
Chapter 14
Floodplain Connectivity
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Abstract Floodplains fulfil vital ecosystem services (supporting water manage-
ment, biodiversity, agricultural production, ecotourism and others). Since a satis-
factory water supply is indispensable for the provision of such services, in addition
to longitudinal channel connectivity, lateral channel/floodplain hydrological con-
nectivity is of primary importance. As a consequence of river regulation, however,
floodplains shrunk considerably in area, ‘protected’ floodplains connection with the
river channel which had produced them and became severely threatened ecosystems.
In the Drava Plain, too, disconnected (or ‘geographically isolated’) oxbows became
typical. With reduced surface connectivity, groundwater flow becomes the main
driver of connecting processes (profundal type of oxbow). Effective porosity and
hydraulic conductivity of alluvial deposits and seepage from an oxbow lake (the
degree of clogging of floor deposits) were calculated to estimate groundwater
movements and to reveal water exchange between oxbow lakes and the active river
channel. Subsurface connectivity under drought conditions was simulated by
hydrological modelling with the help of HYDRUS-1D and MODFLOW 6 packages.
Planning rehabilitation efforts subsurface connectivity too should be considered.
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14.1 Introduction

In geomorphology and landscape ecology, the concept of connectivity is applied in
three different meanings (Croke et al. 2013):

(1) landscape (topographic) connectivity denotes the physical coupling of land-
forms (e.g. hillslope to channel) within a drainage basin (e.g. Michaelides and
Wainwright 2002; Brierley et al. 2006);

(2) hydrological connectivity refers to the communication of landforms manifested
in surface and subsurface water flow (e.g. Ambroise 2004; Bracken and Croke
2007; Opperman et al. 2010) and

(3) sedimentological connectivity relates to the movement of sediments and
attached pollutants between landscape units (e.g. Hooke 2003; Fryirs et al.
2007; Fryirs 2013).

Although the term is widely used, confusion remains on how to quantify con-
nectivity at various spatial and temporal scales (Croke et al. 2013).

Even before the concept of hydrological connectivity became accepted, it had
been pointed out that, nutrients, sediments and organic matter carried by water
move laterally and are deposited on floodplain surfaces (Gregory et al. 1991;
Zwoliński 1992). A central theme in large river ecosystem functioning has been the
flood pulse concept (Junk et al. 1989; Sparks et al. 1990; Tockner et al. 2000),
which holds that, during floods of proper level and duration, floodplain connectivity
allows the exchange of nutrients and feeding and spawning for some fish species in
the floodplain. In the often heavily altered flow regimes of regulated rivers, how-
ever, flood pulses, which had formerly ensured connectivity, are reduced in mag-
nitude, frequency and duration (APFM-WMO 2017).

Landscape ecological studies underline that longitudinal hydrological connec-
tivity is a key property for the survival of the whole system (Tockner and Stanford
2002; Brierley et al. 2006). The term does not only refer to the river channel, but to
the riverine corridor, too, and it denotes a central concept of restoration/
rehabilitation projects (Piégay et al. 2000; Sulc-Michalková and Sulc 2011).

In addition to surface connectivity, water may also connect with the floodplain and
its wetlands through groundwater flow (Brinson et al. 1995; Jacobson et al. 2011).
Unconsolidated and permeable floodplain deposits facilitate rapid and dynamic
connections between river channels and wetlands adjacent to the channel (Amoros
and Bornette 2002) or even at considerable distance from that (in ‘geographically
isolated’ position—Ameli and Creed 2017). (It is also observed in the case of the
Drava River—Dezső et al. 2017). The hyporheic corridor may extend some kilo-
metres away from the river channel into the alluvium (Stanford and Ward 1993) and
can be an important source of water supply to oxbow lakes (Tockner et al. 1999).
Other sources of groundwater are neighbouring hills and uplands, where run-off
maintains hillslope/floodplain links (Kelly 2001) and establish a connectivity chain.

In view of complex interactions among surface and groundwater, topography
and alluvial deposits present a challenge to the assessment of rehabilitation potential
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(Fryirs and Brierley 2000, 2016). For successful interventions, detailed historical
geomorphic analyses at floodplain and catchment scales are needed (Brierley and
Fryirs 2005, 2008; Kondolf et al. 2007; Hohensinner et al. 2011). Analysing a
Danube restoration project, Tockner et al. (1998) claim that primarily fluvial
dynamics, the associated connectivity gradients and a natural disturbance regime
have to be reestablished. Then the ecosystem can hopefully be maintained with only
minimum effort.

14.2 Types of Hydrological Connectivity

Floodplain hydrology, morphology and hydraulic connectivity are influenced by a
wide range of factors (Shankman 1993; Amoros and Bornette 2002; Hudson 2010;
Kupfer et al. 2010). The stage of infilling for abandoned channels (including
oxbows) depends on the time elapsed since cut-off, avulsion or bifurcation and the
rate of plugging processes. The density of vegetation controls the accumulation of
organic fill. The links established with cross-floodplain tributaries help abandoned
channels remain hydrologically active longer (Phillips 2009). Additional local
processes can also affect the evolution of floodplain depressions.

Phillips (2013) identified six different modes of surface hydrological connec-
tivity for floodplain wetlands (oxbow lakes, sloughs and paleochannels):

(1) flow through (regular river flow to and from the main channel);
(2) floodchannel (flow at high water stages, partly reaches the main channel);
(3) fill and spill (flow at high stages, fill to a threshold level and then overflow into

flood basins);
(4) fill and drain (fills at high river discharge and returns to the main channel);
(5) tributary occupation of former river reaches and
(6) disconnected (no flow except during large floods).

He found that lateral distance from the active channel is poorly related to
hydrological connectivity.

In their lake typology, Dawidek and Ferencz (2014) also claim that ‘the
hydrological (the degree of filling of the basin) and ecological state mostly depends
on the type of connections that the lake has to the parent river’. Dawidek and
Turczyński (2006) identify four types of connection between floodplain lakes and
the main river (Fig. 14.1):

(1) confluent (the floodplain lake receives water from the river in the direction of
general slope of the valley);

(2) contrafluent–confluent (the lake is fed by the river from both upstream and
downstream directions);

(3) contrafluent (water supply during floods and backflow to lake at the same site)
and

(4) profundal–confluent (the lake is fed primarily from groundwater and secon-
darily from the river channel).
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Naturally, there is an extreme profundal type, too, where groundwater flow is the
sole supplier of water to the lake. Even for lakes where no profundal connection is
predominant, groundwater flow is important (Dawidek and Ferencz 2014). As a
matter of course, the rate of recharge is also dependent on these types. The inter-
ception and transpiration of riparian forests can significantly modify the water
balance of floodplains (see Chap. 12 and Piégay et al. 1997).

The EU Water Framework Directive (WFD) (European Commission 2000) also
acknowledges that surface/subsurface water interactions play a crucial role in the
water budget of floodplains for the restoration of floodplain habitats (Downs and
Thorne 2000). Major streams, like the Drava River, and their hyporheic zones
maintain a hydraulic balance with groundwater. Among groundwater bodies and
aquifers, the unconfined aquifer reacts most rapidly to rainfall events. Therefore,
groundwater and surface water have to be conceived as components of a single
system (Winter et al. 1999). Although the protected floodplain is only exceptionally
covered by water along regulated rivers like the Drava, inundations in the perirheic
zone (as defined by Mertes 1997) are regularly observed during wet spells.

Along the Drava River, flood-control structures also disrupted links on the
surface and reduced connectivity to groundwater flow. Parafluvial and floodplain
hyporheic flows also seem to be inhibited. Increasingly, severe drought conditions
are indicated by dropping water levels recorded in groundwater observation wells
even at 2–3 km distance from the channel.

14.3 Methods and Discussion

There are analytical and synthetical approaches to quantify floodplain/channel
connectivity (also embracing flood risk). Studying surface connectivity, Croke et al.
(2013) identified macrochannel width as a crucial factor. Macrochannels and

Fig. 14.1 Types of oxbow
lake recharge from the main
river channel (on the example
of the Bug River, Poland—
after Dawidek and Turczyński
2006). A, confluent; B,
contrafluent–confluent; C,
contrafluent; D, profundal–
confluent
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associated landforms (within-channel benches, macrochannel banks and flood-
plains) were represented on fine-resolution digital elevation models based on
LiDAR survey. Bankfull Average Recurrence Interval (ARI) was computed for
channel reaches of expansion and contraction using the one-dimensional (1D) flow
hydraulic model HEC-RAS. Valley floor width was established from the valley
bottom flatness index (MrVBF—Gallant and Dowling 2003). Significant nonlinear
changes in channel capacity were found to control the spatial pattern of hydro-
logical connectivity. A network index (NI) has also been proposed to predict sur-
face connectivity in agricultural catchments (Lane et al. 2004; Shore et al. 2013).

An index for river/floodplain connectivity, called the Land Capability Potential
Index (LCPI), was suggested to assist regional-scale restoration planning of agri-
cultural land along the Lower Missouri River (Jacobson et al. 2007, 2011).
The LCPI integrates modelled water-surface elevations, floodplain topography and
soils to index relative wetness of floodplain patches. Schwarz et al. (1996) assessed
hydrological connectivity in terms of distance, elevation difference and channelized
connections to the active channel. These approaches are directed at studying the
fertility of agricultural land and not really appropriate for the investigation of the
Drava floodplain.

To find suitable indicators for subsurface connectivity is even more problematic
(Golden et al. 2014; McLaughlin et al. 2014). Most authors suggest the application
of coupled surface–subsurface flow models, like MODFLOW (Brunner et al. 2010).
The MODFLOW wetlands package and its recent modified versions (MODFLOW
6) are useful tools to depict subsurface hydrologic connectivity of wetlands, where
groundwater is the dominant flow pathway. MIKE-SHE covers six key processes at
the watershed scale: overland flow, channel flow, unsaturated and saturated flow,
interception and evaporation, snowmelt and exchanges between aquifers and rivers.
Ameli and Creed (2017) and Ameli and Craig (2014) used a 3D groundwater–
surface water interaction model to reveal spatially variable recharge rates and
groundwater depths. Supported by empirical groundwater table observations, these
authors assumed a steady-state subsurface flow.

In the Drava research project, surface connectivity was found to be temporarily
limited and of subordinate significance. Therefore, a central task was to search for
hydrogeological parameters, which act as boundary conditions for groundwater
flow in the floodplain (Dezső et al. 2017). In this approach, the highly changeable
water transfer processes can be evaluated in the light of temporally much more
stable sedimentological properties (such as grain-size distribution, effective
porosity, hydraulic conductivity). Dynamic data on groundwater flow (depth to
groundwater table, soil moisture content, rate of seepage from lake) are supplied by
groundwater observation wells and soil moisture monitoring.
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14.3.1 Effective Porosity

Effective porosity (Singhal and Gupta 2010) was measured by the gravimetric
method on undisturbed samples. The samples were oven-dried at 105 °C for 24 h
and filled with water to saturation. After saturation, samples were placed on a sand
bed for 24 h to lose gravitational water.

Although microstratification varied with samples, effective porosity was equally
low in all samples. As a consequence, relatively low infiltration rates were found.
Effective porosity is reduced by various precipitations (calcareous, ferruginous and
organic matter), while increased by root canals and outwash of sediments from the
matrix (Table 14.1).

14.3.2 Hydraulic Conductivity

The alluvial sequences in floodplains are rather heterogeneous for physical and
hydraulic properties (Wang et al. 2017). The preliminary soil survey, however,
allows some typology and a simplified approach can be applied. The sediments of
the studied oxbow floor can fundamentally be divided into two types: a clayey-silty
and a calcareous sandy unit (Dezső et al. 2017). Hydraulic experiments were carried
out on undisturbed sediment samples taken from the deepest part (the former
channel thalweg) of the oxbow (Kp1) and parallel with the shoreline (Kp3). The
modi of the PSD curves were markedly different, 80 lm along the shoreline and
10 lm in the deepest part of the lake (Fig. 14.2).

Based on hydraulic analyses of the undisturbed sediment samples in the labo-
ratory, different hydraulic conductivity values were found in the middle and
shoreline section of the oxbow (from 8.34 � 10−8 to 2.82 � 10−7 m s−1)—which is
just the opposite to the corresponding pattern in river channels. It is explained by the
presence of fine lacustrine silts in the deepest part and the dominance of fine fluvial
sands (Dmed = 80 lm) with high organic matter content in the offshore region.

At the beginning of the hydraulic conductivity experiments, a hydraulic head of
1.5 m was set on the top of the samples (Fig. 14.3). Subsequently, saturated
hydraulic conductivity was calculated using the falling head method. The pressure

Table 14.1 Typical effective porosity data of the soil and sediment samples

Sediment Maximum porosity
(V/V%)

Effective porosity
(V/V%)

Pale brown loam, root canals 46.52 22.14

Brown, subangular clayey loam 44.78 13.40

Pale brown loamy silt with ferruginous
precipitations

43.19 17.15

Grey, single grained, fine sand 48.28 22.90

Pale grey, single grained sand 49.51 30.15
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Fig. 14.2 Stratification and grain-size distribution of deposits in the deepest (Kp1) and offshore
part (Kp3) of Lake Kisinc (Cún-Szaporca oxbow)

Fig. 14.3 Cumulative infiltration as a function of time for the undisturbed samples Kp1, Kp2 and
Kp3
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head is representative of the water column height in Lake Kisinc (Fig. 12.3) after the
accomplishment of the water replenishment scheme. (Water levels will be raised
from the current 90.5 m to an operational level of 91.5–92 m). Saturated hydraulic
conductivity was calculated with the following formula (Reynolds and Elrick 1985):

k ¼ L
t2 � t1ð Þ � ln

h1
h2

� �

where k is saturated hydraulic conductivity, L is the height of the soil core, t1 and t2
are initial and final times of the experiment, respectively, h1 and h2 are the corre-
sponding pressure head heights.

Hydraulic conductivity was 8.3 � 10−8 m s−1 for Kp1 sediment samples and
2.82 � 10−7 m s−1 for the cores Kp2 and Kp3 (Fig. 14.3). When an initial head of
1.5 m was used during the laboratory experiments, water-level drop ranged
between 0.38 and 0.60 m for the sediment samples taken from the clogging zones.
However, since its cut-off, the oxbow has been functioning as a depositional basin
with ever finer sedimentation. The sediments taken from the shoreline borehole
originate and have been transported into the lake from the levee of the oxbow. In
addition to the dissimilarity in PSD, variations in hydraulic conductivity may be
caused by the development of biofilms. (This latter effect, however, cannot be
proved from our measurements unambiguously).

14.3.3 Groundwater Flow Modelling During Drought

To study connectivity through groundwater flow, a drought period of 30 days (with
no rainfall, 3 mm d−1 evaporation) was simulated using the HYDRUS-1D model
(Nagy et al. 2017). The model was run for altogether 19 sampled sites with different
soil textures under 3 hydrological boundary conditions; dry (w < 15,000 H2O-cm),
normal (−15,000 < w < −10 H2O-cm) and saturated conditions or excess ponding
(−10 H2O-cm < w).

Multilayered sandy and sandy-silt loam soil profiles showed no capillary rise and
groundwater recharge. With groundwater table 1 m below the average depth,
permanent wilting point was reached at all sites after a 30-day drought. Water
retention varied widely with soil texture type, and the best correlation coefficient
(r = 0.79) between observed and measured volumetric water content was found for
loam layers in the studied profile.

14.3.4 Seepage from Lake

The rate of seepage from the oxbow can be calculated from the water balance
equation. The used input parameters included geomorphological data for the oxbow
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and the measured hydrological parameters (Table 14.2). Since the planned
replenishment rates for the months of March and June were 43,200 and 24,512 m3

d−1, respectively (data obtained from DDKÖVÍZIG 2012), a mean 30,000 m3 d−1

replenishment rate was used in our calculations. The thickness of the saturated zone
was set to 4 m.

The amount of exchanged water between the oxbow lakes and the surrounding
groundwater is proportional to the change of hydraulic head (dh), the surface area
and the hydraulic conductivity (k) of the sediments and inversely proportional to the
thickness of the clogging zone (d) as it is described by the modified Darcy equation
(Brunner et al. 2010):

Qs ¼ k
d

hox � hgrw
� � � DxDy

where Qs is total outflow from the oxbow; k is hydraulic conductivity (m s−1); d is
soil depth (m); hox is relative water level of the oxbow lakes (m); hgrw is the depth
of the adjacent relative groundwater table (m) and DxDy is the change of seepage
surface area that corresponds to As.

The lakebed was divided into two zones, a shallow zone (less than 1.5 m deep)
and a deeper (1.5–2.4 m) zone. The hydraulic conductivities of the recently flooded
shoreline areas are similar to the relevant values obtained from the pumping tests.
Very different hydraulic conductivity values were found: for the deeper zone
(median particle size: Dmed = 10 lm) an order of magnitude lower hydraulic
conductivity (k * 10−8 m s−1) than in the shallow zone (Dmed = 80 lm)
(k * 10−7 m s−1). The additionally inundated areas have an even higher conduc-
tivity (k * 10−5 m s−1).

Table 14.2 Input and output parameters for seepage calculations

Input data

From geomorphological survey From field and
laboratory
investigations

Volume of
oxbow

Voxbow (m3) Hydraulic conductivity (depending on
sedimentological properties of the oxbow and
newly flooded areas)

k (m s−1)

Area of oxbow
lake surface

Aoxbow (m2)

(relative) Water
level of oxbow

hoxbow (m) Effective porosity no (-)

Output (calculation)

Amount of seepage from the oxbow Qs (m3 d−1)

Total seepage area As (m2)

Change of oxbow lake surface Aom (m2)

Calculated water level of oxbow hcw (m a.s.l)

Calculated water storage capacity of oxbow Vcws (m3)
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The rising water level in the oxbow triggers an increasing hydraulic pressure
difference compared to the adjacent areas. With the increasing volume in the
oxbow, the potential contact surface and seepage area also increases. Due to the
increasing total seepage area, more and more added water is lost (Fig. 14.4).

14.3.5 Groundwater Flow Modelling
with MODFLOW-2005

Water transfer from the oxbow lakes to the main Drava channel was simulated
using the MODFLOW 6 model (Langevin et al. 2017). The groundwater flow
model includes calculations of groundwater flow (discretization, initial conditions,
hydraulic conductance and storage), stress packages (constant heads, wells,
recharge, rivers, general head boundaries, drains and evapotranspiration) and
advanced stress packages (streamflow routing, lakes, multi-aquifer wells and
unsaturated zone flow).

A 10-m resolution Digital Elevation Model (DEM) was built for the area
between the Cún–Szaporca oxbow and the Drava main channel. The model is
discretized with a finite-difference grid (60 rows, 14 columns and 10 layers; cell
size: 10 m � 10 m) (Salem et al. 2017). The eastern and western boundaries are
marked with constant head values from previous monitoring of precipitation,
groundwater table, infiltration and groundwater recharge. The evapotranspiration is
estimated at 13 mm d−1.

The model was run using the replenishment scenarios identified in the Old Drava
Programme (DDKÖVÍZIG 2012—see Chap. 21). In scenario 1 (lake level
increases by 0.5–91 m above sea level), seepage from the lake was found as
1,298.8 m3 d−1 and water loss through evapotranspiration rise was estimated at

Fig. 14.4 Functional relationship between the hydraulic pressure head difference and seepage
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Fig. 14.5 Simulated groundwater levels between the oxbow lakes and the main Drava channel
under modelling conditions (by Ali Mohamed Salem)

14 Floodplain Connectivity 225



161.20 m3 d−1 higher than the baseline situation. This equals 0.28 m average
groundwater level rise. In scenario 2 (lake level raised by 1 m to 91.5 m), recharge
rate from the lake to the aquifer grows by 745.59 m3 d−1. Consequently, the
average water table rises by 0.77 m (Salem et al. 2017).

The advantage of this modelling approach is that it detects water transfer from the
lake to inflow into the river. Great variations are revealed according to the grain-size
distribution of the alluvial sequence. Calculating with a single uniform aquifer
344.29 m3 d−1 seepage is found for a silty deposit (k = 60 m d−1) and 1,468.95 m3

d−1 for sand (k = 500 m d−1). Recharge to the river is 176.34 m3 d−1 for silt and
1,477.15 m3 d−1 for sand. More realistic estimates of subsurface connectivity are
made through the vertical discretization of the aquifer based on the geomorpho-
logical interpretation of satellite images supplemented with ground-penetrating radar
surveys (Dezső et al. 2017). This way, six layers with different texture and con-
ductivity were distinguished and incorporated in the model (Salem et al. 2017). In
this case, water loss amounts to 347.79 m3 d−1 and inflow into the channel is
707.74 m3 d−1. The figures underline a very high horizontal connectivity between
water bodies (Fig. 14.5). At the same time, in the vadose and saturated zones 65% of
the water leaked from the oxbow lake may be retained (Salem et al. 2017).

14.4 Conclusions

Surface connectivity of the protected floodplain with the main channel of the Drava
is very difficult to provide. Groundwater flow, however, ensures some degree of
subsurface hydrological connectivity. This has to be assessed in close association
with the water retention capacities of soils and alluvial deposits.

Our research shows that the critical factor in water retention is the transmissivity
of lakebed and adjacent deposits. It is not only the present lakeshore that has to be
examined hydrodynamically but also the future shallow lakebed zone inundated
after water replenishment. Based on the laboratory hydraulic analyses of the
undisturbed sediment samples, highly different conductivity values were found for
the middle and offshore parts of the oxbow lakes—a pattern just the opposite
expected for active river channels. Relatively, coarse fraction (*80 µm) dominates
the shoreline zone and allows higher seepage rate from the oxbow lake.
Considerable losses to groundwater (and indirectly to the Drava River) are expected
and may jeopardize the success of the replenishment scheme. Allowing for the
hydraulic variability of the sediment sequence, HYDRUS-1D and MODFLOW 6
simulations showed to what extent the planned replenishment scenarios will raise
the groundwater level and allowed the estimation of soil water retention capacity
(Valentová et al. 2010).
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