)

Check for
updates

From Security-by-Design to the
Identification of Security-Critical
Deviations in Process Executions

Mattia Salnitri'®), Mahdi Alizadeh?, Daniele Giovanella?, Nicola Zannone?,
and Paolo Giorgini®

! Polytechnic University of Milan, Milan, Italy
mattia.salnitri@polimi.it
2 Eindhoven University of Technology, Eindhoven, Netherlands
{m.alizadeh,n.zannone}@tue.nl
3 University of Trento, Trento, Italy
daniele.giovanella@alumni.unitn.it, paolo.giorgini@unitn.it

Abstract. Security-by-design is an emerging paradigm that aims to
deal with security concerns from the early phases of the system develop-
ment. Although this paradigm can provide theoretical guarantees that
the designed system complies with the defined processes and security
policies, in many application domains users are allowed to deviate from
them to face unpredictable situations and emergencies. Some deviations
can be harmless and, in some cases, necessary to ensure business continu-
ity, whereas other deviations might threat central aspects of the system,
such as its security. In this paper, we propose a tool supported method
for the identification of security-critical deviations in process executions
using compliance checking analysis. We implemented the approach as
part of the STS-Tool and evaluated it using a real loan management
process of a Dutch financial institute.

1 Introduction

Security-by-design is a key emerging principle driving research innovation and
industry development and maintenance of today’s systems [2]. It includes meth-
ods, languages, techniques and tools to deal with security concerns since the
initial phases of the system development and to perform verification and cer-
tification activities. In this context, business process modeling languages, such
as BPMN [22], are currently used to represent the behavior of large and com-
plex systems in terms of humans’ and technical components’ activities and their
interactions. Extensions of such languages have demonstrated to be also effec-
tive in capturing security constraints and security policies [8,26]. Automated
reasoning techniques are then used to verify whether business process models
satisfy specific security and privacy policies [4,12,30], such as those imposed by
national or international regulations or simply needed to guarantee a certain
level of security.

© Springer International Publishing AG, part of Springer Nature 2018

J. Mendling and H. Mouratidis (Eds.): CAiSE Forum 2018, LNBIP 317, pp. 218-234, 2018.
https://doi.org/10.1007/978-3-319-92901-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92901-9_19&domain=pdf

From Security-by-Design to the Identification of Security-Critical Deviations 219

s =}

(o
SecBPMN2 Model Event Log Security Policies
1 2 3 o 4 5 n
Process Model om Conformance > Log Trace £ Security Policy a A ?ﬁ
Transformation om0 Checking {M Transformation EOD Checking /\/\ g7)
Petrinet Process Model SecBPMN2 Security-Critical
Model Deviations Trace Model Deviations

Fig. 1. An overview of the approach

Security-by-design can guarantee compliance with security policies as far as
business processes are executed according to their respective (predefined) mod-
els. However, there are many application domains where deviations of the exe-
cuted processes from such models is the norm. For example, in a hospital it may
occur frequently that internal processes are not executed as they were designed
to deal with emergency. This is perfectly natural, since when humans face unpre-
dictable situations they require a certain level of flexibility in the execution of
their activities [28,32]. It may also happen that deviations become habits for
specific processes and they are never executed as they were originally designed
and verified. From a security perspective, this may become a problem and it
introduces the need to complement methods used to realize secure-by-design
processes with methods for checking the conformance of process executions with
the prescribed behavior.

Although the literature offers a number of approaches aiming to ensure
that business processes comply with a set of security policies given at design
time (forward compliance checking) [4,8,16,37] and techniques to evaluate the
conformance of process executions with the defined process models (backward
compliance checking) [1,3,6,23-25,34], what is still missing is a comprehensive
framework that can close the gap between verified and certified models and their
actual executions, providing an effective support to deal with security within the
entire lifecycle of the system.

In this paper, we propose a tool supported method for the identification of
security critical deviations in process executions, where forward and backward
compliance checking are fully integrated. We adopt a state-of-art BPMN-based
modeling language (i.e., SecBPMN2 [26]) to represent and verify security con-
cerns in business processes and off-the-shelf techniques for compliance checking
analysis of process executions. We show how the combination of these tech-
niques can benefit the identification and analysis of security-critical deviations.
We present an application of our approach to a real loan management process
of a Dutch financial institute along with an evaluation of its capabilities. The
approach is fully supported by an extended version of the STS-Tool [27].

The paper is organized as follows. Section2 presents an overview of our
approach for the identification of security-critical deviations in process execu-
tions. Section 3 demonstrates the approach in a real loan management process.
Section 4 presents the tool supporting our approach and its evaluation. Finally,
Sect. 5 discusses related work and Sect. 6 concludes the paper.

220 M. Salnitri et al.

2 Identifying Security-Critical Deviations in Process
Executions

This section describes our approach for the identification and analysis of security-
critical deviations in process executions. Starting from secure-by-design pro-
cesses, the approach aims to: (i) automatically analyze process executions,
recorded in log traces, and identify deviations from the process specification;
(ii) determine which deviations are security-critical; and (iii) visualize the iden-
tified deviations along with their security impact on the business processes. An
overview of the approach is shown in Fig. 1.

The approach takes as input a set of business processes, a set of security
constraints on the business processes, hereafter called security policies, and a set
of log traces. For the definition of business processes and security policies, we
rely on SecBPMN?2 [26], which offers a means to define secure-by-design business
processes. In particular, it provides a modeling language for the specification of
business processes, called SecBPMN2-ml, that extends BPMN 2.0 [22] with secu-
rity annotations, and a modeling language for the specification of security policies
in the form of procedural patterns, called SecBPMN2-Q, along with capabilities
to verify whether a given business process satisfies the defined policies.

An off-the-shelf backward conformance checking technique is used to identify
log traces that deviate from the process specification. Deviating traces are then
transformed into SecBPMN2 models to determine which deviations are security-
critical. These deviations are graphically projected onto SecBPMN2 business
processes for visual inspection. It is worth noting that most state-of-the-art
(backward) conformance checking techniques use Petri nets for the represen-
tation of business processes. Thus, we have introduced an additional step for the
automated transformation of BPMN2 process models into Petri nets. Below, we
provide an overview of the main steps of our approach and underlying techniques.
Then, in the next section, we illustrate these steps on a real loan management
process.

Process Model Transformation. The first step of the approach aims to transform
a SecBPMN2 business process into the corresponding Petri net. This transforma-
tion is required for conformance checking (second step). Petri nets [13] provide a
formal representation of business processes for which several conformance check-
ing techniques and tools have been proposed and are currently available (see,
e.g., [1,24,33]). The transformation consists in generating a Petri net that reflects
the control flow specified by the given SecBPMN2 business process. We base this
process model transformation on the work of Dijkman et al. [14]. In particular,
Dijkman’s work specifies transformation rules for most BPMN 2.0 elements such
as tasks and gateways. However, such rules do not support the transformation of
inclusive gateways due to limitations on the synchronization of multiple control
flows. To this end, we extend the transformation rules proposed in [14] along the
lines suggested in [35], where inclusive gateways are transformed into (portions
of) Petri nets that simulate the inclusive gateway behavior. Although this solu-
tion does not fully address the problem of synchronization, this problem is only

From Security-by-Design to the Identification of Security-Critical Deviations 221

relevant when process models are simulated or executed. On the other hand, in
conformance checking log traces are replayed on the process models and, thus,
issues related to the synchronization of multiple control flows do not affect our
approach.

Conformance Checking. The Petri nets generated in the previous step are used
to identify process executions, recorded in log traces, that do not comply with the
process specification. In this work, we adopt a backward conformance checking
technique based on the notion of alignment [33]. In a nutshell, an alignment
relates the events in a log trace to the activities in a run of the process, thus
pinpointing the deviations causing nonconformity. If a log trace perfectly fits a
Petri net, each “move” in the trace, i.e. each event recorded in the log trace,
can be mimicked by a “move” in the model, i.e. an instance of a transition fired
in the net. In cases where deviations occur, some moves in the trace cannot be
mimicked by the net or vice versa. For instance, an activity could be executed
when not allowed by the process model, resulting in a so-called move on log.
Other times, an activity should have been executed according to the model but
is not observed in the log trace. This results in a so-called move on model.

Log Trace Transformation. The third step consists in generating a SecBPMN2
business process for each log trace that does not comply with the process model.
This step is required for the identification of security-critical deviations (the
next step of the approach). The log traces recorded by IT systems often con-
tain only information on the name of the activities that were executed along
with the order of their execution. Although this information covers extremely
important aspects of security (e.g., deviations from the prescribed control-flow
might affect the correct enforcement of security mechanisms), log traces usually
neither contain information on the security mechanisms implemented nor on
the data objects used in the execution of activities. Such information, however,
is necessary to verify security properties, such as the correct access to data or
enforcement of security needs. To overcome this limitation, we exploit the infor-
mation specified in SecBPMN2 processes. In particular, we extend log traces by
including the elements that are not present in the log traces, such as gateways,
data objects and security annotations, as specified in the SecBPMN2 process
models. Intuitively, the activities of a log trace are mapped to the tasks in the
SecBPMN2 business process by matching their labels. After that, a SecBPMN2
business process is created using the original process as a template. Once the
SecBPMN2 business processes representing the deviating log traces are gen-
erated, they are annotated to highlight where the deviations took place. The
identified deviations should be easy to inspect so that proper measures can be
taken. The challenge lies in providing a visualization of deviations that scales
well with the number of traces, and uses a notation familiar to the person who
defined the original business process. We address this issue by aggregating all
deviating traces into a single SecBPMN2 model and thus providing an overview
of where the deviations happened. We chose SecBPMN2 for the visualization

222 M. Salnitri et al.

of deviations as this minimizes the learning phase by reducing the amount of
information users need to learn.

It is worth noting that our transformation of log traces in SecBPMN2 models
assumes that tasks are executed as specified in SecBPMN2 models, i.e. with
a correct implementation of security annotations, data access as specified in
the model, etc. Such an assumption can be relaxed by considering richer logs
or, possibly, different types of logs [1], which however are often unavailable or
difficult to obtain. We leave an investigation of a more comprehensive extraction
of security elements from logs for future work.

Security Policy Checking. Among the log traces that deviates from the pro-
cess specification, we are interested in the ones that are security-critical. The
identification of security-critical deviations is performed using SecBPMN2. In
particular, SecBPMN2 supports the checking of business processes expressed
in SecBPMN2-ml against security policies expressed in SecBPMN2-Q. In a nut-
shell, SecBPMN2 verifies if there exists a path in the process model that satisfies
the given security policies (recall that SecBPMN2-Q policies specify constraints
on the order of execution of activities). For each path, it is verified whether the
security annotations in the process model are of the same type of those in the
security policies and whether they are linked to the same SecBPMN2 elements.
In this case, the security annotations in the security policies are verified against
the security annotations in the SecBPMN2 model. If at least one security policy
is not verified, then the corresponding trace is considered security-critical.

3 Approach at Work

This section describes an application of our method to the loan management
process of a Dutch financial institute, taken from the 2012 BPI challenge [7].
We first introduce the case study along with the SecBPMN2 concepts that are
necessary to understand the method and then we present a step-by-step appli-
cation of the method. We assume the reader to be familiar with BPMN 2.0 [22]
and Petri net [13] notations.

3.1 Loan Management Process

Our case study is about the analysis of an event log recording the loan man-
agement process of a Dutch financial institute, which was made available for
the 2012 BPI challenge [7]. The event log contains the events recorded for three
intertwined subprocesses: subprocess A specifies the handling of loan applica-
tions, subprocess O describes the handling of loan offers, and subprocess W
specifies how work items are processed. For activities executed within subpro-
cesses A and O, only events at stage complete are recorded, whereas for activities
executed within subprocess W, events are recorded at stages schedule, start and
complete.

From Security-by-Design to the Identification of Security-Critical Deviations 223

Figure 2 shows the loan management process in SecBPMN2 notation. This
process model is obtained based on the analysis reported in [36]. The pro-
cess starts when a client submits a credit request. Then, if needed, fraud
check (W_Beoordelen fraude) or first assessment (W_Afhandelen leads) are per-
formed. Applications are then finalized by filling in additional information
(W_Completeren aanvraag) and an offer is sent to the client. An offer can be
canceled or created multiple times during a process execution. In different states
of the process, the client might be contacted (W_Nabellen offertes and W_Nabellen
incomplete dossiers) for obtaining missing information. After returning an offer,
the applications might undergo further assessment (W_Valideren aanvraag). At
the end, an application can be denied, approved or canceled. Note that after
approving an application, the contract can still be modified (W_Wijzigen con-
tractgegevens).

Security requirements defining the correct execution of the loan management
process are captured using SecBPMN2 security annotations. These annotations
are represented with an orange circle with an icon denoting the type of security
annotation. The language supports eleven types of annotations. Here, we only
present the four that are used in the case study and refer interested readers
to [26] for a complete description of SecBPMNZ2 security annotations.

Many organizations and, in particular, banks and financial institutes, require
that sensitive activities are performed by different users to prevent conflicts of
interest [17,29]. In our case study, it is required that the handling of loan appli-
cations and offers is handled by at least two different employees. In SecBPMN2,
this can be specified through a Separation of duties security annotation (&) con-
necting two pools (or two lanes). This annotation indicates that the activities
in the two pools (lanes) cannot be executed by the same person. In the process
of Fig. 2, the security annotation specifies that Customer Service and Specialist
cannot be the same person in an execution of the process.

Moreover, it should not be possible to challenge the execution of some activi-
ties, for example the approval (A_APPROVED) or denial (O_DECLINED) of a loan
in Fig. 2, and the validity of the associated contracts. To this end, a legal proof of
the execution of those activities is usually requested. Such a proof demonstrates,
from a legal point of view, that the activity has been executed and no one can
deny its execution. In SecBPMNZ2, this is specified with a Non repudiation secu-
rity annotation (@), which denotes that a legal proof of the execution of an
activity has to be generated.

Some activities can be central to the core businesses of an organization.
Such types of activities are captured using Availability security annotations (@),
which specify that an activity should always be executed. For example, in Fig. 2,
activity A_SUBMITTED is associated with an availability annotation indicating
that customers should always be able to request a loan. SecBPMNZ2, optionally,
allows the specification of an availability threshold indicating, for example, an
availability of 99% of the time. Business processes may use personal data, stored
in data objects, which requires special protection due to its sensitive content.
SecBPMN2 uses the Confidentiality security annotation (@) to specify that the

224

M. Salnitri et al.

Dutch Financial Institute

A_SUBMITTED

[A_DECLINED

b

SCHEDULE

T H
1
W_Beoordelen fraude i

y&» START

AjARTLYSUBM\TrEI:L

A-PREACCEPTED

-~

b SCHEDULE

Y)
R -
Afhandelen leads

W
) :

J

-

i . f
g
End

SCHEDULE

\%f

W. Completeren aanvraag

)

Customer Service.

I

W_Wijzigen
contractgegevens

-—— A_CANCELLED —

=

A-FINALIZEC
-A> id 8 _. osa
O-SELECTED ’—“ ? %, >|ﬁ
Loan
Proposal
]
¥ 1
& - &-&-Tor |
‘ +W_Nabe|le1 offertes
([’ 1
O_SENT_BACK
s X Customer info
. I
f) v
W_Nabellen
[SCHEDULE - SCHEDULE
§<>’ START incomplete dossiers
s J
! -
4 COMPLETE
4
$®’;> START i\ !
4 r W_Valideren aanvraag
I \ A
AA<
z
g D
&

Fig. 2. Loan management process in SecBPMN2-ml notation

From Security-by-Design to the Identification of Security-Critical Deviations 225

@ | A SUBMITTED L.
e =" =

) ‘ A_APPROVED ‘ -

@A
e od P___’,

’A-ACCEPTEDHA_DECLINED‘

(a) Policy1 (b) Policy2
A o
fra\:‘é—esf:‘gri‘]‘:'LeE”TE HA_APPROVED‘ ’A_SUBMITTED HA—pARTLg§UB“"'TT‘
(¢) Policys (d) Policya

Fig. 3. Policies for the loan management process of Fig. 2

access to a data object must be prevented to unauthorized users. For example, in
Fig. 2, data object customer info contains customer personal data and the security
annotation specifies that the access to that data object should be limited only
to authorized users.

SecBPMN2 also allows the specification of security policies to determine
whether the defined process is secure-by-design. Figure3 presents four sam-
ple security policies for the case study defined using SecBPMN2-Q. Policy,
indicates that the handling of the submission and approval of an application
must be performed by two different users. This is specified with a Separation
of Duties annotation linking two lanes. The @ wild card specifies there is no
constraint on the user performing the activities, i.e. the policy applies to every
user. Policys and Policys are anti-patterns (denoted by a red box), indicating
that the behavior described in these policies should not be observed in any pro-
cess executions. Policys imposes that, after an application is accepted, it cannot
be immediately declined. This is specified using a sequence flow relation indi-
cating that A.DECLINED cannot be executed immediately after A_ACCEPTED.
Policys specifies that if an application is inspected for fraud, eventually it must
not be approved. This is specified using a walk relation indicating that two activ-
ities must not be linked with an arbitrary long sequence of executable elements.
Finally, Policy, indicates that the handling of application submissions has to be
provided with high availability (specified using the availability annotation) and
its execution should be followed by the execution of A_LPARTIALLYSUBMITTED.
This is specified using a sequence flow indicating that the target activity must
be executed immediately after the source activity.

A verification of the process in Fig. 2 against the policies in Fig. 3 shows that
the process is secure-by-design, i.e. all policies are satisfied by the process model.
However, reality can diverge from the prescribed behavior. Figure4 presents
three log traces recorded by the financial institute that deviate from the loan
management process in Fig. 2. In the next section, we illustrate our approach for
the identification of security-critical deviations in process executions. Then, in
Sect. 4, we present an analysis of the log traces in Fig. 4.

226 M. Salnitri et al.

lAclm(‘y Resource

1 A_SUBMITTED-COMPLETE 112

2 | A_PARTLYSUBMITTED-COMPLETE 112

3 A_PREACCEPTED-COMPLETE 12

4 | W_Completeren aanvraag-SCHEDULE 112 | Activity | Resource |
5 W_Completeren aanwaag-START 10982 © A_SUBMITTED-COMPLETE T
Pyl il e 2 | A_PARTLYSUBMITTED-COMPLETE 112
7102 3 A_PREACCEPTED-COMPLETE 112
2 g—ﬂggﬁgggx:tgs 13;32 4 | W_Completeren aanvraag-SCHEDU... 112
10| O_SENT-COMPLETE =2 g y_}\%:;g:g[r}e_gg;ry&::snm 11200
11 | W_Nabellen offertes-SCHEDULE 10982 ? A:FINN.IZED—COMPLEI‘E 11200
12 W_Completeren aanvraag-COMPLETE 10982 & | O_SELECTED-COMPLETE 11200
13 | W_Nabellen offertes-START 10982 9 O-CREATED-OOMPLEI'E 11200
14 | W_Nabellen offertes-COMPLETE 10982 10 O_SENT-COMPLETE 11200
15 | W_Nabellen offertes-START 11001 11 | W._Nabellen offertes-SCHEDULE
16 | O_SELECTED-COMPLETE 11001 -
17 O_CANCELLED-COMPLETE 11001 12 W_Completeren aanvraag-COMPLETE
18 | O_CREATED-COMPLETE 11001 | Activity |Resourca | 13NN EateNE RoReess SEAC 11049
19 | O_SENT-COMPLETE 11001 1 | A_SUBMITTED-COMPLETE 12 1 %—3;7;—”“‘”””—”5 11059
20 | W_Nabellen offertes-SCHEDULE 11001 2 | A_PARTLYSUBMITTED-COMPLETE 112 /_Valideren aanvraag-SCHEDULE 11049
21| W_Nabellen offertes-COMPLETE 11001 3 | W_Amandelen leads-SCHEDULE 12 oo i sser PamlE fiioto
22 | W_Nabellen offertes-START 11049 4 | W_Afandelen leads-START 11003 17_|W_Valideren aanwaag-START 10629
23 | 0_SENT_BACK-COMPLETE 11049 5 | A_PREACCEPTED-COMPLETE B
24 | W_Valideren aanvraag-SCHEDULE 11049 6 | W_Completeren aanwraag-SCHEDULE 11003 19 W_valideren aanwraag-COMPLETE 10629
25 | W_Nabellen offertes-COMPLETE 11049 7 | W_Amandelen leads-COMPLETE RN -2 eseeccn RS AR W
26 | W_Valideren aanvraag-START 10138 8 | W_Completeren aanvraag-START 10929 21 | W_Valideren aanwaag-SCHEDULE 10188
27 | W_Valideren aanwaag-COMPLETE 10138 o | W_Completeren aanviaag-COMPLETE 10929 22 | W_Beoordelen fraude-COMPLETE 10188
28 | W_Valideren aanvraag-START 10138 10 | W_Completeren aanvraag-START 10913 23 W_Valideren aanwraag-START 10629
29 | W_Valideren aanvraag-COMPLETE 10138 11 | W_Completeren aanvraag-COMPLETE 10913 24 | A_REGISTERED-COMPLETE 10629
30 A W_Valideren aanvraag-COMPLETE 10138 12 | W_Completeren aanwraag-START 10929 25 | A_APPROVED-COMPLETE 10629
31 | A_APPROVED-COMPLETE 112 13 | A_ACCEPTED-COMPLETE 10929 26 | 0_ACCEPTED-COMPLETE 10629
32 | A_ACTIVATED-COMPLETE 12 14 | A_DECLINED-COMPLETE 10929 27_| A ACTIVATED-COMPLETE 10629
33 | A_REGISTERED-COMPLETE 112 15 | W_Completeren aanvraag-COMPLETE 10929 28 | W_Valideren aanwraag-COMPLETE 10629

(a) (b) (©)

Fig. 4. Examples of log traces.

3.2 Walkthrough Application of the Approach to the Case Study

This section describes the application of the method presented in Sect. 2 to the
loan management process introduced in the previous section.

Process Model Transformation. After the loan management process has been
modeled in SecBPMN2-ml along with security annotations, it is automatically
transformed into a Petri net. Figure5 shows a portion of the Petri net gener-
ated from the process model expressed in SecBPMN2 notation shown in Fig. 2.
Activities are transformed into transitions with an input and output places. For
example, activity A.SUBMITTED in Fig. 2 is transformed into a transition with
the same name along with two places, one before and one after the transition.
Another example of the application of transformation rules is the exclusive gate-
way after activity A_LPARTIALLYSUBMITTED in Fig. 2, which is transformed, in
Fig. 5, in a place connected with as many transitions as the outgoing control
flows. Our transformation rules provide optimizations over the transformation
rules in [14] to reduce the size of the generated Petri net. For example, the tran-
sitions after the place encoding the exclusive gateway denote the activities to
be executed after the gateway, instead of duplicating places and transitions as
indicated in [14].

Conformance Checking. The generated Petri net is used to assess the confor-
mity of log traces with the model. As discussed in Sect.2, we employ an off-
the-shelf alignment-based technique [33], which provides a robust approach to
conformance checking able to pinpoint the deviations causing nonconformity

From Security-by-Design to the Identification of Security-Critical Deviations 227

A_DECLINED

1 Mergé
Start Inv Inv
v A Inv
A_SUBMITTED Merge
= Spit y Splc ’ Spit .
pi7 B g W_Beoordelen fraude_START W_Beoordelen fraude_COMPLETE
W. Beoordelen fraude_SCHEDULE 7
Spit Inv End
Merge Inv
' Tnv
A_PARTLYSUBMITTED N Spit
W_Afhandelen leads_SCHEDULE > > W_Afhandelen leads_COMPLETE

W_Afhandelen leads_START

Fig. 5. Portion of the Petri net generated from the SecBPMN2 business process in
Fig. 2

A_PARTLY | W_Afhandelen |[W_Afhandelen W_Completeren ‘W_Completeren

A’SUBM]TTED‘SUBMITTED leads SCHEDULE | leads _.START | *"|aan vraag .START > ‘ > aanvraag ,COMPLETE""‘O’DEC['[NED""
A_PARTLY | W_Afhandelen [W_Afhandelen W_Completeren W_Completeren
ASUBMIWED‘SUBMIT’FED leads SCHEDULE | leads .START | *"|aan vraag -START A-ACCEPTED ‘A‘DECLINED aanvraag ,COMPLETE" . > ‘ .

Fig. 6. A (portion of) alignment of the log trace in Fig.4b and the process model in
Fig. 2.

between the observed and prescribed behavior. Figure 6 shows a sample align-
ment between the log trace in Fig.4b and the Petri net obtained from the
SecBMPN2-ml model in Fig. 2. The top row of the alignment shows the sequence
of activities in the run of the net; the bottom row shows the sequence of events
in the log trace. Deviations are explicitly shown by columns that contain >>.
For example, the 7th and 8th columns in the alignment show moves on logs for
activities AL ACCEPTED and A_DECLINED, indicating that these events occur
in the log trace although they are not allowed according to the net. The 11th
column shows a move on model for O_DECLINED, indicating that this activity
must occur in the log trace according to the net but it was not executed. Other
columns show that the events in the log trace match the activities in the run of
the net (i.e., synchronous moves).

Log Trace Transformation. Log traces that deviate from the process model are
transformed into SecBPMN2 models using the original SecBPMN2 business
process as a template. Figure7 shows two portions of the SecBPMN2 model
generated from the trace in Fig.4b, in which the deviations captured in the
alignment of Fig.6 are highlighted to easy inspection. In the figure, process
elements are represented using the following color code: (i) the elements exe-
cuted according to the process model are in orange; (ii) the control flows indi-
cating the presence of moves on the logs are in purple; (iii) the elements for
which a move on mode occurred are in brown. For example, Fig. 7a shows that
some activities were executed between activities W_Completeren aanvraag START
and W_Completeren aanvraag_ COMPLETE (control flows highlighted in purple).
Figure 7b shows another part of the same model where activity O_DECLINED was

228 M. Salnitri et al.

I s (R
W_Completeren \ \ W_Completeren N
| aanwraag_START | ’“&, {"& aanviaag_COMPLETE |. Z]
N S T e
0 0 :

@

Fig. 7. Portion of the SecBPMN2 model corresponding to the log trace in Fig. 4b (Color
figure online)

- Y A_DECLINED | ———
\W_Beoordelen| H
fraude_START

W_Beoordelen

: . W_Beoordelen
i 1|fraude_SCHEDULE

fraude_COMPLETE

A_PARTLYSUBMITTED —

W_Afhandelen
leads_SCHEDULE

W_Afhandelen
leads_COMPLETE]|

leads_START

Fig. 8. Visualization of the aggregated deviating traces on the SecBPMN2 process
model (Color figure online)

not executed in the log trace examined (activity highlighted in brown). Through
this view, an analyst can determine where deviations occurred in single traces.

To provide an overview of the deviations in the process executions recorded
in the log, we aggregate all deviating traces in a single SecBPMN2 model, thus
provide analysts with an easy understanding of where deviations took place in
the process. The visualization consists of the original SecBPMN2 process where
the process elements for which a deviation happened in at least one process
execution are highlighted in purple or brown depending on the type of deviation
as shown in Fig. 8.

Security Policy Checking. The annotated SecBPMN2 model generated in the
previous step shows all deviations form the prescribed behavior. In this work, we
are particularly interested in security-critical deviations. To this end, deviating
traces, represented as SecBPMN2 models, are verified using the SecBPMN2 ver-
ification engine to identify which log traces violate any security policy. Security-
critical traces, and their aggregation, are shown to analysts using the same color
code used in the previous step (see Figs.7 and 8). An analysis of the log traces
in Fig. 4 is presented in the next section.

4 Evaluation

We have implemented the proposed approach as an extension of STS-Tool [27].
STS-Tool is a software tool that permits to graphically design business processes

From Security-by-Design to the Identification of Security-Critical Deviations 229

Table 1. Analysis of real-life data

complaint|# noncomplaint|# synchronous|# move|# move |# policyy |# policys | # policys|# policyy
log traces log traces move on log |on model|violation |violation |violation |violation
4237 8850 232,438 29,762 |28,541 3 25 30 0

and security policies using SecBPMN2, and to verify business processes against
security policies. We have extended the tool by: (i) implementing the transfor-
mation of SecBPMN2 models into Petri nets; (ii) integrating alignment-based
techniques to identify process executions that deviate from the process speci-
fication; (iii) adapting its verification engine to identify security-critical traces;
(iv) extending the graphical editor to show aggregated traces in order to easily
understand where security-critical deviations happened in business processes.

To evaluate the capabilities of our approach in the identification of security-
critical deviations in real-life settings, we used the event log recording the loan
management process described in Sect. 3. The event log contains 262,200 events
recorded in 13,087 log traces. We applied the proposed approach to the event log,
the process model in Fig. 2 and the policies in Fig. 3. Table 1 reports the results of
the analysis. In total, 8,850 log traces deviated from the process model. Among
the identified deviations, 29,762 are moves on log and 28,541 are moves on model.
In total, 58 violations of the defined security policies were identified. To illustrate
the insights provided by our the method, we next analyze the three log traces
shown in Fig. 4.

Figure 4a shows a log trace that violates Policy;. According to this policy,
the submission and approval of a loan application have to be handled by two
different users. However, in this trace, both activities were executed by the same
user. By analyzing the log, we observed that this user performed many more
activities than other users (17.42% of all executed activities were performed by
this user) and these activities were performed every day and at any time. We
speculate that this user might actually be a software application. A closer look
at the log also showed that only a limited number of users (9 over 68 users)
had approved a loan and the aforementioned user approved only three loan
requests (as average, 249 loan applications by each user). Although we were
not able to validate this finding with domain experts,! we believe that further
investigation is required to understand the role of this user and its responsibilities
and, thus, to assess the security impact of this deviation. Figure4b shows a
log trace that violates Policys. According to this policy, applications must not
be declined immediately after being accepted. However, this log trace shows
that after collecting all required information, the application was denied without
sending any offers to the client or assessing the application. Note that the amount
of the requested loan is equal to €1000. Among 361 submitted applications
with equal or lower amount, only 5 applications were approved, while in general
17% of all applications were approved. This may indicate that the financial

! The 2012 BPI Challenge made a real log available but the log is anonymized. Also
the name of the company providing the log is not disclosed.

230 M. Salnitri et al.

institute tends to not grant loans with low amounts to clients and declines most
of these requests. Figure 4c shows a log trace that violates Policys. According to
this policy, applications suspected to be a fraud must not be approved. In fact,
according to the process model, these applications must be either terminated
or declined. However, this log trace shows that a suspicious application was
approved.

These results confirm that our tool is able to identify security-critical devi-
ations in real-life settings. It is worth mentioning that analyzing all deviations
from the process specification is not a trivial task and can require a significant
amount of time and resources. A main advantage of our tool is that it enables
analysts to focus on security-critical deviations. In particular, the tool offers
visualization capabilities to inspect where security-critical deviations occurred
along with information about the type of security concerns (i.e., which security
policy was violated). We remark that our tool aims to assist and facilitate ana-
lysts in the identification and analysis of security-critical deviations rather than
taking over their responsibilities. As mentioned above, the identified deviations
need to interpreted based on domain knowledge, although this task is eased by
the insights provided by the tool.

The application of the tool to the case study also allowed us to perform a
preliminary evaluation of its effectiveness and usability. In particular, the visu-
alization of aggregated deviating traces into a SecBPMN2 diagram provides an
intuitive view of where deviations occurred and scales well with a large number
of traces, as in our case study. The visualization of single deviating traces is
effective since the tool shows the business process, as drawn by the analyst, but
includes only the process elements occurring in the trace. However, we realized
that the usability of the tool could be improved by providing additional features
for the filtering and selection of deviating traces.

5 Related Work

The goal of this paper is to guarantee the compliance of business processes
during the entire lifecycle of the systems. Approaches to compliance checking in
the area of business processes can be grouped into two main categories: forward
and backward compliance checking. To the best of our knowledge, this is the first
work that aims to reconcile these two orthogonal approaches.

Forward compliance checking aims to ensure that business processes models
comply with a given set of requirements at design time. A number of approaches
have been proposed to verify the compliance of process models, before they
are deployed and executed. For instance, SecureBPMN [8] extends BPMN with
access control and information flow constraints. It uses the hierarchic structure of
the organization, in which the business process will be executed, to help security
designers to define security properties such as binding of duty [17] and separation
of duty [17,29]. However, SecureBPMN is limited in that it does not allow the
specification of other fundamental security concepts such as confidentiality, non-
repudiation and availability. Beeri et al. [4] propose BP-QL, a pattern-based

From Security-by-Design to the Identification of Security-Critical Deviations 231

graphical query language for business processes. They also provide software
tooling to determine the compliance of a business process—defined using WS-
BPEL [20]-with behavioral patterns. The use of WS-BPEL, a machine-readable
standard, hinders the readability of business processes, especially with real case
scenarios, where business process easily reach hundreds of elements. APQL [16]
is a textual query language, based on 20 predicates that can be composed to
create complex queries. This approach suffers scalability issues: the definition of
complex queries is challenging and error-prone due to its complexity. Moreover,
to the best of our knowledge, this approach is not tool-supported. Wolter et
al. [37] propose a modeling language for business processes and business security
concepts, to graphically define security specifications. They also develop a frame-
work that transforms security goals in security policies specified in XACML [21]
and Rampart [31]. The framework automatically extracts specifications of secu-
rity mechanisms aiming at the enforcement of security goals, but it does not
allow security experts to compose security goals and, therefore, to create com-
plex security policies. FPSPARQL [5] is a query language that allows defining
queries using a formal textual language. FPSPARQL focuses on the analysis of
business processes mined from action logs, hence making it impossible to directly
define processes; in addition, it does not address security concerns. In this work,
we have adopted SecBPMN2 for the definition of secure-by-design processes. It
provides a modeling language for the specification of business processes with
security annotations, and a modeling language for the specification of security
policies along with capabilities to verify whether a given business process satisfies
the defined policies.

Backward compliance checking aims to evaluate the compliance of process execu-
tions recorded in an event log with the prescribed behavior. Existing approaches
[1,3,6,23-25,34] can be classified in two main streams, depending on the repre-
sentation of the prescribed behavior. One stream comprises approaches that
assess the compliance of process executions with business rules. Ramezani
et al. [24] encode business rules into Petri net patterns and employ alignments
to identify possible deviations from them. In recent years, many researchers
have focused on conformance checking with respect to declarative models. For
example, Chesani et al. [10] represent the prescribed behavior using declarative
reactive business rules. This approach maps business rules to Abductive Logic
Programming, and Prolog is used to check whether business rules are fulfilled.
Montali et al. [19] propose to encode business rules in Linear Temporal Logic and
evaluate them using automata. However, these approaches do not support time
or data perspectives. Declarative constraints have been extended to support the
time [18] and data [11] perspectives separately. Burattin et al. [9] propose an
approach to support different process perspectives at the same time.

Another stream includes approaches that assess the compliance with respect
to a process model. Among these approaches, Petkoviéet al. [23] generate the
transition system of a process model and verify whether a log trace corresponds
to a valid trace of the transition system. Rozinat and van der Aalst [25] propose
a token-based approach to measure the conformance between an event log and

232 M. Salnitri et al.

a Petri net. This measurement is based on the number of missing and remaining
tokens after replaying log traces on the net. Banescu et al. [3] extend the work in
[25] to identify different types of deviations such as replacement and re-ordering
by analyzing the configuration of missing and remaining tokens using predefined
patterns. These approaches, however, do not provide accurate diagnostics on
deviations. In this work, we adopt the notion of alignment [33] for conformance
checking. Alignments offer a robust approach to conformance checking able to
provide richer and more accurate diagnostics and have been widely used for
various purposes such as performance analysis [33], process-model repairing [15]
and security analysis [1].

6 Conclusion

This paper proposes a methodological approach for the identification of security-
critical deviations in process executions, which leverages off-the-shelf techniques
for forward and backward conformance checking. The use of forward compliance
checking allows the specification of secure-by-design business processes, whereas
the use of backward compliance checking allows the identification of deviations in
the process executions. Moreover, we exploit the verification capabilities provided
by forward compliance checking to identify those deviations that are security
critical. Our approach is fully supported by an extended version of the STS-
Tool. The tool offers visualization capabilities to inspect the identified deviations
and provide diagnostics on security concerns (i.e., which policy was violated).
This view provides analysts with insights into security issues, thus, helping them
in taking the necessary measures to mitigate the impact of security incidents.
We evaluated the tool with a case study using a real log recording the loan
management process of a Dutch financial institute. The results of the evaluation
show that our approach is able to identify a number of security concerns, and the
visualization of the single and aggregated deviations help in the understanding
of critical-security issues in process executions.

Although the evaluation showed that our approach is able to detect security-
critical deviations in real settings, we plan to conduct a more extensive evaluation
of the usability and effectiveness of the tool by involving practitioners. Moreover,
we plan to extend our method in order to support the analysis of a larger range
of security constraints in process executions. This includes the design of meth-
ods to extract security-related information (e.g., security mechanisms employed,
accessed data objects) from log files.

Acknowledgments. This work has been partially funded by the NWO CyberSecurity
programme under the PriCE project, by the DITAS project funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement RIA
731945.

From Security-by-Design to the Identification of Security-Critical Deviations 233

References

10.

11.

12.

13.

14.

15.

16.

17.

Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking
data and process perspectives for conformance analysis. Comput. Secur. 73, 172—
193 (2017)

Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd edn. Wiley, Hoboken (2008)

Banescu, S., Petkovi¢, M., Zannone, N.: Measuring privacy compliance using fitness
metrics. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp.
114-119. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-
5.8

Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Inf. Syst. 33(6), 477-507 (2008)

Beheshti, S.-M.-R.., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query lan-
guage for analyzing business processes execution. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281-297. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2_22

Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business
process models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340-5352
(2014)

BPI Challenge 2012: Event log of a loan application process (2012). https://doi.
org/10.4121 /uuid:3926db30-{712-4394-aebc-75976070e91f

Brucker, A.D., Hang, I., Liickemeyer, G., Ruparel, R.: SecureBPMN: modeling
and enforcing access control requirements in business processes. In: SACMAT, pp.
123-126. ACM (2012)

Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194-211 (2016)
Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.: Check-
ing compliance of execution traces to business rules. In: Ardagna, D., Mecella, M.,
Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 134-145. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00328-8_13

De Masellis, R., Maggi, F.M., Montali, M.: Monitoring data-aware business con-
straints with finite state automata. In: ICSSP, pp. 134-143. ACM (2014)
Delfmann, P., Dietrich, H.-A., Havel, J.-M., Steinhorst, M.: A language-
independent model query tool. In: Tremblay, M.C., VanderMeer, D., Rothenberger,
M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 453-457.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06701-8_44

Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122-173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6_15

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281-1294 (2008)

Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220-243 (2014)

ter Hofstede, A.H.M., Ouyang, C., La Rosa, M., Song, L., Wang, J., Polyvyanyy, A.:
APQL: a process-model query language. In: Song, M., Wynn, M.T., Liu, J. (eds.)
AP-BPM 2013. LNBIP, vol. 159, pp. 23-38. Springer, Cham (2013). https://doi.
org/10.1007/978-3-319-02922-1_2

Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation-
of-duty. ACM Trans. Inf. Syst. Secur. 10(2), 5 (2007)

https://doi.org/10.1007/978-3-642-32885-5_8
https://doi.org/10.1007/978-3-642-32885-5_8
https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.1007/978-3-642-00328-8_13
https://doi.org/10.1007/978-3-319-06701-8_44
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-319-02922-1_2
https://doi.org/10.1007/978-3-319-02922-1_2

234

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

M. Salnitri et al.

Maggi, F.M., Westergaard, M.: Using timed automata for a priori warnings and
planning for timed declarative process models. IJCIS 23(01), 1440003 (2014)
Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. TWEB 4(1),
3 (2010)

OASIS: Web Services Business Process Execution Language, April 2007. http://
docs.oasis-open.org/wsbpel /2.0/wsbpel-v2.0.html

OASIS: eXtensible Access Control Markup Language (XACML)Version 3.0, Jan-
uary 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
OMG: BPMN 2.0, January 2011

Petkovié¢, M., Prandi, D., Zannone, N.: Purpose control: did you process the data
for the intended purpose? In: Jonker, W., Petkovié, M. (eds.) SDM 2011. LNCS,
vol. 6933, pp. 145-168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23556-6-10

Taghiabadi, E.R., Gromov, V., Fahland, D., van der Aalst, W.M.P.: Compliance
checking of data-aware and resource-aware compliance requirements. In: Meers-
man, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A.,
Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 237-257. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45563-0_14

Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64-95 (2008)

Salnitri, M., Paja, E., Giorgini, P.: Maintaining secure business processes in light
of socio-technical systems’ evolution. In: RE Conference Workshops, pp. 155-164.
IEEE (2016)

Salnitri, M., Paja, E., Poggianella, M., Giorgini, P.: STS-Tool 3.0: maintaining
security in socio-technical systems. In: Proceedings of the CAiSE Forum, pp. 205—
212 (2015)

Sarker, S., Sarker, S., Sidorova, A.: Understanding business process change failure:
an actor-network perspective. J. Manag. Inf. Syst. 23(1), 51-86 (2006)

Simon, R., Zurko, M.: Separation of duty in role-based environments. In: Proceed-
ings of the Computer Security Foundations Workshop, pp. 183-194 (1997)
Storrle, H.: VMQL: a visual language for ad-hoc model querying. J. Vis. Lang.
Comput. 22, 3-29 (2011)

The Apache Software Foundation: Apache Rampart website. http://axis.apache.
org/axis2/java/rampart/. Accessed April 2016

van der Aalst, W.M.P.: Business process management: a comprehensive survey.
ISRN Softw. Eng. 2013, 37 p. (2013). https://doi.org/10.1155/2013/507984. Arti-
cle ID 507984

van der Aalst, W.M.P., Adriansyah, A.,; van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. Wiley Int.
Rev. Data Min. Knowl. Disc. 2(2), 182-192 (2012)

van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130-147. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575771_11

van der Aalst, W.M.P., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Distrib. Parallel Databases 14(1), 5-51 (2003)

van der Aalst, W.M.P., Verbeek, H.: Process discovery and conformance checking
using passages. Fundamenta Informaticae 131(1), 103-138 (2014)

Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven busi-
ness process security requirement specification. J. Syst. Architect. 55(4), 211-223
(2009)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1007/978-3-642-23556-6_10
https://doi.org/10.1007/978-3-642-23556-6_10
https://doi.org/10.1007/978-3-662-45563-0_14
http://axis.apache.org/axis2/java/rampart/
http://axis.apache.org/axis2/java/rampart/
https://doi.org/10.1155/2013/507984
https://doi.org/10.1007/11575771_11

	From Security-by-Design to the Identification of Security-Critical Deviations in Process Executions
	1 Introduction
	2 Identifying Security-Critical Deviations in Process Executions
	3 Approach at Work
	3.1 Loan Management Process
	3.2 Walkthrough Application of the Approach to the Case Study

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

