:77Þ

In Barlat and Chung [4], it is stated that for orthotropy, the SRP2004-18p
strain-rate potential involves 18 independent anisotropy coefficients, and that the

(a) (b)
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Fig. 6.19 Comparison between the cross-sections in the plane dxx; dyy

� �
of the strain-rate surface

according to the Hill [15] strain-rate potential and the Barlat et al. [2] strain-rate potential,
respectively, for: a AA2090-T3, b DP600 steel alloy. Parameters for each model reported in
Rabahallah [19]
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parameter b should be set to b ¼ 4=3 for fcc materials and b ¼ 3=2 for bcc
materials, respectively.

As an example, in the following are presented the isosurfaces according to the
SRP2004-18p strain-rate potential for AA2090-T3 and DP600 sheets (see
Figs. 6.20 and 6.21). The numerical values for the anisotropic coefficients of the
strain-rate potential for each material that are given in Table 6.2 were reported in
Rabahallah [19] and Kim et al. [17], respectively. The parameter b was set to the
recommended values for each crystal structure.

Comparison between the isosurfaces according to the SRP93 and the
SRP2004-18p presented in Fig. 6.21 for the AA2090-T3 shows that both criteria
predict similar curvatures and normals in the biaxial tension quadrant, i.e., dxx [ 0
and dyy [ 0. On the other hand, for the DP600 steel alloy, there is a large difference
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Fig. 6.20 Representation in several biaxial planes dxy ¼ dxz ¼ dyz ¼ 0
� �

of the cross-sections of
the orthotropic SRP2004-18p (Barlat and Chung [4]) for an AA2090-T3: a cross-section in the
plane dxx; dyy

� �
, b cross-section in the plane dxx; dzzð Þ, c cross-section in the plane dyy; dzz

� �
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between the shapes of the cross-sections of SRP93 and that of the SRP2004-18p,
respectively. The behavior predicted for equibiaxial loadings is completely differ-
ent. Nevertheless, both isosurfaces are symmetric with respect to the origin, i.e., are
invariant by the transformation dxx; dyy

� �! �dxx;�dyy
� �

.
In closing, we note that Barlat and Chung [4] stated that the orthotropic

SRP2004-18p involves 18 anisotropy coefficients. For general orthotropy, only 17
of these coefficients are independent (see also discussion in Sect. 5.1 on
form-invariance and the possibility of expressing the pseudo-dual stress potentials
in terms of generalized invariants). Therefore, an optimal identification of the Barlat
and Chung [4] strain-rate potential requires at least 17 independent experimental
data to populate the strain-rate space.
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Fig. 6.21 Comparison between the cross-sections of the strain-rate isosurfaces according to the
orthotropic SRP 93 [2] and SRP2004-18p [4], respectively, for textured sample sheets:
a AA2090-T3, b DP600 steel alloy

Table 6.2 Anisotropy coefficients of the SRP2004-18p strain-rate potential [4] for AA2090-T3
(after Rabahallah [19]) and DP600 steel alloy (after Kim et al. [17])

b012 b013 b021 b023 b031 b032 b044 b055 b066
2090-T3 0.39 0.68 0.91 1.01 1.13 0.63 1.00 0.56 1.07

DP600 1.67 0.85 0.62 1.12 0.53 1.10 1.04 1.04 1.43

b0012 b0013 b0021 b0023 b0031 b0032 b0044 b0055 b0066
2090-T3 1.37 0.77 1.45 0.68 0.94 1.11 1.00 0.56 0.51

DP600 0.89 1.29 0.23 0.34 1.06 0.82 1.04 1.04 0.45

324 6 Strain-Rate-Based Plastic Potentials for Polycrystalline …



6.2.2 Exact Dual of the Orthotropic Cazacu et al. [5]
Stress Potential

The orthotropic strain-rate potentials presented in Sect. 6.2.1 are applicable only to
the description of the plastic behavior of fully dense textured materials with cubic
crystal structure (bcc or fcc) for which the mechanical response is the same in
tension–compression. A strain-rate potential that accounts for both orthotropy
and the tension–compression asymmetry of polycrystalline materials was developed
by Cazacu et al. [6]. This strain-rate potential is the exact dual of the quadratic form of
the anisotropic stress potential of Cazacu et al. [5] [see Sect. 5.4.3 and Eq. (5.160)].
The complete proof is presented in the following along with examples that show the
ability of this strain-rate potential to describe the complex behavior of hcp metals.

As discussed in Sect. 5.4.3, the quadratic form of the Cazacu et al. [5] ortho-
tropic stress potential is:

g r_1; r
_

2; r
_

3

� �
¼ ~re � rT0 ¼ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

r_i
�� ��� kr_i

� �2vuut � rT0 ¼ 0 ð6:78Þ

where rT0 is the yield stress in tension in the rolling direction, k is a parameter

describing the tension–compression asymmetry, r_1; r
_

2; r
_

3 are the principal values
of the transformed tensor r_ ¼ Ls, where L is a fourth-order orthotropic and sym-
metric tensor. In Eq. (6.78), ~m is a constant defined such that for uniaxial tensile
loading, the effective stress ~re reduces to rT0 (see Eq. (5.161) for the expression of
~m in terms of the orthotropy coefficients and the parameter k). Relative to the
orthotropy axes, this fourth-order tensor L operating on the stress deviator s is
represented in Voigt notations by:

L ¼

L11 L12 L13 0 0 0
L12 L22 L23 0 0 0
L13 L23 L33 0 0 0
0 0 0 L44 0 0
0 0 0 0 L55 0
0 0 0 0 0 L66

2
6666664

3
7777775

ð6:79Þ

[see also Chap. 5, Eq. (5.159)]. To deduce the work-conjugate of the orthotropic
stress potential given by Eq. (6.78), Cazacu et al. [8] further assumed that the
fourth-order tensor L is also deviatoric, i.e.,

L11 þ L12 þ L13 ¼ L12 þ L22 þ L23 ¼ L13 þ L23 þ L33 ¼ A ð6:80Þ

where A is a constant. The additional constraints ensure that r_ ¼ Ls ¼ Lr.
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Next, to calculate the plastic multiplier _k; the expression of g given by Eq. (6.78)
is substituted in the flow rule, to obtain:

dij ¼ _k
@g

@r
_

kl

Lklij ð6:81Þ

when

g r_1; r
_

2; r
_

3

� �
¼ 0: ð6:82Þ

It is worth noting that the symmetric tensor L, given by Eq. (6.79), and satis-
fying the additional constraints given by Eq. (6.80) is not invertible.
However, there exists a 4th order symmetric tensor H such that

HL ¼ K; ð6:83Þ

where K is the fourth-order symmetric deviatoric unit tensor (see also Chap. 1).
Using (6.81) and (6.83), we obtain that

Hpqijdij ¼ _k
@g

@r_kl

HpqijLijkl ¼ _kKpqkl
@g

@r_kl

: ð6:84Þ

Let us denote the deviator of
@g

@r
_

� �
as

@g

@r
_

� �0
. Hence, in the orthotropic case we

have:

H : d ¼ _k
@g

@r
_

� �0
with g r_1; r

_

2; r
_

3

� �
¼ 0: ð6:85Þ

Remark Note that in the isotropic case [see Sect. 6.2.1, Eq. (6.31)],

d ¼ _k
@g
@s

� �0
when g s;m; rTð Þ ¼ 0: ð6:86Þ

Comparison between Eqs. (6.85) and (6.86) shows that the expression of the
plastic multiplier for orthotropic materials is obtained simply by replacing in the
expression of the isotropic strain-rate potential [Eq. (6.43)] the plastic strain-rate
tensor d by Hd and the constant m by the constant ~m. Thus, the expression of the
Cazacu et al. [8] orthotropic strain-rate potential is:
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w dð Þ ¼
1

~m 1� kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2 þ
3k2 � 10kþ 3
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3 ;

1
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8>>>><
>>>>:

ð6:87Þ

In Eq. (6.87), B1; B2; B3ð Þ are the principal values of the transformed strain-rate
tensor B defined as:

B ¼ Hd; ð6:88Þ

while the domains Dþ
3 and D�

3 are described by Eqs. (6.36) and (6.38), respectively.
The expressions of the branches of the orthotropic strain-rate potential corresponding
to the subspaces Dþ

1 , D�
1 , D

þ
2 , and D�

2 are obtained from Eq. (6.88) by symmetry.
Thus, for any 3-D loading, the Cazacu et al. [6] orthotropic strain-rate potential writes
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where the following notations have been introduced

X1 ¼ 3k2 � 2kþ 3ð Þ2
6 k2 þ 3ð Þ 3k2 þ 1ð Þ ; X2 ¼ � 3k2 þ 2kþ 3ð Þ2

6 k2 þ 3ð Þ 3k2 þ 1ð Þ
a1 ¼ 3k2 þ 10kþ 3

3k2 � 2kþ 3
; a2 ¼ 3k2 � 10kþ 3

3k2 þ 2kþ 3

ð6:90Þ

Remark Note that for isotropic materials, for which L ¼ K the Cazacu et al. [6]
orthotropic strain-rate potential given by Eq. (6.87) reduces to the isotropic Cazacu
et al. [6] strain-rate potential given by Eq. (6.43). If a material does not display
tension–compression asymmetry (yield in tension is equal to the yield in compres-
sion), the parameter k associated with strength differential effects is automatically
zero and the Cazacu et al. [6] orthotropic strain-rate potential given by Eq. (6.87)
reduces to the Hill [15] orthotropic strain-rate potential given by Eq. (6.50).

6.2 Orthotropic Strain-Rate Plastic Potentials 327



Components of the fourth-order orthotropic tensor H

Using Voigt notations, the fourth-order orthotropic tensor L involved in the
expression of the Cazacu et al. [5] stress potential is represented in the reference
system associated with orthotropy by the 6 � 6 matrix given by Eq. (6.79).
Therefore, using the definition of H given by Eq. (6.83), relative to the same
coordinate system, H is represented by the matrix of components:

H11 ¼ � H12 þH13ð Þ

H12 ¼ H21 ¼ 1
3
� 2 L32 � L12ð Þþ L31 � L11ð Þ
L21 � L11ð Þ L32 � L12ð Þ � L22 � L12ð Þ L31 � L11ð Þ

H13 ¼ H31 ¼ 1
3
� L11 � L21ð Þþ 2 �L22 þ L12ð Þ
L21 � L11ð Þ L32 � L12ð Þ � L22 � L12ð Þ L31 � L11ð Þ

H22 ¼ � H21 þH23ð Þ

H23 ¼ H32 ¼ 1
3
� 2 L11 � L21ð Þþ �L22 þ L12ð Þ
L11 � L21ð Þ L32 � L22ð Þ � �L22 þ L12ð Þ L31 � L21ð Þ

H33 ¼ � H31 þH23ð Þ
H44 ¼ 1

L44
;H55 ¼ 1

L55
;H66 ¼ 1

L66

ð6:91Þ

First derivatives of the Cazacu et al. [6] orthotropic strain-rate potential for
plane-stress loadings

The Cazacu et al. [6] orthotropic strain-rate potential was developed for full 3-D
loading conditions. In view of applications to sheet forming, in the following, we
present the explicit expressions of the first derivatives of this SRP for plane-stress
conditions. Let us first note that under plane-stress conditions ðrzz ¼ rzy ¼
rzx ¼ 0Þ, the only nonzero components of the transformed tensor B ¼ Hd are Bxx,
Byy, Bzz, and Bxy. Therefore, the principal values B1, B2, B3 of the transformed
tensor B are:

B1;2 ¼ Bxx þByy

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bxx � Byy

2

� �2

þB2
xy

s
; B3 ¼ Bzz: ð6:92Þ

The first derivatives of the orthotropic Cazacu et al. [6] strain-rate potential
(6.89) are given as:

@w
@dij

¼ @w
@Ba

� @Ba

@dij
ð6:93Þ

where
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while the derivatives:

@Bk

@Bmm
; k ¼ 1; . . .; 3 and ðm; nÞ either ðx; xÞ; ðy; yÞ; or ðx; yÞ

are given by:

@B1
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2
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2
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2
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ð6:97Þ

and the derivatives of Bij with respect to dxx; dyy; dzz; dxy are:

@Bij

@dkl
¼ Hijkl ð6:98Þ

Remark Note that the derivatives in Eq. (6.97) have singular values when the
denominator vanishes, i.e., for Bxx ¼ Byy and Bxy ¼ 0. In this case, the following
equations should be used to calculate the first derivatives:

@w
@Bxx

¼ @w
@B1

;
@w
@Byy

¼ @w
@B2

;
@w
@Bxy

¼ 0;
@w
@Bzz

¼ @w
@B3

ð6:99Þ

in conjunction with Eqs. (6.94)–(6.96).

Identification procedure for the material parameters of the Cazacu et al. [6]
orthotropic strain-rate potential

As demonstrated, the orthotropic strain-rate potential of Cazacu et al. [6] given by
Eq. (6.89) is the exact dual of the orthotropic and quadratic stress potential proposed
by Cazacu et al. [5] given by Eq. (6.78). Thus, for full 3-D conditions, the seven
anisotropy coefficients involved in the expression of the SRP [see Eq. (6.89)] can be
obtained simply by using Eq. (6.83) that relates the tensorH to the tensor L involved
in the expression of the stress potential [see also the expressions of the coefficientsHij

in terms of Lij given by Eq. (6.91)]. The strength differential coefficient k in
Eq. (6.89) of the strain-rate potential is the same coefficient that appears in the
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Eq. (6.78) of the stress potential. These seven anisotropy coefficients (either the
components ofH orL) as well as k can be determined from at least eight experimental
measurements through the minimization of an error function. The experimental data
may consist of flow stresses and r-values in tension–compression corresponding to
different orientations in the plane of the metallic sheet, biaxial flow stress in tension–
compression, as well as out-of-plane yield stresses and r-values:

Error ¼
X
n

weight 1� rnth
rndata

� �2

þ
X
m

weight 1� rmth
rmdata

� �2

ð6:100Þ

Regardless of the potential used, the description of the plastic response of a
given material is identical. Thus, in the above Eq. (6.100), the subscript “data” may
refer to data points obtained from direct measurements (uniaxial loading tests),
while “theoretical” refers to predicted values obtained with either potential.
Specifically, if one chooses to determine from data the coefficients Lij, then the
subscript “theoretical” in the error function refers to theoretical values obtained
using Eqs. (5.166)–(5.172) (see Chap. 5). Subsequently, Eq. (6.91) are used to
calculate the coefficients Hij. This is the procedure that will be used to generate the
isosurfaces according to the orthotropic strain-rate potential of Cazacu et al. [6] for
a Mg AZ31 and a high-purity Ti (identification of the parameter k and anisotropy
coefficients Lij presented in Sect. 5.4.3.1).

Application of the Cazacu et al. [6] orthotropic strain-rate potential to
hexagonal-closed packed metallic materials

As discussed in Sect. 5.4.3, for a strongly anisotropic Mg AZ31 alloy
Revil-Baudard et al. [21] (see also Chandola et al. [8]) have identified the param-
eters involved in the quadratic form of the Cazacu et al. [7] orthotropic stress
potential using the experimental data reported by Khan et al. [16]. The values of
these parameters were given in Table 5.8. Using Eq. (6.91), the components Hij of
the fourth-order tensor H can be easily determined (see Table 6.3).

For the Mg AZ31 alloy, Fig. 6.22 shows the isocontours of the Cazacu et al. [5]
stress potential (see Fig. 6.22a) in the biaxial plane rxx; ryy

� �
for several levels of

the equivalent plastic strain along with the isocontours of its dual, i.e., the Cazacu
et al. [6] strain-rate potential, in the biaxial plane dxx; dyy

� �
(see Fig. 6.22b). It is

worth noting that in both the stress space and the strain-rate space, the shape of the

Table 6.3 Anisotropy coefficients involved in the Cazacu et al. [6] orthotropic strain-rate
potential for a Mg AZ31 alloy

Plastic strain H11 H12 H13 H23 H66 k

0.05 0.473 −0.340 −0.134 −0.1575 1.3699 −0.625

0.06 0.366 −0.236 −0.130 −0.156 0.9625 −0.520

0.08 0.359 −0.165 −0.194 −0.219 0.887 −0.215

0.1 0.378 −0.163 −0.215 −0.242 0.945 −0.169

6.2 Orthotropic Strain-Rate Plastic Potentials 331



surface evolves from a triangular shape at low levels of equivalent plastic strain
toward an elliptical shape for larger values of the equivalent plastic strain.
Furthermore, an outer isocontour in the stress space becomes an inner isocontour in
the strain-rate space. This is due to the fact that all the isocontours correspond to the
same plastic dissipation.

It is also worth comparing the prediction of the Cazacu et al. [6] strain-rate
potential with the prediction of the Hill [15] strain-rate potential for this material
(see Fig. 6.23 for the respective isocontours corresponding to an equivalent plastic
strain of 5%). Let us recall that these two strain-rate potentials are the only
potentials which are the exact duals of their respective stress potentials. As already
discussed, according to the Hill [15] quadratic SRP, the mechanical response is the
same in tension–compression, so the isocontours can only be elliptical and invariant
to the transformation dxx; dyy

� �! �dxx;�dyy
� �

. On the other hand, the Cazacu
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Fig. 6.22 Representation in the biaxial plane of: a the Cazacu et al. [5] stress potential and b the
Cazacu et al. [6] dual strain-rate potential for an Mg AZ31 alloy, respectively
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et al. [6] strain-rate potential accounts simultaneously for the anisotropy and ten-
sion–compression asymmetry of the material.

It is also worth mentioning that both SRPs have been identified solely based on
measurements of the yield stresses along different orientations. The predicted values
of the Lankford coefficients along RD (the x-direction) are: r 0�ð Þ ¼ 0:25 for the
Cazacu et al. [6] SRP and r 0�ð Þ ¼ 2:6 for the Hill [15] SRP. Along TD (or the y-
direction): r 90�ð Þ ¼ 0:26 for the Cazacu et al. [6] SRP, while the Hill [15] SRPs
predict r 90�ð Þ ¼ 3:7. Note also that one of the advantages of a strain-rate formu-
lation is that the Lankford coefficients in RD and TD can be directly estimated by
plotting the normals to the respective SRP isosurfaces in the biaxial plane.

Next, the orthotropic SRP of Cazacu et al. [6] is applied to high-purity hcp-Ti,
with a strong initial basal texture for which the mechanical characterization data
were reported in Nixon et al. [18]. These test results in uniaxial tension–com-
pression along the RD, TD, and ND directions were discussed in detail in Chap. 5
and further used to identify the material parameters involved in the Cazacu et al. [5]
stress potential, namely the coefficients Lij as well as the parameter k [see
Eq. (6.78)]. Therefore, the coefficients Hij of the Cazacu et al. [6] SRP can be
directly calculated using Eq. (6.83) (see Table 6.4), while the k parameter is the
same in both stress-based and strain-rate-based formulations.

For this hcp-Ti, Fig. 6.24a shows the isocontours of the Cazacu et al. [5] stress
potential in the biaxial plane rxx; ryy

� �
for several levels of the equivalent plastic

strain, while Fig. 6.24b shows the isocontours of its dual, the Cazacu et al. [6]
strain-rate potential in the biaxial plane dxx; dyy

� �
. It is worth noting that in either

stress space or strain-rate space, at the onset of plastic deformation and under 10%
strain, the theoretical surfaces have an elliptical shape and the predicted tension–
compression asymmetry is small, as observed experimentally. However, at 20%
strain and above, the surfaces have a triangular shape, and the difference in response
between tension–compression is pronounced. It is also important to note the
yield surfaces and the strain-rate isosurfaces exhibit the same evolution in shape
with accumulated plastic deformation, which should be the case given that the
tensors L and H describing the evolving anisotropy of the material are related by
Eq. (6.83).

Table 6.4 Anisotropy coefficients involved in the Cazacu et al. [6] orthotropic strain-rate
potential for a high-purity hcp-Ti

Plastic strain H11 H12 H13 H23 H66 k

0.05 2.833 −1.1437 −1.690 −2.33 3.861 −0.06

0.08 1.142 −0.4790 −0.663 −0.8714 1.522 −0.084

0.2 0.679 −0.305 −0.374 −0.397 0.778 −0.392

0.3 0.657 −0.307 −0.350 −0.345 0.696 −0.650
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Chapter 7
Plastic Potentials for Isotropic Porous
Materials: Influence
of the Particularities of Plastic
Deformation on Damage Evolution

It is well documented that in metals, damage and ultimately failure is the result of
nucleation, growth, and coalescence of voids (e.g., McClintock [47]; Hancock
and Mackenzie [31]; Hosokawa et al. [36]). Void nucleation occurs mainly by
decohesion at the particle matrix interface (e.g., Kwon and Asaro [40]) and
micro-cracking of second-phase particles (see, e.g., Tvergaard and Needleman
[69]). Constitutive models for porous ductile materials are thus needed as the basis
for ductile failure theories, or for understanding and describing consolidation
processes aimed at reducing porosity [59]. One of the most widely used models are
those derived by Gurson [29] for porous materials containing randomly distributed
voids of either spherical or cylindrical geometry. These plastic potentials were
deduced by conducting limit analysis of a hollow sphere or hollow cylinder obeying
von Mises yield criterion. It was proven that the presence of voids in a von Mises
matrix induces dependence on the mean stress. To better account for void evolution,
various modifications of Gurson’s [30] criteria have been proposed (e.g., Tvergaard
and Needleman [69]; Richmond and Smelser [59]; Leblond et al. [41]). In the past
couple of years, growing experimental evidence has shown the role played by all
stress invariants in ductile failure of metallic materials. In particular, the combined
effects of the second and third-invariants of the stress deviator (i.e., Lode parameter)
have been well documented (e.g., recent data reported by Bao and Wierzbicki [8];
Barsoum and Faleskog [9]; Lou and Huh [44]). Using an extensive set of experi-
mental data and sophisticated fitting procedures, criteria that postulate the depen-
dence of the equivalent plastic strain at fracture on both the stress triaxiality and the
Lode parameter were proposed (e.g., Bai and Wierzbicki [6]).

Since void evolution is due to the plastic deformation of the surrounding fully
dense material (matrix), it is essential to understand how the particularities of the
plastic deformation influence void evolution. In their seminal study, Rice and
Tracey [58] formulated variational principles for void growth in rigid-plastic
materials and compared growth of spherical voids in a Tresca material with that in a
von Mises material for very high stress triaxialities. It was found that the rate of
void growth in a Tresca material is much faster than in a von Mises material.
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Nevertheless, within the last decades, most efforts have been devoted to the
description of void interaction or to the effects of void geometry on the mechanical
response of porous metallic materials (e.g., Leblond and Gologanu [43]). Indeed, in
most of the available models for isotropic porous materials, the matrix material is
described by the von Mises yield criterion.

Recently, efforts have been devoted toward describing the role played by the
particularities of the plastic deformation of the matrix on yielding and void evo-
lution. In this chapter are presented these new analytic plastic potentials. First, the
general mathematical framework and the limit-analysis theorems used for the
derivation of these potentials are briefly described. On the basis of these theorems,
the general properties of the yield surface of an isotropic porous material for which
the matrix behavior is governed by a yield function which is even in stresses are
deduced. The analysis of yielding and void evolution in porous materials with
Mises matrix is revisited, and the previously unrecognized combined effects of the
mean stress and third-invariant of the stress deviator on yielding of a porous Mises
solid put into evidence by Cazacu et al. [19] are discussed along with the criterion
derived by these authors. Next, the case when the matrix is governed by the Tresca
yield criterion is analyzed, and the derivation of the plastic potential for a porous
Tresca material is presented, along with comparison with the predictions of the
porous von Mises criterion in terms of void growth/collapse under axisymmetric
loadings. However, to gain understanding of the combined effects of all invariants
on the mechanical response of porous solids for general three-dimensional loadings,
a strain-rate-based approach appears more appropriate. Three-dimensional strain-
rate-based potentials for porous solids are presented. It is demonstrated that the
presence of voids induces dependence on all invariants, the noteworthy result being
that the couplings between invariants are very specific and depend strongly on the
particularities of the plastic flow of the matrix. This in turn strongly influences void
evolution. It is shown that the fastest rate of void growth or collapse occurs in a
porous Tresca material. However, depending on the relative weight of the invariants
of the stress deviator on yielding of the matrix, the rate of void evolution can be
either slower or faster than in a porous von Mises material. Most importantly, it is
revealed that depending on the yield criterion for the matrix, the third-invariant
effects (or Lode effects) on void evolution can be either enhanced or completely
eliminated.

Finally, recent contributions to the understanding of the influence of the tension–
compression asymmetry of the plastic deformation of the isotropic and incom-
pressible matrix on yielding and void evolution of porous materials are presented. It
is shown that if the yield function that governs the matrix behavior is an odd
function, there is a very strong effect of the third-invariant of the stress deviator for
all loadings. Moreover, the yield surface of the porous material lacks any symmetry.

We begin with a brief overview of the mathematical framework for developing
plastic potentials for porous metallic materials. For an in-depth presentation of
both the kinematic and static limit-analysis theorems and complete proofs of the
mathematical results, the reader is referred to books devoted entirely to this subject
(e.g., Salençon [60, 61]). Here focus is on the general properties of the potentials,

338 7 Plastic Potentials for Isotropic Porous Materials …



and the challenges and roadblocks associated to the derivation of their expression in
closed form. As concerns the notations used throughout this chapter and Chap. 8,
the strain-rate and stress associated with the matrix (fully dense material) are
denoted by d, and r while those associated with the porous material (matrix and
voids) are denoted by D, and R:

The mean strain-rate of the porous material is denoted as

Dm ¼ ðtrDÞ=3; ð7:1Þ

D0 stands for the deviator of D; i.e., D0 ¼ D� DmI; its invariants are denoted
asloadings at

JD2 ¼ tr D02� �
=2 and JD3 ¼ tr D03� �

=3; ð7:2Þ

and

De ¼ 2=
ffiffiffi
3

p� � ffiffiffiffiffiffi
JD2

q
; ð7:3Þ

denotes von Mises equivalent strain-rate associated to D:
The mean stress of the porous material, i.e., the first invariant of R is denoted as

Rm ¼ tr Rð Þ=3; while the invariants of the stress deviator R0 ¼ R� Rm=3ð ÞI and of
the stress triaxiality T are denoted as:

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 R0

ijR
0
ij

� �
=2

r
¼

ffiffiffiffiffiffiffiffi
3JR2

q
; JR3 ¼ tr R0ð Þ3=3; ð7:4Þ

T ¼ Rm=Re: ð7:5Þ

7.1 Kinematic Homogenization Framework
for Development of Plastic Potentials for Porous
Metallic Materials

Consider a representative volume element X; composed of a homogeneous
rigid-plastic matrix and a traction-free void. Let f be the void volume fraction. The
plastic deformation of the matrix material is described by a yield function u rð Þ
which is convex and homogeneous of degree one, and an associated flow rule, i.e.,

d ¼ _k
@u
@r

: ð7:6Þ

In Eq. (7.6), d ¼ rvþrvTð Þ=2 is the strain-rate tensor with v being the
velocity field; _k� 0 is the plastic multiplier. If rT denotes the yield limit in uniaxial
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tension, in a specified direction, then the yield surface is defined as: u rð Þ ¼ rT
(see also Chap. 2). The plastic dissipation is then defined as

p dð Þ ¼ sup
r2C

r : dð Þ: ð7:7Þ

In Eq. (7.7), C denotes the convex domain delimited by the yield surface, i.e.,

C ¼ r u rð Þ� rTjf g: ð7:8Þ

For uniform strain-rate boundary conditions on @X, i.e.,

v xð Þ ¼ Dx; for any x 2 @X; where D ¼ const; ð7:9Þ

Hill [32]-Mandel [46] lemma applies, i.e.,

r : dh iX¼ rh iX: dh iX¼ R : D ð7:10Þ

In the above equation, h i denotes the average value over the representative
volume X; and

R ¼ rh iX; ð7:11Þ

denotes the average stress. Moreover, there exists a plastic potential P ¼ PðD; f Þ
such that the stress at any point in the porous solid is given by:

R ¼ @P D; fð Þ
@D

ð7:12Þ

and

P D; fð Þ ¼ inf
vðxÞ K:A:with D

p dð Þh iX: ð7:13Þ

In Eq. (7.13) inf stands for infimum, the minimization being done over the set of
incompressible velocity fields compatible with D [i.e., velocity fields v satisfying
Eq. (7.9)]. For the proof of this lemma, the reader is referred to Garajeu and Suquet
[28], Leblond [42].

Remark (a) To derive an analytic expression of the plastic potential of the porous
solid, P D; fð Þ; one needs to know the closed-form expression of the local plastic
dissipation,

p dð Þ ¼ _krT ¼ w dð ÞrT ; ð7:14Þ

where w dð Þ is the strain-rate potential (SRP) associated to u rð Þ; the plastic
potential of the matrix. Given that analytic expressions for SRPs which are exact
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duals of yield functions are known only in a few cases (see the examples presented
in Chap. 6), closed-form expressions of analytic plastic potentials for porous
metallic materials have been developed only for the cases when the matrix is
described by von Mises [70], Tresca [66], Hill [33], and Cazacu et al. [15] yield
criteria.

Remark (b) Another key ingredient needed for the homogenization procedure is
the knowledge of velocity fields which are kinematically admissible. It is very
important to note that only very few velocity fields compatible with uniform
strain-rate boundary conditions are known.

In the case of spherical void geometry, the only known velocity fields are those
deduced by Rice and Tracey [58], Budiansky et al. [10], and Huang [37]. The Rice
and Tracey [58] velocity field is presented in Sect. 7.2.2. For other examples of
velocity fields, which were deduced using an Eshelby-type approach, the reader is
referred to Monchiet et al. [50]. In the case of cylindrical void geometry, generally
the velocity field deduced by Gurson [29] is used (see Sect. 7.4.1).

In closing, it should be mentioned that while for metallic materials the most
widely used approach is that of kinematic homogenization, for modeling porous
geologic materials and polymers, the use of the static homogenization approach
(e.g., see Thoré et al. [64]) is more prevalent. In this latter framework, minimization
of the local plastic dissipation is done over the set of statically and plastically
admissible stress fields (i.e., stresses that belong to the plasticity convex C defined
by Eq. (7.8), satisfy the equilibrium equations, and uniform stress boundary con-
ditions). For more details concerning this approach and its application to porous
geological materials, the reader is referred to the monographs of Salençon [60] and
Dormieux et al. [24].

7.2 Constitutive Models for Porous Isotropic Metallic
Materials with Incompressible Matrix Governed
by an Even Yield Function

On the basis of the mathematical results presented in Sect. 7.1, Cazacu et al. [19]
demonstrated that for spherical void geometry, the dependence of the yield function
of the porous solid, F R; fð Þ; on the invariants of R cannot be arbitrary. Moreover, it
was put into evidence that a very specific coupling between the signs of the mean
stress Rm and the third-invariant JR3 exists. These general results with complete
proofs are presented in the following.
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7.2.1 General Properties of the Yield Surface of Porous
Metallic Materials Containing Spherical Voids
in an Incompressible Matrix Governed by an Even
Yield Function

Theorem 7.1 The yield surface of a porous isotropic material containing ran-
domly distributed spherical voids and matrix governed by a yield criterion repre-
sented by an even function u rð Þ ought to be centro-symmetric, and the yield
function F R; fð Þ should satisfy the following invariance requirement:

F Rm;Re; J
R
3

� � ¼ F �Rm;Re;�JR3
� � ð7:15Þ

Proof Indeed, if the matrix behavior is described by a yield function u rð Þ which is
an even function in stresses, then the local plastic dissipation p dð Þ is an even
function of the local strain-rate tensor d: By Eq. (7.13) it follows that the exact
macroscopic strain-rate potential of the porous aggregate, P ¼ P D; fð Þ; is also an
even function of the strain-rate tensor D and consequently, the yield function of the
porous material, which is defined as,

F R; fð Þ ¼ sup
D

R : D�P D; fð Þ½ � ð7:16Þ

is also an even function.
Because the voids are spherical and randomly distributed in the matrix, the yield
function of the porous solid, F R; fð Þ; ought to be isotropic. By the usual arguments
based on theorems of representation of scalar isotropic functions (see Chap. 1), it
follows that F R; fð Þ should depend on the stress tensor R only through its invari-
ants, i.e.,

F R; fð Þ ¼ F Rm;Re; J
R
3 ; f

� �
:

Since F Rð Þ is an even function, the following restriction on the form of the yield
function

F Rm;Re; JR3
� � ¼ F �Rm;Re;�JR3

� � ð7:17Þ

ought to be satisfied.
In other words, the origin is a center of symmetry for the yield surface of the

porous solid. Indeed, Eq. (7.15) implies that the point on the yield surface that is
characterized by a given stress triaxiality, (T and JR3 � 0Þ is symmetric with respect
to the axis Rm ¼ 0 to the point corresponding to (−T) and JR3 � 0. Only for purely
hydrostatic loading (T ¼ 1 and JR3 ¼ 0Þ or purely deviatoric axisymmetric loadings
(T ¼ 0Þ, there is no effect of the sign of the third-invariant on the yielding response.
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Moreover, it can be shown that irrespective of the expression of the yield function
of the matrix, u rð Þ, the hydrostatic yield limit is the same.

Theorem 7.2 If the yield function of the matrix is an even function then the
hydrostatic yield limit of the porous solid is equal to � 2=3ð ÞrT ln f :

Proof For spherical void geometry, a representative volume element (RVE) is a
hollow sphere of inner radius a and outer radius b ¼ a f�1=3, where f is the porosity
(see Fig. 7.1). The outer boundary of the RVE is subjected to purely hydrostatic
loading R ¼ pI, p real. The hydrostatic limit pY is the solution to the following
limit-analysis problem:

Find the maximum pressure p, for which there exists a stress field statically and
plastically admissible, i.e.,

div r ¼ 0

rn ¼ 0jr¼a i.e:; the void is traction-free,

rn ¼ perjr¼b;

u rð Þ� 0 for a� r� b:

8>>><>>>: ð7:18Þ

In the spherical coordinate system r; h;uð Þ; the deviator of the local stress r is
given by

s ¼ 1
3

2X 0 0
0 �X 0
0 0 �X

0@ 1A with X ¼ rrr � rhh ð7:19Þ

Therefore, the invariants of s are expressed as:

J2 ¼ trðs2Þ=2 ¼ X2=3 and J3 ¼ trðs3Þ=3 ¼ 2X3=27: ð7:20Þ

a

b

Fig. 7.1 Representative
volume element (RVE) for a
porous solid containing
spherical voids
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The equilibrium equations, div r ¼ 0; reduce to:

@rrr
@r

þ 2
rrr � rhh

r
¼ 0; ð7:21Þ

with boundary conditions: rrr r¼aj ¼ 0 and rrr r¼bj ¼ p:
For compressive hydrostatic loadings p� 0, while for tensile loading p� 0. The

matrix is incompressible, so the isotropic yield function u rð Þ is represented as:

u rð Þ ¼ u J2; J3ð Þ

(see Theorem 4.1, Chap. 4). Therefore, using the relations given by Eq. (7.20),
the yield criterion writes:

u X2=3; 2X3=27
� � ¼ rT ð7:22Þ

Since u r2T=3; 2r
3
T=27

� � ¼ rT , and u rð Þ is an even function and homogeneous
of degree one in stresses, it follows that the solution of Eq. (7.22) is:

Xj j ¼ rT : ð7:23Þ

If X ¼ rrr � rhh � 0; substitution in the equilibrium Eq. (7.21) and further
integration leads to:

rrr ¼ �2rT ln rþ constant:

Imposing the boundary conditions, it follows that the maximum compressive

pressure is: p�Y ¼ 2
3
rT ln f :

Similarly, for tensile hydrostatic loading, it follows that the maximum pressure is

pþ
Y ¼ � 2

3
rT ln f : Therefore, irrespective of the specific expression of the yield

function u rð Þ describing the plastic deformation of the matrix, if u rð Þ is an even
function, the absolute value of the hydrostatic yield limit of the porous material is
2=3ð ÞrT ln fj j:

7.2.2 Velocity Field Compatible with Uniform Strain-Rate
Boundary Conditions

As already mentioned, for porous materials containing spherical voids randomly
distributed in the fully dense matrix, a representative volume element is a hollow
sphere. If the inner radius is denoted by a and outer radius b (see Fig. 7.1), the void
volume fraction (porosity) is expressed as: f ¼ a3=b3. In the following, we present
the velocity field proposed by Rice and Tracey [58]. This velocity field has been
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used for the derivation of all the analytic plastic potentials for porous materials
containing spherical voids that will be presented in this book.

7.2.2.1 Rice and Tracey [58] Velocity Field

Rice and Tracey [58] proposed a velocity field of the form:

v ¼ vv þ vS; ð7:24Þ

where vv is associated with expansion of the void, whereas vS is related to shape
changes. Imposing the incompressibility condition

div v ¼ 0;

and uniform strain-rate boundary conditions on the outer boundary of the RVE, i.e.,

vjx¼ber¼ Dx withD ¼ constant;

where x is the position vector, originating from the center of the sphere, and er is the
radial unit vector, it follows that:

vv ¼ b3=r2
� �

Dmer and vS = D0x: ð7:25Þ

In Eq. (7.25), both Cartesian and spherical coordinates have been used.

In spherical coordinates r; h;uð Þ; the local rate of deformation d ¼
1
2

rvþrvT
� �

corresponding to v given by Eq. (7.25) is as follows:

d r;h;uð Þ¼
drr drh 0
drh dhh 0
0 0 duu

0@ 1A
where

drr ¼ D0
rr � 2Dm b=rð Þ3

dhh ¼ D0
hh þDm b=rð Þ3

duu ¼ D0
uu þDm b=rð Þ3

drh ¼ D0
rh ¼ Drh

:

8>>>><>>>>: ð7:26Þ
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For general 3-D loadings,

D ¼ D1e1 � e1 þD2e2 � e2 þD3e3 � e3; ð7:27Þ

with e1; e2; e3ð Þ denoting the eigenvectors of D and D1;D2;D3 its eigenvalues
(unordered). In this Cartesian system, the components of the local strain-rate tensor
d ¼ rvþrvTð Þ=2 corresponding to the Rice and Tracey [58] velocity field are:

d11 ¼ D0
1 þ b3Dm
� � 1� 3x21= x21 þ x22 þ x23

� �
x21 þ x22 þ x23
� �3=2

d22 ¼ D0
2 þ b3Dm
� � 1� 3x22= x21 þ x22 þ x23

� �
x21 þ x22 þ x23
� �3=2

d33 ¼ D0
3 þ b3Dm
� � 1� 3x23= x21 þ x22 þ x23

� �
x21 þ x22 þ x23
� �3=2

d12 ¼ � 3b3Dmx1x2

x21 þ x22 þ x23
� �3=2 ; d13 ¼ � 3b3Dmx1x3

x21 þ x22 þ x23
� �3=2

d23 ¼ � 3b3Dmx2x3

x21 þ x22 þ x23
� �3=2 :

ð7:28Þ

where D0
i ¼ Di � Dm, i = 1, …, 3 being the eigenvalues of D0:

In particular, for two-dimensional axisymmetric loadings, say,

D ¼ D11 e1 � e1 þ e2 � e2ð ÞþD33 e3 � e3ð Þ; ð7:29Þ

by using either Eq. (7.27) or Eq. (7.28), it follows that the expressions of the
eigenvalues (not necessarily ordered) of the strain-rate field d are given for any
a� r� b; 0� h� p are given by:

dI ¼ D0
11 þDm b=rð Þ3

dII ¼ �dI=2þ 3=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D02

11 þD2
m b=rð Þ6 þ 2D0

11Dm b=rð Þ3cos 2h
q

dIII ¼ �dI=2� 3=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D02

11 þD2
m b=rð Þ6 þ 2D0

11Dm b=rð Þ3cos 2h
q

8>><>>: : ð7:30Þ

Remark For hydrostatic loadings, the Rice and Tracey [58] velocity field reduces to:

vv ¼ b3=r2
� �

Dmer:

If the plastic behavior of the matrix is governed by an isotropic and
pressure-insensitive yield function, this field is also the only plastically admissible
field (see also [45]).
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7.2.3 Porous Materials with von Mises Matrix

7.2.3.1 Gurson [30] Plastic Potentials

Gurson [29] was the first to use the kinematic homogenization approach to model
porous solids. The matrix behavior was considered to be rigid-plastic and governed
by the von Mises yield function, uMises rð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=2Þs : sp

. Let us recall that for any
strain-rate field d; the local plastic dissipation associated with uMises rð Þ has the
following closed-form expression:

pMises dð Þ ¼ rT _k ¼ rTwMises dð Þ; ð7:31Þ

with the von Mises SRP expressed as:

wMises dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þtrd2

q
;

(see Sect. 6.1.1).
For spherical void geometry, the RVE considered by Gurson [29] is the hollow

sphere, shown in Fig. 7.1. To arrive at a closed-form expression of the plastic
potential for the porous Mises material, the analysis was done for a unique velocity
field, namely that of Rice and Tracey [58] and axisymmetric loadings [see
Eqs. (7.25) and (7.29)]. For the corresponding strain-rate field d; [see Eq. (7.30)],
the local plastic dissipation given by Eq. (7.31) takes the form:

pMises dð Þ ¼ rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m
b
r

� �6

þ 4D02
11 þ 2D0

11Dm
b
r

� �3

1þ 3 cos 2hð Þ
s

; ð7:32Þ

and the average value of this local plastic dissipation is:

Pþ
Mises D; fð Þ ¼ 1

V

Z
X

p dð ÞdX

¼ rT
V

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ 4D02
11 þ 2D0

11Dm b=rð Þ3 1þ 3 cos 2hð Þ
q

dX

ð7:33Þ

with V ¼ 4pb3=3 and X is the domain occupied by the matrix (see Fig. 7.1). As
discussed in Sect. 7.1,Pþ

Mises D; fð Þ is an upper bound of the exact potential [i.e., the
potential obtained through minimization over the entire set of velocity fields
compatible with uniform boundary conditions given by Eq. (7.13)].

It is important to note that Gurson [29, 30] did not estimate the integral given by
Eq. (7.33). Instead, Gurson made the following simplifying hypothesis:
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(H1) In the expression (7.32) of the local plastic dissipation pMises dð Þ; the
“cross-term” DmD0

11 can be neglected, i.e.,

pMises dð Þ ’ pGursonMises dð Þ ¼ rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ 4D02
11

q
: ð7:34Þ

Moreover, the truncated plastic dissipation pGursonMises dð Þ given by Eq. (7.34)
involves only dependence on the radial coordinate. This means that the local plastic
dissipation is the same on every spherical surface S rð Þ; with a� r� b: Neglecting
the cross-term DmD0

11 is thus a strong approximation of the distribution of the
plastic dissipation in the matrix (i.e., plastic flow is such that the local plastic
dissipation for axisymmetric states does not depend on the spherical coordinate h).
Using this simplifying hypothesis, Gurson [29] obtained the following approximate
overall plastic dissipation for the porous von Mises material:

PGurson D; fð Þ ¼ 1
V

Z
X

pGursonMises dð Þ ¼ rT

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ 4D02
11

q
dV

¼ 3rT
b3

Z b3

a3
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ 4D02
11

q
dr:

ð7:35Þ

Later on, using Cauchy–Schwarz inequality, Leblond [42] has shown that
PGurson D; fð Þ is an upper bound of the exact plastic potential. Let us denote the
overall strain-rate triaxiality as:

u ¼def 2 Dmj j
De

: ð7:36Þ

Theorem 7.3 The Gurson [29] strain-rate potential for a porous von Mises solid is
given by:

WGurson D; fð Þ ¼ 2 Dmj j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ u2

p
u

þ ln
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ u2

p
uþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p :

1
f

 !" #
: ð7:37Þ

Proof Since the applied loading is axisymmetric [see Eq. (7.29)], the equivalent
strain-rate De and the absolute value of the strain-rate triaxiality take the form

De ¼ 2 D0
11

		 		 and u ¼ Dmj j=D0
11: ð7:38Þ

Taking into account that the void volume fraction f ¼ a3=b3, and making the
change of variable y ¼ u b=rð Þ3 in the integral given by Eq. (7.35), Gurson [29]
obtained the following closed-form expression of the overall plastic dissipation
PGurson D; fð Þ and strain-rate potential WGurson D; fð Þ of a porous Mises material:

PGurson D; fð Þ ¼ rTWGurson D; fð Þ; ð7:39Þ

with WGurson D; fð Þ given by Eq. (7.37).
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Let us recall that at yielding, the stresses of the porous materials are: (see
Sect. 7.1)

R
rT

¼ @WGurson D; fð Þ
@D

:

Therefore, knowledge of WGurson D; fð Þ leads to the expression of the yield locus
in parametric form. At yielding, the mean stress and effective stress of the porous
von Mises material, respectively [see Eq. (7.4)] are:

Rm

rT
¼ 1

3
@WGurson D; fð Þ

@Dm
¼ 2

3
ln

uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ f 2

p
uþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p � 1

f

 !
;

Re

rT
¼ @WGurson D; fð Þ

@De

				 				 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ f 2

p
8>>>><>>>>: ð7:40Þ

Theorem 7.4 Gurson [30] yield function for a porous material with matrix gov-
erned by the von Mises yield criterion and containing spherical voids is given by:

U R; fð Þ ¼ Re

rT

� �2

þ 2f cosh
3Rm

2rT

� �
� 1� f 2 ¼ 0: ð7:41Þ

Proof Using Eq. (7.40), we obtain that:

cosh
3
2
Rm

rT

� �
¼ cosh ln

uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ f 2

p
uþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p � 1

f

 ! !

¼ 1
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ u2ð Þ 1þ u2ð Þ

p
� u2

� � ð7:42Þ

and

Re

rT

� �2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ f 2

p� �2
¼ 1þ f 2 þ 2u2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ u2ð Þ 1þ u2ð Þ

p ð7:43Þ

By eliminating the parameter u between Eqs. (7.42) and (7.43), one obtains the
classical form of the Gurson [30] yield criterion given by Eq. (7.41).

Remark

(i) It is very important to note that Gurson’s stress potential U R; fð Þ given by
Eq. (7.41) is the exact dual of the strain-rate potential WGurson D; fð Þ given by
Eq. (7.37). This is a direct consequence of the kinematic homogenization
procedure used to obtain these potentials (see Sect. 7.1).
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(ii) If the void volume fraction f ¼ 0; the Gurson [30] stress potential U R; fð Þ
given by Eq. (7.41) reduces to the von Mises [70] stress potential (see
Chap. 4 for more details about the von Mises yield criterion), while the
porous SRP given by Eq. (7.37) reduces to the von Mises SRP (see Chap. 6).

(iii) Both potentials of the porous material display very strong symmetries. The
strain-rate potential WGurson D; fð Þ is invariant to the transformation:
Dm;Deð Þ ! �Dm;Deð Þ while the stress potential U R; fð Þ is invariant to the
transformation Rm;Reð Þ ! �Rm;Reð Þ:

Due to the property (iii), the Gurson [30] yield surface and the SRP isosurface
are represented only for Rm � 0; and Dm � 0; respectively, while for compressive
states the mechanical response/shape is obtained by symmetry. As an example, in
Fig. 7.2a is shown the representation of the Gurson’s [29] strain-rate potential given
by Eq. (7.37) in the plane Dm;Deð Þ for Dm � 0 for different initial porosities
f = 0.001, f = 0.01, and f = 0.1, respectively, while in Fig. 7.2b are shown the
projections in the plane Rm;Reð Þ of its exact dual, i.e., the classical Gurson’s stress
potential [Eq. (7.41)] for the same porosities.

It should be also mentioned that F.E. analyses of the behavior of porous
materials are generally done using Gurson’s [30] yield function [Eq. (7.41)]. In
Balan and Cazacu [7], it was shown that the strain-rate-based formulation in con-
junction with Gurson [29] strain-rate potential given by Eq. (7.37) can be used
instead of the stress-based formulation. Moreover, these authors analyzed the void
volume fraction evolution in a tensile bar. The results indicate that an elastic–plastic
model based on the strain-rate potential predicts the dilatational response with the
same level of accuracy as the classic stress-based model.

Remark

(a) For hydrostatic loadings, the yield limit according to the Gurson’s [30] criterion
coincides with the exact solution of the limit-analysis problem (see
Theorem 7.2 of Sect. 7.1).
Proof Indeed, it can be easily seen that for purely hydrostatic loadings, i.e., for
u ! 1 in Eq. (7.40), we obtain

Rmj j ¼ � 2
3
rT ln f and Re ¼ 0; ð7:44Þ

(b) For axisymmetric and purely deviatoric loadings (i.e., Rm ¼ 0 Þ, Gurson [30]
predicts that the yield limit is rT 1� fð Þ:
Proof For such loadings, i.e., for u ! 0 in Eq. (7.40), we obtain:

Rm ¼ 0 and Re ¼ rT 1� fð Þ: ð7:45Þ
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7.2.3.2 Modified Versions of Gurson [30] Criterion

Unit-cell models for porous solids and method of analysis

Beginning with the pioneering studies of Needleman [51], Tvergaard [67],
Koplik and Needleman [39], F.E. analyses using unit-cell models, representative of
a material containing a periodic array of spherical voids, have provided insights into
the micromechanics of ductile damage and fracture. With the exception of a few
investigations (e.g., Tvergaard [67]; Zhang et al. [71]; Alves et al. [4]; Alves and
Cazacu [1] for isotropic materials; Srivastava and Needleman [63] for anisotropic

(a)

(b)

Fig. 7.2 a Representation of the Gurson’s [29] strain-rate potential [Eq. (7.37)] in the plane
Dm;Deð Þ for Dm � 0; b isocontours in the plane Rm;Reð Þ of the Gurson’s [30] criterion for initial
porosities f = 0.001, f = 0.01, and f = 0.1, respectively
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single crystal behavior), two-dimensional axisymmetric unit-cell models are con-
sidered, the RVE being a cylinder with a single spherical void at its center.
Therefore, only axisymmetric loadings can be applied.

In three-dimensional analyses, it is generally assumed that the porous solid
contains a regular array of initially spherical voids, the inter-void spacing is the
same in any direction. Thus, the RVE or unit cell is initially cubic with side lengths
2C0, and contains a single void of radius r0 at its center. The initial porosity is:

f0 ¼ p
6

r0
C0

� �3

ð7:46Þ

A Cartesian coordinate system is used with the origin at the center of the void
(see Fig. 7.3a). Let u denote the incremental displacement between the current and
reference configuration, and t the prescribed Cauchy stress vector, defined on the
current configuration. Symmetry conditions are imposed on the planes x ¼ 0;
y ¼ 0, and z ¼ 0; respectively:

u1ð0; y; zÞ ¼ 0; t2ð0; y; zÞ ¼ 0; t3ð0; y; zÞ ¼ 0;

u2ðx; 0; zÞ ¼ 0; t1ðx; 0; zÞ ¼ 0; t3ðx; 0; zÞ ¼ 0;

u3ðx; y; 0Þ ¼ 0; t1ðx; y; 0Þ ¼ 0; t2ðx; y; 0Þ ¼ 0:

ð7:47Þ

Therefore, only one-eighth of the unit cell needs to be analyzed numerically (see
Fig. 7.3b). To simulate the constraints of the surrounding material, it is enforced
that the faces of the unit cell, which are initially planes parallel to the coordinate
planes, remain plane and shear free. Therefore, the boundary conditions imposed on
the faces of the unit cell are:

Fig. 7.3 a Schematic two-dimensional projection of a three-dimensional cubic cell model; 2 C0

and r0 denote the length of the undeformed cubic cell and the initial radius of the spherical void,
respectively. b Finite-element mesh of one-eight of the unit cell with a spherical void at its center
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u1ðC0; y; zÞ ¼ U	
1ðtÞ; t2ðC0; y; zÞ ¼ t3ðC0; y; zÞ ¼ 0;

u2ðx;C0; zÞ ¼ U	
2ðtÞ; t1ðx;C0; zÞ ¼ t3ðx;C0; zÞ ¼ 0;

u3ðx; y;C0Þ ¼ U	
3ðtÞ; t1ðx; y;C0Þ ¼ t2ðx; y;C0Þ ¼ 0:

ð7:48Þ

The time histories of the displacements, U	
1 tð Þ; U	

2 tð Þ; and U	
3 tð Þ in Eq. (7.48)

are determined by the analysis in such a way that the principal values of the overall
Cauchy stresses R1, R2, R3 follow a prescribed proportional loading history that is
given by:

R1

R2
¼ q1

q2
and

R1

R3
¼ q1

q3
ð7:49Þ

where q1, q2 and q3 are prescribed constants, and R1, R2, R3 are calculated as:

R1 ¼ 1
C2C3

Z C2

0

Z C3

0
t1 dzdy;

R2 ¼ 1
C1C3

Z C3

0

Z C1

0
t2 dzdx;

R3 ¼ 1
C1C2

Z C1

0

Z C2

0
t3 dxdy:

ð7:50Þ

where Ci ¼ C0 þU	
i are the current cell dimensions. The void is considered to be

traction-free. The invariants of the stress field R of the porous material (matrix and
void) are then calculated using Eq. (7.4). The eigenstrains and the von Mises
equivalent strain Ee are calculated as follows:

E1 ¼ ln
C1

C0

� �
;E2 ¼ ln

C2

C0

� �
;E3 ¼ ln

C3

C0

� �
;

Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

E2
1 þE2

2 þE2
3

� �r
:

ð7:51Þ

As already mentioned, such prescribed proportional loading is of interest for
assessing the capabilities of models to capture the effects of the stress state (stress
invariants) on the response of porous solids.

If axisymmetric loadings are considered, q1 ¼ q2 [see Eq. (7.49)]. Generally,
the simulations are done such that the stress triaxiality, T , is maintained constant.
For this purpose, at the end of each time increment, the condition of constant
proportionality between the true stresses is strictly verified, so it is ensured that the
stress triaxiality remains constant throughout the given deformation history. For
axisymmetric loadings, JR3 ¼ �2 R1 � R3ð Þ3=27 thus only the effect of the sign of the
third-invariant can be investigated. To assess the influence of JR3 on the stress–strain
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response and the evolution of porosity, for each fixed value of the triaxiality T [see
definition given in Eq. (7.5)], simulations need to be conducted for the two possible
ordering of the principal values, i.e.,

(a) q1 ¼ q2 � q3, which corresponds to JR3 � 0; and
(b) q1 ¼ q2 � q3, which corresponds to JR3 � 0:

It is worth noting that:

• For loadings (a), two principal values of the stress deviator R0 are compressive
(negative) but the maximum principal value is tensile (positive).

• For loadings (b), two principal values of R0 are tensile (positive) but the minor
principal value, which is compressive (negative), has the largest absolute value.

The void volume fraction f is evaluated at the end of each time increment as:

f ¼ Vmatrix

Vcell
ð7:52Þ

In the above equation, Vcell ¼ C1C2C3, while the volume of the deformed
matrix, Vmatrix, is determined directly from the integration of the F.E. domain using
the finite-element formulation (Vmatrix ¼

PNE
i¼1 Vi, where Vi is the volume of the

element i and NE is the total number of finite elements in the mesh).
When the focus of the F.E. unit-cell model investigations is on assessing an

upper-bound model (e.g., such as the Gurson’s [30] model), elastic/ideal plastic
behavior is considered. For example, Alves et al. [4] considered that the material in
the cell obeys a power-law-type hardening, i.e.,

Y ¼ Aðe0 þ�epÞn; ð7:53Þ

with hardening exponent n ¼ 10�4, which corresponds to almost ideal plastic
behavior (see also Chap. 2). In Eq. (7.53), Y denotes the current flow stress while
A; and e0 are material parameters, and �ep is the equivalent plastic strain. The
numerical values of the elastic parameters and matrix yield stress, Y0, which are
typically used in cell calculations, are respectively: Y0=E ¼ 500 and m ¼ 1=3 (see
also Koplik and Needleman [39]). Various F.E. softwares are used to conduct F.E.
analyses with the unit-cell models described. For example, the F.E. analyses
reported in Alves et al. [4] were performed with DD3IMP (Menezes and Teodosiu
[49], Oliveira et al. [53]). The fact that DD3IMP is an in-house code facilitated an
accurate implementation of the boundary-value problem. Specifically, the degrees
of freedom of all F.E. nodes belonging to the same planar bounding surface of the
cubic surface were associated in the global stiffness matrix, and the equations of all
these degrees of freedom were replaced by only one unknown variable. In this way,
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it was ensured that all initially planar boundary surfaces remain strictly flat during
the entire loading history.

Gurson–Tvergaard–Needleman model

Numerical studies of Koplik and Needleman [39] using cylindrical unit-cell
geometry with a single spherical void at its center have put into evidence that
Gurson’s [30] criterion given by Eq. (7.41) underestimates the rate of void growth.
It is to be noted that in the F.E. unit-cell calculations reported, the applied
axisymmetric loading was imposed such as to have the axial stress always greater
than the lateral stress, i.e., such that JR3 � 0: As already mentioned, later on
numerical studies were conducted to assess the influence of the loading path on
porosity evolution (e.g., Faleskog et al. [26]; Zhang et al. [71]; Kim et al. [38]). For
example, in order to investigate the influence of the sign of JR3 on void evolution,
Alves et al. [4] conducted F.E. analyses on a cubic unit cell subjected to axisym-
metric loadings corresponding to JR3 � 0 [q1 ¼ q2 � q3, see Eq. (7.49)] or JR3 � 0
(q1 ¼ q2 � q3), and fixed stress triaxiality T . As an example, in Fig. 7.4 are shown
the evolution of the void volume fraction as a function of the overall equivalent
strain Ee [see Eq. (7.51)] for T ¼ 2. The initial F.E. mesh of one-eighth of the
unit-cubic cell consisted of 12150 elements (8-node hexahedral finite elements;
selective reduced integration technique, with 8 and 1 Gauss points for the deviatoric
and volumetric parts of the velocity field gradient, respectively) and a total of
13,699 nodes (see also Fig. 7.3b). The initial porosity was f0 ¼ 0:0013 (same initial
porosity as in the 2-D unit-cell F.E. calculations of Koplik and Needleman [39]).
On the same figure is plotted the void evolution according to the Gurson [30]
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Fig. 7.4 Comparison between the void volume fraction evolution with equivalent strain Ee

according to Gurson [30] model (solid line), and unit-cell calculations (symbols) for T = 2 for
JR3 � 0 and JR3 � 0; initial porosity f0 ¼ 0:0013
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criterion [see Eq. (7.41)]. Note that the F.E. results show that there is an effect of
the sign of the third-invariant JR3 on void evolution that Gurson [30] model cannot
capture (see Fig. 7.4).

Tvergaard [67, 68] studied the onset of shear band instabilities in a voided
medium. By conducting F.E. calculations for both plane-strain and axisymmetric
conditions, Tvergaard found that the agreement with the numerical results can be
improved by introducing additional parameters q1 and q2 in the expression of the
Gurson [30] yield criterion. This modified form of Eq. (7.41) has been further used
as a basis for description of ductile fracture by Tvergaard and Needleman [69]. The
expression of this modified version of Gurson [30] yield criterion, called Gurson–
Tvergaard–Needleman (GTN) criterion, is:

Re

rT

� �2

þ 2q1f cosh
3q2Rm

2rT

� �
� 1� q21f

2 ¼ 0 ð7:54Þ

There is a very large body of literature on the GTN criterion and model of ductile
fracture and its applications. Mention is made here only of general features of the
GTN criterion. For detailed discussion see for example Gao et al. [27], who per-
formed micromechanics calibration of the model for a range of engineering materials.

First, let us note that the GTN criterion can be obtained from the Gurson [30]
yield criterion given by Eq. (7.41) by making use of the change of variables:
f ! q1f and Rm ! q2Rm. Therefore, according to the GTN criterion for purely
deviatoric loading, yielding occurs for

Rm ¼ 0 and Re ¼ rT 1� q1fð Þ: ð7:55Þ

For purely hydrostatic loadings, the GTN criterion predicts that yielding occurs
for

Rmj j ¼ � 2
3q2

rT ln q1fð Þ and Re ¼ 0: ð7:56Þ

Therefore, the exact solution for yielding of a hollow sphere under hydrostatic
loadings (see Theorem 7.2 in Sect. 7.2.1) is not recovered.

Concerning the values of the parameters q1 and q2, Tvergaard [67] has shown
that q1 ¼ 1:5 and q2 ¼ 1 provide the best approximation of the numerical results
for fracture strain and porosity. On the basis of axisymmetric 2-D F.E. unit-cell
model calculations, Koplik and Needleman [39] concluded that in order to obtain a
good agreement with the numerical results for void growth at fixed stress triaxiality
T ¼ 1; 2; 3 respectively, the values of these parameters should be: q1 ¼ 1:25 and
q2 ¼ 1:

In Fig. 7.5 are shown comparisons between the predicted void volume fraction
evolution according to the GTN criterion with q1 ¼ 1:25 and q2 ¼ 1 and the F.E.
cell calculations results obtained with a cubic cell subjected to axisymmetric
loadings and fixed stress triaxiality: T = 2. While the GTN model [Eq. (7.54)]
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predicts a faster rate of void growth than the Gurson [30] criterion (see Fig. 7.4), it
does not capture third-invariant effects.

Richmond and Smelser [59] yield criterion

In parallel with the aforementioned F.E. numerical studies of Tvergaard [67] and
Koplik and Needleman [39], Richmond and collaborators at Alcoa designed an
experimental program to assess the capabilities of Gurson’s [30] model to describe
void growth and closure. Uniaxial tension–compression tests on specimens con-
solidated to various initial porosities from iron powder were conducted (data
reported in Richmond and Smelser [59]; Spitzig et al. [62]). Moreover, in order to
better describe the experimentally observed evolution of porosity, Richmond and
Smelser [59] proposed the following modification of the Gurson’s [30] yield
function:

Re

�r

� �2

þ 2f m cosh
3mRm

2�r

� �
� 1� f 2m ¼ 0; ð7:57Þ

where �r denotes the effective stress of the matrix material, and m is a coefficient
between 2/3 and unity describing strain-hardening. Let us first note that for m ¼ 1;
Eq. (7.57) reduces to Eq. (7.41), i.e., Gurson’s [30] yield criterion is recovered as a
special case.

For hydrostatic loadings, the Richmond and Smelser’s [59] criterion predicts
that:

Fig. 7.5 Comparison between the void volume fraction evolution with equivalent strain Ee

according to the GTN model (solid line) and cell calculations (symbols) for T = 2 for JR3 � 0 and
JR3 � 0; initial porosity f0 ¼ 0:0013
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Rm

�r

				 				 ¼ 2
3m

cosh�1 1þ f 2m

2f m

� �
¼ � 2

3
ln fð Þ and Re ¼ 0;

while for purely deviatoric loadings ðRm ¼ 0Þ, it predicts that:

Re

�r
¼ 1� fð Þm:

It was shown that for strain-hardening described by a power-type law with
exponent 0.31 and for m ¼ 2:31; the experimental porosity evolution of iron
compacts is predicted with improved accuracy (see Spitzig et al. [62]).

7.2.3.3 Combined Effects of Mean Stress and Third-Invariant
on the Mechanical Response According to Cazacu et al. [19]
Plastic Potential

The Gurson’s [30] yield criterion (Eq. (7.41) and its modifications presented in
Sect. 7.2.3) involve only the mean stress, Rm and the von Mises effective stress, Re.
However, as discussed in the previous section, F.E. unit-cell model calculations
either for axisymmetric or more general 3-D tensile loading configurations (e.g., see
Fig. 7.5) have shown that in a porous von Mises material, the void growth rate
depends on the loading path. To better reproduce void growth, it was suggested that
in the GTN model [see Eq. (7.54)], different values of the qi parameters should be
taken depending on the applied loading (e.g., see Zhang et al. [71]). Moreover, for
tensile loadings the aforementioned numerical studies have also shown that the
stress triaxiality T [see Eq. (7.5)] by itself is insufficient to characterize yielding of a
porous Mises material.

In turn, Cazacu and Stewart [20] conducted axisymmetric 2-D F.E. unit-cell
model calculations for both tensile and compressive loadings and generated
numerical yield surfaces for a porous Mises material. In the plane Rm;Reð Þ; the
reported F.E. results describe two yield curves (see Fig. 7.6). For tensile loadings,
the yield curve corresponding to JR3 � 0 is below that corresponding to JR3 � 0;
while for compressive loadings the reverse is true (see Fig. 7.6). Moreover, a point
on the yield curve for JR3 � 0 corresponding to a given stress triaxiality, T , is
symmetric with respect to the hydrostatic axis to the point on the other yield curve
ðJR3 � 0Þ corresponding to ð�TÞ. The Gurson [30] yield criterion or any of its
modified versions do not capture these very specific couplings between the signs of
the mean stress and the third-invariant, JR3 .

In the past, this insensitivity to the sign of JR3 as well as the invariance
with respect to the sense of the applied load of Gurson-type models have been
attributed to the pressure-insensitivity of the matrix yield criterion (see, e.g.,
McElwain et al. [48]).
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As shown in Sect. 7.2.3, if the matrix behavior is governed by the von Mises
yield criterion, the plastic dissipation is a function of both the radial coordinate r;
and the polar coordinate, h [see Eq. (7.32)]. However, in his analysis Gurson [30]
approximated the matrix plastic dissipation with a function that depends only on the
radial coordinate [see Eq. (7.34)]. In Cazacu et al. [19], it was shown that this
approximation amounts to discarding any combined shear mean stress effects on
yielding of the porous material. Moreover, the insensitivity of Gurson’s [30] cri-
terion to the third-invariant JR3 is a direct consequence of this approximation.
Furthermore, Cazacu et al. [19] solved the limit-analysis problem for axisymmetric
stress states without making Gurson’s simplification. The plastic dissipation
Pþ

Mises D; fð Þ and consequently the strain-rate potential of the porous von Mises
material,Wþ

Mises D; fð Þ ¼ Pþ
Mises D; fð Þ=rT was obtained in closed form, and an explicit

analytic expression of a new yield criterion for the porous von Mises material was
derived, namely:

Rm=rT ¼ 1
3
@Wþ

Mises D; fð Þ
@Dm

Re=rT ¼ @Wþ
Mises D; fð Þ
@De

				 				

8>>><>>>: ð7:58Þ

While the explicit expression of Wþ
Mises D; fð Þ and the parametric representation of

this yield surface will be given later in this section, it is important to note here that

Fig. 7.6 Influence of the third-invariant on yielding of the porous von Mises material for
axisymmetric loadings such that R11 ¼ R22 �R33 (JR3 � 0Þ and R11 ¼ R22 �R33 (JR3 � 0Þ for
porosity f0 ¼ 1%: comparison between F.E. unit-cell calculations (symbols) and the Gurson [30]
theoretical yield surface (after Cazacu and Stewart [20])
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the key features of the plastic behavior of a porous Mises solid revealed by the
analysis can be deduced without calculation of the integrals representing
Wþ

Mises D; fð Þ:
Theorem 7.5 Cazacu et al. [19] predict that for a porous von Mises material:

i. Yielding depends on the sign of the third-invariant of the stress deviator, JR3 .
ii. For stress triaxialities T different from 0 and �1, there is a combined effect

of the signs of JR3 and the mean stress Rm, on yielding. Moreover, a point
belonging to one of the yield surfaces given by Eq. (7.58) (e.g., JR3 � 0Þ
corresponding to a given stress triaxiality T is symmetric, with respect to
the hydrostatic axis Rm ¼ 0; to the point on the other yield surface (e.g.,
JR3 � 0Þ corresponding to ð�TÞ.

iii. Irrespective of the sign of JR3 , for purely deviatoric axisymmetric loadings,
yielding occurs at Re ¼ rT 1� fð Þ; for purely hydrostatic loadings, yielding
occurs at: Rmj j ¼ 2

3 rT ln f :
Proof As mentioned analysis needs to be done for both tensile and com-
pressive states. Thus, the following axisymmetric loading scenarios need to be
considered separately: (a) D0

11 � 0 and Dm � 0; (b) D0
11 � 0 and Dm � 0;

(c) D0
11 � 0 and Dm � 0; and (d) D0

11 � 0 and Dm � 0: Given that the expression
of the local plastic dissipation pMises dð Þ is given by Eq. (7.32), its expression
is the same for the loadings (a) and (d) and, respectively, for the loadings
(b) and (c). Therefore, only two loading cases need to be considered
separately.

Case (a): D0
11 � 0 and Dm � 0

Since for this loading, D0
11 ¼ De=2� 0; substitution into Eq. (7.32) leads to the

following expression of the strain-rate potential of the porous Mises material:

Wþ
Mises D; fð Þ ¼ 1

V

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ D2
e þDeDm b=rð Þ3 1þ 3 cos 2hð Þ

q
dV ð7:59Þ

with V ¼ 4pb3=3 and dV ¼ r2 sin hdhdudr:

Therefore,
@Wþ

Mises D; fð Þ
@D11

� @Wþ
Mises D; fð Þ
@D33

and
@Wþ

Mises D; fð Þ
@Dm

� 0: Hence using

Eq. (7.58) it follows that the stress state at yielding is such that: Rm � 0 and
JR3 ¼ �2 R11 � R33ð Þ3=27� 0Þ.

Case (c): In a similar manner, for D0
11 � 0 and Dm � 0; we obtain:

Wþ
Mises D; fð Þ ¼ rT

V

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ D2
e � DeDm b=rð Þ3 1þ 3 cos 2hð Þ

q
dX

ð7:60Þ
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Thus,
@Wþ

Mises D; fð Þ
@D11

� @Wþ
Mises D; fð Þ
@D33

and @Wþ
Mises D;fð Þ
@Dm

� 0; so at yielding the stress

state is such that (Rm � 0 and JR3 � 0Þ. Therefore, according to the criterion, given
by Eq. (7.58), yielding depends on the sign of the third-invariant JR3 . Moreover,
Eqs. (7.59) and (7.60) show that for stress triaxialities T ¼ Rm=Re different from 0
and �1, yielding also depends on the sign of the mean stress Rm, which has the
same sign as Dm.

As already mentioned, Cazacu et al. [19] showed that the overall plastic dissi-
pation can be obtained in closed form and a new strain-rate potential and yield
criterion for porous von Mises materials were deduced.

Theorem 7.6 The Cazacu et al. [19] strain-rate potential for a porous von Mises
material is given by:

(a) For Dm � 0 and JD3 � 0; and any value of u¼ 2 Dmj j
De

:

Wþ
Mises D; fð Þ ¼ Deu Fð ffiffiffi

u
p

=f Þ � Fð ffiffiffi
u

p Þ
 � ð7:61Þ

with:

FðzÞ ¼ � 2

3z2
þ 1

3
ffiffiffi
3

p tan�1 2zþ
ffiffiffi
3

p� �
� tan�1 2z�

ffiffiffi
3

p� �h i
þ 1

2
ln z4�z2 þ 1
� �þ ln

z2 þ z
ffiffiffi
3

p þ 1

z2�z
ffiffiffi
3

p þ 1

� �
3z4 þ 3z2 � 1

6
ffiffiffi
3

p
z3

ð7:62Þ

(b) For Dm � 0 and JD3 � 0;

Wþ
Mises D; fð Þ ¼

2Dm Gð
ffiffiffiffiffiffiffi
u=f

p
Þ � Gð ffiffiffi

u
p Þ

h i
; if u� f ;

2Dm Gð ffiffiffi
u

p ÞþGð
ffiffiffiffiffiffiffi
u=f

p
Þþ 2 ln 3ð Þ � 2

9
pffiffiffi
3

p
� 

; if f\u\1

2Dm Gð ffiffiffi
u

p Þ � Gð
ffiffiffiffiffiffiffi
u=f

p
Þ

h i
; if u� 1:

8>>>>><>>>>>:
ð7:63Þ

with G zð Þ being given by:

GðzÞ ¼ �2= 3z2
� �þ 3z4 � 3z2 � 1

3
ffiffiffi
3

p
z3

tan�1 z
ffiffiffi
3

p

1� z2

� �
þ 1

3
ffiffiffi
3

p tan�1 2zþ 1ffiffiffi
3

p
� �

� tan�1 2z� 1ffiffiffi
3

p
� �� �

� ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 þ z2 þ 1

p
:

ð7:64Þ
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Proof In the following, we will present in detail the calculations that lead to the
parametric representation of the yield surface of the von Mises porous material
corresponding to the case (a), i.e., Dm � 0 and JD3 � 0: For all the other cases, the
proof can be found in Cazacu et al. [19]. As already discussed, for case
(a) Wþ

Mises D; fð Þ is given by Eq. (7.59). Using the change of variable, y = u b=rð Þ3
and a ¼ cos h, respectively, in this integral we obtain:

Wþ
Mises D; fð Þ ¼ Deu

Zu=f
u

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 þ y 3a2 � 1ð Þ

p
y2

dady ð7:65Þ

Note that:

Z1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 þ y 3a2 � 1ð Þ

p
y2

da ¼ 1þ y
2y2

þ 1þ y2 � y

2
ffiffiffi
3

p
y5=2

ln
1þ yþ ffiffiffiffiffi

3y
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2 � y
p !

Further integration with respect to y leads to the expression given in Eq. (7.61).
Since the plastic dissipation is invariant under the transformation Dm;D0

11

� �!
�Dm;�D0

11

� �
; the expression of the SRP for all other loadings is deduced from

Eqs. (7.61) to (7.63) by symmetry.
The parametric representation of the yield surface is further obtained by sub-

stituting the above expressions of Wþ
Mises D; fð Þ into Eq. (7.58).

Theorem 7.7 The Cazacu et al. [19] yield criterion for porous von Mises is given
by:

(a) For JR3 � 0; Rm � 0; and any value of u¼ 2 Dmj j
De

:

Rm

rT
¼ 1� f

9u
þ 1

3
ln

u2 � uf þ f 2

u2 � uþ 1
1
f 2

� �
þ 1

18
ffiffiffi
3

p ln
uþ ffiffiffiffiffiffiffi

3uf
p þ f

u� ffiffiffiffiffiffiffi
3uf

p þ f

� �
9u2 þ 3uf þ f 2

u3=2
ffiffiffi
f

p
� �

� 1

18
ffiffiffi
3

p ln
uþ ffiffiffiffiffi

3u
p þ 1

u� ffiffiffiffiffi
3u

p þ 1

� �
9u2 þ 3uþ 1

u3=2

� �
þ 2

18
ffiffiffi
3

p tan�1 2
ffiffiffi
u
f

r
þ

ffiffiffi
3

p� �
� tan�1 2

ffiffiffi
u
f

r
�

ffiffiffi
3

p� �� �
� 2

18
ffiffiffi
3

p tan�1 2
ffiffiffi
u

p þ
ffiffiffi
3

p� �
� tan�1 2

ffiffiffi
u

p �
ffiffiffi
3

p� �� �
Re

rT
¼ 1� f

2
þ 1

4
ffiffiffiffiffi
3u

p
u2 � uþ 1
� �

ln
uþ ffiffiffiffiffi

3u
p þ 1

u� ffiffiffiffiffi
3u

p þ 1

� �
� u2 � uf þ f 2ð Þffiffiffi

f
p ln

uþ ffiffiffiffiffiffiffi
3uf

p þ f
u� ffiffiffiffiffiffiffi

3uf
p þ f

� �
26664

37775

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7:66Þ
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(b) For JR3 � 0 and Rm � 0:

• If u� f :

Rm

rT
¼ f � 1

9u
þ 1

3
ln

u2 þ uf þ f 2

u2 þ 1þ uð Þf 2
� �

� 1

9
ffiffiffiffiffiffiffiffiffi
3fu3

p 9u2 � 3uf þ f 2ð Þ tan�1

ffiffiffiffiffiffiffi
3uf

p
f � u

� �
� 9u2 � 3uþ 1ð Þ tan�1

ffiffiffiffiffi
3u

p

1� u

� �
0BBB@

1CCCA

� 2

9
ffiffiffi
3

p
tan�1 2

ffiffiffi
u

p þ ffiffiffi
f

pffiffiffiffiffi
3f

p
� �

þ tan�1 2
ffiffiffi
u

p � 1ffiffiffi
3

p
� �

� tan�1 2
ffiffiffi
u

p � ffiffiffi
f

pffiffiffiffiffi
3f

p
� �

� tan�1 2
ffiffiffi
u

p þ 1ffiffiffi
3

p
� �

0BBB@
1CCCA

Re

rT
¼ f u� 1j j � u� fj j

2u
� 1

2
ffiffiffi
3

p

u2 þ uf þ f 2ð Þ tan�1

ffiffiffiffiffiffiffi
3uf

p
f � uj j

� �
ffiffiffiffiffi
uf

p

�
1þ uþ u2ð Þ tan�1

ffiffiffiffiffi
3u

p

1� uj j
� �

ffiffiffi
u

p

266666664

377777775
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• If f\u\1:

Rm

rT
¼ 2

3
ln 3ð Þ � 2

18
pffiffiffi
3

p � 1þ f � 2u
9u

� 1
3
ln

u2 þ 1þ uð Þ u2 þ uf þ f 2ð Þ
f 2

� �

þ 1

9
ffiffiffiffiffiffiffi
3u3

p
9u2 � 3uþ 1ð Þ tan�1

ffiffiffiffiffi
3u

p

1� u

� �
� 9u2 � 3uf þ f 2ð Þ tan�1

ffiffiffiffiffiffiffi
3fu

p
f � u

� �
0BBB@

1CCCA

þ 2

9
ffiffiffi
3

p
tan�1 2

ffiffiffi
u

p þ ffiffiffi
f

pffiffiffiffiffi
3f

p
� �

� tan�1 2
ffiffiffi
u

p � ffiffiffi
f

pffiffiffiffiffi
3f

p
� �

þ tan�1 2
ffiffiffi
u

p þ 1ffiffiffi
3

p
� �

� tan�1 2
ffiffiffi
u

p � 1ffiffiffi
3

p
� �

0BBB@
1CCCA

Re

rT
¼ 1

2
1þ fð Þ � u þ 1

2
ffiffiffiffiffi
3u

p
u2 þ uf þ f 2ð Þffiffiffi

f
p tan�1

ffiffiffiffiffiffiffi
3uf

p
f � u

� �
þ u2 þ 1þ uð Þ tan�1

ffiffiffiffiffi
3u

p

1� u

� �
0BBB@

1CCCA

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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• If u� 1:
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Rm

rT
¼ 1� f

9u
� 1
3
ln

u2 þ uf þ f 2

u2 þ 1þ uð Þf 2
� �

þ 1

9
ffiffiffiffiffiffiffiffiffi
3fu3

p 9u2 � 3uf þ f 2ð Þ tan�1

ffiffiffiffiffiffiffi
3uf

p
f � u

� �
� 9u2 � 3uþ 1ð Þ tan�1

ffiffiffiffiffi
3u

p

1� u

� �
0BBB@

1CCCA

þ 2

9
ffiffiffi
3

p
tan�1 2

ffiffiffi
u

p þ ffiffiffi
f

pffiffiffiffiffi
3f

p
� �

þ tan�1 2
ffiffiffi
u

p � 1ffiffiffi
3

p
� �

� tan�1 2
ffiffiffi
u

p � ffiffiffi
f

pffiffiffiffiffi
3f

p
� �

� tan�1 2
ffiffiffi
u

p þ 1ffiffiffi
3

p
� �

0BBB@
1CCCA

Re
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¼ f u� 1j j � u� fj j

2u
� 1

2
ffiffiffi
3

p

u2 þ uf þ f 2ð Þ tan�1

ffiffiffiffiffiffiffi
3uf

p
f � uj j

� �
ffiffiffiffiffi
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p

�
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3u
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1� uj j
� �

ffiffiffi
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2666666664

3777777775
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Based on the property (ii) demonstrated earlier (see Theorem 7.5), the para-
metric representation of the yield locus corresponding to JR3 � 0 can be easily
obtained from Eqs. (7.66) to (7.69), i.e.,

(c) For JR3 � 0 and Rm � 0:

Rm

rT
¼ �Rm

rT
JR3 � 0; Rm � 0

			
Re

rT
¼ Re

rT
JR3 � 0; Rm � 0

			
8>><>>: ; ð7:70Þ

where the right-hand expressions are given by Eqs. (7.67)–(7.69).
By the same arguments,

(d) For JR3 � 0 and Rm � 0:

Rm

rT
¼ �Rm

rT
JR3 � 0; Rm � 0

			
Re

rT
¼ Re

rT
JR3 � 0; Rm � 0

			
8>><>>: ð7:71Þ

where the right-hand expressions are given by Eq. (7.66).

Proof For case (a), i.e., JR3 � 0; Rm � 0; as already discussed, Dm � 0 and D0
11 [ 0:

Using Eqs. (7.58) and (7.61), we obtain that the parametric representation of the
yield surface is:
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Rm

rT
¼ 1
3
Wþ

Mises D; fð Þ
@Dm

¼ 2
3

F
ffiffiffiffiffiffiffi
u=f

p� �
� F

ffiffiffi
u

pð Þ

þ
ffiffiffi
u

p
2

F0 ffiffiffiffiffiffiffi
u=f

p� �
ffiffiffi
f

p � F0 ffiffiffi
u

p� �0@ 1A
266664

377775
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rT
¼ Wþ

Mises D; fð Þ
@De

				 				 ¼ u
ffiffiffi
u

p
2

F0 ffiffiffiffiffiffiffi
u=f

p� �
ffiffiffi
f

p � F0 ffiffiffi
u

p� �0@ 1A						
						

8>>>>>>>>>>><>>>>>>>>>>>:
ð7:72Þ

In the above equation F0ðzÞ denotes the first derivative of FðzÞ given in
Eq. (7.62). Further substitution of Eq. (7.62) into Eq. (7.72) leads to Eq. (7.66).

Remark Let us also note that since Pþ
Mises D; fð Þ�PGurson D; fð Þ; the Cazacu et al.

[19] criterion (7.58) is a better estimate of the exact potential of the porous Mises
material than Gurson [30] [see Eq. (7.13)]. The two yield criteria coincide only for
the special cases of purely hydrostatic (D0 = 0), or purely deviatoric loading
(Dm ¼ 0Þ. This can be easily verified by taking u ! 1 (i.e., imposing purely
hydrostatic loading) in Eqs. (7.66)–(7.69), respectively. Indeed, we obtain: Rmj j ¼
2
3 rT ln f ; and Re ¼ 0; on the other hand for u ! 0 (purely deviatoric loading) from
Eqs. (7.66) to 7.67), we obtain: Rm ¼ 0; and Re ¼ rT 1� fð Þ; irrespective of the
sign of the third-invariant of the stress deviator.

For illustration of the features ofCazacu et al. [19], inwhat followswe present plots
of the resulting yield surface. Let us first recall that for axisymmetric loadings: R ¼
R11 e1 � e1 þ e2 � e2ð ÞþR33 e3 � e3ð Þ; so the vonMises equivalent stress reduces to:

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2R

0
ijR

0
ij

q
¼ R11 � R33j j; the mean stress is Rm ¼ 2R11 þR33ð Þ=3; and the

third-invariant of the stress deviator is: JR3 ¼ � 2
27 R11 � R33ð Þ3. It follows that for

axisymmetric stress states such that the axial stress is less than the lateral stress, i.e.,
R33 �R11 ¼ R22, we have JR3 � 0; while for axisymmetric stress states for which the
axial stress is larger than the lateral stress, i.e., R11 ¼ R22 �R33, we have JR3 � 0:
Figure 7.7 shows the representation in the plane Rm=rT ;Re=rTð Þ of the yield surface
corresponding to JR3 � 0 [Eqs. (7.66)–(7.69)] for a porosity f = 0.05. Clearly, for
triaxialities T different from 0 and�1, the yield surface according to this criterion is
no longer symmetric with respect to the axis Rm ¼ 0: For any given absolute value of
the strain-rate triaxiality, u, there are two yield points on the surface which have
a different absolute value of the stress triaxiality, T : For example, in Fig. 7.7 are
shown the yield points A (Rm=rT ¼ 1:861, Re=rT ¼ 0:4Þ and B (Rm=rT ¼ �1:861,
Re=rT ¼ 0:381Þ, which correspond to u ¼ 0:935: For the same porosity f = 0.05, the
yield surface corresponding to JR3 � 0 is plotted in Fig. 7.8. Examination of Figs. 7.7
and 7.8 shows that a yield point on one yield surface (JR3 � 0Þ corresponding to a given
stress triaxiality T is symmetric, with respect to the hydrostatic axis, to the point on the
other yield surface (JR3 � 0Þ corresponding to (�TÞ. For example, the yield point C
(Rm=rT ¼ �1:861;Re=rT ¼ 0:4Þ which lies on the yield surface corresponding to
JR3 � 0 (see Fig. 7.8) has the same absolute value of stress triaxiality as the yield point
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A (Rm=rT ¼ 1:861;Re=rT ¼ 0:4Þ, which lies on the yield surface corresponding to
JR3 � 0 (see Fig. 7.7). In other words, the yield locus according to Cazacu et al. [19] is
invariant to the transformation: Rm;Re; JR3

� �! �Rm;Re;�JR3
� �

; as it should be
given that the matrix behavior is governed by an even yield function in stresses [see
also Theorem 7.1, Sect. 7.2.1 and Eq. (7.17)].

Figure 7.9 shows the yield curves according to the Cazacu et al. [19] criterion
corresponding to JR3 � 0 and JR3 � 0; respectively, and the Gurson [30] yield surface
for a porosity f = 5%. It is clearly seen that Gurson [30] criterion is an upper bound
of the Cazacu et al. [19] criterion. Note also the sensitivity of the latter criterion to
the sign of the mean stress Rm.

Most importantly, note that according to the Cazacu et al. [19] criterion, for
states corresponding to Rm � 0; the response is softer for JR3 � 0 than for JR3 � 0 (see
also Fig. 7.10, showing different zooms on the yield surfaces in the tensile quad-
rant). For purely deviatoric loading, the response is the same, and the effect of JR3
becomes noticeable with increasing triaxiality (see Fig. 7.10a, b). The normal to the
yield surfaces are clearly different, determining distinct plastic flow directions and
resulting porosity evolution. For triaxialities approaching infinity, the effect of JR3
starts to decrease, and the yield surfaces coincide at the purely hydrostatic point (see
Fig. 7.10c).

For completion, Fig. 7.11 shows the yield surface in the plane R11 � R33;Rmð Þ
according to the Cazacu et al. [19] criterion and Gurson [30], for several porosities,
f = 1, 5, and 15%, respectively. Stresses are normalized by the matrix yield stress
in uniaxial tension rT . All yield surfaces show the same trends described above.
Irrespective of the porosity, the intersection of the curves corresponding to JR3 � 0

Fig. 7.7 Yield surface according to the Cazacu et al. [19] criterion, corresponding to R11 ¼
R22 �R33 (JR3 � 0Þ and porosity f = 0.05, showing the sensitivity of yielding to the sign of the
mean stress
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ðR11 ¼ R22 �R33Þ and JR3 � 0 ðR11 ¼ R22 �R33Þ belong to the axis Rm ¼ 0 (i.e.,
the yield surface has no corners); and the criterion coincides with Gurson [30] only
for the purely hydrostatic ðR11 ¼ R22 ¼ R33Þ or purely deviatoric loadings
ðRm ¼ 0Þ.

Fig. 7.8 Yield surface according to Cazacu et al. [19] criterion, corresponding to R11 ¼
R22 �R33 (JR3 � 0Þ and porosity f = 0.05

Fig. 7.9 Yield surface of the porous Von Mises material according to the Cazacu et al. [19]
criterion for R11 ¼ R22 �R33(JR3 � 0Þ and R11 ¼ R22 �R33 (JR3 � 0Þ, respectively, and in
comparison with Gurson [30] yield surface. Porosity f = 0.05
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Fig. 7.10 Zoom on the tensile quadrant of the yield surfaces according to the Cazacu et al. [19]
criterion, for JR3 � 0 and JR3 � 0; and Gurson [30] criterion, for porosity f = 0.05, within following
ranges: a (Rm � 0; 0:8\Re=rT\ 1� fð Þ; b Rm � 0; 0\Re=rT\0:5
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Effect of the centro-symmetry of the Cazacu et al. [19] surface on void evolution

Although the effect of the sign of JR3 is small, it affects not only the onset of plastic
flow of the porous von Mises material, but it also influences void evolution. Indeed,
even small changes in the direction of the normal to the yield surface affect plastic
flow of the porous material and lead to changes in the rate at which the porosity
evolves (see Revil-Baudard and Cazacu [54]). As an example, Fig. 7.12 shows a
comparison between the void evolution as a function of the effective macroscopic
equivalent strain, Ee, according to the Gurson [30] and Cazacu et al. [19] criterion
for axisymmetric loadings at fixed triaxiality, Tj j ¼ 2 for loadings such that JR3 � 0
and JR3 � 0; respectively. The initial porosity is: f0 ¼ 0:5%. Note that irrespective of
the sign of the third-invariant, the rate of void growth according to Cazacu et al.
[19] criterion is faster than that predicted by Gurson [30] model. For example, for
loadings such that JR3 � 0 at a macroscopic equivalent plastic strain Ee ¼ 0:15; the
porosity according to Gurson [30] is 15% lower than that predicted by the Cazacu
et al. [19] criterion. Comparison between the results presented in Fig. 7.12a shows
that Cazacu et al. [19] model captures the influence of the sign of the third-invariant
of the stress deviator on void growth, the rate of void growth being faster for JR3 � 0
than for JR3 � 0: For example, at an equivalent plastic strain Ee ¼ 0:15; the void
volume fraction is almost 4% higher for JR3 � 0 than for JR3 � 0: Obviously, Gurson
[30] model cannot capture the influence of the sign of JR3 on void growth.
Figure 7.12b shows the evolution of the void volume fraction as a function of the
effective equivalent strain, Ee for axisymmetric loadings and negative stress triax-
iality, T ¼ �2: Since the mean stress, Rm, is negative (compression) void collapse

Fig. 7.11 Yield surfaces obtained with the Cazacu et al. [19] criterion, and with Gurson [30], for
porosities f = 1, 5 and 15%. The blue lines represent the yield surfaces for R11 ¼ R22 �R33

(JR3 � 0Þ, and the red lines R11 ¼ R22 �R33 (JR3 � 0Þ. The dashed lines are Gurson’s [30] yield
surfaces
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occurs. However, irrespective of the sign of JR3 the rate of void collapse according
to the Cazacu et al. [19] criterion is faster than that according to the Gurson [30]
criterion. For example, at Ee ¼ 0:1; the void volume fraction according to Cazacu
et al. [19] for JR3 � 0 and Gurson [30] is: f ¼ 0:167f0 and f ¼ 0:2f0, respectively.
Furthermore, comparison between Fig. 7.12a, b shows the effects of the
centro-symmetry of Cazacu et al. [19] yield locus on void evolution. Indeed, for
T ¼ 2; the rate of void growth is faster for loadings at JR3 � 0 than for JR3 � 0 while
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Fig. 7.12 Comparison between the evolution of the void volume fraction with equivalent strain
Ee for axisymmetric stress states such as JR3 � 0 and JR3 � 0 and fixed stress triaxiality T ¼ �2
predicted by the Gurson [30] and Cazacu et al. [19] criterion; initial porosity, f0 ¼ 0:5%: a void
growth; b void collapse
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the rate of void collapse is faster for axisymmetric loadings at JR3 � 0 than for
loadings at JR3 � 0:

7.2.3.4 Void Growth and Collapse According to Cazacu et al. [19]
Model and F.E. Unit-Cell Model Calculations

The new features of the mechanical response of von Mises porous materials that
were revealed by the Cazacu et al. [19] analysis and model, namely the
centro-symmetry of the yield surface and the coupled effects of the signs of the
means stress and third-invariant JR3 on void growth and collapse were verified by
comparison with the results of F.E. unit-cell model simulations. Detailed numerical
analyses of the dilatational response of a porous von Mises material for axisym-
metric stress histories at fixed triaxialities were conducted by Alves et al. [4] using
cubic unit cells containing one void at the center (for the geometry of the cell and
the methodology used to solve the boundary-value problem, see Sect. 7.2.3.2).

For loadings at fixed positive triaxialities, the initial porosity considered was:
f0 ¼ 0:13%. In the F.E. calculations corresponding to loadings at fixed negative
triaxialities, the initial porosity was considered higher ðf0 ¼ 1:04%Þ such as to
allow plastic strains to develop prior to pore closure. For any given triaxiality, T;
calculations were done for loadings corresponding to R11 ¼ R22 �R33 (i.e., JR3 � 0Þ
and for loadings corresponding to R11 ¼ R22 �R33 (i.e., JR3 � 0Þ. For each loading
case, the stress–strain response (Re vs. Ee ) as well as the evolution of the void
volume fraction as a function of the von Mises effective macroscopic equivalent
strain, Ee were reported. As a general observation, the F.E. results show that irre-
spective of the sign of JR3 , there is a very strong effect of the stress triaxiality on
void evolution (see Figs. 7.13 and 7.14). Secondly, the numerical results indicate a
combined effect of the signs of the mean stress and JR3 on void evolution. The trends
predicted by the Cazacu et al. [19] model were confirmed. Indeed, for T[ 0 the
rate of void growth is faster for the case when the loading is such that JR3 � 0 than in
the case when the loading is such that JR3 � 0 (see Fig. 7.13). However, for T\0;
void evolution is faster for loadings with JR3 � 0 than for loading at JR3 � 0 (see
Fig. 7.14). The agreement between the numerical results and the Cazacu et al. [19]
model is very good. For completeness, also note that irrespective of the sign of JR3 ,
the Cazacu et al. [19] criterion is in better agreement with the numerical predictions
than Gurson [30] criterion (see Fig. 7.15 for void growth and Fig. 7.16 for void
collapse).

Figure 7.17 shows the effective stress Re versus equivalent strain, Ee curves for
axisymmetric loadings at positive fixed stress triaxialities. Since the Cazacu et al.
[19] model captures the effects of the stress triaxiality and JR3 on void growth (see
Figs. 7.13 and 7.14), it describes correctly the influence of the loading path on
the softening or hardening of the porous material. Note that for negative stress
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triaxialities (compressive mean stress), this model correctly captures that for T ¼ �3
the rate of void collapse is faster than for T ¼ �2 (see also Fig. 7.15), which in turn
affects the rate of hardening. This correlates with the predicted stress–strain
response shown in Fig. 7.18.
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Fig. 7.13 Comparison between the void volume fraction evolution with equivalent strain Ee

according to the Cazacu et al. [19] model and F.E. unit-cell model calculations (symbols)
corresponding to axisymmetric stress states for stress triaxialities: T ¼ 2 and T ¼ 3; respectively;
initial porosity, f0 ¼ 0:13%: a axisymmetric loadings such that the axial stress is greater than the
lateral stress (JR3 � 0Þ; b axisymmetric loadings such that the axial stress is less than the lateral
stress (JR3 � 0Þ
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7.2.3.5 Cazacu and Revil-Baudard [16] 3-D Plastic Potentials

Cazacu et al. [19] analysis and model presented in Sect. 7.2.3.3 was conducted for
axisymmetric states. It was shown that the strain-rate potential and the yield cri-
terion of the porous Mises material can be deduced without making the
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Fig. 7.14 Comparison between the void volume fraction evolution (collapse) as a function of the
equivalent strain Ee according to the Cazacu et al. [19] model and F.E. unit-cell calculations
(symbols) corresponding to axisymmetric loadings at fixed stress triaxialities: T ¼ �2 and T ¼
�3; initial porosity, f0 ¼ 1:04%: a axisymmetric loadings such that the axial stress is greater than
the lateral stress (JR3 � 0Þ; b axisymmetric loadings such that the axial stress is less than the lateral
stress (JR3 � 0Þ
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simplifications that are generally done in the literature. While for general 3-D
loadings, the integrals representing the plastic dissipation of the porous material
cannot be obtained in closed form, the combined effects of all the invariants of the
strain-rate D on the plastic response can be assessed. Cazacu and Revil-Baudard
[16] conducted such an analysis, and established that the maximum influence of JR3
on yielding of a porous Mises solid occurs for axisymmetric states.

Moreover, based on this analysis these authors proposed 3-D approximate
potentials that preserve the key properties of the exact one. For axisymmetric states,
the 3-D model developed reduces to the Cazacu et al. [19] criterion [see
Eqs. (7.66)–(7.69)].

(a)

(b)

Fig. 7.15 Comparison between the void volume fraction evolution with equivalent strain Ee

according to the Cazacu et al. [19] model (line), Gurson [30] model (dashed line), and F.E.
unit-cell calculations (symbols) for T ¼ 2; initial porosity f0 ¼ 0:13%: a axisymmetric loadings
such that the axial stress is greater than the lateral stress (JR3 � 0Þ; b axisymmetric loadings such
that the axial stress is less than the lateral stress (JR3 � 0Þ
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Fig. 7.16 Comparison between the void volume fraction evolution with equivalent strain Ee

according to the Cazacu et al. [19] model (line), Gurson’s [30] model (dashed line), and F.E.
unit-cell calculations (symbols) for T ¼ �2; initial porosity f0 ¼ 1:04%: a axisymmetric loadings
such that the axial stress is greater than the lateral stress (JR3 � 0Þ; b axisymmetric loadings such
that the axial stress is less than the lateral stress (JR3 � 0Þ
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Fig. 7.17 Comparison between the effective stress Re evolution with equivalent strain Ee

according to the Cazacu et al. [19] model and F.E. unit-cell calculations (symbols) corresponding
to axisymmetric stress states and different stress triaxialities: T ¼ 2 and T ¼ 3; initial porosity,
f0 ¼ 0:13%: a axisymmetric loadings such that the axial stress is greater than the lateral stress
(JR3 � 0Þ; b axisymmetric loadings such that the axial stress is less than the lateral stress (JR3 � 0Þ
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Let us first recall that for 3-D loadings, in the Cartesian basis e1; e2; e3ð Þ asso-
ciated with the eigenvectors of D [see also Eq. (7.27)], the local strain-rate tensor
d ¼ rvþrvTð Þ=2 corresponding to Rice and Tracey [58] velocity field is given
by Eq. (7.28), and consequently the plastic dissipation of the porous von Mises
material is of the form:
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Fig. 7.18 Comparison between the effective stress Re evolution with equivalent strain Ee

according to the Cazacu et al. [19] model and cell calculations (symbols) corresponding to
axisymmetric stress states and different stress triaxialities: T ¼ �2 and T ¼ �3; initial porosity,
f0 ¼ 0:13%: a axisymmetric loadings such that the axial stress is greater than the lateral stress
(JR3 � 0Þ; b axisymmetric loadings such that the axial stress is less than the lateral stress (JR3 � 0Þ

7.2 Constitutive Models for Porous Isotropic Metallic … 377



Pþ
Mises D; fð Þ ¼ rTW

þ
Mises D; fð Þ;

with

Wþ
Mises D; fð Þ
¼ 1

V

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þ D02

1 þD02
2 þD02

3

� �þ 4D2
m b=rð Þ6�4Dm b=rð Þ3 D0

1x
2
1 þD0

2x
2
2 þD0

3x
2
3

� �q
dV

ð7:73Þ

In Eq. 7.73, D0
i ¼ Di � Dm, i = 1, …, 3 are the eigenvalues of D0; V ¼ 4pb3=3

and X is the domain occupied by the matrix and the void (see Fig. 7.1).
As demonstrated in Sect. 7.2.3.3 (see Theorem 7.6), for axisymmetric states,

Wþ
Mises D; fð Þ can be calculated analytically without making any of the approxima-

tions generally considered in the literature (e.g., the hypothesis (H1), Sect. 7.2.3.1).
For all other loadings, Wþ

Mises D; fð Þ cannot be calculated analytically and numerical
integration methods need to be used. Isotropy dictates that Wþ

Mises D; fð Þ has
threefold symmetry with respect to the origin. Thus, it is sufficient to evaluate the
integral given by Eq. (7.73) only for states corresponding to one sector of the
octahedral plane. Any state in the sector D2 �D3 �D1 is characterized by two polar
coordinates (R; c ) with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D02

1 þD02
2 þD02

3

q
¼ De

ffiffiffiffiffiffiffiffi
3=2

p
¼

ffiffiffiffiffiffiffiffi
2JD2

q
ð7:74Þ

and c being the angle satisfying: �p=6� c� p=6 and whose sine is given by:

sin3c ¼ � 3
ffiffiffi
3

p

2
� JD3
JD2
� �3=2 : ð7:75Þ

(see also Chap. 6 for more details about the representation in the octahedral plane of
an isotropic function of DÞ. Using Eqs. (7.74) and (7.75), the integral expressing
Wþ

Mises D; fð Þ can be put in the form:

Wþ
Mises D; fð Þ¼ 1

V

Z
X

2rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=6
� �þD2

m b=rð Þ6�4RDm b=rð Þ3F c; x2ið Þ=ðr2=
ffiffiffi
6

p
Þ

q
dV

ð7:76Þ

with F c; x21; x
2
2; x

2
3

� � ¼ ffiffiffi
3

p
x22 � x21
� �

cos cþ 2x23 � x21 � x22
� �

sin c:
Next, Gaussian quadrature integration is used to evaluate the integral for any 3-D

loadings. For this purpose, the hollow sphere is discretized with 125,000 hexahedral
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elementary volumes with one integration point at the center. For axisymmetric
loadings, the numerical estimate of Wþ

Mises D; fð Þ was compared to the exact result
[i.e., Eqs. (7.66)–(7.69)], the differences being negligible (less than 10−7).

As an example, in Fig. 7.19 is shown a 3-D isosurface of the von Mises porous
solid [calculated using Eq. (7.76)] corresponding to a porosity f = 1%. Specifically,
this convex surface contains all the points Dm;R; cð Þ that produce the same plastic
dissipation Wþ

Mises D; fð Þ ¼ 9:21
 10�3 for the porous solid.
First, let us note that the presence of voids induces a strong influence of the mean

strain-rate Dm on the plastic dissipation, the surface being closed on the hydrostatic
axis. Indeed, for purely hydrostatic states (i.e., D ¼ DH

mIÞ according to Eq. (7.73),
Wþ

Mises D; fð Þ ¼ 2 DH
m

		 		 ln 1=fð Þ: In particular, for f ¼ 1% and dissipation of
9:21
 10�3, DH

m ¼ �1
 10�3 s−1. Thus, the intersection of the isosurface with the
planes Dm ¼ 1
 10�3 s−1 and Dm ¼ �1
 10�3 s−1, respectively are two points on
the hydrostatic axis that are symmetric with respect to the origin (see also Fig. 7.19).

To fully assess the effects of all invariants of the strain-rate, D; on the plastic
response of the porous von Mises material, the cross-sections of the same 3-D
isosurface with several deviatoric planes Dm ¼ constant are considered (see
Fig. 7.20). Note that the intersection of any surface Wþ

Mises D; fð Þ = constant with
the plane Dm ¼ 0; is a circle (see, e.g., Fig. 7.19). This is to be expected since states
for which Dm ¼ 0 correspond to purely deviatoric loadings for which the plastic
dissipation of the porous material coincides with that of the matrix (von Mises
behavior). The cross-sections with all the other deviatoric planes Dm ¼ c; with
c 6¼ 0 have threefold symmetry with respect to the origin, and deviate slightly from
a circle. This indicates that the third-invariant JD3 ¼ D0

1D
0
2D

0
3 affects the plastic

response of the porous Mises material. It is also clearly seen that as Dm increases the
response of the material becomes softer (the inner cross-section depicted in

x mD 3 D

Dy Dz

Purely hydrostatic 
Dm>0

Purely hydrostatic
Dm<0

Purely deviatoric
Dm=0

Fig. 7.19 3-D surface of a
porous solid with von Mises
matrix according to Eq. (7.76)
for both tensile
(Dm ¼ tr Dð Þ[ 0Þ and
compressive (Dm\0Þ states.
Note that this convex surface
contains all the points
Dm;R; cð Þ that produce the
same plastic dissipation
Wþ

Mises D; fð Þ ¼ 9:21
 10�3

for the porous solid. Porosity:
f = 0.01 (after Cazacu and
Revil-Baudard [16])
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Fig. 7.20 corresponds to Dm ¼ 9
 10�4 s−1, the outer cross-section correspond to
Dm ¼ 0Þ.

To assess the combined effects of the invariants JD3 and JD2 on the mechanical
response of the porous von Mises material, the shapes of its cross-sections with
the deviatoric planes Dm ¼ c c 6¼ 0ð Þ need to be determined. Due to isotropy, it is
sufficient to study how the distance between the origin and any point on the
cross-section evolves with c in the sector �p=6� c� p=6. In this sector, axisym-
metric conditions correspond to c ¼ �p=6 ðD1 ¼ D3\D2Þ or c ¼ p=6
ðD2 ¼ D3\D1Þ. As an example, in Fig. 7.21 is plotted R cð Þ (normalized by
R �p=6ð ÞÞ for the cross-section corresponding to Dm ¼ 6
 10�4 s−1 and Dm ¼ 0;
respectively. As already mentioned, the cross-section Dm ¼ 0 corresponds to the
matrix behavior (von Mises behavior) and as such it is a circle, RðcÞ = constant. As
concerns the cross-section Dm ¼ 6
 10�4 s−1, note the influence of the
third-invariant JD3 (or cÞ as evidenced by the deviation of R cð Þ=R �p=6ð Þ from a
straight line.

Remark The noteworthy result is that the maximum difference is between the
axisymmetric states, i.e., between R �p=6ð Þ and R p=6ð Þ: This holds true irre-
spective of the level of Dm (see also Fig. 7.20). It follows that the maximum
influence of c (or JD3 ) on the response of the porous von Mises material, and

f2

f1

f3

Dm=0

f=0.01

=0

Fig. 7.20 Cross-sections of the 3-D isosurface of a porous von Mises material with several
deviatoric planes Dm ¼ constant; the outermost cross-section represents the intersection with the
plane Dm ¼ 0 while the innermost cross-section corresponds to Dm ¼ 9
 10�4 s−1. Porosity:
f = 0.01 (after Cazacu and Revil-Baudard [16])
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consequently the maximum influence on void growth or void collapse occurs for
axisymmetric loadings. It is worth noting that for the case of large positive and
negative triaxialities, the same conclusions concerning the influence of the
third-invariant on void evolution were obtained in their seminal study by Rice and
Tracey [58].

Cazacu and Revil-Baudard [16] strain-rate plastic potential for a porous Mises
material

A remarkable property of the exact plastic potentials (stress-based and strain-rate-
based formulations) of a porous solid with von Mises matrix is their centro-
symmetry [see also Theorem 7.1 and Eq. (7.17)]. This property is preserved by
Wþ

Mises D; fð Þ: This means that for any porosity f :

Wþ
Mises Dm;R; c; fð Þ ¼ Wþ

Mises �Dm;R;�c; fð Þ;

i.e., the surface is symmetric with respect to the origin (see also Eq. (7.76) and
Fig. 7.19). More specifically, in Fig. 7.20 it is clearly seen that for a given value of
Dm in order to reach the same plastic dissipation in the porous solid, there should be
a very specific dependence between the invariants of D0, i.e., between R and c.
Indeed, the analysis of the cross-sections shows that for Dm [ 0; R cð Þ is a
monotonically decreasing function of c (see Fig. 7.21). Due to the centro-symmetry
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Fig. 7.21 Evolution of R cð Þ (normalized by R �p=6ð ÞÞ with c for the cross-section of the surface
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of Wþ
Mises D; fð Þ for Dm\0; R cð Þ must be a monotonically increasing function of c.

A function that has these properties and coincides with the exact values of R cð Þ for
axisymmetric states was proposed by Cazacu and Revil-Baudard [16], i.e.,

R cð Þ ¼ R� þ Rþ
2

þ R� � Rþ
2

sinhðcÞ � c cosh p=6ð Þ
� sinhðp=6Þþ p coshðp=6Þ=6
� �

; ð7:77Þ

where R� and Rþ are the values of the SRP corresponding to axisymmetric
loadings at c ¼ �p=6 and c ¼ p=6; respectively that are calculated using
Eqs. (7.61) and (7.63), respectively.

Figure 7.22 shows the comparison between the evolution of R cð Þ (normalized by
R p=6ð ÞÞ according to Eq. (7.77) and the numerical values (symbols) obtained by
estimating numerically the plastic dissipation given by Eq. (7.76) for the
cross-sections of the isosurface Wþ

Mises D; fð Þ ¼ 9:21
 10�3 corresponding to
f ¼ 0:01. In the sector �p=6� c� p=6, the shapes of the cross-sections of the
analytical SRP [Eq. (7.77)] with several deviatoric planes Dm ¼ constant and the
numerical points (symbols) are shown in Fig. 7.23. Note that the Cazacu and
Revil-Baudard [16] SRP is a very good approximation of the SRP of the porous von
Mises material for all values of Dm [ 0 considered.

Comparison between the Cazacu and Revil-Baudard [16] strain-rate potential and
Gurson strain-rate potential

It is also interesting to compare the 3-D SRP of Cazacu and Revil-Baudard [16]
with that developed by Gurson [29]. As already mentioned in Sect. 7.2.3.1,
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Fig. 7.22 Comparison between the evolution of R cð Þ (normalized by R �p=6ð ÞÞ according to
Eq. (7.77) and the numerical values (symbols) for the cross-section of the surface of the porous
von Mises material with the deviatoric planes: Dm ¼ 6
 10�4 s−1, Dm ¼ 4
 10�4 s−1, and Dm ¼
0; respectively. f = 0.01 (after Cazacu and Revil-Baudard [16])
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Gurson’s [29] SRP for a porous Mises material, WGurson D; fð Þ, given by Eq. (7.37),
does not involve any dependence on the third-invariant JD3 (or c). Therefore, irre-
spective of the value of Dm or the porosity level the cross-section with any
deviatoric plane Dm ¼ constant is a circle, i.e., R cð Þ ¼ constant (see also Fig. 7.24).

On the other hand, the analytical SRP of Cazacu and Revil-Baudard [16]
[Eq. (7.77)] depends on all the invariants of D: It has the following properties:

f2

f3

Dm=0

f=0.01

=0

Fig. 7.23 Cross-sections of
the Cazacu and
Revil-Baudard [16] 3-D
strain-rate potential
corresponding to a fixed value
of the plastic dissipation of
9:21
 10�3 with several
deviatoric planes Dm ¼
constant; the outer
cross-section represents the
intersection with the plane
Dm = 0 while the inner
cross-section corresponds to
Dm ¼ 9
 10�4 s−1.
Numerical points are
represented by symbols.
Porosity f = 0.01

f3

f1
f2

f=0.01

Gurson's SRP

Fig. 7.24 Comparison
between the cross-sections of
the Cazacu and
Revil-Baudard [16] strain-rate
potential [solid line;
Eq. (7.77)] and that of
Gurson’s [29] strain-rate
potential [interrupted line,
Eq. (7.37)] corresponding to
the same level of plastic
energy 9:21
 10�3. The
cross-section corresponds to
Dm ¼ 6
 10�4 s−1. Note that
Gurson’s [29] SRP is more
dissipative than the new
model. Porosity: f = 0.01
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• For axisymmetric states, it coincides with Wþ
Mises D; fð Þ [see Eqs. (7.61)–(7.63)]

• Since R cð Þ given by Eq. (7.77) is an odd function, it satisfies automatically the
centro-symmetry requirement.

• The derivative of R cð Þ with respect to c is null for axisymmetric loadings [see
Eq. (7.77)].

• The Cazacu and Revil-Baudard [16] SRP displays threefold symmetry with
respect to the origin.

Thus, the Cazacu and Revil-Baudard [16] potential given by Eq. (7.77) preserves
all the key features of the exact SRP of a porous von Mises material. To further
illustrate the specific differences between theCazacu andRevil-Baudard [16] SRP and
Gurson’s [29] SRP in Fig. 7.24 are shown the cross-sections with the deviatoric plane
Dm ¼ 6
 10�4 s−1 of the respective isosurfaces corresponding to the same value of
the plastic dissipation ð9:21
 10�3Þ and the same void volume fraction f ¼ 1%.
Since the Gurson [29] SRP was obtained by truncating the plastic dissipation asso-
ciated with Rice and Tracey’s [58] velocity field [see Eq. (7.34)], it is necessarily
interior to the Cazacu and Revil-Baudard [16] SRP. This means that Gurson’s [29]
SRP ismore dissipative, i.e., in order to reach the same value of the plastic dissipation,
the norm of the loading, R cð Þ; for the Gurson [29] SRP is lower than that for the
Cazacu andRevil-Baudard [16] SRP [Eq. (7.77)]. Only for purely hydrostatic loading
ðD0 ¼ 0Þ, and purely deviatoric states ðDm ¼ 0Þ, the two potentials coincide.

Cazacu and Revil-Baudard [16] 3-D stress-based potential for a porous solid
with von Mises matrix

Based on the numerical calculations of the plastic dissipation for full 3-D
loadings presented in the previous subsection, it can also be concluded that the
stress potential and yield function of a porous Mises material has the following
remarkable properties:

(i) It depends on all stress invariants,
(ii) It is centro-symmetric, i.e., invariant to the transformation:

Rm;Re; JR3
� �! �Rm;Re;�JR3

� �
;

(iii) It is an even function in stresses,
(iv) The maximum influence of the third-invariant of the stress deviator occurs

for axisymmetric states.

Cazacu and Revil-Baudard [16] also proposed a 3-D stress potential that has all the
properties (i)-(iv). This stress potential being isotropic, it is sufficient to provide its
expression in the sectorR2 �R3 �R1. Let us recall that ifR2 �R3 �R1, it follows that:

R0
1 ¼ �

~Rffiffiffi
6

p ffiffiffi
3

p
coshþ sinh

� �
R0
2 ¼

~Rffiffiffi
6

p ffiffiffi
3

p
cosh� sinh

� �
R0
3 ¼

2~Rffiffiffi
6

p sinh

ð7:78Þ
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with

~R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02
1 þR02

2 þR02
3

q
¼ Re

ffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þ

p
ð7:79Þ

and h is the angle satisfying: �p=6� h� p=6 and whose sine is given by:

sin3h ¼ � 3
ffiffiffi
3

p

2
� JR3
JR2
� �3=2 ð7:80Þ

As already mentioned, the sub-sector �p=6� h� 0 corresponds to states on the
surface for which ðR0

2 � 0;R0
3 � 0;R0

1 � 0Þ so the third-invariant JR3 � 0 while the
sub-sector 0� h� p=6 corresponds to states for which R0

2 � 0;R0
3 � 0;R0

1 � 0ð Þ
so JR3 � 0: In this sector, axisymmetric states correspond to either h ¼ �p=6 ðR0

1 ¼
R0

3\R0
2Þ or h ¼ p=6 ðR0

2 ¼ R0
3 [R0

1Þ.
To describe the variation of ~R ¼ Re

ffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þp

with the angle h (a measure of the
combined influence of Re and JR3 ), Cazacu and Revil-Baudard [16] proposed the
following function:

eR hð Þ ¼
eR þ þ eR�

2
þ
eR� � eR þ

2
sinhðhÞ � h cosh p=6ð Þ

� sinhðp=6Þþ p
6
coshðp=6Þ

0B@
1CA ð7:81Þ

where ~R� and ~Rþ are the exact values corresponding to axisymmetric loadings at
h ¼ �p=6 and h ¼ p=6; respectively [calculated using Eqs. (7.66)–(7.71)].

As an example, in Fig. 7.25 is shown the 3-D yield surface given by Eq. (7.81)
corresponding to a porosity f ¼ 1% for both tensile ðRm [ 0Þ and compressive
ðRm\0Þ states. Specifically, this convex surface contains all the stress points
corresponding to the same plastic dissipation for the porous solid. Note that the

x m3

y
z

Purely hydrosta c 
m T

Purely hydrosta c 
m T

e T

Purely deviatoric

Fig. 7.25 Cazacu and
Revil-Baudard [16] 3-D yield
surface for a porous solid with
von Mises matrix. Porosity:
f = 0.01
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presence of voids induces a strong influence of the mean stress Rm on yielding, and
that the yield surface is closed on the hydrostatic axis.

Figure 7.26 shows the cross-sections of the 3-D yield criterion given by
Eq. (7.81) with several deviatoric planes Rm ¼ constant: Note that irrespective of
the value of Rm, the cross-sections slightly deviate from circles, the maximum
influence of the third-invariant of the stress deviator occurs for axisymmetric
conditions. Also, with increasing Rm, the influence of the third-invariant (or h ) is
increasing. Since the dependence of ~R with h given by Eq. (7.81) relies on the exact
solution of the limit-analysis problem for axisymmetric loadings (associated with
the Rice and Tracey’s [58] velocity field), and it is an odd function, it satisfies the
key properties (i)–(iv) of the exact stress-based plastic potential for a porous Mises
material.

Most importantly, the yield surface according to the Cazacu and Revil-Baudard
[16] criterion is centro-symmetric. To illustrate this noteworthy property, in
Fig. 7.27 are shown the cross-sections of the yield surface according to Eq. (7.81)
for f = 0.01 with a deviatoric plane corresponding to a positive mean stress
(Rm=rT ¼ 2; interrupted line) and a compressive mean stress (Rm=rT ¼ �2; solid
line), respectively. The symmetry of the respective cross-sections with respect to
the origin is clearly seen. For example, for loadings corresponding to JR3 � 0
(i.e.,�p=6� h� 0Þ to produce the same plastic dissipation, ~R hð Þ at yielding is
lower for compressive states (Rm\0—interrupted line) than for tensile states
(Rm [ 0—solid line). The reverse holds true for loadings corresponding to JR3 � 0
(0� h� p=6Þ.

As an example, in Fig. 7.28 are shown the cross-sections of the Cazacu and
Revil-Baudard [16] yield surface [Eq. (7.81)] and that of Gurson’s [30] [Eq. (7.41)]
with the deviatoric planes Rm=rT ¼ 1:5 and Rm=rT ¼ 2; respectively, for a void

2/ t

3/ t

m=0

1/ t

f=0.01Fig. 7.26 Cross-sections of
the Cazacu and
Revil-Baudard [16] 3-D yield
surface [Eq. (7.81)] for a
porous von Mises material
with several deviatoric planes
Rm ¼ constant; the outer
cross-section represents the
intersection with the plane
Rm=rT ¼ 0 while the inner
cross-section corresponds to
Rm=rT ¼ 2:5: Porosity:
f = 0.01
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volume fraction f = 1%. The Gurson’s [30] criterion (interrupted line) is an upper
bound to the new criterion, the correction brought to the Gurson’s [30] criterion
becoming more important with increasing Rm. This point is further illustrated in
Fig. 7.29, which shows the differences between the two criteria as a function of the

Fig. 7.27 Cross-sections of the Cazacu and Revil-Baudard [16] 3-D yield surface for the porous
von Mises material with the deviatoric planes Rm=rT ¼ 2 (interrupted lines) and Rm=rT ¼ �2
(solid lines), respectively. Note the centro-symmetry of the cross-sections due to the invariance of
the plastic response to the transformation Rm;R0ð Þ ! �Rm;�R0ð Þ. Porosity: f = 0.01

(a) (b)

1 2

3
Gurson (1977)

f=0.01
Gurson (1977)

1 2

3 f=0.01

Fig. 7.28 Comparison between the cross-sections of the Cazacu and Revil-Baudard [16] 3-D
yield surface [solid line; Eq. (7.81)] and that of the Gurson’s [30] yield surface [interrupted line;
(Eq. (7.41)] with several deviatoric planes: a Rm=rT ¼ 1:5; b Rm=rT ¼ 2: Note that Gurson’s [30]
surface is always exterior. Porosity f = 0.01
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loading path. The differences between the two criteria are calculated for loadings at
Rm = constant and Lode parameter l = constant. Let us recall that l ¼ ffiffiffi

3
p

tanh,
with h given by Eq. (7.80). It is also worth noting that the most important difference
between the Gurson [30] criterion and the Cazacu and Revil-Baudard [16] criterion
correspond to tensile axisymmetric conditions at h ¼ �p=6:, i.e., l ¼ �1:

Using the yield criterion of Cazacu and Revil-Baudard [16] given by Eq. (7.81),
one can easily establish the relation between Re and Rm at yielding for loadings
corresponding to Lode parameter l ¼ ffiffiffi

3
p

tan hð Þ = constant: As an example, in
Fig. 7.30 are shown the projections of the yield surface in the Rm;Reð Þ plane for
tensile loadings ðRm � 0Þ at l ¼ �0:464 (h ¼ �p=12Þ, l ¼ 0, and axisymmetric
loadings, i.e., at l ¼ �1 (h ¼ �p=6Þ and l ¼ 1 ðh ¼ p=6Þ, respectively.

Note that according to the yield criterion, for low triaxialities the difference
between the yield curves at h ¼ constant is very small. However, the difference
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Fig. 7.29 Corrections brought by the Cazacu and Revil-Baudard [16] 3-D model to Gurson’s [30]
as a function of the Lode parameter l (l ¼ ffiffiffi

3
p

tanh ) for loadings at constant positive mean stress
Rm. Irrespective of the level of Rm the maximum deviation corresponds to axisymmetric states
corresponding to h ¼ �p=6: The higher the mean stress, the greater is the correction to Gurson
[30]. Porosity: f = 0.01

cFig. 7.30 Zooms on the tensile quadrant of the cross-sections of the 3-D yield surface for the
porous von Mises material according to Cazacu and Revil-Baudard [16] [Eq. (7.81)] in the
Rm;Reð Þ plane at fixed values of the Lode parameter l ¼ ffiffiffi

3
p

tanh in the range �p=6; p=6ð Þ; a low
stress triaxialities (1�Rm=rT � 2; 0:9�Re=rT � 0:98Þ; b intermediate triaxialities (2:5�Rm=
rT � 2:8; 0:6�Re=rT � 0:742): c high stress triaxialities (2:8�Rm=rT � 3:07; 0�Re=rT � 0:6Þ; ax-
isymmetric loadings correspond to l ¼ �1 (h ¼ �p=6Þ and l ¼ 1 (h ¼ p=6Þ
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becomes more important with increasing stress triaxiality (see also Fig. 7.30a, b);
for stress states corresponding to stress triaxialities T ¼ Rm=Reð Þ approaching
infinity (i.e., purely hydrostatic states), the difference in the yielding response starts
to decrease, and all the yield curves coincide at the purely hydrostatic point ðRe ¼
0Þ (see Fig. 7.30c). Irrespective of the level of the stress triaxiality T, the softest
response is for axisymmetric loadings corresponding to l = −1 ðh ¼ �p=6Þ while
the hardest response is for axisymmetric loadings at l = 1 ðh ¼ p=6Þ.

Note that due to the centro-symmetry of the yield surface, for compressive
loadings ðRm � 0Þ the hardest response is for axisymmetric loadings corresponding
to l ¼ �1 ðh ¼ �p=6Þ while the softest response is for axisymmetric loadings at
l ¼ 1 (see Fig. 7.31).

7.2.4 Porous Materials with Tresca Matrix

The recent studies on void evolution in a porous Mises material presented in the
previous section have put into evidence the fact that even if the matrix response
does not depend on the third-invariant of stress (or strain-rate), the presence of
voids induces dependence on all invariants. In the case when the plastic defor-
mation of the matrix is governed by the von Mises criterion, it was demonstrated
that the influence of the third-invariant on the plastic flow and void evolution is
most pronounced for axisymmetric states.

The fundamental question that arises concerns the effect of the third-invariant on
yielding and void evolution in a porous material with matrix governed by a yield
criterion that depends on both invariants of the stress deviator. Specifically, it is
important to compare the rate of void growth or collapse with that of a porous
von Mises material.

A partial response to this question was given by Rice and Tracey [58], who
proved that for loadings at high triaxialities the rate of void growth in a
porous Tresca material is much faster than in a porous von Mises material. Whether
this holds true for all loadings has remained an open question. Adressing this
question is also of interest in view of engineering applications, given that the plastic
behavior of certain fully dense metallic materials is described with improved
accuracy by Tresca yield criterion (for more details about the Tresca yield criterion
and stress potential, see Chap. 4; for discussion on its exact work-conjugate in the
strain-rate space, see Chap. 6).

cFig. 7.31 Zooms on the tensile quadrant of the cross-sections of the 3-D yield surface for the
porous von Mises material according to Cazacu and Revil-Baudard [16] [Eq. (7.81)] in the
Rm;Reð Þ plane at fixed values of the Lode parameter l ¼ ffiffiffi

3
p

tanh in the range �p=6;p=6ð Þ; for:
a low stress triaxialities (�2�Rm=rT � � 1; 0:9�Re=rT � 0:98Þ; b intermediate triaxialities
(�2:8�Rm=rT � � 2:5; 0:6�Re=rT � 0:742): c high stress triaxialities (�3:07�Rm=rT �
�2:8; 0�Re=rT � 0:6Þ; axisymmetric loadings correspond to l ¼ �1 (h ¼ �p=6Þ and l ¼ 1
(h ¼ p=6Þ
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Recently, Cazacu et al. [18] derived an analytic plastic potential for porous solids
with matrix obeying Tresca’s yield criterion. It is to be noted that a major difficulty
in deriving such a potential in closed form is related to the calculation of the overall
plastic dissipation. This is a direct consequence of Tresca’s criterion being
dependent on the third-invariant of the stress deviator. Indeed, in contrast with the
case when the matrix is described by the von Mises yield criterion, mathematical
difficulties arise in the analysis because the expression of the local plastic dissi-
pation depends on the sign of each of the principal values of the local strain-rate
tensor.

In the following, it is shown that, despite of these fresh difficulties, for
axisymmetric states the integrals representing the overall plastic dissipation can be
calculated analytically. Moreover, an explicit parametric representation of the yield
surface for porous solids with randomly distributed spherical voids in a Tresca
matrix can be derived. The new results put into evidence in Cazacu et al. [18]
concerning a very specific coupling between the mean stress and the third-invariant
of the stress deviator and its effects on yielding and void evolution of porous Tresca
materials are also discussed.

7.2.4.1 Cazacu et al. [18] Yield Criterion

Cazacu et al. [18] used the kinematic homogenization approach to model the
mechanical response of a porous Tresca material. The matrix behavior was con-
sidered to be rigid-plastic and governed by the Tresca’s yield function (see also
Sect. 4.2.1),

uTresca rð Þ ¼ max r1 � r2j j; r2 � r3j j; r1 � r3j jð Þ;

with r1, r2 and r3 being the principal values of the Cauchy stress r: Let us recall
that for any strain-rate field d; the local plastic dissipation associated with uTresca rð Þ
has the following closed-form expression:

pTresca dð Þ ¼ rT _k ¼ rTwTresca dð Þ; ð7:82Þ

the exact strain-rate potential wTresca dð Þ being given by:

wTresca dð Þ ¼ dIj j þ dIIj j þ dIIIj jð Þ=2;

where dI ,dII , dIII denote the principal values of d (see Sect. 6.1.1).
For spherical void geometry, the RVE considered is the hollow sphere, shown in

Fig. 7.1. The analysis was done for a unique velocity field, namely that of Rice and
Tracey [58] and axisymmetric loadings [see Eqs. (7.25) and (7.29)]. For this
strain-rate field d; the principal values are given by Eq. (7.30). It is to be noted that
in contrast to the case when the plastic flow of the matrix is described by the von
Mises criterion, the local plastic dissipation pTresca dð Þ depends on the sign of dI , dII ,
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dIII : This is a direct consequence of Tresca’s yield function depending on the
relative ordering of the principal stresses, i.e., on the third-invariant of the stress
deviator. Nevertheless, it is possible to solve the limit-analysis problem analytically
and to obtain the plastic dissipation Pþ

Tresca D; fð Þ and consequently the strain-rate
potential of the porous Tresca material, Wþ

Tresca D; fð Þ ¼ Pþ
Tresca D; fð Þ=rT in closed

form. Moreover, Cazacu et al. [18] derived an explicit analytic expression of the
yield criterion for the porous Tresca material, namely:

Rm=rT ¼ 1
3
@Wþ

Tresca D; fð Þ
@Dm

Re=rT ¼ @Wþ
Tresca D; fð Þ
@De

				 				

8>>><>>>: ð7:83Þ

Let us first note that Pþ
Tresca D; fð Þ is an upper bound of the exact potential (i.e.,

the potential obtained through minimization over all the velocity fields compatible
with uniform boundary conditions given by Eq. (7.13), see Sect. 7.1). While the
explicit expression of Wþ

Tresca D; fð Þ and the parametric representation of the yield
surface (7.83) will be given later on, it is important to note here that there are key
features of the plastic behavior of a porous Tresca material that can be deduced
without calculation of the integrals representing the plastic dissipation.

Indeed, since uTresca rð Þ is an even function of stresses, according to
Theorem 7.1:

• The yield surface of a porous Tresca material given by Eq. (7.83) is
centro-symmetric.

• Irrespective of the sign of JR3 , for purely deviatoric loading, yielding occurs at
Re ¼ rT 1� fð Þ; for purely hydrostatic loadings, yielding occurs at:
Rmj j ¼ 2

3 rT ln f :

Theorem 7.8 (Strain-rate potential of a porous Tresca material under axisymmetric
loadings)

For axisymmetric states, the strain-rate potential of a porous Tresca material is
given by:

(a) For Dm � 0 and JD3 � 0 (D0
11 � 0), and any value of u¼ 2 Dmj j

De
:

Wþ
Tresca D; fð Þ ¼

uDe

8
F1

u
f

� �
� F1 uð Þ

� �
; 8u� f

uDe

8
F2

u
f

� �
� F1 uð Þ

� �
; 8f\u\1

uDe

8
F2

u
f

� �
� F2 uð Þ

� �
8u� 1

8>>>>>>><>>>>>>>:
ð7:84Þ
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with F1ðyÞ and F2ðyÞ given by:

F1ðyÞ ¼ 1� 16 ln 2ð Þ � 6
y
þ 3y2 þ 8y3=2 þ 6y� 1
� �

y3=2
ln

ffiffiffi
y

p þ 1
1� ffiffiffi

y
p

� �
þ 16 ln 1� ffiffiffi

y
p� �

F2ðyÞ ¼ 1� 16 ln 2ð Þ � 6
y
þ 3y2 þ 8y3=2 þ 6y� 1
� �

y3=2
ln

ffiffiffi
y

p þ 1ffiffiffi
y

p � 1

� �
þ 16 ln

ffiffiffi
y

p � 1
� �

ð7:85Þ

(b) For Dm � 0 and JD3 � 0 (D0
11 � 0),

Wþ
Tresca D; fð Þ ¼

uDe

8
G1 u=fð Þ � G1 uð Þð Þ ; 8u� f

uDe

8
G2 u=fð Þ � G1 uð Þ � 12� 16 ln 2ð Þð Þ; 8f\u\1

uDe

8
G2 u=fð Þ � G2 uð Þð Þ 8u� 1

8>>>><>>>>:
ð7:86Þ

with:

G1ðyÞ ¼ � 6
y
� arctan

2
ffiffiffi
y

p
y� 1

� �
3y2 � 6y� 1ð Þ

y3=2
� 8 ln yþ 1ð Þ;

G2ðyÞ ¼ 6
y
þ 3y2 � 6y� 1ð Þ

y3=2
arcsin

2
ffiffiffi
y

p
yþ 1

� �
þ 8 ln yþ 1ð Þ:

ð7:87Þ

For all other states, the expression of the strain-rate potential can be deduced
taking into account the centro-symmetry properties of Wþ

Tresca D; fð Þ.
Proof As already mentioned, to calculate the local plastic dissipation pTresca dð Þ [see
Eq. (7.82)], one needs to determine the signs of the principal values dI , dII , dIII
given by Eq. (7.30).

Case (a): Dm � 0 and JD3 � 0 (D0
11 � 0Þ

Since dI ¼ D0
11 þDm b=rð Þ3, for the imposed loading it follows that everywhere

in the RVE dI is positive, and consequently dIII is negative [see Eq. (7.30)].
Moreover, dII can be considered to be positive everywhere in the RVE (see analysis
of the sign of dII presented in Cazacu et al. [18]). Thus, the local plastic dissipation
is given by:

pTresca dð Þ ¼ rT dI þ dII � dIIIð Þ=2 ¼ �rTdIII ; for any a� r� b ð7:88Þ
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Further substituting Eq. (7.30) into Eq. (7.82), we obtain:

Wþ
Tresca D; fð Þ ¼ 1

V

Z
X

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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m
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11Dm
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þ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

m
b6

r6
þ 2D0

11Dm
b3

r3
cos 2hð ÞþD02

11

r !
dV :

Since for Case (i), the strain-rate triaxiality u ¼ 2Dm=De, it follows that:

Wþ
Tresca D; fð Þ ¼ 3De

16pb3

Z
X

1þ u
b
r

� �3

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

b
r

� �6

þ 2u
b
r

� �3

cos 2hð Þ
s24 35 dV

ð7:89Þ

By the change of variable, y ¼ u b=rð Þ3, the above integral becomes:

Wþ
Tresca D; fð Þ ¼ uDe

8

Zu=f
u

Zp
0

1þ yþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 2y cos 2hð Þþ 1

p� � dy
y2

sin h dh ð7:90Þ

Noting that:

Zp
0

1þ yð Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 2y cos 2hð Þþ 1

p� � sin h
y2

dh

¼ 5
1þ yð Þ
y2

þ 3
2

y� 1ð Þ2
4y5=2

ln
ffiffiffi
y

p þ 1ffiffiffi
y

p � 1
		 		

 !
ð7:91Þ

further integration with respect to y leads to the expression of Wþ
Tresca D; fð Þ given by

Eq. (7.84)-(7.85), respectively.
Case (b): Dm � 0 and JD3 � 0 (D0

11 � 0Þ,
For this loading analysis of the sign of the principal values of dI , dII , dIII leads to

the following expression for the SRP:

Wþ
Tresca D; fð Þ ¼ De

4V

Z
X

u
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r3
� 1
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� 2u
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r3
cos 2hð Þþ 1
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dV ; otherwise

ð7:92Þ
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With V ¼ 4pb3=3 and dV ¼ r2 sin hdhdudr: Using the change of variable,
y ¼ u b=rð Þ3, these integrals can be written in the form:

For y[ 1;

Wþ
Tresca D; fð Þ ¼ Deu

8

Zu=f
u

Zp
0

y� 1ð Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 2y cos 2hð Þþ 1

p� � dy
y2

sin h dh;

while for y\1;
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8

Zu=f
u

Zp
0

1� yð Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 2y cos 2hð Þþ 1

p� � dy
y2

sin h dh

ð7:93Þ

Next, integration with respect to h leads to:

For y[ 1;

Wþ
Tresca D; fð Þ ¼ Deu

8

Zu=f
u

5
y� 1ð Þ
y2

þ 3
2

y2 þ 2yþ 1ð Þ
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ffiffiffi
y
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2
ffiffiffi
y

p
yþ 1

� �
dy;

while for y\1;

Wþ
Tresca D; fð Þ ¼ Deu

8

Zu=f
u

5
1� yð Þ
y2

� 3
2

y2 þ 2yþ 1ð Þ
y2

ffiffiffi
y

p arctan
2
ffiffiffi
y

p
y� 1

� �
dy:

ð7:94Þ

Further integration with respect to y leads to the expression of Wþ
Tresca D; fð Þ

given by Eqs. (7.86)–(7.87), respectively.

Theorem 7.9 (Cazacu et al. [18] yield criterion of a porous Tresca material under
axisymmetric loadings)
For any absolute value of the strain-rate triaxiality, u ¼ 2 Dmj j=De; the parametric
representation of the yield surface of the Tresca porous solid is:
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(a) For stress states such that Rm � 0 and JR3 � 0:

• For u� f :
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• For f\u\1:
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• For u� 1:
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(b) For stress states such that Rm � 0 and JR3 � 0:

• For u� f :
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• For f\u\1
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• For u� 1
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Based on the centro-symmetry property of the yield locus, demonstrated
earlier, the parametric representation of the yield locus corresponding to
stress states such that Rm � 0 and JR3 � 0 can be easily obtained from
Eqs. (7.95) to (7.100).
Thus,
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(c) For stress states such that Rm � 0 and JR3 � 0:

Rm

rT
¼ �Rm

rT
JR3 � 0; Rm � 0

			
Re

rT
¼ Re

rT
JR3 � 0; Rm � 0

			
8>><>>: ð7:101Þ

the right-hand expressions of Eq. (7.101) are given by the corresponding
Eqs. (7.95)–(7.97).

(d) For Rm � 0 and JR3 � 0:

Rm

rT
¼ �Rm

rT
JR3 � 0; Rm � 0

			
Re

rT
¼ Re

rT
JR3 � 0; Rm � 0

			
8>><>>: ð7:102Þ

where the right-hand side of the expression in Eq. (7.102) is given by the
corresponding Eqs. (7.98)–(7.100).

Proof In the following, we present the calculations that lead to the parametric
representation of the yield surface of the porous aggregate for Case (a). For all the
other loading conditions, the analysis can be done in a similar manner.

It can be easily seen that for Dm � 0 and D0
11 � 0; Eqs. (7.84)–(7.85) lead to:

ð@Wþ
Tresca=@D11Þ[ ð@Wþ

Tresca=@D33Þ ð7:102Þ

and @Wþ
Tresca=@Dm � 0;

so the stress state at yielding obtained with Eq. (7.83) is such that R11 [R33

ðJR3 � 0Þ and Rm � 0: Moreover, for any absolute value of the strain-rate triaxiality,
u ¼ 2 Dmj j=De; we obtain:
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u
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� F0

i uð Þ
� �

8>><>>: ð7:103Þ

In the above equation, i = 1, 2, and the prime symbol indicates the first
derivative of the respective functions. Further substitution of the expressions of
F1ðyÞ and F2ðyÞ given by Eq. (7.85) into Eq. (7.103) leads to Eqs. (7.95)–(7.97).

Remark It is worth noting that according to Cazacu et al. [18] criterion, the yield
surface of the porous Tresca material is smooth. In particular, there are no singu-
larities for hydrostatic states. Indeed, although in the plane (Rm=rT , Re=rT ) the
yield locus is represented by two curves, one corresponding to axisymmetric stress
states for which JR3 � 0 while the other corresponds to axisymmetric stress states for
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which JR3 � 0; these two curves coincide for purely hydrostatic loading. This is
because the limit when u ! 1 of the Eq. (7.97) is:

lim
JR3 !0
JR3 � 0

Rmð Þ ¼ � 2
3
rT ln f and lim

JR3 !0
JR3 � 0

Reð Þ ¼ 0

while the limit when u ! 1 of Eq. (7.100) is given by:

lim
JR3 !0
JR3 � 0

Rmð Þ ¼ � 2
3
rT ln f and lim

JR3 !0
JR3 � 0

Reð Þ ¼ 0

This means that

lim
JR3 !0
JR3 � 0

Rmð Þ ¼ lim
JR3 !0
JR3 � 0

Rmð Þ ¼ � 2
3
rT ln f and lim

JR3 !0
JR3 � 0

Reð Þ ¼ lim
JR3 !0
JR3 � 0

Reð Þ ¼ 0: ð7:104Þ

Similarly, using Eqs. (7.101) and (7.102), it can be easily shown that according
to Cazacu’s et al. [18] criterion for a porous Tresca material under compressive
hydrostatic loading yielding occurs at Rmj j ¼ 2

3 rT ln f . Therefore, for hydrostatic
loadings the exact solution is predicted (see also Theorem 7.2 and discussion).
Also, it can verified that Cazacu’s et al. [18] criterion predicts the exact value of the
yield stress for purely deviatoric axisymmetric loadings, namely that Re ¼
rT 1� fð Þ: Indeed, by taking u ! 0 in Eq. (7.95) one obtains:

lim
u!0
JR3 � 0

Rmð Þ ¼ 0 and lim
u!0
JR3 � 0

Reð Þ ¼ rT 1� fð Þ; ð7:105Þ

on the other hand by taking the limit when u ! 0 in Eq. (7.98), one obtains:

lim
u!0
JR3 � 0

Rmð Þ ¼ 0 and lim
u!0
JR3 � 0

Reð Þ ¼ rT 1� fð Þ: ð7:106Þ

To better illustrate the very specific dependence on the signs of the mean stress,
Rm, and the third-invariant JR3 of the yield locus of the porous Tresca material, in
Fig. 7.32 is shown the theoretical yield surface in the plane R33 � R11ð Þ=ð
rT ;Rm=rTÞ for several porosities f ¼ 0:1%, 1%, 2% and 5%, respectively. All the
yield surfaces show the same trends described above. Irrespective of the porosity,
the intersection of the curves corresponding to R11 ¼ R22 �R33 ðJR3 � 0Þ and R11 ¼
R22 �R33 ðJR3 � 0Þ belongs to the axis Rm ¼ 0 (i.e., there are no discontinuities by
passing from states characterized by JR3 � 0 to states characterized by JR3 � 0Þ.
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7.2.4.2 Implications of Adopting the Classic Simplifying Hypothesis
When Modeling Porous Materials with Tresca Matrix

As discussed in Sect. 7.2.3.1, the insensitivity of Gurson’s [30] criterion to JR3 , the
third-invariant of the stress deviator, [see also Eq. (7.41)] and the ensuing strong
symmetry properties of Gurson [30] yield surface for a porous Mises material are
direct consequences of neglecting the “cross-term” DmD0

11 in the expression of the
local plastic dissipation [see Eq. (7.34)]. It is worth analyzing the implications of
adopting the same simplifying hypothesis when deriving the plastic potential of a
porous material with matrix described by Tresca’s yield criterion.

It can be easily shown that irrespective of the loading scenario (i.e., the
respective signs of Dm and D0

11 ), if we neglect the cross-term in the expression of
the local plastic dissipation associated with Tresca yield criterion, the strain-rate
potential of the porous Tresca material reduces to the Gurson’s [29] strain-rate
potential for a von Mises material.

For example, in the case when (Dm � 0 and D0
11 [ 0Þ, the expression of the

strain-rate potential of the porous Tresca material is (see Theorem 7.8):
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Fig. 7.32 Yield surface of a
porous Tresca material
according to the Cazacu et al.
[18] criterion for loadings
such R11 ¼ R22 �R33

(JR3 � 0Þ and loadings such
R11 ¼ R22 �R33 (JR3 � 0Þ,
respectively, for porosity
f = 0.001, f = 0.01, f = 0.02,
and f = 0.05, respectively.
Stresses are normalized by the
matrix yield stress in uniaxial
tension, rT
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Note that if in the above equation the cross-term DmD0
11 is neglected, we obtain:

Wþ þ
Tresca D; fð Þ ’ 1

V

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ 4D02
11

q
dX ¼ WGurson D; fð Þ: ð7:108Þ

It is thus clearly demonstrated that neglecting the cross-term DmD0
11 amounts to

erasing the specificities of the plastic flow of the matrix, the resulting criterion for
the porous material being the same whether the plastic response of the matrix is
described by Tresca criterion, which incorporates dependence on both the second
and third-invariant of stress, or by von Mises criterion which describes only the
influence of the second-invariant of stress. Furthermore, Cazacu et al. [18] also
demonstrated that Gurson [30] yield criterion is an upper bound of the yield cri-
terion for porous solids with Tresca matrix developed in Cazacu et al. [18].

Figure 7.33 shows different zooms of the yield surface in the tensile quadrant in
comparison with the Gurson’s [30] yield surface for the same porosity. Note that the
Gurson’s [30] criterion is an upper bound of the exact yield locus of a porous
material with Tresca matrix and coincides with it only for purely hydrostatic
(R11 ¼ R22 ¼ R33) or purely deviatoric loadings (Rm ¼ 0Þ (for a complete proof
see Cazacu et al. [18]).

In contrast to Gurson [30] model, the Cazacu et al. [18] criterion for a porous
Tresca material predicts that there is an increasing influence of JR3 as stress tri-
axiality increases. It is predicted that only for stress states corresponding to stress
triaxialities T approaching infinity (i.e., purely hydrostatic states), the effect of JR3
starts to decrease, the Gurson [30] and Cazacu et al. [18] yield curves coinciding at
the purely hydrostatic point (JR3 ¼ 0Þ, as it should be [see Eq. (7.108)].

It is worth summarizing the key features of the Cazacu et al. [18] criterion for
porous Tresca materials under axisymmetric states:

• Yielding is invariant to the transformation: Rm;R
0ð Þ ! Rm;�R0ð Þ, so the

dilatational response of the porous Tresca material depends on the sign of mean
stress, Rm (tension–compression asymmetry);

• Yielding of the porous Tresca material depends on the third-invariant of the
stress deviator. Furthermore for tensile hydrostatic pressure (Rm � 0Þ the
response for axisymmetric stress states corresponding to JR3 � 0 is softer than for
axisymmetric stress states corresponding to JR3 � 0. For purely deviatoric
loadings, the response is the same, and the effect of JR3 becomes noticeable with

cFig. 7.33 Zoom on the tensile quadrant of the yield surface for a porous von Mises material
according to Gurson [30] criterion in comparison with Cazacu et al. [18] yield surface for a porous
Tresca material (solid line) for the same porosity (f = 5%) and axisymmetric stress states
corresponding to R11 ¼ R22 �R33 (JR3 � 0Þ and R11 ¼ R22 �R33 (JR3 � 0Þ, respectively, within
following ranges: a low stress triaxialities (0�Rm=rT � 0:8; 0:85\Re=rT\ 1� fð ÞÞ; b interme-
diate triaxialities (0:8\Re=rT\1:8; 0:5\Re=rT\0:9Þ: (c) high stress triaxialities
(1:8\Rm=rT\2:1;0\Re=rT\0:7Þ
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increasing triaxiality. For triaxialities approaching infinity, the effect of JR3 starts
to decrease, and both yield surfaces coincide at the purely hydrostatic point
(e.g., see Fig. 7.33).

• The criterion reproduces the exact solution of a hollow sphere obeying Tresca’s
yield criterion and subjected to hydrostatic loading.

• The Gurson’s [30] criterion is an upper bound of the Cazacu et al. [18]. The two
criteria coincide only for purely deviatoric axisymmetric loading or purely
hydrostatic loading. Specifically, for purely deviatoric loading, yielding occurs
at Re ¼ rT 1� fð Þ; while for purely hydrostatic loadings, yielding occurs at
Rm ¼ � 2

3 rT ln f :

7.2.4.3 Comparison of the Cazacu et al. [18] Yield Criterion with F.E.
Unit-Cell Calculations

Cazacu et al. [13] reported results of F.E. unit-cell calculations for the case when
the matrix is governed by Tresca yield criterion. The main focus was on assessing
the importance of the consideration of the specificities of the local plastic dissi-
pation on yielding and void evolution of a porous Tresca material, and verify the
trends predicted by Cazacu et al. [18] criterion. Given that previous F.E. unit-cell
studies did not concern porous Tresca materials, another outcome of the study is the
possibility to compare the F.E. unit-cell results for a von Mises material with that of
a Tresca material using the same unit-cell geometry and loading history.

In the following, we present only the main results of Cazacu et al. [13] F.E.
analyses of cubic unit cells containing a single initially spherical cavity. For more
details concerning the boundary-value problem, and the geometry of the unit cell
considered, the reader is referred to Sect. 7.2.3.2. Likewise, for details concerning
the F.E. implementation of an elastic–plastic model with yielding according to
Tresca criterion, the reader should refer to Chap. 4.

As an example, in Fig. 7.34a–d are presented comparisons between the theo-
retical yield surfaces according to the Cazacu et al. [18] criterion and the F.E.
unit-cell results for several porosities ranging from f ¼ 0:001 to f ¼ 0:04. The
numerical points correspond to prescribed axisymmetric loads such that the stress
triaxiality, T; is fixed. For either loading scenarios (i.e., JR3 � 0 or JR3 � 0Þ, the stress
triaxialities T range from �0:25 to �25: Note that the unusual features of the
dilatational response predicted by the Cazacu et al. [18] criterion [Eqs. (7.95)–
(7.102)], namely the sensitivity to the sign of the applied stress for triaxialities
different from 0 and �1, and the very specific coupling between the mean stress
and the third-invariant of the stress deviator are confirmed by the numerical results.
Irrespective of the porosity level, f ; the numerical yield surface is no longer
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symmetric with respect to the axis Rm ¼ 0; a given fixed value of the stress tri-
axiality T corresponds to two different yield points. It is also worth noting that for
both tensile and compressive loadings, the relative positions of the theoretical yield
points for JR3 � 0 and JR3 � 0 are also confirmed by the F.E. results. Specifically, for
tensile axisymmetric loadings such that the axial stress is larger than the lateral
stress (JR3 � 0Þ, the response is softer than in the case when the applied stresses are
such that the axial stress is smaller than the lateral stress (JR3 � 0Þ (see Fig. 7.34).
Hence, the very specific coupling between the mean stress Rm and the
third-invariant JR3 on yielding of the porous Tresca material predicted by the ana-
lytic criterion is also confirmed by the F.E. unit-cell calculations. Also, it is clearly

Fig. 7.34 Comparison between finite-element calculations and the analytical Cazacu et al. [18]
yield criterion for an porous material with Tresca matrix and initial porosity: a f = 0.001,
b f = 0.01, c f = 0.02, and d f = 0.04
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seen that the sensitivity to JR3 is strongly influenced by the level of porosity in the
material. For a low porosity, the third-invariant effects are less pronounced than in
the case of a larger porosity (e.g., compare Fig. 7.34a, d).

Cazacu et al. [13] also reported F.E. cell calculations of the stress–strain
response, and void evolution. The F.E simulations were conducted for a fixed ratio
of the axial and lateral true stresses corresponding to different levels of stress
triaxiality, T , for stress histories corresponding to positive and negative values of
JR3 , respectively. Figure 7.35 compares the porosity f versus the overall equivalent
strain Ee [for the definition Ee see Eq. (7.51)] curves for axisymmetric loading
histories at fixed stress triaxialities T ¼ 2 and T ¼ 3; respectively. The initial
porosity was taken f0 ¼ 0:0013 such as to also enable comparison with the results
for a porous von Mises material with the same initial porosity (see Sect. 7.2.3.4).

Let us first note the very strong influence of the stress triaxiality on the rate of
void growth for the porous Tresca material. Secondly, irrespective of the value of
the triaxiality both the analytical and F.E. cell calculations show that there is a
marked influence of the third-invariant of the stress deviator on void growth.
Indeed, comparison between the results presented in Fig. 7.35a, b shows that the
criterion accounts for the influence of the third-invariant on void growth, the rate of
void growth being faster for loadings such that JR3 � 0: This is to be expected since
according to the Cazacu et al. [18] model for states corresponding to tensile mean
stresses, the response is softer for JR3 � 0 than for JR3 � 0 (see Fig. 7.33). Note also
that the agreement between numerical results and model is good, in particular for
axisymmetric loadings corresponding to R1 ¼ R2 �R3 (JR3 � 0Þ.

Figure 7.36 shows a comparison between the macroscopic stress–strain response
(Re vs. Ee) according to Cazacu et al. [18] criterion and the numerical points. Note
that since the analytical model captures the effects of the stress triaxiality and JR3 on
void growth, it describes correctly the influence of the loading history on the
softening of the porous solid.

Figure 7.37 shows the comparison between the predictions for void collapse
according to the analytical model and the F.E. unit-cell results while Fig. 7.38
shows the predictions of the effective stress versus equivalent strain response (Re

vs. Ee) for the porous Tresca material. The loading histories considered correspond
to axisymmetric states at fixed compressive triaxialities T ¼ �2 and T ¼ �3;
respectively. The initial porosity was considered higher ðf0 ¼ 0:0104Þ such as to
allow plastic strains to develop prior to void closure. It is worth noting that the rate
of void collapse is much faster for loadings at stress triaxiality T ¼ �3 than at
T ¼ �2: The agreement between numerical results and the model is very good.

Analysis of the effective stress Re versus Ee curves in Fig. 7.38 shows that the
analytical model predicts that the rate of hardening is higher for T ¼ �3 than for
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T ¼ �2; but that the limiting state, which corresponds to f close to zero (void
closure), is the same. This is in agreement with the F.E. unit-cell results.

Most importantly, these results correlate with the predicted void evolution
shown in Fig. 7.37, i.e., for T ¼ �3 the rate of void collapse is faster than for
T ¼ �2. Also, the specific influence of the coupling effect between Rm and JR3 on

Fig. 7.35 Comparison between the void volume fraction evolution with the equivalent strain Ee

according to the Cazacu et al. [18] analytical model, and F.E. unit-cell model calculations
(symbols) for axisymmetric loadings at fixed stress triaxialities T ¼ 2 and T ¼ 3; respectively:
a loadings such that R1 ¼ R2 �R3 (JR3 � 0Þ; b loadings such that R1 ¼ R2 �R3 (JR3 � 0Þ. Initial
porosity f0 = 0.0013 (after Cazacu et al. [13])
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void evolution, predicted by the model, is confirmed by the F.E. unit-cell model
(see Figs. 7.35 and 7.37). Indeed, for positive stress triaxialities (i.e., Rm [ 0Þ the
rate of void growth is faster for the case when loading is such that R1 ¼ R2 �R3

(JR3 � 0Þ, and the overall response is softer than in the case when loading is such
that R1 ¼ R2 �R3 (JR3 � 0Þ (see Fig. 7.35). However, for negative stress triaxiali-
ties (i.e., Rm\0Þ, the reverse holds true, i.e., void collapse is faster for axisym-
metric loadings with (JR3 � 0Þ than for axisymmetric loadings with (JR3 � 0Þ (see
Fig. 7.37).
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Fig. 7.36 Comparison between the effective stress Re ¼ R1 � R3j j evolution with the equivalent
strain Ee, according to the Cazacu et al. [18] analytical model and F.E. unit-cell model calculations
(symbols) for axisymmetric loadings at fixed positive (tensile) triaxialities, T ¼ 2 and T ¼ 3;
respectively: a loadings such that R1 ¼ R2 �R3 (JR3 � 0Þ; b loadings such that R1 ¼ R2 �R3

(JR3 � 0Þ. Initial porosity, f0 = 0.0013 (after Cazacu et al. [13])
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7.2.4.4 Importance of the Local Plastic Heterogeneity
on the Dilatational Response of a Porous Tresca Material

To assess the importance of accounting for the local heterogeneity of the plastic
flow, in Fig. 7.39 are shown contours of constant equivalent plastic strain (i.e., local
plastic dissipation pTresca dð Þ normalized by rT ) at various stages of the deformation
process for axisymmetric loadings at fixed stress triaxiality T ¼ 2 corresponding to
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Fig. 7.37 Comparison between the void volume fraction evolution (collapse) as a function of the
equivalent strain Ee according to the Cazacu et al. [18] analytical model, and F.E. unit-cell model
calculations (symbols) for axisymmetric loadings at fixed negative (compressive) stress triaxialities
T ¼ �2 and T ¼ �3; respectively, for: a loadings such that R1 ¼ R2 �R3(JR3 � 0Þ; (b) loadings
such that R1 ¼ R2 �R3 (JR3 � 0Þ. Initial porosity f0 = 0.0104 (after Cazacu et al. [13])
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R1 ¼ R2 �R3 (JR3 � 0Þ (Fig. 7.39a) and R1 ¼ R2 �R3 (JR3 � 0Þ, respectively,
(Fig. 7.39b) for an initial porosity f0 ¼ 0:0013. To allow comparison, we present
the isocontours of the local plastic strain that correspond to the same level of the
overall equivalent strain Ee. Note that for the two loadings, the distribution of
plastic deformation in the unit cell is markedly different. For any fixed level of the
overall equivalent strain Ee, the plastic zone is larger for loadings corresponding to
JR3 � 0 (see Fig. 7.39b) than in the case when loadings are such that JR3 � 0
(Fig. 7.39a). This correlates with the rate of void growth being slower for JR3 � 0
than for JR3 � 0 (see Fig. 7.35). Also note, that for the axisymmetric loading such

that JR3 � 0 (i.e., axial stress greater than the lateral stresses throughout the
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Fig. 7.38 Comparison between the effective stress Re ¼ R1 � R3j j evolution with the equivalent
strain Ee according to the Cazacu et al. [18] analytical model and F.E. unit-cell model calculations
(symbols) for axisymmetric loadings at fixed negative (compressive) triaxialities, T ¼ �2 and
T ¼ �3; respectively: a loadings such that R1 ¼ R2 �R3 (JR3 � 0Þ; b loadings such that R1 ¼
R2 �R3 (JR3 � 0Þ. Initial porosity, f0 = 0.0104 (after Cazacu et al. [13])
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deformation history) the plastic zone extends less in the axial direction than in the
case when JR3 � 0 (i.e., axial stress less than the lateral stresses).

As discussed in Sect. 7.2.4.2, neglecting the “cross-term” DmD0
11 in the

expression of the matrix plastic dissipation leads to an approximate local plastic
dissipation, which depends only on the radial coordinate [see Eq. (7.108)], so the
heterogeneities in the plastic flow of the matrix are “smoothed out.” However,
comparison between Fig. 7.39a, b clearly illustrates that the local heterogeneities of
the plastic dissipation are very important. Moreover, neglecting the heterogeneity of
the plastic dissipation in the matrix, leads to a potential for the porous Tresca
material identical to Gurson [30]. The fact that the Gurson’s [30] model is not a
good approximation for the mechanical response of a porous Tresca material is
clearly seen from the results presented in Fig. 7.40. This figure shows the void
evolution according to the Cazacu et al. [18] analytical model for the porous Tresca
material, the F.E. unit-cell model with matrix governed by Tresca yield criterion,
and the Gurson’s [30] criterion predictions. The comparisons correspond to
axisymmetric loadings at fixed triaxiality T ¼ 2 and R1 ¼ R2 �R3 (JR3 � 0Þ
(Fig. 7.40a) and R1 ¼ R2 �R3 (JR3 � 0Þ, respectively (see Fig. 7.40b). Note that the
differences in the rate of void growth between the Gurson [30] model and F.E.
unit-cell results are significant. Moreover, irrespective of the sign of JR3 , the Gurson
[30] model predicts a lower porosity level in the material than the Cazacu et al. [18]
criterion. Because Cazacu et al. [18] model for a porous Tresca material accounts
for the coupling between Rm and JR3 , void evolution depends on JR3 . Indeed,

Fig. 7.39 Isocontours of the local equivalent plastic strain in the F.E. unit cell corresponding to
several levels of the equivalent strain Ee of a porous Tresca material with an initial porosity
f0 ¼ 0:0013 subject to axisymmetric loadings at fixed stress triaxiality, T ¼ 2: a loadings with
R1 ¼ R2 �R3 (JR3 � 0Þ; b loadings with R1 ¼ R2 �R3 (JR3 � 0Þ
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according to the criterion the rate of void growth is faster for loadings such that
JR3 � 0 than for loadings corresponding to JR3 � 0: Also, the rate of void collapse is
much faster in a porous solid with Tresca matrix than in a porous solid governed by
Gurson’s [30] criterion (see Fig. 7.41). For example, for the same initial porosity

Fig. 7.40 Comparison between the void volume fraction evolution with equivalent strain Ee

according to the porous Tresca model (Cazacu et al. [18]) (line), the Gurson [30] model (dashed
line), and F.E. unit-cell calculations with matrix behavior governed by Tresca yield criterion
(symbols) for axisymmetric loadings at fixed triaxiality T ¼ 2 corresponding to: a loadings such
that R1 ¼ R2 �R3 (JR3 � 0Þ and b loadings with R1 ¼ R2 �R3 (JR3 � 0Þ. Initial porosity
f0 ¼ 0:0013
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f0 ¼ 1:1%, for axisymmetric loadings at a fixed negative triaxiality T ¼ �2
(compressive mean stress) at Ee ¼ 0:1; the void volume fraction according to the
porous Tresca criterion are: f ¼ 0:16 f0 for loadings with JR3 � 0 (Fig. 7.41a) and
f ¼ 0:1 f0 for loadings with JR3 � 0 (Fig. 7.41b), while according to the Gurson’s
[30] criterion: f ¼ 0:24 f0. Thus, Gurson’s [30] criterion predicts that the porosity is
almost double for the Cazacu et al. [18] porous Tresca material.

In summary, it is clearly seen that irrespective of the loading history, if the local
plastic heterogeneity of the matrix is neglected, the rate of void growth or collapse
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Fig. 7.41 Comparison between the void volume fraction evolution with the equivalent strain Ee

according to the porous Tresca model (Cazacu et al. [18]) (line), the Gurson [30] model (dashed
line), and F.E. unit-cell calculations with matrix behavior governed by Tresca yield criterion
(symbols) for axisymmetric loadings at fixed triaxiality (symbols) T ¼ �2 corresponding to:
a loadings such that R1 ¼ R2 �R3 (JR3 � 0Þ and b loadings with R1 ¼ R2 �R3 (JR3 � 0Þ. Initial
porosity f0 ¼ 0:01
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is drastically underestimated. It also reveals that one cannot adopt a Gurson-type
model for description of the mechanical behavior of porous ductile materials with
plastic deformation governed by a criterion other than von Mises.

7.2.4.5 3-D Strain-Rate Potential

The analysis of the mechanical response of a porous von Mises material for general
3-D loadings has revealed that although the presence of voids induces dependence
on all invariants, the shape of the cross-sections of the yield surface with the
octahedral plane deviates slightly from a circle, and changes very little as the
absolute value of the mean strain-rate Dm increases (see Sect. 7.2.3.5). In the case
when the matrix behavior is governed by Tresca yield criterion, which depends on
both invariants, Cazacu et al. [18] analysis conducted for axisymmetric states has
revealed that the effects of the third-invariant on the behavior of the porous material
are much stronger than in case when the matrix is governed by von Mises criterion.
Moreover, it was shown that for axisymmetric states the strain-rate potential and
yield criterion of the porous Tresca material can be obtained analytically [e.g., see
Eqs. (7.95)–(7.102)].

For general 3-D states, the integral representing the plastic dissipation of the
porous Tresca material cannot be obtained in closed form, however the combined
effects of all the invariants of the strain-rate D on the plastic response can be
assessed numerically. Such an analysis was conducted by Revil-Baudard and
Cazacu [55] who established that for a porous Tresca material the relationship
between JD2 and JD3 at yielding depends on both the level of the mean strain-rate Dm

and on the porosity. Specifically, there is a drastic change in the shape of the
cross-section of the isosurface in the octahedral plane. As the absolute value of the
mean strain-rate Dm increases, the shape of the cross-section evolves from a regular
hexagon ðDm ¼ 0Þ to a triangle with rounded corners. However, the level of
porosity is key in how fast the shape of the cross-section changes with increasing
Dm. In the following are presented the main findings, for more details the reader is
referred to Revil-Baudard and Cazacu [55].

As discussed in Sect. 7.2.4.1, an upper-bound estimate of the exact strain-rate
potential of a porous Tresca material is:

Wþ
Tresca D; fð Þ ¼ 1

2V

Z
X

dIj j þ dIIj j þ dIIIj jð Þ dV ; ð7:109Þ

with dI ; dII and dIII being the principal values (unordered) of the strain-rate d ¼
rvþrvTð Þ=2 corresponding to Rice and Tracey [58] velocity field given by
Eq. (7.28). Only for axisymmetric loadings one can determine the signs of dI , dII
and dIII and calculate the integral of Eq. (7.109) explicitly, without any approxi-
mation (see Sect. 7.2.4.1). For general 3-D states, Wþ

Tresca D; fð Þ can only be esti-
mated numerically. To this end, in Revil-Baudard and Cazacu [55], the hollow
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sphere was discretized with 125,000 hexahedral elementary volumes with one
integration point at the center. For axisymmetric loadings, the numerical estimate of
Wþ

Tresca D; fð Þ was compared to the analytical results [Eqs. (7.84)–(7.87)], the dif-
ferences being negligible (error less than 10−7).

As an example, in Fig. 7.42a is shown the normalized 3-D isosurface of the
porous Tresca material with f ¼ 1% for states characterized by (Dm � 0Þ and
(Dm � 0Þ, respectively. Specifically, this convex surface contains all states
Dm;R; cð Þ that produce the same plastic dissipation Wþ

Tresca D; fð Þ ¼ 9:21
 10�3 s−1

for the porous material [for the definitions of R and c, see Eqs. (7.74)–(7.75)]. Let
us note that the presence of voids induces a strong influence of the mean strain-rate
Dm on the overall plastic dissipation (e.g., compare the isosurface for the porous
Tresca material with that of the fully dense material (hexagonal prism) shown in
Fig. 7.42b). The SRP for f ¼ 1% is closed on the hydrostatic axis. As already
mentioned for purely hydrostatic states, i.e., D ¼ DH

mI; according to Eqs. (7.73) and
(7.109), Wþ

Mises D; fð Þ ¼ Wþ
Tresca D; fð Þ ¼ 2 DH

m

		 		 ln 1=fð Þ: Thus the intersection of the
isosurface with the planes Dm ¼ DH

m and Dm ¼ �DH
m are two points on the

hydrostatic axis, which are symmetric with respect to the origin (see Fig. 7.42).
To investigate the effects of all invariants on the response of the porous Tresca

material, the cross-sections of the same 3-D isosurface with the planes Dm ¼
constant are considered (see Fig. 7.43). Note that the intersection of the isosurface
with the plane Dm ¼ 0 is a regular hexagon. This is to be expected since states for
which Dm ¼ 0 correspond to purely deviatoric loadings for which the plastic dis-
sipation of the porous solid coincides with that of the matrix (i.e., Tresca behavior).

Due to the presence of voids, the cross-sections of the isosurface with all the
other deviatoric planes Dm ¼ c; with c 6¼ 0 are “smoothed out.” It is worth noting
the very strong influence of Dm on the shape of the cross-sections, which changes

x mD 3 D

D y
Dz

Purely hydrostatic 
Dm>0

Purely hydrostatic
Dm<0

Purely deviatoric
Dm=0

x mD 3 D

D y
Dz

(a) (b)

Fig. 7.42 a The 3-D isosurface for a porous Tresca material for both tensile (Dm [ 0Þ and
compressive (Dm\0Þ states. Note that this convex surface contains all the points Dm;R; cð Þ such
that Wþ

Tresca D; fð Þ ¼ 9:21
 10�3 with f ¼ 1%. b Fully dense material (Tresca SRP) (after
Revil-Baudard and Cazacu [55])
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drastically with the level of Dm (see Fig. 7.43). Specifically, the shape of the
cross-section evolves from a regular hexagon (Dm ¼ 0Þ to a triangle with rounded
corners (the innermost cross-section corresponding to Dm ¼ 9
 10�4 s−1).

It is also worth noting the strong coupling between all invariants Dm, R; [or JD2 ,
see Eq. (7.74)], and c [see Eq. (7.75)] on the plastic response of the porous Tresca
material. Note also that at yielding the relationship between the invariants associ-
ated with shear effects, i.e., the relationship between R and c (or between JD2 and JD3 )
is very specific and depends strongly on the mean strain-rate Dm as shown in the
zoom of the same cross-sections in the sector: �p=6� c� p=6 (see Fig. 7.43b).
Also in Fig. 7.44 is plotted R cð Þ (normalized by R c ¼ �p=6ð ÞÞ for cross-sections
corresponding to Dm ¼ constant (in the range Dm ¼ 0 to Dm ¼ 9
 10�4 s−1).
Since Tresca’s SRP depends on both JD2 and JD3 , even the cross-section corre-
sponding to Dm ¼ 0 (matrix behavior) is not a circle.

This is clearly seen by comparing the curve R cð Þ=R �p=6ð Þ versus c at Dm ¼ 0
for the porous Tresca material (Fig. 7.44) with that corresponding to a porous von
Mises material, which is a straight line (see Fig. 7.21).

Furthermore, for the porous Tresca material only for loading at Dm ¼ 0; R cð Þ
has a maximum at c ¼ 0 (JD3 ¼ 0Þ while the minima corresponding to axisymmetric
states (c ¼ �p=6Þ and R �p=6ð Þ ¼ R p=6ð Þ:

For all other loadings at Dm ¼ constant; the maximum of R cð Þ is no longer at
c ¼ 0; but shifts towards the axisymmetric state corresponding to c ¼ �p=6
(D1 ¼ D3\D2 and JD3 [ 0Þ; on the other hand, the minimum of R cð Þ is always
obtained for c ¼ p=6 (axisymmetric state corresponding to JD3 \0Þ. Another

(a)
(b)

f1 f2

f3

Dm=0

f=0.01

Dm=0

f=0.01

3D =0

Fig. 7.43 Cross-sections of the 3-D isosurface of a porous Tresca material with several planes
Dm ¼ constant: Outer cross-section corresponds to Dm ¼ 0 (matrix behavior) and the innermost
cross-section corresponds to Dm ¼ 9
 10�4 s−1: a entire cross-section displaying threefold
symmetry; b zoom in the sector: �p=6� c� p=6: Initial porosity: f = 1% (after Revil-Baudard
and Cazacu [55])

416 7 Plastic Potentials for Isotropic Porous Materials …



specificity of the dilatational response of a porous Tresca material is that irre-
spective of the cross-section Dm = constant, there are two states with the same R
(or JD2 ): the axisymmetric state c ¼ �p=6 and another state say c ¼ c1; the value of
c1 depending on Dm (e.g., for Dm ¼ 0; c1 ¼ p=6Þ; the higher the level of Dm, the
lower is the value of c1.

As already mentioned, Wþ
Tresca D; fð Þ is centro-symmetric. This means that for

any porosity f :

Wþ
Tresca Dm;R; c; fð Þ ¼ Wþ

Tresca �Dm;R;�c; fð Þ:

To illustrate this remarkable property, in Fig. 7.45 are shown the cross-sections
of the same 3-D isosurface Wþ

Tresca D; fð Þ ¼ 9:21
 10�3 (f ¼ 1% ) with the devi-
atoric planes Dm ¼ 7
 10�4 s−1 and Dm ¼ 9
 10�4 s−1, respectively, (interrupted
lines) as well as the cross-sections with the planes Dm ¼ �7
 10�4 s−1 and Dm ¼
�9
 10�4 s−1, respectively (solid lines). The symmetry of all these cross-sections
with respect to the origin is clearly seen. For example, for states corresponding to
JD3 [ 0 (�p=6� c\0Þ to produce the same plastic dissipation, R (or JD2 ) must be
higher for tensile states (Dm [ 0: interrupted line) than for compressive states
(Dm\0: solid line). The reverse holds true for loadings corresponding to JD3 \0
(0\c� p=6Þ. It is worth mentioning that this remarkable property was put into
evidence experimentally by Combaz et al. [23] for Al foams. Moreover, the shapes
of the experimental cross-sections in the octahedral plane are triangles with rounded
corners, the directions to which the apex of the triangle points depending on the
sign of the applied mean stress (or Dm).
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Fig. 7.44 Shape of the cross-sections revealed by the variation of R cð Þ vs. c corresponding to
Dm = constant. Note that the plane Dm = 0 represents the matrix behavior (i.e., Tresca). Initial
porosity: f = 0.01 (after Revil-Baudard and Cazacu [55])
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Remark While in the case of a porous von Mises material, the most pronounced
difference in plastic response is between the axisymmetric states (i.e., between
R c ¼ p=6ð Þ and R c ¼ �p=6ð Þ; in the case of a porous Tresca material, no general
conclusions can be drawn because the relationship between R and c (i.e., the
dependence between the invariants JD2 and JD3 ) at yielding depends both on the level
of Dm and porosity (e.g., compare Fig. 7.20 with Fig. 7.43).

To further illustrate the specificities of the plastic response of a porous Tresca
material in Fig. 7.46a are shown the cross-sections with deviatoric planes of the

Fig. 7.45 Cross-sections of
the isosurface of the porous
Tresca material,
Wþ

Tresca D; fð Þ ¼ 9:21
 10�3

(f ¼ 1%) with the deviatoric
planes Dm ¼ 7
 10�4 s−1

and Dm ¼ 9
 10�4 s−1,
respectively (interrupted
lines) as well as the
cross-sections with the planes
Dm ¼ �7
 10�4 s−1 and
Dm ¼ �9
 10�4 s−1,
respectively (solid lines).
Note the centro-symmetry of
the cross-sections which is
due to the invariance of the
plastic response to the
transformation
Dm;D0ð Þ ! �Dm; �D0ð Þ

(a) (b)

Fig. 7.46 Cross-sections of the 3-D isosurfaces of the porous Tresca material with several
deviatoric planes Dm ¼ constant for: a porosity f ¼ 0:1% and b porosity f ¼ 5%. In each case, the
outermost cross-section corresponds to Dm ¼ 0 while the innermost cross-section corresponds to
Dm
�
DH

m ¼ 0:9; where DH
m represents the hydrostatic limit (after Revil-Baudard and Cazacu [55])
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surface corresponding to f ¼ 0:1% while in Fig. 7.46b are shown the cross-section
of the surface corresponding to f ¼ 5% and the same plastic dissipation
9:21
 10�3 s−1. Note that irrespective of the level of porosity, the same general
trends are observed. Namely, due to the presence of the voids, the shape of the
cross-section changes from a regular hexagon (Dm ¼ 0; matrix behavior) to a tri-
angle with rounded corners as the absolute value of Dm increases. It is very inter-
esting to note the important role played by the level of porosity. Indeed, the porosity
is key in how fast the shape of the cross-section changes along the hydrostatic axis. If
the level of porosity is small (e.g., f ¼ 0:1% see Fig. 7.46a), the cross-sections
smooth out slower than in the case when the level of porosity in the matrix is higher
(e.g., compare with the cross-sections corresponding to f ¼ 1% shown in Fig. 7.43).
The same conclusion can be drawn by comparing the cross-sections shown in
Fig. 7.43 (f ¼ 1%) and those presented in Fig. 7.46b, which correspond to a
porosity f ¼ 5%. For example, the cross-section of triangular shape corresponds to a
lower value of Dm

�
DH

m in the case when f ¼ 5% than in the case when f ¼ 1%.

7.2.4.6 Comparison Between the Theoretical Response of Porous
Solids with Tresca and von Mises Matrices

The influence of the yield criterion describing the plastic flow of the matrix on the
mechanical response of a porous solid for both tensile and compressive states can
be put into evidence through direct comparisons between the mechanical response
of a porous Tresca material and porous Mises material. Specifically, Revil-Baudard
and Cazacu [54] analyzed yielding and void evolution under axisymmetric loadings
using the porous Tresca criterion [see Eqs. (7.95)–(7.100)], the Cazacu et al. [19]
[Eqs. (7.66)–(7.71)] and the Gurson [30] [Eq. (7.41)] criteria in which the matrix is
modeled by the von Mises yield criterion.

As an example, Fig. 7.47a, b show in the plane Re;Rmð Þ the theoretical yield sur-
faces corresponding to the same porosity f ¼ 3%. Both the stress states corresponding
to R11 ¼ R22 �R33 (JR3 � 0Þ, and R11 ¼ R22 �R33 (JR3 � 0Þ are represented. The
strong influence of the particularities of the plastic flowof thematrix on yielding of the
porousmaterials is clearly seen. In particular, the third-invariant effects on yielding are
much stronger for a porous material with matrix obeying Tresca criterion than for the
porousmaterial withmatrix obeying vonMises yield criterion. Furthermore, for stress
triaxialities, T , different from zero or infinity, the response of the porous Tresca
material is softer than that of a porous material with von Mises matrix. Note that the
Gurson [30] model is an upper bound for both criteria, the difference between the
predictions of the porous Tresca model and Gurson [30] being pronounced. This very
strong influence of the plastic flow of the matrix on yielding of the porous solid can be
easily explained by comparing Wþ

Tresca D; fð Þ [Eqs. (7.84)–(7.87)], Wþ
Mises D; fð Þ

[Eqs. (7.61)–(7.63)] and WGurson D; fð Þ [Eq. (7.37)]. All criteria coincide for T ¼ 0
(i.e., purely deviatoric loadings) when the yield limit is given by:Re ¼ R11 � R33j j ¼
rT 1� fð Þ or for T ¼ 1 (i.e., purely hydrostatic loadings) when the yield limit
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is: Rmj j ¼ 2R11 þR33j j ¼ � 2
3 rT ln f :Note also that the curvature of the yield surface

of the porous material depends strongly on the criterion that governs the plastic
behavior of the matrix. This implies a marked difference in void evolution that will be
discussed further.

Figure 7.48 shows the predicted void evolution as a function of the equivalent
strain, Ee for axisymmetric loadings at fixed triaxiality, T ¼ 2 corresponding to
R11 ¼ R22 �R33 (JR3 � 0Þ, and R11 ¼ R22 �R33 (JR3 � 0Þ, respectively. The initial
porosity is f ¼ 0:13%. Irrespective of the sign of the third-invariant, the rate of void
growth is much faster in a porous solid with Tresca matrix than in a porous solid

(a)

(b)

Fig. 7.48 Comparison
between the evolution of the
void volume fraction with the
overall equivalent strain Ee

for axisymmetric loadings at
fixed stress triaxiality T ¼ 2
predicted by Gurson [30],
Cazacu et al. [19], and the
criterion for porous Tresca
materials of Cazacu et al.
[18]; initial porosity,
f0 ¼ 0:13%:
a R11 ¼ R22 �R33 (JR3 � 0Þ
and b R11 ¼ R22 �R33

(JR3 � 0Þ

JFig. 7.47 Comparison between the yield surfaces for porous solids with von Mises matrix
according to Gurson [30] and Cazacu et al. [19] criterion and the yield surface for a porous Tresca
material according to Cazacu et al. [18] criterion for axisymmetric tensile loadings corresponding
to: a R11 ¼ R22 �R33 (JR3 � 0) and b R11 ¼ R22 �R33 (JR3 � 0Þ; c representation in the plane
Rmð Þ=rT ; R11 � R33ð Þ=rTð Þ of all surfaces for axisymmetric loadings at both positive and negative

triaxialities. Porosity f ¼ 3%
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with von Mises matrix. Furthermore, because Gurson’s [30] criterion is an upper
bound for both criteria, it predicts the slowest void growth. The differences in the
rate of void growth are significant. For example, for loadings at JR3 � 0 at Ee ¼
0:15; the Gurson [30] model predicts a porosity f ¼ 0:01; the Cazacu et al. [19]
model predicts f ¼ 0:013 while according to the porous Tresca criterion of Cazacu
et al. [18], f ¼ 0:02: Thus, the porosity according to the Gurson [30] criterion is
half that predicted for the porous Tresca material. These results also show that
neglecting the coupling between shear and mean stress in the expression of the local
plastic dissipation amounts not only to erasing the particularities of the plastic flow
of the matrix (see also discussion in Sects. 7.2.4.2 and 7.2.4.4, respectively) but
also to a drastic underestimate of the rate of void growth. The same conclusions can
be drawn by analyzing the predicted void evolution for T ¼ 2 and JR3 � 0
(Fig. 7.48b).

As already discussed, the Cazacu et al. [19] criterion for a porous Mises material
and Cazacu et al. [18] model for a porous Tresca material predict that the rate of void
growth is faster for axisymmetric loadings at JR3 � 0 than for axisymmetric loading at
JR3 � 0 (compare Fig. 7.48a with Fig. 7.48b). According to both criteria at an
equivalent plastic strain Ee ¼ 0:15, the void volume fraction is almost 8% higher for
loadings such that JR3 � 0 than for loadings such that JR3 � 0: As already mentioned,
since the Gurson [30] criterion does not account for couplings between mean stress
and shear stresses, it cannot capture the influence of the sign of JR3 on void growth.

Figure 7.49 shows the evolution of the void volume fraction as a function of the
overall equivalent strain, Ee for axisymmetric loadings and negative stress triaxi-
ality, T ¼ �2; the initial porosity being set to f0 ¼ 5%. Since the mean stress, Rm,
is negative (compression), void collapse occurs. Note that the rate of void collapse
is much faster in a porous solid with Tresca matrix than in a porous solid with von
Mises matrix. Furthermore, as demonstrated previously, the Gurson [30] criterion is
an upper bound for both criteria and as such predicts the slowest rate of void
collapse. For example, at Ee ¼ 0:15; the void volume fraction according to the
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Fig. 7.49 Comparison
between the evolution of the
void volume fraction with the
equivalent strain Ee (void
collapse) under axisymmetric
loadings such that R11 ¼
R22 �R33 (JR3 � 0Þ and fixed
stress triaxiality T ¼ �2
according to Gurson [30],
Cazacu et al. [19], and the
porous Tresca criterion
(Cazacu et al. [18]); initial
porosity, f ¼ 5%
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porous Tresca criterion of Cazacu et al. [18], the porous von Mises criterion of
Cazacu et al. [19], and the Gurson [30] criterion are: f ¼ 0:0062, f ¼ 0:0087; and
f ¼ 0:0099, respectively. It is very interesting to note that the influence of the
plastic flow of the matrix is stronger on void growth than on void collapse.

For general 3-D loadings, Revil-Baudard and Cazacu [55] investigated the role
played by the plastic behavior of the matrix on the mechanical response by comparing
the isosurfaces of equal plastic dissipation corresponding to porous materials with
matrix obeying the Tresca yield criterion and the vonMises yield criterion, respectively.
For this purpose, comparisons were made between the predictions of the 3-D strain-rate
potentials for a porous Mises material WGurson D; fð Þ [see Eq. (7.37)] developed by
Gurson [29] and Wþ

Mises D; fð Þ developed by Cazacu and Revil-Baudard [16] [see
Sect. 7.2.3.5 and Eq. (7.73)], and the 3-D strain-rate potential for a porous Tresca
material Wþ

Tresca D; fð Þ given by Eq. (7.109) (see also Sect. 7.2.4.5).
Figure 7.50 shows the cross-sections in the octahedral plane of the respective

isosurfaces corresponding to the same void volume fraction f ¼ 1%. Each of these

(a) (b)

(c) (d)

f3

f1
f2

γ=0

f=0.01

f3

f1
f2

γ=0

f=0.01

f3

f1
f2

γ=0

f=0.01

Fig. 7.50 Comparison between the shapes of the cross-sections in the octahedral plane of the 3-D
isosurfaces of a porous Tresca material (Revil-Baudard and Cazacu [55]) (red solid line) and
porous von Mises material according to Gurson [29] (interrupted line), and Cazacu and
Revil-Baudard [16] respectively, corresponding to: a Dm ¼ 2
 10�4 s−1; b Dm ¼ 4
 10�4 s−1;
c Dm ¼ 6
 10�4 s−1; d Dm ¼ 8
 10�4 s−1. Initial porosity f = 0.01. Note that of the three
potentials, Gurson [29] is the most dissipative (interrupted line) while the porous Tresca potential
is the least dissipative
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surfaces correspond to the same plastic dissipation (equal to 9:21
 10�3). Since the
Gurson [29] potential was obtained by truncating the local plastic dissipation, it is
necessarily interior to the exact potential, which is Wþ

Mises D; fð Þ [see Eq. (7.73)].
Note that irrespective of the value of the mean strain-rate Dm, the isosurface cor-
responding to the porous Tresca material is exterior to the isosurfaces corre-
sponding to the porous von Mises material. This also means that the Gurson [29]
SRP is the most dissipative of the three SRP’s, since in order to reach the same
value of the plastic dissipation, the norm of the loading, R cð Þ, [see definition given
in Eqs. (7.74) and (7.75)] is lower than that for a porous Mises or a porous Tresca
material. On the other hand, Wþ

Tresca D; fð Þ is the least dissipative potential.
To summarize, the noteworthy result is the very strong influence of the plastic

flow of the matrix on the response of a porous solid. If the matrix obeys the von
Mises criterion, the shape of the cross-sections of the plastic surface of the porous
solid changes very little as Dm increases. However, if the matrix behavior is
described by the Tresca’s criterion, the shape of the cross-section evolves from a
regular hexagon to a triangle with rounded corners (compare Fig. 7.50a which
shows the cross-sections with the plane Dm ¼ 2
 10�4 s−1 with Fig. 7.50c which
shows the cross-section with the plane Dm ¼ 8
 10�4 s−1). Although the differ-
ence between the surfaces of the porous solids with von Mises matrix and Tresca
matrix becomes less important with increasing Dm, it strongly affects void
evolution.

Let us recall that a state D on any isosurface is defined by Dm;R; cð Þ; pure shear
corresponds to c ¼ 0 ðJD3 ¼ 0Þ; while c ¼ �p=6 corresponds to axisymmetric
states such that JD3 � 0 (i.e., the two equal eigenvalues of D are negative) and
c ¼ p=6 corresponds to axisymmetric states at JD3 � 0 [i.e., the two equal eigen-
values of D are positive, see also Eqs. (7.74) and (7.75)]. The comparison of the
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Fig. 7.51 Comparison between the shapes of the cross-sections c = constant of the 3-D
isosurfaces of a porous Tresca material (Revil-Baudard and Cazacu [55]) and porous Mises
material according to Cazacu and Revil-Baudard [16], and Gurson [29], respectively: a c ¼ 0
(pure shear); b c ¼ �p=6 (axisymmetric loadings). Initial porosity f = 0.01
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cross-sections of the 3-D isosurfaces of the porous Tresca and porous Mises
material corresponding to c = 0 and c ¼ �p=6 is shown in Fig. 7.51a, b, respec-
tively. For the porous Tresca material, the relationship between Dm and R (or JD2 ) at
yielding depends strongly on the level of c (see the difference between the shapes of
the respective cross-sections).

The very pronounced difference in the response under pure shear (c = 0)
between the porous Tresca material and the porous von Mises material is also
clearly seen. Only for purely hydrostatic loadings (R = 0) and for axisymmetric
purely deviatoric states (e.g., c ¼ �p=6 and Dm ¼ 0Þ, the isosurfaces coincide (see
Fig. 7.51a, b, respectively). This is to be expected since the porous von Mises and
porous Tresca material have the same response for purely hydrostatic loadings and
for axisymmetric purely deviatoric states.

Both the porous Mises SRP and the porous Tresca SRP involve a very specific
dependence on the third-invariant, JD3 (or c ), as shown in Figs. 7.50 and 7.51. As
already mentioned, for a porous Mises solid, the maximum influence of the
parameter c is that between axisymmetric states (see Sect. 7.2.3.5), while for a
porous Tresca solid, the manner in which the third-invariant, JD3 influences the
dilatational response depends on both the level of the mean strain-rate and that of
the void volume fraction (see Sect. 7.2.4.5). As an example, Fig. 7.52 shows the
evolution of the void volume fraction as a function of the plastic dissipation of a
porous Tresca solid for loadings at a fixed strain ratio Dm=R cð Þ ¼ 0:06 for c ¼
constant. For this type of loading, the rate of void growth is the fastest for shear
strain-loading (c ¼ 0Þ while the lowest rate of void growth is obtained for c ¼ p=6
(i.e., axisymmetric loadings at JD3 � 0Þ.

To further illustrate the influence of the third-invariant, JD3 , on the dilatational
response of the porous Mises and porous Tresca materials, Fig. 7.53 shows the
plastic dissipation needed to reach a given void volume fraction for loadings at
fixed strain-rate ratio Dm=R cð Þ and c ¼ constant. If Dm [ 0 (i.e., void growth), for a
porous Mises solid, the plastic work that must be dissipated to reach a given void

Fig. 7.52 Evolution of the
void volume fraction as a
function of the plastic
dissipation for a porous
Tresca solid subjected to
loadings at fixed strain ratio
Dm=R cð Þ ¼ 0:06 and
c = constant
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volume fraction will be the smallest for axisymmetric loadings with JD3 � 0 (i.e.,
c ¼ �p=6Þ and the largest for axisymmetric loadings with JD3 � 0 (i.e., c ¼ p=6Þ
(see also Table 7.1). It is to be noted that the very specific couplings between the
third-invariant and the mean strain-rate (i.e., the centro-symmetry of the SRP) has
strong consequences on void evolution. For Dm\0; for a porous Mises solid, the
plastic dissipation necessary to reach the same void volume fraction will be the

Fig. 7.53 Plastic dissipation necessary to reach a given void volume fraction f for loadings at
fixed strain ratio Dm=R cð Þ ¼ 0:06 and c = constant according to the porous von Mises SRP and
the porous Tresca SRP. For loadings at Dm [ 0; f ¼ 100f0 (with f0 ¼ 0:001Þ; for loadings at
Dm\0; f ¼ 0:01f0 (with f0 ¼ 0:2Þ

Table 7.1 Plastic dissipation necessary to reach a given void volume fraction f for loadings at
fixed strain ratio Dm=R cð Þ and c = constant according to the porous Mises SRP

Loading Porous Mises SRP

c ¼ �p=6 c ¼ �p=12 c ¼ 0 c ¼ p=12 c ¼ p=6

Dm=R ¼ 0:06 0.4533 0.4536 0.4542 0.4548 0.4550

Dm=R ¼ 0:18 0.2370 0.2373 0.2380 0.2386 0.2389

Dm=R ¼ �0:06 1.2229 1.2225 1.2214 1.2201 1.2195

Dm=R ¼ �0:18 0.8059 0.8056 0.8046 0.8036 0.8031

For loadings at Dm [ 0; f ¼ 100f0 (with f0 ¼ 0:001Þ; for loadings at Dm\0; f ¼ 0:01f0 (with
f0 ¼ 0:2Þ
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smallest for axisymmetric loadings with JD3 � 0 (c ¼ p=6Þ and the largest for
axisymmetric loadings with JD3 � 0 (c ¼ �p=6Þ.

The same analysis has been conducted for a porous Tresca solid (see Table 7.2).
As already mentioned, for a porous Tresca solid, the influence of the third-invariant
JD3 on the dilatational response depends on the initial void volume fraction and on
Dm. As an example, for a low mean strain-rate Dm=R cð Þ ¼ 0:06; the smallest and
largest plastic dissipation necessary to reach a given void volume fraction are
obtained for shear loading (c ¼ 0Þ and for axisymmetric loadings with JD3 � 0
(c ¼ p=6Þ, respectively. On the other hand, for Dm=R cð Þ ¼ 0:18; the smallest
and largest plastic dissipation necessary to reach the same void volume fraction
are obtained for axisymmetric loadings at JD3 � 0 (c ¼ �p=6Þ and for loading at
c ¼ p=12; respectively. It is to be noted that the centro-symmetry property of
the porous Tresca SRP implies that if the sign of the mean strain-rate changes
(i.e., Dm=R cð Þ ¼ �0:18Þ, the maximal and minimal plastic dissipation is now
obtained for c ¼ �p=12 and c ¼ p=6; respectively.

7.2.5 Effect of the Relative Weight of the Invariants
of the Matrix on Damage Evolution in Porous
Materials

The investigation of the mechanical response of porous Tresca and porous Mises
materials presented in Sects. 7.2.3 and 7.2.4 has revealed the key role played by the
plastic flow of the matrix. If the matrix behavior is described by Tresca’s yield
criterion which incorporates dependence on both invariants of the stress deviator,
the combined effects of pressure and the third-invariant on yielding of the porous
material are much stronger than in the case when the matrix obeys the von Mises
criterion (i.e., matrix behavior independent of the third-invariant of the stress
deviator). Furthermore, the rate of void growth or collapse is much faster in a
porous material with a Tresca matrix than in the one with matrix behavior governed

Table 7.2 Plastic dissipation necessary to reach a given void volume fraction f for loadings at
fixed strain ratio Dm=R cð Þ and for different values of c according to the porous Tresca SRP

Loading Porous Tresca SRP

c ¼ �p=6 c ¼ �p=12 c ¼ 0 c ¼ p=12 c ¼ p=6

Dm=R ¼ 0:06 0.4384 0.4284 0.4163 0.4352 0.4417

Dm=R ¼ 0:18 0.2217 0.2220 0.2258 0.2292 0.2254

Dm=R ¼ �0:06 1.1950 1.1875 1.1546 1.1752 1.1887

Dm=R ¼ �0:18 0.7850 0.7944 0.7893 0.7835 0.7794

For loadings at Dm [ 0; f ¼ 100f0 (with f0 ¼ 0:001Þ; for loadings at Dm\0; f ¼ 0:01f0 (with
f0 ¼ 0:2Þ
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by the von Mises yield criterion. These studies led to posing the following fun-
damental questions:

– Are there any materials for which the rate of void evolution is faster than in a
porous Tresca material?

– What should be the relative weight of invariants in the matrix in order to have
the most influence of the third-invariant (or Lode parameter) on void evolution?

– Are there any materials for which there is no effect of the third-invariant (or
Lode parameter) on void evolution?

To address these questions Alves and Cazacu [2] have conducted a
micro-mechanical F.E. analysis of model unit cells, considering that the matrix
behavior is governed by the Drucker [25] yield criterion. Like the von Mises and
Tresca yield criterion, the Drucker [25] yield criterion is pressure-insensitive and
predicts the same response in tension–compression. Its expression is a smooth
function of both invariants of the stress deviator and involves a unique parameter c
(for a detailed discussion of Drucker [25] yield criterion see Chap. 4). F.E. unit-cell
calculations were conducted for porous materials with matrix characterized by
c ¼ �27=8, c ¼ 0 (von Mises) and c ¼ 2:25. For each porous material considered,
the macroscopic loadings imposed were such that the principal values of the applied
stress, R1, R2, R3 followed a prescribed proportional loading history corresponding
to a constant stress triaxiality T : The mechanical response was investigated for
axisymmetric loadings ðR1 ¼ R2Þ where the overall axial stress R3 was adjusted to
ensure that a fixed value of the stress triaxiality is maintained. To investigate the
influence of the third-invariant, JR3 , of the applied stress on void growth and void
collapse for any given specified value of the stress triaxiality T; loadings corre-
sponding to either the major stress along the axial direction (i.e., JR3 � 0 for the
entire loading history) or to the major stress being along the lateral direction (JR3 � 0
for the entire loading history) were considered. As an example, Fig. 7.54 shows a

Fig. 7.54 Evolution of the void volume fraction with the overall equivalent strain Ee, obtained by
F.E. unit-cell calculations for an isotropic porous material with matrix characterized by the
Drucker’s [25] yield criterion corresponding to c ¼ þ 2:25 and c ¼ �27=8; in comparison with
that for a porous von Mises material (c ¼ 0), for axisymmetric loadings corresponding to a fixed
triaxiality T ¼ 1 and: a loadings such that R1 ¼ R2 �R3 (JR3 � 0Þ and b loadings with R1 ¼
R2 �R3 (JR3 � 0Þ. Initial porosity f0 ¼ 0:01
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comparison between the evolution of the void volume fraction with the equivalent
strain Ee [see definition given by Eq. (7.51)] corresponding to T ¼ 1 for the porous
materials. It is clearly seen that for c ¼ �27=8, the rate of void growth is slower
than in the case of the von Mises matrix, while for c ¼ 2:25, it is faster. This study
shows that the sensitivity of the plastic deformation of the matrix to the
third-invariant of stress, described by the parameter c; has a very strong influence
on void evolution. However, in order to draw general conclusions and provide a
quantitative estimate of these effects, an analytic plastic potential needs to be
developed. As discussed in Sect. 7.1, the derivation of such a potential in closed
form is possible only if the analytic expression of the strain-rate potential associated
to the matrix plastic behavior is known. However, a strain-rate potential associated
to the Drucker [25] stress-based yield criterion cannot be determined analytically
(see also discussion in Chap. 6 devoted to isotropic strain-rate potentials).

7.2.5.1 Cazacu and Revil-Baudard [17] Plastic Potential

To address the question concerning the relative weight of the matrix invariants such
as to have maximum influence or erase completely the effect of JR3 on void evolution,
Cazacu and Revil-Baudard [17] adopted a two-step approach. Namely, these authors
proposed a new isotropic model for fully dense materials that depends on both
invariants,wCB dð Þ; and then developed an analytic criterion for porous materials with
matrix behavior governed by this potential wCB dð Þ (see Sect. 6.1.1.3).

Since the isotropic plastic potential for fully-dense materials of Cazacu and
Revil-Baudard [17] and its properties were discussed in detail in Sect. 6.1.1.3, here
we present only the main equations. This isotropic SRP is expressed as:

wCB dð Þ ¼
ffiffiffiffi
j2

p
B

1þ b
j23
j32

� �
; ð7:110Þ

with

B ¼ 1þ 4b=27ffiffiffiffiffiffiffiffi
4=3

p : ð7:111Þ

In Eq. (7.110), j2 ¼ d : dð Þ=2 is the second-invariant of the plastic strain-rate
tensor d; j3 = det(dÞ is the third-invariant of d; whereas b is a parameter of the
model. The constant B appearing in the expression of the criterion depends solely
on b, and it is defined such that for uniaxial tension wCB dð Þ is equal to the axial
strain-rate. Let us recall that for wCB dð Þ to be convex, the range of variation of b is,
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�9
24

� b � 27
68

: ð7:112Þ

Most importantly, depending on the sign of the parameter b, this isotropic SRP is
either interior to the von Mises strain-rate potential (b\0Þ, coincides with it
(b ¼ 0Þ, or it is exterior to it (b[ 0Þ. On the other hand, irrespective of the value of
b, Tresca’s potential wTresca dð Þ is an upper bound for wCB dð Þ:

To arrive at a closed-form expression of the plastic potential for the porous
material with matrix described by wCB dð Þ [see Eq. (7.110)], Cazacu and
Revil-Baudard [17] conducted limit analysis on a hollow sphere subjected to
axisymmetric loadings [see Eq. (7.29)], and made use of the Rice and Tracey [58]
velocity field [see Eq. (7.25)]. For this strain-rate field d; the principal values are
given by Eq. (7.30). It was shown that it is possible to solve the limit-analysis
problem analytically, and to obtain the plastic dissipation Pþ

CB D; fð Þ and conse-
quently the strain-rate potential of the porous material, Wþ

CB D; fð Þ ¼ Pþ
CB D; fð Þ=rT

in closed form. Moreover, Cazacu and Revil-Baudard [17] derived an explicit
analytic expression of the yield criterion for the porous material, namely:

Rm=rT ¼ 1
3
@Wþ

CB D; fð Þ
@Dm

Re=rT ¼ @Wþ
CB D; fð Þ
@De

				 				

8>>><>>>: ð7:113Þ

It is worth noting that for the strain-rate d associated with the Rice and Tracey
[58] velocity field [see Eq. (7.25)], with dI , dII , dIII given by Eq. (7.30), wCB dð Þ is
invariant under the transformation: Dm;D0

11

� �! �Dm;�D0
11

� �
: Thus the potential

of the porous material, Wþ
CB D; fð Þ; needs to be calculated only for loadings such that

(Dm � 0; D0
11 [ 0Þ and (Dm � 0; D0

11\0Þ, respectively.
In the following, we present only the key steps of the proof and the parametric

representation of the yield surface of the porous material. For more details, the
reader is referred to Cazacu and Revil-Baudard [17].

Theorem 7.10 (Strain-rate potential for porous materials with matrix depending
on both invariants)

For axisymmetric states, the strain-rate potential of the porous material is given by:

(a) For Dm � 0 and JD3 � 0 (D0
11 � 0Þ, irrespective of the value of u ¼ 2 Dmj j=De:

Wþ
CB D; fð Þ ¼

ffiffiffi
3

p
uDe

4B
H1

u
f

� �
� H1 uð Þ

� �
; ð7:114Þ
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with:

H1ðyÞ ¼ � 2
ffiffiffi
3

p

3
b tan�1 2y� 1ffiffiffi

3
p

� �
þ 2

ffiffiffi
3

p

9
1þ 11

3
b

� �
tan�1

ffiffiffi
3

p
þ 2

ffiffiffi
y

p� �
� tan�1 �

ffiffiffi
3

p
þ 2

ffiffiffi
y

p� �� �

þ

9y3=2 þ ffiffiffi
3

p � 3y
ffiffiffi
3

p � 3y2
ffiffiffi
3

p

9y3=2
�

b
6y2

ffiffiffi
3

p þ 9y3=2 � 12y
ffiffiffi
3

p � 2
ffiffiffi
3

p

27y3=2

0BBB@
1CCCA ln �

ffiffiffiffiffi
3y

p
þ yþ 1

� �

� 4
3y

þ 4b
27

4y2 � 4yþ 1ð Þ
y2 � yþ 1ð Þy þ 13

27
b ln y2 � yþ 1

� �

þ

9y3=2 þ 3y
ffiffiffi
3

p þ 3y2
ffiffiffi
3

p � ffiffiffi
3

p

9y3=2
þ

b
�12y

ffiffiffi
3

p þ 6y2
ffiffiffi
3

p � 9y3=2 � 2
ffiffiffi
3

p

27y3=2

0BBB@
1CCCA ln

ffiffiffiffiffi
3y

p
þ yþ 1

� �

ð7:115Þ

(b) Dm � 0 and JD3 � 0 (D0
11 � 0Þ,

Wþ
CB D; fð Þ ¼

ffiffiffi
3

p
uDe

4B
A1

u
f

� �
� A1 uð Þ

� �
; 8 u\f

ffiffiffi
3

p
uDe

4B

A2
u
f

� �
� A1 uð Þþ

b � 7
27

p� 4
ffiffiffi
3

p

27
ln 3ð Þþ 4

ffiffiffi
3

p

9

� �
� ffiffiffi

3
p

ln 3ð Þ � 4
ffiffiffi
3

p

3
þ p

9

0BBBBBB@

1CCCCCCA; 8 f\u\1

ffiffiffi
3

p
uDe

4B
A2

u
f

� �
� A2 uð Þ

� �
; 8u[ 1

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ð7:116Þ
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with A1 uð Þ and A2 uð Þ given by:

A1ðyÞ ¼ � 2bffiffiffi
3

p tan�1 2yþ 1ffiffiffi
3

p
� �

� 2
ffiffiffi
3

p

27
3þ 11bð Þ

tan�1 2
ffiffiffi
y

p � 1ffiffiffi
3

p
� �

� tan�1 2
ffiffiffi
y

p þ 1ffiffiffi
3

p
� �

0BBB@
1CCCA

� 2
ffiffiffi
3

p

9y3=2
3y2 � 3y� 1þ 2b

3
3y2 þ 6y� 1
� �� �

tan�1

ffiffiffiffiffi
3y

p
y� 1

� �
� 4bþ 27ð Þ

27
ln y2 þ yþ 1
� �þ 4

27
b 4y2 þ 4yþ 1ð Þ � 9 y2 þ yþ 1ð Þ

y y2 þ yþ 1ð Þ
� �

;

ð7:117Þ

and

A2ðyÞ ¼ � 2ffiffiffi
3

p b tan�1 2yþ 1ffiffiffi
3

p
� �

þ 2
ffiffiffi
3

p

27
3þ 11bð Þ tan�1 2

ffiffiffi
y

p � 1ffiffiffi
3

p
� �

� tan�1 2
ffiffiffi
y

p þ 1ffiffiffi
3

p
� �� �

þ 2
ffiffiffi
3

p

9y3=2
3y2 � 3y� 1þ 2b

3
3y2 � 1þ 6y
� �� �

tan�1

ffiffiffiffiffi
3y

p
y� 1

� �
þ 27þ 4b

27
ln y2 þ yþ 1
� �� 4

27
b 4y2 þ 4yþ 1ð Þ � 9y� 9� 9y2

y y2 þ yþ 1ð Þ :

ð7:118Þ

Case (a): For Dm � 0 and JD3 � 0 (D0
11 � 0Þ, substitution of dI , dII , dIII given by

Eq. (7.30) into the expression of wCB dð Þ leads to:
Bffiffiffi
3

p wCB dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

m b=rð Þ6 þD0
11Dm b=rð Þ3 3 cos2 h� 1ð ÞþD02

11

q

þ b
Dm b=rð Þ3 þD0

11

� �2
2D2

m b=rð Þ6 þDmD0
11 b=rð Þ3 9 cos2 h� 5ð Þþ 2D02

11

� �2
27 D2

m b=rð Þ6 þDmD0
11 b=rð Þ3 3 cos2 h� 1ð ÞþD02

11

� �5=2
ð7:119Þ

Since for the applied loading, the strain-rate triaxiality u ¼ 2Dm=De ¼ Dm=D0
11

using the change of variable y ¼ u b=rð Þ3 and a ¼ cos h in the integral representing
Wþ

CB D; fð Þ; we obtain:
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4Bffiffiffi
3

p Wþ
CB D; fð Þ ¼ uDeð Þ

Zu=f
u

Z1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þð3a2 � 1Þyþ 1

p
þ b

27
yþ 1ð Þ2 2y2 þð9a2 � 5Þyþ 2ð Þ2

y2 þð3a2 � 1Þyþ 1ð Þ5=2

0B@
1CA dy

y2
da ð7:120Þ

Further integration with respect to y leads to the expression given in Eq. (7.114).
Furthermore, for (Dm � 0 and D0

11 � 0Þ from Eq. (7.119), it follows that:
@Wþ

CB D; fð Þ
@D11

� @Wþ
CB D; fð Þ
@D33

and
@Wþ

CB D; fð Þ
@Dm

� 0; so the stresses at yielding of the

porous material are such that the third-invariant of the stress deviator JR3 ¼
�2 R11 � R33ð Þ3=27 is negative, and the mean stress Rm � 0.

For all other loading scenarios, the analysis can be conducted in a similar way.
Therefore, on the basis of Theorem 7.10, we obtain the following result:

Theorem 7.11 The parametric representation of the yield surface of a porous
material with matrix described by the model depending on both invariants
[Eq. (7.110)] is:

(a) For Rm � 0 and JR3 � 0 and any value of u ¼ 2 Dmj j=De:

Rm=rT ¼ 2
3

ffiffi
3

p
u2

4B H1 u=fð Þ � H1 uð Þþ u 1
f H

0
1 u=fð Þ � H0

1 uð Þ
� �� �

Re=rT ¼ �
ffiffi
3

p
u2

4B
1
f H

0
1 u=fð Þ � H0

1 uð Þ
� �

8<: ð7:121Þ

where the prime symbol denoted the first derivative of the function H1 yð Þ given
by Eq. (7.115).

(b) For stress states such that Rm � 0 and JR3 � 0; the yield surface of the porous
material is:

• For u\f :

Rm=rT ¼ 2
3

ffiffiffi
3

p
u2

4B
A1 u=fð Þ � A1 uð Þþ u

1
f
A0
1 u=fð Þ � A0

1 uð Þ
� �� �

Re=rT ¼ �
ffiffiffi
3

p
u2

4B
1
f
A0
1 u=fð Þ � A0

1 uð Þ
� �

8>>><>>>:
ð7:122Þ

• For f\u\1:

Rm=rT ¼ 2
3

ffiffiffi
3

p
u2

4B

A2 u=fð Þ � A1 uð Þþ b � 7
27
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ð7:123Þ
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• For u[ 1:

Rm=rT ¼ 2
3

ffiffiffi
3

p
u2

4B
A2 u=fð Þ � A2 uð Þþ ðu=f ÞA0

2 u=fð Þ � uA0
2 uð Þ� �

Re=rT ¼ �
ffiffiffi
3

p
u2

4B
1
f
A0
2 u=fð Þ � A0

2 uð Þ
� �

8>><>>: ð7:124Þ

where A0
1 yð Þ and A0

2 yð Þ denote the first derivatives of the functions A1 yð Þ
and A2 yð Þ; respectively, which are given by Eqs. (7.117) and Eq. (7.118).

(c) For Rm � 0 and JR3 � 0; the parametric representation of the yield surface of
the porous material is obtained from Eq. (7.121) by arguments of
centro-symmetry.

(d) Similarly, for loadings such Rm � 0 and JR3 � 0; the parametric representation
of the yield surface of the porous solid is obtained from Eqs. (7.122) to (7.124).

Remarks It is important to note that in developing the SRP (Eqs. (7.115)–(7.118)]
and the yield criterion for the porous material [Eqs. (7.121)–(7.124)], no approxi-
mations were made when calculating the local plastic dissipation. Neglecting, the
cross-term DmD0

11 involved in the expression of wCB dð Þ [e.g., see Eq. (7.119)]
would have resulted in erasing the specificities of the plastic deformation of the
matrix, and as such the resulting yield criterion of the porous solid would have been
independent of JR3 .

For b ¼ 0; the Cazacu and Revil-Baudard [17] criterion for porous materials
given by Eqs. (7.121)–(7.124) reduces to the Cazacu et al. [19] criterion for porous
von Mises materials [see Eqs. (7.66)–(7.71)].

Irrespective of the value of the parameter b, it is predicted that yielding of the
porous material has the following properties:

• The absolute value of the yield limit under hydrostatic tensile loadings is the
same as the yield limit under purely hydrostatic compression loadings:
Rmj j ¼ �2=3rT ln f .

• For purely deviatoric axisymmetric loadings, yielding occurs at Re ¼ rT 1� fð Þ;
irrespective of the sign of JR3 .

The above properties are a direct consequence of the plastic potential of the
matrix being an even function [see Eq. (7.110)].

7.2.5.2 Effect of the Matrix Sensitivity to Both Invariants on Yielding

On the basis of the analytic criterion for isotropic porous materials given by
Eqs. (7.121)–(7.124), it is possible to draw general conclusions pertaining to the
role played by the matrix sensitivity to both invariants of plastic deformation. In the
following analysis, we will take advantage of the fact that, irrespective of the value
of the parameter b, the yield surface of the porous solid is centro-symmetric.
Therefore, we will represent and analyze only the quadrant of the yield surface
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defined by Re;Rmð Þ with Rm � 0: We recall that for axisymmetric loadings with
R11 ¼ R22, the equivalent stress Re reduces to R11 � R33j j; the mean stress is:
Rm ¼ 2R11 þR33ð Þ=3; and the third-invariant of the stress deviator is:
JR3 ¼ �2 R11 � R33ð Þ3=27:

In Fig. 7.55 are represented for the same level of porosity (f ¼ 5% ), the yield
surfaces corresponding to materials with matrix characterized by b ¼ 0:38; 0, (von
Mises matrix), b ¼ �0:15; and b ¼ �0:35, respectively. It is very interesting to
note that if the matrix is characterized by b� 0, i.e., its plastic potential is exterior
or coincides with the von Mises SRP (see also Sect. 6.1.1.3), the response of the
porous material for loadings such that R11 ¼ R22 �R33 (i.e., at JR3 � 0Þ is softer
than that for loadings such that R11 ¼ R22 �R33 (i.e., at JR3 � 0Þ, the yield curve
corresponding to JR3 � 0 is below that corresponding to JR3 � 0: The stronger is the
sensitivity of the matrix plastic deformation to the third-invariant [i.e., the larger the
value of b in Eq. (7.110)], the stronger is the influence of JR3 on yielding of the
porous material.
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Fig. 7.55 Effect of the third-invariant JR3 on yielding of porous materials with matrix
characterized by: a b ¼ 0:38; b b ¼ 0 (von Mises matrix); c b ¼ �0:15; d b ¼ �0:35:
Porosity f ¼ 5% for all materials
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It is also very interesting to note that for the material with matrix characterized
by b ¼ �0:15 and porosity f ¼ 5% there is practically no influence of JR3 on the
behavior (see Fig. 7.55c showing that the yield curve corresponding to JR3 � 0
almost coincides with the one that corresponds to JR3 � 0Þ. It means that although
the matrix behavior depends on both invariants, the presence of voids practically
erases the influence of JR3 on yielding of the porous material. The same conclusion,
i.e., practically no influence of JR3 on the response, applies to a material charac-
terized by a porosity f ¼ 1% and matrix with b ¼ �0:15 (see Fig. 7.56b). It is to be
noted that the particular value of b, say b	, for which the porous material has no
influence on the third-invariant can be determined numerically by making use of
Eqs. (7.121)–(7.124). For fixed values of the porosity f ; ranging from 10�5 to 0:15;
�0:179\b	\� 0:172:

It is also worth comparing the yield surfaces of porous materials according to
Cazacu and Revil-Baudard [17] with the yield surface of a porous Tresca material
obtained using the Cazacu et al. [18] criterion. For axisymmetric loadings R11 ¼
R22 �R33 (i.e., at JR3 � 0Þ the respective surfaces for f ¼ 5% are shown in
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Fig. 7.56 Effect of the third-invariant JR3 on yielding of porous materials with matrix
characterized by: a b ¼ 0:38; b b ¼ �0:15; c b ¼ �0:35: For all materials, f ¼ 1%
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Fig. 7.57; for loadings corresponding to R11 ¼ R22 �R33 (i.e., at JR3 � 0Þ, the
respective surfaces are shown in Fig. 7.58.

It is very interesting to note that irrespective of the imposed loading, if the matrix
is characterized by b[ 0; the yield surface of the porous material lies between the
yield surface of a porous von Mises material and the yield surface of a porous
Tresca material. Specifically, for b[ 0 the porous Tresca yield surface is a lower
bound while the porous von Mises surface is an upper bound. Moreover, the
stronger the deviation of the matrix behavior from von Mises (i.e., the larger the
value of b in Eq. (7.110), the closer is the yield surface is to that of a porous Tresca
material.

On the other hand, the response of the porous material with von Mises matrix
(b ¼ 0Þ is softer than that of a porous material with matrix characterized by b\0:
The smaller the value of b, the more pronounced is the difference in response as
compared to that of a porous von Mises material. As expected, the yield limit for
purely deviatoric states and purely hydrostatic states is the same for all porous
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materials irrespective of the criterion governing the plastic deformation of the
matrix (see also Theorem 7.2).

7.2.5.3 Influence of the Matrix Sensitivity to Both Invariants
on Porosity Evolution

Effect of b on void evolution

Cazacu and Revil-Baudard [17] have shown that the value of the parameter b
which describes the relative weighting of the invariants on the plastic deformation
of the matrix strongly affects the rate of void evolution. As an example, in Fig. 7.59
are compared the predictions of the void growth versus the overall equivalent
plastic strain Ee corresponding to porous materials with a matrix characterized by
b ¼ 0:38, b ¼ �0:15, and b ¼ �0:35 which were subjected to axisymmetric
loadings at fixed stress triaxiality T ¼ 1:5 with either R11 ¼ R22\R33 (i.e., at
JR3 � 0Þ or R11 ¼ R22 [R33 (i.e., at JR3\0Þ. For all porous materials considered the
initial porosity was f0 ¼ 0:5%.
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Fig. 7.59 Effect of the third-invariant JR3 on the void volume fraction (f =f0Þ evolution with the
overall equivalent plastic strain for axisymmetric loadings at fixed triaxiality T ¼ 1:5 predicted by
the Cazacu and Revil-Baudard [17] criterion for porous materials characterized by matrix with
a b ¼ 0:38; b b ¼ �0:15; c b ¼ �0:35: For all materials, the initial porosity is: f0 ¼ 0:5%
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It is very interesting to note that for the material characterized by a matrix with a
value of b ¼ �0:15; close to b	, the rate of void growth for loadings such that
JR3 � 0 and JR3 � 0; respectively, are almost the same (see Fig. 7.59b). This is
consistent with the fact that for the same material there is practically no effect of JR3
on yielding (see Fig. 7.56b). On the other hand, if the matrix is characterized by
b[ b	, the rate of void growth is faster for loadings such that JR3 � 0 than for
loadings at JR3 � 0; and the larger is the value of b, the stronger is the effect of JR3 on
void growth. On the contrary, if the matrix is characterized by b\b	, the rate of
void growth is faster for JR3 � 0 than for JR3 � 0 (see, e.g., Fig. 7.59c which presents
the void evolution for the material with matrix characterized by b ¼ �0:35).

Since the yield criterion is centro-symmetric, the following conclusions can be
drawn concerning the effect of the matrix plastic deformation on void collapse (i.e.,
void evolution for compressive mean stress):

• If the porous solid has the matrix characterized by b[ b	, the rate of void
collapse is faster for loadings at JR3 � 0 than for loadings at JR3 � 0;

• If the porous solid has the matrix characterized by b close to b	, there is
practically no effect of JR3 on void collapse;

• If the porous solid has the matrix characterized by a value of the parameter
b\b	 the rate of void collapse is faster for loadings at JR3 � 0 than for loadings
at JR3 � 0:

Comparison with the void evolution of a porous Mises (b ¼ 0) and porous Tresca
material

It is also worth comparing the void growth rates and collapse with that of a porous
Tresca material. Let us first consider a porous material with matrix characterized by
b ¼ �0:15 (close to b	 ¼ �0:175Þ. Note that the void growth and void closure
rates in this porous material are slower than in both a porous von Mises material and
a porous Tresca material, respectively (see Figs. 7.60 and 7.61). In contrast to both
Tresca and von Mises porous materials, for this porous material there is practically
no effect of JR3 on void evolution.

On the other hand, if the matrix is characterized by b[ 0[ b	, the relative
weight of the invariants on the matrix behavior is such that irrespective of the type
of loading (i.e., sign of JR3 ), the rate of void growth is faster than in a porous von
Mises material (b ¼ 0Þ and lower than in a porous Tresca material. As an example,
in Figs. 7.62 and 7.63 is presented the evolution of the void volume fraction f =f0
with the overall effective plastic strain for a porous material with matrix charac-
terized by b ¼ 0:38 subjected to axisymmetric loading histories corresponding to
either (JR3 � 0Þ or (JR3 � 0Þ and fixed positive stress triaxiality T ¼ 1:5: The initial
void volume fraction is f0 ¼ 0:5%. For example, for axisymmetric loadings such
that JR3 � 0; at an equivalent plastic strain of Ee ¼ 0:3; the void volume fraction is
f ¼ 7:82f0 in the porous Mises material, 9:41f0 in the material with matrix char-
acterized by b ¼ 0:38; against 11:29f0 in the porous Tresca material.
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While for all porous materials the rate of void growth is faster for axisymmetric
loadings such that JR3 � 0 (see Fig. 7.62b) than for axisymmetric loadings such that
JR3 � 0 (see Fig. 7.62a), the maximum influence of JR3 on void evolution is dis-
played by the material characterized by b ¼ 0:38: For example at Ee ¼ 0:3; in this
material the difference between the porosity attained in loadings with JR3 � 0 and
JR3 � 0 is of 13% while for the porous Tresca material the difference is of 8%, and
for the porous Mises material there is 5% difference. The same conclusions can be
drawn from the analysis of the void evolution in a porous material with matrix
characterized by b ¼ 0:2: However, the influence of JR3 on void growth is less
pronounced. As an example, at Ee ¼ 0:3; the difference between the porosity
attained in loadings corresponding to JR3 � 0 and JR3 � 0 is 9.5%. In general, for
b[ b	 the influence of JR3 on void growth is less pronounced as the value of the
parameter b decreases.

Since both the Cazacu and Revil-Baudard [17] criterion and the Cazacu et al.
[18] criterion for a porous Tresca material display centro-symmetry, the same
effects of the relative weighting of the invariants in the matrix (i.e., of b) on the rate

(a)

(b)

Fig. 7.60 Comparison
between the evolution of the
void volume fraction with the
overall equivalent plastic
strain Ee for axisymmetric
loadings at fixed stress
triaxiality T ¼ 1:5 for a
porous von Mises material
(according to Cazacu et al.
[19]), a porous Tresca
material (using Cazacu et al.
[18]) and for porous solids
with matrix characterized by
b ¼ �0:15 according to the
Cazacu and Revil-Baudard
[17] criterion: a axisymmetric
loadings such that JR3 � 0 and
b axisymmetric loadings such
that JR3 � 0: For the porous
material with b ¼ �0:15
there is practically no
influence of JR3 on void
growth
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of void collapse should occur. Comparisons between the predictions of void col-
lapse as a function of the overall equivalent strain for axisymmetric loadings at
fixed compressive triaxiality T ¼ �1:5 corresponding to either JR3 � 0 or JR3 � 0 are
shown in Fig. 7.63. The initial porosity was considered higher (f0 ¼ 5% ) such as to
allow a larger range of plastic strain to develop prior to void closure. Irrespective of
the sign of the third-invariant, the rate of void closure in the material with matrix
characterized by b ¼ 0:38 is much faster than in the porous Mises material, and
only slightly slower than the rate of void closure in the porous material with Tresca
matrix (see Fig. 7.63a for JR3 � 0 and Fig. 7.63b for JR3 � 0Þ. While for all porous
materials, the rate of void closure is faster for axisymmetric loadings such that
JR3 � 0 than for axisymmetric loadings such that JR3 � 0; the influence of JR3 on the
rate of void collapse is more pronounced for the material with matrix characterized
by b ¼ 0:38 (18% difference between JR3 � 0 and JR3 � 0 at Ee ¼ 0:3Þ than for the
porous Tresca material (13% difference at Ee ¼ 0:3Þ and the porous Mises material
(8% difference at Ee ¼ 0:3Þ. The same conclusions can be drawn by analyzing the
rate of void closure in a porous material with matrix characterized by b ¼ 0:2 as
compared to that in the porous von Mises and porous Tresca material, respectively.
However, the influence of JR3 on the rate of void collapse is less pronounced than in

(a)

(b)

Fig. 7.61 Comparison
between the evolution of the
void volume fraction with the
overall equivalent plastic
strain Ee for compressive
axisymmetric loadings at
fixed stress triaxiality T ¼ 1:5
for a porous von Mises
material (according to Cazacu
et al. [19]), a porous Tresca
material (using Cazacu et al.
[18]) and for a porous
material with matrix
characterized by b ¼ �0:15
a axisymmetric loadings such
that JR3 � 0 and
b axisymmetric loadings such
that JR3 � 0; Initial porosity
f0 ¼ 0:05. For the porous
material with b ¼ �0:15,
there is practically no
influence of JR3 on void
collapse
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the case when the matrix is characterized by b ¼ 0:38: As an example, at Ee ¼ 0:3;
the difference between the porosity corresponding to loadings at JR3 � 0 and JR3 � 0
is of 12% for the material characterized by b ¼ 0:2. As already mentioned, if the
matrix is characterized by b[ b	, the influence of J

R
3 on void evolution decreases

as the value of the parameter b decreases.
As seen in Sect. 7.2.5.2, for stress triaxialities T different from zero or infinity

the response of the porous Tresca material is softer than that of the porous von
Mises material which in turn is softer than that of a porous material with matrix
characterized by b\0 (see also Figs. 7.57 and 7.58). As a consequence, in porous
materials with b\0; the rate of void growth and the rate of void closure will be
slower than the rate of void evolution in a porous Mises material and a porous
Tresca material, respectively. As an example, let us examine Fig. 7.64a which
shows the void growth evolution with the overall equivalent strain Ee in a porous
material with matrix characterized by b ¼ �0:35 subjected to axisymmetric tensile
loadings at a fixed stress triaxiality T ¼ 1:5: Note that for axisymmetric loadings
such that JR3 � 0; at Ee ¼ 0:3 in the porous material with b ¼ �0:35; the void
volume fraction is f ¼ 6:30f0, against f ¼ 11:3f0 in the porous Tresca material, and
f ¼ 7:82f0 in the porous Mises material (b ¼ 0Þ. It is also worth noting that while

(a)

(b)

Fig. 7.62 Comparison
between the evolution of the
void volume fraction with
equivalent plastic strain Ee for
axisymmetric loadings at
fixed stress triaxiality T ¼ 1:5
for a porous von Mises
material according to Cazacu
et al. [19] criterion, a porous
Tresca material according to
Cazacu et al. [18] and a
porous material with matrix
characterized by b ¼ 0:38
a axisymmetric loadings such
that JR3 � 0 and
b axisymmetric loadings such
that JR3 � 0; Initial porosity
f0 ¼ 0:5%

442 7 Plastic Potentials for Isotropic Porous Materials …



for the porous Mises and porous Tresca materials, the void growth rate is faster for
loadings at JR3 � 0 than for loadings at JR3 � 0; for the material with matrix char-
acterized by b ¼ �0:35; the reverse occurs, i.e., the void growth rate is slower for
loadings at JR3 � 0 than for loadings at JR3 � 0: Due to the centro-symmetry of all
criteria, it follows that the void closure rate will also be slower than in a porous von
Mises material. The same conclusions, i.e., that the void closure rate will be faster
for JR3 � 0 than for JR3 � 0 can be drawn for any porous material with matrix
characterized by b\b	 (see Fig. 7.65).

In summary, it was established that:

• A porous material with matrix governed by Tresca criterion has the fastest rate
of void growth or collapse.

• However, depending on the specific dependence of the matrix plastic defor-
mation to the invariants of the stress deviator, the rate of void growth or collapse
in a porous material can be either faster or slower than that of a porous Mises
material. Specifically,

• If the matrix is characterized by b[ 0; the void growth rate is faster than in a
porous Mises material; the larger is the value of b, the faster is the rate of void
evolution, which approaches the one in a porous Tresca material.

(a)

(b)

Fig. 7.63 Comparison
between the evolution of the
void volume fraction with
equivalent plastic strain Ee for
axisymmetric loadings at
fixed stress triaxiality T ¼
�1:5 for a porous von Mises
material according to the
Cazacu et al. [19] criterion, a
porous Tresca material
according to the Cazacu et al.
[18] and a porous material
with matrix characterized by
b ¼ 0:38 a axisymmetric
loadings such that JR3 � 0 and
b axisymmetric loadings such
that JR3 � 0; Initial porosity
f0 ¼ 5%
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• If the matrix is characterized by b\0; the rate of void growth and the rate of
void closure are slower than in a porous Mises material. The smaller is the value
of b, the slower is the rate of void growth as compared to a von Mises porous
material.

7.3 Constitutive Model for Porous Isotropic Metallic
Materials with Incompressible Matrix Governed
by an Odd Yield Function

It is important to note that when modeling porous metals, it is generally assumed
that the matrix material is incompressible and has the same yield in tension–
compression. In fact in all the models for porous metals presented in Sect. 7.2, the
plastic potential of the matrix is represented by an even function (e.g., von Mises
[70], Tresca [66], Drucker [25], Cazacu and Revil-Baudard [17]). However, for
certain metallic materials, a significant strength differential (SD) or tension–com-
pression asymmetry is observed even though no volume changes accompany
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Fig. 7.64 Comparison
between the evolution of the
void volume fraction with
equivalent plastic strain Ee for
axisymmetric loadings at
fixed stress triaxiality T ¼ 1:5
for a porous von Mises
material (according to Cazacu
et al. [19]), a porous Tresca
material (using Cazacu et al.
[18]) and a porous material
with matrix characterized by
b ¼ �0:35: a axisymmetric
loadings such that JR3 � 0 and
b axisymmetric loadings such
that JR3 � 0; Initial porosity
f0 ¼ 0:5%
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yielding. For data on a variety of engineering materials and recent yield criteria that
account for this asymmetry, the reader is referred to Chaps. 4–6.

The fundamental question that arises concerns the influence of the tension–
compression asymmetry of the matrix on damage evolution. In this section are
presented recent contributions that address this question. First, it is shown that if the
matrix is incompressible and displays tension–compression asymmetry, even under
hydrostatic loadings the overall mechanical response of the porous material depends
on the sign of the applied pressure (tension vs. compression).

Next, the derivation of the Cazacu and Stewart [20] analytic plastic potential for
porous isotropic materials with randomly distributed spherical voids in an incom-
pressible matrix displaying tension–compression asymmetry is presented. On the
basis of this criterion, the influence of the matrix asymmetry on void evolution and
the location of the zone corresponding to maximum damage in round tensile
specimens subject to uniaxial tension is assessed numerically. The unusual char-
acteristics of damage evolution revealed by this model are confirmed by X-ray
tomography data on engineering materials.
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(b)

Fig. 7.65 Comparison
between the evolution of the
void volume fraction with
equivalent plastic strain Ee

under compressive
axisymmetric loadings at
fixed stress triaxiality
T ¼ �1:5 for a porous von
Mises material according to
Cazacu et al. [19] criterion, a
porous Tresca material
(according to Cazacu et al.
[18]) and a porous material
with matrix characterized by
b ¼ 0:38; b ¼ �0:35:
a axisymmetric loadings such
that JR3 � 0 and
b axisymmetric loadings such
that JR3 � 0; Initial porosity
f0 ¼ 5%

7.3 Constitutive Model for Porous Isotropic Metallic … 445



7.3.1 Cazacu and Stewart [20] Plastic Potential

Cazacu and Stewart [20] used the kinematic homogenization approach to model
isotropic porous materials containing randomly distributed spherical voids in an
incompressible matrix displaying tension–compression asymmetry. The matrix
behavior was considered to be rigid-plastic and governed by the quadratic form of
the isotropic stress potential of Cazacu et al. [15]:

u rð Þ ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

sij j � ksið Þ2
vuut ; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

2 3k2 � 2kþ 3ð Þ

s
: ð7:125Þ

We recall that in Eq. (7.125), s1, s2 and s3 are the principal values (not ordered)
of the Cauchy stress deviator while k is a material constant expressible solely in
terms of the ratio b ¼ rT=rC between the uniaxial yield in tension–compression,
respectively, as:

k ¼ 1� h
1þ h

;with h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� b2

2b2 � 1

s
ð7:126Þ

For more details about this stress potential and its exact dual w dð Þ, the reader is
referred to the Sects. 4.3.2 and 6.1.2, respectively. Let us recall here that for any
plastic strain-rate field d, the expression of w dð Þ is:

w dð Þ ¼

ffiffiffi
2
3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

3� 2b2

b2

� 
2� b2

vuuut
; if d1; d2; d3ð Þ 2 D�

3ffiffiffi
2
3

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ 3b2�2


 �
d23

2b2 � 1

s
; if d1; d2; d3ð Þ 2 Dþ

3

8>>>>>>><>>>>>>>:
; ð7:127Þ

with d1, d2, d3 denoting the eigenvalues of d (not necessarily ordered) and the
sub-domains Dþ

3 and D�
3 being defined as:

D�
3 ¼ d1; d2; d3ð Þj d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21 þ d22 þ d23

q � �b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ b4 � b2
� �q

8><>:
9>=>;

Dþ
3 ¼ d1; d2; d3ð Þj d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21 þ d22 þ d23

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ b4 � b2
� �q

8><>:
9>=>;;
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The expressions of the other branches of w dð Þ; corresponding to the domains
Dþ

j and D�
j (j = 1, 2) are obtained from Eq. (7.127) by symmetry arguments (for

more details and the geometric representation of these domains in the octahedral
plane, see Sect. 6.1.2). Therefore, for any strain-rate field d; the local plastic dis-
sipation associated with the yield criterion given by Eq. (7.125) is:

p dð Þ ¼ rTw dð Þ: ð7:128Þ

For spherical void geometry, the RVE considered is the hollow sphere of inner
radius a and outer radius b, shown in Fig. 7.1. To arrive at a closed-form expression
of the plastic potential for the porous material, the analysis was done for a unique
velocity field, namely that of Rice and Tracey [58] and axisymmetric loadings [see
Eqs. (7.25)–(7.29)]. For this strain-rate field d, the principal values denoted dI , dII ,
dIII are given by Eq. (7.30).

It is to be noted that due to the tension–compression asymmetry of the matrix,
fresh difficulties are encountered when estimating the local plastic dissipation, p dð Þ:
Indeed, for a material with matrix having rT 6¼ rC, p dð Þ has multiple branches [see
Eq. (7.127)] and its expression depends on the sign and relative ordering of the
eigenvalues dI , dII , dIII : Nevertheless, it is possible to obtain analytically an
approximate plastic potential for the porous material. This potential will be denoted
PSD D; fð Þ: Moreover, Cazacu and Stewart [20] obtained an explicit expression of
the yield criterion from the expressions of

Rm ¼ 1
3
@PSD D; fð Þ

@Dm

Re ¼ @PSD D; fð Þ
@De

				 				
8>><>>: ð7:129Þ

General properties of the yield surface of a porous material with incompressible
matrix displaying SD effects

While the explicit expression of PSD D; fð Þ and that of the yield criterion will be
given later on, it is important to note here that for purely hydrostatic or purely
deviatoric loadings, the plastic dissipation of the porous material can be obtained in
closed form without making any approximations. Most importantly, the analysis of
the yielding response of the porous material for these loadings leads to key findings
concerning the influence of the tension–compression asymmetry of the matrix on
yielding of the porous material.

It is worth recalling that if the matrix plastic behavior is governed by an even
yield criterion, there is a combined effect between the mean stress Rm and the
third-invariant JR3 for all stress states, except for purely deviatoric or purely
hydrostatic loadings. Moreover, it was shown that the yield surface of the porous
material is centro-symmetric (see Theorems 7.1 and 7.2; Sect. 7.2.1). In contrast, if
the matrix is incompressible and displays SD effects (i.e., rT 6¼ rC), then there is an
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effect of the sign of Rm on yielding under purely hydrostatic loadings and of the
sign of JR3 on yielding under purely deviatoric axisymmetric loadings, respectively.
Specifically, these very specific effects can be quantitatively described in terms of
rT=rC, the ratio between the matrix uniaxial yield stresses in tension–compression.

Theorem 7.12 If the matrix is governed by the isotropic form of the Cazacu et al.
[15] yield criterion,

• For tensile hydrostatic loadings, the yield limit of the porous material is:

pþ
Y ¼ � 2=3ð ÞrC ln f ð7:130Þ

• For compressive hydrostatic loadings, the yield limit of the porous material is:

p�Y ¼ 2=3ð ÞrT ln f : ð7:131Þ

Proof Given that the matrix is governed by an isotropic yield criterion [see
Eq. (7.125)] and the voids are spherical and randomly distributed in the matrix, the
porous material is isotropic. Therefore, when subjected to purely hydrostatic
loading, i.e., R ¼ RmI; the resulting deformation and strain-rate tensor D is also
spherical, i.e., D ¼ DmI: Further substitution in Eq. (7.30) leads to the following
expressions for the eigenvalues dI ; dII ; dIII :

• For tensile hydrostatic loadings (i.e.,Rm > 0):

dI ¼ dII ¼ Dm b=rð Þ3 [ 0

dIII ¼ �2dI\0

(

• For compressive hydrostatic loadings (i.e.,Rm < 0):

dI ¼ dII ¼ Dm b=rð Þ3\0

dIII ¼ �2dI [ 0

(

Substituting these eigenvalues in the expression of the matrix plastic dissipation
[Eqs. (7.127) and (7.128)], we obtain:

p dð Þ ¼ 2=bð ÞrTDm b=rð Þ3 if Dm [ 0;

2 Dmj jrT b=rð Þ3 if Dm\0:

(
with b ¼ rT=rC:

Note that for this type of loading, the local plastic dissipation is the same on
every spherical surface S rð Þ with a� r� b; therefore the integral of p dð Þ over the
hollow sphere can be done analytically, leading to the following expression of the
plastic dissipation of the porous material:

448 7 Plastic Potentials for Isotropic Porous Materials …



p dð Þh iX¼
�2rCDm lnðf Þ if Dm [ 0;
�2rT Dmj j lnðf Þ if Dm\0:

�
with f ¼ a=bð Þ3:

The stresses at yielding are obtained by differentiating the above equations with
respect to D [see Eq. (7.12)].

Thus, under tensile hydrostatic loading the yield limit of the porous material is
Rm ¼ pþ

Y ¼ � 2=3ð ÞrC ln f ; while for compressive hydrostatic loading, the yield
limit is Rm ¼ p�Y ¼ 2=3ð ÞrT ln f (i.e., Eqs. (7.130) and (7.131), respectively).

Remark (a) Note that if there is no asymmetry between the tensile and compressive
behavior of the matrix; i.e., if rT ¼ rC, then Eqs. (7.130) and (7.131) become:
pþ
Yj j ¼ p�Y

		 		 � 2=3ð ÞrT ln f ; i.e., we recover the yield limit under hydrostatic
loadings of a porous material with matrix plastic behavior governed by an even
yield criterion (e.g., von Mises, Tresca); see also Theorem 7.2, Sect. 7.2.1.

Remark (b) For the solution to the limit-analysis problem of a hollow sphere loaded
hydrostatically assuming ideal plastic behavior governed by the Cazacu et al. [15]
yield criterion, the reader is referred to Cazacu and Stewart [20]. Here, we mention
that the solutions are pþ

Y and p�Y , given by Eqs. (7.130) and (7.131), respectively.
Thus, in the plane Rm;Reð Þ both the exact and the approximate estimate of the yield
surface based on the Rice and Tracey [58] velocity field contain the states pþ

Y ; 0ð Þ
and p�Y ; 0

� �
:

Theorem 7.13 If the matrix is governed by the isotropic form of the Cazacu et al.
[15] yield criterion, for axisymmetric and purely deviatoric loadings (i.e., Rm ¼ 0Þ,
the yield limit of the porous material depends on the sign of JR3 :

• For purely deviatoric axisymmetric loadings, if JR3 � 0; yielding occurs at:

Re ¼ rC 1� fð Þ ð7:132Þ

• For purely deviatoric axisymmetric loadings, if JR3 � 0; yielding occurs at:

Re ¼ rT 1� fð Þ: ð7:133Þ

Proof The porous material being isotropic under purely deviatoric axisymmetric
loadings such that R11 ¼ R22 [ 0; R33 ¼ �2R11 (JR3 � 0Þ, the strain-rate D is also
axisymmetric and traceless with D0

11 ¼ D0
22. Further substitution in Eq. (7.30) leads

to: dI ¼ dII ¼ D0
11 ¼ De=2[ 0 and dIII¼ �De\0: Moreover, it can be easily

shown that for any b ¼ rT=rC:

dIIIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2I þ d2II þ d2III

p ¼ �
ffiffiffi
2
3

r
\

�b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 b4 � b2 þ 1
� �q :

Therefore, the matrix plastic dissipation [see Eqs. (7.127) and (7.128)] is:
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p dð Þ ¼ rCDe;

while the plastic dissipation of the porous material is given by:

p dð Þh iX¼ rCDeð Þ 4p b3 � a3
� �� �

= 4pb3
� � ¼ rCDeð Þ 1� fð Þ: ð7:134Þ

The stresses at yielding are obtained by differentiating with respect to D the
overall plastic dissipation given by Eq. (7.134). We obtain that yielding occurs for
Re ¼ rC 1� fð Þ: By similar arguments, it can be shown that under purely deviatoric
axisymmetric loadings such that R11 ¼ R22\0; R33 ¼ �2R11 (JR3 � 0Þ, yielding
occurs for Re ¼ R11 � R33j j ¼ rT 1� fð Þ:
Remark Note that if there is no asymmetry between the tensile and compressive
behavior of the matrix, i.e., if rT ¼ rC, then Eqs. (7.132) and (7.133) coincide, and
we recover the yield limit under axisymmetric purely deviatoric loading of a porous
material with matrix plastic behavior governed by an even yield criterion (e.g., von
Mises or Tresca): Re ¼ rT 1� fð Þ (see also Sect. 7.2.1).

In summary, for a porous material with matrix displaying SD effects, the yield
surface does not have any symmetry. In the plane Rm;Reð Þ there are two yield
curves corresponding to axisymmetric states. These yield curves intersect only at
pþ
Y ; 0ð Þ and p�Y ; 0

� �
; respectively (see also Fig. 7.67).

Theorem 7.14 The Cazacu and Stewart [20] yield function for a porous material
with matrix displaying SD effects is given by:

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

R0
i

rT

				 				� k
R0

i

rT

� �2
vuut0@ 1A2

þ 2f cosh
3zs
2

Rm

rT

� �
� 1þ f 2
� � ¼ 0; ð7:135Þ

with R0
i, i = 1, …, 3 are the eigenvalues of the stress deviator, Rm is the mean

stress, and

zs ¼ 1þ 1
2

sgn2 Rmð Þþ sgn Rmð Þ
 � rT
rC

� 1
� �

: ð7:136Þ

Proof Since the plastic flow in the matrix is sensitive to the third-invariant of the
stress deviator, the following axisymmetric loading scenarios need to be considered
separately:

(i) Rm � 0 and JR3 � 0; (ii) Rm � 0 and JR3 � 0; (iii) Rm � 0 and JR3 � 0;
(iv) Rm � 0 and JR3 � 0:

We will give a detailed analysis for Case (i); the other cases can be treated in a
similar manner (see Cazacu and Stewart [20])

Case (i): Rm � 0 and JR3 � 0
In this case, the RVE is subject to tensile loading such that the axial stress is less than

the lateral stress; i.e., R11 ¼ R22 �R33 � 0; so Rm � 0; Re ¼ R11 � R33, and JR3 � 0:
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Hence, D0
11 [ 0 andDm � 0 (void expansion) and the absolute value of the strain-rate

triaxiality u ¼ 2Dm=De. Since the matrix plastic dissipation p dð Þ has multiple bran-
ches, one needs to analyze the sign and relative ordering of the eigenvalues dI , dII , dIII
[see Eq. (7.30)]. For D0

11 [ 0 and Dm � 0; it follows that for any a� r� b; dI � 0
hence dIII � 0: To determine which expression of p dð Þ to use [see Eq. (7.127)], one
further needs to calculate the sign of the following expressions

E1 ¼ d2I
d2I þ d2II þ d2III

� 1

2 1þ b4 � b2
� � ;

and

E2 ¼ b4

2 1þ b4 � b2
� �� d2III

d2I þ d2II þ d2III
;

with b ¼ rT=rC. Further substitution of Eq. (7.30) and lengthy calculations lead to:
E1\0 for any h while E2\0 for h 2 0; h1ð Þ [ h2; 180

�� �
; where h1 and h2 are the

solutions in the interval 0; 180oð Þ of the equation tan2 hð Þ ¼ 8: Thus, the local
plastic dissipation is of the following form:

p dð Þ ¼ rT

ffiffiffi
2
3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2I þ d2II þ d2III

3� 2b2

b2

� 
2� b2

vuuut
; ð7:137Þ

with dI , dII , dIII are given by Eq. (7.30).
To obtain an analytical expression of the plastic potential of the porous material,

i.e., explicitly calculate the integral of p dð Þ over the RVE, Cazacu and Stewart [20]
made the same hypothesis as Gurson [29], i.e., they neglected the cross-term
“DmD0

11” in the expression of p dð Þ given by Eq. (7.137). The implications of
adopting this classic simplification were assessed through comparison with F.E.
unit-cell calculations and experimental data (see Sects. 7.3.1.1 and 7.3.1.2).
Specifically, using this simplification Eq. (7.137) becomes:

p dð Þ ’ pSD dð Þ ¼ rC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þD2
e

q
; ð7:138Þ

and the plastic potential of the porous material,

PSD D; fð Þ ¼ 3rC
b3

Zb
a

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

m b=rð Þ6 þ 4D02
11

q
dr

or
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PSD D; fð Þ ¼ 2rCDm

b3

Zu=f
u

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p� � dy
y2

ð7:139Þ

with u ¼ 2Dm=De and y ¼ u b=rð Þ3.
Note that if there is no difference in the matrix response between tension–

compression (i.e., if rT ¼ rC ), Eq. (7.139) reduces to Eq. (7.35), i.e., PSD D; fð Þ
coincides withPGurson D; fð Þ; the Gurson’s [30] estimate of the plastic dissipation of
a porous von Mises material. Calculation of the integral given by Eq. (7.139), its
derivatives relative to Dm and De, and elimination of u between the respective
expressions of Rm and Re result in

Re

rC

� �2

þ 2f cosh
3
2
Rm

rC

� �
� 1þ f 2
� � ¼ 0

or, equivalently,

Re

rT

� �2 rT
rC

� �2

þ 2f cosh
3
2

rT
rC

� �
Rm

rT

� 
� 1þ f 2
� � ¼ 0: ð7:140Þ

For any given stress state R; let us denote by

~Re ¼def m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

R0
ij j � kR0

ið Þ2
vuut ; ð7:141Þ

the equivalent stress associated with the isotropic form of the Cazacu et al. [15]
yield criterion [see Eq. (7.125)]; R0

i denoting the principal values of R0; the deviator
of R: Note that for axisymmetric loadings such that R11 ¼ R22 �R33 � 0 (i.e., for
JR3 � 0Þ,

~Re ¼ rT
rC

� �
Re: ð7:142Þ

Hence, Eq. (7.140) can be rewritten as

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

R0
i

rT

				 				� k
R0

i

rT

� �2
vuut0@ 1A2

þ 2f cosh
3
2
Rm

rC

� �
� 1þ f 2
� � ¼ 0 ð7:143Þ
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Remarks

• The Cazacu and Stewart [20] criterion given by Eq. (7.135) predicts that irre-
spective of loading there is an effect of the sign of the mean stress Rm on
yielding of the porous material (see also Theorem 7.12). This effect is modeled
through the coefficient zs [see Eq. (7.136)].

• Given that for k 6¼ 0; the effective stress ~Re ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

R0
ij j � kR0

ið Þ2
s

depends on

the relative ordering of the eigenvalues of the stress deviator R0; the Cazacu and
Stewart [20] criterion predicts that with the exception of purely hydrostatic
loadings there is an effect of the third-invariant JR3 on yielding of the porous
material (see also Theorems 7.12 and 7.13).

• If b ¼ rT=rC ¼ 1 and consequently k ¼ 0; the Cazacu and Stewart [20] crite-
rion given by Eq. (7.135) reduces to the Gurson [30] criterion for a porous von
Mises material [see Eq. (7.41)]. Indeed, for rT=rC ¼ 1; the coefficient zs ¼ 1
(see Eq. (7.136) and ~Re ¼ Re (see Eq. (7.141).

• In the absence of voids (f ¼ 0Þ, the Cazacu and Stewart [20] criterion given by
Eq. (7.135) reduces to the isotropic and quadratic form of the Cazacu et al. [15]
yield criterion [see Eq. (7.125)].

As an example, in Fig. 7.66 is shown the representation in the plane (Rm, Re ) of
the yield locus according to the Cazacu and Stewart [20] criterion given by
Eq. (7.135) for a porous material (f = 0.01) and matrix displaying tension–com-
pression asymmetry characterized by the ratio b ¼ 0:82 [k ¼ �0:3, see
Eq. (7.126)]. Note that the yield locus is represented by two curves, one corre-
sponding to axisymmetric stress states for which JR3 � 0 while the other corre-
sponding to axisymmetric stress states for which JR3 � 0; these two curves having in
common only the hydrostatic states, i.e., the points pþ

Y ; 0ð Þ and p�Y ; 0
� �

[see
Eqs. (7.130) and (7.131)].

To better put into evidence and visualize the complete lack of symmetry of the
yield surface of a porous material with matrix having SD effects, in Fig. 7.67a, b are
shown the projection in the R11 � R33;Rmð Þ plane of the Cazacu and Stewart [20]
yield surface for two porous materials (f ¼ 0:01), one with matrix having the yield
stress in tension less than in compression [rT=rC ¼ 0:71; corresponding to
k ¼ �0:9, see Eq. (7.126)] while the other having the yield stress in tension larger
than in compression [corresponding to rT=rC ¼ 1:41; k = 0.9, see Eq. (7.126)].

Irrespective of the SD ratio of the matrix, the yield locus is no longer symmetric
with respect to the deviatoric axis (Rm ¼ 0Þ. Furthermore, because the Cazacu and
Stewart [20] criterion depends on the sign and ordering of the eigenvalues of R0; the
yield locus is no longer symmetric with respect to the hydrostatic axis (i.e.,
R11 ¼ R22 ¼ R33). In general, the yield surface of a porous material with incom-
pressible matrix having the same response in tension–compression is invariant to
the transformation: Rm;R

0ð Þ ! Rm;�R0ð Þ (see Theorem 7.1). This is no longer the

7.3 Constitutive Model for Porous Isotropic Metallic … 453



case for porous materials with incompressible matrix having SD effects. This is a
key difference in yielding response with respect to porous materials with matrix
behavior represented by an even yield function (e.g., compare Fig. 7.67a, b with
Fig. 7.32 representing in the same plane a porous Tresca material).

It is also worth mentioning that according to Cazacu and Stewart [20] criterion,
the tension–compression asymmetry in the plastic deformation has a very strong
influence on yielding of the porous material. In particular, the sensitivity of the
mechanical response of the porous material to the third-invariant JR3 is correlated to
the ratio rT=rC

• For a porous material with matrix characterized by rT\rC (k < 0), the response
is softer for axisymmetric loadings at JR3 � 0 than for axisymmetric loadings at
JR3 � 0 (see also Fig. 7.67a).

• For a porous material with matrix characterized by rT [ rC (k > 0), the
response is softer for axisymmetric loadings such that JR3 � 0 (i.e., R11 ¼
R22 �R33 ) than for loadings at JR3 � 0 (i.e., R11 ¼ R22 �R33 ), see also
Fig. 7.67b.

The effects of the tension–compression asymmetry of the matrix on void evo-
lution will be analyzed in detail in Sect. 7.3.2.

Fig. 7.66 Cazacu and Stewart [20] theoretical yield surface for a porous material with matrix
displaying tension–compression asymmetry characterized by the ratio rT=rC ¼ 0:82 (k = −0.3)
and porosity f = 0.01. Both axisymmetric states corresponding to JR3 � 0 (R11 ¼ R22 �R33)
(interrupted line) and states corresponding to JR3 � 0(R11 ¼ R22 �R33) (solid line) are represented
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7.3.1.1 Effect of the Matrix Tension–Compression Asymmetry
on Yielding

Cazacu and Stewart [20] have also reported results of F.E. unit-cell calculations
where the matrix is governed by the isotropic and quadratic form of the Cazacu
et al. [15] yield criterion [see Eq. (7.125)]. The main focus was on assessing the
unusual features of the yielding of voided materials predicted by the model. 2-D

m TΣ σ

m TΣ σ

(a)

(b)

Fig. 7.67 Theoretical yield surfaces according to the Cazacu and Stewart [20] criterion for porous
materials (f ¼ 0:01Þ with incompressible matrix displaying tension–compression asymmetry
a k = −0.9 (rT=rC ¼ 0:71Þ b k = 0.9 (rT=rC ¼ 1:41Þ
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F.E. unit-cell model calculations for both tensile and compressive axisymmetric
loadings were conducted at fixed strain triaxiality, TE, the RVE considered being a
cylinder with a single spherical void at its center. All the simulations were per-
formed using a UMAT for the F.E. code ABAQUS. For more details concerning the
boundary-value problem and the F.E. mesh, the reader is referred to Cazacu and
Stewart [20], while for details concerning the F.E. implementation of an elastic–
plastic model with yielding according to the Cazacu et al. [15] yield criterion, the
reader should refer to Chaps. 2 and 4. The matrix elastic properties were:
E=rT = 800 and m ¼ 0:32. Two different porous materials (with f ¼ 0:01Þ were
considered, Material 1 with matrix characterized by k ¼ 0:3098 ðrT=rC ¼ 0:82Þ
and Material 2 with matrix characterized by k ¼ �0:3098 (rT=rC ¼ 1:22, the
reciprocal of the SD ratio of the matrix of Material 1). Such SD ratios were obtained
by Hosford and Allen [35] for fcc and bcc polycrystals with random textures for
which the constituent grains deform solely by twinning (for more details concerning
these crystal plasticity calculations and the identification of the values of k for these
materials, see also 4.3). Figures 7.68 and 7.69 show a comparison between the
theoretical yield surfaces according to the Cazacu and Stewart [20] porous model
and the numerical results. For the simulations corresponding to axisymmetric
loadings with JR3 � 0; the imposed strain triaxialities were as follows: for Material 1,
TE ranged from �0:303 to �3:328 while for Material 2, TE ranged from �0:207 to
�2:272: For simulations at JR3 � 0; the numerical points correspond to strain tri-
axialities ranging from TE ¼ �0:25 to TE ¼ �2:75 for both materials. In the
respective figures, the stresses are normalized by the tensile stress of the fully dense
material, rT .

The main observation from these figures is that the strong effect of the
third-invariant on yielding of the porous materials predicted by the Cazacu and
Stewart [20] criterion is indeed confirmed by the F.E. unit-cell model results. For
Material 1 whose matrix is softer in tension than in compression ðrT=rC ¼ 0:82Þ, the
F.E. predictions corresponding to JR3 � 0 are above those for JR3 � 0; the maximum
split corresponding to the purely deviatoric points. Meanwhile, for Material 2 whose
matrix is softer in compression than in tension ðrT=rC ¼ 1:22Þ, the reverse occurs,
i.e., the F.E. predictions corresponding to JR3 � 0 are above those for JR3 � 0; the
maximum split being also for deviatoric loadings. Moreover, the maximum splits for
the two materials are, within the precision of the numerical solutions, identical, as
predicted by the model. Indeed, as demonstrated in Theorem 7.13 under purely
deviatoric axisymmetric loadings, the ratio between the yield limits at JR3 � 0 and
JR3 � 0 should be equal to rT=rC [see Eqs. (7.132) and (7.133)].

Note also that the F.E. unit-cell predictions show a clear effect of the sign of
applied hydrostatic loading on the response of porous materials. For the Material 1
whose matrix is softer in tension than in compression ðrT=rC ¼ 0:82Þ, the F.E.
predictions show that the mean stress at yielding corresponding to tensile hydro-
static loading is greater than that corresponding to compressive hydrostatic loading.
On the other hand, for Material 2 with matrix having rT [ rC, the absolute value of
the mean stress corresponding to compressive hydrostatic loading is greater than
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that corresponding to tensile hydrostatic loading. This is consistent with the model
predictions. Indeed, as demonstrated in Theorem 7.12 the ratio between the
hydrostatic yield limits is: pþ

Y =p�Y
		 		 ¼ rC=rT [see Eqs. (7.131)–(7.133)].

As already mentioned, Cazacu and Stewart [20] also performed F.E. unit-cell
calculations corresponding to a material with matrix characterized by k ¼ 0 [von
Mises material, see also Eq. (7.125)] (see also Sect. 7.2.3.4). The results showed
that if the matrix has no SD effects: (a) for purely deviatoric axisymmetric loadings,
the yield limit of the porous material point is insensitive to the sign of JR3 ; (b) the
yielding of the porous material under purely hydrostatic loadings does not depend
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Fig. 7.68 Yield surface of a
porous material with
incompressible matrix
characterized by
rT=rC = 0.82 according to
the Cazacu and Stewart [20]
and F.E. unit-cell model yield
points (symbols) for
axisymmetric loadings such
that JR3 � 0 (solid line) and
JR3 � 0 (interrupted line),
respectively. Initial porosity
f = 0.01. Stresses are
normalized by the matrix
yield stress in uniaxial
tension, rT
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Fig. 7.69 Yield surface of a
porous material with
incompressible matrix
characterized by
rT=rC = 1.22 according to
Cazacu and Stewart [20]
criterion and F.E. unit-cell
model yield points (symbols)
for axisymmetric loadings
such that JR3 � 0 (solid line)
and JR3 � 0 (interrupted line),
respectively. Initial porosity
f = 0.01. Stresses are
normalized by the matrix
yield stress in uniaxial
tension, rT
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on the sign of the applied load (tensile or compressive); (c) for all other loadings
there is a combined effect of the signs of JR3 and Rm.

Similarly to Tvergaard [67]; Tvergaard and Needleman [69], the Cazacu and
Stewart [20] yield criterion can be modified to include additional parameters, qi, as
follows:

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

R0
i

rT
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i

rT
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vuut0@ 1A2

þ 2q1f cosh
3zs
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q2
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rT

� �
� 1þ q3f 2
� � ¼ 0

ð7:144Þ

with zs ¼ 1þ 1
2 sgn2 Rmð Þþ sgn Rmð Þ½ � rT

rC
� 1

� �
:

In this manner, for k = 0 (von Mises matrix) the yield criterion given by
Eq. (7.144) reduces to the Gurson–Tvergaard–Needleman (GTN) model
[Eq. (7.54)]. In Fig. 7.70 is shown a comparison between the theoretical yield loci
of this modified version of the Cazacu and Stewart [20] model [see Eq. (7.144)]
corresponding to axisymmetric loading at JR3 � 0 and F.E. numerical results for a
material with matrix characterized by rT=rC ¼ 0:82 and several porosities f = 0.01,
0.04, and 0.14, respectively. As expected, the criterion predicts that increasing
porosity results in softening of the material. Similar conclusions can be drawn for
the case when JR3 � 0: Application of this criterion to modeling porosity evolution
in an Al alloy will be presented in Sect. 7.3.3.
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Fig. 7.70 Yield surface of a
porous material with matrix
characterized by an SD ratio
rT=rC = 0.82 according to
the modified version of the
Cazacu and Stewart [20]
criterion for axisymmetric
loadings such R11 ¼
R22 �R33 (JR3 � 0Þ for several
porosities: f = 0.01, f = 0.04,
and f = 0.14, respectively.
Stresses are normalized by the
matrix yield stress in uniaxial
tension, rT
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7.3.1.2 Influence of the Matrix Tension–Compression Asymmetry
on Void Evolution

The Cazacu and Stewart [20] analysis and model for porous materials with matrix
having SD effects revealed that irrespective of loading, yielding is influenced by the
third-invariant JR3 , the strongest effect being for purely deviatoric axisymmetric
loadings. Moreover, the manner in which JR3 affects yielding depends on the ratio
rT=rC. As a consequence, the influence of JR3 on void evolution is also affected by
the matrix tension–compression asymmetry. F.E. unit-cell calculations were also
conducted to verify these new features predicted by the model. Only the main
results of these studies are presented, for more details the reader is referred to
Cazacu et al. [12]; Alves and Cazacu [1]; Alves and Cazacu [3].

The F.E. analyses of void evolution were conducted for cubic unit cells con-
taining a single initially spherical cavity (for the geometry of the unit cell, see
Sect. 7.2.3.2). For axisymmetric loadings, a fixed ratio of the axial and lateral true
stresses was maintained throughout the loading history (i.e., fixed level of the stress
triaxiality T). For a given value of the triaxiality, loading histories corresponding to
positive and negative values of JR3 were considered. As an example, Fig. 7.71
compares the porosity f versus the overall equivalent strain Ee [for definition Ee see
Eq. (7.51)] evolution for tensile axisymmetric loading histories corresponding to
R1 ¼ R2 �R3 (JR3 � 0Þ and a fixed positive stress triaxiality T = 2 for porous
materials with matrix characterized by k ¼ �0:3 and k ¼ 0:3; respectively. The
initial porosity was f0 ¼ 0:0013 such as to enable comparison with the F.E. unit-cell
results for von Mises matrix behavior (k ¼ 0Þ presented in Sect. 7.2.3.4.

As a general observation, the strong influence of the tension–compression
asymmetry of the matrix on void growth predicted by the Cazacu and Stewart [20]
criterion is confirmed by the numerical results. Note that the rate of void growth is
fastest in the material with k ¼ 0:3 (matrix softer in compression than in tension).
The effect of the stress triaxiality on void growth is also well described by the
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Fig. 7.71 Comparison
between the evolution of the
void volume fraction f with
the equivalent strain Ee,
obtained by F.E. unit-cell
calculations and the Cazacu
and Stewart [20] criterion for
axisymmetric loadings at
fixed stress triaxiality T ¼ 2
such that R1 ¼ R2 �R3

(JR3 � 0Þ for materials
characterized by different
tension–compression
asymmetry ratios
corresponding to k ¼ �0:3;
k ¼ 0; and k ¼ 0:3;
respectively
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model. Irrespective of the tension–compression ratio, the higher is the triaxiality the
faster is the rate of void growth (see Fig. 7.72 for k ¼ �0:3 and k ¼ 0:3; and
Fig. 7.13 for k ¼ 0Þ.

For the porous materials with matrix characterized by k ¼ 0:3 and k ¼ �0:3;
comparison between the predictions of the evolution of porosity according to the
Cazacu and Stewart [20] criterion and the F.E. unit-cell calculations corresponding
to axisymmetric loadings for the same triaxialities, but corresponding to JR3 � 0 are
presented in Fig. 7.73a, b. Note the very good agreement between the model and
the numerical results.

Comparison between the results presented in Figs. 7.72 and 7.73 shows that
irrespective of the value of k, there is a strong effect of JR3 on void evolution. For the
material with matrix characterized by k ¼ 0:3; the rate of void growth is faster for
loadings at JR3 � 0 than for loadings at JR3 � 0: On the other hand, for the material
with matrix characterized by k ¼ �0:3; the opposite holds true, i.e., the rate of void
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Fig. 7.72 Comparison
between the evolution of the
void volume fraction f with
the equivalent strain Ee,
obtained by F.E. unit-cell
calculations and the Cazacu
and Stewart [20] criterion for
axisymmetric loadings at
fixed stress triaxialities T ¼ 1;
T ¼ 2, and T ¼ 3;
respectively, for loadings
such that R1 ¼ R2 �R3

(JR3 � 0Þ for materials
characterized by different
tension–compression
asymmetry ratios
corresponding to: a k ¼ 0:3
and b k ¼ �0:3; respectively
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growth is slower for loadings at JR3 � 0 than for loadings at JR3 � 0: Thus, the
manner in which JR3 affects void evolution depends strongly on the matrix SD ratio
described by the parameter k.

Moreover, for loadings such that JR3 � 0; the fastest void growth rate occurs in
the material characterized by k ¼ 0:3; on the other hand, for loadings such that
JR3 � 0; the fastest void growth rate occurs in the material characterized by k ¼
�0:3: While examples have been provided only for specific values of k, the same
conclusions hold true for all k.

In summary, irrespective of the imposed loading, the Cazacu and Stewart [20]
model predicts that the tension–compression asymmetry in the plastic flow of the
matrix, described by the parameter k, has a very strong influence on all aspects of
the mechanical response of the porous solids. Furthermore, there is a very strong
effect of the loading path, in particular of JR3 on yielding, porosity evolution, and
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Fig. 7.73 Comparison
between the evolution of the
void volume fraction f with
the equivalent strain Ee,
obtained by F.E. unit-cell
calculations and the Cazacu
and Stewart [20] criterion for
axisymmetric loadings at
fixed stress triaxialities T ¼ 1;
T ¼ 2; and T ¼ 3;
respectively, for loadings
such that R1 ¼ R2 [R3

(JR3 � 0Þ for materials
characterized by different
tension–compression
asymmetry ratios
corresponding to: a k ¼ 0:3
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ultimately on the material’s ductility. Specifically, for materials with matrix such
that rT=rC\1 (k\0Þ for axisymmetric loadings at JR3 � 0 damage growth is much
faster than in the case of loadings at JR3 � 0; which in turns affects the overall
ductility. The reverse holds true for materials with matrix characterized by
rT=rC � 1 (k� 0Þ. All those trends predicted by the analytical criterion of Cazacu
and Stewart [20] were confirmed by F.E. unit-cell calculations.

In the next section, the influence of the matrix SD ratio on damage accumulation
under uniaxial tension is assessed using an elastic–plastic model based on this
criterion.

7.3.2 Effect of the Matrix Tension–Compression Asymmetry
on Damage in Round Tensile Bars

To simplify writing, in all the applications that will be discussed in Sect. 7.3.2 and
7.3.3, the Cauchy stress applied to the porous material is denoted by r; its deviator
by s (and its eigenvalues by si ) and the stress by rm, and the matrix effective yield
stress by �r: Thus, the modified version of the Cazacu and Stewart [20] yield
criterion given by Eq. (7.144) writes:

U ¼ 9
2 3k2 � 2kþ 3ð Þ

X3
i¼1

sij j � ksi
�r

� �2

þ 2q1f cosh q2
3zsrm
2�r

� �
� 1þ q3f

2� �
ð7:145Þ

It is worth recalling that since Cazacu and Stewart [20] criterion was derived
using rigorous upscaling methods, the dependence of the dilatational response on
the mean stress, rm, was deduced and not postulated. Consequently, the parameter
zs involved in Eq. (7.145) has a clear physical significance, being dependent on the
specificities of the plastic deformation of the matrix (through k) and on the state of
stress. Its expression is:

zs ¼
1 if rm � 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k2 þ 2kþ 3

3k2 � 2kþ 3

s
if rm [ 0:

8><>: ð7:146Þ

For k = 0, zs ¼ 1 for any value of the mean stress, so Eq. (7.145) coincides with
the GTN criterion (see Eq. (7.54) and discussion in Sect. 7.2.3.2).

Using the Cazacu and Stewart [20] criterion, Revil-Baudard and Cazacu [56]
conducted a numerical study on the influence of the matrix tension–compression
asymmetry on void evolution and the location of the zone corresponding to max-
imum damage in round tensile specimens subject to uniaxial tension.
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Normality flow rule was assumed, i.e., dp, the plastic part of the strain-rate is
given by:

dp ¼ _k
@U
@r

; ð7:147Þ

Matrix hardening was considered, i.e., in Eq. (7.145) the matrix effective stress �r
was taken to be a function of the effective plastic strain, �ep, the hardening law being
of the form:

�r ¼ a e0 þ�epð Þn ð7:148Þ

with the hardening exponent n being a constant and the parameters a, and e0 having
dimensions of stress and strain, respectively. The matrix being incompressible,
from mass conservation it follows that the porosity evolves according to:

_f ¼ 1� fð Þ dp : I ð7:149Þ

Following the same arguments as Gurson [30], if �r is given by Eq. (7.148), the
following work–equivalence relationship applies

�r _�e
p
1� fð Þ ¼ r: dp ð7:150Þ

From Eqs. (7.147) to (7.150), the evolution law for the effective plastic strain is:

_�e
p ¼ _k

r: @U
@r

1� fð Þ�r : ð7:151Þ

The aim of the study being the investigation of the effect of the tension–com-
pression asymmetry of the matrix on void growth, F.E. simulations were conducted
for various values of the strength differential parameter k; all the others parameters
were kept the same. Specifically, in all simulations the elastic properties of the
matrix were: (E=rT ¼ 300, m ¼ 0:3), the parameters involved in the law of evo-
lution of the tensile yield stress of the matrix were taken as: a=rT ¼ 1:8;
e0 ¼ 0:0027; n ¼ 0:1; the initial void volume fraction f0 ¼ 0:04, and q1 ¼ 1:5,
q2 ¼ 1, and q3 ¼ q21. Since void nucleation was not considered and all the materials
have the same matrix tensile yield stresses [see Eq. (7.148)], any differences in
damage evolution between porous materials are due solely to the matrix tension–
compression asymmetry (SD ratio). Moreover, the numerical values that were taken
for the matrix elastic properties, matrix yield stress in tension and matrix hardening
in tension are the same as those given by Tvergaard and Needleman [69] and
Aravas [5]. Therefore, with this choice of the numerical values for the matrix
properties, the porous material with k = 0 (no tension–compression asymmetry in
the matrix) is in fact the porous von Mises material considered by Tvergaard and
Needleman [69].
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Results of F.E. analyses of void evolution in a long, notched specimen with
circular cross-section were reported. An initial geometric imperfection was used to
induce necking in the specimen (see Fig. 7.74). The specimen considered has an
initial length of 2L0 and initial radius of R0 with L0=R0 ¼ 4; with R0 set to unity.
A cylindrical reference coordinate system (radial coordinate R, axial coordinate Z)
was used for the analysis. The following kinematic boundary conditions were
imposed: symmetry about R = 0 and symmetry about Z = 0; all the nodes along
Z = L0 were pulled in the Z direction while the nodes in the radial direction were
free. The F.E. mesh for one-eight of the bar is shown in Fig. 7.74b. It consists of
5472 hexahedral elements with reduced integration (ABAQUS C3D8R). The
simulations were carried out using a User Material Subroutine (UMAT) that was
developed for the coupled elastic–plastic damage model [Eqs. (7.147)–(7.151)] and
implemented in the F.E. code ABAQUS. The simulation were terminated when a
critical void volume fraction fc was reached ðfc ¼ 15:5%Þ.

7.3.2.1 Materials with Matrix Characterized by a Constant Strength
Differential Ratio

Round tensile bars made of three isotropic materials containing randomly oriented
spherical voids in a matrix characterized by rT=rC ¼ 1:24; and rT=rC ¼ 1:41 and
rT=rC ¼ 1 (GTN material-no strength differential effects) were examined. For

Fig. 7.74 a Geometry and
boundary conditions for the
tensile test on a notched
specimen with circular
cross-section; b F.E. mesh of
one-eighth of the specimen
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these materials, the corresponding values of the SD parameter are: k ¼ 0:355;
k ¼ 0:9, and k ¼ 0; respectively [see Eq. (7.126)]. Figure 7.75 shows isocontours
of the porosity f for the three materials. These isocontours correspond to the end of
each test, i.e., corresponding to the maximum porosity fc ¼ 15:5%. Therefore, the
global strain e ¼ ln L=L0ð Þ varies from one material to another.

For all materials, the maximum void volume fraction develops at the center of
the specimen. However, for the material with matrix characterized by k ¼ 0:9
(rT=rC ¼ 1:41Þ, the extent of the zone of maximum damage is the smallest. Note

Fig. 7.75 Contours of constant void volume fraction, f, corresponding to the end of the test (i.e.,
for fmax ¼ 15:5% ) for materials with matrix having the yield in tension larger than the yield in
compression k ¼ 0:355 (rT=rC ¼ 1:24Þ and k ¼ 0:9 (rT=rC ¼ 1:41Þ, in comparison with a GTN
material (k ¼ 0Þ
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that for the material with the highest contrast between the matrix yield stresses in
tension–compression (k ¼ 0:9Þ, the damage isosurfaces become square with
rounded corners whereas for lower contrast the isosurfaces are oval, and the
porosity is more localized. Results of F.E. simulations were also reported for porous
materials with matrix characterized by negative values of k, i.e., for materials with
matrix yield in tension less than in compression (rT\rC). The isocontours of
porosity corresponding to the end of each test, shown in Fig. 7.76, demonstrate an
important influence of the tension–compression asymmetry on the void volume
fraction distribution. For k ¼ �0:355 (rT=rC ¼ 0:81Þ, the void volume fraction
map is qualitatively similar to that for k� 0; with the maximum void volume
fraction being at the center of the specimen. For k ¼ �0:544 (rT=rC ¼ 0:75Þ, there
is a much larger spread of the zone of maximum damage than in the case when
k ¼ �0:355 (rT=rC ¼ 0:81Þ; as k further decreases (k ¼ �0:686 corresponding to
rT=rC ¼ 0:72Þ, the zone of maximum damage extends to the entire section. For
k ¼ �0:9 (rT=rC ¼ 0:71Þ, the zone of maximum damage shifts from the center of
the specimen toward its outer surface. A clear correlation between the value of the
tension–compression asymmetry ratio and the location of the zone of maximum
damage is observed (Fig. 7.76). It is worth pointing out that k ¼ �0:544 corre-
sponds to a tension–compression asymmetry ratio rT=rC of 0.75 while k ¼ �0:9
corresponds to rT=rC ¼ 0:71: Thus, a difference of less than 5% in the matrix
tension–compression ratio leads to a very strong difference in the location of the
zone of maximum damage.

To better quantify the observed shift, in Fig. 7.77 is shown the normalized void
volume fraction (f =fmaxÞ as a function of the distance from the center of the
specimen (R=RmaxÞ for different materials. In each case, the void distribution cor-
responds to the end of the test (all simulations are terminated at fc ¼ 15:5%; Rmax

denotes the radius of the specimen at the end of a given test). Dimensionless
quantities for damage and radial distance have been used in order to allow com-
parison between the void volume fraction distributions corresponding to different
porous materials.

The trends illustrated in Figs. 7.75 and 7.76 are confirmed. It is clearly observed
that the different materials considered could be divided into two categories, namely
materials for which the maximum void volume fraction develops at the center of the
specimen, and materials for which the maximum void volume fraction shifts away
from the center. It is very interesting to note that the void volume fraction distri-
bution is not simply dictated by the sign of k (i.e., whether the matrix tensile yield
stress in tension is larger than in compression), but also depends on the absolute
value of this parameter. Indeed, the material characterized by k ¼ �0:355 has a
response closer to that of a material with k[ 0 (rT [ rC ) than to a material for
which k ¼ �0:686: To better understand the effects of the tension–compression
ratio on void evolution, in Figs. 7.78 and 7.79 are shown contours of constant void
volume fraction, f, at various stages of the test (i.e., for different levels of the global
axial deformation e ¼ ln L=L0ð ÞÞ for materials with k ¼ �0:686 (rT=rC ¼ 0:72Þ
and k ¼ �0:9 (rT=rC ¼ 0:71Þ respectively. Similar evolution of the porosity is
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observed in both materials, namely the damage initiates at the center of the spec-
imen; with increasing deformation, the damage isosurfaces become oval, then
damage grows faster at mid-radius than in the center of the specimen, which leads
to the final void volume fraction map shown in Fig. 7.76. However, for k ¼ �0:9;
the trends are much more pronounced.

Isocontours of the third-invariant of the stress deviator, JR3 , corresponding to the
end of the respective tests are shown in Fig. 7.80. It is very interesting to note that
for a GTN material (i.e., k ¼ 0 in Eq. (7.145) and for a material with matrix
characterized by k ¼ 0:345 (rT [ rC ), JR3 is positive everywhere in the specimen.
However, for the porous materials with matrix having rT\rC the sign of JR3 is
negative at the surface of the specimen. Furthermore, the higher is the contrast, the

Fig. 7.76 Contours of constant void volume fraction, f, for materials with matrix having the yield
in tension less than the yield in compression: k ¼ �0:355 (rT=rC ¼ 0:81Þ, k ¼ �0:544
(rT=rC ¼ 0:75Þ, k ¼ �0:686 (rT=rC ¼ 0:72Þ and k ¼ �0:9 (rT=rC ¼ 0:71Þ, corresponding to
the end of the test (i.e., for fmax ¼ 17%) (after Revil-Baudard and Cazacu [56])
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more extended is the zone where JR3 is negative. This explains the differences in the
dilatational response, since the higher the contrast, the stronger is the dependence of
the yield surface on JR3 , the level of plastic strain and its direction depending on the
location in the specimen, i.e., whether in the center or at the surface (see also
Fig. 7.67 showing the strong sensitivity of the yield surface of the porous material
to the sign of JR3 )

Let us also examine the local evolution of the void volume fraction corre-
sponding to two elements. One was initially located at the center of the specimen
while the other was initially at R=R0 ¼ 0:582; i.e., at about mid-radius. It is very
interesting to note that for the element located at the center of the specimen, the
porosity increases most rapidly in the material characterized by the largest strength
differential ratio of the matrix, namely rT=rC ¼ 1:41: A possible explanation is that
among all the materials examined, this material has the smallest compressive yield
stress. Thus, according to the Cazacu and Stewart [20] model, under tensile loading
this material should yield first, which leads in turn to accelerated void growth when
compared to the other materials. On the other hand, for porous materials with
matrix characterized by k negative, the fact that their matrix is harder in com-
pression than in tension appears to delay the onset of plastic flow and, thus, delay
void growth (see Fig. 7.81b for comparison between the void growth rate in the
center element (solid line) of material with k ¼ 0 (GTN) and k ¼ �0:355

Fig. 7.77 Void volume fraction as a function of the distance from the center of the specimen at
the end of the test for porous materials with matrix characterized by different tensile/compression
asymmetry ratios: k ¼ 0:355 (rT=rC ¼ 1:24Þ and k ¼ 0:9 (rT=rC ¼ 1:41Þ, k ¼ 0 (GTN material),
k ¼ �0:355 (rT=rC ¼ 0:81Þ, k ¼ �0:544 (rT=rC ¼ 0:75Þ, k ¼ �0:686 (rT=rC ¼ 0:72Þ and k ¼
�0:9 (rT=rC ¼ 0:71Þ. Maximum void volume fraction is shifted from the center if k\0:544
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(rT=rC ¼ 0:81Þ; respectively). It is also worth noting that for a GTN material and
for materials with matrix characterized by k positive, the void growth rate for the
two elements is similar (see Fig. 7.81a) while for the material with k ¼ 0:9 the
porosity evolution is almost identical. The local behavior thus correlates with the
global response illustrated in Figs. 7.75 and 7.76a, which show that damage dis-
tribution is quite similar in these materials. Since damage occurs first in the center,
and the void growth rate in the two elements is similar, maximum porosity develops
at the center of the specimen. On the other hand, Fig. 7.81b reveals very interesting
features of damage evolution for materials with k\� 0:544: The void growth rate
of the element at the center (R ¼ 0; solid lines) is slower than that at mid-radius
(R=R0 ¼ 0:582; interrupted lines) and there is intersection between the porosity
versus local plastic strain curves associated to the two elements, which explains the
shift observed previously in the location of the maximum void volume fraction (see,
e.g., Fig. 7.77).

To further explain the observed behavior, for the material with matrix charac-
terized by: k ¼ �0:9; in Fig. 7.82 are plotted the radial, longitudinal, and axial
stress as a function of the local plastic strain in the two elements. Note that for the
element at the center of the specimen (solid line), the state of stress is axisymmetric

Fig. 7.78 Contours of constant void volume fraction at different stages of the test for a material
with k ¼ �0:686 (rT=rC ¼ 0:72Þ
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(rhh ¼ rrr ), whereas for the element at mid-radius rhh 6¼ rrr . The curve repre-
senting the evolution of the pressure, P ¼ �rm with the local plastic strain for the
element at the center (R ¼ 0Þ has a maximum at about �ep ¼ 0:4 and then it
decreases, hence the local porosity grows faster at mid-radius than at the center (see
also Fig. 7.83 and the porosity evolution law according to the Cazacu and Stewart
[20] model). Thus, the shift in the location of the zone of maximum damage may be
correlated to the criterion being sensitive to the third-invariant of the stress deviator,
which influences the plastic flow (level of plastic deformation in the matrix and its
orientation), and consequently void growth (see also Fig. 7.67).

7.3.2.2 Materials with Matrix Characterized by an Evolving Tension–
Compression Strength Ratio

In all the simulations presented so far, the SD parameter k was considered to be a
constant. However, in certain hcp materials the interplay between deformation
twinning and slip leads to the evolution of the matrix tension–compression ratio

Fig. 7.79 Contours of constant void volume fraction at different levels of the global axial strain
for a material with k ¼ �0:9 (rT=rC ¼ 0:71Þ
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with plastic deformation. For example, in Mg alloys, at initial yielding and for
equivalent plastic strains less than 10% the tensile strength is larger than the
compressive strength, while above 10% the tensile strength is comparable to the
compressive strength because twinning saturates (see Hosford [34];Cazacu et al.
[15] and further examples in Chap. 5). In hcp-Ti, the tensile and compressive
strength are comparable for strains below 10%, while the compressive strengths
become larger than the tensile strength (k ranges from 0 to −0.9) as deformation
twinning becomes active (see discussion and data of Nixon et al. [52] presented in
Chap. 5). To get insights on the rate of void growth to be expected in such
materials, Revil-Baudard and Cazacu [56] conducted F.E. analyses of the tensile
test for porous materials with matrix characterized by a strength differential ratio
k evolving with accumulated plastic deformation. Two evolution laws, with
k ranging from zero at the onset of plastic flow to a maximum value of kmax ¼ �0:9
(rT=rC ¼ 0:71Þ were considered, namely:

kð�epÞ ¼ aþ b
1� expð�e� �e1Þ=�e2 ; ð7:152Þ

and

Fig. 7.80 Contours of the third-invariant of the stress deviator, JR3 corresponding to the end of
each test (fmax ¼ 17% ) for materials characterized by matrix with different tension–compression
asymmetry ratios: k ¼ 0:355 (rT=rC ¼ 1:24Þ, k ¼ 0 (GTN material), k ¼ �0:355
(rT=rC ¼ 0:81Þ, k ¼ �0:544 (rT=rC ¼ 0:75Þ, k ¼ �0:686 (rT=rC ¼ 0:72Þ and k ¼ �0:9
(rT=rC ¼ 0:71Þ
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Fig. 7.81 Evolution of the void volume fraction as a function of the local plastic strain at
the center of the specimen (R ¼ 0) and R=R0 ¼ 0:582 (interrupted line) for different materials
a k ¼ 0 (GTN material), k ¼ 0:355 (rT=rC ¼ 1:24Þ, k ¼ 0:9 (rT=rC ¼ 1:41Þ and b k ¼ 0 (GTN
material), k ¼ �0:355 (rT=rC ¼ 0:81Þ, k ¼ �0:544 (rT=rC ¼ 0:75Þ, k ¼ �0:686
(rT=rC ¼ 0:72Þ and k ¼ �0:9 (rT=rC ¼ 0:71Þ
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Fig. 7.82 Evolution of the components of the Cauchy stress (in a cylindrical coordinate system)
and of the void volume fraction as a function of the local plastic strain at the center of the specimen
(R ¼ 0) and at R=R0 ¼ 0:582 (interrupted lines) for a material with matrix characterized by
k ¼ �0:9 (rT=rC ¼ 0:71Þ. Note that for the element at R=R0 ¼ 0:582; the state of stress is no
longer axisymmetric (after Revil-Baudard and Cazacu [56])

Fig. 7.83 Evolution of the pressure, P ¼ �rm, and of the void volume fraction as a function of
the local plastic strain at the center of the specimen (R ¼ 0) and at R=R0 ¼ 0:582 for a material
with matrix characterized by k ¼ �0:9 (rT=rC ¼ 0:71Þ
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kð�epÞ ¼ aþ b
1� expð�e� �e3Þ=�e4 ; ð7:153Þ

with a = 0.90416, b = 0.009321; �e1 ¼ 0:15, �e2 ¼ 0:02788, while �e3 ¼ 0:4,
�e4 ¼ 0:06788.

Note that the only difference between these two exponential laws is the rate of
change of k. Figure 7.84a shows the contour of constant void volume fraction at the
end of the test for a material with matrix characterized by k ¼ �0:9 while
Fig. 7.84b, c present the void isocontours for a porous material with matrix char-
acterized by an evolving k according to Eqs. (7.152) and (7.153), respectively. For
all these porous materials, the calculations were terminated at a void volume
fraction fc = 0.14. Although, the limiting value (final value) of k for both materials
with evolving microstructures (SD ratios) is the same (k ¼ �0:9Þ, there is a very
striking difference in the void distribution within the respective specimens. For the
material for which k evolves according to Eq. (7.152), i.e., there is a fast decrease of
k from zero to the final value k ¼ �0:9; the zone of maximum damage is shifted
from the center of the specimen outward, i.e., the response is quite similar to that of
the material with k ¼ �0:9 (constant). On the other hand, if the rate at which

Fig. 7.84 Contours of constant void volume fraction, f, for materials with matrix having
a constant strength ratio (k ¼ �0:9Þ; b evolving microstructure with k following the evolution law
(7.152) and c evolving microstructure with k following evolution law (7.153) corresponding to the
end of the test (i.e., for fmax ¼ 14% ) (after Revil-Baudard and Cazacu [56])
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k decreases from k �ep¼0j ¼ 0 to k ¼ �0:9 is slower [i.e., Eq. (7.152)], the void
volume fraction distribution within the specimen is totally different, the zone of
maximum damage develops at the center of the specimen, i.e., similar to a GTN
material with k ¼ 0 (constant).

Thus, it can be concluded that the evolution of the parameter k strongly influ-
ences the void volume fraction distribution. Figure 7.85 shows the local damage
evolution in an element at the center of the specimen and at mid-radius
(R=R0 ¼ 0:582Þ for the same three materials. These results confirm the para-
mount influence of the rate of change of the parameter k with the accumulated
plastic strain. Indeed, in a material for which k evolves according to Eq. (7.152), the
void growth in both the center element (R ¼ 0Þ and the mid-radius element is quite
similar to that obtained for a material with matrix characterized by the limiting
value k ¼ �0:9 (constant). Note that the void growth curves for the two elements
intersect. This explains the shift in the location of the zone of maximum damage of
Fig. 7.84b. It is worthwhile to note that for the material with matrix tension–
compression asymmetry evolving according to Eq. (7.153), the void growth rate is
similar to that corresponding to a material with no tension–compression asymmetry
(k ¼ 0) up to an equivalent plastic strain of about 4%, while beyond this strain level
the void growth rate becomes slower and comparable to that of a material with

Fig. 7.85 Evolution of the void volume fraction as a function of the local equivalent plastic strain
at the center of the specimen (R ¼ 0) and at R=R0 ¼ 0:582; for materials with matrix having
constant strength ratio k ¼ �0:9 and k ¼ 0 (GTN material), respectively, in comparison with the
void growth in porous materials with evolving microstructure characterized by a strength
differential ratio k following the evolution law (7.152) and (7.153), respectively (after
Revil-Baudard and Cazacu [56])

7.3 Constitutive Model for Porous Isotropic Metallic … 475



matrix characterized by a constant tension–compression ratio of k ¼ �0:9: In
conclusion, the results presented in Figs. 7.84 and 7.85 demonstrate that the final
void volume fraction distribution could not be predicted based on either the initial
or final value of k, the rate of change of k being of foremost importance.

In summary, on the basis of the Cazacu and Stewart [20] criterion, it was shown
that in porous metallic materials with incompressible matrix softer in compression
than in tension, the rate of void growth is higher than in materials with matrix
governed by the von Mises criterion. On the other hand, for certain porous materials
in which the matrix is softer in tension than in compression, under uniaxial tension,
damage is delayed and the void growth rate is much slower than in a GTN
material. Furthermore, damage distribution is significantly different; the location of
the zone of maximum porosity is shifted from the center of the specimen outwards.
It should be noted that even a slight tension–compression asymmetry of the matrix (
rT=rC of about 0.7) leads to damage evolution that is strikingly different than that
for a material with matrix that does not display strength differential effects. Most
importantly, void growth and damage distribution are significantly affected by the
rate of change of the strength differential ratio with plastic strain.

Unfortunately, complete mechanical characterization data for both tension–
compression and experimental data on the void evolution of engineering materials
are very scarce. Therefore, experimental validation of the trends revealed by ductile
porous models is rather limited.

Partial verification of the model’s predictions for an AA 6016-T4 alloy is pre-
sented in the next section.

7.3.3 Application to Al: Comparison Between Porous
Models Predictions and in Situ X-Ray Tomography
Data

Tensile test results on notched samples of an AA 6016-T4 and damage measure-
ments by X-ray computed tomography for several loading orientations were
reported in Thuillier et al. [65]. It was concluded that the weak texture of the
material does not affect the stress–strain and damage evolution in the material. To
investigate the effect of stress triaxiality on void evolution, tensile tests up to
fracture were conducted on a sample with a rather smooth geometry (R = 6 mm),
and also on samples with sharper notches of radius R = 2.5 mm and R = 1 mm,
respectively. In the following, these specimen geometries will be referred to as R6,
R2p5, and R1, respectively. For each specimen, the dimensions of the minimal
section are 1 
 1 mm2. In all tests, the axial strain was estimated from the mea-
surements of the minimal section area. In the numerical simulations, the axial strain
was calculated in the same manner, i.e., based on the displacement of the corners of
the minimal cross-section. Indeed, assuming incompressibility and linear interpo-
lation, the axial strain is related to the evolution of the minimal area S, i.e.,
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e ¼ lnðSo=SÞ ð7:154Þ

where So denotes the initial area. As already mentioned, the void volume fraction
was estimated using the XCMT method. The analysis of the void properties was
restricted to the center of the sample, the size and the volume fraction of the
porosities being determined by 3-D image analysis (see Buffiere et al. [11]). The
average initial value of the void volume fraction was estimated to be: f0 = 0.0005.

To describe the observed void evolution in the notched Al specimens, Thuillier
et al. [65] used the GTN model. Hardening of the matrix in tension was identified
from the pre-necking response of smooth specimens as

�r ¼ r0 þQ1 1� e�b�ep
� �þH�ep; ð7:155Þ

where �ep is the effective plastic strain, r0 ¼ 156 MPa, Q1 ¼ 145:6 MPa, b = 16
and H = 200 MPa. The values considered for the q1, q2, and q3 parameters are the
classical ones: q1 ¼ 1:5, q2 ¼ 1, and q3 ¼ q21. In the analysis, void evolution was
considered to be due to both void nucleation and void growth. The contribution due
to void growth was obtained from mass conservation assuming no volume change
in the von Mises matrix while void nucleation was considered to follow a normal
distribution with mean value eN and a standard deviation sN , as proposed by Chu
and Needleman [22]. The simulation results indicate that the GTN model predicts
qualitatively the effect of the stress triaxiality on the void volume fraction evolution.
However, a good quantitative agreement cannot be obtained for all specimens.

Revil-Baudard et al. [57] used the Cazacu and Stewart [20] model to predict the
response of the same material. Given that Cazacu and Stewart [20] criterion is an
extension of the GTN model, the only parameter that remains to be identified is the
parameter k [see Eq. (7.145)]. For isotropic materials, its range of variation is (-1,1).
The value of this parameter can be determined directly from uniaxial compression
tests or shear tests, or combined tension–torsion tests (see Chap. 4). Since such data
were not available for the AA 6016-T4, the parameter k was considered constant
and its value was determined using the porosity data for specimen R1 (see also
Fig. 7.86). The rate of change of the void volume fraction (_f Þ was considered to
result from the growth of existing voids and the nucleation of new ones; for void
nucleation, the same law of Chu and Needleman [22] was used. Thus,

_f ¼ 1� fð Þ dp: IþAN _�e
p; ð7:156Þ

AN ¼ fN
sN

ffiffiffiffiffiffi
2p

p exp � 1
2

�ep � eN
sN

� �2
" #

; ð7:157Þ
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with dp calculated using Eq. (7.147), and �ep denoting the equivalent plastic strain of
the matrix. In the F.E. calculations, the numerical values of the parameters involved
in Eq. (7.157) are those reported in Thuillier et al. [65], namely fN ¼ 0:0018,
sN ¼ 0:4, eN ¼ 0:9.

Note that according to the modified Cazacu and Stewart [20] criterion [see
Eq. (7.145)], the contribution due to the growth of existing voids is given by:

q1q2f 1� fð Þsinh q2
3zsrm
2�r

� �
ð7:158Þ

Thus, the rate of change of the void volume fraction ( _f Þ depends on the matrix
tension–compression asymmetry described by the parameter k (see Eq. (7.146) for
the expression of zs).

In the following are presented results obtained with the modified Cazacu and
Stewart [20] potential (see Eqs. (7.145)–(7.148), and Eqs. (7.156) and (7.157)) in
conjunction with the work-equivalence principle that allows calculation of the rate
of change of the matrix equivalent strain, _�ep. The respective F.E. meshes used in the
simulations are shown in Fig. 7.86 for the three AA 6016-T4 specimens. To
eliminate any discussion concerning purely numerical issues that may affect the
results, for all the geometries the simulations were run with the same constant time
step equal to Dt = 10−3s, all specimens having a similar mesh size in the reduced
section zone. The mesh consisted of 14,000 hexahedral elements with reduced
integration (ABAQUS C3D8R) and was refined in the reduced section zone.

Fig. 7.86 F.E. meshes for the three AA 6016-T4 specimens used in the tests of Thuillier et al.
[65]: a specimen R6, b specimen R2p5, c specimen R1
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As already mentioned, in order to identify the parameter k several F.E. simu-
lations were conducted with k = constant in the range (−1, 1) for the geometry R1.
A value of k = 0.2 describes well the experimental evolution (see Fig. 7.87). In the
same figure is also shown the porosity evolution according to GTN, which corre-
sponds to k ¼ 0 in the modified Cazacu and Stewart [20] criterion [see Eq. (7.145)].
It should be emphasized that in both calculations, all the other parameters were kept
the same, i.e., the elastic properties of the matrix (E ¼ 70 GPa and m ¼ 0:33Þ; the
material parameters involved in the hardening law for the matrix, the initial void
volume fraction f0, the parameters q1, q2, q3; and the parameters associated with
void nucleation (fN , sN , eN). Thus, the differences between the predictions obtained
with the two models are solely due to the value of the parameter k. It is interesting
to note that for values of the plastic strain below 0.2 both the Cazacu and Stewart
[20] model and GTN model describe well the experimental evolution; however,
with increasing accumulated plastic deformation the rate of void growth predicted
by the Cazacu and Stewart [20] model is faster.

Cazacu and Stewart [20] model with k = 0.2 was further used to predict the
evolution of the void volume fraction at the center of the specimens R2p5 and R6,
respectively (see Fig. 7.88). Note the excellent agreement between the numerical
predictions and the X-ray porosity data. On the other hand, GTN underestimates the
rate of void growth. This difference between the predictions according to the two
models can be explained based on Eq. (7.158). Note that for k > 0, it follows that
zs > 1 [see Eq. (7.146)], hence void growth is accelerated as compared to the GTN
model (which corresponds to k = 0 and zs ¼ 1). To further explain the predicted
trends, in Fig. 7.89 for each specimen are shown the isocontours of the mean stress,
corresponding to the same global axial strain (= 0.4) according to GTN and Cazacu
and Stewart [20] model, respectively. Note that both models predict that the highest
levels of mean stress occur in the specimen with the smallest notch radius

Fig. 7.87 Evolution of the
void volume fraction at the
center of the AA 6016-T4
specimen R1: comparison
between the experimental
X-ray data and the numerical
predictions according to the
GTN model (k = 0) and
Cazacu and Stewart [20]
model with k = 0.2,
respectively (after
Revil-Baudard et al. [57])
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(specimen R1). However, irrespective of the specimen geometry, Cazacu and
Stewart [20] model (k = 0.2) predicts higher levels of mean stress than GTN
(k = 0), which explains the higher rate of void growth predicted by the Cazacu and
Stewart [20] model as compared to the GTN model.

Fig. 7.88 Comparison
between the experimental data
obtained by X-ray
tomography and the
predictions of the Cazacu and
Stewart [20] criterion with
k = 0.2 for: a specimen R2p5;
b specimen R6 of AA
6016-T4 (after
Revil-Baudard et al. [57])

cFig. 7.89 Isocontours of the mean stress rm corresponding to a global plastic strain e ¼ 0:4 for
the three AA 6016-T4 specimens of different notch acuities according to: a GTN model (k = 0)
and b Cazacu and Stewart [20] criterion with k = 0.2 (after Revil-Baudard et al. [57])

480 7 Plastic Potentials for Isotropic Porous Materials …



7.3 Constitutive Model for Porous Isotropic Metallic … 481



Concerning the strength decrease due to porosity (Fig. 7.90), as the macroscopic
tensile tests and the tomography tests were performed at different aging times (see
Thuillier et al. [65]), a normalized ratio defined by the nominal stress rN of the test,
over the maximum nominal stress rmax reached during the same test was calculated
for all configurations (see Revil-Baudard et al. [57]). Figure 7.90 shows the
experimental evolution of rN=rmax in comparison with the F.E. results obtained
using the Cazacu and Stewart [20] model. Note that the model predicts quite well
the degradation of strength with increasing porosity. In particular, the shape of the
experimental curve is well described for the R1 and R2p5 specimens. The model
does, however, appear to slightly over predict the experimental response for the
specimen R6, which corresponds to the lowest stress triaxiality (see also Fig. 7.89).

In summary, the results presented suggest that the porosity evolution in the AA
6016-T4 is strongly affected by the value of the parameter k, which accounts for the
tension–compression asymmetry in the plastic flow of the incompressible matrix.
Irrespective of the geometry of the specimen, it was shown that the Cazacu and
Stewart [20] model with k = 0.2 predicts with accuracy the void growth evolution
while the GTN model underestimates it.

Fig. 7.90 Prediction of the nominal stress rN versus strain according to the Cazacu and Stewart
[20] model (k = 0.2) in comparison with X-ray tomography data for AA 6016-T4 (symbols):
a specimen R1; b specimen R2p5 and c specimen R6. rmax corresponds to the maximum nominal
stress reached during the respective test or numerical calculations, respectively
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Because of lack of mechanical characterization data, an isotropic porous model
was used, thus neglecting the role of the initial texture of the material. A more
complete data set would have allowed the experimental identification of the
orthotropic extension of the Cazacu and Stewart [20] model (see Chap. 8).
Nevertheless, the results reported by Revil-Baudard et al. [57] indicate that Cazacu
and Stewart [20] model gives accurate predictions and does provide a basis for
quantitatively relating microscale ductile damage processes to macroscopic ductility
in engineering materials.

7.4 Derivation of Plastic Potentials for Porous Isotropic
Metallic Materials Containing Cylindrical Voids

The constitutive models presented so far assume spherical void geometry. Long,
roughly cylindrical voids may result from decohesion of cylindrical inclusions (e.g.,
sulfides in steels) from the matrix (e.g., see Gurson [30]). Gurson was the first to
quantitatively describe the effects on yielding associated to the presence of cylin-
drical voids randomly distributed in the matrix (see Gurson [29]). The approach that
he used is that of kinematic limit analysis (see Sect. 7.1). Assuming that the matrix
is rigid-plastic and obeys the von Mises criterion, Gurson has shown that for
axisymmetric loadings with one of the stress eigenvectors aligned with the axis of
the cylindrical voids, it is possible to find the relation between the mean stress Rm

and the second-invariant of the stress deviator Re at yielding (Sect. 7.4.2). For any
other orientation of the loading axes with respect to the void axes, the description of
the induced anisotropy in yielding has remained an open question. Likewise, the
influence of the characteristics of the plastic flow of the matrix on yielding of
porous materials containing cylindrical voids is not well understood. Some of the
challenges associated with obtaining analytical results concerning both yielding and
void evolution are also discussed. Recent analytical results of Cazacu and Stewart
[21] who investigated the effects of the tension–compression asymmetry of the
matrix on yielding of porous materials with cylindrical voids are presented in
Sect. 7.4.3. It is shown that matrix SD effects lead to unusual yielding behavior as
compared to the case of a material with von Mises matrix.

We begin with the general statement of the problem and then proceed with
detailed proofs for the case when the plastic behavior of the matrix is described by
the von Mises [70] criterion, and the isotropic form of Cazacu et al. [15] criterion,
respectively.

7.3 Constitutive Model for Porous Isotropic Metallic … 483



7.4.1 Statement of the Problem

A representative volume element (RVE) is a hollow cylinder of inner radius, a, and
outer radius, b ¼ a=

ffiffiffi
f

p
, where f denotes the void volume fraction (or porosity) (see

Fig. 7.91). Irrespective of the yield criterion describing the matrix, the imposed
loading is axisymmetric, with one of the stress eigenvectors along the axis of the
cylinder (see Fig. 7.91). Therefore, the outer boundary of the RVE is subjected to:

R ¼ R11 e1 � e1 þ e2 � e2ð ÞþR33 e3 � e3ð Þ ð7:159Þ

where e1; e2; e3ð Þ are the eigenvectors of R with e3 being along the axis of the
cylinder. The boundary of the void is considered to be traction-free.

Since the applied loading is axisymmetric, the overall strain-rate D should also
be of the form

D ¼ D11 e1 � e1 þ e2 � e2ð ÞþD33 e3 � e3ð Þ ð7:160Þ

Thus, its invariants are expressed as: Dm ¼ 2D11 þD33ð Þ=3 and De ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3D

0
ijD

0
ij

q
¼ 2 D0

11

		 		 [see definitions given in Eqs. (7.1)–(7.3)].

Using axial and rotational invariance arguments and the incompressibility con-
dition, Gurson [29] deduced the following velocity field v compatible with uniform
strain-rate boundary conditions on the hollow cylinder:

v ¼ 3
2
b2Dm

1
r

� �
� D33

2
r

� 
er þD33zez ð7:161Þ

The eigenvalues (unordered) of the strain-rate field d corresponding to the
velocity field v given by Eq. (7.161) are as follows:

Fig. 7.91 Representative
volume element for a porous
material containing
cylindrical voids
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dI ¼ drr ¼ � 3Dm

2

� �
b2

r2
� D33

2
;

dII ¼ dhh ¼ 3Dm
2

� � b2
r2

� D33

2
;

dIII ¼ dzz ¼ D33

8>>>><>>>>: for any a� r� b: ð7:162Þ

Let Pþ D; fð Þ be the average plastic dissipation over the domain X occupied by
the RVE corresponding to the velocity field v given by Eq. (7.161); i.e.,

Pþ D; fð Þ ¼ p dð Þh iX¼
1
pb2

Zb
a

p dð Þ � 2prdr; ð7:163Þ

with p dð Þ denoting the plastic dissipation of the matrix.
As seen in Sect. 7.1, Pþ D; fð Þ is an approximate plastic potential of the porous

material. Moreover, at yielding of the porous material the stresses satisfy:

R11 ¼ R22 ¼ @Pþ D; fð Þ
@D11

andR33 ¼ @Pþ D; fð Þ
@D33

; ð7:164Þ

Or

Re ¼ @Pþ D; fð Þ
@De

				 				andRcc ¼ 2
@Pþ D; fð Þ

@D11
; ð7:165Þ

where Rcc ¼def R11 þR22 and Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
R0

ijR
0
ij

r
¼ R11 � R33j j

Equations (7.164) define the yield locus of the porous material with randomly
distributed cylindrical voids.

Remark (a) Pþ D; fð Þ is an upper-bound estimate of the exact plastic dissipation,
P D; fð Þ of the porous material (i.e., of the void-matrix aggregate). Therefore,
Eq. (7.164) defines an approximate yield locus for the porous material containing
cylindrical voids.

Remark (b) A major difficulty in obtaining closed-form expressions of this yield
locus is the determination of the expression of the local plastic dissipation p dð Þ
associated with the yield criterion describing the behavior of the matrix material and
the calculation of the integral representing the plastic dissipation Pþ D; fð Þ [see
Eq. (7.163)].
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7.4.2 Plastic Potential for a Porous Material with von Mises
Matrix

Using the approach presented in Sect. 7.4.1, Gurson [29] and Gurson [30] derived
an analytic plastic potential for porous materials with von Mises matrix containing
cylindrical voids. In the following, it is presented the derivation of the expression of
this potential, Ucyl

Gurson R; fð Þ; followed by a discussion of its key properties.

Theorem 7.15 The Gurson [30] yield function for a porous material with matrix
governed by the von Mises criterion and containing cylindrical voids is given by:

Ucyl
Gurson R; fð Þ ¼ Re

rT

� �2

þ 2f cosh

ffiffiffi
3

p

2
Rcc

rT

� �
� 1þ f 2
� � ¼ 0 ð7:166Þ

Proof Let us recall that for any strain-rate field d, the local plastic dissipation
associated with the von Mises yield function, uMises rð Þ; has the following
closed-form expression (see Sect. 6.1.1):

pMises dð Þ ¼ rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þtrd2

q
For cylindrical void geometry, the RVE considered by Gurson (see Gurson [29,

30]) is shown in Fig. 7.91. The analysis was done for axisymmetric tensile loadings
[see Eq. (7.159)] using the velocity field given by Eq. (7.161). For the corresponding
strain-rate field [see Eq. (7.162)], the local plastic dissipation takes the form:

pMises dð Þ ¼ rT D33j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 Dm=D33ð Þ2 b=rð Þ4

q
: ð7:167Þ

Let us denote t ¼def 32 Dmj j= D33j jð Þ: Substitution of Eq. (7.167) in Eq. (7.163) leads
to the following expression for the plastic dissipation of the porous von Mises
material:

Pþ
Mises;cyl D; fð Þ ¼ 2rT D33j j

b2

Zb
a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2=3ð Þ b=rð Þ4

q
dr: ð7:168Þ

Using the change of variable x ¼ ð2 ffiffiffi
3

p Þtb2=r2; Eq. (7.168) becomes:

Pþ
Mises;cyl D; fð Þ ¼ 2rT D33j jffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 3=4

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 3f 2=4

p
þ t ln

tþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 3f 2=4

p
t þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ 3=4
p � 1

f

 !264
375 ð7:169Þ

Using the above expression of the plastic dissipation, the stresses at yielding are
obtained by derivation [see Eq. (7.164)]:
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R11 ¼ Rcc

2
¼ @Pþ

Mises;cyl D; fð Þ
@D11

¼ 2rTffiffiffi
3

p ln
t þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ 3f 2=4
p

t þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 3=4

p � 1
f

 !

R33 ¼
@Pþ

Mises;cyl D; fð Þ
@D33

¼ 2rTffiffiffi
3

p ln
t þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ 3f 2=4
p

t þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 3=4

p � 1
f

 !
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ 3=4
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 3f 2=4

p
2664

3775
ð7:170Þ

Equations (7.170) define the Gurson [29] yield locus for a porous von Mises
solid containing cylindrical voids in a parametric form. Eliminating the parameter
t between the Eq. (7.170), one obtains the classical form [Eq. (7.166)] given in
Gurson [30].

General properties of the yield surface of a porous material with von Mises matrix
containing cylindrical voids

(a) For purely deviatoric axisymmetric loadings, there is no effect of the
third-invariant of the stress deviator on yielding.
Proof Indeed, for purely deviatoric axisymmetric loadings according to
Eq. (7.166) yielding occurs at:

Re=rT ¼ R11 � R33j j ¼ 1� f : ð7:171Þ

Therefore, the yield surface [Eq. (7.166)] is symmetric with respect to the
hydrostatic axis (R11 ¼ R22 ¼ R33).

Fig. 7.92 Representation in the R33 � R11ð Þ=rT ; R11 þR22ð Þ=rTð Þ plane of the Gurson [30]
theoretical yield surface for a porous material containing randomly distributed cylindrical voids in
a von Mises matrix, subjected to axisymmetric loadings with a void volume fraction (f = 0.01)
(after Cazacu and Stewart [21])
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(b) For generalized plane-strain conditions (D33 ¼ 0 or t ! 1 ), the stress state at
yielding is hydrostatic.
Proof According to Eq. (7.170) for D33 ¼ 0 and t ! 1:

lim
t!1 R11 � R33j j ¼ 0 ð7:172Þ

Thus, under plane strain, the stress state at yielding is hydrostatic. In other
words, in the case when the matrix is described by the von Mises criterion, the
yield limit under hydrostatic tension or hydrostatic compression, which cor-
responds to JR3 ¼ 0; coincides with the yield limit under plain strain conditions
(D33 ¼ 0Þ (see also Fig. 7.92).

(c) The yield limit under hydrostatic loadings has the absolute value:

pYj j ¼ � rTffiffiffi
3

p ln f ð7:173Þ

Proof Indeed, from Eq. (7.166), it follows that for tensile hydrostatic loadings:

R11 ¼ R22 ¼ R33 ¼ �rTffiffiffi
3

p ln fð Þ: Since pMises dð Þ has the same expression irre-

spective of the sign of Dm [see Eq. (7.167)], it follows that for compressive
hydrostatic loadings, the yield limit has the same absolute value given by
Eq. (7.173). Note that the expression of pY given by Eq. (7.173) coincides with
the solution for the maximal pressure necessary to fully plastify a cylinder
made of a material with ideal plastic behavior governed by the von Mises yield
criterion and subjected to hydrostatic loading (see Lubliner [45]).

All these characteristics of the yielding behavior of a porous von Mises material
when subjected to axisymmetric loadings such that the eigenvalue R33 is aligned
along the generators of the voids are clearly seen in Fig. 7.92. In this figure the
theoretical yield surface according to the Gurson [30] criterion corresponding to a
void volume fraction f = 0.01 is represented in the plane R33 � R11ð Þ=rT ;ð
R11 þR22ð Þ=rTÞ:
Note also that the yield surface is invariant under the transformation

Rcc;Re
� �! �Rcc;Re

� �
: This is a consequence of the fact that the local plastic

dissipation in the von Mises matrix is invariant with respect to the transforma-
tion: Dm;D33ð Þ ! �Dm;D33ð Þ [see also Eq. (7.167)].

7.4.3 Cazacu and Stewart [21] Plastic Potential
for Porous Material with Matrix Displaying
Tension–Compression Asymmetry

The influence of the tension–compression asymmetry (or SD effects) of the
incompressible matrix on yielding of porous materials containing cylindrical voids
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was analyzed by Cazacu and Stewart [21]. For this purpose, the matrix behavior
was considered to be rigid-plastic and governed by the quadratic form of the
isotropic stress potential of Cazacu et al. [15] [see Chap. 4; its expression was
recalled in this chapter, Eq. (7.125)]. According to this yield criterion the SD effects
are described by a unique parameter k, which is expressible solely in terms of the
ratio b ¼ rT=rC between the uniaxial yield in tension–compression [see
Eq. (7.126)]. Moreover, for any strain-rate field d, the associated plastic dissipation
p dð Þ ¼ rTw dð Þ has multiple branches [e.g., see Eq. (7.127)].

Therefore, for the same imposed loadings on the RVE [see Eq. (7.159)] and the
same velocity field [see Eq. (7.161)], the analysis is very involved. Nevertheless, it
is possible to obtain analytically an approximate plastic potential for the porous
material. This potential will be denoted Pcyl

SD
D; fð Þ; moreover, the stresses at

yielding for axisymmetric states having the minor or major eigenvalue along the
generators of the cylindrical voids will be derived.

General properties of the yield surface of a porous material with incompressible
matrix displaying SD effects containing cylindrical voids

While the explicit expression of Pcyl
SD

D; fð Þ and parametric representation of the
stress states at yielding of the porous material will be presented later on, for
hydrostatic loadings and plane-strain deformation it is possible to obtain the
solution of the limit-analysis problem directly (i.e., without calculating the integral
Pcyl

SD
D; fð ÞÞ.

Most importantly, the analysis of the yielding response of the porous material for
these loadings leads to key findings concerning the influence of the tension–com-
pression asymmetry of the matrix on the behavior of the porous material.

7.4.3.1 Exact Solution for the Problem of a Hollow Cylinder
Loaded Hydrostatically

Theorem 7.16

• If the matrix is harder in tension than in compression, i.e., it is characterized by
rT=rC > 1, the absolute value of the hydrostatic yield limit of the porous
material is:

pkpY

			 			 ¼ �rTð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2T � r2C

6 2r2T � r2C
� �s !

lnðf Þ ð7:174Þ

• If the matrix is softer in tension than in compression, i.e., it is characterized by
rT=rC < 1, the absolute value of the hydrostatic yield limit of the porous
material is:
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pknY
		 		 ¼ �rCð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2C � r2T

6 2r2C � r2T
� �s !

lnðf Þ ð7:175Þ

Proof We need to calculate the limit-pressure that can sustain a hollow cylinder
loaded hydrostatically under plane-strain conditions. The limit-analysis problem
reads as follows:

– Find the maximal pressure for which there exists a stress field statically and
plastically admissible; i.e., find pSDY ¼ maxðpÞ for which

div r ¼ 0 for a� r� b
rn ¼ 0jr¼a i:e:; no internal pressure
rn ¼ perjr¼b;
u rð Þ� 0; for a� r� b;

8>><>>: ð7:176Þ

with u rð Þ being the quadratic form of the isotropic stress potential of Cazacu
et al. [15] [see Chap. 4; its expression recalled in Eq. (7.125)]. Note that due to
axial and rotational invariance, incompressibility, and plane-strain conditions,
the velocity field should be radial. Therefore, in the cylindrical coordinate
system er; eh; ezð Þ, the strain-rate field is of the form:

drr ¼ c=r2; dhh ¼ �c=r2; dzz ¼ 0; a� r� b; ð7:177Þ

where c is a constant. For the imposed loadings, it can be assumed that
er; eh; ezð Þ are also eigenvectors for the stress, i.e., the stress tensor r and its
deviator s are given by

r ¼
rrr 0 0
0 rhh 0
0 0 rzz

0@ 1A and s ¼
X þ Y 0 0
0 X � Y 0
0 0 �2X

0@ 1A ð7:178Þ

with X ¼ rrr þ rhh � 2rzzð Þ=6 and Y ¼ rrr � rhhð Þ=2: Momentum balance
gives divr ¼ 0; which reduces to one non-trivial equation:

@rrr
@r

þ 1
r

rrr� rhhð Þ ¼ 0 ð7:179Þ

with boundary conditions rrrjr¼a¼ 0 and rrrjr¼b¼ p: For compressive loadings
p\0; while for tensile loading p� 0:

In the following, the solution will be given for the case when the matrix is harder
in tension than in compression; i.e., b ¼ rT=rC [ 1: The solution for the case b\1
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can be obtained in a similar manner. With the notations introduced in Eq. (7.178),
the matrix yield criterion [see Eq. (7.125)] writes:

Xþ Yj j�k Xþ Yð Þ½ �2 þ X � Yj j þ k X � Yð Þ½ �2 þ 2Xj j þ k 2Xð Þ½ �2¼ r2T
m2 ð7:180Þ

On the other hand, dzz ¼ @u
@rzz

¼ 0, (plane-strain condition) which writes:

�2Xð Þ 1þ k2
� �� 8k

3
Xj j þ 2k

3
X � Yj j þ Xþ Yj jð Þ ¼ 0 ð7:181Þ

Next, we need to solve the system of Eqs. (7.180) and (7.181) for the unknowns
X and Y. Note that for b ¼ rT=rC [ 1; in order for this system to admit solutions,
we cannot have simultaneously X � Y [ 0 and X\0: Let’s assume that X[ 0,

Y [ 0 and X\Y : From Eq. (7.181), it follows that X ¼ 2k

3k2 þ 4kþ 3

� �
Y : Since

for b[ 1; k is positive [see Eq. (7.126)] this solution is acceptable. Further sub-

stitution in Eq. (7.180) leads to: Y ¼ rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 4kþ 3

p
3 kþ 1ð Þ : In terms of the matrix yield

stresses rT and rC, we obtain (see Eq. (7.126) for the expression of kÞ:

Y ¼ rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2T � r2C

6 2r2T � r2C
� �s

andX ¼ rT=rCð Þ r2T � r2C
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 2 r2T � r2C
� �

3 r2T � r2C
� �q : ð7:182Þ

Thus, the stress deviator components are constant [see Eq. (7.178)]. Substitution
in the momentum balance Eq. (7.179) gives:

drrr
dr

þ 2Y=r ¼ 0 ) rrr ¼ � 2Y ln rþC1;

with C1 being a constant. Imposing the boundary conditions on the internal
boundary r ¼ a; it follows that:

C1 ¼ 2Y ln að Þ

Imposing the boundary conditions on the external boundary, we obtain that the
external compressive pressure that needs to be applied such that the hollow cylinder
is fully plastified is equal to Y ln fð Þ; the tensile pressure that needs to be applied is
equal to: �Yð Þ ln fð Þ; with f ¼ a2=b2. Further using Eq. (7.182), it follows that the
absolute value of the yield limit of the porous material under hydrostatic tension is
equal with the absolute value of the yield limit under hydrostatic compression, and
it is given by Eq. (7.174). The proof for the case when the matrix is softer in tension
than in compression can be done in a similar manner.
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Remark Note that if the matrix does not display tension–compression asymmetry,
i.e., if rT ¼ rC, then we recover the absolute yield limit for a porous material with
von Mises matrix containing cylindrical voids, i.e.,

pkp
Y

		 		 ¼ pkn
Y

		 		 ¼ pYj j ¼ rTffiffiffi
3

p ln fð Þ ð7:183Þ
[see also Eq. (7.173)].

7.4.3.2 Cazacu and Stewart [21] Strain-Rate Plastic Potential

Due to the tension–compression asymmetry, the plastic behavior of the incom-
pressible matrix is strongly dependent on the third-invariant of the stress deviator
(see also Chap. 4). For the strain-rate field d corresponding to the velocity field
v compatible with uniform strain-rate boundary conditions on the hollow cylinder
with eigenvalues given by Eq. (7.162), the strain-rate potential w dð Þ associated to
the Cazacu et al. [15] stress criterion [Eq. (7.127)] and the local plastic dissipation
p dð Þ are invariant under the transformation: Dm;D33ð Þ ! �Dm;D33ð Þ: Thus, in
estimating the plastic potential of the porous material, Pcyl

SD
D; fð Þ ¼ p dð Þh iX, only

the following loadings cases need to be considered separately: Case (i): Dm � 0 and
D33 � 0; and Case (ii): Dm � 0 and D33 � 0:

Case (i): Dm � 0 and D33 � 0 ) dhh � 0 and dzz � 0 for any r 2 a; b½ �: Hence, in
order to choose the appropriate expression for w dð Þ [see Eq. (7.127)], we need to
determine whether drr; dhh; dzzð Þ belong to the subdomain Dþ

h or D�
z (see Fig. 7.93)

which are defined as follows:

Fig. 7.93 Representation of
the Cazacu et al. [14]
strain-rate potential in the
octahedral plane, with
k ¼ �0:4; of the local plastic
dissipation, which presents
threefold symmetry
(aþ 6¼ a�) (after Cazacu and
Stewart [21])
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Dþ
h ¼ drr; dhh; dzzð Þj dhh

dk k � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ b4 � b2
� �q

8><>:
9>=>;

D�
z ¼ drr; dhh; dzzð Þj dzz

dk k � �b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ b4 � b2
� �q

8><>:
9>=>; with b ¼ rT=rC:

ð7:184Þ

On the other hand, for Case (ii): Dm � 0 and D33 � 0 ) drr � 0 and dzz � 0 for
any r 2 a; b½ �; in order to determine the appropriate branch for the local plastic
dissipation w dð Þ we need to determine whether drr; dhh; dzzð Þ belong to the sub-
domain Dþ

z or D�
r (see Fig. 7.93), which are defined as:

Dþ
z ¼ drr; dhh; dzzð Þj dzz

dk k � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ b4 � b2
� �q

8><>:
9>=>;

D�
r ¼ drr; dhh; dzzð Þj drr

dk k � �b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ b4 � b2
� �q

8><>:
9>=>;

ð7:185Þ

Irrespective of loading [cases (i) or (ii)], the location of drr; dhh; dzzð Þ depends on
the ratio t ¼ 3

2
Dmj j
D33j j between the axial and the mean value of the strain-rate tensor

D (see also Sect. 7.4.2). In the following, we will present the parametric repre-
sentation of the yield surface of the porous material. Proof will be given only for
loadings corresponding to Case (i): Dm � 0 and D33 � 0 and 0� t� f 2� b2

� �
=2b2.

For all other loadings, detailed calculations can be found in Cazacu and Stewart
[21]. To simplify writing, the following notations are introduced:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2� b2
� �q
2b

; a ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 � 1

b2 þ 1

s
; s ¼ 2

ffiffiffi
3

p
b2 � 1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
� �

3b2 � 1
� �q ;

g ¼ 2b2

2� b2
; g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2b2 � 1
� �q

2
;A ¼ 2ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� b2

b2 þ 1

s
;

s1 ¼
2
ffiffiffi
3

p
1� b2
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
� �

3� b2
� �q :

ð7:186Þ

Note that all the above constants are expressible solely in terms of the ratio
between the matrix tensile and compressive strengths, b ¼ rT=rC.
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Theorem 7.17 (Yield surface of a porous material with SD effects under
axisymmetric loadings)

For any t¼ 3
2

Dmj j= D33j jð Þ; the strain-rate potential of a porous material with

matrix displaying SD effects is given by:

• For Dm � 0 and D33 � 0 such that 0� t� 2� b2

2b2

� �
f :

Rcc

rT
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2� b2
� �q ln

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g2f 2

p
tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g2

p � 1
f

 !
R11 � R33

rT
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2� b2
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ g2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g2f 2

ph i
8>>>>><>>>>>:

; ð7:187Þ

• For Dm � 0 and D33 � 0 such that
2� b2

2b2

� �
f � t� 2� b2

2b2

� �
:

Rcc

rT
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s

ln
a tþ s

2
f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ sa tf þ f 2

p
aþ s

2
gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ sagþ g2

p � g
f

0B@
1CA

� s
2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s

ln

s
2
atþ f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ satf þ f 2

p
s
2
aþ gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ sagþ g2

p � 1
t

0B@
1CA

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2� b2
� �q ln

2g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ 9

p
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ t2

p � g
3

 !

R11 � R33

rT
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2� b2
� �q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2t2 þ satf þ f 2
p264

375

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

ð7:188Þ

• For Dm � 0 and D33 � 0 such that t� 2� b2

2b2

� �
;

Rcc

rT
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s ln

atþ s
2 f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ satf þ f 2

p
atþ s

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ satþ 1

p � 1
f

 !

þ s
2
ln

s
2 atþ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2t2 þ satþ 1
p

s
2 atþ f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ satf þ f 2

p !
2666664

3777775
R11 � R33

rT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2t2 þ satþ 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ satf þ f 2

ph i

8>>>>>>>>>><>>>>>>>>>>:
ð7:189Þ
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Case (ii):

• For Dm � 0 and D33 � 0 such that 0� t� 1
2

2b2 � 1
� �

f ;

Rcc

rT
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2b2 � 1
� �q ln

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g21f

2
p

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g21

p � 1
f

 !
R33 � R11

rT
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2b2 � 1
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ g21

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g21f

2
q� 

:

8>>>>><>>>>>:
ð7:190Þ

• For Dm � 0 and D33 � 0 such that
1
2

2b2 � 1
� �

f � t� b2 þ 1

2 b2 � 1
� � f ;

Rcc

rT
¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2b2 2� b2
� �s

�
ln

A tþ s1
2 f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2t2 þ s1Atf þ f 2

p
Aþ s1

2 c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ s1Ac1 þ c21

p � c1
f

 !

� s1
2
ln

s
2Atþ f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2t2 þ s1Atf þ f 2

p
s1
2 Aþ c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ s1Ac1 þ c21

p � 1
t

 !
8>>>><>>>>:

9>>>>=>>>>;
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2b2 � 1
� �q ln

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ g21

p
g1

� 3

2g1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g21 þ 9

p !

R33 � R11

rT
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2b2 � 1
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ g21

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2b2 2� b2
� �s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2t2 þ s1Atf þ f 2

p

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
ð7:191Þ

• For Dm � 0 and D33 � 0 such that
b2 þ 1

2 b2 � 1
� � f � t� 1

2
2b2 � 1
� �

Rcc

rT
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s

�
ln

2a t � sf þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � sa tf þ f 2

pffiffiffiffiffiffiffiffiffiffiffiffi
4� s2

p
2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
4� s2

p� � � s
f

0@ 1A
� s
2
ln

at
ffiffiffiffiffiffiffiffiffiffiffiffi
4� s2

p

�satþ 2f þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � sa tf þ f 2

p !
2666664

3777775

þA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2b2 2� b2
� �s

�
ln

�2þ s21=2�
ffiffiffiffiffiffiffiffiffiffiffiffi
4� s21

p
Ac1 þ c1s1=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ s1Ac1 þ c21

p � c1
s1

 !

� s1
2
ln

A
ffiffiffiffiffiffiffiffiffiffiffiffi
4� s21

p
s1Aþ 2c1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ s1Ac1 þ c21

p !
266664

377775
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2b2 � 1
� �q ln

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ t2

p
g1

� 3

2g1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g21þ 9

p !

R33 � R11

rT
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 2b2 � 1
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ g21

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � sa tf þ f 2

p264
375

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7:192Þ
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• For Dm � 0 and D33 � 0 such that
1
2

2b2 � 1
� �� t� b2 þ 1

2 b2 � 1
� � ;

Rcc

rT
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2 2b2 � 1
� �s

�
ln

a t � s
2 f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � sa tf þ f 2

p
2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
4� s2

p� � ffiffiffiffiffiffiffiffiffiffiffiffi
4� s2

p � 2s
f

0@ 1A
� s
2
ln

at
ffiffiffiffiffiffiffiffiffiffiffiffi
4� s2

p

�sa tþ 2f þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � sa tf þ f 2

p !
2666664

3777775

þA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2b2 2� b2
� �s

�
ln

2þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4� s21

p� � ffiffiffiffiffiffiffiffiffiffiffiffi
4� s21

p
2 s1j j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2t2 þ s1Atþ 1
p þAtþ s1=2
� �

0@ 1A
þ s1

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2t2 þ s1Atþ 1

p þ s1
2 Atþ 1ffiffiffiffiffiffiffiffiffiffiffiffi

4� s21
p � 2

Au

 !
2666664

3777775
R11 � R33

rT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2t2 þ s1Atþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2� b2
� �q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � satf þ f 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 � 1

p
0B@

1CA

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
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• For Dm � 0 and D33 � 0 such that t� b2 þ 1

2 b2 � 1
� � ;

Rcc

rT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3b2 � 1
� �

3 2b2 � 1
� �s

ln
at � s

2 f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � satf þ f 2

p
at � s

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � satþ 1

p � 1
f

 !

þ
ffiffiffi
2

p
b2 � 1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
� �

2b2 � 1
� �q ln

� sa
2 tþ f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � satf þ f 2

p
� sa

2 tþ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � satþ 1

p
 !

R11 � R33

rT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

2ð2b2 � 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 � satþ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � satf þ f 2

p� �

8>>>>>>>>>><>>>>>>>>>>:
ð7:194Þ

Proof For loadings such that Dm � 0 and D33 � 0 and 0� t� 2� b2

2b2

� �
f ; the

local plastic dissipation has the same expression everywhere in the hollow
cylinder [see Eqs. (7.127)–(7.162)], i.e.,

p dð Þ ¼ 1
b
rT D33j j 1þ b2

2� b2
� � 4t2

3
b4

r4

� �" #1=2
8a� r� b: ð7:195Þ
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Further substitution in the integral representing the plastic dissipation of the
porous material, i.e., Pcyl

SD
D; fð Þ ¼ p dð Þh iX and making change of variable, x ¼

tb2=gr2; where g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2� b2
� �q
2b

[see also, Eq. (7.186)], leads to:

Pcyl
SD

D; fð Þ ¼ 2rT D33j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2� b2
� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ t2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2g2 þ t2

p
þ t ln

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2g2 þ t2

p
tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ t2

p � 1
f

 !264
375: ð7:196Þ

Using the above formula, the stresses at yielding are obtained by derivation (see
Sect. 7.1) resulting in the parametric representation of the yield surface of the
porous material given by Eq. (7.187).

Key features of the yielding response of a porous material according to Cazacu and
Stewart [21] criterion

• First, let us note that if b ¼ rT=rC ¼ 1 (no tension–compression asymmetry of
the matrix), Eqs. (7.187)–(7.194) reduce to a unique expression which is given by
Eq. (7.170). In other words, Gurson [29] criterion for a porous material with von
Mises matrix containing randomly distributed cylindrical voids is recovered.

• For b ¼ rT=rC 6¼ 1; the yield surface of the porous material given by
Eqs. (7.187)–(7.194) is not invariant to the transforma-
tion: Rcc;Re

� �! Rcc;�Re
� �

: Thus, according to Cazacu and Stewart [21]
criterion yielding of the porous material depends on the third-invariant of the
stress deviator, JR3 :

– The zone of the yield surface given by Eqs. (7.187)–(7.189) corresponds to
stress states for which the third-invariant of the stress deviator is negative
(R33\R11, so JR3 � 0Þ while Eqs. (7.190)–(7.194) correspond to stress states
for which JR3 � 0:

– The hydrostatic solution, which corresponds to JR3 ¼ 0; can be obtained from
Eq. (7.193) by setting Re ¼ R11 � R33j j ¼ 0 and solving a second-order
algebraic equation for t. Only one of the roots of this equation belongs to the

interval
1
2

2b2 � 1
� �

;
b2 þ 1

2 b2 � 1
� �" #

: This root is:

t JR3¼ 0
� � ¼ 2b2 � 1� b2 2� b2

� �
f � 1� fð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2� b2
� �

2b2 � 1
� �q

2 b2 � 1
� �2

ð7:197Þ

• For purely deviatoric axisymmetric loadings, yielding occurs at either Re ¼
1� fð ÞrC or at Re ¼ 1� fð ÞrT . This sensitivity to the sign of the mean stress is
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due to the tension–compression asymmetry of the plastic flow in the incom-
pressible matrix.

• The invariance to the transformation Rcc;Re
� �! Rcc;�Re

� �
is a consequence

of the type of loadings imposed, namely axisymmetric stresses with either the
minimum or maximum eigenstress aligned with the void generator e3. Indeed,
this type of loadings induces invariance of the local plastic dissipation with
respect to Dm;D33ð Þ ! �Dm;D33ð Þ and, consequently the overall plastic
potential has the same property.

• For plane-strain conditions (D33 ¼ 0 or t ! 1), the stress state at yielding is
not hydrostatic.
Indeed, according to the yield criterion [see Eq. (7.194)]:

lim
t!1

R11 � R33j j
rT

� �
¼ b2 � 1
� � 1� fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3 3b2 � 1
� �

2b2 � 1
� �q

lim
t!1

Rcc

rT

� �
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3b2 � 1Þ
6 2b2 � 1
� �s

ln fð Þ:
ð7:198Þ

All those features of the yielding of the porous material are illustrated in
Figs. 7.94 and 7.95 which show the yield surfaces of two materials having the same
porosity f = 1%. One of the materials has the matrix harder in tension than in

Fig. 7.94 Representation in the R33 � R11=rT ; R11 þR22ð Þ=rTð Þð Þ plane of the Cazacu and
Stewart [21] yield surface of a porous material containing randomly distributed cylindrical voids in
a matrix having the yield in tension greater than the yield in compression (rT=rC = 1.21) for
axisymmetric loadings; void volume fraction (f ¼ 0:01Þ

498 7 Plastic Potentials for Isotropic Porous Materials …



compression, being characterized by b1 ¼ rT=rC ¼ 1:21 while the other has the
matrix softer in tension than in compression, and it is characterized by b2 ¼ 1=b1
(i.e., has rC=rT ¼ 1:21Þ. As a general observation, note the strong effect of the
third-invariant JR3 on yielding of the porous materials. Furthermore, for plane-strain
conditions (D33 ¼ 0 or t ! 1), the stress state at yielding is not hydrostatic [see
Eq. (7.198)].

Remark Cazacu and Stewart [21] yield surface was obtained in parametric form
[see Eqs. (7.187)–(7.194)]. The elimination of the parameter t is not possible except
in certain intervals. For example, the parameter t can be eliminated between the
expressions (7.187) such that

b2
Re

rT

� �2

þ 2f cosh

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� b2

q
Rcc

rT

� �
� 1þ f 2
� �¼ 0

where, Re is the von Mises effective stress and Rcc ðc ¼ 1; 2Þ is the partial trace of
the stress tensor, R; in the plane orthogonal to the axis of voids (e.g., if the axis of
voids is along the unit vector e3, Rcc ¼ R11 þR22). Nevertheless, the parametric
form of the yield surface [see Eqs. (7.187)–(7.194)] can be easily implemented as a
material subroutine in commercial F.E. codes and used to perform numerical studies
of damage evolution and fracture in voided polycrystals with incompressible matrix
displaying S-D effects (e.g., ultra-high strength martensitic steels).

Fig. 7.95 Representation in the R33 � R11ð Þ=rT ; R11 þR22ð Þ=rTð Þ plane of the Cazacu and
Stewart [21] yield surface of a porous material containing randomly distributed cylindrical voids in
a matrix having the yield in tension less than the yield in compression (rT=rC = 0.82) for
axisymmetric loadings; void volume fraction (f ¼ 0:01Þ
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Chapter 8
Anisotropic Plastic Potentials for Porous
Metallic Materials

In all the constitutive models for porous plastic materials presented in previous
chapters, it was presumed that the matrix can be regarded as isotropic. However,
most engineering materials display plastic anisotropy (see Chaps. 5 and 6). In this
chapter are presented key contributions toward understanding the role played by the
matrix plastic anisotropy on yielding and damage evolution in single crystals and
strongly textured polycrystalline materials containing randomly distributed spher-
ical voids. The case when the matrix is governed by Hill [13] orthotropic yield
criterion is first discussed (Sect. 8.1). Next, a recent analytical model that accounts
for the combined effects of anisotropy and tension–compression asymmetry of the
matrix on yielding and porosity evolution is presented. This model predicts a strong
sensitivity to the loading path and that the triaxiality and Lode angle effects are
orientation dependent. The model is applied to the description of plastic defor-
mation and damage in hcp-Ti. The unusual damage characteristics of Ti, both in
terms of the rate of void growth and location, predicted by the analytical model are
confirmed by both in situ and ex situ X-ray tomography results (Sects. 8.1–8.3).

We conclude with the presentation of a new model for description of porosity
evolution in single crystals subject to creep loadings. It is shown that the rate of
void growth is strongly influenced by the crystal anisotropy and/or tension–com-
pression asymmetry (Sect. 8.4).

Before proceeding with the presentation of the models, it is important to note
that in the case when the matrix behavior is governed by an anisotropic yield
criterion, it is extremely difficult or impossible to obtain analytically the plastic
potential of the porous material. As already mentioned, in order to carry out the
kinematic homogenization, one needs to know in closed form the exact strain-rate
plastic potential associated to the stress-based plastic potential of the matrix (see
Sect. 7.1). Only the strain-rate potentials associated with Hill [13] and Cazacu et al.
[5] orthotropic potentials can be obtained analytically (see Chap. 6).

Therefore, the effects of plastic anisotropy on yielding and void evolution can be
explained quantitatively only in the case when the matrix is governed by the Hill
[13] or Cazacu et al. [5] orthotropic potential, respectively. The orthotropic plastic
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potentials developed by Benzerga and Besson [4] and Stewart and Cazacu [32] for
porous materials with matrix governed by these potentials, are presented in the
following. Irrespective of the matrix behavior, the limit analysis was carried out for
a hollow sphere with inner radius a and outer radius b ¼ af�1=3, where f is the void
volume fraction (see Fig. 7.1), and for a unique velocity field v; namely that of Rice
and Tracey [27] (see also Sect. 7.2.2), which is compatible with uniform strain-rate
boundary conditions on the hollow sphere, i.e.,

vjt¼ber ¼ Dt; ð8:1Þ

for any position vector t on the outer radius. In the presentation of the models, the
notations introduced in Chap. 7 will be used. Specifically, the local stresses and
strain-rates are designated with r and d, while the overall fields (i.e., the averages of
the local fields over the domain of the representative volume element) are desig-
nated as R ¼ hriX and D ¼ hdiX, respectively. Likewise, the same definitions for
the mean strain-rate Dm and the invariants of the deviator D0 (see Sect. 7.1) are
used. Here, we only recall that the local strain-rate tensor d ¼ 1

2 rvþrTvð Þ cor-
responding to the Rice and Tracey [27] velocity field v is expressed as:

d ¼ D0 þDm b=rð Þ3�d ð8:2Þ

with

�d ¼ �2er � er þ eh � eh þ eu � eu
� �

; ð8:3Þ

er; eh; eu
� �

being the unit vectors associated with the spherical coordinate system
and r denoting the radial coordinate (see Sect. 7.2.2).

8.1 Benzerga and Besson [4] Criterion for Orthotropic
Porous Materials with Hill [13] Matrix

Benzerga and Besson [4] were the first to conduct a limit analysis for the case of an
anisotropic matrix and show that it is possible to obtain an approximate relation
between the stresses at yielding of a porous material with a Hill [13] matrix con-
taining randomly distributed spherical voids. Their analysis was extended by
Monchiet et al. [19] to the case of spheroidal void geometry.

In the following, we revisit the analysis conducted by Benzerga and Besson [4]
and present the key challenges and the approximations that needed to be considered
in order to arrive at analytic expressions of the strain-rate-based and stress-based
plastic potentials of the porous material.
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Theorem 8.1 In the coordinate system x; y; zð Þ associated with the axes of
orthotropy, the Benzerga and Besson [4] strain-rate potential for a porous material
with matrix governed by the Hill [13] yield criterion and containing spherical voids
is given by:

WBB D; fð Þ ¼ 2h Dmj j
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ c2

p
c

þ ln
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ c2

p
cþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p 1
f

 !" #
; ð8:4Þ

where h is a constant, expressible only in terms of the anisotropy coefficients F, G,
H, L, M, and N, i.e.,

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
5

FþGþH
FHþFGþGH

� �
þ 6

5
1
L
þ 1

M
þ 1

N

� �s
ð8:5Þ

and c is an anisotropic measure of the strain-rate triaxiality defined as:

c ¼def h Dmj j
�De

ð8:6Þ

with

�De ¼def WHill D0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FD02

xx þGD02
yy þHD02

zz

FHþFGþGH
þ 2D02

yz

L
þ 2D02

xz

M
þ 2D02

xy

N

s
; ð8:7Þ

Based on the expression of the SRP of the porous material, WBB D; fð Þ; the
stresses at yielding are then obtained by differentiation with respect to D; leading to
the expression of the yield locus of the porous Hill material, in parametric form in
terms of c: Elimination of this parameter, leads to the classical form of the Benzerga
and Besson [4] yield criterion, presented below.

Theorem 8.2 In the coordinate system x; y; zð Þ associated with the axes of
orthotropy, the Benzerga and Besson [4] yield criterion for a porous material with
matrix governed by the Hill [13] yield criterion and containing spherical voids is
given by the following:

UBB R; fð Þ ¼
�Re

rTx

� �2

þ 2f cosh
3
h
Rm

rTx

� �
� 1þ f 2
� � ¼ 0: ð8:8Þ

where

�Re ¼
F Ryy � Rzz
� �2 þG Rzz � Rxxð Þ2 þH Rxx � Ryy

� �2
þ 2LR2

yz þ 2MR2
xz þ 2NR2

xy

" #1=2

Rm ¼ Rxx þRyy þRzz
� �

=3;

ð8:9Þ
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and h is a constant defined by Eq. (8.5) and rTx stands for the tensile effective stress
of the fully dense material in the x-direction of orthotropy of the material.

Before proceeding with the proof of Theorem 8.1, let us first discuss the diffi-
culties associated with estimating the plastic potential of the porous Hill [13]
material even for the simplest loadings scenarios.

Remark 8.1 In contrast to the isotropic case, the solution to the problem of the
hollow sphere having ideal plastic behavior governed by Hill [13] criterion and
subject to hydrostatic pressure is not known.

Remark 8.2 Even for hydrostatic loadings, the overall plastic dissipation of the
porous material associated with the Rice and Tracey [27] velocity field cannot be
obtained in closed form. However, the following result can be deduced.

Proposition 8.1 For hydrostatic loadings, a porous Hill material containing
spherical voids yields at:

Re ¼ 0 and RH
m

�� �� ¼ rTx
3
ln fð Þ

� �
a F;G;H; L;M;Nð Þ; ð8:10Þ

with

a F;G;H; L;M;Nð Þ\h; ð8:11Þ

and h given by Eq. (8.5).

Proof Let us first recall that for any strain-rate field d, the local plastic dissipation

associated with the Hill [13] yield function, uHill rð Þ ¼ r:Mrf g1
2, has the following

closed-form expression:

pHill dð Þ ¼ rTxwHill dð Þ; ð8:12Þ
where the Hill SRP is given by:

wHill dð Þ ¼ d:Udf g1
2;

In the coordinate system x; y; zð Þ associated with the axes of orthotropy (see
Sect. 6.2.1),

wHill dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fd2xx þGd2yy þHd2zz

D
þ 2d2yz

L
þ 2d2xz

M
þ 2d2xy

N

s
; ð8:13Þ

with

D ¼ FHþFGþGH; ð8:14Þ

(for the definition of the fourth-order tensors M and U and more details, the reader
is referred to Chaps. 5 and 6).
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For purely hydrostatic loadings (D0 = 0), the local strain-rate associated with the
Rice and Tracey [27] velocity field is: d ¼ Dm b=rð Þ3�d; with �d given by Eq. (8.3).
In order to evaluate the local plastic dissipation pHill �dð Þ; one needs to first express �d
in the coordinate system x; y; zð Þ associated with the axes of orthotropy, i.e.,
calculate

�dðx;y;zÞ ¼ R�dðr;h;uÞRT ð8:15Þ

with

R ¼
cosu sin h cosu cos h � sinu
sinu sin h sinu cos h cosu

cos h � sin h 0

2
4

3
5; h 2 ½0; p�; u 2 ½0; 2p�: ð8:16Þ

Substitution of Eq. (8.3) into Eq. (8.15) leads to:

�dðx;y;zÞ ¼
1� 3 sin2 h cos2 u �3 sin2 h sinu cosu �3 sin h cos h cosu

�3 sin2 h sinu cosu 1� 3 sin2 h sin2 u �3 sin h cos h sinu
�3 sin h cos h cosu �3 sin h cos h sinu 1� 3 cos2 h

2
4

3
5:

ð8:17Þ

Therefore for hydrostatic loadings, the overall plastic dissipation of the porous
material is:

P D; fð Þ ¼ rTx
V

Zb
a

4pr2hpHillðdÞiSðrÞdr

¼ �rTx Dm ln fð Þ
4pZ2p

0

Zp
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�d2xx þG�d2yy þH�d2zz
� 	

=Dþ 2 �d2yz=Lþ �d2xz=Mþ �d2xy=N
� 	r

sin hdhdu;

ð8:18Þ

with V ¼ 4pb3=3; X the domain occupied by the matrix (see Fig. 7.1), and S rð Þ
being the spherical surface of radius r. In Eq. (8.18), the following notation was
used:

hxiSðrÞ ¼
1
4p

Z2p
0

Zp
0

x sin hdhdu: ð8:19Þ
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Because the components of �dðx;y;zÞ depend on both h 2 ½0;p� and u 2 ½0; 2p�, the
above integral cannot be evaluated analytically, so for general orthotropic materials
it is impossible to determine the specific expression of a F;G;H; L;M;Nð Þ.

However, since the surface integrals of the squared components of �dðx;y;zÞ can be
evaluated in closed form (see for example, Stewart and Cazacu [32]), namely:

h�d2xxiSðrÞ ¼ h�d2yyiSðrÞ ¼ h�d2zziSðrÞ ¼ 4
5

h�d2yziSðrÞ ¼ h�d2xziSðrÞ ¼ h�d2xyiSðrÞ ¼ 3
5
; ð8:20Þ

it follows that:

wHillð�dÞð Þ2
D E

S rð Þ
¼ 4

5
FþGþHð Þ= FHþFGþGHð Þ

þ 6
5

1=Lþ 1=Mþ 1=Nð Þ ¼ h2
ð8:21Þ

(see also Eq. 8.5). Further, using Cauchy–Schwarz inequality, we obtain that an
approximate upper bound of the hydrostatic yield limit, RH

m

�� ��; is:
pHillj j ¼ �h

3
rTx ln fð Þ: ð8:22Þ

It is also worth noting that for isotropic materials, i.e., the parameters F ¼ G ¼
H ¼ 1=2 and L ¼ M ¼ N ¼ 3=2; the Hill [13] yield criterion reduces to the von
Mises yield criterion and from Eq. (8.5) it follows that: h ¼ 2. Thus, the
upper-bound estimate pHill coincides with the exact solution of the yield limit of a
porous von Mises material under hydrostatic loadings (see Sect. 7.1).

Proposition 8.2 For purely deviatoric loadings, i.e., D ¼ D0 ¼ constant, the
porous Hill material yields at:

Rm ¼ 0 and �Re ¼ rTx 1� fð Þ; ð8:23Þ

where �Re is the effective stress associated with Hill [13] criterion (see Eq. 8.9).

Proof For purely deviatoric loadings (Dm ¼ 0), the local strain-rate associated with
the Rice and Tracey [27] velocity field is: d ¼ D0 = constant, so the overall plastic
dissipation of the porous Hill [13] material is:

P D; fð Þ ¼ pHillðdÞh iX¼ rTx 1� fð ÞwHill D
0ð Þ:

Since wHill D
0ð Þ is the exact work-conjugate of the Hill [13] stress potential,

differentiation with respect to D of the above relation, leads to Eq. (8.23).
For any other loadings it is impossible to obtain the overall plastic potential

P D; fð Þ associated with the Rice and Tracey [27] velocity field in closed form. To
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obtain the approximate analytic criterion given by Eq. (8.8), Benzerga and Besson
[4] made use of Cauchy–Schwarz inequality, i.e.,

P D; fð Þ ¼ rTx
V

Zb
a

4pr2hwHillðdÞiSðrÞdr

� rTx
V

Zb
a

4pr2 h wHillðdÞð Þ2iSðrÞ
h i1=2

dr

ð8:24Þ

For the Rice and Tracey [27] velocity field, d ¼ D0 þDm b=rð Þ3�d [see Eqs. (8.2)
and (8.3)], therefore

wHillðdÞð Þ2
D E

SðrÞ
¼ wHillðD0Þð Þ2
D E

SðrÞ
þD2

m b=rð Þ6 wHillð�dÞð Þ2
D E

SðrÞ

þ 2Dm b=rð Þ3 �dh iSðrÞ: UD0:
ð8:25Þ

Noting that:

h�diSðrÞ ¼ h �2er � er þ eh � eh þ eu � eu

 �iSðrÞ ¼ 0; ð8:26Þ

and wHillðD0Þð Þ2
D E

SðrÞ
¼ �D2

e [see Eq. (8.7)] and making use of Eq. (8.21), we obtain

that:

WBB D; fð Þ ¼ 1
V

Zb
a

4pr2 h wHillðdÞð Þ2iSðrÞ
h i1=2

dr

¼ 3
b3

Zb
a

r2 D2
m
b6

r6
h2 þ �D2

e

� �1=2

dr

¼ h Dmj j
c

Z1=f
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2t2

p dt
t2

ð8:27Þ

which after integration leads to Eq. (8.4).

Remark (a) Let us first note that if the anisotropy coefficients F ¼ G ¼ H ¼
L=3 ¼ M=3 ¼ N=3 ¼ 1=2; the potentials given by Eqs. (8.4) and (8.8) reduce to
the Gurson [11] potentials for a porous von Mises material (see Sect. 7.2.3.1).
Moreover, it can be easily shown (e.g., see in Chap. 6 the expressions of the SRP
associated to the von Mises and Hill [13] stress potentials, respectively) that:
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Remark (b) The SRP given by Eq. (8.4) can be obtained from WGurson D; fð Þ by
making use of the change of variables:

Dm ! hDm ð8:28Þ

De ¼ wMises Dð Þ ! �De ¼ wHill Dð Þ ð8:29Þ
Remark (c) The yield criterion of Benzerga and Besson [4] given by Eq. (8.8) can
be obtained from that of Gurson [12] by making use of the change of variables:

Rm ! 2=hð ÞRm ð8:30Þ

Re ¼ uMises Rð Þ ! �Re ¼ uHill Rð Þ ð8:31Þ

(for the expression of the von Mises and Hill [13] criteria and their SRPs, see
Chaps. 4–6).

Remark (d) Hill [13] criterion is an extension to orthotropy of the von Mises yield
criterion using a linear transformation M on the stress tensor (see Chap. 5). If in the
expression of the Gurson [12] criterion, the stress tensor is replaced by its transform
MR; the resulting criterion is:

�Re

rTx

� �2

þ 2 f cosh
3
2
Rm

rTx

� �
� 1 þ f 2
� � ¼ 0: ð8:32Þ

with �Re given by Eq. (8.9). Note that Eq. (8.32) is not the Benzerga and Besson [4]
criterion. Most importantly, according to Eq. (8.32), there is no effect of anisotropy
on void evolution. This shows that a formulation that accounts for the effects of
anisotropy on yielding and porosity evolution cannot be obtained heuristically by
slightly modifying either an isotropic porous criterion (such as Gurson [12]) or the
yield criterion of the matrix.

Remark (e) While the use of the Cauchy–Schwarz inequality enabled the deter-
mination of approximate potentials in closed form, at the same time it erased any
dependence of the local plastic dissipation on the spherical coordinates h and u.
Moreover, couplings between shear and mean strain-rate effects were eliminated.

This means that even for simple loadings such as axisymmetric loadings along
the axes of orthotropy, the Benzerga and Besson [4] criterion cannot account for the
influence of the ordering of the eigenstresses on the yielding response of the porous
material. For example, for axisymmetric loadings such that: R ¼ R1 ey � ey

� �þ
R3 ex � ex þ ez � ezð Þ, the criterion predicts the same yielding behavior in the case
when R1 [R3 and in the case when R1\R3, respectively, although in one case the
major eigenstress is along the y-axis while in the other case the major eigenstress is
along the z-axis of orthotropy.

Nevertheless, the Benzerga and Besson [4] criterion accounts for the main effects
of the plastic anisotropy on yielding and porosity evolution. As an example, in
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Fig. 8.1a–c are shown the projections of the yield surface according to the Benzerga
and Besson [4] criterion (Eq. 8.8) with f ¼ 0:05 for an AA2090-T3 corresponding
to axisymmetric loadings such that the axial stress is oriented along either the
rolling direction (RD) (unit vector ex); transverse direction (TD) (unit vector ey) or
through-thickness direction (unit vector ez). The parameters involved in the
Benzerga and Besson [4] criterion are: F, G, H, L, M, N, i.e., the Hill [13] aniso-
tropy coefficients describing the plastic properties of the matrix. For this AA
2090-T3 material, in Chap. 5, was presented the identification of Hill [13] criterion
based on the experimental uniaxial yield stresses along the RD, TD, 45° orientation
from RD in the plane of the sheet, and the tensile equibiaxial yield stress rTb ; the
numerical values of the anisotropy coefficients being: F = 0.603, G = 0.397,
H = 0.603, N = 2.537. Since there were no data available for identification of the
parameters L and M, their values were set equal to 3/2 (isotropic values). Using
Eq. (8.5), it follows that for AA 2090-T3 the parameter h = 1.897. For comparison
purposes, in Fig. 8.1a–c are also plotted the projections of the yield surfaces for an
isotropic porous material (i.e., F = G = H = 0.5, L = M = N = 3/2) corresponding
to the same porosity.

Let us first note that for the AA 2090-T3 material under purely hydrostatic
loadings, the yield limit is (see Eq. 8.22):

Rmj j
rTx

¼ pHillj j
rTx

¼ � h
3
ln fð Þ;

with h = 1.897. Thus, it is smaller than the hydrostatic yield limit of an isotropic
porous material (F = G = H = 0.5, L = M = N = 3/2 and h = 2) with the same
porosity (see Fig. 8.1).

Since the matrix is orthotropic for loadings other than pure hydrostatic loading,
yielding will depend on the orientation. Note that for axisymmetric loadings such
that the axial stress is along the direction ey (i.e., TD), i.e., R ¼
RTD ey � ey

� �þRRD ex � ex þ ez � ezð Þ (see Fig. 8.1a), the intersection of the
Benzerga and Besson [4] yield curve with the axis Rm = 0 (purely deviatoric
loading) corresponds to:

Re

rTx
¼ RTD � RRDj j

rTx
¼ 1� fffiffiffiffiffiffiffiffiffiffiffiffiffi

FþH
p ¼ 1� fð Þ rTy =r

T
x

� 	
ð8:33Þ

(see also Sect. 5.2).
Since the AA 2090-T3 material is harder in the x-direction (RD) than in the y-

direction (see also Table 5.1), the yield surface projection is markedly different than
that of the isotropic porous material.

On the other hand, for axisymmetric loadings such that the axial stress is along
the direction ez (i.e., normal to the sheet plane), i.e., R ¼ RND ez � ezð Þþ
RRD ex � ex þ ey � ey

� �
(see Fig. 8.1b), the predicted yield limit under purely

deviatoric loadings is:
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Fig. 8.1 Projection of the
theoretical yield surface
according to the Benzerga and
Besson [4] criterion in the
plane Re;Rmð Þ for a porous
orthotropic AA 2090-T3
subject to axisymmetric
loadings such that the axial
stress is aligned with: a the
transverse direction (ey); b the
normal direction (ez); c the
rolling direction (ex); Gurson
[12] (interrupted line) yield
surface for an isotropic
material. Porosity f = 5%
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Re

rTx
¼ RND � RRDj j

rTx
¼ 1� fffiffiffiffiffiffiffiffiffiffiffiffi

FþG
p ¼ 1� fð Þ rTb=r

T
x

� � ð8:34Þ

Since for AA 2090-T3, rTb=r
T
x

� �
= 1.01, for purely deviatoric loadings and in

general for low stress triaxialities, the anisotropic yield surface is close to that
corresponding to an isotropic material, the differences becoming more pronounced
with increasing triaxialities (the maximum difference corresponds to T ¼ 1, i.e.,
hydrostatic loadings).

For axisymmetric loadings such that the axial stress is along the direction ex
(RD), i.e., R ¼ RRD ex � exð ÞþRTD ey � ey þ ez � ez

� �
; the projection of the

Benzerga and Besson [4] yield surface in the plane Re;Rmð Þ is shown in Fig. 8.1c.
Note that for purely deviatoric loadings the criterion predicts

Re

rTx
¼ RRD�RTDj j

rTx
¼ 1� fffiffiffiffiffiffiffiffiffiffiffiffiffi

GþH
p ð8:35Þ

Since GþH = 1, for purely deviatoric loading the anisotropic porous material
and the isotropic porous material have the same yield limit, the difference in
the yielding response increasing with increasing triaxiality.

As discussed in Chap. 5, certain textured metallic materials (e.g., Ti and Mg
alloys) display plastic anisotropy and a strong tension–compression asymmetry that
is evolving during deformation (due to activation of twinning). To accurately model
damage in such materials, it is imperative to account for the specificities of the
plastic deformation of the incompressible matrix, in particular the tension–com-
pression asymmetry (SD effects) of the matrix behavior.

Moreover, due to the very specific couplings between all stress invariants
induced by the presence of voids, a damage model cannot be postulated or obtained
by heuristically modifying existing criteria. Recent contributions toward under-
standing the combined effects of anisotropy and tension–compression asymmetry
on damage of porous polycrystals and single crystals are presented in the following.

8.2 Stewart and Cazacu [32] Yield Criterion
for Orthotropic Porous Materials with Incompressible
Matrix Displaying Tension–Compression Asymmetry

Stewart and Cazacu [32] used the kinematic homogenization approach to model the
mechanical response of orthotropic porous materials with incompressible matrix
displaying SD effects. In the following are presented the key steps in derivation of
this criterion and the insights that can be gained on the basis of this criterion on
damage evolution and the reasons for increased ductility or catastrophic failure
under certain loadings.
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The matrix behavior was considered to be rigid-plastic and governed by the
quadratic form of the orthotropic stress potential of Cazacu et al. [5], i.e.,

uðr_; ~m; rTx Þ ¼ ~re ¼ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

j r_i j � kr_i

� 	2vuut : ð8:36Þ

In Eq. (8.36), r_1, r
_

2 and r_3 are the principal values (not ordered) of the trans-
formed stress tensor

r
_ ¼ Ls;

where L is the orthotropic fourth-order symmetric tensor describing the anisotropy
in plastic properties, s is the Cauchy stress deviator, k is a parameter associated to
tension–compression asymmetry in yielding, and ~m is a constant defined such that
the equivalent stress ~re reduces to rTx , the tensile yield stress along the x orthotropy
axis. For more details about this orthotropic stress potential and its exact dual w dð Þ
the reader is referred to Chaps. 5 and 6, respectively. Let us recall here that for any
strain-rate field d:

w dð Þ ¼

1
~mð1� kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ b23

3k2 � 10kþ 3
3k2 þ 2kþ 3

� �s
; if b1; b2; b3ð Þ 2 D�

3

1
~mð1þ kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ b23

3k2 þ 10kþ 3
3k2 � 2kþ 3

� �s
; if b1; b2; b3ð Þ 2 Dþ

3

8>>>>><
>>>>>:

;

ð8:37Þ

with b1, b2, b3 the eigenvalues (not necessarily ordered) of the transformed
strain-rate tensor

B ¼ Hd; ð8:38Þ

H being a 4th order symmetric and orthotropic tensor that is the “inverse” of the
tensor L describing the anisotropy of the material,

i.e.,

HL ¼ K; ð8:39Þ

with K being the 4th order deviatoric tensor (see Chap. 1).
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The sub-domains Dþ
3 and D�

3 are defined as:

D�
3 ¼ b1; b2; b3ð Þj b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ b22 þ b23
p � � 3k2 þ 2kþ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 k2 þ 3ð Þ 3k2 þ 1ð Þp
( )

Dþ
3 ¼ b1; b2; b3ð Þj b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ b22 þ b23
p � 3k2 � 2kþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 k2 þ 3ð Þ 3k2 þ 1ð Þp
( ) ð8:40Þ

The expressions of the other branches of w dð Þ, corresponding to the domains
Dþ

j and D�
j (j = 1, 2) are obtained from Eq. (8.40) by symmetry arguments (for

more details and the geometric representation of these domains in the octahedral
plane, see Sect. 6.2.2).

Due to the complexity of the plastic behavior of the matrix, the analysis can be
conducted only for axisymmetric loadings such that the stress eigenvectors are
along the axes of orthotropy of the material. Moreover, due to the difficulties
associated with the SD effects in the matrix and the fact that the choice of the
branch of w dð Þ depends on the sign of the imposed mean stress Rm, in order to
arrive at an approximate analytic plastic potential for the porous material couplings
between the mean strain-rate Dm and D0 were neglected, and the local plastic
dissipation was approximated with:

pðdÞ ’ rTx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ Hd : Hdð Þ

p
; ð8:41Þ

where

~n ¼
1

~m2

3
3k2 � 2kþ 3

� �
if Rm � 0

1

~m2

3
3k2 þ 2kþ 3

� �
if Rm [ 0:

8>><
>>: ð8:42Þ

Moreover, when estimating the overall plastic dissipation the loadings cases
corresponding to JR3 � 0 and JR3 � 0 need to be considered separately. Further, using
Cauchy–Schwarz inequality, lengthy calculations (for details see Stewart and
Cazacu [32]) lead to an analytical estimate of the approximate overall plastic
potential and the following criterion:

Theorem 8.3 The Stewart and Cazacu [32] yield criterion for a porous orthotropic
material with incompressible matrix displaying SD effects and containing spherical
voids is given by:

U R; fð Þ ¼ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

r_i

rTx

�����
������ k

r_i

rTx

 !2
vuut

0
B@

1
CA

2

þ 2f cos h
3
~h

Rm

rTx

� �
� 1þ f 2
� � ¼ 0;

ð8:43Þ
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where f is the void volume fraction, r_1, r
_

2, r
_

3 are the principal values (not ordered)
of the transformed stress tensor, r_ ¼ LR0, Rm denotes the mean stress, R0 the
deviator of R and rTx , the tensile yield stress along the x orthotropy axis.

All the parameters involved in the criterion given by Eq. (8.43), namely ~m and ~h
are expressible in terms of the plastic properties of the matrix described by the SD
parameter k and the matrix anisotropy coefficients, i.e., the components of the
tensor L in the orthotropy frame x; y; zð Þ. Specifically, if in Voigt notations, the
fourth-order tensor L is represented by:

L ¼

L11 L12 L13
L12 L22 L23
L13 L23 L33

L44
L55

L66

2
666666664

3
777777775
;

~m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1j j � kU1ð Þ2 þ U2j j � kU2ð Þ2 þ U3j j � kU3ð Þ2

q

ð8:44Þ

with

U1 ¼ ð2L11 � L12 � L13Þ=3; U2 ¼ ð2L12 � L22 � L23Þ=3;
U3 ¼ ð2L13 � L23 � L33Þ=3:

The parameter ~h depends on the anisotropy coefficients and the sign of the mean
stress, Rm, its expression being:

~h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n
5

4t1 þ 6t2ð Þ
r

ð8:45Þ

with ~n given by Eq. (8.42)
and the parameters t1 and t2 being expressible in terms of the components of the

orthotropic tensor L (see Eq. 8.38):

t1 ¼ 3 H13H23 þH12H23 þH12H13 þ 2H2
12 þ 2H2

13 þ 2H2
23

� �
t2 ¼ H2

44 þH2
55 þH2

66:
ð8:46Þ

Remarks

• The Stewart and Cazacu [32] criterion given by Eq. (8.43) predicts that irre-
spective of loading there is an effect of the sign of the mean stress Rm on
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yielding of the porous material. This effect is modeled through the coefficient ~h
(see Eq. 8.45).

• Given that for k 6¼ 0, the effective stress ~re ¼ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

r_i

rTx

�����
������ k

r_i

rTx

 !2
vuut

depends on the relative ordering of the eigenvalues of the transformed r
_ ¼ Ls,

the Stewart and Cazacu [32] criterion depends on all the invariants of the stress
deviator, s, as well as on the mixed invariants of s and the symmetry tensors
associated with orthotropy, namely M1 ¼ x� x, M2 ¼ y� y, M3 ¼ z� z.

• The Stewart and Cazacu [32] criterion predicts that with the exception of purely
hydrostatic loadings there is an effect of the third-invariant JR3 on yielding of the
porous material; the sensitivity to JR3 depends on the orientation of the loading
axes with respect to the orthotropy axes.

• In contrast to the case when the matrix is orthotropic and has plastic behavior
governed by the Hill [13] criterion (i.e., no SD effects in the matrix), the yield
locus of the porous anisotropic material is no longer symmetric with respect to
the axis Rm ¼ 0; the Stewart and Cazacu [32] criterion predicts that the yield
limit for purely tensile hydrostatic loading is different than the yield limit for
purely compressive hydrostatic loadings.

• For tensile hydrostatic loadings, yielding occurs when: Rm ¼ p_
þ
Y with

p
_þ
Y ¼ � rTx

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

~m2 3k2 þ 2kþ 3ð Þ
4t1 þ 6t2

5

� �s
ln fð Þ; ð8:47Þ

• For compressive hydrostatic loading, yielding occurs when Rm ¼ p_
�
Y with

p_
�
Y ¼ rTx

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

~m2 3k2 � 2kþ 3ð Þ
4t1 þ 6t2

5

� �s
ln fð Þ; ð8:48Þ

the expressions for ~m, t1, and t2 in terms of the anisotropy coefficients and k being
given by Eqs. (8.44) and (8.46), respectively.

• Only for a porous orthotropic material with no tension–compression asymmetry
in the matrix (k = 0),

p
_þ
Y ¼ jp_�

Y j ¼ pHill

(see also Eq. 8.22).
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• For an isotropic matrix (i.e., L ¼ I4), the Stewart and Cazacu [32] criterion
reduces to the Cazacu and Stewart [6] model for isotropic porous materials
displaying SD effects. Indeed, for L ¼ I4, U1 = 2/3, U2 = U3 = −1/3 (see

Eq. 8.44), so ~m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9
2 3k2 � 2kþ 3ð Þ

r
¼ m and ~h ¼ 2=zs (see Theorem 7.14 and

the expression of the Cazacu and Stewart [6] criterion, respectively).
• In the absence of voids (f ¼ 0Þ, the Stewart and Cazacu [32] criterion given by

Eq. (8.43) reduces to the matrix yield criterion, i.e., the quadratic form of the
Cazacu et al. [5] orthotropic criterion given by Eq. (8.36), i.e,.

~re ¼ rTx :

Combined effects of anisotropy and tension–compression asymmetry on yielding of
the porous material under axisymmetric loadings

To further illustrate the capabilities of the Stewart and Cazacu [32] criterion to
model the combined effects of the tension–compression asymmetry and plastic
anisotropy on the yielding response of a porous material, in the following we
analyze axisymmetric loadings such that the axial stress is oriented along either the
rolling direction (RD) (unit vector ex); transverse direction (TD) (unit vector ey) or
through-thickness direction (unit vector ez). In each case, both loadings corre-
sponding to the axial stress being the minor applied principal stress (i.e.,
third-invariant JR3 � 0) and loadings such that axial stress is the major principal
stress (i.e., third-invariant, JR3 � 0) are considered.

As an example, 2-D projections of the theoretical yield surfaces corresponding to
the same porosity (f ¼ 2%) and different orientations between the loading frame
and the material symmetry frame are presented in Fig. 8.2a–c for a Mg AZ31 alloy
at 5% equivalent plastic strain. Note that all the parameters involved in the Stewart
and Cazacu [32] criterion are expressible in terms of the anisotropy coefficients Lij
and the parameter k, i.e., the parameters describing the plastic properties of the
matrix. As discussed in Chap. 5, this hcp Mg AZ31 alloy displays a strong ani-
sotropy and tension–compression asymmetry that evolve with accumulated plastic
deformation. Its plastic behavior can be accurately described using the Cazacu et al.
[5] orthotropic criterion. For more details on this material, the identification pro-
cedure and the numerical values of the parameters of the Cazacu et al. [5] ortho-
tropic criterion at 5% equivalent plastic strain, the reader is referred to Sect. 5.4.3.

Let us first discuss the yielding response according to the Stewart and Cazacu
[32] criterion for axisymmetric loadings with axial stress along the x-axis (RD), i.e.,
R ¼ RRD ex � exð ÞþRTD ey � ey þ ez � ez

� �
for which Re ¼ RRD � RTDj j, JR3 ¼

2 RRD � RTDð Þ3=27 (see also Fig. 8.2a).
Note that if RRD �RTD ¼ RND (JR3 � 0), i.e., the minor principal stress is along

RD and RTD¼ RND, the criterion writes:
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Fig. 8.2 Projection of the theoretical yield surface according to the Stewart and Cazacu [32]
criterion in the plane Re;Rmð Þ for a porous orthotropic Mg AZ31 alloy subject to axisymmetric
loadings such that axial stress is aligned with: a the rolling direction (ex); b the transverse direction
(ey); c the normal direction (ez); porosity f = 2% and anisotropy coefficients corresponding to
an equivalent plastic strain of ep ¼ 0:05
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U R; fð Þ ¼

rTx
rCx

� �2 RRD�RTD

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 � 2kþ 3ð Þ

4t1þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm\0;

rTx
rCx

� �2 RRD�RTD

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 þ 2kþ 3ð Þ

4t1 þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm � 0

8>>>>>><
>>>>>>:

ð8:49Þ

However, if RRD �RTD ¼ RND (JR3 � 0), i.e., the minor principal stress is along
TD and RTD ¼ RND, then:

U R; fð Þ ¼

RRD�RTD

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 � 2kþ 3ð Þ

4t1 þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm\0;

RRD�RTD

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 þ 2kþ 3ð Þ

4t1 þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm � 0

8>>>>>>><
>>>>>>>:

ð8:50Þ

In the above equations, rCx denotes the matrix uniaxial compressive flow stress in
the x (RD) direction. Comparison between Eqs. (8.49) and (8.50) shows that the
Stewart and Cazacu [32] criterion is sensitive to JR3 and for the same stress triax-
iality it predicts two yield values. Furthermore, the ratio between the yield values
corresponding to the same triaxiality is maximum for purely deviatoric loadings.
Indeed, for purely deviatoric loadings the intersections of the yield curves with the
axis Rm = 0 correspond to:

Re ¼ RRD�RTDj j ¼ 1� fð ÞrCx ; if JR3 � 0;
1� fð ÞrTx ; if JR3 � 0;

�
ð8:51Þ

the split between the two curves for this stress state being
RejJR3 � 0

RejJR3 � 0
¼ rTx

rCx
: For

example, for the Mg AZ31 alloy which at 5% plastic strain has rCx \rTx , the
response is softer under axisymmetric loadings corresponding to JR3 � 0 compared
to the response under axisymmetric loadings corresponding to JR3 � 0, the maxi-
mum difference being for purely deviatoric loadings (see Fig. 8.2a).

On the other hand, for axisymmetric loadings with axial stress along the y-axis
(TD), i.e., R ¼ RTD ey � ey

� �þRRD ex � ex þ ez � ezð Þ (see also Fig. 8.2b), for
which Re ¼ RTD � RRDj j ¼ RTD � RNDj j,
• if RRD ¼ RND �RTD, (JR3 � 0), i.e., the minor eigenstress is along the x-axis

(RD) and RRD ¼ RND yielding occurs when:
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U R; fð Þ ¼

rTx
rTy

 !2
RTD�RRD

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 � 2kþ 3ð Þ

4t1 þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm\0;

rTx
rTy

 !2
RTD�RRD

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 þ 2kþ 3ð Þ

4t1þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm � 0;

8>>>>>><
>>>>>>:

ð8:52Þ

[compare with Eq. (8.49)] while for loadings such that RRD ¼ RND �RTD, (i.e.,
JR3 � 0), for which the minor stress is along TD (y-axis) and RRD ¼ RND, yielding
occurs when:

U R; fð Þ ¼

rTx
rCy

 !2
RTD�RND

rTx

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2 � 2kþ 3ð Þ

4t1 þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm\0;

rTx
rCy

 !2
RTD�RND

rT

� �2

þ 2f cosh
Rm

rTx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15~m2 3k2þ 2kþ 3ð Þ

4t1 þ 6t2

s0
@

1
A� 1þ f 2ð Þ; Rm � 0;

8>>>>>><
>>>>>>:

ð8:53Þ

In the above equations, rCy denotes the matrix uniaxial compressive yield stress
in the y (TD) direction. Comparison between Eqs. (8.52) and (8.53) shows that for
axisymmetric loadings such that the axial stress is along the y-axis (i.e.,
RND ¼ RRD), the model predicts that the maximum difference between the yield
curves at JR3 � 0 and JR3 � 0 is given by the ratio between the matrix yield stresses in
tension–compression along the y-direction. Indeed, for purely deviatoric loadings
with axial stress along TD, the intersection with the axis Rm = 0 is at:

Re ¼ RTD � RNDj j ¼ 1� fð ÞrCy ; if JR3 � 0;
1� fð ÞrTy ; if JR3 � 0;

(
ð8:54Þ

resulting in a ratio
RejJR3 � 0

RejJR3 � 0
¼ rTy

rCy
.

Since the Mg AZ31 alloy at 5% plastic strain has rTy =r
C
y [ 1, the yield curve

corresponding to JR3 � 0 is above that corresponding to JR3 � 0 (see Fig. 8.2b). The
fact that for this material similar trends are predicted for axisymmetric loadings with
the axial stress in the x-axis and y-axis (Fig. 8.2a, b, respectively) is related to the
fact that the orthotropic matrix is characterized by rTx =r

C
x [ 1, and rTy =r

C
y [ 1, the

split between the JR3 � 0 and JR3 � 0 curves is most pronounced for x-loading,
consistent with the strength differential (SD) ratio being larger in the RD direction
than in the TD direction.

Similarly, it can be shown that according to the criterion for axisymmetric
loadings such as the axial stress is along the z-direction (ND-axis), the yielding
response is different depending on whether the minimum principal stress is along
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RD (JR3 � 0) or along ND (JR3 � 0). Specifically, if RRD ¼ RTD �RND (JR3 � 0)
yielding occurs when:
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s0
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8>>>>>><
>>>>>>:

ð8:55Þ

On the other hand, for loadings such that RTD ¼ RRD [RND (JR3 � 0) yielding
occurs when

U R; fð Þ ¼

rTx
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� �2 RND � RRD

rTx

� �2

þ 2f cosh
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8>>>>>>>>>>><
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ð8:56Þ

and the maximum split between the yield curves at JR3 � 0 and JR3 � 0 corresponds to
axisymmetric purely deviatoric loadings (Rm = 0). Specifically, for purely devia-
toric loadings with axial stress along ND, the intersection with the axis Rm = 0 is at:

Re ¼ RND � RRDj j ¼ 1� fð ÞrCz ; if JR3 � 0;
1� fð ÞrTz ; if JR3 � 0;

�
ð8:57Þ

Thus, the maximum split is given by the ratio between the matrix ND yield
stresses in tension–compression:

RejJR3 � 0

RejJR3 � 0
¼ rTz

rCz
ð8:58Þ

In summary, according to the Stewart and Cazacu [32] criterion for axisym-
metric loadings, the sensitivity of the yielding response of the porous material to the
third-invariant of the stress deviator is correlated to the matrix tension–compression
asymmetry ratio in the direction corresponding to the major principal stress.

Given that the Mg AZ31 alloy at 5% plastic strain has rTz =r
C
z \1, the yield curve

corresponding to JR3 � 0 is below that corresponding to JR3 � 0 (see Fig. 8.2c), i.e.,
the general trends are completely different for those corresponding to axisymmetric
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loadings with the axial stress along the RD axis and TD-axis (compare Fig. 8.2a–c).
Comparison between the Fig. 8.2a–c shows that the model accounts for the influ-
ence of the anisotropy in plastic deformation on the response of the porous material.
Indeed, the sensitivity to the third-invariant is the most pronounced for loadings
with the axial stress along ND. Furthermore, irrespective of the orientation of the
loading frame with respect to the axes of symmetry of the material, the yield surface
projection in the plane Rm;Reð Þ lacks symmetry with respect to the deviatoric axis
(Rm ¼ 0Þ. In particular, the material’s yield stress for purely tensile hydrostatic
loadings is different than that under purely hydrostatic compressive loadings [see
also Eqs. (8.47) and (8.48)].

Stewart and Cazacu [32] have also reported two-dimensional F.E. unit-cell
calculations, the RVE considered being a cylinder with a single void at the center
and the matrix plastic behavior governed by the Cazacu et al. [5] yield criterion (see
Eq. 8.36). The F.E. analyses were conducted for transversely isotropic materials
(i.e., the plane of symmetry ex; ey

� �
is isotropic). As an example, in Fig. 8.3 are

shown the F.E. results together with the theoretical yield curves [see Eqs. (8.55)
and (8.56)] corresponding to a material with L11 ¼ L22 = 1.054, L33 = 0.85,
L13 ¼ L23 = 0.075, L12 = −0.129, L44 = 0.775 and k = 0.3098. To examine the
combined effects of anisotropy and tension–compression asymmetry, axisymmetric
calculations were performed with the axial stress along the ND direction (ez) being
either the major stress (JR3 � 0) or to the minor stress (JR3 � 0). The main obser-
vation from these results is that the strong asymmetry of the yield loci and the
effects of JR3 predicted by the Stewart and Cazacu [32] model are indeed confirmed
by the F.E. unit-cell results.

As already mentioned, experimental data on yielding of anisotropic materials
with strength differential effects, e.g., polycrystals in which twinning is a pre-
dominant deformation mechanism, are lacking, so these unusual trends associated
to the combined effects of the anisotropy and tension–compression asymmetry
revealed by Stewart and Cazacu [32] model remain to be confirmed.
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Fig. 8.3 Analytical yield
curves according to the
Stewart and Cazacu [32]
criterion and axisymmetric
F.E. unit-cell results for both
JR3 � 0 and JR3 � 0: The
anisotropic matrix material is
hardest in the through-
thickness direction, i.e.,
rTz [rTx ¼ rTy and displays
tension–compression
asymmetry with the tensile
yield strengths larger than
the compressive ones
(k = 0.3098). The void
volume fraction is f0 ¼ 0:01
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Partial verification of the trends revealed by the model, in particular the fact that
under axisymmetric purely deviatoric loadings the ratios between the yield limits at
JR3 � 0 and JR3 � 0 should be equal to the matrix tension–compression asymmetry
ratio in the direction corresponding to the major principal stress were confirmed by
the numerical study of Lebensohn and Cazacu [17]. These authors used the Fast
Fourier Transform (FFT)-based approach of Lebensohn et al. [16] to generate gauge
surfaces for porous textured polycrystals deforming by slip and twinning at single
crystal level. In the case of textured fcc polycrystals, it was shown that the strong
sensitivity to the sign of the third-invariant is due to the directionality of the
tension–compression asymmetry. Moreover, the most pronounced split between the
loadings at JR3 � 0 and JR3 � 0 was obtained in the direction of the highest contrast
between the matrix’s yield in tension–compression thus confirming the model
predictions [see Eqs. (8.51), (8.54) and (8.58)]. For a textured hcp polycrystal
deforming by slip and twinning, the same trends of the yielding response of the
porous material were confirmed.

In summary, the Stewart and Cazacu [32] model reveals that for a plastically
anisotropic porous material with matrix displaying tension–compression asymme-
try, there are third-invariant effects (or Lode angle effects) on yielding and that the
sensitivity to JR3 depends drastically on the respective orientation between the
loading axes and the axes of orthotropy (compare Fig. 8.2a–c). As a consequence,
there should be strong effects of the loading path on void evolution.

In the following, we discuss the combined effects of anisotropy and tension–
compression asymmetry on void evolution predicted by the Stewart and Cazacu
[32] model. Illustration of the main trends is done for the same AZ31 Mg. As
already mentioned, a complete set of experimental data including measurements of
deformation and void evolution for this material is lacking, so only numerical
results are presented.

Combined effects of anisotropy and tension–compression asymmetry on porosity
evolution under axisymmetric loadings

By making the usual assumption of the plastic strain-rate D being proportional to
the gradient of the potential U R; fð Þ from mass conservation, one obtains the
evolution of the void volume fraction f in the form:

_f ¼ 1� fð Þ _k 6f
~hrTx

 !
sinh

3Rm

~hrTx

 !
: ð8:59Þ

where _k is the plastic multiplier.
To examine the effects of the loading orientation on porosity evolution that are

predicted by the model, we consider three axisymmetric Mg AZ31 specimens with
their long axis being along RD (ex), TD (ey) and ND (ez), respectively. Each
specimen is subjected to the same loading. The loading imposed is axisymmetric
and corresponds to a fixed ratio Rm=RT ¼ 1:5, where RT is the applied tensile axial
stress.
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Figure 8.4 shows the model predictions for the evolution of the relative void

volume fraction f =f0 with the equivalent plastic strain Ee ¼
R
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3ÞD0

ijD
0
ij

q
dt for

the three specimens. The void volume fraction f ¼ Rt _f dt is calculated using
Eq. (8.59). The simulations are carried out for the same values of the anisotropy
coefficients and parameter k used for the predictions of the yielding behavior of the
porous material. The model predictions show a very strong effect of the specimen
orientation on void growth. Note that under the applied loading, the fastest void
evolution is predicted for the TD specimen while the slowest void growth rate
corresponds to the ND specimen (see Fig. 8.4).

On the other hand, if the axial stress is compressive (i.e., RT\0) and Rm [ 0
while maintaining the same ratio Rm= RTj j ¼ 1:5, i.e., JR3 � 0, the fastest void
evolution occurs in the ND specimen while the slowest void evolution is predicted
for the RD specimen (see Fig. 8.5). Therefore, for the same absolute value of the
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triaxiality the effect of the specimen orientation on void evolution is completely
different. This highlights the fact that for a material displaying anisotropy and
tension–compression asymmetry in its plastic behavior, damage evolution is
strongly dependent on the loading path. Specifically, the tension–compression
asymmetry of the matrix induces sensitivity to the third-invariant of stress, JR3 , and
this sensitivity is orientation dependent. Most importantly, it is clearly seen that on
the basis of data on a given loading path, no general conclusions can be drawn on
the effect of texture on damage evolution for any other loading path.

In summary, irrespective of the imposed loading, the Stewart and Cazacu [32]
criterion predicts that the anisotropy and tension–compression asymmetry of the
incompressible matrix have a very strong influence on all aspects of the mechanical
response of a porous material. In the next section, the predictions of the porosity
evolution in uniaxial tension obtained with the Stewart and Cazacu [32] potential
(Eq. 8.43) are compared to ex situ and in situ measurements of porosity evolution
in a textured Ti material.

8.3 Coupled Plasticity-Damage in Hcp-Ti: Comparison
Between Stewart and Cazacu [32] Predictions and Ex
Situ and In Situ X-Ray Tomography Data

Since damage is driven by the plastic behavior, to understand and accurately model
damage evolution it is essential to have complete information on the plastic
behavior. In particular, for polycrystalline materials with hexagonal crystal structure
(e.g., Ti, Zr, Mg) that are strongly textured and display both anisotropy and ten-
sion–compression asymmetry in plastic deformation and strength, damage evolu-
tion is orientation-dependent and strongly influenced by the loading path (see
Sect. 8.2). Moreover, for hcp-Ti, the initial texture is strongly dependent not only
on processing, but also on the supplier. Therefore, analysis of damage evolution in
hcp-Ti cannot be done without knowledge of the initial texture, and a complete set
of mechanical data, based on which the quantification of the plastic anisotropy and
strength differential effects can be done.

Nevertheless, data reported in the literature on hcp materials generally include
only the tensile stress–strain response and damage measurements in only one
loading orientation (e.g., for Ti see Huez et al. [14]). Moreover, modeling of the
room-temperature damage and failure of hcp materials is generally done using
either empirical laws for the strain at failure as a function of the triaxiality, and/or
the Lode parameter (e.g., Jia and Bai [15]), or void growth laws such as Rice and
Tracey [27] (e.g., for commercially pure Ti, see Pushkareva et al. [22]). However,
the Rice and Tracey [27] void growth law or the most widely used criteria for
porous metals (e.g., the Gurson [12] criterion and its various modifications) cannot
realistically describe damage in hcp materials because the core hypothesis of such
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models is that the plastic behavior of the matrix is governed by the isotropic von
Mises criterion, which is a criterion critically inadequate for Ti materials (see
Chap. 5).

Recently, Revil-Baudard et al. [26] reported an experimental study on the plastic
deformation and damage of a polycrystalline pure Ti material, as well as modeling
of the observed porosity evolution using the Stewart and Cazacu [32] potential (see
Eq. 8.43). As already mentioned, all the parameters involved in this model are
expressible in terms of a few coefficients related to the plastic properties of the
material. For this Ti material, the identification of these parameters was based on
data obtained in uniaxial tension tests on flat specimens, and uniaxial compression
tests on cylindrical specimens. To further study damage, these authors performed
additional uniaxial tension tests on axisymmetric cylindrical specimens of circular
cross-section. Both smooth and notched geometries were considered. X-ray com-
puted micro-tomography (XCMT) measurements both ex situ and in situ were
conducted. The data revealed unusual damage characteristics as compared to fcc
polycrystalline materials. In the following are presented the key experimental and
simulation results of this study.

8.3.1 Experimental Results in Uniaxial Compression
and Uniaxial Tension of Hcp-Ti

To quantify the influence of the loading direction on the mechanical response at
room-temperature, quasi-static tests in uniaxial compression were conducted on
cylindrical specimens that were machined such that the axes of the cylinders were
along the rolling direction (RD), and two other in-plane directions, at 45° (DD) and
90° (TD) with respect to RD, respectively. In addition, tests were conducted on
specimens with the axis along the normal direction (ND) of the Ti plate. Based on
these tests, it can be concluded that there is very little difference between the
uniaxial compression stress–strain curves along RD, DD, and TD, yet there is a
marked difference between the yield stress in the normal direction and the average
in-plane yield stresses (see Fig. 8.6).

The results of the quasi-static tension tests conducted on flat dog-bone speci-
mens of rectangular cross-section show that there is very little difference in the
stress–strain response between the RD, DD, and TD orientations, respectively (see
Fig. 8.7). However, the material displays a strong and evolving tension–compres-
sion asymmetry; irrespective of the in-plane loading orientation, the flow stress in
uniaxial compression being higher than that in uniaxial tension (e.g., see Fig. 8.8
for the comparison between the response in uniaxial tension–compression along
TD). As for most high-purity Ti materials, the difference in hardening between
uniaxial tension and uniaxial compression may be attributed to occurrence of
twinning (for more details on crystallographic twinning, see Chap. 3).
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Based on the stress–strain data in uniaxial compression and tension presented in
Figs. 8.6 and 8.7, respectively, one may conclude that the material’s in-plane
anisotropy can be neglected. If this would be the case, the Lankford coefficients or
r-values should be the same irrespective of the in-plane orientation h with respect to
RD (for the definition of the plastic strain ratio, r hð Þ see Chap. 5). However,
measurements of the Lankford coefficients for h ¼ 0�, 45�, and 90�, respectively,
show that there is a strong in-plane anisotropy in r-values. Moreover, the anisotropy
in r-values evolves with the plastic strain (see Table 8.1 for the experimental
r-values; for more details on the strain measurements see Revil-Baudard et al. [26]).
Note also that irrespective of the plastic strain level, the largest r-value is along RD.

It can be thus concluded that the Ti material is plastically orthotropic. It is also
worth noting that the r-values are very large (for comparison, see experimental
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r-values for fcc Al alloys presented in Chap. 5). Generally, large r-values indicate
that a material displays resistance to thinning (see for example, Revil-Baudard
[24]); hence, from a formability standpoint, this material is very challenging. In
summary, on the basis of the mechanical characterization tests in uniaxial tension–
compression, it can be concluded that the high-purity Ti material displays ortho-
tropy and tension–compression asymmetry. To describe these features of the plastic
deformation of the material, and in order to account for the influence of plastic
deformation on damage, Revil-Baudard et al. [26] used the Stewart and Cazacu [32]
potential (see Eq. 8.43).

8.3.2 Yielding of Porous Hcp-Ti

All the parameters involved in the Stewart and Cazacu [32] potential (see Eq. 8.43),
namely the anisotropy coefficients Lij and the parameter k, can be identified based
on the data presented in Sect. 8.3.1. As already mentioned, the evolution of the
anisotropy in r-values with accumulated plastic deformation (see Table 8.1) and the
evolving difference in hardening rates between tension–compression loadings
observed from the test results (e.g., see Fig. 8.8) are indicative of texture evolution.
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Table 8.1 Lankford coefficients for several in-plane orientations h, measured with respect to the
rolling direction

Orientation
h (°)

Level of equivalent plastic strain �ep

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0 2.87 2.68 2.52 2.38 2.26 2.15 2.07 2.01

45 2.08 2.01 1.94 1.88 1.82 1.78 1.74 1.71

90 1.57 1.56 1.55 1.53 1.52 1.50 1.48 1.46
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To describe these effects, Revil-Baudard et al. [26] considered that the anisotropy
coefficients and k evolve with accumulated plastic deformation. The numerical
values of these parameters corresponding to eight individual levels of equivalent
plastic strain �ep (up to 0.35 strain) are listed in Table 8.2 (for the definition of the
equivalent plastic strain associated with the Cazacu et al. [5] orthotropic potential,
the reader is referred to Sect. 5.4.3; for more details on the identification procedure
see Revil-Baudard et al. [26]).

The values of these parameters corresponding to any given level of plastic strain
�epj ��ep ��epjþ 1 were obtained by linear interpolation (for more details see
Revil-Baudard et al. [26]). Furthermore, it was considered that the material’s hard-
ening is isotropic and it is governed by the equivalent plastic strain according to a
power law, Y �epð Þ ¼ b e0 þ�epð Þn where the material parameters b and e0 were esti-
mated based on the experimental uniaxial tension axial stress versus true strain curve
in RD. The values of these parameters are: b = 413 MPa, e0 = 0.6445 and n = 1.

To illustrate the combined effects of anisotropy and tension–compression
asymmetry of the plastic deformation on yielding of the material according to the
Stewart and Cazacu [32] criterion, in Fig. 8.9 are shown the projections of the yield
surface corresponding to an equivalent plastic strain �ep ¼ 0:25 and a porosity f ¼
0:01 for axisymmetric loadings with axial stress oriented either along the RD (axis
ex) (Fig. 8.9a), TD (axis ey) (Fig. 8.9b) or normal direction (ND) (axis ez)
(Fig. 8.9c), respectively. In each case, loadings corresponding to the axial stress
being the minor principal stress (i.e., third-invariant, J3 � 0) and loadings such that
axial stress is the major principal stress (i.e., third-invariant, J3 � 0) were considered.

Given that irrespective of orientation this material has rTx

rCx \1, rTy

.
rCy \1

and rTz

.
rCy \1, the same general trends are observed for axisymmetric loadings

with the axial stress along the RD, TD, or ND-axis, respectively (compare
Fig. 8.9a–c). Namely, for axisymmetric loadings at J3 � 0, the response is softer
than in the case of axisymmetric loadings at J3 � 0. However, the influence of the
anisotropy of the material is clearly observed, the sensitivity to J3 being less pro-
nounced for loadings with the axial stress along ND. Furthermore, the yield surface

Table 8.2 Stewart and Cazacu [32] parameters for a high-purity orthotropic hcp-Ti corresponding
to different values of the equivalent plastic strain, �ep; for any strain level L11 is set to unity

�ep L22 L33 L12 L13 L23 L44 k

0.02 0.971 1.316 0.022 0.189 0.152 0.972 −0.304

0.05 0.989 1.243 0.089 0.193 0.173 0.909 −0.313

0.1 0.992 1.046 0.016 0.075 0.053 0.983 −0.363

0.15 0.996 0.915 −0.015 0.021 0.000 1.016 −0.419

0.2 0.998 0.849 −0.048 −0.012 −0.034 1.050 −0.472

0.25 0.998 0.815 −0.089 −0.041 −0.068 1.092 −0.518

0.3 0.998 0.797 −0.130 −0.068 −0.099 1.134 −0.554

0.35 1.000 0.772 −0.178 −0.097 −0.135 1.183 −0.635
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lacks symmetry with respect to the deviatoric axis (Rm ¼ 0). In particular, the
material’s yield stress for purely tensile hydrostatic loadings is different than that
under purely hydrostatic compressive loadings [for further explanations see
Sect. 8.2 and Eqs. (8.47)–(8.56)].

In Revil-Baudard et al. [26], the capabilities of this model to predict plastic
deformation and damage in this material were assessed by comparing the predic-
tions with data that were not used for identification of the model parameters. These
data were obtained by conducting additional uniaxial tension tests on smooth
specimens of circular cross-section (radius of 3.18 mm) with axis along RD, TD,
and at 15°, 45°, and at 75° to the rolling direction.

F.E. simulations of the uniaxial tension response of these specimens were
conducted, and the F.E. predictions were compared with the measured final
cross-sections and XCMT measurements of porosity on both smooth and notched
specimens. The presentation of these additional experimental tests and F.E. anal-
yses is given in the following.

8.3.3 Comparison Between Model Predictions and Data

8.3.3.1 Comparison Between Predictions of Plastic Deformation
and Data on Smooth Specimens

In the F.E. analyses, the rate of change of the void volume fraction ( _f ) was con-
sidered to result from growth of existing voids and nucleation of new ones. The
contribution due to void growth was obtained from mass conservation and the
condition of plastic incompressibility of the matrix. The simple idealization of
nucleation controlled by plastic strain �ep suggested by Gurson [11] based on
Gurland [10] experimental data was considered. The stress controlled nucleation
was considered to be governed by the mean stress, as discussed by Argon et al. [2],
the specific dependencies on �ep and the mean stress, rm being modelled as in Chu
and Needleman [7], so that:

_f ¼ 1� fð Þ dp: IþAN _�e
p þBN _rm; ð8:60Þ

where

AN ¼ fN
sN

ffiffiffiffiffiffi
2p

p exp � 1
2

�eP � eN
sN

� �2
" #

BN ¼
0 if _rm\0

fP
sP
ffiffiffiffi
2p

p exp � 1
2

rm�rP
sP

� 	2� �
if _rm [ 0

8<
:

ð8:61Þ
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i.e., both the plastic strain controlled nucleation and mean stress controlled
nucleation were considered to follow a normal distribution with mean value and
standard deviations (eN , sN ) and (rP, sP), respectively.

In Eq. (8.60), the plastic strain-rate tensor dp was calculated using the normality
rule in conjunction with the Stewart and Cazacu [32] potential given by Eq. (8.43).
The average initial value of the void volume fraction of the specimens was esti-
mated to be: f0 ¼ 0:0001. The reported numerical values of the parameters involved
in the void nucleation law (Eq. 8.61) are: fN ¼ 0:001, sN ¼ 0:4, eN ¼ 0:9,
fP ¼ 0:001, sP ¼ 250 MPa, rP ¼ 800 MPa; and the elastic parameters values are:
E ¼ 110 GPa, m ¼ 0:3.

The same numerical values for the parameters of the plastic potential, namely the
anisotropy coefficients Lij and the strength differential parameter k (see Table 8.2)
were used in all F.E. analyses. We recall that the values of these parameters were
determined from tensile tests on specimens with rectangular cross-section, and
compression tests (data presented in Sect. 8.3.1).

The specimen geometry and the F.E. meshes used in the simulations are shown
in Fig. 8.10. Note that for the axisymmetric specimens oriented along the axes of
orthotropy of the material (i.e., either RD or TD), only one-eighth of the specimen
needs to be analyzed. The mesh used consisted of 8109 hexahedral elements (see
Fig. 8.10b). However, for the off-axis specimens (i.e., those specimens cut such that
their respective generator is at 15°, 45°, and at 75° with respect to the rolling

Fig. 8.10 a Geometries of the axisymmetric smooth tensile specimens; b F.E. meshes used for the
specimens with axes along the directions of orthotropy: rolling direction (RD) and transverse
direction (TD); c F.E. meshes used for the off-axis specimens. Dimensions are in mm
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direction of the plate), symmetric boundary conditions cannot be applied, and the
entire specimens needed to be meshed. While the F.E. mesh used in these cases
consists of 16355 hexahedral elements (see Fig. 8.10c), the size of the elements in
the middle of the specimen (i.e. the zone of interest) is the same as for the RD and
TD axisymmetric specimens.

To assess the predictive capabilities of the model, we first present comparisons
between the experimental and predicted final cross-section of each specimen.
Specifically, in Fig. 8.11 are shown the photographs of the final cross-sections of
the respective specimens on which are superposed the F.E. predictions obtained
with the model (dashed lines). It is worth noting that for all the loading orientations,
the F.E. predictions are in good agreement with the experimental data. Note that the
model correctly captures the anisotropy in plastic deformation of the material;
irrespective of the specimen orientation, the initial circular cross-section becomes
elliptical.

(a) RD (b) 15ο (c) 45ο

(d) 75ο (e) 90ο (TD)

Fig. 8.11 Comparison between experimental and F.E. predictions according to the Stewart and
Cazacu [32] porous model of the final cross-sections of axisymmetric tensile specimens of hcp-Ti
after uniaxial tension. Specimens were cut such that the long axis is along: a RD; b 15° to RD;
c 45° to RD; d 75° to RD; e 90° to RD, respectively. The F.E. predictions are represented as
dashed lines (After Revil-Baudard et al. [26])
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Let define the ellipticity e, as

e ¼ a1 � b1ð Þ=b1 ð8:62Þ

where a1 and b1 are the major and minor axes of the respective deformed
cross-section. Note that the Stewart and Cazacu [32] porous model describes cor-
rectly the influence of the loading orientation on the shape of the final cross-section,
the largest ellipticity being obtained for the RD specimen. Specifically, for the RD
specimen, the predicted ellipticity is 28.3% against 30.4% obtained experimentally.
For the specimens with axis oriented along other in-plane directions, the ellipticity
predicted by the model is 25% for the 15° specimen (against 26.5% experimen-
tally), 22% for the 45° specimen (against 21.7% experimentally), 21% for the 75°
specimen (against 24% experimentally), and 19.7% for the TD specimen (against
22.7% experimentally). Thus, it can be concluded that the model predictions are in
quantitative agreement with the data.

It is also worth noting that the Stewart and Cazacu [32] model captures fairly
well the experimental axial load versus displacement curves for all specimens. As
an example, in Fig. 8.12 are shown comparisons between the load-displacement
curves obtained experimentally and theoretically for the RD specimen (Fig. 8.12a),
and for the 45° specimen, respectively (Fig. 8.12b). It is worth recalling that all the
F.E. simulations were conducted with the same set of values for the Stewart and
Cazacu [32] parameters which were identified based on a different set of data. Thus,
the results presented in Figs. 8.11 and 8.12 demonstrate that the model is truly
predictive.

8.3.3.2 Comparison Between Model Prediction and XCMT Porosity
Measurements for a Smooth RD Specimen

Revil-Baudard et al. [26] also reported ex situ X-ray computed micro-tomography
measurements of the porosity in the smooth RD specimen. The scan was done after
the specimen was subjected to uniaxial tension to an axial displacement of 5.52 mm,
i.e., the deformed specimen was very close to failure. The images were taken at the
necking region. Tomography acquisition was carried out with a cubic voxel size of
1:22143 ¼ 1:82 lm3 and a range of view (ROV) of 2030 pixels. The total data set
consisted of 1361 images where each image was of 2030 � 2030 pixels, a total of
about 5:6� 109 voxels representing a volume of 2:48� 2:48� 1:66 ¼ 10:2mm3.

In Fig. 8.13a are shown the reconstructed 2-D views in the (TD, TT) plane, and
in the (RD, TD) plane of the specimen, respectively. For comparison purposes, in
Fig. 8.13b are shown the respective views extracted from the scan of a copper
specimen, which was taken at the same axial displacement. It is very important to
note that for the same axial displacement, the copper material is very damaged
while the Ti material shows very little damage. While a large hole/crack is seen in
the middle of the copper specimen, almost no damage is observed in the hcp-Ti
specimen. It means that for uniaxial tensile loading the rate of damage growth is
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slower in this Ti material than in Cu. Thus, these XCMT observations confirm the
conclusions of the preliminary theoretical study of Revil-Baudard and Cazacu [25]
on the influence of the tension–compression asymmetry on damage growth rate and
damage distribution in a round tensile specimen which was done using the isotropic
form of Stewart and Cazacu [32] model (for more details, the reader is referred to
Sect. 7.3.2). Let us recall that in that theoretical study it was shown that for isotropic
materials for which the flow stress in uniaxial compression is larger than the flow
stress in uniaxial tension damage is delayed as compared to materials for which the
matrix plastic behavior is governed by the von Mises criterion. The observed drastic
difference in damage evolution between hcp-Ti, which is harder in compression
than in tension (see Fig. 8.8), and the copper material, which does not display
tension–compression asymmetry, validates the main conclusion of this study,
namely that the rate of void growth should be much lower for Ti than for Cu (von
Mises behavior). In summary, Fig. 8.13 clearly shows that there is a very strong
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coupling between the specificities of the plastic deformation and porosity/damage
evolution.

In order to assess the predictive capabilities of the Stewart and Cazacu [32]
porous model in terms of damage evolution, in Revil-Baudard et al. [26], the
porosity data were compared with the F.E. isocontours of the void volume fraction
corresponding to the same axial displacement (see Fig. 8.14). Specifically, the F.E.
predictions were superposed on the different views obtained by XCMT, namely on
the experimental cross-section, the experimental (RD, TD) section, and the
experimental (RD, ND) section, respectively. To extract the experimental void
volume fraction, a clustering technique was applied in order to identify 3-D groups
of connected voxels, and thus to identify individually each pore within the matrix.
A total of 2385 pores (independent cavities) have been detected in the total volume
of the specimen, which resulted in an average porosity over the specimen volume of
0.052%. It is worth noting that if only the pores of volume larger than 50 voxels are
considered (i.e., number of 1857 independent cavities), the average void volume
fraction in the total volume of the specimen is of 0.051%.

Irrespective of the threshold value prescribed for the pore size, the maximum
average porosity corresponds to the root of the neck. The average porosity in the

(a) hcp-Ti (b) Copper

Fig. 8.13 Post-test X-ray computed micro-tomography scans of smooth axisymmetric specimens
of circular cross-sections that were subjected to uniaxial tension to large plastic deformations
(close to failure): a hcp-Ti material studied; b isotropic copper material (After Revil-Baudard et al.
[26])
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Fig. 8.14 Comparison between the F.E. cross-sections and isocontours of the void volume
fraction of a smooth axisymmetric specimen of hcp-Ti subjected to uniaxial tension along x-
direction (RD), according to the Stewart and Cazacu [32] model and XCMT data for an axial notch
displacement of 5.52 mm: a deformed specimen cross-section; b x; yð Þ section of the deformed
specimen; c x; zð Þ section of the deformed specimen. The axes x, y, z are along the rolling (RD),
transverse (TD), and normal (ND) directions (After Revil-Baudard et al. [26])
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minimal cross-section (root of the neck) is of 0.25%. It is worth noting that the
Stewart and Cazacu [32] model also predicts that damage is diffuse, in the minimal
cross-section the maximum void volume fraction predicted being of 0.22% (see
Fig. 8.14a). Likewise, for the other views (Figs. 8.14b, c, respectively) most of the
voids observed by XCMT are inside the region of maximum void volume fraction
predicted by the model. Furthermore, in Fig. 8.14, the F.E. predictions of the
geometry of the specimen for the respective axial displacement (red points) are
superposed on the different experimental cut views. It is to be noted that the Stewart
and Cazacu [32] model correctly predicts the cross-section geometry in each plane.

While data were obtained for an axial displacement of 5.52 mm, the same
authors also reported the damage distribution predicted by the model for other axial
displacements. Specifically, in Fig. 8.15 are shown the F.E. predictions of the

Fig. 8.15 F.E. predictions according to the Stewart and Cazacu [32] model of the isocontours for
the void volume fraction of an axisymmetric smooth specimen of hcp-Ti subjected to uniaxial
tension along the x-direction (rolling direction RD) for other axial displacements: a 5 mm,
b 5.6 mm, c 5.85 mm. Note that for large axial displacements, the location of the zone of
maximum void volume fraction shifts from the center of the specimen. The axes x, y, z are along
the rolling (RD), transverse (TD), and normal (ND) directions (After Revil-Baudard et al. [26])
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isocontours of the void volume fraction predicted for the same RD smooth speci-
men corresponding to a lower axial displacement (Fig. 8.15a) and to higher axial
displacements of 5.6 mm (Fig. 8.15b), and 5.85 mm (Fig. 8.15c), respectively.
Note that the model predicts that for the axisymmetric smooth specimen damage
initiates at the center (see Fig. 8.15a), and shifts toward the outside surface of the
specimen for large axial displacements (see Fig. 8.15b, c).

8.3.3.3 In Situ XCMT Measurements of Damage Evolution
for a Notched RD Specimen of Hcp-Ti and Comparison
with Model Predictions

In the previous section, it was shown that the Stewart and Cazacu [32] porous
model predicts correctly the level of damage as well as plasticity-damage couplings
under uniaxial tensile loading of an axisymmetric smooth specimen. The compar-
ison between model and data were done for a fixed level of the imposed axial
displacement. To assess the capabilities of the model to capture the influence of the
stress state (stress triaxiality) on damage and its evolution, the same authors have
conducted an uniaxial tension test up to fracture on a notched axisymmetric RD
specimen. The notch radius was of 0.51 mm while the specimen cross-section
radius was of 1.27 mm. The reported load-displacement curve is shown in Fig. 8.16
in comparison with the Stewart and Cazacu [32] F.E. model predictions. Given that
the specimen has its axis along an orthotropy axis of the material (RD), only
one-eighth of the specimen was meshed. On Fig. 8.16 are also shown for com-
parison the load vs. displacement curves obtained experimentally and predicted by
the model for the smooth RD specimen. It is clearly seen that the model describes
well that the presence of the notch induces a much softer response as compared to
the smooth specimen.

To further provide insights into the porosity evolution in the material and verify
the unusual damage characteristics revealed by the model, in situ XCMT tensile
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Fig. 8.16 Effect of the notch
geometry on the load versus
displacement response for
hcp-Ti according to the
Stewart and Cazacu [32]
porous model and
experimental data in uniaxial
tension along the rolling
direction (After
Revil-Baudard et al. [26])
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tests on RD specimens of the same notch radius were also conducted at Wright
Patterson Air Force Laboratory using a Deben CT5000 5 kN in situ tomograph.
Each tomography acquisition was carried out with a cubic voxel size of 3:25163

lm3 and comprised 700 images of 992 � 1014 pixels each. It is to be noted that in
order to be able to acquire in situ XCMT measurements for metallic specimens with
this apparatus, the spatial resolution had to be larger than that used for the ex situ
measurements, which were done using a Xradia X-ray microscope,
VersaXRM-500. The analysis of the in situ XCMT data was done using ImageJ,
which is a public domain image processing program developed at the National
Institutes of Health (see Rasband [23], Abramoff et al. [1], Schneider et al. [28]).

The rationale for conducting in situ measurements was to have information on
damage evolution in Ti, and to validate/invalidate the trends predicted by the
model. Due to the specificity of the in situ XCMT testing capabilities, the
load-displacement curve cannot be obtained directly. However, for each XCMT
scan, knowing the resolution of the X-ray microscope, it was possible to deduce the
displacement between the extremities of the notch. In Fig. 8.17 are shown views
obtained from scans taken at notch displacement of 0.24, 0.73, 1.02 and 1.20 mm,
respectively. To assess the effect of anisotropy on the mechanical response, at each
individual level of displacement, the cross-sections in the (TD, ND) plane, in the
(RD, TD) plane, and in the (RD, ND) plane were reported (Fig. 8.17). Model
predictions of the porosity isocontours corresponding to the various cross-sections
for several levels of axial displacements are presented in Figs. 8.18, 8.19 and 8.20.

A close examination of the scans shown in Fig. 8.17 for the notched specimen
reveals that damage initiates at the surface of the specimen. Thus, the damage
evolution predicted by the model (see Figs. 8.18 and 8.19) is confirmed
experimentally.

Furthermore, it was demonstrated that the location of the zone where damage
initiates strongly depends on the specimen geometry. Indeed, the model predicts
that for a smooth axisymmetric specimen, damage initiates at the center of the
specimen (see Fig. 8.15a), and the level of damage close to failure is very low (see
also the comparison between F.E. predictions and XCMT data for an axial dis-
placement of 5.52 mm shown in Fig. 8.14). On the other hand, for the notched
specimen the model predicts that damage initiates at the outer surface of the
specimen, and further grows from the outer surface to the center of the specimen
(see Figs. 8.18, 8.19 and 8.20), which corroborates with the in situ XCMT data of
Fig. 8.17. In other words, for the same global loading (i.e. uniaxial tension), the
local stress state, which depends on the specimen geometry is different, which in
turn triggers a different damage initiation site, and a markedly different damage
evolution.

It is very important to note that the model predicts that for the specimen sub-
jected to uniaxial tension along RD, damage accumulates differently along ND and
TD. The predictions of the isocontours of porosity in the (TD, ND) cross-section
corresponding to different levels of notch displacement are shown in Fig. 8.18.
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Note that the void volume fraction is larger along TD (i.e. the small axis of the
deformed elliptical cross-section) than along ND (i.e. the long axis of the elliptical
cross-section).

Moreover, comparison of the XCMT (RD, TD) sections with the (RD,ND)
sections (see Fig. 8.17), clearly shows that the surface of the specimen along the

(TD,ND) cut view (RD, TD) cut view (RD, ND) cut view

(a) notch displacement of 0.24 mm 

(b) notch displacement of 0.73 mm

(c) notch displacement of 1.02 mm

(d) notch displacement of 1.2 mm

ND
TD

TD
RD

ND
RD

Fig. 8.17 X-ray micro-tomography in situ scans of the hcp-Ti notched specimen subject to
uniaxial tension along rolling direction (RD) showing the (TD, ND) view, (RD-TD) view, and
(RD, ND) view, respectively corresponding to a notch displacement of: a 0.24 mm, b 0.73 mm,
c 1.02 mm, d 1.2 mm (After Revil-Baudard et al. [26])
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(a) (b) (c) (d)

TDTDTDTD

Fig. 8.18 F.E. predictions according to the Stewart and Cazacu [32] model of the void volume
fraction isocontours in the (TD, ND) cross-section of an axisymmetric notched specimen of hcp-Ti
subjected to uniaxial tension along RD at an axial displacement of: a 0.24 mm, b 0.73 mm,
c 1.02 mm, d 1.2 mm, respectively. Initial void volume fraction f0 ¼ 10�4 (After Revil-Baudard
et al. [26])

(a) (RD,TD) plane

(b) (RD,ND) plane

Fig. 8.19 Comparison between the F.E. cross-sections and isocontours of void volume fraction of
a notched axisymmetric specimen of hcp-Ti subjected to uniaxial tension along RD, according to
the Stewart and Cazacu [32] model and XCMT data corresponding to a notch axial displacement
of 0.73 mm: a cross-section of the deformed specimen; b (RD-TD) section of the deformed
specimen; c (RD-ND) section of the deformed specimen. The axes x, y, z are along the rolling
(RD), transverse (TD), and normal (ND) directions (After Revil-Baudard et al. [26])
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TD-axis is more damaged than the surface along the ND axis. The prediction of the
Stewart and Cazacu [32] porous model corroborates with these experimental
observations. To further demonstrate that there is a good agreement between the
predictions of the Stewart and Cazacu [32] model in terms of plasticity-damage
couplings in Figs. 8.19 and 8.20 are also superposed on the XCMT scans the F.E.
predictions of the specimen profiles (red points) corresponding to notch displace-
ments of 0.73 and 1.2 mm, respectively. Note that the model correctly captures the
change in geometry of the specimen (anisotropy in plastic deformation). Since
damage is driven by the plastic deformation, and the plastic anisotropy is correctly

(a) (RD,TD) plane

(b) (RD,ND) plane

Fig. 8.20 Comparison between the F.E. cross-sections and isocontours of void volume fraction of
a notched axisymmetric specimen of hcp-Ti subjected to uniaxial tension along RD, according to
the Stewart and Cazacu [32] model and XCMT data corresponding to a notch axial displacement
of 1.2 mm: a cross-section of the deformed specimen; b (RD-TD) section of the deformed
specimen; c (RD-ND) section of the deformed specimen. The axes x, y, z are along the rolling
(RD), transverse (TD), and normal (ND) directions (After Revil-Baudard et al. [26])
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described, the model also correctly predicts the location of the zones of maximum
damage in each plane.

Because the Stewart and Cazacu [32] plasticity-damage model accounts for both
anisotropy and tension–compression asymmetry, it captures the main trends
revealed by the XCMT scans, namely that damage initiates at the outer surface of
the specimen, and further grows from the outer surface to the center of the specimen
(see data shown in Fig. 8.17).

To evaluate the importance of the consideration of the tension–compression
asymmetry in plastic deformation on the local fields, the authors performed addi-
tional F.E. simulations in which the tension–compression asymmetry was neglec-
ted, i.e. in the simulations the tension–compression asymmetry parameter k in
Eq. (8.43) was set to zero. As an example, Fig. 8.21 compares the isocontours of
the hydrostatic pressure (p ¼ �1=3tr rð ÞÞ in the (RD-TD) section of the notched

Axial notch displacement of 0.73 mm

Axial notch displacement of 1.2 mm

(a) Anisotropic model with no ten-
sion/compression asymmetry (k=0)

(b) Model accounting for 
anisotropy and tension-
compression asymmetry

Axial notch displacement of 0.73 mm

Axial notch displacement of 1.2 mm

(a) Anisotropic model with no ten-
sion/compression asymmetry (k=0)

(b) Model accounting for 
anisotropy and tension-
compression asymmetry

Fig. 8.21 Importance of accounting for tension–compression asymmetry in plastic behavior of
hcp-Ti: comparison of the isocontours of the hydrostatic pressure (p ¼ � 1=3 tr rð ÞÞ in the
(RD-TD) section of the notched specimen for axial notch displacement of 0.73 and 1.2 mm,
respectively, according to: a anisotropic model with no tension–compression asymmetry (k = 0),
b the Stewart and Cazacu [32] model which accounts for both anisotropy and tension–compression
asymmetry. Note that if the tension–compression asymmetry in plastic deformation is accounted for,
the local distribution of the hydrostatic pressure is totally different (After Revil-Baudard et al. [26])
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specimen at axial notch displacement of 0.73 and 1.2 mm, respectively according to
the anisotropic model with no tension–compression asymmetry (k ¼ 0) and the
Stewart and Cazacu [32] model with parameters given in Table 8.2.

Note that the distribution of the hydrostatic pressure is totally different. If the
tension–compression asymmetry is neglected, the maximum mean stress (i.e. the
minimum hydrostatic pressure) occurs in the center of the specimen, while if the
model accounts for tension–compression asymmetry, the maximum mean stress is
located along the surface of the specimen. To pursue this analysis, in Fig. 8.22 are
plotted the isocontours of the third-invariant of the stress deviator for the same axial
displacements. If the tension–compression asymmetry is neglected, locally, the
third-invariant of the stress deviator is always positive. However, if the model

Axial notch displacement of 0.73 mm

Axial notch displacement of 1.2 mm

(a) Anisotropic model with no ten-
sion/compression asymmetry 

(k=0)

(b) Model accounting for ani-
sotropy and tension-

compression asymmetry

Fig. 8.22 Importance of accounting for tension–compression asymmetry of the plastic behavior
of an hcp-Ti. Comparison of the isocontours of the third-invariant of the stress deviator J3 in the
(RD-TD) section of the notched specimen for an axial notch displacement of 0.73 and 1.2 mm,
respectively, according to: a anisotropic model with no tension–compression asymmetry (k = 0),
b the Stewart and Cazacu [32] model which accounts for both anisotropy and tension–compression
asymmetry. Note that only if the tension–compression asymmetry in plastic deformation is
neglected, the third-invariant is always positive; otherwise the local distribution is completely
different (After Revil-Baudard et al. [26])
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accounts for both the anisotropy and tension–compression asymmetry, the
third-invariant J3 is negative close to the outside surface of the specimen and
positive at the center of the specimen. Given the strong coupling between the mean
stress and the third-invariant J3 on the response of the porous material [see the
Eqs. (8.49) and (8.50)] and the yield surface of the porous hcp-Ti shown in
Fig. 8.9), the isocontours of the void volume fraction are completely different
depending on whether the tension–compression asymmetry is accounted for in the
porous model or not (see Fig. 8.23). If the tension–compression asymmetry is
neglected, the maximum void volume fraction is located at the center of the
specimen, while if the model accounts for the tension–compression asymmetry, the
zone of maximum damage shifts toward the outside surface.

In summary, the results presented suggest that only by using a porous model that
accounts for the specificities of the plastic deformation in Ti the anisotropy in
plastic deformation and damage can be captured. Irrespective of the loading ori-
entation, the final geometry of the specimens was correctly predicted. Specifically,
it was shown that for a smooth axisymmetric specimen subjected to uniaxial ten-
sion, damage initiates at the center of the specimen and is diffuse; the level of
damage close to failure being very low. On the other hand, for a notched specimen
subject to uniaxial tension, the Stewart and Cazacu [32] porous model predicts that
damage initiates at the outer surface of the specimen, and further grows from the
outer surface to the center of the specimen, which corroborates with the in situ
X-ray tomography data.

(a) No tension/compression asym-
metry

(b) Model accounting for 
the tension-compression 

asymmetry

Fig. 8.23 Importance of accounting the tension–compression asymmetry of the plastic behavior
of an hcp-Ti. Comparison of the isocontours of the void volume fraction in the (RD-TD) section of
the notched specimen for an axial notch displacement of 1.2 mm, respectively, according to:
a anisotropic model with no tension–compression asymmetry (k = 0), b the Stewart and Cazacu
[32] model which accounts for both anisotropy and tension–compression asymmetry (After
Revil-Baudard et al. [26])
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8.4 Effects of Anisotropy on Porosity Evolution
in Single Crystals Under Multiaxial Creep

All the models discussed so far in this book and the applications presented concern
rate-independent plastic behavior using plastic potentials for fully dense materials
(Chaps. 4–6) or porous materials (Chap. 7; Sects. 8.1–8.3). There are circumstances
however when time effects on the mechanical behavior play a significant role. An
appropriate framework for modeling those effects is that of viscoplasticity theory.
As already mentioned, presentation of viscoplasticity models for isotropic and
anisotropic metallic materials is beyond the scope of this book. For the early history
and main contributions concerning viscoplasticity models for isotropic materials,
the reader is referred to the monographs of Perzyna [21] and Cristescu [8].

In the following, recent attempts toward modeling the role of anisotropy on
porosity evolution during multiaxial creep in single crystals are presented. Due to
its great importance in assessment of structural integrity, extensive amount of
experimental work has been carried out on smooth and notched single crystals.
While the data reported in the open literature is scarce and mainly concern the
characterization of specimens in the h100i orientation (e.g., Liu et al. [18]), recent
F.E. numerical studies have provided new insights into the role played by the lattice
orientation on the deformation and void growth of creeping single crystals. For
example, Srivastava and Needleman [29, 30] carried out detailed investigations
using F.E. unit-cell models of fcc single crystals containing a single initially
spherical void. The deformation of the matrix was considered to be governed by the
Asaro and Needleman [3] crystal model. Simulations were carried out for different
crystal orientations. The unit cell was subject to creep loadings (i.e., fixed stress) for
a range of values of the imposed stress triaxialities and a range of imposed values of
the Lode parameter, a measure of the third-invariant of the stress deviator J3 (see
Chap. 4 for the definition of the Lode angle). Specifically, for each value of the
stress triaxiality, T , creep loadings corresponding to the third-invariant of the stress
deviator, J3, being negative, zero (shear), and positive were considered. The results
of Srivastava and Needleman [30] showed a strong effect of the stress state and
anisotropy on all aspects of the mechanical response of the voided single crystal.
For the [100] crystal orientation, nearly no effect of J3 was found. On the other
hand, for other crystal orientations a significant effect of J3 on the mechanical
response was reported even for creep loadings at very high values of the stress
triaxialities.

Very recently, an analytic model for description of the creep response of porous
single crystals with fcc crystal structure was developed by Srivastava et al. [31]. To
describe the anisotropy of the single crystal, these authors specialized the ortho-
tropic Stewart and Cazacu [32] potential to cubic symmetry. To account for viscous
effects, the approach introduced by Pan et al. [20] was used, namely the effective
stress of the matrix was considered to obey a power-type law.

The very strong influence of the crystal’s anisotropy and the loading path on the
evolution of porosity is captured by the model. For the [100] crystal loading
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orientation, this model predicts that void growth is not influenced by J3. However,
for the [110] orientation, irrespective of the stress triaxiality, the model predicts that
there is a very strong effect of J3, the fastest rate of void growth being for loading at
J3 ¼ 0 in one of the secondary orientation while the slowest rate of void growth
corresponds to loadings at J3\0 in the other secondary orientation. For the [111]
crystal orientation the fastest rate of void growth corresponds always to loadings at
J3 [ 0 while the slowest rate corresponds to loadings at J3\0.

While the model predicts the same trends observed in the F.E. unit-cell calcu-
lations, it has also revealed previously unrecognized features of the mechanical
response, namely that for certain axisymmetric loadings at the same triaxiality and
mean stress, the creep response should be the same for certain crystal orientations.

It is important to point out that in both the F.E. unit-cell model and the analytical
model for creep of the porous crystal of Srivastava et al. [31], the tension–com-
pression asymmetry of the crystal was neglected. However, for porous polycrys-
talline materials it was clearly demonstrated (see Chaps. 7 and 8) that only by
accounting for the tension–compression asymmetry of the matrix it is possible to
explain damage evolution and its distribution (e.g., see Fig. 8.23).

In the following, we present a theoretical study of the influence of the tension–
compression asymmetry of the single crystal matrix on yielding and porosity
evolution of voided single crystals subject to creep. To enable development of a
closed-form expression for the evolution of porosity under creep loading, time
effects on the irreversible deformation are modeled using an overstress-based
approach in conjunction with the Stewart and Cazacu [32] porous model specialized
for cubic symmetry. Creep stabilization is considered to be governed by the irre-
versible work per unit volume. Next, the creep response according to this model is
analyzed for porous fcc single crystals for which the tension–compression asym-
metry may be neglected. The influence of the loading path on yielding and porosity
evolution for the case when the principal directions of the applied stress are aligned
with different crystallographic directions is analyzed. We conclude with analyzing
the creep response for a single crystal with incompressible matrix displaying ten-
sion–compression asymmetry. To simplify writing, in the following, we denote by
r the Cauchy stress applied to the porous crystal.

8.4.1 Creep Models for Porous Single Crystals
with Cubic Symmetry

The aim is to provide insights into the combined effects of anisotropy and loading
history on the evolution of porosity under multiaxial creep. Therefore, key in the
formulation is the choice of the plastic potential.
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8.4.1.1 Plastic Potential for a Porous Crystal with Cubic Symmetry

To describe the plastic flow of a porous single crystal, we specialize to cubic
symmetry the Stewart and Cazacu [32] potential presented in Sect. 8.1.

Note that in the formulation of the Stewart and Cazacu [32] potential, the plastic
anisotropy of the incompressible matrix is described by the fourth-order symmetric
tensor L. Specifically, the potential is a function of the mean stress rm and the
principal values r_1, r

_

2, r
_

3 of the transformed stress, r_ ¼ Ls, with s ¼ r� rmI
denoting the deviator of the applied stress r (see Eq. 8.43).

Theorem 8.4 (Plastic potential for a porous single crystal with cubic symmetry) In
the coordinate system associated with the h100i crystal axes, the potential for the
porous cubic crystal is of the form:

Ucðr; f Þ ¼ ~m2
X3
i¼1

r_i

rT100h i

�����
������ k

r_i

rT100h i

 !2
2
4

3
5þ 2f cosh

3rm
~hrT100h i

 !
� 1� f 2 ¼ 0

ð8:63Þ

with

~h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 � 2k sgn U1ð Þþ 3ð Þ
3k2 þ 2k sgn rmð Þþ 3ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 12=b2

5

s
ð8:64Þ

~m2 ¼ 2

U2
1 3k2 � 2k sgn U1ð Þþ 3ð Þ ð8:65Þ

b ¼ 2L44=3U1ð Þ; U1 ¼ 2 L11 � L12ð Þ=3 ð8:66Þ

In Eq. (8.63) k is a parameter associated with strength differential effects, L11,
L12 and L44 are the only nonzero components of the fourth-order symmetric tensor
L describing the anisotropy in plastic properties of the single crystal, and rT100h i is
the tensile uniaxial stress in the h100 i crystallographic directions, respectively.

Proof Let us denote by x; y; zð Þ the Cartesian coordinate system associated with
the h100i crystal axes. Invariance requirements associated to the threefold sym-
metry of the h100i directions result in the fourth-order tensor L satisfying in the
x; y; zð Þ frame, the additional constraints:

L12 ¼ L13¼ L23; L11 ¼ L22 ¼ L33; L44 ¼ L55 ¼ L66 [ 0; ð8:67Þ
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so that in Voigt notations the transformed stress tensor r_ is given by:

r_xx

r_yy

r_zz

r_xz

r_yz

r_xy

2
6666664

3
7777775
¼

L11 L12 L12 0 0 0
L12 L11 L12 0 0 0
L12 L12 L11 0 0 0
0 0 0 L44 0 0
0 0 0 0 L44 0
0 0 0 0 0 L44

2
6666664

3
7777775

sxx
syy
szz
sxz
syz
sxy

2
6666664

3
7777775

ð8:68Þ

Note that

r_xx þ r_yy þ r_zz ¼ L11 þ 2L12ð Þ sxx þ syy þ szz
� � ¼ 0;

i.e., for cubic symmetry, the transformed stress r_ ¼ Ls is traceless.
Let us also recall that the parameters ~m and ~h involved in the Stewart and Cazacu

[32] potential depend on k, a parameter associated with the tension–compression
asymmetry of the matrix, and on the tensor L. Therefore, due to the additional
constraints of Eq. (8.67), it follows that these parameters become [see Eqs. (8.44)–
(8.46)]:

U ¼ U3 ¼ �U1=2; withU1 ¼ 2 L11 � L12ð Þ=3;

so that ~m and the hydrostatic parameter ~h take the form given by Eqs. (8.64)–(8.66).

Remarks

• In the absence of voids (f = 0), Eq. (8.63) reduces to the criterion for the fully
dense crystal,

~re ¼ ~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

j r_i j � kr_i

� 	2vuut ¼ rT100h i: ð8:69Þ

• All the parameters in the plastic potential given by Eq. (8.63) have a clear
physical significance, being related to the plastic properties of the fully dense
crystal described by k, and the anisotropy coefficients L11, L12, L44. In turn, these
parameters can be determined from simple uniaxial tension and uniaxial com-
pression tests along the [100], [110], and [111] directions, respectively.

• The tension–compression asymmetry of the fully dense single crystal is
orientation-dependent.

For example, in any of the h100i directions, the ratio rTh100i=r
C
h100i is expressible

solely in terms of the parameter k, yet the specific expression depends on the sign of
U1, i.e., on whether L12 [ L11 or L12\L11. Specifically, using Eq. (8.69), we
obtain:
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if L12 [ L11:
rTh100i
rCh100i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 � 2kþ 3
3k2 þ 2kþ 3

r
: ð8:70Þ

while

if L12\L11:
rTh100i
rCh100i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 2kþ 3
3k2 � 2kþ 3

r
:

On the other hand, for the [110] direction, it is predicted that the tension–

compression asymmetry ratio
rTh110i
rCh110i

is expressible in terms of k and b ¼ 2L44=3U1ð Þ,
the specific expression depending on the relative ordering of L12 and L11 and on the
ratio of L12 to L44, or alternatively on the range of b (see Eq. 8.66). Specifically,
using Eq. (8.69), we obtain:

• For U1 ¼ 2 L11 � L12ð Þ=3\0:

if b\� 1=3:
rTh110i
rCh110i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 2kþ 3ð Þþ 9b2 1� kð Þ2
3k2 � 2kþ 3ð Þþ 9b2 1þ kð Þ2

s

while for

if � 1=3\b\0 :
rTh110i
rCh110i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 4kþ 3ð Þþ 9b2 1þ k2ð Þþ 12kb

3k2 � 4kþ 3ð Þþ 9b2 1þ k2ð Þ � 12kb

s
ð8:71Þ

As will be shown later in Sect. 8.4.3, this orientation dependency of the tension–
compression asymmetry of the single crystal has drastic implications on porosity
evolution, and most importantly on the influence of the stress state on porosity
evolution.

8.4.1.2 Creep Response of Porous Crystals

To model first-stage creep, the overstress-type approach (see for example Cristescu
[9]) will be used. The constitutive hypotheses of the proposed model for the porous
single crystal are as follows:

(H1) The creep stabilization boundary is considered to be of the form:

Ucðr; f Þ ¼ WI ; ð8:72Þ
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where Ucðr; f Þ is the yield function of the porous single crystal given by Eq. (8.63),
and WI denotes the irreversible work per unit volume.

(H2) Neglecting elasticity, the evolution of the strain, is given by:

_e ¼ g 1� WI

Ucðr; f Þ
� �

@Ucðr; f Þ
@r

; ð8:73Þ

where g is a viscosity parameter and h i is the Macaulay bracket, i.e., xh i ¼
xþ xj jð Þ=2 denotes the positive part of any number x; superposed dot on any
variable denotes differentiation with respect to time. Therefore, the material
undergoes irreversible deformation, i.e. _e 6¼ 0 only if the stress state is such that
Ucðr; f Þ[WI .

(H3) The evolution of the void volume fraction is obtained from conservation of
mass for the matrix (fully dense crystal) so that

_f ¼ g 1� fð Þ 1� WI

Ucðr; f Þ
� �

@Ucðr; f Þ
@rm

: ð8:74Þ

Let us examine the creep response of the single crystal according to the con-
stitutive model given by Eqs. (8.72)–(8.74). Let us assume that in the time interval
t0; t	ð Þ, the stress is maintained constant, say, rðtÞ ¼ rs ¼ constant. From the
evolution law given by Eq. (8.73), we obtain:

_W
I ¼ r: _e ¼ g 1� WI

Ucðr; f Þ
� �

@Ucðr; f Þ
@r

:r ð8:75Þ

Assuming that the single crystal undergoes plastic deformation (i.e., the bracket
in Eq. (8.75) is nonzero), by integration with respect to time of the above equation,
we obtain:

1� WI tið Þ
Uc rs; fi�1ð Þ ¼ 1� WI ti�1ð Þ

Uc rs; fi�1ð Þ
� �

exp �g
ti � ti�1ð Þ

Uc rs; fi�1ð Þ
@Uc r; fi�1ð Þ

@r

����
r¼rs

: rs
� �� �

ð8:76Þ

where i is a counter for iterations, f1 is the initial value of the porosity, i.e.,
f1 ¼ f jt¼t0 and WI t0ð Þ¼ 0. Further substitution of the right-hand side of Eq. (8.76)
in the evolution law for plastic strain (Eq. 8.73) and integration leads to:
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e tið Þ ¼ e ti�1ð Þ

þ
1� WI ti�1ð Þ

Uc rs; fi�1ð Þ
� �

@Uc r; fi�1ð Þ
@r

����
r¼rs

@Uc r; fi�1ð Þ
@r

����
r¼rs

:rs
� � 1� exp �g

ti � ti�1ð Þ
Uc rs; fi�1ð Þ 


@Uc r; fi�1ð Þ
@r

����
r¼rs

:rs
� �� �� �

ð8:77Þ

Next, the porosity f is updated using Eq. (8.74). These equations will be used for
simulating the creep response of porous single crystals.

To illustrate the influence of anisotropy and tension–compression asymmetry of
the crystal on porosity evolution under multiaxial creep, theoretical predictions will
be presented for loadings with the maximum principal stress aligned with the ½100�,
½110� and ½111� crystallographic directions, respectively. A total of five relative
orientations between the loading frame and the x; y; zð Þ frame associated with
the h100i directions are considered (see Fig. 8.24). The crystal orientation,

(a) (b)

(c)

Fig. 8.24 Relative orientations of the (x, y, z) frame associated with the fcc cubic crystal axes and
the frame associated with the principal stress directions for all the loading cases analyzed:
a maximum principal stress along [100]; b maximum principal stress along [110] direction;
c maximum principal stress along the [111] direction. For the case (b) and (c), two additional
secondary orientations are also considered
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designated as “orientation 100” is such that the loading axes are aligned with
the h100i directions. For the case when the maximum principal stress is aligned
with the ½110� direction, the predicted response for two possible relative orientations
designated as “orientation 110hO1i” and “orientation 110hO2i” are investigated
(see Fig. 8.24b with hO1i corresponding to principal stresses along x1, x2, x3
while hO2i corresponds to principal stresses along [110], [001], 1�10½ �). The pur-
pose of considering the secondary orientation O2 is to assess the influence of
anisotropy, namely the difference in response depending whether a given value of
the eigenstress corresponds to an eigenvector along [110] or �110½ �. Similarly, for
loadings with maximum principal stress along ½111�, the “orientation 111hO1i” and
“orientation 111hO2i” are discussed (see Fig. 8.24c with hO1i corresponding to
principal stresses along y1, y2, y3 while hO2i corresponds to principal stresses
along [111], �101½ �, 1�21½ �).

For a given crystal orientations, creep calculations are done using the model for
loadings corresponding to a fixed value of the stress triaxiality T and the same mean
stress rm. We recall that

T ¼ rmffiffiffiffiffiffiffi
3J2

p

Furthermore, to investigate the effect of the third-invariant J3 for any given
crystal orientation, calculations are done for shear loadings J3 ¼ 0 and axisym-
metric loadings at J3 [ 0 or J3\0, respectively. The values of the principal stresses
for all the loadings considered in the illustrative examples are given in Table 8.3.
Alternatively, the stress states analyzed can be defined in terms of the Lode
parameter l (see Chap. 4). Namely, for each crystal orientation, the stress paths
considered correspond to the same T and rm; what is varied between calculations is
l, namely l = 0 (shear), l = −1 (axisymmetric loadings at J3 [ 0) or l = 1 (ax-
isymmetric loadings at J3\0), respectively.

Table 8.3 Loadings analyzed: values of the principal values of the stress tensor r=rT ; mean
stress rm, sign of the third-invariant, J3 for each crystal orientation

r1 r2 r3 rm Sign of J3 (Lode parameter) Orientation (see Fig. 8.24)

5.4 2.16 2.16 3.24 J3 [ 0 (l = −1)

5.11 3.24 1.37 3.24 J3 ¼ 0 (l = 0) hO1i
5.11 1.37 3.24 3.24 J3 ¼ 0 (l = 0) hO2i
4.32 4.32 1.08 3.24 J3\0 (l = 1) hO1i
4.32 1.08 4.32 3.24 J3\0 (l = 1) hO2i
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8.4.2 Creep of Fcc Single Crystals

When modeling fcc crystals, it is generally assumed that the tension–compression
asymmetry in plastic deformation is negligible (see Chap. 3). Therefore, in the
expression of the plastic potential given by Eq. (8.63), the parameter k should be set
to zero.

Plastic potential for a porous fcc crystal

Using the definitions in Sect. 8.4.1.1, it can be easily seen that in the crystal
frame x; y; zð Þ, the plastic potential of a porous fcc crystal is of the form:

uðr; f Þ ¼ 2

3U2
1

X3
i¼1

r_i

rT100h i

 !2

þ 2f cosh
3
ffiffiffi
5

p
rm

2rT100h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:78Þ

with parameters b and U1 as defined in Eq. (8.66); and rT100h i the tensile uniaxial

stress in the h100i crystallographic directions, respectively.

Remarks

• For k = 0, the effective stress of the fully dense crystal ~re, given by Eq. (8.69),
becomes:

~re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

s2xx þ s2yy þ s2zz
� 	

þ 2b2 s2xy þ s2xz þ s2yz
� 	h ir

¼ rT100h i: ð8:79Þ
(see also Srivastava et al. [31]).

• All the parameters involved in the potential for a porous fcc crystal given by
Eq. (8.78) are related to the plastic properties of the matrix (i.e., the fully dense
crystal) described by the coefficients L11, L12 and L44 (see Eq. 8.66). Given that
the effective stress of the fully dense crystal is homogeneous of degree one in
stresses, without loss of generality one of these coefficients can be set equal to
unity; for example, we can take L11 = 1. Moreover, the plastic response depends
only on the ratio of L12 to L44, or alternatively on b (see Eq. 8.66).

• For isotropy, L12 = 0 and L44 = 1 so that the plastic potential given by
Eq. (8.78) reduces to the Gurson [12] stress potential (see Chap. 7).

In the next subsection, we present the effects of anisotropy and path-dependency
on the yielding of the porous fcc crystal according to the potential given by
Eq. (8.78) for loadings with the maximum principal stress aligned with the [100],
[110], and [111] crystallographic directions, respectively. To simplify the writing,
in all the expressions we will denote the matrix tensile yield stress in any of
the h100i direction rT100h i by rT .
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8.4.2.1 Effect of the Loading Orientation and Loading Path
on the Plastic Response of the Porous Fcc Crystal

Orientation 100

Let us first consider loadings such that the principal directions of stress are along
the cubic axes x, y, and z (see Fig. 8.24a). For such loadings, the only stress
components different from zero are rxx; ryy; rzz so the potential for the porous fcc
crystal given by Eq. (8.78) takes the form:

uðr; f Þ ¼
3 s2xx þ s2yy þ s2zz
� 	

2r2T
þ 2f cosh

ffiffiffi
5

p
rxx þ ryy þ rzz
� �
2rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� �

ð8:80Þ

Therefore for such loadings, there is no influence of the third-invariant J3 on
yielding of the porous crystal. Those predictions are consistent with the results of F.
E. unit-cell model calculations where the single crystal was considered to be
governed by the TBH model, i.e., the tension–compression asymmetry in plastic
deformation was also neglected (e.g., see Srivastava and Needleman [30]).

On the other hand, for the 110 and 111 crystal orientations (Fig. 8.24), the
anisotropy of the matrix plays a crucial role. In the following, we will analyze the
yielding response according to the model for each of these orientations separately.

Orientation 110

If the porous fcc crystal is loaded such that the principal directions of the applied
stress are along the 110½ �, �110½ �, and 001½ � crystallographic directions (see
Fig. 8.24b), i.e.:

r ¼ r1 x1 � x1ð Þþ r2 x2 � x2ð Þþ r3 x3 � x3ð Þ ð8:81Þ

with xi oriented with respect to the cubic axes x; y; zð Þ as:

x1 ¼ 1ffiffiffi
2

p ;
1ffiffiffi
2

p ; 0
� �

; x2 ¼ �1ffiffiffi
2

p ;
1ffiffiffi
2

p ; 0
� �

; x3 ¼ 0; 0; 1ð Þ: ð8:82Þ

Relative to the reference frame x; y; zð Þ, the only nonzero components of the
applied stress tensor r are: rxx ¼ ryy ¼ r1 þr2

2 ; rzz ¼ r3; and rxy ¼ r1 � r2ð Þ=2; so
the potential of the porous crystal uðr; f Þ (see Eq. 8.78) takes the form:
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uðr; f Þ ¼ 9
4

s3
rT

� �2

þ 3b2

4
s1 � s2
rT

� �2

þ 2f cosh

ffiffiffi
5

p
rxx þ ryy þ rzz
� �
2rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA

� 1þ f 2
� � ð8:83Þ

In particular,

• For axisymmetric loadings at J3 [ 0, (i.e., in Eq. (8.81): r1 [ r2 ¼ r3 so:
s1 [ 0, s1 ¼ �2s2 ¼ �2s3, J2 ¼ 3s21=4, and J3 � 0Þ:

uðr; f Þ ¼ 3b2 þ 1
� � 3J2

4r2T
þ 2f cosh

3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:84Þ

• For loadings at J3 ¼ 0 hO1i (i.e., in Eq. (8.81): s1 ¼ �s3 and s2 ¼ 0, so
J2 ¼ s21), the criterion writes:

uðr; f Þ ¼ b2 þ 3
� � 3J2

4r2T
þ 2f cosh

3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:85Þ

• For loadings at J3 ¼ 0 hO2i , (i.e., in Eq. (8.81): s1 ¼ �s2 and s3 ¼ 0, so
J2 ¼ s21), we have:

uðr; f Þ ¼ 3b2J2
r2T

þ 2f cosh
3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:86Þ

• For axisymmetric loadings at J3\0 hO1i (i.e., in Eq. (8.81) s1 ¼ s2 and
s3 ¼ �2s1), the criterion writes:
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uðr; f Þ ¼ 3J2
r2T

þ 2f cos h
3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:87Þ

• For axisymmetric loadings at J3\0 hO2i (i.e. in Eq. (8.81), s1 ¼ s3 and
s2 ¼ �2s1):

uðr; f Þ ¼ 3b2 þ 1
� � 3J2

4r2T
þ 2f cosh

3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:88Þ

Note that according to the criterion for loadings at the same triaxiality T and
mean stress rm (i.e., same J2 and rm):

• Only for ½110� loadings at J3 [ 0 and 110½ �hO2i loadings at J3\0 [see
Eqs. (8.84) and (8.88)], the mechanical response is the same. For all other
loadings, the response in the O1 and O2 orientations is markedly different.

• The response for 110½ �hO1i axisymmetric loadings at J3\0 is the same as for
100½ � orientation [see Eqs. (8.87) and (8.80)].

Orientation 111

Let us consider that the crystal is loaded such that the principal directions of the
applied stress are along the 111½ �, �12�1½ �, and �101½ � crystallographic directions (see
Fig. 8.24c), i.e.,

r ¼ r1 y1 � y1ð Þþ r2 y2 � y2ð Þþ r3 y3 � y3ð Þ ð8:89Þ

with yi oriented with respect to the cubic axes x; y; zð Þ as

y1 ¼ 1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p� 	
; y2 ¼ �1=

ffiffiffi
6

p
; 2=

ffiffiffi
6

p
;�1=

ffiffiffi
6

p� 	
;

y3 ¼ �1=
ffiffiffi
2

p
; 0; 1=

ffiffiffi
2

p� 	

Relative to the crystal frame x; y; zð Þ, the only nonzero components of the
applied stress tensor r are:

rxx ¼ rzz ¼ 2r1 þ r2 þ 3r3
6

; ryy ¼ r1 þ 2r2
3

;

rxy ¼ ryz ¼ r1 � r2
3

; rxz ¼ 2r1 þ r2 � 3 r3
6

:

ð8:90Þ
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so that the potential uðr; f Þ of the porous crystal takes the form:

uðr; f Þ ¼ s3 � s2
2rT

� �2

þ b2

4r2T
8s21 þ 3s22 þ 3s23 � 2s2s3
� �

þ 2f cosh

ffiffiffi
5

p
rxx þ ryy þ rzz
� �
2rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� �
:

ð8:91Þ

It is worth noting that according to Eq. (8.91), the plastic response should be
invariant to the transformation: r1; r2; r3ð Þ ! r1; r3; r2ð Þ. Thus, the mechanical
response of the porous single crystal for the 111hO1i loadings is the same as for the
111hO2i loadings.
• For axisymmetric loadings at J3 [ 0; (i.e., in Eq. (8.91): r1 [ r2 ¼ r3 so:

s1 [ 0, s1 ¼ �2s2 ¼ �2s3, J2 ¼ 3
4 s

2
1), the criterion writes:

uðr; f Þ ¼ 3b2J2
r2T

þ 2f cosh
3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:92Þ

• For loadings at J3 ¼ 0; (e.g., in Eq. (8.91): s1 ¼ �s3 and s2 ¼ 0; so J2 ¼ s21),
the criterion writes:

uðr; f Þ ¼ 1þ 11b2
� � J2

4r2T
þ 2f cosh

3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:93Þ

• For axisymmetric loadings at J3\0 (e.g., in Eq. (8.91), s1 ¼ s2 and s3 ¼ �2s1),
the criterion writes:

uðr; f Þ ¼ 1þ 3b2
� � 3J2

4r2T
þ 2f cosh

3
ffiffiffi
5

p
rm

2rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3=b2

q
0
B@

1
CA� 1þ f 2

� � ð8:94Þ

Note that according to the criterion for loadings at the same triaxiality and mean
stress rm (i.e., same J2 and rm):

• The mechanical response for 111½ � axisymmetric loadings at J3 [ 0 and
[110] hO2i loadings at J3 ¼ 0 is the same [see Eqs. (8.92) and (8.86)].

• The mechanical response for 111½ � axisymmetric loadings at J3\0, 110½ �
axisymmetric loadings at J3 [ 0, and 110½ �hO2i axisymmetric loadings at J3\0
is the same [see Eqs. (8.94), (8.84), and (8.88)].
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8.4.2.2 Porosity Evolution for Various Loading Paths and Crystal
Orientation

In the following, we illustrate the creep model [see Eqs. (8.72)–(8.75)] predictions
of porosity evolution for a fcc crystal with L11 ¼ 1; L12 ¼ 1:60, L44 ¼ 0:25. For
this crystal, the matrix uniaxial tensile yield stress in the [111] direction is larger
than in the [100] direction (see also Eq. 8.79). The 3-D creep loadings considered
are given in Table 8.3. The initial porosity is taken to be the same (f0 ¼ 0:001).

As already mentioned, for any given crystal orientation the effect of the
third-invariant J3 on porosity evolution is assessed by comparing the results for
creep calculations corresponding to J3 ¼ 0 (shear) and axisymmetric loadings at
J3 [ 0 or J3\0, respectively Note that such comparisons are meaningful, given
that for each loading path the imposed mean stress rm, and stress triaxiality T is the
same (see Table 8.3).

For the 100 crystal orientation, in Fig. 8.25a, b are shown the evolution of the
relative void volume fraction f =f0 with the irreversible work per unit volume WI ,
and the evolution of WI with time, respectively. Since for the [100] crystal ori-
entation, the plastic potential of the porous fcc crystal, uðr; f Þ, does not depend on
J3 (see Eq. 8.80), it is predicted that the irreversible work, WI and the porosity
evolution are also independent of J3 (see Fig. 8.25).

On the other hand, for the 110 crystal orientation the predicted mechanical
response is strongly anisotropic, as evidenced by comparing the respective evolu-
tion of the irreversible work and porosity for 110hO1i loadings with those for
110hO2i loadings (see Fig. 8.26). Obviously, as already mentioned, the results for
the 110hO1i and 110hO2i at J3 [ 0 must coincide, since the difference in these
loadings corresponds to interchanging r2 and r3 and for axisymmetric loadings
such that J3 [ 0, r2 ¼ r3 . Therefore, to limit the amount of text in Fig. 8.26, the
results for 110hO1i and 110hO2i at J3 [ 0 are marked as J3 [ 0.

Note that irrespective of the imposed loadings (i.e., shear loadings or loadings at
J3\0), the rate of void growth is faster for 110hO2i orientation than for the
110hO1i orientation.

Note also that the effect of J3 is very strong. The fastest rate of void growth is for
loadings corresponding to J3 ¼ 0 (shear) in the O2 orientation, followed by load-
ings at J3 [ 0 and J3\0hO2i, and J3 ¼ 0hO1i. The slowest rate of void growth
corresponds to loadings at J3\0hO1i. This is consistent with Eqs. (8.84)–(8.88)
which describe the effect of J3 on yielding for the respective orientations and
loadings. It is also to be noted the correlation between the energy dissipated (WI)
and void growth: the lower is the plastic energy dissipated; the faster is the void
growth rate. Furthermore, it important to note that the model accounts for creep
saturation, which occurs at different times and levels of plastic work depending on
the type of creep loading and the orientation considered.
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According to Eq. (8.91), the results for 111hO1i and 111hO2i loadings should
be the same. However, since for the 111 loadings, the potential uðr; f Þ [see
Eqs. (8.91)–(8.94)] depends on the third-invariant J3, the plastic energy dissipated
(see Fig. 8.27b), and consequently, the porosity evolution (see Fig. 8.27a) is sen-
sitive to the third-invariant. The influence of J3 is less pronounced than that pre-
dicted for the [110] loadings. The fastest rate of void growth is for loadings
corresponding to J3 [ 0, while the slowest rate of void growth is for loadings
corresponding to J3\0.

The predictions of the model for all five relative orientations between the loading
axes and crystal axes corresponding to creep loadings at the same mean stress, and
same triaxiality (T = 1) for l = −1 (J3 [ 0Þ, l = 0 (J3 = 0) and l = 1 (J3\0Þ are
shown in Fig. 8.28.
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Fig. 8.25 a Evolution of the
relative void volume fraction
f =f0 as a function of the
irreversible work, WI and
b evolution of the irreversible
work, WI , with time for creep
loadings along the
crystallographic axes [100]
corresponding to either
J3 < 0, J3 = 0, or J3 > 0 and
the same triaxiality T = 1
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As a general observation, it is worth noting that the response is markedly dif-
ferent in the 100, 110, and 111 crystal orientations (compare also the expressions of
the plastic potential for the five relative orientations of the loading axes and crystal
axes [Eqs. (8.80)–(8.94)]). The fastest rate of void growth corresponds to loading at
J3 ¼ 0 for the 110hO2i orientation (and 111 J3 [ 0), while the slowest rate of void
growth corresponds to loading at J3\0 in the primary orientation 110hO1i and 100
(all loadings). The rate of void growth for loading at J3 ¼ 0 in the 111 orientation is
faster than that for shear loadings in the 110hO1i , but slower than for shear
loadings in the 110hO2i orientation.

The fact that for certain orientations and loadings, we have the same creep
response was explained in Sect. 8.4.1.1.

While results have been presented only for one triaxiality value (T = 1), the
conclusions are the same for any triaxiality [see discussion in Sect. 8.4.2.1 and
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Fig. 8.26 a Evolution of the
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Eqs. (8.80)–(8.94)]. It means that for an fcc porous crystal, the third-invariant has a
strong effect on the evolution of porosity.

8.4.3 Creep of Single Crystals with Tension–Compression
Asymmetry

In this section, the effect of the tension–compression asymmetry of the matrix (fully
dense crystal) on the creep response of the porous single crystal will be investi-
gated. The same crystal orientations and loadings are considered (see Fig. 8.24 for
the five crystal orientations and Table 8.3 for the loading conditions).

As discussed in Sect. 8.4.1.1, the tension–compression asymmetry ratio of the
matrix is orientation-dependent, i.e. depends on the relative ordering of the values
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of the coefficients of anisotropy. Analytical results will be presented for the case
U1\0 (L12 [ L11), while illustrative examples will be given also for crystals with
anisotropy coefficients such that L12\L11. Detailed calculations and explanations
of the combined effects of anisotropy and tension–compression asymmetry on the
plastic response of the porous crystal will be given for the 100 and 111 orientations
(Fig. 8.24a, c), the focus being on putting in evidence the importance of consid-
eration of the matrix tension–compression asymmetry. Since we are interested in
assessing stress path effects on the rate of void growth, only loadings at positive
triaxialities (rm [ 0) are considered.

8.4.3.1 Effect of Anisotropy and Loading Path on the Plastic Response
of Porous Crystals with tension–compression Asymmetry

Orientation 100

Let us first consider loadings such that the principal directions of stress are along
the cubic axes x, y, and z (see Fig. 8.24a for the definition of the 100 orientation).
As mentioned, only loadings at rm [ 0 are considered, and the following stress
paths are analyzed: (a) loadings such that syy¼ szz\sxx, which correspond to
J3 [ 0; (b) sxx ¼ �syy; szz ¼ 0, which correspond to J3 = 0; and (c) loadings such
that syy ¼ szz [ sxx correspond to J3\0. From Eq. (8.63), it follows that for a single
crystal with U1\0 (L12 [ L11) the potential is of the form:
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Fig. 8.28 Effect of crystal orientation on porosity evolution for creep loadings corresponding to
either J3 < 0, J3 = 0 (shear), or J3 > 0 and the same triaxiality T = 1. Note that due to the
symmetries in plastic flow of the matrix, the response is the same for certain orientations
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Ucðr; f Þ ¼

3k2 � 2kþ 3
3k2 þ 2kþ 3

� �
3J2
r2T

þ 2f cosh
3rm
~hrT

� �
� 1� f 2; if J3\0;

3k2 þ 3
3k2 þ 2kþ 3

� �
3J2
r2T

þ 2f cosh
3rm
~hrT

� �
� 1� f 2; if J3 ¼ 0;

3J2
r2T

þ 2f cosh
3rm
~hrT

� �
� 1� f 2; if J3 [ 0:

8>>>>>>><
>>>>>>>:

ð8:95Þ

In the above equations, J2 ¼ 1
2 s2xx þ s2yy þ s2zz
� 	

, rm ¼ rxx þ ryy þ rzz
� �

=3; and

J3 ¼ sxxsyyszz.
Note that in contrast to the case when the matrix tension–compression asym-

metry is neglected (see Eq. 8.80), even for loadings such that the stress eigenvectors
are along the crystallographically equivalent h100i directions, the response of the
porous single crystal will depend on the stress path, in particular on the sign of J3.

On the other hand, as discussed in Sect. 8.4.2,

if L12 [ L11:
rTh100i
rCh100i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 � 2kþ 3
3k2 þ 2kþ 3

r
:

Therefore, if rT ¼ rTh100i > rCh100i then among the loading paths considered,

maximum plastic dissipation will occur for axisymmetric loadings at J3\0, the
reverse holds true if rT ¼ rTh100i < rCh100i (see also the illustrative examples in the

next section).

Orientation 111

Let us first consider that the crystal is loaded such that the principal directions of the
applied stress are along the 111½ �, �12�1½ �, and �101½ � crystallographic directions,
i.e., hO1i orientation [see Fig. 8.24c and Eq. (8.89)]. Relative to the crystal frame
x; y; zð Þ, the components of the transformed stress r_ (see Eq. 8.68) are:

r_xx ¼ r_zz ¼ U1 r3 � r2ð Þ=4; r_yy ¼ �2r_xx;

r
_

xy ¼ r_yz ¼ L44 r1 � r2ð Þ=3; r_xz ¼ L44 2r1 þ r2 � 3 r3ð Þ=6:

For a single crystal with matrix such that U1\0 (L12 [ L11), for axisymmetric
loadings at J3 [ 0: r1 [ r2 ¼ r3 calculation of the eigenvalues r_1, r

_

2, r
_

3 and
further substitution in the expression of the plastic potential given by Eq. (8.63),
leads to

Ucðr; f Þ ¼ b2
3k2 � 2kþ 3
3k2 þ 2kþ 3

� �
3J2
r2T

þ 2f cosh
3rm
~hrT

� �
� 1� f 2 ð8:96Þ
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As discussed, for the loadings at J3 [ 0, the response for the 111hO1i and
111hO2i orientations must coincide, since for such loadings, r2 ¼ r3 for
both hO1i and hO2i crystal orientations.

On the other hand, for shear loadings (J3 ¼ 0), there is a marked difference in
response between the hO1i and hO2i orientations.

Moreover, the difference between the response in the hO1i and hO2i orienta-
tions depends on both the matrix anisotropy, namely on the relative ordering of L12
and L11, and on the ratio of L12 to L44 [i.e., the sign of U1 and b (see Eq. (8.66))].

For example, for a single crystal with matrix characterized by U1\0 and
b\� 1=3

• For loadings at J3 ¼ 0 hO1i which corresponds to: s1 ¼ �s3 and s2 ¼ 0 (see
Eq. (8.89)), the plastic potential writes:

Ucðr; f Þ ¼ J2
8r2T 3k2 þ 2kþ 3ð Þ

6 1þ k2ð Þð1þ 11b2Þ
þ 2k 1þ 5bð Þ 1þ 5bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32b2 þ 5b� 3ð Þ2

q� �
2
64

3
75

þ 2f cosh
3rm
~hrT

� �
� 1� f 2

ð8:97Þ

• For loadings at J3 ¼ 0 hO2i which corresponds to: s1 ¼ �s2 and s3 ¼ 0 (see
Eq. (8.89)), the expression of the potential is:

Ucðr; f Þ ¼ J2
8r2T 3k2 þ 2kþ 3ð Þ

6 1þ k2ð Þð1þ 11b2Þ
þ 2k 1� bð Þ 1� b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128b2 þ 3þ bð Þ2

q� �
2
64

3
75

þ 2f cosh
3rm
~hrT

� �
� 1� f 2

ð8:98Þ

Note that only for k = 0, the response in shear (J3 ¼ 0) for the 111hO1i and
111hO2i crystal orientations coincide, and both Eqs. (8.97) and (8.98) reduce to
Eq. (8.93).

Also, the plastic response for axisymmetric loadings at J3\0 is different in the
111hO1i and 111hO2i crystal orientations. For the 111hO1i orientation the plastic
potential writes:
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Ucðr; f Þ ¼
3J2 3 1þ 3b2

� �ð1þ k2Þþ 4k 1þ 3bð Þ
 �
4r2T 3k2 þ 2kþ 3ð Þ þ 2f cosh

3rm
~hrT

� �
� 1� f 2

ð8:99Þ

while for the 111hO2i orientation,

Ucðr; f Þ ¼ 3J2
8r2T 3k2 þ 2kþ 3ð Þ

6 1þ k2
� �ð1þ 3b2Þ

� 2k bþ 1ð Þ �b� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� bð Þ2 þ 32b2

q� �
2
64

3
75

þ 2f cosh
3rm
~hrT

� �
� 1� f 2

ð8:100Þ

If the tension–compression asymmetry is neglected (k = 0), the response for
axisymmetric loadings at J3\0 in the 111hO1i and 111hO2i crystal orientations
coincide, and both Eqs. (8.99) and (8.100) reduce to Eq. (8.94).

For the crystal orientation 110hO1i, the effect of J3 is very pronounced, and the
response in the O1 and O2 orientations is markedly different. The expressions of the
porous plastic potential for the loadings considered can be also obtained in closed
form, by using the transformation of coordinates given by Eq. (8.81) and con-
ducting the analysis of the sign of the principal values of the transformed tensor r_1,
r_2, r

_

3.
In summary, the analysis presented shows the strong coupling effects between

anisotropy and tension–compression asymmetry on yielding of the porous crystal.
In the following, we present calculations of the creep response for the same loading
orientations, the imposed stress states being given in Table 8.3.

Before proceeding with the presentation of illustrative examples, let us first point
out that:

For creep loadings at the same triaxiality and mean stress rm, cubic symmetry of
the cubic crystal (specially the fact that the h100i directions are equivalent) impose
that:

• the response for loadings with l = 1 (axisymmetric such that J3\0) in the
110hO2i and 111hO1i orientations must coincide.

• the response for the 110hO1i loadings with l = 1 and 100 loadings with l = 1
must coincide.

For proof, it is sufficient to represent the imposed stress tensor in the cubic axes
x; y; zð Þ. For example, for loadings with l = 1 (axisymmetric such that J3\0) in
the 110hO2i orientation (i.e., r ¼ r1 x1 � x1ð Þþ r2 x2 � x2ð Þþ r3 x3 � x3ð Þ with
s1 ¼ s3 and s2 ¼ �2s1), the stress tensor in the cubic axes x; y; zð Þ is given by:
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rh110i ¼
�s1=2þ rm 3=2 s1 0

3=2 s1 �s1=2þ rm 0
0 0 s1 þ rm

2
4

3
5

x;y;zð Þ

ð8:101Þ

while for loadings with l = 1 (axisymmetric such that J3\0) in the orientation 111,
the stress tensor in the cubic axes is:

rh111i ¼
�s1=2þ rm 0 �3=2 s1

0 s1 þ rm 0
�3=2 s1 0 �s1=2þ rm

2
4

3
5

x;y;zð Þ

ð8:102Þ

Due to the symmetry of the cubic single crystal (see Chap. 3 for the list of
symmetry transformations under which the response is invariant), it follows that the
response must coincide.

Illustrative examples of the creep predictions based on the model will be pre-
sented in the next section.

8.4.3.2 Combined Effects of Anisotropy and Tension–Compression
Asymmetry on Porosity Evolution

The main focus is on assessing the importance of the consideration of the tension–
compression asymmetry in the behavior of the matrix, the examples correspond to
single crystals with the same anisotropy coefficients, but with k = −0.3 (single
crystal 1) and k = 0.3 (single crystal 2), respectively. The numerical values of the
anisotropy coefficients considered in the calculations are: L11 ¼ 1, L12 ¼ 1:60 and
L44 ¼ 0:25, resulting in U1 = −0.4 and b = −0.417. It is important to point out that
although the two crystals have the same values of the anisotropy coefficients, in the
absence of voids (f = 0) their tensile response is not the same. Furthermore, due to
the fact that they are characterized by a different value of k, even in the absence of
voids, the orientation-dependence of their tension–compression asymmetry ratios is
different (see for example Eq. 8.70). The implications in terms of void growth are
examined in the following discussion.

Single crystal 1

For this single crystal which is characterized by k ¼ �0:3, L11 ¼ 1, L12 ¼ 1:60 and
L44 ¼ 0:25, in the absence of voids (f = 0), the tension–compression ratio along the
direction 100½ � is rTh100i=rCh100i ¼ 1:2 (see Eq. 8.70) while along the directions
110½ � and 111½ � it is equal to rTh110i=rCh110i ¼ 1:06 and rTh111i=rCh111i ¼ 0:83,
respectively; the isocontours of the tension–compression ratios along any other
direction d in the basic stereographic triangle are shown in Fig. 8.29.

In the following, we will analyze in detail the model predictions for the evolution
of the relative void volume fraction f =f0 with the plastic work WI and the evolution
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of the irreversible work, WI with time for all five crystal orientations of the porous
crystal and creep loadings corresponding to fixed triaxiality T = 1 (see Table 8.3).

First, the model predictions for the 100 crystal orientation subjected to creep
corresponding to l = 1 (axisymmetric such that J3\0); l = −1 (axisymmetric such
that J3 [ 0) and l = 0 (J3 ¼ 0) are shown in Fig. 8.30.

As a general observation, consideration of the tension–compression asymmetry
of the matrix leads to a sensitivity of porosity evolution to the third-invariant
(compare with results in Fig. 8.25 for an fcc crystal with k = 0, and same values of
the anisotropy coefficients).

As discussed in Sect. 8.4.3.1, for a porous single crystal with k 6¼ 0 the yielding
response depends on the third-invariant J3 (see Eq. 8.95), the maximum difference
being between axisymmetric loadings. Since for the single crystal 1, k ¼ �0:3,
from Eq. (8.95) it follows that the softest response should be for axisymmetric
loadings such that J3 [ 0. This is consistent with the results shown in Fig. 8.30
which indicate that the fastest rate of void growth is obtained for loading such that
J3 [ 0, followed by shear loadings, and loadings at J3\0. Also, the rate of void
growth correlates with the plastic dissipation. Specifically, the fastest growth rate
for the porosity corresponds to the loading path for which WI is the lowest (see
Fig. 8.30).
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Fig. 8.29 Isocontours in the stereographic triangle of the ratios between the yield stress in
uniaxial compression and tension along an arbitrary axis d; rThdi


rChdi; according to the

yield criterion (Eq. 8.78) corresponding to a fully dense (f = 0) single crystal with k ¼ �0:3;
L12 ¼ 1:60 and L44 ¼ 0:25
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As discussed, the effects of the crystal anisotropy are very pronounced for
loadings such that the maximum principal stress is along the [110] direction, even if
the tension–compression asymmetry is neglected (k = 0). Only for ½110� loadings at
J3 [ 0 and 110½ �hO2i loadings at J3\0 [see Eqs. (8.84) and (8.88)], the
mechanical responses coincide. For all other loadings, the response in the
hO1i and hO2i orientations is markedly different, the rate of void growth being the
fastest in the hO2i orientation (see Fig. 8.26).

For the single crystal 1, with k ¼ �0:3 (see Fig. 8.31) there is a difference in
mechanical response between loadings at J3 [ 0 and loadings at J3\0 in
the hO2i orientation. The fastest and slowest rate of void growth correspond to
shear loadings in the hO2i orientation, and loading such that J3\0 in
the hO1i orientation, respectively. Moreover, the rate of void growth is faster for
loadings at J3 [ 0 than for loadings at J3\0 in the hO2i orientation.
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Fig. 8.30 a Evolution of the
relative void volume fraction
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irreversible work, WI and
b evolution of the irreversible
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Figure 8.32 shows the evolution of the plastic work and relative porosity for the
111 crystal orientations for the various creep loadings Note that consideration of the
tension–compression asymmetry leads to prediction of a difference in response
between the 111hO1i and 111hO2i crystal orientations, for a crystal with k ¼ �0:3
the void growth rate being faster for the primary crystal orientation O1 than for the
orientation O2. In contrast, when the tension–compression asymmetry is neglected
for all three values of the Lode parameter the response in the 111hO1i and
111hO2i crystal orientations coincide (see Eq. (8.91) and Fig. 8.27 for k ¼ 0).

As seen from Eqs. (8.96) and (8.100) for the single crystal 1, the softest response
correspond to J3 [ 0, followed by loadings at J3 ¼ 0hO1i, then J3 ¼ 0hO2i and
J3\0hO1i and finally J3\0hO2i. This is consistent with the results of Fig. 8.32,
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Fig. 8.31 a Evolution of the
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the fastest growth rate of the porosity being for loadings corresponding to J3 [ 0,
followed by loadings at J3 ¼ 0hO1i, then J3 ¼ 0hO2i and J3\0hO1i, while the
slowest rate of void growth is for loadings corresponding to J3\0hO2i.

Figure 8.33 compares the evolution of the porosity with WI between all five
crystallographic orientations (i.e., 100, 110, and 111) for all the loadings at the
same triaxiality T = 1 considered (see Table 8.3). As in the case when the tension–
compression asymmetry of the matrix was neglected (see results for the fcc single
crystal with k ¼ 0 in Fig. 8.28), the strong anisotropy of the crystal results in the
mechanical response being markedly different in the 100, 110, and 111 crystal
orientations. However, for the fcc single crystal (k ¼ 0) for certain orientations and
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loadings the creep response coincide (see discussion in Sect. 8.4.2.1 and compare
the results of Fig. 8.33 to the results of Fig. 8.28 for k ¼ 0).

On the other hand, for a single crystal displaying tension–compression asym-
metry the only loadings for which the mechanical response coincide are the ones
imposed by the intrinsic symmetries of the crystal lattice (see discussion in
Sect. 8.4.3.1).

For all other loadings, the rate of void growth is totally dependent on the loading
orientation and the relative ordering of the eigenstresses (see Fig. 8.33). Moreover,
consideration of the tension–compression asymmetry in the plastic behavior of the
single crystal results in a larger difference in the creep response between various
conditions (compare results in Figs. 8.28 and 8.33, respectively).

Single crystal 2

The fact that the sensitivity of the mechanical response to the third-invariant
depends on the combined effects of anisotropy and tension–compression asym-
metry is clearly seen by comparing the void evolution in single crystal 1 with the
void evolution in the single crystal 2. As mentioned in the absence of voids, the
single crystal 2 has a completely different behavior in compression than single
crystal 1 (see the isocontours of the ratio between the uniaxial compressive and
tensile yield stresses represented in the basic stereographic triangle in Fig. 8.34).

For this single crystal which is characterized by k ¼ 0:3, L11 ¼ 1, L12 ¼ 1:60
and L44 ¼ 0:25, in the absence of voids (f = 0), the tension–compression ratio
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Fig. 8.33 Effect of crystal orientation on porosity evolution for creep loadings corresponding to
either J3 < 0, J3 = 0 (shear), or J3 > 0 and the same triaxiality T = 1 for a single crystal
characterized by k ¼ �0:3; L11 ¼ 1; L12 ¼ 1:60 and L44 ¼ 0:25
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along the direction 100½ � is rTh100i=rCh100i ¼ 0:83 (see Eq. 8.70) while along the
directions 110½ � and 111½ � it is equal to rTh110i=rCh110i ¼ 0:94 and
rTh111i=rCh111i ¼ 1:2, respectively.

As discussed in Sect. 8.4.3.1, for a porous single crystal with k 6¼ 0 the yielding
response for loadings along the cubic axes h100i depends on the third-invariant J3,
the maximum difference being between axisymmetric loadings. Moreover, the rate
of void growth is dictated by the ratio between the matrix (fully dense crystal)
tensile and compressive yield stresses in the h100i directions. Since for the single
crystal 2, rTh100i=rh100i < 1, from Eq. (8.95) it follows that the mechanical response
should be exactly the opposite to that of single crystal 1 for which
rTh100i=rCh100i [ 1. This is consistent with the results shown in Fig. 8.35 which
indicate that for single crystal 2 the fastest rate of void growth is obtained for
axisymmetric loadings such that J3\0, followed by shear loadings, and axisym-
metric loadings at J3 [ 0. Also, as seen from Eq. (8.95) the void growth rate in
shear should be always intermediate.

For the single crystal 1, for loadings such that the principal stress value is along
the [110] crystallographic direction, the creep response is strongly anisotropic and
the rate of void growth is faster for the 110hO2i than for 110hO1i, irrespective of
the loadings, and the fastest rate of void growth is for loadings corresponding to
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J3 ¼ 0 (shear) in the secondary orientation hO2i, while the slowest rate of void
growth corresponds to loadings at J3\0hO1i (see Fig. 8.31). The results for the
single crystal 2 for the same crystal orientation and loadings are shown in Fig. 8.36.

The difference in response between axisymmetric loadings at J3 [ 0 and
axisymmetric loadings at J3\0hO2i can be correlated with the matrix tension–
compression ratio in the [110] crystallographic direction. For the single crystal 2
rTh110i=rCh110i\1 while for the single crystal 1 this ratio is greater than unity. By
comparing the response of the single crystal 1(see Fig. 8.31) with that of the single
crystal 2 (see Fig. 8.36) for the same loadings, it can be seen that in single crystal 2
the void growth rate for J3 [ 0 is slower than the one for J3\0hO2i loadings while
the reverse holds true for the single crystal 1 (see Fig. 8.36).

Concerning the creep response for the 111 crystal orientation (see Fig. 8.37), as
previously seen, the fastest void growth is obtained for loadings at J3 [ 0, and
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consideration of the tension–compression asymmetry of the single crystal matrix
results in different mechanical response for the hO1i and hO2i orientations.
Comparison between the void evolution in single crystal 1 and single crystal 2 (see
Figs. 8.32 and 8.37, respectively) shows that depending on whether the matrix has
rTh111i=rCh111i [ 1 (single crystal 2) or rTh111i=rCh111i\1 (single crystal 1), the
void evolution rate is faster for the secondary orientation hO2i than for the primary
orientation hO1i, or vice versa.

For the single crystal 2, the predictions of the model for all five crystallographic
orientations and for all creep loadings considered are plotted in Fig. 8.38. Let us
recall that in order to assess the importance of the consideration of the matrix
tension–compression asymmetry we have done calculations for two single crystals,
both crystals having L11 ¼ 1, L12 ¼ 1:60 and L44 ¼ 0:25.
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Comparison between the results for single crystal 1 (Fig. 8.33) and single crystal
2 (Fig. 8.38) shows the very strong influence of the plastic properties of the matrix
(fully dense crystal) on the porosity evolution, namely the effect of the contrast
between the tension–compression asymmetry ratios along crystal directions. To
predict for which loading the rate of void growth is the fastest, knowledge of only
the anisotropy in tensile properties of the matrix is not sufficient.

Note that for the crystal characterized by k ¼ 0:3, the fastest growth rate for the
porosity is obtained for axisymmetric loadings with maximum principal stress along
the 111 crystallographic direction (denoted 111½ �J3 [ 0) and the slowest growth
rate for axisymmetric loadings with maximum principal stress along the [100] cubic
axis (denoted 100½ �J3 [ 0) (see Fig. 8.38). On the other hand, for a single crystal
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characterized by k ¼ �0:3, among all creep loadings considered the fastest growth
rate occurs for shear loadings in the 111½ �J3 ¼ 0hO2i and the slowest growth rate
occurs for axisymmetric loadings with minimum principal stress along the [001]
cubic axis (denoted 100½ �J3\0 loading) (see Fig. 8.33).

In summary, neglecting the tension–compression asymmetry of the fully dense
single crystal leads to nearly isotropic predictions of the creep response for loadings
with principal axes of stresses aligned with the h100i crystallographic directions,
and a lack of sensitivity to the loading path (for the same triaxiality and mean stress,
no effect of the Lode parameter). If the tension–compression asymmetry of the
matrix is taken into consideration, the model predicts a difference in mechanical
response between secondary orientations. Most importantly, consideration of the
tension–compression asymmetry of the matrix revealed that the manner in which
the void growth rate accumulates under multiaxial creep is strongly dependent on
both the anisotropy and the tension–compression asymmetry of the material.
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