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Abstract. Customer journey mapping (CJM) is a popular technique
used to increase a company’s understanding of their customers. In its
simplest form, a CJM shows the main customer paths. When dealing
with complex customers’ trajectories, these paths are difficult to appre-
hend, losing the benefit of using a CJM. We present a javascript-based
tool that can leverage process mining models, namely process trees, and
business owners’ knowledge to semi-automatically build a CJM at differ-
ent levels of granularity. We applied our approach with a dataset describ-
ing a complex process, and shows that our technique can abstract it in
a meaningful way. By doing so, we contribute by showing how process
mining and CJM can be put closer together.
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1 Introduction

A customer journey map (CJM) is a conceptual tool used to visualize typical
customers’ trajectories when using a service. In their simplest form, CJMs show
the interactions between a customer and a service provider through time. A
series of interactions is called a journey. Because CJMs give a company a bet-
ter understanding of their customers, they are becoming increasingly popular
amongst practitioners. A CJM can be used as a design thinking tool by internal
stakeholders to anticipate the best — or worst — journeys possible. Such journeys,
displayed on a CJM, are called the expected journeys. However, customers might
experience a different journey from the one anticipated. For this reason, few
researchers [4,5,10] propose leveraging traces left by customers in information
systems to build CJMs from evidence. Because the journeys that will be displayed
on the CJM are produced from facts, we refer to them as the actual journeys.
Such approaches are in line with the urgent call from the authors Lemon and
Verhoef to take a data-driven approach to map the customer journey [15].
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Fig. 1. Three possible ways to display the handling of reviews for a journal from [1] on
a CJM: @ projecting the actual journeys (only the first 100 — out of 10,000 — journeys
are displayed); @ using two representative journeys; and, ® using two representative
journeys and abstracting the activities using the technique presented in this paper.

However, when dealing with numerous journeys, it becomes unrealistic to
display all the actual journeys on a single CJM. For illustration purposes, Fig. 1
depicts 10,000 instances of the traces related to the handling of reviews for
a journal, a synthetic dataset available in [1]. In the context of this dataset,
the service provider is the conference’s organizing committee, the customers are
the researchers submitting their papers, and a journey describes the handling
of the reviews, from the submission until the final decision. In Fig. 1, part @,
it is difficult to apprehend the typical paths of the reviewing process. To this
end, representative journeys have been introduced as a means of reducing the
complexity. Indeed, the central CJM (@) uses two representative journeys to
summarize 10,000 actual journeys. Although representative journeys decrease
the complexity by reducing the number of journeys, a CJM might still be difficult
to apprehend when it is composed of many activities. Indeed, even though only
representative journeys are used, quickly spotting the main differences between
the two journeys visible in @ (Fig.1) is not straightforward due to the high
number of activities and the length of the journeys.

We propose CJM-ab (for CJM abstractor) a solution that leverages the exper-
tise of process discovery algorithms from the process mining discipline to abstract
CJMs. More precisely, we take as an input a process tree, we parse it, starting
from the leaves, and iteratively ask the end-user if it is relevant to merge the
activities that belong to the same control-flow, and, if so, to provide a name for
this group of activities. By doing so, we let the end-user decide which activities
should be merged and how they should be renamed. Then, one can visualize the
same CJMs at different levels of granularity using a slider, which is visible in
Fig. 1, part . At a certain level of granularity, we clearly observe, given the
end activities, that one representative journey summarizes the accepted papers,
while the other one depicts the rejected papers. The importance and originality
of CJM-ab is that it explores, for the first time, a seamless integration of business
process models with customer journeys maps.

The paper is organized as follows. Section 2 introduces process mining and the
process discovery activity. Section 2.2 describes the customer journey discovery
activity. Section 3 describes our algorithm, and Sect. 4 provides a demonstration.
Finally, Sect. 5 opens a discussion and concludes the paper.
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2 Background

2.1 Process Mining and Process Discovery

Our approach is a seamless integration of Process Mining with Customer Journey
Mapping and showcases the impact that the latter can have in the analysis
of journeys. Process mining is an emerging discipline sitting between machine
learning and data mining on the one hand, and process modeling and analysis on
the other [2]. In this research, we focus on the discovery of process models, one
of the three types of process mining along with conformance and enhancement.

The idea behind the discovery of process models &
is to leverage the evidence left in information systems ®» o0 3
to build process models from event logs. The resulting
process models are, therefore, based on factual data,
showing how the process was really executed. To build
such a model, process mining uses an input dat.a for- ble process trees given the
mat called event logs. An event log is a collection of .+ log T = ({BDCEF),
traces, a trace being a single execution of a process (ACDEFG), (BCDEFGG))
composed of one or multiple activities.

For illustration purposes, let T' = ((BDCEF), (ACDEFG), (BCDEFGG)) be an
event log composed of 3 traces and 7 distinct activities. Regardless of the nota-
tion, the resulting models can express the control-flow relations between activ-
ities. For instance, for the event log, T', the model might express the following
notation: (1) A and B are in an XOR relation (x); i.e., only one of them is exe-
cuted; (2) ¢ and D are executed in parallel (+); i.e., both activities are executed
in any order; (3) E and F are in a sequence relation (—); i.e., F always follows E;
(5) G is in a XOR loop (Combination of x and O); i.e., it can be executed 0 or
many times. Note that 7 denotes a silent activity. It is used to correctly execute
the process but it will not result in an activity which will be visible in the event
logs. Figure 2 displays the five aforementioned relations using a process tree.

Discovering a process model from event logs is a challenge. Indeed, state-of-
the-art algorithms should be robust enough to generalize (to avoid overfitting
models) without being too generic. They should also try to build process models
that are as simple as possible [3]. Many representations exist to express the
discovered process models: Petri nets, YAWL, process trees, state machines, or
bpmn models, to name a few. The next section introduces the notation used by
our algorithm: process trees.

AB|c/plElFlc A

Fig. 2. One of the possi-

Process Tree. A process tree is an abstract hierarchical representation of a
process model introduced by Vanhatalo et al. [17], where the leaves are anno-
tated with activities and all the other nodes are annotated with operators such
as X [14]. One interesting characteristic of process trees is that they guarantee
the soundness of the models. A model is considered to be not sound when some
activities cannot be executed or when the end of the process cannot be reached.
The soundness guarantee is one reason that we choose the process tree nota-
tion. There are also three other reasons. First, process models in block structure
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achieve best performance in terms of fitness, precision, and complexity [3]. Sec-
ond, the hierarchical structure of process trees is ideal to derive multiple levels
of granularity. Finally, according to Augusto et al. [3], process trees are used by
top-performing process model algorithms, such as the inductive miner [11-13] or
the Evolutionary Tree Miner [6].

2.2 Customer Journey Discovery

In [5], we proposed a process mining based model that allows us to map a
standard event log from process mining (i.e., XES [9]) to store customer journeys,
a first attempt to bring customer journeys and process mining closer together.

Discovering a set of representative journeys that best describe the actual
journeys observed in the event logs is a challenge inspired by the process discov-
ery challenge introduced in the previous section. However, instead of describing
the control flows of activities using a business process model, the main trajec-
tories (i.e., the representative journeys) are shown using a CJM. It encompasses
three important challenges: (1) choosing the number of representatives. Let k
be this number of representative journeys used on a CJM; (2) grouping actual
journeys in k clusters; and (3) for each k, finding a representative journey. We
briefly present these three challenges and ways to overcome them.

The first challenge is to set the number of representative journeys used to
summarize the entire actual journeys. Looking at @ from Fig. 1, it is difficult to
say how many representative journeys should be used to summarize the data.
We identify two ways to solve this challenge. The number of representative jour-
neys can be set manually, or it can also be set using standard model selection
techniques such as the Bayesian Information Criterion (BIC) penalty [16], or the
Calinski-Harabasz index [7].

Once k has been defined, actual journeys should be split in k clusters and a
representative journey per cluster must be found. One of the ways, presented in
[4], is to first define a distance function between actual journeys, such as the edit
distance, or shingles, and to build a distance matrix; then, to split the actual
journeys in k groups using hierarchical clustering techniques. Next, the represen-
tative can be found using a frequent sequence mining algorithm [4], by counting
the density of sequences in the neighborhood of each candidate sequence [8], by
taking the most frequent sequences [8], or by taking the medoid [8]. Instead of
inferring the representative from the distance matrix, it is also possible to obtain
it using statistical modeling [8]. We can employ an Expectation-Maximization
algorithm on a mixture of k& Markov models, and then for each Markov model
the journey with the highest probability becomes the representative [10].

The next section describes a novel way to leverage business process models
to abstract customer journey maps.

3 Abstracting Customer Trajectories Using Process Trees

CJM-ab uses four steps to render a CJM at different levels of abstraction. They
are depicted in Fig. 3. This chapter introduces each step. In the first step, the
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goal is to build a process tree given an event log. This can be done using the
technique introduced in Sect. 2.1. Next, using the same event log, the goal is to
build a CJM using the technique introduced in Sect. 2.2.

1. Process Mining: 2. Customer Journey 3. Traverse the tree and 4. Transform the
Discovering a process Mapping: Discovering a interact with end-user representative journeys at
tree from event logs CJM from event logs to merge activites different levels of granularity

®
® o 0 \<§ — \
[
Fig. 3. Rendering a CJM at different levels of abstraction in four steps

The third step consists of parsing the tree obtained in step 1. To this aim,
we developed a script in javascript which parses the process tree (i.e., XML file)
and performs a reverse Breadth-first search; i.e., traversing the operators in the
tree from the lowest ones to the root in a level-wise way. Let ¢ be the number
of operators in the process tree. At each of the ¢ operators of the process tree,
we offer the opportunity to the end-user to merge the leaves under the operator.
If the user chooses to merge the activities, she should provide a new name and
the operator virtually becomes a leaf. If the end-user chooses not to merge the
activities, we keep the leaves intact. If the answer is no, we keep the activities
separated at all levels of granularities, and we also disable the parents’ steps.
Indeed, we postulate that if a user does not want to merge two activities at a
low level of granularity, it does not make sense to merge them later at a higher
level of granularity.

Input : c¢jm, customer journey map
A, level of abstraction
pt, process tree annotated with merging decisions
Output: ¢jmy, cjm at the level of abstraction A
1 Function GetLevelAbstraction(cjm, A, pt)
for i — 0 to A do
L c¢jm — Abstract(cjm, pt.operator;)

return cjm

Function Abstract(cjm, op)
foreach journey in cjm do
L journey.replace(op.leaves, op.new_name, removeSeqRepeats=True )

® o k~k wWN

return cjm

Algorithm 1. Function to get to the level of complexity A

Finally, in step 4, we transform the CJM at different levels of abstraction.
Let X be the number of abstractions which will be available for a CJM. It can be
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seen as the number of steps that will be included in the sliders visible in Fig. 1,
part ©. Note that A is equal to the number of times the end-user decides to
merge the activities and that A = £ when the end-user merges all the activities.
Let operatory be the A\** operator to be merged. Let GetLevelAbstraction(cjm,
A, pt) be a function that returns a CJM at the A" level of abstraction. Algo-
rithm 1 shows how the function Abstract is recursively called to get to the level
of abstraction A\. The parameter removeSeqRepeats in Algorithm 1 in line 7
emphasizes that continuous sequence of activities that are to be replaced, will
be replaced by only one instance of the new name given for this operator. For
instance, if the journey is “AABCBAC”, the leaves that are to be replaced, are
“A” and “B” and the new name is “X*’, the journey will become “XCXC”. This
reduces the length of the journeys and, thus, increases the abstraction. One can
go back from more abstract to fine granular again by calling GetLevelAbstrac-
tion() again with a smaller A\. The next section illustrates these four steps with
a running example.

4 Demonstration

This section provides a running example of our developed tool. The running
example is based on synthetic event logs describing the handling of reviews for
a journal (from [1]) cited in the introduction. It contains 10,000 journeys and
236,360 activities. This demonstration is available on http://customer-journey.
unil.ch/cjm-ab/. In the first step, we obtained a process tree by using the induc-
tive miner [14] with default parameters!. It results in the process tree visible
in Fig.4. In the second step, we obtain a CJM by: (1) measuring the distance
between actual journeys using the edit distance; (2) building a dendrogram using
a hierarchical clustering algorithm; (3) finding & using the Calinski-Harabaz
Score (k=2); (4) finding representative journeys using the function ‘seqrep’
available in Traminer, a R package?. It results in a CJM which is visible in
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Fig. 4. Process tree annotated with the order in which the operators are parsed (i.e.,
‘iter. step’) and the decisions to merge the activities or not (i.e., colors red and green).

! Using the software ProM available at http://www.promtools.org/doku.php.
2 Available at: http://traminer.unige.ch/doc/seqrep.html.
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@ (Fig.1). In the third step, we parse the XML in javascript. To traverse the
tree, we are using a tree-like data structures ®. The order in which the operators
are parsed is depicted in Fig.4 (i.e., ‘step’). Figure4 shows that we decided to
merge 7 out of the 9 operators (in green in Fig.4). Note that we decided not to
merge the activities ‘reject’ and ‘accept’, which disabled the option of merging
all the activities below step 9. The Fig.5 shows a screen capture of the appli-
cation when merging the activities during step 1. Finally, the Fig. 6 shows the
resulting CJMs at three levels of abstraction.

Make CJM simpler with process tree

According to the process tree, the following activities are in a xor relation:
e get review 3
o time-out 3

Does it make sense to merge them into a single activity ?

m review 3 Yes

Fig. 5. Screen shot of the application during the merging process at ‘step 1’

invite rev... invite rev... invite rev...
get review 2
. reviews 1to 3 .
time-out 1 reviews 110 3
time-out 3 collect reviews

f collect reviews
collect reviews decide
decide o decide
invite add. reviewer invite add, reviewer )
time-out X review X add. reviewers
get review X accept accept
accept
reject reject reject

o
Current Slider Value: 0 Current Slider Value: 5 Current Slider Value: 7

Fig. 6. Results at the levels of abstraction 1, 3, and 7.

5 Conclusion

CJMs are being used more and more to help service providers put themselves in
their customers’ shoes. However, very little research has investigated automated
ways of building them. We contribute by showing how a process mining model
can be used to guide the abstraction of a CJM. By answering few questions
about the merging of the activities and by playing with the abstraction sliders,
we anticipate that our tool allows practitioners to gain new insights about their
data. By leveraging process trees — a format built within the process mining
community — we can bring customer journey analytics and process mining closer
together. We expect that many algorithms and works from process mining are
relevant for the discovery of customer journeys.

3 Available at: https://github.com /joaonuno/tree-model-js.
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