
Chapter 2
Spectral Analysis and Fourier Series

2.1 Musical Sounds

As discussed in Chap. 1 in the case of vibrating strings and organ pipes, there
are generally many different modes in which a resonant system may vibrate. (See
Fig. 1.6 and related discussion.) Generally, more than one of these modes are excited
simultaneously in the sounding of a musical instrument. Indeed, their presence or
absence is what determines the beauty of a particular tone as well as the difference
in sound from one instrument to another. Which modes are excited is not only
determined by the characteristics of the resonant system but also by the way in
which it is excited. For example, the slipping of the violin string on the bow, or the
vibration of the reed in an oboe or a bassoon excites a particular set of modes in
those instruments.

Musicians often refer to the extra sounds produced above the pitch of a note
as overtones. In most cases, these overtones are harmonically related to the funda-
mental frequency in that their frequencies are integral multiples of the fundamental.
Unfortunately, that fact sometimes produces confusion between the meaning of the
musician and that of a scientist analyzing the tone. For example, the first overtone
of a vibrating string is actually the second harmonic of the fundamental pitch (its
frequency is twice the fundamental frequency), the second overtone is the third
harmonic (or three times the normal pitch), and so on.

Life is further complicated by the fact that some instruments produce overtones
that are not harmonically related to the fundamental. Examples are the kettledrum
(or timpani), bells, bars, wood blocks, and so on. Even more surprisingly, the
plucked string turns out to have overtones that are not precisely harmonics of the
fundamental, whereas the bowed string does.
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In most instruments characterized by harmonically related overtones, the exci-
tation mechanism itself produces a locking effect causing the various harmonics to
be in phase with the fundamental. That results from the action of the vibrating reed
in woodwinds, the vibrating lips in the case of brass instruments, and the stick-slip
motion of the string against the bow in instruments of the violin family.

Because the relative distribution of overtones plays such a key role in defining
the characteristics of musical sound, it will help to review some of the methods used
to determine spectral distributions. By the term “spectral distribution,” we mean the
variation of amplitude or intensity of a waveform with frequency. (This chapter gives
a qualitative discussion of several important methods of spectral analysis, whose
mathematical bases are derived in the appendices.)

2.2 Early Methods of Spectral Analysis

The early pioneer, Helmholtz, did much of his experimental research in acoustics
using volume resonators for which the design bears his name. His basic idea was
to have a large spherical volume of air resonant at a given frequency that could be
driven by sound waves entering through a small aperture. (See Fig. 2.1.) A much
smaller tube at the other side of the sphere was designed to fit snuggly through a
wax seal into his ear so as to block off external sounds. Helmholtz had a set of
such matched resonators made that were tuned to different frequencies and managed
to accomplish an amazing amount of research with this relatively crude type of
apparatus.

Michelson (1903) designed another kind of spectrum analyzer to study the
fringes produced in optical interferometry. His analyzer (Fig. 2.2) consisted of a
large number of vertical rods tuned to different frequencies. These would vibrate
at sympathetic resonances in the audio range when a horizontal lever was made to
trace out a particular waveform. The extent of vibration of each rod was recorded
on paper and thus provided a measure of the spectral amplitudes.

Fig. 2.1 An original
Helmholtz resonator. Sound
entered the resonant volume
at a and was monitored
through the narrow tube at b,
which was covered with wax
molded to fit the
experimenter’s ear. From
Helmholtz (1885, pp. 43,
373). The resonant frequency
is derived in Appendix A. See
Eq. (A.68)
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Fig. 2.2 Michelson’s
spectrum analyzer consisting
of vibrating rods tuned to
different frequencies. From
Michelson (1903, p. 67)
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Fig. 2.3 Schematic diagram of an analog electronic spectrum analyzer. The illustration shows the
waveform from a closed organ pipe being broken into its spectral components—principally, the
first and third harmonics (in practice, such devices often use one very good narrowband filter at a
fixed high frequency which looks at the difference frequency produced when the audio input signal
is multiplied by a sine wave from a swept, high-frequency oscillator)

A more-sophisticated electronic approach was developed at the Bell Laboratories
during the 1930s to study sound in which a signal could be recorded on a magnetic
disc that was repeatedly scanned while a narrowband filter swept slowly through
the audio frequency range. The spectra were shown by using the rectified output of
the filter to darken a piece of paper. Apart from the time required to observe the
spectrum, the recording medium had very limited dynamic range.

A more recent version of that approach having a much wider dynamic range
is shown in Fig. 2.3. The main difficulty with such analyzers is that you need a
sustained source of sound (or a tape loop) for analysis (Fig. 2.4).
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Fig. 2.4 Odd-harmonic
spectrum from a square wave
determined with this analyzer

2.3 The Decibel (dB)

Relative spectral amplitudes are often described in terms of “dB,” or decibels. The
“decibel” was originally called the “transmission unit” and referred to the loss in
a standard length of telephone wire (Martin 1924). It was subsequently renamed
in honor of Alexander Graham Bell, but with his name misspelled and entered in
lower case. The more recent abbreviation for the unit (the “dB”) at least capitalizes
the “B.” The most important thing to remember about the unit is that it represents
a logarithmic measure of the ratio of two intensity (or power) levels. Specifically,
the ratio of the intensity levels I2 to I1 is defined in dB as

10 log10

(
I2

I1

)
. (2.1)

Because the intensity is generally proportional to the square of an amplitude (for
example, I2 ∝ A2

2 and I1 ∝ A2
1), the intensity ratios in dB may also be written as1

10 log10

((
A2

2

)
/
(
A2

1

)) = 10 log10 (A2/A1)
2 = 20 log10 (A2/A1) (2.2)

where A2 to A1 is the amplitude ratio. If the wave is attenuated in passing through
a medium, the result is a negative number of dB, and vice versa. Some useful
benchmarks to keep in mind: 10 dB corresponds to an intensity ratio of 10:1 whereas
doubling the intensity only amounts to about 3 dB. On the other hand, doubling the
amplitude results in a gain of about 6 dB. Conductor Leopold Stokowski became
enamored with decibels during the 1930s. People at the Bell Laboratories gave him
a dB meter hooked to a microphone which he used on the podium of the Philadelphia
Orchestra. One can imagine comments during rehearsals such as, “Mr. Tabuteau, I’d
like 6 dB more in the crescendo at letter A.”

1Note by definition,
a = log10 b means that b = 10a .
Therefore,
log10 b2 = log10 102a = 2a = 2 log10 b
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Table 2.1 Sound pressure levels (SPLs) referred to 2 × 10−4 dynes/cm2 (100 dB = 1 μW/cm2)

SPL (in dB) Source

200 16 in. naval gun at 12 ft

140 Jet taking off

130 Jet taxiing

125 Student rock concert at Yale university at 50 ft

120 Threshold of pain

110 Construction site (pneumatic drills at 100 ft)

100 Lawn mower

95 Good Stradivari violin at 3 ft; most car interiors; times square traffic.

90 San Francisco symphony in Carnegie hall playing Mahler (100 ft)

85 Kirov orchestra in Verizon hall playing Wagner (100 ft)

80 City street; alarm clock (at 2 ft)

75 Frappuccino maker at 3 ft

70 Shouting at 4 ft

60 Normal conversation at 3 ft; busy office

50 Quiet office or classroom

40 Living room

30 Bedroom at night

20 Recording studio

10 Yale maintenance workers

0 Snowflake hitting ground

Note: These are total SPLs and not “A weightings.” Extended listening to sound levels above
90 dB is thought by OSHA to be damaging to the ear. The Bavarian Radio Symphony Orchestra
was cited for violating a new law on noise level while rehearsing the “State of Siege” by Dror
Feiler, a piece containing sustained sound levels of 97 dB (N.Y. Times, April 20, 2008, p. 1)

Confusion may be introduced by people who refer to absolute sound levels in
decibels. What they usually mean by that terminology is that the sound intensity
ratio is in respect to a standard reference level where 0 dB corresponds to 2 ×
10−4 dynes/cm2. That value is approximately the threshold of hearing at 2 kHz. On
that same scale, 120 dB is about the threshold of pain. By coincidence, an increment
of 1 dB is about the smallest change in intensity ratio that the average human ear
can detect, although the value varies somewhat with individuals, with frequency,
and with sound level. (See Riesz 1932.) Using such SPL (“Sound Pressure Level”)
meters, the various peak absolute sound levels shown in Table 2.1 were obtained.

Recently, circuits containing multiple frequency-band transmission filters to
cover the audio spectrum have flooded the “Hi-Fi” market and are generally
calibrated in decibels. The frequency bands are often spaced at octave, or even one-
third octave, intervals and use light-emitting diodes to indicate the relative sound
intensity levels within the different bands. Although they have the advantage of
rapid response and can provide a rough portrayal of spectra in “real time,” the
resolution is limited by the number of filters one can crowd into a small circuit.
A nice application of this display has been incorporated in the sound level meter



36 2 Spectral Analysis and Fourier Series

Fig. 2.5 A portable real-time
spectrum analyzer and sound
level meter

made by the AudioSource company. As illustrated in Fig. 2.5, the meter is portable
and provides a real-time spectral display of absolute sound levels in dB detected
from a calibrated condenser microphone.

With the computer methods discussed below, one can increase the resolution
merely by increasing the dimension of a column array. It used to be that machine
“running times” were an impediment to mathematical analysis. But, now that we
have computer speeds in the GHz domain and nearly unlimited random access
memory storage capability, Fourier analysis can be done throughout the entire audio
spectrum in real time with good resolution.

2.4 Fourier Analysis

Although the mathematical techniques involved in Fourier analysis have been
known since the 1820s, the ability to use this method rapidly in real-time analysis
required innovations in computer technology that did not arise until the 1970s. One
major advantage is that you do not need a very long sample of a waveform to
determine its spectral distribution. Indeed, if you know that the waveform is truly
periodic, you only need one period for analysis. Hence, in many cases, the spectra
can be captured “on the fly.”
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2.5 A Brief Historical Background of Fourier Series

Fourier began the mathematical work which led to his formulation of what we now
call “Fourier Series” in a theoretical study of heat flow in 1807, stimulated by
engineering problems encountered in the boring of Napoleon’s cannons.2 Fourier
solved the heat-flow equation for sinusoidal distributions of temperature. But, he
needed an infinite series of such solutions to describe the results of arbitrary
temperature distributions on the walls of the material. Fourier’s initial paper on
this subject was highly controversial. Several outstanding mathematicians did not
believe what he was saying and urged the paper’s rejection. In fact, his paper
was refused publication until Fourier himself was elected President of the French
Mathematical Society in 1822.

According to Whittaker and Watson (1920), the major background developments
were as follows:

1. D′Alembert had solved the wave equation for the vibrating string problem and
obtained a solution of the form

y(x, t) = 1/2[f (x + ct) + f (x − ct)]. (2.3)

Note that y = f (x) is the shape of the string at time t = 0.
2. Daniel Bernoulli next showed that a formal solution to the problem was also

given by a sum of solutions of the type summarized in Chap. 1 by Eq. (1.13):

y(x, t) =
∞∑

n=1

(An sin(nπx/L) cos(nπct/L)) (2.4)

where the An are adjustable constants.3 Bernoulli went on further to claim that
this result was the most general solution to the problem possible. (Although the
claim sounded like a Madison Avenue advertising slogan, it turned out to be
right.)

3. Neither d ′Alembert nor Euler believed Bernoulli and protested that such a
series could not possibly converge to a function such as f (x) = x(L − x) at

2Baron Jean-Baptiste-Joseph von Fourier (1768–1830) accompanied Napoleon in 1798 on his
expedition to Egypt, where he served as Secretary for Napoleon’s newly formed Institut d’Egypt.
In Cairo, he did extensive research on Egyptian antiquities and gave advice on engineering matters.
He returned to France in 1801, about the same time that the Rosetta Stone and other major
ancient Egyptian relics were surrendered to the British. Back in France, he was charged with the
publication of an enormous mass of Egyptian material which became known as Description de
l’Egypt (in 21 volumes from 1808 to 1825). He was also the first to describe the atmosphere’s
trapping of heat as “The Greenhouse Effect” in the 1820s. (See Segré 2002, p. 119.)
3The notation

∑∞
n=1(An sin(nπx/L) cos(nπct/L)) means that you sum the expression for the

values of n = 1, 2, 3, . . . to infinity.
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t = 0, or even worse, the boundary conditions at t = 0 on a plucked harpsichord
string.

4. Fourier (1822) proved for the first time that such a series did indeed converge
in a large number of specific cases while discussing his analytic theory of heat
flow.

5. Others (Poisson, Cauchy, Dirichlet , and Bonnet) went on to attempt more
general proofs (some of them wrong). According to Whittaker and Watson
(1902), the first correct proof of convergence was given by Dirichlet.

2.6 A Note on the Convergence of Infinite Series

The concept of convergence of a sum such as that in Eq. (2.4) at t = 0 is
of fundamental importance in establishing the usefulness of Fourier series. For
a rigorous discussion of convergence, the reader should consult a treatise on
mathematical analysis such as that by Whittaker and Watson (1902). What follows
here is a more pragmatic approach to the problem.

Suppose we have a sum of numbers of the form

S = a1 + a2 + a3 + · · · + an · · ·

where the nth term is a known function of n. For the sum to converge to a limiting
value, an clearly must go to zero as n → ∞. Although that is a necessary condition
for convergence, it is not a sufficient one. For example, the well-known series

S = 1 + 1/2 + 1/3 + · · · + 1/n + · · ·

does not converge, but obviously satisfies that “necessary” condition. Convergence
does occur when an + 1/an goes to zero in the limit that n → ∞. (The divergent
case quoted above obviously does not satisfy that requirement.)

In the present computer age, it is often adequate to run off the sum of the
series to a few dozen terms to see what actually happens. In that approach, if you
stop calculating the sum after |an| < 10−7|S|, you will usually have reached the
convergence limit within the accuracy of the computer. That is, “single-precision”
computer calculations in which the mantissa is evaluated to 24-bit accuracy are
typically good to only about one part in 107. (Of course, convergent series can
always be computed in extended precision using more bits for the calculation.)

A numerical example will help for clarification. The infinite series for ex is given
by

S = 1 + x + x2/2 + x2/3! + · · · + xn/n + · · · (2.5)

It is useful to note that the nth term of the series is easily related to the (n − 1)th
term by
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Fig. 2.6 The first 30 terms
for the series in Eq. (2.5) for
x = 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

n a (n) s
1
11
6.1
22.77
64.44
147.77
286.66
485.07
733.09
1008.66
1284.24
1534.76
1743.52
1904.11
2018.82
2095.29
2143.09
2171.2
2186.82
2195.04
2199.15
2201.11
2202
2202.39
2202.55
2202.61
2202.64
2202.65
2202.65
2202.65

0
10
50
166.667
416.667
833.334
1388.889
1984.127
2480.159
2755.732
2755.732
2505.211
2087.676
1605.905
1147.075
764.717
477.948
281.146
156.193
82.207
41.104
19.573
8.897
3.869
1.612
0.645
0.248
0.092
0.033
0.012

an = an−1x/n . (2.6)

The series will converge for any finite value of x because

an/an−1 → 0 as n → ∞ .

The first 30 terms for the series are illustrated in Fig. 2.6 for the case x = 10.
As can be seen from the figure, the increment an rapidly builds up for the first few
powers of x but goes through a maximum value at about the 11th term. After that, the
n! in the denominator rapidly reduces the increment to zero and the series converges
to 1 part per million by the 30th term to S = 2202.65. To get the numerical value for
e (= 2.718282. . . , the base of the Naperian logarithms), one merely lets x = 1 in
the series Eq. (2.5). The number π is also the result of a convergent infinite series,
as are all the transcendental trigonometric functions.4

4Ramanujan (1914) gave the most rapidly convergent series for 1/π ever discovered: 1
π

=
1
4

[
1123
882 − 22,583

8823 · 1
2 · 1·3

42 + 44,043
8825 · 1·3

2·4 · 1·3·5·7
42·82 − · · ·

]
. Amazingly, the first term by itself gives

π = 3.141585041 . . . (Ramanujan liked to entertain his friends by reciting the endless digits of π

at parties.
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2.7 Specific Examples of Convergence for Periodic Series

The following three examples involve convergence of an infinite series for each
value of x over the domain 0 ≤ x ≤ 4π . All three represent periodic functions that
repeat themselves over the range from 0 to 2π . (The range for x from 0 to 4π was
chosen to illustrate two periods of the function in each case.) Here, we have used
a computer to demonstrate convergence by adding up the terms for different values
of n at each value of x. For each of the three cases listed below, a superposition of
the first ten terms is shown at the left in Fig. 2.7, and the limit of the series after 100
terms is shown at the right. Although the three cases look superficially similar, the
results converge in each case to very different, highly non-sinusoidal functions.

Case 1: “Sawtooth”:

y = sin x + 1

2
sin 2x + 1

3
sin 3x + 1

4
sin 4x + · · · + 1

n
sin nx (2.7)

Case 2: “Square Wave”:

y = sin x + 1

3
sin 3x + 1

5
sin 5x + · · · + 1

n
sin nx [n odd] (2.8)

Fig. 2.7 Convergence of the three infinite series shown in the text over two fundamental cycles
(0 ≤ x ≤ 4π .) Case (1) Sawtooth waveform; (2) Square wave; and (3) the Gibbs Zigzag. The
column on the left shows the superposition of the buildup of the series through the first 10 terms.
The column on the right shows the series after 100 terms were added in each case
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Case 3: Gibbs “Zigzag”:

y = sin x − 1

2
sin 2x + 1

3
sin 3x − 1

4
sin 4x + · · · + (−1)n

n
sin nx (2.9)

2.8 The “Gibbs Phenomenon” or Wilbraham Effect

If you look in the vicinity of the vertical discontinuities in the development of the
infinite series shown in Fig. 2.7, you will notice a small “horn” sticking up above
the waveform. That effect was first discovered by the Scottish mathematician Henry
Wilbraham in 1848. It was rediscovered some 50 years later by Gibbs (1899) and
has since come to be known as the “Gibbs Phenomenon” in Fourier Series. The
width of the horn gets narrower and narrower as the number of terms added to the
series increases, but it never disappears. It arises because the convergent limit of
the series at the discontinuity differs by about 14% from the limit a small distance
away on the curve. Since the waveforms of interest in the present study are not
characterized by vertical discontinuities, the effect does not show up in musical
instrument waveforms and is merely of historical interest here.

2.9 Basic Aspects of Fourier Series

In what follows here, we will restrict ourselves to periodic functions that are “well-
behaved” in the sense that they are continuous and their slopes are finite. By a
periodic function V (θ) such as shown in Fig. 2.8, we mean that

V (θ + 2π) = V (θ) . (2.10)

Many musical instrument waveforms are periodic in the time, or at least quasi-
periodic after an initial excitation transient has died down. For example, the sound
pressure wave produced by a closed organ pipe is shown in Fig. 2.9, where the pipe
was turned on at the start of the oscillogram. As can readily be seen by eye, the
waveform settles down to a periodic one after about ten cycles of the fundamental
pipe resonance.

Fig. 2.8 A hypothetical
periodic waveform
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Fig. 2.9 Oscilloscope
display of the waveform from
a quintadena (closed organ
pipe of circular cross-section)

As Fourier showed, any such periodic function can be represented by an infinite
series of harmonics of sine and cosine functions over the fundamental period. Thus,
V (θ) in Eq. (2.10) could be written

V (θ) = C0 + A1 sin 1θ + A2 sin 2θ + A3 sin 3θ (2.11)

+ · · · + B1 cos 1θ + B2 cos 2θ + B3 cos 3θ + · · ·

or

V (θ) = C0 +
∞∑

n=1

An sin nθ +
∞∑

n=1

Bn cos nθ (2.12)
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Here, the constant C0 allows for a net DC (“Direct Current”) offset of the
waveform from the horizontal axis. The terms involving sin nθ and cos nθ are
called the nth harmonic terms and the coefficients An and Bn are called harmonic
amplitudes.

2.10 Calculating the Fourier Coefficients for V (θ)

We could just postulate different values for the coefficients C0, An, and Bn, and
evaluate the series in Eq. (2.11) with a computer in the same way that we computed
those for Fig. 2.7. We might even try to narrow in on a set of coefficients that
would match a particular waveform. However, that would be an extremely tedious
and inefficient approach. Fortunately, Fourier worked out a systematic method
to compute the coefficients from the waveform directly. The method involves
integral calculus and is described in detail in Appendix C. Essentially, the different
coefficients are determined by finding the areas under various curves related to the
initial waveform over one fundamental period. The DC constant C0 is the average
value and is determined from the area under the curve for V (θ) itself, whereas the
coefficients An are determined from the area under the curve, V (θ) sin(nθ), and
those for Bn from the curve, V (θ) cos(nθ). For musical instruments, the waveforms
can be measured numerically using an A-to-D converter, a circuit that converts
Analog microphone voltages to Digital output values to be read by a computer.
(Microphone voltages are usually proportional to the sound wave pressure.)

Once numerical values have been determined for the sine and cosine terms (An

and Bn) in the series, it is desirable to express the results in terms of one net
coefficient and phase for each harmonic (value of n). That process just involves
a little trigonometry. We rewrite the original Fourier series in Eq. (2.11)

V (θ) = C0 +
∞∑

n=1

An sin nθ +
∞∑

n=1

Bn cos nθ

as an equivalent series involving one sine and a phase angle for each harmonic:

V (θ) = C0 +
∞∑

n=1

Cn sin nθ + φn . (2.13)

One then evaluates the coefficients Cn and the phases φn in terms of An and Bn by
comparing like terms in the two different expressions for the infinite series.
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Thus,5

Cn =
√

A2
n + B2

n for n ≥ 1 (2.14)

and

φn = arctan(Bn/An).

Often, one is primarily interested in the relative distribution of the net harmonic
amplitudes Cn because they correspond roughly to the psychological impression
the sound makes on the human ear. As shown in Appendix C, the relative energy
distribution in the harmonics of a Fourier series goes as the square of the amplitudes.
Some people prefer to convert that number into decibels because the ear responds
logarithmically to the harmonic intensity.

Although it is straightforward (but tedious) to do a Fourier analysis by hand, the
calculation is a simple matter with a high-speed computer. A program for doing that
is given in Appendix C, together with a derivation of the mathematical quantities
involved. Not only is that approach to the problem much faster than the older
methods of spectral analysis, you only need one period of the waveform in order
to determine the harmonic structure. Thus, you can catch the spectral distribution in
the time of one period of the waveform rather than, for example, spending a long
time scanning the output of a tape loop (as in Fig. 2.3) while a narrow frequency
filter is slowly swept through the spectrum.

2.11 An Example of Discrete Fourier Analysis

In order to do the computations involved in Fourier analysis, one needs to sample
at least one period of the waveform digitally and obtain lots of points. In doing that
sort of analysis myself, I used a high-quality condenser microphone to pick up the
sound and fed its output into a high-speed A-to-D (“Analog-to-Digital”) converter
controlled by a computer. The computer recorded the data, showed the waveform,
did a Fourier analysis, and then displayed the relative amplitudes of the harmonic
coefficients. The photograph in Fig. 2.10 was taken during a lecture I once gave at
Yale in which a student (William C. Campbell) blew a note on a 50-ft garden hose.
The hose behaved like a narrow-scale open pipe with modes spaced at about 11 Hz.
Campbell was able to phase-lock a large number of those modes in the mid-audio
range (at a fundamental frequency of about 307.7 Hz) and produce a waveform with
a sharp, periodic pulse that sounded much like a braying elephant. (The waveform

5These results are obtained by applying the trigonometry identities Cn sin(nθ + φn) =
Cn sin nθ cos φn + Cn cos nθ sin φn

and
tan φn = sin φn

cos φn
together with cos2 φn + sin2 φn = 1.
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Fig. 2.10 Photograph taken in Davies auditorium at Yale University during a lecture by the author
on “Live Fourier Analysis” in the 1970s. The garden hose was played by Yale student, William C.
Campbell

and amplitude spectrum are shown on the oscilloscope in Fig. 2.10, together with
the HP-2116B computer used.)

The Campbell waveform provides a nice example of the way in which a sum of
sine waves can add up to produce a sharp pulse. At the same time, it provides a useful
example to illustrate the convergence of a Fourier series. The amplitude coefficients
and phases shown in Fig. 2.11 were computed from the digitized waveform using
the program described in Appendix C. A histogram of the Fourier coefficients C(n)

is shown as a function of harmonic number starting from the left with n = 1
in Fig. 2.12, together with the waveform over one cycle. (The DC offset, C(0),
probably resulted from air coming out of the hose near the microphone and is not
included in the histogram.)

The original waveform can, of course, be reconstructed by putting the amplitudes
and phases from Fig. 2.11 back into Eq. (2.12). That process illustrates the conver-
gence of the Fourier series with increasing number of harmonics, as has been done
in Fig. 2.13 where the numbers represent the maximum number of harmonics used
in the reconstruction. The values of the phase are very important in determining the
visual shape of the waveform, whereas the harmonic amplitudes are more related to
the sound heard by ear (Fig. 2.14).

The oscillogram of the closed pipe waveform in Fig. 2.9 provides an example of
the pitfalls involved in Fourier analysis. If you had started analyzing that data when
the organ pipe was initially turned on, you probably would not even have been able
to determine the fundamental period. There was an initial transient during which
only higher modes of the pipe were excited. Then, as time went on, the fundamental
mode slowly built up and became the dominant source of sound in the spectrum.
At the extreme right end of the oscillogram, the waveform has become strongly
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Fig. 2.11 Relative amplitude
coefficients C(N) and phases
P(N) computed from one
cycle of the garden hose
waveform for the first 20
harmonics

Fig. 2.12 Waveform and
histogram of the Fourier
coefficients C(n) for the
garden hose waveform

periodic and one can easily pick out the period. Just by looking at it, you can see
that only odd harmonics are of importance in the steady-state waveform and not
much more than the first three are significant. If you were to use a slow computer,
it would help to estimate just how many harmonics you need to analyze in advance,
for the running time in the computation of the discrete Fourier analysis goes up as
the square of the number of harmonics (and of the number of points). Once you
know the fundamental period, you could, of course, go back to the beginning and
Fourier analyze the entire spectrum, period by period. That process would show how
the harmonics changed during the transient.

We can use the reconstruction of the waveform from the harmonic coefficients to
show how the Fourier series itself converges. That has been illustrated in Fig. 2.13
for the garden hose waveform in Fig. 2.12.
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Fig. 2.13 Reconstruction of the waveform in Fig. 2.12 from the Fourier coefficients. The numbers
represent the maximum number of harmonics used in each case to reconstruct the waveform
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Fig. 2.14 Top: Waveform
from a tuba at 33 Hz
reconstructed from the
original 50 amplitudes and
phases obtained from Fourier
analysis. Bottom: Waveform
reconstructed from exactly
the same set of 50 amplitude
coefficients but with
randomly selected phases for
the different harmonics

The cochlea in the human ear acts somewhat like a spectrum analyzer in that
thousands of different channels respond to sound waves of different frequency
and transmit pulses to the brain such that their rate increases with the loudness
detected by each channel. To a large extent, the apparent tonal color of the sound
is determined by that distribution—hence by the energy content in each harmonic
component. The harmonic distribution thus gives the listener the main perception of
tonal color. However, that is not the entire story. The ear is also somewhat sensitive
to the actual shape of the waveform. Hence, a waveform consisting of periodic sharp
spikes sounds somewhat different from that produced by a periodic waveform with
the same relative harmonic amplitudes but different phases. The relative phases in
a musical instrument waveform are usually determined by the excitation process—
for example, the stick-slip mechanism in the bowed violin string, the vibration of
the reed in a woodwind, or that in the lips of a brass instrument player. Generally,
these processes produce phase locking of the different harmonics in respect to the
fundamental period of the instrument so that the phases do not just wander around
randomly.

A question naturally arises regarding the number of points needed for analysis
of the waveform. Most instruments seldom have more than 10–30 important
harmonics. (There are exceptions such as the low notes on a krummhorn, or tuba.)
It is, of course, the relative distribution of the stronger harmonics that mainly
determines the tonal color (not to mention their variation with time, as in the
case of vibrato). Surprisingly, a criterion developed many years ago by Harry
Nyquist (1924) for the transmission of telegraph pulses is relevant. He showed in
general that in order to transmit signals digitally, one needs to sample the original
analog signal at more than twice the maximum frequency you want to transmit.
His criterion (following from something called the “Nyquist Sampling Theorem”
and which plays a key role in the CD-recording industry) also works backwards.
For example, if you have a waveform whose fundamental frequency is 200 Hz
and want to examine 20 harmonics (i.e., up to a frequency of 4 kHz), you need
to have more than 8000 samples per second, which means more than 40 points over
one period of the waveform. In practice, you would want to exceed that minimum
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requirement by at least a factor of 2 or 3, which means that you would probably want
at least 100 points over the fundamental cycle. (The minimum number required by
the Nyquist criterion would just give two samples over the period of the highest
frequency component.) However, for similar reasons, it is also pointless to analyze
the waveform for a number of harmonics larger than half the number of points
measured over one period. (If you do so, you just get the same spectral information
back again in the higher harmonics, but in reverse order.) It is sometimes implied
that there are only slight differences in the waveforms between different instruments
and that a relatively small fraction of the sound intensity falls in the overtones.
Nothing could be farther from the truth. The differences in the harmonic structure
can be enormous, even between instruments of the same species. We will illustrate
that fact with a variety of different examples throughout this book.

2.12 The Fourier Transform

The method of Fourier series discussed above works well when one has a precisely
periodic waveform. However, in practice one often encounters situations where
the waveform may be quasi-periodic, but varies significantly over the time of
observation. Such cases might include the sound from an instrument played with
vibrato, or the sound from an instrument such as a harpsichord or piano that is
inherently transient in character. Finally, there are some instruments (e.g., tympani
and bells) where the waveforms are not even approximately periodic and for which
the overtones are not harmonically related. Here, there is a useful computational
method based on Fourier analysis that goes under the heading Fourier Transform. In
that approach, we observe the wave over a very long time T that is not the period of
the vibration as discussed before. We then pretend that the waveform is periodic over
that long time interval T (which generally includes many cycles of oscillation in the
frequency range of interest). Now, even though it is just a mathematical fiction, we
can apply our previous results for periodic waveforms to compute the harmonics
present with fundamental frequency 1/T . But, of course, the results will not apply
outside the region 0 ≤ t ≤ T . Most of the spectral components will be of no
physical interest. However, the components we do care about will be contained in
the computed frequency range and appear as harmonics of 1/T .

It will help to illustrate with a particular example. Consider a decaying waveform
of the type

y(t) = exp(−γ t/2) sin(2πF0t) for 0 ≤ t ≤ T (2.15)

which might represent the sound amplitude from the fundamental mode of a string
plucked at t = 0. (See Fig. 2.12.) Here, γ /2 is the amplitude decay rate which
might result from energy being coupled to a sounding board. Because the energy in
the wave motion varies as the square of the amplitude, the energy decay rate in this
situation is simply γ , or twice that for the amplitude decay rate. We assume here that
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Fig. 2.15 Decay of a damped
waveform given by Eq. (2.14)

Fig. 2.16 Energy spectrum
for the waveform in
Eq. (1.14) computed with a
Discrete Fourier Transform

F0
Frequency

POWER
SPECTRUM

ΔF = γ/2π

T >> 1/F0, or equivalently, that Eq. (2.14) describes the oscillation of the string
over many fundamental periods of the string oscillation frequency. In practice, there
might be a thousand or more digital samples taken of the string amplitude during
the long time interval T .

Fourier analysis of the waveform described by Eq. (2.14) and Fig. 2.15 results in
the spectrum shown in Fig. 2.16, where the square of the net Fourier amplitudes is
plotted as a histogram as a function of the harmonic number. Figure 2.15 represents
the energy distribution in the spectrum. Note that the spectrum peaks at F0, which
itself is a high harmonic of 1/T , where T again is the long observation time. As
shown in Appendix A, the energy or power distribution in this case has a so-called
“Lorentzian shape” with a full width at half-maximum intensity of ΔF = γ /2π .
That is, the resonance is not perfectly sharp but is spread over a range of frequencies
ΔF centered about F0. The spread arises because the initial signal is not a constant
single-frequency wave persisting for an infinite length of time. The result is actually
an example of the Uncertainty Principle—something known to electrical engineers
long before Heisenberg made his famous pronouncement as applied to quantum
physics. As we have shown here, it is a consequence of Fourier analysis that

ΔFΔt ≈ 1

2π
(2.16)
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where Δt ≈ 1/γ . To put it in different words, the limiting uncertainty in the
frequency measurement (ΔF ) varies approximately as the inverse of the signal
duration (Δt).6

2.13 Window Functions

Although the Discrete Fourier Transform worked perfectly well with the waveform
shown in Eq. (2.14), there are some pitfalls in the method. The waveform in
Eq. (2.14) was carefully chosen to go to zero at t = 0 and to become very small as
t → T . However, an arbitrarily chosen wave shape, y(t), might be nonzero at both
t = 0 and t = T and result in a function that could not conceivably be periodic in the
large time interval without having major discontinuities. They, in turn, would result
in spurious frequency components during Fourier analysis. To avoid that difficulty,
it has become a standard practice to multiply the data obtained in the large time
interval by a Window Function which we will call W(t) that goes smoothly to zero
at both t = 0 and t = T . Although the process tends to broaden the computed
spectral widths and produces minor distortion of resonant line shapes, it does not
interfere with the determination of the resonant frequencies and, most important of
all, it does not introduce spurious spectral components. There are almost as many
window functions as people who have worked in this field. The most commonly
used one is that proposed initially by the Austrian mathematician, Julius von Hann,
which for some strange reason is now called the “Hanning Window.”7 It multiplies
the data by the function

W(t) = 0.5[1 − cos 2πt/T ] for 0 ≤ t ≤ T . (2.17)

This “Hanning Window” has been adopted as a standard by the IEEE (“Institute
for Electrical and Electronics Engineers”) and is built into a number of commercial
electronic spectrum analyzers, including the one used by the author to take much of
the data presented in this book.

6In Heisenberg’s formulation, the energy of the electron (or other particle) is given by E = hν

where ν is a frequency corresponding to the de Broglie wavelength and h is Planck’s constant.
Hence, in Heisenberg’s formulation of the Uncertainty Principle, ΔEΔt ≈ h/2π .
7My personal suspicion is that the peculiar nomenclature arose as a typographical error, com-
pounded by the fact that there actually was an electrical engineer at the Bell Laboratories named
Richard W. Hamming who developed his own window function for numerical analysis that is called
the “Hamming Window” in the literature.
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2.14 The Fast Fourier Transform

The main problem in applying the straightforward Discrete Fourier Transform to
the analysis of data is that the running time for the calculation increases as n2

where n is the number of data points to be analyzed. Because one often wants to
analyze waveforms consisting of 1000 points or more (for example, one convenient
block size is 210 = 1024 points), running time is of major importance. Methods
to reduce the running time by making use of the redundancy contained in the sine
function date at least to the early work of Runge (1903). Most current processors use
something known as the fast Fourier transform (FFT) algorithm devised by Cooley
and Tukey in 1965. The Cooley–Tukey algorithm reduces the running time from an
n2-dependence on the number of data points to one that goes up as n log 2n. For
n = 210, that saving can reduce the running time for computer analysis by a factor
of 100. (See Brigham and Murrow 1967.) With the advent of high-speed, hardwired
FFT processors, it is now possible to do spectral analysis over the entire audio band
in real time.

Within the limits imposed by Eq. (2.15), one can use the FFT to study spectra
as a function of time. That not only has broad applicability to the study of musical
instrument sound generation, but to numerous other areas of science—especially,
to medical diagnostics. For example, the FFT is an essential tool for unfolding the
data in magnetic resonance imaging (or MRI.) It also can be applied to acoustic
diagnostics in medicine. As an example, the variation of the acoustic spectrum of
heart sounds with time can be used to diagnose and categorize heart murmurs. (See
Bennett and Bennett 1990.)

Figure 2.17 illustrates this technique using the sound monitored by a high-quality
condenser microphone placed on the chest at the apex of the heart. The top figure
is for a normal 28-year-old male where the spectrum is concentrated below 200 Hz
and shown in yellow. The lower figure is for a 54-year-old patient with prolapse
of the mitral valve.8 The data are presented here as a three-dimensional surface in
which frequency runs horizontally from near DC to 1000 Hz (left to right) and time
advances diagonally from the upper right to the lower left in increments of 0.1 s.
The amplitudes of the Fourier components are plotted vertically. Before analysis,
the signal was run through an “A-Weighting” Filter that fell off at the low-frequency
end so as to mimic the response of the human ear. Hence, what one sees in the figure
corresponds to what one would hear through a stethoscope, except that the electronic
technique is far more sensitive. Four heart beats are shown in the figure. The signal
running from about 200 to 1000 Hz in between the “first” (S1) and “second” (S2)
heart sounds from each beat and shown in red is due to the murmur. (The signal
below 200 Hz was fairly normal.)

8Mitral prolapse (verified in the present case by an echocardiogram and open-heart surgery) is a
common condition in which the mitral valve (so-called because it is shaped like a Bishop’s mitre)
is pushed backward toward the left atrium when the left ventricle contracts. Some blood from the
ventricle is then forced back through the leaky mitral valve into the atrium in turbulent flow, instead
of going out through the aortic valve in laminar flow, as in the normal case.
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Fig. 2.17 Spectral surfaces of stethoscopic heart sounds. Upper figure: normal heart sounds from
a 28-year-old male. Lower figure: heart murmur arising from mid-systolic mitral prolapse in a 54-
year-old male. The RMS (root-mean-square) amplitude is shown vertically and the frequency scale
runs from near 0 to 2000 Hz. Time advances diagonally in the plot in increments of 0.1 s. Source:
Bennett (1990). The author is indebted to Dr. Lawrence Cohen for helpful discussions

As can be seen from Fig. 2.17, the murmur peaks in the middle of systole (during
contraction of the heart) and has its strongest components at about 600 Hz. The
murmur was generated by turbulent flow of blood back through the mitral valve into
the left atrium when the heart contracted. In contrast to most musical instruments,
the relative phases of the spectral components are random. The sound of the murmur
is actually very similar to that produced by an African percussion instrument called
“The Lion’s Roar.” (It is also akin to the noise made by a crosscut hand saw going
through a piece of wood.)

One shortcoming of single FFT-based analysis is that the use of a window
function precludes the possibility of reconstructing the original waveform exactly,
since part of the information contained in the original waveform is discarded. That
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Fig. 2.18 A real-time FFT
(fast Fourier transform)
analyzer

is not a problem when one merely wants to determine the main spectral features.
However, in cases where one might want to manipulate the data in the frequency
domain and then reconstruct a signal in the time domain, that limitation can be a
problem. Although one can get around that difficulty by using two FFT processors
having identical time windows staggered by half their common duration, the method
is cumbersome. A much-touted recent development called Wavelet Analysis appears
to offer a more mathematically elegant solution. There, one devises a complete set of
wavelet functions that look somewhat like windowed Fourier transform integrands.
Since a complete set is involved, the original signal can be reconstructed. (See
Rioul and Vetterli 1991.) However, there is a disadvantage in the wavelet analysis
method for our present purposes in that the measured frequency intervals increase
in powers of two. Although that tends to mimic the logarithmic frequency response
of the human ear, such a logarithmic display makes it much harder to pick out the
fundamental frequency visually from the spectra of periodic waveforms. In a linear
display based on FFT analysis, the harmonic terms are separated by a constant
which is usually equal to the fundamental frequency. Much of the data presented
in the present book were taken with a real-time, hard-wired FFT analyzer using a
“Hanning Window.” (See Fig. 2.18.)
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Problems

2.1 Suppose the amplitude of the rod vibration in Michelson’s spectrum analyzer
decayed to 1/e of its initial value in about 5 s. What would the minimum frequency
width be that the analyzer could resolve?

2.2 (a) If the narrowband filter in Fig. 2.3 were 50 Hz wide, what would be the
least time you would need to scan through the spectrum from 0 to 10 kHz without
distorting the data? (b) What would the frequency scanning rate be in Hz/sec?

2.3 Draw the amplitude spectrum for the first 15 harmonics of a sawtooth and of a
squarewave.

2.4 If the paper used on an early spectrum analyzer can only be darkened in
intensity by a factor of ten, what is its maximum dynamic range?

2.5 Citizens of Leyden, Massachusetts reported hearing the cannons at Bunker Hill
some 80 miles away. Suppose that the sound level in Leyden was about 60 dB
(“normal conversation at 3 ft” from Table 2.1). What would the sound level have
been 10 ft from a cannon? (Assume the sound pressure falls off as the inverse square
law.) [Reference: Arms 1959.]

2.6 When the first atomic bomb was exploded at the “Trinity” test site in New
Mexico, Robert Serber (Oppenheimer’s assistant at Los Alamos) heard the sound
of the explosion about a minute and a quarter after the flash. How far was he from
the explosion? Noting that the blast was heard at Los Alamos 20 min after the flash,
how far was Los Alamos from the test site? Use the value for the velocity of sound
at 0◦ in dry air from Table 1.2. About how many dB louder would the blast have
been at Serber’s location than at Los Alamos? (Data from Serber and Crease 1998,
pp. 91, 93).

2.7 The loudest natural noise in recorded history is said to have occurred on
August 27, 1883 when the volcanic island Krakatoa blew up. The sound was heard
on Rodriguez Island 3000 miles away. If the level there were 60 dB (“normal
conversation” at 3 ft), what would it have been one mile away on the island of
Verlaten? (Assume the inverse square law.9) [Reference: Winchester 2003.]

2.8 An A-to-D converter samples a microphone voltage with 10-bit accuracy. What
is its limiting dynamic range in dB? (Note: 210 = 1024.)

2.9 A CD recording uses 16-bit samples. About how big a dynamic range in dB
would it provide?

2.10 A large gymnasium is to be constructed in the middle of a residential area in
Bryn Mawr, PA with an air conditioning unit installed on the roof that will produce

9The assumption of an inverse square law is not terribly good here because the source of noise
extended over a distance larger than the island of Verlaten. Also, the radiation pattern appears to
have a strong dipole component. (See Winchester 2003, p. 271.)
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a sound level of about 80 dB at a distance of 50 ft. Assuming an inverse square law
loss, what intensity will this sound have at a neighbor’s house 300 ft away?

2.11 Suppose four identical air conditioning units were to be placed on the roof of
the gymnasium in Problem 2.7). (a) What would the increase in sound level be if the
four sources were in phase? (b) What would it be on the average if the four phases
were randomly related?

2.12 The air conditioning unit in the previous problem produced the following
spectrum, as measured by the instrument in Fig. 2.4: What was the amplitude
spectrum?

Frequency (Hz) 31.5 63 125 250 500 1000 2000

Signal (dB) 65 78 88 80 70 67 50

2.13 The emergence of 17-year cicadas on the weekend of May 22, 2004 resulted
in the following spectrum at noon measured in the author’s backyard at Haverford,
PA: Draw the amplitude spectrum.

Frequency (Hz) 31.5 63 125 250 500 1000 2000 4000 8000

Signal (dB) 50 52.5 52.5 55 60 67.5 60 57.5 52.5

2.14 We know the harmonics of a square wave decrease in amplitude as 1/n (with
n odd). Draw a spectrum through n = 11 of a square wave in dB referred to the
value at n = 1.

2.15 Sketch waves proportional to sin θ and 0.3 sin 3θ over the range 0 ≤ θ ≤ 2π .
Then, add the two together and sketch the resultant waveform. What might produce
that waveform?

2.16 Suppose the wind supply to an organ pipe were modulated in amplitude
sinusoidally at 6 Hz. What would the effect be on the sound spectrum? (Hint: Note
the trig identity cos(A ± B) = cos A cos B ∓ sin A sin B and take into account that
each harmonic component from the sound wave is multiplied by a sinusoidal term
at 6 Hz.)
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