Chapter 9 Secondary Malignant (Metastases)

Dominic H. Moon and Timothy M. Zagar

Brain metastasis is the most common indication for stereotactic radiosurgery (SRS). SRS is a safe and effective treatment modality for patients with good performance status and limited number of brain metastases. In addition, SRS serves as an adjuvant therapy for resected brain lesions. Accumulating studies also support the use of hypofractionated stereotactic radiotherapy (HSRT) delivering 27–35 Gy in 3–5 fractions for relatively large brain lesions and resection beds.

9.1 Pearls

- Brain metastases are the most common intracranial tumors in adults.
- Incidence of brain metastases has been increasing due to improvement in detection with MRI and improvement in extracranial disease control with systemic therapy.
- Up to 30% of patients with cancer develop brain metastases.
- Common primary malignancies metastasizing to the brain include lung cancer, breast cancer, melanoma, and renal cell cancer.
- Metastases are most commonly located at the grey-white matter junction.
- Distribution of metastases is approximately proportional to the blood flow to the different parts of the brain: cerebral hemispheres (80%), cerebellum (15%), and brainstem (5%).
- Patients commonly present with headaches, focal neurologic dysfunction, cognitive dysfunction, seizures, and/or stroke.

D. H. Moon

Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

T. M. Zagar (⊠) Northeastern Radiation Oncology, PLLC, Saratoga Springs, NY, USA

© Springer International Publishing AG, part of Springer Nature 2018

O. Kaidar-Person, R. Chen (eds.), *Hypofractionated and Stereotactic Radiation Therapy*, https://doi.org/10.1007/978-3-319-92802-9_9

• The imaging study of choice is a contrast-enhanced brain MRI. Brain metastases are suspected by the presence of multiple lesions, localization at the grey-white matter junction, circumscribed margins, and presence of vasogenic edema.

9.2 Prognosis Based on Diagnosis-Specific Graded Prognostic Assessment (DS-GPA)

	GPA scoring criteria				
Prognostic factor	0	0.5	1.0		
Age (years)	≥70	<70	-		
KPS	≤70	80	90–100		
ECM	Present	-	Absent		
No. of BM	>4	1-4	-		
Gene status	EGFR neg/unk and ALK neg/unk	-	EGFR pos or ALK pos		
Median survival (months) by GPA score					
	Non-adenocarcinoma: 0–1.0 = 5.3; 1.5–2.0 = 9.8; 2.5–3.0 = 12.8				

Non-small cell lung cancer (Lung-molGPA) [1].

Abbreviations: *KPS* Karnofsky performance score, *ECM* extracranial metastases, *BM* brain metastases, *neg/unk* negative or unknown, *pos* positive

	GPA scoring criteria				
Prognostic factor	0	0.5	1.0		
Age (years)	≥70	<70			
KPS	≤70	80	90-100		
ECM	Present	-	Absent		
No. of BM	>4	2-4	1		
BRAF gene status	Negative/unknown	Positive			
Median survival (months) by GPA score	0-1.0 = 4.9; 1.5-2.0 = 8.3; 2.5-3.0 = 15.8;				
	3.5-4 = 34.1				

Melanoma (Melanoma-molGPA) [2].

Abbreviations: KPS Karnofsky performance score, ECM extracranial metastases, BM brain metastases

	GPA sco	GPA scoring criteria				
Prognostic factor	0	0.5	1.0	1.5	2.0	
KPS	≤50	60	70-80	90-100	-	
Subtype ^a	Basal	-	LumA	HER2	LumB	
Age (years)	≥60	<60	-	-	-	
Median survival (months) by GPA score	0-1.0 = 2	3.4; 1.5–2.0	0 = 7.7; 2.5-	3.0 = 15.1; 4	.5-4.0 = 25.3	

Breast cancer [3].

Abbreviations: KPS Karnofsky performance score

^aBreast cancer subtype: Basal—triple negative; LumA—ER/PR positive, HER2 negative; HER2— ER/PR negative, HER2 positive; LumB—triple positive

Renal cell carcinoma [3].

	GPA scoring criteria		
Prognostic factor	0	1	2
KPS	<70	70-80	90–100
No. of BM	>3	2–3	1
Median survival (months) by GPA score	0-1 = 3.3; 2 = 7.3; 3 = 11.3; 4 = 14.8		

Abbreviations: KPS Karnofsky performance score, BM brain metastases

GI cancers [3].

	GPA scoring criteria				
Prognostic factor	0	1	2	3	4
KPS	≤60	70	80	90	100
Median survival (months) by GPA score	0-1 = 3.1; 2 = 4.4; 3 = 6.9; 4 = 13.5				

Abbreviations: KPS Karnofsky performance score

9.3 Tumor/Patient Selection

- SRS is generally recommended for patients with good performance status (KPS ≥70).
- Patients with brain metastases and a KPS <70 have poor overall prognosis, and should be considered for whole-brain radiotherapy (WBRT) versus best support-ive care [4].
- Indications for SRS:
 - 1–4 brain metastases and surgery are not feasible secondary to location, comorbidities, or patient preference.
 - Status post-resection of a dominant or a few brain metastases (postoperative RT).

- SRS can also be considered for patients with good performance status and 4–10 brain metastases with low tumor burden (i.e., total volume of disease in the brain is low) [5].
- For patients with limited number of brain metastases, adding WBRT to SRS is generally not recommended. Although SRS + WBRT improves local and distant brain control, it leads to significant cognitive decline without improvement in overall survival [6, 7].
- Dose and fractionation are selected based on size and setting (refer to 9.5 and 9.9 for details):
 - For lesions ≤40 mm, a single-fraction SRS is given with doses of 15–24 Gy based on size.
 - For larger lesions or lesions near critical structures such as the brainstem and optic apparatus, a lower dose (12–14 Gy) can be used in a single-fraction SRS or Fractionated stereotactic radiotherapy (FSRT) with doses of 24–35 Gy in 3–5 fractions.
 - In the postoperative setting, SRS/HSRT to the surgical bed in 1–5 fractions is an alternative to WBRT.
- Re-irradiation with SRS is used in some institutions as salvage therapy for local failure after initial SRS. Several retrospective series report good local control rates but relatively high risk of radiation necrosis [8]. For select patients (surgically inaccessible local recurrence, small and limited number of lesions, etc.), repeat SRS may be an option, but the authors urge caution.

9.4 Treatment Planning Considerations

Simulation instructions	– Position: Supine	
	- Immobilization: Customized head cast	
	– 1 mm thick CT slices	
	- Fuse MR brain (1 mm slices preferred) to help delineate target volume	
	- Fuse pre- and postoperative MR for surgical bed treatment	
Image guidance	Linac: Daily cone beam CT	
	CyberKnife: Continuous skull tracking	
Margins	- The authors use no CTV or PTV expansions for intact brain metastasis (Figs. 9.1 and 9.2)	
	 Consider 1–2 mm expansion of postoperative bed CTV for resected brain metastasis (Fig. 9.3) 	
Tumor coverage considerations	- 100% of GTV (or CTV for postoperative cases) receives 100% of Rx (if GTV/CTV <20 mm)	
	 – ≥95% of GTV (or CTV for postoperative cases) receives 100% of Rx (if GTV/CTV >20 mm) 	

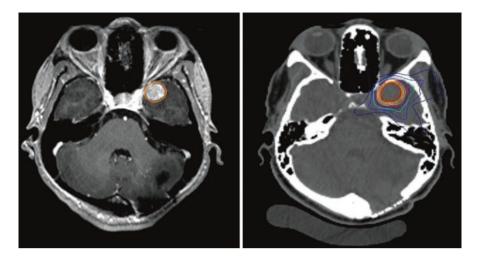


Fig. 9.1 Contouring of a left temporal lobe metastasis based on contrast-enhanced MR brain (left) and the treatment plan sparing optic structures (right)

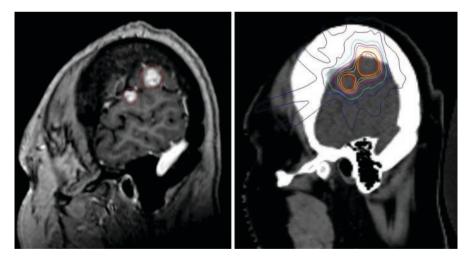


Fig. 9.2 Sagittal view of two adjacent left temporal brain metastases (left) and the treatment plan targeting both lesions (right)

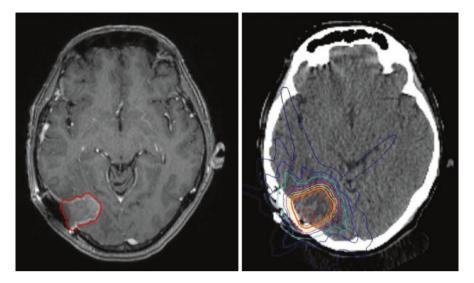


Fig. 9.3 Contouring of a right occipital surgical bed following a resection of a renal cell metastasis based on the postoperative contrast-enhanced MR brain (left) and the treatment plan (right)

9.5 Commonly Used Dose/Fractionation Schemes

Dose per fraction (Gy)	# of fractions	Total dose (Gy)	Notes
SRS for intact lesions			
RTOG 90–05 [9]			
20–24	1	20-24	≤20 mm
18	1	18	21–30 mm
15	1	15	31–40 mm
Hypofractionated stere	otactic radiothera	ару	
Manning 2000 [10]			
9	3	27	≤3 brain mets, median dose
Aoyama 2003 [11]			
8.75	4	35	≤4 brain mets, median dose
Ernst-Stecken 2006 [12]			
6	5	30	If combined with WBRT
7	5	35	All others
Murai 2014 [13]			
9–10	3	27-30	25–39 mm
6.2–7	5	31–35	≥40 mm
Postoperative SRS			
Minniti 2013 [14]			
9	3	27	>30 mm
N107C/CEC.3 [15]			

Dose per fraction (Gy)	# of fractions	Total dose (Gy)	Notes
20	1	20	<4.2 cc
18	1	18	\geq 4.2 and <8.0 cc
17	1	17	≥8.0 and <14.4 cc
15	1	15	\geq 14.4 and <20 cc
14	1	14	≥20 and <30 cc
12	1	12	\geq 30 cc and <5 cm
Mahajan 2016 [16]			
16	1	16	≤10 cc
14	1	14	10.1–15 cc
12	1	12	>15 cc

For intact lesions, the authors use $20 \text{ Gy} \times 1 = 20 \text{ Gy}$ if $\leq 20 \text{ mm}$, $18 \text{ Gy} \times 1 = 18 \text{ Gy}$ if 21-30 mm, and $6 \text{ Gy} \times 5 = 30 \text{ Gy}$ if >30 mm. In general, postoperative CTV is >30 mm and $6 \text{ Gy} \times 5 = 30 \text{ Gy}$ is used

9.6 Normal Tissue Tolerances

	TG101	QUANTEC	Our institutional practice
Brain pare	enchyma		
One fraction	NA	V12 <5-10 cc	V12 <10 cc
Toxicity	NA	<20% symptomatic necrosis	<20% symptomatic necrosis
Brainstem		^	
One fraction Three fractions Five fractions	Dmax ≤15 Gy, V10 <0.5 cc Dmax ≤23.1 Gy, V18 <0.5 cc Dmax ≤31 Gy, V23 <0.5 cc	Dmax <12.5 Gy	Same as TG101
Toxicity	≥grade 3 cranial neuropathy	<5% permanent cranial neuropathy or necrosis	≥grade 3 cranial neuropathy
Optic path	iway	^	
One fraction Three fractions Five fractions	Dmax ≤10 Gy, V8 <0.2 cc Dmax ≤17.4, V15.3 <0.2 cc Dmax ≤25, V23 <0.2 cc	Dmax <12 Gy	Same as TG101
Toxicity	≥grade 3 neuritis	<10% optic neuropathy	≥grade 3 neuritis
Spinal cor	d		
One fraction Three fractions Five fractions	$\begin{array}{c} Dmax \leq 14 \text{ Gy}, V10 \\ <0.35 \text{ cc}, V7 < 1.2 \text{ cc} \\ Dmax \leq 21.9 \text{ Gy}, V18 \\ <0.35 \text{ cc}, V12.3 < 1.2 \text{ cc} \\ Dmax \leq 30 \text{ Gy}, V23 \\ <0.35 \text{ cc}, V14.5 < 1.2 \text{ cc} \end{array}$	Dmax = 13 Gy	Same as TG101

	TG101	QUANTEC	Our institutional practice
Toxicity	≥grade 3 myelitis	1% myelopathy	≥grade 3 myelitis
Cochlea	- ·		
One fraction Three fractions Five fractions	Dmax ≤9 Gy Dmax ≤17.1 Gy Dmax ≤25 Gy	Dose ≤14 Gy (prescription dose)	Same as TG101
Toxicity	≥grade 3 hearing loss	<25% sensory neural hearing loss	≥grade 3 hearing loss

9.7 Patient Management Considerations

- Premedication: If the patient is not already on steroids, premedicate with dexamethasone 4 mg PO prior to each fraction. Lorazepam 0.5–1 mg PO can be used prior to each fraction.
- Acute toxicities can include mild nausea, headaches, and in rare cases, newonset seizures.
- The main dose-limiting late toxicity of SRS is radiation necrosis, which occurs in 5–10% of cases, 6 months to years after treatment.
 - Factors associated with increased risk of radiation necrosis include larger size of the brain metastasis and a history of prior radiation to the same region. Other tumor biology characteristics including renal cell or lung adenocarcinoma histology, HER2 amplification, and ALK/BRAF mutation may increase the risk of radiation necrosis [17].
 - Radiation necrosis is managed conservatively if asymptomatic or with moderate-dose steroids (e.g., dexamethasone 4 mg BID) if symptomatic. Surgical resection for palliation may be needed in severe cases.

9.8 Follow-Up

- According to NCCN guidelines [18]:
 - Brain MRI q2-3 months for the first year
 - Follow-up and imaging as clinically indicated after 1 year

9.9 Relevant Literature

Study	Patients	Treatment	Median f/u	Outcomes
Dose escalation				
RTOG 90–05 [9] (phase I trial)	N = 156 Patients previously treated with WBRT	SRS dose escalation: $\leq 20 \text{ mm}$: $18 \rightarrow 21 \rightarrow 24 \text{ Gy}$ $21 \rightarrow 30 \text{ mm}$: $15 \rightarrow 18 \rightarrow 21$ $\rightarrow 24 \text{ Gy}$ 31 - 40 mm: $12 \rightarrow 15 \rightarrow 18 \text{ Gy}$	3 years	$\begin{array}{l} - \mbox{ Maximum tolerated dose:} \\ \leq 20 \mbox{ mm: } 24 \mbox{ Gy} \\ 21-30 \mbox{ mm: } 18 \mbox{ Gy} \\ 31-40 \mbox{ mm: } 15 \mbox{ Gy} \\ - \mbox{ Total grade } 3-5 \mbox{ toxicity:} \\ \leq 20 \mbox{ mm: } 18 \mbox{ Gy} (8\%), \\ 21 \mbox{ Gy} (11\%), 24 \mbox{ Gy} (10\%) \\ 21-30 \mbox{ mm: } 15 \mbox{ Gy} (10\%) \\ 21-30 \mbox{ mm: } 15 \mbox{ Gy} (13\%), \\ 18 \mbox{ Gy} (20\%), 21 \mbox{ Gy} (38\%), \\ 24 \mbox{ Gy} (58\%) \\ 31-40 \mbox{ mm: } 12 \mbox{ Gy} (10\%), \\ 15 \mbox{ Gy} (14\%), 18 \mbox{ Gy} (50\%) \end{array}$
$\frac{WBRT \pm SRS \ bc}{RTOG \ 95-08}$	N = 333	1 WDDT (27.5 Cm)	Not	1. WBRT
[19] (randomized trial)	N = 353 KPS \geq 70, 1–3 mets \leq 40 mm	1. WBRT (37.5 Gy) 2. WBRT + SRS boost (15–24 Gy per RTOG 90–05)	Not reported	 WBR1 5.7-month median OS 4.9-month median OS (single met) 71% 1-year LC 27% stable/improved KPS at 6 months WBRT + SRS 6.5-month median OS (p = NS) 6.5 months (single met) (p = 0.039) 82% 1-year LC (p = 0.013) 43% stable/improved KPS at 6 months (p = 0.03)
$SRS \pm WBRT$		1		
JROSG 99–1 [20] (randomized trial)	N = 132 KPS ≥70, 1-4 mets ≤30 mm	1. SRS (18–25 Gy) 2. SRS (30% reduction) + WBRT (30 Gy)	7.8 months (entire study) 49.2 months (survivors)	 SRS 8-month median OS 73% 1-year LC 76% 1-year brain tumor recurrence SRS + WBRT 7.5-month median OS (p = NS) 89% 1-year LC (p = 0.002) 47% 1-year brain tumor recurrence (p < 0.001)

Study	Patients	Treatment	Median f/u	Outcomes
Chang 2009 [6] (randomized trial)	N = 58 KPS ≥70, 1–3 mets	1. SRS (15–20 Gy) 2. SRS + WBRT (30 Gy)	9.5 months	 SRS 15.2-month median OS 67% 1-year LC 24% mean probability of neurocognitive decline at 4 months SRS + WBRT 5.7-month median OS (p = 0.003) 100% 1-year LC (p = 0.01) 52% mean probability of neurocognitive decline at 4 months
EORTC22952– 26001 [21] (randomized trial)	N = 359 ECOG 0-2, 1-3 mets ≤35 mm	1. SRS (14–25 Gy) 2. SRS + WBRT (30 Gy)	1. SRS: 40 months 2. SRS + WBRT: 49 months	1. SRS: - 10.7-month median OS - 69% 2-year LC 2. SRS + WBRT - 10.9-month median OS (p = NS) - 81% 2-year LC (p = 0.04)
Brown 2016 [7] (randomized trial)	N = 213 ECOG 0–2, 1–3 mets < 30 mm	1. SRS (20–24 Gy) 2. SRS (18– 22 Gy) + WBRT (30 Gy)	7.2 months	1. SRS - 10.4-month median OS - 73% 1-year LC - 64% cognitive deterioration at 3 months - 0.1 mean decline from baseline in overall quality-of-life score 2. SRS + WBRT - 7.4-month median OS (p = NS) - 90% 1-year LC (p = 0.003) - 92% cognitive deterioration at 3 months $(p < 0.001)$ - 12 mean decline from baseline in overall quality-of-life score (p = 0.001)

Study	Patients	Treatment	Median f/u	Outcomes
Number of meta	stases			
Likhacheva 2013 [22] (retrospective study)	N = 251 brain mets (median 2, range 1–9)	 SRS alone (62% of patients, median dose: 20 Gy) SRS + salvage SRS (22%), WBRT (13%), or surgery (3%) 	9.4 months	 11.1-month median OS 94.6% 1-year LC Factors associated with OS on multivariable analysis: Total tumor volume >2 cc, age ≥60, diagnosis-specific graded prognostic assessment, and extracranial disease Number of brain mets not associated with OS
JLGK0901 [5] (prospective observational cohort study)	N = 1194 KPS \geq 70, 1–10 brain mets < 3 cm each, <10 cc each, \leq 15 cc total volume	SRS: <4 cc: 22 Gy 4–10 cc: 20 Gy	20.9 months (survivors)	 1. 1 metastasis 13.9 median OS 7% any grade toxicity 2. 2-4 metastases 10.8 median OS 9% any grade toxicity 3. 5-10 metastases 10.8 median OS (p = NS vs. 2-4 metastases) 9% any grade toxicity (p = NS vs. 2-4 metastases) 9% any grade toxicity (p = NS vs. 2-4 metastases)
Hypofractionate	d stereotactic	radiotherapy	1	,
Manning 2000 [10] (phase II)	$N = 32$ $\leq 3 \text{ brain}$ mets	HSRT with a linac Median 9 Gy \times 3 = 27 Gy to the 80–90% isodose line	37 weeks (survivors)	 11.8-month median OS Acute toxicity: None Late toxicity: Seizures (13%), radionecrosis (6%)
Ernst-Stecken 2006 [12] (phase II)	N = 51 KPS ≥ 60 , ≤ 3 brain mets	HSRT with a linac 7 Gy \times 5 = 35 Gy to the 90% isodose line 6 Gy \times 5 = 30 Gy if additional WBRT	7 months	 11-month median OS 76% 1-year LC Acute toxicity: None Increasing rates of edema and necrosis if V4 ≥23 cc
Ammirati 2014 [23] (phase II)	N = 40 KPS ≥ 60 , ≤ 3 brain mets	HSRT with a linac 6 Gy \times 5 = 30 Gy Definitive or adjuvant following a surgical resection	16 months	 16-month median OS 11-month median PFS 13% neurological death rate Acute toxicity: None Late toxicity: 8% radiation necrosis

Study	Patients	Treatment	Median f/u	Outcomes
Aoyama 2003 [11] (retrospective)	$N = 87$ $\leq 4 \text{ brain}$ mets	HSRT with a linac Median 35 Gy/4 fx to the 80–90% isodose line	6.3 months (entire study) 7.6 months (survivors)	 - 8.7-month median OS - 81% 1-year LC - Acute toxicity: 2% nausea, 1% hypomnesia, 1% seizure - Late toxicity: 1% nausea, 1% hemiparesis
Murai 2014 [13] (retrospective)	N = 54 brain mets ≥ 2.5 cm	HSRT with a linac Dose escalation: 3fx (2.5-3.9 cm): 18-22 Gy to 27-30 Gy $5 fx (\ge 4 \text{ cm})$: 21-25 Gy to 31-35 Gy	Not reported	 - 6-month median OS - 78% 1-year LC - No ≥grade 3 toxicity at every level of dose
Postoperative SI	RS			
Mahajan 2016 [16] (randomized trial)	N = 131 1–3 mets, ≥ 1 met with complete resection, ≤ 4 cm resection cavity	1. SRS (12–16 Gy) 2. observation of the resection cavity	11.1 months	1. SRS - 17-month median OS - 72% 1-year LC 2. Observation - 18-month median OS (<i>p</i> = NS) - 43% 1-year LC (<i>p</i> = 0.015)
N107C/CEC.3 [15] (randomized trial)	N = 194 1-4 mets, s/p surgical resection of 1 met, <5 cm resection cavity	1. SRS (12–20 Gy) 2. WBRT (30 or 37.5 Gy) Unresected mets treated with SRS in both arms	11.1 months	1. SRS - 12.2-month median OS - 3.7-month cognitive deterioration-free survival - 60.5% 1-year surgical bed control - 36.6% 1-year overall brain control 2. WBRT - 11.6-month median OS (p = NS) - 3.0-month cognitive deterioration-free survival (p < 0.0001) - 80.6% 1-year surgical bed control (p = 0.00068) - 72.1% 1-year overall brain control (p < 0.0001)
Brennan 2014	N = 49	SRS with a linac	12 months	– 78% 1-year LC
[24] (phase II)	1–2 brain mets s/p resection	≤ 2 cm: 22 Gy 2.1–3 cm: 18 Gy 3.1–4 cm: 15 Gy		 - 56% 1-year distant brain control - Toxicity: 17.5% with radionecrosis

Study	Patients	Treatment	Median f/u	Outcomes
Jensen 2011 [25] (retrospective)	N = 106 s/p surgical resection, no prior WBRT	SRS with GammaKnife Median dose of 17 Gy to the 50% isodose line	Not reported	 10.9-month median OS 80.3% 1-year LC 35.4% 1-year distant brain control 37% received salvage WBRT at a median of 12.6 months
Choi 2012 [26] (retrospective)	N = 112 s/p surgical resection	SRS with CyberKnife Median dose of 20 Gy in 1–5 fx to a median 79% isodose line, 2 mm margin	11 months	 17-month median OS 90.5% 1-year LC 46% 1-year distant brain control 28% received salvage WBRT at a median on 7 months
Minniti 2013 [14] (retrospective)	N = 101 s/p surgical resection (resection cavity >3 cm)	SRS with a linac 9 Gy × 3 = 27 Gy to a median 83% isodose line, 2 mm margin	16 months	 17-month median OS 93% 1-year LC 50% 1-year distant brain control 24% received salvage WBRT

References

- 1. Sperduto PW, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (lung-molGPA). JAMA Oncol. 2017;3:827–31.
- Sperduto PW, et al. Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers (melanoma-mol-GPA). Int J Radiat Oncol Biol Phys. 2017;99:812–6.
- Sperduto PW, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:419–25.
- 4. Mulvenna P, et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. Lancet Lond Engl. 2016;388:2004–14.
- Yamamoto M, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15:387–95.
- Chang EL, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10:1037–44.
- Brown PD, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316:401–9.
- McKay WH, et al. Repeat stereotactic radiosurgery as salvage therapy for locally recurrent brain metastases previously treated with radiosurgery. J Neurosurg. 2017;127:148–56. https:// doi.org/10.3171/2016.5.JNS153051.

- 9. Shaw E, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47:291–8.
- Manning MA, et al. Hypofractionated stereotactic radiotherapy as an alternative to radiosurgery for the treatment of patients with brain metastases. Int J Radiat Oncol Biol Phys. 2000;47:603–8.
- Aoyama H, et al. Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int J Radiat Oncol Biol Phys. 2003;56:793–800.
- Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81:18–24.
- Murai T, et al. Fractionated stereotactic radiotherapy using CyberKnife for the treatment of large brain metastases: a dose escalation study. Clin Oncol(R Coll Radiol). 2014;26:151–8.
- Minniti G, et al. Multidose stereotactic radiosurgery (9 Gy × 3) of the postoperative resection cavity for treatment of large brain metastases. Int J Radiat Oncol Biol Phys. 2013;86:623–9.
- Brown PD, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC-3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18:1049–60.
- Mahajan A, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-Centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18:1040–8.
- Miller JA, et al. Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. Int J Radiat Oncol Biol Phys. 2016;96(5):1060–9. https:// doi.org/10.1016/j.ijrobp.2016.08.039.
- Nabors LB, et al. Central nervous system cancers, version 1.2015. J Natl Compr Cancer Netw. 2015;13:1191–202.
- Andrews DW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. *Lancet Lond*. Engl. 2004;363:1665–72.
- 20. Aoyama H, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295:2483–91.
- 21. Kocher M, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:134–41.
- Likhacheva A, et al. Predictors of survival in contemporary practice after initial radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys. 2013;85:656–61.
- 23. Ammirati M, Kshettry VR, Lamki T, Wei L, Grecula JC. A prospective phase II trial of fractionated stereotactic intensity modulated radiotherapy with or without surgery in the treatment of patients with 1 to 3 newly diagnosed symptomatic brain metastases. Neurosurgery. 2014;74:586–94; discussion 594.
- 24. Brennan C, et al. A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int J Radiat Oncol Biol Phys. 2014;88:130–6.
- Jensen CA, et al. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis. J Neurosurg. 2011;114:1585–91.
- 26. Choi CYH, et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys. 2012;84:336–42.