®

Check for
updates

Integrating IoT Devices into Business
Processes

Christian Friedow, Maximilian Vélker, and Marcin Hewelt(®)

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
marcin.hewelt@hpi.de

Abstract. The Internet of Things (IoT) has arrived in everyday life,
controlling and measuring everything from assembly lines, through ship-
ping containers to household appliances. Thus, IoT devices are often part
of larger and more complex business processes, which might change their
course based on events from these devices. However, when developing IoT
applications the process perspective is often neglected and coordination
of devices is realized in an ad-hoc way using custom scripts. In this paper
we propose to employ process model to define the process layer of IoT
applications and enact them through a process engine. Our approach thus
bridges the gap between physical IoT devices and business processes. The
presented implementation shows that those two can be combined with-
out in-depth programming expertise or extensive configuration, without
restricting or strongly coupling the components.

Keywords: Business processes *+ Business event processing
Process automation - Process execution - BPMN - Internet of Things
IoT - Fragment-based case management - Case management - Events

1 Introduction

Business Processes are operated in increasingly complex environments and have
to take into account external events that influence the course of the process exe-
cution [1]. The complexity is further exacerbated through the rapid growth of
devices in the “Internet of Things” (IoT). These devices are used to automate,
measure, and control large parts in different environments, starting from indus-
trial facilities up to lighting and radiators in private homes. However, when devel-
oping IoT applications, the process perspective is often neglected and devices are
coordinated in an ad-hoc way using a different app for each device or custom
scripts that realize the integration logic.r Thus, understanding and adapting IoT
applications developed this way becomes a burden. There is a mismatch between
business processes that include manual tasks, integrate legacy applications, or
call webservices, and the ad-hoc logic of the IoT.

Several web-based services like zapier [2] and IFTTT [3] offer an event-based
way to integrate different systems and services, including some IoT devices.
However, they are limited to simple event-condition-action rules linking a trigger

© Springer International Publishing AG, part of Springer Nature 2018
R. Matulevi¢ius and R. Dijkman (Eds.): CAiSE 2018 Workshops, LNBIP 316, pp. 265-277, 2018.
https://doi.org/10.1007/978-3-319-92898-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92898-2_22&domain=pdf

266 C. Friedow et al.

event from one system or service to an action in another one [4]. Meyer et al. [5]
propose to integrate IoT devices as resources into business processes, but do
not address the execution of such processes. Serral et al. [6] suggest a model-
driven solution to integrate pervasive services which interact with sensors and
actuators. It allows to create context-specific tasks models and execute them in
an engine. However, [6] does not consider business tasks, but rather focuses on
supporting behavioral patterns of users.

We propose to employ BPMN process models to define the process layer of
IoT applications and enact them through a process engine. This extends the
framework of [7] with IoT devices. Technically, this contribution provides a way
to bidirectionally integrate low-level, physical IoT devices into business pro-
cesses, in a way that the execution of process instances is influenced by events,
e.g. sensor values, and in return, process instances can send commands to those
devices. To simplify this connection and to abstract from the concrete physical
device, the Bosch IoT Things service is used. By this means, the process engine
and the device do not need to share much knowledge about each other and the
implementation of each is encapsulated.

The presented implementation is based on several existing systems: the
Gryphon process modeling tool, the Unicorn event processing engine, and the
Chimera case engine, all introduced in Sect. 2. Section 3 describes in detail how
these systems work together to realize IoT applications with a process layer.
Afterwards, in Sect. 4, we demonstrate the feasibility of our approach by realiz-
ing an usecase that involves several devices, manual tasks, and webservice calls.
We summarize and discuss our approach in Sect. 5, pointing out how it could be
improved upon in future work.

2 Foundations

The approach presented in this work is built on a few software systems, which
will be briefly introduced in the following.

2.1 Bosch IoT Things Service

The Bosch IoT Things service' provides an interface for managing so-called “dig-
ital twins” in the cloud. For each connected device, e.g. a Raspberry Pi, a digital
representation (the “twin”) is stored in the cloud. This counterpart, referred to
as “Thing”, consists of several static attributes and features (attributes the value
of which change over time), reflecting values of the physical device.

The example in Fig.1 shows an abbreviated, possible configuration of a
Thing, monitoring a truck. A geolocation sensor connected to the device can
be represented as a feature comprising properties for longitude and latitude.
Now, each time the sensor measures a location change, the device would update
the geolocation feature of its digital representation with the new sensor data.

! https://www.bosch-iot-suite.com /things/.

https://www.bosch-iot-suite.com/things/

Integrating IoT Devices into Business Processes 267

{"thingId": "truckle4",
"attributes": {
"no-of-trailers”: "2",
"driver": "51843"},
"features": {
"geolocation-sensor”: {
"properties": {
"latitude": "52.393787",
"longitude": "13.131836"}},
"temperature”: {
"properties": {
"out": "31",

in": "24"}}}}

Fig. 1. Shortened configuration of an exemplary Thing

Services interested in the device’s data can subscribe to changes and get
notified each time the digital equivalent is updated. This way, the Bosch IoT
Things service abstracts from concrete device particularities and offers a unified
interface to access the device’s data. The service also offers backwards communi-
cation: services can send data and messages back to the device, for example, to
give commands. The communication follows a specified format based on JSON,
and Things themselves are also represented in this format. To access a Thing, a
Rest API, as well as a WebSocket connection can be used.

2.2 Unicorn

Unicorn?, an event processing platform, was developed within a logistics project
for planning for more efficient transport and was presented by Baumgrass et al.
[8] and first described in [9]. As an event processing platform, Unicorn gathers
events from event producers, processes, e.g. aggregates, filters or enriches them,
and distributes them further to event consumers. The processing is done by
Esper®, a Java library based on the event processing language (EPL).

Event producers can publish events to Unicorn using its Rest API, or events
can be fetched using so-called event adapters, which actively poll event sources,
like web services. Event consumers can subscribe to event queries and are notified
by Unicorn each time a relevant event occurred or a query matched, through
REST endpoints. In addition, events can be viewed in a provided web-interface.

2.3 Gryphon

Gryphon* is a web-based modeler for process models, build on NodelJS and
connected to a MongoDB to persist the models. Next to common process mod-

2 https://bpt.hpi.uni-potsdam.de/ UNICORN.
3 http://www.espertech.com/esper/.
4 https://github.com/bptlab/gryphon.

https://bpt.hpi.uni-potsdam.de/UNICORN
http://www.espertech.com/esper/
https://github.com/bptlab/gryphon

268 C. Friedow et al.

els, fragment-based case models can be created, as described by the fragment-
based case management (fCM) approach [10]. Additionally, object life cycles can
be defined for data objects and their possible transitions used within the case
models.

Models can then be transferred directly to connected Chimera instances (see
below) for deployment, or exported as JSON to reuse them in other services.

2.4 Chimera

Chimera® is a case engine for executing fragment-based case models (fCM).
To accomplish that, Chimera takes a fragment-based case model as an input,
analyzes it and enables activities, gateways and events based on their data-
flow and control-flow dependencies. Running cases and their current state can
be viewed in a web-based interface, which also allows for manual execution of
activities and data entry.

Important parts of Chimera for the approach presented in this paper are
webservice tasks, data-based gateways, receiving events and manual tasks. As
the name suggests, webservice tasks are able to call webservices predefined in
the model. Data-based gateways are gateways, whose decisions are based on
data-objects and their state or their attribute values, and which therefore can
be executed (i.e. decided) automatically by the engine. Receiving events are start
or intermediate events, that, in order to be executed, register event queries to
Unicorn and wait for the fulfillment of these queries. Data from the event noti-
fication can be stored in data object. These three model elements are executed
without manual intervention, which enables case models that only consist of
these types to be executed completely automatically by Chimera.

3 Approach and Implementation

In this section, we present an exemplary approach and implementation to allow
physical devices and event processing services to interact with each other. The
practical realization is based on the foundations introduced in Sect.2. A Rasp-
berry Pi is used as a physical device and the Bosch IoT Things service operates
the digital twin. The event processing platform Unicorn registers changes of
Things and provides events, which are used by the case engine Chimera to start
and influence business processes, modeled in Grpyhon beforehand.

In the following, a general, architectural overview is presented, followed by
more specific explanations for each component.

3.1 Overview

Figure 2 provides an overview of the overall structure and components involved.
The Raspberry Pi communicates with the Bosch IoT Things service, which in

5 https://bpt.hpi.uni-potsdam.de/Chimera.

https://bpt.hpi.uni-potsdam.de/Chimera

Integrating IoT Devices into Business Processes 269

(hingstorage) (eventstorage ’

Request thing
Inform about
| property change Updates
thingberry ;)

RN !
3 a® A
s Things Senvice uncorn

«,
[trigger actions
e tO0% Emuggens property

chany

I

O _[Setup Script | | Monitoring Script | o (' scenario storage)) &

‘~Eangeauiun ‘\Eormahwr
propery events

Configuration File Chimera

"> [Handle manual
activities

Fig. 2. Fundamental modeling concepts (FMC) model

turn is requested by Unicorn for event processing. Chimera, subscribed to Thing
related events, gets notified each time a new, relevant event occurs and performs
its activities accordingly. In case an action should be performed, Chimera com-
municates with the Bosch IoT Things service, which then notifies the Raspberry
Pi about the change.

3.2 Creating a Digital Representation for an IoT Device

This section describes the process of connecting a physical device to the Bosch
TIoT Things service and keeping the device synchronized with its digital twin.
The thingberry® software responsible for this is written in Python and runs on
the physical device, in our case a Raspberry Pi. It contains three main software
components. First, a setup component that allows to create and store a descrip-
tion of the device, which defines connected sensors, actuators, and attributes.
Second, a monitoring component, that observes the connected sensors for value
changes. Third, a connector component that, (a) uses the description provided
by the setup component to create the digital twin in the Bosch IoT Things
service, and (b) connects to the Bosch IoT Things service updating the state
of the digital twin, whenever the state of the physical device changes. These
components are described in more detail in the following subsections.

Setting up the Representation. The setup component is a command-line
tool, used to gather meta information about the device, e.g. the device name,
as well as context information, e.g. sensors and the pins they are connected to.
An excerpt from an exemplary setup process is given in Fig. 3, which shows the
setup for a connected Pi camera and a button. After finishing the setup process,
this information is stored locally as a configuration file in JSON format. Thus,
configurations can be easily shared and reused for similar device setups.

5 https://github.com/MaximilianV /thingberry.

https://github.com/MaximilianV/thingberry

270 C. Friedow et al.

Please choose a component to be added to your thing:|Please choose a component to be added to your thing:
1 Camera 1 Camera
2 Button 2 Button
3 NFC 3 NFC
4 Vibration 4 Vibration
5 Display 5 Display
Please select an entry:1 Please select an entry:2
Please name the new Action: Please select a feature to insert the component:
camera 1 New entry
Configuring Camera Action: Please select an entry:1
Delay until photo is taken (def. 2): 3 Please name the new Feature:
Destination to save image: /var/www/html/images Buttons
What's the current IP address? 192.168.0.123 Please name the new Property:
Completed setup for Camera component. LoginButton
Configuring Button Property:
Which pin is the button connected to? 12
Add another component? (y/n) Completed setup for Button component.
y

Split side by side for clarity.

Fig. 3. Excerpt from an exemplary setup process

In order to reduce the effort and time involved in setting up the digital rep-
resentation, the user is guided through the process. This eliminates the need to
manually write a complex configuration file based on documentation. So far, the
setup component offers support for five physical components, commonly used
with the Rasperry Pi — buttons, the Pi camera, segment displays, NFC-chips,
generic binary components. These can be used in the setup process without
any further programming effort or in-depth knowledge about the component.
All these components can be configured using the textual interface of the setup
component. More components can be added by extending the provided architec-
ture inside the repository, which are also automatically integrated into the setup
script.

Two different types of components can be distinguished:

Observers “listen” to changes of the system, like a button press or other sen-
sor values. They are organized in features and properties, and often
need to be configured, e.g. which physical pin the button is con-
nected to.

Actions can be triggered externally, e.g. by business process activities. They
provide a way to interact with the device or with the environment
using the device, like sending a signal or taking a photo. All actions
provided by a device, and therefore by the Thing, are grouped as
properties within an artificial Thing-feature called “actions” (see
the explanation of Thing terminology in Sect. 2.1).

A physical component can be of one or both of the described types. For example,
the button component is an observer, which monitors the pin of the (push)
button, but the button itself cannot be operated automatically by an action. In
contrast, the NFC component serves as an observer, which reads an NFC-chip,
as well as an action, which writes to an NFC-chip.

Integrating IoT Devices into Business Processes 271

Connecting to the Cloud Service. The connector component takes care
of any communication between the physical device and the Bosch IoT Things
service. To connect to the service, the provided Rest API7 is used. Working with
the configuration file created by the previous step, the connector component
creates a new Thing instance in the Bosch IoT Things service and configures
it according to the file. Thing features and properties are instantiated with the
provided names and initialized with default values.

During operation of the IoT application, the connector component also
updates the digital twin with the latest device state, e.g. sensor values. Due
to the fine-grained structure, each change of information can be addressed and
processed individually. If a sensor reports a new value, only this specific value
can be updated and there is no need to refresh the whole Thing.

Monitoring the Device and Its Components. The third component man-
ages the device at “runtime”: Each connected physical component, like a button,
is monitored in its own thread, according to the configuration. The decoupled
structure of the implementation allows to supervise different components simul-
taneously, whilst being more error resistant, as each component operates in an
own thread. In case a change is registered, e.g. the button is pressed or the
measured temperature increases, the new value is assigned to the corresponding
feature and property of the Thing. Then, the updated value is provided to the
connector component, which updates the digital twin in the Bosch IoT Things
service. By comparing the previous value with the updated one, unnecessary
calls and updates to the Rest API are avoided.

The monitoring component also manages the return path from the Bosch IoT
Things service to the Raspberry Pi and its connected components. On startup, a
WebSocket connection to the cloud service is established and within this connec-
tion, the script registers for events about changes to the Thing. Thus, every time
a Thing changes, an event is received containing information about the affected
Thing entity, the changed feature and property, as well as the new value. Since
so-called actions are organized in a separate “actions’-feature, action related
events can be identified by filtering firstly according to the configured Thing
name and secondly, the change must concern an action. Most actions can be
triggered by setting the corresponding property-value in the “actions”-features
to true (i.e. enabling it). Now, each time a property within the “actions”-feature
of the current Thing is set to true, an event passes the filter and can be processed
further. Based on the event’s information, the monitoring component determines
the requested action and executes it in an additional thread. After completing
the action’s task, the corresponding property in the twin is reset to allow another
execution. A more abstract view is provided in Sect. 3.5 below.

" https://things.s-apps.del.bosch-iot-cloud.com/documentation /rest /.

https://things.s-apps.de1.bosch-iot-cloud.com/documentation/rest/

272 C. Friedow et al.

3.3 Receiving Events from “Digital Twins”

Every time a Thing in the Bosch IoT Things service is updated, an event should
be registered inside Unicorn. In order to receive the updates, which we created
earlier through the Python script, we developed an event adapter for Unicorn®.
This event adapter requests the Bosch IoT Things service Rest API for all Things
in regular intervals. Afterwards, it calculates the JSON difference between the
last two requests according to RFC 6902° and converts the updates into events

in Unicorn.

Table 1. Mapping from target of change to corresponding event type

Target of change Event type
Thing was created ThingAdded
Attribute was changed | AttributeChanged

Feature was changed | FeatureChanged

Property was changed | PropertyChanged

Thing was deleted ThingRemoved

Events created by this adapter will have different event types based on the
target of the change. Table 1 shows the change made to the Thing and the event
type of the corresponding event. The events created by the Bosch IoT Things
adapter can now be either processed further using EPL or used directly by other
services that subscribed accordingly to Unicorn.

3.4 React Flexibly to Events

In order to react to events using fragment based case models, the case model
execution engine Chimera is introduced to the workflow. Chimera already imple-
ments a configurable connection which connects to the Rest API provided by
Unicorn. If a case model containing message receive or send events is deployed
to Chimera, the engine will register the specified queries in Unicorn. Message
receive events will additionally register a callback to Chimera, which is called
by Unicorn each time the registered EPL query is matched. The implementation
of the connection between Unicorn and Chimera has been described in [11] and
conceptually extended in [7].

Bringing together the events created in Unicorn when the digital twin is
changed and a case model using the mentioned message receive events, opens up
the possibility to drive a case model using events from IoT devices. That enables
case model execution engines like Chimera to automatically decide gateways or

8 https://github.com /bptlab/Unicorn/tree/dev/EapEventProcessing/src/main/java/
de/hpi/unicorn/adapter/Boschlot.
9 https:/ /tools.ietf.org/html/rfc6902.

https://github.com/bptlab/Unicorn/tree/dev/EapEventProcessing/src/main/java/de/hpi/unicorn/adapter/BoschIot
https://github.com/bptlab/Unicorn/tree/dev/EapEventProcessing/src/main/java/de/hpi/unicorn/adapter/BoschIot
https://tools.ietf.org/html/rfc6902

Integrating IoT Devices into Business Processes 273

change the state of objects, based on sensor values or real life events measured
by IoT devices. The next challenge was to trigger actions, like taking a photo
or displaying some text on a IoT device, using certain activities inside the case
model.

3.5 Sending Commands from Business Activities

As mentioned before, the communication between cloud service and device is
bi-directional. Thereby, e.g. business process instances can trigger actions on
physical devices and affect the environment. In Sect. 3.2, “actions” were intro-
duced and how they can be triggered on devices. To accomplish the required
property-change, so-called webservice-activities are used inside Chimera. Those
activities can be enriched with a URL that is called as soon as the activity is exe-
cuted. In this case, the webservice-activities are configured to perform a request
to the Bosch IoT Things service Rest API, which changes the desired property
in the digital twin.

Example: A business process requires a device (the Raspberry Pi) to take
a photo. During the modeling process, a webservice-activity is inserted at
the desired point and configured with a request to enable the “camera’-
property in the “actions”-feature on the correct Thing. The Raspberry Pi
configured for this Thing, now receives an event for this change through
its WebSocket connection to the Bosch IoT Things service. It determines
that the “camera”-property was connected to the configured Pi-Camera-
component during the setup process and executes the logic behind it (tak-
ing a photo). As it is very likely that the image needs to be viewed at
some point later, the component also updates the “camera’-feature with
the path of the last photo taken. In addition, the value of the “camera”-
property in the “action”-feature is reset (i.e. disabled) and therefore ready
to be triggered again.

4 Evaluation

In order to evaluate the approach presented above to connect Internet of Things
devices to business processes, we realize an exemplary use case. The use case
should not only combine different physical components or only be of theoretical
or abstract use, but should also demonstrate, how the combination of IoT and
business processes can simplify and enhance our everyday lives.

The Idea is a simple coffee machine billing system. The system aims to auto-
mate the process of counting the coffee amount for each user, as well as detecting
potential coffee theft, to simplify the billing for a shared coffee machine. In a suc-
cessful execution of the process, a user should be identified before using the coffee
grinder and the amount of consumed coffee in the corresponding user account

274 C. Friedow et al.

should increase. If the coffee grinder is used without previous identification the
action should be treated as theft and should be documented.

Starting from this informal description, we determined the sensors and actors
necessary to implement the use case. In order to ease the authentication process
for users, we connected an NFC sensor module to a Raspberry Pi. We also
connected a vibration sensor attached to the coffee grinder, in order to detect
when it is used. Finally, we connected a display and a camera to the Raspberry
Pi, to visualize process progress and take photos of potential thieves.

Creating a Digital Representation for the Raspberry Pi. After con-
necting all sensors and actors the Raspberry Pi, a digital representation needs
to be created. We implemented the scripts for all components in Python and
executed the setup script, introduced in Sect. 3.2, which initialized the digital
representation of the Raspberry Pi, afterwards. As the initialization finished, the
Raspberry Pi was ready to be monitored by the daemon script, which pushes
changes of sensor values and receives execution commands for actions.

Receiving Events from Digital Twins. The Thing inside the Bosch IoT
Things service already receives updates from the Raspberry Pi and to get these
updates into Unicorn too, the Bosch IoT event adapter inside an existing Unicorn
instance needs to be started. No additional customization or configuration was
required at this step.

ID Timestamp EventType Values

161 2018-01-29 PropertyChanged feature=actions, property=display, propertyValue=BPT meets loT, thingld=com.friedow:thingberry
10:24:19.000 (8)

160 2018-01-29 PropertyChanged feature=vibration, property=lastTriggered, propertyValue=2018-01-29 09:53:01.118664,
09:53:05.000 (8) thingld=com.friedow:thingberry

Fig. 4. Events concerning the Raspberry Pi

Figure4 shows a vibration event that was successfully pushed to Unicorn
from the the Raspberry Pi, as well as an action event which will show a message
on the display.

React Flexibly to Events. Now that the updates of sensor values are available
in Unicorn, they can be used by other systems like Chimera. But before actually
using Chimera to receive and work on the basis of events, we had to model our
exemplary use case as a fragment-based case model. Therefore, we captured our
example in eight fragments, modeled them in Gryphon and deployed the case
model to Chimera. Figure 5 shows the case fragment in which a user is able to
use the coffee grinder if he is currently authenticated.

In order to receive event notifications from Unicorn, Chimera registers EPL
queries for each event-receiving model element. From this point on, every time
Unicorn receives an event which matches the query, Chimera is notified and the
process model is powered by this event.

Integrating IoT Devices into Business Processes 275

. Al

User S ol User
Is user [authenticated] Ss.. [approved]

{?{a,}

authenticated?

getcoffee
#User =
authenticated

coffee grinder
activated

DEFAULT

Fig. 5. Exemplary case fragment “Get Coffee”

Sending Commands from Business Activities. After the exemplary show-
case successfully received events and powered fragment based case model
instances with it, the last task was to trigger actions like taking a photo or show-
ing some text on the Raspberry Pi’s display. As already described in Sect. 3.5,
actions are triggered by setting certain properties on the Thing inside the Bosch
IoT Cloud. To achieve this, we defined webservice tasks inside the case model,
changing the corresponding property. These can then be automatically executed
by Chimera, if they were enabled. That opened up the possibility to take a photo
or display some text using just the executed case model itself.

Wrap-Up. The small use case clearly demonstrates the level of abstraction and
the capabilities of the underlying implementation. Whereas the Raspberry Pi just
sends its data to the Bosch IoT Things service, having no knowledge about other
connected systems, Chimera and Unicorn do not need any detailed information
about the device and its physical characteristics. Therefore, it furthermore shows
the power of the connection between Internet of Things and business process
management and how manual tasks can be automated.

5 Conclusion

The approach presented in this contribution allows to coordinate the devices
used in an IoT application using a process engine for the process logic. It can
also be used to extend existing business process or case models by integrating
external events produced by IoT devices. Thus, with our approach, business pro-
cesses can make use of real-world sensor data, while on the other hand changing
the physical state of the world, by triggering actions. By using a defined and
documented interface, the physical world and its model representation can be
kept decoupled, allowing to reuse device data in various instances and to access
data from multiple different devices from within a single instance.

The presented implementation provides an uncomplicated way to connect
small and inexpensive devices with business processes via a cloud service. For
the implementation we combined several existing systems. While previous work

276 C. Friedow et al.

existed for the connection of Unicorn and Chimera [7,11], the connections
between Unicorn and the Bosch IoT Things service, as well as the Bosch IoT
Things service and the IoT device originate from this contribution.

One limiting factor of our approach are the sensor and actuator components
connected to the Rasberry Pi. For each of these components custom code has to
be written to read sensor values or trigger actions. Our implementation already
supports several sensors and actuators, like buttons, binary sensors, the camera
module, the NFC reader, and a display. It provides also templates that can
be sub-classed to support further components, thus reducing the programmatic
effort to realize future use cases.

Further the specification of webservice tasks in the case models requires a
lot of knowledge about the setup; concrete names of Things, as well as their
feature and property names must be available at modeling time and the corre-
sponding Rest API call needs to be assembled manually. In future work we want
to examine, how this step can be made more flexible by allowing to define the
webservice tasks at deploy or run time. This kind of flexible late binding has
already been implemented for email tasks which can be configured on a per-case
basis at runtime. Another approach would be to specify Things as well as their
features and properties as part of the data model in Gryphon. This is already
done for event types that are modeled in Gryphon and registered with Unicorn
when the case model is deployed.

References

1. Baumgra8, A., Botezatu, M., Di Ciccio, C., Dijkman, R., Grefen, P., Hewelt, M.,
Mendling, J., Meyer, A., Pourmirza, S., Volzer, H.: Towards a methodology for the
engineering of event-driven process applications. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 501-514. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42887-1_40

2. Zapier: Zapier = documentation (2018). https://zapier.com/developer/
documentation/v2/. Accessed Mar 2018

3. IFTTT: IFTTT documentation (2018). https://platform.ifttt.com/docs. Accessed
Mar 2018

4. Rahmati, A., Fernandes, E., Jung, J., Prakash, A.: IFTTT vs. Zapier: a compar-
ative study of trigger-action programming frameworks. CoRR abs/1709.02788
(2017)

5. Meyer, S., Ruppen, A., Magerkurth, C.: Internet of Things-aware process modeling;:
integrating iot devices as business process resources. In: Salinesi, C., Norrie, M.C.,
Pastor, O. (eds.) CAISE 2013. LNCS, vol. 7908, pp. 84-98. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38709-8_6

6. Serral, E., Valderas, P., Pelechano, V.: Context-adaptive coordination of pervasive
services by interpreting models during runtime. Comput. J. 56(1), 87-114 (2013)

7. Mandal, S., Hewelt, M., Weske, M.: A Framework for Integrating Real-World
Events and Business Processes in an IoT Environment. In: Panetto, H., et al. (eds.)
On the Move to Meaningful Internet Systems. OTM 2017 Conferences, OTM 2017.
LNCS, vol. 10573, pp. 194-212. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69462-7_13

https://doi.org/10.1007/978-3-319-42887-1_40
https://doi.org/10.1007/978-3-319-42887-1_40
https://zapier.com/developer/documentation/v2/
https://zapier.com/developer/documentation/v2/
https://platform.ifttt.com/docs
https://doi.org/10.1007/978-3-642-38709-8_6
https://doi.org/10.1007/978-3-319-69462-7_13
https://doi.org/10.1007/978-3-319-69462-7_13

10.

11.

Integrating IoT Devices into Business Processes 277

Baumgrass, A., Di Ciccio, C., Dijkman, R.M., Hewelt, M., Mendling, J., Meyer,
A., Pourmirza, S., Weske, M., Wong, T.Y.: GET Controller and UNICORN: event-
driven process execution and monitoring in logistics. In: BPM Demo Session, pp.
75-79 (2015)

Herzberg, N., Meyer, A., Weske, M.: An event processing platform for business
process management. In: EDOC. IEEE (2013)

Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution.
In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 38-54.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_3

Beyer, J., Kuhn, P., Hewelt, M., Mandal, S., Weske, M.: Unicorn meets Chimera:
integrating external events into case management. In: BPM Demo Track, vol. 1789,
CEUR-WS (2016)

https://doi.org/10.1007/978-3-319-45468-9_3

	Integrating IoT Devices into Business Processes
	1 Introduction
	2 Foundations
	2.1 Bosch IoT Things Service
	2.2 Unicorn
	2.3 Gryphon
	2.4 Chimera

	3 Approach and Implementation
	3.1 Overview
	3.2 Creating a Digital Representation for an IoT Device
	3.3 Receiving Events from ``Digital Twins''
	3.4 React Flexibly to Events
	3.5 Sending Commands from Business Activities

	4 Evaluation
	5 Conclusion
	References

