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Preface

The 15th Workshop on Algorithms and Models for the Web Graph (WAW 2018) took
place at the Moscow Institute of Physics and Technology, Russia, May 17–18, 2018.
This is an annual meeting, which is traditionally co-located with another, related,
conference. WAW 2018 was co-located with the Workshop on Graphs, Networks, and
Their Applications. The co-location of the two workshops provided opportunities for
researchers in two different but interrelated areas to interact and to exchange research
ideas. It was an effective venue for the dissemination of new results and for fostering
research collaboration.

The World Wide Web has become part of our everyday life, and information
retrieval and data mining on the Web are now of enormous practical interest. The
algorithms supporting these activities combine the view of the Web as a text repository
and as a graph, induced in various ways by links among pages, hosts and users. The
aim of the workshop was to further the understanding of graphs that arise from the Web
and various user activities on the Web, and stimulate the development of
high-performance algorithms and applications that exploit these graphs. The workshop
gathered together researchers working on graph-theoretic and algorithmic aspects of
related complex networks, including social networks, citation networks, biological
networks, molecular networks, and other networks arising from the Internet.

This volume contains the papers presented during the workshop. Each submission
was reviewed by Program Committee members. Papers were submitted and reviewed
using the EasyChair online system. The committee members accepted 11 papers.

May 2018 Anthony Bonato
Paweł Prałat

Andrei Raigorodskii
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Finding Induced Subgraphs in Scale-Free
Inhomogeneous Random Graphs

Ellen Cardinaels, Johan S. H. van Leeuwaarden, and Clara Stegehuis(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
C.Stegehuis@tue.nl

Abstract. We study the induced subgraph isomorphism problem on
inhomogeneous random graphs with infinite variance power-law degrees.
We provide a fast algorithm that determines for any connected graph H
on k vertices if it exists as induced subgraph in a random graph with n
vertices. By exploiting the scale-free graph structure, the algorithm runs
in O(nk) time for small values of k. We test our algorithm on several
real-world data sets.

1 Introduction

The induced subgraph isomorphism problem asks whether a large graph G con-
tains a connected graph H as an induced subgraph. When k is allowed to grow
with the graph size n, this problem is NP-hard in general. For example, k-
clique and k induced cycle, special cases of H, are known to be NP-hard [13,20].
For fixed k, this problem can be solved in polynomial time O(nk) by search-
ing for H on all possible combinations of k vertices. Several randomized and
non-randomized algorithms exist to improve upon this trivial way of finding
H [14,25,27,29].

On real-world networks, many algorithms were observed to run much faster
than predicted by the worst-case running time of algorithms. This may be
ascribed to some of the properties that many real-world networks share [4],
such as the power-law degree distribution found in many networks [1,8,19,28].
One way of exploiting these power-law degree distributions is to design algo-
rithms that work well on random graphs with power-law degree distributions.
For example, finding the largest clique in a network is NP-complete for general
networks [20]. However, in random graph models such as the Erdős-Rényi ran-
dom graph and the inhomogeneous random graph, their specific structures can be
exploited to design fixed parameter tractable (FPT) algorithms that efficiently
find a clique of size k [10,12] or the largest independent set [15].

In this paper, we study algorithms that are designed to perform well for
the inhomogeneous random graph, a random graph model that can generate
graphs with a power-law degree distribution [2,3,5,6,24,26]. The inhomogeneous
random graph has a densely connected core containing many cliques, consisting
of vertices with degrees

√
n log(n) and larger. In this densely connected core,

the probability of an edge being present is close to one, so that it contains
c© Springer International Publishing AG, part of Springer Nature 2018
A. Bonato et al. (Eds.): WAW 2018, LNCS 10836, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-92871-5_1
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2 E. Cardinaels et al.

many complete graphs [18]. This observation was exploited in [11] to efficiently
determine whether a clique of size k occurs as a subgraph in an inhomogeneous
random graph. When searching for induced subgraphs however, some edges are
required not to be present. Therefore, searching for induced subgraphs in the
entire core is not efficient. We show that a connected subgraph H can be found
as an induced subgraph by scanning only vertices that are on the boundary of
the core: vertices with degrees proportional to

√
n.

We present an algorithm that first selects the set of vertices with degrees
proportional to

√
n, and then randomly searches for H as an induced subgraph on

a subset of k of those vertices. The first algorithm we present does not depend on
the specific structure of H. For general sparse graphs, the best known algorithms
to solve subgraph isomorphism on 3 or 4 vertices run in O(n1.41) or O(n1.51) time
with high probability [29]. For small values of k, our algorithm solves subgraph
isomorphism on k nodes in linear time with high probability on inhomogeneous
random graphs. However, the graph size needs to be very large for our algorithm
to perform well. We therefore present a second algorithm that again selects the
vertices with degrees proportional to

√
n, and then searches for induced subgraph

H in a more efficient way. This algorithm has the same performance guarantee
as our first algorithm, but performs much better in simulations.

We test our algorithm on large inhomogeneous random graphs, where it
indeed efficiently finds induced subgraphs. We also test our algorithm on real-
world network data with power-law degrees. There our algorithm does not per-
form well, probably due to the fact that the densely connected core of some
real-world networks may not be the vertices of degrees at least proportional
to

√
n. We then show that a slight modification of our algorithm that looks for

induced subgraphs on vertices of degrees proportional to nγ for some other value
of γ performs better on real-world networks, where the value of γ depends on
the specific network.

Notation. We say that a sequence of events (En)n≥1 happens with high prob-
ability (w.h.p.) if limn→∞ P (En) = 1. Furthermore, we write f(n) = o(g(n)) if
limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) if |f(n)|/g(n) is uniformly bounded,
where (g(n))n≥1 is nonnegative. Similarly, if lim supn→∞ |f(n)| /g(n) > 0, we
say that f(n) = Ω(g(n)) for nonnegative (g(n))n≥1. We write f(n) = Θ(g(n)) if
f(n) = O(g(n)) as well as f(n) = Ω(g(n)).

1.1 Model

As a random graph null model, we use the inhomogeneous random graph or
hidden variable model [2,3,5,6,24,26]. Every vertex is equipped with a weight.
We assume that the weights are i.i.d. samples from the power-law distribution

P (wi > k) = Ck1−τ (1.1)

for some constant C and for τ ∈ (2, 3). Two vertices with weights w and w′ are
connected with probability

p(w,w′) = min
(

ww′

μn
, 1

)
, (1.2)
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where μ denotes the mean value of the power-law distribution (1.1). Choosing
the connection probability in this way ensures that the expected degree of a
vertex with weight w is w.

1.2 Algorithms

We now describe two randomized algorithms that determine whether a connected
graph H is an induced subgraph in an inhomogeneous random graph and find
the location of such a subgraph if it exists. Algorithm 1 selects the vertices in
the inhomogeneous random graph that are on the boundary of the core of the
graph: vertices with degrees slightly below

√
μn. Then, the algorithm randomly

divides these vertices into sets of k vertices. If one of these sets contains H as
an induced subgraph, the algorithm terminates and returns the location of H. If
this is not the case, then the algorithm fails. In the next section, we show that
for k small enough, the probability that the algorithm fails is small. This means
that H is present as an induced subgraph on vertices that are on the boundary
of the core with high probability.

Algorithm 1 is similar to the algorithm in [12] designed to find cliques in
random graphs. The major difference is that the algorithm to find cliques looks
for cliques on all vertices with degrees larger than

√
f1μn for some function f1.

This algorithm is not efficient for detecting other subgraphs than cliques, since
vertices with high degrees will be connected with probability close to one.

Algorithm 1. Finding induced subgraph H (random search)
Input : H, G = (V, E), μ, f1 = f1(n), f2 = f2(n).
Output: Location of H in G or fail.

1 Define n = |V |, In = [
√

f1μn,
√

f2μn] and set V ′ = ∅.
2 for i ∈ V do
3 if Di ∈ In then V ′ = V ′ ∪ i
4 end
5 Divide the vertices in V ′ randomly into �|V ′| /k� sets S1, . . . , S�|V ′|/k�.
6 for j = 1, . . . , �|V ′| /k� do
7 if H is an induced subgraph on Sj then return location of H
8 end

The following theorem gives a bound for the performance of Algorithm 1 for
small values of k.

Theorem 1. Choose f1 = f1(n) ≥ 1/ log(n) and f1 < f2 < 1 and let k <

log1/3(n). Then, with high probability, Algorithm 1 detects induced subgraph H
on k vertices in an inhomogeneous random graph with n vertices and weights
distributed as in (1.1) in time O(nk).

Thus, for small values of k, Algorithm 1 finds an instance of H in linear time.
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A problem with parameter k is called fixed parameter tractable (FPT) if it
can be solved in f(k)nO(1) time for some function f(k), and it is called typical
FPT (typFPT) if it can be solved in f(k)ng(n) for some function g(n) = O(1)
with high probability [9]. As a corollary of Theorem 1 we obtain that the
induced subgraph problem on the inhomogeneous random graph is in typFPT
for any subgraph H, similarly to the k-clique problem on inhomogeneous random
graphs [12].

Corollary 1. The induced subgraph problem on the inhomogeneous random
graph is in typFPT.

In theory Algorithm 1 detects any motif on k vertices in linear time for small
k. However, this only holds for large values of n, which can be understood as
follows. In Lemma 2, we show that |V ′| = Θ(n(3−τ)/2), thus tending to infinity
as n grows large. However, when n = 107 and τ = 2.5, this means that the size
of the set V ′ is only proportional to 101.75 = 56 vertices. Therefore, the number
of sets Sj constructed in Algorithm 1 is also small. Even though the probability
of finding motif H in any such set is proportional to a constant, this constant
may be small, so that for finite n the algorithm almost always fails. Thus, for
Algorithm 1 to work, n needs to be large enough so that n(3−τ)/2 is large as well.

The algorithm can be significantly improved by changing the search for H
on vertices in set V ′. In Algorithm 2 we propose a search for motif H similar
to the Kashtan motif sampling algorithm [21]. Rather than sampling k vertices
randomly, it samples one vertex randomly, and then randomly increases the set
S by adding vertices in its neighborhood. This already guarantees the vertices
in list Sj to be connected, making it more likely for them to form a specific
connected motif together. In particular, we expand the list Sj in such a way that
the vertices in Sj are guaranteed to form a spanning tree of H as a subgraph.
This is ensured by choosing the list TH that specifies at which vertex in Sj we
expand Sj by adding a new vertex. For example, if k = 4 and we set TH = [1, 2, 3]
we first add an edge to the first vertex, then we look for a random neighbor of
the previously added vertex, and then we add a random neighbor of the third
added vertex. Thus, setting TH = [1, 2, 3] ensures that the set Sj contains a path
of length three, whereas setting TH = [1, 1, 1] ensures that the set Sj contains a
star-shaped subgraph. Depending on which subgraph H we are looking for, we
can define TH in such a way that we ensure that the set Sj at least contains a
spanning tree of motif H in Step 6 of the algorithm.

The selection on the degrees ensures that the degrees are sufficiently high so
that probability of finding such a connected set on k vertices is high, as well as
that the degrees are sufficiently low to ensure that we do not only find complete
graphs because of the densely connected core of the inhomogeneous random
graph. The probability that Algorithm 2 indeed finds the desired motif H in
any check is of constant order of magnitude, similar to Algorithm 1. Therefore,
the performance guarantee of both algorithms is similar. However, in practice
Algorithm 2 performs much better, since for finite n, k connected vertices are
more likely to form a motif than k randomly chosen vertices.
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Algorithm 2. Finding induced subgraph H (neighborhood search)
Input : H, G = (V, E), μ, f1 = f1(n), f2 = f2(n), s.
Output: Location of H in G or fail.

1 Define n = |V |, In = [
√

f1μn,
√

f2μn] and set V ′ = ∅.
2 for i ∈ V do
3 if Di ∈ In then V ′ = V ′ ∪ i
4 end
5 Let G′ be the induced subgraph of G on vertices V ′.
6 Set T H consistently with motif H.
7 for j=1,. . . ,s do
8 Pick a random vertex v ∈ V ′ and set Sj = v.
9 while |Sj | �= k do

10 Pick a random v′ ∈ NG′(Sj [T
H [j]]) : v′ /∈ Sj

11 Add v′ to Sj .

12 end
13 if H is an induced subgraph on Sj then return location of H

14 end

The following theorem shows that indeed Algorithm 2 has similar perfor-
mance guarantees as Algorithm 1.

Theorem 2. Choose f1 = f1(n) ≥ 1/ log(n) and f1 < f2 < 1. Choose s =
Ω(nα) for some 0 < α < 1, such that s ≤ n/k. Then, Algorithm 2 detects
induced subgraph H on k < log1/3(n) vertices on an inhomogeneous random
graph with n vertices and weights distributed as in (1.1) in time O(nk) with high
probability.

The proofs of Theorems 1 and 2 rely on the fact that for small k, any sub-
graph on k vertices is present in G′ with high probability. This means that after
the degree selection step of Algorithms 1 and 2, for small k, any motif finding
algorithm can be used to find motif H on the remaining graph G′, such as the
Grochow-Kellis algorithm [14], the MAvisto algorithm [27] or the MODA algo-
rithm [25]. In the proofs of Theorems 1 and 2, we show that G′ has Θ(n(3−τ)/2)
vertices with high probability. Thus, the degree selection step reduces the prob-
lem of finding a motif H on n vertices to finding a motif on a graph with
Θ(n(3−τ)/2) vertices, significantly reducing the running time of the algorithms.

2 Proof of Theorems 1 and 2

We prove Theorem 1 using two lemmas. The first lemma relates the degrees of
the vertices to their weights. The connection probabilities in the inhomogeneous
random graph depend on the weights of the vertices. In Algorithm 1, we select
vertices based on their degrees instead of their unknown weights. The following
lemma shows that the weights of the vertices in V ′ are close to their degrees.
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Lemma 1. Degrees and weights. Fix ε > 0, and define Jn = [(1−ε)
√

f1μn, (1+
ε)

√
f2μn]. Then, for some K > 0,

P (∃i ∈ V ′ : wi /∈ Jn) ≤ Kn exp
(

−ε2(1 − ε)
2(1 + ε)

√
f1μn

)
. (2.1)

Proof. Fix a vertex i ∈ V . Conditionally on the weight wi of vertex i, Di ∼
Poi(wi) [5,16]. Then,

P

(
wi < (1 − ε)

√
f1μn, Di ∈ In

)
=

P
(
Di ∈ In | wi < (1 − ε)

√
f1μn

)

P
(
wi < (1 − ε)

√
f1μn

)

≤ P
(
Di >

√
f1μn | wi = (1 − ε)

√
f1μn

)

1 − C((1 − ε)
√

f1μn)1−τ

≤ K1P

(
Di >

√
f1μn | wi = (1 − ε)

√
f1μn

)
,

(2.2)
for some K1 > 0. Here the first inequality follows because for Poisson random
variables P (Poi(λ1) > k) ≤ P (Poi(λ2) > k) for λ1 < λ2. We use that by the
Chernoff bound for Poisson random variables

P (X > λ(1 + δ)) ≤ exp
(−h(δ)δ2λ/2

)
, (2.3)

where h(δ) = 2((1 + δ) ln(1 + δ) − δ)/δ2. Therefore, using that h(δ) ≥ 1/(1 + δ)
for δ ≥ 0 results in

P

(
Di >

√
f1μn | wi = (1 − ε)

√
f1μn

)
≤ exp

(
−ε2(1 − ε)

2(1 + ε)

√
f1μn

)
. (2.4)

Combining this with (2.2) and taking the union bound over all vertices then
results in

P

(
∃i : Di ∈ In, wi < (1 − ε)

√
f1μn

)
≤ K1n exp

(
−ε2(1 − ε)

2(1 + ε)

√
f1μn

)
. (2.5)

The bound for wi > (1 + ε)
√

f2μn follows similarly. Combining this with the
fact that f1 < f2 then proves the lemma. �	

The second lemma shows that after deleting all vertices with degrees outside
of In defined in Step 1 of Algorithm 1, still polynomially many vertices remain
with high probability.

Lemma 2. Polynomially many nodes remain. There exists γ > 0 such that

P

(
|V ′| < γn(3−τ)/2

)
≤ 2 exp

(
−Θ(n(3−τ)/2)

)
. (2.6)

Proof. Let E denote the event that all vertices i ∈ V ′ satisfy wi ∈ Jn for some
ε > 0, with Jn as in Lemma 1. Let W ′ be the set of vertices with weights in Jn.
Under the event E , |V ′| ≤ |W ′|. Then, by Lemma 1

P

(
|V ′| < γn(3−τ)/2

)
≤ P

(
|W ′| < γn(3−τ)/2

)
+ Kn exp

(
−ε2(1 − ε)

2(1 + ε)

√
f1μn

)
.

(2.7)
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Furthermore,

P (wi ∈ Jn) = C((1 − ε)
√

f1μn)1−τ − C((1 + ε)
√

f2μn)1−τ ≥ c1(
√

μn)1−τ

(2.8)
for some constant c1 > 0 because f1 < f2. Thus, each of the n vertices is in
set W ′ independently with probability at least c1(

√
μn)1−τ . Choose 0 < γ < c1.

Applying the multiplicative Chernoff bound then shows that

P

(
|W ′| < γn(3−τ)/2

)
≤ exp

(
− (c1 − γ)2

2c1
n(3−τ)/2

)
, (2.9)

which proves the lemma together with (2.7) and the fact that
√

f1μn =
Ω(n(3−τ)/2) for τ ∈ (2, 3). �	

We now use these lemmas to prove Theorem 1.

Proof of Theorem 1. We condition on the event that V ′ is of polynomial size
(Lemma 2) and that the weights are within the constructed lower and upper
bounds (Lemma 1), since both events occur with high probability. This bounds
the edge probability between any pair of nodes i and j in V ′ as

pij < min
(

(1 + ε)
√

f2μn(1 + ε)
√

f2μn

μn
, 1

)
= f2(1 + ε)2, (2.10)

so that pij ≤ p+ = c1 < 1 if we choose ε small enough. Similarly,

pij > min

(
(1 − ε)2

√
f1μn

2

μn

)

= Θ

(
1

log(n)

)
, (2.11)

by our choice of f1, so that pij ≥ p− = c2/ log(n). Let E := |EH | be the number
of edges in H. We upper bound the probability of not finding H in one of the
partitions of size k of V ′ as 1− pE

−(1− p+)(
k
2)−E . Since all partitions are disjoint

we can upper bound the probability of not finding H in any of the partitions as

P (H not in the partitions) ≤
(
1 − pE

−(1 − p+)(
k
2)−E

)⌈ |V ′|
k

⌉

. (2.12)

Using that E ≤ k2,
(
k
2

) − E ≤ k2 and that 1 − x ≤ e−x results in

P (H not in the partitions) ≤ exp
(

−pk2

− (1 − p+)k2
⌈ |V ′|

k

⌉)
. (2.13)

Since |V ′| = Θ
(
n

3−τ
2

)
, 
|V ′|/k� ≥ dn

3−τ
2 /k for some constant d > 0. We fill in

the expressions for p− and p+, with c3 > 0 a constant

P (H not in the partitions) ≤ exp

(

−dn
3−τ
2

k

(
c3

log n

)k2)

. (2.14)
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Now apply that k ≤ log
1
3 (n). Then

P (H not in the partitions) ≤ exp

(

−dn
3−τ
2

log
1
3 n

(
c3

log n

)log
2
3 n

)

≤ exp
(
−dn

3−τ
2 −o(1)

)
.

(2.15)

Hence, the inner expression grows polynomially such that the probability of not
finding H in one of the partitions is negligibly small. The running time of the
partial search is given by

|V ′|
k

(
k

2

)
≤ n

k

(
k

2

)
≤ nk ≤ nek4

, (2.16)

which concludes the proof for k ≤ log1/3(n). �	

Proof of Corollary 1. If k > log
1
3 (n), we can determine whether H is an induced

subgraph by exhaustive search in time
(

n

k

)(
k

2

)
≤ nk

k

k(k − 1)
2

≤ knk ≤ kek4 ≤ nek4
, (2.17)

since for all sets of k vertices the presence or absence of
(
k
2

)
edges needs to be

checked. For k ≤ log
1
3 (n), Theorem 1 shows that the induced subgraph isomor-

phism problem can be solved in time nk ≤ nek4
. Thus, with high probability

the induced subgraph isomorphism problem can be solved in nek4
time, which

proves that it is in typFPT. �	
Proof of Theorem 2. The proof of Theorem 2 is very similar to the proof of
Theorem 1. The only way Algorithm 2 differs from Algorithm 1 is in the selection
of the sets Sj . As in the previous theorem, we condition on the event that
|V ′| = Θ(n(3−τ)/2) (Lemma 2) and that the weights of the vertices in G′ are
bounded as in Lemma 1.

The graph G′ constructed in Step 5 of Algorithm 2 then consists of
Θ(n(3−τ)/2) vertices. Furthermore, by the bound (2.11) on the connection prob-
abilities of all vertices in G′, the expected degree of a vertex i in G′ satisfies
E [Di,G′ ] = Ω(n(3−τ)/2/ log(n)). We can use similar arguments as in Lemma 1 to
show that Di,G′ = Ω(n(3−τ)/2/ log(n)) with high probability for all vertices in
G′. Since G′ consists of Θ(n(3−τ)/2) vertices, Di,G′ = O(n(3−τ)/2) as well. This
means that for k < log

1
3 (n), Steps 8–11 are able to find a connected subgraph

on k vertices with high probability.
We now compute the probability that Sj is disjoint with the previous j − 1

constructed sets. The probability that the first vertex does not overlap with the
previous sets is given by 1 − jk/ |V ′|, since that vertex is chosen uniformly at
random. The second vertex is chosen in a size-biased manner, since it is chosen
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by following a random edge. The probability that vertex i is added can therefore
be bounded as

P (vertex i is added) =
Di,G′

∑|V ′|
s=1 Ds,G′

≤ M log(n)
|V ′| (2.18)

for some constant M > 0 by the conditions on the degrees. Therefore, the prob-
ability that Sj does not overlap with one of the previously chose jk vertices can
be bounded from below by

P (Sj does not overlap with previous sets) ≥
(
1 − kj

|V ′|
) (

1 − Mkj log(n)

|V ′|
)k−1

. (2.19)

Thus, the probability that all j sets do not overlap can be bounded as

P (Sj ∩ Sj−1 · · · ∩ S1 = ∅) ≥
(

1 − Mkj log(n)
|V ′|

)jk

, (2.20)

which tends to one when jk = o(n(3−τ)/4). Let sdis denote the number of disjoint
sets out of the s sets constructed in Algorithm 2. Then, when s = Ω(nα) for some
α > 0, sdis > nβ for some β > 0 with high probability, because k < log1/3(n).

The probability that H is present as an induced subgraph is bounded sim-
ilarly as in Theorem 1. We already know that k − 1 edges are present. For all
other E − (k − 1) edges of H, and all

(
k
2

) − E edges that are not present in H,
we can again use (2.10) and (2.11) to bound on the probability of edges being
present or not being present between vertices in V ′. Therefore, we can bound
the probability that H is not found similarly to (2.13) as

P (H not in the partitions) ≤ P (H not in the disjoint partitions)

≤ exp
(
−pk2

− (1 − p+)k2
sdis

)
.

Because sdis > nβ for some β > 0, this term tends to zero exponentially. The
running time of the partial search can be bounded similarly to (2.16) as

s

(
k

2

)
≤ sk2 = O(nk), (2.21)

where we used that s ≤ n/k. �	

3 Experimental Results

Fig. 1 shows the fraction of times Algorithm 1 succeeds to find a cycle of size
k in an inhomogeneous random graph on 107 vertices. Even though for large n
Algorithm 1 should find an instance of a cycle of size k in step 7 of the algorithm
with high probability, we see that Algorithm 1 never succeeds in finding one. This
is because of the finite size effects discussed before.
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Fig. 1. The fraction of times step 7 in Algorithm 1 succeeds to find a cycle of length k
on an inhomogeneous random graph with n = 107, averaged over 500 network samples
with f1 = 1/ log(n) and f2 = 0.9.

Figure 2a also plots the fraction of times Algorithm 2 succeeds to find a cycle.
We set the parameter s = 10000 so that the algorithm fails if the algorithm does
not succeed to detect motif H after executing step 13 of Algorithm 2 10000
times. Because s gives the number of attempts to find H, increasing s may
increase the success probability of Algorithm 2 at the cost of a higher running
time. However, in Fig. 2b we see that for small values of k, the mean number of
times Step 13 is executed when the algorithm succeeds is much lower than 10000,
so that increasing s in this experiment probably only has a small effect on the
success probability. We see that Algorithm 2 outperforms Algorithm 1. Figure 2b
also shows that the number of attempts needed to detect a cycle of length k is
small for k ≤ 6. For larger values of k the number of attempts increases. This
can again be ascribed to the finite size effects that cause the set V ′ to be small,
so that large motifs may not be present on vertices in set V ′. We also plot the
success probability when using different values of the functions f1 and f2. When
only the lower bound f1 on the vertex degrees is used, as in [11], the success
probability of the algorithm decreases. This is because the set V ′ now contains
many high degree vertices that are much more likely to form clique motifs than
cycles or other connected motifs on k vertices. This makes f2 = ∞ a very efficient
bound for detecting clique motifs [11]. For the cycle motif however, we see in
Fig. 2b that more checks are needed before a cycle is detected, and in some cases
the cycle is not detected at all.

Setting f1 = 0 and f2 = ∞ is also less efficient, as Fig. 2a shows. In this
situation, the number of attempts needed to find a cycle of length k is larger
than for Algorithm 2 for k ≤ 6.

3.1 Real Network Data

We now check Algorithm 2 on four real-world networks with power-law degrees:
a Wikipedia communication network [22], the Gowalla social network [22], the
Baidu online encyclopedia [23] and the Internet on the autonomous systems
level [22]. Table 1 presents several statistics of these scale-free data sets. Fig. 3
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Fig. 2. Results of Algorithm 2 on an inhomogeneous random graph with n = 107 for
detecting cycles of length k. The parameters are chosen as s = 10000, f1 = 1/ log(n),
f2 = 0.9. The values are averaged over 500 generated networks.

shows the fraction of runs where Algorithm 2 finds a cycle as an induced sub-
graph. We see that for the Wikipedia social network in Fig. 3a, Algorithm 2 is
more efficient than looking for cycles among all vertices in the network. For the
Baidu online encyclopedia in Fig. 3c however, we see that Algorithm 2 performs
much worse than looking for cycles among all possible vertices. In the other two
network data sets in Figs. 3b and d the performance on the reduced vertex set
and the original vertex set is almost the same. Figure 4 shows that in general,
Algorithm 2 indeed seems to finish in fewer steps than when using the full vertex
set. However, as Fig. 4c shows, for larger values of k the algorithm fails almost
always.

Table 1. Statistics of the data sets: the number of vertices n, the number of edges E,
and the power-law exponent τ fitted by the method of [7].

n E τ

Wikipedia 2,394,385 5,021,410 2.46

Gowalla 196,591 950,327 2.65

Baidu 2,141,300 17,794,839 2.29

AS-Skitter 1,696,415 11,095,298 2.35

These results show that while Algorithm 2 is efficient on inhomogeneous ran-
dom graphs, it may not always be efficient on real-world data sets. This is not
surprising, because there is no reason why the vertices of degrees proportional to√

n should behave like an Erdős-Rényi random graph, like in the inhomogeneous
random graph. We therefore investigate whether selecting vertices with degrees
in In = [(μn)γ/ log(n), (μn)γ ] for some other value of γ in Algorithm 2 leads
to a better performance. Figures 3 and 4 show for every data set one particular
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Fig. 3. The fraction of times Algorithm 2 succeeds to find a cycle on four large network
data sets for detecting cycles of length k. The parameters are chosen as s = 10000,
f1 = 1/ log(n), f2 = 0.9. The black line uses Algorithm 2 on vertices of degrees in
In = [(μn)γ/ log(n), (μn)γ ]. The values are averaged over 500 runs of Algorithm 2.

value of γ that works well. For the Gowalla, Wikipedia and Autonomous systems
network, this leads to a faster algorithm to detect cycles. Only for the Baidu net-
work other values of γ do not improve upon randomly selecting from all vertices.
This indicates that for most networks, cycles do appear mostly on degrees with
specific orders of magnitude, making it possible to sample these cycles faster.
Unfortunately, these orders of magnitude may be different for different networks.
Across all four networks, the best value of γ seems to be smaller than the value
of 0.5 that is optimal for the inhomogeneous random graph.
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Fig. 4. The number of times step 12 of Algorithm 2 is invoked when the algorithm does
not fail on four large network data sets for detecting cycles of length k. The parameters
are chosen as s = 10000, f1 = 1/ log(n), f2 = 0.9. The black line uses Algorithm 2
on vertices of degrees in In = [(μn)γ/ log(n), (μn)γ ]. The values are averaged over 500
runs of Algorithm 2.

4 Conclusion

We presented an algorithm which solves the induced subgraph problem on inho-
mogeneous random graphs with infinite variance power-law degrees in time
O(nek4

) with high probability as n grows large. This algorithm is based on the
observation that for fixed k, any subgraph is present on k vertices with degrees
slightly smaller than

√
μn with positive probability. Therefore, the algorithm

first selects vertices with those degrees, and then uses a random search method
to look for the induced subgraph on those vertices.

We show that this algorithm performs well on simulations of inhomogeneous
random graphs. Its performance on real-world data sets varies for different data
sets. This indicates that the degrees that contain the most induced subgraphs
of size k in real-world networks may not be close to

√
n. We then show that on

these data sets, it may be more efficient to find induced subgraphs on degrees
proportional to nγ for some other value of γ. The value of γ may be different for
different networks.
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Our algorithm exploits that induced subgraphs are likely formed among
√

μn-
degree vertices. However, certain subgraphs may occur more frequently on ver-
tices of other degrees [17]. For example, star-shaped subgraphs on k vertices
appear more often on one vertex with degree much higher than

√
μn corre-

sponding to the middle vertex of the star, and k − 1 lower-degree vertices cor-
responding to the leafs of the star [17]. An interesting open question is whether
there exist better degree-selection steps for specific subgraphs than the one used
in Algorithms 1 and 2.
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Abstract. We establish the asymptotic normality of the global cluster-
ing coefficient in sparse uniform random intersection graphs.

Keywords: Clustering coefficient · Asymptotic normality
Random intersection graph

1 Introduction

The global clustering coefficient of a finite graph G is the ratio CG = 3NΔ/N∨,
where NΔ is the number of triangles and N∨ is the number of paths of length
2. Equivalently, CG represents the probability that a randomly selected path of
length 2 induces triangle in G. The global clustering coefficient is a commonly
used network characteristic, assessing the strength of the statistical association
between neighboring adjacency relations. For example, in a social network the
tendency of linking actors which have a common neighbor is reflected by a non-
negligible value of the global clustering coefficient.

Clustering in a social network can be explained by an auxiliary bipartite
structure: each actor is prescribed a collection of attributes and any two actors
sharing a common attribute have high chances of being adjacent, cf. [8]. The
respective random intersection graph (RIG) on the vertex set V = {v1, . . . , vn}
and with the auxiliary attribute set W = {w1, . . . , wm} defines adjacency rela-
tions with the help of a random bipartite graph H linking actors (=vertices) to
attributes: two actors are adjacent in RIG if they have a common neighbour in
H. We mention that RIG admits non-vanishing tunable global clustering coeffi-
cient, power-law degrees and short typical distances, see e.g., [4].

In this note we consider the uniform random intersection graph G(n,m, r),
where every vertex vi ∈ V is prescribed a random subset Si = S(vi) ⊂ W of size r
and two vertices vi, vj are declared adjacent (denoted vi ∼ vj) whenever Si∩Sj �=
∅. We assume that the sets S1, . . . , Sn are independent. (The respective random
bipartite graph H is drawn uniformly at random from the class of bipartite
c© Springer International Publishing AG, part of Springer Nature 2018
A. Bonato et al. (Eds.): WAW 2018, LNCS 10836, pp. 16–29, 2018.
https://doi.org/10.1007/978-3-319-92871-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92871-5_2&domain=pdf


The Asymptotic Normality of the Global Clustering Coefficient 17

graphs with the property that each actor vi ∈ V has exactly r neighbours in
W .) The uniform random intersection graph has been widely studied in the
literature mainly as a model of secure wireless sensor network that uses random
predistribution of keys, see [5,14]. We denote for short G = G(n,m, r) and by G
we denote the instance (realization) of the random graph G.

We consider large random intersection graphs, where r2 = o(m) as
m,n → +∞. In this case the edge probability is, see (53),

pe = P(vi ∼ vj) = r2m−1 + O(r4m−2). (1)

For us the most interesting range of parameters n,m, r is defined by the approx-
imate relation

m ≈ cnr2, (2)

where c > 0 is an arbitrary constant. In this case we obtain a sparse random
graph, where the expected number of edges

(
n
2

)
pe ≈ n/(2c) scales as n.

Before formulating our results we introduce some notation. Given a vertex
triple vi, vj , vk, let Δi,j,k and pΔ denote the indicator and the probability of the
event that the vertex triple induces a triangle in G. Similarly, ∨ijk and p∨ denote
the indicator and probability that G contains the path vi ∼ vj ∼ vk (we call
such a path a cherry). The total number of triangles NΔ and cherries N∨ are

NΔ = NΔ(S1, . . . , Sn) =
∑

{i,j,k}⊂[n]

Δi,j,k, (3)

N∨ = N∨(S1, . . . , Sn) =
∑

{i,j,k}⊂[n]

(∨ijk + ∨jki + ∨kij

)
.

Denote

N̄Δ = NΔ − ENΔ, N̄∨ = N∨ − EN∨, σ2
Δ = EN̄2

Δ, σ2
∨ = EN̄2

∨, σΔ∨ = E
(
N̄ΔN̄∨

)
.

We start our analysis with an evaluation of the first and second moments of
the subgraph counts NΔ and N∨.

Lemma 1. Let m,n → +∞. Assume that r ≥ 2 and r3 = O(m). We have

ENΔ =
(

n

3

)
pΔ, pΔ =

r3

m2
+

r6

m3
+ O

( r5

m3

)
, (4)

EN∨ = 3
(

n

3

)
p∨, p∨ = p2e =

r4

m2
− r4(r − 1)2

m3
+

r4(r − 1)4

4m4
+ O

( r8

m4

)
, (5)

σ2
Δ = (n − 2)2

(
n

2

)
Eg2Δ 1,2 +

(
n

3

)
Eh2

Δ 1,2,3, (6)

σ2
∨ = (n − 2)2

(
n

2

)
Eg2∨ 1,2 +

(
n

3

)
Eh2

∨ 1,2,3, (7)

σΔ∨ = (n − 2)2
(

n

2

)
E

(
gΔ 1,2g∨ 1,2

)
+

(
n

3

)
E

(
hΔ 1,2,3h∨ 1,2,3

)
. (8)
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The random variables gΔ1,2, hΔ1,2,3 and g∨1,2, h∨1,2,3 define the Hoeffding
decomposition of N̄Δ and N̄∨, see (12). Their second moments entering (6),
(7), (8) are evaluated in (25), (26) and (31), (32) and (39), (40) respectively.

We note that (4) and (5) imply that the “theoretical clustering coefficient”

P
(
Δi,j,k

∣
∣∨ijk

)
=

pΔ

p∨
=

E(3NΔ)
EN∨

≈ 1
r

as n,m → +∞.

Therefore, in order to have a non-vanishing global clustering coefficient we
need r to be bounded as n,m → +∞, cf. [3,13]. But we may still expect the
asymptotic normality of σ−1

Δ N̄Δ and σ−1
∨ N̄∨ even for r → ∞ as n,m → +∞.

Indeed, assuming (2) we obtain from (4) for r3 = o(m) that

ENΔ ≈ m

6c3r3

(
1 +

r3

m

)
→ +∞ as n,m → +∞. (9)

Hence, for r3 = o(m) we can expect the asymptotic normality of σ−1
Δ N̄Δ. For

larger r such that m = O(r3) and r2 = o(m), the identity ENΔ =
(
n
3

)
pΔ

combined with (2) and the bound pΔ = O(r3m−2+r6m−3) implies ENΔ = O(1).
The latter bound rules out the asymptotic normality of σ−1

Δ N̄Δ. We refer to
Lemma 4 and the remark following it for various bounds on pΔ.

Our main result, Theorem 2 below gives sufficient conditions for the asymp-
totic normality of CG as n,m → +∞. We derive the asymptotic normality of CG
from a related asymptotic normality result for the bivariate vector of subgraph
counts (NΔ, N∨).

Theorem 1. Let α, β > 0. Let m,n → +∞. Assume that α ≤ m/n ≤ β.
Assume that r ≥ 2 and r = O(1). Suppose that the ratio σΔ∨/(σΔσ∨) con-
verges to a limit. We denote the limit κ. The random vector

(
σ−1

Δ N̄Δ, σ−1
∨ N̄∨

)

converges in distribution to a Gaussian random vector (η1, η2), where Eηj = 0,
Eη2

j = 1, j = 1, 2, and Eη1η2 = κ.

An immediate consequence of Theorem 1 is the asymptotic normality of the
global clustering coefficient CG .

Theorem 2. Let r ≥ 2 and β > 0. Let m,n → +∞. Assume that m/n → β.
Then the ratio σΔ∨/(σΔσ∨) converges to a limit. We denote the limit κ. The
random variable

σ−1
(
CG − 3

ENΔ

EN∨

)

converges in distribution to the standard normal random variable. Here

σ2 = 9
(ENΔ

EN∨

)2
(( σΔ

ENΔ

)2

+
( σ∨
EN∨

)2

− 2κ

σΔσ∨
ENΔEN∨

)
.
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We remark that the asymptotic normality of subgraph counts like NΔ, N∨
and their derivatives such as CG provide a useful tool for statistical inference
in network analysis, see e.g., [12]. Results of Theorems 1 and 2 seem to be new.
We are not aware of an earlier work on the asymptotic normality of the global
clustering coefficient in sparse random graphs. A related problem of Poissonian
approximation of the number of cliques in random intersection graphs has been
addressed in [9].

Future Work. We envisage the extension of the techniques developed in the
present paper to more general sparse random intersection graphs and to the
counts of subgraphs of arbitrary, but finite size.

2 Proofs

In the proof we combine Hoeffding’s decomposition and Stein’s method. In a bit
different context a similar approach has been used in [2], see also [7].

The section is organized as follows. We first collect necessary notation. Then
we construct Hoeffding decompositions of N̄Δ, N̄∨ and evaluate variances of
various parts of the decompositions. Next we briefly outline our approach to
the asymptotic normality via Stein’s method. At the very end of the section we
prove Lemma 1, Theorem 2 and sketch the proof of Theorem1.

Notation. The adjacency relation between vertices vi and vj is denoted vi ∼ vj .
The indicator of an event A is denoted IA. In particular, we have

∨ijk = I{vi∼vj}I{vj∼vk}, Δi,j,k = I{vi∼vj}I{vj∼vk}I{vk∼vi}.

Introduce random variables s[j,k] = |Sj ∩ Sk| and s[i,j,k] = |Si ∩ Sj ∩ Sk| and
probabilities

pt = P
(
Δi,j,k = 1

∣
∣s[j,k] = t

)
, qt = P(∨kij = 1|s[j,k] = t),

p̄t = P
(
s[j,k] = t), p′

t = P
(
s[i,j,k] ≥ 1|s[j,k] = t

)
,

p′′
t = P

(
Δi,j,k = 1

∣
∣s[i,j,k] = 0, s[j,k] = t

)
.

We observe that pt = qt for t ≥ 1. Furthermore, we have for t ≥ 0 that

pt = p′
t + p′′

t (1 − p′
t). (10)

We denote pe = P(vi ∼ vj) and observe that E
(
I{vi∼vj}

∣
∣Si) = EI{vi∼vj} = pe.

In particular, we have p∨ = p2e. Indeed,

p∨ = EI{vi∼vj}I{vj∼vk} = E
(
I{vi∼vj}E

(
I{vj∼vk}

∣
∣Si, Sj

))

= E
(
I{vi∼vj}pe

)
= p2e. (11)
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Hoeffding’s Decomposition. Let ψ be a real function defined on 3-
tuples of subsets of W , which is symmetric in its arguments. We assume
that Eψ(S1, S2, S3) = 0. Hoeffding’s decomposition [1,6] expands T =∑

{i,j,k}⊂[n] ψ(Si, Sj , Sk) into a series of uncorrelated U statistics

T =
(n − 1

2

)
U1 + (n − 2)U2 + U3, (12)

U1 =
∑
i∈[n]

fi, fi = E(ψ(Si, Sj , Sk)|Si),

U2 =
∑

{i,j}⊂[n]

gi,j , gi,j = E
(
ψ(Si, Sj , Sk)− fi − fj

∣∣Si, Sj

)
,

U3 =
∑

{i,j,k}⊂[n]

hi,j,k, hi,j,k = ψ(Si, Sj , Sk)− fi − fj − fk − gi,j − gi,k − gj,k.

We note that g(Si, Sj) := gi,j and h(Si, Sj , Sk) := hi,j,k are symmetric functions
of their arguments Si, Sj and Si, Sj , Sk and they have the orthogonality property

E(g(Si, Sj)|Si) = 0, E(h(Si, Sj , Sk)|Si, Sj) = 0. (13)

(13) implies in particular that all distinct summands fi, gj1,j2 , hk1,k2,k3 are
uncorrelated whatever the indices i, j1, j2, k1, k2, k3. A simple consequence of
(13) is the variance formula

VarT = ET 2 =
(

n − 1
2

)2

nEf2
1 + (n − 2)2

(
n

2

)
Eg21,2 +

(
n

3

)
Eh2

1,2,3. (14)

We construct decomposition (12) for T = N̄Δ and T = N̄∨ and use subscripts
Δ and ∨ to distinguish the respective terms ψΔ, fΔ j , gΔ i,j , hΔ i,j,k and ψ∨, f∨ j ,
g∨ i,j , h∨ i,j,k.

Decomposition of N̄Δ. We put ψΔ(Si, Sj , Sk) = Δi,j,k − pΔ and apply (12)
to T = N̄Δ. We shall show that for any j and k �= j

fΔ j ≡ 0, (15)

gΔ j,k =
r∑

t=1

(
I{s[j,k]=t} − p̄t

)
pt. (16)

To show (15), we observe that, given Sj , the conditional probability of triangle
induced by vi, vj , vk (the quantity E(Δi,j,k|Sj)) does not depend on Sj . Hence
E(Δi,j,k|Sj) = pΔ and, consequently, fΔ j ≡ 0. To show (16) we observe that,
given the pair (Sj , Sk), the conditional probability of the triangle (the quantity
E(Δi,j,k|Sj , Sk)) only depends on the number s[j,k]. In particular, the following
random variables are equal

E(Δi,j,k|Sj , Sk) = E(Δi,j,k|s[j,k]) =
r∑

t=1

I{s[j,k]=t}pt. (17)
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Taking the expected values of the left and right sides of (17) we obtain the
identity

pΔ = E
(
E(Δi,j,k|Sj , Sk)

)
=

r∑

t=1

p̄tpt. (18)

From (17), (18) we obtain expression (16) for gΔ j,k = E(Δi,j,k|Sj , Sk) − pΔ.
Decomposition of N̄∨. We put ψ∨(Si, Sj , Sk) = ∨ijk + ∨jki + ∨kij − 3p∨ and
apply (12) to T = N̄∨. We shall show that for any j and k �= j

f∨ j ≡ 0, (19)

g∨ j,k = 2pe

(
I{vj∼vk} − pe

)
+

r∑

t=0

(
I{s[j,k]=t} − p̄t

)
qt (20)

=
(
I{s[j,k]=0} − p̄0

)
q0 +

r∑

t=1

(
I{s[j,k]=t} − p̄t

)
(qt + 2pe). (21)

To show (19), we observe that, given Sj , the conditional probabilities of cherries
∨ijk, ∨jki, ∨kij (the random variables E(∨ijk|Sj), E(∨jki|Sj), E(∨kij |Sj)) do not
depend on Sj . Hence all three conditional probabilities equal to the unconditional
one, p∨. Consequently, f∨ j ≡ 0. To show (20) we observe that, given the pair
(Sj , Sk), the conditional probability

E
(∨ijk|Sj , Sk) = E

(
I{vi∼vj}I{vj∼vk}

∣
∣Sj , Sk) = I{vj∼vk}pe, (22)

cf. (11). Similarly, we obtain E
(∨jki|Sj , Sk) = I{vj∼vk}pe. Furthermore, we note

that the conditional probability E(∨kij |Sj , Sk) only depends on the number s[j,k].
Hence the following random variables are equal

E(∨kij |Sj , Sk) = E(∨kij |s[j,k]) =
r∑

t=0

I{s[j,k]=t}qt. (23)

An immediate consequence of (23) are the identities

p∨ = E
(
E(∨kij |Sj , Sk)

)
=

r∑

t=0

p̄tqt,

E(∨kij |Sj , Sk) − p∨ =
r∑

t=0

(
I{s[j,k]=t} − p̄t

)
qt. (24)

From (22), (24) we obtain (20) for g∨ j,k = E
(∨ijk + ∨jki + ∨kij)

∣
∣Sj , Sk

) − 3p∨.
Invoking in (20) the identities I{vj∼vk} =

∑r
t=1 I{[sj,k]=t} and pe =

∑r
t=1 p̄t we

obtain (21).

Variances. Variance of NΔ. Assuming that r3 = O(m) we show below that

Eg2Δ j,k =
r4

m3
+ 2

r7

m4
+

r10

m5
+ O

( r6

m4

)
, (25)

Eh2
Δ i,j,k =

r3

m2
+

r6

m3
+ O

( r5

m3

)
. (26)
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Proof of (25). Using I{s[j,k]=t}I{s[j,k]=u} = 0, for t �= u, we obtain from (16) that

Eg2j,k =
r∑

t=1

p2t p̄t(1 − p̄t) − 2
∑

1≤s<t≤r

psptp̄sp̄t. (27)

We write Eg2Δ j,k = p21p̄1 + R1, where the remainder term

R1 =
r∑

t=2

p2t p̄t(1 − p̄t) − p21p̄
2
1 − 2

∑

1≤s<t≤r

psptp̄sp̄t. (28)

Combining (10) and Lemma 3, see also (64), we obtain for r3 = O(m) that

p21p̄1 = r4m−3 + O
(
r7m−4

)
. (29)

Finally, (29) together with the bound R1 = O(r6m−4) of Lemma 4 imply (25).

Proof of (26). We observe that (13), (15) implies E(ψΔ(Si, Sj , Sk)|Si, Sk) =
gΔ i,k. Furthermore, the identity E(gΔ i,j |Si) = 0 implies EgΔ j,kgΔ i,h = 0, for
{j, k} �= {i, h}. Combining these identities we obtain

Eh2
Δ i,j,k = Eψ2

Δ(Si, Sj , Sk) − 3Eg2Δ i,j = pΔ(1 − pΔ) − 3Eg2Δ i,j . (30)

For r3 = O(m) relation (30) combined with (25) and Lemma 4(ii) imply (26).

Variance of N∨. Assuming that r3 = O(m) we show below that

Eg2∨ j,k = (r4 + 4r5 + 4r6)m−3 + O
(
r8m−4

)
, (31)

Eh2
∨ i,j,k = (3r4 + 6r3)m−2 + 3r6m−3 + O(r5m−3). (32)

Proof of (31). Using I{s[j,k]=t}I{s[j,k]=u} = 0, for t �= u, we obtain from (21) that

Eg2∨ j,k = p̄0(1 − p̄0)q20 +
r∑

t=1

p̄t(1 − p̄t)(qt + 2pe)2 (33)

− 2
r∑

t=1

p̄0p̄tq0(qt + 2pe) − 2
∑

1≤s<t≤r

p̄sp̄t(qs + 2pe)(qt + 2pe).

We write Eg2∨ j,k = p̄1(q1 + 2pe)2 + R2, where p̄1(q1 + 2pe)2 is the leading term.
The remainder

R2 = p̄0(1 − p̄0)q20 − p̄21(q1 + 2pe)2 +
r∑

t=2

p̄t(1 − p̄t)(qt + 2pe)2 (34)

− 2
r∑

t=1

p̄0p̄tq0(qt + 2pe) − 2
∑

1≤s<t≤r

p̄sp̄t(qs + 2pe)(qt + 2pe).

Combining (10) and Lemma 3 we obtain for r3 = O(m) that

p̄1(q1 + 2pe)2 = (r4 + 4r5 + 4r6)m−3 + O
(
r8m−4

)
. (35)

Now, (35) together with the bound R2 = O(r8m−4) of Lemma 4 imply (31).
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Proof of (32). Proceeding similarly as in the proof of (30) above we obtain

Eh2
∨ i,j,k = Eψ2

∨(Si, Sj , Sk) − 3Eg2∨ i,j . (36)

We evaluate the first term on the right

E ψ2
∨(Si, Sj , Sk) = Var ψ∨(Si, Sj , Sk) = E(∨ijk + ∨jki + ∨kij)2 − (3p∨)2

= 3p∨ + 6pΔ − 9p2∨ = (3r4 + 6r3)m−2 + 3r6m−3 + O(r5m−3). (37)

In the first step of (37) we used the identities ∨ijk∨jki = Δi,j,k and E(∨ijk)2 =
E∨ijk = p∨. In the second step we used the identity p∨ = p2e and Lemma 4(ii),
(iii). Finally, (36) combined with (31) and (37) yield (32).
Covariance of NΔ and N∨. By the orthogonality property (13) and symmetry,

EN̄ΔN̄∨ = (n − 2)2
(

n

2

)
E

(
gΔ 1,2g∨ 1,2

)
+

(
n

3

)
E

(
hΔ 1,2,3h∨ 1,2,3

)
. (38)

Assuming that r3 = O(m) we show below that

E
(
gΔ 1,2g∨ 1,2

)
=

r4 + 2r5

m3
+

2r8

m4
+ O

( r7

m4

)
, (39)

E
(
hΔ 1,2,3h∨ 1,2,3

)
= 3

r3

m2
+ 3

r6

m3
+ O

( r5

m3

)
. (40)

Proof of (39). Using I{s[j,k]=t}I{s[j,k]=u} = 0, for t �= u, we obtain from (16), (21)
that

E
(
gΔ 1,2g∨ 1,2

)
= p̄1(1 − p̄1)p1(q1 + 2pe) − R3.1 + R3.2, (41)

where the remainder terms

R3.1 =
r∑

t=1

p̄tp̄0ptq0, R3.2 =
r∑

t=2

p̄t(1−p̄t)pt(qt+2pe)−
∑

1≤t�=u≤r

p̄tp̄upt(qu+2pe).

(42)
They are bounded in Lemma4, R3.i = O(r7m−4), i = 1, 2. The leading term

p̄1(1 − p̄1)p1(q1 + 2pe) = (r4 + 2r5)m−3 + 2r8m−4 + O
(
r7m−4

)
. (43)

Here we used (63) and (64), the identity p1 = q1 and Lemma 4(iii).

Proof of (40). By the orthogonality property (13),

E
(
hΔ 1,2,3h∨ 1,2,3

)
= E

(
ψΔ(S1, S2, S3)ψ∨(S1, S2, S3)

)

+ E
(
qΔ 1,2 + qΔ 1,3 + qΔ 2,3

)(
q∨ 1,2 + q∨ 1,3 + q∨ 2,3

)

= 3pΔ(1 − p∨) + 3EgΔ 1,2g∨ 1,2. (44)

In the last step we used the identities

EψΔ1,2,3ψ∨ 1,2,3 = 3E(Δ1,2,3 − pΔ)(∨123 − p∨) = 3pΔ(1 − p∨),

which follow from Δ1,2,3∨312 = Δ1,2,3. Furthermore, note that Lemma4(iii), (iv)
imply

pΔ(1 − p∨) = r3m−2 + r6m−3 + O
(
r5m−3

)
.

Invoking this expression and (39) in (44) we obtain (40).
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Asymptotic Normality. Let {(X1n,X2n)} be a sequence of bivariate random
vectors and let (η1, η2) be a Gaussian vector with Eηj = 0, Eη2

j = σ2
j , j = 1, 2,

and Eη1η2 = σ12. Recall that the sequence {(X1n,X2n)} converges in distribu-
tion to (η1, η2) whenever for any reals a, b we have

EeiaX1n+ibX2n → Eeiaη1+ibη2 as n → +∞. (45)

Here and below “bold italic” i denotes the imaginary unit. Note that (45) holds
if Xn := aX1n +bX2n converges in distribution to the Gaussian random variable
η := aη1 + bη2. Here Eη = 0 and Eη2 = a2σ2

1 + b2σ2
2 + 2abσ12 =: σ2

∗. In order to
verify (45) one can use the following sufficient condition for the convergence in
distribution of Xn to η, see [10,11],

d

dt
EeitXn + σ2

∗tEeitXn → 0. (46)

We remark that condition (46) refers to the Stein method, [10].

Proofs of Lemma 1 and Theorems 1, 2.

Proof of Lemma 1. (4) and (5) follow from Lemma 4(ii), (iii). (6) and (7) follow
from (14) combined with (25), (26) and (31), (32) respectively.

Proof of Theorem 1. Given a, b, we verify (46) for Xn = aσ−1
Δ N̄Δ + bσ−1

∨ N̄∨ and
σ2

∗ = EX2
n.

In the first step we expand Xn in the series of uncorrelated U -statistics.
Invoking expansions (12) of N̄Δ and N̄∨ constructed above we obtain the expan-
sion for Xn,

Xn =
∑

{i,j}⊂[n]

gi,j +
∑

{i,j,k}⊂[n]

hi,j,k, (47)

gi,j = (n − 2)
(
aσ−1

Δ gΔi,j + bσ−1
∨ g∨i,j

)
, hi,j,k = aσ−1

Δ hΔi,j,k + bσ−1
∨ h∨i,j,k.

Note that g(Si, Sj) = gi,j and h(Si, Sj , Sk) = hi,j,k possess the orthogonality
property (13).

In the second step we verify (46). Let Ei1,...,ik denote the conditional expec-
tation given all the random variables but Si1 , . . . , Sik . Note that (13), (47) imply

Ei1,...,ikXn =
∑

{i,j}⊂[n]\{i1,...,ik}
gi,j +

∑

{i,j,k}⊂[n]\{i1,...,ik}
hi,j,k.

Denote X
{i1,...,ik}
n = Xn −Ei1,...,ikXn so that Xn = Ei1,...,ikXn +X

{i1,...,ik}
n . We

split

d

dt
eitXn = EiXneitXn =

(
n

2

)
Eig1,2e

itXn +
(

n

3

)
Eih1,2,3e

itXn (48)
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and expand the exponents on the right

eitXn = eitE1,2Xn+itX{1,2}
n = eitE1,2Xn

(
1 + i tX{1,2}

n + R1

)
, (49)

eitXn = eitE1,2,3Xn+itX{1,2,3}
n = eitE1,2,3Xn

(
1 + i tX{1,2,3}

n + R2

)
. (50)

Invoking these expressions in (48) we obtain (with o(1) accounting for remainders
R1, R2)

d

dt
eitXn =

(
n

2

)
Ei2tg21,2e

itE1,2Xn +
(

n

3

)
Ei2th2

1,2,3e
itE1,2,3Xn + o(1)

= −t

(
n

2

)
Eg21,2EeitE1,2Xn − t

(
n

3

)
Eh2

1,2,3EeitE1,2,3Xn + o(1). (51)

Finally, we replace EeitE1,2Xn and EeitE1,2,3Xn in (51) by EeitXn proceeding
similarly as in (49), (50) above, and observe that now the right side of (51)
reduces to −σ2

∗tEeitXn + o(1). We have arrived to (46).

Proof of Theorem 2. Using the notation N∗
Δ = N̄Δ/ENΔ, N∗

∨ = N̄∨/EN∨ and
μ = ENΔ/EN∨ we write CG − 3μ in the form

CG − 3μ = 3μ

(
N∗

Δ + 1
N∗∨ + 1

− 1
)

= 3μ(N∗
Δ − N∗

∨) + R, (52)

where

R = 3μ

(
−N∗

ΔN∗
∨ + (1 + N∗

Δ)
( (N∗

∨)2

1 + N∗∨

))

is a negligible reminder. Note that E
(
3μ(N∗

Δ−N∗
∨)

)
= 0 and E

(
3μ(N∗

Δ−N∗
∨)

)2 =
σ2. Furthermore, the asymptotic normality of

(
σ−1

Δ N̄Δ, σ−1
∨ N̄∨

)
, see Theorem 1,

implies the asymptotic normality of 3μ(N∗
Δ − N∗

∨)/σ.

3 Auxiliary Results

Lemma 2. (See, e.g., [3]). Given integers 1 ≤ s ≤ d1 ≤ d2 ≤ m, let D1,D2 be
independent random subsets of the set W = {1, . . . , m} such that D1 (respectively
D2) is uniformly distributed in the class of subsets of W of size d1 (respectively
d2). The probabilities p̊ := P(|D1 ∩ D2| = s) and p̃ := P(|D1 ∩ D2| ≥ s) satisfy

(
1 − (d1 − s)(d2 − s)

m + 1 − d1

) (
d1
s

)(
d2
s

)(
m

s

)−1

≤ p̊ ≤ p̃ ≤
(

d1
s

)(
d2
s

)(
m

s

)−1

.

(53)
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Lemma 3. Let m → +∞. Assume that r2 = o(m). For 1 ≤ t ≤ r we have
(

r

t

)2(
m

t

)−1(
1 − 2

(r − t)2

m

)
≤ p̄t ≤

(
r

t

)2(
m

t

)−1

, (54)

rt

m

(
1 − 2

rt

m

)
≤ p′

t ≤ rt

m
, (55)

p′′
t ≤

(
2r − 2t

2

)(
r

2

)(
m − t

2

)−1

, (56)

p′′
t = (r − t)2

(
r

2

)(
m − t

2

)−1

+ O
( (r − t)3r3

m3

)
, (57)

q0 = r2
(

r

2

)(
m

2

)−1

+ O
( r6

m3

)
. (58)

Proof of Lemma 3. (54) follows from (53). In the proof of (55), (56), (57), (58)
we fix Sj , Sk satisfying s[j,k] = t. To show (55) we apply (53) to the probability
that random set Si intersects with a given set Sj ∩ Sk of size t. To show (56)
we note that Si is a subset of W ′ = W \ (Sj ∩ Sk), by the condition s[i,j,k] = 0.
The event Δi,j,k implies that random set Si intersects with S′

j = Sj ∩ W ′ and
with S′

k = Sk ∩W ′. Therefore Si has at least two common elements with the set
S′

j ∪ S′
k of size 2r − 2t. We bound the probability of the latter event by (53) and

obtain (56).

To show (57) we color elements of Sj white and those of Sk black. The event
Δi,j,k occurs if: (a) random set Si intersects with given set S′

j ∪S′
k in at least two

elements; (b) the intersection contains white and black elements. Furthermore,
we split the event (a) into two events: (a1) Si and S′

j ∪ S′
k have exactly two

common elements; (a2) Si and S′
j ∪ S′

k have three or more common elements.
Note that, by (53), the probability of (a2) is of order O

(
(2r − 2t)3r3m−3

)
. We

neglect this event and only consider the two step experiment: we firstly check
whether (a1) occurs, and if so, we secondly check whether (b) occurs. By (53),
the probability of (a1) is

(
2r − 2t

2

)(
r

2

)(
m − t

2

)−1

+ O
(
(2r − 2t)3r3m−3

)

and the probability of (b) given (a1) is (r − t)2
(
2r−2t

2

)−1
. Hence (57).

The proof of (58) is similar to that of (57). The event ∨j,i,k occurs if: (a)
random set Si intersects with given set Sj ∪ Sk in at least two elements; (b)
the intersection contains white and black elements. We split the event (a) into
two events: (a1) Si and Sj ∪ Sk have exactly two common elements; (a2) Si and
Sj ∪Sk have three or more common elements. Note that, by (53), the probability
of (a2) is of order O

(
r6m−3

)
. We neglect this event and only consider the two

step experiment: we firstly check whether (a1) occurs, and if so, we secondly
check whether (b) occurs. By (53), the probability of (a1) is

(
2r

2

)(
r

2

)(
m

2

)−1

+ O
(
r6m−3

)
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and the probability of (b) given (a1) is r2
(
2r
2

)−1
. Hence (58).

Lemma 4. Let m → +∞. Assume that r3 = O(m).

(i) For R1 and R2 defined in (28) and (34) we have R1 = O(r6m−4) and R2 =
O(r8m−4). For R3.1 and R3.2 defined in (42) we have R3.1 = O(r9m−5),
i = 1, 2.

(ii) pΔ = r3m−2 + r6m−3 + O(r5m−3).
(iii) pe = r2m−1 − 0.5r2(r − 1)2m−2 + O

(
r6m−3

)
.

Remark. Proceeding similarly as in the proof of Lemma 4(ii) one can show that
pΔ = O

(
r3m−2 + r6m−3

)
for r2 = o(m).

Proof of Lemma 4. Let c > 0 and assume that r3 ≤ cm uniformly in m. We
denote by c′ a constant which may depend on c, but it is independent of m and
r. c′ may attain different values in different places.

We begin with showing two auxiliary inequalities. From (54), (55), (56) we
have for t ≥ 1

pt ≤ p′
t + p′′

t ≤ rtm−1 + 2r2(r − t)2(m − t)−2 ≤ (t + 2c)rm−1 ≤ c′trm−1, (59)
p̄t = (r)t(r)t/(t!(m)t) ≤ (r2/m)t/t!, (60)
qt + 2pe = pt + 2pe ≤ c′r2m−1. (61)

Proof of (i). To show the bound for R1 we estimate various terms in (28) using
(59), (60),

r∑

t=2

p2t p̄t(1 − p̄t) ≤
r∑

t=2

p2t p̄t ≤
r∑

t=2

c′ (tr)
2

m2

r4

t!m2
≤ c′ r6

m4
,

r−1∑

s=1

psp̄s

r∑

t=s+1

ptp̄t ≤ c′
r−1∑

s=1

sr

m

r2

s!m

r∑

t=s+1

tr

m

r4

t!m2
≤ c′ r8

m5

r−1∑

s=1

s

s!

r∑

t=s+1

t

t!
≤ c′ r8

m5
,

p21p̄
2
1 ≤ r6m−4.

To show the bound for R2 we estimate various terms in (34) using (1), (58),
(59), (60),

r∑

t=2

p̄t(1 − p̄t)(qt + 2pe)2 ≤
r∑

t=2

p̄t(qt + 2pe)2 ≤ c′
m∑

t=2

r4

m2t!
r4

m2
≤ c′ r8

m4
,

r∑

t=2

p̄0p̄tq0(qt + 2pe) ≤
r∑

t=2

p̄tq0 ≤ c′
r∑

t=2

r4

m2t!
r4

m2
≤ c′ r8

m4
,

r−1∑

s=1

p̄s(qs + 2pe)
r∑

t=s+1

p̄t(qt + 2pe) ≤ c′
r−1∑

s=1

r2

s!m
r2

m

r∑

t=s+1

r4

t!m2

r2

m
≤ c′ r

10

m5
,

p̄0(1 − p̄0)q20 ≤ q20 ≤ c′r8m−4,

p̄21(q1 + 2pe)2 ≤ c′r8m−4. (62)
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To show the bound for R3.1 we estimate R3.1 ≤ q0
∑

1≤t≤r p̄1pt = O(r9m−5)
using upper bounds (62) and (63) for q0 and

∑
1≤t≤r p̄1pt.

To show the bound for R3.2 we estimate

|R3.2| ≤ p̄1p̄2p1(q2 + 2pe) + p̄2p̄1p2(q1 + 2pe) +
r∑

t=2

p̄tpt

r∑

u=2

p̄u(qu + 2pe).

Using qt = pt and (1), (59), (60) we bound the first two summands from above
by O(r9m−5) and bound the sum

∑r
u=2 p̄u(qu + 2pe) = O(r6m−3). Finally, we

apply (63) to
∑r

t=2 p̄tpt.
To show (ii) we evaluate/estimate various terms in (18),

r∑

t=2

ptp̄t ≤ c′
r∑

t=2

tr

m

r4

m2t!
≤ r5

m3

r∑

t=2

t

t!
≤ c′ r5

m3
,

p1p̄1 =
r3

m2
+

r6

m3
+ O

( r5

m3

)
. (63)

In the first line we applied (59), (60). In the second line we invoked the relations

p̄1 =
r2

m
+ O

( r4

m2

)
, p1 =

r

m
+

r4

m2
+ O

( r3

m2

)
, (64)

which follow from (54), (55), (56).
To show (iii) we split pe = p̄1 + P(s[j,k] ≥ 2) and evaluate

P(s[j,k] ≥ 2) = 0.5r2(r − 1)2m−2 + O(r6m−3), (65)

p̄1 = r

(
m − r

r − 1

)(
m

r

)−1

=
r2

m

(m − r)r−1

(m − 1)r−1
=

r2

m
− r2(r − 1)2

m2
+ O

( r6

m3

)
. (66)

In (65) we applied Lemma 2. In (66) we evaluated the fraction

(m − r)r−1

(m − 1)r−1
= 1 − (r − 1)2

m
+ O

( r4

m2

)

using the relations

ln
( (m − i − 1)r−1

mt

)
=

r−1∑

j=1

ln
(
1 − j + i

m

)
= −

r−1∑

j=1

j + i

m
+ O

( r3

m2

)

= −i
r − 1
m

−
r−1∑

j=1

j

m
+ O

( r3

m2

)

for i = 0 and i = r − 1.
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Abstract. In this paper, we study the clustering properties of the Spa-
tial Preferential Attachment (SPA) model introduced by Aiello et al. in
2009. This model naturally combines geometry and preferential attach-
ment using the notion of spheres of influence. It was previously shown
in several research papers that graphs generated by the SPA model are
similar to real-world networks in many aspects. For example, the ver-
tex degree distribution was shown to follow a power law. In the current
paper, we study the behaviour of C(d), which is the average local clus-
tering coefficient for the vertices of degree d. This characteristic was not
previously analyzed in the SPA model. However, it was empirically shown
that in real-world networks C(d) usually decreases as d−a for some a > 0
and it was often observed that a = 1. We prove that in the SPA model
C(d) decreases as 1/d. Furthermore, we are also able to prove that not
only the average but the individual local clustering coefficient of a vertex
v of degree d behaves as 1/d if d is large enough. The obtained results
are illustrated by numerous experiments with simulated graphs.

1 Introduction

The evolution of complex networks attracted a lot of attention in recent years.
Empirical studies of different real-world networks have shown that such net-
works have some typical properties: small diameter, power-law degree distribu-
tion, clustering structure, and others [8,22]. Therefore, numerous random graph
models have been proposed to reflect and predict such quantitative and topo-
logical aspects of growing real-world networks [4,5].

The most well studied property of complex networks is their vertex degree
distribution. For the majority of studied real-world networks, the degree dis-
tribution was shown to follow a heavy-tailed distribution [2,11,23]. Another
important property of real-world networks is their clustering structure. One way
to characterize the presence of clustering structure is to measure the clustering
c© Springer International Publishing AG, part of Springer Nature 2018
A. Bonato et al. (Eds.): WAW 2018, LNCS 10836, pp. 30–43, 2018.
https://doi.org/10.1007/978-3-319-92871-5_3
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coefficient, which is, roughly speaking, the probability that two neighbours of a
vertex are connected. There are two well-known formal definitions: the global
clustering coefficient and the average local clustering coefficient (see Sect. 3 for
details). At some point, it was believed that for many real-world networks both
the average local and the global clustering coefficients tend to non-zero limit as
the network becomes large; for example, some numerical values can be found
in [22]; however, this statement for the global clustering coefficient is question-
able and recently some contradicting theoretical results were presented in [24].

In this paper, we mostly focus on the behaviour of C(d), which is the average
local clustering coefficient for the vertices of degree d. It was empirically shown
that in real-world networks C(d) usually decreases as d−ψ for some ψ > 0 [9,20,
27,28]. In particular, for many studied networks, C(d) scales as d−1 [26].

We study the clustering properties of the Spatial Preferential Attachment
(SPA) model introduced in [1]. This model combines geometry and preferential
attachment; the formal definition is given in Sect. 2.1. It was previously shown
that graphs generated by the SPA model are similar to real-world networks in
many aspects. For example, it was proven in [1] that the vertex degree distribu-
tion follows a power law. More details on the properties of the SPA model are
given in Sect. 2.2. However, the clustering coefficient C(d) was not previously
analyzed for this model, although some clustering properties were analyzed for
the generalized SPA model proposed in [13]. It is proved in [13,14] that the aver-
age local clustering coefficient converges in probability to a strictly positive limit.
Also, the global clustering coefficient converges to a nonnegative limit, which is
nonzero if and only if the power-law degree distribution has a finite variance.

In this paper, we prove that the local clustering coefficient C(d) decreases
as 1/d in the SPA model. We also obtain some bounds for the individual local
clustering coefficients of vertices. The obtained theoretical results are compared
with and illustrated by numerous experiments on simulated graphs. Our theo-
retical results are asymptotic in nature, so we empirically investigate how the
model behaves for finite size graphs and see that the asymptotic predictions
are still close to empirical observations even for small graph sizes. Additionally,
we demonstrate that some of our theoretical assumptions are probably too pes-
simistic and the SPA model behaves even more predictable than we have proven.
We also propose an efficient algorithm for generating graphs according to the
SPA model which runs much faster than the straightforward implementation.

Proofs of all theoretical results stated in this paper can be found in the
journal version [12] that focuses exclusively on asymptotic results of the model.
On the other hand, this proceeding version also contains results on simulated
graphs and so can be viewed as a complement to the journal version.

2 Spatial Preferential Attachment Model

2.1 Definition

This paper focuses on the Spatial Preferential Attachment (SPA) model, which
was first introduced by [1]. This model combines preferential attachment with
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geometry by introducing “spheres of influence” whose volume grows with the
degree of a vertex. The parameters of the model are the link probability p ∈ [0, 1]
and two constants A1, A2 such that 0 < A1 < 1

p , A2 > 0. All vertices are placed
in the m-dimensional unit hypercube S = [0, 1]m equipped with the torus metric
derived from any of the Lk norms, i.e.,

d(x, y) = min
{||x − y + u||k : u ∈ {−1, 0, 1}m

} ∀x, y ∈ S.

The SPA model generates a sequence of random directed graphs {Gt}, where
Gt = (Vt, Et), Vt ⊆ S. Let deg−(v, t) be the in-degree of the vertex v in Gt, and
deg+(v, t) its out-degree. Then, the sphere of influence S(v, t) of the vertex v at
time t ≥ 1 is the ball centered at v with the following volume:

|S(v, t)| = min
{

A1deg−(v, t) + A2

t
, 1

}
.

In order to construct a sequence of graphs we start at t = 0 with G0 being
the null graph. At each time step t we construct Gt from Gt−1 by, first, choosing
a new vertex vt uniformly at random from S and adding it to Vt−1 to create
Vt. Then, independently, for each vertex u ∈ Vt−1 such that vt ∈ S(u, t − 1), a
directed link (vt, u) is created with probability p. Thus, the probability that a
link (vt, u) is added in time-step t equals p |S(u, t − 1)|.

2.2 Properties of the Model

In this section, we briefly discuss previous studies on properties and applica-
tions of the SPA model. This model is known to produce scale-free networks,
which exhibit many of the characteristics of real-life networks [1,7]. Specifically,
Theorem 1.1 in [1] proves that the SPA model generates graphs with a power-
law in-degree distribution with coefficient 1 + 1/(pA1). On the other hand, the
average out-degree is asymptotic to pA2/(1 − pA1), as shown in Theorem 1.3
in [1]. In [15], it was demonstrated that the SPA model give the best fit, in
terms of graph structure, for a series of social networks derived from Facebook.
In [16], some properties of common neighbours were used to explore the under-
lying geometry of the SPA model and quantify vertex similarity based on the
distance in the space. Usually, the distribution of vertices in S is assumed to
be uniform [16], but [17] also investigated non-uniform distributions, which is
clearly a more realistic setting. The SPA model was also used to study a duopoly
market on which there is uncertainty of a product quality [18]. Finally, in [25]
modularity of this model was investigated, which is a global criterion to define
communities and a way to measure the presence of community structure in a
network.

3 Clustering Coefficient

Clustering coefficient measures how likely two neighbours of a vertex are con-
nected by an edge. There are several definitions of clustering coefficient proposed
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in the literature (see, e.g., [5]). The global clustering coefficient Cglob(G) of a
graph G is the ratio of three times the number of triangles to the number of
pairs of adjacent edges in G. In other worlds, if we sample a random pair of
adjacent vertices in G, then Cglob(G) is the probability that these three vertices
form a triangle. The global clustering coefficient in the SPA model was previ-
ously studied in [13,14] and it was proven that Cglob(Gn) converges to a limit,
which is positive if and only if the power-law degree distribution has a finite
variance.

In this paper, we focus on the local clustering coefficient, which was not
previously analyzed for the SPA model. Let us first define it for an undirected
graph G = (V,E). Let N(v) be the set of neighbours of a vertex v, |N(v)| =
deg(v). For any B ⊆ V , let E(B) be the set of edges in the graph induced by
the vertex set B; that is, E(B) = {(u,w) ∈ E : u,w ∈ B}. Finally, clustering
coefficient of a vertex v is defined as follows:

c(v) =
|E(N(v))|
(
deg(v)

2

) .

Clearly, 0 ≤ c(v) ≤ 1.
Note that the local clustering c(v) is defined individually for each vertex and

it can be noisy, especially for the vertices of not too large degrees. Therefore, the
following characteristic was extensively studied in the literature for various real-
world networks and some random graph models. Let C(d) be the local clustering
coefficient averaged over the vertices of degree d; that is,

C(d) =

∑
v:deg(v)=d c(v)

|{v : deg(v) = d}| .

Further in the paper we will also use the notation c(v, t) and C(d, t) specifying
that the graph has t vertices.

The local clustering C(d) was extensively studied both theoretically and
empirically. For example, it was observed in a series of papers that in real-
world networks C(d) ∼ d−ϕ for some ϕ > 0. In particular, [26] shows that C(d)
can be well approximated by d−1 for four large networks, [28] obtains power-law
in a real network with parameter 0.75, while [9] obtains ϕ = 0.33. The local
clustering coefficient was also studied in several random graph models of com-
plex networks. For instance, it was shown in [10,19,21] that some models have
C(d) ∼ d−1. As we prove in this paper, similar behaviour is also observed in the
SPA model.

Recall that the graph Gt constructed according to the SPA model is directed.
Therefore, we first analyze the directed version of the local clustering coefficient
and then, as a corollary, we obtain the corresponding results for the undirected
version. Let us now define the directed clustering coefficient. By N−(v, t) ⊆ Vt

we denote the set of in-neighbours of a vertex v at time t. So, the directed
clustering coefficient of a vertex v at time t and the average directed clustering
for the vertices of incoming degree d are defined as
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c−(v, t) =
|E(N−(v, t))|

(
deg−(v,t)

2

) , C−(d, t) =

∑
v:deg−(v,t)=d c−(v, t)

|{v : deg−(v, t) = d}| .

Note that we normalize c−(v, t) by
(
deg−(v,t)

2

)
, since in the SPA model edges can

be created only from younger vertices to older ones.

4 Results

4.1 Notation

Let us start with introducing some notation. As typical in random graph theory,
all results in this paper are asymptotic in nature; that is, we aim to investigate
properties of Gn for n tending to infinity. We say that an event holds asymptoti-
cally almost surely (a.a.s.) if it holds with probability tending to one as n → ∞.
Also, given a set S we say that almost all elements of S have some property
P if the number of elements of S that do not have P is o(|S|). We emphasize
that the notations o(·) and O(·) refer to functions of n, not necessarily positive,
whose growth is bounded. We use the notations f 
 g for f = o(g) and f � g
for g = o(f). We also write f(n) ∼ g(n) if f(n)/g(n) → 1 as n → ∞ (that is,
when f(n) = (1 + o(1))g(n)). Finally, by f(n) = Ω(g(n)) we denote the fact
that f is asymptotically bounded below by g and by f(n) = Θ(g(n)) that f is
asymptotically bounded both above and below by g.

First we consider the directed clustering coefficient. It turns out that for the
SPA model we are able not only to prove the asymptotics for C−(d, n), which
is the average clustering over all vertices of in-degree d, but also analyze the
individual clustering coefficients c−(v, n). However, in order to do this, we need
to assume that deg−(v, n) is large enough.

From technical point of view, it will be convenient to partition the set of
contributing edges, E(N−(v, n)), and independently consider edges to “old” and
to “young” neighbours of v. Formally, for a given function ω(n) that tends to
infinity as n → ∞, let T̂v be the smallest integer t such that deg−(v, t) exceeds
ω log n (or T̂v = n if deg−(v, n) < ω log n). Vertices in N−(v, T̂v) are called old
neighbours of v; N−(v, n) \ N−(v, T̂v) are new neighbours of v. Finally,

Eold(N−(v, n)) = {(u,w) ∈ En : u ∈ N−(v, n), w ∈ N−(v, T̂v)},
Enew(N−(v, n)) = E(N−(v, n)) \ Eold(N−(v, n)) ;

and
c−(v, n) = cold(v, n) + cnew(v, n), (1)

where

cold(v, n) = |Eold(N−(v, n))|
/(

deg−(v, n)
2

)
,

cnew(v, n) = |Enew(N−(v, n))|
/(

deg−(v, n)
2

)
.
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4.2 Results

Let us start with the following theorem which is extensively used in our rea-
sonings and is interesting and important on its own. Variants of this results
were proved in [16,17]; here, we present a slightly modified statement from [17],
adjusted to our current needs.

Theorem 1. Let ω = ω(n) be any function tending to infinity together with
n. The following holds with probability 1 − o(n−4). For any vertex v with
deg−(v, n) = k = k(n) ≥ ω log n and for all values of t such that

n

(
ω log n

k

) 1
pA1

=: Tv ≤ t ≤ n,

we have

deg−(v, t) ∼ k

(
t

n

)pA1

.

The expression for Tv is chosen so that at this time vertex v has a.a.s.
(1 + o(1))ω log n neighbours. The implication of this theorem is that once a
vertex accumulates ω log n neighbours, its behaviour can be predicted with high
probability until the end of the process (that is, till time n).

Let us note that Theorem 1 immediately implies the following two corollaries.

Corollary 1. Let ω = ω(n) be any function tending to infinity together with n.
The following holds with probability 1−o(n−4). For every vertex v, and for every
time T so that deg−(v, T ) ≥ ω log n, for all times t, T ≤ t ≤ n,

deg−(v, t) ∼ deg−(v, T )
(

t

T

)pA1

.

Corollary 2. Let ω = ω(n) be any function tending to infinity together with n.
The following holds with probability 1 − o(n−4). For any vertex vi born at time
i ≥ 1, and i ≤ t ≤ n we have that deg−(vi, t) ≤ ω log n (t/i)pA1 .

Theorem 1 can be used to show that the contribution to c−(v, n) coming from
edges to new neighbours of v is well concentrated.

Theorem 2. Let ω = ω(n) be any function tending to infinity together with n.
Then, with probability 1 − o(n−1) for any vertex v with

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1))

we have
cnew(v, n) = Θ(1/k).

Unfortunately, if a vertex v lands in a densely populated region of S, it might
happen that cold(v, n) is much larger than 1/k. We show the following ‘negative’
result (without trying to aim for the strongest statement) that shows that there
is no hope for extending Theorem2 to c−(v, n).
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Theorem 3. Let C = 5 log (1/p) and ξ = ξ(n) = 1/(ω(log log n)2

(log log log n)) = o(1) for some ω = ω(n) tending to infinity as n → ∞. Suppose
that k = k(n) is such that 2 ≤ k ≤ nξ. Then, a.a.s., there exists a vertex v such
that deg−(v, n) ∼ k and

(i) c−(v, n) = 1, provided that 2 ≤ k ≤ √
log n/C,

(ii) c−(v, n) = Ω(1) � 1/k, provided that
√

log n/C ≤ k ≤ log n/ log log n,
(iii) c−(v, n) � (log log n)2(log log log n)/k � 1/k, provided that

log n/ log log n ≤ k ≤ nξ.

On the other hand, Theorem2 implies immediately the following corollary.

Corollary 3. Let ω = ω(n) be any function tending to infinity together with n.
The following holds with probability 1 − o(n−1). For any vertex v for which

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1))

it holds that

c−(v, n) ≥ cnew(v, n) = Ω(1/k)
c−(v, n) = cold(v, n) + cnew(v, n) = O(ω log n/k) + O(1/k) = O(ω log n/k).

Moreover, despite the above ‘negative’ result, almost all vertices (of large
enough degrees) have clustering coefficients of order 1/k. Here is a precise state-
ment. The conclusions in cases (i)’ and (ii)’ follow immediately from Theorem2.

Theorem 4. Let ε, δ ∈ (0, 1/2) be any two constants, and let k = k(n) ≤ npA1−ε

be any function of n. Let Xk be the set of vertices of Gn of in-degree between
(1 − δ)k and (1 + δ)k. Then, a.a.s., the following holds.

(i) Almost all vertices in Xk have cold(v, n) = O(1/k), provided that k �
logC1 n, where C1 = (1 + (2 + ε)pA1)/(1 − pA1).

(i)’ As a result, almost all vertices in Xk have c−(v, n) = Θ(1/k), provided that
k � logC n, where C = 4 + (4pA1 + 2)/(pA1(1 − pA1)).

(ii) The average clustering coefficient cold(v, n) of vertices in Xk is O(1/k); that
is,

1
|Xk|

∑

v∈Xk

cold(v, n) = O(1/k),

provided that k � logC2 n, where C2 = (1 + (2 + pA1 + ε)pA1)/(1 − pA1).
(ii)’ As a result, the average clustering coefficient c−(v, n) of vertices in Xk is

Θ(1/k); that is,
1

|Xk|
∑

v∈Xk

c−(v, n) = Θ(1/k),

provided that k � logC n, where C = 4 + (4pA1 + 2)/(pA1(1 − pA1)).

Finally, let us briefly discuss the undirected case. The following lemma holds.
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Lemma 1. Let ω = ω(n) be any function tending to infinity together with n.
The following holds with probability 1 − o(n−3). For every vertex vi,

deg+(vi, i) = deg+(vi, n) ≤ ω log n.

Note that a weaker bound of log2 n was proved in [1]; with Corollary 2 in hand,
we can get slightly better bound but the argument remains the same.

From the above lemma we get the following corollary.

Corollary 4. Let c(v, n) be the clustering coefficient defined for the undirected
graph Ĝn obtained from Gn by considering all edges as undirected. Then Corol-
lary 3 and Theorem4 hold with replacing c−(v, n) by c(v, n).

Indeed, according to Lemma 1, a.a.s. the out-degrees of all vertices do not
exceed ω log n. Therefore, even if out-neighbours of a vertex form a complete
graph, the contribution from them is at most

(
ω log n

2

)
, which is much smaller

than the required lower bound for k.

5 Experiments

In this section, we illustrate the theoretical, asymptotic, results presented in the
previous section by analyzing the local clustering coefficient for graphs of various
orders generated according to the SPA model.

5.1 Algorithm

Let us first discuss the complexity of the straightforward (naive) algorithm for
generating graphs according to the SPA model. At each step we add one vertex
and, for each existing vertex, we check if the new vertex belongs to its sphere of
influence. Then we (possibly) add new edges and update the radii for all vertices.
The complexity of this procedure is Θ(n2).

Let us now propose a more efficient algorithm. First, we describe this algo-
rithm and provide heuristic arguments about its complexity. Then, we compare
running times of the new algorithm and the naive one.

Our algorithm works in several phases, as described further in the text. For
now, let us assume that we already generated a graph on n vertices according
to the SPA model and we want to add one additional vertex. It is known that

E

(
deg−(vi, t)

)
∼ A2

A1

(
t

i

)pA1

,

provided that i � 1 (see, for example, [7]). We call a vertex heavy if its degree
is at least D for some D; otherwise, it is light. All heavy vertices are kept in a
separate list H. Fix

D =
A2

A1

( n

T

)pA1

, (2)
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so H has expected size around T . The choice of an optimal value of T will be
discussed further in this section.

Let us divide S = [0, 1]2 into k squares where k is some perfect square; that
is, each square will have side length 1/

√
k. (We choose the dimension m = 2 for

our simulations. However, the ideas can easily be applied for an arbitrary m.)
All light vertices are kept in k disjoint lists; let L(i) be a list containing all light
vertices from square i. The expected number of vertices in each list is (n−T )/k.

We want the following property to be satisfied:
√

A1D + A2

πn
≤ 1√

k
. (3)

Indeed, if this is the case, then no light vertex vi has the area of influence that
touches squares other than the square containing vi and the 8 adjacent squares.
Moreover, the same property will hold for all t > n as areas of influence of light
vertices decrease with time. Hence, since we aim for an integer

√
k to be as large

as possible:

k =
⌊√

πn

A1D + A2

⌋2

⇒ k ≈ πn

A2 (1 + (n/T )pA1)
. (4)

The most expensive computational work for the algorithm is the number of
comparisons needed in order to add a vertex vn+1 to a graph, which is of order

f(T ) := T + 9
n − T

k
= T +

9A2

π
(1 − T/n)

(
1 + (n/T )pA1

)
. (5)

Hence, the function f(T ) is minimized for

T =
9npA1A2(n/T )pA1

πn − 9A2 − 9A2(1 − pA1)(n/T )pA1
.

For large n the second and the third terms in the denominator are negligible, as
pA1 < 1; moreover, if pA1 is close to 1 we will soon show that T = Θ(n1/2−ε) for
some small ε > 0, so the approximation converges fast. Thus, we may approxi-
mate T by:

T ≈ n1−1/(pA1+1)

(
9pA1A2

π

)1/(pA1+1)

. (6)

Using this T we can calculate the recommended value of D, see (3), and the
density of the

√
k × √

k grid, see (4).
Below are some practical implementation details:

– It is computationally expensive to recalculate H and L division each time
a new vertex is added. By empirical testing, we have found that the recal-
culation should be done approximately after adding t/4 vertices, where t is
the number of vertices in already constructed graph. As a result, the num-
ber of phases is O(log n), as each time the number of vertices increases by
approximately 25%.
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– As we work in phases, at each step we have to check if some light vertex
becomes heavy, and move it to the appropriate list, if needed. However, this
operation is not expensive computationally.

– After several phases, for actually constructed graphs the optimal parameters
k, T and D might deviate from the theoretical values derived above. There-
fore, in the implementation we choose the optimal parameters conditional on
the actual input graph structure. Namely, for each candidate value k we can
calculate the corresponding D using (3) and then calculate T from the data
(this is the actual number of heavy vertices given D). We choose k to opti-
mize the number of comparisons needed to add one vertex to the actual graph,
the approximation for this value is given in (5). After that we dynamically
construct H and L lists.

Let us now discuss the complexity of the obtained algorithm. Equation (5) shows
that T is expected to be of order npA1/(pA1+1). So, we may derive from (4)
that k is of order n1−pA1+(pA1)

2/(pA1+1) = n1/(pA1+1). From (5) we obtain that
f(T ) grows as npA1/(pA1+1). So, the expected complexity of the whole process is
Θ

(
n2−1/(pA1+1)

) 
 n2.
Figure 1 presents an empirical comparison of the running time for new and

naive algorithms. We also present this figure in log-log scale. The computations
were performed using Julia 0.6.2 language [3] and LightGraphs [6] package on a
single thread of Intel i5-5200U @ 2.20 GHz processor.

Fig. 1. Running time of the proposed and the naive algorithms.

Finally, let us mention that further improvements of the algorithm are pos-
sible. For example, one can keep more than two lists H and L. For example,
Ls(i) could contain vertices of degree between 2s−1 and 2s that landed in region
i, so the total number of lists is O(log n). Then, the running time of the algo-
rithm would be O(n log n). Indeed, during a phase that started at time t, Ls

has expected size O(t 2−s/pA1); since vertices from Ls(i) are gathered from the
square of area, say, 2s/t, the expected size of this list is O(2s−s/(pA1)) = O(1).
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Hence, after adding one vertex, O(log n) lists are investigated and we expect only
a constant number of comparisons done on each list. Of course, there is always
a trade-off between the running time of an algorithm and how complicated it is
to implement it. For our purpose, we decided to go for a simpler algorithm with
only two lists.

5.2 Empirical Analysis of the Local Clustering Coefficient

In this section, we compare asymptotic theoretical results obtained in Sect. 4
with empirical results obtained for graphs with finite n. All graphs are generated
according to the algorithm described in Sect. 5.1.

It is proven in Theorem 4 that 1
Xd

∑
v∈Xd

c−(v, n) = Θ(1/d) for d � logC n,
where C = 4 + (4pA1 + 2)/(pA1(1 − pA1)). In order to illustrate this result, we
generated 10 graphs for each p ∈ {0.1, 0.2, . . . , 0.9}, A1 = 1, A2 = 10(1 − p)/p
(A2 is chosen to fix the expected asymptotic degree equal 10) and computed
the average value of C−(d, n) for n = 106, see Fig. 2 (left). Similarly, Fig. 2
(right) presents the same measurements for the undirected average local cluster-
ing C(d, n). Note that in both cases figures agree with our theoretical results:
both C−(d, n) and C(d, n) decrease as c/d with some c for large enough d (we
added a function 10/d for comparison). Note that for small p the maximum
degree is small, therefore the sizes of the generated graphs are not large enough
to observe a straight line in log-log scale.

Fig. 2. Average local clustering coefficient for directed (left) and undirected (right)
graphs.

Note that for all p ∈ (0, 1) we have C = 4 + 4p+2
p(1−p) > 18, so, our theoretical

results are expected to hold for d � logC n > 1020 which is irrelevant as the
order of the graph is only 106. However, we observe the desired behaviour for
much smaller values of d; that is, in some sense, our bound is too pessimistic.

Also, note that the statement C−(d, n) = Θ(1/d) is stronger that the state-
ment of Theorem 4, since in the theorem we averaged c−(v, n) over the set Xd
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of vertices of in-degree between (1 − δ)d and (1 + δ)d. In order to illustrate the
difference, on Fig. 3 we present the smoothed curves for the directed (left) and
undirected (right) local clustering coefficients averaged over Xd for δ = 0.1. Note
that this smoothing substantially reduce the noise observed on Fig. 2.

Fig. 3. Local clustering coefficient for directed (left) and undirected (right) graphs
averaged over Xd.

Next, let us illustrate the fact that the number of edges between “new”
neighbours of a vertex is more predictable than the number of edges going from
some neighbours to “old” ones. We extensively used this difference in Sect. 4.2,
where we analyzed new and old edges separately. In our experiments, we split
c−(v, n) into “old” and “new” parts as in (1), but now we take T̂v be the smallest
integer t such that deg−(v, t) exceeds deg−(v, n)/2. As a result, we compute the
average local clustering coefficients C−

old(d) and C−
new(d). Figure 4 shows that

C−
new(d) can almost perfectly be fitted by c/d with some c, while most of the

noise comes from C−
old(d).

Fig. 4. Comparison of “new” and “old” parts of the average local clustering coefficient.
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Fig. 5. The distribution of individual local clustering coefficients.

Finally, Fig. 5 shows the distribution of the individual local clustering coef-
ficients for one graph generated with p = 0.7. Theorem 3 states that a.a.s. there
exist a vertex v of degree d with c−(v, n) � 1/d. Also, according to this theo-
rem, the situation is much worse for smaller values of d. Indeed, one can see on
Fig. 5 that for small d the scatter of points is much larger. On the other hand, in
Theorem 4 we present bounds for c−(v, n) for almost all vertices, provided that
d is large enough. One can see it on the figure too and, similarly to previously
discussed figures, we observe the expected behaviour even for relatively small n
despite the bound logC n that is bigger than n in our case.
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27. Serrano, M.Á., Boguna, M.: Clustering in complex networks. I. General formalism.

Phys. Rev. E 74(5), 056114 (2006)
28. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and

dynamical properties of the internet. Phys. Rev. E 65(6), 066130 (2002)

http://arxiv.org/abs/1711.06846
https://doi.org/10.1007/978-3-319-03536-9_2
https://doi.org/10.1007/978-3-319-03536-9_2
https://doi.org/10.1007/978-3-319-67810-8_4
https://doi.org/10.1007/978-3-319-26784-5_2
https://doi.org/10.1007/978-3-319-26784-5_2


Parameter Estimators of Sparse Random
Intersection Graphs with Thinned

Communities

Joona Karjalainen1(B), Johan S. H. van Leeuwaarden2, and Lasse Leskelä1
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Abstract. This paper studies a statistical network model generated by
a large number of randomly sized overlapping communities, where any
pair of nodes sharing a community is linked with probability q via the
community. In the special case with q = 1 the model reduces to a random
intersection graph which is known to generate high levels of transitivity
also in the sparse context. The parameter q adds a degree of freedom
and leads to a parsimonious and analytically tractable network model
with tunable density, transitivity, and degree fluctuations. We prove that
the parameters of this model can be consistently estimated in the large
and sparse limiting regime using moment estimators based on partially
observed densities of links, 2-stars, and triangles.

1 Introduction

Networks often display transitivity or clustering, the tendency for nodes to be
connected if they share a mutual neighbor. Random graphs can statistically
model networks with clustering after adding a community structure of small
relatively dense subgraphs. Triangles, or other short cycles, then occur predomi-
nantly within and not between the communities, and clustering becomes tunable
through adapting the community structure.

There are various ways to install community structure, for instance by
locally adding small dense graphs [1–4]. This creates nonoverlapping commu-
nities. Another way is to introduce overlapping communities through a random
intersection graph (RIG) which can be defined as the 2-section of a random
inhomogeneous hypergraph where hyperedges correspond to overlapping com-
munities [5]. RIGs have attractive analytical features, for example admitting
tunable transitivity (clustering coefficient) and power-law degree distributions
[6–8]. However, by construction the RIG community structure is rigid, in the
sense that every community corresponds to a clique. In this paper we relax this
property and consider an extension of the RIG, a thinned RIG where nodes
within the same community are linked with some probability q ∈ [0, 1] via that
community, independently across all node pairs.
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The RIG and thinned RIG are known to generate high levels of transitivity,
even in sparse regimes where nodes have finite mean degrees in the large-network
limit [6,9]. In [9] it is shown that the community density q can be exploited to
tune both triangle and 4-cycle densities. In this paper we also exploit the addi-
tional freedom offered by q, but for controlling the density of 2-stars instead
of 4-cycles. We derive scaling relations between the model parameters to create
large, sparse, clustered networks, in which the number of links grows linearly in
the number of nodes n, and the numbers of 2-stars and triangles grow quadrat-
ically in n. We investigate a special instance of the sparse model parameterized
by a triplet (λ, μ, q) where λ corresponds to the mean degree and μ to the mean
number of community memberships of a node. By analyzing limiting expressions
for the link, 2-star and triangle densities, we derive moment estimators for λ,
μ, and q based on observed frequencies of 2-stars and triangles. Taken together,
the densities of links, 2-stars and triangles prove sufficient to produce tunable
sparsity (mean degree), degree fluctuations and transitivity.

This work is part of an emerging area in network science that connects high-
order local network structure such as subgraphs with statistical estimation pro-
cedures. The triangle is the most studied subgraph, because it not only describes
transitivity, but also signals hierarchy and community structure [10]. Other sub-
graphs, however, such as 2-stars, bifans, cycles, and cliques are also relevant for
understanding network organization [11,12]. In this paper we exploit a direct
connection between the model parameters and the frequencies of links, 2-stars
and triangles. A key technical challenge is to characterize the mean and variance
of the subgraph frequencies, where the latter requires frequencies of all sub-
graphs that can be constructed by merging two copies of the subgraph at hand
[13–16]. A byproduct of our analysis yields a rigorous proof of the graph-ergodic
theorem (analogous to [17, Theorem 3.2]) stating that the observed transitivity
(a large graph average) of a large graph sample is with high probability close to
the model transitivity (a probabilistic average).

Notation. For a probability distribution π on the nonnegative integers, we
denote the moments by πr =

∑
x xrπ(x) and the factorial moments by

(π)r =
∑

x(x)rπ(x), where (x)r = x(x − 1) · · · (x − r + 1). For sequences
an and bn, we denote a � b when an ≤ cbn for some c > 0 and all n. a � b
means “a � b and b � a”. For an = (1 + o(1))bn we use the notation a ∼ b,
and for an/bn → 0 we use a � b. X = oP(1) is read as “X converges to zero in
probability”.

2 Model Description

We will study a statistical network model with n nodes (individuals, users, ver-
tices) and m overlapping communities (attributes, blocks, groups, layers). The
model is parameterized by (n,m, π, q), where π is a probability distribution
on {0, . . . , n} such that π(x) corresponds to the proportion of communities of
size x, and q ∈ [0, 1] is the probability that two nodes are linked via a particular
community.
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A realization of the model corresponds to a collection of random subsets
Vk of {1, . . . , n} indexed by k = 1, . . . ,m representing the communities, and
a collection of symmetric binary matrices (Cij,k)ij , with i, j = 1, . . . , n, and
k = 1, . . . , m. These objects are used to define an undirected random graph G
on node set {1, . . . , n} with adjacency matrix

Gij = max
k=1,...,m

{Bi,kBj,kCij,k}, i �= j, (1)

where Bi,k = 1Vk
(i) indicates whether node i belongs to community k, and

Cij,k = 1 means that i and j are linked via community k, given that both i and
j are members of community k. We assume that V1, . . . , Vm are independent
random sets with a common probability density P(Vi = A) = π(|A|)( n

|A|
)−1, and

that Cij,k are independent {0, 1}-valued random integers with mean q. Moreover,
the arrays (Vk) and (Cij,k) are assumed independent.

The special case where q = 1 corresponds to the so-called passive random
intersection graph model [7,18]. The special case where π is a Dirac measure has
been recently studied in [9]. The binomial community size distribution π(x) =(
n
x

)
(1 − p)n−xpx gives another important special case of the model (referred to

as Bernoulli model), which allows to smoothly interpolate between a standard
Erdős–Rényi random graph (setting p = 1) and a binomial random intersection
graphs [19] (with q = 1).

3 Analysis of Local Model Characteristics

3.1 Sparse Parameter Regime

In this section we analyze how the model behaves when the number of nodes
n is large. We view a large network as a sequence of models with parameter
quadruples (n,m, π, q) = (nν ,mν , πν , qν) indexed by a scale parameter ν =
1, 2, . . . such that nν → ∞ as ν → ∞. For simplicity we omit the scale parameter
from the notation.

Let pr = (π)r/(n)r denote the probability that a particular community con-
tains a given set of r nodes. Then mpr equals the mean number of communities
common to a particular set of r nodes, and

(
n
r

)
pr = (π)r/r! equals the expected

number of r-sets of nodes contained in a single community. Because mp2q equals
the number of communities through which a given node pair is linked, it is nat-
ural to assume that mp2q � 1 when modeling a large and sparse network. The
following result confirms this.

Proposition 1. The probability that any particular pair of distinct nodes is
linked equals P(link) = 1 − (1 − qp2)

m
. Furthermore, P(link) � 1 if and only if

mp2q � 1, in which case

P(link) = (1 + O(mp2q)) mp2q. (2)
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3.2 Subgraph Densities

For an arbitrary graph R, the R-covering density of the model is defined as the
expected proportion of subgraphs1 of G that are isomoprhic to R. By symmetry,
this quantity equals the probability that G contains R as a subgraph, when we
assume that V (R) ⊂ {1, . . . , n}. Note that the K2-covering density of the model
is just the link density analyzed in Proposition 1. The following result describes
the covering densities of connected three-node graphs.

Proposition 2. The probabilities that the model in the sparse regime mp2q � 1
contains as subgraph the 2-star and triangle are approximately

P(2-star) = (1 + O(mp2q)) q2
(
mp3 + (m)2p22

)
, (3)

P(triangle) = (1 + O(mqp2)) q3
(
mp3 + 3(m)2p2p3 + (m)3p32

)
. (4)

3.3 Model Transitivity

The transitivity (or global clustering coefficient) of a graph usually refers to
the proportion of triangles among unordered node triplets which induce a con-
nected graph. The model transitivity of a random graph is usually defined by
replacing the numerator and the denominator in the latter expression by their
expected values [17]. In our case, by symmetry, the model transitivity equals
τ = P(triangle)/P(2-star), and is characterized by the following result in the
sparse parameter regime.

Proposition 3. The model transitivity in the sparse regime mp2q � 1 satisfies

τ =
p3q

p3 + (m − 1)p22
+ o(1).

Remark 1. In the special case with q = 1 the above result coincides with [20,
Corollary 1] and [7, Theorem 3.2].

3.4 Degree Mean and Variance

Proposition 4. The degree D of any particular node of the model in the sparse
regime mp2q � 1 satisfies

E(D) ∼ mnp2q, Var(D) ∼ mnp2q

(

1 + nq

(
p3
p2

− p2

))

.

1 By subgraph we mean any subgraph, not just the induced ones.
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4 Parameter Estimation of Sparse Models

Our goal is to fit the model parameters to a sparse and large graph sample
of known size n in a consistent way. For this we impose assumptions on the
parameter sequence (nν ,mν , πν , qν), called the balanced sparse regime.

Assumption 1 (Balanced sparse regime). The ratio m/n, the factorial
moments (π)1, (π)2, (π)3, and the parameter q converge to nonzero finite con-
stants as the scale parameter tends to infinity.

Propositions 3 and 4 imply that in the balanced sparse regime, the mean
degree λ, the degree variance σ2, and the model transitivity τ converge to nonzero
finite constants which are related to the model characteristics via the formulas

λ ∼ (m/n)(π)2q, σ2 ∼ λ

(

1 + q
(π)3
(π)2

)

, τ ∼ (π)3q
(π)3 + (m/n)(π)22

.

These are the three model characteristics we wish to fit to real data. Single-
parameter distributions π are of special interest, as the parameter then deter-
mines both (π)2 and (π)3, reducing the number of unknowns by one.

4.1 Empirical Subgraph Counts

Consider the model G = (n,m, q, π) and assume that we have observed a sub-
graph G(n0) induced by n0 nodes. We wish to estimate one or more model
parameters using the empirical subgraph counts in G(n0) and the asymptotic
relations developed in Sect. 3. Computationally efficient estimators are obtained
by choosing a suitably low n0.

Denote by NK2(G
(n0)) the number of links, by NS2(G

(n0)) the number of
(induced or noninduced) subgraphs which are isomorphic to the 2-star, and by
NK3(G

(n0)) the number of triangles in the observed graph G(n0). These are
asymptotically close to the expected subgraph counts by the following theorem.

Theorem 2. Consider the model in the balanced sparse regime (Assumption 1).
If (π)4 � 1 and n0 � n1/2, then the number of links in the observed graph G(n0)

satisfies
NK2(G

(n0)) = (1 + oP(1))ENK2(G
(n0)). (5)

If also (π)6 � 1, and n0 � n2/3, then

NS2(G
(n0)) = (1 + oP(1))ENS2(G

(n0)), (6)

NK3(G(n0)) = (1 + oP(1))ENK3(G
(n0)). (7)
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4.2 Parameter Estimation in the Bernoulli Model

The binomial community size distribution π(x) =
(
n
x

)
(1−p)n−xpx with p ∈ (0, 1)

gives (π)r = n!/(n−r)!pr for all integers r ≥ 1. We parameterize the model with
three positive constants (λ, μ, q) (with q not depending on scale) and choose

m =
⌊

μ2q

λ
n

⌋

, and p =
λ

μq
n−1, (8)

where μ can be interpreted as the mean number of communities of a node. The
following (asymptotic) relations follow from the results in Sect. 3:

λ ∼ nqmp2, σ2 ∼ nqmp2 (1 + nqp) , τ ∼ q

1 + mp
,

from which one may solve

μ =
λ2

σ2 − λ
and q = τ(1 +

λ2

σ2 − λ
).

After substituting the asymptotic densities from Sect. 3 and estimating them
using empirical counts we obtain (after some algebra) the estimators

λ̂ = (n − 1)
(
n0
2

)−1
NK2(G

(n0)),

μ̂ = 2NK2 (G
(n0))2

n0NS2 (G
(n0))−2NK2 (G

(n0))2
, q̂ = 3n0NK3 (G

(n0))

n0NS2 (G
(n0))−2NK2 (G

(n0))2
.

To summarize, we estimate the parameters μ and q by counting the numbers of
links, 2-stars, and triangles from an induced subgraph of n0 nodes. Alternatively,
this can be seen as a way of fitting the transitivity and the mean and variance
of the degrees. The theoretical justification is given by the following theorem.

Theorem 3. λ̂, μ̂, and q̂ converge in probability to the true values λ, μ, and q,
under the Bernoulli model defined by (8) given n0 � n2/3.

Proof. The assumptions of Theorem 2 and Propositions 1 and 4 are satisfied by
(8), which establishes the claim for λ̂. Dividing and multiplying both μ̂ and q̂ by
n2
0 yields rational expressions where the numerators and denominators converge

in probability to nonzero constants by Theorem 2 and Propositions 1 and 2. The
claim now follows from the continuous mapping theorem.

5 Numerical Experiments

5.1 Attainable Regions in the Bernoulli Model

The relations σ2 ≥ λ, τ ∈ (0, 1) and τ ≤ (1 + λ2/(σ2 − λ))−1 restrict the
attainable combinations (λ, τ, σ2); see Fig. 1. To obtain a model with a large
asymptotic transitivity coefficient, one may choose a low mean degree and a large
degree variance. The flexibility gained by allowing q ≤ 1 is also illustrated in
Fig. 2. The discreteness of the attainable points (P(link),P(triangle)) is obvious
with q = 1, whereas the points with q ≤ 1 fill a large part above the curve
P(triangle) = P(link)3.
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Fig. 1. Attainable combinations of (τ, σ) for λ ∈ {1, 2, 4, 7, 11, 16}. Combinations with
q = 1 lie on the curves. The points under the curves are obtained by setting q ≤ 1.

Fig. 2. Attainable combinations of link and triangle probabilities in Bernoulli models
with different values of λ and τ (λ ≤ 500, τ ≥ 0.0002), and (a) q = 1 (exact probabili-
ties) and (b) q ≤ 1 (averages of 1000 Monte Carlo samples). The solid curves represent
theoretical bounds, and the thick black curve the Erdős–Rényi graph.

5.2 Real Data

Ten data sets of different sizes were analyzed using the Bernoulli model. The whole
data sets were used for estimation, i.e., n0 = n. The obtained estimates are listed
in Table 1. Because we essentially fit τ and λ, these values are listed in Table 1 only
for illustration purposes. In the largest data sets the estimates of q are very small,
which might suggest that the structure of the model is not strongly supported by
the data. For one of the data sets, Dolphin, the estimate of q is outside the allowed
range (0, 1). This may be related to the denseness of the network. On the other
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Table 1. Parameter estimates of the Bernoulli model for collaboration networks in
astrophysics and high energy physics, a social network of bottleneck dolphins, an e-
mail network from a research institution, a geographically local Facebook network, a
Flickr image network, a social network of Flixster users, a Twitter network of users
who mention each other in their tweets, a US aiport network, and a Wikipedia com-
munications network. Data sets from a[21], b[22], and c[23].

Data set n λ̂ τ̂ q̂ m̂ σ̂ m̂q=1 σ̂q=1

ca-AstroPha 18772 21.1 0.32 0.47 100 30.6 4092 15.1

ca-HepPha 12008 19.7 0.66 0.78 15 46.6 162 28.2

Dolphinb 62 5.1 0.31 −(2.36) 1255 3.0 61 4.1

email-Eu-corea 1005 32.0 0.27 0.47 8 37.0 236 20.1

Facebookb 63731 25.6 0.15 0.21 90 40.0 82756 11.8

Flickra 105938 43.7 0.40 0.46 23 115.6 5377 36.4

Flixsterb 2523386 6.3 0.01 0.014 4 36.6 2.1*109 2.6

Twitter 2919613 8.8 0.006 <0.001 77 20.9 9.3*109 3.0

USAir97c 332 12.8 0.40 0.56 2 20.1 60.1 11.0

wiki-talka 2394385 3.9 0.002 0.002 <1 102.5 1.27*1011 2.0

hand, simulation results in [17] suggest that the size n = 62 may not be sufficient
for estimators based on asymptotic moment equations.

The rightmost two columns in Table 1 display reference values of m and σ
estimated for the RIG model (q = 1) using the estimators introduced in [17].
These estimators give very large values for m and grossly underestimate σ in the
largest data sets. These observations speak for the significantly improved model
fit when using the thinned RIG model instead of the classical RIG model.

6 Technical Proofs

6.1 Analysis of Link Density

Proof (Proof of Proposition 1). The probability of the event Ek that nodes 1 and
2 are linked via community k can be written as

P(Ek) = P (Vk ⊃ {i, j}, C12,k = 1) = p2q.

Because the events E1, . . . , Em are independent, it follows that

P(link) = P

( ⋃

k

Ek

)
= 1 −

∏

k

P(Ec
k) = 1 − (1 − p2q)

m
.

The inequality 1 − x ≤ e−x and the union bound P(∪kEk) ≤ ∑
k P(Ek) imply

that 1 − e−mp2q ≤ P(link) ≤ mp2q, from which we see that P(link) � 1 if and
only if mp2q � 1. The approximation formula (2) follows from the Bonferroni’s
bounds

mp2q −
(

m

2

)

(p2q)2 ≤ P(link) ≤ mp2q.
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6.2 Analysis of 2-Star Covering Density

Proof (Proof of Proposition 2: Eq. (3)). Consider a 2-star with node set {1, 2, 3}
and link set {{1, 2}, {1, 3}}. Denote by BA,k = {Vk ⊃ A} the event that com-
munity k covers a node set A, and by Cij,k the event that Cij,k = 1. Then
Eij,k = Bij,k ∩Cij,k is the event that node pair ij is linked by community k. Then
the probability that G contains the 2-star as a subgraph is given by

P(2-star) = P

( ⋃

k∈[m]2

Fk

)
,

where Fk = E12,k1 ∩ E13,k2 for an ordered community pair k = (k1, k2). Observe
that P(Fk) = q2p3 for k1 = k2 and P(Fk) = q2p22 otherwise. Therefore,

P(2-star) ≤
∑

k∈[m]2

P(Fk) = mq2p3 + (m)2q2p22.

To prove the claim using Bonferroni’s bounds, it suffices to show that
∑

(k,�)

P(Fk,F�) � q2
(
mp3 + (m)2p22

)
, (9)

where the sum on the left is over all (k, �)-pairs with k, � ∈ [m]2 and k �= �.
We will now compute the sum on the left side of (9). Note that

P(Fk,F�) = q|{k1,�1}|+|{k2,�2}|
P(B12,k1 ,B13,k2 ,B12,�1 ,B13,�2).

Therefore, for example, for a (k, �)-pair of the form (k1, k2, �1, �2) = (a, a, b, c)
with distinct a, b, c we have

P(Fk,F�) = q4P(B123,a,B12,b,B13,c) = q4p22p3.

The table below displays the values of P(Fk,F�) for all combinations of k �= �,
and the cardinalities of such combinations.

(k1, k2, �1, �2) Cardinality P(Fk, F�)

(a, b, c, d) (m)4 q4p4
2

(a, b, a, c) or (a, b, c, b) 2(m)3 q3p3
2

(a, a, b, c) or (a, b, c, c) or (a, b, c, a) or (a, b, b, c) 4(m)3 q4p2
2p3

(a, a, b, b) or (a, b, b, a) 2(m)2 q4p2
3

(a, a, a, b) or (a, a, b, a) or (a, b, a, a) or (b, a, a, a) 4(m)2 q3p2p3

As a consequence,
∑

(k,�)

P(Fk, F�) = (m)4q4p42 + 2(m)3q3p32 + 4(m)3q4p22p3 + 2(m)2q4p23 + 4(m)2q3p2p3

By noting that p3 ≤ p2 and mp2q � 1, we see that the first three terms on the
right are bounded from above by 4(mp2q)q2(m)2p22, and the last two terms on
the right are bounded from above by 4(mp2q)q2mp3. Hence the above sum is at
most 12(mp2q)q2(mp3 + (m)2p22), claim (9) is valid, and the claim follows.
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6.3 Analysis of Triangle Covering Density

Proof (Proof sketch of Proposition 2: Eq. (4)). Consider a triangle with node
set {1, 2, 3}. Denote by Ee,k = {Vk ⊃ e, Ce,k = 1} the event that node pair
e is linked via community k. Then P(triangle) = P(∪k∈[m]3Fk), where Fk =
E12,k1 ∩ E13,k2 ∩ E23,k3 is the event that the node pairs of the triangle are linked
via communities of the triplet k = (k1, k2, k3). Because

P(Fk) = q3P(Vk1 ⊃ 12, Vk2 ⊃ 13, Vk3 ⊃ 23) =

⎧
⎪⎨

⎪⎩

q3p3, |{k1, k2, k3}| = 1,

q3p2p3, |{k1, k2, k3}| = 2,

q3p32, |{k1, k2, k3}| = 3,

the union bound implies that

P(triangle) ≤
∑

k

P(Fk) ≤ q3
(
mp3 + 3(m)2p2p3 + (m)3p32

)
.

By similar techniques as in the proof of (3), one can show that
∑

(k,�):k �=�

P(Fk,F�) � (mqp2)
∑

k

P(Fk) �
∑

k

P(Fk),

and the claim follows by Bonferroni’s bounds. (The details of the lengthy com-
putations are omitted.)

6.4 Analysis of Model Transitivity

Proof (Proof of Proposition 3). By applying Propositions 2 we find that

τ = (1 + o(1))q
mp3 + 3(m)2p2p3 + (m)3p32

mp3 + (m)2p22
= (1 + o(1))q

(
mp3

mp3 + (m)2p22
+ R

)
,

where

R =
3(m)2p2p3 + (m)3p32

mp3 + (m)2p22
≤ mp2

3mp3 + (m)2p22
mp3 + (m)2p22

≤ 3mp2.

The assumption mqp2 � 1 now implies that qR = o(1). Hence we conclude

τ = (1 + o(1))
(

qmp3
mp3 + (m)2p22

+ o(1)
)

=
qp3

p3 + (m − 1)p22
+ o(1).

6.5 Analysis of Degree Moments

Proof (Proof of Proposition 4). By expressing the degree of node i using the
adjacency matrix as D =

∑
j �=i Gi,j and taking expectations, we find that

E(D) = (n − 1)P(link),

E(D2) = (n − 1)P(link) + (n − 1)(n − 2)P(2-star).
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By Propositions 1 and 2 we find that

P(link) = (1 + O(mp2q))mp2q,

P(2-star) − P(link)2 = (1 + O(mp2q))q2
(
mp3 + (m)2p22 − m2p22

)
.

Hence E(D) ∼ mnp2q, and by the formula Var(D) = E(D2) − (ED)2,

Var(D) = (1 + O(n−1)
(
nP(link) + n2

(
P(2-star) − P(link)2

))

= (1 + O(n−1)(1 + O(mp2q))
(
mnqp2 + mn2q2(p3 − p22)

)
.

6.6 Analysis of Observed Link Density

Proof (Proof of Theorem 2: Eq. (5)). Let us denote by N̂ = NK2(G
(n0)) the

number of links in the observed graph G(n0). The assumptions (π)2 � 1 and
(π)4 � 1 imply that p2 � n−2 and pr � n−r for r = 3, 4. Because m � n, and
q � 1, with the help of Proposition 1, we see that

P(link) = (1 + o(1))mp2q � n−1,

and

EN̂ =
(

n0

2

)

P(link) � n2
0n

−1 � 1.

Denote by P(link2) the probability that G contains any particular pair of
disjoint node pairs (e.g., pairs {1,2} and {3,4}). Note that

Var(N̂) =
∑

e

∑

e′
P(e ∈ E(G(n0)), e′ ∈ E(G(n0))) −

(n0

2

)2
P(link)2

=
(n0

2

)
P(link) + (n0)3P(2-star) +

(n0

2

)(n0 − 2

2

)
P(link2) −

(n0

2

)2
P(link)2

≤ n2
0P(link) + n3

0P(2-star) +
(n0

2

)2(
P(link2) − P(link)2

)
.

Note that P(link) � n−1 and P(2-star) � n−2. Furthermore,

P(link2) = P(∪k ∪� {Vk ⊃ {1, 2}, C12,k = 1, V� ⊃ {3, 4}, C34,� = 1})

≤
∑

k

∑

�

P({Vk ⊃ {1, 2}, C12,k = 1, V� ⊃ {3, 4}, C34,� = 1})

= (m)2p22q
2 + mp4q

2 = (1 + o(1))P(link)2 + O(n−3),

so that

Var(N̂) � n2
0n

−1 + n3
0n

−2 + n4
0n

−3 + o(1)(EN̂)2

≤ 3n2
0n

−1 + o(1)(EN̂)2 � (EN̂)2.
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6.7 Analysis of Observed 2-Star Covering Density

Proof (Proof sketch of Theorem 2: Eq. (6)). Let us denote N̂ = NS2(G
(n0)).

Note that
N̂ =

∑

R

1AR

where the sum ranges over the set of all S2-isomorphic subgraphs of K[n0], and
1AR

is the indicator of the event AR that G(n0) contains R as a subgraph. The
assumptions (π)2 � 1 and (π)6 � 1 imply that p2 � n−2 and pr � n−r for
r = 3, . . . , 6. Because m � n, and q � 1, with the help of Proposition 2, we see
that

P(2-star) = q2
(
mp3 + (m)2p22

)
(1 + o(1)) � n−2, (10)

and

EN̂ = 3
(

n0

3

)

P(2-star) � n3
0n

−2 � 1.

The above relation underlines the role of assumption n0 � n2/3. This guarantees
that there are lots of (dependent) samples to sum in the observed graph.

Let us next analyze the variance of N̂ . By applying the formula Var(N̂) =
E(N̂2) − (EN̂)2 and noting that AR ∩ AR′ = AR∪R′ , we see that

Var(N̂) =
∑

R

∑

R′
P(AR, AR′) −

∑

R

∑

R′
P(AR)P(AR′) =

3∑

i=0

Mi,

where
Mi =

∑

R

∑

R′:|V (R)∩V (R′)|=i

(
P(AR∪R′) − P(AR)2

)
. (11)

For i ≥ 1, we approximate Mi from above by omitting the P(AR) term in (11). By
generalizing the analytical technique used in [17] (details will be available in the
extended version), it can be shown that for any graph R such that |V (R)| ≤ 6,

P(AR) � n−κ(R), (12)

where κ(R) = minE(||E|| − |E|), with the minimum taken across all partitions
of E(R) into nonempty sets, where |E| is the number of parts in the partition,
and we set ||E|| =

∑
E∈E |E�| where E� = ∪e∈Ee denotes the set of nodes

covered by the node pairs of E, so that for example, {{1, 2}}� = {1, 2} and
{{1, 3}, {2, 3}}� = {1, 2, 3}. Table 2 summarizes the values of κ(R) for the type
of graphs that can be obtained as unions of two 2-stars. By applying (12), it
follows that

M1 � n5
0

(
P(4-star) + P(4-path) + P(chair)

)
� n5

0n
−4,

M2 � n4
0

(
P(3-star) + P(3-path) + P(3-pan) + P(4-cycle)

)
� n4

0n
−3,

M3 � n3
0

(
P(2-star) + P(triangle)

)
� n3

0n
−2.
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Table 2. Values of κ(R) (obtained using an exhaustive computer search) for graphs
obtained as unions of two 2-stars.

Because n0 � n2/3, it follows that Mi � n3
0n

−2 � (EN̂)2 for i = 1, 2, 3.
The M0-term in the variance formula (11) satisfies

M0 � n6
0

(
P(2-star2) − P(2-star)2

)

where P(2-star2) indicates the probability that G contains a particular union of
two disjoint 2-stars as a subgraph. Here we need more careful analysis because
the technique used to bound Mi for i ≥ 1 would only yield an upper bound
for M0 of the same order as (EN̂)2. Nevertheless, a tedious but straightforward
computation (details will be available in the extended version) involving all 15
partitions of the link set of a union of two disjoint 2-stars can be used to verify
that

P(2-star2) ≤ q4
(
m2p23 + 2m3p22p3 + m4p42

)
+ O(n−5)

= (1 + o(1))P(2-star)2 + O(n−5).

By comparing this with (10), we find that P(2-star2) − P(2-star)2 � P(2-star)2,
and

M0 � n6
0

(
P(2-star2) − P(2-star)2

)
� n6

0P(2-star)2 � (EN̂)2.

We may now conclude that Var(N̂) =
∑3

i=0 Mi � (EN̂)2, and hence the claim
follows by Chebyshev’s inequality.

6.8 Analysis of Observed Triangle Density

Proof (Proof sketch of Theorem 2: Eq. (7)). Let us denote by N̂ = NK3(G
(n0))

the number of triangles in the observed graph G(n0). The assumptions (π)2 � 1
and (π)6 � 1 imply that p2 � n−2 and pr � n−r for r = 3, . . . , 6. Because
m � n, and q � 1, with the help of Proposition 2, we see that

P(triangle) = (1 + o(1))mp3q
3 � n−2,
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and

EN̂ =
(

n0

3

)

P(triangle) � n3
0n

−2 � 1.

To show that N̂ is with high probability close to EN̂ , by Chebyshev’s
inequality it suffices to verify that Var(N̂) � (EN̂)2. By applying the formula
Var(N̂) = EN̂2 − (EN̂)2 and noting that AR ∩ AR′ = AR∪R′ , we see that

Var(N̂) =
∑

R

∑

R′
P(AR, AR′) −

∑

R

∑

R′
P(AR)P(AR′) =

3∑

i=0

Mi,

where
Mi =

∑

R

∑

R′:|V (R)∩V (R′)|=i

(
P(AR∪R′) − P(AR)2

)
.

In analogy with the proof of (6) one can show (details omitted) that Mi � (EN̂)2

for i = 1, 2, 3 by analyzing the subgraph containment probabilities of G for
unions of two triangles. Again, the M0 term requires special attention. A careful
analysis of the various patterns through which the communities of the model
can cover the links of two disjoint triangles (details available in the extended
version) shows that

P(triangle2) − P(triangle)2 � P(triangle)2.

This implies M0 � (EN̂)2 and allows to conclude that Var(N̂) =
∑3

i=0 Mi �
(EN̂)2. Hence the claim follows by Chebyshev’s inequality.
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19. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University
Press, Cambridge (2016)

20. Godehardt, E., Jaworski, J., Rybarczyk, K.: Clustering coefficients of random inter-
section graphs. In: Gaul, W.A., Geyer-Schulz, A., Schmidt-Thieme, L., Kunze, J.
(eds.) Proceedings of the 34th Annual Conference of the Gesellschaft für Klassi-
fikation. STUDIES CLASS, pp. 243–253. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-24466-7 25

21. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

22. Kunegis, J.: Konect: the Koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343–1350. ACM (2013)

23. Batagelj, V., Mrvar, A.: Pajek datasets (2006)

http://arxiv.org/abs/1709.09477
https://doi.org/10.1007/978-3-319-67810-8_1
https://doi.org/10.1007/978-3-319-67810-8_1
https://doi.org/10.1007/978-3-642-24466-7_25
https://doi.org/10.1007/978-3-642-24466-7_25
http://snap.stanford.edu/data


Joint Alignment from Pairwise
Differences with a Noisy Oracle

Michael Mitzenmacher1 and Charalampos E. Tsourakakis1,2(B)

1 Harvard University, Cambridge, USA
michaelm@eecs.harvard.edu

2 Boston University, Boston, USA
ctsourak@bu.edu

Abstract. In this work we consider the problem of recovering n discrete
random variables xi ∈ {0, . . . , k−1}, 1 ≤ i ≤ n with the smallest possible
number of queries to a noisy oracle that returns for a given query pair
(xi, xj) a noisy measurement of their modulo k pairwise difference, i.e.,
yij = xi − xj (mod k). This is a joint discrete alignment problem with
important applications in computer vision [12,23], graph mining [20], and
spectroscopy imaging [22]. Our main result is a recovery algorithm (up to
some offset) that solves with high probability the non-convex maximum
likelihood estimation problem using O(n1+o(1)) queries.

1 Introduction

Learning a joint alignment from pairwise differences is a problem with various
important applications in computer vision [12,23], graph mining [20], and spec-
troscopy imaging [22]. Formally, there exists a set V = [n] of n discrete items,
and an assignment g : V → [k] according to which each item is assigned one
out of k possible values. The assignment function g is unknown, but we obtain
a set of pairwise noisy difference samples {yi,j

def= g(i) − g(j) (mod k)}(i,j)∈Ω ,
where Ω ⊆ (

[n]
2

)
is a symmetric index set. To give an example, imagine a set

of n images of the same object, where each g(i) is the orientation/angle of the
camera when taking the i-th image. Recovering g would allow to better under-
stand the 3d structure of the object. The goal is to recover g based on these
measurements, up to some global offset that is unrecoverable. However, learning
a joint alignment from such differences is a non-convex problem by nature, since
the input space is discrete and already non-convex to begin with [5].
Model. Suppose that there are k groups, where k is a positive constant, that we
number {0, 1, ..., k−1} and that we think of as being arranged modulo k. Let g(u)
refer to the group number associated with a vertex u. We are allowed to query a
given pair of nodes only once. When we query an edge e = (x, y), we obtain

f̃(e) =

⎧
⎨

⎩

g(x) − g(y) mod k, with probability 1 − q;
g(x) − g(y) + 1 mod k, with probability q/2;
g(x) − g(y) − 1 mod k, with probability q/2.

(1)
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That is, we obtain the difference between the groups when no error occurs,
and with probability q we obtain an error that adds or subtracts one to this gap
with equal probability. In this work we ask the following question:

Problem 1. What is the smallest number of queries we need to perform
in order to recover g with high probability (up to some unrecoverable
global offset)?

Our main contribution is the following result, stated as Theorem1.

Theorem 1. There exists a polynomial time algorithm that performs O(n1+o(1))
queries, and recovers g (up to some global offset) whp for any 1−q = 1+δ

2 , where
0 < δ < 1 is any positive constant.

We refer to δ as the bias. Notice that when δ = 1, g can be trivially recovered.
On the contrary, when δ = 0 exact recovery is impossible. Our result extends our
recent work on predicting signed edges [20], and relies on techniques developed
there in. Some remarks follow.

Remark 1. The number of queries we perform is O(n log nδ− log n
log log n ) =

O(n1+o(1)). We perform queries non-adaptively, specifically we query pairs of
nodes uniformly at random. The term L = log n

log log n appears in a natural way, as
the diameter of an Erdős-Rényi graph at the connectivity threshold is asymp-
totically ∼ log n

log log n (see Sect. 3).

Remark 2. Observe that even when all
(
n
2

)
possible queries are performed, as

long as there is some noise (i.e., q > 0), it is not clear a priori whether g can be
recovered or not whp.

Remark 3. We choose this model for ease of exposition. More generally we can
handle queries governed by more general error models, of the form:

f̃(e) = g(x) − g(y) + i with probability qi, 0 ≤ i < k.

That is, the error does not depend on the group values x and y, but is simply
independent and identically distributed over the values 0 to k − 1. We outline
how our algorithm adapts to this more general case.

Remark 4. In prior work by the authors of this paper [20] a similar model was
studied for the case of two latent clusters, i.e., k = 2, see also [16]. According
to that model, we may query any pair of nodes once, and we receive the correct
answer on whether the two nodes are in the same cluster, or not, with probability
1 − q = 1+δ

2 . If we use a model similar to the latter one, it would be difficult to
reconstruct the clusters; indeed, even with no errors, a chain of such responses
along a path would not generally allow us to determine whether the endpoints
of a path were in the same group or not. Our model in this work provides more
information and naturally generalizes the two cluster case.

Roadmap. The paper is organized as follows: Sect. 2 presents theoretical pre-
liminaries. Section 3 presents our algorithm, and its analysis. Section 4 surveys
related work. Finally, Sect. 5 concludes the paper.
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2 Theoretical Preliminaries

We use the following powerful probabilistic results for the proofs in Sect. 3.

Theorem 2 (Chernoff bound, Theorem 2.1 [13]). Let X ∼ Bin (n, p), μ =
np, a ≥ 0 and ϕ(x) = (1 + x) ln(1 + x) − x (for x ≥ −1, or ∞ otherwise). Then
the following inequalities hold:

Pr [X ≤ μ − a] ≤ e−μϕ(−a
μ ) ≤ e− a2

2μ , (2)

Pr [X ≥ μ + a] ≤ e−μϕ(−a
μ ) ≤ e− a2

2(μ+a/3) . (3)

We define the notion of read-k families, a useful concept when proving concen-
tration results for weakly dependent variables.

Definition 1 (Read-k families). Let X1, . . . , Xm be independent random vari-
ables. For j ∈ [r], let Pj ⊆ [m] and let fj be a Boolean function of {Xi}i∈Pj

.
Assume that |{j|i ∈ Pj}| ≤ k for every i ∈ [m]. Then, the random variables
Yj = fj({Xi}i∈Pj

) are called a read-k family.

The following result was proved by Gavinsky et al. for concentration of read-
k families. The intuition is that when k is small, we can still obtain strong
concentration results.

Theorem 3 (Concentration of Read-k families [10]). Let Y1, . . . , Yr be a
family of read-k indicator variables with Pr [Yi = 1] = q. Then for any ε > 0,

Pr

[
r∑

i=1

Yi ≥ (q + ε)r

]

≤ e−DKL(q+ε||q)·r/k (4)

and

Pr

[
r∑

i=1

Yi ≤ (q − ε)r

]

≤ e−DKL(q−ε||q)·r/k. (5)

Here, DKL is Kullback-Leibler divergence defined as

DKL(q||p) = q log
(

q

p

)
+ (1 − q) log

(
1 − q

1 − p

)
.

The following corollary of Theorem3 provides multiplicative Chernoff-type
bounds for read-k families. It is derived in a similar way that Chernoff multi-
plicative bounds are derived from Eqs. (3) and (2), see [17]. Notice that the
parameter k appears as an extra factor in denominator of the exponent, that is
why when k is relatively small we still obtain meaningful concentration results.

Theorem 4 (Concentration of Read-k families [10]). Let Y1, . . . , Yr be a
family of read-k indicator variables with Pr [Yi = 1] = q. Also, let Y =

∑r
i=1 Yi.

Then for any ε > 0,

Pr [Y ≥ (1 + ε)E [Y ]] ≤ e− ε2E[Y ]
2k(1+ε/3) (6)

Pr [Y ≤ (1 − ε)E [Y ]] ≤ e− ε2E[Y ]
2k . (7)
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3 Proposed Method

Proof Strategy. Our proposed algorithm is heavily based on our work for the
case k = 2, a special case of the joint alignment problem of great interest to the
social networks’ community [20]. In both cases k = 2 and k ≥ 3, the structure
of the algorithmic analysis is identical. At a high level, our proof strategy is as
follows:

1. We perform O(nΔ) queries uniformly at random.
2. We compute the probability that a path between x and y provides us with

the correct information on g(x) − g(y) or not.
3. We show that there exists a large number of almost edge-disjoint paths of

length L = log n
log log n between any pair of vertices with probability at least

1 − 1
n3 .

4. To learn the difference g(x) − g(y) for any pair of nodes {x, y}, we take a
majority vote (k = 2), or a plurality vote (k ≥ 3), among the paths we have
created. A union bound in combination with (2) shows that whp we learn g
up to some uknown offset.

Key Differences with Prior Work [20]. While this work relies on [20], there
are some key differences. Our main result in [20] is that when there exist two
latent clusters (k = 2), we can recover them whp using O(n log n/δ4) queries,
i.e., Δ = O(log n/δ4). In this work where k ≥ 3, we set Δ = O(log nδ−L), i.e.,
we perform a larger number of queries. An interesting open question is to reduce
the number of queries when k ≥ 3. Since the models are different, step 2 also
differs. Furthermore, the algorithm proposed in [20], and the one we propose here
are different; in [20] we use a recursive algorithm that we analyze using Fourier
analysis to get a near-optimal result with respect to the number of queries1.
Here, we use concentration of multivariate polynomials [10], see also [3,14], to
analyze the plurality vote of the paths that we construct between a given pair of
nodes. Steps 3, 4 are almost identical both in [20], and here. The key difference
is that our algorithm requires an average degree O

(
log n
δL

)
only for the first level

of certain trees that we grow, for the rest of the levels a branching factor of order
O(log n) suffices.
A Sub-optimal Algorithm for k = 2. We describe an algorithm for k = 2,
that directly generalizes to k ≥ 3. The caveat is that our proposed algorithm is
sub-optimal with respect to the number of queries achieved in [20]. The model
for k = 2 gets simplified to the following: let V = [n] be the set of n items that
belong to two clusters, call them red and blue. Set g : V → {red,blue}, R = {v ∈
V (G) : g(v) = red} and B = {v ∈ V (G) : g(v) = blue}, where 0 ≤ |R| ≤ n. The
function g is unknown and we wish to recover the two clusters R,B by querying
pairs of items. (We need not recover the labels, just the clusters.) For each query

1 The information theoretic lower bound on the number of queries is O(n log n/δ2)
[11].
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Algorithm 1. Learning Joint Alignment for k = 2
L ← logn

log logn

Perform 20n log nδ−L queries uniformly at random.
Let G(V, E, f̃) be the resulting graph, f̃ : E → {+1, −1}
for each item pair x, y do

Px,y = {P1, . . . , PN} ← Almost-Edge-Disjoint-Paths(x, y)
Yi ← ∏

e∈Pi
f̃(e) for i = 1, . . . , N

Yxy ← ∑
P∈Pu,v

YP

if Yxy ≥ 0 then
predict g(x) = g(y)

else
predict g(x) �= g(y)

end if
end for

Algorithm 2. Almost-Edge-Disjoint-Paths(x, y)

Require: G(V, E, f̃), x, y ∈ V (G)
L ← logn

log logn

ε ← 1√
log logn

Using Breadth First Search (BFS) grow a tree Tx starting from x as follows.
For the first level of the tree, we choose 4 log nδ−L neighbors of x.
For the rest of the tree we use a branching factor equal to 4 log n until it reaches
depth equal to εL. Similarly, grow a tree Ty rooted at y, node disjoint from Tx of
equal depth.
From each leaf xi (yi) of Tx (Ty) for i = 1, . . . , N grow node disjoint trees until they
reach depth ( 1

2
+ ε)L with branching factor 4 log n. Finally, find an edge between

Txi , Tyi

we receive the correct answer with probability 1 − q = 1+δ
2 , where q > 0 is the

corruption probability. That is, for a pair of items x, y such that g(x) = g(y),
with probability q it is reported that g(x) 	= g(y), and similarly if g(x) 	= g(y)
with probability q it is reported that g(x) = g(y). Since many of the lemmas in
this work are proved in a similar way as in [20], we outline the key differences
between this work and the proof in [20]. We prove the following Theorem.

Theorem 5. There exists a polynomial time algorithm that performs
Θ(n log nδ−L) edge queries and recovers the clustering (R,B) whp for any gap
0 < δ < 1.

The pseudo-code is shown as Algorithm 1. The algorithm runs over each pair
of nodes, and it invokes Algorithm2 to construct almost edge-disjoint paths for
each pair of nodes x, y using Breadth First Search. Note that since we perform
20n log nδ−L queries uniformly at random, the resulting graph is is asymptoti-
cally equivalent to G ∼ G(n, 40 log nδ−L

n ), see [8, Chap. 1]. Here, G(n, p) is the
classic Erdös-Rényi model (a.k.a random binomial graph model) where each
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possible edge between each pair (x, y) ∈ (
[n]
2

)
is included in the graph with

probability p independent from every other edge.
It turns out that our algorithm needs an average degree O

(
log n
δL

)
only for

the first level of the trees Tx, Ty that we grow from x and y when we invoke
Algorithm 2. For all other levels of the grown trees, we need the degree to
be only O(log n). This difference in the branching factors exists in order to
ensure that the number of leaves of trees Tx, Ty in Algorithm 2 is amplified
by a factor of 1

δL , which then allows us to apply Theorem4. Using appropri-
ate data structures, a straight-forward implementation of Algorithm1 runs in
O(n2(n + m)) = O(n3 log nδ−L). Since we use a branching factor of O(log n) for
all except the first two levels of Tx, Ty, we work with the G(n, p) model with
p = 40 log n

n to construct the set of almost edge disjoint paths. (Alternatively, one
can think that we start with the larger random graph with more edges, and then
in the construction of the almost edge disjoint paths we subsample a smaller
collection of edges to use in this stage.) The diameter of this graph whp grows
asymptotically as L [4] for this value of p. We use the G(n, 40 log nδ−L

n ) model
only in Lemma 1 to prove that every node has degree at least 5 log nδ−L.

Recall that in the case of two clusters f̃(e) ∈ {−1,+1}, indicating whether
the oracle answers that the two endpoints of e lie or not in the same cluster. The
following result follows by the fact that f̃ agrees with the unknown clustering
function g on x, y if the number of corrupted edges along that path Pxy is even.

Claim. Consider a path Pxy between nodes x, y of length L. Let Rxy =∏
e∈Pxy

f̃(e). Then,

Pr [Rxy = 1|g(x) = g(y)] = Pr [Rxy = −1|g(x) �= g(y)] =
1 + (1 − 2q)L

2
=

1 + δL

2

The next lemma is a direct corollary of the lower tail multiplicative Chernoff
bound.

Lemma 1. Let G ∼ G(n, 40 log n
δLn

) be a random binomial graph. Then whp all
vertices have degree greater than 5 log nδ−L.

Proof. The degree deg(x) of a node x ∈ V (G) follows the binomial distribution
Bin(n − 1, 40 log n

δLn
). Set γ = 3

4 . Then

Pr
[
deg(x) < 5 log nδ−L

]
< e− γ2

2 40 log nδ−L 
 n−1.

Taking a union bound over n vertices gives the result.

We state the following key lemma, see also [6,9], that shows that we can
construct for each pair of nodes x, y a special type of a subgraph Gx,y.

Lemma 2. Let ε = 1√
log log n

, and k = εL. For all pairs of vertices x, y ∈
[n] there exists a subgraph Gx,y(Vx,y, Ex,y) of G as shown in Fig. 1, whp. The
subgraph consists of two isomorphic vertex disjoint trees Tx, Ty rooted at x, y each
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Fig. 1. We create for each pair of nodes x, y two node disjoint trees Tx, Ty whose leaves
can be matched via a natural isomorphism and linked with edge disjoint paths. For
details, see Lemma 2.

of depth k. Tx and Ty both have a branching factor of 4 log nδ−L for the first level,
and 4 log n for the remaining levels. If the leaves of Tx are x1, x2, . . . , xτ , τ ≥
δ−Ln4ε/5 then yi = f(xi) where f is a natural isomorphism. Between each pair
of leaves (xi, yi), i = 1, 2, . . . ,m there is a path Pi of length (1 + 2ε)L. The paths
Pi, i = 1, 2, . . . , τ, . . . are edge disjoint.

We outline that the events hold with large enough probability. For a detailed
proof, please check [20]. The only difference with the proof of Lemma 4 in [20] is
that for the first level of trees Tx, Ty, we choose 5 log n

δL neighbors of x, y respec-
tively. For all other levels we use a branching factor equal to 4 log n. The proof
of Theorem 5 follows.

Proof (Theorem 5). Fix a pair of nodes x, y ∈ V (G), and suppose x, y belong to
the same cluster (the other case is treated in the same way). Let Y1, . . . , YN be
the signs of the N edge disjoint paths connecting them, i.e., Yi ∈ {−1,+1} for
all i. Also let Y =

∑N
i=1 Yi. Notice that {Y1, . . . , YN} is a read-k family where

k = N
4 log nδ−L . By the linearity of expectation, and Lemma 2 we obtain

E [Y ] = NδL ≥ n
4
5 εδL.

By applying Theorem4 we obtain

Pr [Y < 0] = Pr [Y − E [Y ] < −E [Y ]] ≤ exp

(

− n4/5εδL

2n4/5ε

4δ−L log n

)

= o(n−2).

Algorithm for Learning a Joint Alignment, k ≥ 3. When q = 0, so there are
no errors from f̃(e), the edge queries would allow us to determine the difference
between the group numbers of vertices at the start and end of any path, and in
particular would allow us to determine if the groups were the same. However,
when q > 0 the actual difference between the cluster ids of x, y, i.e., g(x) − g(y)
is perturbed by a certain amount of noise. In the following we discuss how we
can tackle this issue. Since the proof of Theorem1 overlaps with the proof of



66 M. Mitzenmacher and C. E. Tsourakakis

Algorithm 3. Learning Joint Alignment for k ≥ 3
L ← logn

log logn

Perform 20n log nδ−L queries uniformly at random.
Let G(V, E, f̃) be the resulting graph
for each item pair x, y do

Px,y = {P1, . . . , PN} ← Almost-Edge-Disjoint-Paths(x, y)
Yi(x, y) ← ∑

e∈Pi
f̃(e) for i = 1, . . . , N

Output the plurality vote among {Y1(x, y), . . . , YN (x, y)} as the estimate of g(x)−
g(y)

end for

Theorem 5 for k = 2, we outline the main differences. The idea is still the same:
among the differences reported by the large number of paths we create between
nodes x, y, the correct answer g(x) − g(y) will be the plurality vote with large
enough probability. The pseudocode is shown in Algorithm3.

Proof (Theorem 1). Let us return to the basic version of our Model, and let
X(e) ∈ {−1, 0, 1} for e = (x, y) be

f̃(e) − (g(x) − g(y)) mod k.

Then given a path between two vertices x and y,

g(y) = g(x) +
∑

e∈Pxy

f̃(e) −
∑

e∈Pxy

X(e) mod k.

Our question is now what is Zxy =
∑

e∈Pxy
X(e) mod k. We would like that Zxy

be (even slightly) more highly concentrated on 0 than on other values, so that
when g(x) = g(y), we find that the sum of the return values from our algorithm,∑

e∈Pxy
f̃(e) mod k, is most likely to be 0. We could then conclude by looking

over many almost edge-disjoint paths that if this sum is 0 over a plurality of
the paths, then x and y are in the same group whp, i.e., the plurality value will
equal g(y) – g(x) whp.

For our simple error model, the sum
∑

e∈Pxy
X(e) mod k behaves like a sim-

ple lazy random walk on the cycle of values modulo k, where the probability of
remaining in the same state at each step is q. Let us consider this Markov chain
on the values modulo k; we refer to the values as states. Let pt

ij be the probability
of going from state i to state j after t steps in such a walk. It is well known than
one can derive explicit formulas for pt

ij ; see e.g. [7, Chap. XVI.2]. It also follows
by simply finding the eigenvalues and eigenvectors of the matrix corresponding
to the Markov chain and using that representation. One can check the result-
ing forms to determine that pt

0j is maximized when j = 0, and to determine
the corresponding gap maxj∈[1,k−1] |pt

00 − p0j |t. Based on this gap, we can apply
Chernoff-type bounds as in Theorem 4 to show that the plurality of edge-disjoint
paths will have error 0, allowing us to determine whether the endpoints of the
path x and y are in the same group with high probability.
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The simplest example is with k = 3 groups, where we find

pt
00 =

1
3

+
2
3

(1 − 3q/2)t
,

and
pt
01 = pt

02 =
1
3

− 1
3

(1 − 3q/2)t
.

In our case t = L, and we see that for any q < 2/3, pt
00 is large enough that we

can detect paths using the same argument as for k = 2.
For general k, we use that the eigenvalues of the matrix

⎡

⎢
⎢
⎢
⎣

1 − q q/2 0 . . . q/2
q/2 1 − q q/2 . . . 0
...

...
...

...
. . .

q/2 0 0 . . . 1 − q

⎤

⎥
⎥
⎥
⎦

are 1−q+q cos(2πj/k), j = 0, . . . , k−1, with the j-th corresponding eigenvector
being [1, ωj , ω2j , . . . , ωj(k−1)] where ω = e2πi/k is a primitive k-th root of unity.
Here, i is not an index but the square root of -1, i.e., i =

√−1. In this case we
have

pt
00 =

1
k

+
1
k

k−1∑

j=1

(
1 − q + q cos(2πj/k)

)t
.

Note that pt
00 > 1/k. Some algebra reveals that the next largest value of pt

0j

belongs to pt
01, and equals

pt
01 =

1
k

+
1
k

k−1∑

j=1

ω−j
(
1 − q + q cos(2πj/k)

)t
.

We therefore see that the error between ends of a path again have the plurality
value 0, with a gap of at least

pt
00 − pt

01 ≥ 2(1 − cos(2π/k))(1 − q + q cos(2π/k))t.

This gap is constant for any constant k ≥ 3 and q ≤ 1/2.

As we have already mentioned, the same approach could be used for the more
general setting where

f̃(e) = g(x) − g(y) + j with probability qj , 0 ≤ j < k,

but now one works with the Markov chain matrix
⎡

⎢
⎢
⎢
⎣

q0 q1 q2 . . . qk−1

qk−1 q0 q1 . . . qk−2

...
...

...
. . .

...
q1 q2 q3 . . . q0

⎤

⎥
⎥
⎥
⎦

.
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4 Related Work

Many real-world social networks involve both positive and negative interactions
or sentiments, that can be positive or negative [15]. The edge sign prediction
problem aims to predict the sign s(x, y) ∈ {±1} of an edge (x, y) ∈ E(G), given
the signs of the rest of the edges. Tsourakakis et al. [20] studied this problem both
from a theory perspective, using the model proposed in Sect. 3 for k = 2 clusters,
an empirical perspective, showing that edge-disjoint paths of short length can
increase the classification accuracy of the classification algorithms given in [15],
especially for pairs of nodes with few common neighbors. A reduction from the
planted partition model [1,2,18,19,21], shows that the information theoretic
lower bound on the number of queries is O(n log n/δ2), see [2,11]. Mazumdar
and Saha [16] study also the problem of clustering using a noisy oracle. When
k = 2 their model coincides with ours, but when k ≥ 3 their model is not suitable
for learning a joint alignment. For the case of k = 2 clusters, they provide a
polynomial time algorithm that performs O(n log n/δ4) and runs in O(n log n)
time. For k ≥ 3, they provide an almost information theoretic optimal algorithm
that performs O(nk log n/δ2) queries but does not run in polynomial time, and
an algorithm that runs in O(n log n + k6) time, but requires O(k2n log n/δ4)
queries instead. Finally, learning a joint alignment from noisy measurements has
several important applications [12,22,23]. Closest to our work lies the work of
Chen and Candes who provide stronger theoretical guarantees, using a projected
power method to solve the non-convex maximum likelihood estimation problem
under our model [5]. Our approach is significantly different, and we conjecture
that as in the case of k = 2 clusters [20], it may yield asymptotically optimal or
near-optimal query complexity.

5 Conclusion

In this work we studied the problem of learning a joint alignment from pair-
wise differences using a noisy oracle. Based on techniques developed in our pre-
vious work [20], we show how we can recover a latent alignment whp using
O(n log nδ−L) queries, where L = log n

log log n is the asymptotic growth of the diam-
eter of an Erdős-Rényi graph at the connectivity threshold. An open question is
to improve the dependence on δ. We conjecture, that for constant bias δ, as in
the case of k = 2 [20], O(n log n) queries suffice to recover the alignment whp.
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Abstract. We study the relaxation time in the random walk with
jumps. The random walk with jumps combines random walk based sam-
pling with uniform node sampling and improves the performance of net-
work analysis and learning tasks. We derive various conditions under
which the relaxation time decreases with the introduction of jumps.
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1 Introduction

In the present work we study the relaxation time or equivalently the spectral
gap of the random walk with jumps on a general weighted undirected graph. The
random walk with jumps can be viewed as a random walk on a combination of
the original graph and the complete graph weighted by a scaled parameter. This
parameter determines the rate of jumps from the current node to an arbitrary
node. The random walk with jumps has similarities with PageRank [18]. In fact,
it coincides with PageRank on the regular graphs but differs on the irregular
graphs. In the case of the random walk with jumps, the jump probability depends
on the node degree. The higher the degree of the current node is, the less likely
the random walk will jump out of the node to an arbitrary node. The random
walk with jumps can also be viewed as a particular case of the generalisation of
PageRank with node-dependent restart [6].

The random walk with jumps has been introduced in [5] to improve the ran-
dom walk based network sampling or respondent driven sampling [21] by com-
bining the standard random walk based sampling with uniform node sampling.
A big advantage of the random walk with jumps in comparison with PageRank
is that, as opposite to PageRank, the random walk with jumps on an undirected
graph is a time-reversible process and its stationary distribution is available in
a simple, explicit form. In particular, this allows us to unbias efficiently the ran-
dom walk, which is node degree biased on irregular graphs. This comes with a
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price. The price is the difficulty to control the relaxation time. In the case of
PageRank the relaxation time is bounded by the reciprocal of the restart prob-
ability [10,15]. In the case of the random walk with jumps, there is no simple
connection with the jump parameter. In [5] the authors have shown that under
a natural condition on the clustering structure of the graph, the relaxation time
decreases with the increase of the jump parameter.

Let us mention a few more applications of the random walk with jumps
beyond network sampling [5,17,19]. The random walk with jumps has been used
in the context of graph-based semi-supervised learning [2,14]. The random walk
with jumps has also been used as a main building block in the quick algorithm
for finding largest degree nodes in a graph [4]. A continuous-time version of the
random walk with jumps has an application in epidemiology [12].

All this motivates us to take another look at the relaxation time of the random
walk with jumps. In particular, we are now able to give a necessary and sufficient
condition for the improvement of the relaxation time on weighted graphs. We
give an example showing that there are weighted graphs where introducing jumps
increases the relaxation time. The necessary and sufficient conditions are not easy
to interpret. Therefore we derive a series of simpler sufficient conditions. One
new sufficient condition, similar in spirit to the condition in [5], indicates that
on graphs with clusters, the relaxation time improves with the introduction of
jumps. The other new sufficient conditions require the spectral gap of the original
graph to be smaller than the reciprocal of the squared coefficient of variation of
the nodes’ degrees, thus establishing a connection between the measure of graph
irregularity and the relaxation time. We expect that the derived conditions are
satisfied in most complex networks (either due to clustering structure or due
to small spectral gap). Thus, the present study confirms that it is safe and in
most cases beneficial to use the random walk with jumps for complex network
analysis.

The structure of the paper is as follows: in the next section we define the
random walk with jumps and provide necessary background material. In Sect. 3
we discuss the application of Dobrushin coefficient for large jump rates. Then,
in Sect. 4 we discuss necessary and sufficient conditions for the reduction of the
relaxation time when the jump rate is small. In Sect. 5 we provide a series of
sufficient conditions, which are easier to interpret and to verify. In particular,
we provide a sufficient condition in terms of the coefficient of variation of nodes’
degrees. In Sect. 6 we give interesting numerical illustrations. We conclude the
paper with a conjecture in Sect. 7.

2 Definitions and Preliminaries

Most of the analysis in the present article is for the case of a general weighted
undirected graph G with vertex set V (G), |V (G)| = n, and edge set E(G),
|E| = m, defined by the weighted adjacency matrix A = (aij) with elements

aij =
{

weight of edge (i, j), if i ∼ j,
0, otherwise.
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Unless stated otherwise, we assume that G is connected.
Denote by 1 the column vector of ones of appropriate dimension. Then, d =

A1 is the vector of weighted degrees of vertices and D = Diag(d) is the diagonal
matrix with vector d on the main diagonal.

The Standard Random Walk (SRW) is a discrete-time Markov chain {Xt, t =
0, 1, ...} on the vertex set V (G) with the transition probability matrix

P = D−1A, (1)

whose elements are

pij = P [Xt+1 = j|Xt = i] =
{

wij/di, if i ∼ j,
0, otherwise.

SRW is a time-reversible process with the stationary distribution

πi =
di

2m
, i = 1, ..., n. (2)

Since SRW is time-reversible, its transition matrix is similar to a symmetric
matrix and hence the eigenvalues of the transition matrix are real, semi-simple
and can be indexed as follows:

1 = λ1 ≥ λ2 ≥ ... ≥ λn ≥ −1.

Denote λ∗ the maximum modulus eigenvalue of P different from +1 and −1 and
call γ(P ) = 1 − |λ∗| the spectral gap.

The relaxation time trel is then defined by

trel =
1

γ(P )
. (3)

One interpretation of the relaxation time is as follows [16]: if t ≥ trel, then the
standard deviation of P tf is bounded by 1/e times the standard deviation of
f . Also, the following inequality (see, e.g., [1,9,16]) indicates a strong relation
between the relaxation time and mixing time

(log(1/ε) + log(1/2))(trel − 1) ≤ tmix(ε) ≤ (log(1/ε) + log(1/πmin))trel.

In particular, the above inequality suggests that for a finite Markov chain and
for small enough ε, the ε-mixing time is very close to log(1/ε)trel.

Now let us define the random walk with jumps (RWJ). It is a random walk
on a combination of the original graph and the complete graph weighted by a
scaled parameter α/n [5]. Specifically, let us modify the adjacency matrix in the
following way

A(α) = A +
α

n
11T . (4)

Note that the new degree matrix is given by D(α) = D + αI, where I is the
identity matrix. Then, the random walk on the modified graph is described by
the following transition probability matrix

P (α) = D−1(α)A(α), (5)
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with elements

pij(α) =

{
wij+α/n

di+α , if i ∼ j,
α/n
di+α , otherwise,

Since RWJ is again a random walk on a weighted undirected graph, it is time-
reversible Markov chain with semi-simple eigenvalues. The stationary distribu-
tion of RWJ also has a simple form

πi(α) =
di + α

2m + αn
, i = 1, ..., n. (6)

The modified transition matrix P (α) can be rewritten as follows:

P (α) = (D + αI)−1D P + (D + αI)−1αI 1
(

1
n

1T

)
. (7)

We note that if the graph is regular, i.e., D = dI, the above expression reduces
to

P (α) =
d

d + α
P +

α

d + α
1
(

1
n

1T

)
,

which is the transition matrix for PageRank (PR) [18] with the damping factor
d/(d+α). Thus, in the case of a regular graph RWJ coincides with PR. However,
when the graph has inhomogeneous degrees, these two concepts are different.
From the equivalence of RWJ to PR on the regular graph, we can immediately
conclude that the relaxation time is monotonously decreasing with α when the
graph is regular. When the graph is irregular, the situation becomes much more
complex.

We also would like to note that RWJ can be viewed as a node-dependent
PageRank [6], where the restart probability at each node is given by α/(di +α).
Thus, in contrast to PR, RWJ restarts with smaller probabilities from higher
degree nodes.

3 Application of Dobrushin Coefficient

The Dobrushin ergodic coefficient (see, e.g., [8,11,20]) can be used to obtain a
lower bound on the spectral gap γ(P ) of a Markov chain. The Dobrushin ergodic
coefficient is given by

δ(P ) =
1
2

max
i,j∈V

∑
k∈V

|pik − pjk|, (8)

or, equivalently,
δ(P ) = 1 − min

i,j∈V

∑
k∈V

pik ∧ pjk. (9)

In the case of RWJ, we can obtain a simple upper bound on δ(P ) by taking the
smallest element in the transition probability matrix. Namely, we obtain

δ(P ) ≤ 1 − min
i,j∈V

∑
k∈V

α/n

dmax + α
= 1 − α

dmax + α
, (10)
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where dmax is the maximal degree in the graph. Since γ(P ) ≥ 1 − δ(P ), we also
obtain a lower bound for the spectral gap

γ(P (α)) ≥ α

dmax + α
. (11)

And since α/(dmax + α) → 1 as α → ∞, we have

Proposition 1. For any undirected graph G, there always exists ᾱ = ᾱ(G) such
that for all α > ᾱ, we have γ(P (α)) > γ(P ).

For the regular graphs with degree d, the bound α/(d + α) is quite tight. In
fact, for the regular graphs, as was noted at the end of the previous section α

d+α
corresponds to the restart probability and the exact value of the spectral gap
is d

d+αλ∗(P ) [10,15]. However, we have observed that for irregular graphs the
bound (11) can be very loose.

4 Conditions in the Case of Small Jump Rate

Let us analyse in this section the effect of small jump rate on the relaxation
time.

Denote by v∗(α) the eigenvector corresponding to λ∗(α), that is

P (α)v∗(α) = λ∗(α)v∗(α). (12)

For brevity, we shall write v∗ = v∗(0) and λ∗ = λ∗(0). We also need the following
preliminary result

Lemma 1. The eigenelements v∗(α) and λ∗(α) are analytic functions with
respect to α.

Proof: It is known from [13, Chap. 2] (see also [3,7]) that if the eigenvalues of the
perturbed matrix are semi-simple, then the eigenvalues as well as eigenvectors
can be expanded as power series with positive integer powers. Since in our case,
RWJ is time-reversible, its eigenvalues are semi-simple and the statement of the
lemma follows. �

Next, we are in a position to provide necessary and sufficient conditions for
the improvement of the relaxation time for small jump rates.

Theorem 1. For sufficiently small α, in the case λ∗ < 0, the spectral gap
increases, and equivalently, the relaxation time decreases with respect to α.

If λ∗ > 0, for sufficiently small α the necessary and sufficient condition for
the decrease of the relaxation time is

1
n

(1T v∗)2 < λ∗vT
∗ v∗. (13)

In addition, we have the following asymptotics:

λ∗(α) = λ∗(0) + α
1
n (v(0)

∗ )T 11T v
(0)
∗ − λ

(0)
∗ (v(0)

∗ )T v
(0)
∗

(v(0)
∗ )T Dv

(0)
∗

+ O(α2).
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Proof: According to Lemma 1, the eigenelements λ∗(α) and v∗(α) can be
expanded as power series

λ∗(α) = λ
(0)
∗ + αλ

(1)
∗ + O(α2), (14)

v∗(α) = v
(0)
∗ + αv

(1)
∗ + O(α2), (15)

for sufficiently small α. If we set α = 0, we obtain λ
(0)
∗ = λ∗(0) = λ∗ and

v
(0)
∗ = v∗(0) = v∗ such that

D−1Av∗ = λ∗v∗,

or equivalently,
Av∗ = λ∗Dv∗. (16)

It is also convenient to rewrite (12) as a generalized eigenvalue problem

(A +
α

n
11T )v∗(α) = λ∗(α)(D + αI)v∗(α). (17)

Substituting the power series (14) and (15) into Eq. (17) and equating coefficients
in α-terms, i.e.,

(A +
α

n
11T )(v(0)

∗ + αv
(1)
∗ + O(α2)) =

(λ(0)
∗ + αλ

(1)
∗ + O(α2))(D + αI)(v(0)

∗ + αv
(1)
∗ + O(α2)),

yields

1
n

11T v
(0)
∗ + Av

(1)
∗ = λ

(0)
∗ Iv

(0)
∗ + λ

(1)
∗ Dv

(0)
∗ + λ

(0)
∗ Dv

(1)
∗ . (18)

Now let us multiply the above equation by vT
∗ from the left to obtain

1
n (v(0)

∗ )T 11T v
(0)
∗ + (v(0)

∗ )T Av
(1)
∗ (19)

= (v(0)
∗ )T λ

(0)
∗ v

(0)
∗ + (v(0)

∗ )T λ
(1)
∗ Dv

(0)
∗ + (v(0)

∗ )T λ
(0)
∗ Dv

(1)
∗ .

Due to symmetry, the Eq. (16) can be rewritten as

vT
∗ A = λ∗vT

∗ D,

and hence
(v(0)

∗ )T Av
(1)
∗ = (v(0)

∗ )T λ
(0)
∗ Dv

(1)
∗ ,

which simplifies (19) to

(v(0)
∗ )T 11T v

(0)
∗

n
= (v(0)

∗ )T λ
(0)
∗ v

(0)
∗ + (v(0)

∗ )T λ
(1)
∗ Dv

(0)
∗ .

Thus, λ
(1)
∗ can be expressed as

λ
(1)
∗ =

1
n (v(0)

∗ )T 11T v
(0)
∗ − λ

(0)
∗ (v(0)

∗ )T v
(0)
∗

(v(0)
∗ )T Dv

(0)
∗

. (20)

Clearly, the denominator in (20) is always positive. Now, consider two cases:
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Case 1. λ∗ < 0

In this case the numerator in (20) is always positive. Then λ
(1)
∗ is also positive. By

expansion (14), when α is sufficiently small, the absolute value of λ∗ is decreasing
with respect to α.

Case 2. λ∗ > 0

Again, by expansion (14), for sufficiently small α the value of λ∗(α) decreases
in α if and only if λ

(1)
∗ is negative, i.e., when the numerator is negative. This is

precisely what was stated in the theorem’s condition. �

5 Sufficient Conditions with Easier Interpretation

Even though the condition in Theorem 1 is necessary and sufficient, it is not easy
to use and does not have an easy intuitive interpretation. Next, we shall derive a
series of sufficient conditions with easier interpretation and verification. Towards
this goal, let us transform the condition in Theorem 1 to an equivalent form
using the combinatorial Laplacian. Specifically, we shall use the combinatorial
Laplacian of the complete graph:

LK = nI − 11T .

Lemma 2. The condition (13) is equivalent to

1 − λ∗ <
vT

∗ LKv∗
nvT∗ v∗

,

and if λ∗ > 0, the condition (13) is equivalent to

γ(P ) <

∑
i,j(v∗i − v∗j)2

n
∑

i v2
∗i

. (21)

Proof: Using the definition of the Laplacian, we can write

1
n

(1T v∗)2 =
1
n

vT
∗ 11T v∗ =

1
n

vT
∗ (nI − LK)v∗ = vT

∗ v∗ − 1
n

vT
∗ LKv∗.

Thus, we can rewrite condition (13) in a new form:

1 − λ∗ <
vT

∗ LKv∗
nvT∗ v∗

.

The other equivalent form follows immediately from the definitions of the spec-
tral gap and LK . �

Next we provide a couple of sufficient conditions with easy interpretation in
the context of complex networks.
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Corollary 1. If

γ(P ) <
1
n

, (22)

then, for sufficiently small α > 0, the spectral gap of P (α) is larger than the
spectral gap of P .

Proof: Clearly,
∑
i,j

(v∗i(α)− v∗j(α))2 >
∑
i

v∗i(α)2. Because v∗(α) ⊥ π(α) and so

there are both positive and negative numbers among v∗i(α). Each number v∗i(α)
has at least one number of opposite sign v∗j(α) and such that (v∗i(α)−v∗j(α))2 >
v∗i(α)2. �

The above corollary has the following simple and useful interpretation: If
P has a sufficiently small gap, the addition of jumps with small rate always
improves the relaxation time. It is known that many complex networks have very
small spectral gap and thus this corollary gives an explanation why the relaxation
time typically improves with the addition of jumps in complex networks. The
next corollary refines the above argument.

Corollary 2. Denote the proportion of negative and positive v∗i(α) as μ : 1−μ.
Then, for sufficiently small α, if

γ(P ) < min(μ, 1 − μ), (23)

the relaxation time decreases with respect to α.

Proof: For each positive number v∗i(α) has μn numbers of opposite sign v∗j(α)
such that (v∗i(α)−v∗j(α))2 > v∗i(α)2. Analogously, each negative number v∗i(α)
has (1 − μ)n numbers of opposite sign v∗j(α) and for them (v∗i(α) − v∗j(α))2 >
v∗i(α)2. So,

∑
i,j

(v∗i(α) − v∗j(α))2 ≥ nmin(μ, 1 − μ)
∑
i

v∗i(α)2. �

As a result of Corollary 2, the closer μ is to 1/2, the better. Often complex
networks have clustering structure. The eigenvector v∗ can be interpreted as a
variant of the Fiedler vector. Thus, if a complex network can be divided into two
clusters of similar sizes, the value of μ will be close to 1/2 or at least far from
zero. In such a case, the spectral gap of the original transition matrix P does
not need to be small for the addition of jumps to improve the relaxation time.
The above statement is similar in spirit to the condition given in [5].

Let us now provide a sufficient condition in terms of nodes’ degrees.

Theorem 2. Let the following condition hold:

γ(P ) < 4
(d1 + d2 + · · · + dn)2

n(d21 + d22 + · · · + d2n)
. (24)

Then, if α > 0 is sufficiently small, γ(P (α)) > γ(P ).

Proof: We replace the condition (21) with the following more stringent condi-
tion:

γ(P ) < min
f ⊥π

∑
i∼j(fi − fj)2

n
∑

f2
i

. (25)
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Let us find the minimum of the RHS of the above expression over all vectors f ,
orthogonal to π(α), i.e., for vectors satisfying

∑
fidi = 0. So it will be enough

for γ(P ) to be less than the RHS of the condition (25).
Note that the RHS of (25) is homogeneous in f , so without loss of generality

we can set
∑

fi
2 = 1.

We shall use the method of Lagrange multipliers for the objective function∑
i,j(fi − fj)2 and the following constraints:

n∑
i=1

f2
i = 1, (26)

n∑
i=1

fidi = 0. (27)

The expression
∑

i,j(fi − fj)2 taking into account the latter constraint can be
rewritten as 2n−2(f1+f2+· · ·+fn)2. Therefore we are looking for the maximum
of (f1 + f2 + · · · + fn)2, which will give us the minimum of

∑
i,j(fi − fj)2. Let

us find the maximal absolute values of the function (f1 + f2 + · · · + fn) with
respect to the above constraints. Obviously, these extreme values exist (sums
cannot be more than n and less than −n). Furthermore, their absolute values
coincide, because domains of these two sums is symmetric with the center in the
origin. So the set of values of (f1 + f2 + · · · + fn) is centrally symmetric and the
maximal absolute values of (f1 + f2 + · · ·+ fn) and −(f1 + f2 + · · ·+ fn) are the
same.

Looking at the geometry of our maximization problem, we can see that the
constraints give us a sphere cut by the hyperplane

∑
fidi = 0. We are looking

for the touching points of this set and some hyperplane (f1 + f2 + · · · + fn) = c.
Clearly, there will be exactly two centrally-symmetric points of touching, giving
us the maxima of the absolute values (the domain of this sum is symmetric with
the center of the symmetry in the origin, so the set of values of (f1+f2+· · ·+fn)
is centrally symmetric).

Now, consider the Lagrange function:

L = (f1 + f2 + · · · + fn) − λ1

( ∑
i

f2
i − 1

)
− λ2

∑
fidi. (28)

Taking partial derivatives with respect to fi for i = 1, ..., n, we obtain

0 = 1 − 2λ1fi − λ2di. (29)

Firstly, multiply all these equations with di, respectively, and sum all of them
(here we also use Eq. (27)). The result is

0 = 2m − λ2

∑
i

d2i . (30)

Thus, λ2 = 2m∑
i d2

i
, where m is the total number of edges.
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Secondly, multiply all equations with fi, respectively, and sum all of them
(here we additionally use Eqs. (26) and (27)). The result is

0 = S − 2λ1, (31)

where S = (f1 + f2 + · · · + fn). Thus, λ1 = S/2.
And finally, just sum all equations (here we also use Eqs. (26) and (27)) to

get
0 = n − 2λ1S − λ2

(
2m

)
. (32)

If we know λ1 and λ2, we also know S2 = n − 8m2
∑

i d2
i
. Substituting this into our

initial expression that we want to minimize, we obtain

min
f ⊥π

1
n

∑
i,j(fi − fj)2∑

f2
i

=
1
n

(
2n−2

(
n− 8m2∑

i d2i

))
= 4

(d1 + d2 + · · · + dn)2

n(d21 + d22 + · · · + d2n)
. (33)

Thus, if inequality (25) holds, the condition of Theorem 1 also holds, and
hence γ(P (α)) > γ(P ) for sufficiently small α. �

We can also rewrite the condition of the above theorem as follows:

Corollary 3. Let the following condition hold:

γ(P ) < 4
(d̄)2

d2
, (34)

where
d̄ =

d1 + d2 + · · · + dn

n
,

and

d2 =
d21 + d22 + · · · + d2n

n
.

Then, if α > 0 is sufficiently small, γ(P (α)) > γ(P ).

The quantity (d̄)2/d2 is the reciprocal of the efficiency or of the squared
coefficient of variation. It is also sometimes referred to as the signal-to-noise
ratio. From Corollary 3 we can see that the more “irregular” the degree sequence
is, the more stringent is the condition on the spectral gap.

The following simple sufficient condition using only d̄ and dmax also holds.

Corollary 4. For sufficiently small α, γ(P (α)) > γ(P ) is true for all graphs
such that

γ(P ) < 4d̄/dmax. (35)

Proof: The RHS of the inequality (24) is greater than d̄/dmax. �
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6 Examples

Let us first demonstrate in this section that there exist weighted graphs for which
the introduction of jumps actually increases the relaxation time. Towards this
end, we consider a weighted graph of size 2 with the following adjacency matrix:

A =
[

a11 a12

a12 a22

]
.

The characteristic equation for the generalized eigenvalue problem Av = λDv
takes the form

det(A − λD) = det
[

a11 − λ(a11 + a12) a12

a12 a22 − λ(a22 + a12)

]
= 0.

It has two solutions

λ1 = 1 and λ∗ =
det(A)

(a11 + a12)(a22 + a12)
.

The eigenvector corresponding to λ∗ is given by

v∗ =
[

1
−a11+a12

a22+a12

]
C.

Let us calculate the numerator in the expression (20)

1
2
(vT

∗ 1)2 − λ∗vT
∗ v∗ =

(a22 − a11)2(a11 + a12)(a22 + a12) − 2 det(A)[(a11 + a12)2 + (a22 + a12)2]
2(a11 + a12)(a22 + a12)3

.

Now if we choose the weights such that det(A) is close to zero or just zero and
a11 	= a22, the spectral gap will decrease, and consequently the relaxation time
will increase when α increases from zero. Thus, in general, the conditions of
Theorem 1 need to be checked in the case of weighted graphs if one wants to be
sure that the relaxation time decreases with the increase of the jump rate.

We also tried to construct an example of unweighted graph when the relax-
ation time increases with the increase in the jump rate. Somewhat surprisingly,
it appears to be hard to construct such an example. In fact, we have checked all
non-isomorphic graphs of sizes up to n ≤ 9 from the Brendan McKay’s collection
[22] and could not find a single example when the relaxation time increases with
the introduction of small jump rate. The code of this verification can be found
at [23].

We have also checked various random graph models like Erdős-Rényi graph
or non-homogeneous Stochastic Block Model and could not find an example of an
unweighted graph for which the relaxation time increases with the introduction
of jumps.
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7 Conclusion and Future Research

We have analysed the spectral gap, or equivalently the relaxation time, in the
random walk with jumps. We have obtained a necessary and sufficient condition
for the decrease of the relaxation time when the jump rate increases from zero.
These conditions unfortunately do not have easy interpretation. Therefore, we
have proceeded with the derivation of several sufficient conditions with easy
interpretation. Some of these sufficient conditions can also be easily verified. The
derived sufficient conditions show that in most complex networks the relaxation
time should decrease with the introduction of jumps. We have also demonstrated
that there exist weighted graphs for which the relaxation time increases with the
introduction of jumps. On the other hand, we could not find such an example
in the case of unweighted graphs. At the moment, we tend to conjecture that
the introduction of jumps always improves the relaxation time in the case of
unweighted graphs.

Acknowledgements. This work was partially supported by the joint laboratory
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References

1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. Mono-
graph in Preparation (2002). http://www.stat.berkeley.edu/∼aldous/RWG/book.
html

2. Avrachenkov, K., Chebotarev, P., Mishenin, A.: Semi-supervised learning with
regularized Laplacian. Optim. Methods Softw. 32(2), 222–236 (2017)

3. Avrachenkov, K., Filar J.A., Howlett P.G.: Analytic Perturbation Theory and Its
Application. SIAM (2013)

4. Avrachenkov, K., Litvak, N., Sokol, M., Towsley, D.: Quick detection of nodes with
large degrees. Internet Math. 10(1–2), 1–19 (2014)

5. Avrachenkov, K., Ribeiro, B., Towsley, D.: Improving random walk estimation
accuracy with uniform restarts. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010.
LNCS, vol. 6516, pp. 98–109. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-18009-5 10

6. Avrachenkov, K., van der Hofstad, R., Sokol, M.: Personalized pagerank with node-
dependent restart. In: Bonato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2014.
LNCS, vol. 8882, pp. 23–33. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13123-8 3
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8. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues,
vol. 31. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3124-8

9. Chung, F.: Spectral graph theory. American Math. Soc. (1997)
10. Haveliwala, T., Kamvar, S.: The second eigenvalue of the Google matrix. Stanford

Technical Report (2003)
11. Ipsen, I.C.F., Selee, T.M.: Ergodicity coefficients defined by vector norms. SIAM

J. Matrix Anal. Appl. 32(1), 153–200 (2011)

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1007/978-3-642-18009-5_10
https://doi.org/10.1007/978-3-642-18009-5_10
https://doi.org/10.1007/978-3-319-13123-8_3
https://doi.org/10.1007/978-3-319-13123-8_3
https://doi.org/10.1007/978-1-4757-3124-8


82 K. Avrachenkov and I. Bogdanov

12. Jacobsen, K.A., Tien, J.H.: A generalized inverse for graphs with absorption. Linear
Algebra Appl. 537, 118–147 (2018)

13. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, Heidelberg
(1995). https://doi.org/10.1007/978-3-642-66282-9

14. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input
spaces. In: Proceedings of ICML, pp. 315–322 (2002)

15. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, Princeton (2006)

16. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Math. Soc. (2008)

17. Murai, F., Ribeiro, B., Towsley, D. and Wang P.: Characterizing directed and
undirected networks via multidimensional walks with jumps. ArXiv preprint
arXiv:1703.08252 (2017)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Stanford InfoLab Research Report (1999)

19. Ribeiro, B., Towsley, D.: Estimating and sampling graphs with multidimensional
random walks. In: Proceedings of the 10th ACM SIGCOMM Conference on Inter-
net Measurement, pp. 390–403 (2010)

20. Seneta, E.: Non-Negative Matrices and Markov Chains, Revised Printing edition.
Springer, New York (2006). https://doi.org/10.1007/0-387-32792-4

21. Volz, E., Heckathorn, D.D.: Probability based estimation theory for respondent
driven sampling. J. Official Stat. 24(1), 79 (2008)

22. Brendan McKay’s graph collection. http://users.cecs.anu.edu.au/∼bdm/data/
graphs.html

23. GitHub code repository for the numerical experiments of the article. https://
github.com/ilya160897/Random-walk-with-jumps

https://doi.org/10.1007/978-3-642-66282-9
http://arxiv.org/abs/1703.08252
https://doi.org/10.1007/0-387-32792-4
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://github.com/ilya160897/Random-walk-with-jumps
https://github.com/ilya160897/Random-walk-with-jumps


QAP Analysis of Company
Co-mention Network

S. P. Sidorov, A. R. Faizliev(B), V. A. Balash, A. A. Gudkov,
A. Z. Chekmareva, M. Levshunov, and S. V. Mironov

Saratov State University, Saratov, Russian Federation
faizlievar1983@mail.ru

http://www.sgu.ru

Abstract. In our research we form a network called company co-
mention network. News analytics data have been employed to collect
the companies co-mentioning. Each company acquires a certain value
based on the amount of news in which the company was mentioned. A
matrix containing the number of co-mentioning news between pairs of
companies has been created for network analysis. Each company is pre-
sented as a node, and news mentioning two companies establishes a link
between them. The network is constructed quite similarly to social net-
works or co-citation networks. The networked map of the companies is
used to visualize the dependence structure of the economy by identify-
ing groups of companies that are more central than others. The analysis
carried out in the context of sectors of economy and territorial affiliation
made it possible to identify key companies and to explore the similarity
of the power law of vertices within sectors. QAP analysis between the
co-mention network and the sector affiliation network was carried out
to examine the ability of the sector affiliation network to predict the
structure of the co-mention network.

Keywords: Network analysis · News analytics · Degree distribution
SNA metrics · QAP analysis

1 Introduction

One of the examples of big data that has emerged relatively recently is informa-
tion flows generated by news agencies, enterprises, organizations, social networks,
etc. Such real time information flows feature a huge amount of news sources,
unstructurability, a large amount of both sources and objects of news, and high
frequency (thousands of news items per second). Therefore, one of the problems
of information systems that process such data is to aggregate them into one or
several indicators that allow to describe the intensity, stability, changing news
flow structure, identify the most discussed news subjects, and so on. Note that
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the characteristics and features of the news flow are currently not sufficiently
studied, and the methods and algorithms for processing such data are not fully
developed.

In this paper we use some methods of the graph theory and corresponding
algorithms to examine news flow data. A social network analysis (SNA) approach
allows to investigate (explain) structures in systems based on the relations among
the system’s components (nodes) rather than the attributes of individual cases
[6]. Methods of social network analysis can be used to analyze the structure of
relations in an organization [7,8] or examine relationships among social entities
[44]. The basic concepts of SNA are node and link, where a node refers to a unit
(individual, object, item) and a link indicates a relationship between nodes.

News flow data can be easily converted into network data, since a company
can be presented as a node and the act of mentioning two companies in one
news item can be visualized as a link between them. Moreover, using this co-
mention network we can study basic properties of networks, such as centrality
and tie strength. Highly mentioned companies may be treated as key companies
which are more significant to economy than other companies. Central nodes in
this co-mention network are key companies in co-mention analysis. Moreover,
we can treat the amount of co-mentions as the link weight. In this case, highly
mentioned companies will have a higher value of link weight.

The paper [35] used various types of social network analysis metrics and
citation indices to find key companies in the network. The focus of this paper
is the analysis of different parts of co-mention network (or subnetworks) rather
than the co-mention network as the whole. In our study, we use two ways to
construct subnetworks:

– subnetworks represent different sectors of economy, such as products,
resources, services, IT sectors.

– each subnetwork consists of companies with the same stock exchange affilia-
tion.

The concept of link weight is crucial to our analysis. Through examination fre-
quencies and other SNA metrics of each company within a subnet, co-mention
analysis of companies can identify the key companies of the subnetwork. For
co-mentioned companies, the weight of links may be useful for identification of
the most frequently co-mentioned pairs of companies, as well as those who are
poorly co-mentioned but useful in terms of providing diversity to the sector or
subnetwork where they belong. We suppose that companies with weak links to
other companies may play a valuable role in expanding the diversity of economic
information within their subnetwork or clique.

In our research we would like to find answers to the following questions:

– Do the frequency, degree centrality, closeness centrality, betweenness central-
ity and eigenvector centrality of companies vary within subnetworks (clus-
ters)? Within each group (or subnetwork) of companies, our research is going
to find those which are more central than others. It is assumed that the
more central a company is within a network, the more influential and more
important the news about it must be.
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– Does the type of the degree distribution vary within clusters? What type of
the functional form has the clustering-degree relation for the clusters?

– Does the analysis of company co-mention network identify groups? Our
hypothesis is that the network analysis of the company co-mention network
reproduces the sector structure of the economy. The company co-mention
network may be very sparse, but the graph of companies is expected to show
which of them are often mentioned together or which belong to the same sec-
tor of economy. Each group or cluster of companies might be associated with
a particular sector, for example, products, resources, services or information
technology. Another hypothesis we would like to examine is that the structure
of the company co-mention network reflects the clusterization of companies
based on their stock exchange affiliation.

To provide answers to the first and the second questions we will use well-known
SNA metrics and methods. The answer to the third question will rely on the
quadratic assignment procedure (QAP) which was proposed and developed in
[13,18,21,27]. Since then, QAP has been widely used in social network analy-
sis (see e.g. [5,9,10,17,34,42], among many others). QAP is a peculiar type of
permutation test which leaves the dyadic data structure under the permutations
unchanged.

Our research questions are close to ones from the paper [20] which investi-
gated whether the patterns of author co-citation can describe the structure of
the field of communication.

Our study uses the data delivered by the news analytics providers. In our
opinion, the data are quite typical and can be used for processing and analysis.
Using this data, papers [36–39] examined different news flow characteristics, such
as intensity, stability, volatility, long-term memory, fractality, etc.

2 Data

A huge amount of economic and financial news are generated in real time by
news agencies, stocks exchanges, companies, magazines, papers, blogs and so
on. Different companies are named in these news items. We accomplish company
co-mention analysis in the five steps:

1. we assemble all economic and financial news items produced during one month
of 2015 (February of 2015);

2. we collect a list of mentioned companies for each news item;
3. we calculate a weighted co-mention count for each pair of co-mentioned com-

panies based on all set of available news items;
4. we produce a symmetric co-mention matrix using these weighted co-mention

counts;
5. then we analyze this co-mention matrix statistically, and the results are visu-

alized and interpreted.

Step 1 and 2 operations are executed by providers of news analytics. In our
research, we manipulate these already processed data.
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2.1 News Analytics Data

Two of the biggest providers of news analytics are Thompson Reuters and Raven
Pack. They gather news items from diverse sources in real time. They collect
data from different sources including news agencies and social media (blogs,
social networks, etc.). They also use so-called pre-news, i.e. SEC reports, court
documents, reports of various government agencies, business resources, com-
pany reports, announcements, industrial and macroeconomic statistics. Then
news analytics providers handle preliminary analysis of each news item in real
time. Using AI algorithms, they calculate news-related expectations (sentiments)
based on the current market situation. As a rule, providers of news analytics pro-
vide to subscribers in real time the following attributes for each news item: time
stamp, company name, company id, relevance of the news, event category, event
sentiment, novelty of the news, novelty id, composite sentiment score of the
news, among others. Subscribers of news analytics data may develop and exploit
quantitative models or trading strategies based on both the news analytics data
and financial time series data. The survey of applications for news analytics tools
can be found in books [28,29].

2.2 Generating Company Co-mention Network

Methodology. Company co-mention network is formed based on co-mention;
it means that a company has connection with those companies that have been
mentioned in a news item together. A company co-mention network is a set of
companies which have connections in pair to represent their co-mention relation-
ship. Two companies are linked if there has been published a publicly available
news item mentioning both of them. In such type of network, a company will be
represented by ’node’ or ’vertex’ and the connection will be an ’edge’. Thus, we
represent the company co-mention network as an undirected weighted graph. In
some sense, company co-mention network can be considered as social network.
Based on the available data of news analytics, we built an adjacency matrix
which represents the relationship between companies in line with the approach
described in [35].

Network. We deal with all the financial and economic news items released dur-
ing one month period from February 1, 2015 to February 28, 2015 (i.e. 20 trading
days). We eliminated all the news on the imbalance of supply and demand before
both the opening and the closing of trading time of different stock exchanges.
News of such type may amount to several hundreds of news coming out in a short
time at the beginning and at the end of the trading sessions. During February
2015, there were published more than 230 thousand news items which mentioned
more than 18,000 companies. We assembled the list of all companies which have
at least one common news item with at least one other company. There are more
than 7,000 such companies during February, 2015.

Table 1 presents the descriptive statistics of time series.
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Table 1. The descriptive statistics, one day

All news Stock exchanges Sectors

NYSE LSE Tokyo SE Products Resources Services IT

Mean 8383.43 2351.57 902.43 730.75 1772.21 1348.50 1896.46 505.61

St. dev. 5415.21 1569.98 596.61 524.85 1159.12 928.81 1235.39 356.55

Skewness −0.60 −0.49 −0.63 −0.22 −0.54 −0.17 −0.56 −0.31

Kurtosis 1.75 1.64 1.88 1.89 1.74 2.13 1.76 1.76

After obtaining non-directional symmetric matrix with valued weights for
the co-mention counts of each pair of companies, we use R packages for finding
basic statistics and to visualize the network of companies.

2.3 Social Network Analysis

Social Network Analysis (SNA) describes social relations in terms of graph the-
ory. SNA presents objects (e.g. individuals, groups, organizations, URLs, and
other connected entities) within the network as nodes, and links represent rela-
tionships (e.g. friendship, co-authorship, organizations and sexual relationships)
between the objects [1,14,22,25,40].

Social networks can be represented in the form of a diagram, where nodes
are points and links are lines. SNA deals with measuring relationships between
objects [12,26,30,44].

The nodes in our network represent companies and the links represent co-
mention relationships between the nodes. SNA provides both visual and math-
ematical analysis of relationships [33,41].

Recent years have seen increased interest in the study of Social Media using
SNA (see e.g. [3,11,23,45,47], among many others).

Key objects are those that are in relationships with many other objects. In
the context of our analysis, a company with extensive links or co-mention with
many other companies in the economy is considered more important than a
company with relatively fewer links. Different types of SNA metrics can be used
to find key companies in the network. In our analysis, we use the following well-
known metrics: degree centrality, closeness centrality, betweenness centrality,
eigenvector centrality, frequency. A detailed description of these metrics can be
found in the article [25].

2.4 Key Company Analysis According to Sectors of Economics

In addition to the co-mention matrix, we create a matrix describing which of
ten economic sectors the companies belongs to (extraction of consumer discre-
tionary, consumer staples, energy, financial, health care, industrials, information
technology, raw materials, telecommunications services and utilities) and which
stock exchange the companies is related to.
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All the companies we considered were divided into four sectors of the economy
in the following way:

Consumer discretionary
Consumer staples

Industrials

⎫
⎬

⎭
−→ Products (2007 companies)

Energy
Raw materials

}

−→ Resources (1398 companies)

Financials
Health care

Telecommunications
Utilities

⎫
⎪⎪⎬

⎪⎪⎭

−→ Services (2375 companies)

Information technology
} −→ IT sector (548 companies)

Table 2 lists the top-5 companies with the highest frequency of co-mention
in each of the 4 sectors. The table also shows the number of company’s links
and different standardized centrality indicators. As you can see from this table,
General Motors with high frequency and with high degree is a key company in
the products sector. It strongly dominates over the rest of the companies, so that
it has the largest number of news co-mentions and links to other companies. We
noted that in terms of proximity (closeness centrality), all considered companies
are identical. This is typical for all sectors of the economy. Most of the largest
companies in this sector belong to auto groups or aircraft manufactory.

Table 2 also shows the largest companies in the Resources sector. The leading
companies in this sector are oil and gas companies, which is reasonable. At the
same time American companies Apache Corporation and Continental Resources
lead in co-mention frequency and number of links. The high of the Eigenvector
centrality indicator proves that Apache Corporation and Continental Resources
interact with other large companies in the sector. It acts as the bridge more
often (it is a connecting link) connecting the companies of this sector.

In the services sector, there are several leaders which are the largest financial
holdings: JPMorgan Chase, Citigroup, Bank of America. This group of compa-
nies are also leaders in all measures of centrality considered. Apple is the leader
in the information technology sector for all of the indicators with a large margin.
Earlier, in our article [35] it was shown that Apple is the leading (key) company
among all the companies under consideration.

2.5 Key Company Analysis According to Stock Exchanges

Next, a network of co-mentions of companies belonging to different territorial
zones was studied. We considered separately companies that are trading on the
European, American and Asian stock exchanges. Precisely, we analyzed compa-
nies that traded on London SE (488 companies), New-York SE (1,715 companies)
and Tokyo SE (586 companies).

Table 3 shows that the key companies of the London Stock Exchange in
terms of the number of links are Barclays Bank PLC and Aviva PLC. Mining
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Table 2. Companies with higher frequency for four sectors of the economy

Company Frequency Degree Degree

centrality

×101

Closeness

centrality

×103

Betweenness

centrality

×101

Eigenvector

centrality

Products

General Motors Co 1051 143 0.71 2.0745 0.72 1.000

Ford Motor Co 691 90 0.45 2.0731 0.26 0.877

Volkswagen AG 668 101 0.50 2.0734 0.23 0.572

Boeing Co 663 103 0.51 2.0735 0.34 0.084

Bayerische Motoren

Werke AG

652 108 0.54 2.0724 0.17 0.576

Rescources

Apache Corp 1583 118 0.84 2.5374 0.04 0.966

Continental

Resources Inc

1538 101 0.72 2.5373 0.06 1.000

Pioneer Natural

Resources Co

1422 70 0.50 2.5354 0.00 0.984

RSP Permian Inc 1369 67 0.48 2.5353 0.00 0.937

Devon Energy Corp 1282 92 0.66 2.5356 0.01 0.849

Services

JPMorgan Chase &

Co

882 137 0.58 1.6921 0.43 1.000

Citigroup Inc 837 128 0.54 1.6922 0.43 0.889

Bank of America

Corp

757 142 0.60 1.6926 0.69 0.763

Goldman Sachs

Group Inc

706 105 0.44 1.6915 0.13 0.868

American Express

Co

622 126 0.53 1.6921 0.39 0.391

IT sector

Apple Inc 805 127 2.32 6.1457 2.59 1.000

Alphabet Inc 472 67 1.22 6.1364 0.79 0.927

Twitter Inc 371 54 0.99 6.1293 0.27 0.640

Samsung Electronics

Co Ltd

336 56 1.02 6.1364 0.79 0.618

Facebook Inc 307 47 0.86 6.1323 0.32 0.640

company BHP Billiton PLC has the largest number of co-mentioned news and
interacts with the largest companies of this exchange. Further in the table the
key companies of the New York Stock Exchange are given; all of them belong
to the oil and gas industry. At the same time key companies of the Tokyo Stock
Exchange relate to engineering and industrial sectors.

2.6 Degree Distribution Analysis

In this section, the distribution analysis for the sub-graphs on 4 sectors of the
economy and for the 3 stock exchanges is provided. The description of this
procedure can be found in the articles [2,19].
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Table 3. Companies with higher frequency for three stock exchanges

Company Frequency Degree Degree

centrality

×101

Closeness

centrality

×105

Betweenness

centrality

×102

Eigenvector

centrality

London SE

Barclays PLC 484 42 1.72 3.2481 3.37 0.374

Aviva PLC 429 47 1.93 3.2517 5.20 0.308

BHP Billiton PLC 363 81 3.33 3.2576 4.29 1.000

BP PLC 313 53 2.18 3.2511 3.43 0.536

Associated British

Foods PLC

303 68 2.79 3.2534 3.00 0.733

New-York SE

Continental

Resources Inc

1594 178 2.08 0.2767 0.50 0.720

Apache Corp 1588 184 2.15 0.2774 1.02 0.733

Anadarko

Petroleum Corp

1386 217 2.53 0.2780 1.96 0.831

Basic Energy

Services Inc

1336 252 2.94 0.2778 1.05 1.000

Halliburton Co 1281 247 2.88 0.2778 1.52 0.924

Tokyo SE

Bombardier Inc 515 154 5.26 2.0368 6.32 0.994

Calfrac Well

Services Ltd

489 105 3.59 2.0299 0.59 0.710

Alara Resources Ltd 464 120 4.10 2.0320 1.08 0.883

Newalta Corp 428 147 5.03 2.0345 1.86 1.000

Strad Energy

Services Ltd

414 101 3.45 2.0305 0.68 0.633

A degree distribution is called power-law distribution if

n(k) ∼ Ak−γ ,

where γ is degree exponent.
For all stock exchanges under review (Table 5) and economic sectors (Table 4)

the distribution of degrees follows the power law. Figure 1 shows the dependence
of the number of companies n(k) on node degree k for NYSE.

The resulting models are statistically significant at alpha level of 0.01. How-
ever, the degree exponent for all stock exchanges and sectors of the economy
does not fall in the interval (2, 3). Thus, the decrease in the degrees of vertices is
slower than for typical social networks [16,24]. It is also notable that the fewer
companies are in a subgraph, the slower the degree of vertices decreases are and
the less the coefficient of determination is.
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Table 4. Degree distribution for four sectors of the economy

Subgraphs Degree exponent γ R2

Products 1.06 0.82

Rescources 0.91 0.79

Services 1.14 0.84

Information technology 0.64 0.65

Table 5. Degree distribution for three stock exchanges

Subgraphs Degree exponent γ R2

London SE 1.10 0.81

New-York SE 1.18 0.84

Tokyo SE 0.68 0.44

Fig. 1. The degree distribution of the New-York’s companies co-mention network

2.7 Clustering Coefficient Distribution

In this section, clustering coefficient distributions analysis will be carried out
for sub-graphs in 4 sectors economy and for 3 stock exchanges described above.
Description of these procedures can be found in articles [4,15,43].

The average clustering coefficient of nodes C(k) with degree k has been found:

C(k) ∼ Bk−β ,

where the exponent β usually lies between 1 and 2 [31,32,46].
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For the given networks, the clustering-degree distribution relation follows the
power law.

The resulting models are statistically significant at alpha level of 0.01. Here-
with, the exponent β is turned out less than 1 for all the subgraphs under
consideration (Tables 4 and 5).

It should also be noted that the power dependence between the local cluster-
ing coefficient and the degree is manifested for sufficiently large degrees of the
vertices of k. There is no dependence for relatively small k. This fact is typical
for all subgraphs under consideration and it can be well observed in the example
of a subgraph (Fig. 2). Herewith, the exponent β is turned out less than 1 for all
stock exchanges and sectors of the economy (Tables 6 and 7).

Sometimes the flow contains news which mention a large number of actors
(companies). For example, about 0.5% of news reports allude to 10 or more
companies. In such cases, the procedure we used to fill the incidence matrix
generated a “pleiad” - a subgraph that included all possible verges between the
actors mentioned in the report, which led to deviations of the vertex degree and
clustering coefficient values from the general pattern. Note that exclusion of a
large number of co-occurrences from the news analysis eliminated this problem.
However, this method leads to a significant loss of information. It seems more
accurate to use a modified procedure for clustering coefficient calculation that
takes into account the peculiarities of the co-occurrences flow. We are planning
to do this in the future.

In further research, we are taking into account this feature of the news flow,
particularly in procedures for the news flow filtering and decomposing. We pro-
pose to allocate and consider repetitive co-mentions (a stable part of the graph
in time), co-mentions caused by certain events in politics or economy (eventual
co-mentions), and, finally, random perturbations separately.

Table 6. Local clustering coefficient for four sectors of the economy

Subgraphs Exponent β R2

Products 0.70 0.58

Rescources 0.44 0.46

Services 0.70 0.61

Information technology 0.61 0.54

Table 7. Local clustering coefficient for three stock exchanges

Subgraphs Exponent β R2

London SE 0.68 0.55

New-York SE 0.68 0.74

Tokyo SE 0.78 0.74



QAP Analysis of Company Co-mention Network 93

Fig. 2. The clustering-degree distribution of the New-York’s companies co-mention
network

3 QAP Correlation and Regression Analysis

Using the co-mention matrix and the companies’ sector affiliation matrix (as well
as the stock exchange affiliation matrix) we conduct QAP Correlation Analysis.
QAP (Quadratic Assignment Procedure) was proposed and developed in [13,18,
21,27]. We use QAP Correlation Analysis to identify correlations

– between the co-mention network and companies’ sector affiliation,
– between the co-mention network and stock exchange affiliation.

With the co-mention network as a prime network, corresponding cells of the
sector affiliation matrix (as well as the stock exchange affiliation matrix) are
compared to compute the value of Pearson’s correlation. We repeat the process
randomly permuting columns and rows to find the correlation. A lower value of
Pearson’s correlation means a stronger relationship between the matrices.

The first research hypothesis states that the graph of companies resulting
from a network analysis identify sectors. First, QAP analyses between the co-
mention network and the sector affiliation network was carried out to examine
whether the sector affiliation network can predict the structure of the co-mention
network. We calculate the value of Pearson correlation using R package.

The QAP correlation analysis shows a significant correlation between the co-
mention network and the stock exchange affiliation (r = 0.053, p = 0.000) and
the sector affiliation network (r = 0.020, p = 0.000).

We exploited the QAP procedure for testing the significance of the correla-
tion coefficients. Estimated density of QAP replications for the sector affiliation
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network is shown in Fig. 3. Similar results were also obtained for the network
of co-mentions and the Stock exchange affiliation. The observed values of the
correlation coefficients were higher than the model values in all simulated 500
samples. Thus, the observed correlation coefficients are statistically significant,
while they are close to zero. This can be explained by the fact that the adja-
cency matrices were of large dimension and were sufficiently discharged. This
could contribute to the underestimation of the correlation coefficient.

We evaluated the linear regression between the elements of the co-mention
network matrix and the stock exchange affiliation matrix, as well as elements of
the co-mention network matrix and the sector affiliation matrix. The values of
the parameters found by the least squares method and p-value obtained by the
QAP procedure are given in Table 8.

The QAP regression analysis shows (Table 8), that only 0.2% variance is
predicted by the model (R2 = 0.002). This value is relatively low, and indicates
an insufficient inclusion of explanatory variables. The coefficients of the model
are statistically significant.

Table 8. QAP regression analysis

Coefficients Estimate P-value

Intercept 0.003 0.000

Sector affiliation 0.015 0.000

Stock exchange affiliation 0.033 0.000

The co-mention network of companies has similar structure to their territorial
connections. We visualize the co-mention matrix using R package. We identify
clusters using the level of link weights which is derived from co-mention frequen-
cies. We use the sector affiliation matrix as attribute data to see if companies
of one cluster have the attribute in common. Figure 4 shows a small part of
network map of companies. Nasdaq companies with New York Stock Exchange
and Dax companies with London Stock Exchange make two clusters. London
companies along with GM (General Motors) are more likely to be a bridge for
the US connection with Europe.

Big companies generate a much bigger news flow than small companies. For
this reason, the co-mention matrix is dense for the largest companies and is much
sparser for small companies. However, the overall spatial and sector affiliation
of companies significantly affects the probability and frequency of co-mentions.
In our opinion, the widening of the range of analyzed companies induces the
sparsity of the co-mention matrix, which leads to a drop in the share of the
explained variance.
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Fig. 3. Estimated density of QAP replications for the sector affiliation network

Fig. 4. Networked Map of companies
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4 Conclusion

In this article, we investigated the relationship between company co-mention
network and the sector affiliation matrix. Moreover, we identified key companies
in different sectors of the economy using various indicators of network analysis,
such as frequency, normalized degree of centrality, closeness centrality, between-
ness centrality and eigenvector centrality. We discovered that different network
analysis indicators show different values for different companies. But some of
the companies have high significance for all indicators considered. At the same
time, the majority of leading (key) companies belong to the New York Stock
exchange. It was shown that the distribution of degrees and clustering-degree
relations for our network adheres to the power law, although with nonstandard
indicators of exponent. QAP analysis showed the presence of significant positive
correlation between company co-mention network and stock exchange affiliation,
and between company co-mention network and sector affiliation network.
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Abstract. Generative graph models play an important role in network
science. Unlike real-world networks, they are accessible for mathemati-
cal analysis and the number of available networks is not limited. The
explanatory power of results on generative models, however, heavily
depends on how realistic they are. We present a framework that allows
for a systematic evaluation of generative network models. It is based on
the question whether real-world networks can be distinguished from gen-
erated graphs with respect to certain graph parameters.

As a proof of concept, we apply our framework to four popular random
graph models (Erdős-Rényi, Barabási-Albert, Chung-Lu, and hyperbolic
random graphs). Our experiments for example show that all four models
are bad representations for Facebook’s social networks, while Chung-Lu
and hyperbolic random graphs are good representations for other net-
works, with different strengths and weaknesses.

Keywords: Generative graph models · Real-world comparison
Distinguishability of network classes

1 Introduction

Generative graph models play an important role in network science for a multi-
tude of reasons. They can explain how certain properties observed in real-world
networks naturally emerge when assuming simplified but reasonable creation
mechanisms. The small-world phenomenon for example emerges from a small
amount of randomness in the form of independently chosen edges [10,23], and
analyzing how information spreads in random networks can help to explain infor-
mation cascades, in which individuals act based on the behavior of other indi-
viduals instead of their own information, leading to a herd-like behavior [22].
Moreover, analyzing the expected run time of an algorithm on a realistic gen-
erative model has the potential to explain why certain algorithms perform well
on real-world instances despite their bad worst-case performance [16]. Finally,
randomly generated instances can serve as benchmark sets for algorithms.

The explanatory power of a generative model and its usefulness as benchmark
heavily depends on how well the generated graphs mimic real-world networks.
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A common way to provide evidence for the usefulness of a model, is to analyze
it with respect to certain fundamental properties. The properties commonly
perceived as most important are the degree distribution (which is typically het-
erogeneous with many vertices of low degree and few vertices of high degree), the
diameter (maximum distance between nodes, which is typically small), and the
clustering coefficient (providing a measure of locality, which is typically high).

Typical examples of arguments for or against a certain model are as follows.
The Barabási-Albert model leads to a power-law degree distribution, which is
realistic for certain classes of real-world networks [3,7]. Chung-Lu graphs have
the small-world property often observed in real-world networks as their diameter
is rather small (namely Θ(log n)) [8]. The clustering coefficient of Barabási-
Albert graphs tends to 0 for n → ∞ [11], while it is bounded away from 0 for
hyperbolic random graphs [15,17], making the latter more realistic.

Though knowing the asymptotic behavior of these fundamental properties is
an important contribution to understand a model, there are disadvantages when
it comes to judging how realistic it is: the statements are only of qualitative
nature (a parameter is “small” or “large”) but it is unclear which values are
actually realistic. This is particularly true when trying to compare the asymp-
totic growth in a model with the specific numbers of a few real-world networks.

A more direct comparison is achieved by comparing how different a generated
network and its real-world counterpart are. Such an approach heavily depends
on the used similarity measure [20]. While these measures have important appli-
cations, they typically compare only pairs of networks. Thus, we believe they
are not suited to evaluate the usefulness of a generative model as this pairwise
comparison heavily favors overfitting and discourages the models to generalize.

The goal of being as unbiased as possible while mimicking certain impor-
tant properties of real-world networks is formally captured by the term maxi-
mum entropy model. Erdős-Rényi graphs are for example maximum entropy with
respect to the number of vertices and edges, i.e., each graph with the desired
number of vertices and edges is produced with the same probability. Using this
perspective, the perfect model would be one that is maximum entropy with
respect to as few properties as possible such that the generated networks are
indistinguishable from real-world networks with respect to as many properties
as possible.

Our goal with this paper is to develop a framework that enables a systematic
experimental evaluation of how good generative graph models are. In particular,
it is possible to answer questions of the following type.

– Barabási-Albert, Chung-Lu, and hyperbolic random graphs all have small
diameter (Θ(log n/ log log n) [6], Θ(log n) [8], and polylogarithmic [14]).
Which of the three is more realistic?

– Which aspects of real-world networks are well represented by a given model
and which are not? Note that answering this question is particularly interest-
ing for maximum entropy models, as it provides a direction on how to make
the model more realistic.
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– Which types of real-world networks (e.g., social or infrastructural) are well
represented by a given model?

– Given two seemingly similar models, do they actually generate graphs with
similar properties?

Contribution and Outline. We developed a framework capable of answering these
questions. The general approach is to select generative models, a collection of
real-world networks, and a set of parameters. For each model, a set of graphs
fitted to the real-world networks is generated. We then answer the question
whether the chosen set of parameters is sufficient to distinguish between the
different collections using machine learning. This general question allows us to
formulate all the above mentioned specific questions by appropriately choosing
the graph collections that should be distinguished and the set of parameters.

The different components of the framework can be easily adapted: New real-
world networks, further generative models, and additional parameters can be
included. Moreover, the used machine learning technique is interchangeable.

To showcase our framework, we selected four models (Erdős-Rényi, Barabási-
Albert, Chung-Lu, and hyperbolic random graphs) and evaluated them on 219
real-world networks based on ten different parameters. Our findings, interesting
in their own right, are as follows.

– While all four models are bad representations for Facebook graphs,
Chung-Lu and hyperbolic random graphs are reasonable models for other
real-world networks.

– While the Chung-Lu model is better for features related to node degrees,
hyperbolic random graphs excel when involving clustering or distance-related
features.

– Though hyperbolic random graphs have a realistic average clustering, the
variance in clustering is too low.

– In the Barabási-Albert model, the choice of the initial graph (clique or cycle)
is only irrelevant if the average degree is small.

Our framework and the raw data produced in our experiments are available
at https://github.com/jstriebel/nemo-eva.

Related Work. Attar and Aliakbary recently followed a similar approach of clas-
sifying networks based on certain graph parameters [1]. Their perspective is,
however, significantly different: their goal is to decide for a given real-world
network, which model is most suited to represent it. We note that this app-
roach can also be used to evaluate which model is the most realistic for certain
real-world networks by counting how many real-world networks are classified as
which model. However, this only leads to a evaluation in comparison to the other
models under consideration and it does not identify parameters with respect to
which a model requires improvement.

https://github.com/jstriebel/nemo-eva
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2 Methodology

Our framework consists of three main steps. First, multiple collections of graphs
are determined. Typically, we have one collection containing real-world networks
and one collection for each generative model. In the second step, different graph
parameters are computed for all graphs in a collection. For each graph, this yields
a feature vector, which is used as its representation. Thus, the second step turns
the collections of graphs into collections of feature vectors. The third step then
determines, whether two collections can be distinguished based on the feature
vectors, and if yes, which subsets of features can or cannot be used to distinguish
between them. In the following, we describe the three steps in more detail.

2.1 Collections of Networks

In the first step, a collection of real-world networks and a selection of gen-
erative models is chosen. We denote the collection of real-world networks by
C = {G1, . . . , Gc} with c = |C|. For each model m and each graph Gi ∈ C, we
use m to generate an artificial graph Gm

i trying to mimic the real-world network
Gi. We denote the set of resulting networks by Cm = {Gm

1 , . . . , Gm
c }.

Fitting the Models. We want the graph Gm
i generated by m to mimic the corre-

sponding real-world network Gi. As this highly depends on the chosen model, it
is not part of the framework. Most models, however, generate graphs based on
a small set of input parameters and produce graphs that roughly match these
parameters. In this case, we compute the relevant parameters for Gi and generate
Gm

i using the resulting values. For input parameters of a model that are known
to mainly influence one parameter of the generated graphs, without knowing
an exact formula for this dependency, one can use a binary search to fit this
parameter. In Sect. 3.2 we describe the fitting we used for Erdős-Rényi Graphs,
Barabási-Albert, Chung-Lu, and hyperbolic random graphs.

2.2 Network Parameters

In the second step, each graph G is turned into a feature vector by computing
the values of different parameters. Formally, a feature ϕ is a function that maps
G to a numerical value ϕ(G). For a feature set F = {ϕ1, . . . , ϕf} of f = |F |
features, the feature vector of G is (ϕ1(G), . . . , ϕf (G)) and we denote it by
F (G). For a collection C of graphs, F (C) denotes the corresponding collection of
feature vectors. We note that selecting a sufficiently expressive set of parameters
is crucial: our framework is based on the assumption that structural properties
distinguishing different networks types can be represented by the chosen features.

Feature Cleaning. To eliminate meaningless features, we apply three data clean-
ing techniques: numerical cleaning, variation cleaning, and correlation grouping.
The numerical cleaning eliminates all features that are undefined or infinite for
at least one of the networks. The variation cleaning eliminates features that have
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little predictive value as they assume similar values on most networks. More pre-
cisely, features are eliminated based on their normalized coefficient of variation,
which is defined as follows. For a given feature, let X be the vector containing the
c values it assumes in different graphs. Then the feature’s normalized coefficient
of variation is defined as

σ(X)
μ(X)

√
c − 1

,

where σ and μ denote the standard deviation and the arithmetic mean, respec-
tively. We remove features with a normalized coefficient of variation below a
threshold of 1%.

The correlation grouping groups highly correlated features, as having multi-
ple very similar features does not add any predictive value. For each group of
correlated features only the feature with the clearest semantics (given by a manu-
ally predefined order) of the group is used. The grouping is done by constructing
a graph, using the features as nodes and connecting two features by an edge if
they have an absolute Spearman’s rank correlation coefficient above 99%. Each
connected component in that graph is one group. Note that grouped features
can have a smaller correlation than the threshold of 99%, as the correlation is
not transitive, but being in the same connected component is.

2.3 Distinguishing the Collections

In the third step, we want to determine which pairs of collections can be dis-
tinguished based on which features. To this end, we want to answer queries of
the following type. The input is a subset F of all features and two collections of
graphs, typically the collection C of real-world networks and the collection Cm

for one model m (it is also possible to compare the collections of two different
models, but for the sake of readability, we assume C and Cm in the following).
We then want to know how well F (C) can be distinguished from F (Cm), i.e.,
whether it can be learned which feature vectors are members of which collections
by observing the membership only for few samples.

Classification Task. The input for the classifier consists of a feature-matrix X ∈
R

2c×f (c = |C| and f = |F |) and a binary vector Y ∈ {0, 1}2c that classifies the
features as belonging to C (denoted as 0) or as to Cm (denoted as 1). They are
defined as

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F (G1)
...

F (Gc)
F (Gm

1 )
...

F (Gm
c )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

⎫⎪⎬
⎪⎭

c

1
...
1

⎫⎪⎬
⎪⎭

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The task of distinguishing features X according to the vector Y corresponds
directly to the classical machine-learning setting of binary classifications: Given
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the feature-space X = R
2c×f for 2c observations of c graphs and c correspond-

ing models with f real-valued features, the target value space is defined as
Y = {0, 1}2c, and the binary classification model MX is a function of the form
MX : X → Y. The output for each prediction is independent from other predic-
tions, therefore

MR2c×f ((x1 · · · x2c)T ) = (MRf (x1) · · · MRf (x2c))T .

Evaluation. To evaluate the resulting predictions, the accuracy is measured.
Given the actual target values Y and the predicted values Ŷ = M(X), the
accuracy is the ratio of correctly classified examples [2]. Therefore,

accuracy(Ŷ , Y ) =
∑

i[Ŷi = Yi]
|Y | ,

where [·] is the Iverson bracket with [p] = 1 if p is true and [p] = 0 otherwise.

Supervision and Cross-Validation. To do supervised learning, we need training
data Xtrain and Ytrain. With this, a supervised learning strategy S results in a
trained model MX , therefore S : Xtrain × Ytrain → (MX : X → Y).

To make use of all the data as a target to predict, but simultaneously prevent
to use the same data as a training and a testing example, we use cross-validation.
Given some predictors X and target values Y , the �-fold cross-validation splits
the data in � random, equally-sized subsets X1, . . . , X�, Y1, . . . , Y�. They are used
to generate � learned models, where for each model a single subset is used as
the test dataset and all other subsets as the training data. To make the training
unbiased we use stratified cross-validation which ensures that the number of
examples is the same for both classes (i.e., each Xi includes the same number
of feature vectors from F (C) as from F (Cm)). The total accuracy of the cross-
validation is then defined as the arithmetic mean of the accuracies of all models.

Classification Model. From the wide range of possible supervised machine learn-
ing classifiers we use support vector machines (SVMs) with the Gaussian radial
basis function (rbf) kernel because they have a good predictive performance
in general [13], are able to capture high order dependencies [4,19], and the
parametrized regularization allows to tune the variance-bias trade-off [2,19].

To select the best parameters for the SVM and the rbf kernel, cross-validation
over a grid of parameters is performed. The model with the best average accuracy
in the testing sets is used as the final model. All features used in the SVM are
normalized to have an arithmetic mean of zero and unit variance in the training
data. The testing dataset is scaled using the same parameters. This ensures that
also the scaling is done in an unbiased, cross-validated fashion.

3 Experiments

For the experiments we used 219 publicly available graphs from Network Repos-
itory [18]. For disconnected graphs, we used the largest connected component.
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Fig. 1. The graphs used in our experiments.

The Network Repository divides graphs into different categories, as shown in
Fig. 1. The graphs vary in their sizes and have up to 1.8 million nodes and 17
million edges. In the following, we define the used graph parameters, describe
the considered generative models, and how we fitted them to the real-world
networks.

3.1 Graph Properties

Table 1 lists all features we use. The properties we consider in our experiments
can be divided into two categories: single-value features and distributions over
nodes. We used NetworKit [21] to compute the features.

Single-Value Features. These are features that assign a single numerical value
to a given graph. The most basic properties of this type are the number of nodes
and the number of edges. Additionally, the diameter describes the maximum
length of a shortest path between any two nodes in the graph and the effective
diameter (a similar but more robust measure) represents an upper bound on the
shortest path between 90% of all node pairs.

The generative models we consider are mostly meant to represent so-called
scale-free networks whose degree distribution follows a power law, i.e., the frac-
tion of vertices with at least k neighbors roughly behaves like k−β , where β is
the so-called power-law exponent.

Distribution over Nodes. These are features that assign a value to each node,
leading to distributions over all nodes in the graph. For each of these distributions
we consider the arithmetic mean, median, first quartile and third quartile, as well
as the standard deviation.
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The simplest measure of this type is the degree distribution, assigning each
vertex its degree. The local clustering coefficient of a vertex v is the probability
that two randomly selected neighbors of v are connected. The arithmetic mean
of the local clustering coefficients is often referred to as “average local clustering
coefficient” or simply “clustering coefficient” of the network and represents an
important single-value feature. The k-core of a graph is obtained by successively
removing all nodes with degree less than k. This leads to the measure of core
centrality, where each node is assigned the largest k such that it is contained
in the k-core. The betweenness centrality measures for each vertex v how many
shortest paths between pairs of other nodes go though v, and the closeness
centrality of a node denotes its average distance to every other node in the
graph. Furthermore, the Katz centrality measures the importance of a node by
its number of neighbors and the distance of all other nodes to these neighbors.
Finally, the PageRank centrality is basically the limiting probability distribution
of a random walk.

Table 1. The parameters we use, their abbreviations, and whether they are single-value
or distribution parameters.

Feature Abbreviation SV/Distr.

Number of nodes n Single value

Number of edges m Single value

Diameter d Single value

Effective diameter d′ Single value

Power-law exponent β Single value

Degree deg Distribution

Local clustering coefficient c Distribution

Core centrality core Distribution

Betweenness centrality betw Distribution

Closeness centrality close Distribution

Katz centrality Katz Distribution

PageRank centrality PR Distribution

3.2 Graph Models

As mentioned above, we are mostly interested in scale-free networks, i.e., highly
heterogeneous networks with many low-degree and few high-degree nodes, whose
degree distribution roughly follows a power law. We thus chose Barabási-Albert,
Chung-Lu, and hyperbolic random graphs as models for our experiments. More-
over, we also consider the Erdős-Rényi Graphs model, as it is arguably the most
basic random graph model possible. In the following we briefly describe how
graphs are generated by the different models, discuss their basic properties, and
report how we did the model fitting mentioned in Sect. 2.1.
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Erdős-Rényi Graphs [12]. The Erdős-Rényi random graph model is the earliest
and most studied one. A graph is generated by connecting each pair of n vertices
with probability p. Thus, one can control the number of vertices and expected
number of edges, which is p · n(n − 1)/2. To fit the model to a given real-world
network, we set n to the number of vertices and the edge probability parameter
to p = 2m/(n(n − 1)) where m denotes the number of edges in the network.

We do not expect the Erdős-Rényi Graphs model to generate very realistic
graphs, i.e., we expect them to be easily distinguishable from the real-world
networks.

Barabási-Albert Graphs [3]. This model (which is also called preferential attach-
ment) generates a random graph by starting with a small graph of size n0 (e.g. a
cycle). Then, nodes are added one by one, each connected to k already existing
nodes with probability proportional to their degree, until there are n nodes in
the graph. The size of the initial graph is typically chosen as n0 = k, which is
the smallest value ensuring that the first node that is added in the generation
process has enough neighbors to connect to. Note that 2k is the expected average
degree of the resulting graph. Thus, to fit the model, we set n to the number of
vertices and derive k from the average degree of the real-world network.

As this model generates scale-free graphs, we expect it to produce more realis-
tic results than the Erdős-Rényi Graphs model. The main point commonly made
against the Barabási-Albert model is its vanishing clustering coefficient [11],
which indicates a lack of locality typically present in real-world networks.

Chung-Lu Graphs [8,9]. In the Chung-Lu model each node is assigned a weight
and each pair of nodes is connected with a probability proportional to the prod-
uct of their weights. In the resulting graph, each node has an expected degree
equal to its weight. In our experiments, we fit the model by using the observed
degree distribution in a real-world network as weights.

By construction, the Chung-Lu model mimics the degree distribution of a
real-world network very well. As for the Barabási-Albert model, the most com-
mon point of criticism is its low clustering coefficient. Moreover, the Chung-Lu
model seems more artificial than the Barabási-Albert model, as the latter mimics
the evolution of a real-world network (in a simplified manner). The Chung-Lu
model on the other hand matches the desired degree distribution much more
accurately. It is thus interesting to know which of the two models leads to more
realistic results with respect to features other than the degree distribution.

Hyperbolic Random Graphs [17]. In this model n nodes are placed randomly in
a disk within the hyperbolic plane. Then, each pair of vertices is connected if
their hyperbolic distance is below a threshold, whose size depends on n and the
desired average degree. The resulting networks have a power-law degree distri-
bution with the power-law exponent β being an input parameter. Additionally, a
parameter T can be used to soften the threshold behaviour, allowing long-range
edges with a certain probability. The geometry implies locality, which leads to
a non-vanishing clustering coefficient [15]. Roughly speaking, the parameter T
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controls how important this locality is (the more probable long-range edges are,
the less important is the locality) and thus impacts the clustering coefficient.

When fitting the model parameters to a given real-world network, the largest
connected component of the generated graph is typically smaller than the num-
ber of initially generated nodes n. To estimate n we use a technique based on
estimating the missing nodes of degree 0 [5]. As desired average degree, we simply
use the average degree of the real-world network, and the power-law exponent β
is estimated based on the cumulative degree distribution. To fit the final param-
eter T ∈ [0, 1), we perform a binary search on T , in each step comparing the
clustering coefficients of the resulting graph and the real-world network.

Table 2. Failure rates on Facebook graphs. The table includes the same feature sets
as Table 3, not showing all-0% rows. (∅: only average values for distributions)

Feature Sets ER BA CL HRG

n, m 49% 50% 47% 44%
n, m, d 0% 0% 1% 0%
n, m, d′ 1% 1% 14% 16%
n, m, c ∅ 0% 0% 0% 40%
n, m, betw ∅ 4% 5% 12% 41%
n, m, betw 1% 0% 7% 2%
n, m, close ∅ 13% 11% 12% 30%
n, m, close 1% 3% 7% 14%
n, m, PR 0% 1% 21% 1%
n, m, Katz ∅ 0% 1% 20% 2%
n, m, Katz 0% 0% 13% 0%
n, m, deg 0% 0% 42% 0%
n, m, core ∅ 0% 8% 11% 2%
n, m, core 0% 0% 16% 0%
n, m, deg, betw 0% 0% 7% 0%
n, m, close, deg 0% 0% 20% 0%
n, m, PR, deg 0% 0% 4% 0%
n, m, Katz, deg 0% 0% 2% 0%
n, m, core, deg 0% 0% 2% 0%
c, β, d ∅ 0% 0% 0% 1%
c, β, d′

∅ 0% 0% 1% 19%
c, β, d′ 0% 0% 1% 0%
betw, close, d 0% 0% 2% 1%
betw, close, d′ 0% 1% 4% 1%

We expect hyperbolic random graphs to be more realistic than the other
models, due to their non-vanishing clustering coefficient. It is, however, unclear
whether hyperbolic random graphs are also more realistic with respect to other
features that are not explicitly enforced by the model.
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3.3 Results

The results of our experiments can be summarized as follows. We note that
the insights obtained by our method are meant to guide the direction of future
research rather than being reliable scientific facts by themselves.

– None of the tested models is a good representation for Facebook’s social
networks. Further analysis has to show if this is due to Facebook’s special
structure or whether it is a general issue with graphs of high average degree.

– For other real-world networks, Chung-Lu and hyperbolic random graphs
outperform Erdős-Rényi and Barabási-Albert graphs, which are easy to
distinguish from real-world networks even for small parameter sets. Non-
surprisingly, Chung-Lu graphs perform well with respect to the degree dis-
tribution but typically have a too low clustering. Hyperbolic random graphs
not only improve with respect to clustering but also outperform Chung-Lu
graphs for features related to graph distances.

– Though hyperbolic random graphs have a realistic average clustering coeffi-
cient (even for the Facebook graphs), the distribution of clustering coefficients
is surprisingly unrealistic.

– In the Barabási-Albert model, the choice of the initial graph is only irrelevant
when the average degree is small. For networks with average degree above 30,
it is easy to distinguish between graphs initialized with cliques or cycles.

Our findings are mainly based on Tables 2 and 3. They show the failure rates
of the classifier trying to separate different real-world networks from generated
graphs, given a subset of features. Note that a failure rate of 0% means the model
can be easily distinguished while 50% means that the classifier cannot do better
than guessing. To explain the resulting data, we selectively show scatter plots to
visualize the relation between two parameters. The findings in this section nicely
illustrate the strength of our approach: though the absolute numbers in Tables 2
and 3 have no significant meaning, their comparison can lead to interesting
insights, which can be used as starting points for further investigations.

Facebook Graphs. Table 2 shows the failure rates when considering only Facebook
graphs (label “socfb” in Fig. 1). Table 3 shows the same data, when excluding
them. One can see that Facebook graphs are much easier to distinguish from
the different models than other real-world networks: ignoring the high values
for the parameters directly fitted (n and m for all models, the degree distribu-
tion for Chung-Lu and the average clustering coefficient for hyperbolic random
graphs), only few parameters are well represented. Though some parameters lead
to non-zero values (PageRank, average Katz centrality, and core centrality for
Chung-Lu and average betweenness and closeness for hyperbolic random graphs),
the failure rates are much lower than for their non-Facebook counterparts. The
only exception is the average betweenness for hyperbolic random graphs.

It is interesting to note that, e.g., for the Katz centrality in Chung-Lu graphs,
the failure rate drops from 20% to 2%, when additionally taking the degree
distribution into account. Non-Facebook graphs behave different in this regard.



110 T. Bläsius et al.

Table 3. Failure rates when excluding the Facebook graphs. (∅: only average values
for distributions)

Feature Sets ER BA CL HRG

all (uncorrelated) 3% 4% 15% 14%
n, m 50% 50% 45% 46%
n, m, d 28% 22% 28% 35%
n, m, d′ 37% 38% 33% 43%
n, m, c ∅ 9% 9% 23% 39%
n, m, c 3% 6% 17% 29%
n, m, betw ∅ 47% 49% 38% 42%
n, m, betw 2% 11% 37% 41%
n, m, close ∅ 44% 47% 44% 46%
n, m, close 25% 26% 43% 45%
n, m, PR 11% 16% 43% 35%
n, m, Katz ∅ 27% 27% 46% 39%
n, m, Katz 9% 15% 42% 31%
n, m, deg 5% 6% 36% 20%
n, m, core ∅ 30% 46% 43% 39%
n, m, core 3% 6% 35% 19%
n, m, c, d 4% 6% 17% 28%
n, m, c, d′ 4% 5% 14% 28%
n, m, c, betw 2% 2% 17% 28%
n, m, close, c 4% 5% 17% 28%
n, m, PR, c 2% 5% 18% 27%
n, m, Katz, c 1% 4% 16% 22%
n, m, core, c 1% 2% 17% 18%
n, m, deg, c 0% 2% 17% 19%
n, m, deg, betw 4% 6% 32% 21%
n, m, deg, close 6% 6% 37% 22%
n, m, deg, PR 5% 6% 32% 22%
n, m, deg, Katz 5% 7% 37% 21%
n, m, deg, core 5% 6% 30% 17%
c, β, d ∅ 3% 5% 22% 43%
c, β, d 4% 5% 20% 33%
c, β, d′

∅ 4% 6% 22% 36%
c, β, d′ 4% 6% 20% 30%
betw, close, d 5% 6% 31% 38%
betw, close, d′ 4% 6% 28% 33%

We note that most Facebook graphs have an average degree above 40, while
it is below 30 for most other networks in our data set (see Fig. 3 (left)). Thus,
the observed discrepancy can have its origin in the special structure of Facebook
networks or in the high average degree.

Non-Facebook Graphs. The first row of Table 3 shows failure rates when using
all features, partitioned into correlated groups (see Sect. 2.2). The smallest
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Fig. 2. Left: Average local clustering coefficients of real-world networks (not Facebook)
and their Chung-Lu counterparts. Right: Degree distribution (1st/3rd quartile) of real-
world networks (not Facebook) and their hyperbolic counterparts.

correlation within a group is 0.95. Erdős-Rényi and Barabási-Albert graphs are
easy to distinguish from real-world networks. For Chung-Lu and hyperbolic ran-
dom graphs, the classifier is wrong in about 15% of the cases.

Though the Erdős-Rényi and Barabási-Albert models perform reasonable
with respect to the diameter, average betweenness, closeness, and average core
centrality, they appear to be rather unrealistic in general. It is also interesting
to note that the failure rate for Barabási-Albert graphs drops from 46% to 6%
when considering the distribution of the core centrality instead of the average.

The main issue for Chung-Lu graphs is the clustering coefficient. For hyper-
bolic random graphs failure rates get worse when considering the degree distri-
bution. Figure 2 (left) shows that for most considered networks the clustering
coefficient of Chung-Lu graphs is too small. Figure 2 (right) shows that hyper-
bolic random graphs are not sufficiently heterogeneous: the degree of low-degree
vertices is too high, while the degree of high-degree vertices is too low.

Concerning the other parameters, Chung-Lu graphs perform better than
hyperbolic random graphs with respect to centrality measures that are closely
related to the degree distribution (PageRank, Katz centrality, and core central-
ity). On the other hand, hyperbolic random graphs perform better with respect
to measures related to distances (diameter, betweenness centrality, and closeness
centrality). This is interesting as it supports the common claim that the metric
of real-world networks is similar to the hyperbolic metric.

Distribution of the Local Clustering Coefficient. In this section, we focus on the
local clustering coefficient of hyperbolic random graphs. Table 2 shows that the
failure rate drops from 40% to 0% when considering the distribution instead of
only the average. In Fig. 3 (left) it is easy to see that the standard deviation of
the clustering coefficient is too small in hyperbolic random graphs, compared to
Facebook networks. One can, however, also see, that hyperbolic random graphs
can, in principal, achieve high variance. A possible explanation for the too small
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standard deviation compared to Facebook graphs is that a high average degree
decreases the variance in clustering for hyperbolic random graphs.

Even though the difference becomes more apparent for graphs with high-
average degree, Fig. 3 (right) shows that hyperbolic random graphs tend to have
too little variance in the clustering coefficient. We believe that this finding pro-
vides an interesting starting point for improving the model.

Fig. 3. Left: Standard deviation of clustering coefficients depending on the average
degree. Facebook graphs are marked with filled shapes. Right: Standard deviation of
clustering coefficients, depending on the average clustering coefficient. Facebook graphs
are excluded.

The Initial Graph in the Barabási-Albert Model. Recall that the Barabási-Albert
model generates graphs by starting with an initial graph and then successively
adding vertices, each connected to the same number of already existing vertices.
The size of the initial graph is typically chosen as small as possible, such that
the first added vertex has enough neighbors to connect to. The original paper by
Barabási and Albert [3] introducing the model does not specify how the initial
graph has to be chosen and it is generally assumed to be a negligible choice.

We compared two variants of the Barabási-Albert model using cliques and
cycles as initial graphs. For graphs with average degree at most 30, our classifier
was not able to distinguish the two different variants (50% failure rate when
using all features). If, however, the average degree is above 30, the two variants
indeed lead to graphs with different properties. Using (in addition to n and m)
the degree distribution led to an 18% failure rate, which dropped to only 5%
when using the distribution of clustering coefficients instead. Thus, for graphs
with average degree above 30, the initial graph makes a difference. This general
behaviour is not surprising as the initial graph becomes larger when increasing
the average degree. It is, however, surprising that this happens for such compar-
atively small average degrees.

4 Conclusions

We have seen that the question whether or not a machine learning technique can
successfully learn to distinguish between real-world and generated networks can
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lead to interesting insights. We believe that this is particularly useful for guiding
network science towards more realistic generative graph models by evaluating
how good a model mimics the real world and by revealing its strengths and
weaknesses.
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Abstract. We consider social networks of competing agents that evolve
dynamically over time. Such dynamic competition networks are directed,
where a directed edge from nodes u to v corresponds a negative social
interaction. We present a novel hypothesis that serves as a predictive tool
to uncover alliances and leaders within dynamic competition networks.
Our focus is in the present study is to validate it on competitive networks
arising from social game shows such as Survivor and Big Brother.

1 Introduction

Complex social networks are heterogeneous, evolving, and pervasive in the nat-
ural world and in technological settings. Social networks present rich sources of
complex networks, where nodes represent agents and edges correspond to some
form of social interaction. For example, in Facebook edges represent friendship,
while on Twitter they denote following. Complex, social networks commonly dis-
play power law degree distributions, the small world property (short distances
between nodes and high local clustering) and other phenomena such as den-
sification and strong community structure; see [4,8,10]. Another key principle
underlying social networks is that links exhibit homophily, that is, nodes with
similar social attributes are linked, which is related to an embedding of the nodes
in a so-called Blau space, where nodes are assigned to points in a suitable metric
space and the relative distance between pairs of nodes is a function of similar
social attributes. See [5,17].

While social interaction is usually studied from the premise of friendship,
cooperation, or other positive social interactions, there is a growing literature
on the study of negative social interaction as a generative mechanism under-
lying social networks. For example, while transitivity is a folkloric notion in
social networks, summarized in the adage that “friends of friends are more likely
friends,” structural balance theory (see [10,14] for a modern treatment) points
also to the inverse adage “enemies of enemies are more likely friends.” A com-
mon problem in this direction is the prediction of the type of edges in a social
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network [16,19,21]. Hence, competitive and negative relationships are critically
important to the study of social networks, and are often hidden drivers of link
formation.

Competitive relationships were studied recently via the Iterated Local Anti-
Transitivity (or ILAT) model; see [6,7]. In the ILAT model, each node u dupli-
cates every time-step by forming its anti-clone u′, so that u′ joins to the nodes in
the non-neighbor set of u. We may also consider real-world networks of opposing
nation states, rival gangs or other organizations, and consider alliances formed by
mutually shared adversaries. The ILAT model provably generates highly dense
graphs with low diameter and high local clustering. See [13] for a recent study
using the spatial location of cities to form an interaction network, where links
enable the flow of cultural influence, and may be used to predict the rise of con-
flicts and violence. Another example comes from market graphs, where the nodes
are stocks, and stocks are adjacent as a function of their correlation measured
by a threshold value θ ∈ (0, 1). Market graphs were considered in the case of
negatively correlated (or competitive) stocks, where stocks are adjacent if θ < α,
for some positive α; see [3].

In the present paper, we focus on the underlying structure of social networks
of competitors that evolve dynamically over time. We view such networks as
directed, where a directed edge from nodes u to v corresponds to some kind
of negative social interaction. For example, a directed edge may represent a
vote by one player for another in a social game such as the television program
Survivor. Directed edges are added over discrete time-steps in what we call
dynamic competitive networks. Our main contribution in this empirical work
is a hypothesis that serves as a predictive tool to uncover alliances and leaders
within dynamic competition networks. While the hypothesis may hold more
broadly, our focus here is on competitive networks arising from social game
shows. We validate the hypothesis using voting record data of the social game
shows Survivor and Big Brother.

We organize the discussion in this paper as follows. In Sect. 2, we formally
introduce dynamic competition networks, and using graph theoretic tools, give
a precise formulation of the Dynamic Competition Hypothesis. In Sect. 3 and
the Appendix, we present voting data from all the seasons of U.S. Survivor and
Big Brother, focusing on three seasons of Survivor in detail and one season of
Big Brother. We analyze this data using tools from network science in an effort
to validate the Dynamic Competition Hypothesis. We find that the hypothesis
accurately predicts the emergence of alliances and predicts finalists with a high
degree of precision. The final section interprets our results within the context
of real-world complex networks, and presents open problems derived from our
analysis.

We consider directed graphs with multiple directed edges throughout the
paper. For background on graph theory, the reader is directed to [20]. Additional
background on complex networks may be found in the book [4].
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2 Dynamic Competition Hypothesis

A competition network G is one where nodes represent agents, and there is
directed edge between nodes u and v in G if agent u is in competition with agent
v. The directed edge (u, v) may also represent a vote against v (depending on the
nature of G). A dynamic competition network is a competition network where
directed edges are added over discrete time-steps. For example, on the game show
Survivor (as we discuss in detail in the next section), players cast votes against
each other, and the votes correspond to directed edges in the network. As another
example, nodes may consist of nation states and edges correspond to conflicts
between them. Dynamic competition networks may have multiple edges. Note
that dynamic competition networks are also models of (sports) tournaments.
However, in dynamic competition networks, not all nodes are joined by edges as
is typically the case in tournaments. Our focus in this work will be on dynamic
competition networks arising in social networks, and we focus specifically on
networks arising from Survivor and Big Brother.

Before we describe our hypothesis about the structure of competition net-
works, we present some graph-theoretic terminology. We consider standard met-
rics in network science, such as in- and out-degree, closeness and betweenness.
Given the nature of the voting network in Survivor, we also consider the number
of common out-neighbors as a key metric.

For nodes u, v, and w, we say that w is a common out-neighbor of u and v if
(u,w) and (v, w) are directed edges. For a pair of distinct nodes u, v, we define
CON(u, v) to be the number of common out-neighbors of u and v. For a fixed
node u, define

CON(u) =
∑

v∈V (G)

CON(u, v).

We call CON(u) the CON score of u. For a set of vertices S with at least two
nodes, we define

CON(S) =
∑

u,v∈S

CON(u, v).

Note that CON(S) is a non-negative integer.
A set of nodes S with no directed edges in its induced subgraph is called

independent ; we also need a notion of being “close” to independent. For a set S of
nodes, define its edge density to be the ratio ED(S) = |E(S)|/(|S|

2

)
. Observe that

ED(S) may be greater than 1 as there may be multiple edges in the digraphs we
consider. For a non-negative real number ε say that a set S is ε-near independent
if ED(S) ≤ ε. The parameter ε measures the relative density of sets of vertices.
We say that a set is near independent if it is ε-near independent for some positive
value of ε; typically, in applications, we take ε to be small. The value of ε will often
be heuristically determined in a real-world networks by considering a ranking
of subsets by their edge density. Note that independent sets are trivially near
independent.
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For a strongly connected digraph G and a node v, define the closeness of u by

C(u) =

⎛

⎝
∑

v∈V (G)\{u}
d(u, v)

⎞

⎠
−1

where d(u, v) corresponds to the distance measured by one-way, directed paths
from u to v. The betweenness of v is defined by

B(v) =
∑

x,y∈V (G)\{v}
σxy(v)/σxy,

where σxy(v) is the number of shortest one-way, directed paths between x and
y that go through v, and σxy is the number of shortest one-way, oriented paths
between x and y. Both closeness and betweenness are well-studied centrality
measures for complex networks [9]. For example, centrality of sports networks is
often used to rank teams [15].

2.1 The Hypothesis

Alliances are defined as groups of agents who pool capital towards mutual goals.
In the context of social game shows such as Survivor, alliances are groups of
players who work together to vote off players outside the alliance. Members of
an alliance are typically less likely to vote for each other, and this is the case
in strong alliances. Leaders are defined as members with high standing in the
network, and edges emanating from leaders may influence edge creation in other
agents. In Survivor, leaders may be the winner of a given season, but may also
be non-winning players with a strong influence on the outcomes of the game.
One of our main goals is to apply network science to help determine alliances
and leaders in dynamic competitive networks arising in social networks.

The Dynamic Competition Hypothesis (or DCH ) asserts that dynamic compe-
tition networks arising from a social networks satisfy the following four properties.

1. Alliances are near independent sets.
2. Strong alliances have low edge density.
3. Members of an alliance with high CON scores are more likely leaders.
4. Leaders exhibit high closeness, high CON scores, low in-degree, and high

out-degree.

The DCH provides a quantitative framework for the structure of dynamic
competition networks arising from social networks; no other data is required
other than the presence of competitive relationships. See Fig. 1 for a visualization
of the DCH.

Note how items (1), (2), and (3) mutually reinforce each other. Once we
have discovered an alliance as per (1), we can measure its strength relative to
other alliances via (2), and use (3) as tool to isolate leaders within alliances.
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Fig. 1. A heat map representation of dynamic competition networks according to the
DCH, where nodes closer to the center have higher closeness and CON scores. Larger
nodes have higher CON scores, lower in-degree, and higher out-degree. The subsets
correspond to alliances.

Item (4) is independent of alliances; in particular, while we expect leaders to be
in alliances (that is, have prominent local influence), leaders are determined via
global metrics of the network.

Interestingly, closeness rather than betweenness appears be a good centrality
measure in the dynamic competition networks studied in the next section. This
may be explained by the low in-degree of nodes corresponding to leaders.

3 Data and Methods

We extracted data from the American television series Survivor over all of its
seasons, and for further validation, from all seasons of Big Brother. Before we
present the data in detail for a subset of seasons, we give some background
on both series. Survivor and Big Brother are examples of social games, where
social interactions help determine the gameplay and winner. We focus on the
US version of both shows, but they play in several countries, accounting for over
one hundred seasons in total.

In Survivor, strangers called survivors are placed in a location and forced to
provide shelter and food for themselves, with limited support from the outside
world. Survivors are split into two or more tribes which cohabitate and work
together. Tribes compete for immunity and the losing tribe goes to tribal council
where one of their members is voted off. At some point during the season, tribes
merge and the remaining survivors compete for individual immunity. Survivors
voted off may be part of the jury. When there are a small number of remaining
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survivors who are finalists (typically two or three), the jury votes in favor of one
of them to become the Sole Survivor who receives a cash prize of one million
dollars.

In Big Brother, a group of strangers called HouseGuests cohabitate in a
custom set under video surveillance. Each week, the HouseGuests compete for
the title of Head of Household, who must nominate two HouseGuests for eviction.
The Houseguests vote to evict one of them, and the one with the most votes is
evicted. The winner received a cash prize of half a million dollars.

In both Survivor and Big Brother, several twists have been introduced during
the seasons. For example, in Survivor, these include the introduction of a hidden
immunity idol which would protect a survivor from being voted out if used during
tribal council. As a disclaimer, our analysis is insensitive to these twists.

Data was taken from Survivor Wiki [18] and Big Brother Wiki [2], which con-
tains information on contestants, their voting records and tribes, and catalogues
of alliances. For computing centrality metrics and for the dynamic competition
graph visualization, we used the open source Gephi software [1].

We present below visualizations of the dynamic competition networks for
Survivor: Borneo, China, Game Changes, and HHH; we also include data from
Season 12 of Big Brother. Note that the data is taken after all votes had been
cast against other players, and tables are provided with a summary of relevant
network statistics. The order of the tables is given by their elimination order
from the game, so the first entry is the winner and the others are ordered by
when they were eliminated. In all of the five seasons described below, the data
conforms to the predictions of the DCH with regards to leaders (that is, winners
in this context). It also clearly delineates alliances, as we discuss below.

3.1 Borneo

We consider the first season of Survivor set in Borneo. The abbreviations ID,
OD, C, CON, and B stand for in-degree, out-degree, closeness, CON-score, and
betweenness, respectively.

Note that Richard, the Sole Survivor of the season, has one of the highest
closeness and CON scores. Rudy and Susan have higher scores, however. We note
that Kelly won individual immunity several times near the end of the game, and
her voting out Rudy and Susan was a deciding factor in Richard’s win. We also
note that comparing betweenness of players is inconclusive as a predictor of
leaders. For example, we computed Richard’s betweenness as 28.7, Kelly’s as 0,
and Rudy’s as 36.5. One explanation of this is that leaders tend to have lower
in-degree, which may reduce the number of paths traversing through them. As
such, we do not include betweenness scores for other seasons.
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Name Tribe ID OD C CON B

Richard Tagi 6 10 0.737 42 28.7

Kelly Tagi 0 12 0.682 34 0

Rudy Tagi 8 11 0.778 45 36.483

Susan Tagi 7 10 0.778 44 16.467

Sean Tagi 9 9 0.7 38 17.917

Colleen Pagong 7 8 0.636 29 33.067

Gervaise Pagong 6 7 0.636 31 8.583

Jenna Pagong 11 6 0.583 27 27.85

Greg Pagong 6 5 0.412 15 4.833

Gretchen Pagong 4 4 0.56 17 7.233

Joel Pagong 4 3 0.412 17 1

Dirk Tagi 4 3 0.5 12 1.317

Ramona Pagong 6 2 0.412 10 17.733

Stacey Tagi 6 2 0.452 4 1.733

B.B Pagong 6 1 0.298 5 0.333

Sonja Tagi 4 1 0.452 4 0.75

3.2 China

We next turn to Survivor: China, which was chosen because it represents a
sample after the game was better known, and contestants better understood
which strategies to employ in the game.
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Name Tribe ID OD C CON

Todd Fei Long 5 9 0.765 49

Courtney Fei Long 0 9 0.667 39

Amanda Fei Long 0 9 0.737 49

Denise Fei Long 3 9 0.722 40

Peih-Gee Zhan Hu 8 10 0.722 41

Erik Zhan Hu 5 9 0.722 41

James Fei Long 9 6 0.591 31

Frosti Zhan Hu 7 7 0.65 39

Jean-Robert Fei Long 12 4 0.5 23

Jaime Zhan Hu 7 5 0.481 26

Sherea Zhan Hu 6 4 0.448 24

Aaron Fei Long 3 2 0.406 12

Dave Zhan Hu 6 3 0.382 11

Leslie Fei Long 6 1 0.342 9

Ashley Zhan Hu 8 2 0.464 10

Chicken Zhan Hu 5 1 0.333 6

In this season, it is evident that Todd, the Sole Survivor, is the clear front-
runner for Sole Survivor based on his high closeness and CON scores. Courtney
and Amanda emerge also as leaders based on their scores.
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3.3 Game Changers

We next analyzed Survivor: Game Changers, as the second-to-last season of the
show.

Name Tribe ID OD C CON

Sarah Nuku 3 13 0.692 64

Brad Nuku 2 12 0.643 49

Troyzan Mana 2 12 0.643 55

Tai Nuku 12 13 0.72 56

Aubry Mana 9 13 0.72 61

Cirie Nuku 0 8 0.613 45

Michaela Mana 11 11 0.643 51

Andrea Nuku 14 8 0.581 39

Sierra Nuku 15 7 0.581 34

Zeke Nuku 11 6 0.6 39

Debbie Nuku 6 7 0.545 32

Ozzy Nuku 7 4 0.5 22

Hali Mana 8 5 0.474 28

Jeff Mana 6 5 0.529 33

Sandra Mana 5 5 0.581 34

JT Nuku 3 2 0.45 18

Malcom Mana 5 3 0.439 24

Caleb Mana 5 3 0.4 21

Tony Mana 7 2 0.439 15

Ciera Mana 9 1 0.4 8

In this season, the Sole Survivor Sarah has high closeness and CON scores,
but Tai and Aubry have higher closeness scores. Note, however, both players
have high in-degrees which likely disadvantaged them.
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3.4 HHH

We now turn to the most recent season of Survivor, Survivor: Heroes vs Healers
vs Hustlers (or HHH, for short). The following table contains network data for
Survivor: HHH.

Name Tribe ID OD C CON

Ben Levu 11 11 0.63 41

Chrissy Levu 7 13 0.68 44

Ryan Yawa 2 14 0.708 47

Devon Yawa 2 11 0.708 55

Mike Soko 9 9 0.63 37

Ashley Levu 8 10 0.607 46

Lauren Yawa 3 7 0.63 39

Joe Soko 12 6 0.607 26

JP Levu 6 8 0.586 25

Cole Soko 7 4 0.531 26

Desi Soko 11 3 0.515 9

Jessica Soko 7 1 0.415 6

Ali Yawa 3 4 0.5 19

Roark Soko 3 1 0.415 6

Alan Levu 2 2 0.415 11

Patrick Yawa 5 2 0.405 6

Simone Yawa 5 1 0.293 4

Katrina Levu 5 1 0.386 5
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The finalists of this season were Ben, Chrissy and Ryan. Ryan and Devon had
the highest overall closeness and highest overall CON scores, followed by Chrissy.
However, Ben, the Sole Survivor, had lower scores than the other finalists; he
secured his place in the final three by playing the hidden immunity idol three
times.

3.5 Big Brother

Given the success of the DCH in Survivor, we turned to data from another social
game Big Brother, focusing on Season 12.

Name ID OD C CON

Hayden 3 16 0.923 44

Lane 3 10 0.857 46

Enzo 4 9 0.8 48

Britney 4 10 0.8 43

Regan 5 8 0.706 49

Brendon 7 9 0.706 40

Matt 9 7 0.632 35

Kathy 7 4 0.6 20

Rachel 8 6 0.667 24

Kristen 7 3 1 25

Andrew 9 2 1 17

Monet 8 1 1 10

Annie 11 0 0 0
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Hayden, the winner of the season, is the clear frontrunner with regards to
closeness and CON scores, with HouseGuests Lane and Enzo rounding out the
top three.

3.6 CON Scores

The CON score for each player in the full set of Survivor and Big Brother seasons
is listed in the Appendix; there are 35 seasons in Survivor and 20 for Big Brother.
In this section, we summarize that data. We are interested in knowing if a high
CON score correlates with being the winner. To test this, we check whether the
winner of a particular season has a CON score within the top three or five CON
scores out of every player from that season. As displayed in the table below,
68.6% of winners in Survivor had a top three CON score, and 94.3% of them
have a top five CON score.

We compare the CON score to two other well-known rankings: PageRank and
Jaccard Similarity scores. Jaccard Similarity is a type of normalized CON score,
and both of these methods are commonly used in ranking; see, for example,
[11,12]. Note that we computed PageRank scores on the reverse of the network
discussed in Sect. 2. The table shows that the CON scores are the best predictor
for winners in Survivor, while PageRank is a slightly better predictor in Big
Brother. Furthermore, we calculate the probability of the winner appearing in
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a random set of three or five, under the random set column. This probability
varies depending on the size of the network (that is, the number of players). We
see, for example, that the probability of a winner being in a random set of three
in Survivor is between 15% and 18.8%. In all cases, these probabilities are lower
than the CON scores, which suggests that the result of the winner having one
of the largest CON scores is not due to random chance.

CON Page rank Jacard similarity Random set

Survivor Top 3 68.6 54.3 54.3 15.0–18.8

Top 5 94.3 88.6 80.0 25.0–31.3

Big Brother Top 3 60.0 80.0 25.0 17.6–30.0

Top 5 70.0 100 55.0 29.4–50.0

3.7 Alliances

In addition to predicting winners, we analyzed alliances in the various seasons
and computed their edge density. All the alliances conform to the DCH as they
form near independent sets. Some alliances have relatively high edge density, as
we note in the Tagi alliance in Borneo (which includes the sole survivor Richard).
Nevertheless, narrowing down the alliances to subsets of finalists appears to
reduce the edge density. For example, in the Tagi alliance, the edge density of
the subsets {Kelly,Richard} is 1/2 and {Richard,Rudy} is 0. Analogously, in the
Fie-Long alliance in Survivor: China, the subset {Amanda, Courtney, Todd} has
edge density 0.

Season Winner Finalists Alliances ED

Borneo Richard Kelly Barbecue: Colleen, Jenna, Gervase 1.667

Tagi: Richard, Rudy, Susan, Kelly 1.5

China Todd Courtney Fei Long: Todd, Courtney, Amanda, Aaron,

Denise, James, Frosti

0.667

Amanda Zhan Hu: Peih-Gee, Erik, Jaime 0.0

Game Changers Sarah Brad Power Six : Sarah, Brad, Troyzan, Sierra,

Debbie, Tai

0.933

Troyzan Tavua: Aubry, Cirie, Michaela, Ozzy, Andrea,

Zeke, Sarah

1.238

HHH Ben Chrissy Healers: Joe, Desi, Jessica, Cole, Mike 0.6

Ryan The Round Table: Chrissy, Ryan, Devon, JP,

Ben, Ashley, Lauren

0.905

Final Four : Ashley, Lauren, Ben, Devon 1.333

Big Brother 12 Hayden Lane The Brigade: Enzo, Hayden, Lane, Matt 0.5

We list the edge densities for each alliance in the Appendix, along with
the edge density for the entire graph. There may be some use in exploring to
what extent alliances have smaller edge density than that of the entire graph.
As already discussed, the edge density of an alliance can become much lower
when removing players who play against their alliance. That being said, 60% of
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the Survivor seasons have an alliance with a lower edge density than the edge
density for the total graph, and 95% of Big Brother seasons have an alliance with
a lower edge density than the edge density for the total graph. More exploration
is needed to understand the relationship between the edge densities of alliances
and leaders.

4 Discussion and Future Work

We introduced the notion of dynamic competition networks and studied
their properties. The Dynamic Competition Hypothesis (DCH) was presented,
which resolves dynamic competition networks arising from social networks into
alliances, detects leaders, and measures the relative strength of alliances. The
DCH was tested with voting data from all seasons of the U.S. television social
game shows Survivor and Big Brother. In all seasons and as predicted by the
DCH, alliances correspond to near independent sets, CON scores accurately
determine leaders of alliances, and leaders are detected via their CON scores
and closeness.

In future work, we will mine data from all international seasons of Survivor
and Big Brother (our current analysis uses only seasons from a single country).
We will also look for other data sets to further validate the DCH more broadly,
within the lens of structural balance theory and social network analysis. A weak-
ness of our current theory is that longer lasting members of a season accumulate
more influence simply due to their survival. In particular, players in Survivor
and Big Brother that survive longer in the game have a greater opportunity to
improve their CON-scores and other metrics. In future work, we will therefore,
evaluate data at earlier stages of the formation of the network. Other areas where
we can explore the DCH are food webs, signed networks (by extracting the sub-
graph with negative signs), and geo-political networks. It would be interesting
to invert the DCH to determine low ranked members of dynamic competition
networks. Further, it would be useful to develop a mathematical model predict-
ing the evolution of dynamic competition networks, which provably simulates
properties predicted by the DCH.

A Appendix

Complete data from all U.S. Seasons of Survivor and Big Brother may be found
in the document:

http://www.math.ryerson.ca/∼abonato/papers/SurvivorBB Data BEGM.

We include this data below for convenience. The data from five of these
seasons (Survivor: Borneo, China, Game Changers, HHH, and Big Brother 12)
is discussed in detail in the body of the paper. We provide the remaining data
to further support the DCH and for transparency.

http://www.math.ryerson.ca/~abonato/papers/SurvivorBB_Data_BEGM
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All data was gathered from the Survivor and Big Brother Wiki pages [2,18].
Within the wiki, each season has a dedicated page (for example http://survivor.
wikia.com/wiki/Survivor: Millennials vs. Gen X) with a table of voting history,
which was used to construct the directed networks. Each player of the game is
a vertex of the network, with a directed edge added from vertex A to vertex B
if player A voted against player B. If player A voted against player B n times,
then the edge has a weight of n. We scraped voting history tables using simple
python code, and further did the analysis in python.

AppendixA.1 gives a table for each season with the following metrics, which
are discussed thoroughly in Sect. 2:

1. In-degree;
2. Out-degree;
3. Closeness;
4. CON Score.

Contestants are listed in the order which they were voted out, where the player
on top of the table remained in the game the longest.

AppendixA.2 gives the edge density for every Alliance in each season, as well
as the edge density of the full graph for comparison. Information on edge density
can be found in Sect. 2.

http://survivor.wikia.com/wiki/Survivor:_Millennials_vs._Gen_X
http://survivor.wikia.com/wiki/Survivor:_Millennials_vs._Gen_X
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A.1 Complete Network Metrics

Africa
Name ID OD C CON
Ethan 0 10 0.75 51
Kim J. 1 11 0.824 57
Lex 10 11 0.737 47
Tom 9 10 0.7 43
Teresa 4 10 0.636 35
Kim P. 4 10 0.667 39
Frank 9 8 0.636 31
Brandon 6 8 0.636 32
Kelly 5 6 0.56 30
Clarence 12 4 0.538 20
Lindsey 12 3 0.5 12
Silas 8 4 0.452 13
Linda 4 3 0.378 11
Carl 7 1 0.341 6
Jessie 5 2 0.368 14
Diane 6 1 0.359 9

All-Stars
Name ID OD C CON
Amber 6 8 0.682 36
Rob M. 1 8 0.682 34
Jenna L. 4 8 0.682 32
Rupert 4 8 0.682 32
Tom 4 6 0.6 28
Shii Ann 5 8 0.625 33
Alicia 7 4 0.536 18
Kathy 6 5 0.556 18
Lex 7 5 0.577 21
Jerri 7 6 0.6 21
Ethan 6 5 0.536 15
Colby 4 2 0.395 10
Susan 0 1 0.276 4
Richard 6 1 0.288 3
Rob C. 5 1 0.357 6
Jenna M. 0 0 0 0
Rudy 3 2 0.375 8
Tina 4 1 0.417 3

Blood vs. Water
Name ID OD C CON
Tyson 2 12 0.63 49
Monica 6 13 0.708 67
Gervase 6 12 0.654 54
Tina 10 9 0.654 54
Ciera 14 14 0.739 62
Hayden 8 13 0.739 75
Katie 4 15 0.68 64
Caleb 4 11 0.68 74
Laura M. 19 6 0.567 38
Vytas 10 10 0.68 58
Aras 7 3 0.436 16
Laura B. 11 4 0.5 34
Kat 5 3 0.486 27
Brad 7 5 0.531 36
John 8 4 0.515 31
Colton 0 1 0.281 5
Rachel 5 3 0.5 21
Marissa 10 2 0.436 7
Rupert 0 1 0.375 13
Candice 6 1 0.37 13

Borneo
Name ID OD C CON
Richard 6 10 0.737 42
Kelly 0 12 0.682 34
Rudy 8 11 0.778 45
Susan 7 10 0.778 44
Sean 9 9 0.7 38
Colleen 7 8 0.636 29
Gervase 6 7 0.636 31
Jenna 11 6 0.583 27
Greg 6 5 0.412 15
Gretchen 4 4 0.56 17
Joel 4 3 0.412 17
Dirk 4 3 0.5 12
Ramona 6 2 0.412 10
Stacey 6 2 0.452 4
B.B. 6 1 0.298 5
Sonja 4 1 0.452 4

Cagayan
Name ID OD C CON
Tony 5 9 0.696 44
Woo 4 10 0.696 42
Kass 2 12 0.696 41
Spencer 8 12 0.667 34
Trish 5 8 0.64 29
Tasha 4 10 0.696 36
Jefra 9 8 0.552 28
Jeremiah 9 7 0.571 32
LJ 8 6 0.516 23
Morgan 8 4 0.471 15
Sarah 6 2 0.381 12
Alexis 8 2 0.381 8
Lindsey 0 1 0.354 6
Cliff 4 1 0.348 6
J’Tia 7 3 0.444 11
Brice 5 1 0.281 6
Garrett 3 2 0.32 7
David 4 1 0.314 4

Cambodia
Name ID OD C CON
Jeremy 3 12 0.643 45
Spencer 11 15 0.72 61
Tasha 8 13 0.692 53
Kelley 17 13 0.692 46
Keith 4 10 0.6 31
Kimmi 5 10 0.621 43
Abi-Maria 14 12 0.72 48
Joe 8 5 0.545 29
Stephen 9 7 0.621 43
Ciera 10 5 0.514 16
Kelly 8 7 0.563 35
Andrew 4 5 0.563 26
Kass 6 2 0.462 8
Woo 5 5 0.514 24
Terry 0 2 0.487 17
Monica 3 1 0.383 6
Jeff 4 4 0.383 16
Peih-Gee 4 3 0.462 19
Shirin 5 2 0.439 12
Vytas 6 1 0.429 10
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Caramoan
Name ID OD C CON
Cochran 0 14 0.655 52
Dawn 2 14 0.692 57
Sherri 6 13 0.692 59
Eddie 16 12 0.667 37
Erik 2 10 0.621 47
Brenda 5 10 0.621 48
Andrea 13 8 0.643 49
Reynold 9 9 0.581 25
Malcolm 11 6 0.581 33
Phillip 5 8 0.563 40
Michael 10 8 0.6 39
Corinne 7 6 0.545 24
Julia 9 6 0.545 22
Matt 4 5 0.529 27
Brandon 8 2 0.439 12
Laura 6 4 0.409 14
Shamar 8 2 0.429 13
Hope 8 2 0.316 3
Allie 6 1 0.305 3
Francesca 6 1 0.4 8

China
Name ID OD C CON
Todd 5 9 0.765 49
Courtney 0 9 0.667 39
Amanda 0 9 0.737 49
Denise 3 9 0.722 40
Peih-Gee 8 10 0.722 41
Erik 5 9 0.722 41
James 9 6 0.591 31
Frosti 7 7 0.65 39
Jean-Robert 12 4 0.5 23
Jaime 7 5 0.481 26
Sherea 6 4 0.448 24
Aaron 3 2 0.406 12
Dave 6 3 0.382 11
Leslie 6 1 0.342 9
Ashley 8 2 0.464 10
Chicken 5 1 0.333 6

Cook Islands
Name ID OD C CON
Yul 5 9 0.633 46
Ozzy 1 10 0.633 42
Becky 5 9 0.633 46
Sundra 6 10 0.594 41
Adam 5 11 0.633 52
Parvati 4 10 0.633 52
Jonathan 15 9 0.613 43
Candice 6 7 0.543 40
Nate 5 7 0.543 37
Jenny 6 6 0.5 39
Rebecca 6 6 0.528 36
Brad 7 4 0.475 29
Jessica 6 3 0.432 15
Cristina 5 4 0.422 21
Cao Boi 6 2 0.422 9
Stephannie 9 3 0.38 12
J.P. 7 2 0.352 10
Cecilia 5 2 0.432 5
Billy 4 1 0.396 0
Sekou 3 1 0.38 5

Fiji
Name ID OD C CON
Earl 1 9 0.654 36
Cassandra 5 7 0.586 28
Dreamz 2 11 0.654 42
Yau-Man 9 10 0.68 39
Boo 5 6 0.567 21
Stacy 4 6 0.567 26
Alex 9 8 0.63 37
Mookie 6 10 0.654 38
Edgardo 5 5 0.531 25
Michelle 3 5 0.486 24
Lisi 7 3 0.472 10
Rocky 5 6 0.531 26
Anthony 10 5 0.425 18
Rita 6 4 0.472 17
Liliana 6 1 0.386 4
Gary 0 0 0 0
Sylvia 6 2 0.37 12
Erica 6 2 0.436 10
Jessica 6 1 0.327 5

Gabon
Name ID OD C CON
Bob 2 9 0.615 31
Susie 7 10 0.727 44
Sugar 0 10 0.708 49
Matty 7 12 0.762 54
Ken 7 12 0.762 52
Crystal 11 11 0.762 50
Corinne 4 5 0.593 26
Randy 5 5 0.552 27
Charlie 5 3 0.516 17
Marcus 3 3 0.552 16
Dan 4 3 0.457 19
Ace 5 5 0.5 25
Kelly 8 4 0.5 21
G.C. 6 4 0.421 24
Jacquie 5 2 0.356 12
Paloma 7 1 0.34 4
Gillian 8 2 0.457 12
Michelle 8 1 0.32 7

Game Changers
Name ID OD C CON
Sarah 3 13 0.692 64
Brad 2 12 0.643 49
Troyzan 2 12 0.643 55
Tai 12 13 0.72 56
Aubry 9 13 0.72 61
Cirie 0 8 0.613 45
Michaela 11 11 0.643 51
Andrea 14 8 0.581 39
Sierra 15 7 0.581 34
Zeke 11 6 0.6 39
Debbie 6 7 0.545 32
Ozzy 7 4 0.5 22
Hali 8 5 0.474 28
Jeff 6 5 0.529 33
Sandra 5 5 0.581 34
J.T. 3 2 0.45 18
Malcolm 5 3 0.439 24
Caleb 5 3 0.4 21
Tony 7 2 0.439 15
Ciera 9 1 0.4 8
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Guatemala
Name ID OD C CON
Danni 1 12 0.739 50
Stephenie 2 11 0.739 64
Rafe 2 11 0.739 64
Lydia 10 11 0.739 56
Cindy 6 9 0.654 47
Judd 5 8 0.607 43
Gary 8 9 0.567 36
Jamie 10 7 0.586 41
Bobby Jon 8 6 0.567 27
Brandon 6 5 0.447 22
Amy 4 5 0.447 29
Brian 7 4 0.436 24
Margaret 7 3 0.472 19
Blake 5 2 0.34 12
Brooke 5 2 0.459 15
Brianna 7 2 0.447 15
Morgan 8 1 0.436 8
Jim 8 1 0.327 6

Heroes vs. Healers vs. Hustlers
Name ID OD C CON
Ben 11 11 0.63 41
Chrissy 7 13 0.68 44
Ryan 2 14 0.708 47
Devon 2 11 0.708 55
Mike 9 9 0.63 37
Ashley 8 10 0.607 46
Lauren 3 7 0.63 39
Joe 12 6 0.607 26
JP 6 8 0.586 25
Cole 7 4 0.531 26
Desi 11 3 0.515 9
Jessica 7 1 0.415 6
Ali 3 4 0.5 19
Roark 3 1 0.415 6
Alan 2 2 0.415 11
Patrick 5 2 0.405 6
Simone 5 1 0.293 4
Katrina 5 1 0.386 5

Heroes vs. Villains
Name ID OD C CON
Sandra 3 12 0.679 53
Parvati 8 12 0.679 53
Russell 5 12 0.704 57
Jerri 9 12 0.679 53
Colby 7 11 0.655 46
Rupert 10 10 0.679 50
Danielle 4 9 0.633 40
Candice 5 8 0.559 45
Amanda 10 7 0.559 37
J.T. 5 6 0.528 33
Courtney 9 5 0.487 27
Coach 4 4 0.442 19
Rob 5 3 0.432 10
James 7 5 0.452 23
Tyson 3 2 0.422 14
Tom 8 4 0.413 24
Cirie 3 3 0.311 18
Randy 9 1 0.306 4
Stephenie 6 2 0.373 17
Sugar 9 1 0.365 9

KR
Name ID OD C CON
Michele 2 6 0.625 25
Aubry 8 9 0.652 35
Tai 4 9 0.625 26
Cydney 5 10 0.682 38
Joe 1 9 0.6 25
Jason 5 9 0.652 20
Julia 7 5 0.5 16
Scot 7 9 0.517 25
Debbie 5 4 0.405 12
Nick 6 1 0.294 4
Neal 0 2 0.348 7
Peter 7 3 0.455 14
Anna 5 1 0.319 5
Alecia 8 3 0.375 11
Caleb 0 0 0 0
Liz 5 1 0.417 5
Jennifer 3 3 0.283 8
Darnell 7 1 0.278 4

Marquesas
Name ID OD C CON
Vecepia 2 11 0.778 50
Neleh 4 10 0.737 45
Kathy 5 9 0.7 37
Paschal 0 9 0.714 45
Sean 7 10 0.737 43
Robert 6 6 0.56 25
Tammy 5 5 0.56 25
Zoe 8 4 0.452 24
John 8 3 0.5 18
Rob 8 5 0.438 23
Gina 3 5 0.5 14
Gabriel 7 1 0.311 7
Sarah 11 4 0.519 14
Hunter 4 3 0.359 11
Patricia 5 2 0.359 11
Peter 5 1 0.269 4

Micronesia
Name ID OD C CON
Parvati 4 8 0.654 41
Amanda 4 13 0.773 58
Cirie 3 12 0.773 65
Natalie 3 8 0.654 37
Erik 7 11 0.68 45
Alexis 2 6 0.607 32
James 3 5 0.472 28
Jason 8 5 0.486 17
Ozzy 9 8 0.586 47
Eliza 8 3 0.425 20
Ami 4 6 0.567 35
Tracy 7 5 0.515 28
Kathy 0 2 0.286 10
Chet 12 4 0.459 21
Jonathan 0 2 0.419 11
Joel 6 3 0.37 19
Mikey B. 6 2 0.321 8
Yau-Man 6 2 0.415 11
Mary 6 1 0.347 6
Jon 9 1 0.378 7
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Millennials vs. Gen X
Name ID OD C CON
Adam 6 13 0.655 52
Hannah 13 12 0.655 51
Ken 3 15 0.76 69
David 10 15 0.76 67
Bret 5 14 0.655 51
Jay 10 11 0.633 36
Sunday 5 12 0.655 52
Will 6 9 0.633 41
Zeke 14 7 0.576 37
Jessica 9 9 0.559 44
Chris 7 7 0.514 32
Taylor 7 4 0.487 12
Michelle 10 3 0.463 18
Michaela 4 2 0.432 9
Figgy 6 2 0.463 8
CeCe 11 4 0.5 21
Lucy 2 3 0.432 18
Paul 6 2 0.373 12
Mari 7 1 0.322 4
Rachel 5 1 0.413 4

Nicaragua
Name ID OD C CON
Fabio 2 11 0.621 49
Chase 1 10 0.692 66
Sash 2 11 0.692 61
Holly 4 12 0.72 74
Dan 9 11 0.692 58
Jane 11 11 0.621 47
Benry 5 7 0.6 45
Kelly S. 0 7 0.5 34
NaOnka 3 6 0.5 46
Brenda 13 7 0.462 32
Marty 15 7 0.545 46
Alina 10 4 0.474 31
Jill 3 6 0.529 41
Yve 7 5 0.5 28
Kelly B. 8 2 0.383 15
Tyrone 6 4 0.419 21
Jimmy T. 5 3 0.439 22
Jimmy J. 8 2 0.429 15
Shannon 7 1 0.321 11
Wendy 9 1 0.34 6

One World
Name ID OD C CON
Kim 3 10 0.667 49
Sabrina 2 10 0.667 50
Chelsea 4 10 0.667 49
Christina 9 11 0.593 32
Alicia 5 10 0.64 38
Tarzan 12 10 0.696 47
Kat 7 7 0.571 29
Troyzan 6 7 0.615 35
Leif 5 7 0.593 28
Jay 5 5 0.552 32
Michael 9 4 0.485 21
Jonas 10 4 0.432 23
Colton 1 3 0.4 16
Monica 5 2 0.457 11
Bill 8 2 0.4 10
Matt 7 1 0.291 0
Nina 6 1 0.372 6
Kourtney 0 0 0 0

Palau
Name ID OD C CON
Tom 0 8 0.607 30
Katie 1 7 0.615 29
Ian 5 6 0.615 29
Jenn 3 6 0.593 27
Caryn 7 5 0.593 25
Gregg 4 4 0.552 25
Stephenie 8 11 0.667 40
Janu 1 2 0.485 14
Coby 7 2 0.372 7
Bobby Jon 2 8 0.372 19
Ibrehem 4 8 0.457 23
James 7 7 0.372 20
Angie 8 5 0.308 19
Willard 8 1 0.39 0
Kim 8 4 0.296 18
Jeff 5 3 0.291 14
Ashlee 6 2 0.239 9
Jolanda 6 1 0.239 4
Wanda 0 0 0 0
Jonathan 0 0 0 0

Panama
Name ID OD C CON
Aras 9 8 0.682 35
Danielle 4 9 0.714 36
Terry 1 9 0.625 23
Cirie 3 9 0.682 34
Shane 9 7 0.625 28
Courtney 4 6 0.577 28
Bruce 2 4 0.469 21
Sally 8 5 0.484 15
Austin 7 5 0.536 21
Nick 6 4 0.484 17
Dan 3 3 0.385 17
Bobby 3 2 0.417 5
Ruth-Marie 6 3 0.395 13
Misty 5 1 0.288 4
Melinda 5 2 0.429 9
Tina 3 1 0.417 2

Pearl Islands
Name ID OD C CON
Sandra 0 11 0.75 53
Lillian 10 11 0.778 50
Jon 7 11 0.778 54
Darrah 6 10 0.7 49
Burton 10 7 0.636 34
Christa 7 9 0.737 47
Tijuana 5 7 0.667 44
Rupert 7 6 0.583 28
Ryan O. 8 5 0.609 30
Andrew 6 4 0.56 25
Osten 2 3 0.5 19
Shawn 5 4 0.519 21
Trish 4 3 0.483 17
Michelle 6 2 0.467 9
Ryan S. 6 2 0.35 7
Nicole 7 1 0.264 5
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Philippines
Name ID OD C CON
Denise 6 14 0.875 50
Lisa 0 8 0.6 25
Michael 0 8 0.625 29
Malcolm 6 12 0.778 42
Abi-Maria 9 7 0.609 24
Carter 5 8 0.667 28
Jonathan 14 7 0.636 25
Pete 9 4 0.583 19
Artis 5 3 0.452 14
Jeff 5 4 0.452 15
R.C. 4 1 0.378 5
Katie 4 2 0.412 11
Dawson 5 1 0.483 4
Dana 0 0 0 0
Russell 4 4 0.5 15
Angie 4 3 0.359 10
Roxanne 4 2 0.275 7
Zane 5 1 0.341 3

Redemption Island
Name ID OD C CON
Rob 7 13 0.739 66
Phillip 17 13 0.739 58
Natalie 1 13 0.708 55
Ashley 3 13 0.708 64
Andrea 9 11 0.654 56
Grant 10 11 0.708 56
Steve 9 11 0.63 41
Ralph 10 9 0.63 44
Julie 6 9 0.63 41
David 8 8 0.607 37
Mike 6 7 0.586 37
Matthew 10 3 0.531 22
Sarita 6 5 0.447 21
Stephanie 8 3 0.436 20
Krista 6 3 0.425 16
Kristina 9 3 0.436 11
Russell 8 1 0.395 8
Francesca 4 1 0.436 11

Samoa
Name ID OD C CON
Natalie 8 14 0.85 76
Russell H. 9 15 0.85 76
Mick 4 15 0.81 70
Brett 3 11 0.68 52
Jaison 7 14 0.81 71
Shambo 6 9 0.607 31
Monica 7 8 0.607 38
Dave 8 7 0.607 37
John 7 6 0.607 34
Laura 10 4 0.548 26
Kelly 4 3 0.515 22
Erik 10 2 0.486 13
Liz 5 5 0.515 31
Russell S. 0 1 0.29 7
Ashley 9 4 0.37 22
Yasmin 8 1 0.386 5
Ben 7 3 0.283 19
Betsy 7 2 0.279 13
Mike 0 1 0.225 6
Marisa 7 1 0.274 7

San Juan del Sur
Name ID OD C CON
Natalie 0 10 0.63 40
Jaclyn 6 14 0.696 44
Missy 3 12 0.667 34
Keith 16 11 0.667 34
Baylor 17 13 0.762 48
Jon 8 9 0.593 27
Alec 4 9 0.615 41
Reed 10 5 0.593 22
Wes 2 7 0.593 35
Jeremy 5 3 0.516 15
Josh 6 5 0.485 19
Julie 2 1 0.262 4
Dale 8 6 0.533 21
Kelley 4 2 0.471 14
Drew 5 1 0.327 3
John 5 4 0.485 19
Val 9 2 0.485 14
Nadiya 5 1 0.356 4

South Pacific
Name ID OD C CON
Sophie 5 14 0.727 74
Coach 0 14 0.773 80
Albert 1 14 0.762 78
Ozzy 17 9 0.615 34
Rick 15 12 0.762 72
Brandon 4 12 0.762 72
Edna 15 11 0.696 58
Cochran 13 11 0.667 60
Whitney 7 10 0.615 58
Dawn 9 9 0.593 43
Jim 8 8 0.593 47
Keith 12 5 0.571 39
Mikayla 4 3 0.471 19
Elyse 3 3 0.432 21
Stacey 10 2 0.457 14
Mark 6 2 0.4 14
Christine 4 1 0.432 10
Semhar 8 1 0.41 9

Thailand
Name ID OD C CON
Brian 0 9 0.714 40
Clay 3 8 0.667 33
Jan 5 8 0.7 35
Helen 5 8 0.7 33
Ted 7 7 0.667 30
Jake 7 8 0.667 29
Penny 5 7 0.609 31
Ken 6 6 0.583 26
Erin 3 5 0.438 23
Shii Ann 10 4 0.424 16
Robb 5 3 0.304 6
Stephanie 5 2 0.304 6
Ghandia 5 3 0.467 11
Jed 5 1 0.304 6
Tanya 5 2 0.452 9
John 6 1 0.326 4
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The Amazon
Name ID OD C CON
Jenna 3 11 0.75 50
Matthew 6 10 0.714 48
Rob 4 10 0.75 51
Butch 5 10 0.75 41
Heidi 3 9 0.714 45
Christy 9 8 0.625 27
Alex 6 7 0.577 32
Deena 6 6 0.517 31
Dave 8 5 0.536 21
Roger 11 4 0.5 20
Shawna 6 3 0.517 16
Jeanne 5 3 0.517 13
JoAnna 4 2 0.441 13
Daniel 7 2 0.341 8
Janet 5 1 0.349 4
Ryan 4 1 0.341 8

The Australian Outback
Name ID OD C CON
Tina 0 12 0.778 43
Colby 10 12 0.813 46
Keith 10 11 0.765 39
Elisabeth 5 10 0.65 32
Rodger 5 10 0.65 32
Amber 6 10 0.722 36
Nick 4 7 0.619 29
Jerri 12 8 0.65 30
Alicia 5 5 0.565 23
Jeff 11 3 0.542 15
Michael 0 2 0.292 11
Kimmi 6 2 0.371 12
Mitchell 6 3 0.5 16
Maralyn 5 2 0.419 14
Kel 7 1 0.406 8
Debb 7 1 0.361 6

Tocantins
Name ID OD C CON
J.T. 0 11 0.714 41
Stephen 1 10 0.778 46
Erinn 5 8 0.7 36
Taj 7 10 0.737 32
Coach 6 7 0.609 29
Debbie 6 6 0.467 25
Sierra 11 5 0.467 24
Tyson 5 4 0.368 17
Brendan 4 3 0.412 16
Joe 1 4 0.5 21
Sydney 4 4 0.5 21
Spencer 5 3 0.483 17
Sandy 6 2 0.35 9
Jerry 6 2 0.438 9
Candace 7 1 0.326 6
Carolina 7 1 0.264 5

Vanuatu
Name ID OD C CON
Chris 3 12 0.708 48
Twila 6 10 0.708 57
Scout 3 11 0.68 58
Eliza 9 11 0.654 49
Julie 4 9 0.654 44
Ami 8 9 0.654 47
Leann 8 8 0.607 45
Chad 7 7 0.63 33
Lea 7 6 0.586 30
Rory 14 6 0.548 27
John K. 5 4 0.515 23
Lisa 4 4 0.5 26
Travis 6 4 0.415 23
Brady 6 3 0.362 10
Mia 5 2 0.459 9
John P. 5 2 0.472 12
Dolly 5 1 0.386 7
Brook 5 1 0.425 2

Worlds Apart
Name ID OD C CON
Mike 4 12 0.68 45
Carolyn 10 11 0.68 44
Will 4 12 0.68 45
Rodney 5 11 0.63 39
Sierra 6 10 0.63 41
Dan 9 11 0.654 40
Tyler 5 8 0.607 36
Shirin 7 7 0.607 36
Jenn 18 7 0.607 24
Joe 8 6 0.531 26
Hali 8 5 0.548 19
Kelly 4 4 0.548 21
Joaquin 4 2 0.472 12
Max 5 2 0.436 6
Lindsey 5 1 0.405 3
Nina 4 2 0.436 14
Vince 3 1 0.386 11
So 4 1 0.415 6

Big Brother 1 (US)
Name ID OD C CON
Eddie 17 14 0.75 28
Josh 10 14 0.75 25
Curtis 18 14 0.692 22
Jamie 7 14 0.9 37
George 9 12 0.818 30
Cassandra 8 10 0.75 24
Brittany 6 8 0.75 29
Karen 7 6 0.692 24
Jordan 10 4 0.529 8
William 6 2 0.529 7

Big Brother 2 (US)
Name ID OD C CON
Will 1 5 0.625 10
Nicole 3 6 0.667 18
Monica 1 6 0.714 19
Hardy 1 5 0.476 16
Bunky 2 6 0.5 23
Krista 4 3 0.4 12
Kent 4 2 0.357 9
Mike 4 2 0.357 11
Shannon 6 2 0.455 8
Autumn 7 1 1.0 4
Sheryl 5 0 0.0 0

Big Brother 3 (US)
Name ID OD C CON
Lisa 3 8 0.714 19
Danielle 0 9 0.688 24
Jason 1 9 0.769 24
Amy 13 1 0.667 4
Marcellas 2 5 0.588 18
Roddy 4 4 0.588 13
Gerry 4 6 0.5 17
Chiara 4 4 0.556 17
Josh 8 3 0.476 8
Eric 4 3 1.0 14
Tonya 5 1 1.0 4
Lori 5 0 0.0 0

Big Brother 4 (US)
Name ID OD C CON
Jun 0 6 0.588 25
Alison 0 9 0.833 25
Robert 2 6 0.643 23
Erika 4 5 0.692 20
Jee 2 4 0.529 14
Jack 4 4 0.5 20
Justin 3 4 0.6 19
Nathan 5 3 0.8 14
Dana 6 2 1.0 13
David 5 2 1.0 13
Michelle 6 1 1.0 8
Amanda 9 0 0.0 0
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Big Brother 5 (US)
Name ID OD C CON
Drew 0 9 0.8 37
Michael 1 7 0.625 29
Diane 1 9 0.733 34
Nakomis 0 5 0.611 24
Karen 4 8 0.769 35
Marvin 10 3 0.455 18
Adria 5 6 0.667 26
Natalie 4 2 0.526 8
Will 4 5 0.625 25
Jase 6 3 0.556 15
Scott 4 3 1.0 21
Holly 7 2 1.0 15
Lori 7 1 1.0 9
Mike 10 0 0.0 0

Big Brother 6 (US)
Name ID OD C CON
Maggie 4 9 0.722 43
Ivette 2 10 0.765 39
Janelle 3 6 0.619 26
April 2 9 0.722 39
Howie 2 6 0.481 33
Beau 2 8 0.65 40
James 4 8 0.65 32
Rachel 5 6 0.481 30
Jennifer 5 5 0.565 33
Kaysar 16 1 0.394 2
Sarah 6 4 0.361 29
Eric 5 1 1.0 8
Michael 9 1 1.0 8
Ashlea 9 0 0.0 0

Big Brother 8 (US)
Name ID OD C CON
Dick 3 8 0.75 27
Daniele 0 8 0.684 38
Zach 2 8 0.632 32
Jameka 2 7 0.706 36
Eric 5 8 0.667 33
Jessica 2 6 0.6 37
Amber 4 6 0.667 30
Jen 5 5 0.571 20
Dustin 4 4 0.444 28
Kail 8 1 0.462 2
Nick 6 3 1.0 23
Mike 7 2 1.0 17
Joe 9 1 1.0 9
Carol 10 0 0.0 0

Big Brother 9 (US)
Name ID OD C CON
Adam 0 10 0.737 41
Ryan 9 7 0.65 22
Sheila 1 11 0.813 42
Sharon 6 5 0.52 23
Natalie 2 9 0.565 19
James 8 8 0.684 31
Joshuah 3 7 0.619 32
Chelsia 5 7 0.65 27
Matt 4 6 0.542 15
Allison 12 2 1.0 10
Alex 6 0 0.0 0
Amanda 6 0 0.0 0
Jen 6 2 0.371 5
Parker 6 2 0.371 5
Jacob 2 0 0.0 0

Big Brother 10 (US)
Name ID OD C CON
Dan 0 8 0.667 22
Memphis 3 9 0.846 36
Jerry 3 4 0.611 22
Keesha 1 5 0.524 24
Renny 3 6 0.647 27
Ollie 3 7 0.688 31
Michelle 3 5 0.579 28
April 4 4 0.833 28
Libra 6 4 1.0 26
Jessie 4 1 1.0 8
Angie 8 2 1.0 16
Steven 9 1 1.0 8
Brian 9 0 0.0 0

Big Brother 11 (US)
Name ID OD C CON
Jordan 2 5 0.632 11
Natalie 3 5 0.6 19
Kevin 1 9 0.8 29
Michele 1 8 0.706 31
Jeff 2 5 0.414 26
Russell 3 5 0.5 26
Lydia 6 4 0.462 21
Chima 5 3 0.353 19
Jessie 3 3 0.375 17
Ronnie 4 2 0.25 12
Casey 8 2 0.273 11
Laura 8 1 0.267 4
Braden 6 0 0.0 0

Big Brother 12 (US)
Name ID OD C CON
Hayden 1 6 0.688 27
Lane 0 7 0.462 39
Enzo 1 9 0.846 39
Britney 1 7 0.688 36
Ragan 2 8 0.647 43
Brendon 3 5 0.407 32
Matt 6 3 0.423 18
Kathy 5 4 0.524 19
Rachel 6 1 0.6 7
Kristen 6 3 1.0 22
Andrew 8 2 1.0 15
Monet 7 1 1.0 9
Annie 10 0 0.0 0

Big Brother 13 (US)
Name ID OD C CON
Rachel 2 7 0.667 17
Porsche 5 8 0.706 31
Adam 3 8 0.706 29
Jordan 3 8 0.75 30
Kalia 4 7 0.6 29
Shelly 3 6 0.571 27
Jeff 3 6 0.414 30
Daniele 3 4 0.522 20
Brendon 10 3 0.364 19
Lawon 6 4 0.5 24
Dominic 7 2 0.444 12
Cassi 9 1 0.429 4
Keith 6 0 0.0 0

Big Brother 14 (US)
Name ID OD C CON
Ian 0 8 0.688 29
Dan 0 9 0.765 30
Danielle 3 5 0.588 17
Shane 1 9 0.786 31
Jenn 4 8 0.75 26
Joe 7 5 0.692 19
Frank 7 2 0.529 7
Britney 4 4 0.6 20
Ashley 5 5 0.643 22
Mike 5 2 0.333 12
Wil 6 3 0.391 15
Janelle 8 0 0.0 0
JoJo 5 1 0.375 4
Kara 5 0 0.0 0
Jodi 1 0 0.0 0
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Big Brother 15 (US)
Name ID OD C CON
Andy 0 12 0.867 63
GinaMarie 0 10 0.737 42
Spencer 5 6 0.571 39
McCrae 1 11 0.813 56
Judd 9 8 0.75 47
Elissa 12 8 0.667 43
Amanda 3 8 0.75 46
Aaryn 5 3 0.48 20
Helen 4 6 0.667 38
Jessie 6 6 0.632 41
Candice 8 4 0.5 30
Howard 7 4 0.48 30
Kaitlin 9 3 0.48 11
Jeremy 9 2 0.414 8
Nick 7 1 1.0 6
David 7 0 0.0 0

Big Brother 16 (US)
Name ID OD C CON
Derrick 0 11 0.857 65
Cody 0 12 0.778 54
Victoria 1 10 1.0 74
Caleb 1 8 0.786 50
Frankie 2 10 0.846 62
Christine 3 10 1.0 74
Nicole 12 5 1.0 48
Donny 5 7 0.727 43
Zach 9 6 0.875 50
Hayden 5 6 0.875 54
Jocasta 6 4 0.667 37
Amber 9 4 1.0 40
Brittany 10 3 1.0 31
Devin 11 1 1.0 12
Paola 10 0 0.0 0
Joey 13 0 0.0 0

Big Brother 17 (US)
Name ID OD C CON
Steve 1 11 0.75 63
Liz 0 11 0.762 69
Vanessa 1 11 0.778 59
John 7 10 0.813 60
Austin 2 12 0.929 75
Julia 4 6 0.65 37
James 8 8 0.684 40
Meg 7 8 0.684 50
Becky 8 5 0.542 39
Jackie 7 5 0.591 35
Shelli 8 3 0.371 23
Clay 9 5 0.448 37
Jason 7 4 0.5 31
Audrey 9 3 0.5 18
Jeff 7 1 1.0 11
Da’Vonne 7 1 1.0 11
Jace 12 0 0.0 0

Big Brother 18 (US)
Name ID OD C CON
Nicole 0 12 0.667 53
Paul 2 9 0.722 37
James 1 12 0.765 44
Corey 2 8 0.684 47
Victor 13 5 0.692 29
Natalie 3 9 0.722 43
Michelle 6 7 0.818 48
Paulie 9 5 0.692 32
Bridgette 7 3 0.6 19
Zakiyah 3 6 0.75 42
Da’Vonne 6 4 0.6 27
Frank 9 4 0.529 23
Tiffany 12 1 1.0 6
Bronte 6 1 0.45 6
Jozea 7 0 0.0 0

Big Brother 19 (US)
Name ID OD C CON
Josh 3 12 0.789 61
Paul 11 12 0.789 60
Christmas 6 12 0.789 61
Kevin 5 11 0.714 70
Alex 3 9 0.682 48
Raven 3 10 0.714 60
Jason 3 9 0.652 51
Matt 8 7 0.6 49
Mark 4 9 0.652 50
Elena 6 6 0.625 45
Cody 14 3 0.536 12
Jessica 7 4 0.556 28
Ramses 10 4 0.556 30
Dominique 10 3 0.395 24
Jillian 11 0 0.0 0
Megan 0 1 1.0 7
Cameron 8 0 0.0 0

Big Brother All-Stars (US)
Name ID OD C CON
Mike 0 9 0.765 45
Erika 3 6 0.667 31
Janelle 1 7 0.667 25
Will 1 9 0.846 37
George 3 6 0.5 39
Danielle 5 6 0.667 32
James 5 5 0.625 29
Howie 3 6 0.667 38
Marcellas 6 5 0.455 34
Kaysar 5 3 0.4 23
Diane 9 2 0.435 12
Jase 9 1 0.313 7
Nakomis 8 1 0.417 4
Alison 8 0 0.0 0

Big Brother Over The Top
Name ID OD C CON
Morgan 0 6 0.667 21
Jason 0 7 0.733 24
Kryssie 1 4 0.571 11
Justin 2 7 0.75 24
Shelby 2 5 0.692 21
Danielle 11 3 0.583 8
Whitney 3 4 0.636 22
Alex 3 4 0.7 17
Scott 5 3 0.583 18
Neeley 3 2 1.0 10
Shane 5 2 1.0 10
Monte 4 0 0.0 0
Cornbread 8 0 0.0 0
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A.2 Complete Alliances Data

Season Winner Finalists Alliances ED Full ED

Africa Ethan Kim J. Older Samburu: Frank, Teresa,

Linda, Carl

0.167 0.85

Boran: Lex, Ethan, Kim J., Tom,

Kelly

1.0

Younger Samburu: Silas, Kim P.,

Brandon, Lindsey

0.167

All-Stars Amber Rob M. Chapera: Rob M., Amber, Jenna

L., Rupert, Tom, Alicia

1.067 0.581

Mogo Mogo: Lex, Shii Ann,

Kathy, Jerri

0.667

Blood vs.

Water

Tyson Monica, Gervase Singles: Tyson, Monica, Gervase,

Ciera, Hayden, Caleb

1.667 0.747

Five Guys: Hayden, Brad, John,

Caleb, Vytas

0.9

Galang: Tina, Aras, Tyson,

Monica, Gervase

1.3

Borneo Richard Kelly Barbecue: Colleen, Jenna,

Gervase

1.667 0.783

Tagi: Richard, Rudy, Susan, Kelly 1.5

Cagayan Tony Woo Solana: Trish, Jefra, LJ, Tony,

Woo

0.7 0.647

Aparri: Spencer, Tasha,

Jeremiah, Morgan, Sarah, Kass

0.533

Cambodia Jeremy Spencer, Tasha Bayon: Jeremy, Tasha, Stephen,

Andrew, Keith, Joe, Kimmi

0.905 0.705

Witches’ Coven: Kelley,

Abi-Maria, Ciera, Kass

0.167

Caramoan Cochran Dawn, Sherri Stealth R Us: Cochran, Dawn,

Phillip, Andrea, Malcolm, Corinne

0.8 0.742

Gota: Sherri, Julia, Shamar,

Laura, Michael, Matt

0.667

Cool Kids: Eddie, Reynold, Hope,

Allie

0.0

China Todd Courtney, Amanda Fei Long: Todd, Courtney,

Amanda, Aaron, Denise, James,

Frosti

0.667 0.75

Zhan Hu: Peih-Gee, Erik, Jaime 0.0

Cook

Islands

Yul Ozzy, Becky Aitu Four : Yul, Ozzy, Becky,

Sundra

1.0 0.611

Raro: Adam, Parvati, Candice,

Nate, Jonathan

0.9

Fiji Earl Cassandra, Dreamz Four Horsemen: Alex, Mookie,

Edgardo, Dreamz

0.667 0.66

Syndicate: Earl, Cassandra,

Michelle, Yau-Man

0.667
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Season Winner Finalists Alliances ED Full ED

Gabon Bob Susie, Sugar Onion: Bob, Corinne, Randy,

Charlie, Marcus, Jacquie, Susie

0.476 0.667

Fang: Ken, Crystal, Kelly, G.C.,

Susie, Sugar, Matty

1.095

Game

Changers

Sarah Brad, Troyzan Power Six : Sarah, Brad, Troyzan,

Sierra, Debbie, Tai

0.933 0.737

Tavua: Aubry, Cirie, Michaela, Ozzy,

Andrea, Zeke, Sarah

1.238

Guatemala Danni Stephenie Nakum: Stephenie, Rafe, Lydia,

Cindy, Judd, Jamie

1.067 0.712

Yaxha: Danni, Bobby Jon, Brandon,

Blake

0.333

Heroes vs.

Healers vs.

Hustlers

Ben Chrissy, Ryan Healers: Joe, Desi, Jessica, Cole,

Mike

0.6 0.706

The Round Table: Chrissy, Ryan,

Devon, JP, Ben, Ashley, Lauren

0.905

Final Four : Ashley, Lauren, Ben,

Devon

1.333

Heroes vs.

Villains

Sandra Parvati, Russell Heroes: Rupert, Amanda, J.T., Cirie,

James, Candice

0.533 0.679

Rob’s Villains: Sandra, Courtney,

Rob, Tyson, Jerri, Coach

0.667

Russell’s Villains: Parvati, Russell,

Jerri, Danielle

1.0

KR Michele Aubry, Tai Gondol: Jason, Julia, Scot, Tai 1.0 0.625

Dara Women: Michele, Aubry, Joe,

Cydney, Julia, Debbie

0.8

Marquesas Vecepia Neleh Maraamu: Rob, Vecepia, Sean, Rob,

Sarah

0.3 0.733

Rotu Four : John, Robert, Tammy,

Zoe

0.667

Outsiders: Kathy, Vecepia, Neleh,

Paschal, Sean

1.0

Micronesia Parvati Amanda Black Widow Brigade: Parvati,

Amanda, Cirie, Natalie, Alexis

1.0 0.563

Malakal Couples: James, Ozzy,

Parvati, Amanda, Cirie

0.5

Older Airai: Tracy, Kathy, Chet 0.0

Millennials

vs. Gen X

Adam Hannah, Ken Triforce: Jay, Will, Taylor, Michelle,

Figgy, Michaela

0.267 0.768

David’s Vinaka: Hannah, Ken,

Jessica, David, Adam

0.6

Zeke’s Vinaka: Bret, Jay, Sunday,

Zeke, Will

0.7

Takali: Bret, Sunday, Chris, Lucy,

Paul, Jessica

0.733

Nicaragua Fabio Chase, Sash Final Four : Chase, Sash, NaOnka,

Holly, Jane

0.7 0.674

La Flor: Kelly S., Brenda, Chase,

Sash, NaOnka

0.4

Espada: Dan, Marty, Jill 0.0

One World Kim Sabrina, Chelsea Misfit: Leif, Jonas, Colton, Tarzan,

Troyzan

0.3 0.765

Muscle: Michael, Matt, Jay, Bill 1.0

Salani: Kim, Sabrina, Chelsea,

Alicia, Kat

0.9

Palau Tom Katie Koror : Tom, Katie, Ian, Jenn, Gregg 1.0 0.588
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Season Winner Finalists Alliances ED Full ED

Panama Aras Danielle La Mina: Terry, Austin, Nick, Dan 0.667 0.65

Casaya: Shane, Courtney, Bruce, Aras,

Danielle, Cirie

1.067

Pearl Islands Sandra Lillian Morgan: Andrew, Ryan O., Osten,

Darrah, Tijuana

0.2 0.8

Drake: Rupert, Sandra, Christa, Jon,

Trish

0.8

Outcast: Burton, Jon, Tijuana, Lillian,

Darrah

1.9

Philippines Denise Lisa, Michael Matsing: Denise, Malcolm, Angie 1.333 0.654

Kalabaw : Carter, Jonathan, Jeff 0.0

Fulcrum: Michael, Lisa, R.C 0.0

Tandang: Abi-Maria, Pete, Artis, R.C.,

Lisa, Michael

0.533

Redemption

Island

Rob Philip, Natalie Zapatera Six : Mike, Ralph, Steve, Julie,

David, Sarita

0.467 0.895

Stealth R Us: Rob, Phillip, Natalie,

Ashley, Andrea, Matthew, Grant

1.571

Russell’s Zapatera: Stephanie, Krista,

Russell

0.0

Samoa Natalie Russell H., Mick Galu: Brett, Monica, Dave, Laura, Kelly,

Shambo, John

0.667 0.663

Foa Foa Four : Natalie, Russell H., Mick,

Jaison

0.667

San Juan del

Sur

Natalie Jaclyn, Missy Fab Five: Missy, Baylor, Jaclyn, Jon,

Natalie

1.2 0.752

Coyopa Guys: Alec, Wes, Josh, Dale,

John

0.3

South

Pacific

Sophie Coach, Albert The Family: Sophie, Coach, Albert, Rick,

Brandon, Edna

1.2 0.922

Savaii: Ozzy, Whitney, Dawn, Keith,

Jim, Elyse, Cochran

1.143

Thailand Brian Clay Sook Jai: Jake, Penny, Ken, Erin, Shii

Ann

1.0 0.683

Chuay Gahn Five: Brian, Clay, Jan,

Helen, Ted

1.2

The Amazon Jenna Matthew Tambaqui: Roger, Matthew, Rob, Butch,

Dave, Alex

1.133 0.767

Jaburu: Jenna, Heidi, Alex, Deena,

Shawna, Rob, Matthew

1.048

The

Australian

Outback

Tina Colby Ogakor : Amber, Jerri, Tina, Colby,

Keith

1.0 0.825

Kucha: Elisabeth, Rodger, Nick, Alicia,

Jeff

0.0

Tocantins J.T. Stephen Exile: Sierra, Brendan, Stephen, Taj 0.667 0.675

Timbira: Coach, Tyson, Debbie 0.333

Jalapao Three: J.T., Stephen, Taj 0.667

Vanuatu Chris Twila Yasur : Ami, Leann, Lisa, Twila, Scout,

Eliza

1.2 0.719

Final Four : Chris, Twila, Scout, Eliza 1.333

Fat Five: Chris, Chad, Lea, Rory, Travis 0.3

Worlds

Apart

Mike Carolyn, Will Escameca: Rodney, Dan, Kelly, Mike,

Sierra

1.0 0.739

Nagarote: Jenn, Joe, Hali, Will 1.0
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Season Winner Finalists Alliances ED Full ED

10 Dan Memphis The Renegades: Dan, Memphis 0.0 0.718

The Coven: Keesha, Libra, April 0.667

12 Hayden Lane The Brigade: Enzo, Hayden,
Lane, Matt

0.5 0.718

13 Rachel Porsche The Regulators: Dominic, Keith,
Cassi, Lawon

0.5 0.821

Newbies: Adam, Porsche, Kalia,
Shelly, Lawon, Dominic, Cassi,
Keith

0.786

Veterans: Daniele, Dick, Jordan,
Rachel, Jeff, Brendon

0.467

14 Ian Dan Silent Six : Britney, Danielle,
Dan, Frank, Mike, Shane

0.8 0.581

Team Toche: Britney, Shane,
Danielle, Dan

0.667

The Quack Pack : Britney,
Danielle, Dan, Ian, Shane

0.6

Chilltown 2.0 : Mike, Frank 0.0

15 Andy GinaMarie Tenexas: Judd, Jessie 1.0 0.767

Exterminators: GinaMarie,
Andy, Judd, Spencer

0.667

Young Grasshoppers:
GinaMarie, Howard, Andy,
Kaitlin, Spencer, Judd

0.733

The Moving Company : Nick,
McCrae, Spencer, Jeremy,
Howard

0.6

3 A.M.: Aaryn, Amanda, Andy,
McCrae

0.5

The Blonde-Tourage: David,
Aaryn, Kaitlin, Jeremy,
GinaMarie, Jessie

0.4

The Goof Troupe: Amanda,
Andy, McCrae, Judd

1.167

The Mom Squad : Elissa, Helen 0.0
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Season Winner Finalists Alliances ED Full ED

16 Derrick Cody The Detonators: Christine, Cody,

Derrick, Frankie, Zach

0.6 0.808

The Crazy 8’s: Amber, Cody, Devin,

Donny, Frankie, Joey, Nicole, Paola

0.929

El Cuatro: Amber, Joey, Nicole, Paola 0.833

Team America: Derrick, Donny, Frankie,

Joey

1.0

The Bomb Squad: Amber, Caleb,

Christine, Cody, Derrick, Devin,

Frankie, Hayden, Zach

0.722

Los Tres Amigos: Cody, Derrick, Zach 0.333

The Hitmen: Cody, Derrick 0.0

Zankie: Frankie, Zach 0.0

The Rationale: Cody, Derrick, Hayden,

Nicole

1.0

The Double D’s: Donny, Devin 1.0

The Weirdos: Christine, Hayden, Nicole 0.667

17 Steve Liz Clelli: Clay, Shelli 0.0 0.765

ShellTown: Jace, Austin 1.0

Team JJ : Jackie, Jeff 0.0

Students of Sound: Steve, Vanessa 1.0

Three’s Company: Clay, Shelli, Vanessa 0.333

The Goblins: James, Jackie, Meg,

Audrey, DaVonne, Jason, Jeff

0.667

The Sixth Sense: Clay, Austin, Julia, Liz,

Shelli, Vanessa

0.667

Jecky: Becky, John 0.0

Austwins: Austin, Julia, Liz, Jace 0.5

Scamper Squad: Vanessa, Liz, Steve,

Austin, Julia

0.5

Rockstars: John, Steve 0.0

18 Nicole Paul The Revolution: Paul, Jozea, Victor 0.0 0.819

Team PP: Paulie, Paul 2.0

Nicorey: Corey, Nicole 0.0

Zaulie: Paulie, Zakiyah 0.0

Spy Girls: Natalie, Bronte, Bridgette 0.0

Fatal Five: DaVonne, Michelle, Nicole,

Tiffany, Zakiyah

0.6

Final Four : Corey, Nicole, Paul, Victor 0.833

8-Pack : Nicole, James, DaVonne, Frank,

Tiffany, Corey, Michelle, Zakiyah

0.75

Jatalie: James, Natalie 0.0

The Executives: Corey, James, Paul,

Paulie, Victor

1.2

The Sitting Ducks: Paul, Victor 0.0

19 Josh Pau The Team: Christmas, Cody, Dominique,

Elena, Jessica, Mark, Matt, Paul, Raven

1.028 0.824

Marlena: Elena, Mark 0.0

Jody: Cody, Jessica 0.0

The Misfits: Christmas, Josh, Paul 1.0

Whistlenut and Ole: Alex, Jason, Paul 1.0

2 Will Nicole Chilltown: Mike, Will, Shannon 0.333 0.691

TOP (The Other People): Bunky, Kent,

Nicole, Hardy, Monica, Autumn

0.733
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Season Winner Finalists Alliances ED Full ED

3 Lisa Danielle Danielle and Jason: Danielle, Jason 0.0 0.803

Chiara and Roddy: Chiara, Roddy 0.0

Cartel: Lisa, Chiara, Tonya, Roddy,

Eric, Josh

0.667

Original Six : Josh, Roddy, Lisa, Chiara,

Eric, Gerry

0.933

Eric and Lisa: Eric, Lisa 0.0

4 Jun Alison Three Stooges: Jee, Justin, Robert 0.333 0.697

Girl Power : Alison, Erika, Jun 0.333

Elite Eight: Alison, Dana, David, Erika,

Jack, Jun, Nathan, Scott

0.464

5 Drew Michael Four Horsemen: Drew, Jase, Michael,

Scott

0.167 0.692

Pinky Swear : Adria, Diane, Karen,

Natalie, Nakomis, Will

0.667

6 Ivette Maggie Sovereign Six : Janelle, Howie, Kaysar,

James

1.333 0.813

The Friendship: Ivette, Maggie, Eric,

Beau, Jennifer, April

0.667

8 Dick Daniele Mrs. Robinson: Zach, Kail, Nick, Mike 0.5 0.736

Late Night Crew : Amber, Daniele, Dick,

Dustin, Eric, Jameka, Jessica

0.619

9 Adam Ryan Team Christ: Adam, Ryan, Sheila,

Natalie

1.333 0.724

All-Stars Mike Erika Sovereign Six : Janelle, Howie, Kaysar,

James

0.5 0.725

Chilltown: Mike, Will 0.0

Mr. and Mrs. Smith: Diane, Jase 1.0

The Legion of Doom: Danielle, James,

Mike, Will

0.5

Over The

Top

Morgan Jason, Kryssie OTT Jamboree: Jason, Justin, Kryssie,

Scott, Shelby

0.6 0.603

Boys Alliance: Cornbread, Monte, Scott,

Shane

0.667

The Ballsmashers: Alex, Morgan, Shelby,

Whitney

0.0

Late Night Jamboree: Danielle, Jason,

Justin, Kryssie, Shane

0.6

The Southerners: Alex, Monte, Morgan,

Shane, Whitney

0.4

The Jackolanterns: Jason, Kryssie,

Neeley

0.333

Shonte: Monte, Shane 1.0

Shanielle: Danielle, Shane 0.0

Monte and His Pythons: Alex, Monte,

Morgan, Shelby, Whitney

0.0

Krason: Jason, Kryssie 1.0

Sisters: Alex, Morgan 0.0

Team Longshot: Morgan, Shelby 0.0



144 A. Bonato et al.

References

1. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: Proceedings of the International AAAI Con-
ference on Weblogs and Social Media (2009)

2. Big Brother Wiki. http://bigbrother.wikia.com/wiki/Big Brother Wiki
3. Boginski, V., Butenko, S., Pardalos, P.M.: On structural properties of the market

graph. In: Nagurney, A. (ed.) Innovation in Financial and Economic Networks, pp.
29–45. Edward Elgar Publishers (2003)

4. Bonato, A.: A Course on the Web Graph. American Mathematical Society Grad-
uate Studies Series in Mathematics, Providence, Rhode Island (2008)

5. Bonato, A., Gleich, D.F., Kim, M., Mitsche, D., Pralat, P., Tian, A., Young, S.J.:
Dimensionality matching of social networks using motifs and eigenvalues. PLOS
ONE 9(9), e106052 (2014)

6. Bonato, A., Hadi, N., Pra�lat, P., Wang, C.: Dynamic models of on-line social
networks. In: Proceedings of WAW 2009 (2009)

7. Bonato, A., Hadi, N., Horn, P., Pra�lat, P., Wang, C.: Models of on-line social
networks. Internet Math. 6, 285–313 (2011)

8. Bonato, A., Tian, A.: Complex networks and social networks. In: Kranakis, E. (ed.)
Advances in Network Analysis and its Applications. MATHINDUSTRY, vol. 18,
pp. 269–286. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-30904-
5 12

9. Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer,
Heidelberg (2005). https://doi.org/10.1007/b106453

10. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets Reasoning about a
Highly Connected World. Cambridge University Press, Cambridge (2010)

11. Gleich, D.F.: PageRank beyond the Web. SIAM Rev. 57(3), 321–363 (2015)
12. Gower, J.C., Warrens, M.J.: Similarity, Dissimilarity, and Distance, Measures of.

Wiley StatsRef: Statistics Reference Online (2006)
13. Guo, W., Lu, X., Donate, G.M., Johnson, S.: The spatial ecology of war and peace.

Preprint (2018)
14. Heider, F.: The Psychology of Interpersonal Relations. Wiley, New York (1958)
15. Langville, A.N., Meyer, C.D.: Who’s #1? The Science of Rating and Ranking.

Princeton University Press, Princeton (2012)
16. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links

in online social networks. In: Proceedings of the 19th International Conference on
World Wide Web (WWW 2010) (2010)

17. McPherson, J.M., Ranger-Moore, J.R.: Evolution on a dancing landscape: organi-
zations and networks in dynamic Blau space. Soc. Forces 70, 19–42 (1991)

18. Survivor Wiki. http://survivor.wikia.com/wiki/Main Page
19. Tang, J., Chang, S., Aggarwal, C., Liu, H.: Negative link prediction in social media.

In: Proceedings of the Eighth ACM International Conference on Web Search and
Data Mining (WSDM 2015) (2015)

20. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle
River (2001)

21. Yang, S.-H., Smola, A.J., Long, B., Zha, H., Chang, Y.: Friend or frenemy? pre-
dicting signed ties in social networks. In: Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2012) (2012)

http://bigbrother.wikia.com/wiki/Big_Brother_Wiki
https://doi.org/10.1007/978-3-642-30904-5_12
https://doi.org/10.1007/978-3-642-30904-5_12
https://doi.org/10.1007/b106453
http://survivor.wikia.com/wiki/Main_Page


An Experimental Study of the k-MXT
Algorithm with Applications

to Clustering Geo-Tagged Data

Colin Cooper(B) and Ngoc Vu(B)

Department of Informatics, King’s College London, London, UK
{colin.cooper,ngoc.vu}@kcl.ac.uk

Abstract. We consider a graph fragmentation process which can be
described as follows. Each vertex v selects the k adjacent vertices which
have the largest number of common of neighbours. For each selected
neighbour u, we retain the edge (v, u) to form a the subgraph graph S
of the input graph. The object of interest are the components of S, the
k-Max-Triangle-Neighbour (k-MXT) subgraph, and the vertex clusters
they produce in the original graph.

We study the application of this process to clustering in the planted
partition model, and on the geometric disk graph formed from geo-tagged
photographic data downloaded from Flickr.

In the planted partition model, there are � numbers of partitions, or
subgraphs, which are connected densely within each partition but sparser
between partitions. The objective is to recover these hidden partitions.
We study the case of the planted partition model based on the random
graph Gn,p with additional edge probability q within the partitions. The-
oretical and experimental results show that the 2-MXT algorithm can
recover the partitions for any q/p > 0 constant provided the density of
triangles is high enough.

We apply the k-MXT algorithm experimentally to the problem of clus-
tering geographical data, using London as an example. Given a dataset
consisting of geographical coordinates extracted from photographs, we
construct a disk graph by connecting every point to other points if and
only if theirs distance is at most d. Our experimental results show that
the k-MXT algorithm is able to produce clusters which are of comparable
to popular clustering algorithms such as DBSCAN (see e.g. Fig. 5).

1 Introduction

A graph fragmentation process is a procedure in which every vertex selects one
of its neighbours or itself according to some rule. Each selection forms a directed
edge and the entirety of such edges is a directed graph S in which every vertex
has out-degree 1, and each component of S is unicyclic. Ignoring orientation, S
is a subgraph of the original graph and is usually sparser. Typically S usually
consists of many smaller components which we call fragments.
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Graph fragmentation can be considered a mapping on the vertex set. For
example, consider a complete graph Kn with V = {1, 2, . . . , n}. Each vertex i
selects one of its neighbour or itself with equal probability. Since the graph is
complete and the queried vertex i is also included, the vertex that i maps to some
j such that 1 ≤ j ≤ n. A directed edge (i, j) with i being the source and j the
target is added to S. This graph model is known as the random mapping graph
and has been studied extensively by various authors e.g. Bollobas [1], Frieze and
Michal [6], etc.

The rule used for graph fragmentation in the 1-MXT algorithm is to choose
that neighbour u of v for which the edge (v, u) is contained in the maximum
number of triangles among all edges (v, w) incident with v.

Graph clustering is the task of dividing vertices of the graph into sets of
vertices, so that there is a higher degree of connectivity for vertices within a
cluster, and lower for vertices between different clusters. Inspired by small-world
networks in which pairs of adjacent vertices are more likely to be connected
to a common neighbour, we consider a fragmentation process in which each
vertex selects the k adjacent vertices which share the highest number of common
neighbours. The motivation is that the resulting components in the subgraph
S should contain many triangles, and thus be dense internally. We call this
algorithm k-MaX-Triangles (k-MXT). The algorithm is introduced in Sect. 2.

To test the functionality of the k-MXT algorithm, we use a graph model
called the planted � partition model. It was first introduced by Condon and Karp
in [3] and later considered by Girvan and Newman in [7]. Thereafter it became
a standard benchmark graph for testing graph clustering algorithm. A random
planted � partition graph is constructed as follows. Let G(V,E) be a simple,
undirected graph generated by the random graph model i.e. G = G(n, p). Divide
V into � subsets of equal sizes i.e. S = {S1, . . . , S�} where each Si, a hidden
partition, is a disjoint set of vertices i.e. Si ∩ Sj = ∅ and S1 ∪ · · · ∪ S� = V and
|Si| = m = n/�. For each hidden partition, we add an additional edge layer by
considering each as a random graph G(m, q). If q = 0, then the graph G is just
a normal random graph. For q > 0, the hidden partitions become denser and G
has a more apparent cluster structure.

Assuming that p = Ω(1/n2/3) w.h.p. most vertices are in triangles, and if
each partition is relatively dense then the edges with the most triangles should
lie within the partitions rather than between them. Hence, if we apply k-MXT
to the graph the vertices should be choosing k neighbours within their partition.

We show that, with � = 4, when p ≥ 3
√

log n/n and q = 2βp then for
any β > 0 constant and k ≥ 1, the probability that k-MXT wrongly chooses
a between-partition edge tends to zero. However, this does not mean we can
automatically recover the correct partitions, as the k-MXT fragments may be
small. Experimental results show that with k = 1, the algorithm tends to break
the partitions into many small fragments. Nevertheless, experimentally for k ≥ 2,
the algorithm is able recover the correct partitions provided β is a large enough
constant.
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Inspired by a study by Crandall, Backstrom, Huttenlocher, and Kleinberg
(Mapping the worlds photos, [4]), and after some initial experiments, we noticed
that, in some sense, a disk graph constructed using geographical co-ordinates of
photographs show some structural resemblance to that of a planted � partition in
the sense that most photographs are taken at popular tourist spots. Even if the
tourist venues are close, the edge density is still locally high. We experimented
and evaluated the performance of the k-MXT algorithm in identifying popular
venues. The algorithm used in [4] was mean-shift which under-performed at a
detailed level, mainly because clusters are linear as people often take photos
walking down the street. The DBSCAN algorithm [5] performed better, but has
the advantage of two parameters (a disk size d and min-points m to include). By
modifying k-MXT to only include those edges within a given disk d which induce
at least m triangles, the algorithm can be adapted to outperform DBSCAN in
some cases.

2 The k-MXT Algorithm

Let G(V,E) be a simple, undirected graph. Let S be an empty graph, assign
V (S) = V (G) and E(S) = ∅. For each vertex v ∈ V , let N(v) be its adjacency
list, hence d(v) = |N(v)| the degree of v. Each edge (v, u) ∈ E(G) is given a
weight which is the number of common neighbours of v and u, i.e. the cardinality
of the set intersection of N(v) and N(u)

w(v, u) = |N(v) ∩ N(u)| = |{w : w ∈ N(v) and w ∈ N(u)}|.
Next, for each vertex v we select a set of k incident edges of v which have
the highest weights, let this set be �(v) (if there is a tie, edges are selected at
random); if d(v) < k, then all incident edges are selected. Note that for each
edge (v, u) ∈ �(v), the edge has a natural orientation, but we can choose to
ignore its orientation. Finally, for each v ∈ V , the edge set �(v) is added to S.

0. Input: a simple graph, undirected graph G = (V,E); number of edges to select
(for each vertex) k.

1. Initialisation: an empty graph S, V (S) = V (G) and E(S) = ∅.
2. For each edge (i, j) ∈ E(G), compute w(i, j).
3. For each vertex i ∈ V (G), select �(i); for each edge (i, j) ∈ �(i): E(S) =

E(S) ∪ (i, j).
4. Output: subgraph S.

3 The Planted � Partitions Model

In the following sections we consider the case � = 4, thus m = n/4 is the size of
each of the partitions P1, P2, P3, P4. We prove the following Theorem 1.

Theorem 1. For p ≥ 3
√

log n/n and q = 2βp for any β > 0 constant and
k ≥ 1, then the probability that k-MXT wrongly chooses an inter-partition edge
tends to zero as O(1/n).
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Fig. 1. An example of the k-MXT algorithm. Figure (a) presents the input graph with
the weighted edges. Figures (b), (c) and (d) present the subgraph S whose values of k
are 1, 2 and 3, respectively.

By its nature k-MXT can only be used on graphs with triangles. The expected
number of triangles in a random graph G(n, p) is E[# triangles] =

(
n
3

)
p3. Let

p = n−c this is Θ(n3−3c). If c ≤ 2/3 then the expected number of triangles
becomes at least linear with the graph size and hence significant globally. It can
be shown that

Lemma 1. Let G = G(n, p). Let X be the expected number of triangles in G
associated with vertex v. Let p = 1/n−c where c < 2/3. Then

E[X] =
(

n − 1
2

)
p3 ≈ n2−3c

2
→ ∞,

and
Pr(X = 0) = O(

1
n2−3c

+
1

n1−c
) → 0.

From now on we assume p = n−c with c < 2/3.

3.1 The Expected Weight of an Intra/Inter Edges in the Planted �
Partitions Model

Let P be a partition. For u, v ∈ P , the edge (u, v) is an intra-partition edge. If
x �∈ P then (u, x) is an inter-partition edge.

Consider a pair of vertices v, u ∈ P1. The probability that the edge (v, u)
is not present in the global graph G is 1 − p. Further, the probability that the
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same edge is not present in the hidden partition P1 is 1 − q. Hence, let r be the
probability that such edge exists, then provided that pq = o(1)

Pr(an intra edge (v, u)) = r = 1 − (1 − p)(1 − q) = p + q − pq ≈ p + q (1)

Let Xvu = X(intra, vu) be the number of vertices w with edges (w, u) and
(w, v). For a pair of vertices v, x in different partitions, let Yvx = Y (inter, vx)
be the number of vertices w with edges (w, v) and (w, x). We note that these
variables do not depend on the presence or absence of the edge (v, u) or (v, x).

Lemma 2. Let q = 2βp. Let (v, u) be an intra-partition edge and let (v, x) be
an inter-partition edge. Then

E[X(intra, vu)] = np2(1 + β + β2), and E[Y (inter, vx)] = np2(1 + β).

Consequently, let E[X(intra)] = αE[Y (inter)] then α ≈ 1 + β2

1+β .

The expected number of triangles on the intra-partition edges (v, u), or equiv-
alently, the expected weight of an intra edge is, substituting r ≈ p+q = p(1+2β),

E[X(intra, vu)] = (m − 2)r2 + 3mp2 ≈ m(r2 + 3p2) = np2(1 + β + β2). (2)

For an inter-partition edge (v, x) in which x /∈ P1, e.g. x ∈ P2, the probability
that a triplet {v, x, y} with y being in either P1 or P2 is rp. For any other vertex
z that is not in the same partition as x and y, the triplet {v, x, z} exists with
probability p2. Thus, the expected number of triangles on an inter edge (v, x) is

E[Y (inter, vx)] = 2(m − 1)rp + 2mp2 ≈ 2mp(r + p) = np2(1 + β). (3)

Putting E[X(intra)] = αE[Y (inter)], it follows that α ≈ 1 + β2/(1 + β). 
�

3.2 Threshold for β to Avoid Selecting Inter-cluster Edges

For convenience, denote the weight of an intra edge (v, u) and inter edge (v, x)
by X and Y instead of X(intra, vu) and Y (inter, vx). Substituting p = n−c into
Eq. (3) and (2) yields

E[Y ] = n1−2c(1 + β), and E[X] = n1−2c(1 + β + β2).

For c > 1/2, E[Y ] = O(n−c) → 0 as n → ∞. As this case is of little interest, we
exclude it and assume p > n−1/2.

For c ≤ 1/2 we examine Y using the Hoeffding-Chernoff concentration
inequality. Choose δ =

√
ω/E[Y ] with ω = 9 log n (note that Hoeffding-Chernoff

requires 0 < δ < 1, which will be examined below), we get

Pr
(|Y − E[Y ]| ≥ δE[Y ]

) ≤ e−δ2E[Y ]/3 = e−ω2/3 = e−3 log n = n−3. (4)

As there are at most
(
n
2

)
edges (v, x) to consider, the probability any edge (v, x)

deviates is O(n2 × n−3) = O(1/n).
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Similarly, we choose δ̂ =
√

ω/E[X]. Then X is bounded as

Pr{|X − E[X]| ≥ δ̂E[X]} ≤ e−̂δ2E[X]/3 = e−3 log n = n−3. (5)

Hence the probability that any edge (v, u) (with v and u in the same partition)
deviates is also O(1/n).

It is seen that Y is unlikely to be more than (1 + δ)E[Y ]; and X is unlikely
to be less than (1 − δ̂)E[X]. Therefore set

δE[Y ] + δ̂E[X] ≤ E[X] − E[Y ],

which simplifies to

√
ω = 3

√
log n ≤ E[X] − E[Y ]

√
E[X] +

√
E[Y ]

= n1/2−c
(√

β2 + β + 1 −
√

β + 1
)
. (6)

For c < 1/2. As δ̂ < δ, Chernoff’s inequality requires that δ =
√

ω/E[Y ] < 1,
hence

3
√

log n <
√

E[Y ] = n1/2−c
√

1 + β,

which implies that p = n−c ≥ 3
√

log n/n. Thus (6) yields

3nc−1/2
√

log n <
√

β2 + β + 1 −
√

β + 1, (7)

as c < 1/2 the left hand side is O(n−ε) → 0 for n → ∞. The right hand side
is at least constant for β > 0. Thus (7) is true for any β > 0, and we have
Theorem 1.

3.3 Experiments

We conducted experiments to investigate the accuracy of the algorithm when β
increases. To generate the planted � partitions graphs, we set: n = 104, p = 1/

√
n;

q ∈ [0, 14]. For each unique set of parameters, we generated 10 different graphs,
and fragment it with k = 1, 2, 3, 4, 5 which we abbreviate as 1, 2, 3, 4, 5-MXT.
The value of p = 1/

√
n was chosen as it is the threshold for triangles to appear on

the inter-partition edges, the expected number of triangles being constant (see
(3)). To evaluate the accuracy of the partitions, we use the following metrics.

Adjusted Rand Index. The Adjusted Rand Index (ARI) [8] is a metric based
on the principle of pair counting. It measures the similarity of two different sets
by counting the number of pairs of vertices which are classified in the same
and different clusters in the two given sets. In more detail, given a set, and two
partitions derived from it: X = X1, ...,Xm and Y = Y1, ...Yn, where m and n
may or may not be equal, the ARI measures the similarities of X and Y , yielding
a score ranges from [−1; 1]. A higher score indicates high similarity with 1 being
an exact match. In our case, X is the hidden partitions and Y is the components
in the resulting k-MXT subgraph.
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Fraction of Incorrect Edges. An incorrect edge is an edge selected by the
k-MXT algorithm that connects a pair of vertices from different partitions. Let
P (v) be the index of the hidden partition which vertex v belongs. The edge (v, u),
selected by the algorithm, is an incorrect edge if P (v) �= P (u). The fraction of
incorrect directed-edge (FoID) is the ratio between the total number of incorrect
edges over the total number of edges in subgraph H

S(v, u) =

{
1 if P (v) �= P (u)
0 otherwise

then

FoID =

∑
(vi,vj)∈E(H) S(vi, vj)

|E(H)|
Thus, the value of FoID is in [0; 1]; a score of 1 indicates all edges are incorrect.

Fig. 2. The figures present the performance of k-MXT algorithm in experiments. The
x-axis is the ratio q/p = 2β. The primary y-axis (left) corresponds to the scores for
the FoID (blue) and ARI (green). The secondary y-axis (right) corresponds to the
number of connected components (red). It can be seen that there is a difference between
1-MXT and the rest. (Color figure online)



152 C. Cooper and N. Vu

Results. The results of the experiments are reported in Fig. 2. It can be seen
that there is a difference between 1-MXT and the rest.

Particularly, for 1-MXT, although the FoID ≈ 0 i.e. the number of incorrect
edges is approximately 0 (for q/p ≥ 6) the accuracy measure ARI is also 0.
This is because the 1-MXT breaks the correct hidden partitions into many small
fragments (as indicated by the number of components). To achieve a high ARI
scores, it is required that the number of components to be close to 4 i.e. the
number of hidden partitions. Therefore, even though 1-MXT does not select any
incorrect edge, its accuracy score is low. Picturesquely, 1-MXT produces small
fragments which are contained inside the correct, hidden partitions.

It appears that experimentally 2, 3, 4, 5-MXT have a threshold at q/p ≈ 8,
above which the algorithms find the correct partitions i.e. number of components
is 4 and ARI scores are 1.

4 Application of k-MXT to Clustering Geo-Tagged Data

In this section, we consider the problem of clustering geospatial points, collected
from photographs as a graph problem. Given a dataset consists of geographical
coordinates i.e. latitude and longitude, we create a proximity graph as follows.
For every point (xv, yv) where xv and yv are the latitude and longitude of vertex
v, we connect v to every point u located within the disk radius d centered at v,
i.e. dist(v, u) ≤ d where dist(v, u) is a distance function.

The result is a simple, undirected graph, which captures the essential spa-
tial information. Further, because the points are biased toward specific locations
(popular landmarks, attractions, etc.), the graph reveals the structure of the
underlying data (see Fig. 3). The subgraphs at dense regions of points (presum-
ably popular attractions) are densely connected, with many triangles. Also, these
dense regions are connected by sparser subgraphs whose edges subtend few tri-
angles. We investigate the application of the k-MXT algorithm to identifying
the denser regions.

Fig. 3. An example of proximity graph consisting of ≈2,000 points. For each pair of
vertices, we add an edge if the distance between them is at most d = 100 m.
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4.1 Data Collection

We select Flickr as the main photo-sharing platform as it is easily accessible
and possesses a large database of geo-tagged photos. To collect photographs,
we identify a bounding rectangle covering a desired region. We choose the city
of London. The bounding rectangle is further divided into (a large number of)
sub-rectangles. Finally, for each sub-rectangle, we issue a query using Flickr’s
API to collect photographs which are taken inside it.

Using the data collected, we created two datasets. The small set consists
of 4,000 data points within a bounding rectangle covering St. Paul’s Cathedral
and Tate Modern. The large set consists of 45,000 data points covering a larger
region of central London.

4.2 Comparison of Algorithms

We compare the performance of k-MXT with the Mean-shift and DBSCAN algo-
rithms, which we briefly outline below. Due to space restrictions, the complexity
analysis of the algorithms and experimental runtime comparisons is given in the
appendix.

Mean-Shift. Mean shift is a non-parametric technique for locating the maxima
of a density function [2]. It is used as the method of choice for clustering in the
paper [4]. Mean shift follows an iterative procedure to locate the mode of an
underlying probability distribution given a set of sample points. In more detail,
for each point p, let C be a circle with radius h with p being its centre. Using
every point pj located inside C, a weighted mean is calculated by

m(pi) =

∑
pj∈Ci

{pj .f(pj , pi)}
∑

pj∈Ci
f(pj , pi)

, (8)

where f(pj , pi) is a kernel function that determines the weight of nearby points
for re-estimation of the mean; hence pj .f(pj , pi) multiplies the coordinate vec-
tor pj with the scalar f . We use the Gaussian kernel. The initial data-point is
then shifted to m(pi) i.e. pi ← m(pi) and then continue recursively for pi. The
recursion stops if the mean converges, practically when dist(m(pi), pi) ≤ λ; or
until a maximum number of iteration Tmax is reached. The points which share
the same mode (or approximately close) is put in the same cluster.

DBSCAN. (Density-Based Spatial Clustering of Applications with Noise) [5] is
a popular spatial clustering algorithm. The algorithm requires a distance param-
eter ε and an optional parameter minPts. Consider a data point p and a circle C
with radius ε, centred at p. The point p is classified as a core point if and only
if there are at least minPts number of neighbours points within C. A point q
is reachable from p if there exists a path from p to q formed by p1, ..., pn where
p1 = p and pn = q, in which pi for 1 < i < n must be a core point in its own
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disc. The only exception is the final point q. All points not reachable are noise.
Non-core points are points which are not core but reachable from another core
point. Clusters are formed by grouping together core and non-core points such
that in each cluster every point is reachable from the other. Note that non-core
points cannot be used to reach others.

The Algorithm Parameters. To calculate distance, we treat the coordinates
as points in two dimensional Euclidean space, because the errors are tolerable
given the scale we are looking at. We consider three radiuses: 10 m, 25 m and
50 m. The other parameters are listed below

1. k-MXT: k = 1, 2, 3, 4;
2. DBSCAN: minPts = 3, 20, 40, 80;
3. Mean shift: Tmax = 50;λ = 1 (metre).

4.3 Results and Evaluation

Visualisation. For each cluster we draw a convex hull which is the minimum
bounding polygon covering every point within that cluster. The basic parameter
is the radius d, ε, h of the bounding circle in MXT, DBSCAN and Mean-shift
respectively. To distinguish the clusters generated by different parameters k and
minPts of MXT and DBSCAN, we use different colours for the bounding poly-
gons, see Table 1 for more detail. To demonstrate the change in cluster size
obtained by altering the parameters k and minPts, we overlayed the resulting
clusters.

The geographic location of the small dataset (between St Paul’s and Tate
Modern) is shown in this figure. The results of the small dataset are presented
in Fig. 4. Results for the large dataset are presented in multiple figures in the
Appendix.

Accuracy. We evaluate the accuracy of the algo-
rithms by visual inspection. More specifically, we exam-
ine whether the polygons produced by the algorithms
cover meaningful regions (see Fig. 11 for a map of Lon-
don with some identified points of interest). Overall,
DBSCAN and k-MXT appear to be the best algo-
rithms that produce compact regions of points that
cover some identifiable popular attractions in London.
Moreover both algorithms produce polygons which fol-
low the ’shape’ of the density of points.
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At a small radius (d = 10 m), the polygons produced by k = 1 are too small
and fragmented, those produced by k = 2, 3, 4 just about right on the small
dataset (Figs. 4, 8), whereas k = 2 seems best on the large dataset (Figs. 9, 10,
11). At radius d = 10 m the results for k-MXT seem more pleasing, compared
to DBSCAN.

At larger radius (d = 25 m) DBSCAN improves on k-MXT (Figs. 12, 13). The
polygons produced by k ≥ 3 are rather large. However this can be overcome by
truncating low weight edges (see Fig. 14, and the section weighted k-MXT below).

Thus 2-MXT at d = 10 m, seems the best choice for geo-tagged clustering at
city level. See in particular the London map produced by 2-MXT in Fig. 5.

Fig. 5. Clusterings produced by 2-MXT (d = 10m), layered on London’s map. Some
popular tourist attractions are identified and labelled.

The polygons produced by DBSCAN and k-MXT differ in shape. Polygons
produced by k-MXT are more rounded, whereas DBSCAN sometimes faithfully
follows the street layout. Both algorithms produce distinct, well defined clusters;
whereas, the polygons produced by mean shift seem similar and uninformative
regardless of the distance h see Fig. 4(c) and (f).

A Measure of Density. The resulting polygons lead us to the question: What
makes a cluster look better than the others? Consider the six figures show in
Fig. 6. Which figure, visually, looks better compared to the other? The answer
is, perhaps, (e) or (f). This is because the top polygons i.e. (a) (b) and (c) cover
exceedingly large areas, thus there is a significantly amount of empty space in
each figure. Whereas, polygon (d) (e) and (f) look much better, being able to
closely fit the centre dense region. Although (f) is visibly the smallest, but it
can be argued that it is too small as many of the relevant points lie outside the
polygon. Hence, (e) is arguably better.
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Motivated by this observation, we derive a measure of density as follows. Let
n(P ) be the number of points within the polygon P , and A(P ) be its area, then
the density R(P ) is defined by

R(P ) =
n(P )
A(P )

. (9)

Thus R(P ) measures the data density within a given region i.e. the number
of contained data points per unit of area. In our experiments, A(P ) is typically
measured in square metres m2, thus R(P ) yields the number of points per m2. A
high score indicates a high level of density of dots within such polygon. However,
it may not always indicate a better cluster.

Fig. 6. Trafalgar Square. Which figure looks better? Note that the k-MXT algorithm
used to produce figures (b), (d) and (e) has an additional parameter w which is intro-
duced in Sect. 4.4.

Given the number of points and the areas of the region of our dataset, exper-
imentally, we found that a density between 0.1 ≤ R(P ) ≤ 0.5 can be consid-
ered a good result. For instances, the density of the polygons in bottom row
in Fig. 6(e) and (f) is 0.072, 0.101 and 0.291, respectively. Scores higher than 1
are often occur in very small polygons but having several points thus having an
abnormally high score. We often exclude these cases.

4.4 Parameterising the k-MXT Algorithm

A property of the k-MXT algorithm is that when k increases the density of clus-
ters produced by k-MXT is significantly reduced. This is because data points are
not evenly distributed as they are biased toward specific locations (landmarks,
attractions, etc.). Thus by increasing k, the area of the polygons are increased
(as a vertex now select more edges), thus reducing the density of the polygons.
This behaviour is might be due to the absence of a noise controlling mechanism.
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The small polygons are considered as small clusters so far, not noise. Hence,
to improve the k-MXT algorithm, we introduce a parameter w similar to the
minPts parameter of DBSCAN.

The parameterised algorithm k-MXT(wmin) adds a simple edge filter to the
graph construction process so that for each edge e if w(e) < wmin then delete e.
Resulting vertices of degree zero are considered as noise.

Figure 7 plots selected clusters over the region of Trafalgar Square. These
clusters are produced by k-MXT(w = 40, 80) to compare directly with DBSCAN
(minPts = 40, 80), with d, ε = 25 m. Overall, it can be seen that the introduction
of w significantly improves the results of k-MXT.

Fig. 7. Choice of region for geo-tags in Trafalgar Square.

The parameters and resulting density R for each polygon in Fig. 7 are:

– [1]-blue 2-MXT(d = 25m, w = 80), R = 0.128;
– [2]-red 2-MXT(d = 25m, w = 40), R = 0.101;
– [3]-black DBSCAN(ε = 25m,minPts = 80), R = 0.101;
– [4]-brown DBSCAN(ε = 25m,minPts = 40), R = 0.072;
– [5]-green 2-MXT(d = 25m, w = 0), R = 0.026;
– [6]-turquoise DBSCAN(ε = 10m,minPts = 80), R = 0.291.

If we use 2-MXT(d = 25m) on the large dataset, Fig. 12 shows the results,
however visually it requires improvement. This is obtained by using param-
eterised 2-MXT. Figure 14 compares the weighted versions of DBSCAN and
2-MXT. Figures (a) and (d) seem best.

A Appendix

A.1 Complexity Analysis

The k-MXT procedure can be broken down into two main tasks: constructing
the disk graph and selecting the k-Max Triangles neighbours for each vertex.
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Graph Construction. To construct the proximity graph, we need to find the
points inside each vertex’s disc. The naive approach takes O(n2) operations. A
simple improvement is to separate the set of latitudes and longitudes and sort
them. For each vertex v = (xv, yv) and each coordinate xv and yv, we locate
the values within a fixed distance from it using range binary search. The result,
for each coordinate, is a set of points which are located within a fixed distance
d from the queried point i.e. S(xv) = {u : |xu − xv| ≤ d} and S(yv) = {w :
|yw − yv| ≤ d}. The intersection of these two sets S(xv) ∩ S(yv) can be done
using the smaller set, and yields the set of points bounded by a square of width
2d centered at v. To transform the bounding square to a bounding circle then
requires an additional computation step. Overall, the complexity of the improved
naive method takes

O(n log n)
︸ ︷︷ ︸

sort

+O(n log n)
︸ ︷︷ ︸
range search

+O(n × min
v∈V

{|S(xv)|, |S(yv)|}).
︸ ︷︷ ︸

connect edges

Further improvement requires using spatial data structures such as R-trees
or kd-trees. The construction of such trees take, on average, O(n log n). A search
query takes O(log n) on average and O(n) worst. Also, note that both structures
search operation only support query by rectangle. Thus, an additional step is
required to locate points within a vertex’s circle of radius d.

We give an experimental running time of the graph construction methods in
Table 3. We used the C++ Boost Geometry library [11] for an implementation
of R-tree and the Approximate Nearest Neighbour (ANN) for kd-tree.

Additionally, there is further consideration of calculating distances using
great-circle distance when carrying out geo-tagged clustering at country or
world scale. Note that only the R-tree implementation supports this operation.
Our experiments show that the improved naive method out-performs R-trees
(Table 3).

Selecting Neighbours. Given the constructed graph, to select the k-Max Tri-
angle edges for each vertex requires,

1. For each edge: calculate the number of common neighbours;
2. For each vertex: select the k highest scores;
3. Find the connected components of the resulting graph fragments.

If the adjacency lists are sorted (implying O(n × dmax log dmax) pre-
processing), the first task is equivalent to finding the set intersection. Thus for
each edge it takes at most d(u) + d(v). Hence, the overall computation cost is

∑

v∈V

∑

u∈N(v)

(
d(v) + d(u)

)
=

∑

v∈V

d2(v) +
∑

u∈N(v)

∑

v∈V

d(u) ≤ 2dmax

∑

v∈V

d(v) = 4|E|dmax.

Thus the first task takes O(|E| × dmax).
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Table 3. Large dataset: n = 45, 000. Graph construction time in seconds and averaged
over 10 executions. The best running time are highlighted. Interestingly, the improved
naive method performs better than the R-tree when computing the spherical coordi-
nates.

Naive Improved Naive R-tree kd-tree

Cartesian Spherical Cartesian Spherical Cartesian Spherical Cartesian

10m 82.1 419.4 1.6 5.6 1.3 9.1 1

25m 82.1 419.4 3.6 13.59 3.1 26.7 1.5

50m 82.1 419.1 6.9 26.35 7.3 65.3 2.6

Table 4. Table presents the average density and the density of the top polygons for
the large dataset with d, ε = 25 m. Results for the 2-MXT algorithm (w = 40, 80) and
DBSCAN (minPts = 40, 80) are also included.

Density 2-MXT 2-MXT
(w =
40)

DBSCAN
(minPts =
40)

2-MXT
(w =
80)

DBSCAN
(minPts =
80)

Small
Area:
[100, 1000] m2

Best 0.163 0.215 0.052 0.274 NA

Average 0.055 0.08 0.045 0.12 NA

Medium
Area:
[1000, 5000]
m2

Best 0.05 0.103 0.044 0.113 0.068

Average 0.013 0.052 0.031 0.086 0.054

Large
Area:
> 5000 m2

Best 0.04 0.101 0.072 0.128 0.101

Average 0.01 0.068 0.034 0.128 0.062

The second task is done using a priority queue i.e. min-heap which takes at
most

∑
v∈V d(v) log k = log k × 2|E| = O(|E|), for fixed k.

The final task is to compute the connected components of the k-MXT sub-
graph. This can be done using any classical algorithm in linear time in the
number of edges in the component, O(kn) overall. For small values of k this is
O(n).

Overall, the fragmenting process has a running time of

O(n × dmax log dmax)︸ ︷︷ ︸
pre-processing

+O(|E|dmax)︸ ︷︷ ︸
set intersect

+ O(|E|)
︸ ︷︷ ︸

k-max scores

+ O(n)
︸ ︷︷ ︸

components

= O(|E|dmax).

In comparison, DBSCAN implemented with R-trees or kd-trees has an aver-
age complexity of O(n log n) [5]. For mean shift, a loose theoretical running time
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is O(n × Tmax) where Tmax is the maximum number of iterations allowed for
each query. In practice, we usually set the distance to determines convergence
to λ = 0.5 m, and noticed that the mode converged in relatively fewer iterations
than Tmax.

Experimental Running Time. DBSCAN is executed using the R package
dbscan [10], a fast re-implementation of the original algorithm in C++. Mean-
shift is executed using the R package MeanShift [9].

Table 2 presents the experimental running time of the algorithms. The results
of the small dataset experiments show the mean shift has the slowest run-
ning time; hence it was excluded in the large experiment. Furthermore, in both
experiments, optimized DBSCAN outperformed the current implementation of
k-MXT, which is hardly surprising. For k-MXT, it is seen that the running time
for the clustering procedure seems to scale quadratically with the distance, which
determines the number of edges in the graph hence dmax. This is probably due
to the O(|E|dmax) ≈ O(n(dmax)2) set intersection.
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Abstract. Measuring graph clustering quality remains an open prob-
lem. Here, we introduce three statistical measures to address the prob-
lem. We empirically explore their behavior under a number of stress test
scenarios and compare it to the commonly used modularity and con-
ductance. Our measures are robust, immune to resolution limit, easy to
intuitively interpret and also have a formal statistical interpretation. Our
empirical stress test results confirm that our measures compare favorably
to the established ones. In particular, they are shown to be more respon-
sive to graph structure, less sensitive to sample size and breakdowns
during numerical implementation and less sensitive to uncertainty in
connectivity. These features are especially important in the context of
larger data sets or when the data may contain errors in the connectivity
patterns.

1 Introduction

While there are many graph clustering1 algorithms in the literature (e.g., [15,17,
21,24]), measuring their performance, that is assessing the quality of the clusters
they identify, remains an open problem [1,3,6,11–13,16,23]. Graph clustering is a
form of unsupervised learning, where one typically cannot count on labeled data
to assess results. For example, in [20], the authors correctly assert that “(...)
running a clustering algorithm over a set of randomly generated data points will
always produce clusters which, however, have little meaning.” Therefore, our only
quality measure is a thorough assessment of the graph’s and resulting clusters’
connectivity patterns.

In this article, we present new clustering performance measures to assess the
strength of the clustering returned by a specific algorithm and compare cluster-
ings across algorithms on a specific graph. We restrict our attention to undirected
1 Note on vocabulary: Although there are subtle differences between the concepts

of graph clustering and community detection, in this document we use the two
interchangeably.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Bonato et al. (Eds.): WAW 2018, LNCS 10836, pp. 170–184, 2018.
https://doi.org/10.1007/978-3-319-92871-5_11
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unweighted and weighted graphs, with no self-loops or multiple edges. We begin
with a review of two of the most common clustering performance measures, mod-
ularity and conductance. We empirically demonstrate how these measures may,
in some cases, be drowned out by graph structure and lack sensitivity. We also
offer three alternative measures, which are shown to be more robust.

2 Performance Measures

In this section, we describe the two most popular performance metrics in the
literature, namely modularity and conductance. We also present our own sta-
tistical measures, the “Kappas”. In the following sections, we will empirically
analyze their strengths and weaknesses.

2.1 Modularity

Modularity (Q) is by far the most popular measure of clustering performance
[4,5,8,13,17–19]. It was originally introduced by Newman and Girvan in 2004
[17] and has been extensively used both as a performance measure and objective
function for clustering algorithms (e.g., [2,7,17]). In this section, we present
modularity (Q) as defined in [5].

Q =
k∑

i=1

⎛

⎜⎝ei,i − a2
i︸ ︷︷ ︸

qi

⎞

⎟⎠

Where,

ei,i =
1

2m

∑

v,w

Av,w δ(cv, i)δ(cw, i)

ai =
1

2m

∑

v

Av,. δ(cv, i)

Here, m = |E| is the total number of edges in the graph, k is the number of
clusters, Av,w is the element at the intersection of the v-th row and w-th column
of the adjacency matrix, Av, is the entire v-th row of the adjacency matrix, δ(x, y)
is the Kroenecker delta function, ei,i is the portion of vertex degree connecting
vertices within cluster i, ai is the total vertex degree in cluster i and cv is the
cluster in which vertex ‘v’ is clustered into by the algorithm. Putting it together,
we get

Q =
k∑

i=1

⎡

⎢⎢⎢⎢⎢⎣

1
2m

∑

v,w

Av,w δ(cv, i)δ(cw, i)

︸ ︷︷ ︸
ei,i

− 1
4m2

(
∑

v

Av,. δ(cv, i)

)2

︸ ︷︷ ︸
a2
i

⎤

⎥⎥⎥⎥⎥⎦
. (1)
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(A high value indicates densely connected clusters.)
In closing, it should be noted that modularity suffers from a resolution limit,

as described by Fortunato and Bathélemy [9]. These authors describe how any
(clustering) quality function that is defined as a sum of qualities of individual
clusters where terms from smaller clusters are dominated by terms from larger
clusters suffers from resolution limit. Because the smaller clusters’ contribution
to the sum is dominated by the larger clusters, the final result is also dominated
and does not always reflect the structure accurately. Indeed, in (1), we see how
larger clusters dominate the outer summation.

2.2 Conductance

Conductance (φ, Φ) is another popular clustering performance measure [6,13,14,
22,23]. In this article, we use the definition presented in [22].

At the individual cluster level,

φ(S) =
∂(S)

min (d(S), d(V \ S))

At the graph level,
Φ(G) = min

S
φ(S)

Here, ∂(S) is the number of edges joining vertices in cluster S to vertices outside
S, d(S) is the sum of vertex degrees within S and d(V \ S) the sum of vertex
degrees on the graph, outside S. (A low conductance indicates strongly connected
clusters.)

2.3 The Kappas

Our overarching goal in developing our measures is to gauge the strength of
connectivity on the graph in general, within individual clusters and between
clusters. While the established measures of clustering strength, modularity and
conductance, measure intra-cluster connectivity strength, we seek to measure the
strength of intra- and inter-cluster connectivity relative to the overall graph’s
connectivity. For example, in a densely connected graph we expect clusters to be
even more strongly connected and strong inter-cluster connections can be con-
sistent with a good partition. Conversely, in a densely connected graph, poorly
connected clusters or strong inter-cluster connectivity are symptoms of a poor
clustering.

We define K̄ as the graph’s overall connectivity ratio, K̄intra as the measure
of intra-cluster connectivity and K̄inter as the measure of inter-cluster connec-
tivity. According to every definition of a good clustering, we expect that an effi-
cient clustering algorithm will label vertices such that intra-cluster connectivity
is greater than inter-cluster connectivity [8,18,19] (if the graph does indeed have
a clustered structure). Under our model, we expect that a good clustering will
group vertices so they form clusters whose vertices are more densely connected
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than the average connection between any two vertices on the graph. Similarly,
we expect that a good clustering will group vertices so they form clusters whose
vertices are less densely connected to those in other clusters than the average
connection between any two vertices on the graph. In summary, we expect that
under a good clustering the inequalities K̄intra > K̄ > K̄inter will hold. Our
model also allows these inequalities to be formulated as a hypothesis test, as will
be shown later.

Below, we present the formulation for our clustering measures, for an
unweighted undirected graph, but our metrics easily generalize to weighted
graphs as well. In our formulation, we use the following variables: The set of
all clusters is C = {C1, . . . , Ck}, with |C| = k, the total number of vertices in
the graph is N , the total number of vertices in cluster i is |Ci| = ni, the set of all
edges on the graph is E = {e1, . . . , em}, where |E| = m. Finally, Ei,j is the set of
edges connecting a vertex in cluster i to a vertex in cluster j, and |Ei,j | = mi,j .
As a special case, note that Ei,i is the set of edges within cluster i, and mi,i is
the number of edges connecting vertices within cluster i.

In order to gauge the strength of the entire graph’s, of each cluster’s and
each inter-cluster pair’s connectivity, we take the ratio of the observed edges
over the maximum possible number of edges given the number of vertices. For
inter and intra cluster connectivity, we compute the ratio for each cluster or pair
of clusters and take their mean as a graph-wide measure. All our measures lie
in the [0, 1] interval, with high values denoting highly connected graphs, clusters
or cluster pairs and vice-versa.

We define the graph’s connections ratio as

K̄ =
|E|

0.5 × N(N − 1)
.

The graph’s connection ratio is the ratio of the total number of edges over the
number of edges in a complete graph with the same number of vertices. The
closer K̄ is to 1, the closer the graph is to being a complete graph. Conversely,
the closer K̄ is to 0, the closer the graph is to being a set of disconnected vertices.

We also define the mean intra-cluster connections ratio as

K̄intra =
1
K

κ∑

i=1

|Ei,i|
0.5 × ni(ni − 1)

.

The mean intra-cluster connections ratio is the mean ratio of the number of
edges within each cluster over the maximum number of edges that could possibly
connect the vertices of each cluster. Each term in the summation is a measure of
how closely each cluster is to being a clique. Each always lies on the interval [0, 1],
with a value of 0 indicating a cluster is just a set of disconnected vertices and a
value of 1 indicating that a cluster is a clique. At the aggregate level, K̄intra is
the sample mean of the individual terms and also lies in the interval [0, 1]. Values
close to 0 indicate poorly connected clusters on average, while values closer to 1
indicate densely connected clusters on average.
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Finally, we define the mean inter-cluster connections ratio as

K̄inter =
1

0.5× k(k − 1)

k∑

i=1

k∑

j=i+1

|Ei,j |
0.5× ((ni + nj)(ni + nj − 1)− ni(ni − 1)− nj(nj − 1))

.

The mean inter-cluster connections ratio is the mean ratio of the number of
edges joining vertices in two different clusters, over the total number of edges
that could possibly connect each pair of vertices in each cluster pair (ci, cj). Each
term in the double summation is a measure of how closely two clusters ‘i’ and ‘j’
are from forming a single clique. Each of these terms also lies in the interval [0, 1],
with a value of 0 indicating no connection between a pair of clusters and a value
of 1 indicating that the pair of clusters forms a clique. At the aggregate level,
K̄inter is the sample mean of the individual terms of the summation and also
lies in the interval [0, 1]. Values close to 0 indicate poor inter-cluster connections,
on average, a desirable feature indicating strong cluster partitions, On the other
hand, values closer to 1 indicate improperly partitioned clusters, on average.

It should also be mentioned that in cases where the connectivity patterns of
the clusters is very noisy, the median of the summation terms can be used in
lieu of the mean, in order to produce more robust measures. Unfortunately, this
substitution makes statistical interpretation and significance testing less obvious.

Resolution Limit and Sensitivity to Cluster Size. It is important to note
that neither K̄intra nor K̄inter are affected by individual cluster size and do
not suffer from the resolution limit observed in modularity [9]. Large clusters
do not skew their values, since all terms in the sums are scaled by the total
number of possible edges within each cluster or pair of clusters and always lie
on the [0, 1] interval. This feature makes these measures robust to large “mega-
clusters” that are often observed in real-world networks and to the fallacious
tendency of clustering algorithms to lump all vertices together in a few very
large clusters. (Naturally, K̄ is a graph-wide measure that remains completely
agnostic to clusters and their respective sizes.)

The equal weight carried by each cluster or pair of cluster does, however, have
its drawbacks. Because our measures are unweighted means, they are somewhat
sensitive to outliers. For example, a few unrepresentative small clusters could
indeed skew the measures. However, the effect of outliers is typically smoothed
out by the mean or can be corrected by the use of a weighted mean.

Statistical Interpretation of the Kappas. The main strength of our Kap-
pas comes from their statistical definition. In the unweighted case, K̄ is the
probability any two nodes are connected, and in the weighted case it becomes
the mean edge weight. Similarly, K̄intra (K̄inter) is the mean probability two
nodes within a cluster (between clusters) are connected or the mean intra-cluster
(inter-cluster) edge weight.

In probabilistic terms, we expect a good clustering to partition the graph
such that the probability there exists an edge (ei,j) between two arbitrary nodes
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‘i’ and ‘j’ is lower than the probability a connection exists if these nodes are in
the same cluster (i.e., if ci = cj) and higher than when they belong to different
clusters (i.e., ci �= cj). Mathematically, we expect the following to hold:

Pr [ei,j |ci = cj ] > Pr[ei,j ] > Pr[ei,j |ci �= cj ]

In the case of a weighted graph, these probabilities become expected values of
edge weights between arbitrary vertices, vertices within and vertices between
clusters, and we expect the following inequalities to hold:

E[ei,j |ci = cj ] > E[ei,j ] > E[ei,j |ci �= cj ]

Defining our measures in this way, as estimates of an unknown “true” param-
eter, with an associated standard error, allows formal significance testing using
a simple t-test. Such tests can be used to determine if the clusters identified by
an algorithm are statistically significant. If they are, we expect the inequalities
K̄intra > K̄ > K̄inter to hold at a reasonable significance level. These inequal-
ities are necessary and sufficient to conclude the clusterings returned by an
algorithm are statistically (on average) consistent with the universally accepted
definition of a clustering. [8,18,19]. Our statistics can also be used when com-
paring two or more algorithms’ performances on a given graph. In such a case,
in order to conclude algorithm ‘a’ is better than algorithm ‘b’, we should observe
K̄a

intra > K̄b
intra and K̄a

inter < K̄b
inter.

Finally, let us note that our statistical (i.e., non deterministic) definition also
allows for uncertainty in the connectivity, another open problem [10]. Unlike
modularity and conductance, our measures are defined as statistical measure-
ments with associated standard errors, not deterministic quantities.

To formally confirm statistical significance and the strength with which the
sufficient conditions are met, we formulate an appropriate null hypothesis and
apply the t-test. Examples of such a test are shown in Sect. 4.4.

3 Computational Experiments

In order to empirically assess the accuracy of the various performance measures,
to study their response to various graph structures and cluster labelings, we sub-
ject them to a number of numerical stress test scenarios, using simulated graphs
and labels. The full experimental set-up of our individual tests and scenario
details are described in the next sub-section.

Overall, our goal is to test the accuracy and robustness of our clustering
measures and compare their behavior to that of the two main clustering measures
in the literature (modularity and conductance). Simulation is used to generate
test scenarios where the clustering structure is known in advance and could be
modified easily. These test scenarios are then used to examine and compare the
sensitivities of the kappas, modularity and conductance. Our scenarios include a
number of contrived instances, which are useful to stress test our metrics through
“extreme” examples and compare their behavior to those of the more established
measures.
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The overarching logic guiding our tests is that a good measure of inter-
or intra- cluster connectivity should accurately reflect the simulated graph’s
structures. We would expect measures of intra-cluster connectivity, Kintra and
modularity to increase in step with the simulated graph’s connectivity levels,
while we would expect conductance to display the inverse behavior. We would
also expect Kinter to follow the fluctuations of inter-cluster connectivity.

It should also be mentioned that some authors have used so-called “ground-
truth” data sets, networks where the nodes’ cluster memberships were labeled,
as benchmarks for clustering algorithm performance (e.g., [16,23,24]). Our app-
roach is more general, data set and objective function independent. Arguably,
the fact that an algorithm anecdotally provided accurate clustering on a labeled
instance is no guarantee it will perform equally well on another (likely unlabeled)
instance. In addition, our experiments provide us with an understanding of each
measure’s sensitivity and response to graph structure.

3.1 Experimental Set-Up

In the first set of experiments, shown in Table 1, we examine the effect of intra-
cluster connectivity. We begin with a graph with no edges between any of the
vertices and gradually increase intra-cluster connectivity in steps of 25%, while
maintaining inter-cluster connectivity at 0% (e.g., 25% of nodes are connected
to another node within their assigned cluster, 75% of nodes in each cluster have
no connections at all, nodes with connections only have connections to other
nodes within their assigned cluster, each cluster is disconnected from the rest of
the graph).

We then examine the effect of inter-cluster connectivity on each measure.
We begin with no inter-cluster connectivity and then increase it in steps of 25%
(e.g., 25% of nodes are connected to 25% of nodes outside their cluster), while
keeping intra-cluster connectivity at 0%. In other words, clusters are just sets of
disconnected vertices. In these scenarios, we imagine an algorithm, one with a
very poor cluster detection ability, that groups disconnected vertices into clusters
with different levels of inter-connection to other clusters but with an intra-cluster
connectivity that remains constant at 0%. Results are shown in Table 2.

In our experiments, we expect K̄intra to increase in step with intra-cluster
connection percentage. We also expect K̄inter to increase in step with inter-
cluster connection percentage. If this in-step increase occurs, it indicates our
measures accurately detect the graph’s connectivity structure.

Finally, in order to assess our measures’ robustness, we repeat all the tests
described above, but with the introduction of “noise” in the connectivity pat-
terns. Noise is introduced in the form of 100% intra-(inter-) cluster connectivity.
Results are shown in Tables 3 and 4.

In the tables that follow, we also report each graph’s characteristics, for each
experiment. The total number of vertices is denoted by N , the total number of
clusters by |C|, and the total number of edges by |E|.



A Statistical Performance Analysis of Graph Clustering Algorithms 177

Table 1. Varying intra-cluster connectivity, no noise from inter-cluster connectivity

Pct Inter = 0, Pct Intra varies

Pct Intra 0 25 50 75 100

N 10,048 9,440 9,666 10,493 10,039

|C| 200 200 200 200 200

|E| 0 76,942 160,147 269,341 336,942

K̄ 0.00 0.00 0.00 0.00 0.01

K̄intra 0.00 0.26 0.50 0.75 0.99

Std Err (K̄intra) 0.00 0.01 0.01 0.01 0.01

K̄inter 0.00 0.00 0.00 0.00 0.00

Std Err (K̄inter) 0.00 0.00 0.00 0.00 0.00

Φ 0.00 0.00 0.00 0.00 0.00

Q 0.00 0.99 0.99 0.99 0.99

Table 2. Varying inter-cluster connectivity, no noise from intra-cluster connectivity

Pct Intra = 0, Pct Inter varies

Pct Inter 0 25 50 75 100

N 10,530 10,089 9,354 10,028 10,829

|C| 200 200 200 200 200

|E| 0 3,058,924 10,753,463 27,815,367 58,250,108

K̄ 0.00 0.06 0.25 0.55 0.99

K̄intra 0.00 0.00 0.00 0.00 0.00

Std Err (K̄intra) 0.00 0.00 0.00 0.00 0.00

K̄inter 0.00 0.06 0.24 0.55 1.00

Std Err (K̄inter) 0.00 0.00 0.00 0.00 0.00

Φ 0.00 1.00 1.00 1.00 1.00

Q 0.00 −0.01 −0.01 −0.01 −0.01

4 Discussion

As shown in Sect. 3, our “Kappas” behave as expected, even when subjected to
noise. In all instances where the labeling of clusters reflects a good partition, the
inequalities K̄intra > K̄ > K̄inter hold and they do not hold in instances where
the partition reflects poor clustering. For example, in Table 3, all instances are
cases of poor clustering, by design. Similarly, in Table 4, instances where the
percentage of inter-cluster connectivity is below 75% are examples designed to
show good clustering and our inequalities hold in each.

More importantly, our inter- and intra-cluster measures follow the fluctua-
tions of the graph’s connectivity patterns more accurately than either modularity
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Table 3. Varying intra-cluster connectivity, with noise from inter-cluster connectivity

Pct Inter = 100, Pct Intra varies

Pct Intra 0 25 50 75 100

N 10,048 10,096 10,526 10,115 10,182

|C| 200 200 200 200 200

|E| 50,142,540 50,712,690 55,215,342 51,067,113 51,831,471

K̄ 0.99 1.00 1.00 1.00 1.00

K̄intra 0.00 0.25 0.50 0.74 0.98

Std Err (intra) 0.00 0.00 0.01 0.01 0.01

K̄inter 1.00 1.00 1.00 1.00 1.00

Std Err (inter) 0.00 0.00 0.00 0.00 0.00

Φ 1.00 1.00 1.00 0.99 0.99

Q −0.01 0.00 0.00 0.00 0.00

Table 4. Varying inter-cluster connectivity, with noise from intra-cluster connectivity

Pct Intra = 100, Pct Inter varies

Pct Inter 0 25 50 75 100

N 9,917 9,662 10,512 10,043 10,151

|C| 200 200 200 200 200

|E| 314,102 3,127,922 13,942,175 28,187,302 51,516,325

K̄ 0.01 0.07 0.25 0.56 1.00

K̄intra 1.00 0.99 1.00 1.00 1.00

Std Err (intra) 0.00 0.01 0.00 0.00 0.00

K̄inter 0.00 0.06 0.24 0.54 1.00

Std Err (inter) 0.00 0.00 0.00 0.00 0.00

Φ 0.00 0.85 0.96 0.98 0.99

Q 0.99 0.09 0.02 0.01 0.00

or conductance. It should be noted however, that K̄inter is less responsive to
increases in inter-cluster connectivity than K̄intra is to increases in intra-cluster
connectivity and that a graph’s overall connectivity (K̄) closely reflects inter-
cluster connectivity, especially in cases where the number of clusters is large.
Additionally, we note modularity and conductance display very counterintuitive
behaviors, although on a much larger scale. In the following sections we attempt
to explain these unintuitive behaviors and explain why the “Kappas” provide
a more accurate picture of the graph’s and clusters’ connectivity patterns than
either modularity or conductance.

Finally, in the following sections, we also show that the erratic behavior
displayed by modularity and conductance are the result of their sensitivity to



A Statistical Performance Analysis of Graph Clustering Algorithms 179

numerical implementation and sample sizes. This numerical sensitivity deeply
affected our results with our moderately-sized graphs and clusters. As we will
show in the next sections, this numerical sensitivity would only be compounded
in the case of a larger data set, rendering these measures even less responsive.
These sensitivities to data set size are particularly relevant in the context of
large data sets (“big data”).

4.1 Modularity Under Stress Test

In order to illustrate the lack of responsiveness of modularity and explain the
results in the previous section, we examine the following numerical example:
|C| = 200, N = 16, 400 and ni = 82 ∀i. We then adjust the intra and inter-
cluster connectivities, to examine the effect on modularity. The results are shown
in Tables 5 and 6.

We begin with a clustering algorithm that would be very deficient and returns
“clusters” that have 0% connection within themselves but are fully connected to
the rest of the graph (A0). We gradually increase intra-cluster connectivity to
25% (A25) and 100% (A100), while keeping inter-cluster connectivity constant at
100%. We then do the opposite, we begin with 200 isolated complete graphs (in
B0, each cluster is an isolated complete graph) and then increase inter-cluster
connectivity to 25% (B25). These experiments are almost the same as those
shown in Sect. 3, except that we kept cluster size constant, at 82 vertices, in
order to facilitate calculations.

Table 5. Varying intra-cluster connectivity

Scenarios A0 A25 A100
Components of Q e ii a i e ii a i e ii a i

cluster 1 0 0.005 0.00001 0.005 0.00002 0.005
cluster 2 0 0.005 0.00001 0.005 0.00002 0.005

...
...

...
...

...
...

...
cluster K 0 0.005 0.00001 0.005 0.00002 0.005

In Table 5, we see that with NO connectivity within clusters, Q ≈ 200× (0−
0.0052) ≈ 0. Now if we raise the intra cluster connectivity from 0% to 25%, we
add �0.25 × 82 × 81� = 831 edges to the graph, all of which connect vertices
within clusters.

The ai portion remains essentially unaffected, because the ai of each node
is scaled by 1

4m2 (i.e., increase of 831
4m2 ). On the other hand, ei,i, which is scaled

by 1
2m (i.e., increase of 831

2m ) goes up ever so slightly, but on a different order of
magnitude, and the denominator (m) also increases. So in the end, the added
connectivity only has an infinitesimal effect on the value of Q:

Q ≈ 200 × (0.00001 − 0.0052) ≈ 0
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Increasing the intra-cluster connectivity even further to 100% does not affect
the value of Q either. Indeed, the number of intra-cluster edges increases to
82 × 81 × 0.5 = 3, 321, but this increase is scaled by 1

2m or 1
4m2 , while m also

increases as well. So in the end, Q remains indistinguishable from 0, Q ≈ 200 ×
(0.00002 − 0.0052) ≈ 0.

Table 6. Varying inter-cluster connectivity

Scenarios BO B25
Components of Q e ii a i e ii a i

cluster 1 0.005 0.005 0.00038 0.005
cluster 2 0.005 0.005 0.00038 0.005

...
...

...
...

...
cluster K 0.005 0.005 0.00038 0.005

In Table 6, we observe that when none of the vertices within clusters are
connected to vertices outside their cluster, yet all have connections to vertices
within their assigned clusters (case of K isolated complete graphs), ei,i = ai.
As a result Q ≈ 200 × (0.005 − 0.0052) ≈ 1. But as soon as inter-cluster con-
nectivity increases, Q collapses. Increasing inter-cluster connectivity dramati-
cally increases m, which dramatically reduces ei,i. Simultaneously, ai increases,
although very modestly. With 200 connected components, modularity quickly
reaches its maximum, Q ≈ 200 × (0.005 − 0.0052) ≈ 1. With 25% inter-cluster
connectivity, it quickly approaches 0, Q ≈ 200× (0.00038− 0.0052) ≈ 0.07. Note
that although the degree of each vertex does indeed increase and contribute to
increasing each ai, the denominator of each ai is 4m2, a graph-wide number.
In the end, any increase in the cluster-centric numerator of ai is eliminated by
a dramatic graph-wide increase in m. Also note that, predictably, increases in
inter-cluster connectivity beyond 25% make Q rapidly converge to zero.

4.2 Conductance Under Stress Test

Conductance is calculated at the cluster level and we assign Φ(G) the minimum
value of all φ(S). Taking the minimum makes conductance very sensitive to
outliers and not robust at all. In the event the graph has even one single cluster,
call it S̃, that is densely connected, then φ(S̃) ≈ 0. Consequently, Φ(G) ≈ 0,
regardless of network configuration.

In the results shown in Sect. 3, conductance breaks down for a different rea-
son, however: In the case of an edge-less graph the denominator of conductance
is zero, so we set φ(S) = 0, by convention. Later, as we raise intra-cluster connec-
tivity, the denominator remains zero, because inter-cluster connectivity is kept
at 0% (Table 1). In the case of completely disconnected “clusters” (incorrectly
labeled as clusters by the algorithm), the denominator is again 0. The denomi-
nator remains unchanged, when we increase inter-cluster connectivity (Table 2).
This pattern repeats with the introduction of noise (Tables 3 and 4).
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4.3 Kappas Under Stress Test

As shown in Sect. 3, our Kappas behave as expected, even if K̄inter appears
less responsive to graph structure than K̄intra, K̄inter closely mirrors K̄ and
K̄intra increases slowly in the case of our weighted examples. This relatively
slow response and mirroring are completely consistent with the definitions. Note
that when one edge is added anywhere on the graph, K̄ goes up by 1/(0.5×N ×
(N −1)), a very small amount. When one edge is added within a cluster, K̄intra
also goes up, but by a larger amount:

(1/k)/(0.5 × ni × (ni − 1))

When an edge is added between clusters, K̄inter also only goes up by a small
amount:

1
0.5×κ×(κ−1)

0.5 × [(ni + nj)(ni + nj − 1) − ni(n1 − 1) − nj(nj − 1)]

In the case of weighted graphs, our weights (wi,j) are all in the [0, 1] interval, so
when one edge is added within a cluster K̄intra increases by

(wi,j/k)/(0.5 × ni × (ni − 1)) ≤ (1/k)/(0.5 × ni × (ni − 1)).

It is also important to note that even in instances where K̄inter or K̄intra are not
as responsive as expected, the relative magnitude of the measures still correctly
identifies highly clustered graphs. In all our experiments strong clusters were
always characterized by the inequality K̄intra > K̄ > K̄inter.

Finally, we call the readers’ attention to the standard errors of the various
Kappas, which remain stable around 0. We show standard errors to emphasize
the statistical nature of the Kappas. However, due to the pre-defined homoge-
neous connectivity patterns used in our computational experiments, variance
(standard deviation) in connectivity is relatively low. Additionally, a small stan-
dard deviation is then scaled by a relatively large denominator (

√
200), which

reduces it even more.

4.4 An Example of Formal Statistical Testing for Kappas

As discussed previously, one of the strengths of our measures is their statisti-
cal definition. This definition allows us to perform formal statistical testing to
confirm our conclusions. Here, we illustrate our claim by showing two examples,
in Table 7. Our null hypotheses are, in the first test, K̄intra ≤ K̄ and, in the
second test, K̄inter ≥ K̄. The goal of these tests is to formally verify the quality
of the clustering identified by an algorithm. If the clustering is good, the null
hypotheses K̄intra ≤ K̄ and K̄intra ≥ K̄ should be rejected, at the usual confi-
dence levels (0.01, 0.05). If the clustering is bad, as it is in our first example, we
expect the null not to be rejected.
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Table 7. Hypothesis test example

Test K̄intra Test K̄inter

Null Hyp K̄intra ≤ K̄ K̄intra ≥ K̄

Alt. Hyp K̄intra > K̄ K̄inter < K̄

Pct inter (actual) 1 0.75

Pct intra (actual) 0.75 1

|C| 200 200

K̄ 1.00 0.56

K̄intra 0.74 na

Std Error 0.01 na

K̄inter na 0.54

Std Error na 0.001

t-statistic −26 −20

Deg freedom 199 19,899

p-value 0.000 0.000

Reject null? NO YES

5 Conclusion

We described a new set of statistical clustering measures that allow formal qual-
ity assessments and comparison of algorithms. Our measures are shown to be
more robust than the commonly used modularity and conductance. In particular,
our measures appear to be more responsive to cluster labeling and less sensitive
to sample size, resolution limit and breakdowns during numerical implementa-
tion. This latter feature is especially important in the context of larger data
sets.

In this article, we restricted our attention to non-overlapping clusters, since
that is what most clustering techniques identify. Future investigations could
focus on extensions to measuring the strength of overlapping clusters.
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