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The Acoustical Society of America

On 27 December 1928 a group of scientists and engineers met at Bell Telephone
Laboratories in New York City to discuss organizing a society dedicated to the field
of acoustics. Plans developed rapidly and the Acoustical Society of America (ASA)
held its first meeting on 10–11 May 1929 with a charter membership of about 450.
Today ASA has a worldwide membership of 7000.

The scope of this new society incorporated a broad range of technical areas
that continues to be reflected in ASA’s present-day endeavors. Today, ASA serves
the interests of its members and the acoustics community in all branches of
acoustics, both theoretical and applied. To achieve this goal, ASA has established
technical committees charged with keeping abreast of the developments and needs
of membership in specialized fields as well as identifying new ones as they develop.

The Technical Committees include acoustical oceanography, animal bioacous-
tics, architectural acoustics, biomedical acoustics, engineering acoustics, musical
acoustics, noise, physical acoustics, psychological and physiological acoustics,
signal processing in acoustics, speech communication, structural acoustics and
vibration, and underwater acoustics. This diversity is one of the Society’s unique
and strongest assets since it so strongly fosters and encourages cross-disciplinary
learning, collaboration, and interactions.

ASA publications and meetings incorporate the diversity of these Technical
Committees. In particular, publications play a major role in the Society. The Journal
of the Acoustical Society of America (JASA) includes contributed papers and
patent reviews. JASA Express Letters (JASA-EL) and Proceedings of Meetings on
Acoustics (POMA) are online, open-access publications, offering rapid publication.
Acoustics Today, published quarterly, is a popular open-access magazine. Other key
features of ASA’s publishing program include books, reprints of classic acoustics
texts, and videos. ASA’s biannual meetings offer opportunities for attendees to share
information, with strong support throughout the career continuum, from students
to retirees. Meetings incorporate many opportunities for professional and social
interactions and attendees find the personal contacts a rewarding experience. These
experiences result in building a robust network of fellow scientists and engineers,
many of whom became lifelong friends and colleagues.

From the Society’s inception, members recognized the importance of developing
acoustical standards with a focus on terminology, measurement procedures, and
criteria for determining the effects of noise and vibration. The ASA Standards
Program serves as the Secretariat for four American National Standards Institute
Committees and provides administrative support for several international standards
committees.

Throughout its history to present day, ASA’s strength resides in attracting the
interest and commitment of scholars devoted to promoting the knowledge and
practical applications of acoustics. The unselfish activity of these individuals in the
development of the Society is largely responsible for ASA’s growth and present
stature.
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Foreword

Harmonizing principles from physics, engineering, and music, William Ralph
Bennett, Jr. hit the right notes for undergraduate students in a popular semester-long
course on the physics of musical instruments, which he taught at Yale University
in the 1970s and 1980s. The course appealed to students with diverse talents
and backgrounds, including musicians and scientists. His lectures were filled with
demonstrations that helped students visualize complex concepts in wave analysis
and train their sense of hearing to appreciate harmonics and historical tuning of
musical instruments, and his classes were always infused with humor. In the mid-
1970s, Bennett was selected by students as one of the “Ten Best Teachers” at Yale
University 3 years in a row. The material for this course was based on Bennett’s
encyclopedic research of the physics of musical instruments. I was drawn to one of
Bennett’s lectures as a Yale graduate student when I heard strange noises and loud
music emanating from gigantic electrostatic speakers in a lecture hall in Becton
Center. As I slipped into the back of the hall, I was struck by his enthusiasm and the
engagement of his students; his approach resonated with me. I became his teaching
assistant on the spot. Lecture notes and homework assignments from Bennett’s
course served as the foundation for this book.

While at Bell Labs in 1960, Bennett invented the first gas laser, the helium-neon
laser, along with Ali Javan and Donald Harriott. The word “LASER” originated
as an acronym for light amplification by stimulated emission of radiation. Bennett
went on to invent nearly a dozen other lasers using electron impact excitation in
each of the noble gases, dissociative excitation transfer in the first chemical laser,

Musica et Lux - William Ralph Bennett, Jr. (January 30, 1930–June 29, 2008).
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x Foreword

the neon-oxygen laser, and collision excitation in several metal vapor lasers. He
was awarded 12 patents for his work in this area. Laser technology spawned many
applications, including compact disc players, of relevance to the enjoyment of high-
fidelity recorded music. Bennett authored 8 books and over 130 research papers.

Outside of his applied physics research on optical pumping, Bennett was also
an accomplished musician. He enjoyed listening to and playing chamber music as
Head of Silliman College at Yale and played clarinet with several amateur symphony
orchestras. I personally enjoyed playing four-hand classical works with him on his
beautifully restored Steinway concert grand piano. My hands worked hard to keep
up with Bennett’s, who hit the keys hard with his large hands. Before Bennett died
in 2008 from esophageal cancer, he asked me to help Frances Commins Bennett,
his wife of 55 years, see that the material in this book make it into print. Frances
and their daughter Jean Bennett, a geneticist at the University of Pennsylvania,
carefully organized and curated the contents of this book. Through my academic
connections, and later as President of the Acoustical Society of America (ASA), I
promised Frances to help find an editor for this book who is as passionate about
teaching as William Ralph Bennett, Jr. was. Andrew C.H. Morrison was the perfect
choice, an active member of the musical acoustics technical committee at the ASA,
a society that generates, disseminates, and promotes the knowledge and practical
applications of acoustics. Morrison is an assistant professor at Joliet Junior College,
Northern Illinois University. Morrison’s primary area of research is the physics
of musical instruments, and he teaches acoustics, astronomy, general physics, and
modern physics.

Bennett’s intellectual legacy is partly immortalized in this first installment of
a two-volume set on the science underpinning musical sounds. Wave motion and
the physics of the propagation of disturbances in strings, membranes, and pipes
are introduced with elegant descriptions and minimal algebraic and trigonometric
mathematics. The history of spectral analysis and Fourier series is presented with
delightful tidbits about significant scientists in the footnotes. Discrete Fourier
analysis is described and applied to musical sounds and is employed to elucidate
how human hearing works. Bennett provides sampled waveforms of many musical
instruments and quirky household items, such as the garden hose, which can
be played like a trumpet, complete with computer programs for the student to
explore. While in my laboratory at the University of Cincinnati, Jason L. Raymond,
currently a postdoctoral research assistant in the Department of Engineering Science
at the University of Oxford, translated Bennett’s original BASIC programs to
MATLAB code, found in Appendix C. The scientific concepts of modes of vibration
and resonance frequency are translated into the language of music, so that the
nonscientist can understand the origins of overtones and pitch. Detailed descriptions
of the inherent spectra of plucked, struck, and bowed strings are treated in separate
chapters. The source of sounds made by the human voice is given special attention,
and even the sampled spectrum of one of Bennett’s beloved German Shepherd
dogs named Mozart appears in one figure. The diagrams, photos, and anecdotes
in the chapter on pipe organs reveal Bennett’s fascination and familiarity with the
construction of this intricate instrument. Bennett spent many hours building a pipe
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organ into a nook of his summer home in Colrain, Massachusetts. Students reading
this book will be treated to Bennett’s witty personality and love of music while
learning about the instruments that contribute to this art form.

Professor, Internal Medicine, Division of Cardiovascular Christy K. Holland
Health and Disease and Biomedical Engineering
Scientific Director, Heart, Lung, and Vascular Institute
University of Cincinnati
Cincinnati, OH, USA



Preface

Just as aging musicians often find the leap to the podium irresistible, aging scientists
often turn to the study of musical sound. Examples start with the beginning of
physics itself, from Aristotle and Pythagoras to Brook Taylor (Newton’s student,
who is best known for his invention of the T aylor Series in calculus, studied the
physics of plucked vibrating strings). The more famous names of the nineteenth
century include Felix Savart, John William Strutt (alias Lord Rayleigh), and
Herman Helmholtz. In the early twentieth century, the roster contains molecular
spectroscopist Chandrasekhara Raman (who investigated the physics of bowed
violin strings), French nuclear physicist H. Bouasse (who wrote on resonances
in tubular cavities), and that well-known British expert on the dynamical theory
of gases, Sir James Jeans. More recent examples have included English scientist
Alexander Wood, RCA engineer Harry F. Olson (1952), physicist John Backus,
nuclear physicist Arthur Benade, solid-state physicist Thomas Rossing, former
director of electronics research at the Bell Telephone Laboratories John Pierce, and,
most humbly, the laser physicist who wrote this volume. Nuclear physicist Charles
Kavalovski didn’t wait for his “golden years” after teaching physics for 10 years,
he became Principal Hornist in the Boston Symphony Orchestra. Interestingly, the
French mathematician, Baron Jean-Baptiste-Joseph von Fourier, whose analysis is
so frequently used to study the sound of instruments, seemed to have had no interest
in music at all. (His revolutionary 1822 paper on Fourier Series arose from a study
of heat flow in the boring of cannons for Napoleon’s army. His other interests were
Egyptology and draining swamps.) It is much rarer to find musicians who have
turned to physics in their later years. The lone example of NBC Symphony violinist
Norman Pickering comes to mind. (Although he conducted research on the physics
of bowed strings, he was more widely known for his work in electrical engineering,
especially the invention of the Pickering Phonograph Cartridge in the 1940s.)

In addition to physicists, many electrical engineers became enamored with the
subject—a natural development in the early days of electronic sound recording and
reproduction. The period from the late 1920s through the 1940s became a heyday
in acoustical research at the Bell Laboratories, and, being the son of one of their
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xiv Preface

electrical engineers, I was privileged to meet many famous people in that world
at an early age. Harry Nyquist (sometimes thought of as the “Einstein” of the
communication field), Homer Dudley (inventor of the Vocoder), John Pierce (the
father of satellite communication), and many others were frequent guests in our
home. As a result, I acquired a strong interest in the early developments in multi-
channel high-fidelity stereophonic sound reproduction, audio technology, and the
digital encoding of sound—which, in those days, went under the heading PCM
(for pulse code modulation.) My father showed me how to construct electronic
circuits at home, ranging from audio amplifiers to FM tuners, and the very smell
of rosin smoke (probably poisonous) curling up in thin wisps from a hot soldering
iron became a source of nostalgia. Later, when I worked at the Bell Laboratories
myself, I came with sad reverence across some of the historic relics of that age
gathering dust in the basement of Building One. When we got the first gas laser to
work back in December of 1960,1 Harry Nyquist, who was still at the Bell Labs
as a consultant, came around to see how the device satisfied his famous criterion
for oscillation. (Nyquist was one of many people at the Labs who had built an
electronic organ at home. In those days, you had to make everything yourself if you
wanted anything good, and the living rooms of many Lab employees were often
cluttered with breadboard circuits and relay racks—much to the disgust of their
wives.) (Fig. 1)

The wide availability of live classical music over FM in those days played an
important role in my own musical education, as well as in that of many others. On
a typical weekend in the New York City area, one could hear live concerts from the

Fig. 1 The author with one of the first helium-neon lasers

1Javan et al. (1961).
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NBC Symphony under Toscanini, the Philadelphia Orchestra under Stokowski, the
N.Y. Philharmonic under Metropolis, the Radio City Music Hall Orchestra under
Rapeé, the CBS Symphony, miscellaneous chamber music recitals over WNYC and
the WQXR String Quartet—not to mention the Longine Symphonette, and even the
“Bell Telephone Hour.” The decrease in live (and recorded) classical music over the
radio since that time has been appalling.2

For me (in contrast to Baron von Fourier), life without music would be
unimaginably bleak, and I am not surprised that many scientists turned to study the
subject in their later years. Of course, some, including me, were amateur musicians
themselves. I studied the clarinet with Simeon Bellison (Principal Clarinetist in
the New York Philharmonic from 1925 to 1948) and clarinetist David Weber (then
Principal in the New York Metropolitan Opera Orchestra) during my college years
and was a soloist with several orchestras in the Princeton, NJ area.

At the Institute for Advanced Study, Einstein’s mathematical assistant, physics
professor Valentine Bargmann, was an excellent pianist. I once played the Brahms
clarinet trio, along with chemist (and cellist) Peter Koerber, while Bargmann
sight-read the difficult piano part. Also at the Institute, Swiss theoretical physicist
Dominic Rivier was a good cellist with whom I spent many evenings alternately
playing chamber music and talking about David Bohm’s “new” book on quantum
theory. (“You must work all the problems!”) Then, of course, the Director of the
Institute himself, physicist J. Robert Oppenheimer, was a great devotee of chamber
music.

The music scene at the Columbia Physics department was also active among
the student population. When I first arrived, Professor Charles Townes (of “maser-
laser” fame and then chairman of the department) sternly advised that I would
have to cut down on musical activity if I wanted to obtain a PhD in physics. I, of
course, took his advice, although I learned later that Charlie was taking voice lessons
then at the neighboring Juilliard School of Music.3 One of the faculty members at
Columbia was violinist Erwin Hahn, an expert in magnetic resonance spectroscopy
who could also play tunes by beating the top of his head with spoons. Another, Jack
Steinberger, played the flute; at our New Year’s Eve party in 1956, he made the
welcome suggestion to bring in a string quartet “to raise the tone of the event.” But
many students tended to conceal their musical abilities, probably fearing that they
wouldn’t be taken seriously as physicists.

A casual glance through the Amateur Chamber Music P layers Directory,
confirms my belief that there are lots of scientists who do love music. But I
don’t especially share the view expressed by some (e.g., Rothstein 1995) that it
is primarily the mathematical structure of music that attracts them to the subject.

2Lebrecht (2001, p. 96) infers that the end of classical music broadcasts occurred when Toscanini’s
memory failed due to a transient ischemic attack during a televised concert. “He floundered in
mid-Wagner and America listened aghast.” The NBC engineers quickly shifted to a recording of
the Maestro conducting Brahms. This was shortly followed by Toscanini’s resignation and the
disbandment of the NBC Symphony. The other networks quickly followed suit.
3Schawlow (1996, p. 4).
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As a number of composers have demonstrated, it is possible to write music with
very complex mathematical structure that sounds simply dreadful. For example,
Hindemith himself decided to abandon a composition based on the wavelengths in
the hydrogen atom, and, as once demonstrated by hornist Willie Ruff and geologist
John Rodgers at Yale, “the music of the spheres” is not all that it is cracked up
to be either.4 I think the allure of both music and art is more on a tonal, partly
subconscious level. Obviously, form plays a very important part. But the main thing
is whether it sounds good. Similarly, in great writing, it is the sound of words that
stimulates emotional interest. If Lincoln’s Gettysburg Address had started off,
“Eighty-seven years ago, our predecessors set up a new type of government,” few
people would have remembered it. Similar thoughts apply to changes from the King
James version of the Bible and from Shakespeare’s English. (In one pirated version
of Hamlet , the famous soliloquy from Act III began, “To be or not to be; ay, there’s
the rub. . . ”) Some remarkable analysis must go on behind the scenes in the human
brain for most people while listening to music. For example, the late Beethoven
string quartets have a special, near-mystical appeal. One almost feels that they are
the result of such intense emotional concentration that they could not have been
written by someone who had not become totally deaf. Of course to the scientist,
trying to understand the physical basis of acoustic phenomenon is as irresistible as
the analysis of musical structure must be to a composer, and most physicists also
have a well-developed fondness for problems involving wave motion.

In reviewing previous books on the physics of music, one sees a familiar problem
in presenting the material. One wants to hold the attention of two rather different
groups of readers: those who play musical instruments and have only an amateur
interest in physics or mathematics and those who are quite at home with math
and physics, but also play musical instruments as a hobby. The problem of how
to deal with both groups simultaneously is one that I faced over a decade of
teaching this subject at Yale University. One could see frustration and boredom
develop among the musicians during the presentation of elegant mathematical
proofs. Similarly, the scientists in the audience would become restive without some
analytic treatment of the subject. Starting with Helmholtz, different authors have
handled this problem in different ways. Helmholtz had a traumatic experience in
1855 while serving as Professor of Anatomy and Physiology at Bonn: he was
severely criticized (nearly fired) for having had the temerity to write a cosine
function on the blackboard during a lecture on physiological optics.5 It is probably
for that reason that he divided his famous opus On the Sensations of T one into
two major parts: the first and longest section was a qualitative discussion of the
material in which equations were spelled out in words; the second was a series

4Physicist Henry Margeneau (private conversation) had computed the hydrogen wavelengths at
Hindemith’s request while the composer was at Yale. Margeneau also told me that, although he
was a violinist, he had been forced to pass an examination in playing the pipe organ before he
could receive his undergraduate degree in Germany! The opinion of the “music of the spheres”
(based on the orbital periods of the planets in the solar system) is the author’s own.
5Henry Margeneau in the Preface to the Dover (1954) edition of the Helmholtz (1885) work.
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of very concise mathematical appendices. The basic trouble with that approach
for the physicist is the necessity to keep jumping back and forth between the
two parts of the book. Lord Rayleigh’s 1877 book, T he T heory of Sound, is
strictly for physicists and for those having a good deal of patience at that. He
is already deeply involved in the stability of solutions to nonlinear differential
equations by page 80. Jeans in his 1937 volume, Science and Music, solved
the problem by leaving out the equations altogether. But that results in such a
watered-down treatment that the book would scarcely be useful in a “physics for
poets” course. Various other approaches have been tried. John Backus (1969) in his
opus entitled T he Acoustical Foundations of Music used lots of illustrations,
and almost no math. C.A. Taylor (1965) in T he Physics of Musical Sounds

mixes the equations in with the text in a fairly traditional way. Arthur Benade
(1976) in Fundamentals of Musical Acoustics has lots of verbal description and
relatively few equations. He fools the reader slightly by omitting equation numbers
and referring instead to numbered statements in sections of the text that really are
equations spelled out in words. His book goes into much practical detail (e.g., on
the geometry of mouthpieces) that could be of value to a professional musician, but
tends to be too detailed for the nonspecialist. His study of clarinet mouthpieces is a
remarkable tour de force.

Many other authors have written about music and science, including Thomas
Rossing (1990), Rossing and Fletcher (1991), Bouasse and Fouché (1929), and
Cremer (1981). Many of these are excellent reference books for advanced students,
but in some cases the mathematics can obscure physical meaning for a general
college audience. An interesting experiment conducted by the late John R. Pierce
(1983) only used equations derived by dimensional analysis. In that approach, one
figures out what units the answer should have and then plays around with likely
quantities until the right dimensions pop out. For example, if the answer is to be a
velocity, you probably want to divide length by time, but you might also decide to
multiply acceleration by time, so the process is ambiguous. In addition, numerical
factors are both dimensionless and important. With so many books already written
on the subject, one might ask,“Why still another?” It’s a fair question. I found in
teaching a course that used books by most of the authors listed above that no one of
them seemed adequate for my own purposes. In addition to the problem of treating
the mathematics of the subject, there were many interesting questions that simply
weren’t mentioned at all: those things ranged from modern methods and examples of
spectral analysis to digital recording and computational models for the mechanism
of sound production in various instruments. I also prefer a more historical approach
to the subject than given in most texts. In addition, I have presented some of my
own research results here. My approach in teaching the course was to make the
undiluted mathematical material available in handouts, but not as a compulsory part
of the reading. I did assume the students at least had an introduction to trigonometry
and calculus. But I added footnotes in the reading to clarify those things when
they were important. I also provided lots of illustrations in the course, sometimes
based on “video clips” or “computer movies” that showed things like the motion
of a plucked harpsichord string or the vibrational modes of a circular drumhead.
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These were determined either by direct measurement or from numerical calculations
based on reasonable models of the things being studied. Those demonstrations were
supplemented by weekly laboratory experiments that permitted easy observation of
real examples. I have tried to carry over some of those concepts here by putting most
of the routine math in page footnotes and at the end of chapters and by referring
the reader to more involved calculations in mathematical appendices. I have also
provided numerous illustrations of the mathematical results. The math contained
within the chapters should not be a problem for anyone familiar with high school
geometry, algebra, trigonometry, and introductory calculus. (The reader is invited to
skip over the equations if he or she doesn’t like them; they are included primarily for
completeness and are not essential to understanding the material.) However, more
difficult mathematics is used in the Appendices, which are intended for people with
a more advanced mathematical background.

Haverford, PA, USA William Ralph Bennett, Jr.
February 2008
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Chapter 1
Wave Motion

An editor once warned me that every equation in a book reduces the readership by a
factor of two. Unfortunately, a few equations really are necessary to understand
this subject. But, the reader should rest assured that there is not much math in
this chapter other than a little high-school algebra and trigonometry. Throughout
the book, the more difficult derivations involving calculus have been relegated to
appendices designed to provide a more rigorous development of the subject. The
more difficult concepts are also placed at the end of chapters. In fact, the general
reader should be able to understand most of the material in this book merely by
skipping the equations and by looking at the figures, many of which illustrate the
mathematical results.

Many aspects of both physics and music deal with wave motion. Musical sound
involves the generation of vibration in different media—strings stretched under
tension in a piano, the taut membranes on a kettledrum, the wood fiber in a
violin front and back plates, the reeds made from cane in woodwind instruments,
and the transmission of sound through the air. The vibration is usually set up
within a medium where a localized disturbance propagates from one region to
another. In a gas such as air, neighboring molecules bump into each other to
transmit energy throughout the medium. The result is a compression wave moving
through the medium in the same direction as the vibration amplitude. In solids,
the localized microscopic vibrations are also coupled to neighboring atoms through
intermolecular forces. The process through which these vibrations are coupled
throughout a medium generally results in wave motion of some sort.

Many people first see evidence of wave motion in the ripples on the surface of
a pond, for example, after dropping a pebble into the water. That case produces
a localized vertical displacement of the water surface resulting in a wave whose
amplitude is transverse to the direction of wave propagation. It is important to realize
that the individual molecules do not have to move very far in order to transmit waves

The original version of this chapter was revised: Equations on pages 16 and 25 were corrected.
The correction to this chapter is available at https://doi.org/10.1007/978-3-319-92796-1_8
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2 1 Wave Motion

over a large distance and bulk motion of the material is not involved in the wave
propagation. Here, as in most cases of wave motion, it is the surface disturbances
and not the individual molecules that move throughout the medium. In the case of
water waves, the particles undergo up and down motion. There, surface tension as
well as gravity acts as a restoring force that produces wave motion.1 The velocity
with which the wave travels is normally much less than the speed of the individual
atoms or molecules.

In contrast, sound waves consist of compressional variations in the medium that
travels in the same direction as the initial disturbance. That is, the particles in the
medium move back and forth in the direction of the wave motion and the waves
are said to be “longitudinal” rather than “transverse.” In most cases, the medium is
uniform and isotropic (has the same properties in all directions) and the waves tend
to expand at equal rates in all directions. The magnitude of the pressure fluctuation in
the wave is generally quite small compared to the average background pressure—for
example, the local atmospheric pressure in the case of sound waves moving in air.

1.1 Frequency, Period, and Wavelength

Musical sound very often involves the motion of periodic waves of the type
illustrated in Fig. 1.1. Here, a transverse wave with amplitude y is shown traveling
at velocity c in the x-direction through some material. By “periodic,” we mean that
the disturbance repeats itself regularly both in time (at one point in space) and in
space (at one instant of time). If we stand at one point along the x-axis and watch
the wave go by, we might count the number of peaks whizzing past us per second.
That number is known as the f requency and is often designated by the letter f in
acoustics and electronics. (The time between peaks is called the period and equals
1/f .) Unfortunately, frequency is now measured in a nonintuitive unit called the
hertz—abbreviated Hz, in honor of Heinrich Hertz, who died in 1894 and did early
experiments on radio waves. One Hz is defined to be one cycle per second.2 The
situation is often compounded by the addition of Greek prefixes such as kilo (as
in kHz for 1000 Hz) and Mega (abbreviated MHz for one million Hz), and so on.
Fortunately, the period of the wave is still measured in units of time (seconds) but
with still more Greek prefixes. (See Table 1.1.)

If one were to freeze time and walk along the wave with a meter stick, one would
find that it repeated itself spatially in a distance known as the wavelength, which
is often abbreviated λ (the Greek letter for L) and fortunately is still measured in
standard units of length such as centimeters, meters, and feet.

1Reducing the surface tension tends to dampen out the waves—especially, the rapid ripples with
short wavelengths (hence the expression “pouring oil on troubled waters”).
2People used to measure frequency directly in “cycles per second” until some committee got a
hold of the problem. One suspects that the term Hz might have been coined to keep newcomers
out of the field. The situation becomes more confusing in the Russian language where there is
no equivalent of “H” and people use the Russian “G” (�) instead. Thus, “gigahertz” for a billion
cycles per second becomes “gigagertz.”
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Fig. 1.1 A periodic wave traveling through some medium at velocity c

Table 1.1 Frequency and period measurement nomenclature

Frequency (f ) Written Meaning Period (= 1/f ) Written

0 hertz DC Direct current

AC Alternating current

1 hertz 1 Hz 1 cycle/second 1 second 1 s

1 kilohertz 1 kHz 1000 cycles/second 1 millisecond 1 ms

1 megahertz 1 MHz 1 million cycles/second 1 microsecond

1 gigahertz 1 GHz 109 cycles/second 1 nanosecond 1 ns

1 terahertz 1 THz 1012 cycles/second 1 picosecond 1 ps

1 petahertz 1 PHz 1015 cycles/second 1 femtosecond 1 fs

1 exahertz 1 EHz 1018 cycles/second 1 attosecond 1 as

As one might suspect from the dimensions involved, the velocity c of the wave
is generally related to the wavelength and frequency by the equation

λf = c (1.1)

That is, in the time T of one period the wave moves a distance λ; hence, c =
λ/T = λf . Although the human ear only responds to audio frequencies in the
range from about 20 Hz to 20 kHz, some of the higher frequencies listed in Table 1.1
are used in devices related to sound transmission, recording, and reproduction. For
example, sampling rates on digital recordings range from about 44 kHz to 200 kHz;
the high-frequency bias on good tape recorders is typically at least 150 kHz; AM
radio transmission uses carrier frequencies of about 1 MHz; FM broadcasting is
done at about 100 MHz; present digital computers, TV sets, and cell phones use
frequencies up to about 2 GHz; the lasers used in CD and DVD recordings typically
emit light at about 0.6 PHz.

1.2 Why Sine Waves?

The reader will notice that we talk about sine functions a great deal throughout
this book. The reason is that they are a fundamental building block in the physics
of vibrational phenomena and, as such, are among the most important things one
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learns about in plane geometry or trigonometry. Indeed, one might go so far as to
say that the identities one derives for the addition, subtraction, and multiplication of
sine and cosine terms are among the most useful things taught in high school. The
motion of a harmonic oscillator is a sine function of the time (see Appendix A), as is
that of a vibrating reed at low air pressure or an oscillating pendulum or the human
vocal cords at low levels of excitation. All vibrating string problems involve sine
waves, from the plucked string of a harp to a bowed violin string. Solutions for the
motion of a light wave through space or those for a sound wave propagating through
air also involve sine waves. Of course, all these things could be expressed in terms
of cosine waves just as well since the cosine is merely a sine shifted in phase by 90◦
(π/2 radians).

1.3 The Wave Equation

In different areas of physics, the disturbance y (which might be the amplitude of
a vibrating string or the pressure fluctuation in a sound wave, or even the electric
field in a light wave moving through space) obeys something known as the Wave
Equation. The derivation of the wave equation involves more mathematics than we
wish to include here and depends on the laws of physics holding in the particular
area of interest. But, the form of the equation is much the same in these different
areas.3 In most cases in the present book, it arises merely by application of Newton’s
Laws of Motion. Because the form of the wave equation is essentially the same in
different areas of physics, the solutions are all quite similar.

1.4 Running Waves

As shown in Appendix B, any linear function of the type f (x ±ct) can be a solution
to the wave equation. However, sinusoidal solutions have a special relevance to the
physics of musical sound because of their periodicity. In particular, solutions to the
one-dimensional wave equation of the form

y = sin 2π(x/λ − f t)(−→)

and (1.2)

y = sin 2π(x/λ + f t)(←−)

3The wave equation for vibrating strings is derived in Appendix B and that for sound in Appendix F.
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describe running waves. The one marked (−→) travels to the right (+x direction) at
velocity +c and the one marked (←−) travels to the left (−x direction) at velocity
−c. To verify the direction and speed of travel, note how x must vary with time when
the argument of the sine wave is held constant. For the upper solution, (x/λ−f t) =
constant, which means that x is increasing at the rate +λf = +c. Similarly, for the
lower solution, (x/λ + f t) = constant, which means that x is decreasing at the rate
−λf = −c.

1.5 π and Other Greek Letters

Physicists and mathematicians often use Greek letters for mathematical quantities,
not to exhibit erudition, but for quite opposite reasons. They usually do not know
Greek at all and want symbols that will not be mixed up with letters in their own
alphabet. For the same reason, editors of papers and books like to italicize Roman
letters when they are used as mathematical variables to distinguish them from the
text.

Several Greek letters have taken on specific meaning through historic usage.
Leading among them is the letter π (Pi), which traditionally stands for the ratio of
the circumference-to-the-diameter of a circle. That quantity is of basic importance
in describing wave motion. It is an irrational number given by

π = 3.141592653589793238462643383279 . . . (1.3)

a number whose digits go on and on forever. Shanks and Wrench (1962) computed
the value of π to 100,000 decimal places.4 One seldom needs to know π to that
number of digits, but if some day you are stuck on a desert island and need to do a
calculation in “double precision,” the first 15 digits are given by a mnemonic due to
Sir James Jeans:

How I want a drink alcoholic of course after the heavy lectures involving quantum
mechanics.

4The current record was set by Yasumasa Kanada of Tokyo who calculated π to over 200 billion
places. (An early calculation done in 1873 by William Shanks to 707 places turned out to have a
mistake in the 528th place, after which all the subsequent digits were wrong.) In 1897, the Indiana
State House introduced Bill No. 246 to define π equal to the more convenient “Biblical value” of
3. Fortunately, that law was never passed by the State Senate. At the 762nd digit, π goes 999,999,
but then reverts to a near random sequence. Daniel Tammet set a record by reciting π to 22,514
places in 5 h (BBC News, 3/15/2004). See “A Very Large Slice of Pi” by Tammet (2007, Chapter
10). Why do it? Because: “It’s extremely beautiful. . . like a Mozart Symphony.”
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(The number of letters in each word corresponds to the successive digits in π .) Early
mathematicians investigated the number to see if the digits ever started to repeat
themselves. (They have not yet.) Von Neumann had hoped that the successive digits
might make a good pseudo-random number series, but that turned out not to be the
case, either.

Most pocket calculators or computer programming languages already have π

built into the appropriate number of places.5 Note that π is an angular measure: π

radians = 180◦.

1.6 Some Basic Trigonometry Relations

Figure 1.2 shows the basic definitions of the sine, cosine, and tangent functions as
applied to the angle ϑ shown in a right triangle. The identity, cos 2ϑ + sin 2ϑ = 1,
follows immediately from Pythagoras’ theorem (the square of the hypotenuse equals
the sum of the squares of the other two sides.) The shape of a sine wave is shown in
Fig. 1.3.

Fig. 1.2 A right triangle
illustrating the definitions of
the sine, cosine, and tangent,
plus two useful trigonometry
identities

A

Also,

= 1

Pythagorus:

A sin ϑ

tan ϑ = sinϑ/cosϑ

A cos ϑ

cos2ϑ + sin2ϑ

J

Fig. 1.3 The sine function
over two periods expressed in
radians and degrees

0
180° 360° 540°
π= 2π=

sin(J )

J

3π=
720°
4π=

5If not, the constant can usually be entered easily by the statement Pi = 4 ∗ AT N(1.0)[radians].
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1

ωt

t

y(t)=sin ω

Fig. 1.4 Generation of a sine wave by a unit radius vector rotating at angular velocity ω

1.7 Angular Frequency ω

The Greek lower case omega (ω) is often used to denote angular frequency. Since
there are 2π radians in a circle, the angular frequency is related to the cyclical
frequency f by

ω = 2πf . [radians per second] (1.4)

This definition provides a useful shorthand notation in writing later equations. From
the basic trigonometric definition of the sine (Fig. 1.2), it is easy to see how a radius
vector of unit length rotating at angular velocity ω generates a sine wave. In Fig. 1.4,
the radius vector started rotating at t = 0 when aligned with the horizontal axis. The
vertical position of the tip of the vector then traces out a sine wave as a function of
time. In the illustration, the sine wave is spread out with time to the right of the
circle, and the vector has rotated through a little more than two complete turns.

1.8 Phase Angle φ

The concept of phase for a sine wave is illustrated in Fig. 1.5. The phase angle φ is
added to the argument of the sine function and is essentially a measurement of the
time delay (in units of ω) between different sine waves. The figure illustrates the
relative positions of sine waves for three different phase angles spaced by 45◦ (π/4
radians). A phase shift of 90◦ (π/2 radians) would convert a sine wave into a cosine
wave.
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PHASE (φ)

+45 degrees

0 degrees

Amplitude

Angular
Frequency

Phase

y=A sin(ωt+φ)– 45 degrees

t

Fig. 1.5 Sine waves with different phase angles

1.9 Propagation Constant k

Another useful notation is that for the propagation constant k of a wave, which by
definition is6

k = 2π/λ. (1.5)

Hence, by use of these definitions, solutions to the wave equation such as those
in Eq. (1.2) might be written more simply as,

y = sin(kx ± ωt) (1.6)

for which Eq. (1.1) becomes

λf = ω/k = 2πf/k = c . (1.7)

6In two- and three-dimensional problems, k becomes a vector quantity that also describes the
direction of propagation of the wave as well as having the magnitude, 2π/λ. Its components play an
important role in determining the allowed modes of vibration in two-dimensional resonant systems
from spatial boundary conditions.
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An important property of the wave equation is that it is linear; any linear
combination of solutions of type (1.6) will also be a solution of the wave equation,
provided that condition (1.7) is satisfied for each component.

We have defined many mathematical terms and equations, but they allow a
concise description of the physical phenomena involved. If everything had to be
explained in words, little progress in understanding would have been made over the
centuries.

1.10 Reflections, Standing Waves, and the Vibrating String
Modes

Whenever there is a discontinuity in the medium through which a wave propagates,
there will be a change in the velocity of propagation and the generation of a reflected
wave. For example, light is partly reflected when it hits a glass window. (The
velocity of light is generally slower in the glass than in the air.) But, immersing
a quartz lens in a beaker of carbon tetrachloride makes it disappear. (The refractive
index, hence velocity of visible light, is the same in those two materials.) Sound
waves running down a pipe are reflected at the open end. (The effective velocity of
sound is reduced by reflection from the walls of the pipe compared to that in the
room.) Similarly, the sound waves running through a brass instrument are reflected
by the flaring bell of the horn at the open end. A pulse sent down a string under
tension will be reflected by the end support. The “crack” of a bull whip is created
by the reflection of a pulse at the free end of the whip, and so on. (The loud “crack”
of the bull whip is created because the whip tapers toward the end so that the wave
velocity speeds up and the pulse travels at supersonic velocity when it is reflected.
One actually hears the tip of the whip breaking the sound barrier.)

It is useful to distinguish between “soft” and “hard” reflections. A “hard”
reflection is associated with a change of phase of 180° (π radians) as, for example,
occurs at the end of a fixed string where the total amplitude is forced to be zero. The
amplitude of the reflected wave changes sign, and the two running waves traveling in
opposite directions cancel each other out at the point of support. A “soft” reflection
involves no change of phase at the discontinuity and occurs at the end of a string that
is free to move. In that case (for instance, the free end of a bull whip), the reflected
running wave has the same sign as the incident wave. If the wave velocity decreases
in the new medium after the discontinuity, the reflection is said to be “hard,” and
vice versa.

Suppose we do have a medium containing two such discontinuities—for exam-
ple, a vibrating string under tension fastened rigidly at the points x = 0 and x = L.
Further, let us suppose that the two running waves generated by the reflections add
up to the form

y = sin(kx − ωt) + sin(kx + ωt) (1.8)
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where the first term represents a running wave in the +x direction and the second
term is a running wave in the −x direction. If we make use of the identity from
trigonometry that

sin(A − B) + sin(A + B) = 2 sin A cos B , (1.9)

we can rewrite Eq. (1.8) as

y = 2 sin kx cos ωt . (1.10)

That is, we let A = kx and B = ωt in Eq. (1.9) in order to get Eq. (1.10).
Equation (1.10) can only be satisfied by particular values of the propagation

constant that we will denote by kn. Because we must have y = 0 at both ends
of the string (at x = 0 and x = L) for all values of the time, the spatial boundary
conditions result in special solutions for which

sin knL = 0 ,

which in turn means that we must have

knL = nπ or λn = 2L/n , where n = 1, 2, 3 . . . (1.11)

This condition defines a set of allowed modes on the string whose resonant frequen-
cies are given by substituting the values of λn into Eq. (1.7). The corresponding
frequencies for these modes are given by

fn = n(c/2L) where n = 1, 2, 3 . . . (1.12)

Note that the resonant frequencies of the string increase as the reciprocal of its length
(i.e., as 1/L.)

The complete solution for the resonant modes of the string is obtained by
substituting Eqs. (1.11) and (1.12) in Eq. (1.10). In that way, the full solutions for
the vibrating string are found to be of the form

yn = sin(nπx/L) cos
(

2πn
c

2L
t
)

where n = 1, 2, 3 . . . (1.13)

For a given mode (value of n), the spatial variation is multiplied by a time-
dependent factor that oscillates between −1 and +1 at frequencies that are
harmonics (integer multiples) of c/2L. Because the wave equation for which these
are particular solutions is linear, any linear combination of the solutions in Eq. (1.13)
is also a solution to the vibrating string problem. That property was tacitly employed
in writing Eq. (1.8) in the first place. The first three resonant modes of the vibrating
string are illustrated in Fig. 1.6. As shown in the figure, the values of x for which the
amplitudes of the standing waves are always zero are called “nodes.” (The points at
x = 0 and x = L are nodes for all resonant modes.) The maxima are often called
“antinodes.”
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Fig. 1.6 Resonant modes of
a vibrating string

Nodes

x = 0 x = L

n = 2

n = 1

n = 3
etc.

As shown in Appendix B, the velocity of the transverse waves on a vibrating
string is given by

c = √
T/μ , (1.14)

where T is the tension in the string and μ is the mass density per unit length. (The
result follows by application of Newton’s law of motion to a string vibrating at small
amplitude.) The inverse square-root dependence on the mass is characteristic of
vibrating systems ranging from the harmonic oscillator (see Appendix A) to kettle-
drum heads. This general dependence on mass explains why winding copper wire
around the base strings of a piano lowers their pitch for the same tension and length.
It also indicates why the pitch of a wine glass, when rubbed by a wet finger on the
rim, goes down as the glass is filled with more and more wine—thus, increasing the
effective mass in the vibrating system.7 (Intuitively, most people would expect the
pitch to go up because the vibrating length of the glass seems to get shorter.)

1.11 Sound Waves and Open Pipes

Surprisingly, the boundary conditions in the case of the open pipe are exactly the
same as those for the vibrating string. The time-varying pressure amplitude must go
to zero at both ends of an open pipe because at that point the pressure is forced to
equal the air pressure in the room. Consequently, the modes of an open pipe are just
the same as those for the vibrating string shown in Fig. 1.6, except that the quantity
plotted should be the pressure amplitude in respect to the room pressure rather than
the displacement of the string. Of course, the velocity now becomes the velocity of
sound (about 1130 ft/s in air), instead of that given by Eq. (1.14).

7If you do not have access to wine and a fine crystal goblet, try it with an ordinary glass of water,
hitting the edge with a spoon.
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Fig. 1.7 Resonant modes of
an open pipe

In contrast to the transverse waves propagated along a vibrating string, sound
waves consist of alternate longitudinal pressure maxima (“compressions”) and pres-
sure minima (“rarefactions”). These pressure fluctuations are sometimes represented
in schematic drawings by a varying density of dots. However, it is a little tricky
to represent the modes accurately in that way because the rarefactions represent a
negative amplitude (absence of dots) in respect to the ambient room pressure. To
illustrate the problem here, I have used black dots for positive pressure and white
dots for negative pressure on a gray background representing the constant ambient
pressure in the room. The first three open-pipe modes are illustrated in that manner
in Fig. 1.7.

Note that the black-dot density for n = 1 traces out half of a sine wave along
the length of the pipe, whereas that for n = 2 represents the full period of a sine
wave. Without a motion picture representation, it would be hard to show how the
standing waves varied with time over one period as done for the vibrating string
in Fig. 1.6. At half the period, the black and white regions would be interchanged
and at the quarter-period points, the entire figure would be gray. The nodes occur
at the boundaries between the black and white regions. It is easy to see that a hole
drilled in the side wall of the pipe at half its length would kill the mode for n = 1.
(The hole would force the inside pressure to equal the room pressure at that point.)
If the pipe were oscillating during the drilling operation, one would hear the pitch
suddenly jump up an octave as the oscillation switched from the n = 1 mode to the
n = 2 mode. The latter has a node at the midpoint and would not be affected by the
hole. The experiment is analogous to forcing a violin string to vibrate on the second
harmonic by touching the string lightly in the middle.

1.12 Closed Pipes

The resonances in a closed pipe are trickier to derive because the boundary
conditions are different at each end. At the open end (which we will take to be
at x = 0), it is just the same as with the vibrating string, and the fluctuating pressure
amplitude must be zero. However, at the closed end of the pipe (x = L), there will
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be a pressure maximum because at that point the air molecules bump against the
end of the pipe rather than moving against an opening to the air in the room. (As we
will discuss later, the flow of air molecules behaves in opposite sense to the pressure
in such a resonance and must be zero at the closed end. In contrast, the flow will be
a maximum at the open end, where the driving pressure for the resonance is nearly
zero.) Hence, the closed-pipe resonances are now ones for which

sin knL = ±1

rather than zero. (Of course, the amplitude of the pressure standing wave still goes
to zero at x = 0.) The closed-pipe modes are then determined by requiring that knL

be an odd multiple of π/2, hence

kL = (2n − 1)π/2 where n = 1, 2, 3 . . . (1.15)

or

knL = π/2, 3π/2, 5π/2, . . .

and the resonant frequencies for the closed-pipe modes are given from Eq. (1.7) by

fn = c/4L, 3c/4L, 5c/4L, . . . (1.16)

The pressure standing waves at t = 0 for the first few resonances are shown in
Fig. 1.8, using the convention of Fig. 1.7. These resonances are all odd harmonics of
the fundamental closed-pipe resonance (c/4L), which itself is half the fundamental
frequency of an open pipe of the same length.8 Consequently, simple closed organ

Fig. 1.8 Resonant pressure
modes in a closed pipe

8Organists have the quaint custom of specifying stops in terms of the length of an open pipe that
produces the same pitch as the one in question. Thus, a “16-ft Gedakt” (old German for “closed
pipe”) on the stop list would actually be about 8-ft long and both it and the hypothetical open pipe
would resonate at ≈35 Hz.
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Fig. 1.9 Time variation of
the pressure modes in a
closed pipe

Nodes

x = 0 x = L

pipes tend to sound a little like clarinets, which also mainly produce odd harmonics
because they have single reeds that vibrate in such a manner as to be closed most of
the time. (As we shall see, square-wave generators also produce only odd harmonics
and tend to sound like clarinets, too.) The time variation of these mode distributions
is illustrated in Fig. 1.9.

1.13 Determining Resonances from Phase Shifts

There is a very simple way to determine the fundamental frequencies of these
vibrating systems that is just based on phase shift analysis. The main point is that
the running waves have to close on themselves in a round-trip through the system.
That fact implies a condition on the phase of the running wave: The round-trip phase
shift has to be an integral multiple of 2π for a resonance to build up. (That is just as
true in laser oscillators as it is in vibrating strings or organ pipes.) The total phase
shift at frequency fn in a round-trip through length 2L is made up of two parts: first,
the time-delay phase shift, 2πfn(2L/c), where (2L/c) is the time for the running
wave to make a round-trip during which fn(2L/c) cycles occur (each contributing
2π radians to the total phase shift); and second, the phase shifts that take place upon
reflection at the end points.

In the vibrating string and open pipe, there are two “hard” reflections (one at
each end) which each introduce a phase shift of π radians. Hence, the resonances
are given by

2πf n(2L/c) + 2π = n2π where n = 1, 2, 3, . . .

Dividing the equation by 2π and rearranging terms, we get

fn = (n − 1)c/2L where n = 1, 2, 3, . . . (1.17)
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Here, the case n = 1 corresponds to the uninteresting DC solution where f = 0.
The frequencies of interest are all uniformly spaced at c/2L as we found previously.
The result is the same as that in Eq. (1.12) if we replace n − 1 by n in Eq. (1.17).
In the case of the closed pipe, there is only one hard reflection (at the open end).
Hence, the resonances are given there by

2π × fn(2L/c) + π = n2π ,

or rearranging terms,

fn = (2n − 1)c/4L where n = 1, 2, 3, . . . (1.18)

Note that the resonant frequencies automatically turn out to be odd multiples of
c/4L. In non-cylindrical pipes, additional terms are sometimes added to the running
wave phase shift. For example, an open conical pipe has a hard reflection at both
ends and one gets both even and odd harmonics and a lowest frequency of c/2L

rather than c/4L.
In general, quite a few different modes will be excited in both vibrating

strings and in open and closed pipes. The relative energy distributions over these
modes affect the tonal color (or t imbre) of the sound. That energy distribution
is determined by characteristics of the excitation process, many of which will be
discussed later in this book. Generally, the narrower the diameter of the pipe (and
the narrower the diameter of the string), the easier it is to excite higher harmonics.

In the case of both open and closed pipes, the fundamental resonant frequency
increases linearly with the velocity of sound. Because that velocity varies with the
media, the pitch of the pipe is directly affected by things such as the air temperature
and humidity content of the air, or the nature of the gas blown through the pipe.
(See Table 1.2.) For example, using helium instead of air can increase the pitch
by a factor of about 2.8—or much more than an octave, and the speaker who
has just inhaled helium sounds like “The Munchkins” (from The Wizard of Oz).
Similarly, tightening the tension on a violin string (which increases the velocity of
wave propagation) raises the pitch of the string.

The velocity of sound in a gas varies as

c = √
γRT/M (1.19)

where T is the absolute temperature in degrees Kelvin, M is the molecular weight
of the gas, γ is the ratio of the specific heat of the gas at constant pressure to that at
constant volume, and R is the universal gas constant (R = 8.31441 J/K mol). As in
Eq. (1.14), the velocity decreases with 1/

√
M .
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Table 1.2 Velocity of sound waves in different media

Temperature Velocity

Material (°C) (m/s) (ft/s)

Air: (dry) 0 331.4 1087.3

(dry) 20 343.4 1126.6

(50% humidity) 20 344.1 1128.8

(100% humidity) 20 344.7 1130.9

(at sea level) 0 340.3 1116.5

Helium 0 965 3166

Carbon dioxide 0 259 850

Water: (distilled) 25 1496.7 4910.4

(sea)a 25 1531 5023

Aluminum 5000 16,404

Brass 3480 11,420

Steel: (mild) 5200 17,060

(Stainless) 5000 16,400

Lead (rolled) 1210 3970

Glass (Pyrex) 5170 16,960

Quartz (fused) 5760 18,900

Wood: Ash (across rings) 1390 4560

Ash (along fiber) 4670 15,320

Beech (along fiber) 3340 10,958

Maple (along fiber) 4110 13,480

Source: CRC Handbook of Chemistry and Physics (69th Edition)
aAccording to Kuperman and Lynch (2004), the velocity of sound in shallow sea water is c ≈
1449 + 4.6T + (1.34 − 0.01T )/(S − 35) + 0.0216z m/s where T is in degrees Celsius, S is the
salinity in parts per thousand, and z is the depth in meters. Values for different woods used in
musical instruments are given in Bucur (1988 and 2006)

1.14 Wave Propagation

The seventeenth-century physicist Christian Huygens invented a method for pre-
dicting the motion of a wave front that is useful in describing the propagation of
sound waves. His principle states that for each point on the wave front at one instant
in time, the position of the wave a time t later is given by constructing a series of
spherical wavelets of radius r = ct centered at each point along the original wave
front. (The radius r , of course, is simply the distance the wavelet would expand in
time t at velocity c.) This type of construction is illustrated in Fig. 1.10 for a few
points on a curved wave front. Although tedious to carry out by hand, it is easy
to write a computer program that will draw as many wavelets as you want. The
approach is illustrated in Figs. 1.10 and 1.11.
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Fig. 1.10 Illustration of a
Huygens’ wavelet
construction for a wave front
moving to the right. This is an
expanding spherical wave

Fig. 1.11 Plane wave
propagating to the right

1.15 Refraction by a Continuously Varying Medium

A less familiar example of sound propagation occurs when there is a continuous
variation in the velocity of sound throughout a medium. An example of that is
shown in Fig. 1.12 where a spherical wave is assumed to expand from the top left
into a region where the velocity of sound increases continuously with decreasing
height. This type of phenomenon occurs when the ground is much warmer than
the air (for example, at sunset). The air density then increases gradually with
height above the ground, which from Eq. (1.19) implies that the wave velocity is
continuously decreasing toward the top of the figure. As is evident from the figure,
these conditions imply a continuous bending of the wave front toward the ground
as it progresses to the right. This in turn can lead to focusing effects where a
source that is normally inaudible such as children playing at dusk in the distance
becomes unusually clear. A similar effect can occur when there is wind flowing
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Fig. 1.12 Refraction of a
spherical wave by a medium
in which the velocity of
sound increases toward the
ground level

over the ground. The boundary conditions on air flow near the ground can result in
density variations and focusing effects on the downwind side. For example, one may
suddenly hear distant voices, giving the erroneous impression that they have been
blown in by the wind.

1.16 Reflection of Sound Waves from a Flat Mirror (Snell’s
Law)

The Huygens’ method also permits illustrating the spread of a wave through a hole
in a blocking screen and permits deriving the laws for reflection and refraction
(“Snell’s Laws” in optics) when a plane wave encounters a discontinuity in wave
velocity between two media. The reflection of sound waves is of considerable
importance in acoustic problems.

Consider a plane wave front hitting a plane (mirror) surface as shown in Fig. 1.13.
We only have to construct a wavelet at one point (A) to see what happens. Consider
a wave coming down from the left and striking the mirror at an angle φ in respect
to the surface normal at point A. The initial plane wave front extends along the line
from A to B, at right angles to the initial direction of propagation. We construct a
Huygens wavelet of radius r centered at point A. In the time taken for that wavelet
to expand by the distance r , the point B on the initial wave front will have moved
through the distance r to point C on the mirror. According to Huygens’ principle,
the reflected wave front will lie along the line through point C that is tangent to
the expanded wavelet at point D. By definition, that line is perpendicular to the
wavelet radius vector from point A to D, which is the direction of propagation of
the reflected wave. The two right-angle triangles (ADC and CBA) with base equal
to r and sharing a common hypotenuse along the mirror surface are congruent from
a theorem in plane geometry. Hence, the angles designated by ϑ in the two triangles
are equal. Similarly, because the sides forming the angle ACD are perpendicular to
the angle formed by the surface normal and the line AD, the latter angle (defined as
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Fig. 1.13 Diagram to illustrate the derivation of Snell’s Law for Reflection using a Huygens’
wavelet construction

the “angle of reflectance”) is also equal to ϑ . Finally, because the angle φ is formed
by lines that are perpendicular to the mirror surface and to the initial wave front (the
line AB), we know that

ϑ = φ , (1.20)

which is Snell’s Law for Reflection. That is, the angle of reflection equals the angle
of incidence for plane waves hitting a mirror surface.

1.17 Focal Point of a Spherical Mirror

Armed only with Eq. (1.20) and a little plane geometry, we can determine the
approximate focal length (f ) of a spherical mirror. Consider a plane wave incident
from the right on a spherical mirror as shown in Fig. 1.14. Consider the triangle
shown in the figure whose long side R is the radius of curvature of the mirror drawn
from the point O surface. From Snell’s Law, the angle of incidence equals the angle
of reflection, as indicated by ϑ in the drawing. The line R crosses two parallel lines
(the rays from the incident plane wave). Hence, from plane geometry, the angle of
incidence also equals the acute angle to the right inside the triangle. From that, we
conclude that the triangle must be isosceles and that the two shorter sides must both
be equal. Because the line from point O through point F to the mirror is equal to the
radius of curvature, R, the two short sides of the triangle are both equal to (R − f ).
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Fig. 1.14 Diagram used to
determine the focal length of
a spherical mirror

We next apply the Law of Cosines to the triangle, obtaining9

R2 = 2R(R − f ) cos ϑ ,

which reduces to

f ≈ R/2 (1.21)

for small values of ϑ . The approximation, cos ϑ ≈ 1, is much better than one might
intuitively think and holds within 10% up to angles of ϑ ≈ 25◦—hence, for a full
aperture as seen from the point O in Fig. 1.14 of 50◦. Focusing by spherical surfaces
is extremely important in determining the acoustic properties of architectural struc-
tures since many of them have curved ceilings or domes. A curved ceiling increases
the reverberation time enormously because of focusing effects and, generally, results
in very poor acoustic properties in auditoriums and even small rooms.

1.18 Reflection from a Moving Plane Mirror

Consider the case shown in Fig. 1.15 in which a plane mirror is moving normal to
its surface and toward a point source of sound located at S. When the mirror surface
passes through the point D, it is apparent from Snell’s Law of Reflection that the
image of the source heard by the observer seems to be located at point B, which is
located at a perpendicular distance behind the mirror equal to the distance from the
source to the mirror. That is, the BD = DS in Fig. 1.15.

9The Law of Cosines (derived from fundamental theorems in plane geometry) states that c2 =
a2 + b2 − 2ab cos ϑ where a and b are the two sides of a general triangle enclosing the angle ϑ

and c is the side opposite to that angle. For the case in the text, c = b = R − f , and a = R. (Note
that the general result reduces to the Pythagorean Theorem when ϑ = 90◦.)
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Fig. 1.15 Image location in a
moving plane mirror
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The dashed lines in the Fig. 1.15 refer to an earlier position of the mirror surface
when it passed through the point C. Again, because the image is an equal distance
behind the mirror to the distance of the mirror from the source, AC = CS. Hence,
during the time interval t in which the image at point A moved through the distance
VImaget to point B, the mirror at point C moved through the distance Vmirrort to point
D. Therefore, we know that the distances are related by

AB + BC = CD + DS

and

BC + CD = DS . (1.22)

Subtracting the second equation from the first yields

AB = 2CD (1.23)

or10

VImage = 2VMirror. (1.24)

That is, the apparent velocity of the image toward the source is twice the
velocity of the mirror toward the source, something to keep in mind if you are a
policeman measuring car velocities with Doppler Radar or a physician measuring
blood velocities in the heart with Echo Cardiography.

10A much simpler derivation follows from a modest use of calculus. Let the distance from the
source normal to the mirror be y, hence the distance from the source to the image is 2y. Then, the
velocity of the mirror is VMirror = dy/dt and the velocity of the image is VImage = 2dy/dt =
2V Mirror.
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1.19 The Inverse Square Law and Diffraction Effects

Although Huygens’ principle is powerful in its simplicity, it is only an approximate
method for handling wave propagation problems. For one thing, if you took the
method literally and drew complete spheres about each point on the wave front, you
would see a false backward wave arising in addition to the wave propagating in the
forward direction that you expected. Without further modification, the method also
does not depend explicitly on the wavelength and cannot predict interference effects
between different sound waves with well-defined phase.

A more rigorous way to treat these problems is through solution of the wave
equation in three dimensions. When the wave equation is written in spherical
coordinates, the solutions in the radial direction for emission from a point source
are actually similar to the one-dimensional plane wave solutions discussed in
connection with Eq. (1.8). If a wave spreads outward spherically through a uniform
isotropic medium, it is clear that the energy flow must fall off according to the
inverse square law. Imagine drawing a spherical surface about the point source. The
energy from the point source must flow through that surface and the flow per unit
area clearly must fall off as 1/r2, where r is the radius of the sphere. (That is,
the area of the sphere, 4πr2, increases with the square of the radius.) As shown in
Appendix A, the energy in oscillatory motion is proportional to the square of the
amplitude; hence, one would expect the amplitude of the spherical wave to fall off
as 1/r . As the wave expands to larger and larger size, it begins to approximate a
plane wave over small regions. It is therefore not surprising to find that a rigorous
solution of the wave equation for a point source at the origin in spherical coordinates
shows that an outgoing spherical wave is of the form11

y = sin(kr − ωt)/r. (1.25)

Thus, an outgoing spherical wave from a point source (or “monopole” radiation)
could be portrayed at one instant in time (t = 0) as shown in Fig. 1.16 where
our previous graphic technique has been employed to illustrate regions where the
fluctuating pressure amplitude is positive (black dots) and negative (white dots). As
before, the ambient background pressure is shown in gray. However, the dot density
in this case has been made proportional to the amplitude squared in order to illustrate
the inverse square law decrease in intensity. The pattern shown could represent the
radiation from the open end of a closed organ pipe.

11The singularity introduced near r = 0 would generally be removed when one summed the
contributions over a real (nonpoint) source distribution. In the present case, the singularity does
not occur because sin(kr)/r → k at t = 0.
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Fig. 1.16 Radiation of a
spherical wave from a
monopole source

Fig. 1.17 Radiation from a
dipole source

1.20 Dipole and Multipole Radiation

The radiation patterns become more interesting when we consider two or more point
sources radiating with a fixed phase relationship. One of the more well-known
cases—that of dipole radiation—occurs when two sources spaced by half of a
wavelength radiate 180° (π radians) out of phase. That case is illustrated in Fig. 1.17
where the two point sources are located on the horizontal axis. As in our previous
example, the region of positive amplitude is shown in black and that of negative
amplitude is in white, except that the dot density here has been made proportional to
the intensity (i.e., to the square of the amplitude). In this and the following figures,
the circles at the bottom indicate the relative polarity and position of the sources.
Although the intensity still falls off as 1/r2, the radiation is very directional and
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Fig. 1.18 Radiation from a
linear multipole

Fig. 1.19 Radiation from an
axial quadrupole

peaks along the axis of the dipole.12 Examples of this radiation pattern occur with
open pipes (where the two open ends are separated by λ/2), in the dominant “tea
cup” mode of a kettledrum (where the dipole axis is usually toward the audience),
in many modes of vibrating plates and in instrument soundboards. As illustrated in
Fig. 1.18, adding more dipole sources in line with the first one results in a similar,
but elongated radiation pattern in the horizontal direction.

A still-more complex situation is illustrated in Figs. 1.19 and 1.20, where the
radiation patterns from “quadrupole” source distributions are shown. Again, the
configuration and relative phase relations of the sources are indicated by the circles

12People familiar with electric-dipole radiation in electromagnetic theory may find this directional
characteristic surprising. In the electric field case, the radiated amplitude is a vector quantity that
peaks in the direction perpendicular to the dipole. With sound waves, the radiated pressure is a
scalar quantity peaking in the direction of the dipole axis.
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Fig. 1.20 Radiation from a
planar quadrupole

at the bottom of the figures, where black corresponds to pressure maxima and white
represents pressure minima. As with the dipole, the point sources are separated by
λ/2. In each case, the radiation is maximum in the plane of the quadrupole and
peaks along the 45° directions in respect to the horizontal. As shown, essentially the
same planar radiation patterns are obtained from these two rather different source
distributions. Examples of both linear multipole and quadrupole source distributions
occur in the sound boards of pianos.

1.21 The Doppler Shift

Whenever either the source of sound or the receiver is moving, there is a shift
observed from the original frequency of the source. The effect was first described in
1842 by the Austrian physicist Christian Johann Doppler (1803–1853).13 His initial
treatment of the phenomenon dealt with the frequency shift in light waves. But, we
will only consider sound waves here (Fig. 1.21).

First, consider the case where the source is moving at velocity VS toward the
observer while emitting sound at frequency fS . In time T , the source emits fST

cycles that are spread over a distance in the propagating medium given by (c−VS)T ,
where c is the velocity of sound in the medium. Consequently, the wavelength of the
sound emitted in the medium is

λM = (c − VS)T /(fST ) = (c − VS)/fS. (1.26)

13The Austrian physicist Christian Johann Doppler should not be confused with the several
contemporary Hungarian musicians having the same last name.
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Fig. 1.21 The demonstration at Maarsen

Because the frequency and wavelength in the medium must be related by
Eq. (1.7), the frequency measured by a stationary observer in the medium is given
by

fM = c

λM

= cfS

(c − VS)
= fS

(1 − VS/c)
.

If VS is positive, the observed frequency is higher than the source frequency
because the number of cycles emitted in time T has been crowded into a shorter
space in the medium than would occur if the source were not moving. If VS

is negative (source moving away from the observer), the observed frequency is
lower. In the days of railroad trains, the effect was commonly observed on station
platforms. The horn or bell on an approaching locomotive would sound higher in
pitch as the train approached than it did as the train receded away from people
standing on the platform. The first public demonstration of this effect was conducted
by Dr. Buijs Ballot in June of 1845, using a group of trained musicians at stations
along the tracks of the Rhine Railroad between the Dutch towns of Maarsen and
Utrecht. They listened to the change in pitch as a group of trumpet players riding on
a railroad car went by and found that the pitch change agreed well with Doppler’s
equations. (See Ballot 1845.)

The size of the effect differs in detail when the observer is also moving and is
actually more complex with sound than in the case of light.14 Consider the case
where the observer is moving in the same direction as the source, but with velocity
VO in respect to the medium. If VO is positive (observer moving away from source),
the observer now hears a frequency decreased by VOT/λM (the number of cycles in

14One conceptual difference in the analysis between sound and light waves occurs because there
is no fixed material medium (or “ether”) supporting the motion of the light wave. Light waves, of
course, can travel through vacuum, whereas sound waves cannot.
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the medium the observer passes through in time T ). Hence, with both the source and
the observer each moving in the same direction, the observer hears the frequency

fO = fM − VO

λM

= fs

(1 − VO/c)

(1 − VS/c)
. (1.27)

For VS � c (hence, λM ≈ c/fS = λ), one can expand the denominator of
Eq. (1.26) giving the total frequency shift Δf = fS − fO to be

Δf ≈ fS(VS − VO)/c ≈ (VS − VO)/λM ≈ VRel/λ , (1.28)

where VRel is the relative velocity between the source and observer. When both
source and observer are moving toward each other, VRel and the observed frequency
have their maximum values, and vice versa. If the relative velocity is not in the
direction of the line between the source and the observer, one needs to use the
component of VRel in that direction in these formulas. The inclusion of a cos ϑ term
(where ϑ is the angle between the relative velocity vector and the direction from
the source to the observer) causes the Doppler shift to decrease and then vanish as
ϑ → 90°.15

Problems

1.1 (1) Benjamin Franklin enjoyed walking to the edge of a pond where he would
raise his arms in a Moses-like gesture while slyly dropping a little oil on the water.
The surface ripples would immediately die out, greatly impressing local bystanders.
Explain.16

1.2 (a) Radio station WQXR-FM has broadcast classical music in the New York
City area for well-over 50 years. It currently uses a carrier frequency of 96.3 MHz.
What is the corresponding wavelength? (b) A surgeon employs a green argon ion
laser with a wavelength of 488 nm (1 nanometer = 10−9 m) to weld detached retinas
back in place. What is the corresponding frequency? (Note: both radio waves and
visible light travel at about 3 × 108 m/s.)

15The Doppler shift for light waves always depends on the relative velocity between the source
and the receiver because there is no propagation medium (or “ether”). But, there is an additional
relativistic Doppler shift in the optical case from “time dilation” when (v/c)2 is not negligible
compared to unity that occurs even when the relative velocity is perpendicular to the distance
between the source and the receiver. But, the first-order optical shift is also just ≈VRel/λ.
16Possibly inspired by Franklin, a chemistry professor at Oregon State College in the 1920s
enjoyed impressing the students by spitting into puddles on the campus while secretly dropping
a small piece of sodium in the water. The resulting reaction would produce a small (and rather
dangerous) explosion with yellow flames shooting 6 ft up into the air.
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1.3 (3) According to the New York Times (August 3, 2004, p. D1), a giant black
hole in the Perseus cluster emits pressure waves through the thin hot gases at “B-
flat, 57 octaves below middle C.” What is that frequency? What is the corresponding
period?

1.4 (a) A physicist laid out a house on the side of a hill using a red helium–
neon laser oscillating at 474 THz. What was the laser wavelength? (b) In order
to minimize standing wave resonances, the same physicist designed a living room
that would be 10 ft longer than the wavelength of the lowest note (C = 32.7 Hz) on
his pipe organ. How long did he make the room? (Take the velocity of sound to be
1100 ft/s.)

1.5 A physics professor hurriedly grabbed a tank of hydrogen rather than helium on
his way to give a demonstration of the “Munchkin effect” for his class in acoustics.
(Fortunately, there were no open flames in the lecture hall, or the demonstration
could have been really spectacular.) (a) Noting that the molecular weight of H2 = 2
and that for air is about 29, by about what factor did the resonant frequencies in
his vocal tract go up when he inhaled a lung full of hydrogen? (b) By how much
would they have gone up if he had used helium (molecular weight = 4) as originally
planned?

1.6 A string has a kink in it at two thirds of its length. If the full length of the string
is L, what frequencies would you expect from the string?

1.7 An auditorium has a microphone 10 ft from a loudspeaker in its Public Address
system. (a) At what frequencies would you expect the system to oscillate (“sing”)
from regenerative feedback? (b) Suppose it did not oscillate where you expected.
What might cause a shift from the expected frequencies?

1.8 An elegant apartment owned by a French psychiatrist living in Paris near the
Madeleine has a water closet containing a nineteenth-century flush toilet with a large
water tank mounted on the wall 6 ft above the bowl. When the chain is pulled, a flap
valve opens at the bottom of the tank causing water to pour down a narrow pipe into
the bowl. The sound produced is a beautiful clarinet-like glissando rising from a low
note through a two and a half octave range (See footnote 17). How does this work
and what is the lowest frequency? (Take the velocity of sound to be about 1100 ft/s.)

1.9 The whistle on a steam engine consists of four closed pipes with lengths of 6.31
in, 5.30 in, 4.46 in, and 3.54 in. A composer wants to imitate the sound on a piano.
Assuming that only the first two harmonics are important for each pipe, what would
the chord look like if the pipe were blown with air? (Optional for music majors:
How would the lower chord be resolved?)

1.10 The monks’ cells in the San Marco monastery in Florence run by Girolamo
Savonarola (before he was hanged and burned in 1498) have an unusual design. The
ceilings are spherically concave and about 10 ft above the floor, thus producing
strong resonances in the audio range for sound propagating vertically. For the
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purpose of this problem, assume that the radius of curvature of the ceiling is 20
ft, hence that the ceiling acts like a mirror with a focal point at the floor. One monk
standing in the middle of these resonant modes mumbling prayers sounds like an
entire army of monks to the uninitiated. What would the first few frequencies be?
(Hint: Draw the ray diagram for sound waves from a source on the floor that are
focused by the ceiling. How many trips up and down are required for the wave front
to repeat itself?)

1.11 It is often noted by organists that the sound from free-standing large closed
pipes “carries” much further than that from large open pipes. Why should that be
the case?

1.12 How could a person with perfect pitch determine the speed of a train in which
he or she were riding?

1.13 (a) About how fast would the car carrying the trumpet players have to move
for the musically trained observers near the track at Maarsen to hear a shift of one-
half step on the Well-Tempered Scale for the approaching train? (b) About how large
an interval on the well-tempered scale would the total shift (coming plus going) be
at that speed? Assume the velocity of sound is about 1100 ft/s ≈ 680 mph. (The
interval between successive half-steps on the WTS is 12

√
2 ≈ 1.0595.)

1.14 A clarinetist who abhors vibrato is playing in a large room with an overhead
fan. He is distressed to realize that his tone has developed a pronounced vibrato.
Explain.

1.15 The TGV (Très Grande Vitesse) runs at 322 km/hr (200 mph) between Paris
and Lucerne. (a) Suppose the engineer blows a 500 Hz whistle as a warning to a
farmer standing near the track. What pitch does the farmer hear? (b) Suppose a
French driver is cruising along at 200 km/h (about 124 mph) on a road parallel to
the track, but heading toward the train. What pitch does he hear? (c) What would be
the approximate answer for part b) using Eq. (1.27)? (Take the velocity of sound to
be 680 mph.)

1.16 A traffic officer is checking the speed of motorists with a Doppler Radar
device. Suppose he stands at the edge of the road and uses a microwave source
with a wavelength of 10 cm while aiming his radar gun at an on-coming car going
80 mph. Treating the car as a plane mirror, what is the frequency shift he would
measure in the wave reflected from the car? (There are 5280 ft per mile and 2.54 cm
per inch.)17

17During the summer of 1940 when the first portable radar gun developed at Loomis Research
Laboratories in Tuxedo Park 35 miles north of New York City as part of the war research program
was tested on unsuspecting motorists on a nearby highway, one research worker warned, “For
Lord’s sake, don’t let the cops know about this!” (Herken 2002, p. 36).
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1.17 An adult giraffe has a neck 6.9 ft long. If it acted like a closed pipe, what
would the resonant frequency be?

1.18 (18) The dunes at Nevada’s Sand Mountain “sing” at C, two octaves below
middle C.18 What is the wavelength?

18Kenneth Chang, “The Secrets of the Singing Sand Dunes,” The New York Times, July 25, 2006.



Chapter 2
Spectral Analysis and Fourier Series

2.1 Musical Sounds

As discussed in Chap. 1 in the case of vibrating strings and organ pipes, there
are generally many different modes in which a resonant system may vibrate. (See
Fig. 1.6 and related discussion.) Generally, more than one of these modes are excited
simultaneously in the sounding of a musical instrument. Indeed, their presence or
absence is what determines the beauty of a particular tone as well as the difference
in sound from one instrument to another. Which modes are excited is not only
determined by the characteristics of the resonant system but also by the way in
which it is excited. For example, the slipping of the violin string on the bow, or the
vibration of the reed in an oboe or a bassoon excites a particular set of modes in
those instruments.

Musicians often refer to the extra sounds produced above the pitch of a note
as overtones. In most cases, these overtones are harmonically related to the funda-
mental frequency in that their frequencies are integral multiples of the fundamental.
Unfortunately, that fact sometimes produces confusion between the meaning of the
musician and that of a scientist analyzing the tone. For example, the first overtone
of a vibrating string is actually the second harmonic of the fundamental pitch (its
frequency is twice the fundamental frequency), the second overtone is the third
harmonic (or three times the normal pitch), and so on.

Life is further complicated by the fact that some instruments produce overtones
that are not harmonically related to the fundamental. Examples are the kettledrum
(or timpani), bells, bars, wood blocks, and so on. Even more surprisingly, the
plucked string turns out to have overtones that are not precisely harmonics of the
fundamental, whereas the bowed string does.

The original version of this chapter was revised: Equations on pages 40 and 41 were corrected.
The correction to this chapter is available at https://doi.org/10.1007/978-3-319-92796-1_8
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In most instruments characterized by harmonically related overtones, the exci-
tation mechanism itself produces a locking effect causing the various harmonics to
be in phase with the fundamental. That results from the action of the vibrating reed
in woodwinds, the vibrating lips in the case of brass instruments, and the stick-slip
motion of the string against the bow in instruments of the violin family.

Because the relative distribution of overtones plays such a key role in defining
the characteristics of musical sound, it will help to review some of the methods used
to determine spectral distributions. By the term “spectral distribution,” we mean the
variation of amplitude or intensity of a waveform with frequency. (This chapter gives
a qualitative discussion of several important methods of spectral analysis, whose
mathematical bases are derived in the appendices.)

2.2 Early Methods of Spectral Analysis

The early pioneer, Helmholtz, did much of his experimental research in acoustics
using volume resonators for which the design bears his name. His basic idea was
to have a large spherical volume of air resonant at a given frequency that could be
driven by sound waves entering through a small aperture. (See Fig. 2.1.) A much
smaller tube at the other side of the sphere was designed to fit snuggly through a
wax seal into his ear so as to block off external sounds. Helmholtz had a set of
such matched resonators made that were tuned to different frequencies and managed
to accomplish an amazing amount of research with this relatively crude type of
apparatus.

Michelson (1903) designed another kind of spectrum analyzer to study the
fringes produced in optical interferometry. His analyzer (Fig. 2.2) consisted of a
large number of vertical rods tuned to different frequencies. These would vibrate
at sympathetic resonances in the audio range when a horizontal lever was made to
trace out a particular waveform. The extent of vibration of each rod was recorded
on paper and thus provided a measure of the spectral amplitudes.

Fig. 2.1 An original
Helmholtz resonator. Sound
entered the resonant volume
at a and was monitored
through the narrow tube at b,
which was covered with wax
molded to fit the
experimenter’s ear. From
Helmholtz (1885, pp. 43,
373). The resonant frequency
is derived in Appendix A. See
Eq. (A.68)
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Fig. 2.2 Michelson’s
spectrum analyzer consisting
of vibrating rods tuned to
different frequencies. From
Michelson (1903, p. 67)

Signal
IN OUT

Detector y-axis x

y

31
(Harmonic)

(Filter frequency)
Oscilloscope

(x-axis voltage or
“sawtooth” controls
filter pass frequency)

Slowly-swept
variable frequency
narrow-band filter

Fig. 2.3 Schematic diagram of an analog electronic spectrum analyzer. The illustration shows the
waveform from a closed organ pipe being broken into its spectral components—principally, the
first and third harmonics (in practice, such devices often use one very good narrowband filter at a
fixed high frequency which looks at the difference frequency produced when the audio input signal
is multiplied by a sine wave from a swept, high-frequency oscillator)

A more-sophisticated electronic approach was developed at the Bell Laboratories
during the 1930s to study sound in which a signal could be recorded on a magnetic
disc that was repeatedly scanned while a narrowband filter swept slowly through
the audio frequency range. The spectra were shown by using the rectified output of
the filter to darken a piece of paper. Apart from the time required to observe the
spectrum, the recording medium had very limited dynamic range.

A more recent version of that approach having a much wider dynamic range
is shown in Fig. 2.3. The main difficulty with such analyzers is that you need a
sustained source of sound (or a tape loop) for analysis (Fig. 2.4).
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Fig. 2.4 Odd-harmonic
spectrum from a square wave
determined with this analyzer

2.3 The Decibel (dB)

Relative spectral amplitudes are often described in terms of “dB,” or decibels. The
“decibel” was originally called the “transmission unit” and referred to the loss in
a standard length of telephone wire (Martin 1924). It was subsequently renamed
in honor of Alexander Graham Bell, but with his name misspelled and entered in
lower case. The more recent abbreviation for the unit (the “dB”) at least capitalizes
the “B.” The most important thing to remember about the unit is that it represents
a logarithmic measure of the ratio of two intensity (or power) levels. Specifically,
the ratio of the intensity levels I2 to I1 is defined in dB as

10 log10

(
I2

I1

)
. (2.1)

Because the intensity is generally proportional to the square of an amplitude (for
example, I2 ∝ A2

2 and I1 ∝ A2
1), the intensity ratios in dB may also be written as1

10 log10

((
A2

2

)
/
(
A2

1

)) = 10 log10 (A2/A1)
2 = 20 log10 (A2/A1) (2.2)

where A2 to A1 is the amplitude ratio. If the wave is attenuated in passing through
a medium, the result is a negative number of dB, and vice versa. Some useful
benchmarks to keep in mind: 10 dB corresponds to an intensity ratio of 10:1 whereas
doubling the intensity only amounts to about 3 dB. On the other hand, doubling the
amplitude results in a gain of about 6 dB. Conductor Leopold Stokowski became
enamored with decibels during the 1930s. People at the Bell Laboratories gave him
a dB meter hooked to a microphone which he used on the podium of the Philadelphia
Orchestra. One can imagine comments during rehearsals such as, “Mr. Tabuteau, I’d
like 6 dB more in the crescendo at letter A.”

1Note by definition,
a = log10 b means that b = 10a .
Therefore,
log10 b2 = log10 102a = 2a = 2 log10 b
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Table 2.1 Sound pressure levels (SPLs) referred to 2 × 10−4 dynes/cm2 (100 dB = 1 μW/cm2)

SPL (in dB) Source

200 16 in. naval gun at 12 ft

140 Jet taking off

130 Jet taxiing

125 Student rock concert at Yale university at 50 ft

120 Threshold of pain

110 Construction site (pneumatic drills at 100 ft)

100 Lawn mower

95 Good Stradivari violin at 3 ft; most car interiors; times square traffic.

90 San Francisco symphony in Carnegie hall playing Mahler (100 ft)

85 Kirov orchestra in Verizon hall playing Wagner (100 ft)

80 City street; alarm clock (at 2 ft)

75 Frappuccino maker at 3 ft

70 Shouting at 4 ft

60 Normal conversation at 3 ft; busy office

50 Quiet office or classroom

40 Living room

30 Bedroom at night

20 Recording studio

10 Yale maintenance workers

0 Snowflake hitting ground

Note: These are total SPLs and not “A weightings.” Extended listening to sound levels above
90 dB is thought by OSHA to be damaging to the ear. The Bavarian Radio Symphony Orchestra
was cited for violating a new law on noise level while rehearsing the “State of Siege” by Dror
Feiler, a piece containing sustained sound levels of 97 dB (N.Y. Times, April 20, 2008, p. 1)

Confusion may be introduced by people who refer to absolute sound levels in
decibels. What they usually mean by that terminology is that the sound intensity
ratio is in respect to a standard reference level where 0 dB corresponds to 2 ×
10−4 dynes/cm2. That value is approximately the threshold of hearing at 2 kHz. On
that same scale, 120 dB is about the threshold of pain. By coincidence, an increment
of 1 dB is about the smallest change in intensity ratio that the average human ear
can detect, although the value varies somewhat with individuals, with frequency,
and with sound level. (See Riesz 1932.) Using such SPL (“Sound Pressure Level”)
meters, the various peak absolute sound levels shown in Table 2.1 were obtained.

Recently, circuits containing multiple frequency-band transmission filters to
cover the audio spectrum have flooded the “Hi-Fi” market and are generally
calibrated in decibels. The frequency bands are often spaced at octave, or even one-
third octave, intervals and use light-emitting diodes to indicate the relative sound
intensity levels within the different bands. Although they have the advantage of
rapid response and can provide a rough portrayal of spectra in “real time,” the
resolution is limited by the number of filters one can crowd into a small circuit.
A nice application of this display has been incorporated in the sound level meter



36 2 Spectral Analysis and Fourier Series

Fig. 2.5 A portable real-time
spectrum analyzer and sound
level meter

made by the AudioSource company. As illustrated in Fig. 2.5, the meter is portable
and provides a real-time spectral display of absolute sound levels in dB detected
from a calibrated condenser microphone.

With the computer methods discussed below, one can increase the resolution
merely by increasing the dimension of a column array. It used to be that machine
“running times” were an impediment to mathematical analysis. But, now that we
have computer speeds in the GHz domain and nearly unlimited random access
memory storage capability, Fourier analysis can be done throughout the entire audio
spectrum in real time with good resolution.

2.4 Fourier Analysis

Although the mathematical techniques involved in Fourier analysis have been
known since the 1820s, the ability to use this method rapidly in real-time analysis
required innovations in computer technology that did not arise until the 1970s. One
major advantage is that you do not need a very long sample of a waveform to
determine its spectral distribution. Indeed, if you know that the waveform is truly
periodic, you only need one period for analysis. Hence, in many cases, the spectra
can be captured “on the fly.”
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2.5 A Brief Historical Background of Fourier Series

Fourier began the mathematical work which led to his formulation of what we now
call “Fourier Series” in a theoretical study of heat flow in 1807, stimulated by
engineering problems encountered in the boring of Napoleon’s cannons.2 Fourier
solved the heat-flow equation for sinusoidal distributions of temperature. But, he
needed an infinite series of such solutions to describe the results of arbitrary
temperature distributions on the walls of the material. Fourier’s initial paper on
this subject was highly controversial. Several outstanding mathematicians did not
believe what he was saying and urged the paper’s rejection. In fact, his paper
was refused publication until Fourier himself was elected President of the French
Mathematical Society in 1822.

According to Whittaker and Watson (1920), the major background developments
were as follows:

1. D′Alembert had solved the wave equation for the vibrating string problem and
obtained a solution of the form

y(x, t) = 1/2[f (x + ct) + f (x − ct)]. (2.3)

Note that y = f (x) is the shape of the string at time t = 0.
2. Daniel Bernoulli next showed that a formal solution to the problem was also

given by a sum of solutions of the type summarized in Chap. 1 by Eq. (1.13):

y(x, t) =
∞∑

n=1

(An sin(nπx/L) cos(nπct/L)) (2.4)

where the An are adjustable constants.3 Bernoulli went on further to claim that
this result was the most general solution to the problem possible. (Although the
claim sounded like a Madison Avenue advertising slogan, it turned out to be
right.)

3. Neither d ′Alembert nor Euler believed Bernoulli and protested that such a
series could not possibly converge to a function such as f (x) = x(L − x) at

2Baron Jean-Baptiste-Joseph von Fourier (1768–1830) accompanied Napoleon in 1798 on his
expedition to Egypt, where he served as Secretary for Napoleon’s newly formed Institut d’Egypt.
In Cairo, he did extensive research on Egyptian antiquities and gave advice on engineering matters.
He returned to France in 1801, about the same time that the Rosetta Stone and other major
ancient Egyptian relics were surrendered to the British. Back in France, he was charged with the
publication of an enormous mass of Egyptian material which became known as Description de
l’Egypt (in 21 volumes from 1808 to 1825). He was also the first to describe the atmosphere’s
trapping of heat as “The Greenhouse Effect” in the 1820s. (See Segré 2002, p. 119.)
3The notation

∑∞
n=1(An sin(nπx/L) cos(nπct/L)) means that you sum the expression for the

values of n = 1, 2, 3, . . . to infinity.
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t = 0, or even worse, the boundary conditions at t = 0 on a plucked harpsichord
string.

4. Fourier (1822) proved for the first time that such a series did indeed converge
in a large number of specific cases while discussing his analytic theory of heat
flow.

5. Others (Poisson, Cauchy, Dirichlet , and Bonnet) went on to attempt more
general proofs (some of them wrong). According to Whittaker and Watson
(1902), the first correct proof of convergence was given by Dirichlet.

2.6 A Note on the Convergence of Infinite Series

The concept of convergence of a sum such as that in Eq. (2.4) at t = 0 is
of fundamental importance in establishing the usefulness of Fourier series. For
a rigorous discussion of convergence, the reader should consult a treatise on
mathematical analysis such as that by Whittaker and Watson (1902). What follows
here is a more pragmatic approach to the problem.

Suppose we have a sum of numbers of the form

S = a1 + a2 + a3 + · · · + an · · ·

where the nth term is a known function of n. For the sum to converge to a limiting
value, an clearly must go to zero as n → ∞. Although that is a necessary condition
for convergence, it is not a sufficient one. For example, the well-known series

S = 1 + 1/2 + 1/3 + · · · + 1/n + · · ·

does not converge, but obviously satisfies that “necessary” condition. Convergence
does occur when an + 1/an goes to zero in the limit that n → ∞. (The divergent
case quoted above obviously does not satisfy that requirement.)

In the present computer age, it is often adequate to run off the sum of the
series to a few dozen terms to see what actually happens. In that approach, if you
stop calculating the sum after |an| < 10−7|S|, you will usually have reached the
convergence limit within the accuracy of the computer. That is, “single-precision”
computer calculations in which the mantissa is evaluated to 24-bit accuracy are
typically good to only about one part in 107. (Of course, convergent series can
always be computed in extended precision using more bits for the calculation.)

A numerical example will help for clarification. The infinite series for ex is given
by

S = 1 + x + x2/2 + x2/3! + · · · + xn/n + · · · (2.5)

It is useful to note that the nth term of the series is easily related to the (n − 1)th
term by
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Fig. 2.6 The first 30 terms
for the series in Eq. (2.5) for
x = 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

n a (n) s
1
11
6.1
22.77
64.44
147.77
286.66
485.07
733.09
1008.66
1284.24
1534.76
1743.52
1904.11
2018.82
2095.29
2143.09
2171.2
2186.82
2195.04
2199.15
2201.11
2202
2202.39
2202.55
2202.61
2202.64
2202.65
2202.65
2202.65

0
10
50
166.667
416.667
833.334
1388.889
1984.127
2480.159
2755.732
2755.732
2505.211
2087.676
1605.905
1147.075
764.717
477.948
281.146
156.193
82.207
41.104
19.573
8.897
3.869
1.612
0.645
0.248
0.092
0.033
0.012

an = an−1x/n . (2.6)

The series will converge for any finite value of x because

an/an−1 → 0 as n → ∞ .

The first 30 terms for the series are illustrated in Fig. 2.6 for the case x = 10.
As can be seen from the figure, the increment an rapidly builds up for the first few
powers of x but goes through a maximum value at about the 11th term. After that, the
n! in the denominator rapidly reduces the increment to zero and the series converges
to 1 part per million by the 30th term to S = 2202.65. To get the numerical value for
e (= 2.718282. . . , the base of the Naperian logarithms), one merely lets x = 1 in
the series Eq. (2.5). The number π is also the result of a convergent infinite series,
as are all the transcendental trigonometric functions.4

4Ramanujan (1914) gave the most rapidly convergent series for 1/π ever discovered: 1
π

=
1
4

[
1123
882 − 22,583

8823 · 1
2 · 1·3

42 + 44,043
8825 · 1·3

2·4 · 1·3·5·7
42·82 − · · ·

]
. Amazingly, the first term by itself gives

π = 3.141585041 . . . (Ramanujan liked to entertain his friends by reciting the endless digits of π

at parties.
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2.7 Specific Examples of Convergence for Periodic Series

The following three examples involve convergence of an infinite series for each
value of x over the domain 0 ≤ x ≤ 4π . All three represent periodic functions that
repeat themselves over the range from 0 to 2π . (The range for x from 0 to 4π was
chosen to illustrate two periods of the function in each case.) Here, we have used
a computer to demonstrate convergence by adding up the terms for different values
of n at each value of x. For each of the three cases listed below, a superposition of
the first ten terms is shown at the left in Fig. 2.7, and the limit of the series after 100
terms is shown at the right. Although the three cases look superficially similar, the
results converge in each case to very different, highly non-sinusoidal functions.

Case 1: “Sawtooth”:

y = sin x + 1

2
sin 2x + 1

3
sin 3x + 1

4
sin 4x + · · · + 1

n
sin nx (2.7)

Case 2: “Square Wave”:

y = sin x + 1

3
sin 3x + 1

5
sin 5x + · · · + 1

n
sin nx [n odd] (2.8)

Fig. 2.7 Convergence of the three infinite series shown in the text over two fundamental cycles
(0 ≤ x ≤ 4π .) Case (1) Sawtooth waveform; (2) Square wave; and (3) the Gibbs Zigzag. The
column on the left shows the superposition of the buildup of the series through the first 10 terms.
The column on the right shows the series after 100 terms were added in each case
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Case 3: Gibbs “Zigzag”:

y = sin x − 1

2
sin 2x + 1

3
sin 3x − 1

4
sin 4x + · · · + (−1)n

n
sin nx (2.9)

2.8 The “Gibbs Phenomenon” or Wilbraham Effect

If you look in the vicinity of the vertical discontinuities in the development of the
infinite series shown in Fig. 2.7, you will notice a small “horn” sticking up above
the waveform. That effect was first discovered by the Scottish mathematician Henry
Wilbraham in 1848. It was rediscovered some 50 years later by Gibbs (1899) and
has since come to be known as the “Gibbs Phenomenon” in Fourier Series. The
width of the horn gets narrower and narrower as the number of terms added to the
series increases, but it never disappears. It arises because the convergent limit of
the series at the discontinuity differs by about 14% from the limit a small distance
away on the curve. Since the waveforms of interest in the present study are not
characterized by vertical discontinuities, the effect does not show up in musical
instrument waveforms and is merely of historical interest here.

2.9 Basic Aspects of Fourier Series

In what follows here, we will restrict ourselves to periodic functions that are “well-
behaved” in the sense that they are continuous and their slopes are finite. By a
periodic function V (θ) such as shown in Fig. 2.8, we mean that

V (θ + 2π) = V (θ) . (2.10)

Many musical instrument waveforms are periodic in the time, or at least quasi-
periodic after an initial excitation transient has died down. For example, the sound
pressure wave produced by a closed organ pipe is shown in Fig. 2.9, where the pipe
was turned on at the start of the oscillogram. As can readily be seen by eye, the
waveform settles down to a periodic one after about ten cycles of the fundamental
pipe resonance.

Fig. 2.8 A hypothetical
periodic waveform
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Fig. 2.9 Oscilloscope
display of the waveform from
a quintadena (closed organ
pipe of circular cross-section)

As Fourier showed, any such periodic function can be represented by an infinite
series of harmonics of sine and cosine functions over the fundamental period. Thus,
V (θ) in Eq. (2.10) could be written

V (θ) = C0 + A1 sin 1θ + A2 sin 2θ + A3 sin 3θ (2.11)

+ · · · + B1 cos 1θ + B2 cos 2θ + B3 cos 3θ + · · ·

or

V (θ) = C0 +
∞∑

n=1

An sin nθ +
∞∑

n=1

Bn cos nθ (2.12)
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Here, the constant C0 allows for a net DC (“Direct Current”) offset of the
waveform from the horizontal axis. The terms involving sin nθ and cos nθ are
called the nth harmonic terms and the coefficients An and Bn are called harmonic
amplitudes.

2.10 Calculating the Fourier Coefficients for V (θ)

We could just postulate different values for the coefficients C0, An, and Bn, and
evaluate the series in Eq. (2.11) with a computer in the same way that we computed
those for Fig. 2.7. We might even try to narrow in on a set of coefficients that
would match a particular waveform. However, that would be an extremely tedious
and inefficient approach. Fortunately, Fourier worked out a systematic method
to compute the coefficients from the waveform directly. The method involves
integral calculus and is described in detail in Appendix C. Essentially, the different
coefficients are determined by finding the areas under various curves related to the
initial waveform over one fundamental period. The DC constant C0 is the average
value and is determined from the area under the curve for V (θ) itself, whereas the
coefficients An are determined from the area under the curve, V (θ) sin(nθ), and
those for Bn from the curve, V (θ) cos(nθ). For musical instruments, the waveforms
can be measured numerically using an A-to-D converter, a circuit that converts
Analog microphone voltages to Digital output values to be read by a computer.
(Microphone voltages are usually proportional to the sound wave pressure.)

Once numerical values have been determined for the sine and cosine terms (An

and Bn) in the series, it is desirable to express the results in terms of one net
coefficient and phase for each harmonic (value of n). That process just involves
a little trigonometry. We rewrite the original Fourier series in Eq. (2.11)

V (θ) = C0 +
∞∑

n=1

An sin nθ +
∞∑

n=1

Bn cos nθ

as an equivalent series involving one sine and a phase angle for each harmonic:

V (θ) = C0 +
∞∑

n=1

Cn sin nθ + φn . (2.13)

One then evaluates the coefficients Cn and the phases φn in terms of An and Bn by
comparing like terms in the two different expressions for the infinite series.
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Thus,5

Cn =
√

A2
n + B2

n for n ≥ 1 (2.14)

and

φn = arctan(Bn/An).

Often, one is primarily interested in the relative distribution of the net harmonic
amplitudes Cn because they correspond roughly to the psychological impression
the sound makes on the human ear. As shown in Appendix C, the relative energy
distribution in the harmonics of a Fourier series goes as the square of the amplitudes.
Some people prefer to convert that number into decibels because the ear responds
logarithmically to the harmonic intensity.

Although it is straightforward (but tedious) to do a Fourier analysis by hand, the
calculation is a simple matter with a high-speed computer. A program for doing that
is given in Appendix C, together with a derivation of the mathematical quantities
involved. Not only is that approach to the problem much faster than the older
methods of spectral analysis, you only need one period of the waveform in order
to determine the harmonic structure. Thus, you can catch the spectral distribution in
the time of one period of the waveform rather than, for example, spending a long
time scanning the output of a tape loop (as in Fig. 2.3) while a narrow frequency
filter is slowly swept through the spectrum.

2.11 An Example of Discrete Fourier Analysis

In order to do the computations involved in Fourier analysis, one needs to sample
at least one period of the waveform digitally and obtain lots of points. In doing that
sort of analysis myself, I used a high-quality condenser microphone to pick up the
sound and fed its output into a high-speed A-to-D (“Analog-to-Digital”) converter
controlled by a computer. The computer recorded the data, showed the waveform,
did a Fourier analysis, and then displayed the relative amplitudes of the harmonic
coefficients. The photograph in Fig. 2.10 was taken during a lecture I once gave at
Yale in which a student (William C. Campbell) blew a note on a 50-ft garden hose.
The hose behaved like a narrow-scale open pipe with modes spaced at about 11 Hz.
Campbell was able to phase-lock a large number of those modes in the mid-audio
range (at a fundamental frequency of about 307.7 Hz) and produce a waveform with
a sharp, periodic pulse that sounded much like a braying elephant. (The waveform

5These results are obtained by applying the trigonometry identities Cn sin(nθ + φn) =
Cn sin nθ cos φn + Cn cos nθ sin φn

and
tan φn = sin φn

cos φn
together with cos2 φn + sin2 φn = 1.
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Fig. 2.10 Photograph taken in Davies auditorium at Yale University during a lecture by the author
on “Live Fourier Analysis” in the 1970s. The garden hose was played by Yale student, William C.
Campbell

and amplitude spectrum are shown on the oscilloscope in Fig. 2.10, together with
the HP-2116B computer used.)

The Campbell waveform provides a nice example of the way in which a sum of
sine waves can add up to produce a sharp pulse. At the same time, it provides a useful
example to illustrate the convergence of a Fourier series. The amplitude coefficients
and phases shown in Fig. 2.11 were computed from the digitized waveform using
the program described in Appendix C. A histogram of the Fourier coefficients C(n)

is shown as a function of harmonic number starting from the left with n = 1
in Fig. 2.12, together with the waveform over one cycle. (The DC offset, C(0),
probably resulted from air coming out of the hose near the microphone and is not
included in the histogram.)

The original waveform can, of course, be reconstructed by putting the amplitudes
and phases from Fig. 2.11 back into Eq. (2.12). That process illustrates the conver-
gence of the Fourier series with increasing number of harmonics, as has been done
in Fig. 2.13 where the numbers represent the maximum number of harmonics used
in the reconstruction. The values of the phase are very important in determining the
visual shape of the waveform, whereas the harmonic amplitudes are more related to
the sound heard by ear (Fig. 2.14).

The oscillogram of the closed pipe waveform in Fig. 2.9 provides an example of
the pitfalls involved in Fourier analysis. If you had started analyzing that data when
the organ pipe was initially turned on, you probably would not even have been able
to determine the fundamental period. There was an initial transient during which
only higher modes of the pipe were excited. Then, as time went on, the fundamental
mode slowly built up and became the dominant source of sound in the spectrum.
At the extreme right end of the oscillogram, the waveform has become strongly



46 2 Spectral Analysis and Fourier Series

Fig. 2.11 Relative amplitude
coefficients C(N) and phases
P(N) computed from one
cycle of the garden hose
waveform for the first 20
harmonics

Fig. 2.12 Waveform and
histogram of the Fourier
coefficients C(n) for the
garden hose waveform

periodic and one can easily pick out the period. Just by looking at it, you can see
that only odd harmonics are of importance in the steady-state waveform and not
much more than the first three are significant. If you were to use a slow computer,
it would help to estimate just how many harmonics you need to analyze in advance,
for the running time in the computation of the discrete Fourier analysis goes up as
the square of the number of harmonics (and of the number of points). Once you
know the fundamental period, you could, of course, go back to the beginning and
Fourier analyze the entire spectrum, period by period. That process would show how
the harmonics changed during the transient.

We can use the reconstruction of the waveform from the harmonic coefficients to
show how the Fourier series itself converges. That has been illustrated in Fig. 2.13
for the garden hose waveform in Fig. 2.12.
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Fig. 2.13 Reconstruction of the waveform in Fig. 2.12 from the Fourier coefficients. The numbers
represent the maximum number of harmonics used in each case to reconstruct the waveform
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Fig. 2.14 Top: Waveform
from a tuba at 33 Hz
reconstructed from the
original 50 amplitudes and
phases obtained from Fourier
analysis. Bottom: Waveform
reconstructed from exactly
the same set of 50 amplitude
coefficients but with
randomly selected phases for
the different harmonics

The cochlea in the human ear acts somewhat like a spectrum analyzer in that
thousands of different channels respond to sound waves of different frequency
and transmit pulses to the brain such that their rate increases with the loudness
detected by each channel. To a large extent, the apparent tonal color of the sound
is determined by that distribution—hence by the energy content in each harmonic
component. The harmonic distribution thus gives the listener the main perception of
tonal color. However, that is not the entire story. The ear is also somewhat sensitive
to the actual shape of the waveform. Hence, a waveform consisting of periodic sharp
spikes sounds somewhat different from that produced by a periodic waveform with
the same relative harmonic amplitudes but different phases. The relative phases in
a musical instrument waveform are usually determined by the excitation process—
for example, the stick-slip mechanism in the bowed violin string, the vibration of
the reed in a woodwind, or that in the lips of a brass instrument player. Generally,
these processes produce phase locking of the different harmonics in respect to the
fundamental period of the instrument so that the phases do not just wander around
randomly.

A question naturally arises regarding the number of points needed for analysis
of the waveform. Most instruments seldom have more than 10–30 important
harmonics. (There are exceptions such as the low notes on a krummhorn, or tuba.)
It is, of course, the relative distribution of the stronger harmonics that mainly
determines the tonal color (not to mention their variation with time, as in the
case of vibrato). Surprisingly, a criterion developed many years ago by Harry
Nyquist (1924) for the transmission of telegraph pulses is relevant. He showed in
general that in order to transmit signals digitally, one needs to sample the original
analog signal at more than twice the maximum frequency you want to transmit.
His criterion (following from something called the “Nyquist Sampling Theorem”
and which plays a key role in the CD-recording industry) also works backwards.
For example, if you have a waveform whose fundamental frequency is 200 Hz
and want to examine 20 harmonics (i.e., up to a frequency of 4 kHz), you need
to have more than 8000 samples per second, which means more than 40 points over
one period of the waveform. In practice, you would want to exceed that minimum
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requirement by at least a factor of 2 or 3, which means that you would probably want
at least 100 points over the fundamental cycle. (The minimum number required by
the Nyquist criterion would just give two samples over the period of the highest
frequency component.) However, for similar reasons, it is also pointless to analyze
the waveform for a number of harmonics larger than half the number of points
measured over one period. (If you do so, you just get the same spectral information
back again in the higher harmonics, but in reverse order.) It is sometimes implied
that there are only slight differences in the waveforms between different instruments
and that a relatively small fraction of the sound intensity falls in the overtones.
Nothing could be farther from the truth. The differences in the harmonic structure
can be enormous, even between instruments of the same species. We will illustrate
that fact with a variety of different examples throughout this book.

2.12 The Fourier Transform

The method of Fourier series discussed above works well when one has a precisely
periodic waveform. However, in practice one often encounters situations where
the waveform may be quasi-periodic, but varies significantly over the time of
observation. Such cases might include the sound from an instrument played with
vibrato, or the sound from an instrument such as a harpsichord or piano that is
inherently transient in character. Finally, there are some instruments (e.g., tympani
and bells) where the waveforms are not even approximately periodic and for which
the overtones are not harmonically related. Here, there is a useful computational
method based on Fourier analysis that goes under the heading Fourier Transform. In
that approach, we observe the wave over a very long time T that is not the period of
the vibration as discussed before. We then pretend that the waveform is periodic over
that long time interval T (which generally includes many cycles of oscillation in the
frequency range of interest). Now, even though it is just a mathematical fiction, we
can apply our previous results for periodic waveforms to compute the harmonics
present with fundamental frequency 1/T . But, of course, the results will not apply
outside the region 0 ≤ t ≤ T . Most of the spectral components will be of no
physical interest. However, the components we do care about will be contained in
the computed frequency range and appear as harmonics of 1/T .

It will help to illustrate with a particular example. Consider a decaying waveform
of the type

y(t) = exp(−γ t/2) sin(2πF0t) for 0 ≤ t ≤ T (2.15)

which might represent the sound amplitude from the fundamental mode of a string
plucked at t = 0. (See Fig. 2.12.) Here, γ /2 is the amplitude decay rate which
might result from energy being coupled to a sounding board. Because the energy in
the wave motion varies as the square of the amplitude, the energy decay rate in this
situation is simply γ , or twice that for the amplitude decay rate. We assume here that
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Fig. 2.15 Decay of a damped
waveform given by Eq. (2.14)

Fig. 2.16 Energy spectrum
for the waveform in
Eq. (1.14) computed with a
Discrete Fourier Transform

F0
Frequency

POWER
SPECTRUM

ΔF = γ/2π

T >> 1/F0, or equivalently, that Eq. (2.14) describes the oscillation of the string
over many fundamental periods of the string oscillation frequency. In practice, there
might be a thousand or more digital samples taken of the string amplitude during
the long time interval T .

Fourier analysis of the waveform described by Eq. (2.14) and Fig. 2.15 results in
the spectrum shown in Fig. 2.16, where the square of the net Fourier amplitudes is
plotted as a histogram as a function of the harmonic number. Figure 2.15 represents
the energy distribution in the spectrum. Note that the spectrum peaks at F0, which
itself is a high harmonic of 1/T , where T again is the long observation time. As
shown in Appendix A, the energy or power distribution in this case has a so-called
“Lorentzian shape” with a full width at half-maximum intensity of ΔF = γ /2π .
That is, the resonance is not perfectly sharp but is spread over a range of frequencies
ΔF centered about F0. The spread arises because the initial signal is not a constant
single-frequency wave persisting for an infinite length of time. The result is actually
an example of the Uncertainty Principle—something known to electrical engineers
long before Heisenberg made his famous pronouncement as applied to quantum
physics. As we have shown here, it is a consequence of Fourier analysis that

ΔFΔt ≈ 1

2π
(2.16)
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where Δt ≈ 1/γ . To put it in different words, the limiting uncertainty in the
frequency measurement (ΔF ) varies approximately as the inverse of the signal
duration (Δt).6

2.13 Window Functions

Although the Discrete Fourier Transform worked perfectly well with the waveform
shown in Eq. (2.14), there are some pitfalls in the method. The waveform in
Eq. (2.14) was carefully chosen to go to zero at t = 0 and to become very small as
t → T . However, an arbitrarily chosen wave shape, y(t), might be nonzero at both
t = 0 and t = T and result in a function that could not conceivably be periodic in the
large time interval without having major discontinuities. They, in turn, would result
in spurious frequency components during Fourier analysis. To avoid that difficulty,
it has become a standard practice to multiply the data obtained in the large time
interval by a Window Function which we will call W(t) that goes smoothly to zero
at both t = 0 and t = T . Although the process tends to broaden the computed
spectral widths and produces minor distortion of resonant line shapes, it does not
interfere with the determination of the resonant frequencies and, most important of
all, it does not introduce spurious spectral components. There are almost as many
window functions as people who have worked in this field. The most commonly
used one is that proposed initially by the Austrian mathematician, Julius von Hann,
which for some strange reason is now called the “Hanning Window.”7 It multiplies
the data by the function

W(t) = 0.5[1 − cos 2πt/T ] for 0 ≤ t ≤ T . (2.17)

This “Hanning Window” has been adopted as a standard by the IEEE (“Institute
for Electrical and Electronics Engineers”) and is built into a number of commercial
electronic spectrum analyzers, including the one used by the author to take much of
the data presented in this book.

6In Heisenberg’s formulation, the energy of the electron (or other particle) is given by E = hν

where ν is a frequency corresponding to the de Broglie wavelength and h is Planck’s constant.
Hence, in Heisenberg’s formulation of the Uncertainty Principle, ΔEΔt ≈ h/2π .
7My personal suspicion is that the peculiar nomenclature arose as a typographical error, com-
pounded by the fact that there actually was an electrical engineer at the Bell Laboratories named
Richard W. Hamming who developed his own window function for numerical analysis that is called
the “Hamming Window” in the literature.
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2.14 The Fast Fourier Transform

The main problem in applying the straightforward Discrete Fourier Transform to
the analysis of data is that the running time for the calculation increases as n2

where n is the number of data points to be analyzed. Because one often wants to
analyze waveforms consisting of 1000 points or more (for example, one convenient
block size is 210 = 1024 points), running time is of major importance. Methods
to reduce the running time by making use of the redundancy contained in the sine
function date at least to the early work of Runge (1903). Most current processors use
something known as the fast Fourier transform (FFT) algorithm devised by Cooley
and Tukey in 1965. The Cooley–Tukey algorithm reduces the running time from an
n2-dependence on the number of data points to one that goes up as n log 2n. For
n = 210, that saving can reduce the running time for computer analysis by a factor
of 100. (See Brigham and Murrow 1967.) With the advent of high-speed, hardwired
FFT processors, it is now possible to do spectral analysis over the entire audio band
in real time.

Within the limits imposed by Eq. (2.15), one can use the FFT to study spectra
as a function of time. That not only has broad applicability to the study of musical
instrument sound generation, but to numerous other areas of science—especially,
to medical diagnostics. For example, the FFT is an essential tool for unfolding the
data in magnetic resonance imaging (or MRI.) It also can be applied to acoustic
diagnostics in medicine. As an example, the variation of the acoustic spectrum of
heart sounds with time can be used to diagnose and categorize heart murmurs. (See
Bennett and Bennett 1990.)

Figure 2.17 illustrates this technique using the sound monitored by a high-quality
condenser microphone placed on the chest at the apex of the heart. The top figure
is for a normal 28-year-old male where the spectrum is concentrated below 200 Hz
and shown in yellow. The lower figure is for a 54-year-old patient with prolapse
of the mitral valve.8 The data are presented here as a three-dimensional surface in
which frequency runs horizontally from near DC to 1000 Hz (left to right) and time
advances diagonally from the upper right to the lower left in increments of 0.1 s.
The amplitudes of the Fourier components are plotted vertically. Before analysis,
the signal was run through an “A-Weighting” Filter that fell off at the low-frequency
end so as to mimic the response of the human ear. Hence, what one sees in the figure
corresponds to what one would hear through a stethoscope, except that the electronic
technique is far more sensitive. Four heart beats are shown in the figure. The signal
running from about 200 to 1000 Hz in between the “first” (S1) and “second” (S2)
heart sounds from each beat and shown in red is due to the murmur. (The signal
below 200 Hz was fairly normal.)

8Mitral prolapse (verified in the present case by an echocardiogram and open-heart surgery) is a
common condition in which the mitral valve (so-called because it is shaped like a Bishop’s mitre)
is pushed backward toward the left atrium when the left ventricle contracts. Some blood from the
ventricle is then forced back through the leaky mitral valve into the atrium in turbulent flow, instead
of going out through the aortic valve in laminar flow, as in the normal case.
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Fig. 2.17 Spectral surfaces of stethoscopic heart sounds. Upper figure: normal heart sounds from
a 28-year-old male. Lower figure: heart murmur arising from mid-systolic mitral prolapse in a 54-
year-old male. The RMS (root-mean-square) amplitude is shown vertically and the frequency scale
runs from near 0 to 2000 Hz. Time advances diagonally in the plot in increments of 0.1 s. Source:
Bennett (1990). The author is indebted to Dr. Lawrence Cohen for helpful discussions

As can be seen from Fig. 2.17, the murmur peaks in the middle of systole (during
contraction of the heart) and has its strongest components at about 600 Hz. The
murmur was generated by turbulent flow of blood back through the mitral valve into
the left atrium when the heart contracted. In contrast to most musical instruments,
the relative phases of the spectral components are random. The sound of the murmur
is actually very similar to that produced by an African percussion instrument called
“The Lion’s Roar.” (It is also akin to the noise made by a crosscut hand saw going
through a piece of wood.)

One shortcoming of single FFT-based analysis is that the use of a window
function precludes the possibility of reconstructing the original waveform exactly,
since part of the information contained in the original waveform is discarded. That
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Fig. 2.18 A real-time FFT
(fast Fourier transform)
analyzer

is not a problem when one merely wants to determine the main spectral features.
However, in cases where one might want to manipulate the data in the frequency
domain and then reconstruct a signal in the time domain, that limitation can be a
problem. Although one can get around that difficulty by using two FFT processors
having identical time windows staggered by half their common duration, the method
is cumbersome. A much-touted recent development called Wavelet Analysis appears
to offer a more mathematically elegant solution. There, one devises a complete set of
wavelet functions that look somewhat like windowed Fourier transform integrands.
Since a complete set is involved, the original signal can be reconstructed. (See
Rioul and Vetterli 1991.) However, there is a disadvantage in the wavelet analysis
method for our present purposes in that the measured frequency intervals increase
in powers of two. Although that tends to mimic the logarithmic frequency response
of the human ear, such a logarithmic display makes it much harder to pick out the
fundamental frequency visually from the spectra of periodic waveforms. In a linear
display based on FFT analysis, the harmonic terms are separated by a constant
which is usually equal to the fundamental frequency. Much of the data presented
in the present book were taken with a real-time, hard-wired FFT analyzer using a
“Hanning Window.” (See Fig. 2.18.)
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Problems

2.1 Suppose the amplitude of the rod vibration in Michelson’s spectrum analyzer
decayed to 1/e of its initial value in about 5 s. What would the minimum frequency
width be that the analyzer could resolve?

2.2 (a) If the narrowband filter in Fig. 2.3 were 50 Hz wide, what would be the
least time you would need to scan through the spectrum from 0 to 10 kHz without
distorting the data? (b) What would the frequency scanning rate be in Hz/sec?

2.3 Draw the amplitude spectrum for the first 15 harmonics of a sawtooth and of a
squarewave.

2.4 If the paper used on an early spectrum analyzer can only be darkened in
intensity by a factor of ten, what is its maximum dynamic range?

2.5 Citizens of Leyden, Massachusetts reported hearing the cannons at Bunker Hill
some 80 miles away. Suppose that the sound level in Leyden was about 60 dB
(“normal conversation at 3 ft” from Table 2.1). What would the sound level have
been 10 ft from a cannon? (Assume the sound pressure falls off as the inverse square
law.) [Reference: Arms 1959.]

2.6 When the first atomic bomb was exploded at the “Trinity” test site in New
Mexico, Robert Serber (Oppenheimer’s assistant at Los Alamos) heard the sound
of the explosion about a minute and a quarter after the flash. How far was he from
the explosion? Noting that the blast was heard at Los Alamos 20 min after the flash,
how far was Los Alamos from the test site? Use the value for the velocity of sound
at 0◦ in dry air from Table 1.2. About how many dB louder would the blast have
been at Serber’s location than at Los Alamos? (Data from Serber and Crease 1998,
pp. 91, 93).

2.7 The loudest natural noise in recorded history is said to have occurred on
August 27, 1883 when the volcanic island Krakatoa blew up. The sound was heard
on Rodriguez Island 3000 miles away. If the level there were 60 dB (“normal
conversation” at 3 ft), what would it have been one mile away on the island of
Verlaten? (Assume the inverse square law.9) [Reference: Winchester 2003.]

2.8 An A-to-D converter samples a microphone voltage with 10-bit accuracy. What
is its limiting dynamic range in dB? (Note: 210 = 1024.)

2.9 A CD recording uses 16-bit samples. About how big a dynamic range in dB
would it provide?

2.10 A large gymnasium is to be constructed in the middle of a residential area in
Bryn Mawr, PA with an air conditioning unit installed on the roof that will produce

9The assumption of an inverse square law is not terribly good here because the source of noise
extended over a distance larger than the island of Verlaten. Also, the radiation pattern appears to
have a strong dipole component. (See Winchester 2003, p. 271.)
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a sound level of about 80 dB at a distance of 50 ft. Assuming an inverse square law
loss, what intensity will this sound have at a neighbor’s house 300 ft away?

2.11 Suppose four identical air conditioning units were to be placed on the roof of
the gymnasium in Problem 2.7). (a) What would the increase in sound level be if the
four sources were in phase? (b) What would it be on the average if the four phases
were randomly related?

2.12 The air conditioning unit in the previous problem produced the following
spectrum, as measured by the instrument in Fig. 2.4: What was the amplitude
spectrum?

Frequency (Hz) 31.5 63 125 250 500 1000 2000

Signal (dB) 65 78 88 80 70 67 50

2.13 The emergence of 17-year cicadas on the weekend of May 22, 2004 resulted
in the following spectrum at noon measured in the author’s backyard at Haverford,
PA: Draw the amplitude spectrum.

Frequency (Hz) 31.5 63 125 250 500 1000 2000 4000 8000

Signal (dB) 50 52.5 52.5 55 60 67.5 60 57.5 52.5

2.14 We know the harmonics of a square wave decrease in amplitude as 1/n (with
n odd). Draw a spectrum through n = 11 of a square wave in dB referred to the
value at n = 1.

2.15 Sketch waves proportional to sin θ and 0.3 sin 3θ over the range 0 ≤ θ ≤ 2π .
Then, add the two together and sketch the resultant waveform. What might produce
that waveform?

2.16 Suppose the wind supply to an organ pipe were modulated in amplitude
sinusoidally at 6 Hz. What would the effect be on the sound spectrum? (Hint: Note
the trig identity cos(A ± B) = cos A cos B ∓ sin A sin B and take into account that
each harmonic component from the sound wave is multiplied by a sinusoidal term
at 6 Hz.)



Chapter 3
Plucked Strings

3.1 The Plucked String

A multitude of stringed instruments make use of plucking as a source of excitation.
These range from the harp of Egyptian antiquity to the oriental Koto. Some feel
that the most elegant of all plucked instruments is really the harpsichord. (See later
illustrations.)

All acoustic stringed instruments (as opposed to electronic ones) are charac-
terized by a method of producing transverse vibratory motion in highly resonant
strings whose energy is coupled mechanically through a “bridge” to a soundboard
of large area compared to the cross-sectional area of an individual string. This loss of
energy is small during one period of vibration, and one can talk about a well-defined
frequency with at least quasiperiodic behavior. The soundboard itself typically has
many broad resonant modes that are efficiently excited by the bridge and which in
turn couple a small fraction of the original vibrational energy to the air in the form of
sound waves during each cycle. The soundboard radiates most of the sound heard by
the listener and determines the directional radiation characteristics of the instrument.
Electrical and acoustic engineers like to think of this coupling process as one of
“impedance matching” similar to that encountered in transferring energy from one
electrical circuit to another. But, the basic point is that one wants to convert relatively
large-amplitude vibrations over the small cross-sectional area of the string to small
vibrations over a large area in the soundboard—and, hence, to small sound pressure
fluctuations over a large cross-sectional area in a room. If one merely excites a
string that is supported under tension between two posts, the sound produced is
nearly inaudible. The cross-sectional area of the string is too small to produce
sound waves moving through the air with much efficiency. The problem is most
severe at low frequencies where the wavelength of the sound is long. The coupling
becomes most efficient when the dimensions of the radiating surface are comparable
to the wavelength involved. However, one does not want the coupling process to be
100% efficient, for then all of the energy would be removed from the string so
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Fig. 3.1 Egyptian harp.
After a drawing by Ippolito
Rosellini of a fresco in the
mortuary temple of Ramses
III (circa 1194 BC) at Thebes

rapidly that there would be no musical sustaining power within the instrument. In
addition to soundboards, some instruments (notably harpsichords, harps, guitars,
and violins) have enclosed air-resonant cavities below the soundboard. Generally,
the soundboard makes up at least one wall of that cavity. The resonances produced in
these cavities enhance the radiated sound at certain frequencies. In some instruments
(especially violins and even pianos), wood resonances in the walls supporting the
soundboard are also involved. Because of this intermediate coupling process, the
sound heard in the room is changed quite substantially from the initial spectrum of
the vibrating string (Figs. 3.1 and 3.2).

There are three primary means by which the strings in musical instruments are
excited: plucking, striking, and bowing. The sound produced when a string is excited
is greatly affected by the excitation point, as well as the mass and tension of the
string, and, especially, the soundboard or resonant cavity to which the vibrating
string is attached. The inherent spectrum of the plucked string is quite different
from that obtained when the string is bowed or hit by a hammer and the physics
involved in these three cases will be treated in separate chapters. However, there
is one common characteristic in all of these acoustic, stringed instruments. Single,
isolated normal modes of the vibrating string such as those shown in Fig. 1.6 are
almost never produced by themselves. People who are only used to the simple sine-
wave envelopes characteristic of the normal isolated modes of a vibrating string
will be quite surprised to see what actually happens when a real string is plucked,
or struck. Instead of the simple envelope of a vibrating sine wave like that shown
in Fig. 1.6 for n = 1, one gets complex structures that run back and forth along
the length of the string. They, of course, move too fast for the eye to follow under
normal illumination since the round-trip frequency is that of the pitch to which the
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Fig. 3.2 The Japanese Koto
played by Maya Masaoko
(reproduced with permission)

string is tuned. But, one can see these running pulses with stroboscopic illumination
at a frequency slightly detuned from the string resonance. They arise because the
string is never excited in a pure resonant mode. For example, to excite the string in
only its normal lowest mode, one would have to use a plectrum or a hammer-shaped
like half a sine wave over the entire length of the string.

It is easy to see why one gets a wave that oscillates back and forth between
the two halves of the string at the fundamental frequency. Consider a hypothetical
situation in which only the first and second harmonics of Fig. 1.6 are excited and
with equal amplitudes. In that situation, the total initial waveform would be made
up of two terms, sin(πx/L) and sin(2πx/L), added together over the length (L) of
the string. The first term oscillates at the fundamental string resonance F0, and the
second term oscillates at twice the fundamental. The first term has even symmetry
about the middle of the string, whereas the second has odd symmetry about that
point. (See Fig. 3.3.) Assuming that they both start oscillating in phase at t = 0,
the two solutions will tend initially to cancel each other out on the right half of the
string and reinforce each other on the left-hand side. (The top situation in Fig. 3.3.)
Because the second harmonic oscillates twice as fast as the first, the two solutions
will tend to cancel on the left side of the string and add (negatively) on the right-
hand side at half the fundamental period (t = T/2 in the figure). Finally, after one
complete period, the string will be back to its original shape. The net result is that
the string oscillates back and forth at the fundamental frequency F0 from a positive
bump at the left to a negative bump at the right. Qualitatively, the case with the real
string just involves adding more harmonics and keeping track of their initial relative
amplitudes and phases.
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Fig. 3.3 String motion for a superposition of the first two modes shown at t = 0 and t = T/2.
The resultant bump oscillates back and forth at the resonant frequency F0 between the left side of
the string (where it is positive) and the right side (where it is negative.) As indicated in the figure,
the bump is back at the starting point again at t = T

3.2 Motion of a Plucked String1

As discussed in Chap. 2, d’Alembert solved the wave equation for the vibrating
string and obtained a solution of the form

←−−→ (3.1)

y(x, t) = 1

2
f (x + ct) + 1

2
f (x − ct).

As indicated by the arrows, the first term represents a running wave going to
the left (−x direction) and the second term represents one going to the right (+x

direction), where c is the velocity of the wave. One important aspect of this solution
is that the shape of the string for all future times is given in terms of the initial shape,
f (x), at t = 0. The situation is easiest to understand graphically when the plucking
point is at the middle of the string. Here, the initial shape of f (x) is a simple triangle
peaked at the midpoint, as illustrated by the curve for t = 0 in Fig. 3.4. That triangle
can be broken up into two identical triangles of half the initial amplitude, as in the
equation by d’Alembert. As time increases, these two triangles move in opposite
directions.

1See Appendix B for a derivation of the wave equation and various solutions to the vibrating string
problem. Note that the wave equation itself is an approximation valid for very small amplitudes
compared to the length of the string. The drawings given here exaggerate the size of the deflection
for the sake of illustration. Typically, the deflection is only a few millimeters in a string 4-ft long.



3.2 Motion of a Plucked String 61

Fig. 3.4 Graphical illustration of d’Alembert’s solution to the vibrating string problem. Here, the
string is plucked in the middle at t = 0

Fig. 3.5 Motion of the string
plucked at the midpoint after
release at t = 0

As they pull apart from each other, the two triangular waves add up to a constant
plateau in the region between the two running-wave peaks. The leading edge of the
left running wave undergoes a “hard” reflection2 immediately at x = 0 (the shaded
portion to the left of the diagram) and travels back in the +x direction with negative
amplitude. Similarly, the running wave initially going to the right undergoes a hard
reflection at x = L and then heads back in the −x direction (shaded portion to
the right). When the two (shaded) “Reflected Waves” in the figure (which are now
negative due to the “hard” reflections at each end) are added to the two displaced,
positive triangular running waves, the result is the trapezoid outlined by the thick
bold lines in Fig. 3.4.

As time progresses, the trapezoid broadens out more and more and decreases in
amplitude until it vanishes altogether. As shown in Fig. 3.5, that happens one quarter
of the way through the full period of oscillation where the string is coincident with
the horizontal axis. Only the behavior over the first half of the cycle (up to t = T/2)

2As discussed in Chap. 1, a “hard” reflection produces a change in sign of the running-wave
amplitude.
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Fig. 3.6 Relative harmonic
amplitudes An excited when a
string is plucked at the
seventh harmonic node for
which P0 = L/7 (see inset)

is shown. After that, the motion reverses and the plateau moves upward until at
t = T , the trapezoid becomes coincident with the initial shape the string had at
t = 0. As a result, the motion of the string is given by the simple sequence of
shapes shown in Fig. 3.6 in time increments of T/8.

One can construct similar solutions for the variation of the string with time when
the string is plucked at different places along its length, but they are harder to
interpret graphically. Instead, for the general case we will use a different, more
powerful method of analysis based on Daniel Bernoulli’s solution to the problem
that was also summarized in Chap. 2 and is derived in Appendix B.

Bernoulli noted that the solution for the motion of the string may also be written

y(x, t) =
∞∑

n=1

An sin(nπx/L) cos(2πnF0t) where F0 = c/2L . (3.2)

This means that the shape f (x) of the string at t = 0 is now given by a sum of
sine waves,

y(x, t) =
∞∑

n=1

An sin(nπx/L) , (3.3)

an assertion that upset a number of famous mathematicians of the time.3

3Using the trigonometric identities sin(A ± B) = sin A cos B ± cos A sin B, Bernoulli’s solution
may also be written as a sum of oppositely directed running waves:

y(x, t) =
∞∑

n=1

An

[
1

2
sin

(nπx

L
+ 2πnF0t

)
+ 1

2
sin

(nπx

L
− 2πnF0t

)]
. (3.4)
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As shown in Appendix C, we can use the orthogonal properties of the sine
functions to obtain the values of the coefficients An, yielding

An = 2

L

∫ L

x=0
f (x) sin(nπx/L)dx . (3.5)

Equation (3.4) tells us that the harmonic spectrum for the plucked string is
determined entirely by the initial shape of the string when it is released. We have to
do the integral to see how the actual relative spectrum appears in the general case.
As shown in Appendix B, the integral in Eq. (3.4) can be evaluated in closed form
giving4

An = 2AM2

(M − 1)n2π
sin(nπ/M) (3.6)

where M = L/P0 depends on the plucking point x = P0, A is the initial amplitude,
and it is assumed that the harmonic number n is an integer. However, M is not
necessarily an integer, since the string could be plucked at any arbitrary point along
its length. As can be seen from a symmetry argument, one gets only odd harmonics
of F0 for M = 2. [When the string is plucked at the middle, the areas in the
integrand for even harmonics cancel on opposite sides of the midpoint.] Under that
condition, one gets a clarinet-like sound from the instrument since the clarinet also
has predominantly odd harmonics. The harp (Fig. 3.1) is one of the few stringed
instruments that is often plucked at the middle, and the odd harmonics so produced
give that instrument its characteristic sound. Hubbard (1965, p. 24) mentions that
the notes on some virginals were plucked very close to the midpoint (e.g., at 47.2%
of the length), but for practical reasons that is not the case with most harpsichords
and pianos.5 One also sees from Eq. (3.5) that A = 0 for M = n. (That is, plucking
at the node for the nth harmonic kills the nth harmonic.) Note that the amplitudes
in Eq. (3.5) may be both positive and negative and the angle (nπ/M) in the sine
function is in radians.

Figure 3.6 illustrates the initial shape and computed spectrum when the string
is plucked at the node for the seventh harmonic—i.e., at 1/7 of the length of the
string. Note that harmonics at multiples of the 7th (e.g., at n = 14 and 21) are also
eliminated. Some feel that the seventh harmonic really should be removed because
it clashes with the 8th and hence sounds “unmusical.” However, that notion is very
subjective. Many people (among them, Beethoven) were fond of that dissonant
effect. The basic fact of life is that you have to pluck the string somewhere, and

4It is also a simple matter to integrate the expression in Eq. (3.4) numerically using the sine portion
of the Fourier analysis program in Appendix C.
5Some upright pianos may be exceptions. The geometry of an upright piano (and possibly of a
square piano) could make striking the string at the midpoint feasible. With a concert grand, it
would be out of the question since the hammer shanks would have to be about 4-ft long in the
extreme bass.
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the harmonic with a node nearest to that point will be suppressed. It would be
hard to design a keyboard instrument covering any substantial range for which the
plucking points remained a constant fraction of the length for each string. Because
the location of the plucking point changes the tone quality, one gets a pleasing effect
on such instruments in that the tonal color varies continuously over the range of the
instrument. That property is especially nice for playing fugues on a single-manual
instrument because the different voices seem to enter with different tonal colors.

All acoustic stringed instruments produce substantial changes in the radiated
sound from the vibrating string waveform due to frequency-dependent coupling
of energy through a bridge to a soundboard. Pulses reflected at the bridge result
in momentum being imparted to a large area soundboard, which in turn radiates
acoustic energy efficiently. Part of the challenge to the craftsman is in tailoring the
components to provide desirable overall tone quality.

3.3 Motion of the Computed Plucked String

Putting the computed values for the relative amplitudes back into Eq. (3.2) permits
determining the shape of the string as a function of time after it is plucked. As
shown in Fig. 3.7, a string initially plucked at x = P0 near the left end will produce
a triangular wave running to the right. The wave bounces off the support at x = L

at time T/2 (half the period) and then heads back toward its starting point. It is
reflected back and forth, over and over, at the fundamental frequency, F0 = c/2L =
1/T . In a real string, the energy in the motion would decay with time due to coupling
energy to a soundboard and frictional loss from air resistance. However, that process
takes place over many fundamental periods of oscillation and has not been included

Fig. 3.7 Left: When the string is released (at t = 0), a triangular-shaped initial wave is launched
along the string toward the right. The peak appears to slide down the top side of the initial triangle,
as indicated by the arrow. Right: After the wave reaches the right-hand end of the string (at t =
T/2), it is reflected back toward its starting point. Here, the (negative) peak slides up the bottom
side of the triangular shape of the reflected wave, as indicated by the lower arrow. The original
shape is reproduced at the end of each cycle (see Fig. 3.8 and compare with Fig. 3.3, computed for
only two modes)
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Fig. 3.8 Motion of a string
plucked at 1/7th of its length
over one complete cycle

so far in the description.6 In the words of Appendix A, the typical vibrating string
has a very high Q (“Quality Factor”). It decays very slowly over many cycles and
has a very sharp spectral width.

3.4 The Electric Guitar

One might think that the electric guitar would provide a good test case for examining
the actual motion of a plucked string experimentally for there is no bridge or
acoustic soundboard and the waveform is picked up electronically from the vibrating

6In addition, we have neglected the inharmonic character of vibrating strings, a subject that we will
come back to in the discussion of pianos. That property alters the periodic nature of the vibration,
but it is less important in harpsichords where the strings are relatively thin.
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string directly. However, that turns out not to be the case. To be sure, the plucked
strings in such a guitar do obey Eqs. (3.2) and (3.5) to good approximation.
However, with most versions of the instrument, substantial changes are produced
electronically from that which would be expected of the normal vibrating string
waveform. First of all, the output voltage from a magnetic pickup coil responds to
the velocity of the string and that process tends to emphasize higher harmonics.
(As a consequence of Faraday’s Law, the pickup signal is proportional to the time
derivative of the string motion.) Because the pickup coils are fixed, the spectrum
tends to be roughly independent of the actual plucking point. Further, there are
usually two pickup coils placed at different points along the string and the output
voltages from the two are often subtracted or added. Tone controls (not to mention
loudspeaker response) produce additional coloration of the spectrum. Finally, the
largest change in the waveform occurs with some instruments when the performing
artist turns on the “fuzz” control. The latter produces distortion similar to that
found in low-quality audio amplifiers. It is amazing how something so awful in
one medium can be so artistically desirable in another.

3.5 The Steinberger Bass

One of the more interesting designs from a physicist’s point of view is that used
in the Steinberger bass. (See Fig. 3.9.) Here, the entire instrument is made of
pyrolytic graphite and there is no false attempt to mold the shape into that of a
classical acoustic guitar. (There is, of course, no soundboard or resonant cavity as
in an acoustic guitar.) The strings vibrate laterally across two coils located above
permanent magnets as shown in Fig. 3.10. Because of the large-diameter wrapped
strings, the persistence times for notes on the instrument are comparable to those in
the bass section of a concert grand piano. (Compare Table 3.1 with later Table 4.1.)
The voltage from the two coils is shaped electronically to provide a warm sound
quite different from what one might expect from the vibrating string alone. Perhaps

Fig. 3.9 A Steinberger bass (photograph courtesy of Ned Steinberger)
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Fig. 3.10 Spectrum of the electronic output from a Steinberger bass (Left) compared with that
picked up acoustically with a microphone placed above the string (Right). The tone controls were
set in the mid-position (data taken by the author)

Table 3.1 Persistence times
for the strings on a
Steinberger bass

Note (Hz) E (41) A (55) D (73) G (98)

Diameter (in) 0.132 0.117 0.065 0.050

Decay time (s)a ≈25 35 38 33
aTime to decrease by about 60 dB (data taken by the
author)

the most unique characteristic of the electric guitar is that the harmonic spectrum
is largely determined by the location of the pickup coils, rather than the plucking
point. As with most stringed instruments, the different harmonics decay at different
rates and the spectra from individual notes vary with time after plucking.

The two pickup coils centered at xo ± a in Fig. 3.9 are connected so that the
output varies as the difference between the coil voltages. Among other effects, that
connection scheme largely eliminates “hum” that might otherwise arise from stray
60-Hz magnetic fields. One can see how this connection affects the output spectrum
by inserting the values for the coil locations into Eq. (3.2). The net output from the
difference of the two coil voltages is of the form

V (t) ∝
∞∑

n=1

An {sin[nπ(x0 + a)/L] − sin[nπ(x0 − a)/L]} fn(t) (3.7)

= 2
∞∑

n=1

An cos
(nπx0

L

)
sin

(nπa

L

)
fn(t)
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where fn(t) is a function only of time for the nth harmonic and An is still given by
Eq. (3.5).7

In addition to the nulls predicted by Eq. (3.5) which do depend on the actual
plucking point, the spectrum described by Eq. (3.6) also goes to zero for the
following harmonics 8

n = m
L

a
and n = (2m − 1)

L

2x0
where m = 1, 2, 3 . . .

For the Steinberger bass, xo ≈ 3.75 in, a ≈ 2 in, and L ≈ 34.1 in. Hence,
relations (3.7) predict nulls in the spectra at n ≈ 8, 17, 26, 34, . . . The electronic
spectra on the left side of Fig. 3.10 show minima at about those same values which
are roughly independent of the plucking point. (See the top and bottom spectra at
the left in Fig. 3.11.) These minima also occur at roughly the same places minima
are found in the acoustic spectrum when the string is plucked at L/8. (See the lower
spectrum at the right side of Fig. 3.11.) Hence, one gets a tone quality from the
instrument that approximates that found in an acoustic instrument that is plucked at
the node for the eighth harmonic.

As is also evident from these spectra, even harmonics have been added electroni-
cally to the original waveform. Clearly, these result from some nonlinear element in
the circuitry and probably arise from the pickup coil itself. (Because the magnetic
field lines will spread above the coil region, a nonuniform value of the field will be
encountered as the steel string vibrates back and forth. That, in turn, will introduce
overtones of the periodic string motion, starting with the second harmonic.)9 The

7The function fn(t) increases linearly with harmonic number, n, and can be obtained by taking the
time derivative of Eq. (3.2):

fn(t) = −2πnF0 sin(2πnF0t) .

The further simplification in Eq. (3.7) occurs by use of the trigonometry identity

sin(A ± B) = sin A cos B ± cos A sin B .

8That is, nulls occur that are independent of the plucking point for values of n such that

nπa

L
= mπ and

nπx0

L
= 2m − 1

2
π for m = 1, 2, 3 . . .

9In general, the magnetic field (H ), which is normal to the coil, will vary laterally over the string
motion. The field can be expanded as a power series in the lateral coordinate (y), giving

H(y) = H0 + H1y + H2y2 + · · ·
where y = 0 corresponds to the rest position of the string. The term involving y2 will produce
second harmonics of a sinusoidally oscillating string whose velocity varies as sin 2πF0t . The latter
follows from the trigonometry identity,

cos 2A = 2 cos2 A − 1 . (3.8)
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Fig. 3.11 Basic mechanism of a harpsichord. For clarity, only one stop is shown. In practice, a
felt-lined flat strip of wood is placed above the row of jacks to stop them from flying up out of the
instrument, and the bridge is glued to a triangular-shaped soundboard fastened to the case

fact that even harmonic production is involved is illustrated by comparing the
spectra for the electronic output (left side of Fig. 3.10) with the acoustic spectra
obtained by placing a microphone over the strings (right side of Fig. 3.10). The
top two spectra were obtained when the bass string was plucked at the midpoint, a
location for which we have shown that there should be no even harmonics present
in the actual string motion. As expected, the acoustic spectrum is composed almost
entirely of odd harmonics. (See the upper spectrum on the right side of Fig. 3.10.) In
contrast, the electronic spectrum for this same plucking point has many strong even
harmonic components. (See the top left spectrum in Fig. 3.10.)

In summary, the designer of the Steinberg bass has produced an instrument of
modest size which provides a warm tone quality that has the sustaining power of a
concert grand piano and produces a spectrum which is approximately independent
of the plucking point.



70 3 Plucked Strings

3.6 The Harpsichord10

The action of any harpsichord is made up of a keyboard, registers (or stop
mechanisms), and at least one set of jacks. Each jack rests on the back of a key and
contains a retractable hinged mechanism holding the plectrum and a weak restoring
spring. In addition, one jack on each key has a cloth damper to deaden the string
when the key is not depressed. (See Fig. 3.11.) As the jack is pushed upward by
the rear end of the key, the damper comes off the string, and the string is raised
by the plectrum. After the string slips off the plectrum (i.e., is plucked), the hinged
mechanism permits the plectrum to retract so that the jack can then slide back down
past the string to its normal resting place. As verified by Giordano and Winans
(1999), the speed with which the key is depressed has negligible effect on the sound.

Harpsichords came in all sizes, ranging from the 4-ft pitch Italian ottavino shown
in Fig. 3.12 having only one set of jacks to enormous German instruments. Some of
the latter actually had three manuals, not to mention stops at 16-, 8-, 4-, and 2-ft

Fig. 3.12 Copy of an early
eighteenth-century Italian
ottavino (or treble virginal)
made by Paul Kennedy after
an original instrument by
Josef Mae del Coninus. Here,
the jacks (running diagonally
from lower left to upper right)
go straight through the
soundboard and the bridge is
at the right

10The historical information given here is largely based on Hubbard (1965), Ripin et al. (1980),
and helpful discussions with Richard Rephann of the Yale University Instrument Collection and
harpsichord maker, Paul E. Kennedy.
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Fig. 3.13 The jacks on a French-style harpsichord made by Paul Kennedy; two 8-ft and one 4-ft
stops are shown with one key depressed on the lower manual. Note the two raised jacks

pitch (using the terminology of organists)11—more strings than any sane person
would want to tune.12

Most instruments have more than one set of jacks. (See Fig. 3.13.) Sometimes
two jacks on the same key can excite the same string at different plucking points
(with different stop settings), but more often the different jacks associated with a
given key pluck different strings. Which jacks operate when the key is depressed
is determined by the stop mechanism which generally involves moving the upper
jack slides laterally so as to engage (or disengage) the plectrum from a particular
string. The strings run from tuning pins at the front of the instrument over a fixed
rail called the “nut,” past the jack, over a bridge glued to the soundboard, and to
hitch pins at the rear. The soundboard (usually made from thin spruce or cypress
on Italian instruments) is mounted above a resonant cavity in the instrument which
generally has an opening called a “Rose,” which opens to the room (Fig. 3.14).

The plectrum of choice was the crow quill, and occasionally a carefully shaped
piece of leather. However, quills made of “space-age materials” such as Delrin®

and Celcon® have recently been substituted on many instruments with reasonable
success. “Buff” stops (consisting of pieces of felt or leather moved in from the
side) are sometimes incorporated to dampen the higher overtones on 8-ft strings and
produce a pizzicato effect. “Lute” stops are sometimes incorporated in the form of

11Each stop is described in terms of the length of an open pipe required to produce the same pitch
as the lowest C on the keyboard.
12Anyone who has ever tuned a harpsichord can imagine what a nightmare the 1710 instrument by
J. A. Hass would produce with two sets of strings at 16-, 8-, 4-, and 2-ft pitch! (See Hubbard 1965,
Plate XXVII.)
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Fig. 3.14 The soundboard (complete with a Rose) on the same French-style harpsichord of
Fig. 3.13 built by Paul Kennedy, showing both the 4- and 8-ft bridges

a second jack on the same string that plucks extremely close to the nut, producing a
penetrating “nasal” quality.

Harpsichords with strings tuned to different pitch (e.g., 8- or 4-ft stops) have
more than one bridge and, in some instances (especially, when 16-ft stops are
present), more than one soundboard. The more elaborate instruments generally had
two keyboards or “manuals,” each with its own set of jacks and stops, and frequently
with coupler “dogs” between the two manuals that are usually activated by pulling
out (or pushing in) the upper keyboard. (The couplers, which were first introduced
near the end of the seventeenth century, usually consist of vertical pieces of wood
attached to the lower manual that can cause the keys of that manual to push against
those of the upper manual when it is in the right position. They also tend to be broken
off when one slides the upper keyboard back and forth to engage or disengage the
coupler while a note on either manual is depressed.)

When the string is excited by the plectrum, a triangular pulse is launched
down the string as shown in Figs. 3.8 and 3.9. When the pulse reaches the bridge
(Fig. 3.12) and is reflected by it, the bridge receives an impulse pushing it upward.
(The upward impulse given the bridge balances the downward impulse given the
string at that point, as required to conserve linear momentum.) Because the bridge
is glued to the soundboard, that board also receives an upward kick which in
turn launches a sound (compression) wave upward into the air. The pulse given
the board produces a running wave over its free surface much like that given to
a kettledrum when it is struck with a mallet. The propagation of the pulse over
the soundboard involves a complex two-dimensional problem that is formidable
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Fig. 3.15 Resonant modes in the soundboard of a Flemish-style harpsichord at four different
frequencies. The nodal areas are outlined in white. Positive (up) and negative amplitudes (down)
are indicated with “+” and “−” signs, and the areas of strongest amplitude are shown in darkest
shading (drawn with some artistic license from data presented by Kottick et al. 1991)

to treat mathematically. However, as with a vibrating drumhead, the soundboard
has normal modes of oscillation spread out over its surface area that resonate at
different frequencies. Experimental studies of such modes were given by Kottick
et al. (1991), who identified some 36 distinct modes below 600 Hz in the soundboard
of a Flemish-style harpsichord. (See Fig. 3.15.) These modes have nodal lines that
are determined by spatial boundary conditions: the board usually can have no
appreciable vertical motion at locations where it is glued down—for example, at the
edges of the board and along the supporting ribs underneath. However, exceptions
occur when the modes also involve motion of the case.

The support regions have quasi-triangular shapes that vary from one instrument
to another. The wood fiber of the soundboard is generally oriented parallel to the
long dimension of the instrument. One reason is that it is easiest to get long pieces of
wood in the direction of the grain. Because the stiffness of the board is much greater
in the direction of the fiber than perpendicular to it (by a factor of about ten in the
case of spruce), the velocity of surface waves in the long direction of the board,
hence the separations between the maxima and minima in the mode patterns, are
largest in that direction.13 By comparing the separations between opposite polarity
peaks for the modes shown in Fig. 3.15, it is apparent that the soundboard wave
velocity is about three times greater in the long direction than in the perpendicular

13Modes of vibrating membranes are treated in Appendix B. The stiffness in the soundboard plays
a role analogous to the tension in a string, where for the one-dimensional case the wave velocity is
c = √

T/μ, T is the tension, and μ is the mass density per unit length. Stiffness varies as the 3rd
power of the thickness.
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Fig. 3.16 Approximate radiation patterns in the plane of the soundboard expected for the 56.8 and
102.4 Hz modes of the harpsichord soundboard shown in Fig. 3.15. (Computed using the method
discussed in Chap. 1.) Here, the actual distribution has been approximated by point sources of the
correct polarity at the locations marked with + and − signs. Where more than one source was
present within a principal resonance, a fractional source distribution normalized to unity was used.
(For example, the large negative region in the 56.8 Hz resonance was made up of three sources
each normalized to 1/3.) A more precise result would, of course, be obtained by integrating over a
continuous source distribution

direction. That is, the resonant modes tend to be elongated in the direction of the
grain. Of course, the thickness (hence, mass distribution and stiffness) often varies
significantly over the surface of the soundboard.14

As shown in Fig. 3.16, the radiation pattern from the 56.8 Hz resonance in
Fig. 3.15 corresponds roughly to that for a dipole and that for the resonance at
102.4 Hz is more like a combination of the patterns for dipole and quadrupole
sources. (See the radiation patterns shown earlier in Figs. 1.17 and 1.19 of Chap. 1.)
Of course, room reflections would produce changes in these patterns in practice
and one would need an anechoic chamber to measure how closely these calculated
results would come to the real case. As with the n = 2 mode of the vibrating string,
the separation between negative and positive peaks for the resonance at 56.8 Hz must
correspond roughly to a half-wavelength in the soundboard vibration. Although the
coupling of the dipole in the soundboard to the air is substantially off resonance, one
still gets a characteristic dipole radiation pattern. (Maximum radiation would occur
if the wavelengths of sound in the air and in the soundboard were the same; here,
the difference in the two wavelengths just changes the scale factor in the plot.) The
resonant modes at 253.1 and 483.8 Hz produce weaker, nearly isotropic radiation
patterns that are not shown here. As with many instruments, the different modes
radiate in different directions.

14Not all sounds produced by a harpsichord originate with the soundboard. The mechanical motion
of the jacks can create distracting noises. Once, when harpsichordist and composer Joyce Mekeel
and I were recording a piece she had written called “Textures” for harpsichord and clarinet, she
complained about strange noises in the recording. Finally, we put the microphone directly behind
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3.7 Evolution of the Harpsichord15

The development of keyboard instruments from the harpsichord through the piano
had a major effect on the evolution of western music. Reference to “an instrument
like an organ which sounds by means of strings” dates to a private letter written in
1387 by John I of Aragon in Spain to Philip-the-Bold of Burgundy. Ten years later,
a jurist from Padua wrote that one Hermann Poll had invented something he called
a “Clavicembalum.” Although the earliest known representation of a harpsichord
appears to be in the sculpture for an altarpiece in Minden, Germany dated 1425,
there is little doubt that northern Italy was the center of harpsichord production
during the sixteenth century. Flemish instruments dating from somewhat later have
a strong resemblance to their Italian counterparts (Fig. 3.17), suggesting that there
was a migration northward of the technology from the early development of the
instrument in Italy. Surprisingly, an Italian harpsichord made by “Gerolamo of
Bologna” dated 1521 scarcely differs from other Italian instruments made as much
as 150 years later. The Italians did not incorporate the innovations made later by
their northern European competitors and continued to produce only single-keyboard
instruments. Most Italian harpsichords had only two sets of 8-ft strings tuned in
unison and were very long and narrow. Four-foot stops existed but were extremely
rare.

The early Italian instrument makers went to some effort to keep the scaling
constant. Because the pitch of a vibrating string varies inversely with the length

Fig. 3.17 Plan of an Italian Harpsichord made in 1677. Only the pairs of strings on the two 8-ft
stops at different C’s are shown. The jacks were placed in between the pairs of strings with the
plectra pointing outward in opposite directions. The lowest E was often tuned to C (after Hubbard
1965)

her head and the “strange” sounds disappeared. The music desk had been shielding her ears from
the jack noises.
15The background historical data quoted here have been taken primarily from Hubbard (1965)
and Ripin et al. (1980) and helpful supplementary discussions with Richard Rephann and Paul E.
Kennedy.
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(i.e., as 1/L), it was thought that an ideal instrument ought to have string lengths that
doubled for each octave as one went down the keyboard. The trouble with doing that
in practice is that the instrument gets to be pretty long as you approach the lowest
bass notes. But, the Italians did succeed in that goal throughout about 5/6 of the
instrument’s range. The cases, which initially were just protective boxes, were made
of unusually thin cypress and were quite light. One advantage of long, thin strings
under low tension was that the cases did not need to be very strong. The soundboards
were also made of cypress, which is not as stiff per unit weight as the spruce used in
the later European instruments. The soundboards on some Italian instruments varied
considerably in thickness, from about 1/6-in. under the bridge to perhaps 50% less
at the edges. The soundboards move up and down quite easily when one pushes
(gently!) on them with the fingers and behave somewhat like modern loudspeaker
cones. Although these single-keyboard instruments were said by some to produce
beautiful tone quality, they were primarily used to accompany singers.

Hubbard (1965, p. 9) noted that the tone quality of the Italian instruments began
with a “plunk” rather than a “plink,” meaning that it decayed rapidly (particularly
in the treble) compared to the northern European instruments. However, he also
implied that that can be of musical advantage for the accompaniment of singers
because the Italian instruments excelled in “their dry sparkle.” As shown by
Sir George Stokes in the mid-nineteenth century, the viscous damping rate for
a vibrating string varies inversely as its diameter. Since the strings in Italian
harpsichords were significantly thinner, as well as longer (especially in the bass), the
shorter decay times of the Italian instruments no doubt have their origin in higher
loss from air resistance.16 Stokes also showed that the higher frequency harmonics
on a given string will decay faster than the lower ones by an amount which increases
by about 70% when the frequency is doubled. (See Crandall 1926 and Wood 1955.)

As also noted by Hubbard, no provision of any kind was made in the Italian
instruments for changing either of the 8-ft stops while playing. Instead, the Italians
put their efforts into building harpsichords with absurdly large numbers of keys.
Amazingly, some were built with as many as 31 keys per octave (Hubbard, p. 31).
These strange instruments were made at the request of music theorists of the time
who wanted perfect harmonic intonation in many different keys. More modest
versions with split sharp keys (so as to provide a difference between sharps and flats)
were more prevalent. But, keyboards of even that complexity were nearly impossible
to play with much facility. Fortunately, adoption of the “Well-Tempered Scale” did
away with most efforts in that direction.17

16Hubbard (1965, p. 327) suggests that thicker gut stringing was probably used on some Italian
instruments. But, he was “bound to report that gut strings on Italian instruments sound very badly.”
He also noted that Bach had written for the Lauten Werck, or lute harpsichord, an instrument using
gut strings.
17Willard Martin of Bethlehem, Pennsylvania is still making Italian-style harpsichords with 19
notes per octave as of the present writing. An extra key is also added in between B and C natural
and between E and F natural. (See Hubbard 1965, Plate V, and Brookes 2002, p. 11.)
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3.8 The Spiral of Fifths

It is useful to illustrate the problems produced by harmonic tuning in more detail.
The basic trouble is simply one of arithmetic. Starting at least with the ancient
Greeks, intervals on the musical scale were defined in terms of the harmonics of
a vibrating string. As we showed before, these form a series in which the nth
harmonic has a frequency that is simply n-times that of the fundamental, where n =
1, 2, 3, 4, 5 . . . By listening to “beats,” two strings can be adjusted in relative pitch
so that the fundamental frequency of one closely matches a harmonic of another.18

For n = 2, we get the simple octave relationship in which the fundamental
frequency is doubled. As implied by the word octave itself, the Greeks postulated
that there should be eight notes distributed over that span for each scale or mode.
The possible intervals between notes on the scale were derived by taking the third
harmonic of each note in succession and then lowering it by an octave (or more, as
required). The result gives a series of “Fifths” that approximates the twelve different
notes on the chromatic scale. (The Greek modes used just eight of those notes, as in
the case of the current major and minor scales.) For example, starting on C yields
G (up a fifth), starting on that G gives D, and so on. When you get up to B (step 6),
the result is F�.

This process gives rise to the well-known “Circle of Fifths” with which piano
teachers torture their students. As one goes on in the sequence C, G, D, A, and so on
(clockwise in Fig. 3.18), one traces out all the major key signatures with increasing
numbers of sharps, each step going up a fifth on the scale. Similarly, starting at the
top of Fig. 3.18 (now, A minor) and going around the circle in the counterclockwise
direction involves going down in steps of fourths (i.e., up a fifth and down an octave)
and yields the signatures for all the minor keys. By the time you get halfway around
the circle (F� or G), most people opt for a key signature with the least numbers
of sharps or flats. But, there are exceptions: Brahms liked to slip in a movement in
seven flats now and then in his chamber music for the piano (possibly, just to tease
the string players, who generally hate flat keys.) Mussorgsky, who had a loathing for
sharp keys (especially, E-major) from childhood, wrote out the first entrance of the

18The “beating” process described here is a linear one that arises simply by adding two waves at
different frequencies. Consider two equal amplitude sine waves whose frequencies are proportional
to A and B. Adding the two trigonometry identities,

sin(x ± y) = sin x cos y ± cos x sin y ,

and letting x = (A + B)/2 and y = (A − B)/2, one gets the result,

sin A + sin B = 2 cos

[
A − B

2

]
sin

[
A + B

2

]
.

Thus, when A ≈ B, the resultant wave is at the average of the two frequencies and is amplitude-
modulated at half the difference frequency—an effect called “beating.” One tunes the strings by
adjusting the beat frequency, (A − B)/2, to zero.
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Fig. 3.18 The Circle of Fifths

“Church Motif” from the Great Gate of Kiev in nine flats!19 Of course, the “Circle
of Fifths” also contains the basis of nineteenth-century tonality.

The main difficulty with the method is simply that the process does not close
on itself. (See Table 3.2.) If you go around the “circle” in the clockwise direction
a second time, the frequencies are over 1% (about 20 “cents”) higher than those
obtained on the first pass, and things get still worse on higher passes. (The
discrepancy arising after one trip around the circle is sometimes called “the comma
of Pythagoras.”) The result is that instead of a circle of fifths, one gets a never-ending
spiral.

19Mussorgsky was emulating the hexachordal mode of Russian church music given in the Obikhod,
which may have forced him into that large number of flats. He actually did slip into E-major once
in his lifetime in the “Prelude” to Khovanshchina, but that was probably forced upon him by the
minor third present in the church bell on Red Square signaling matins. (Mussorgsky’s church bells
usually tolled in C�.)
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Table 3.2 Relative
frequencies in the “Circle” of
Fifths

Step Note Pass

(a) (b) (c)

1 C 1 1.013644 1.027473

8 C# (Db) 1.067871 1.08244

3 D 1.125 1.140349

10 D# (Eb) 1.201355 1.217745

5 E 1.265625 1.282892

12 F 1.351524 1.369964

7 F# (Gb) 1.423828 1.443254

2 G 1.5 1.520465 1.541209, etc.

9 G# (Ab) 1.601807 1.623661, etc.

4 A 1.6875 1.710523

11 A# (Bb) 1.802032 1.826618

6 B (Cb) 1.898438 1.924338

Many string players still use harmonic intervals (especially in tuning their
instruments) and some harpsichordists use compromise tunings in which some keys
are more harmonically in tune than others. In view of the differences in tuning
resultant from the basic inharmonic nature of strings discussed in Chap. 4, the
compromise provided by the Well-Tempered Scale seems like a minor concession.

The problem was resolved by the time of Bach by the adoption of the “Well-
Tempered Scale.”20 Here, one simply defines the ratio of frequencies between
successive notes on the chromatic scale mathematically to be given by 21/2 =
1.05946310 . . .; that is, raising that number to the 12th power gives precisely a factor
of two. (See Appendix E.)

3.9 Northern European Developments

Because of their early start in the field, one would have thought that the Italian
makers could maintain a monopoly. Yet, Guild records in Antwerp show quite
a number of harpsichord makers already present in that city by the mid-1500s.
One stipulation of that Guild called for the “maker’s marks” to be affixed to all
harpsichords made in that city—hence, the use of the “Rose” as a kind of gilded
(“guilded”?) logo containing the maker’s name or initials. These were sometimes
made from a slice of pipe (or cast from a mold) coated with gold and often were
accompanied by elaborate floral designs. (See Fig. 3.19.)

According to Hubbard, the addition of the rose had no discernible effect on the
sound quality. Although some might think that the Rose provided an opening to

20Curiously, the Well-Tempered Scale appears to have been a Chinese invention. Early approxima-
tions have been traced to Ho Che’eng-t’ien in the fifth century. But, the first use of a scale in which
the intervals were based on the 12th root of two has been credited to Chu Tsai-yü in the sixteenth
century (Yung 1980, p. 261).
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Fig. 3.19 The Rose from a
two-manual harpsichord by
the eighteenth-century French
maker Louis Bellot, a fervent
admirer of the Flemish school
(drawn by the author from an
instrument in the Crosby
Collection of the
Metropolitan Museum of Art
in New York)

Fig. 3.20 Computed spectra
from Eq. (2.5) for the motion
of a string plucked at the
different points given for the
Ruckers instrument in
Table 3.3. The phase is
included in the sign of the
amplitude here. In practice,
coupling to the soundboard
results in very different
spectral amplitudes of the
radiated sound, especially
with strings near the edge of
the soundboard

a kind of “Helmholtz resonator” below the soundboard, the air resonances in that
space are more like those from a closed organ pipe with an opening at the action
end of the instrument. (The area of the Rose is negligible by comparison.) Italian
harpsichords were the only instruments that were totally enclosed except for the
Rose opening. Kottick et al. (1991) suggest that the main role of such air resonances
is to enhance the springiness of the soundboard (Fig. 3.20).21

21When the two-manual 1770 Taskin harpsichord first came into the Yale University Collection
in 1957, there was a rectangular hole in the underside of the instrument large enough to permit
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Fig. 3.21 Single-manual harpsichord by Andreas Ruckers, Antwerp, 1640. Courtesy of the Yale
University Collection of Musical Instruments (photograph by Joseph Szaszfai/Carl Kaufman)

Probably, the most famous name among the Flemish makers was that of the
Ruckers family. An organ tuner named Hans Ruckers was admitted to the Guild in
1579. The two-manual harpsichord appears to have been invented by some Flemish
builder at about that time. The idea was no doubt inspired by the design of pipe
organs. Two-manual harpsichords of a rudimentary sort appear to have been made in
the Ruckers workshop as early as the 1590s. Whereas the Italians often covered the
inside of their harpsichord lids with beautiful paintings and added floral designs to
the sound boards, the Flemish instruments were usually covered on the inside with
a kind of block-printed wall paper, often including appropriate mottos in Latin.22

The outside of the case was usually painted in an imitation marble surface. The
two red tassels at the side of the 1640 harpsichord by Andreas Ruckers shown
in Fig. 3.21 control the 8- and 4-ft stops. The inscription on the lid, MVSICA

inserting one’s head. One heard quite a glorious sea of sound in there when the instrument was
played.
22This technique was extended to pianos by an interior decorator living in Princeton during the
1940s. She covered her entire Steinway inside and out with the same blue wallpaper used in the rest
of the living room, not to mention the closet and entrance doors. Once inside the room, one might
not find the way out, let alone locate the piano! Hubbard commented (1965, p. 22), “The Ruckers
harpsichords are charming, but their naïve crudity is to the sophisticated Italian harpsichord as a
cuckoo clock to Brunelleschi’s Duomo.” (One Ruckers motto was AVDI VIDE ET TACE, which
might be freely translated as “Listen, look, and be quiet.”)
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Table 3.3 Comparison of
fractional plucking points of
Italian and Flemish
instruments (for the first jack)

Italian Flemish

(Bononiensis, 1521) (Andreas Ruckers, 1648)

d”’ 3.25 –

c”’ 3.45 2.67

c” 3.86 4.15

c’ 5.17 6.37

c 8.33 8.1

C/E 11.32 –

C – 9.08

Values of M = L/P0 are given for different octaves
Source: Hubbard (1965, p. 8)
Note: In Hubbard’s notation c’ = middle c; C is two
octaves below middle c. C/E means bottom note (E) tuned
to C

LETITIAE COMES MEDICINA DOLORVM (“Music is the companion of joy and
the medicine of grief”), occurs on many Ruckers instruments of that period. These
instruments were favorite models for the Flemish painters, especially Johannes
Vermeer.23 In addition to the harpsichords, a virginal built in 1640 by Johannes
Ruckers shows that same motto and block-printed paper and appears in several of
Vermeer’s paintings.

There is an interesting connection between Vermeer and the Ruckers shop. It
has been concluded that a certain harpsichordist and composer named Constantijn
Huygens (1596–1687) both knew the Ruckers craftsmen and introduced Vermeer
to the camera obscura. (See Steadman 2001.) That particular Huygens was the
father of Christiaan Huygens (1629–1695), who is well known among physicists
as the discoverer of “Huygens’ Principle” in wave motion. (See Chap. 1.) The elder
Huygens had not only purchased a camera obscura in London but had also ordered
a virginal in 1648 from the Ruckers shop that was made by Jean Couchet, a nephew
of Johannes Ruckers. (See Broos 1995.) It seems probable that the elder Huygens
also introduced Vermeer to the Ruckers instruments. His other son, Constantijn Jr.
(brother of Christiaan) was apparently more interested in art than physics and may
well have been the one who actually provided the camera obscura lens to Vermeer.
Possibly, Vermeer merely borrowed the Ruckers instruments, which were said to
have cost about half the price of one of his own paintings. These were positioned
under the windows in his studio at his favorite corner opposite from the camera
obscura where models for nearly all of his well-known indoor paintings were posed.

The similarity in design between the Italian and Flemish instruments is illustrated
by the comparison of plucking points on 8-ft stops shown in Table 3.3. A study by
the author of the transient decay of the sound from the 8-ft stop on an instrument

23For example, see Vermeer: “The Music Lesson” (1662–1664), “The Concert” (1665–1666),
“Lady Standing at the Virginal” (1672–1673), and “Lady Seated at the Virginal” (1675). Jan Steen’s
painting entitled “The Music Master” (1660) almost certainly shows a Ruckers instrument, but
Steen signed his own name on the harpsichord. Also see Gerrit Dou, “Woman at the Clavichord”
(1665).
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Fig. 3.22 Transient decay of
the low C on the 8-ft stop of
the Ruckers 1640 instrument
shown in Fig. 3.21. The C(N)
are magnitudes of the relative
harmonic amplitudes
normalized to the maximum
component at T = 0 (the fifth
harmonic in the upper-left
figure. Compare with
Table 3.3 and Fig. 3.20 (the
data were taken in
collaboration with Jean
Bennett)

in the Yale Collection made by Andreas Rucker in 1640 is shown in Fig. 3.22. A
restoration of this instrument by Frank Hubbard was completed in 1972 before the
present data were taken, using crow quills and 0.020′′ steel wire on the low C.24 The
instrument was tuned to a′ = 409 Hz, with quarter comma meantone temperament.
Note the near absence of the ninth harmonic, which is to be expected on the basis
of the fractional plucking point listed in Table 3.3. Because that particular string
is located above a position on the soundboard nearest to the edge of the case,
the fundamental and first few harmonics are greatly attenuated and the maximum
amplitude occurs at the fifth. Some harmonics appeared to oscillate in intensity
with time as the waveform died out, probably due to slow beating effects between
harmonics of the 8- and 4-ft strings—the latter being undamped because the C-key
was kept depressed during the measurements. Ignoring the coupling effect between
these two sets of strings, one can estimate the Q of the string as a function of
frequency from the data in Fig. 3.23. As shown in Appendix A, the Q (“Quality
Factor”) is given as a function of frequency (F ) by

Q = 2πF/γ where γ = 2/τ. (3.9)

24A later restoration by Frank Rutkowski and Robert Robinette (done in March 1987) using 0.023′′
yellow and red brass (90% copper and 10% zinc) on the low C was made after the present data
were taken.
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Fig. 3.23 Variation of Q with frequency for some harpsichord strings. The solid curves are limits
obtained by Cuesta and Valette (1988) for freely vibrating 0.33-mm diameter steel strings supplied
by the Zuckermann Company in a harpsichord kit. The points marked “+” were computed by the
author from the data in Fig. 3.19 based on the decay of sound from the lowest note on the 8-ft stop
of the 1648 instrument by Andreas Ruckers in the Yale University Collection

Here, γ is the energy decay rate and τ(= 2/γ ) is the time the amplitude takes
to decrease by 1/e(= 0.3678794 . . .) of its initial value. The different frequencies
are given by F = nF0 where n is the harmonic of the fundamental frequency,
F0 ≈ 61.73 Hz. (The harpsichord was tuned to a′ = 409 Hz to match the original
conditions for which the instrument was designed.) Applying Eq. (3.6) to the results
in Fig. 3.22, one gets the scatter of points labeled “+” in Fig. 3.23. The scattering
is no doubt due partly to the beating between the harmonics of the 8- and 4-ft
strings. The two solid lines in Fig. 3.23 represent the upper and lower limits on
Q measurements made on three 0.014-in diameter steel harpsichord strings (“fer de
Zuckermann”) of different length by Cuesta and Valette (1988). Their measurements
were made on freely vibrating strings unimpeded by attachment to a harpsichord.
One would, of course, expect to find that the Q of the string “loaded” by the
bridge and soundboard would be lower because energy is then also coupled from the
string to the instrument. The data in Fig. 3.24 support that interpretation. The values
obtained at 200–400 Hz reach the lower bound of the measurements by Cuesta and
Valette, whereas from 200 to 1200 Hz about half of the decaying energy from the
string appears to be coupled from the string to the Ruckers instrument (as opposed
to air resistance and internal viscoelasticity loss in the string alone).

Cuesta and Valette also concluded that although damping from air resistance
is primarily responsible for the decay rate of the isolated string at low frequencies,
internal loss in the string through viscoelasticity and domain dislocations in the wire
were the main factors at high frequencies (above ≈1 kHz). These losses vary a great
deal from one string to another and depend strongly on the string’s metallurgical
state. They found that the Q of the unloaded string typically peaks in the range from
about 1000 to 4000 Hz—the region where the ear is most sensitive. Maximum Q’s
of about 6500 were found at frequencies of about 2–4 kHz and fell off by a factor of
about six by 10 kHz. By comparison, the maximum Q’s from freely vibrating nylon
strings (having more viscoelasticity loss) were in the order of 1400.
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Fig. 3.24 Two-manual harpsichord by Pascal Taskin, Paris, 1770. Courtesy of the Yale University
Collection of Musical Instruments (photograph by Joseph Szaszfai/Carl Kaufman)

Harpsichord building in Paris did not occur as early as it did in Italy or Antwerp
and no French instruments have survived that were made before the middle of
the seventeenth century. According to Hubbard, the French efforts were divided
between two groups: those who produced innovative models of their own and
others who spent their time rebuilding Ruckers instruments. Of the former group,
the most eminent were members of the Blanchet family, starting with Nicholas
Blanchet (1660–1731) and ending with Pascal Joseph Taskin (1723–1793), who
married the widow of François Etienne Blanchet II. Taskin is regarded by some
as the Stradivarius of harpsichord making. Indeed, a two-manual instrument of his
design with one 8-ft stop on the upper manual and an 8- and 4-ft stop on the lower
manual, together with a buff stop has come to be regarded as the epitome of the
“French harpsichord.” Unfortunately, most of the original instruments by Taskin
were burned after the French Revolution. According to Hubbard (p. 116), “There
can be no doubt that the violence of the Revolution, particularly since it came
at the moment of transition to the piano, was responsible for the destruction of a
large number of harpsichords.” One of the old employees of the Paris Conservatory
recalled that those “harpsichords served to heat the classrooms, a purpose for which
some were taken from time to time from the garret.”

In any case, only six of the original two-manual instruments by the great French
master are still known to exist: Two (dated 1764 and 1769) are in the Russell
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Fig. 3.25 Structural supports in the case of a Taskin instrument (after Hubbard 1965)

Collection at Edinburg University in Scotland; one is in Paris (1769) owned privately
by Mlle Guerelle; one dated 1770 is in the Yale University Instrument Collection in
New Haven (Fig. 3.23); one dated 1780 is in the Gelsen Collection in Milan; and a
remaining one built in 1782 is owned by the Marquisa Olga de Clotilde of Portugal.
(See Boalch 1974.) Hubbard felt that even the framing structure used by Taskin
had special esthetic appeal. (See Fig. 3.25.) The meticulous measurements reported
in Hubbard’s 1965 book have enabled a number of people to make replicas of the
Taskin instruments.25

On some instruments, Taskin added jacks with leather plectra behind the ones
equipped with crow quills to produce a solo stop. In addition, he sometimes added
a “Peau de Buffle” (literally, “buffalo skin”) register. The relative striking points on
the two sets of 8-ft strings were different, with the result that one manual would
sometimes have a more “nasal” quality than the other. Certainly, the spectra from
the two-manual Yale instrument are rich in harmonic content (Fig. 3.26).

The spectra from the lowest C on each of the two separate 8-ft stops are shown
in Fig. 3.27, where 16 harmonics below 1000 Hz were encountered. In each case,
the spectrum peaked at the second harmonic. However, the lower manual 8-ft stop
must have been plucked near the node for the seventh harmonic and that for the
upper manual in between the node for the fifth and sixth harmonics—thus producing
significantly different tonal color from the 8-ft stops on the two manuals. According
to Ripin et al., p. 230, the subtlety of tonal color and sweetness of sound in
Taskin’s harpsichords may have been introduced primarily to attract attention to
the instrument and away from the “less-substantial [French] music” of the period.

The time-dependent decay of the harmonics on the 4-ft stop of the lower manual
(Fig. 3.27) showed the same sort of slow beating effects with harmonics of the 8-ft
strings encountered before with the Ruckers instrument. Note especially the sharp

25Hubbard himself established a company (in a barn in northeastern Massachusetts) that sold precut
parts as kits. Kits are also available from the Zuckerman company and various premade parts are
sold by the B & G Instrument Workshop in Ashland, OR. However, “do-it-yourselfers” should
be warned that it takes about 300 expert-person hours to build a two-manual Taskin and that you
have to complete five or six before you start turning out good ones. Back in the 1970s, I asked a
Hubbard associate what he could do for a kit that was poorly completed by one of my children. (At
that time, the two-manual “Taskin” kit sold for about $2400.) The reply was, “We take them up to
the second floor of our barn and toss them out the hay-loft window.”
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Fig. 3.26 Spectra from the lowest C on the 8-ft stops for the upper and lower manuals of the 1770
Taskin Yale instrument (data taken with Jean Bennett)

minimum in the second harmonic amplitude at about 1.2 s after plucking the string
and the subsequent maximum at about 3 s. The bass strings were evidently tuned by
minimizing the beat of the fundamental of the 4-ft stop with the second harmonic of
the 8-ft stop. As discussed in Chap. 4 in regard to piano tuning, the beats are different
between different pairs of overtones that normally would be expected to be in tune.
The difference is due to nonlinearity in the vibrating strings and the data for the
second harmonic in Fig. 3.27 constitute a direct demonstration of this phenomenon.

One of the most beautiful sounding replicas of a French-style harpsichord I
have heard personally was a copy of a two-manual instrument by Henri Hemsch
started by Frank Hubbard and completed by Richard Rephann after Hubbard’s
death. That instrument was outfitted with carefully annealed wire and plucked with
crow quills.26 However, as with the aroma of fine cigars, not everyone appreciates
the tone quality of a fine harpsichord.27

26A stereo recording of the Hubbard–Rephann instrument made by the author of several Bach
pieces played by harpsichordist Lola Odiaga is available on CBS Discos. (See Odiaga 1974.)
27Oboist Robert Bloom once told me that he thought “they all sounded like old bed springs.” On
the other hand, Sir Thomas Beecham felt that the sound was more “like two skeletons copulating
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Fig. 3.27 Spectral-surface showing the time-dependent decay of harmonics of the lowest C on the
4-ft stop of the lower manual on the Taskin instrument in the Yale collection. Note the prompt start
of each harmonic at t = 0 and the subsequent minimum and maximum in the second harmonic
amplitude with time after plucking the string (data taken with Jean Bennett)

There were several major deficiencies of the harpsichord as a musical instrument:
The sound was weak compared to that of many other instruments, the sound decayed
in a very short time, the dynamic range was very limited, and the sound level could
only be changed significantly by adding or removing stops. Finally, the intonation
tended to be unstable and the instrument required frequent tuning—often in the
middle of performances. (Rephann once warned me that even bringing a cup of hot
coffee into the same room with a harpsichord would throw it out of tune because of
the change in humidity!)28

According to Ripin et al., the last harpsichord in the classic tradition was made in
1809. By that time, development of the piano had reached such a point that general
interest in the harpsichord had waned. By then, Beethoven had composed 24 of his
32 sonatas for the piano, had broken lots of strings, and had spilled several bottles
of ink on his succession of inadequate pianos.

on a corrugated tin roof” (Atkins and Newman 1978, p. 34.) But, Beecham was probably referring
to one of the later English models which Ripin et al., p. 234 say sounded like loud brass bands
compared to the woodwind-like quality of the French instruments.
28Yale chemist Martin Saunders (private communication) proposed a possible solution to the
tuning problem: A computer-controlled electric-power source feeds current through each string
separately at about 1/2 Watt maximum per string. Increasing the current heats the string, lowering
its pitch (and vice versa), providing required tuning changes within a 1- or 2-s thermal response
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The harpsichord remained dormant until the late nineteenth century when
both Arnold Dolmetsch and Hans Richter began presenting concerts featuring the
instrument. Shortly afterward, two French piano companies, Pleyel and Erard,
independently brought out elaborately decorated harpsichords modeled after a
classic Taskin instrument and showed them at the Paris Exposition of 1889. A
decade later, a harpsichord dubiously associated with the composer J. S. Bach was
built by William Hirl of Berlin (and eventually by J. C. Neupert of Bamberg).
Meanwhile, the Erard instruments had diffused at least as far south as Vienna.
Wanda Landowska, in her role as Professor of Harpsichord at the Berlin Hochschule
für Musik, persuaded the Pleyel company to produce its “Landowska” model
starting in 1912. Instruments of this vintage were essentially pianos outfitted with
plectra instead of hammers and featured two keyboards with lots of pedal-operated
stops, 16-ft pitch, metal frames, and thick strings under high tension. Many used
only a plain soundboard (as in a piano) with no enclosed volume of air. The tone was
bright and penetrating, but without much bass and could not be heard across the hall.

In 1905, Arnold Dolmetsch moved to the USA and established a short-lived harp-
sichord department with the Chickering piano company of Boston. The Dolmetsch-
Chickering instruments were lighter in construction and modeled after the earlier
Taskin design, producing more mellow tone quality. Following financial troubles
at Chickering, Dolmetsch departed for Paris in 1910 and harpsichord building in
the USA went into hibernation until 1931 when John Challis returned to America
from Europe. Challis was an inventive fellow and quick to adopt current methods of
technology. In his later years, he designed an instrument made entirely of metal,
including the soundboard! Those instruments had remarkably stable intonation,
but as Ripin et al. (1980) put it in mild understatement, “the tonal quality was
not to everyone’s taste.” After World War II, Frank Hubbard and William Dowd
established their joint company in Boston and started a return to the seventeenth-
and eighteenth-century traditions of harpsichord making that was much lauded by
Ralph Kirkpatrick and other harpsichordists of note.

Although the decay times from the best harpsichords were much longer than
from those in the early Italian instruments, they were still at least a factor of two
shorter than those of the larger diameter strings on a typical piano. Indeed, of the
various ways of simulating the sound of a harpsichord on a piano (including thumb
tacks in the hammers), one of the closest is to record a piece an octave lower on
the piano keyboard and then play the recording back at twice the original speed. In
this way, one also picks up a factor-of-two in technique on fast passages that can be
rather startling to the uninformed.

time. A computer-controlled FFT continuously samples the output from a microphone above the
strings and is used to monitor the pitch of each note continuously. The computer then controls
the current through each string to keep the entire instrument in tune. Saunders suggested that one
could also have the program provide continuous harmonic tuning as the music changed keys. But,
it is not clear how the method could distinguish between two harmonics on different strings that
were of the same frequency. (The method might just result in a puddle of molten strings on the
soundboard.)
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3.10 The Clavichord

Although the clavichord is neither plucked nor struck with a hammer, it represents
a kind of intermediate stage between the harpsichord and the piano. Like the
harpsichord, it was also mostly in use between the fifteenth and eighteenth centuries.
Although ingenious in its simplicity, it is probably the least efficient way known to
man to obtain sound from a vibrating string. As illustrated for one note in Fig. 3.28,
a Λ-shaped piece of metal called a “tangent” is attached to the end of each key and
engages the string at right angles and lifts it up in the air. The active length of the
vibrating string is determined by the tangent at one end and by the bridge at the
other. As with the harpsichord, the bridge is fastened to a soundboard in order to
couple the string vibrations to sound waves in the room. The section between the
tangent and the hitch pins is heavily damped by cloth. That section of the string
is prevented from vibrating when the tangent is engaged and the damping material
also deadens vibrations in the entire string when the key is released; hence, one does
not need an additional damper on each key, as with the harpsichord. The mechanism
by which the string is set in motion is a little puzzling at first glance. Because the
tangent hits the string at a node (x = 0 in Fig. 3.29) for all harmonics of the active
length of string, one might think that none of the harmonics of the string would be
excited at all. However, that is not completely true, unless the key is depressed very,
very slowly. Some excitation of the string actually does occur, but by a much more
indirect process than in the harpsichord or the piano.

Fig. 3.28 Diagram of the action of a clavichord
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Fig. 3.29 Diagram illustrating the excitation of a clavichord string

3.11 Method of Excitation

If the tangent hits the string with any appreciable speed, the inertia of the string
results in the string being bent slightly at points between the tangent (x = 0) and
the bridge (x = L). In the real case, the bending will occur continuously over part
of that region. Nevertheless, one can approximate this process by assuming that
the bending occurs at just one effective point (x = P0 in Fig. 3.29). When the key is
depressed with near zero velocity, P0 is coincident with the bridge location (x = L),
and no sound is produced. But, as the initial key velocity increases, that effective
point moves toward the tangent (at x = 0). The result is that the string is distorted
into a quasi-triangular shape similar to that of a harpsichord string at t = 0, except
that the triangular displacement is upside down. For example, when the bending
point is at P0 in Fig. 3.29, the string is initially distorted into the shape of the shaded
triangle shown with initial amplitude, A. As the initial key velocity increases further,
the effective bending point moves to another location x = P ′

0 nearer to the tangent
where the new triangle has a larger negative amplitude A′, and so on. The harmonic
spectrum of the string in this approximation is just the same as that calculated for
the plucked string in Eq. (3.5) for M = L/P0, except that the triangle is upside
down. The pulse then travels down the string as illustrated in Fig. 3.8, except that
the displacement is negative. One important consequence of the negative amplitude
of the initial pulse launched down the string is that after the “hard” reflection by
the bridge, the returning pulse is positive. When this returning positive pulse arrives
back at x = 0, it tends to make the string jump up off the tangent. From the present
excitation model, one can see that both the amplitude and the number of higher
harmonics will increase as the initial key velocity increases. Since one can give
the key a large variation in initial velocity, the dynamic range of the clavichord is
immense. Yale clavichordist Richard Rephann29 believes that the dynamic range
(not the loudness) of a clavichord is actually greater than that of a concert-grand
piano. Although the thought is counterintuitive, I believe that he is actually right.
Even a well-regulated piano action has a definite threshold level below which the

29Private communication.
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hammer does not have enough momentum to hit the string. The same is not true of
the clavichord. However, the sound produced throughout much of its range is below
the threshold of hearing and when struck very hard the pitch goes very sharp. (The
clavichord is just the thing for city apartment dwellers who worry about disturbing
their neighbors or for composers who want to try out their ideas in private.) One
other advantage of the instrument is that by varying the pressure on the key after
the tangent is engaged, one can produce vibrato on the note.30 Figure 3.30 shows a
clavichord similar to one that Mozart owned.

Fig. 3.30 Clavichord made by Johann Christoph Georg Schiedmayer, circa 1796 (courtesy of the
Edwin Ripin Collection at the Museum of Fine Arts in Boston, Massachusetts)

�
Fig. 3.31 (continued) (also called a Rubell); (13)–(14) Marine Trumpets; (15) and (16)
seventeenth-century Pochettes; (17) and (18) twelfth- and thirteenth-century Italian lutes; (19) and
(20) tenth- and eleventh-century Gigues (a family of Rebecs). Row 3. (21) and (22), fourteenth-
and fifteenth-century Rebecs; (23) and (24), eleventh- and tenth-century Rebecs; (25) pimitive
viol; (26) fifteenth-century Lira da Brassio; (27) fifteenth–eighteenth-century Viola d’Amore; (28)
sixteenth-century viole; (28) and (29) Vielles a roue from the Middle Ages (“Hurdy-Gurdies”);
(30) Organistrum. Row 4. (31) German Cithare; (32) Guzla; (33) Hawaiian Guitar; (34) American
Guitar; (35) Indonesian Taranj; (36) sixteenth-century Viol; (37) fifteenth–eighteenth-century
Quinton; (38) Bastard Viol (Middle Ages); (39) Modern Plate Mandolin; (40) Modern Guitar;
(41) Neopolitan Mandolin; (42) Ancient Guitar. Row 5. (43) Spanish Mandolin (Banduria); (44)
and (45) Banjo and Alto Banjo. Row 6. (46) Russian Balalaika; (47) Jazz Guitar; (48) Trapezoidal
Violin (1830); (49) Moon Violin (1850); (50) sixteenth-century Violin; (51) Midget Violin; (52)
Belleville Violin (1828); (53) Chanot Violin (1840)

30Amazingly, Ralph Kirkpatrick once did a recording of Bach’s Well-Tempered Clavier on the
clavichord without using any vibrato at all.
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Fig. 3.31 Collection of stringed instruments that can be plucked. (Courtesy of E. Richard, Master
Luthier of Rouen, France.) Identification, row-wise from top left: Row 1. (1) Wrinnor (Portable
Oriental harp); (2) Greek Lyre; (3) Roman Lyre; (4) eighth- or ninth-century Trojan Crouth;
(5) ninth-century Lyre Guitar (plucked with a plectrum); (6)–(8), ninth-, twelfth-, and fifteenth-
century Psalters. Row 2. (9) tenth- and eleventh-century bowed Crouth; (10) thirteenth-century
Rotta; (11) fifteenth-century Minstrel Harp; (12) eleventh- and twelfth-century Arabic Rabab
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3.12 Other Plucked Instruments

A variety of other plucked instruments is shown in Fig. 3.31. Space limitations
prevent a detailed discussion of these instruments, but it will be appreciated that
they operate in a plucked mode much the same manner as those discussed earlier in
this chapter.

Problems

3.1 Suppose there were only one coil located at x0 = 3.75 inches in the electric
bass shown in Fig. 3.10. Where would the nulls in the electronic spectra occur?
(Note L = 34.1 in.)

3.2 Suppose the coils in the Steinberger bass (Fig. 3.10) were connected so that the
voltages added. At what harmonics would minima in the spectrum occur?

3.3 From the mode pattern at 56.8 Hz in Fig. 3.16, estimate the surface wave
velocity in the long dimension of the harpsichord soundboard. Take the long
dimension of the soundboard to be about 4.69 ft (corresponding to a Ruckers single-
manual instrument.)

3.4 On a certain gut-strung harpsichord, the string for middle C is 63.6 cm long
and has a diameter of 0.029 in. Assuming that the instrument is brought up to A =
440 Hz, what is the tension on the string? (The mass per unit length of the gut string
is 0.0060 g/cm.)

3.5 Suppose someone wanted to restring the gut harpsichord in the previous
problem using steel wire of the same length chosen so as to produce the same
tension. What diameter should the wire be for middle C? (Take the density of steel
to be 7.83 g/cm3 and the density of gut to be 1.4 g/cm3.)

3.6 Research Problem: See if you can design a virginal in which all the strings are
plucked in the middle, hence producing clarinet-like tone quality. (A virginal has
the keyboard parallel to the strings.)



Chapter 4
The Struck String

4.1 The Piano1

Some say that pianists are human and quote the case of Harry Truman.—Ogden Nash

The piano is classified as a percussion instrument because it uses hammers to
hit the strings. Still, many pianists think of it as a “singing instrument”—perhaps
because they can’t refrain from singing themselves while playing. The enormous
dynamic range in present compact disc recordings has made that habit something
of a liability. Audio engineers have been known to shout, “Will someone please
get that drunk out of the studio?”—not realizing that the sound actually came
from the soloist’s mouth. Some pianists wiggle the keys and others make various
grimaces and bodily gestures to fool the audience into thinking it really is a singing
instrument. But in the cynical words of music critic Bernard Holland, “At the end of
a day, it is still a drum with different pitches.” Nevertheless, the piano has been the
backbone of musical development over the past two centuries and in many instances
can sound quite warm and beautiful.

The original version of this chapter was revised: Equation on page 108 was corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-92796-1_8

1For the history of the piano, see Dolge (1911), Ripin (1980), and Gill (1981). The author has
also benefitted from helpful discussions with Edmund Michael Frederick and Patricia Frederick of
the Ashburnham Massachusetts Historical Piano Collection, master piano technician Christopher
Robinson and the late Edward Deutsch, former curator of pianos at Yale University.

© Springer Nature Switzerland AG 2018
W. R. Bennett, Jr., The Science of Musical Sound,
https://doi.org/10.1007/978-3-319-92796-1_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92796-1_4&domain=pdf
https://doi.org/10.1007/978-3-319-92796-1_8
https://doi.org/10.1007/978-3-319-92796-1_4


96 4 The Struck String

4.2 From Cristofori to Mozart

Just as the late nineteenth-century harpsichords were essentially pianos outfitted
with plectra, the first piano made by Bartolomeo Cristofori (official keeper of
musical instruments for the Medici family in Florence) in 1698 was basically
a harpsichord using hammers. Indeed, the sound of the Cristofori instrument is
strongly reminiscent of that of a harpsichord because of the thin strings and use
of a hard hammer. To be fair, Cristofori did address (and solve) many of the major
problems that were faced over and over again by other piano makers in later years.

One major problem in the design of a piano is satisfying the requirement that
the hammer escape from the action (the mechanism that launches the hammer after
depressing the key) immediately before hitting the string; otherwise, it will lift the
string. Another problem is in amplifying the motion so that a much larger velocity is
given to the hammer than that given to the key by the finger. Additionally, a damper
must be raised off the string when the key is depressed. Finally, some provision has
to be made to catch the hammer after it bounces off the string so that it does not
rebound and hit the string a second time. To facilitate a rapid rebounding process,
thicker wire was used than in the harpsichord and under higher tension. That in turn,
also provided a louder sound and a longer decay time than had been obtained on the
harpsichord.

These requirements were largely met by the action Cristofori developed by the
1720s—a period from which three of his original instruments have survived. The
damper was moved to the end of the key and mounted on what resembles an older-
style harpsichord jack, together with the old upper and lower jack guides. A new
“piano jack” was mounted at the old plectra location. In Fig. 4.1, downward force
on the key at the left raises the damper off the string at the right and causes the
jack to push upward on the motion—amplifying lever which is hinged at the right.
After relaying the key impulse, the jack disengages from that lever by slipping off
to the left (“escapement”). The left end of the lever pushes upward on the hammer
shank which rotates about a hinge at the left, hurling the light (hollow) hammer at
the right upward against the string at a velocity some eight times larger than that
initially given the key downward. The hammer is caught by the back check after
bouncing off the string, thereby preventing it from rebounding to hit the string a
second time and the damper remains raised until the player’s finger is removed from
the key. Two of Cristofori’s surviving instruments had inverted (upside down) pin
blocks. Although they must have been awkward to tune, the hammer blows in that
case would tend to tighten the tuning pins rather than to loosen them, as in most
modern pianos.2

2Chris Robinson (private communication) noted that one reason the early pins tended to move
upward was that they were not threaded. Hence, the early tuning keys had a hammer head on them
to permit driving the pins back down—thus the origin of the term “tuning hammer” which persists
to the present day.
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Fig. 4.1 The piano action designed by Cristofori circa 1720

4.3 String Vibration and the Una Corda Mode3

The tradition of Italian harpsichord building (with pairs of strings on every note
tuned in unison) served Cristofori well. In two of his surviving instruments, the
keyboard could be slid sideways so that the hammers would hit only one string on
each note, providing the una corda effect (soft pedal) much used by Beethoven and
other later composers. This development not only provides a difference in sound
level and tone quality, but also results in tones with longer persistence. Because
each note has two strings tuned in unison, energy is coupled between the two strings
through the bridge. The coupling process results in two normal modes of vibration
for each harmonic with slightly different frequencies. In one mode the two strings
vibrate up and down together. That mode is excited initially when the hammer hits
both strings at once (left-hand pattern in Fig. 4.2). There, because the pulses in
each string are in phase, energy is coupled strongly to the soundboard when the
two pulses arrive at the bridge. However, in the other normal mode of the system,
which is excited preferentially when the hammer hits only one of the two strings
(the una corda pedal position), the strings vibrate out-of-phase (right-hand drawing
in Fig. 4.2). With the hammer shifted to the right and both strings undamped, the
pulse generated by striking the right-hand string alone is inverted upon reflection at
the bridge. From Newton’s “Law of Action and Reaction,” the bridge itself goes up
slightly as the right-hand string goes down, thus imparting an upward pulse to the
left-hand string that runs back towards the front of the piano. Both strings quickly
settle down to oscillate in a mode in which out-of-phase (by 180◦) running waves
on the two strings hit the bridge simultaneously, and hence impart less energy per

3See Weinreich (1977) for references to previous work on this problem and a mathematical
treatment of the mode-coupling process. A coupled electric circuit model is derived in Appendix A.
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Fig. 4.2 The circulating pulses on the strings when excited in the normal symmetric mode (left)
and in the anti-symmetric mode (right)

pass to the soundboard. Evidence of these pulses may be seen by using stroboscopic
illumination tuned near the note frequency at one end of the strings.

As time goes on, the higher harmonics damp out the most quickly, leaving the
string vibrating in one (or both) of the two fundamental modes of the first harmonic.
Again, since the even symmetry mode transfers energy more rapidly to the bridge,
the energy will eventually decay through the longer-lived odd-symmetry mode
regardless of the initial position of the hammer.4 Similar things occur in modern
pianos, except that three strings are used on most notes instead of two.

There is an interesting possibility that Cristofori could have tried, although there
is no evidence that he actually did so. One might obtain a crescendo after a given
note has been struck in the out-of-phase mode by incorporating a second set of
dampers for each note. The second set would normally be off the strings, but could
be used to dampen the left-hand strings suddenly (say, with another pedal or knee
lever) after a note was struck with the una corda pedal down (hammers shifted to
the right). The process would work as follows: when the two strings are vibrating
in the 180◦ out-of-phase (una corda) mode, very little loss of energy occurs at the
bridge and the tone persists much longer than with the in-phase mode. But if you
dampen one string suddenly after the note was struck in the una corda position, there
would no longer be a 180◦ out-of-phase component of the string motion at the bridge
and the tone should decay more rapidly because of the greater coupling efficiency
of the single pulse to the sound board. For that reason, the intensity should go up
just because the rate of energy transfer has increased. Weinreich (1977) reported an
increase in the late decay of the string using this technique of nearly 20 dB.5 In an
experiment by the author using middle C on a modern Steinway concert grand (in
which the left string was damped completely with a felt wedge and the una corda
pedal was adjusted to hit only the right-hand string), the increase in loudness was

4The above description, of course, assumes that the strings are only vibrating in the vertical plane.
As Weinreich (1977) noted, if the top of the hammer is not perfectly horizontal, the strings may
also be excited to vibrate in the horizontal plane, in which case there is much smaller coupling
(e.g., ≈10 dB less) to the bridge. Hence, a longer-lived component with very much smaller energy
may also be excited through that mechanism with poorly voiced hammers.
5Chris Robinson (private communication) noted that some piano tuners deliberately keep the
unison strings slightly out of tune to preserve the decay time of the instrument. [The necessary
detuning at middle C would only be about 0.5 cents. WRB]
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quite perceptible, but not much more than 5 dB.6 In a similar experiment using the
two eight-foot stops on a French style harpsichord by Paul Kennedy, the effect could
not be detected at all. However, that may have been due to differences in the string
position for the two stops on the eight-foot bridge. [See the discussion of the coupled
mechanical circuit model given by Weinreich (1977) and the coupled electric circuit
model discussed in Appendix A of this book.]

Gottfried Silberman built pianos in Germany in the mid-1700s with light actions
that were nearly identical to Cristofori’s design and of which Johann Sebastian Bach
approved. (Silberman used hollow square hammers, rather than hollow cylinders
as did Cristofori.) But piano building in Vienna was something of an anomaly. In
contrast to what had happened in Italy, France, England, and Germany, there was not
much of a harpsichord-making industry in Vienna to fall back upon. Pianos seemed
to have evolved there during the last decades of the eighteenth century almost
through spontaneous creation in a manner isolated from developments in other coun-
tries. Although the pianos of Mozart’s time did look a lot like harpsichords (com-
plete with knee-levers to work the dampers), the Viennese actions were quite dif-
ferent from those developed in the northern European cities and remained that way
through the time of Brahms. The characteristic action in the Viennese school during
Mozart’s life was the “Prellmechanik” (or “Rebounding mechanism”) illustrated in
Fig. 4.3 that is said to have been invented by one Johann Andreas Stein (1728–1792).

As shown in Fig. 4.4, the Stein mechanism had a minimum number of levers and
the hammer shank itself provided the main mechanical amplification of the hammer
velocity. As shown in the figure, a beak-like structure at the end of the hammer
shank was released by a spring-restored-single-escapement mechanism. Mozart
seemed to like the Stein mechanism and complained that the hammers “blocked
and stuttered” on other instruments. The hammers on the Stein action were very
small and light, but only covered by a thin layer of leather.7 Anton Walter (1752–
1826), the Viennese maker who built Mozart’s own piano developed a modification
of the Stein action which included larger hammers and a back-check rail to prevent
the hammer from rebounding and hitting the string a second time after the key was
struck. Unlike the Cristofori instruments, many “Mozart pianos” had triple stringing
and incorporated a “moderator” which was operated by a knee lever that would
insert a sheet of material between the hammers and the strings to soften the sound.
Although certainly possible to include in principle, the “una corda” shift of the
hammers was not incorporated on the Stein instruments I have seen. Pianist Lili
Kraus owned a Mozart piano, but complained about its dynamic range: “If you play

6Taub (2002, p. 34) points out that one can also obtain a slight crescendo by depressing the normal
right-hand pedal after the notes are struck, but that, of course, is a very different effect than the
one discussed in the text. Taub (p. 47) also suggests obtaining a “crisp fp” by depressing the keys
rapidly to create the forte, immediately releasing them and then depressing them again immediately
so that the dampers rise quickly allowing the strings to vibrate further at decreased amplitude.
That is really the inverse of the crescendo effect discussed in the text (which perhaps should be
designated pf.)
7The ones I’ve heard personally sounded as if the strings were actually struck by “steins” (i.e.,
rocks).
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Fig. 4.4 The “Prellmechanik” action designed by Stein

it too loudly, the hammers will break; if you play it too softly, it simply won’t speak.”
(Elder 1982, p. 190.) That may explain Beethoven’s observation that Mozart “had a
fine but choppy (zerhacktes) way of playing, non ligato.” (Thayer and Forbes 1973,
p. 88.) The notion that Mozart couldn’t play legato passages is certainly counter-
intuitive, judging from all the beautiful ones written in his music. But Beethoven’s
nephew Karl wrote in one of the “conversation books” that “Mozart’s fingers were
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Fig. 4.5 Mozart, his clavichord, his piano, one of his compositions, and his mother. The piano
was made by Anton Walter circa 1780 with a Viennese (“Prellmechanik”) action and a five-octave
range starting on low F . It was once equipped with a large sustaining pedal and was transported to
Mozart’s various concerts in Vienna (the figure is a pastiche drawn from several period paintings)

so bent from playing that he couldn’t even cut his meat [at the dinner table].”
(Solomon 1995, p. 301.) Perhaps Mozart was just suffering from writer’s cramp?
(He wrote about one major piece by hand every 2 weeks on the average throughout
his lifetime.)

Mozart’s own piano originally had a knee lever to raise all the dampers at once,
although it is said that he later had a large foot pedal added for that purpose.
(Possibly Walter Gieseking’s insistence on avoiding the pedal in playing Mozart was
because he didn’t realize that such a thing existed on a Mozart piano.) (Elder 1982,
p. 10) Other Viennese pianos, especially those by Conrad Graf, were equipped with
various damper-lifting pedals, some of which would only operate on the dampers in
the bass, or in the treble, separately (Fig. 4.5).8

8The pedal mania reached a climax in the instruments built by Conrad Graf in Vienna during the
early 1800s, some having as many as six or seven pedals. Usually, two would split up the dampers
between bass and treble. According to Taub (2002, p. 42), Beethoven only mentioned that device
once (in the score for the Sonata, Opus 53) and said not to use it. Some pedals were designated
“bassoon stops” and pushed a tissue-paper-like structure onto the strings. Another, the “Janizary
stop,” would thump the sound board with a leather glove and in some cases ring a bell for use
in “Turkish marches.” There is currently a multi-pedal Graf instrument in Ferdinand Schubert’s
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Some pianos of the period made with triple stringing by the Clementi firm did
incorporate a una corda pedal which shifted the hammers. (A small lever at the side
of the keyboard controlled the distance the hammers went laterally so that one string
could be excited alone.) It is doubtful that Mozart, Beethoven, or any of the other
composers of that time understood how the sustaining power provided by the una
corda pedal actually worked.

4.4 The Myth of the “Authentic” Beethoven Piano

As described by Robert Taub,9 Beethoven owned or borrowed at least 14 different
pianos during his lifetime, including ones having just about every new development.
These included Viennese models made by Stein and Streicher (to whose firms he felt
great allegiance) and non-Viennese pianos made by Erard (Paris, 1803), Broadwood
(London, 1818), and Vogel (Budapest). The earliest ones, with a five-octave range
starting on F , had hand stops or knee levers as a carry-over from the harpsichord
tradition and were of the two-string-per-note design in which the term una corda had
literal meaning. Later models incorporated two pedals (the left, to shift the keyboard
and the right, to raise the dampers), triple unison stringing, and extended keyboard
range. One made by Graf in 1825 (now in the Beethoven House in Bonn) actually
had four strings per note, not to mention a special resonator intended to compensate
for Beethoven’s loss in hearing. (But by then, his hearing was almost completely
gone, and he never warmed to the instrument.)

It is clear that Beethoven was dissatisfied with every instrument he ever tried
and was constantly in search of pianos with greater dynamic range and keyboard
extent. Comments such as “Clavicembalo miserabile” and “It remains an inadequate
instrument” are sprinkled in his manuscripts and correspondence. (Taub 2002,
p. 89). Although he liked the fast response of the early Viennese pianos, he evidently
advised piano maker Andreas Streicher “to abandon the soft, yielding repercussive
tone of the other Vienna instruments and give his instruments greater resonance
and more elasticity, so that the virtuoso who plays with strength and significance
may have the instrument in better command for sustained and expressive tone.”10

As Taub traced in detail throughout the 32 piano sonatas, Beethoven was quick to
incorporate (and ask for) new improvements. For example, the 1803 piano given
him by the Erard firm had a keyboard range of five and a half octaves that was

apartment in Vienna, but the composer himself was too poor to afford any piano. Franz spent his
last days in his brother’s apartment. (See Neumayr 1994, p. 407).
9Taub 2002. (See, especially, Chapter 7, “The Myth of the Authentic Pianoforte.”)
10Karl Reichardt in his Vertraute Briefe of February 7, 1809 (see Thayer and Forbes 1973, p. 461.)
It is not clear how this request fits in with the octave glissandos Beethoven wrote in the Waldstein
Sonata and the C-Major Piano Concerto. I know one pianist who spent many weeks pricking her
fifth fingers just to develop calluses sufficient to permit playing those glissandos on a modern
Steinway. Artur Schnabel and Rudolph Serkin would discretely lick their little fingers to ease the
slide. Rosen (2002) suggests adding lubricant to the vertical pins at the front of the keys. Teflon
sprayed on the hammer-shank knuckles also helps.
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extended in the top to c4. Beethoven immediately incorporated those new notes in
the Waldstein and Appasionata Sonatas and the Fourth Piano Concerto. (However,
he complained that the Erard action was too heavy.) The Broadwood piano given
him in 1818 by the London firm incorporated a six-octave range going down to
low CC (rather than F ), which Beethoven had already incorporated in his (1816)
Sonata Opus 101 two years earlier. (But Beethoven commented to his friend Johann
Stumpff that the Broadwood instrument had not fulfilled his expectations.) When
Beethoven composed the “Hammerklavier” Sonata Op. 106 in 1818, no piano at
his disposal was able to handle both the extreme bass and a six-and-one-half-octave
range. The demands he continually placed on pianos through his writing forced the
instrument makers to try to keep up!

In view of these observations, the comments made by some “purists” are rather
puzzling. A musicologist once told me, “you really can’t understand the meaning
of the Waldstein Sonata until you’ve heard the opening bass chords played on a
fortepiano.” It seems absurd to assume that a man who boasted that he was “writing
music for future generations” wouldn’t also have been thinking of future generations
of pianos on which to play it. Although Beethoven was impaired by deafness from
about 1802 on, his inner ear was unaffected by the limitations of his piano. As
Taub noted, the equivalent thing to the use of a “period instrument” in the art world
would be to insist that a painting by Rembrandt or Vermeer be viewed only by
candlelight. In a New York Times interview, Taub commented, “The day I play
a concert on a fortepiano will be the day when the whole audience arrives by
horse-drawn carriages and the hall is lit with candles. . . ”11 Rather than seeking
to reproduce “the authentic Beethoven instrument” (which we must agree really
didn’t exist), it would seem more profitable to concentrate on understanding the
intentions Beethoven implied in his written notation. As Beethoven commented to
Czerny after hearing him play his Quintet for Piano and Winds in E-flat, “. . . you
must pardon. . . a composer who would have preferred to hear his work exactly as
he wrote it, no matter how beautifully you played in general.” (Thayer and Forbes
1973, p. 641) To that end, Robert Taub and Charles Rosen have made substantial
contributions in their recent books published in 2002 on the interpretation of the
Beethoven piano sonatas. Rosen (2002) gives many hints on solving the technical
problems faced in pursuing that goal.

Piano building in England started late in the eighteenth century, but grew on the
tradition of English harpsichord building—i.e., the instruments were large, loud and
heavy. According to Ripin, the piano was also much promoted in England by J. C.
Bach, who had gone to London in 1762 to become the Queen’s teacher and “to direct
London’s most expensive non-theatrical musical events.” It was also influenced by
the fact that Clementi had set up his firm in London and that a number of key
patents on piano design were filed in England (e.g., those for heavier hammers
and tubular iron frames and ones by Sebastian Erard on the agraffe and double-

11The New York Times, May 14, 2000, p. AR 37. But according to The New York Times, June 15,
2003, p. NJ 9, Mr. Taub may have changed his mind.
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Fig. 4.6 The Broadwood single-escapement action circa 1799

escapement action), not to mention the merger of the Shudi harpsichord firm with
that of Broadwood. (For example, James Shudi Broadwood patented one of the early
bracing schemes for pianos using iron.)

The early Broadwood action (Fig. 4.6) had a fragile non-Viennese single-
escapement mechanism, complete with back check and a rather anemic-looking
hammer. Beethoven’s 1818 Broadwood probably included some improvements and
is shown in Fig. 4.7. That instrument is of the usual parallel-strung variety prevalent
before the mid-nineteenth century, but did have both a una corda pedal and a second
pedal to raise all of the dampers at once.

4.5 The Erard Double-Escapement Action

The French piano maker Sebastian Erard (1752–1831) contributed the next major
advances: namely, the agraffe, a metal stud (generally brass) through which the
strings for a given note are run before attachment to the tuning pins. The agraffe
determined the boundary for the vibrating string at the keyboard end of the
instrument and added stability to the tuning by keeping the string from riding up
on the tuning pin.12

12The agraffe also serves another beneficial purpose that is not generally appreciated: the strain on
the string is usually largest at that point, where there is a bend in the wire. Consequently, when
a string breaks under the high tension in a modern piano, it is usually at the player’s end of the
instrument and the whip action of the loose wire goes toward the back of the piano rather than
hitting the player in the face. (One piano maker left a short piece of a thick bass string imbedded in
a beam in the ceiling of his shop as a grim reminder of the danger inherent when a string breaks.)
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Fig. 4.7 Beethoven’s 1816 Broadwood piano, incorporating a six-octave range starting on low C

(courtesy of the Hungarian National Museum in Budapest)

The double escapement design is illustrated in Fig. 4.8, where the action is shown
after the key has been depressed once, but not released. Initially, the jack was under
the knuckle and the mechanical advantage hurled the hammer upward at the string
with great velocity. In the figure, the hammer has already bounced off the string and
has been captured by the back check. With a slight lift of the key at this point, the
springs push the jack back under the knuckle, ready for the next note. Of course, the
damper remains raised during this process. Because the hammer does not go all the
way down to the normal hammer rest, the action can respond rapidly to a subsequent
note. The mechanism at the right of the figure permits the dampers to be operated by
a pedal. Because he was living (and dying) in Paris at the time, Chopin could easily
have had an Erard piano. But it was said by Liszt that that great composer of fast
passages for the piano preferred the older-style Pleyel instruments equipped with
a Viennese-style single-escapement action because of “their silvery and somewhat
veiled sonority and . . . easy touch.” (Hedley and Brown 1980, p. 300). Nevertheless,
the Erard was his second choice. The Erard double-escapement action shown in
Fig. 4.8 is the direct precursor of all modern grand piano actions.
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Fig. 4.8 The Erard double-escapement action of 1822

The remaining developments in the nineteenth century were largely devoted to
making the piano louder and more durable. Still-thicker strings were employed,
producing much louder sounds of longer duration. The modern piano has three
strings per note over most of its range, and the strings are wrapped with copper wire
in the extreme bass to avoid the need for excessive length. Typically, the total force
from tension on the strings amounts to over 18 tons—45,373 pounds on a Steinway
D concert grand. Much of the nineteenth century was devoted to strengthening
the piano so that it wouldn’t fly apart during performance. Developments in that
direction were greatly assisted by that well-known smasher of pianos, Franz Liszt.
(See Fig. 4.9) Liszt usually took two pianos along with him on tour, one of which
was said to be knocked out of commission by intermission. V. V. Stasov, who
attended the first concert given by Liszt in Petersburg (in April, 1842) had a different
interpretation in his Memoires13: Liszt, heavily bedecked in medals arrived at the
hall where 3000 people were seated and instead of using the steps, leaped to the
stage, sat down at one of the pianos, tore off his white kid gloves (tossing them to the
floor), threw back his enormous mane and plunged into the William Tell Overture.

After that, Liszt moved swiftly to the second piano facing in the other direction
and, alternating between the two instruments, played such things as his Fantasy
on Don Giovanni and his transcriptions of Schubert’s Ständchen and the Erlkönig.
From Stasov’s description, the role of the second piano was to provide equal
exposure to both sides of the audience and not just a source of spare parts.

13See, Jonas (1968, p. 121). Liszt, himself, boasted that he “practiced not less than ten hours a day”
(Sitwell 1967, p.14); evidently, he really could play a piano for a long time without demolishing it.
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Fig. 4.9 Liszt at the piano
(after an 1845 caricature by
Alexandre)

In between pieces, Liszt would sit on the edge of the stage chatting with people
in the first few rows. As with Horowitz, Liszt preferred to give his concerts in
the afternoon (as one nineteenth-century wag said, “in order to avoid the cost of
candles”).

4.6 The Struck String

4.6.1 Harmonic Content and Motion

As discussed in Appendix B, the initial boundary condition for the motion of a piano
string is on the velocity distribution given to the string by the hammer at the striking
point. To be sure, the normal modes of the string are involved and must satisfy the
requirement that the amplitude be zero at x = 0 and L (the end points of the string).
To be completely rigorous, one would have to include the dynamics of the hammer
motion while in contact with the string. However, as a first approximation we will
assume that the hammer flies away from the string in a time small compared to its
vibrational period. In that case, the string suddenly acquires the velocity distribution
of the hammer at the point of contact before the string has had a chance to move.
(The approximation should work best for the lowest strings on the instrument, where
the period is longest and for hammers that are fairly rigid.) As shown in Appendix B,
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Fig. 4.10 Spectrum of the
string vibration from Eq. (4.1)
for M = 7 (no 7th harmonic).
The assumed shape of the
velocity distribution V (x)

initially given the string is
shown in the inset
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(4.1)

where n is the harmonic number, H = L/R (the string length divided by the
hammer radius) and M = L/P0—the ratio of the string length to the striking point,
in analogy to the case of the plucked string. As in the case of the plucked string,
Eq. (4.1) gives only odd harmonics when M = 2, or the string is struck in the
middle. Also, An = 0 for n = M (or the string is struck at a node for the Mth har-
monic). The initial spectrum produced when the string is struck at the 7th node for
one choice of hammer radius is shown in Fig. 4.10. In this approximation, voicing
the hammer (changing the spectrum) corresponds to adjusting the value of H .

As in the case of the plucked string, the motion of the string after impact by the
hammer is obtained by substituting the values of An in the general solution for the
vibrating string, which in this case is:

y(x, t) =
∞∑

n=1

An sin(nπx/L) sin(2πnF0t) whereF0 = c/2L . (4.2)

Immediately after the hammer hits the string, a narrow pulse (of width 2τ at the
left of Fig. 4.11) pops up at the striking point (x = P0, occurring at t = 0 in
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Fig. 4.11 Pulses launched on the string by the striking process. Left: The initial pulse at the
striking point. Right: The broader pulse running down the string to the right after reflection of
the initial left-running wave

Fig. 4.12 Evolution of the
pulse described by Eq. (4.2)
and Fig. 4.13 computed using
the harmonic coefficients and
initial velocity shape
illustrated in Fig. 4.10

the figure). This narrow pulse consists of two equal-amplitude, oppositely directed
running waves. As time increases, the initial pulse broadens until the wave running
to the left bounces off the support at x = 0, where it undergoes a “hard” reflection
and changes sign. Now negative, it travels back in the +x direction, canceling out
its previous positive portion. Meanwhile, the running wave initially launched to
the right has continued on its way. The result of adding these two running waves
together is an isolated broader, positive pulse (at the right in Fig. 4.12) that runs the
full length of the string. The rise and fall times (τ ) of this wider pulse are each equal
to half of the initial narrow-pulse duration.

However, the breadth of the wide pulse is determined by the time delay taken
for that half of the initial pulse that bounces off the support at x = 0 to get back
to the striking point at x = P0. Hence, as indicated in Fig. 4.12, the broad pulse
time duration is 2P0/c in this approximation, where c is the velocity for transverse
wave propagation. After reaching the point x = L, two “hard” reflections occur (in
succession for each running wave) which send an inverted pulse back toward x = 0.
The initial formation and motion of the pulse is illustrated in Figs. 4.11 and 4.12.
With modern felt hammers, which remain in contact longer with the string, the pulse
shape ends up being more rounded.
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Fig. 4.13 Motion of a string
struck at 1/7th of its length
over one complete cycle.
Time runs from top to bottom

4.6.2 Piano Hammers

Many improvements in the modern piano occurred in the United States.14 One
problem that plagued early pianos was the fragile nature of the hammers. The early
Christofori pianos used small hollow wooden cylinders covered with soft leather.
(Top of Fig. 4.14) As greater sound was required, a form evolved in which Λ-shaped
pieces of wood tapering toward the top were covered first by a layer of sheepskin
and then by a layer of hard leather. With the advent of the iron frame and heavier
wire strings, the leather hammer proved insufficient. In 1833, Alpheus Babcock
of Boston introduced hammers covered with felt. The hand-made hammers of that
period started out with a layer of hard leather over a tapered wooden form; it was
then covered with felt and held together by an outer layer of buckskin. (One can
readily imagine such a device exploding in the hands of a pianist like Liszt.)

14Thomas Jefferson was probably the first American to purchase a piano. According to Ripin
(1980, p. 702), during the Spring of 1771 Jefferson asked Thomas Adams in England to purchase
a piano instead of the clavichord he had originally ordered for his fiancée. Alas, he sold it to a
captured and paroled Hessian general in 1779 for £100 (Salgo 2000, p. 10, footnote.) The first
piano made in colonial American was by John Behrent (alias Johann Behrend) in Philadelphia in
1775. (Dolge 1911, p. 49, and Brookes 2002, p. 4).
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Fig. 4.14 Piano hammers
through the ages. From top to
bottom: a late Cristofori
hammer; a hammer of the
type used on Mozart’s piano;
a hammer used on a
Broadwood grand piano such
as that owned by Beethoven;
a single-coat felt hammer
developed by Dolge and used
by Steinway on concert
grands in New York starting
in 1873; and a contemporary
hammer made by the Renner
Company in Stuttgart used on
several European pianos (e.g.,
German Steinway,
Bösendorfer, Falcone, Fazioli,
Bechstein and Blüthner)

FLORENCE 1726

VIENNA 1785

LONDON 1800

NEW YORK 1873

STUTTGART 2000

The ever-increasing thickness of the strings and the demand for louder tone
necessitated development of something more durable than the hand-made variety
of hammers, which were used in Europe until about 1867. Two Americans from
New York, Rudolf Kreter (in 1850) and Alfred Dolge (in 1871), patented machines
that permitted bonding felt onto wooden forms under high pressure. One version of
the Dolge machine could actually handle layers of felt that were 1.75-in. thick and
was used to make hammers for Steinway concert grands as far back as 1873. Dolge’s
early “single-coat” hammers proved to be a little too heavy and tended to flatten out
at the top. To combat the flattening, Steinway & Sons began to saturate the felt about
halfway up with a chemical solution that hardened the lower half. Improvements of
Dolge’s technique have been used to make hammers by Steinway in New York and
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by the Renner company in Stuttgart for use on contemporary European pianos.1516

Use of felt with unusually long and tough fibers by the Renner company evidently
obviates the necessity of soaking the hammers in chemicals.

In view of the above discussion, it is hardly surprising to learn that piano
hammers are nonlinear. That is, the force F(z) exerted on the string when the
hammer felt is compressed does not obey Hooke’s Law. Many people studying
the elasticity of piano hammers experimentally have fit their data arbitrarily to the
functional form

Fh(z)Kzp . (4.3)

Here, z is the compression due to the applied force and measured values of the
exponent p typically fall in the range 2.5–4, as opposed to the value (p = 1)
expected from a linear medium obeying Hooke’s law.17

Some recent measurements have been reported by Giordano and Winans (2000),
who attached accelerometers to a set of grand piano hammers provided by Knabe
and studied the effects of their impact on a solid object. They found that for soft
(“pianissimo”) impacts at hammer velocities of about 0.6 m/s, the values of the
exponent p were nearly the same (≈3) over the entire range of hammers studied
(from three octaves below middle C to two octaves above middle C). But, for large
impacts (hammer velocities of 1.0 m/s) corresponding to loud tones, they found
an apparent hysteresis effect in the curves of force versus hammer compression
(plots of Fh versus z). Using additional accelerometers on the hammer shanks,
they showed that most of the apparent hysteresis was caused by oscillation in the
(maple) hammer shanks; i.e., the shanks bowed in the middle as the hammer hit
the solid force sensor. In a continuation study by Giordano and Millis (2001) in
which measurements were made with hammers hitting a string (with accelerometers
attached to both the hammer and the opposite side of the string from the impact
point), it was concluded that there actually was a small amount of hysteresis created
within the felt itself, probably due to internal motion of the fibers.

Those measurements (made on middle C on a Steinway grand piano) showed
that the hammer typically remained in contact with the string for ≈5 ms. During
that time the acceleration of the string (from successive traveling pulses reflected
from the end points of the string) was out-of-phase with the acceleration of the
hammer, resulting in rapid compression of the felt.

15See Dolge (1911) pp. 97–106; also, the Renner web site at www.rennerusa.com.
16Piano craftsman Christopher Robinson always does a spectrum analysis of the tone quality
produced by a new hammer before gluing it onto the shank. He found that the spectrum often
differed significantly when the hammer was rotated 180◦ about its long dimension. They are clearly
not quite symmetric.
17See Giordano and Winans (2000) and the numerous references given in that paper. They
determined the compression by integrating the measured time-dependent acceleration twice: the
first integral gives the velocity and the second gives the compression as a function of time. The
maximum compression occurs when the velocity goes to zero.

www.rennerusa.com
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4.6.3 Hammer Voicing

The hammers are among the few components of a piano that may be easily altered
and that also have a major effect on tone quality. New hammers often produce an
undesirable transient sound, somewhat like “chiff” on a low-pressure pipe organ.
In addition, prolonged playing of an instrument (especially if the hammers are not
often shifted horizontally with the “soft pedal”) results in localized hardening in the
hammer tips, which in turn makes the notes louder and harsher. Ridges can develop
in the top of the hammer that must sanded off, after which softening is usually
required. The process of adjusting the hammer is called “voicing.”

“Voicing” can be achieved by sanding the felt (if the tone is too weak or lacking in
harmonics and the hammer is too soft) or by pricking the felt with a fork-like object
containing three ≈ 1-cm long sharp needles in place of tines (if the tone seems too
loud and the hammer is too hard). The second treatment is illustrated in Fig. 4.15. All
the do-it-yourself books warn the reader to avoid working on the top of the hammer
whenever possible. The sanding is to be done in upward strokes from the two sides
of the hammer and the needle-pricking is to be done by pushing the angled fork
down into the felt at points substantially away from the top—for example, between
9:00 and 10:30 AM and 1:30 and 3:00 PM (where “noon” is the top of the hammer).

Fig. 4.15 Softening a
hammer the conventional way
in the skillful hands of
Christopher Robinson. Note
that the three needles are
being pushed down at the
upper side of the hammer (at
about 10 o’clock as viewed
from the left side) and not at
the top
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I was therefore shocked one time when an “expert” technician came to work on my
own instrument. Without hesitation, he jammed the needles straight down from the
top through the heart of the hammer, as if he were killing a vampire. Seeing me
cringe in horror, he said, “I know all the books say not to do that. But unless you go
right through the top, it doesn’t do any good!” One trouble with that method is that it
is irreversible. Of course, when done by just the right amount, it can provide lasting
beneficial effect. Still another approach, which is at least reversible, is to soften
the hammer felt with detergent soap, and then to harden it again using acetone.
The belief here is that the chemicals cause the fibers (normally wound up tightly
inside the felt) to unwind in the former case and rewind in the latter. However, it is
my impression that this voicing approach does not last as long as the conventional
needle-pricking method described above and shown in Fig. 4.15.

Another technique, which is especially useful for bringing out the tone in the
top few hammers in the extreme treble, is to put a drop or two of shellac on the
crown. Here again the books say to proceed with caution. Again, I was startled to
see the expert virtually bathe the top three hammers in that elixir—but with good
results. (Those notes only contain one or two overtones, which are so high that tonal
color is a meaningless concept anyway—except perhaps to small dogs and bats.)
Finally, voicing the hammers can also work wonders for the overall sound when
the instrument is in a room with strong acoustic resonances. (Of course, voicing the
piano doesn’t help other instruments played in the same room.)

4.6.4 The One-Piece Iron Frame and Over-Stringing

A major development in terms of tuning stability was the one-piece cast iron frame.
Although full cast-iron frames for square pianos date to their invention by Alpheus
Babcock of Philadelphia in 1824, it took quite a while before the innovation was
adapted to grand piano construction. Jonas Chickering, who had a firm in Boston,
patented a full one-piece cast iron frame for grand pianos in 1843. Other makers
(Steinway in New York, Erard in Paris) were reluctant to adopt the iron frame
immediately and Chickering remained the only important producer of grand pianos
to use this approach for over a decade. (A later suggestion by Thomas A. Edison that
pianos be made of concrete was ignored.) Interestingly, Liszt acquired a Chickering
concert grand. Actually, Liszt was given several pianos by different companies,
including a second Chickering concert grand with elaborate engravings which is
presently in the Liszt museum-home in Budapest.

The start of the New York Steinway firm dates to 1850, when a family of German
piano makers emigrated to New York in pursuit of better business conditions. (Fostle
1993). In 1855, one of the four sons, Henry Steinway, obtained a patent for an
over-strung grand piano. (See, Fig. 4.16). But neither the cast iron frame nor the
over-strung bass strings were actually adopted by Steinway until the 1870s. (See
Fig. 4.16.)
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Fig. 4.16 Comparison of pianos with straight-bass (left) versus overstrung-bass (right) strings.
The 1892 Concert Grand Piano by Steinway & Sons on the right is similar to that used by
Paderewski (the dimensions of the over-strung piano are closely similar to those of a contemporary
Model D Steinway)

One might suppose that the over-stringing technique illustrated in Fig. 4.16
would permit using longer bass strings within the same overall piano length.
Surprisingly, that conclusion seems to be wrong. In practice, the length of the
straight-strung bass strings in many pianos ranging from those made by Steinway to
ones by Erard and Streicher in the nineteenth century were actually longer than those
adopted in the “over-strung” models. One must then ask, “Why was the change in
stringing made at all?” The main reason was based on the tone quality obtained. As
can be seen from Fig. 4.16 (left side), the bass bridge on the straight-strung piano
is closer to the edge of the sound board on both the long side and the end of the
piano and does not overlap with the long treble bridge at all. In contrast, the over-
strung bass bridge is closer to the center of the board laterally and does overlap the
treble bridge. As a result, a very different set of modes tends to be excited in the
sound board by the bass bridges in the two different cases. (See the later discussion
of sound board modes.) With straight stringing, fewer low-frequency modes of the
sound board are efficiently excited and more of the sound arises from the higher
harmonics of the bass strings. With over-stringing (the right side of Fig. 4.17), more
central modes of the sound board, which include those having the lowest resonant
frequencies, are excited by the bass strings and one gets a warmer, more “lush”
sound. In that case, the tone quality is also more uniform over the entire range
of the piano because many of the same modes are excited efficiently by both the
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Fig. 4.17 An 1877–78 Erard piano with parallel stringing and massive metal bracing (pho-
tographed by the author at the Fredericks’ Collection in Ashburnham, Massachusetts)

bass bridge and by the long bridge (which extends up into the treble end of the
instrument).

Not everyone agrees that the sound resultant from over-stringing is more
desirable. There apparently were some nineteenth-century pianists who liked the
sound from straight stringing just because it produced more contrast over the range
of the instrument. E. M. Frederick argues that some of the inner notes on bass
chords in the music by Brahms (whose 1868 Streicher was a straight-strung piano)
become muddied and lost when played on a modern Steinway because of the over-
stringing. As might be expected from the different mode patterns excited, straight
stringing also produces more of a “stereo effect” across the sound board. To satisfy
the different tastes, Erard made both parallel-strung and over-strung instruments
during the late nineteenth century. Although the dark mahogany Erard grand with
parallel stringing shown in Fig. 4.17 had a very impressive dynamic range, the tone
at high volume seemed a little raucous to the present author. Part of that might be
due to resonances in the long metal frame members. Of course, the tone quality of
any piano depends very much on how the hammers have been voiced. 18

18The sound of an 1881 Erard with straight stringing is preserved on a digital CD recording by
Madeleine Forte (2002).
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4.6.5 Brahms’ Piano

While standing, admiring the elegant 1871 Streicher piano in the Fredericks’
collection (Fig. 4.18), I wondered to what extent the sound of that instrument would
really have influenced Brahms’ writing. It may well be that the slightly strident
quality in the bass resulting from parallel stringing does help to bring out the
opposing, broken arpeggios in something like the first movement of the Bb-major
piano concerto (especially in the “heroic” section where the piece goes into F -
minor). On the other hand, I thought the piano had a somewhat mournful tone
quality more suitable for the Horn Trio or perhaps the foreboding section at the
end of the Edward Ballade where Brahms was literally imitating the sound of blood
dripping on the keys.19 Of course, these are not especially objective thoughts. If

Fig. 4.18 An 1871 Streicher piano similar to the one owned by Brahms (photographed by the
author from the Fredericks’ Collection)

19The Edward Ballade is one of the few “programmatic” pieces by Brahms and is based on one
of the Scottish tales in Herder’s “Stimmen der Völker.” After anxiously calling for her son and
being reassured that he was merely playing in the barn, Edward’s mother discovers that he has
slaughtered his father.
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you doubt that the development of the piano had little effect on his compositional
technique, try playing something by Brahms on a harpsichord.

One technical development shown on the 1871 Streicher piano became more and
more important toward the end of the nineteenth century: The legs are on wheels!
As concert grand pianos became longer and heavier (some current ones are as much
as 10 ft long and weigh nearly 2000 pounds), moving them without wheels became
increasingly difficult. But there is a lot of inertia involved when those instruments
start rolling. Many stages slope outward toward the audience, and it is important to
lock the wheels after a piano is moved on stage. An example of what can happen
when you don’t do that occurred during a performance by George Bolet. While he
was playing, the piano started to roll toward the audience. Mr. Bolet tried desperately
to stop it, but that’s hard to do while playing Liszt. He followed along with the piano
for a while, but the instrument gathered speed, rolled off the edge of the stage and
was destroyed during the crash.20 (Perhaps one should have a brake pedal in addition
to the others.)

One consequence of the changes in piano design was an increase in stiffness
of the action. When Clara Schumann returned to the concert stage after many
years to support her institutionalized husband, the critics noted that her tempos had
slowed down considerably. Although she maintained that that was to provide a more
sensitive interpretation of the music she brought back to the concert hall, others
suspected it was mainly because the action on the newer pianos (see Fig. 4.19) was
too hard for her to manage at higher speed.

KEY

BACK
CHECK

HAMMER

DAMPER
STRING

ESCAPEMENT

SPRING

Fig. 4.19 The single-escapement action developed by Johann Streicher (circa 1845) and similar
to that in the pianos owned by both the Schumanns and by Brahms

20A similar thing happened during a concert by pianist Christopher O’Riley. While looking down
at the wreckage, a cellist overheard him exclaim, “I hate it when it does that!” Some composers
actually wrote a “crashing piano” into the musical score. For example, the sound of a crashing
piano in E major is contained at the end of the Beatles recording of Sgt. Pepper’s Lonely Hearts
Club Band. (EMI Stereo SMAS X-2-2653, NEM Enterprises Ltd., 1967, Side. 2.)
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4.6.6 The Sostenuto Pedal

By 1870 Steinway had invented the “Sostenuto Pedal”—now the middle pedal on
many pianos. The idea behind this device was that one could sustain one note (or
notes) after striking the key by pushing down the middle pedal. The only problem
with their first design (which was incorporated in a Steinway once owned by the
author) was that the dampers in question were to be held up by a silken cord
that engaged pins sticking out of the front of the damper mountings.21 The cord
was supported at several points across the keyboard and would sag in between.
Consequently, relying on this version of the Sostenuto Pedal during a performance
would be like playing “Russian Roulette” with several chambers loaded. Later
versions by Steinway replaced the silken cord with a more reliable mechanism
based on felt components. Although one might think that music by Debussy and
Musorgsky (which frequently had long sustained pedal tones) would have benefited
from this innovation, neither of those composers had instruments equipped with the
middle pedal. As can be seen from the famous portrait by Willie von Beckerath of
the bearded Brahms playing his Streicher piano while smoking a cigar, Brahms did
not have one either.22 From the complex, above-the-strings mechanism used on the
Streicher piano dampers, it is hard even to imagine how a sostenuto pedal action
could have been added.

The Streicher action seemed to have lagged behind the northern European
developments of the mid-1800s. In addition to the lack of a sostenuto pedal,23

Brahms had only a single-escapement instrument made by the Streicher firm with an
action similar to that shown in Fig. 4.18. Here, as with the earlier Viennese pianos,
the mechanical advantage was all contained in the hammer shank and only a spring-
loaded single-escapement was provided. By then, the pianos were more heavily
strung and had 88 keys (with white naturals and black sharps).

To stimulate American interest in the piano, William Steinway launched a
program to bring famous European musicians to tour the United States starting
during the 1872–73 season with Anton Rubenstein. The great Russian pianist gave

21The piano in question was a large rosewood, late-1860s-vintage Steinway grand, similar-looking
to that shown at the left in Fig. 4.16. It had 85 keys, parallel stringing, and did not have a one-piece
cast iron frame.
22This fact was obscured by a color photograph published by The New York Times (Thursday,
November 22, 2001, The Arts, p. E1) showing an 1871 Streicher piano similar to the one Brahms
owned that seemed to have a third pedal. Investigation showed that the “third pedal” in the
photograph was actually the shadow of one of the two real pedals on the instrument. Someone
had cut the piano out of its background in the photograph and thought that the shadow was a third
pedal. The same piano is shown in the photograph taken by the author in Fig. 4.18.
23As with the earlier French harpsichord builders, the Viennese piano builders were inter-related.
For example, Nanette Streicher, who with her husband Andreas Streicher tried to incorporate
Beethoven’s suggestions in pianos built by their company, was the sister of André Stein. Her son,
Johann Baptist Streicher (1796–1871) provided Brahms with his 1868 piano, similar to the 1871
instrument shown in Fig. 4.17. But by then, Johann’s son Emil had taken over the Streicher firm
(which was finally dissolved in 1896).
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over 218 concerts in about as many days in places like Deadwood, Montana and felt
so over-worked when he left the country that he swore never to return. The program
culminated with tours sponsored for Paderewski in 1891 and 1892. During the first
tour, Paderewski injured the fourth finger of his right hand on a Steinway with an
extremely stiff action—an injury from which he never recovered. However, for his
second tour in 1892, an instrument with lighter action was provided, not to mention
a private railroad car for his entourage (wife, secretary, valet, tuner, manager, chef,
two porters, and, of course, the piano).

4.6.7 Scaling and Bridge Shape

If we assume that one objective is to build a piano in which the tension on the strings
is the same from one note to the next (assuming constant wire density), a simple
exponential curve arises for the shape of the bridge. Keeping the ratio T/μ constant
means that the length of the string should be doubled every time the frequency is
halved. That prescription was used by the early Italian harpsichord makers, who
succeeded in following it over some 5/6th of the keyboard range. Of course, one
gets into trouble at the bass end, just as doubling the number of grains of wheat
on successive squares of a chessboard requires more wheat than exists in the world
long before you fill the whole board. In the case of a modern concert grand piano
starting with string lengths of about 2′′ at the highest C, by the time you got to
the lowest A, the strings would be over 25-ft long. Compromises therefore need to
be made to keep the piano within the dimensions of a typical room. It is simple to
derive an equation that satisfies the doubling requirement. Let the x coordinate be
parallel to the keyboard and let S be the distance in that direction over which the
string length is halved. It doesn’t matter what units are used to measure x and S as
long as they are the same in each case. Since the keys are constant in width, they
provide a convenient unit for measuring the distance in the x direction. From the
basic halving requirement, one immediately sees that

L = L02−x/S = L0 exp(−0.693147x/S) (4.4)

where L0 is the string length at x = 0 and we have used the fact that Loge2 ≈
0.6931472 . . . That is, at x = 0, L = L0. When x = S, the original length is halved,
and so on. Ideally, one would want S = 12 notes (one octave on the keyboard) or
about 6.62 in. on most pianos. (S ≈ 6 in. on harpsichords.)24

24J. B. Hayes (1982) concluded that the optimum shape for a piano bridge was a catenary curve
But just why he thought that remains a mystery. The common form of the catenary is given by the
equation

y ∝ [cosh(kx) − 1] = 1

2
[exp(+kx) + exp(−kx) − 2]

where k is an adjustable constant. [See Synge and Griffith (1949), pages 99–104.]
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It is of interest to see how closely the string lengths on a real piano satisfy
Eq. (4.4).25 Figure 4.21 (left) shows a plot of all of the active string lengths on a
Steinway D concert grand piano as a function of notes on the keyboard. The long
treble bridge starts out in the bass at F2 = 87.3 Hz with L0 ≈ 71.87 in. On this type
of semi-log plot, an exponential relationship will appear as a straight line. The solid
line in Fig. 4.21 has been drawn for Eq. (4.4) in the case where S = 12 (i.e., string
length halving every octave). Although the measured string lengths on the treble
bridge do follow this decaying exponential fairly closely, the slope on the graph
changes slightly after the first octave. Above F3 = 174.6 Hz, the exponential slope
changes to one where the halving point is at S ≈ 13 notes on the average, rather
than twelve. The technique spreads out the required departure from ideal scaling
over most of the instrument. Of course, below F2 (in the bass bridge region), the
lengths have to saturate quickly with decreasing frequency to keep all the strings
inside the piano.

The results at the left in Fig. 4.20 do not necessarily give the actual bridge
shape. On the Steinway D, the strings are not all perpendicular to the keyboard
and the agraffes curve exponentially toward the keyboard as one goes down the
scale in order to optimize the hammer striking points. The actual bridge shape
on a Steinway D is shown on the right side of Fig. 4.20, where a new x-axis was
defined by extending a line from the treble end of the capo d’astro bar over the

Fig. 4.20 Left: Active string lengths as a function of notes on the keyboard of a Steinway D
concert grand. Right: Long treble bridge coordinates on a Steinway D

25The Steinway Company feels such data constitute “proprietary information.” Of course, they are
available to anyone with a Steinway piano and a tape measure. Measuring the lengths of string
terminating under the capo d’astro bar is the trickiest part, but can be done easily by slipping
narrow strips of paper along the strings to the end points under the bar.
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Fig. 4.21 The action of a modern (Mason and Hamlin) grand piano. Although the action is more
refined and considerably more rugged, the basic principle of operation is the same as in the original
Erard double-escapement mechanism. Compare with Fig. 4.12

range of the piano covered by the long bridge. (This line is not precisely parallel
to the keyboard.) The y coordinates of points on the bridge were then determined
by constructing perpendicular lines to this new x axis from each bridge location.
Although the strings start out perpendicular to the new x axis in the extreme treble,
they begin to fan out to the left below F3 (174.6 Hz). By the end of the long bridge
at F2 (87.3 Hz) where the perpendicular construction defined the point x = 0, the
strings are going at about 8◦ to the left of the y axis. This fanning-out process
tends to balance the horizontal forces from the treble-bridge strings against those
resulting from the (over-strung) bass strings and also permits coupling the treble
bridge to the same area of the soundboard excited by the bass bridge. As can be
seen from the plotted points at the right of Fig. 4.20, the bridge follows a decaying
exponential curve very closely except in the region where the strings fan out in
the bass. Small fluctuations in the measured points mirror discontinuities in the
cast iron frame.
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4.6.8 The Modern Piano Action

A diagram of a contemporary grand piano action is shown in Fig. 4.21, which works
as follows:

1. When the key is pushed down (in the region not shown at the left of the diagram),
the capstan screw pushes upward on the wippen, which is pivoted at the right side
where the action is screwed into the piano. (The “action” is often regarded as the
combination of the wippen, jack, and repetition lever and is attached by a single
screw at the right.) The damper is raised by a mechanism (not shown) at the
right-end of the key and remains up above the string while the key is depressed
at the left.

2. As the wippen rotates about the pivot at the right, it pushes the jack up against
the felt-covered knuckle underneath the hammer shank, causing the hammer to
fly upward off its normal felt-covered resting place in an arc centered on a pivot
at the left end of the shank. (The jack is constrained to move in a slot cut into the
left end of the repetition lever.)

3. The lower left-hand tip of the L-shaped jack hits the felt at the bottom of the
jack adjustment screw causing the top of the jack to slip off to the left side of the
knuckle.

4. The hammer bounces off the string and is caught by the back check (which has
been raised by the right end of the key), thereby keeping the hammer from
rebounding against the string. If the key had been released at this point, the
hammer would merely have fallen back to its normal resting place on the felt
attached to the stationary part of the piano to the right of the repetition lever.

5. If the key is held down after the impact of the hammer with the string (at which
point the hammer has been grabbed by the back check), the upper part of the jack
remains slightly to the left of the knuckle. At this point, a slight release of the key
allows the springs attached to the wippen to pull the jack back under the knuckle.
The hammer (still supported by the back check) is then ready to strike the string
once more if the key is depressed again slightly. In this way a second note may
be sounded rapidly without the key and hammer falling completely back to their
normal resting positions.

As should be obvious from Fig. 4.21, the hammer velocity is determined by
the initial impulse given the key and, in contrast to the clavichord, no amount of
wiggling of the key afterward in the manner of Claudio Arrau or Glenn Gould has
any effect on the tone quality produced. Similarly, grand sweeping gestures of the
right arm over the performer’s head in the manner of Peter Serkin have no effect on
the sound. (They may, of course, provide useful relaxation of the arm muscles.) The
tone quality is determined entirely by the design of the instrument and the impulse
provided to the hammer. It doesn’t matter whether the initial impulse given the key
is given by a human finger, a falling lead weight, or an umbrella stick: the same tone
quality is obtained for the same initial hammer momentum. (The relative size of the
hammer impulse between one note and the next—not to mention the use of dampers
and lateral shift of the hammers—is, of course, controlled by the player and is what
determines the musical quality of the successive notes.)
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The piano action has evolved considerably since the time of Cristofori to take
advantage of human physiology. The initial “thumbless” fingering promoted prior
to C. P. E. Bach (basically a carry over from harpsichord technique) has been
transformed to the point where pianists now sometimes wish they had even more
thumbs. The length of the keys has increased to almost 6 in. (enough to permit the
flat-fingered technique used by Vladimir Horowitz, Radu Lupu, and Eubie Blake)
and the octave span has been increased by about 1/2 in. from that of the harpsi-
chord.26 These changes, of course, make it easier to use the thumb and in the process
permit more rapid trills (especially, with 1–3 fingering) and impressive sforzandos.
(According to one eyewitness, Paderewski loved to create a forzando by coming
down hard with his left thumb in the bass rather than to begin an arpeggio “more
logically” with his fifth finger.) A dynamic range of over 80 dB can be obtained
with the modern action on a Steinway concert grand, going from the thundering
octaves of Horowitz27 to tones described by pianist Ray Hansen “as soft as the
sound made by a snow flake hitting the ground.” However, as demonstrated by the
composer/pianist Robert Schumann, attempts to make the human physiology evolve
have been much less successful. Schumann’s efforts to strengthen the fourth finger
of his right hand with a gadget of his own design left him crippled, and ended his
piano-playing career altogether. (Figure 4.22 shows one of several different designs

Fig. 4.22 A nineteenth century device designed to “strengthen” the fourth finger

26It is said that Steinway made a special piano with a narrower octave span for the legendary pianist
Joseph Hoffman because his hands were so small.
27The absolute sound levels at maximum from a concert grand can exceed the limits recommended
by OSHA for prolonged exposure by a significant factor and may well cause deafness.
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to achieve the same crippling effect.) There is no one hand position or technique
that works best for everyone. Turning the thumb under the third finger is a basic
technique for playing legato scales stressed by most teachers and piano methods.
Rosen (2002, p.2) notes that because his thumbs were very short, he mastered a
technique in which he “displace[d] the arm quickly to the right when shifting from
the third finger to the thumb” to obtain the same legato effect. (Hanon, who even
stressed the importance of turning the thumb under the fifth finger as an “exercise
of the highest importance”28 would probably spin in his grave at this thought.)

Surprisingly, Paderewski’s 1892 Steinway piano (apart from the bulbous legs,
curlicue music desk, and a slight alteration of the metal frame) was very close to
the present form of the Steinway “Model D” concert grand. With minor adjustment,
it is possible to put an entire modern keyboard and action into an 1899-vintage
Steinway concert grand, the difference in keyboard width being less than 1/2 an
inch. Although the capo d’astro bar,29 a metal rail that determines the front end
points of the vibrating strings on the upper two octaves of the instrument (starting at
D above A = 440 Hz) and replaces the Erard agraffe in that section of the piano, had
been incorporated during the late nineteenth-century, there was one slight difference
in the stringing in that portion of the piano in the 1890 models. The pin assemblies
on the bridge in the capo d’astro region were rotated slightly so that each of the three
strings on a given note was of different length. (The difference amounted to about
3/8-in. on an 11-in. string.) Although each group of three strings was tuned to the
same pitch, the difference in length meant that the fractional striking points, hence
harmonic production, on each of the three strings, would be somewhat different.
For unknown reasons, that approach (which ought to have given a more interesting
sound to the extreme treble strings) was abandoned early in the twentieth-century.
The other major innovation, the “accelerated action,” was introduced in the mid-
1930s. The latter consisted mainly of moving the balancing weights on the key
toward the fulcrum so as to reduce the moment of inertia.30 (Some rounding of
the fulcrum area was also added.)

The introduction of plastic key covers and Teflon bushings in the period
after World War II was more controversial. Although preferable to slaughtering
elephants, the early plastic key covers were non-absorbent and had peaks and valleys

28Hanon (1900), exercise No. 35. Several professional pianists have told me that the first thing they
have had to teach their students is to forget what Hanon had taught them.
29The capo d’astro bar is of great practical value when the bridge is properly adjusted, but it also
contributes to what one piano technician described to me as “Steinway Disease.” The problem
occurs when the sound board sags, pulling down the bridge with it. Under this condition, the
geometry is such that when the returning pulse from the bridge (which is peaked downward)
reaches the capo d’astro bar, it can pull the string down off the bar, producing a sound much
like overload distortion in a “Hi-Fi” set. (The phenomenon is similar to the returning pulse in a
clavichord pulling the string up off the tangent.) Cure usually involves raising the bridge, hence
restringing the instrument.
30The moment of inertia about an axis a distance r away for a point mass M goes as Mr2, whereas
the balancing torque goes as Mr. Hence, putting a larger mass closer to the balance point can speed
up the response of the action.
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which lined up; hence, a small amount of oil or perspiration tended to make the
fingers skid off the keys. It is said that Artur Rubinstein used to rub rosin on
his fingers tips to counteract the slipperiness. With ivory, the peaks and valleys
were more random and the material had small pores which absorbed oil from the
fingers. Later, more porous versions of plastic with irregular surfaces solved the
problem.31 The adoption in 1962 of the Space-Age lubricant Teflon® in place of the
old-fashioned felt bushings made the actions noisier, although the bearings would
last longer and vary less with humidity changes. The main problem with Teflon®

bushings arose because they did not change dimensions with humidity and hence
fell out when the wooden parts became enlarged. The original felt bushings had the
opposite problem: they would swell up with humidity and increase the frictional loss
in the action.32 By 1982 a compromise solution was adopted in which felt bushings
were impregnated with Teflon® particles.33 (Lenehan 1982)

By 1900 more than half the World’s piano production occurred in the United
States and many of the European makers were making pianos in the “American
tradition.” During that period, nearly every household had a piano and the main
exposure most Americans had to classical music was in four-hand reductions of
the “great works.” (It is said that even Richard Wagner had his first exposure to
Beethoven’s Ninth in a four-hand version.) In Europe, the recognized leaders were
Bechstein, Blüthner, Bösendorfer and the Hamburg branch of Steinway. Blüthner
introduced a new feature called “Aliquot Stringing,” in which a second set of (single)
strings was added and tuned one octave above the main set—somewhat akin to the
4’ stop on a harpsichord.34 These additional strings would vibrate in sympathetic
resonance with the main set, but were not struck directly by the hammer. (They
also added excitement to the piano tuner’s life.) A different version of Aliquot
Stringing was introduced by the relatively new piano company formed in 1978 by
Paolo Fazioli in the town of Sacile (60 km northeast of Venice). Here, provision

31See, Malcolm W. Brown, “With Ivory in Short Supply, Pianists Tickle the Polymers,” The New
York Times, May 25,1993; p. C1.
32See, “A Humid Recital Stirs Bangkok” in the Washington Post, July 23, 1967. This hilarious
review describes a concert in which the pianist became so exasperated with sticking keys and other
problems with a concert grand that he grabbed a fire axe and started to smash the piano to pieces.
Although masterfully written by Kenneth Langbell for the English Language Bangkok Post under
the title “Wild Night at The Erawan” on May 27, 1967 and made available to the Washington
Post by Martin Bernheimer of The Los Angeles Times. The story is, alas, just humorous fiction
according to the Web service, Urban Legends.
33This frictional loss can be extremely important. For example, it can increase the weight necessary
to push down middle C from about 52 g (standard) to more than 70 g. For comparison, Horowitz
had his Steinway adjusted so that a weight of only 35 g was needed. (That decrease in required
force increases the ease of playing fast passages enormously; however, it also makes controlling
the loudness of successive notes harder.)
34Blüthner probably couldn’t think of a good German word for it. Aliquot is Latin for “some” or
“several.” In Italian, ali’quota comes from the French and means “quota” or “share.” According to
the O.E.D., the English word “aliquot” means “a part contained in the whole an integral number of
times.” In German, “aliquot part” becomes ohne Rest aufgehende Teil.
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is made to have the string sections between the bridge and hitch pins precisely
tunable to harmonics of the fundamental pitch. Those sections are usually out-of-
tune in older pianos and often covered with felt damping material. It is not clear
how much that innovation contributes to the wonderful tone quality of the Fazioli
instruments. (The company boasts that the soundboards are made from the same
close-grained red spruce used by the great old Italian violin makers.) As with most
pianos, the soundboards are also tapered at the edges in the manner used earlier
on harpsichords to improve their acoustic response. In the Steinway D, the close-
grained sitka spruce is about 9 mm thick in the center and tapers to 6 mm at the rim in
a double-crowned fashion. The Fazioli concert grand appears to have set the world’s
record on length at slightly more than 10 ft. The Bösendorfer “Imperial” is a close
second at about nine and a half feet, but has additional notes in the bass (lacking
in the Fazioli) that get down to low CCC (16.3 Hz) instead of A = 27.5 Hz as on
most contemporary pianos.35 In addition to allowing one to play all the pedal notes
in the organ music of Bach, the extra notes on the Imperial (which have inaudible
fundamental frequencies in the range of earthquake tremors) meant that the normal
low notes were moved farther away from the edge of the case and into a region where
the soundboard could respond more fully to the fundamental components of the
vibrating strings. In addition, when the dampers are raised with the “loud” pedal, one
obtains reinforcement by sympathetic resonance between the higher harmonics of
these low strings and the normal notes on the bass end of the keyboard. The relative
fractional energy content at the fundamental pitch in the low notes on the “Imperial”
does indeed seem larger than in a Steinway D; however, the harmonic content in the
latter appears to be more abundant (Fig. 4.23) and the low notes seem to carry better
in large concert halls, possibly due to different directional radiation patterns.

The Japanese firm of Yamaha began producing copies of Steinway pianos
early in the twentieth century and by the mid-1970s had surpassed the largest
American companies in the number of instruments produced annually. Sadly, the
great American family interest in pianos for the home that had characterized the
early part of the twentieth century and which was rejuvenated by the Japanese during
the 1970s has now largely subsided in favor of electronic instruments.

One version of an electronic piano was invented by Harold Rhodes (1912–2001)
and used a piano keyboard to make hammers hit small metal tines whose motion
was sensed by electromagnetic pickups. The device was marketed by the Fender
Company. It was said that its “pure tones were fed into electronic amplifiers and
special effects generators that could produce a stereo vibrato effect in between
loudspeakers or bite like a wah-wah guitar” and that “‘Acid Jazz’ producers and

35One version of the Bösendorfer Imperial (the Bösendorfer 290 SE System) came complete with
a computer that registered the impulse given the hammers optically at a rate of about 800 samples
per second. Together with solenoids connected to each note, the system provided a kind of “High
Tech” player piano with expression on which mistakes could be edited with the computer. In a
demonstration of the system, pianist Charles Rosen said that the playback provided an exact mirror
of his touch and dynamic expression. (Audio, January 1986, pp. 20,21.)
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Fig. 4.23 Spectra of C1 (32.7 Hz) and C2 (65.4 Hz) on a Steinway D. Both notes were obviously
struck at about 1/8 of the string length. Note the missing harmonics at n = 8, 16, and 24 (data
taken by the author)
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Funk revivalists embraced the Rhodes sound.” 36 The instrument was produced in
small, suit-case sized pianos and lead to the demise of the 1970s piano market. As
if to hedge their bet, CBS took over both the Fenders Company (in 1965) and the
Steinway Company (in 1972). Nevertheless, it is thought (and hoped) that there will
always be a market for the concert grand. In the post-CBS period, Steinway & Sons
has changed hands twice: once to Selmer Industries, the band instrument company
which had been taken over by investment bankers working for Drexel Burnham
Lambert (home of the infamous junk bond king, Michael R. Milken). Most recently,
Selmer Industries changed its name to Steinway Musical Instruments, using a stock
symbol LVB (Beethoven’s initials).37

More recently, electronic pianos have emphasized the use of digitally sampled
tones from real pianos controlled by MIDI (for “Musical Instrument Device
Interface”) keyboards that sense the impact (“touch”) given by the fingers. In at
least one case, an unusually high-frequency and high-resolution sampling system
was used to record every note on a new Steinway digitally.38

4.6.9 Transient Build-Up and Decay

As we have seen, a major advantage of the piano over the harpsichord is in the
persistence of tones after the key has been struck. Although the decay of a note may
involve complex time-dependent behavior due to the exchange of energy between
different coupled modes of vibration, one can simply measure the time for a note to
decrease by a given amount. The criterion generally used to measure reverberation
times in concert halls (a decrease of 60 dB, or a factor of one million in intensity)
is a useful bench mark. In practice that is about the maximum range over which
one normally hears the persistence of tones under concert conditions. Often, a more
practical approach is to measure the time for a sound to decrease by 30 dB and then
double it to get the 60 dB equivalent. Noise levels in a reasonably quiet room are
seldom down by as much as 60 dB from the level at which music is normally played.
Persistence times for different notes on a 9-ft Steinway Model D (concert grand) are
shown in Table 4.1. The persistence times are longest for the bass notes and fall off
in a quasi-logarithmic fashion as one goes up the scale. The decay times, of course,
are determined by the energy loss mechanism of the strings and sound board and as
previously discussed, can involve double (or even multiple) exponential decay rates.

Much shorter time intervals are involved for the sound to build up after striking
a key. But in contrast to the harpsichord waveform, where the sound level starts

36Jon Paroles, The New York Times, January 4, 2001, p. 7.
37James Barron, “Why Today’s Piano is Much Like Yesterday’s and Last Century’s,” The New
York Times, July 19, 2003, p.A11.
38One piano technician commented to me after hearing it, “It’s too bad they didn’t voice the piano
first!”
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Table 4.1 Time to decrease by 60 dB for different notes on a Steinway D

Note C1 C2 C3 C4 C5 C6 C7 C8

Frequency (Hz) 32.7 65.4 130.8 261.6 523.2 1046 2093 4186

Time (s) ≈ 36 48 37 28 26 10.5 3.7 1.5

Data taken by the author

off at near maximum volume when the string is plucked (see Fig. 3.28), there is a
significant time delay before the piano note reaches its maximum intensity. These
time intervals typically range from almost one second on the lowest note, through
a quarter of a second in the middle of the keyboard, to a small fraction of a second
for the highest notes. These time delays obviously involve additional mechanisms
to those found in the decay of the sound; otherwise, the build-up time would be
the same as the decay time. In contrast to the case of the harpsichord, the piano
string is initially undeflected. Because of mechanical inertia, there is some time
delay required for the string to start vibrating after being hit by the hammer. But
one would expect that delay merely to take a few vibration periods. The main effect
is probably due to the time taken for energy setup in the vibrating string modes to
couple to the soundboard. A few examples of the amplitude build-up in a Steinway D
are shown in the spectral surfaces in Fig. 4.25. (Some of the harmonics for C2 appear
to oscillate with time, probably due to slow beating effects between harmonics of
the different strings tuned to the same note. Although C1 involves a single, wrapped
string, all other C’s from C2 through C8 use triple stringing on the Steinway D.)
The delayed peak in the piano sound results in a short, but unavoidable crescendo
after the key has been struck. Some pianists try to enhance this natural crescendo
effect by depressing the “loud” pedal after the tone has reached its maximum level.
(Taub 2002, p. 34) It is likely that these time delays on the lower notes determine an
optimum tempo for some pieces.

4.6.10 The Piano Soundboard and Bridge

As with the harpsichord, the soundboard in the piano is the primary medium for
coupling energy from the vibrating strings to sound waves in the air (Fig. 4.24). But
with the piano, the soundboard itself is just a single, thicker piece of wood (usually
spruce) made by gluing a large number of narrow strips together with the grain at
about 45◦ to the long dimension of the piano. The soundboard is tapered at the
edges, and is not the top part of a resonant air cavity as in the harpsichord. On the
underside of the board, a series of ribs tapering off at the ends run perpendicularly to
the grain with a spacing of about 5.5 in. (See, Fig. 4.25) As well as determining the
bowing and providing mechanical support, the ribs increase the stiffness of the board
in the direction perpendicular to the grain and, hence, tend to make the velocity of
surface waves in the soundboard more isotropic than in the harpsichord. (See the
later figures of mode patterns.) The vibration of the strings is coupled to the bridge
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Fig. 4.24 The underside of the soundboard form a Steinway B grand piano showing the ribs placed
at right angles to the grain. The position of the short bar at the upper left of the figure tunes the
main soundboard resonance. The white strings were put in temporarily to check the bowing of the
board (photo taken at Robinson’s Acousticraft factory by the author)

Fig. 4.25 Underside of the compound bridge from a Steinway B grand piano. Note the undercut-
ting in the area where dowels attach the bridge to the soundboard ribs (the four white circles). The
bass bridge is at the bottom and a small section of the long treble bridge is at the top (photograph
by the author)

using the simple pin arrangement shown in Fig. 4.25. The bridge is fastened to the
soundboard by dowelling through the soundboard ribs.

Although the one-piece cast-iron frame stabilizes the piano enormously, the
swelling and shrinking of the wood in the soundboard and bridge still affects the
pitch because the wood pushes upward on the strings, thus changing their tension.
Humidity changes are much more important than temperature variation. Hence, the
pitch tends to rise in the summer when the humidity is highest and go down in the
winter. If the room is unheated in the winter, the piano tuning can be remarkably
stable. I know of one Steinway D that is left in a New England house kept without
heat all winter in which the intonation changes by less than 1 or 2 cents on successive
summers.
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Fig. 4.26 Method used by
most makers to couple the
strings to the bridge

STRINGS

SOUND
BOARD

TO
HITCH PINS

BRIDGE

The bridge itself is made from hard rock maple and is glued together as one piece
that includes both the long treble bridge and the bass bridge. As shown in Fig. 4.26,
the bottom of the bridge is undercut in the region where the dowels fasten it to the
ribs of the soundboard so as not to inhibit vibration of the board in that area.

4.6.11 Sound Board Modes of Vibration

The modes of vibration of the soundboard are rather different from those found in
the harpsichord and have been studied by a number of people. (See Kindel 1989;
Giordano 1998a,b; and references in those papers.) The measurements are made
by applying a periodic driving force to the sound board at different frequencies
and positions and by analyzing the spatial distribution of sound at different regions
above the soundboard with a microphone and phase-sensitive detection. Relative
phase was determined in Kindel’s work with a dual-trace oscilloscope in which the
driving voltage was used as a reference.

The experimental results presented by Kindel (1989) for the soundboard from a
9-ft Baldwin concert grand are extremely comprehensive and most relevant to our
purposes (Fig. 4.27). He examined two ribbed sound boards made from quarter-cut
sitca spruce, tapering from 11/32” at the middle to 9/32” at the edges, mounted in
the piano body without the metal frame. Although the presence of the metal frame
and stringing of the instrument will no doubt change the resonances somewhat,
it is expected that Kindel’s measurements provide a good first approximation to
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Fig. 4.27 Vibrational modes
in the sound board of a 9-ft
Baldwin concert grand
(drawn from data taken by
Kindel 1989)

52 Hz 63 Hz 91 Hz

152 Hz141 Hz106 Hz

165 Hz 179 Hz 184 Hz

the problem. Ignoring the resonances he encountered from the piano body, several
modal patterns of the sound board have been reconstructed in Fig. 4.29 from his
data. These results are illustrative of the dozens of resonances he studied and
are useful for estimating the radiation patterns from the soundboard at different
frequencies. For example, the monopole resonance at 52 Hz where there is just one
peak will radiate in all directions with equal intensity above the board (assuming the
piano lid is removed, or wide open). The dipole resonance at 63 Hz where there is
both a positive and negative maximum amplitude will radiate preferentially along a
line drawn through the positive and negative extrema, and the higher resonances will
have radiation patterns corresponding to the various higher-order multipole source
distributions shown in Chap. 1. In estimating the directions of propagation. It is
useful to remember that sound waves traveling through the air consist of alternate
compressions (positive amplitudes) and rarefactions (negative amplitudes).
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Fig. 4.28 The Revenaugh modification to the concert grand (drawing by the author)

Hence, for example, with a dipole sound source such as that at 63 Hz in Fig. 4.28,
maximum propagation should occur along the line through the plus and minus signs.
(See the discussion of dipole and multipole radiation patterns in Chap. 1, especially
Figs. 1.16–1.20.) Many of the resonances shown in Fig. 4.28 should have maximum
radiation in the direction of the long dimension of the piano, although those at 52,
152, and 184 Hz, will also have strong components normal to the long dimension
and in the direction toward the audience when the piano lid is opened at about 45◦.

Kindel found that these basic patterns were representative of whole families
of resonances, some of which could not be resolved experimentally. He also
determined the distribution patterns for these resonances and studied them all
numerically using finite element analysis. Identification of the modes was based
on spatial patterns rather than resonant frequencies. Measured and calculated values
for the frequencies typically varied by about 10%.

One novel suggestion to alter the normal radiation pattern from a piano was
made in 1997 by pianist Daniell Revenaugh.39 Noting that roughly half the sound
is radiated downward toward the floor by the sound board under normal conditions,
Revenaugh added a second, lower lid to his piano. (See Fig. 4.29)

Although Revenaugh and pianists Andre Watts and Peter Serkin thought the
sound in the vicinity of the keyboard was more interesting, the implied assertion

39See A. Tomasini, “Not Even Practice Gets a 2-Lid Piano into Carnegie,” New York Times,
December 8, 1997, p. 1.
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UPPER LID

LOWER LID

91 Hz63 Hz52 Hz

Fig. 4.29 Radiation source distributions for the Revenaugh piano modification determined using
the data in Fig. 4.28

Fig. 4.30 Comparison of bending in an ideal string versus that in a real string with significant
stiffness

that the second lid provides more sound to the audience neglects the effects of
phase. The radiation going downward from the soundboard is 180◦ out of phase
with the sound radiated upward, and this out-of-phase relation is preserved by the
sound reflected by the two lids at 45◦. Consequently, the radiation sources as viewed
from the audience should look like those shown in Fig. 4.30 for the first few modes,
rather than the ones in Fig. 4.28.
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The isotropically radiating resonance at 52 Hz has now turned into a dipole
that will have maximum radiation in the vertical direction; the original dipole
resonance at 63 Hz has now become a quadrupole radiator with two directions of
emission maxima—one in the vertical direction and the other along the long axis of
the piano; and so on. In general, because of the out-of-phase relationship, the sound
radiated toward the audience will be reduced, although what the pianist himself
hears may be louder and certainly will be very different from the normal single-
lid configuration. Perhaps the authorities at Carnegie Hall had these things in mind
when they refused to allow the double-lid instrument in the hall.

4.6.12 Inharmonicity in Strings

There are two main ways in which nonlinearities can detract from purely harmonic
production in the overtones of vibrating strings. One is by violating the low
amplitude approximation upon which the linear wave equation itself rests. In a
loose qualitative sense, over-zealous plucking or banging hard on the string with a
hammer momentarily increases the distance the string must travel during a cycle
and hence decreases the initial resonant frequency. This can result in an initial
“clanging” sound during the decay of the tone. Although that effect can be a problem
with early nineteenth century pianos, the modern Steinway and other high-tension
instruments are fairly forgiving in this regard. (The effect amounts to about a 1 cent
flattening during the first 1/4 s of the transient in the midrange of a Steinway D and
is mainly a problem in accurate tuning of the instrument.) The more major source
of inharmonicity in contemporary pianos arises from the effects of stiffness just
because the instruments use thick strings under high tension.

As illustrated qualitatively in Fig. 4.31, it was tacitly assumed that the ideal
vibrating string was able to sustain a discontinuity in slope at the support points. But
the real string cannot bend sharply because of stiffness. Hence, at the end points (and

TUNING PIN

HEAVY FELT

AGRAFFE

METAL PLATE

WOODEN
WEDGE

NEW STRING

FORMED STRING

PIN BLOCK

Fig. 4.31 Technique to “form” a new string. With the string under tension (tuned, say, one-half
step below normal pitch) one gently taps upward on the wooden wedge from beneath the string.
The process is similar to another one called “chipping,” in which one picks at the strings with a
wooden dowel to relieve the strain
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Fig. 4.32 Departure from equal temperament found in various pianos that were tuned aurally. The
individual data points (solid circles) are measurements made on a 9-ft Steinway Model D concert
grand piano tuned aurally by Christopher Robinson. The points marked “x” were on a different
Steinway D tuned by Greg Sikora. The data for the Robinson tuning were taken by Christopher
Haberbosch in collaboration with the author, using both a Sanderson Acutron®tuner and a Reyburn
Cybertuner®on each note. The two measurements for each note are superimposed with solid dots
in the plot. In most cases the two sets of values agreed within ±0.1 cent. The pitch on A =
440 Hz drifted upward by 0.2 cents during the measurements and the data were not corrected for
that systematic error. Meaningful data were not obtained with these instruments below E1 and
above B7. The data for the Sikora tuning were taken by the author using a Korg Model DTM-12
tuner. Those measurements were only made for notes below A = 440 Hz. The middle solid curve
represents an average of 16 different pianos measured by Railsback (1938). The stretch curves
recommended by Peterson (1999) for a spinet and for an 8-ft grand are also shown

also at maxima along the string), the bending is different in a real string than in the
ideal case. That, in turn, means that the real string has its maxima compressed over a
shorter distance and that its active vibrating length is shorter than the length between
supports. Hence, the real string will vibrate at a slightly higher frequency than in the
ideal case. (Generally, greater curvature in the wire results in a higher vibration
frequency.) The frequency increase becomes still larger for the higher overtones.

The problem is especially severe with a newly strung piano. As indicated by the
dashed line in Fig. 4.32, the new string will resist bending sharply at the agraffe
and tend to introduce an extra minimum in the contour. Eventually, repeated use of
the action will cause the string to flatten out, but that process can take a long time.
A way of speeding up that process is to tap (gently) upward on a wooden wedge
placed underneath the string and just beyond the agraffe after the new string is under
tension. This technique also increases the stability of the piano after it is tuned. The
experts like to “baby” the piano up to pitch starting a semitone low, then 50 cents
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low, then to pitch, and then 10 cents high until the piano begins to hold a tuning.
This process allows the stresses to be distributed gradually over the whole piano. In
addition to tapping upward near the agraffe, they also tap the strings downward at
the bridges.40

There are several consequences of the stiffness effect. First, the overtone series
for the real string is no longer harmonic in the presence of non-zero string thickness.
That, in turn, means that the waveform is no longer perfectly periodic. Strictly
speaking, one cannot analyze the spectrum precisely using a discrete Fourier series.
However, one can always use the Fourier Transform method to determine the
approximate spectrum for the vibrating string as discussed in Chap. 1.

Allowing for stiffness, the frequency for the nth mode of the string has been
found to be approximately of the form41

Fn ≈ n
( c

2L

) [
1 + n2

(
π3a4Y

8L2T

)]
(4.5)

where a is the string radius, Y is known as “Young’s modulus” for the material, L

is the length, T is the tension, and n is the harmonic number. As a → ∞, Eq. (4.5)
reduces to the normal harmonic series for the ideal vibrating string. One can see that
the fractional effect of the inharmonicity goes up with n2 and is largest for thick,
short strings under low tension. However, the strings in the bass section that are
wrapped with copper wire are more flexible than solid strings of the same diameter;
hence, the inharmonicity is less with wrapped strings than with solid ones of the
same length and thickness.

A derivation of Eq. (4.5) would be beyond the scope of the present book as it
follows from an approximation to a fourth-order differential equation. Nevertheless,
a few comments about the properties of Young’s modulus and steel strings are
in order. Young’s modulus (described here by Y , but sometimes designated E in
reference books) is defined in general for homogenous isotropic elastic solids by
the stress–strain relation:42

Force

Area
= Y × ΔL

L
or Stress = (Young’s modulus) × (Strain) .

For a cylindrical wire, the stress, or force per unit area, is just T/πa2 where T

is the tension and a is the radius of the wire. The strain, ΔL/L for a cylindrical
wire, would be the fractional elongation that would occur due to tension applied to
it, say by hanging a weight on the wire. Since the ratio ΔL/L is dimensionless, it is
obvious that the dimensions of Y are force per unit area and that Eq. (4.5) is dimen-
sionally correct. The pertinent question is, “How much does the square bracket of

40Christopher Robinson (private communication.)
41Young (1957), p. 3–102, Table 3b-2.
42See Feynman et al. (1963) Vol. 2, Chapter 38, for an explanatory discussion of elasticity in solids.
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Table 4.2 Some properties
of steel piano wire (in cgs
units)

Density ≈ 7.83 g/cm3.

Breaking point ≈ 108 dynes/cm2

Young’s modulus ≈ 2 × 1012 dynes/cm2

Note: 1dyne = 2.247 × 10−6 lbs force
Source: American Institute of Physics Hand-
book (McGraw-Hill, 1957)

Eq. (4.5) deviate from unity in practice?” For convenience some properties of steel
piano wire are summarized in Table 4.2. But one should note that all of the measured
values vary somewhat with the alloy composition.43

4.6.13 The Steinway Model D Concert Grand as an Example

The longest unwrapped string on a Steinway D is for F2 at 87.3 Hz, having a
length of 71.9 in. = 182.6 cm and a diameter of about 0.047 in., or a radius of
a = 0.0597 cm, and a density per unit length of μ = 0.00886 g/cm. The tension
on the string is T = (2LF)2 ≈ 9 × 107 dynes ≈ 202 lbs. The cross-sectional area
πa2 = 0.0113 cm2 and the force per unit area ≈ 8 × 109 dynes/cm2, about 20%
below the elastic limit.44 In this case,

π3a4Y

8L2T
≈ 3.3 × 10−5 for LowF = 87.3 Hz

and the inharmonicity is quite negligible.
However, at the top of the keyboard it is another matter. There, C8 at F =

4186 Hz has a string length of L = 1.962 in. = 4.983 cm and a radius of
a = 0.0165 in. = 0.0419 cm, or a cross-sectional area of 0.00552 cm2. The string
density per unit length is μ = 0.00434 g/cm.45 If the same tension were applied
here as to the low F , the force per unit area would be 1.63 × 1010 dynes/cm2 and
the string would break. But, because the string is much shorter, the actual tension
is quite a bit lower for the highest C. As a first approximation, one can estimate T

from the ideal string equation, obtaining

T = (2LF)2μ = 7.5 × 106 dynes.

43See Trent and Stone (1957), 2–70.
44According to Hayes (1982), piano strings are normally tightened so much that bringing the string
up another whole step, or a frequency increase of 1.122—hence, a tension increase of 1.26 would
break the string.
45Young (1957, p. 3–101) provided a table of mass per unit length for steel and gut strings of
different diameter.
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However, this actually overestimates the tension because the inharmonicity itself
plays a role in the tuning process. Rewriting Eq. (4.5) for n = 1, we get

F1 ≈
( √

T

2Lμ

)[
1 +

(
π3a4Y

8L2T

)]
(4.6)

which in turn may be rewritten as a quadratic equation in T whose solution is46

T = 1

2
(A2 − 2B) + A2

2

√
1 − 4B/A4 ≈ A2 − B(1 + 1/A2) ≈ A2 − B (4.7)

where A2 = (2LF1)
2μ and B = π3a4Y

8L2 .

Note that A2 is just the value of the tension calculated from the ideal string
equation and that the correction to this value from inharmonicity is contained
entirely in the term B. Inserting appropriate numerical values, we get A = 2749
and B = 7.499 × 105 in cgs units. Substituting the values of A and B into the
expression for the tension results in

T = 6.8 × 106 dynes ,

a somewhat smaller value than our initial rough estimate. Using this more accurate
value of T , the inharmonicity coefficient for the top note on the piano becomes

π3a4Y

8L2T
≈ 0.141 for the highest C = 4186 Hz ,

a value that is substantially larger than that determined for the low F at 87.3 Hz.
The presence of anharmonic overtones in the top treble note is not of great esthetic
importance because they fall at frequencies where the ear’s sensitivity to pitch is
decreasing. In fact, anything that adds to the loudness of the top few notes is an
asset.

4.6.14 The Effect of Inharmonicity on Tuning

The effects of inharmonicity are reduced by decreasing the string diameter as one
goes up the scale. In practice one wants to have a smooth transition in the wire
diameter changes, or “scaling” of the instrument. The major consequence of the
inharmonicity in piano strings is on the tuning of the instrument. For example, the

46The quadratic equation is T 2 − (A2 − 2B)T + B2 = 0.
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first overtone of any given note will no longer be precisely an octave higher than
the fundamental. Tuning a piano then consists of trying to find the least roughness
in the beat patterns between overtones of the different notes, and the approach used
is often characteristic of both the individual piano and of the tuner. In the bass,
the fundamental tone on small pianos is often missing or very weak and the notes
fall in a frequency range where the ear itself is losing sensitivity. Consequently
on very small pianos, tuners sometimes adjust the fourth harmonic of one note in
the bass to coincide with the second harmonic of the note one octave higher. As
observed by Railsback (1938), piano tuners who start by setting the temperament
over the middle octave centered at A = 440 Hz generally tend to tune the notes in
the bass so as to fall progressively below those on the well-tempered scale and those
in the treble to be progressively sharper. That this effect results naturally from the
nonlinear overtones of the strings was shown by Schuck and Young (1943). That
the resultant stretched octaves are actually preferred on small pianos by both music
students and by piano technicians alike was demonstrated in carefully controlled
listening tests by Martin and Ward (1961).

The effect is illustrated in Fig. 4.32, which summarizes data provided by several
authors. The solid data points in that figure represent measured values for a Steinway
D concert grand piano that had been selected by Steinway in New York City
for use as a concert rental instrument for many years. Those measurements were
made by piano technician Christopher Haberbosch in collaboration with the present
author on the single middle strings of each note (with the outer strings damped)
immediately after it had been tuned aurally from a pitch fork (for A4 = 440 Hz)
by Christopher Robinson (Master Piano Technician at the Acousticraft Company
in Connecticut). Typically, after hitting a note the pitch starts out flat for the first
1/4 s (presumably due to momentary stretching of the string) and then becomes
sharper. Consequently, average values were recorded in each case over the interval
from 1/4 to 2 s after striking the note. Two electronic instruments were used for
each of these measurements, a Sanderson Acutron®and a Reyburn Cybertuner®,
that gave agreement within about ±0.1 cent in most cases. (A few notes exhibited
a slight instability that gave rise to a discrepancy in the order of 0.5 cents.) A drift
of about +0.2 cents in the note at A = 440 Hz occurred over the period of these
measurements. The data were not corrected for that systematic error. The points
marked “x” represent similar measurements made by the author using a Korg Model
DTM-12 tuner on a second Steinway D immediately after it had been tuned by Greg
Sikora (Chief Tuner for the Philadelphia Orchestra).

Stretch-tuning curves reported by Peterson (1999) for a small spinet and for an
8-ft grand are also shown in Fig. 4.32. In addition, the solid curve in the middle of
the other two represents an average of 16 different pianos measured by Railsback
(1938). Noting that one hundred cents is defined to be a half-step on the chromatic
scale, it is seen from the figure that notes at the upper and lower ends of the keyboard
may be tuned off by a quarter of a step from the frequencies of the well-tempered
scale. The stretching effect is usually about the same in the treble for both small
and large pianos because the strings in that region are of about the same length and
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thickness.47 However, as shown in the figure, very large differences occur between
pianos in the bass. Because the strings in the bass section of a concert grand are
generally thinner and longer by a factor of about two than those in a console or
upright piano, the tuning departure for a concert grand in the bass is generally very
much less than shown for the Railsback average in Fig. 4.32. Thus, the strange
sounding intonation in the bass of a crapaud (French for “toad” or “baby grand
piano”), console, or upright is primarily due to the inharmonic nature of the shorter,
thicker strings.48 (See Eq. 4.5.) But the problem is further exaggerated by the human
ear: first, because the ear’s sensitivity to the actual fundamental frequency falls off
rapidly at low frequencies (by more than 40 dB at low A); second, because it tends to
synthesize a fundamental tone from the difference frequencies between modes that
are an octave apart, which intervals all vary substantially below middle C on a small
piano. The advantage of a concert grand is not just in its superior tone quality in the
bass, but also in its superior intonation. Stretched tuning on a small piano may make
it sound better when it is played by itself, but it also makes playing the piano with
another instrument unsatisfactory. Although stretch-tuning curves are available for
different size pianos from several companies that make electronic tuning devices, I
have yet to hear a piano tuned electronically that sounded as good as the same one
tuned aurally by an expert. Pianos differ in small ways from one another and using
an average curve based on a number of instruments of the same type is seldom the
best solution. The musically trained ear is sensitive to deviations of less than one
cent in relative tuning and it still seems to require an expert human being to bring
out the best sound in individual instruments.

Problems

4.1 From the scale drawing in Fig. 4.3, estimate the gain in velocity resulting from
mechanical advantage in the Stein “IJprellmechanik” action. What would it be for
the Broadwood action in Fig. 4.5 and for the Streicher action in Fig. 4.18.

4.2 Suppose you wanted to imitate the Beatles and have a crashing piano sound a
chord in E-major. How could you do it?

4.3 What would the normal modes be in a triple strung piano?

4.4 It has been found experimentally that piano wires of the same material and
length will break at about the same pitch, regardless of their diameter. Why does
that occur?

47A table of string diameters for nearly every model piano currently made is given in Travis (1982),
Part II.
48That may explain why Babe Ruth threw his upright piano into Willis Pond near Boston in 1918.
(See The New York Times, 9/30/2002, p. A17 and 11/5/2002, p. WK 5.)



Problems 143

4.5 The lowest unwrapped (steel) string on a Steinway concert grand piano is about
71.9 in. long (F2 at 87.3 Hz). What is the wave velocity on the string?

4.6 What is the tension on the string in the previous problem (noting that the string
diameter is about 0.0472 in. with a density per unit length of about 0.0886 g/cm).
The main difficulty with this problem is in the units. Putting the string length in cms
gives the tension in dynes, where 1 dyne = 2.247 × 10−6 lbs of force.

4.7 A tuning hammer has a shaft length of 10 in. The top of the tuning pin has a
width of 0.225 in. What force do you have to apply to the end of the tuning hammer
to break the string on F2 (normally 87.3 Hz) of a Steinway D?

4.8 From the mode pattern of the resonance at 63 Hz in Fig. 4.28, estimate the wave
velocity in the soundboard. Assume the soundboard was 80 in. long.

4.9 What’s the ratio of the third “harmonic” to the fundamental for F2 (87.3 Hz) on
a Steinway D? For C8 (at 4186 Hz)?

4.10 Research Problem: Borrow a stroboscopic light source to study the vibrational
modes of the lowest unwrapped strings on a piano, with and without the soft pedal
depressed.

4.11 Research Problem: Is it possible to obtain something analogous to the una
corda effect in a double-strung Italian harpsichord? Perhaps construct a model with
two strings attached to the bridge on a sound board and try plucking and dampening
them with your fingers.



Chapter 5
Violins and Bowed Strings

5.1 Early History of the Violin

The use of vibrating strings in musical instruments was certainly known to the
ancient Greeks. However, bowed string instruments probably originated in Asia.
One author suggests that the invention of the bow on that continent may be
traced to the fact that Asiatic peoples were among the first to use horses as
domestic animals—horse hair being the most suitable material for stringing a
bow. The southern Slavs actually used horsehair for the bow and the string in a
primitive instrument called the gusle. The earliest instruments had crude sound
boxes consisting of a drum or hollow wooden tube. The two-stringed Chinese erhu,
which used two silken strings with the bow hair passing between them, is still in use
today and may even be heard in the New York subways.1 The instrument produces
a slightly whining sound said to resemble the human voice and uses a drumhead
made from python skin. The single-stringed Arabian rebab was probably the first
instrument to incorporate a trapezoidal resonant cavity and was a direct ancestor of
the European violin. It was brought to Spain by the Moors in a form known as the
rebec in Western Europe.2

The early Arabian instruments were played with the performer bent over in a
stooping position with the instrument resting on the ground, and instruments with
more than one string had to be turned to the right or left when bowed. That resulted
in a rocking motion called geigan in Old High German, a term which evolved into
the modern German word geige to stand for “string” in general. In order to make the

1See Yilu Zhao, “Asian Music Accompanied by the A Train,” New York Times, July 6, 2004,
p. B1. The sound may be heard on a CD recorded by erhu virtuoso YU Hon-mei (Wind Records
SMCD-1010, 1998).
2According to Heron-Allen (1885), the rebab was in use in Spain for centuries before 1200 AD
and still exists in the Basque districts of the Pyrenees under the names “rabel” and “arrabel.” He
adds that it was seldom mentioned because of its “rudeness.”
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bowing easier, the Germans made the instruments narrower and deepened the inward
curves. The term geigen came into use throughout Germany for the predecessor of
the violin, whereas fiedel or “fiddle” took on a derogatory meaning. (A “fiddler”
was someone who played the geige badly.) There were three basic sizes of geige
used in Germany, the smallest of which became a predecessor of the violin and was
called geigen-rubeben—an outgrowth of the three-stringed rebec, which was used
in France until the beginning of the eighteenth century.

Another development incorporated two openings on top of the instrument that
later evolved through various [, C, and S-shapes into what we now call f-holes.
Farga (1950) suggests that the f-shape of the sound holes may have started as a
tribute to francis I, King of France from 1515 to 1547, an enthusiastic patron of
the musical arts. Farga suggests that a man living in Lyon by the name of Gasparo
Duiffoprugghar (alias, Kaspar or Gaspard Tieffenbrucker or Dieffenbrucker) had
more claim than others to the invention. Little is known about the man with
certainty except that he lived in Lyon around 1553 where he made instruments
that at least resembled violins.3 However, according to Faber (2005, p. 116), the
violins accredited to Gaspard Tieffenbrucker “were nineteenth century impostors
. . . antiqued to look old.”

Ironically, although the violin is depicted in a few paintings by Italian artists
in the mid-sixteenth century, bowed instruments were imported from France and
Germany to Italy where they served as a source of inspiration for the early Italian
makers. The Italian viols of that time had six strings and fretted fingerboards
covering one and a half octaves. These instruments came in various sizes: the viola
da bracia (predecessor of the modern tenor viola), the viola da gamba (or “knee
viola” and predecessor of the modern cello, albeit with five to seven strings), and the
violone (a six-stringed double bass). Still another, the viola bastarda, that had metal
sympathetic strings underneath the more usual gut strings of that period turned into
the viola d’amore. In Leipzig, it is thought by some that Johann Sebastian Bach
invented a five-string viola played while resting it on the arm (rather than under
the chin) known as the viola pomposa (also known as the “bassoon viola”) which
was constructed by the German maker Johann Christian Hoffmann (1683–1750) in
Leipzig circa 1720.4 According to Gaillard (1939), the extreme difficulty in playing
Bach’s Sixth Solo Cello Suite arises because it was originally written for the five-
stringed viola pomposa.5 It is tempting to suppose that that viola might have been
the one that Carl Philip Emanuel Bach said was his father’s favorite instrument.6

3See Heron-Allen (1885), Farga (1950), Silverman (1957), Sacconi (2000), and Faber (2005) for
more extended discussions of the history and development of the violin.
4An 8-ft “viola pomposa” stop was found on some pipe organs of Bach’s time.
5Apel (1972, p. 907) asserts the attribution of this invention to J.S. Bach is unfounded and based
on unreliable sources dating from 32 to 42 years after Bach’s death in 1750.
6Letter from C.P.E. Bach to his father’s biographer Johan Nicolaus Forkel in 1774 (quoted by Allan
Kozinn in the New York Times, 7/16/2003, page AR 24).
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5.2 The Cremonese Makers

The phenomenon of Cremona may be appreciated by looking at the map in Fig. 5.1.
The workshops of nine of the most famous violin makers of all time were located
within about one city block of each other! It is said that 20,000 violins were made
here and shipped to all parts of the world during the golden age of violin making in
Cremona. Alas, a little over a century and a half later, the shops and even the Church
of Santa Domenico on which they bordered were all gone. Paolo Stradivari, son of
the most famous of the Italian violin makers, had tried repeatedly to get the town
council to set up a museum to contain his father’s tools and some of his instruments,
but his efforts were in vain. At his final defeat, a councilman told him that “not
only would Cremona refuse to entertain the thought of a Stradivari memorial, but
that he himself would use his influence to see that the magnificent San Domenico
Church was razed to the ground.” (Silverman 1957, p. 27.) According to Farga,
the threat to destroy the church was not actually carried out until 1869.7 Stradivari
had purchased a tomb in the church of San Domenico in which he was buried.
But when the church was torn down, his bones were scattered to the winds (the
Hill brothers, 1902). Farga (1950, p. 50) notes that “the street which had housed
Cremona’s famous violin makers was rebuilt and made into a large, dull block of
tenement flats.” In the words of the Hill brothers (1902, p. 209), “It is pathetic to
think that Cremona contains . . . nothing which witnesses to the glory of that splendid
age of violin-making for which her name will ever be famous.” More recently, a
modest museum containing such artifacts as could be found was established in the
town (although a MacDonald’s stand now marks the location of Stradivari’s shop)
and an attempt has been made to restart a violin-making community. (See Faber
2005 and Steinhardt 2006.)

Fig. 5.1 The violin-maker
shops of Cremona (source:
Silverman 1957)

7Silverman (1957, p. 244) has “before” and “after” photographs of San Domenico.
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Andrea Amati (1505–1577) was the first of these major craftsmen and designed
the first instruments that closely resemble the modern violin. He started as a maker
of rebecs and viols and switched to violin-making later in life. He constructed
violins of two sizes, not to mention large violas and cellos of extraordinary beauty.
Many of these were richly decorated and set a precedent for later makers to imitate.
He, as did most of the Cremona violin makers, used Dolomite spruce of the type that
grows in the Italian and German Alps for the top plate (or belly) of the instrument.
This variety was found in rocky, mountainous soil which prevented fast growth of
the trees and hence resulted in very uniform and closely spaced ring structure. That,
in turn, gave rise to pieces of wood that had remarkably close and uniform grain. He
was one of the first to use Balkan maple (acer-pseudo platanus) for his back plates
of a type that was especially beautiful due to the flaming marks running roughly
perpendicular to the direction of tree growth. His instruments had an exceptionally
high arch on the top plate and produced a tone that was very clear, but soft; it was
especially good for chamber music, but did not carry as well in the concert hall as
some of the earlier instruments by Maggini of the Brescia School (Fig. 5.2).

When I was Master of Silliman College at Yale University in the 1980s, I
persuaded a collector and Yale alumnus named Lawrence Witten to loan his quartet
of Amati instruments for a concert by the Muir String Quartet celebrating the 50th
Anniversary of the College.

These instruments had been in obscurity for some time and had only recently
been uncovered by Mr. Witten.8 The sound was very mellow, but according to the
musicians their real advantage was in the ease with which they could be played. As
violist Steven Ansell (now principal violist of the Boston Symphony Orchestra) put
it, “They played like melting butter.”

I quote here from the program notes written by the late Lawrence Witten for
this concert (given in the newly renovated acoustics of the Silliman Dining Hall on
October 20, 1983):

Andrea Amati made two world-famous sets of instruments: one for the Italianate court of
King Charles IX of France, son of the Florentine princess Caterina de’ Medici, painted and
guilded with the mottoes and devices of the young king who died in 1574; the other for
an unidentified nobleman was similarly decorated. In an age of magnificence, they were
among the most splendid instruments of their time, and unquestionably the most important
of their type, if not indeed the only ones. Except for bricks and mortar, they are the solitary
artifacts of the Italian Renaissance which have been in more or less constant use since their
creation four centuries ago. Their qualities are unsurpassed.

Witten went on to say

The Silliman performance utilized three of about seventeen instruments by Andrea Amati
that were still extant. The cello was the best preserved of its size of those created after 1574
for the French court. The exact extent of this set, looted from the royal collections in the
Revolution of 1789, is not known. It was the ancestor of the Sun King’s ‘Vingt-quatre violins
du roi’, directed by Lully a century later. Both the first violin and the viola of the quartet are

8Lawrence Witten is more widely known as the person who sold the Vinland Map to Yale
University.
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Fig. 5.2 Violin by Andrea Amati made in the mid-sixteenth century (courtesy of Bein and Fushi)

from the other decorated set, identical in construction and made about the same time. The
second violin was dated 1628 by Andrea’s grandson, the renowned Nicolò Amati. . .

I made a high-fidelity four-channel stereo recording of this concert (which
included the first Razumovsky Quartet by Beethoven) for later analysis. Each of
the four condenser microphones used was located over a different instrument.
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5.3 Spectrum from an Andrea Amati

The waveform and harmonic spectrum from a violin by Andrea Amati are shown
in Fig. 5.3 compared with that from a very ordinary contemporary instrument when
both were played on open G by violinist Syoko Aki, of the Yale School of Music.
The data were analyzed using the methods described in Appendix C. One can see
from a casual glance at the numerous wiggles in the waveform that the Amati was
very much richer in harmonic content or “overtones.”

Andrea Amati had two sons, Antonio and Hieronymous (a.k.a, Girolamo), who
took over their father’s workshop after his death and continued for a while to make
violins in their father’s style. Of the two, Hieronymous (1556?–1630?) was the more
inventive and changed the design of the top plate to produce a concave chamfer
toward the edges, thus making the tone sweeter. Hieronymous died of the plague, as
did his first wife and two daughters. However, one of the nine children he had had by
his second wife was a son named Nicolò (1596–1684) who lived to be 88 years old
and became the greatest craftsman in the Amati family. He then went on to teach
many others the art, including his own son Hieronymous II (1649–1743), Andrea
Guarneri (1626–1698), Francesco Ruggieri (1645?–1700?) and, possibly, Antonio

Fig. 5.3 Comparison of the waveforms and spectra of a violin by Andrea Amati (left) with those
from an ordinary present-day violin (right). Both were played on open G without vibrato by the
same violinist and analyzed using the same Sennheiser condensor microphone. The waveforms are
shown as a function of time over one cycle at the top of the figure, normalized to the same peak
amplitude. Relative amplitudes of the spectra are shown as a function of harmonic number at the
bottom for each instrument
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Stradivari (1644–1737).9 Ruggieri, in turn had two sons, Giacino and Vincenzo who
also made splendid violins. Vincenzo Ruggieri made the viola in 1690 that was
owned by Beethoven. Ludwig Spohr (inventor of the chin rest, among other things)
supposedly told his outstanding students to buy a Ruggieri instrument, if they were
not in a position to afford an Amati, Stradivari or Guarneri.10

An outline of the family bloodlines and teaching lines among the Cremona
violin makers is shown below. In at least a creative sense, these makers were all
descendants of Andrea Amati. He not only taught several of them personally, but
his influence permeated the entire group. Of his direct descendants, Nicolò Amati
was not only a great craftsman but also the greatest teacher of the art of violin
making of his period.11 His student, Antonio Stradivari (1644–1737), is the most
well-known and often regarded as the finest craftsman of the group. He generally
included the date at which he completed an instrument under the left-hand f-hole,
but in later years also included his own age at the time it was made. (That fact is the
primary argument for assuming 1644 as the year of his birth.) Sacconi’s remarks to
the contrary, there is no reason to believe Stradivari had any advanced knowledge of
mathematics or the science of acoustics.12 He was adept at laying out the designs for
his top plates with a compass and he was a fine, hard-working craftsman. (His last
violin was made in his 93rd year!) He had great intuition, but most of his deductions
were the outcome of educated trial and error and the heritage of previous instruments
created by the early Cremonese makers. (See Hill et al. 1902, Chapter VIII.)

9Faber (2005, p. 25) suggested that Stradivari never was apprenticed to Nicolo Amati. The usual
assumption is based on one violin (the oldest known) made by Stradivari in 1666 in which the
label was inscribed “Antonius Stradivarius Cremonensis Alumnus Nicolaii Amati”. However, the
word Alumnus (meaning “pupil of”) was dropped from his labels by the time his next violin was
made in 1667 and never appeared on any of his later violins. Faber suggests the wording may have
been used to help sell his first violin by using Nicolo Amati’s name and that Amati himself may
have objected to that practice. Faber goes on to note that Stradivari was already an expert wood
carver and inlayer at the age of 13, before coming under the influence of Amati and that the few
examples of fancy inlaid work on Amati instruments may actually have been done by Stradivari.
Faber suggests that Francesco Ruggieri was a more probable teacher of Stradivari in the art of
violin making.
10For more exhaustive accounts of the history of the violin-making families, see Heron-Allen
(1885), Farga (1950), Silverman (1957), the Hill brothers (1902), and Boyden and Schwarz (1980),
Blot (2001), and Faber (2005).
11Galileo Galilei is thought to have bought a violin by Nicolò Amati for his nephew. In a letter
dated May 28, 1638, Father Micanzio regretted than he had not been able to get it for less than
15 ducats! [One ducat contained ≈ 3.49 g of gold, hence 15 ducats would be worth about $72 in
the fall of 2004.] Galileo had been advised by the Musical Director at St. Marks in Venice that
the Cremona instruments were incomparably better and much cheaper than those made in Brescia
(Hill et al. 1902, pp. 240–243) It has also been suggested that the Cremona violin purchased by
Thomas Jefferson for £5 in 1768 was made by Nicolò Amati Salgo (2000, p. 17). Salgo (Salgo
2000, p. 18) went on to suggest that Jefferson probably acquired a Tourte-style bow while serving
as a diplomat in Paris, despite his (by then) almost crippled right wrist.
12Sacconi’s book The Secrets of Stradivari had as a main thesis that there actually were no secrets
and that everything Stradivari knew was well-known to other luthiers of the period.
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Label inside a violin made by Stradivari in 1719

According to the Hills (1902, pp. 226, 231), Stradivari’s lifetime output consisted
of 1116 instruments of which 540 are extant. During his prime, he turned out about
one violin a week, selling them for some four-to-five pounds each.13 Stradivari, in
addition to making hundreds of violins, also made at least 30 cellos, a few violas
and guitars and at least one arpeggione—a guitar-like instrument that was bowed
and made famous by the later Schubert sonata with that name. It is said that the
cellos he made between 1707 and 1727 (of which only twenty-one have survived)
are the finest in the world (Fig. 5.4).

Fig. 5.4 Blood lines (solid) and chain of teaching (dashed lines) in the Cremona school of violin
making. Sources: Farga (1950), Heron-Allen (1885), Hill et al. (1902, 1931), Silverman (1957),
Sacconi (2000)

13The most recent, record-breaking sale of a Stradivari violin (the 1707 “Christian Hammer”) was
for $3.5 million on May 16, 2006. However, Sherlock Holmes only paid 55 shillings for a Strad
worth 500 guineas (see Conan-Doyle 1981). Faber (2005, pp. 214–216) gave a careful summary of
the sale prices of various instruments by Stradivari; Faber converted the currency used to dollars
and corrected the values for inflation as of 2003.
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The most famous of the Stradivari cellos is the “Davidov” made in 1712 for
the Medicis. That instrument, now named after the Russian virtuoso Karl Davidov
(1838–1889) who once owned and played it at the Court at St. Petersberg, has passed
through the hands of a large number of famous soloists including Jacqueline du Pré
and its present owner, Yo-Yo Ma. I was able to see and hear that instrument first
hand in our living room at Silliman College in the early 1980s. Ma brought it with
him for a Master’s Tea held in his honor and at a request from one of the students,
played the Bach unaccompanied cello suite in G major upon it. (She actually had
asked merely for the Prelude, but Ma said he hated to play just one small part of
the suite and asked if we would mind if he played the whole thing!) Although he
played beautifully, the cello did not sound like an unusually brilliant instrument and
had a rather subdued tone quality that made me wonder if the spruce top plates
on those old Italian instruments wore out from use in the same manner (but at a
much slower rate) as clarinet and oboe reeds do.14 I learned later that Jacqueline du
Pré had pronounced the Davidov to be “unplayable” and hadn’t used it for several
years. Various explanations were given: “You have to draw out the sound on these
Stradivari instruments,” “the cello probably suffered from changes in humidity in
transatlantic flight” and so on.15 (See, Faber 2005, p. 182.) Possibly the sound post
was merely out of adjustment. In any case, Ma seems more recently to have brought
it back to life.

In contrast to Nicolò Amati, who had numerous apprentices, Stradivari himself
was only willing to teach his two sons and Carlo Bergonzi how to make instruments.
An apprenticeship typically lasted at least 6 years and Stradivari clearly did not like
to make that commitment of time. Of the two father and son cousins named Joseph
Guarneri, the younger one with the appellation “del Gesu” (a name derived from
the insignia I H S—with a cross above the H that he inscribed on his instruments)
was by far the most famous and the major competitor of Stradivari. Del Gesu was
something of a maverick. It has been alleged that he was sentenced to jail as the
result of a drunken brawl in which he killed one of his violin-making competitors
(Hill et al. 1931, p. 89) Some have claimed that he was able to continue to make
violins in jail using tools supplied by the daughter of the jailer. But the Hill brothers
(Hill et al. 1931, p. 90) note that except for a “number of more or less commonplace
crudities” that have been foisted upon the public, there are no authentic Del Gesu
violins known from the jailing period.16 Storioni made violins in the general Amati
style and sold his shop to the last of the Cremonese makers, Giovanni Ceruti.17

(Ceruti was given the molds and patterns left in Stradivari’s house after the great
violin maker died.)

14Some claim that terpenoid resin can rejuvenate the spruce in a sound board.
15Those who have seen the 1998 movie Hilary and Jackie might suspect that leaving it out in a
snow storm overnight was the trouble.
16The Hill et al. (1931) note that the quality of Del Gesu’s workmanship deteriorated toward the
end of his life. One luthier suggested to me that the unusual brilliance and harmonic content found
in the later del Gesu instruments arose because he used extreme quantities of varnish to cover up
his mistakes in wood carving.
17The Hill et al. (1931) note that J.B. Guadagnini spent a short time in Cremona in 1758, but he
was hardly a permanent resident.
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Label in a violin made by Guarneri del Gesu

Especially, as modified in the late eighteenth century (by enlarging the bass bar,
increasing the length of the strings to permit higher tension, replacing the bridge,
and using a modern bow), many Stradivari violins acquired a reputation for being
extremely powerful. The Heberlein-Taylor violin made in 1700 (Fig. 5.5.)18 was no
exception, especially in the hands of violinist Joseph Genualdi. I measured sound
levels from this instrument of about 95 dB at a distance of 3 ft from that violin
and the sound carried exceptionally well in the concert hall. As an example of
its power, during the intermission of a concert by The Muir Quartet in Sprague
Auditorium at Yale University during the 1980s, Mr. Taylor complained to Genualdi
during intermission that he couldn’t hear his instrument very well. That turned out
to be a mistake because the first violin drowned out the entire quartet during the
second half of that concert. (Genualdi, now first violinist of The Chicago String
Quartet, is a very sensitive violinist and well-known for achieving excellent balance
in chamber music.) Part of Stradivari’s secret in making more powerful instruments
is thought to be flattening of the belly over the geometry used by Andrea Amati.
Other Stradivari violins I checked at 3 ft at the Library of Congress and bowed by
violinist Cho-Liang Lin were: the Castelbarco (85 dB), the Ward (85 dB), and the
Betts (85 dB). However, Fritz Kreisler’s Guarneri del Gesu put out about 90 dB,
even with the G-string missing. Faber (p. 53) states that the Strads made after about
1730 were among the most powerful of all, possibly because increasing deafness
caused Stradivari to work harder on the problem of tone generation!19

One of the most remarkable tales dealing with the Cremonese instruments has
to do with the way in which many (perhaps, even most) of them survived and were
transported to northern Europe. The story goes that an Italian craftsman named Luigi
Tarisio (1792–1854) was confronted by one Sister Francesca (grand daughter of
Antonio Stradivari who lived in a convent on the outskirts of Cremona) the night
before she died. It is said that she made him promise to save as many of the great
Italian violins as possible and bring them to artists in Europe. Tarisio then walked
all over the hills of Lombardy and Tuscany searching out these instruments, which
were often in total disrepair, and obtained them from their owners—sometimes by
trading them for far inferior instruments in working condition. In one instance he

18The Heberlein-Taylor violin was recently donated by Hugh Taylor to the San Francisco
Symphony. The Concert Master of that orchestra also has the use of the 1742 Guarneri del Gesu
previously owned by Jascha Heifetz. In contrast, Jack Benny bequeathed his 1729 Strad to the Los
Angeles Philharmonic.
19However, power can be a liability. The recent legal feud between members of the Audubon
Quartet may have come about in part because the first violinist acquired a 1735 Carlo Bergonzi
instrument capable of drowning out the rest of the quartet. (See Daniel J. Wakin, “The Broken
Chord”, in the New York Times, December 11, 2005, p. AR 1.) They solved the problem by firing
the first violinist.
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Fig. 5.5 1700 Stradivari violin known as the Heberlein-Taylor (photo courtesy of Joseph Gen-
ualdi)

traded an Amati and some cash to a Florentine noblemen for an entire collection of
Stradivari instruments including “The Messiah”—the violin that Stradivari himself
is said to have regarded as his finest instrument. According to Silverman (1957),
Tarisio carried a bundle of ten violins on his back during his first trip to Paris while
walking over the Alps from Milan. In Paris, he first met the violin maker Aldric who
only offered him a modest sum which he accepted. On a later trip, dressed more
elegantly, he met the famous French violin maker Jean Baptiste Vuillaume (1798–
1875) to whom he ultimately sold many such instruments.20 According to Millant
(1972, p. 124), Tarisio brought more than a thousand violins from Italy. Vuillaume

20According to Silverman (1957, pp. 196–198), Vuillaume was such an expert that (working with
physicist Felix Savart) he secretly made a copy of Paganini’s Guarneri del Gesu (“The Cannon”)
while the instrument was on loan for repair that Paganini himself couldn’t tell from the original.
(However, a later attempt to repeat that experiment failed, probably due to poorer quality wood.)
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repaired them, and in some cases copied them, and went on to sell them to famous
European artists.21 These instruments ranged from Paganini’s favorite Guarneri del
Gesu—“The Cannon” (which is now in a glass bottle in the Genoa Museum) to the
“The Messiah” by Stradivari which is locked up in a glass case at the Ashmolean
Museum in Oxford. It has been said that the name “Messiah” (or “Le Messie”)
was dubbed by the French violinist Delphin Alard, who happened to be Vuillaume’s
son-in-law. It is said that Tarisio kept promising to produce this exquisite instrument
during his visits to Vuillaume in Paris, prompting Alard to exclaim, “Ah, therefore,
your violin is like the Messiah; one always awaits him, but he never appears.” The
Hill brothers do not endorse that story (which is one of several different versions)
and refer to a violin called “le Messie” as existing during Stradivari’s lifetime.
Vuillaume actually had to wait until Tarisio died (cradling two violins in his arms), at
which point he bought out Tarisio’s entire remaining collection of violins, including
the elusive “Messiah.”22 After the death of Vuillaume in 1875, Alard decided to
buy the instrument himself, although he may never have played it. It eventually
passed through the hands of the Hill brothers before it went to the Ashmolean
Museum. According to Millant (1972, p. 123), the Messiah was made along slightly
more delicate lines than the usual Stradivari violins; the back is in two pieces of
flaming maple, the model is flattish and the f-holes are a little more sloping than
usual. The ribs are slightly higher than normal, but the length of the body is the
standard 35.6 cm. Some maintained that the instrument had never been played. But
Milstein said that he had tried out the instrument at the Hill’s shop on Bond Street:
“An astonishing Stradivarius known as the Messiah—an unforgettable experience!”
(Milstein and Solomon 1990, p. 87).

When Vuillaume obtained the Messiah, he took it apart, replaced the bass bar and
brought the instrument up to the then current standards for concert hall performance.
Physicist Savart encouraged him in this process to see what made it tick. While the
Messiah was apart, Vuillaume made enough careful measurements to permit making

Faber (2005, p. 116) presents a more prosaic version of this story: The color of the varnish was
quite different, as was the tone quality. But Paganini still liked it.
21Silverman’s account of the life of Luigi Tariso is very engaging, even if you don’t play the violin.
(His 1957 book also contains numerous color photographs of instruments from the Golden Age of
Cremona.)
22Skeptics note that Alard’s father-in-law (who bought and sold the Messiah several times) was a
master at building fake violins and might have been good at concocting fake stories to go with them.
At one point, suspicion of the Messiah’s authenticity arose from a tree ring analysis suggesting the
wood was cut after Stradivari died. However, a recent more thorough study by Grissino-Mayer
et al. (2004) implied that the tree rings dated between 1577–1687, well before the completion of
the Messiah in 1716. In the account by Silverman (1957, p. 45), Sister Francesca supposedly told
Tarisio of her grandfather’s “most perfect violin called Le Messie” on her death bed in 1809—
long before Tarisio met Vuillaume (1827) and still longer before Alard could have christened it
“The Messiah.” Another doubter, violinist Joseph Gold (private communication) thought that the
purfling on the instrument did not look up to par with the other work of Stradivari.
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Fig. 5.6 The 1716 instrument known as “The Messiah” alleged to have been regarded by
Stradivari as the finest violin he ever made and by Vuillaume as the most perfect violin he had
ever seen. It is claimed that the violin was never played, although Vuillaume replaced the bass bar
and it probably was played by Alard and certainly by Milstein (photo courtesy of the Asholean
Museum)

accurate copies. It is said that towns like Mirecourt in France and Mittenwald in
Germany then became centers of mass-production in turning out replicas of the
“Messiah.”23 (Faber 2005, p. 122) (Fig. 5.6).

23One wag commented that of the original 1116 Stradivari instruments made by the great master,
over 4000 still exist. According to the Hills, the Italians themselves began the habit of putting false
labels on these instruments, a tradition carried on by Vuillaume. According to Faber, the Messiah
is the most-copied violin in the world. In case you want to make one yourself, the Heinrich Dick
Company of Metten, Germany sells a kit with precut wood.
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Fig. 5.7 The earliest (1838) known cello by Giuseppe Rocca. This cello is one of very few with a
one-piece maple back (photograph courtesy of Eric Blot)

The Cremonese tradition did not end with the death of Ceruti in 1817. According
to Blot (2001, p. 158), Tarisio met one Giuseppe Antonius Rocca (1807–1865) of
Turin circa 1842 and showed him a number of Cremonese instruments, including the
famous Stradivari “Messiah” and the “Alard” Guarneri, perhaps for maintenance or
small repairs. Rocca was so impressed by these instruments that he went on to spend
the rest of his life copying them. In later years, he started adding small innovations
of his own. One striking aspect of his early cellos, not to mention his copies of the
Stradiveri and Del Gesu violins, was his penchant for one-piece backs of maple with
strong flaming. He evidently found sufficiently large pieces of maple even to make
cellos with both one-piece backs and top plates! (Fig. 5.7)

5.4 The Bowed String

“Everything should be made as simple
as possible, but no simpler.”

Albert Einstein

Except when the strings are plucked or hit with the bow, the excitation method
used on instruments of the violin family is quite different from those found in
the other stringed instruments that we have discussed previously. With bowed
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instruments, the string traditionally has been excited by frictional contact with
horsehairs fastened on a moving wooden stick. Although friction plays an essential
role in exciting the string, it is hard to provide more than an empirical description
of its action. The old notion, still taught by some violinists, assumes that the surface
of the hair has hooks and barbs spaced along its length that all point in the same
direction. The argument then runs that the hairs should be divided into two groups
of equal number and arranged in opposite directions before they are attached to the
wood of the bow. The supposition is that otherwise, the bow would only work in
one direction, producing either an “up-bow” or a “down-bow.”

The claim is actually nonsense. There are no significant “barbs” or other
asymmetries in the two directions. Microscopic examination shows that any such
protuberances are very small in amplitude to the extent they exist at all. (See
later discussion of bow hair.) Obviously, the main friction is provided by the rosin
violinists apply to their bows. If you don’t believe that, try drawing a tone in either
direction from an unrosined bow.

The motion of the bowed string consists of a series of “stick-slip” cycles as
illustrated in Fig. 5.8. There, we have assumed a steady-state waveform in which
the string at the bowing point moves at the constant upward velocity of the bow
until it reaches a point where the restoring force from the extended string exceeds
the frictional force. At that time, the string rapidly snaps back, launching a pulse (or
“kink”) that runs along the full round-trip length of the string. The transverse motion
of the string at the bowing point continues through zero amplitude until it reaches
a negative displacement such that the frictional force from the bow is just able to
grab the string once again and reverse the direction of motion. The magnitude of
the restoring force at the lower “grab” point is about the same as it was when the
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Fig. 5.8 The stick-slip model of the bowing process discussed in the text

string started to slip. In Fig. 5.8, T1 corresponds to the time out of the cycle that the
string is grabbed by the bow, and T2 represents the time during which the string slips
along the bow. The displacements above and below the time axis are about equal on
the average. (If they weren’t, the amplitude would build up uncontrollably in one
direction or the other.) The full period of one cycle is T = T1 + T2 and in practice,
T1 is much greater than T 2. The fundamental frequency is F0 = 1/(T1 + T2). The
motion of the string thus consists of a continuing series of stick-slip cycles that
are locked to the round-trip frequency (c/2L) for a disturbance launched along the
string and the motion of the string at the bowing point approximates a sawtooth
waveform in time. That locking process transforms the inharmonic nature of the
vibrating into one that is precisely harmonic.

As with the harpsichord and the piano, the general solution for the vibrational
motion of the string can be written in the form

y(x, t) =
∞∑

n=1

Ansin(nπx/L)sin(2πnF t) , (5.1)

where y(x, t) is the transverse displacement, L is the distance from the bridge to the
opposite point of constraint (the “nut”), and x is the coordinate along the length of
the string (here, measured from the bridge). The boundary condition that determines
the amplitude coefficients An is on the steady-state time-dependent displacement of
the string at the bowing point (x = P0 shown in Fig. 5.9). Those coefficients may
be obtained by Fourier analysis of the waveform at the bowing point.

5.5 The Helmholtz Model

Helmholtz (1885) gave an approximate solution to the problem by assuming
straight-line motion of the string at the bowing point (x = P0) over the two
portions of the cycle, an assumption that was compatible with his experimental
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Fig. 5.9 Relative coefficients
Cn computed for the
up-bowed string in Fig. 5.8.
As shown in the magnified
section, the harmonic
amplitudes oscillate in sign

measurements. The sawtooth motion of the string at that point may be written as
the Fourier series

y(P0, t) =
∞∑

n=1

Cn sin 2πnF0t (5.2)

where, as shown in Appendix B,24

Cn = − 2

n2π2

(
T

T1

)(
T

T2

)
sin

(
nπ

T2

T

)
. (5.3)

Here, the sawtooth waveform was normalized to the range −1 ≤ y(P0, t) ≤ +1
and the negative sign corresponds to upward bowing as shown in Fig. 5.8. Relative
values of the coefficients Cn are illustrated in Fig. 5.8. By appropriate choice of the
time origin, the need for a phase angle disappears, although the amplitudes vary in
sign with increasing harmonic number.

Comparing Eqs. (5.1) and (5.2) and substituting Cn from Eq. (5.3), it is seen that

An = − 2A

n2π2

(
T

T1

) (
T

T2

) sin
(
nπ T2

T

)

sin
(
nπ

P0
L

) n �= L/P0 . (5.4)

where A is the amplitude of the oscillation at the bowing point. (As with the other
vibrating string problems discussed earlier, it is assumed that A � L.)

The complete motion of the string is then determined by substituting Eq. (5.4)
into Eq. (5.1) and is illustrated in Fig. 5.10. As is apparent from Eq. (5.4), the
denominator vanishes when the string is bowed at the node for any harmonic. The
consequence of that apparent singularity may be avoided in practice by noting that
the particular value for An must be zero when the string is bowed at a node for a

24Helmholtz obtained an equivalent result in a somewhat different manner.
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Fig. 5.10 Motion of a violin
string at the point of contact
with the bow. (The diagram
illustrates the case where the
bowing is “upward” with
T1/T = 7/8 and
T2/T = 1/8), and
P0/L = 1/10, computed
from Eqs. (5.1) and (5.4). For
the up-bowed case, time starts
from the top. (Time starts at
the bottom for the
down-bowed case.) The
wiggles in the waveforms are
due to the omission of the
tenth harmonic

harmonic.25 Although the string motion becomes the driving force to produce sound
from a violin whose bridge is attached to the string, the spectrum of the vibrating
string alone is quite different from that which would characterize the sound of a
bowed instrument.

As noted before, one important consequence of the stick-slip mechanism is that it
forces the string motion to be precisely periodic at the round-trip frequency (c/2L).
Hence, the inharmonicity vanishes that was described in Chap. 4 in connection with
piano strings (see Eq. (4.7)) and which is present in any plucked stringed instrument.
That is, the waveform is forced to be precisely periodic by the stick-slip process and,
hence, is characterized by a pure harmonic series.

As can be seen from Fig. 5.10, the release of the string from the bow, which
occurs when the restoring force from the displaced string exceeds the frictional force
provided by the bow, results in a “kink” or pulse traveling in a closed loop of total
length 2L.

Because the string is clamped at both the nut and bridge against lateral motion,
hard reflections occur at both ends of the string, with the result that the “kink”
changes sign at each reflection. As noted by Helmholtz, the peak displacements of
the string during one cycle trace out parabolic arcs, as illustrated in Fig. 5.11. The
envelope is roughly what one sees by eye in looking down at a bowed string, because
the eye integrates the image over many cycles of the fundamental frequency.

25A more rigorous solution for that case was given by Raman (1918).
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Fig. 5.11 Parabolic arcs swept out by the peaks in the triangular waveform over one bowing cycle.
Here, the dark area was computed by superimposing the string trajectories for one cycle over
several hundred time increments. The white segments indicate the motion of the “kink” for the
up-bow process at one instant in time. Again, up-bowing was assumed and the same parameters
were used as in Fig. 5.10. The wiggles in the envelope are due to the fact that the string was bowed
at a node for the tenth harmonic, hence that harmonic was suppressed

5.6 The Real Bowed String

Although the Helmholtz model illustrates the main features of the bowing mecha-
nism, there are some aspects of the real problem that it ignores by necessity. These
have to do with such things as the string rolling on the bow, the fact that the string
motion undergoes acceleration during the bowing cycle and does not move in simple
straight lines, and the effect of bowing is strongly pressure-dependent. Further, the
variation in the frictional characteristics produced by rosin on the bow also adds to
the complexity. For example, the static (sticking) and sliding friction coefficients
vary differently with temperature above about 80 °F. The sliding friction coefficient
goes down whereas the sticking coefficient goes up. Infrared pictures of the string
heating during bowing show that the segment of bow hair in contact with the string is
about 25–30 °F warmer than the rest (Pickering 1991, pp. 69,70). Another difference
is that the intersection of a real bow with the string does not occur at a point, but
can be spread over a centimeter or so. For these various reasons, it is only practical
to examine the actual motion of real strings under normal bowing conditions rather
than rely on theoretical models. Pickering (1991) has provided the most extensive
collection of experimental data on real bowed strings known to the author. Using
a bowing machine and a digital measuring technique, he examined the motion of
a variety of string materials bowed at different pressures. The materials ranged
from gut through various metallic and metal-wound strings to orlon.26 Although
violin strings were often called “catgut” (indeed, there was even a violin journal of
that name), the gut strings of choice during Mozart’s time were made from sheep
intestines. It is said that the luthier’s house of that period reeked from the pungent
smell of boiling sheep guts.

26Pickering notes that the word chorde in Greek originally meant the intestines of animals, just as
the word gut means today.
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Leopold Mozart advised that all four strings on a violin should have nearly the
same tension. The only way to do that with gut strings is to increase the diameter
as one goes down in pitch (by about a factor of three in going from the E-string
to the G-string). Although gut has a large internal damping factor (which is its
principal virtue on bowed instruments),27 the large diameter required on the lower-
pitched strings increases the inharmonicity to intolerable levels. (See Eq. (4.5) of
Chap. 4 and related discussion.) For that reason, gut strings, if used at all, are now
often made with a narrow-diameter gut core and then over-wound with metal—
a process that Paganini carried out by using round metal wire that he sanded
flat. (For uncertain reasons—except perhaps that he was Italian, he also stored his
strings in olive oil.) As noted previously in the case of bass piano strings, the over-
winding technique increases the mass per unit length and makes the string more
flexible (hence, less prone to inharmonicity). According to Pickering (1993), the
most successful strings used on bowed instruments today are of a type using a core
of synthetic polymer strands that is often over-wound with aluminum or silver of
square cross-section. These polymers (forms of nylon, with trade names ranging
from the German Perlon to our Orlon) are roughly twice as strong as gut and can
be used with smaller diameter cores. If over-wound with a dense metal, they can be
still smaller in diameter. With this technique, rubbing by adjacent coils of the metal
helps to increase the damping factor.

Two interesting extremes from Pickering’s data are shown in Fig. 5.12. In neither
case does the bowed point on the string move in a simple straight line. It is clear
that the string is slowing down toward the top of the cycle in each case. In the upper
portion of the figure where the bowing pressure is greater by a factor of about 5.5,
the ripples in the waveform are much more pronounced because the bow is pushed
down in greater contact with the string. As with the ripples in the figures computed
earlier from the Helmholtz method, those in Fig. 5.12 are at least partly due to the
suppression of a harmonic by the presence of the bow—an effect that is much greater
at high bowing pressure. The ripples can also arise from torsional motion of the
string. Because the string was bowed at 2 cm out of a length of 32.8 cm, one might
expect the 16th harmonic to be suppressed. However, by counting the ripples, it is
evident that the suppression occurred at closer to the 11th harmonic. The reason
for that seeming discrepancy is that the bow hair had a width of about 1 cm, hence
the range of contact was from about 2 to 3 cm from the bridge. (32.8 divided by
3 is close to 11.) It is a straightforward matter to Fourier analyze data of the type
shown in Fig. 5.12, once it has been digitized. (See Appendix C.) In doing that and
then calculating the motion of the entire string, one would again find ripples in the
motion resulting from the missing harmonic. It should be emphasized that, as in the
case of the Helmholtz model, the Fourier amplitudes for the data in Fig. 5.12 would
have relatively little resemblance to the acoustic harmonics that would be produced

27In contrast to harpsichord and piano strings, a large damping factor is desirable for the strings on
bowed instruments. Here, in contradistinction to the keyboard instruments, one does not want the
tone to persist long after the excitation process has stopped.
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Fig. 5.12 Waveforms at the
bowing point (2 cm from the
end) made during a
four-second stroke at 15 cm/s
on violin A strings of 32.8 cm
length. Upper Figure: Light
steel core with aluminum
winding 0.485 mm in
diameter and a tension of
13.1 lbs with bowing force of
110 g. Lower Figure: Heavy
steel core with nickel winding
0.488 mm in diameter and a
tension of 17.5 lbs with
bowing force of 20 g (data
reproduced with permission
from Pickering 1991, p. 62)

when the string was attached to a violin. Obviously the presence of the vibrating
string drives the acoustic resonances and it is important to have lots of harmonics in
the waveform. But various air and wood resonances in the instrument predominate,
together with the effects of the bridge and bass bar in transmitting vibrations to the
violin top plate. Direct radiation from the surface of the violin also changes the tonal
color and directionality of the instrument.
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5.7 Basic Structure of the Violin

An exploded diagram of a violin (which in reality contains some 70 parts) is shown
in Fig. 5.13. The basic elements are essentially the same in the viola, cello and
double bass apart from differences in scaling. The main parts consist of a bottom
plate made of maple separated by a rib structure (usually maple) from a top plate
made of very thin lighter wood (usually spruce with the fiber running in the long
dimension of the instrument). Together these pieces comprise a resonant air volume.
The top plate, which is hollowed out and has a convex shape in the upward direction,
contains two f-holes placed symmetrically about the long dimension of the violin
on either side of the bridge which serve to couple sound from inside the violin
to the outside world and permit readjustment of the sound post. The exact shape
and area of the holes also tune the fundamental air resonance of the instrument
in a very approximate version of a Helmholtz resonator. (See Appendix A.) The
bottom plate is also hollowed out and is convex (to a lesser extent) facing in the
downward direction. The top plate, ribs and bottom plate are glued together with
small additional pieces of wood (the top block, bottom block and corner blocks)
that serve to strengthen the structure mechanically. Inlaid wood glued along the
periphery of the top plate and bottom plate called the purfling prevents the wood
of the two plates from splintering at the edges. Stradivari produced some of the
most elaborate inlaid carving for the purfling on his instruments of any of his
contemporaries.

Section of purfling from a Spanish viola made by Stradivari in 1696

The structure shown above the instrument in Fig. 5.13 holding the strings consists
of a tail piece (fastened through a covered loop of wire to a hub imbedded in the
bottom block), a bridge which couples the lateral vibration of the strings to vertical
motion of the top plate, a finger board above the top plate and neck of the instrument
which permits the performer to stop the string vibration at various lengths, a nut
which terminates the length of the open vibrating strings, and a hollowed out peg
box containing the four pegs (often made from boxwood) which permit tuning the
instrument by changing the tension on the open strings. In practice, violin makers
often apply graphite lubricant to the groves in the nut and bridge to facilitate the
string slipping over these regions during tuning so that equal tension is maintained
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throughout the string. The scroll at the end of the instrument is primarily of artistic
value but also provides a convenient place to hold the instrument or suspend it from
a wire.

5.8 Sound Coupling to the Top Plate

Coupling of the lateral vibration of the strings to the top plate occurs through a
rocking motion of the bridge as indicated in Fig. 5.14. The bridge pivots at a point on
the top plate near and above something known as the sound post. That post is placed
near and below the foot at the treble side of the bridge near the highest string of the
instrument. The post is positioned near, but behind the bridge foot, and close to a
nodal line for one of the resonant modes.28 Both the bridge and sound post are held
in place only by friction and the component of force from the string tension pushing
downward. The vibrational amplitude of the top plate increases with the torque
applied to the bridge by the transversely vibrating string, and the torque applied
to the bridge from the lateral force exerted by the bow increases with the height of
the bridge. Hence, one would expect the loudness of the instrument to increase with
bridge height for constant bowing force. However, increasing the bridge height also
means increasing the vibrating length of the string between the bridge and the nut,
hence requires that the tension in the string be increased to keep the pitch of the
open string the same. Such increased tension may detract from the tone quality of
the instrument. As well as providing a pivotal point for the rocking of the bridge,

Fig. 5.14 Positions of the bridge, sound post and bass bar in the assembled violin

28See Jansson et al. (1997).
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the sound post plays an important role in transmitting vibrations to the back plate
and in determining the fundamental resonant modes of the assembled instrument.
Known by the French as the “soul” of the instrument, the sound post requires critical
adjustment to get the best tone quality from the instrument. That adjustment, done
by listening to the sound of the instrument, involves locating the post at the right
node for vibrational resonances in the two plates. (See later discussion of the top
plate modes.)29

The other leg of the bridge rests at a point on the top plate that is above the bass
bar, a long piece of wood made of spruce glued to the underside of the top plate
that transmits vibrations from the bridge to the full length of the top plate. Although
the bass bar strongly couples the lower frequency vibrations to the top plate, it also
plays an important role in transferring energy from the higher harmonics of all the
bowed strings.30

5.9 The Bridge

The bridge is one important part of the violin that has changed markedly since the
time of Stradivari. His bridges were also made of hard maple, but with significant
differences in shape from the modern ones.31 (See Fig. 5.15.) A hole (either circular
or heart-shaped) introduced in the center of the Stradivari bridge was an aid in
alignment. One could run a string through this hole that attached to centered
positions at the ends of the violin. However, a large hole in that location attenuates
the high-frequency response of the bridge. As shown in Fig. 5.15, Paganini used a
substantially different bridge shape than other violinists. His bridge was flattened
enough so that he could easily sound three strings at once. According to Giordano
and Dilworth (2004), the bridge on Paganini’s Guarneri del Gesu “Cannon” was
very narrow—38 mm across the feet as opposed to 42 mm for a modern bridge and
the feet themselves were only 7.8 mm by 3.6 mm thick, as opposed to a thickness

29Another kind of “sound post” was invented by the Belgian cello virtuoso Adrien-François Servais
(1807–1866) who became so fat that he could no longer support the instrument between his knees
(the traditional method used since the time of the viola da gamba.) He designed an end-pin to
support the instrument on the floor, an innovation that has since been adopted by most modern
cellists. Faber (2005, p. 131) suggests that vibrations from the cello may be enhanced by coupling
through the end pin to resonances in the wooden floor of a stage.
30Because the main body of the violin is symmetric about the long dimension, it is relatively
easy to adapt the instrument to left-handed players merely by interchanging the bass bar and
sound post locations and reversing the bridge. Thus, for example, the left-handed Austrian violinist
Rudolph Kolisch (1896–1978), founder of the Kolisch Quartet, and Charlie Chaplin could easily
be accommodated. (Accommodating left-handed pianists would be much more of a problem.)
31Although modern bridges are generally made of hard maple, they sometimes contain a V-shaped
insert of still-harder ebony at the location of the E string to minimize the danger of that thin wire
cutting into the bridge.
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Fig. 5.15 Different bridges
(as seen from the fingerboard)

of 4.5 mm at that point on a modern bridge. There is evidence of the same type of
alignment pinhole used by Stradivari in the Guarneri del Gesu bridge on Paganini’s
violin. Although its location is marked on both sides, it does not go through the
wood and may have been filled in after the violin was made.32

Although Helmholtz (1885, p. 86) suggested that all of the sound was coupled to
the top plate through the same, single foot of the bridge above the bass bar, that idea
was wrong.33 With the help of luthier Hiroshi Iizuka, I investigated this question
further in the case of both a violin bridge and a viola bridge on instruments made
by him. Two identical piezoelectric pickups34 were mounted in various places. In
the preferred location in which the violin data shown below were taken, they were
mounted in the slots on each side of the bridge. In other instances, we tried mounting
the elements on the outer, flat sides of the bridge and then finally on the top plate
near the 2 ft of the bridge. The output voltages were fed into the two input channels
of a digital recorder while different notes were bowed on each of the strings of the
instruments. In none of these cases was there a significant difference encountered
between the magnitude of the voltages from the two piezoelectric elements.

With piezoelectric elements mounted in the slots on each side of the bridge, the
signal was characterized by sharp spikes at a repetition frequency characteristic of
the pitch of the note and the two pulse signals were clearly 180◦ out of phase.
(See Fig. 5.16.). This phase relationship should tend to excite modes that have
odd symmetry about the long axis of the instrument. The sharp spikes result from
Newton’s “Law of action and reaction” when the “kink” in the bowed waveform is
reflected by the bridge. (The bridge receives an impulse in an opposite direction to
that in which the kink is reflected.) However, the two vibrational pulses running
through the bridge to the feet occur in opposite directions, producing pulses of
opposite polarity. The relative polarity of the two pulses changes when the bowing
direction changes. Although the extreme low-frequency content was somewhat
higher from the side of the bridge above the bass bar, there was not a great deal
of difference between the spectra obtained in those two locations in either a violin
or viola bridge. (See Fig. 5.17).

32Acoustic data for some twenty-one different modern violin bridges was given by Atwood (1997).
33Cremer (1981), p. 206) suggested that the 2 ft of the bridge transmitted sound very differently
and that the bridge acts like an electric circuit with four input terminals and two output terminals.
34Model SH SV2 made in Erlangen, Germany and distributed by Shadow Electronics. These
elements are said to have nearly constant response within the audio band up to 20 kHz.
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Fig. 5.16 Diagram showing
the locations used for the
piezo electric elements on the
bridge

Fig. 5.17 Trace taken with a double beam oscilloscope showing the output voltages from
piezoelectric elements placed in the slots on each side of the bridge as shown in Fig. 5.16 when
an Iizuka violin was bowed on the open A string. The upper trace is from the element above the
bass bar. Note that the two sets of periodic pulses (resulting from the “kink” round trip cycle) are
approximately 180◦ degrees out of phase. Similar results were obtained on different notes on the
other strings

In addition to the rocking motion of the bridge, the bridge can also bend back
and forth slightly about an axis perpendicular to the strings. The side of the bridge
toward the nut is curved (“like someone with a puffed-out chest,” in the words of
Iizuka.) This effect (which can be minimized by skillful violinists) was observed by
placing the piezoelectric elements on the face of the bridge. The signal amplitude
was typically smaller in this case than that produced by the rocking motion by about
5–10 dB and the pulses from the two piezoelectric elements placed on opposite sides
of the bridge face were approximately in phase in this case.

One thing that strongly affects the overall bass response of an instrument is the
relative position of the treble foot of the bridge (on the right side from the player’s
point of view) with respect to the sound post. If this point is positioned directly
above the sound post (a location preferred by Isaac Stern in his later years35), the
higher frequencies are emphasized at the expense of the low-frequency response.

35Paul Arnold, private communication.
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That position may help the violin tone to be heard over a large orchestra in the
performance of a concerto. However, a more balanced result occurs when the treble
foot of the bridge is located about 1–1.5 sound-post diameters away from the center
of the post. In that position, the top plate is freer to vibrate up and down at low
frequencies. Another thing that affects the relative high and low frequency response
of the instrument is the amount of wood (or thickness) in the bridge. Low-frequency
coupling of the instrument to the air requires a relatively large motion of the top plate
up and down. In contrast, high-frequency coupling involves a smaller amplitude
excursion (Fig. 5.18).

Fig. 5.18 Spectra from the two piezoelectric elements mounted at opposite sides of the bridge on
an Iizuka violin bowed on the open G, D, A, and E strings. The bridge used was the lighter version
whose acoustic spectra are shown in Fig. 5.19 (the same Iizuka violin was used in each case)
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The presence of a large mass of wood in the bridge impedes the motion of the
bridge, hence, the less wood, the more bass response. (Placing a mute on top of the
bridge increases the mass and thus attenuates the sound.) In contrast, a smaller mass
of wood in the bridge does not impede the high frequency response as much. For
similar reasons, violins made with thick wood throughout tend to have very poor
bass response. The exact shape of the bridge (especially the height) is often cut
to match the tastes of individual performers. Relatively small changes in the mass
and shape of the bridge can have large effects on the sound produced. For example,
the two sets of acoustic spectra shown in Fig. 5.19 were obtained from bowed open
strings on the same Iizuka violin played by the same violinist (Paul Arnold) before
and after about 0.2 g were removed from sides of the bridge. The effect was not
huge, but was certainly noticeable in the spectra and sound of the instrument.

5.10 Bass Bar

Sacconi remarked that every Stradivari instrument he had ever worked on had had
the bass bar replaced. He went on to say that the bass bar actually wears out after
some 5–20 years of playing and has to be replaced for that reason. Surprised by
that comment and being aware that removal of the top plate to get at the bass bar
was an inherently risky and delicate operation, I sampled the opinion of two other
contemporary experts on that matter:

According to one New York luthier, the main thing that needs adjustment from
time-to-time is the sound post, whose position depends critically on the position
and size of the bridge and its location with respect to the bass bar. He felt that many
instruments, including very old ones, never need to have the bass bars replaced.
Sometimes they are replaced when the instrument doesn’t sound as good as it might
to the owner or when there is some warpage of the top plate. At other times it
might be replaced when it is found to be improperly positioned. For example, some
instruments became severely stressed in changing from gut to modern higher tension
strings and may have required a new or stronger bass bar for that reason (Fig. 5.20).

Instrument maker Hiroshi Iizuka agrees with the notion of replacing the bass
bar under some circumstances. In new instruments (as opposed to the repair of
old violins) he has replaced the bass bar after it had been in for a while with an
improvement in sound quality. Similarly, it makes sense to replace the bass bar in
old instruments that have too large or too small a bass bar. He notes that there is also
controversy regarding whether the bass bar should be installed under tension. In an
old instrument he would not fit a new bass bar under tension unless the arching is
sagging and seems to require additional support. He does install the bass bar with a
little tension in new instruments in order to counteract the downward pressure from
the string tension through the bridge against the arching of the top plate and to give
some extra “punch” to the sound.
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Fig. 5.19 Spectra on open strings before and after 0.2 g of wood were removed symmetrically
from the two sides of the bridge. Note that the acoustic spectra shown here for the lightened bridge
are quite different from the vibration spectra for the same bridge and violin shown in Fig. 5.14



5.11 Violin Construction 175

Fig. 5.20 Under-side of a
1709 Stradivari top plate
showing the location of the
bass bar (long piece of wood
at the bottom) and of the
sound post. (black circle at
the top) (after Sacconi 2000)

5.11 Violin Construction

The comment is occasionally made that physicists tend to over-simplify the design
of instruments such as the violin in order to provide models that are mathematically
tractable—a process that at least dates to Felix Savart of the Biot-Savart Law in
electromagnetic theory. (Savart worked closely with Vuillaume and supposedly took
apart several dozen Stradivari instruments to see what made them work.) At the
other extreme, the makers of fine violins are generally much too busy to bother
explaining what they are really doing and primarily employ empirical methods
to improve the quality of their instruments. The philosophy of the present author
is to try to describe the actual physical properties of the best instruments, rather
than to emphasize very approximate physical models. For that reason, the main
emphasis here will be on instruments of the Cremona School, or at least those
modeled after the Cremonese instruments because they seem universally regarded
by musicians as the best ones made. That is not to say that there weren’t great
violin makers that arose in other countries—for example, the Austrian genius Jacob
Steiner (1621–1683), a contemporary of Nicolò Amati who created the Austro-
German School of violin making, Matthias Klotz (1656–1743) who founded the
violin-making industry in Mittenwald, and Jean Baptiste Vuillaume (1798–1875)
of Paris, the most prolific violin maker of all time. It is estimated that Vuillaume
made about 5000 violins in his lifetime. (Of course, he had a large team of helpers.)
Fortunately, I developed a very helpful friendship with an expert violin and viola
maker from Narberth, Pennsylvania named Hiroshi Iizuka,36 who apprenticed with

36After an initial apprenticeship in Tokyo during the 1970s, Hiroshi Iizuka spent some 4 years as
an apprentice to a well-known Yugoslavian expert named Josef Kantuscher, who had settled in
Germany. After his years as an apprentice, Iizuka moved to Narberth, PA where he set up his shop.
He brought with him a lifetime supply of Balkan maple and Dolomite spruce and has made some
265 instruments over the past 25 years. Michael Tree told me that he thought Iizuka’s violas were
just as good as any of the famous Italian instruments. He feels that young musicians make a bad
mistake by going into debt to buy over-priced old instruments when much cheaper and equally
good ones are being made by contemporary craftsmen.
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Fig. 5.21 Luthier Hiroshi Iizuka in his workshop

Josef Kantuscher in Mittenwald, Germany and was very familiar with the traditional
techniques of the great Italian masters (Fig. 5.21).

Iizuka, himself, has supplied his instruments to such people as violists Michael
Tree of the Guarneri Quartet and Steve Ansell Principal Violist of the Boston
Symphony and of the Muir Quartet, not to mention members of the Philadelphia
Orchestra and the Berlin Philharmonic. He is perhaps best known for his original
design of a very powerful viola of especially rich and warm tone quality. His violas
are of a symmetric shape (about the long axis of the instrument) and are designed to
make it easier for the player to reach the fingerboard. They contain an indentation
where the instrument rests near the neck of the performer and have a rounded
trapezoidal shape where the fingerboard begins. Nevertheless they contain about
the same air volume (hence primary air resonance) as a more conventional large
viola. His design is slightly similar in those features to the Italian viola da braccio
of the baroque period, but is of a more modern appearance. He also makes violins
and an occasional cello. Among the musicians from the Philadelphia Orchestra who
use his instruments is violinist Paul Arnold, who demonstrated both an Iizuka violin
and a viola for me during research in preparation for the present chapter. In Iizuka’s
shop, Michael Tree of the Guarneri Quartet was able to produce an astounding sound
level of 85–90 dB on the C string of one of Iizuka’s violas! (Normally, the viola is
the weakest sounding instrument of a string quartet.) (Figs. 5.22 and 5.23).
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Fig. 5.22 An especially powerful viola designed and made by Hiroshi Iizuka

Fig. 5.23 Spectrum from
open C on one of Iizuka’s
violas played by Michael
Tree. Going up the scale
produced about 90 dB on the
resonance near F#

5.12 The Role of Wood

The first requirement for a good instrument is carefully chosen and well-seasoned
wood. Stradivari, like most of the other makers from Cremona, had an open shed
to permit drying the wood (generally for periods of at least 3 years and in some
cases over 20 years) on top of his house. Later experiments using artificially applied
heat to accelerate drying carried out by Vuillaume turned out disastrously: the wood
continued to change dimensions long after the violin had been made. According to
Heron-Allen, others who tried steaming, steeping, stoving, boiling and baking the
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Fig. 5.24 Supply of Dolomite spruce and Balkan maple Iizuka brought with him from Europe
some 25 years ago. The well-seasoned wood he uses is similar to that employed by the great
Cremonese luthiers. (Photograph by the author.) Grissino-Mayer and Burckle (2003) recently
suggested that the Cremonese makers might have been assisted by the “Little Ice Age” that gripped
Europe from the mid-1400s for the next 400 years and slowed tree growth generally, producing
spruce with unusually dense spacing. This “mini ice age” reached its coldest point from 1645
to 1715, an era known as the “Maunder Minimum” (after the astronomer E.W. Maunder, who
documented the lack of solar activity during that period). That period was coincident with the
lifetimes of Andrea Amati and Antonio Stradivari

timber, in addition to treating it with spirits, caustics and acids also experienced
poor results compared to the natural aging approach. Iizuka, in the fashion of the
famous makers from Cremona, stores quarter-cut samples of wood in wedge-shape
form of the dimensions required to economize on space. (See Fig. 5.24.) No basic
improvements in the material for the violin body have been discovered since the
time of Andrea Amati, although different makers have tried an astounding variety
of things (e.g., leather, paper mâché, copper, silver, steel, glass, fiberglass and even
concrete!)—generally with very poor results. Of the various shapes tried, ranging
from pear-shaped violins through violins with a trumpet-like horn protruding from
the air chamber to the flat trapezoidal model with straight “f-holes” designed by
physicist Félix Savart,37 the basic original design by Andrea Amati has prevailed.

37Plans of the Savart violin are given by Heron-Allen (1855), pp. 117–120. The instrument looks
more like a balakaika than a violin. Savart’s reasoning was that a flat top-plate would radiate sound



5.12 The Role of Wood 179

As discovered by Andrea Amati, wood with fairly uniform, closely-spaced and
symmetric grain spacing running in the long dimension is best for the top plate. As
with many of the Cremona masters such as Andrea and Nicolò Amati, Stradivari
and Guarneri del Gesu, Iizuka usually uses quarter-cut (radial-cut) spruce for the
top plate (or belly) which gives a highly symmetric grain pattern when opened up
like a butterfly’s wings and Balkan maple for the bottom plate. The Hill brothers
(1902, p. 161) note that neither Nicolò Amati nor Stradivari were able to afford the
more exotic Balkan maple until late in their careers. However, according to Farga,
Andrea Amati was well-off enough financially to permit using Balkan maple, which
was supplied by the Turks and available on the Venice market, early in his career. It
is said that the Turks unloaded a lot of this maple on that market with the malicious
hope that it would be used to make oars for warships; the strong “flaming” resulted
in weak pieces of wood that would easily break under stress. Luthier Iizuka (private
communication) has found that violas and cellos made with backs having strong
flaming tend to be slightly deficient in low-frequency response. Maple weakened
in this way probably is less resilient in reflecting low-frequency sound waves.
Although the flaming marks in maple are often described as the result of variable
light reflection, there are palpable indentations in the wood where the pattern occurs,
and the flaming bands often produce bumps in the bark (The phenomenon is not
confined to maple, but also is found occasionally in other woods such as ash and
oak.)

Flaming (alias “curly,” “tiger-striped,” or “wavy-grain” figure) results from
waves in the grain direction at nearly right angles to the longitudinal axis of the
board. Split faces will show these waves on the radial face and usually on the
tangential face as well. When the grain corrugations are close and abrupt, the
resulting pattern is called “fiddleback figure,” because of the common use of such
figured maple in violin backs. “Flaming maple” is of the species known as pseudo
plantanus. Most experts I consulted were unable to explain why the phenomenon
occurs. The most believable suggestion is that these marks are induced by strain
when a tree bends in the wind. Leaf growth results in increased wind resistance
and would provide an annual periodicity in the strain. Voichita Bucur (C. Hutchins,
private communication) has found a genetic aspect to the effect: seeds from maple
trees showing the effect result in trees that also have a flaming pattern.

Although Loen38 is skeptical of this argument, one would nevertheless expect
that slower growth of the wood would produce spruce similar to that only found

more efficiently than a curved one. Further, with the flat geometry, the “f-holes” no longer need to
be curved and could be made without cutting the long fibers in the wood that he thought tended
to vibrate more efficiently at low frequencies. The violin was also cheaper and easier to make.
Although a panel of “experts” (including Savart’s colleague Biot) thought it compared favorably
with a Cremona masterpiece, most audiences disagreed.
38Loen (2004). Also see Schneider 2004, and Kolbert 2005.
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Fig. 5.25 Close grain
structure in the top plate of a
viola made by Hiroshi Iizuka
of 30-year-old quarter-cut
dolomite spruce from the
Italian Alps. See Figs. 5.26
and 5.27 for the method used
to cut the wood (photograph
by the author)

Fig. 5.26 Quarter-cut
Dolomite spruce and Balkan
maple and slab-cut Balkan
maple. The grain is vertical in
each case, although the
“flaming” in the maple
samples is nearly horizontal
(photograph by the author)

now in the mountainous areas. (See Fig. 5.25 for an illustration of the fine grain
structure in such a sample of dolomite spruce.) Sunspot activity (indicative of solar
emission) was typically under 20 per year in the fifteenth century, whereas it went
up to about 75 per year during the twentieth century. Of course, the more recent
global warming is also dependent on complex interactions of solar radiation with
gases in the atmosphere (Fig. 5.26).

The advantages of quarter-cut (or wedge-shaped segments) in providing sym-
metric grain patterns parallel to the long dimension of the violin will be evident
from the left side of Fig. 5.27. As shown at the left, quarter-cut (radial, wedge-
shaped segments) are cut from the tree and then sliced in half radially to provide
the top and (often) the bottom plate. The outer (bark) sections are then planed flat
and perpendicular to the radius, and the two pieces are opened as a butterfly would
open its wings. The outer (thicker) portions are then glued together, providing a
highly symmetric grain pattern about the radial mid-line and running parallel to
the long dimension of the instrument. With slab-cut maple, shown at the right, the
entire bottom plate is laid out on a single original piece of wood, again with the
grain running vertically. The “flaming” from annual growth in tree height, which
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Fig. 5.27 Portions of a tree used to provide quarter-cut and slab-cut wood

makes the maple bottom plate so attractive, is in a slanting horizontal direction. The
old Italian masters were fond of using slab-cut maple for the backs of violins and
violas when suitably large pieces of wood could be found. As will be evident from
the geometry involved in Fig. 5.26, it is much easier to produce a bottom plate of
large width by joining two pieces of wood back-to-back, a technique often used by
the old masters.

Annual tree growth occurs in a series of conical shells that are coaxial in the
vertical direction. (See Fig. 5.28.) The outer edge of each shell intersects a tree ring
if a lateral section is cut through the tree near the base. These shells mark the outer
boundary for each year’s successive growth of the tree. Sawing vertically in the
radial direction exposes wood in which the grain runs in nearly straight vertical
lines from the ring pattern produced along the edges of the growth cones. However,
a slab cut perpendicularly to the radius near the bottom of the tree and slanting away
from the vertical axis intersects the growth-cone surfaces in quasi-horizontal lines
called “flaming”—the colorful horizontal bands that cross the conic sections and
are related to vertical tree growth. In the case of contemporary Balkan maple, these
bands can be ≈ 3/8 in. wide and separated by ≈ 3/4 in. The flaming pattern is
most striking in red maple.39

39Illustrations of grain patterns obtained by numerous different saw cuts are given by Berlyn and
Richardson (2001).
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Fig. 5.28 Growth patterns of
a tree. The numbers represent
successive years of growth
(after Robbins and Weier
1950)

5.13 The Top and Bottom Plates

As with harpsichord and piano sound boards, spruce provides a suitably flexible
membrane to transform the string vibrations into motion of the top plate perpendic-
ular to its surface. The close-spacing of the fiber also results in vibrational mode
patterns in the top plate that are elongated in the fiber direction. (As discussed
before, the velocity of sound in the wood is faster by a factor of about three in
the fiber direction than perpendicular to it; see Table 1.2 of Chap. 1.) It is probable
that this results in more efficient coupling of plate vibrations to the air because of
the narrow, elongated nature of the instrument. Maple was generally chosen for the
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back plate in violins and violas because it is a hard wood, reflecting sound back into
the violin cavity efficiently, and because it provides decorative beauty through the
flaming marks in its texture. (Vibrations in the back plate are also coupled from the
top plate through the sound post.40) The great Cremonese makers preferred maple
from the Balkans (near Sarajevo) because it was harder, lighter, and more resilient
in reflecting sound than that grown in western Europe. [See Sacconi 2000, p. 56.]

In making the top and bottom plates, only hand tools (chisels, gouges, planes,
knives, and scrapers) are used for the initial shaping (Fig. 5.29). Stradivari used old
sabers to cut with because of the high quality of their steel. For finer shaping, thin
sharp-edged blades are employed that are bent at about 45◦ at the honed edges to
provide a burr used to cut the wood fibers. The object is to cut the fibers in the
direction of the grain without injuring them laterally. (The technique is very similar
to that used by oboists in shaping their reeds.) Although the task of reducing a
nearly half-inch thick slab of maple to a curved surface about 5 mm thick sounds
Herculean, Iizuka says that the rough shaping can be done with sharp gouges in
about 2 h. But smoothing out the surface takes another 6 h. (The top plate made of
spruce is much softer and takes far less time.) Finer finish of the top and bottom
plates was obtained by Stradivari and the other Cremonese craftsmen by using the
sharp ridges in dogfish skin and a kind of horsetail “grass” (asprella or equisetum)
that grew along the rivers and canals in the outskirts of Cremona. Botanists note
that Horsetail is closely related to ferns.41 (It reproduces with spores rather than
seeds.) The samples I’ve seen consist of segmented hollow stems 1–3 in. long
between joints and about 0.35 in. in diameter with ridges running lengthwise that
have abrasive qualities. Slitting the horsetail lengthwise permits unrolling it into flat
strips that may then be used like fine emery paper in the fiber direction without
the danger of bruising the wood fibers laterally. It’s scientific name is Equisetum
hyemale, but is sometimes called “scouring rush.” (Early American settlers used it to
clean their cooking utensils.) Horsetail looks identical to the plant material that some
clarinetists have erroneously called “rush”—an entity that could be picked along the
railroad tracks bordering swampy areas in the New Jersey meadows. (“Rush” used
to be sold at Linx and Long’s Woodwind Store on 48th Street in New York City for
about 25 cents a piece.) But real rush (“Juncus”) does not have joints or a rough
exterior and is a seed plant. Horsetail is an evergreen and, ironically, is poisonous to
horses. The plant is easy to grow in almost any shady, moist environment. To use it
for polishing violins, Iizuka soaks the horsetail in water and then slits it lengthwise
and unrolls the plant into flat strips. After drying, he glues the back to paper.

According to Sacconi (2000), Stradivari also immersed both the dogfish skin and
the horsetail in water and then dried the pieces in cotton cloth before use. Iizuka uses

40This interpretation, given by William Huggins in his 1883 paper (see Helmholtz 1885, p. 86
footnote), is a slight oversimplification. As shown by Savart, a major role of the sound post is in
defining the nodes for top plate resonances. (See later discussion of top-plate modes.).
41I am indebted to botanist Dr. Frone Eisenstadt for a helpful discussion of the properties of
“horsetail.”
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Fig. 5.29 Top (upper) and
bottom (lower) plates for a
violin being carved by
Hiroshi Iizuka. Note the
flaming in the bottom plate
(photograph courtesy of
Iizuka)

shark skin as well as “horsetail” for the same purpose. The expert makers never use
sandpaper because the random orientation of the cutting particles in that medium
would tear the wood fibers laterally rather than cutting them cleanly in the fiber
direction.

Sample of horsetail, alias “scouring rush”

The polished surfaces of curvature in the top and bottom plates are obtained
entirely by hand and the final adjustments of each plate are made by listening to
the “tap tones” produced when the plate is rapped by the knuckles or tapped by the
fingers of the craftsman. According to Faber (p. 114), Felix Savart concluded from
the Vuillaume dissections that the dominant tap tone on the back plate of a Strad
was always a semitone higher than the one on the top plate. One way the resonant
frequencies of a plate were determined was by supporting it at the intersection of
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two nodal lines—for example, by resting the plate on a piece of cork at that point and
pressing down on it with a finger while tapping or bowing at the edges. The resonant
frequencies were then adjusted by varying the thickness of the plate. Those of a free
plate will be rather different from those from a plate that is clamped along the edges.
However, the rib section is generally made of very thin wood that probably does not
serve as a very effective clamp for the plate vibrations. Nevertheless, violin makers
also note that very poor tone quality results when the rib section is made of thick
wood.

It is natural to suspect that the shape and thickness of the top and bottom plates
have a large effect on the tone quality of an instrument. According to Sacconi
(2000), who had measured numerous instruments by Stradivari, the belly (top plate)
thicknesses were typically about 2.3–2.5 mm and did not vary appreciably over the
curved surface. The center portion between the f-holes is flattened where the feet of
the bridge are positioned. As discussed before, the bass bar is glued to the underside
of the top plate passing below the bass foot of the bridge. Animal glue (or “hide
glue”) is used on all glued joints to permit taking the instrument apart for later
repair.

5.14 Thickness Graduation Maps

Jeffrey Loen (2003, 2005) has determined thickness maps for the top and bottom
plates of a very large number of violins by Stradivari and other makers. Although
Sacconi presented some data of this nature, it was seldom clear to what instruments
they referred. The thickness graduation measurements reported by ? represent the
most comprehensive results currently available. This tome contains data taken by
Loen and his colleagues over a period of 5 years. It is displayed in a series of
computer-generated contour maps in color that are particularly easy to read. The
measurements were made using a magnetic gauge (Hacklinger Gauge) in which
a small counter magnet is moved about inside the instrument and attracted by a
magnet on a spring with a calibrated scale. Although not as accurate in principle
as a mechanical caliper, it is more practical to use with instruments that cannot be
taken apart. Loen estimated his errors in measurement were about 0.1 mm over the
range from 1.0 to 4.0 mm and about 0.3 mm for greater than 4.0 mm thicknesses.
He checked the accuracy of his gauges occasionally using wood strips of known
thickness. His measurements were with a contour interval of 0.25 mm and the plates
were displayed as viewed from outside the surface. An example of his technique is
shown in Fig. 5.30 for both a violin and a cello made by Stradivari in 1697.

Stradivari’s early violins had spruce top plates with thicknesses in the order of
2.4 mm (about a tenth of an inch!), with relatively little variation over the surface. In
his early period, he stuck to a symmetric arrangement of the thickness in the top and
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Fig. 5.30 Thickness maps for a violin and cello made by Stradivari. Reproduced from Loen (2005,
p. 28) by permission
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bottom plates of the violin and made violins in the style of Andrea Amati.42 The
maple back plates in early Stradivari instruments were thickest in the center region
between the two f -holes (typically, in the order of 4 to 5 mm), but in the “Golden
Period” (starting after 1700) there usually was a strong asymmetry. Measurements
of later “Golden Age” Stradivari violins by Loen (2002, 2003) showed a distinctive
“bull’s eye” pattern on the back, with the thickest portion off-axis (under the bass
bar) in contrast to the longitudinal “back-bone” structure of many other makers.
In the period of the “Messiah,” small regions of the top plate were thinned out
deliberately as if Stradivari were trying to enhance particular vibrational modes.

Other parts of the violin are made from different woods. Generally, Stradivari
carved the scroll, neck, and peg box (which require unusual strength) out of one
piece of quarter-cut maple. The ribs on violins were always of maple (often slab-
cut showing flaming lines), but for violas and cellos Stradivari also used poplar and
willow. The ribs had a thickness of about 1 mm and were bent to shape using dry
heat (almost to the point of burning) with a curved iron. Stradivari placed a leaf of
lead on top of the wood and bent it together with the heated wood to protect it. (He
didn’t have to worry about the Environmental Protection Agency.) The ribs were
then glued to the six (willow or spruce) blocks of wood, using a mold to position
them accurately. (Rib liners made of 2 × 8 mm strips of willow or spruce were glued
to the ribs after the shaping of the belly and back had been completed.) The bass bar
was made of spruce with an annual ring spacing of about 1 mm and positioned to
pass under the left foot of the bridge (made from maple) with its external edge about
1 mm inside the foot of the bridge. In order to keep the instrument light and reduce
damping of the resonances Stradivari used willow for the fingerboard, although he
covered it with a veneer of ebony. Of course, as the Hill brothers have pointed out,
not all Stradivari instruments are good.

5.15 Vibrational Modes and Resonances

5.15.1 Modes of a Thin Membrane

As a first approximation to the vibrational modes of a violin top plate, one might
simply regard the plate as a thin membrane. The simplest case to treat analytically
would be a rectangular shape clamped along the edges. As shown in Appendix B,
the resonant modes in that case take the form

Z(x, y, t) = sin(nxπx/Lx) sin(nyπy/Ly) cos(ωnx ,ny t) , (5.5)

42Other measurements for an enormous number of Stradivari instruments are contained in
Appendices III–V of the Hill brothers (1902) biography.
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where Z(x, y, t) is the amplitude of the vibration at the point x, y at time t . The
basic shape of the modes is seen by letting t = 0 in Eq. (5.5). The expression gives
rise to a whole family of vibrational modes that are dependent on the integers nx ,
ny . Several of these are shown in Fig. 5.31. Here, the angular frequency ω (= 2πf ,
where f is the cyclic frequency) of a particular mode is determined by the integers
nx , ny which take on the values, 1,2,3,. . . , and by the tensions (or stiffness) and
lengths of the membrane in the x and y direction, Lx , Ly . Even for equal tension in
the two directions, the frequency has a somewhat complex dependence on the above
quantities given by

ω = πc

√(
nx

Lx

)2

+
(

ny

Ly

)2

(5.6)

where c is the surface wave velocity (not to be confused the velocity of sound in
air). Each mode has a different frequency dependent on the two integers nx , ny ,
the two lengths Lx , Ly , and the running wave velocity, c. (See Appendix B for the
derivation of these equations.) It is easily seen from Eq. (5.6) that these modes are
not harmonically related unless very special values of the parameters are chosen.

The modes shown in Fig. 5.31 would be similar to those in the top plate vibrations
of a cigar-box instrument—say, one in which a piece of paper was glued to the top
edges under tension. In a square cigar box, the 1,1 mode (having equal integers in
the x and y directions) would tend to radiate equally in all directions. However, in
an actual violin that mode would be substantially distorted by the effects of the off-
center bass bar and sound post, not to mention the differences in wave velocity in the
membrane between the two directions. With a closed cigar box, the 2,1 mode would
tend to be dominant because of its odd symmetry and because it would produce
the least resistance against compressing air in the volume below the top plate. As

Fig. 5.31 Representative modes of vibration in a thin rectangular membrane somewhat related
to those of a violin top plate. The numbers below each mode pattern correspond to values of the
integers nx , ny , in the x and y directions. The black and white portions of the figures correspond
to out-of-phase vibration. For example, if black stood for a positive amplitude up out of the page,
white would represent a negative amplitude going down into the page. The 1,1 mode amplitude
alternates between vibrating upward above the plate and downward below the plate
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one side went up, the other would go down, resulting in no net air compression. It is
analogous to the sloshing mode for liquid in a teacup. As well as being the dominant
mode in the system, the 2,1 mode would give rise to radiation approximating that
from a dipole and, hence, would tend to carry farther in directions perpendicular
to the long axis of the instrument. The 2,2 mode would give rise to quadrupole
radiation, and so on. (See the discussion of radiation patterns in Chap. 1 and the
section with that title in this chapter.)

5.15.2 Modes in Violin Top and Bottom Plates

The modes in a real violin top plate are substantially different due to the curved
boundaries, the difference in wave velocity in the two orthogonal directions, the
outward arching, and the thickness variation in the plate. The higher wave velocity
in the fiber direction adds further to the complexity and the “thin” membrane
approximation would also tend to fail. It is obviously more practical to measure
the modes in a real violin top plate than to try to calculate them.

E.F.F. Chladni (1809) devised a technique for studying vibrational modes in
plates. By sprinkling sand on them and then bowing the plate at the edges, the sand
would bounce around on the plate until it landed on non-vibrating nodes. In that way,
the nodal lines surrounding the amplitude maxima or minima in a vibrating mode
were outlined. Studies of vibrational modes in violin top plates were made by a large
number of physicists, ranging form the early work of Felix Savart on Stradivari
instruments using sand to illustrate Chladni patterns in the vibrating wood (see
Savart 1819) through that of Carleen Hutchins (1981) in which she suspended the
top or bottom plate over a loudspeaker hooked to an audio oscillator and sprinkled
the plate surface with small aluminum particles (“sprinkle”) so that the nodal lines
could be easily seen and photographed. However, this approach is only practical for
studying the inside patterns on these plates. (Because the top and bottom plates are
convex outwards, the particles would roll off the outside surfaces during excitation
of the normal modes.)

Experimental studies of surface vibration modes generally tend to map out
the nodal lines between maxima and minima in the vibrations, rather than the
peaks and valleys. Hence, they do not usually show the phase relations between
different portions of the vibrating surface contained in Fig. 5.31. One, of course,
can infer what those relations must be in many cases. Most studies have been
made using freely suspended top and bottom plates. (Saunders (1998) and Hutchins
1981.)43 Except for the early work of Savart and Vuillaume, really great violins

43See Hutchins (1983) for a review of early research on violins. A massive review of Research
Papers on Violin Acoustics has been given in two volumes, compiled and edited by Hutchins and
Benade (1997).
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Fig. 5.32 Nodal lines for the first three violin top plate modes (left) and first three bottom plate
modes observed by Carleen Hutchins (reproduced from Hutchins (1981), by permission of the
author)

were not generally studied. Several representative violin top-plate and bottom-plate
resonances measured by Hutchins are shown (Fig. 5.32).

The boundary conditions in a real violin are quite different from those for a freely
suspended plate. The top plate is glued to the rib structure and that in turn is glued
to a relatively stiff bottom plate. In addition to the bass bar, the assembled violin
has a sound post that forces a node in the surface vibrations where it is in contact
with the top plate and bottom plate of the instrument. (Savart concluded that the
main acoustic role of the sound post was to force a vibrational node at its location—
hence to select particular modes of vibration—rather than just to transmit vibrations
from the top plate to the back plate as had previously been assumed.)

There are numerous resonant modes in the wood of the assembled violin, viola
and cello in addition to those in the top and bottom plates and rib structure. Some
are a little surprising to the novice, such as the bending mode of the tail piece and
fingerboard about an axis through the end of the main body of the instrument. Since
there is a tendency for the fingerboard and neck to bend back under tension from
the strings, stability of the instrument is improved by making the neck surface a bit
convex (instead of flat) and to make the fingerboard gluing surface to fit. Of course,
the use of well-seasoned wood is extremely important.

5.16 Air Cavity Resonances

5.16.1 The A0 Resonance

It used to be thought that there was only one important air resonance in the
violin (often labelled “A0”) and that this so-called “breathing mode” resembled
a Helmholtz volume resonance coupled to the outside world through the f-holes.
Sacconi (2000) reported that this air resonance was tuned to B below middle C
(about 247 Hz) in all 350 instruments by Stradivari that he examined. (Of course,
one should note that A was lower in pitch than 440 Hz by about 5 Hz in the time
of Sacconi and by nearly 30 Hz in the time of Stradivari.) Some modern instrument
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makers monitor that mode by blowing across an f-hole as they would across the
mouth of a flute or by humming into the instrument.44 If one is to treat the A0 air
resonance of the violin or cello as a Helmholtz resonator, it is necessary to know
the volume of the instrument and the area of the f-holes in order to calculate the
resonant frequency. Although it is a straightforward matter to determine the area
numerically, how do you determine the volume without destroying the instrument?
Certainly filling it with water is out of the question So I asked my luthier friend
Hiroshi Iizuka the question. His reply was Confucius says, “Use our precious rice!”
He went on to say that violin makers actually do use rice to clean the insides of
their violins.45 Of course, the other difficulty is in determining the length L of the
effective cylindrical neck of the equivalent Helmholtz resonator. The thickness of
the top plate around the f-holes of a Stradivari violin is typically only about 2.5 mm.
As a very rough approximation, we could simply take the entrance cylinder of the
equivalent Helmholtz resonator to have a length L ≈ 2.5 mm, and an area equal to
that of the two f-holes combined. I calculated the area of the f-holes and of the top
and bottom plates for a typical 1700-vintage Stradivari violin by weighing pieces of
heavy cardboard that had been cut out from enlarged tracings of the scale drawings
given by Sacconi (2000). This procedure gave a combined area for the two f-holes of
A ≈ 9.2 cm2 and a total air volume in the cavity of V0 ≈ 2320 cm3. (Using the “rice
method,” Iizuka found a volume of about 2 L in one of his violins.) From Eq. (A.68)
of Appendix A, we might then expect the frequency of dominant A0 air resonance
to be

f0 = c

2π

√
A

LV0

where c is the velocity of sound. Substituting my estimated values for A, L, and
V0 with c ≈ 34,400 cm/s (from Table 1.2 of Chap. 1) gives a resonant frequency
of about 689 Hz. That result is too high by a factor of about three from the
Sacconi’s measured values of the dominant air resonance in Stradivari violins. The
approximation for the effective length of the entrance cylinder of the Helmholtz
resonator is probably the main source of error, however the complex shape of the
volume is no doubt also involved. The length L ≈ 2.5 mm (based on the thickness
of the top plate) is seemingly too small by a factor of nearly eight! The formula for
the Helmholtz resonance is apparently only of semi-quantitative value in the case of
the violin. Increasing the volume should bring the resonance down and increasing

44See Carolyn Wilson Field, “Tuning the B0 Mode in Four New Violins,” in the Journal of the
Catgut Acoustical Society Retrospective Issue (Op. Cit., 2001), pp. 60–61. In that same issue
(pp. 57–58), Carleen Hutchins describes the advantage of adjusting the A0 air and B0 wood modes
to the same frequency.
45He added that you wouldn’t believe how dirty the inside of a violin can sometimes be. If you’re a
good detective, you can tell the lifestyle of the owner, or even tell where the musician has traveled.
Upon taking old instruments apart, you sometimes find large balls of fuzz that have rolled around
inside the instrument gathering dust and dirt.
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the area of the f-holes should bring it up. However, the frequency varies very slowly
with these quantities. The A0 mode corresponds to one in which the top and bottom
plates move in opposite directions, resulting from the expansion and contraction of
the air volume. Hutchins (1962) found empirically that a 20% decrease in air volume
or a 59% increase in f-hole area would raise the actual enclosed air volume resonant
frequency by a whole tone. Hence, a pragmatic procedure in tuning a violin seems
to be to measure the actual resonant frequency and then change the parameters
as necessary in accordance with Hutchins’ prescription. In practice, you probably
wouldn’t want to alter the delicate shape of the f-holes, so one would be left with
volume-altering adjustments.

5.16.2 A1 Resonance

In contrast to the Helmholtz resonator model, one can treat the violin cavity as
an organ pipe, closed at both ends. Its inside length (L ≈ 31.73 cm) in the long
direction between the flattened end supports gives an answer that is fairly close to
measured values for the second air resonance found in a violin, often known as the
“A1 resonance.” From the discussion in Chap. 1, this fundamental resonance should
be given by46

f1 = c/2L ≈ 542 Hz ,

for the 1700-vintage Stradivari violin assumed above. I measured the first two air
resonances on several violins supplied by luthier Hiroshi Iizuka. These values were
determined by coupling the output of a small loudspeaker driven from a variable
frequency oscillator through a very short (about 3 in.) narrow diameter rubber tube
into one f-hole of the violin while another short rubber tube went from above the
opposite f-hole to a condensor microphone. (It is rather important to keep the rubber
tubing short in order to avoid the effects of organ pipe resonances in the tubing itself
at the frequencies involved.) In two cases, the sound was introduced through a small
hole at the front end of the violin. The results in Table 5.1 represent the average
of several measurements with variations in the peak locations of about 2 or 3 Hz.
All the instruments used were strung with sound posts installed and with the strings
under normal tension. The Q’s were usually much higher for the A1 resonance than
for the lower one. However, the A0 resonance was generally the strongest and in
the case of the Iizuka viola was some 55 dB louder than the A1 resonance when
the sound was introduced through an f-hole. The relative intensities varied with the
method of excitation. Large differences in relative excitation were noticed when the
tube from the loudspeaker was simply placed against the bridge of the instrument
rather than introduced inside the cavity. By placing one microphone above each of

46Using the method of phase shift analysis discussed in Chap. 1 and noting that “hard reflections”
are present at both ends of the doubly-closed pipe, it is seen that the resonance in this case is of
exactly the same form as that for an open pipe of the same length.
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Table 5.1 Air resonances measured by the author

Instrument A0 (Hz) Q A1 (Hz) Q

Eastern European Violin (14.25 in.) 265 ≈ 7 475 ≈ 16

Chinese Factory Violin 273 ≈ 15 478 ≈ 16

Sound fed into f-hole

Sound fed into end hole (13.9 in.) 270 ≈ 13 472 ≈ 25

Iizuka Amati-model 266 ≈ 9 488 ≈ 30

(13.9 in., high arch)

Iizuka Guarneri-model (13.9 in.) 260 ≈ 16 461 ≈ 58

Iizuka Viola (16.75 in.) 211 ≈ 18 476 ≈ 48

(Sound fed in end hole)

the two f-holes and looking at their output voltages on a two-beam oscilloscope, it
was clear that the phase of the sound was the same from each f-hole. In contrast, an
out-of-phase relationship should exist for some of the higher-order modes reported
by Jansson. (See below.) Measurements made on several instruments that were not
strung, were not under tension, and did not have sound posts, exhibited numerous
resonances that probably arose from top plate vibrations.

5.16.3 Higher-Order Air Resonances

Studies by Jansson (1973) found the existence of an entire family of high-Q, higher-
frequency air modes.47 He examined these air resonances in a violin-like wooden
cavity that was encased in plaster to suppress vibrations of the wooden structure.
(For practical simplicity, the cavity had a flat top and back.) He further measured
these air resonances with the f-holes open and then closed. Although the f-holes
have a very small area (about 1%) compared to the entire surface area of the
instrument, he found that they played an important role in suppressing some of
the higher frequency modes in the same way that drilling a hole in the middle
of an open organ pipe suppresses the fundamental mode in a harmonic flute. The
main coupling of energy from the higher-order air modes to the outside world in a
real violin with open f-holes occurs through vibration of the violin surfaces. Of
course, these vibrating surfaces are what excite those air resonances in the first
place when the violin is played. The f-holes seem either to suppress the higher
frequency resonances altogether or not to affect them very much. Jansson’s results
(summarized in Table 5.2) were computed from Figure III-C-2 of his paper.48

47See, for example, “A Retrospective on Air and Wood Modes,” edited by Jeffrey S. Loen, Catgut
Acoustical Society Journal, vol. 4, No. 3 (Series II), May, 2001.
48See the reproduction of Janson’s article “ On Higher Air Modes in the Violin” in the Catgut
Journal retrospective issue, May, 2001 (op. cit.)
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Table 5.2 Data for air
resonances from Erik Jansson
(1973)

f-holes open f-holes closed

Air mode Frequency (Hz) Q Frequency (Hz) Q

0 294 15 – –

1 487 55 488 75

2 1088 75 1050 106

3 1196 17 1112 81

4 1285 115 1312 130

5 1603 79 1562 121

6 ? ? 1767 125

7 1906 106 1899 160

Comparing Tables 5.1 and 5.2, it is seen that the results for A0 and A1 are
reasonably consistent. From Table 5.2, it is seen that opening the f-holes has
relatively little effect on most of the higher frequency air modes with the exception
of Jansson’s modes No. 3 (where the Q dropped substantially) and No. 6 (which was
extinguished completely). As he noted, those two modes are probably suppressed
because the f-holes fall on pressure maxima in the mode standing wave patterns.
Jansson suggested that the higher frequency air resonances he found in a violin are
similar to those that would occur in an organ pipe that is closed at both ends.

As with the vibrating membrane modes, it is useful to examine what happens
inside a rectangular enclosure—say, a cigar box with rigid walls. (For ease in later
comparison, we will take one that has about the same length-to-width ratio as a fine
Stradivarius.) Because the thickness of the “instrument” is small compared to its
length and width, we will ignore variation in the mode structure in that direction
and just consider two-dimensional modes formed by the walls. The basic boundary
condition for determining the resonant modes in a rigid box is that the pressure
waves be a maximum at the walls. Hence, the pressure modes in the cigar box should
be of the form

P(x, y, t) ∝ cos(nxπx/Lx) cos(nyπy/Ly) cos(ωnx ,ny t) (5.7)

where P(x, y, t) represents the pressure difference from the ambient atmospheric
pressure, 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly as in the thin membrane case, and the
frequencies are determined by Eq. (5.6) except that here c is the velocity of sound in
air (or other gas contained in the box). Again, nx , ny = 1 , 2 , 3 , . . . The modes for
nx = 1 all have nodes running vertically down the middle of the box and maximum
values of the pressure of opposite phase at the walls. Hence, for example, the 1,1
cigar box mode would couple efficiently to f-holes placed in the lower half of the
top lid. For a perfectly rigid box (say one made of plaster or concrete), the sound
coming out of the two holes in this case would be distributed approximately in a
dipole radiation pattern. More complex distributions in various directions would
occur for sound coupled through a top plate that was allowed to vibrate (Fig. 5.33).
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In the case of a real violin with curved side walls or “bouts”49 and a con-
striction at the middle (formed between the “C-bouts”), much more complex
two-dimensional modes exist beyond the Helmholtz volume mode. Here, Jansson
argued that the dominant ones corresponded to closed pipe resonances propagating
in the long dimension of the violin. (See the data in Table 5.2. and Fig. 5.34.)

The situation may be loosely analogous to that in a generalized confocal laser
cavity—one having curved mirrors at each end. In that case, low loss modes
propagate in the long dimension normal to the mirror surface and (at least for
wavelengths short compared to the length of the cavity—a condition that is not well-

Fig. 5.33 The first few two-dimensional air resonance modes for a rigid cigar box. The numbers
below each mode pattern represent values of nx , ny . As in previous illustrations of this type, the
black and white areas represent those of maximum pressure magnitude, but opposite phase

Fig. 5.34 Jansson’s determination of the higher-frequency air-mode distributions in a violin-
shaped cavity. Source: Jansson (1973)

49According to the 1989 Oxford English Dictionary vol. II, p. 449, 5. A “bout” is the inward curve
of a rib in a violin or similar instrument, by which the waist is formed. From the 1893 Fiddler’s
Handbook, 4. Bouts are the sides of the fiddle, divided into the lower, middle, and upper bouts.
The term apparently comes from the obsolete word “bought” for “bending.” In German, the word
for “bout” is “bogen” meaning “arch,” “vault,” or “bow.”
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Fig. 5.35 Higher order air pressure modes in a violin assuming closed pipe propagation in the
vertical direction and that the modes are independent of the side wall spacing

satisfied here), the mode distribution is independent of the sidewalls.50 Hence, there
is some justification for a closed organ pipe approximation in which one assumes
longitudinal propagation in the long dimension of the violin with a distribution that
merely falls off symmetrically in the lateral direction. Calculations for such mode
distributions for longitudinal propagation using the proportions of a Stradivarius
violin cavity are shown in Fig. 5.35. Here, the boundary condition assumed was that
a pressure maximum occurred at the two ends of the violin and that a cosinusoidal
sound pressure distribution occurred about the long vertical axis. The pressure
distribution for Mode 1,1 matches Jansson’s Mode No. 1 and Mode 1,3 matches his
Mode No. 5 (apart from trivial changes in phase). However, his Mode No. 3 looks
closest to the present Mode 1,4, and his mode No. 6 has a standing wave pattern
similar to the 1,2 cigar box mode shown in Fig. 5.33. His remaining three higher-
order modes (Nos. 2, 4, and 7) may represent closed pipe modes with propagation
in the lateral direction in the separate upper and lower halves of the violin. Jansson
concluded that the air modes in the upper and lower cavities of the violin are only
loosely coupled, and several of the higher-order air resonances would produce sound
that would be out-of-phase between the two f-holes.

However, the actual frequencies are another matter. Although Jansson does not
give the length of his test model, the resonant frequencies for the higher modes
should simply be of the form nyc/2L in his model, where ny = 1, 2, 3, . . ., and
c/2L ≈ 487 Hz corresponding to his value for the A1 mode. According to his
model, the next several higher modes should then have resonances at 974, 1461,
1948, and 2435 Hz. With the possible exception of Mode 1,2 at 1088 Hz, these
numbers simply do not agree very well with his measured frequencies. (Compare
these numbers with those in Table 5.2).51 In another study of a violin, Marshall
(1985) found the first higher Air Modes to be at 478 and 839 Hz. Hence, there is
good agreement on the location of the A0 and A1 mode, but not on the still higher

50See Bennett (1977, pp. 21–32).
51Effective values for a 1700 Stradivarius of Lx ≈ 7.59 in. and Ly ≈ 14 in. were used for the
equivalent cigar box calculation. See Appendix III of Hill brothers (1902).
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modes. It would be nice to have a more rigorous (but simple) mathematical solution
to the air mode problem; however, such a calculation would involve the complex
boundary shape in a real violin and probably have to be done numerically for each
violin geometry. Although the closed pipe model is of doubtful quantitative utility
beyond determining the first of the higher air resonances, Jansson’s experimental
determinations of frequency and Q for the higher air modes shown in Table 5.2 are
quite useful in themselves.

5.17 Modes of the Assembled Violin

As noted before, an enormous list of assembled-violin resonances was given by
Marshall (1985). Marshall found some 34 modes (including both air and wood
resonances) in a violin made by Carleen Hutchins (her SUS #295), ranging from
119.5 to 1228.5 Hz. Marshall concluded that the A1 and A2 modes had somewhat
different nodal distributions than those found by Jansson. (Compare Marshall’s
Fig. 9 with Fig. 5.34 above.)

There are two main types of resonance present in the assembled violin: the wood
resonances that result when the whole body is assembled and air resonances from
the resultant enclosed cavity. As may be deduced from the changes in top plate
modes as the violin is assembled, the resonances in the complete violin are very
complex indeed and result from dozens of both wood and air resonances.

Frederick A. Saunders (at the Croft Acoustical Laboratory at Harvard) started
a practice in the early 1930s in which electronic equipment was used to measure
loudness curves from a violin. He would play the chromatic scale, bowing each
semitone for four seconds, recording the amplitudes from the first ten harmonics
and then combining the results to get the overall response curves. (See Hutchins
2004.) This technique was carried out further by Hutchins (1962) to investigate a
variety of different violins, with results such as those shown in Fig. 5.36.

Hutchins concluded that the best violins, as well as having many strong reso-
nances, were those that had the first air resonance (A0) just above the open D string
and the second wood resonance (W2) just below the open A string. Hence those two
resonances should be about a fifth apart. In some poor instruments the main wood
and air resonances were as much as 12 semitones apart. Another interesting result
from this work was that the finest old instruments could produce very loud sound
levels—for example, over 95 dB at one meter when bowed on the open strings. (In
contrast, a poor instrument might produce sound levels 20 dB less.) The aspiring
violinist should be warned that the levels produced by a fine Stradivarius are intense
enough to cause substantial hearing loss according to OSHA (Occupational Science
and Health Administration) standards when the exposure amounts to several hours
a day. (Paganini seems to have anticipated this danger and always practiced with a
mute on his Guarneri del Gesu “Cannon.”)

Marshall (1985) determined some 34 separate modes in one assembled violin
ranging from about 119 to 1228 Hz and was able to identify about two dozen of
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Fig. 5.36 Loudness Curves
for a 1713 Stradivarius and
older poor quality violin
(plotted from data by
Hutchins, 1962)

them. He detected vibrational resonances with a small light-weight accelerometer
while driving the vibrational modes with a small, light-weight impact hammer. His
test violin displayed many modes that are best described as “bending modes.” He
noted that there were typically about three of those per 100 Hz in the violin. Hence,
very few modes were adequately separated from others to be dominant. The motion
generally involved a mixture of different ones. Of course, these will all vibrate at
the driving frequency, rather than their own resonant frequencies when the violin
is played. But the different vibrating areas and phase relations result in complex
radiation patterns. Some of these modes are ones in which the neck joint acts as a
torsional spring between the body and the fingerboard. Several others (at about 303,
666 and 1173 Hz) represented bending modes of the neck and fingerboard of the
violin. The neck joint itself had three rotational modes clustered about the frequency
of the open G string (196 Hz).

These resonances, together with the variation of coupling of sound from the
vibrating instrument with frequency, make up what has been called the “formant”
for the instrument. As in the case of the human voice, the formant is a frequency-
dependent envelope that effectively multiplies the spectrum of the vibrating string.
Thus, as one goes up the scale, the relative distribution of harmonics from the string
changes substantially with the result that no two notes sound precisely the same.
In addition, the distribution of harmonics produced also depends on the relative
position of the bow with respect to the bridge as well as upon the pressure applied
to the bow. These various effects produce an enormous variety of sound on different
notes within one particular instrument. As discussed below, the direction in which
the sound is emitted also varies substantially with the note on the scale. For these
reasons, synthesizing the sound by digitizing the waveform on one particular note
and then changing the fundamental frequency for different notes (as is done with
some commercial electronic equipment) is doomed to failure.

A major problem in making a violin is deciding how the separate plate resonances
(or “tap tones”) should be adjusted so that the assembled violin has the final
resonances in the right place. This had to be done by trial and error in the early
days of violin making and is pretty hard to accomplish even with modern electronic
instruments to measure the resonances. Obviously, a certain amount of adjustment
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is needed after the instrument is assembled. (See, for example, Firth 1976/77a,
1976/77b.)

5.18 Holographic Studies

An elegant method for studying plate resonances incorporating laser interferometry
was devised by Stetson and Powell (1965, 1966). This “holographic” technique
only requires displacements of the violin surface of as little as one wavelength
of visible light to portray the mode patterns. (Of course, that also means that the
violin also has to be held in a position stable to within a wavelength of light during
the measurement.) Another advantage is that one does not have to worry about
the particles used in the Chladni approach rolling off the convex violin surfaces.
Hence, the method can be used to study the assembled violin. It is interesting to
compare patterns determined for a real violin top plate with the case of the simple
thin membrane example.

One of the most interesting mode studies was conducted by Jansson et al. (1970)
in which holographic techniques were used to examine the variation of resonant
modes in the top plate as the components of a violin were assembled. The plate was
excited by a mechanical vibrator from underneath and the interference pattern was
produced by a 15 μW red (λ = 0.6328 μm) helium-neon laser. They photographed
successive time-averaged interference fringes that corresponded to differences in
vibration amplitude of about 0.3 λfrom one fringe to the next. The individual fringes
thus represented equal amplitude contours of the vibration pattern on the top plate
surface.

In order to illustrate the large changes in some of these modes and the relatively
small changes in others, I assembled the illustrations in Fig. 5.37 from the data of
Jansson et al. (1970). As can be seen from the figure, the even-symmetric 1,1 mode
takes on more and more odd-symmetric character as the bass bar and sound post
are added. Surprisingly, its resonant frequency remains little changed from its initial
value after addition of the sound post. On the other hand, the 2,2 mode retains its
even-symmetric character until the sound post is added, but undergoes large shifts
in resonant frequency. In contrast the hybrid 3,2* mode changes relatively little in
frequency in the assembly after the f-holes are incorporated.52 (The particular mode
designations used here were chosen to facilitate comparison with the computed
modes for a thin rectangular membrane in Fig. 5.31.)

52Jansson et al. (1970), also reported interferograms for the bottom plate and for the completely
assembled violin. A later interferometric study by Jon Luke (1971) of the body vibrations of a
violin also indicated the relative phases for many modes.
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Fig. 5.37 Mode patterns based on data by Jansson et al. (1970) measured holographically. The
original data has been rearranged here so as to show the progressive changes in the three modes
illustrated as the violin was assembled

5.19 Radiation Patterns

It has often been noticed that some violins and cellos “project” very much better
than others. That seems to be especially true of those made by the old Italian masters
such as Stradivari and Guarneri del Gesu. For example, Sacconi cited the case of a
cellist getting ready for a concert at Carnegie Hall who was trying out a modern
cello in addition to his Stradivari instrument in a hotel room before the concert. He
thought they both sounded equally loud in the hotel room and was all set to leave
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the Strad behind during the recital. Sacconi warned him that he had better try them
both out in the concert hall before the concert. He did so and found that the Strad
carried very well far back into the hall, whereas the other instrument could scarcely
be heard beyond the first few rows. Similar stories have been reported by others
for violins. For example, Paul Arnold mentioned that the sound of the Guarneri Del
Gesu played by the concert master in one of his orchestras seemed quite loud at the
middle of the concert hall.53 After he was promoted to sit next to the concert master,
he was surprised to find that the del Gesu did not sound unusually loud right next to
the instrument. Similarly, a Joseph Gagliano instrument played by another violinist
friend only produced a sound level of about 70 dB at 3 ft, yet carried extremely well
in the concert hall. Violins with flatter (less arched) top plates project farther, but
have darker tone quality. (See Hutchins and Schelleng 1967.)

It is clear that the differences in carrying power between these instruments must
lie in their far-field radiation patterns—that is, the distribution of sound radiated at
distances large compared to a wavelength from the source. The wavelength of sound
in air at 1 kHz (near the frequency where the ear is most sensitive) is about 12.4 in.
and is comparable to the length of a typical violin body (about 14 in. for most violins
made by Stradivari.) Hence, diffraction effects resulting from the different surface
modes produced on a violin are bound to be important in the region where hearing
is most sensitive.54

To do an accurate calculation of the radiation pattern from a real instrument,
one would have to integrate the contributions to the sound (including the relative
phases at different parts of the vibrating surface) over the entire instrument—a task
for which precise data are not available. However, it is instructive to see what might
happen using an approximate calculation of radiation patterns based on the data
for the 1.11 kHz 3,2* mode shown in Fig. 5.37. Figure 5.43 shows a result from
a numerical calculation in the plane of the top plate for that particular mode. The
method used was to replace the full surface mode by point sources located at the
maximum vibration spots with intensities roughly equal to the central area in each
case. The openings for the f-holes were each replaced by three circular sources as
shown in the diagram at the left of the figure. The two main surface maxima at the
left were assumed to represent negative deflections (downward on the plate) and
the remaining three (two at the right and one at the bottom middle) were taken to
be positive (upward from the plate). The radiation from the f-holes was assumed
to be of opposite phase from the nearest top-plate maxima. (That is, a downward
motion of the top plate would compress the air in the violin cavity locally, resulting
in a positive air pressure at the nearest f-hole.) The convention used here to display
the results is the same as that employed in the discussion of multipole radiation in
Chap. 1. The gray background represents the ambient pressure in the room; the white
patterns represent local air-pressure minima and black represents local air-pressure

53Paul Arnold, private communication.
54For a review of the properties of vibrational modes that are controllable by the violin maker, see
Woodhouse (2002).
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Fig. 5.38 Approximate computed radiation pattern in the plane of the top plate from the 1.11 kHz
3,2* mode of an assembled violin top plate (The bass bar, f-holes, sound post and rib structure are
all in place)

maxima.55 (The white regions in the diagram at the left are assumed to generate air-
pressure minima, and vice versa.) Thus, for example, the wavelength in air at one
instant in time corresponds to the distance between successive black bands on the
gray background. As shown in Fig. 5.35, the radiation pattern is roughly that of a
quadrupole source distribution and has four directions of maximum intensity. Other
resonant modes at different frequencies would generate quite different radiation
patterns and directions of maximum intensity.56

Now suppose that you were Mr. Stradivari, seated at your work bench and
wanting to enhance the radiation from your violin in the direction of the audience
(i.e., to the right in Fig. 5.38.) After the basic shape is cut out and the bass bar
is glued in place, about all you could do (other than move the sound post) would
be to change the relative thickness of the wood and the width of the f-holes.

55The interference patterns were computed by the author using a Monte Carlo calculation in which
sums were evaluated of the type

[∑
i

Ai

sin(2πRi/λ)

Ri

]2

where Ri is the distance from the ith source to the point of observation, Ai is the source
amplitude (proportional to the area of the source), and λ is the wavelength of the sound in air.
The white versus black color was determined by the sign of the total amplitude at each observation
point, while the intensity was computed from the square of the total amplitude. The intensity was
displayed as a “probability cloud” using random fluctuations in the vicinity of each observation
point. (See Bennett 1976, Chapter 3.)
56For a review of measurements of sound radiation patterns from the violin, see Weinreich (2002).
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Fig. 5.39 Modification of the radiation pattern computed for the 1.11 kHz mode in this figure were
obtained by suppressing the f-holes (top) and eliminating the central maximum between the lower
bouts (bottom). Note that the radiation pattern at the bottom is aimed preferentially at the audience

Presumably, making the wood thinner in one spot would increase the flexibility of
the top plate and enhance a surface vibration maximum or minimum at that point.
Conversely, increasing the thickness at another spot would decrease the amplitude
of the vibration locally. Figure 5.39 was computed to illustrate how such changes
might affect the radiation pattern. In the top portion of the figure, sound from the
f-holes has been suppressed (say, by narrowing their width) and the radiation lobes
parallel to the long dimension of the violin have been decreased. In the bottom part
of the figure, the central maximum between the lower bouts has been eliminated
(for example, by increasing the relative thickness of the wood at that point). In
that instance, radiation directed toward the audience has been selectively increased.
(Suppressing radiation in the direction away from the audience is harder; a good
practical solution to that problem is simply to add an acoustic reflector to the left
of the player.) Although it is relatively easy to make these changes in a computer
calculation, Stradivari would have had to scrape away with his sharpened sabers for
quite a while to achieve the same effect. He clearly must have worked out empirical
solutions to the radiation problem through years of judicious trial and error.

The above discussion is meant merely by way of qualitative illustration and
should not be interpreted to imply that all, or even most, of the radiation occurs in the
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plane of the top plate. Direct measurements by the author and others have shown that
substantial amounts of radiation (especially at frequencies above about 1 kHz for
which the wavelength is shorter than the length of the top plate) also occur in many
different directions. (See, e.g., Weinreich 1997.) Although the radiation well-below
1000 Hz is largely isotropic, much of the sound above that frequency is radiated into
the hemisphere above the top plate. The higher frequencies that produce the much-
desired feeling of “presence” are usually lost in large concert halls that have no shell
or acoustic panels above and behind the violin and viola sections of an orchestra so
as to reflect that sound outward toward the audience. Under these conditions much
of the sound from violins and violas travels upward toward the ceiling, which is
often much too high due to an overly large width of the hall designed to provide
great seating capacity. The result is a very “distant” character to the sound, if not its
complete elimination. The lack of such reflections is one of the worst short-comings
of many contemporary concert halls. For example, there are locations toward the
back of Philadelphia’s new Verizon Hall where one can hardly hear the violins at
all, even though the cellos and double bass come through quite strongly. Often the
only practical way to overcome that problem after a hall has been constructed is
through the suspension of Lucite or wooden panels (“acoustic clouds”) from wires
attached to the ceiling. Their presence is a sure sign of inadequacy in the original
acoustic design of the hall.

Some of the most impressive recent measurements of violin radiation patterns
have been made by Lily Wang (1999) using a linear array of 15 microphones that
could be scanned at right angles to the array with a stepping motor. She used a
bowing machine in an anechoic chamber to study the sound from three different
instruments. (See Fig. 5.40.)

Fig. 5.40 A slice through the
NAH reconstructed intensity
vector field for the Hutchins
mezzo violin at 1320 Hz
showing nearfield effects
(reproduced from Wang 1999
with permission of the
author)
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Her method is related to one suggested by Weinreich (1997) in which near-
field measurements of the sound were to be expanded in terms of a complete
three-dimensional set of Hankel functions and spherical harmonics. Solving for the
expansion coefficients then effectively determines the whole radiation field. Wang’s
results were analyzed using a technique of multi-planar “Near-field Acoustic
Holography” (NAH for short). The basic idea is that near-field measurements of
amplitude and phase made with the microphone array can be used to construct
intensity vectors in three dimensions. The directions of these vectors depend on
phase differences of the sound field at close points. An example of her technique
is shown in Fig. 5.40 as applied to the partial at 1328 Hz on the Hutchins mezzo
violin. (Also see Wang and Burroughs 2001.) Two of the violins Wang studied had
been made by Carleen Hutchins, including the over-sized “mezzo violin” used to
generate Fig. 5.40, an instrument similar to that described originally by Hutchins
and Schelleng (1967).

5.20 Additional Phenomena

5.20.1 Wolf Tones

The phenomenon of the “wolf tone” often plagues very good violins and, especially,
fine cellos with very thin ribs.57 These instruments often have many more strong
resonances than do mediocre ones. The phenomenon involves a near-coincidence of
a strong high-Q resonance in the body or air cavity of the instrument with a note on
the musical scale. When two such oscillations are strongly coupled, two important
things happen. First, energy is transferred back and forth between a body or air
resonance and the string resonance at the difference frequency between those two
resonances with the result that the bow pressure necessary to maintain the stick-slip
process varies strongly with time. This required time-varying bow pressure makes
it hard for the musician to control the note.

The other difficulty is that interaction between the two modes results in a “repul-
sion” of the two closely spaced resonant frequencies in the coupled mechanical
system. That is, the original two resonances move in opposite directions in the
coupled system. (See the equivalent circuit derivation in Appendix A.)58 Hence,
when one resonance is the fundamental mode (i.e., the first harmonic) of a vibrating
string and the other is a strong air or wood resonance, the fundamental mode is
shifted out from underneath the harmonic series of overtones in the string. As

57This phenomenon has been studied by numerous people, ranging from the early work of C.V.
Raman (see his collected Scientific Papers, vol. II, 1988) and John Schelleng (1963) to Arthur
Benade (1975).
58A mathematical derivation of this effect for a string resonance in strong coupling with another
resonance has also been given by Gough (1981; see Fig. 10).
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a result, the sound tends to jump up an octave and the note becomes unstable.
(Two “kinks” in the string motion may develop during the slip-stick process at
the fundamental frequency.) Schelleng (1963) concluded that the even harmonics
tended to remain stable while the odd harmonics (including the fundamental) grew
and shrank at the pulsation rate.

Several things may be done to minimize the wolf-tone effect. Putting more
pressure on the bow usually suppresses it and expert players learn to do that
automatically.59 Shifting the frequency of the air or wood resonance can also reduce
the effect significantly. That sometimes may be accomplished by adding extra mass
to the system—e.g., by a placing a small weight on the string between the bridge
and the end point, or adding more wood to the back plate or top plate, or somehow
changing the dimensions of the body of the instrument—for example, by shortening
the rib height. Adding some dissipative mechanism to the vibrating system can
sometimes reduce the Q of one of the modes enough to suppress the effect. In any
case, it is a curse that often accompanies a highly resonant instrument and is apt to
be much more of a problem with a priceless Stradivari or Guarneri del Gesu violin
than a garden variety “cigar box.” (Fig. 5.41).

Fig. 5.41 Unstable behavior of a resonant note near a “Wolf Tone” on a 1700 Stradivari violin
bowed by Joseph Genualdi

59David Oistrakh’s advice: “I do three things to avoid a wolf. I press my left shoulder tightly against
the violin, I vibrate more, and I pray.” (Steinhardt 2006, p. 78.).
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5.20.2 Scaling and the Hutchins Octet

One early experiment in scaling resulted in the elephantine three-stringed Octobasse
designed by Savart and Vuillaume for Berlioz. The Octobass had a total height of
3.45 m (≈ 11.3 ft)! (See Fig. 5.39.)

According to Berlioz60 the octobass “produced a sound of rare beauty, full and
strong without any roughness. . . every orchestra of any importance needs two of
them.” (But only two of them are extant—one in the Conservatory of Music in Paris
and the other in the State Museum in Vienna.) Alas, neither Berlioz nor Wagner
(who also liked the concept) ever used them. One problem was that the performer
had to stand on a platform and change the active string lengths using a system of
levers actuating pads to contact frets on the “fingerboard.” (The left hand pulls levers
up and down at the back of the neck and the player uses seven foot pedals for the
other notes.) In a normal-sized room, one needed a hole in the ceiling so that the
pegs could be adjusted by a tuner upstairs (Fig. 5.42).

Various resonances in bowed string instruments were studied in some detail for a
Stradivarius violin and several other instruments by Carleen Hutchins (1962, 1981,
1983). Of the several wood resonances, the one just below the open A string on a
good instrument seemed to be most important in evaluating an instrument. On bad
instruments, that resonance either didn’t exist, or was above the A string. The other
main wood resonance on the Stradivarius fell just above the open G string. A strong
(Helmholtz) air resonance is also important and typically occurs just below the open
D string on a Stradivarius violin. Sacconi’s (2000) observations on air resonances in
violins by Stradivari discussed above were in reasonable agreement with Hutchins’
conclusions.

In doing this work, Hutchins speculated that to make a powerful viola, cello, or
double bass, one ought to reduce the arching of the top plate and increase its area
and to scale each instrument in such a way as to make the principal wood and air
resonances fall below and above the two middle strings as in the better Stradivari
violins. The reduced arching of the top plate was to increase the projection of sound
from the instrument. To get the right volume with reduced rib height, greater length
was required for the sound box. For violas and cellos this scaling process meant
enlarging the dimensions of the new instruments. One had to change the length of
the wood box so that the first excited air mode and a wood resonance fell above the
open-string resonance for the third string and to adjust the volume (shape and rib
height) so that the “Helmholtz” air resonance fell below that for the open second
string. The wood resonances of course depend on the thickness and size of the top
and bottom plates—not to mention the acoustic properties of the wood itself.

One problem with the Hutchins approach is that her new viola is about the same
size as a cello, and her new cello is about the size of a normal double bass. By the

60See Hector Berlioz’s report “Of the Great Exhibition in London (1851) to the French Commis-
sion of the International Jury” and his Traité d’Orchestration et d’Instrumentation Modernes; also
see, Millant (1972, p. 116).
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Fig. 5.42 The Vuillaume
Octobass, played here by Paul
Badura-Skoda (photo
courtesy of Heming
associates)

time you get to the new double bass, it takes on proportions mildly reminiscent of
the Vuillaume octobass. Hutchins designed and made an entire octet of such scaled
instruments that had remarkable power and great beauty. (See Fig. 5.43.) I measured
the sound output of several of these instruments. Most were well-above 95 dB at 1-
m and the new double bass peaked at over 105 dB at a distance of 3 ft. That is nearly
the sound level obtained from the entire double bass section of a large symphony
orchestra. Hutchins’ double bass was at least playable by a tall person standing on
the floor.

However, there are several practical problems with the instruments in her “octet.”
First, anything larger than her violin (which is about the same size as a normal
Stradivari) is difficult to play in a conventional manner. One’s arms simply aren’t
long enough for comfort. Ironically, the idea (although quite clever and very fine
from the standpoint of acoustical design) goes in the opposite direction of the
evolution of violas and cellos from the Amatis through Stradivari and Guarneri del
Gesu. The initial instruments designed by Andrea Amati, although very mellow,
were cumbersome to play. Hence, there was a deliberate effort by his descendants
to make them smaller and more agile. In the case of the cello, this effort was fought
for many years by the Catholic Church (a major patron of the instrument makers)
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Fig. 5.43 The Hutchins Octet (photographed by John Castronovo in the living room of Carleen
Hutchins and reproduced here by her permission)

because they wanted deep, booming violoncellos in their religious processions.
(Holes were drilled in the back of the instruments into which pegs could be inserted
to support the instruments from a chain around the neck of a walking performer.)
For many years, there was no thought given toward use of the cello or viola as a
solo instrument; they were exclusively employed to carry the bass line in church
music. That situation obtained until the death of Nicolò Amati in 1684. After that,
Stradivari and other descendants of Nicolò Amati began making cellos of smaller
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size. The Hill brothers concluded that no further improvement was desirable beyond
the later design by Stradivari.

In spite of being Bach’s favorite stringed instruments, large violas had a special
problem unto themselves. First, they were not used very much in chamber music
until the time of Haydn. As a consequence, Stradivari, who made instruments during
the Baroque Period, only made a few violas in his lifetime. (One was the famous
viola that was eventually passed on to Paganini, who refused to use it to play the
solo part in Berlioz’s Harold in Italy.) Consequently, little effort was applied to
making them more powerful, as was done with violins and cellos toward the end of
the eighteenth century. Various solutions to that problem have been tried in recent
years in addition to that of Hutchins. Generally, the approach has been to produce
violas with much greater air volume, sometimes by attaching tumorous-looking
protrusions to the instrument. At least the Hutchins viola looks like a cello and
not a viola with the mumps. One of the most successful modern viola designs I have
seen is that by Iizuka. (See Fig. 5.22.) His approach provides a powerful, symmetric
instrument that is easily accessible to the fingers of the player.

Another problem with the concept of the Hutchins Octet is that by scaling the
instruments so radically, she has given all of them a fairly uniform tonal character.
It had been a basic tenet of Stradivari and his later contemporaries that the timbre of
the different instruments should be kept distinctive. The instruments in the Hutchins
Octet, although very powerful, all sound very similar. The resonances in the viola
and cello aren’t where you are used to hearing them in a conventional instrument.
For example, Mozart clearly made use of the resonances in the viola near F# on the
C string in his viola quintets. When played on a much larger instrument, the viola
parts sound out of character as Hutchins had pointed out herself. (See, Hutchins
1983, p. 1429)

Finally, there isn’t much music written for her ensemble, which includes a double
bass, cello, tenor viola, viola, violin and piccolo violin in this new scaling. (Hutchins
hopes that contemporary composers will get interested.) Although her basic idea is
indeed a very clever and ambitious application of acoustical science, it is doubtful
that her scaling concept will catch on and that contemporary composers will write
very much for the new octet. Composers with the genius of Mozart, Beethoven,
Schubert, and Brahms are in very short supply these days.

5.20.3 Vibrato

Continuous vibrato on the violin did not become the norm until the time of Fritz
Kreisler according to violinist Sandor Salgo (2000). Interestingly, Mark Katz (2005)
argued that the development of the phonograph played an important role in the
adoption of continuous vibrato by violinists such as Kreisler and Eugéne Ysaÿe.
He notes that the timing was right (circa 1910) and that the technical problem of
capturing the sound of the violin on the cylinder phonograph was reduced by the
presence of vibrato. He felt that a greater feeling of “presence” was produced with
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vibrato and that the sound could be captured without danger of the instrument or
bow bumping into the large horns used in the Edison recording process. He also
noted that the frictional sounds of the bow on the string that were picked up by
later more sensitive microphone technology were masked by vibrato. One further
possible argument that Katz did not mention is that the presence of “wow” and
“flutter” (i.e., periodic speed variation from the eccentricity in moving parts of the
machine) in a recording is much less conspicuous when the source is not a pure tone
of constant frequency and amplitude.

Of course as Katz acknowledged, there were other reasons for adopting vibrato:
It covered up the harshness of the metal strings that were used after World War I
and at least gave the impression that the performer played with better intonation.
As one study concluded, vibrato gives the violinist more time to adjust the pitch
before the listener notices he is out-of-tune. Katz also thought the presence of
vibrato compensated somewhat for the absence of the normal visual element of
enjoyment in a performance which was missing in audio recordings. He also noted
some listeners feel that the particular form of vibrato used permits identification of
the performing style of different soloists.

Donnington (1980) suggests that a slight and inconspicuous vibrato was probably
in normal use since the invention of the bow. But Louis Spohr in his Violinschule
of 1832 regarded it as an ornament for special expressive purposes only, a belief
evidently adhered to by Brahms’ violinist Joseph Joachim and the legendary teacher,
Leopold Auer. (One wonders how Joachim felt about the vibrato used by Brahms’
clarinetist friend, Richard Mühlfeld.) Even today, some violinists (for example,
Anne-Sophie Mutter, in her recordings of the Beethoven Violin Sonatas) often use
vibrato as a form of expression coupled to the crescendo. They sometimes start
a note pianissimo without any vibrato at all and then increase the vibrato with
the loudness of the note—a technique also used by oboists to very good effect.
The difference in sound produced by vibrato also can compensate for the limited
dynamic range of an instrument.

Salgo (2000, p. 41) goes on to explain that “two types of vibrato existed in the
eighteenth century violinist’s repertoire: (1) the ‘true’ vibrato in which one finger
undulates the pitch above and below the given note; and (2) the two-finger method
. . . [called] the ‘close shake.’ There, one finger is pressed firmly on the string and
a second finger makes a rapid beating or shaking very close to the first. . . actually,
not a true vibrato at all.” Salgo’s second example is really more of a trill than a
vibrato. Yale violinist Broadus Erle had a still different theory of the vibrato—one
that seems to be shared by a number of current professional violinists. He felt that
the vibrato should primarily go below the note in an asymmetric way, spending
more time in the vibrato cycle on the flat side. Around 1970, Erle went so far as to
ask Professor Kindlmann of the Yale Electrical Engineering Department to design
and build an electronic circuit so that he could analyze the vibrato produced by his
students quantitatively. Kindlmann built the circuit and tried it out on one of Erle’s
students from the Yale School of Music. The measurement showed that the student’s
vibrato was symmetric about the note, much to Erle’s annoyance. Professor Erle
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concluded that the student must have been playing out of tune and lost interest in
the investigation.61

If it were just a matter of modulating the frequency, one would not expect to
find much amplitude variation. However, in most cases I have examined, there is
also substantial amplitude modulation on the note. That suggests that the process
produces significant bending motion of the bridge, which in turn affects the coupling
of sound from the string to the violin top plate.

Vibrato is so built into the technique of modern violinists that they sometimes
use it unconsciously. I once asked Joseph Genualdi (then first violinist in the Muir
Quartet) to play an open G on his Heberlein-Taylor Stradivarius, thinking that
it would surely be without vibrato and therefore easy to analyze. Much to my
astonishment there appeared an “Open G” on my spectrum analyzer that was loaded
with vibrato! It turned out that he was applying vibrato to the D string an octave
above the G, while bowing the open G string. On seeing that, my first thought was
that the effect represented a resonant interaction through the bridge of the frequency
on the D-string with the second harmonic of the open G. However, the vibrato was
actually strongest at the fundamental of the open G where it showed up primarily as
amplitude modulation, rather than at its second harmonic. What may have happened
is that modulation of tension on the D string was moving the bridge back and forth,
thus producing vibrato on the open G. Violinist Paul Arnold demonstrated to me
that he could produce a similar vibrato by modulating almost any note on any other
string. He explained that that vibrato resulted merely from shaking the instrument
and thus affecting the bow velocity—an effect probably similar to the “fast and
narrow wrist vibrato” of Toscha Seidel described by Steinhardt (2006, p. 78).

There has been some difference of opinion about the most desirable vibrato
frequency. Some violinists (for example, Joseph Zigetti) used an extremely slow
rate whereas others produced what might be best described as a nervous tremor
(as one English critic put it, “like jello on the plate of a nervous waiter.”) Broadus
Erle felt that an optimum frequency for vibrato was about 6 Hz. There probably are
neurophysiological reasons why different vibrato speeds are preferred by different
people. At very slow vibrato rates (often used on the tremolo engines in pipe organs),
the ear hears the frequency swinging back and forth over a wide range much too
clearly, sometimes introducing a sense of nausea in the listener. The comment by
Sir Thomas Beecham comes to mind: When an English oboist gave the A for the
orchestra Beecham said, “Gentlemen, take your pick!”62 At 6 Hz, the perceived
frequency seems to be the average pitch. But at much higher frequencies the vibrato
sounds more like gargling.

61P.J. Kindlmann, private communication.
62Atkins and Newman (1978, p. 20).
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5.20.4 The Effect of Varnish

Violins are often treated with sizing to seal the wood, leaving it in a state called
“The White.” The wood actually gets darker through gentle exposure to ultraviolet
radiation in sunlight. (See Fig. 5.44.) After perhaps three to 6 months of this
treatment, it is ready for varnishing, coating, which provides the rich, warm color
associated with the finished violin. (See Fig. 5.45.)

The varnish is normally either oil-based or spirit-based. The mystique associated
with the varnish used by Stradivari was partly created by the secrecy with which
he was said to have guarded the formula himself. It was said that he wrote down
the formula on the inside cover of the family Bible. One of his sons claimed to
have copied the formula in 1704 and then destroyed the heavy and cumbersome
Bible after his father died. But having destroyed the evidence of its authenticity,
no one was convinced that he had the real formula. (Hill brothers, 1902, p. 170.)
According to Faber (2005, p. 141), this “preposterous” story was soon proved to
be a fabrication. That Stradivari used solely a pure oil varnish consisting of a gum
soluble in oil and possessing good drying properties is incontrovertible according to

Fig. 5.44 A group of violins and violas “in the white” basking in the morning sunlight on Iizuka’s
porch (photo by the author)
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Fig. 5.45 A group of varnished instruments languishing in Iizuka’s shop

the Hills.63 They also put much faith in the notion of gradual exposure to subdued
sunlight and the influence of time. As Galileo was told when impatient for the
delivery of his Amati, “the violin cannot be brought to perfection without the strong
heat of the sun.” According to Faber (p. 63), Galileo’s nephew ended up with an old
violin because Father Micanzio was too impatient to wait for “the strong heat of the
sun to bring a new one to perfection.”

Part of the varnish mystique was reinforced by the Hill brothers themselves. In
their opinion the most important things were: (1) the varnish, (2) the workmanship,
and (3) the quality of the wood in that order. Sacconi (2000) states in several
places in his book that he thought the varnish produced “ossification” of the wood.
However, other sources maintain that there really was nothing very special about the
varnish used by Stradivari as it was commonly available to the furniture makers of
Cremona at that time (See Farga). There clearly were some changes in the varnish
Stradivari used over his lifetime. Early in his career, it gave a yellowish tinge to
the wood similar to that found in the Amati instruments, but later in his life (and

63Sacconi (2000, Chapter XII) gives numerous prescriptions for varnish that may or may not have
been used by Stradivari.
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probably to escape comparison with Amati’s work), he added coloring to produce a
more reddish glow. It is suggested by Millant (1972) that Vuillaume came the closest
to reproducing the varnish of Stradivari.64

Although it seemed clear that the varnish results in protection of the wood over
long periods of time and enhancement of the beauty of the natural wood grain, it
was not obvious what quantitative effect it really had on the acoustic properties of
the instrument.

Narberth luthier Hiroshi Iizuka feels that the initial solutions he uses actually
change the acoustic properties of the wood somewhat. He thinks that the pitch of
the tap tones is raised by small amounts and that the timbre is altered. He also
feels that the treatment of the wood is one of the most important aspects of making
a good violin. His formula for the varnish is probably as complex as that used by
Stradivari. I won’t try to give a detailed description of the procedure here, but merely
summarize its major features.

After hanging the instrument outside in the sun for about 4–6 months, Iizuka puts
a very light coat of oil (he is still experimenting with linseed, walnut, or rosin oil)
over the entire surface, making sure not to saturate the wood. The top is then sealed
with a casein solution. After that is dry, he puts two coats of an emulsion of egg
tempura plus oil varnish on the instrument. He then follows that with three-to-four
coats of colored oil varnish. [The violin we tested had initially been coated with
walnut oil. (See below.)]

In order to clarify my own understanding of the role of varnish, I undertook
an experiment with Iizuka and Philadelphia Orchestra violinist Paul Arnold. Iizuka
strung up one of the violins he was making during the spring of 2004 while it was
in the “white” and before it had received any coating, although it had had some
exposure to sunlight. Arnold then played the violin on open strings with a fine
Peccatte bow in Iizuka’s shop, and I made a digital recording of the sound using
a high-quality Sennheiser MKH 104 condensor microphone placed about 1 meter
laterally from the violin.65 The recording was then analyzed for spectral content.
After a long exposure to the sun during the summer, Iizuka applied his varnish to
the instrument, he subjected the violin to more sunlight, and we made another digital
recording in the same room, with the same equipment and violinist (Fig. 5.46).

64In attempts to understand why the old Italian instruments sounded so great, all kinds of
suggestions have arisen: floating the logs down the Po river from the Alps, soaking them in salt
water [no doubt mixed with sewage] in the canals of Venice, and coating the wood with volcanic
ash before applying the varnish. The most bizarre suggestion was provided by the movie industry
in which varnish for The Red Violin (supposedly inspired by 1720 Red Mendelssohn Strad) was
mixed with human blood.
65This microphone (Serial No. 19689) was the same one used to study the spectra from different
bows and had a frequency response curve provided by the manufacturer that was flat within about
±1 dB over the range from 50 to 20,000 Hz. (Two similar microphones were used to make stereo
recordings, the second placed about 1-m laterally on the right side. But the spectra shown here
were taken from the microphone on the left side facing the instrument—i.e., in the usual direction
of an audience.)
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Fig. 5.46 Spectra obtained from an Iizuka violin before and after applying varnish

The “before” and “after” results of our experiment are shown in Fig. 5.43. Here,
the sound pressure levels on a logarithmic scale are shown for each of the four
strings. (On this scale, 100 dB corresponds to the standard pressure level adopted
for such measurements of 1 μW/cm2.) Somewhat to my surprise, there was a fairly
substantial difference in the two sets of spectra obtained from the same microphone.
The intensity of the harmonics has gone up by about 5 to 10 dB with the biggest
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increase being at higher frequencies and on the higher pitched strings. Hence, the
results are in agreement with the notion that the varnish increases the stiffness of
the wood. (The reason why some older instruments with thin top plates sound very
strong is probably due to the use of oil-based rather than spirit-based varnish.)
Iizuka felt that there also were noticeable differences in the directional properties
of the radiated sound in the room. The maximum sound level on any harmonic at
a distance of one meter was about 80 dB on all of the open strings when played at
a normal forte level and my meter readings did not vary much over the dimensions
of the room. Finally, Iizuka replaced the bridge on the varnished instrument with
a somewhat lighter one. That modification resulted in a further increase in higher
harmonic content of a few dB. There, even on the G string, significant energy was
emitted above 10 kHz. (See Fig. 5.19. Also see Schleske 1998).

5.20.5 Evolution of the Bow

As with piano hammers, the modern violin bow has evolved through a remarkable
series of forms.66 It is said that the low-tensioned bow of Bach’s time, which
was shaped like an archer’s bow, was capable of sounding all four strings of the
violin simultaneously. (See Fig. 5.47.) Thus, the opening chords of the famous Bach
Chaconne could be played without rolling the bow across the strings.67 In a desire
to reconstruct the bow that Bach might have used, something known as the “Vega
Bach Bow” was made by Knud Vestergaard in the 1950s and demonstrated by the
Hungarian violinist Emil Telmányi (1892–1988). A CD version of a 1954 recording
made by this violinist was released by Testament Records (SBT2 1957) in 2003.
Although the bow was pretty bizarre looking, the organ-like chords produced with
it by Telmányi are both beautiful sounding and perfectly amazing to anyone used

Fig. 5.47 Artist’s conception
of a Bach bow in action

66Heron-Allen (1885, Chapter IV) gives an exhaustive discussion of the history of the violin bow.
67Steinhardt (2006, p. 227) notes that the “chaconne” derives from a dance form known as the
chacona—an invention frequently attributed to the devil and outlawed in Spain in 1615. He also
implies it might have originated with the natives of South America and brought to Europe by the
Spanish conquistadors.
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Fig. 5.48 The double bow
technique of Frances-Marie
Uitti

to hearing the Chaconne played with broken chords. The New York Times review
hardly did justice to the elegant sound produced in that recording.68 However,
mastering the Vega bow must be incredibly demanding on the part of the performer.
(Vestergaard had built into the frog of the bow a mechanism that permitted the
performer to tighten and loosen the horsehair during a performance.)

Another approach to playing chordal and polyphonic music on a single bowed
instrument was developed more recently by cellist Frances-Marie Uitti. She uses two
bows: one above the strings and the other, below (See Fig. 5.48). She apparently can
control the two bows so as to get different tonal color from each (by moving the
two at separate distances from the bridge) and play two voices at once with cross-
rhythms (e.g., three against four, etc.) She says the underbow tends to have a softer
sound resembling the sweetness of a viola da gamba. Her double bow technique
was evidently well-suited to performing the music of Giacinto Scelsi, especially the
one-note pieces from his “Quattro Pezzi,” in which each movement is based on just
one note—but in which the tuning gets “bent” and the tonal color is altered.69,70

As shown in Fig. 5.49, the shape of the bow gradually evolved during the
seventeenth and eighteenth centuries from a solid wooden stick holding the stretched
horsehair (as in the case of the Mersenne bow and those made by Stradivari himself)
through the shorter version used by Corelli, to a longer, lighter and springier bow
with higher tension of the type designed by the Italian virtuoso Giovanni Battista
Viotti (1755–1824). Viotti was the first to introduce the power of a Stradivari
instrument to French musical audiences and then later to those in London. While in
Paris, Viotti advised the legendary bow maker François-Xavier Tourte (1747–1835),
alias “the Stradivari of the bow,” of his own requirements for a new type of bow in
which the Pernambuco wood curved inward toward the bow hair in contrast to the

68Jeremy Eichler, “The Bow of Bach’s Dreams? Not Quite.” The New York Times, August 10,
2003, p. AR22.
69See Paul Griffiths, “Bringing a Reclusive Composer to Light,” The New York Times, Art Section,
February 16, 1997.
70Still another method of bowing the cello was discovered by Piatigorsky. While rehearsing with
Stravinsky, he was so nervous that the bow jumped out of his hand and slid behind the bridge
producing a strange whistling sound. “Marvelous!” said Stravinsky. “How did you do it?” (Milstein
and Volkov, 1990, p. 143.)
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Fig. 5.49 The evolution of
the violin bow from
Mersenne to Viotti (after
Abele 1905)

previous convex design. This change gave the bow greater strength and elasticity
and permitted larger tension on the horsehair.71 In this design the wood was bent
into a convex shape facing the string using dry heat. A heavier head section than
had been normal was used in order to equalize “down and “up bows.” The horsehair
was held away from the stick with a metal clip to hold the hair in a flat band. The
bow was balanced by adding weight to the “frog.” Tension was applied through a
screw at the frog end where the bow was held. It has been said that Tourte did not
add many new concepts to bow making himself, but largely just combined the best
features previously discovered by others (especially those by Viotti.) In so doing,
he produced bows that surpassed those by anyone who had gone before him.72

(Fig. 5.50).
The requirements for the wood included springiness, strength and high density,

in addition to being workable73 and capable of retaining a curved shape produced

71See discussion in Faber (2005, p. 75).
72The author is indebted to cellist Frances-Marie Uitti and her bow maker, Andreas Gruter, for
helpful comments on the art of bow making.
73A experimental study of the bouncing bow has been given by Askenfelt and Guettler in the CAS
Journal, vol. 3, No. 6 (November 1998), pp. 3–8. Also see the second article in that same journal
by these authors on spiccato and ricochet bowing; Askenfelt and Guettler, CAS Journal, pp. 9–15,
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Fig. 5.50 (Top) A piece of pernambuco cut to the rough shape from which a bow can be made.
(Bottom) A modern bow fashioned from pernambuco wood by Iizuka (photograph by the author)

after the wood had been heated. Although various hardwoods (among them
“snakewood”) had been used previously to make bows, Tourte discovered that a
particular form of wood known as pernambuco imported from Brazil satisfied these
requirements best. It has the highest density and least dissipation rate of any of the
woods commonly used in violins. (See Bucur 1988.) By fortunate coincidence, large
quantities of this furnace-red wood (or “pau-brasil” as it was called in Portuguese)
were available in Paris because a red pigment extracted from it was used to dye the
robes of the nobility. Even so, it has been said that one might have to go through
eight-to-ten tons of this material in order to find a satisfactory piece to fabricate
a single 70–80 g bow, 75 cm long. In a way, the problem of finding a suitable
piece of wood for a fine bow is similar to that encountered by woodwind players
in locating good reeds—with the exception that the wood in the bow seems to retain
its springiness forever. Vast quantities of the wood were used in the dye industry
until the mid-1800s (when aniline dyes came into use), but the trees that produced
this wood and which were located on the coastal regions of Brazil were savagely
cut down as the forests were cleared to produce sugar plantations and the wood was
burned to produce charcoal for use in the steel industry. Not surprisingly, the trees
from which this wood is obtained have ended up on the environmental protection
list. As with cane reeds used in woodwind instruments, attempts to replace the wood
with plastics and other synthetic materials (e.g., fiberglass, composite fiber, carbon
graphite and steel) have proved to be unsatisfactory to professional musicians.74

(See Rymer 2004.) (Fig. 5.51).
Environmentalists and violinists alike will be glad to know that an Interna-

tional Pernambuco Conservation Initiative was officially approved by the Brazilian
Government in 2004 and is dedicated to the preservation of pernambuco wood in
Brazil.75 (Also see Hannings and Chin 2006.) (Fig. 5.52).

Horsehair has proved to be the only satisfactory material for exciting a violin
string. Three commonly used sources of bow hair are shown in microscopic views

and the earlier study by George Bissinger of bounce tests and modal analysis of the violin bow in
the CAS Journal, vol. 2, No. 5 (1995), pp. 17–22.
74It is said that manikara kauki wood grown in Asia is similar to pernambuco and is suitable for
making good bows (Dick 2003, p. 14). However, the violinists I’ve talked to who tried it remain
unconvinced.
75The Violin Society of America Newsletter, March 2004, p. 6.
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Fig. 5.51 Method used by Tourte and others to fasten the horse hair to the tip of the bow

Fig. 5.52 The “frog” from a modern bow made by Iizuka containing a screw with which the
tension in the horsehair may be adjusted. The frogs are made from a variety of materials: ebony
(as in the figure), 50,000 year-old mammoth tusks from Siberia, and horn. Ivory from elephants is
now forbidden (photograph by the author)

of single strands in Fig. 5.53. The top photograph is Chinese black (listed by the
supplier as being “very strong”), the middle is Chinese light grey (“strong and
elastic”) and the bottom is Siberian horsehair (“uniform in color and texture”).76

Single strands of these three types examined by the author varied in diameter as
follows: Chinese black: 0.18–0.25 mm; Chinese light grey: 0.18–0.28 mm; and
Siberian: 0.15–0.20 mm. The top two photomicrographs in Fig. 5.50 of Chinese
horsehair were taken with reflected light, whereas the bottom photomicrograph of a
Siberian horsehair was taken using transmitted light.

In none of these cases were any significant “barbs” encountered at the walls of
the hair of the type described in the old violin-teacher’s lore. However, there were
long groves running lengthwise along the hairs surrounded by ridges which are best
seen stereoscopically. These ridges should increase the strength of the hair against
lateral shearing over that which would be obtained from the same amount of material
concentrated in a perfectly circular cross section. One rough way of understanding
this is to note that resistance (hence, strength) of a beam against bending goes as the
third power of its thickness.

76The author is much indebted to the Heinrich Dick Company of Metten, Germany for supplying
these samples. He is also indebted to Dr. Jean Bennett Maguire for taking the photomicrographs
shown.
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Fig. 5.53 Photomicrographs
of individual strands from
three different kinds of
horsehair commonly used n
the making of violin bows.
Top: Chinese black; Middle:
Chinese light grey; Bottom:
Siberian (photographed by
Dr. Jean Bennett)

These ridges probably arose through years of evolution in the swatting of
horseflies and may be the reason why horsehair is so much better than other material
for violin bows. As well as being substantially thinner, human hair does not exhibit
such structure. (Rapunzel would not have been of much use in providing hair
for violin bows.) In addition to questions of strength, the groves in between the
ridges may also facilitate the adhesion of rosin. The ridges show up most clearly
as shiny reflections in the case of the Chinese black hair at the top of the figure.
(Rosin, of course, was not applied to the hair in any of the photographs shown
here.) Photographs taken by others under extreme magnification using electron
microscopy have also shown the presence of a scalely structure on the surface of
the horsehair that may also promote adhesion of rosin.

One occasionally hears the mysterious (to the uninitiated) comment that “it’s
better to have a fine bow and a mediocre violin than a fine violin and a mediocre
bow.” In addition, the notion that a fine bow should cost as much as (or even more
than) a good violin seems incredible to non-violinists. Part of the reason, quite apart
from the artistry necessary to fabricate a good bow, seems to be the scarcity of wood
with suitable elasticity. However, there is much more to the question than that. The
words of violinist Arnold Steinhardt (1998, p. 263) are instructive:

“The uninitiated might ask why the fuss over a long curved stick with horsehair attached to
both ends. Made by artisans from Brazilian pernambuco wood, each bow varies in thickness,
weight, and elasticity. A bow that works for one violinist may be out of the question for
another. The bow has to match not just the player but his instrument as well. A lightweight,
supple bow fits one instrument; a heavy, stiff one, another. String players can talk for hours
about bows, whose effect is so intangible—their playing qualities, the difference between
the great makers, what is for sale, where, and for how much. At this writing [1998], some
bows sell for upwards of $100,000. Could I hear the difference between the Mendelssohn
Violin Concerto played on a Dominique Peccatte or a Xavier Tourte bow? Probably not, but
in a way that doesn’t really matter. If the performer finds a bow comfortable and responsive,
then that’s the one for him.”
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From the scientist’s point of view, it is of interest to see if there is any major
difference in the spectra of sound produced on a good violin by bows of widely
different quality. For that purpose, a professional violinist from the Philadelphia
Orchestra (Paul Arnold) played on a very fine violin made in 2003 by Hiroshi Iizuka,
using three different bows of vastly different cost: a bow appraised at about $65,000
made by Peccatte,77 one made by Eugène Sartory78 in 1905 valued at about $15,000
to $18,000 and a contemporary Chinese bow only costing about $1000. (The reader
should be warned that there is considerable subjectivity involved in determining the
monetary value of any particular bow; some of the most expensive ones are largely
valued on the fame of their previous owners.) The Sartory bow used in the present
experiment had a replacement frog made from the tusk of a woolly mammoth about
50,000 years old. (According to the violinist, the presence of this mammoth frog on
the end of the bow actually detracted from its balance.) All three bows were made
from pernambuco and had been strung with Siberian horsehair.

Figure 5.54 shows the acoustic spectra obtained from these three different bows
on each of the four strings of the same violin. These data were all taken in the shop
of violin maker, Hiroshi Iizuka, using the same high quality Sennheiser Type MKH
104 condensor microphones used in the “varnish study,” again placed about 1 meter
laterally from the violin. Although definitely not an anechoic chamber, the room had
a reverberation time of less than 1 s and did not appear to have any strong resonances
in the range studied. The relative intensities are shown in decibels as a function of
frequency on a linear scale ranging from 0 to 20 kHz in each case. The violinist
was asked not to use vibrato; however, there was still some variation in the spectra
with time due to the fact that the bow did not remain at precisely the same distance
from the bridge while the data were being taken. One of the things that makes the
sound from a real violin different from the more mechanical sound which may be
produced by synthesizing the tone from the harmonic amplitudes and phases of the
spectral components is the fact that the tone quality does normally vary in this way.
(Of course, the presence of vibrato would produce still more variation in the tone
quality in normal playing of the instrument.)

As may be seen from the figure, there is not a great deal of difference among
the spectral samples from these three bows. The differences between the spectra
were comparable to the variations in harmonic content found as a function of time
when one bow was used by itself. As is apparent from the spectra, and as we
found previously with the waveform from an Amati violin, the sound is loaded with
harmonic content. With the Peccatte bow, frequencies up to about 12 kHz were quite
pronounced on the G string. With the other strings, the harmonic content increased
to about 15 kHz on the D and A strings and exceeded 20 kHz on the E string. The

77Dominique Peccatte (1810–1874) worked for J.B. Vuillaume and was an acquaintance of
François Tourte. He is generally regarded as the second best maker after Tourte and apparently
started in making bows where Tourte left off. (Beare 1980a). He was probably a great disappoint-
ment to his father, who intended him to be a barber. (Millant 1972, p. 112.)
78Eugène Sartory (1871–1946) studied bow making with Charles Peccatte (son of Dominique
Peccatte) and made several bows for the famous violinist Ysaÿe. (Beare 1980b).
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Fig. 5.54 Spectra obtained using three different bows to play the same violin. The instrument
was played by professional violinist Paul Arnold. The three bows were by Peccatte, Sartory and
a contemporary Chinese maker. The individual harmonics of the string are clearly resolved and
result in the peaks shown in each case in the relative response

latter range is most readily perceived by small children, dogs and bats. (Typically,
the hearing in adults falls off markedly above about 10 kHz.79) The energy in the
harmonics is indicated logarithmically in the figure over a range of about 60 dB. (A
60 dB change in intensity corresponds to a change in pressure amplitude by a factor
of one thousand.) As discussed in books on hearing, the sensation of loudness in the
human ear is roughly logarithmic—something known as “Fechtner’s Law.”

According to violinists, the difference between various bows has more to do with
the ease of playing than with the tone quality. For example, the elasticity of the bow
has much to do with the ability to play rapid spiccato passages. A heavier bow may
be able to produce louder tones, but that probably is at the expense of a decrease
in the player’s technical agility. As violinist Arnold put it, of the three studied, the
Pecatte bow adheres best to the string in rapid passages without a lot of “chatter.”

79Aging tends to reduce the upper limit of hearing in people by about 300 Hz per year after the age
of 20—hence, often leading to near-total deafness by the age of 100.
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5.21 Special Effects

5.21.1 Pizzicato

Because the science of plucked strings was discussed in detail in Chap. 3 in con-
nection with harpsichords and guitars, as well as in the mathematical development
in Appendix B, pizzicato (plucked string) playing has not been emphasized in
the present chapter. It is, of course, an extremely important technique used in
compositions ranging from the string quartets of Beethoven and Debussy to large
orchestral works such as the third movement of Tchaikowsky’s 4th Symphony.

As discussed in Chap. 3, the motion of the plucked string may be understood
through a simple method first described by d’Alembert (see the discussion associ-
ated with Figs. 3.4 and 3.5) and detailed computations of the motion of the plucked
string based on analysis of the wave equation were displayed in Figs. 3.7 and 3.8.

There are some important differences that arise in the motion of plucked violin
strings as compared to those of guitars and harpsichords. First, the large damping
factors in violin strings that are so important in permitting fast bowed passages result
in a very rapid decay of single notes when the instrument is played in the pizzicato
mode. In addition, the higher frequencies damp out very much faster than the low
ones. As a result, the tone quality changes markedly even within the short time of
the note’s decay. (The decay times of individual notes on the violin, viola, and cello
are very fast in comparison to those found in the guitar, harpsichord, and piano.) In
addition, with pizzicato excitation the inharmonic nature of the string discussed in
Chap. 4 in connection with Eq. (4.5) is not suppressed as it is when the instrument is
bowed. The overtones of the plucked string are no longer precisely harmonics of the
fundamental pitch. (As discussed earlier in this chapter, the slip-stick process in the
bowed string forces the waveform to be periodic and locks the overtones in phase
so that they are perfect harmonics of the fundamental tone.)

As with the bowed string, the plucked string has an overtone spectrum strongly
dependent on the point of excitation. Plucking the string at the mid-point results
in only odd harmonics and produces a clarinet-like sound. Plucking at a point one
seventh of the way between the bridge and the nut results in both even and odd
harmonics, but with the suppression of the “clashing” seventh harmonic. In general
plucking the string at a point P0 = L/M away from the bridge, where L is the
length of the string and M is an integer, results in suppression of the Mth harmonic
and all of its multiples. Examples of this effect were given in Figs. 3.6 and 3.10 of
Chap. 3. (Just as in the case of the bowed string, the spectrum of the radiated sound
will differ from that of the vibrating string alone due to the frequency response of
the bridge and top plate of the instrument.)
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5.21.2 Harmonics

Nicolò Paganini (1782–1840) had much the same effect on violin playing that Liszt
later had on that for the piano. One of his friends, violinist and conductor Guhr 1831,
spent much of his professional life studying Paganini’s technique and published
a treatise on the virtuoso’s playing in 1831. In addition to the unusual tunings
that Paganini employed,80 he was a master at the use of harmonics. According to
Guhr, he used very thin strings to enhance harmonic production and played in high
positions with the bow very near the bridge. The bridge, being flatter than usual,
rendered the higher positions easier to handle. He played without a chin rest and kept
his left hand with which he supported the violin in a fixed position; double-jointed
fingers made it easier for him to reach the different locations on the fingerboard
than would be the case with most people. According to Joseph Gold, who played
on Paganini’s Gaurneri del Gesu “Cannon,” Paganini had worn an indentation in the
side of the instrument where his thumb constantly rested.81 Much of Guhr’s treatise
is devoted to the notation and technique the legendary master used to produce
harmonics and double stops with harmonics. The latter, of course, were achieved
by playing harmonics simultaneously on two different strings.

One probable source of confusion should be clarified at the start of our
discussion: Paganini and most other musicians count harmonics differently than
do physicists. Violinists usually think of the first overtone on a string as the “first
harmonic,” whereas the physicist starts counting with n = 1 corresponding to the
fundamental frequency of the open string; n = 2 is then the first overtone or second
harmonic, and so on. The frequencies of the various harmonics of the string are then
simply given by

fn = n(c/2L) , (5.8)

where n = 1, 2, 3, . . . as described in earlier sections of this book. (Here again,
frequency is in Hz, L is the length of the string, and c is the wave velocity for
transverse vibration along the string.)

In practice, the performer plays a harmonic by lightly touching the string on a
node for the harmonic desired while bowing near the bridge. For example, to excite
the second harmonic (first overtone), one touches the string in the middle.82 This

80For example, instead of playing his well-known first concerto as originally written in E-flat major,
he tuned all his strings a semitone higher so that he could read it off in D-major. He never tuned
in front of an audience and did not even let the conductor see the part he played from. (His first
concerto is generally played in D major currently.)
81Joseph Gold (private communication) learned much about Paganini’s technique from discussions
with a person who actually knew H. W. Ernst, the famous nineteenth century violinist and friend
of Paganini’s.
82As demonstrated to me by Syoko Aki, some violinists are able to sustain the harmonic after
removing the finger from the node merely by bowing in the right position.
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Fig. 5.55 Motion of the “kinks” (or pulses) during second-harmonic (first overtone) generation
in an up-bow cycle. A node is created at the middle of the string by the violinist’s finger that in
effect reflects the kinks in the two halves of the string which circulate out-of-phase by 180◦. The
running waves actually go right through that node, but the net string motion behaves as if there
were a “hard” reflection at the node. The string slips from the bow at point 1 and successive points
in the cycle are indicated by the numbers 1 through 6. At point 6, the string sticks on the bow again
and the cycle repeats (computed by the author using the Helmholtz model of the bowing process
discussed earlier)

process forces a node in the middle that kills the fundamental frequency (n = 1) in
much the same way that drilling a hole halfway down an organ pipe produces the
first overtone (n = 2) in a harmonic flute. In both cases the frequency jumps up
by a factor of two from the open string (or pipe). The motion of the string is now
altered from that shown in Figs. 5.10 and 5.11. It is still described approximately by
Eq. (5.4) except that the Fourier coefficients in Eq. (5.3) are now forced to be zero
for all of the odd harmonics in order to produce a node in the middle of the string.

The result for the string motion is shown for second harmonic generation is
shown in Fig. 5.55, where time increases in the steps 1,2,3,. . . ,6 over one cycle of the
note. At each instant of time, there is one continuous waveform over the full length
of the string, but by choice of the coefficients, Cn, the waveform always has zero
amplitude in the middle. The summation of these terms at different times throughout
the cycle gives rise to two separate “kinks” in each half of the string rotating in the
same direction, but out-of-phase by 180◦. The system behaves as if there were two
identical halves of the string vibrating separately at exactly the same frequency.
Similar constructions can be made for each of the higher harmonics. Producing
the higher harmonics on a violin proceeds in an analogous manner, except that the
location of the right nodes to use is more complex. To get the third harmonic, two
nodes exist at one-third the length of the string between the bridge and the nut;
hence, there are two possible locations for the finger. Which is chosen might depend
on the previous finger position. However, the fourth harmonic is trickier to excite.
Although it has three nodes at intervals of one-quarter of the active string length,
only the outer two of these will work. That is, placing the finger at 2/4 = 1/2 of the
length just excites the second harmonic as discussed above.83

83Knut Guettler (2002) has discussed the mechanics of exciting such harmonics in more detail.
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5.21.3 Tastiera Bowing and “Ghostly Tones”

Violinist Mari Kimura has developed an unusual version of “tastiera” bowing
technique that produces a delicate “ghostly” sound.84 The technique is somewhat
related to the mechanics of playing normal harmonics in that the transverse
excitation of the string must pass under one finger lightly pressed downward on
the string. However, in this case the bow is placed far down over the fingerboard of
the instrument where the neck of the violin emerges from the belly and the single
finger that determines the vibrating length of string is placed between the bow and
the bridge. The pitch of the note is determined by the length of string between that
finger and the nut; however, the short length of string between the bridge and the
finger is then automatically tuned (from the geometry involved) to a harmonic of
that same pitch. (Only one finger can be put on the string at a time and that finger
must move toward the nut when the player goes up a scale.) The bowing location at
the end of the belly of the violin permits up and down motion of the bow without
striking the body of the instrument. However, the technique is difficult in that one
must avoid hitting an adjacent string with the bow. A photograph of her producing
this effect was shown in the glowing review by New York Times music critic Edward
Rothstein of her 1994 debut recital at Merkin Hall. (See Fig. 5.56.) The acoustic
spectra obtained in this way for the note D bowed on the G string is shown at
the right in Fig. 5.57 together with the normal spectra obtained for that same note
when the string is bowed near the bridge. For the “ghostly” example shown, the
active length of the bowed string between the finger and the nut was tuned to D at
about 294 Hz, whereas the length of string between the bridge and the finger was
(automatically) tuned to the second harmonic of that note at about 588 Hz. This
resulted in an enhancement of the second harmonic (by about 5 dB) in the bowed
acoustic spectra, whereas the fundamental at 294 Hz was largely attenuated (by over
30 dB) since the running wave must pass by the finger on the string to get to the
bridge. Nevertheless, the various frequencies present in the “ghostly tone” spectra
are all precise harmonics of the normal D fundamental at 294 Hz. (The D at 294 Hz
is an octave below the third harmonic of the open G string, which itself is tuned to
196 Hz; hence all of these frequencies in the case shown are harmonically related.)
It was verified that the “ghostly” sound was indeed coupled through the bridge to
the top plate by studying the sound generated by piezoelectric elements placed in
the bridge.

84The word “tastiera” means “keyboard” in Italian. Bowing over the keyboard is often described
by that same term in the world of violinists.
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Fig. 5.56 Position of the
bow and finger for the tastiera
bowing technique developed
by violinist Kimura (from a
photograph taken by David
Corio at Kimura’s 1994 debut
recital in Merkin Hall.
Reproduced by permission of
Mari Kimura)

Fig. 5.57 Normal spectrum for D (left) bowed on the G string compared with that for the “Ghostly
Tone” (right) achieved by bowing over the finger board on the same note. (See text.) The data were
taken with the same microphone in the same relative positions with respect to the instrument. As
with all studies of this type, there is some fluctuation in the relative harmonic distribution from
one instant to the next due to changes in bow pressure and position. However, the main features
(enhanced second harmonic and attenuated fundamental) were consistent

5.21.4 Tartini Tones

As is well known to accomplished violinists, playing two notes that are in a precise
harmonic relationship results in the seeming appearance of a third, subtone lower
than either of the two notes played. Indeed, the occurrence of the subtone is used
by violinists to tune the top two notes forming a double third, fourth or fifth. If you
don’t hear the subtone, the top two notes are probably not harmonically in tune.85

85Meyer and Wit in the CAS Journal vol. 3, No. 5, (May 1998), pp. 22, 23 claim to have detected the
emission of difference tones produced by a violin. However, their resultant tones were at least 70 dB
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Although they surely must have been known to violinists prior to his time,
Giuseppe Tartini (1692–1770) claimed to have discovered these subtones, which
he dubbed terzo sono in 1714. His main claim to credit for the discovery is based on
the fact that he incorporated the phenomenon in his theory of harmony.86 Although
Tartini realized the terzi soni represented difference frequencies, it is not clear that
he really understood how the third sounds were produced. (His derivations are based
on tedious geometrical models that contain some mistakes.) Many contemporary
violinists do not understand the source either and think that the subtones are
actually physically present and come out of their violins! I first encountered that
phenomenon when one of Broadus Erle’s students was doing a senior research
project with me on the violin spectrum in the Yale physics department. I had to
take out a high-quality condensor microphone and spectrum analyzer to convince
him that the subtones did not exist, except in his head.

The main source of these subtones is nonlinearity in the human ear. (One of
the reasons that the ear is usefully sensitive over such an enormous range of sound
intensity is that it is nonlinear.87) By “nonlinearity” in a device is meant that the
output signal (e.g., in the case of the ear, the rate of neurons firing in the cochlea)
does not fall on a straight line as a function of the input amplitude (here, the
pressure wave amplitude striking the ear drum). As a very rudimentary example,
consider the presence of a quadratic nonlinearity in an otherwise linear system
whose characteristic response is of the form,

Output = Input + (Input)2 . (5.9)

If the Input signal consists of two different sound waves of the form

Input = a sin A + b sin B , (5.10)

the Output signal will be

Output = a sin A + b sin B + a2 sin2 A + 2ab sin A sin B + b2 cos2 B . (5.11)

Here, A and B represent periodic, time-varying angles proportional to the
frequencies involved (i.e., A = ωAt and B = ωBt). Equation (5.10) may be

lower than the primary tones and it is not obvious that they were not produced by nonlinearities in
their instrumentation. The psychoacoustic tones heard in the violinist’s ear are extremely loud.
86Published as Trattato di Musica Secondo la Vera Scienza Dell’ Armonia in Padova in 1754. This
treatise contains a table of intervals such as fifths, fourths, thirds, and their difference-frequency
subtones.
87This logarithmic nonlinearity is known as “Fechtner’s Law” in psychology. The actual nonlin-
earity in the ear is a good deal more complex than the example used in the text to illustrate the
generation of difference-frequency tones by a nonlinearity.
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Table 5.3 Frequencies,
Output amplitudes, and
Output intensities produced
by the quadratic nonlinear
expression in Eq. (5.10)

Frequency term Output amplitude Output intensity

A a a2

B b b2

(A − B) ab a2b2

(A + B) ab a2b2

2A a2/2 a4/4

2B b2/2 b4/4

rewritten using simple trigonometric identities88 to obtain the results in Table 5.3.
The main point is that the quadratic nonlinearity generates output signals involving
the sine or cosine of (A−B), (A+B), 2A, and 2B, hence at frequencies of ωA±ωB,
2ωA, and 2ωB that are quite different from the input frequencies, ωA and ωB .
That comes about from simple trigonometric identities for sin A, sin B, sin 2A, and
sin 2B. The “Tartini Tones” are at the frequencies ωA − ωB , which are below either
ωA or ωB and therefore quite conspicuous. Note that the nonlinear terms produce
intensities effectively proportional to the fourth power of the original sound-wave
amplitudes. Hence, if the original sound wave intensities fall off with distance r as
1/r2, the nonlinear terms will seem to fall of as 1/r4. Those extra signals will seem
to fall off much more rapidly with distance than the original sound. Thus, a subtone
that seems loud to the performer may not even be heard by the audience.

Now suppose that each of the tones A and B is represented by a Fourier series
whose fundamental frequencies (“pitches”) are harmonics of some lower frequency,
ω, that will be the “subtone.” Let’s say A and B correspond to the second and third
harmonics of ω. Then A = 2ωt and B = 3ωt , and the fundamental frequency of
the difference term is represented by A − B = 1ωt . Now when we multiply the two
Fourier series representing the input signals together, we will get a result of the form

(∑
n

= 1an sin 3nωt

)
×

(∑
m

= 1am sin 2mωt

)
,

that will generate difference frequencies of the sort (3n − 2m)ω which are written
specifically in Table 5.4 in units of ω.

Note from Table 5.4 that the difference frequencies (3n − 2m)ω themselves
represent a harmonic (Fourier) series in the fundamental frequency ω. Hence, since
the ear has a quadratic term in its nonlinear response, playing two notes a fifth
apart (say C and G on the scale) whose pitches are at the frequencies 3ω and 2ω

(which are the third and second harmonics of 1ω, hence in the ratio of 3:2) will
generate in the brain the illusion of a Fourier series about the subtone one octave

88The trigonometric identities, which are among the most useful things taught in high school, are
2ab sin A sin Bab cos(A − B) − ab cos(AB) ,

a2 sin2 A = a2

2 − a2

2 cos 2A and b2 sin2 = b2

2 − b2

2 cos 2B.
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Table 5.4 Difference
Frequencies in units of ω for
the example in the text for
integers n, m = 1, 2, 3,. . .

n or m 3n 2m 3n−2m

1 3 2 1

2 6 4 2

3 9 6 3

4 12 8 4

5 15 10 5

, etc.

below the frequency 2ω (i.e., an octave below the first C in the example) that is
not really present in the incident sound wave. Listening for that subtone is the way
violinists play double stops in tune. Of course, violins are not the only instruments
that can create such subtones. If, say, a flutist and an oboist play a separate G and
C that are harmonically in tune, one will also hear the subtone an octave below
the C. (Alas, most orchestras do not play in tune that well. However, I have often
noticed the subtone effect in performances by the wind section of the San Francisco
Symphony.)

5.21.5 Bowed Octave Subtones

In April 1994, the young Japanese violinist named Mari Kimura astonished the
audience at Merkin Auditorium in New York by performing several original
compositions featuring what she referred to as subharmonics.89 (See Rothstein
1994.) She had extended the violin’s range by a full octave below the open G string
without changing the tuning. Since then she has extended the technique further to
include nearly all the chromatic intervals for one octave below the fundamental
open string note by applying different amounts of bow pressure and different bow
positions (See Kimura 2001). From Fig. 5.58, the bend in the string produced by
heavy bowing with a string tension of 10.4 lbs (= 4.7 kg) was about 3◦. Hence, the
lateral force (≈ T sin 3) was about 247 g. In her description of the technique, she
said she was applying unusually heavy bowing force. The extreme bowing force can
be estimated from the bending of the G string from the photograph in Fig. 5.58. The
technique (sometimes known as “Russian bowing”) had been suggested to her by her
first teacher, Armand Weisbord (former concertmaster of the Ottowa Philharmonic)
as a means of “developing smoothness and purity of sound.”

Other violinists (for example, Norman Pickering and Michael Tree) have told me
that their teachers suggested the same bowing technique for developing tone quality.
While practicing this technique at slow bowing speeds, Kimura noticed the presence
of various subtones at musical intervals in the otherwise scratchy sound.

89When Kimura demonstrated that she could play an entire scale below open G for a master class
at Juilliard, one of the students exclaimed, “HOLY SHIT!”.



5.21 Special Effects 233

Fig. 5.58 Mari Kimura playing an octave subtone on the G string (photograph by the author)

These subtones apparently are well-known to some violinists, who learned to
avoid them in normal playing and never regarded them as a possible source of
musical sound. Violinist Gold (1995, p. 83) believes that Paganini discovered a
similar technique for playing octave subtones on the G string and used it in his
concerts. Indeed, Gold suspects that Tartini was probably able to do it, also.90

However, Kimura seems to be the only contemporary violinist who makes use of this
effect in performance. She found a reliable and systematic way to produce a whole
series of such tones with remarkably consistent intonation. As she put it. “they were
supposed to be faint or ghostly, but I proved that wrong.”91 Direct measurements
by the author showed that these subtones were typically produced at a total sound
level of about 70 dB at a distance of about 4 ft from her violin, or at about the level
of “loud speech.” One musical problem Kimura explained is that they always come
out “forte.” She is able to produce these tones on almost any violin, although her
own instrument is a fine Italian one. But it does help to use a bow that has strong
weighting in the middle. The tones are best produced with a down bow near the frog
for one can then obtain the most bowing force (Fig. 5.59).

The relative spectra on different subtones produced by Kimura observed in a
series of measurements by the author were roughly similar. The waveform over one
cycle and its corresponding spectral distribution are shown in Fig. 5.56 for the G one
octave below the normal open G-string pitch. The periodic waveform at the subtone
frequency seems phase-locked to the normal open string frequency. The relative
harmonic content is shown on a linear scale for six of these notes in Fig. 5.57.
However, the fundamental frequency components of these subtones was nearly non-

90Gold’s source of information about Paganini was in private discussion with a friend who actually
knew Mme H.W. Ernst—wife of the famous nineteenth-century violinist who was also a close
friend of Paganini.
91See Neuwirth (1994) for a more extended background discussion.
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Fig. 5.59 Waveform and spectrum for the octave subtone below open G produced by violinist
Mari Kimura

existent acoustically, being down typically by more than 25 dB from the stronger
harmonics present. The fundamental is not of key importance in determining the
apparent pitch of the note, although its absence does affect the tone quality. As is
well known from various psychoacoustic experiments, the ear generates the illusion
of the fundamental pitch from the presence of several harmonics, even when the
fundamental is totally absent. The data in Figs. 5.56 and 5.57 were taken in a
large room (≈18,000 cubic-ft volume) with a 1-s reverberation time constant using
a highly linear Sennheiser MKH 104 condensor microphone at about 1-m and a
professional model Sony DAT recorder. (Recording was necessitated by noise from
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the spectrum analyzer. However, other measurements have shown that negligible
distortion was introduced by the DAT recorder used.) (Fig. 5.60).

A very important question for the physical understanding of the production
mechanism is whether or not the fundamental tone is actually produced in the string
by the bowing process. Because it seemed probable that the acoustic response of the
violin fell off so rapidly that the suboctave frequency of open G would be inaudible,
we investigated whether that frequency was actually present in the vibrations of the
bridge of the instrument. The technique used was the same as that discussed earlier
in this chapter to investigate the bridge coupling in a violin bowed in the normal
manner. Piezo electric transducers were fitted in the bridge of Kimura’s violin for
this purpose. Some data from this experiment are shown in Fig. 5.61. These results
clearly demonstrate that the fundamental octave subtone is definitely contained in
the vibration of the bridge. The reason it is not more prominent in the acoustic
spectrum from the violin is simply that the coupling efficiency at the suboctave
frequency is very low due to the small size of the violin top plate compared to
the wavelength of the sound. Typically, the length of the top plate is about one
tenth the wavelength of the subtone fundamental and it is expected that the coupling
efficiency would vary roughly as the square of that ratio. Hence, it is not surprising
to find that the fundamental component of the subtone is down by about 40 dB from
the larger harmonics in the acoustic spectrum.

Kimura’s approach to producing these remarkable subtones is best described in
her own words (Kimura 2001). The bowing arm creates tones and the left fingers
are kept in normal position pressing down on the fingerboard. (The subtones can
also be produced with vibrato.) The bow pressure must be heavy, slow and uniform
throughout the stroke and the bow hair kept flat. The higher the finger position,
the closer the bow should be toward the bridge to maintain a subtone octave.
The approximate relationships between finger positions and resultant subtones are
shown in Fig. 5.60 and Table 5.5. In Table 5.6, the bow positions are shown for a new
G string. As the string ages, Kimura found that the ease of producing the subtones
increases, but the bow position must be moved farther away from the bridge. One
important discovery she made (stimulated by a suggestion from Shigeru Yoshikawa)
is that one can enhance the production of the subtones by twisting a rigid new string
counterclockwise (as seen by the player looking down the string from the bridge).
Twisting a new string in this way makes it work as effectively in producing subtones
as an old worn string. Further, twisting the string one revolution counterclockwise
shifts the subtone down one half step on the musical scale for the same finger and
bow positions.92 Some examples of the sound obtained are included in her web site
article.93 Her interest in producing such new tones was, of course, from a musical

92Measurements by the author showed that twisting the string counterclockwise in Kimura’s sense
slightly increases the torsion constant (K), presumably by tightening the metal winding on the
string. Typically K ≈ 1135 ergs/radian when a cylindrical weight is suspended by the 33 cm string
and adjusted to produce the normal tension (10.4 lbs).
93Mari Kimura, http://pages.nyu.edu/~mk4.

http://pages.nyu.edu/~mk4
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Fig. 5.60 Summary of spectra observed for six subtones produced below open G by violinist
Mari Kimura. The data are all presented on the same linear amplitude scale over the range from
0 to 5000 Hz. The results were recorded digitally using a Sennheiser MKH-104 microphone and
a Sony TCD-D10 PRO 2-channel DAT recorder and then analyzed with the Wavetek spectrum
analyzer shown in Fig. 2.16. This microphone is one of few tested by the author that does NOT
produce discernible difference frequencies from nonlinearities in its circuitry

point of view with the hope that they would enhance the range of the violin and be
used in future compositions. Anyone who is skeptical of the musical applicability
of this result should listen to the pieces she has composed using this technique.94

A variety of different explanations has been offered for the generation mech-
anism of these bowed violin string subtones. According to Lord Rayleigh (1877,

94Six Caprices for Subharmonics (1997); Gemini for Solo Violin (1995); ALT in Three Movements
(1992) produced by Mari Kimura (private publication) and available from her privately by Email:
mari.kimura@nyu.edu.
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Fig. 5.61 Oscillograms
taken from a piezo-electric
element in the bridge of
Kimura’s violin. The top
figure is the result of playing
open G normally. The lower
one, displayed with the same
time scale, shows the pulses
produced by the subtone an
octave below open G. The
result proves that the
fundamental frequency was
actually present in the bridge,
hence, coupled from the
string vibrations

Table 5.5 G-string bow positions for subtone production used by Mari Kimura (Dimensions in
cm)

Sub-octave Minor third below sub-octave

Fingered note Bridge to bow edge Bow edge to stop Bridge to bow edge Bow edge to stop

C 2.70 19.68 3.33 19.53

B 3.02 20.40 3.25 21.11

A# 2.86 21.67 3.17 22.01

A 3.02 23.34 3.65 23.81

G# 3.65 25.00 3.81 24.45

G 4.37 26.67 4.13 26.75

Notes: The active G string length was 32.38 cm from bridge to nut and the string diameter
0.79 mm. (Metal-wrapped nylon, No. 123 by Thomastik-Intels, of Vienna.) End of fingerboard
was 27.00 cm from the nut. As the string ages (or if the string is twisted), the optimum bow
positions move away from the bridge (measurements made by the author)

p. 253), Savart’s experiments on longitudinal vibrations occasionally showed a
tone whose pitch was an octave below that of the normal longitudinal vibration
frequency. Rayleigh stated that Terquem had concluded the cause was a transverse
vibration whose own frequency was approximately the same as the sub-octave
longitudinal vibration. However, it is unlikely that longitudinal resonances could
be excited by Kimura’s particular bowing technique.

Kimura herself thinks of her subtones as subharmonics, an interpretation that is
certainly tempting from a musical point of view and that might be justified on the
basis of nonlinearity in the restoring force of the violin string due to the large bowing
force and extreme deflection of the string. (Hooke’s Law probably breaks down to
some extent in the bowing process.) Interestingly, McIntyre et al. (1982) discussed
the production of subharmonic perturbations in the normal periodic waveform.
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Table 5.6 Alternative Bow
Locations for Octave subtone
production (distances are in
cm)

Note Distance to bridge Distance to nut Fingered note

G 5 26.8

26.8 5

4.7 27.4

27.4 4.7

D 23 8.5 B

8.5 23

F� 20 12.8 D�

12.8 20

D� 8 24.3 F�

24 8.4

B 16.4 16.4 C

Source: Unpublished research by Julie Haas and the author at
Yale University. Note that Julie Haas’ violin and G string were
quite different from those used by Mari Kamura to produce
the data in Table 5.5

They concluded that if the dissipation in the bowing process is sufficiently low and
reflection from the bow during sticking is sufficiently strong, “negative resistance”
at the bow during slipping causes subharmonics to become self-excited. They
concluded that this process was the physical mechanism underlying a mathematical
instability in the oscillation of bowed strings discovered earlier by Friedlander
(1953). They referred to these sounds as “Ghostly Subharmonics” and noted that
they were irregular, very faint, seldom persisted for more than a few subharmonic
cycles, and were “a bit like the response of a cavity to random-noise excitation.”
These descriptions definitely do not fit the characteristics of the subtones produced
by Kimura. Her subtones are quite loud (typically, about 70 dB at about 4 ft from
the violin), unmistakable in their presence, and quite coherent.95

Although it is tempting from a musical point of view to refer to Kimura’s
subtones as “subharmonics,” there are several reasons why they are not likely to
be true subharmonics of a nonlinear oscillator in the conventional physics sense. As
discussed in Appendix A, the conditions for producing such subharmonics usually
involve substantial instability. The potential well from the quadratic force term
needed to produce a subharmonic tends to make the oscillator producing the result
very unstable. But Kimura is able to sustain her subtones for many seconds using a
downbow.

95The subharmonics described by McIntyre et al. (1982) were incoherent. The difference between
a coherent audio signal and an incoherent one is similar to that between the filtered output from a
light bulb and the output amplitude from a laser. In the former case, the amplitude fluctuates wildly
at low intensities, as well as the phase. In the latter case, both the amplitude and phase are constant
within normal statistical fluctuation limits. (e.g., fluctuations in the photon count over a prescribed
time vary as the square root of the number of photons detected.)
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The subtones might result from nonlinear mixing with two modes of oscillation
in the string by the bow motion under heavy pressure. That type of process should
generate acoustic difference frequencies in the sound from the violin similar to
those created inside the ear by the Tartini effect discussed in the previous section.
Such difference frequencies could occur at the frequencies produced by Kimura.
However, it is not so obvious how they would be locked to fractions of the normally
stopped G-string frequency.

The bow positions relative to the bridge used by Kimura (see Fig. 5.55)
are clearly desirable for rapid switching between normal playing and subtone
production—especially in the manner employed by Kimura in her own
compositions. However, there is one important aspect of the production mechanism
that is obscured by these data. Namely, many of the subtones can be produced by
bowing at symmetrically opposite positions from the midpoint of the active length
of string as illustrated in Table 5.5. This aspect of the problem was discovered by
the author and one of his special students at Yale University, a violinist named Julie
Haas. We had initially misinterpreted the photograph reproduced here in Fig. 5.53,
thinking that the bowing position shown was being used by Kimura to produce
subtones. We then realized that there were two stable positions for the bow with
respect to the bridge that worked and that were located symmetrically about the
midpoint of the active length of string. Our measurements were made sometime
after the publication of the Rothstein (1994) review and are reproduced in Table 5.6.
The importance of this observation is that it rules out several cleverly designed
mechanisms to explain how pulses propagating between the bow and the nut could
be transmitted to the bridge at the subtone frequency. The point here is that the
subtone production mechanism works even when the long dimension of the string
is always in direct contact with the bridge.

5.21.6 Torsional Waves

The involvement of torsional waves has been suggested by several authors as a
possible explanation of these subtones,96 and certainly the effect on the subtones
from twisting the string described above tends to reinforce that suspicion. Unfortu-
nately, the previous studies have been inconclusive—largely due to the absence of
any quantitative determination of the torsional wave velocity in the bowed string.
As shown in Appendix B, torsional waves should obey a wave equation similar to
that for lateral vibrations and the boundary conditions for reflection of these waves
are also much the same. Determining that velocity is not trivial since exciting the
torsional waves takes a great deal of torque applied very quickly and the waves
damp out very fast. The most effective way to produce them indeed seems to be

96See, e.g., Hanson et al. (1994) and Shigeru Yoshikawa (1997).
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Fig. 5.62 Torsional deflection of a 0.033 in. silver-wound G string under 10.4 lbs of tension at a
bow weight of 130 g applied 2 cm from the bridge. The 1-cm wide bow hair is moving to the left
horizontally and the rotation of the string downward from the horizontal is about 40◦ as indicated
by a cat whisker glued to the string. Under these conditions Pickering estimated the coefficient of
friction was about 58% (figure reproduced from Pickering 1991 with permission)

with a violin bow. (Several attempts by the author at pulsed excitation of torsional
waves on a violin G string under normal tension with motors did not work.)

Torsional waves in a bowed cello string were observed as early as 1896 by
Cornu,97 and the torque on violin strings produced under continuous heavy bowing
pressure was studied quantitatively by Pickering (1991). Pickering’s conditions (see
Fig. 5.62) were roughly similar to those used by Kimura, except that the bow weight
was about half that implied by Fig. 5.58.

Stroboscopic illumination of the bowed string on Kimura’s violin was viewed
with a digital video camera and showed two important features of the motion:
First, the open G-string waveform from normal bowing consisted entirely of lateral
oscillation of the string. Second, the string motion during the subtone production
had an extremely strong torsional component in addition to a lateral component of
comparable amplitude. But the torsional mode frequency was at least 50 percent
higher than that of the normal lateral vibration mode. To see these effects, a small
strip of stiff paper was glued to the midpoint and other points on the string and
illuminated with a stroboscope operated at the normal open G-string frequency. (See
Fig. 5.63.) Strong torsional motion was found for all of the subtone frequencies
produced by Kimura. Clearly, both vibrational and torsional standing waves must
play some role in the production of these unusual sounds.

As shown in Appendix B, torsional waves satisfy the same type of wave equation
as the more common lateral string vibrations discussed before, and consequently

97M.A. Cornu, Journal de Physique vol. 3, p. 5.1 (1896).
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Fig. 5.63 One frame from a video camera recording using stroboscopic illumination near the
normal open-G frequency. Here, a single small piece of paper was glued to the middle of the
string. The figure illustrates the maximum rotational deflection when the subtone is produced. The
fact that there are at least two images of the single piece of paper means that the torsional frequency
was much greater than 196 Hz

the boundary conditions for the reflection of torsional waves at the fixed ends of the
string are similar to those for lateral vibrations. Since the torsional wave velocity
is significantly higher than the normal lateral wave velocity, difference frequencies
involving submultiples of the normal transverse string resonances could well be
produced through non-linear mixing by the bow of these two forms of resonance.
Such an interpretation could explain why the subtone spectrum is phase-locked to
the normal harmonics (and subharmonic) of the G string.

5.22 Possible Models of Subtone Production

Although it is hard to be sure precisely what mechanism is used by Kimura to
produce octave subtones, there are several ways in which this production might
come about.

5.22.1 Subharmonic Generation

It is appropriate to start the discussion with the mechanism that Kimura herself has
tacitly suggested. A nonlinear oscillator with a strong quadratic term in the spring
constant could certainly produce an octave subtone, or a true subharmonic. One
might argue that the heavy bowing pressure applied to produce the violin subtones
would tend to produce such a nonlinearity in the restoring spring constant. This case
is examined in some detail in Appendix A. Instead of the normal form of Hooke’s
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Law, one assumes there that the restoring force from the spring can be expanded
in a power series in the displacement from equilibrium as done in Eq. (A.48) of
Appendix A. One then solves the differential equation for the oscillator with that
nonlinear force term present. An immediate problem arises in the shallowness of the
potential well for the oscillator as shown in Fig. A.7 of Appendix A. Although stable
solutions may be obtained at very low excitation levels (see Fig. A.8 and, especially,
Fig. A.10), relatively little force is required to cause the oscillator to fly apart—
which in the present case would correspond to the bow slipping on the string. This
difficulty might be overcome through the addition of a cubic term to the restoring
force as shown at the right side of Fig. A.7. Although that assumption may actually
provide a realistic model of the bowing interaction with the string and does stabilize
the oscillator, solutions of the equations of motion at high restoring force in that
case show signs of chaotic motion in which the waveform is no longer precisely
periodic. (See Fig. A.9.) The waveform does have a basic fundamental repetition
rate at the driving frequency, but the shape of the waveform varies from cycle to
cycle. In contrast the waveforms for the actual subtones produced by Kimura are
precisely periodic over long periods of time and have precisely defined harmonics.
(See Fig. 5.60.) For these reasons, it seems unlikely that the stable octave subtones
obtained by Kimura are the result of a subharmonic solution to a nonlinear oscillator.

5.22.2 Coincidence Model

The stick-slip mechanism of the bow moving on the string results in the generation
of pulses traveling between the bow and the nut (the stop at the tail end of the
violin). It can therefore be argued that the heavy bowing pressure results in such
pulses being reflected back and forth between the bow and the nut. Some of these
pulses will result from lateral vibration of the string and some from the torsional
waves generated on the string. Since the torsional waves are expected to have a
higher velocity of propagation than the lateral waves, the successive pulses from
these two different wave motions will generally not arrive at the bow at the same
time. One then argues that when the two types of pulse arrive in coincidence, the
combined pulse (or “kink”) is large enough to slip through the bow and get to the
bridge. This model is illustrated schematically in Fig. 5.64.

The basic idea is that two pulses are launched simultaneously in the two separate
loops when the bow slips on the string. The two loops have different delay periods.
The long period is associated with lateral vibration waves and the short period with
torsional wave propagation. The pulses in each loop are recirculated by the bowing
process which provides some amplification to compensate for energy loss of the
pulses during their round trip travel.

When the two pulses arrive within the resolving time of the coincidence circuit
in Fig. 5.64, the combined amplitudes are assumed to be large enough to cause the
bow to slip resulting in a pulse traveling through to the bridge. The time between
coincidence pulses is determined by the number of round trips made in both loops
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Fig. 5.64 Schematic model of a subtone generator that might produce results similar to those
obtained by Kimura. (The schematic arrangement is similar to one devised by Peter Kindlmann in
1966 to measure lifetimes of excited atomic states except that the delay lines in his experiment were
closely spaced and coincidences generally occurred in times much less than the “Long Period.”)

before the next coincidence occurs. If that time is greater than the circulation time
for the slow loop, a subtone is produced. For example, if the long-to-short pulse
frequencies are in the ratio of 2:3, the output of the coincidence circuit will be at
half the circulation frequency in the long loop. Hence, if the long loop corresponds
to the normal lateral vibration resonance for the G string, the output signal will be
at precisely half the normal open-G frequency. It is also probable that the harmonics
of the subtone in that case would be phase-locked to the harmonics of the normal
open G-string frequency. (See Fig. 5.65.)

Fig. 5.65 Pulse sequences for the model shown in Fig. 5.61 for the case where the long-to-short
pulse frequencies are in the ratio of 2:3. Note that in this case, the output coincidence pulse rate
is half that for the long period pulses. Hence if the long period pulse rate corresponded to lateral
vibrations excited near the open G-string frequency, the output frequency would be at the sub
octave
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5.22.3 Other Stick-Slip Models

There are ways in which a subtone frequency might conceivably be produced simply
by lateral or torsional waves alone. Consider the diagram illustrated in Fig. 5.65
in the case of lateral waves (although much the same model could be used with
torsional waves). Here, we consider the difference that might be produced between
“soft” and “hard” reflections. At step 1 (the top of the figure), the bow slips and
a pulse is launched in the direction of the nut. A “hard” reflection (steps 2 and 3)
must be produced at the nut; i.e., where the amplitude of the reflected wave changes
sign so that the sum of the incident and reflected wave at that point is zero. But
with strong down bow, the bow is moving in the same direction as the incident pulse
in step 4. Hence, a soft reflection may occur at that point (step 5). That wave is
reflected back toward the nut where it again undergoes a “hard” reflection (steps 6
and 7.) But now when the reflected wave from the nut reaches the bow (step 8), its
polarity is opposite to the motion of the bow, causing the bow to slip. A pulse is then
transmitted to the bridge and a positive pulse is sent toward the nut.

There are ways in which a subtone frequency might conceivably be produced
simply by lateral or torsional waves alone. Consider the diagram illustrated in
Fig. 5.66 in the case of lateral waves (although much the same model could be
used with torsional waves). Here, we consider the difference that might be produced
between “soft” and “hard” reflections. At step 1 (the top of the figure), the bow
slips and a pulse is launched in the direction of the nut. A “hard” reflection (steps 2
and 3) must be produced at the nut; i.e., where the amplitude of the reflected wave
changes sign so that the sum of the incident and reflected wave at that point is zero.
But with strong down bow, the bow is moving in the same direction as the incident
pulse in step 4. Hence, a soft reflection may occur at that point (step 5). That wave
is reflected back toward the nut where it again undergoes a “hard” reflection (steps
6 and 7). But now when the reflected wave from the nut reaches the bow (step 8),
its polarity is opposite to the motion of the bow, causing the bow to slip. A pulse is
then transmitted to the bridge and a positive pulse is reflected toward the nut.

The point in this model is that the pulses travel the long length of the string four
times before getting through to the bridge. Hence, the frequency of pulses arriving
at the bridge would be about half that for the normal lateral bowing frequency. Much
the same argument could be made for torsional wave pulses.

This model is similar to the one proposed by Shigeru Yoshikawa (1997, Fig. 2).

5.22.4 Heterodyne Model

It is well-known that nonlinearities can result in difference and sum frequencies
between two applied signals. This phenomenon results from the multiplication of
sine waves of different frequencies in the nonlinearity and can be understood by
application of simple trigonometric identities. If the nonlinearity involves a power
series in the sum of the input signals at frequencies FA and FB , one can expect
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output signals at additional frequencies given by

FOut = nFA ∓ mFB where n,m = 1, 2, 3, . . . . (5.12)

(This phenomenon is used to advantage in many radio receivers where a local high
frequency oscillator output is mixed with radio wave frequencies to produce signals
at lower frequencies.)

As shown in Fig. 5.60, the third and fourth harmonics of the subtone frequency
are strongly excited in the acoustic spectrum in most cases. For example, in the
case of the open G-string resonance, if the torsional wave velocity were adjusted
by bowing pressure to produce a torsional resonance frequency of 294 Hz, or three
times the observed subtone frequency (96 Hz), the fourth harmonic of the subtone

Fig. 5.66 Slip-stick model
for generating a subtone at
half the normal string
frequency
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Table 5.7 Relation between observed open-G harmonic frequencies and octave subtone harmon-
ics

Open G harmonic (n) 1 2 3 4, etc

Frequency (Hz) 196 392 588 784

Subtone harmonic (n) 1 2 3 4 5 6 7 8, etc

Frequency (Hz) 98 196 294 392 490 588 686 784

would tend to phase lock with the second harmonic of the normal open-G frequency.
Similarly, the sixth harmonic of the subtone would lock with the third harmonic of
the normal open-G frequency. The difference between the second harmonic of the
normal open-G frequency and the third harmonic of the subtone would then provide
the sub-octave frequency. (See Table 5.7.)

Such difference frequencies could be provided by the nonlinearity introduced
by the heavy bowing process. Similarly, that mechanism would also produce sum
frequencies of the type

Open G + third harmonic of subtone = fifth harmonic of the subtone (5.13)

and

Second Harmonic of Open G + Third harmonic of subtone = Seventh harmonic
of subtone (5.14)

Presumably, similar relations would hold for the other subtones reported above.
Unfortunately, it is exceedingly difficult to make precise determinations of the
torsional resonance frequencies during the actual bowing process and the above
interpretation is not conclusive. However, it is the only interpretation advanced so far
(other than direct subharmonic production) that would provide equivalent results for
symmetrically placed bowing positions about the center of the active string length.

Problems

5.1 If a violin is tuned to A=440 Hz and the other strings are tuned in fifths starting
with the A, what are their frequencies? What would these frequencies be on the
Well-Tempered Scale? (Hint: when musicians say two strings are tuned in fifths,
the second harmonic of one is equal to the third harmonic of the other. Also see
Appendix D.)

5.2 The strings on a certain Stradivarius violin are all 33 cm long. If the A string is
tuned to 440 Hz, what is the lateral wave velocity on the string? What is it for a G
string tuned to 195.55 Hz?
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5.3 (3) A silver-wrapped G string 33 cm long requires a tension of 10.4 lbs = 4727 g
to tune the string to 195.55 Hz. What is the density of the string? (Hint: the wave
velocity is 12,906 cm/s.)

5.4 The combined weight of the two volumes on violin research by Hutchins and
Benade (1997) is 10.4 lbs. A curious student drills a small hole through the centroids
of both volumes and suspends the two on a silver-wound violin G string from a
clamp 33 cm above the top volume. Noting that the density of the string is 2.838 ×
10−5 g/cm3, what is it frequency?

5.5 Eugene Commins, a violinist and physics professor, plays a double third
consisting of the first E on the D string and the open G string. What subtone does
he hear in his head?

5.6 After playing his bagpipe in “Pervertimento for bagpipes, bicycle and bal-
loons,” Maurice Eisenstadt picked up his violin for the next piece. He tuned his
D and A strings in a perfect fifth with A=440 Hz. Why didn’t he notice a subtone at
the difference frequency?

5.7 K.S. Bostwick and R.O. Prum (Science, vol. 309, July 29, 2005, p. 736)
reported that the club-winged manakin bird gets a violin-like sound using one ridged
feather as a bow to excite other hollow feathers, producing fundamental frequencies
of 1.49 kHz lasting 1/3 s with at least four harmonics. Assuming there are eight
ridges on the “bow,” how many strokes per second does the bow make?



Chapter 6
The Voice

The human voice is almost certainly the oldest and possibly the most beautiful of
all the musical instruments. The unique physiological characteristics of the human
voice have also led to the development of speech and spoken language. Indeed, most
written languages and forms of music have the characteristics of human speech
thoroughly imbedded in them from the Lieder of Schubert to more contemporary
Sprechstimme.

6.1 The Vocal Tract and Speech

6.1.1 The Vocal Cords

The ancient Greeks recognized the larynx as the source of vocal sound and thought
the “glottis”—the space between the vocal cords—was a kind of fluttering tongue.
(“Glottis” is Greek for “tongue.”) However, it was not until 1744 that Antoine
Ferrein showed that the sound produced in singing actually originated through
vibration of the vocal cords (cordes vocales)—a term that he himself coined. In
1854, a Spanish singing teacher named Manuel Garcia used sunlight and a dental
mirror placed at the back of the throat to study the vocal cords of one of his students
directly.1

Pioneering studies of the vocal tract were conducted in the early days of the
Bell Laboratories. There in 1940, D. W. Farnsworth extended the earlier work
of Manuel Garcia by viewing the vocal cords with a high-speed motion picture
camera especially designed for that purpose and capable of taking pictures at up

1The historic references are from Arnold (1973), Kaplan (1971), and Sataloff (1992). For more
detailed properties of the larynx in recent accounts, see Sundberg (1987), Davis and Fletcher
(1996), and Stevens (1998).
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Fig. 6.1 Method used by
Farnsworth for taking motion
pictures of the vocal cords
(from Farnsworth 1940;
reproduced with the
permission of Lucent Bell
Laboratories)
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to 4000 frames per second. The film was then played back in slow motion at
about 16 frames per second. Thus, if the vocal cords were originally vibrating at
250 Hz, one cycle of vibration was spread out over a time of about 1 s in playback.
More recently, Farnsworth’s technique has been superceded by stroboscopic video
technology using fiber-optic cables through the nasal passages that accomplish
the same objective with greater simplicity in the case of periodic motion. There,
the stroboscope is adjusted to flash at a slightly different rate than the resonant
frequency of the vocal cords so that one can see the vocal cords moving directly
in slow motion (Fig. 6.1).

The first thing one notices from Farnsworth’s original photographs (Fig. 6.2)
is that the vocal cords are not really “cords” at all but consist of a pair of
muscular bands that open and close in the air passage from the lungs. Hence,
the eighteenth-century term “vocal cord” has been replaced in recent years by the
more physiologically accurate term, “vocal fold.” The vocal folds have a resonant
frequency that can be varied over a sizable range by muscles in the larynx and play
a similar role in producing sound in the human vocal tract to that of the lips on the
mouthpiece of a brass instrument.

In the normal breathing position, the vocal folds are widely separated and form
a triangular opening as viewed from above. When “voiced” sounds are produced,
the folds are drawn close together by muscles of the larynx (Fig. 6.2). Steady flow
of air from the lungs at low velocities through the narrowed opening produces an
oscillation in the vocal fold that results in a nearly sinusoidal variation of sound
pressure in the throat. This fundamental resonance (which we will designate F0) is
typically about 110 Hz for adult males, an octave higher for adult women, and in the
order of 300 Hz for children. (See Stevens 1998.)

Figure 6.3 shows the opening and closing of the glottis over one complete cycle
at a frequency of F0 ≈ 110 Hz. The vocal folds move in opposite directions laterally
inside the throat. In the fundamental spatial mode of oscillation, the shape of each
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Fig. 6.2 The “vocal cords” as seen from above and back. The pictures illustrate the change in
shape of the vocal folds from normal breathing (upper left and extreme upper right) to “voicing”
(lower middle and far right). Black and white photos are from Farnsworth 1940, reproduced with
the permission of Lucent Bell Laboratories. Color photos (right) of the author’s vocal folds were
photographed by Lauren Campe using fiber optics

band at maximum amplitude is roughly half of a sine wave and similar to that of the
lateral motion of a vibrating string in its first resonant mode. The controlling muscles
raise the pitch of the voice by stretching the length of the vocal fold, sometimes by
as much as 30%. That increases the tension, hence the resonant frequency. However,
because the length of the folds is also increased in this process, the situation is more
complex than in a simple vibrating string. The second spatial mode of vibration (the
“falsetto” register) has a frequency that is not as high as the second harmonic of the
speaking voice. Normally, the vocal folds oscillate in the lowest, “heavy register”
mode. The motion of the folds in the different registers of the voice is complicated
and will be discussed in more detail later.

An often-quoted model due to Benade (1976) of the vocal fold consists of a
mechanical oscillator with a mass moving against a spring as shown in Fig. 6.4.
Friction slows down the motion and the mass is driven by the Bernoulli effect.2 Air
coming from the lungs passes through a constricted region where the conservation

2The Bernoulli principle applies to steady streamline flow, which requires that
SρV = constant

where V is the flow velocity, ρ is the fluid density, and S is the cross-sectional area within a
tube bounded by streamlines (here, the walls of the wind pipe and larynx). Conservation of energy
requires that

P + ρV 2/2 = constant
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Fig. 6.3 The opening and closing of the glottis over one cycle at the resonant frequency of the
voice (Farnsworth 1940; reproduced with the permission of Lucent Bell Laboratories)

of both energy and air molecules in the flow causes the velocity to speed up and the
pressure to decrease. The effect is similar to fluid flow in a laboratory “aspirator”
or in the “Venturi tube” of an automobile carburetor. The decreased pressure in the
constriction pulls the mass to the right in Fig. 6.4 until the restoring force from the
spring (the muscles of the larynx) becomes large enough to reverse the motion. In
the case of the real larynx (Fig. 6.5), the muscles in the sidewalls play the role of the
restoring spring.3 The sharp edge at the top of the “vocal fold” (Fig. 6.4) in the real
larynx can also produce turbulence in the air flow that contributes to the broadband
noise source used when one whispers. At very low air flow rates, a nearly sinusoidal
motion of the vocal folds occurs at resonance. However, as the air flow increases,
the motion of the mass actually cuts off the air flow altogether during more than half
of the cycle, producing a periodic waveform that can contain dozens of harmonics.
The harmonic content is extremely important both in determining the tonal color of
the sound and as a source of frequencies that can be filtered out by the cavities of
the mouth and nose to produce recognizable speech.

which is known as Bernoulli’s equation, where P is the pressure. When the streamlines are
closely spaced (as in the larynx), ρV is large, hence P is small. Thus, the pressure is reduced in
the larynx.
3See Davis and Fletcher (1996) for a discussion of more elaborate mechanical models.
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Fig. 6.4 Mechanical model
of the larynx (after Benade
1976)

Fig. 6.5 Anatomical drawing
of the larynx from the front
(Gray 1918)

6.1.2 Formants or Resonances in the Vocal Tract

The overall working of the vocal tract is shown schematically in Fig. 6.6. The main
energy source is air flow from the lungs. The air next runs through the constricted
region of the larynx where the Bernoulli effect produces forced oscillation of the
vocal folds. The sound wave created there, now rich in harmonics of the vocal fold
resonance frequency F0, is next coupled to resonant cavities (“Formants”) in the
mouth and nasal passage. Traditionally, these cavity resonances have been regarded
as broad transmission filters, through which the sound passes to the outside world
by way of the mouth and nostrils. When the palate is closed, the sound wave travels
over the tongue and to the mouth, where it may be joined by a hissing sound from
turbulent air flow over the front teeth. With the tongue in the right position, that
turbulence produces sibilants—the “sss” sounds in speech.
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Fig. 6.6 The vocal tract, showing the nodes and pressure maxima for the second closed-pipe
resonance, or F2 formant. (The palate has closed off the nasal resonances in the figure.) The tongue
position is that for pronouncing the vowel sound “AH.” By arching the tongue in the middle, one
shifts the resonant frequency up and obtains the vowel sound “EE.” As indicated schematically by
the spacing of the curved lines, the sound flux is greater inside the vocal tract than that radiated
through the mouth. (Here, close spacing means high standing wave pressure amplitude.) That
occurs because some of the sound is reflected back into the vocal tract at the speaker’s mouth
to create a standing wave resonance, which here has two nodes and two pressure maxima. The
sound inside the speaker’s head may be much louder than the sound coming out of his mouth
(leading to the phenomenon called “mumbling”)

These resonances in the vocal tract are similar to the modes in a closed organ
pipe. The principal mode is distributed over the region shown in Fig. 6.6, which has
a length L (vocal folds-to-mouth) of about 17–18 cm in the adult male. As shown in
Chap. 1, the fundamental resonance of such a pipe is given by c/4L, where c is the
speed of sound and L is the pipe length. Hence, the first resonance (formant F1), or
principal mode of the vocal tract, is at about 500 Hz. The reader will note that this
resonance is much higher than the pitch of the voice in an adult male. It is typically
at about the fourth harmonic of F0.

That means the coupling to the air of the fundamental frequency of the vocal
folds is very poor, a matter of special importance to bass singers. The next closed-
pipe resonances of the vocal tract are at odd harmonics of 500 Hz. Hence, the second
resonance (formant F2) occurs at about 1500 Hz and the third (F3) at about 2500 Hz.
But, these resonances or formants are very broad (typically about 200 Hz wide) in
the normal speaking voice because of the large fractional energy loss by the sound
waves coming out of the mouth.
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As indicated by the pairs of curved wave fronts in Fig. 6.6, standing waves occur
in the vocal tract resonances. (As shown in Chap. 1, a standing wave is made up by
the sum of two running waves of the same frequency going in opposite directions.)
Each resonance has a node (pressure minimum) at the mouth and an antinode
(pressure maximum) at the vocal folds. Because the tongue is located at the pressure
maximum for the second closed-pipe resonance, that resonance (formant F2) is
strongly tunable by moving the tongue. As we will see later, the second formant
plays a dominant role in determining different vowel and diphthong sounds. When
the soft palate is open, another set of resonances in the nasal cavities is coupled to
the vocal folds and to the outside air through the nose. The nasal resonances are
not readily tunable because the cavity dimensions are determined by bones in the
skull. You can easily detect the presence of the dominant formants in your own
vocal tract by letting air blow into your mouth, thereby creating “unvoiced” sounds,
or “whispers.” Turbulence is created at the mouth and plays a role analogous to the
vocal folds, but in reverse. If you wear ear protectors to shield your ears from outside
noises, you can easily detect those resonances while riding in an open vehicle at low
speeds. Let some air enter your mouth and then try mouthing various vowels or
syllables. The method is especially sensitive because sound travels from the back of
the throat through the Eustachian tubes to the middle ear. (It is also something to
do to relieve boredom while mowing the lawn on a tractor; in that situation, the ear
protectors are a good idea anyway.)4

The harmonics of the vocal folds are sharply defined and are uniformly spaced
by F0 throughout much of the lower audio range up to perhaps 7 kHz. In contrast,
the turbulent hissing from air moving over the front teeth produces a broad spectrum
of noise extending from about 5 to over 10 kHz. Hence, people who develop hearing
loss at the upper end of the spectrum often have trouble detecting sibilants. Although
the resonant widths of the principal cavities of the mouth, nose, and throat are
typically in the order of 200 Hz, the frequencies at resonance can be varied by factors
in the order of two (especially in the case of the second formant, F2) by moving the
tongue and the muscles controlling the face and mouth. The vocal folds themselves
may, of course, be varied substantially in pitch using the muscles around the larynx.

6.1.3 Talking Birds and Other Animal Sounds

In contrast, the voiced sounds emitted by animals tend to be fairly uniform in relative
spectral distribution, although they can vary in pitch, as with the howling of a wolf.
There are two basic requirements for producing speech: (1) a sound source that has a

4Erwin Hahn (of “spin echo” fame in nuclear magnetic resonance) had a novel way to demonstrate
these resonances. When an aspiring physicist once asked him for a selection of his work, Prof.
Hahn made a fist and used it to play the William Tell Overture on his forehead.
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Fig. 6.7 Mozart’s musical
bird

waveform rich in harmonic content over the audio spectrum; (2) a group of formant
resonances that can be varied at will by the animal in question.

Song birds can usually be ruled out on the basis of harmonic content of the
waveform. In most instances, they produce a whistle-like sound consisting of little
more than a sine wave, although with a frequency that can be varied over an
octave range and with interesting rhythmic quality. However, the European starling,
Sturnus vulgaris, is an exception. According to West and King (1990, p. 107), a
contemporary one learned the phrase, “Does Hammacher Schlemmer have a toll-
free number?”

Mozart’s pet starling was also quite musical (Fig. 6.7). When the composer
walked into the shop to purchase the bird on 27 May 1784, it greeted him with
the opening theme from the last movement of his piano concerto No. 17 in G-
major—except that the Gs were all sharped. Some inferred that Mozart had actually
stolen the theme from the bird, but the truth is obviously different for the concerto
was completed some 6 weeks earlier on 12 April 1784. One explanation proposed
was that the pet store owner had slyly taught the theme to the bird ahead of time.
The Starling has a two-part voice organ, enabling it to sing two different melodies
(in different keys) at once. According to Kroodsma (2005, p. 274), they also have
perfect pitch. It has been suggested that Mozart’s “A Musical Joke,” which he wrote
shortly after the pet starling’s death in June 1787, was inspired by that ability and
the off-key singing of the bird. (See West and King 1990.)

A reed-like tone quality such as the “caw” from a crow offers greater possibility
for speech. Some say that one can facilitate a crow’s ability to talk by slitting its
tongue. But, the best facsimiles of human speech in the bird family are parakeets,
Mynah birds, and African gray parrots. Although these birds do not have vocal folds,
they have an organ called the syrinx, which consists of membranes that produce
sound with tonal quality much like that from a kazoo or a krummhorn; that is, they,
too, have lots of harmonics.

Parrots also have unusually thick tongues that must provide the tunable difference
in mouth cavity resonances. According to the Guinness Book of Records, a female
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African gray parrot named Prudle learned a vocabulary of nearly 800 words.
Another parrot named Alex, who studied at Purdue University, seemed able to
recognize a variety of objects and colors and answer questions about them in English
with 80% accuracy, including correct use of the word, “No.” (See Pepperberg
1991; Perrins and Middleton, 1985, p. 225.) However, the characteristics of most
talking birds are largely imitative. Probably, the most remarkable case is that of
the Australian Lyre Bird reported by Attenborough (1998). As well as mimicking
the sounds from 20 other song birds, that bird could imitate sounds ranging from a
camera shutter (including one with a motor drive) to a car alarm and a chain saw.5

Some birds are able to produce sounds at two different pitches at once, apparently
enabled by a division in the breathing tube within the chest. Most of these produce a
sound like that of a closed-pipe resonance with first and third harmonics. The minor
third in the case of the Mourning Dove is especially noteworthy, since that interval
cannot be made up from one harmonic series alone.

Most mammals other than Man seem unable to vary the relative position of
resonances in the vocal tract with much facility. Surprisingly, relatively unsuccessful
results were obtained from those closest to Man. In the 1940s, Catherine and Keith
Hayes took a 6-week old chimpanzee named Viki into their home and tried to teach
her to talk. After 6 years, Viki could only utter mama, papa, cup, and up. Yet, some
other chimpanzees were able to learn over one hundred symbols in American Sign
Language (Hayes 1951; Gleason 1997; and Kent 1997).

There are several major physiological differences in vocal tract anatomy between
human beings and other land-dwelling animals that probably affect speech acqui-
sition. The vocal folds in human beings are in a fairly direct line to the back of
the throat—something which can be life threatening due to accidental aspiration of
food. In the case of dogs and other animals, the vocal fold is less directly accessible;
hence, they can “wolf” down their food without risk. As indicated in Fig. 6.6, human
beings can close off the nasal cavities from the vocal tract with the soft palate. This
ability may be indicative of an aquatic background in the early stages of human
evolution since the soft palate can prevent water from entering the throat through
the nose while swimming under water. It is suspected that early humans learned
to emit loud vocal sounds by keeping that flap closed, using the basic closed-pipe
resonances, and cutting off absorption from the soft nasal tissues. Other features that
help in the speech process are a short snout, not to mention a large brain with lots
of synapses. (See the review by Kent 1997.)

5According to bird neurological expert Dr. Fernando Nottebohm (private communication), these
exotic sounds may actually just be part of the Lyre Bird’s normal vocabulary and not picked up by
imitation of chain saws, and so forth. The sounds provide a kind of auditory Rorschach Test for the
human listener. However, there are birds such as the Greater Racket-tailed Drongo that definitely
do imitate the calls of others. (See the note in the American Scientist 94, No. 2 March–April 2005,
p. 191.)
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Fig. 6.8 Spectrum of an adult male German Shepherd in B-flat. The sound amplitude is shown
versus the frequency and time for two barks

Animals often want to communicate, but their vocal signals generally consist of
the same envelope of relative frequencies.6 As an example, the spectrum from the
author’s German shepherd is shown in Fig. 6.8. The message, consisting of “woof,
woof,” always meant that he wanted something (e.g., ice cream, or to go out) or
that something annoyed him. He especially hated the sounds of applause and of our
door bell. But, the relative frequency structure in his bark never varied significantly
and always had a fundamental pitch of B-flat. Ironically, the dog (named Mozart by
our children) had perfect pitch. He would bark in response to the sound of a door
bell in G (either live or recorded); but, if the pitch were changed by as little as a
half-step on the musical scale (by varying the playback speed of a tape recording),
he would not bark. (I discovered that fact accidentally while trying to get him to
perform for a class on Live Fourier Analysis at Yale, using a tape recording of our
doorbell to trigger his bark; but, the machine was running too slowly and the dog
would not bark until I sped up the tape to its normal speed.) The particular frequency
of our doorbell had evidently been burned into his memory from early puppyhood
as a source of displeasure. Perhaps he did not like the minor third relationship to his
own voice. He did appear to have discerning musical taste. When our son started

6Physicist Richard Feynman once spent an entire day in the cellar with Robert Serber’s German
Shepherd, Nicka, after which Feynman announced that the dog had a vocabulary of 80 English
words. Unfortunately, the dog could only communicate by barking ferociously and by grabbing
Serber’s pants leg to pull him to the scene of the accident when his wife had a bad fall (Serber and
Crease 1998, pp. 161, 162).



6.2 Speech Synthesis 259

playing the oboe, Mozart would flee to the farthest corners of the house. But, as our
son got better, the dog seemed to like the sound and eventually would curl up near
the instrument. Similarly, the dog seemed very fond of the chorale settings by Bach
in the Orgel-Büchlein. We had a small pipe organ on the third floor of our house in
New Haven and that became a favorite resting spot.

6.2 Speech Synthesis

The earliest voice synthesizer may have been the 70-ft high statue of Memnon at
Thebes, built ≈1490 BC. At sunrise, the statue was said by the early Greeks to emit
a curious high note as a greeting by King Memnon to his mother, Eos, Goddess of
the Dawn. The voice was created by air passing through a fissure leading to resonant
cavities in the stone but was stilled by masonry repairs of the Romans during the
reign of Septimius Severus, circa 200 AD.7

Albertus Magnus (1198–1280) was credited with the design of a mechanical
speaking head, but the design appears to have been lost. (It was said that St. Thomas
Aquinas was so terrified by the device that he broke it to pieces.) The thirteenth-
century English monk, Roger Bacon (≈1220–1292) was also known to have had a
“talking head.” Although these things had mechanically moving parts, it is thought
that they were all activated by speaking tubes coupled to the human voice.

6.2.1 von Kempelen and Wheatstone Voice Synthesizers

The earliest detailed description of a real speech synthesizer that has survived
was given by the Hungarian, Wolfgang Ritter von Kempelen (1734–1804).8 Von
Kempelen was a very inventive man and did quite a number of interesting things:
He designed the fountains for the Schönbrunn Palace outside of Vienna and the
Royal Castle at Buda, Hungary. He also designed a mechanical chess player which
beat Napoleon at the game. But, he cheated on that one: a midget, who was expert
at chess, was kept inside the apparatus. (Edgar Allan Poe later wrote an essay
“exposing” that fakery, which by then was well known.) Von Kempelen worked for
some 22 years on his speech synthesizer and did much research on the mechanism
of pronunciation in the process. His pioneering work was described in a 456-page
volume with 25 plates which was published the year Mozart died (von Kempelen
1791).9

7Drower (1974, p. 264).
8In Hungarian, his name was Kempelen Farkas Lovag.
9A copy of the von Kempelen book is in the Beinecke Library at Yale University under call number
2000 888.
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Fig. 6.9 Von Kempelen’s speech synthesizer from his book Mechanismus der menschlichen
Sprache, 1791, p. 439 (reproduced courtesy of the Yale Collection of German Literature, Beinecke
Rare Book, and Manuscript Library)

In the von Kempelen machine (Fig. 6.9), the operator rested his right arm on a
bellows (X) which was pumped up and down to provide a source of air that fed a
wind box (A), which in turn led to a vibrating reed (the “vocal fold”), which was
followed by a narrow throat section containing two “nostrils” (m and n). The output
of the throat led to a rubber bell-shaped mouth (C). The two levers (S and Sch) were
operated by the right hand and opened and closed odd-shaped passages to produce
fricative sounds.

The left hand was placed in front of the “mouth” (C) to manipulate resonances in
the manner of someone playing the French horn with his hand in the bell. It is said
that von Kempelen could utter short sentences in both German (including a trilled
rrr) and French (“je vous aime de tout mon coeur”) with the machine and boasted
that anyone could learn to use it in 3 weeks. Although von Kempelen’s ultimate
dream was to develop a machine operated by something like a piano keyboard, the
device he actually built must have required a great deal of skill to use. In 1846, a
Professor Joseph Faber of Vienna demonstrated a still-more elaborate version using
a variable pitch source that permitted it to sing airs such as God Save the Queen. (It
was during Victoria’s reign.)

The English scientist Sir Charles Wheatstone produced a simplified model of
the von Kempelen apparatus in which the vowel sounds were made by squeezing
a leather resonator tube at the outlet. Starting in the fall of 1862, young Alexander
Graham Bell (who gave his name to the old Bell System) spent a formative year
living in London with his grandfather (also named Alexander), who was a close
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friend of Wheatstone.10 Wheatstone demonstrated his apparatus to young Alec and
his grandfather, both of whom were interested in teaching the deaf to speak, and
loaned them a copy of the plans for the von Kempelen machine. The grandfather-
and-grandson team decided to build one for themselves. In their version, the wind
was supplied by blowing down a tube containing a reed and the human tongue was
simulated with six sections that could be raised or lowered by the fingers to produce
different vowel sounds. (It was probably a little like playing a krummhorn.) After
much effort, they made a device that said “Mama” so realistically that one of the
downstairs tenants rushed up to see “what can be the matter with that baby” (Mackay
1977, p. 38; also see Wheatstone 1879; and Dudley and Tarnoczy 1950).

6.2.2 The Jew’s Harp

Sound generation in the Jew’s harp works in a very similar way to sound production
in the vocal tract, except that the vibrating tongue of the harp replaces the larynx.
The nomenclature for the instrument has varied from country to country and seems
to have nothing to do with the Jewish people.11.

Although the Jew’s harp today is thought of mostly as a folk instrument, it
became a true virtuoso instrument during the nineteenth century for which serious
composers wrote serious works. Among them, Beethoven’s orchestration teacher
Johann Georg Albrechtsberger wrote two concertos for Jew’s harp and orchestra.
Probably, the greatest living virtuoso of the period was Karl Eulenstein, who toured
Europe and England, even playing before King George IV on several occasions.
Due to the limitations on tonal range of a single instrument, the nineteenth-
century virtuosi often utilized several Jew’s harps, changing between them with
lightning speed. It is said that Eulenstein himself used sixteen instruments during
his performances, all tied together with silken string. (See Eulenstein 1892.)

A photograph of an original Jew’s harp made by J. R. Smith (regarded by some
players as the “Stradivari” of the instrument) is shown in Fig. 6.10. Smith was a

10There is a touch of Wheatstone in the modern telephone. His electrical bridge is the basis of
the side-tone rejection circuit used to prevent deafening yourself with your own voice. Campbell
and Foster (1920) enumerated some 446,234 ac versions of the bridge for the Bell System Patent
Office.
11Some maintain that it is really “The Jaw’s Harp”—an instrument made from the jaw bone of
an ass (sometimes played on that of another), but the assertion is doubtful. In north-east England,
it is called the “Gewgaw,” a word possibly derived from the Swedish word “munngiga,” meaning
“mouth fiddle.” In the Saar region of Germany, it is called the “Maulgeige,” or “mouth violin.”
The French call it “La Guimbarde,” a name suggestive of its actual sound. The Italians call
it “Il Scacciapensieri,” literally something that drives away thoughts. Some Russians call it the
“BAPAH” (pronounced “vahrgahn”) derived from the verb VAPAHITb (“vahrgahneet”) meaning
“to botch or bungle.” Strangely, it is feminine in French and masculine in Italian. The instrument
was evidently appreciated by the American Indians for in 1630 Peter Minuit bought Staten Island
from the Tappans for a number of Jew’s harps and other small items (Shorto 2004, p. 56)
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Fig. 6.10 An original J. R.
Smith Jew’s harp made circa
1900. Note the graceful
tapered cross-sectional shape
of the harp, which was forged
from iron by the master
craftsman himself. This
instrument had an especially
strong spectrum rich in
harmonics (see Fig. 6.11)

craftsman working in up-state New York circa 1900. In use, the narrow section of
the “harp” is placed horizontally against the upper and lower front teeth, with a
spacing just adequate to allow the vibrating tongue of the instrument to move back
and forth between the teeth. (The narrow spacing provides optimum coupling to the
vocal cavities, but the novice tends to produce nerve-shattering clicks caused by the
tongue of the Jew’s harp colliding with the player’s teeth.) The vibration has a low
resonant frequency similar to that of the voice and is very rich in overtones. Because
of its tonal similarity to the human vocal folds, one can actually talk over a Jew’s
harp. It was seriously used by some people as a mechanical speech synthesizer. (See
Leipp 1963a,b.) According to John Wright (1980), who is himself a virtuoso on
the instrument, the Jew’s harp serves as a voice for spoken communication between
courting couples in south-east Asia. If you have access to one, try producing the
common vowel sounds “a,” “e,” “i,” “o,” and “u,” mouthing them as you would in
normal speech, but exciting them by striking the tongue of the harp.

In serious performance on the instrument, the tongue is struck with the index
finger of one hand, but not for each separate note. (Unlike the violin, it works equally
well with left-handed and right-handed players.) Articulation is also accomplished
by drawing air in and out of the mouth from the lungs. The working of the instrument
is illustrated by the spectral surfaces shown in Fig. 6.11, where the sound amplitude
as a function of frequency is again displayed linearly against time (in seconds),
which recedes diagonally off to the right in these three-dimensional plots. At any
instant in time, one can see the first 11 harmonics of the tongue spaced at its
resonant frequency of 174.6 Hz. (The Jew’s harp was tuned to F below middle
C.) In addition, there was some real sound produced at half the lowest pitch of
the instrument, probably due to a subharmonic mode of oscillation. That effect
does not seem to have been reported elsewhere in the literature. The tongue of the
Jew’s harp is deliberately tapered to produce nonlinearities that enhance harmonic
production, and, as discussed in Appendix A, a quadratic nonlinearity can also
introduce subharmonics.

However, the main intensity is selectively peaked at different mouth resonances,
one centered at about 300 Hz, another at 1100 Hz, and a third close to 1800 Hz.
These are probably the F1, F2, and F3 formants mentioned above. The piece played
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Fig. 6.11 Spectral surfaces illustrating the variation of sound amplitude versus frequency as
a function of time for the “Stradivarius” Jew’s harp shown in Fig. 6.10 when played by the
author’s father, William Ralph Bennett. Time recedes toward the upper right. (a) Left: “Bonaparte’s
Retreat.” (b) Right: “The Irish Washer Woman.” The frequency scale in the figures runs from 5 Hz
(the limiting resolution of the analyzer) to 2000 Hz and is marked in ten equal steps of 200 Hz

in Fig. 6.11a is a section from the traditional dirge known as Bonaparte’s Retreat.
The basic rhythm is a quarter note, followed by a triplet, repeated over and over.
The Jew’s harp tongue has been struck only on the quarter notes (only once in the
figure) and the triplets are created by breathing in and out through the tongue of the
harp. A sudden change in the mouth resonance—hence, perceived pitch—occurs
at 1.4 s in Fig. 6.11a. The sound distribution obtained on a different piece (a folk
tune called the Irish Washer Woman) by the same player on the same instrument
is shown in Fig. 6.11b. The fundamental pitch of the vibrating tongue of the harp
is unaltered throughout both examples. The player’s formants have simply been
changed by moving his tongue to enhance different overtones at different points
in time. The human voice works much the same way in normal speech. Analysis
of the Jew’s harp dates at least to the time of Wheatstone (1828). For an extended
discussion of the acoustics of the Jew’s harp as a musical instrument, see Leipp
(1963b, 1967).

6.2.3 The Dudley Vocoder and Electronic Speech Synthesis

From its very inception in 1925, one primary goal of the Bell Telephone Laborato-
ries was understanding the nature of speech and speech reproduction. To this end,
many electronic devices were developed, ranging from the sound spectrograph (an
instrument that would display the intensity and frequency distribution of sound as a
function of time) to methods of electronic speech synthesis.
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The Vocoder (an acronym standing for “VOice CODER”) was conceived by
Dudley in 1931. It was first demonstrated privately to a group of engineers at the
Bell Labs in 1935 and then publicly at the Harvard Tercentenary in September,
1936. It together with the Voder (another acronym standing for “Voice Operated
DEmonstratoR”) were the earliest electronic speech synthesizers ever made. Using
other developments by Dudley and his colleagues (in particular, the “Sound
Spectrograph”), Dudley had observed that the spectrum of the human voice could be
broken up into the time variation of a small number of frequency bands, now called
“formants.” The spectrum analyzer he used consisted of a band-pass filter that could
be swept slowly through the audio spectrum from near 0 to 8000 Hz. The original
signal was recorded magnetically on the periphery of a cylinder (the equivalent of a
magnetic tape loop), which was rotated continuously while a single filter was tuned
through the entire spectral range. The intensity coming out of the filter was then
recorded by darkening a piece of paper that had been wrapped around the cylinder.
The dynamic range was fairly limited (perhaps to 10 dB), but one could still see the
dominant frequency components in the audio signal. (There are, of course, much
faster and better methods for accomplishing the same objectives available now that
are based on the use of Fast Fourier Analysis.)

Displaying the formants from the frequency spectra required some subtlety in
filtering technique. If you just looked at the output from a swept narrowband
filter (of say ≈45 Hz width), what you would see is a large number of discrete
harmonic components of the vocal fold’s fundamental frequency. (See the upper
part of Fig. 6.12, where some 24 harmonics are resolved.) However, as you increase
the bandwidth of the swept filter to 300 Hz, a characteristic structure develops that
is the basis of speech recognition. (See Fig. 6.12.) Typically, about five dominant
dark bands evolve whose variations in height represent the variations in the center
frequencies of the resonant cavities or formants in the vocal tract. One can actually
learn to recognize the syllables displayed in such “visible speech” and, thus, “read”
the message contained in the original audio recording. The human ear recognizes
speech through the relative positions of the formants, which vary with the different
vowel sounds and, in the case of diphthongs, change in position relative to each
other during pronunciation.

Because the time variation of those formants is quite slow (they typically vary at
less than 25 Hz) compared to the sound vibrations in the normal human voice (which
extend up to perhaps 8000 Hz), only a very small telephone transmission bandwidth
would be needed to transmit the information contained in a spoken message. For
example, the first five formants, plus signals indicating the presence of the random
“hissing” noise from sibilants and frequency of the vocal fold pitch would only
require about a 350 Hz bandwidth. Since the normal telephone bandwidth was
about 5000 Hz, one could expect to send at least 14 different messages over one
telephone channel! The trouble with that approach is that when you substitute the
harmonics from a relaxation oscillator for those of a person’s voice, the sound
becomes unrecognizable. You could understand what grandma was saying on a
transcontinental call, but she would sound like a mechanical robot. Dudley’s initial
work on the vocoder was probably stimulated by the challenge to send speech over
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Fig. 6.12 (a) (Top) Spectrum from the message “THE STORY IS TRUE” as seen through a
45 Hz filter. (b) (Bottom) The same spectrum as seen with a much broader 300 Hz filter. Here,
five separate formants are clearly visible, and the individual harmonics of the vocal folds are no
longer seen (reproduced from Dudely 1955 with the permission of Lucent Bell Laboratories and
Jean and Richard Dudley)

the (1928) transatlantic telegraph cable that had a bandwidth of only about 100 Hz.
(He had been asked to work on the problem of voice transmission over transatlantic
radio, long telephone lines, and submarine cables during the 1920s.)

The real utility of the discovery came during World War II when the Bell Labs
developed a secret telephone system used by Roosevelt and Churchill. In that
system, a random key (used only once) was added digitally to the different vocoder
channels at the transmitting end and subtracted at the receiving end. The recovered
signals then operated a vocoder to recreate the speech sounds. The system was kept
highly classified until 1976. By 1982, my father, who had been a close friend of
Dudley’s and who was the only person still left alive who had worked on the system,
was asked by the editors of an IEEE journal to write a description of it. That paper
was became his last publication. (See Bennett 1983.)

Dudley had set about to simulate the entire vocal process electronically. One
interesting analogy he proposed was “the carrier nature of speech.” He noted that
the modulation impressed by the vocal formants by the sound from the vocal folds
was analogous to the way in which radio waves were modulated. The speaker was
pictured “as a sort of radio broadcast transmitter, with the message to be sent out
originating in the studio of the talker’s brain and manifesting itself in muscular wave
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motions in the vocal tract.” These contractions impressed the formants of speech on
the audible sound which then acted as a higher-frequency carrier transmitted to the
listener, who then detected the lower-frequency message contained in the formant
variation (Dudley 1940).

With the Vodor (a device demonstrated at the 1939–1940 New York and San
Francisco World’s Fairs), ten band-pass filters were used to process the output
amplitude from a relaxation oscillator (see Appendix A), and the attenuation in
front of each was controlled by the fingers of an operator (logarithmically with key
deflection) in such a way as to mimic the formant frequency variations. (Without
this control, one just heard the raw spectrum from the oscillator itself.) In addition,
random noise amplitude for sibilants and the oscillator pitch were controlled by the
operator. (See Fig. 6.13.) After considerable practice, the operator could produce
understandable speech just by hitting keys on the machine; the apparatus was the
first “talking typewriter.” (See Dudley 1939.)

Visible speech recognition became a field in itself during that period. The formant
patterns characteristic of various parts of speech were categorized and a stylized
shorthand for those patterns was developed. (See Potter et al. 1947.) Astonishingly,
the Bell Laboratories trained stenographers to take dictation from voice prints
displayed on a moving screen in real time. (See Fig. 6.14.) The more advanced
students could then reproduce the speech on a Vodor. Although a remarkable
feat, that approach to stenography certainly did not catch on generally in the
rest of the world. However, the subsequent development of computer-controlled
speech synthesizers based on the principles initially developed by Dudley and his
colleagues has found many applications, especially with handicapped people. The
techniques developed are also valuable tools for understanding properties of the
singing voice.

With the Vocoder, a compromise technique was used because it was difficult
to extract the formant variation electronically. The output from a microphone was
passed through an analyzer section which covered the principal formant bands from
about 250 to 2950 Hz in channels 300 Hz wide. Pitch and sibilant signals were
also extracted which controlled the pitch of a relaxation oscillator and turned on
a random noise generator in the synthesizer.

Harmonics from the relaxation oscillator were then transmitted to an identical set
of band-pass filters whose outputs were controlled by the intensity in the original
bands. The remade speech was then sent out to a loudspeaker (Fig. 6.15). Ten band-
pass circuits of the type shown in Fig. 6.16 were used. Later developments in this
field at the Bell Laboratories included extensions of the original Dudley concept
to vocoders with more channels, formant vocoders that incorporated electronically
tunable filters and oscillators, the use of predictive encoding, and methods for
electronic speech recognition. (See Flanagan 1972, and Schroeder 1999.)



6.2 Speech Synthesis 267

Fig. 6.13 The Vodor and its analogy to the human voice (reproduced from Dudley 1939 with the
permission of Lucent Bell Laboratories and Jean and Richard Dudley)

6.2.4 The Vocoder as a Musical Instrument

With the advent of both analog and digital music synthesizers and the easy
availability of MIDI (“Musical Instrument Device Interface”) keyboards, some
novel applications of the vocoder have occurred in the composition of music. For
example, one can replace the periodic relaxation oscillator in the original Dudley
vocoder by the output of a musical instrument or a synthesizer controlled from a
piano-type keyboard. Then, merely by speaking into the microphone while playing
a melody on the keyboard, one can simulate singing. One of the most impressive
demonstrations of that technique I have heard was done by an undergraduate
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Fig. 6.14 A training class in visible speech recognition held at the Bell Laboratories in the 1940s
(reproduced from the Bell Laboratories Record with the permission of Lucent Bell Laboratories)

Fig. 6.15 Functional plan of the Vocoder (reproduced from Dudely 1955 with the permission of
Lucent Bell Laboratories and Jean and Richard Dudley)

electrical engineering major and amateur composer at Yale University named,
David Dana (Class of 1984). During his senior year, he composed a piece in that
fashion which he called I am not Singing, that combined the musical treatment of a
rhapsodic melody played on a Moog synthesizer with a delightful sense of humor.
Surprisingly, the technique has not been used more often in the world of serious
musical composition. Early commercial applications of the Vocoder were devoted
to such tricks as advertising the headache remedy Bromo Seltzer with the sounds
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Fig. 6.16 Block diagram of the Vocoder circuit (reproduced from Dudely 1955 with the permis-
sion of Lucent Bell Laboratories and Jean and Richard Dudley)

from a steam locomotive.12 More recently, modifications of the vocoder have been
used for special effects by popular entertainers (Figs. 6.17, 6.18, and 6.19).

6.3 The Voice as a Musical Instrument

6.3.1 Operatic Singing Voice

One often wonders if all that girth is really necessary for the successful Wagnerian
singer and indeed many modern singers are quite thin (Fig. 6.21). Certainly, they
need powerful voices, for the traditional opera house is pretty “dead” acoustically
and the singer does not get much help from reverberation. Some have argued that an
enormous chest provides additional resonance. However, the lungs are composed
of very spongy, absorbent material that would prevent any significant high-Q
resonance. Large lung capacity would, of course, produce the wind power necessary
to drive the vocal fold at high volume. But, if that were the only explanation, one
would expect the Helden Tenor to be built like an Olympic swimmer—mostly chest
and upper body. The principal resonances utilized by the voice are in the throat,
mouth, and nasal passages. So, if internal acoustic resonances are really the main

12One early proposal left on the cutting room floor was to use the device in the movie, Mr. Smith
goes to Washington. The vocoder was supposed to make the steam engine from Jimmy Stewart’s
passenger train repeat the movie title over and over. Perhaps, the director feared that the movie
would just become another Bromo Seltzer ad.
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Fig. 6.17 The Wagnerian
Soprano (after a drawing by
Katie H. Maguire). Overheard
at a performance of the
“Liebestod” from Tristan und
Isolde: “When you saw her
walk out on stage, you knew
she had to be good!”

Fig. 6.18 The acoustic horn
in an adult hippopotamus
produces 115 dB (after a
photo by Jessie Cohen)
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Fig. 6.19 Average energy spectrum of a large symphony orchestra during an entire performance
of Le Sacre du Printemps by Igor Stravinsky. Frequency runs from left to right in the plot. The
data were taken by playing a high-quality recording of Le Sacre du Printemps repeatedly through a
spectrum analyzer. The darkening represents the average intensity, but there are occasional higher
peaks at almost any frequency throughout the audio band. The average spectrum of an operatic
tenor is indicated by the dashed lines, based on data by Cazden (1993)

need, one would expect the successful Wagnerian singer to have an unusually long
neck, large mouth, and enormous head. The mouth structure, if it were big and
long enough, might also serve as an efficient horn to couple acoustic energy to
the outside world. That seems to be the case with the adult hippopotamus, which
typically can produce low-frequency noises in excess of 115 dB.13 (See Schwartz
1996, and Fig. 6.22.) Similarly, it has been found recently by X-ray tomography that
the Parasaurolophus walkeri (a duckbill dinosaur) had two long curved, trombone-
like air passages in its head leading from the nostrils to the back of its throat which
probably would have enabled it to emit extremely loud sounds (Browne 1996;
Diegert and Williamson 1998). But, those characteristic features are not found in
the typical opera singer.

I know of several svelte singers who are capable of producing a very beautiful
sound in moderate-size halls at levels of at least 115 dB. Hence, it seems unlikely
that enormous body mass is really required. The main secret seems to lie in the

13As discussed in Chap. 2, the “dB” (standing for “decibel”) is a logarithmic measure of the sound
intensity ratio given by 10 Log10(Intensity Ratio). Here and in the following paragraphs, the ratio
sometimes tacitly refers to a reference level in which 0 dB corresponds to 2 × 10−4 dynes/cm2,
roughly the threshold of human hearing. (120 dB is about the threshold of pain.) An increment of
1 dB is about the smallest change in intensity ratio that the average human ear can detect.
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LEFT NOSTRIL

LEFT AIR PASSAGE

Parasaurolophus walkerie

Fig. 6.20 The Parasaurolophus walkeri. Although not really an invention by Richard Wagner,
this duck-billed dinosaur would probably have made an excellent Helden tenor. It had two folded
internal air tubes inside the crest of its skull (the left one shown here in white) going from the
nostrils to the back of the throat having an estimated unfolded length of about 6 ft. They each
would have produced a fundamental open-pipe resonance of about 90 Hz (drawn by the author
from the fossil on exhibit in the American Museum of Natural History in New York City)

distribution of energy from a powerful set of vocal folds that is also unusually
rich in harmonics. There is a technique which singers themselves refer to as
“focusing the sound.” It is seldom clear from their own descriptions what they
really mean by that term. Certainly, sound waves are not being focused. Instead,
the terminology has to do with the spectral distribution of energy over the vocal fold
harmonics. Professional singers develop something known among laryngologists
as the “singer’s formant.” By lowering the larynx and expanding the laryngeal
ventricle, some can tune the normal fourth formant down in frequency to coincide
with the third, thereby enhancing vocal energy in the region of above about 3 kHz
where the energy level of an accompanying orchestra rapidly falls off. As shown
in Fig. 6.23, the average energy spectra of a large symphony orchestra drop with
increasing frequency from its peak value at about 100 Hz and are down by about
20 dB at 3 kHz. Another benefit of the “Singer’s Formant” is that it shifts energy
from lower frequencies having nearly omnidirectional radiation patterns to higher
frequencies that are more directional. Hence, the voice can be aimed more efficiently
at the audience. Combining these techniques, a moderately powerful singer can
manage to be heard above a very loud orchestra. (See Sundberg 1987, Chapter 5.)

Of course, another possibility would be to produce a new breed of singers
by genetic control. For example, imagine the possibilities that might be attained
through gene splicing in the DNA molecule. (See Fig. 6.20.)

Normal singing relies heavily on the use of vowel sounds where most of the
energy is contained in the first four formants, the first two of which are usually
the strongest. (The vocal tract, of course, also provides articulation and consonant
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Fig. 6.21 Extreme positions of the tongue for three different vowel sounds. Limitations on the
ability to sing or speak different sounds rapidly arise from the physiology of the tongue. For
example, try to stick out your tongue and say, “OO” (as in “food”)

sounds.) It is important to remember that these formants are physical resonances in
the vocal tract determined by the geometry of the mouth and nasal passages, the
opening of the mouth and jaw, and the position of the tongue. (See Fig. 6.21.)

Representative frequencies and formant patterns for six of the common vowel
sounds used in a normal speaking voice are shown in Fig. 6.22. The lower part of
the figure shows voice prints for the vowel sounds [ee] as in “seat,” [eh] as in “set,”
[aa] as in “sat,” [ah] as in “calm,” [aw] as in “ought,” and [oo] as in “food.” The
top part of Fig. 6.22 shows typical frequencies in Hz for the first three formants
for women’s (W) and men’s (M) voices. Frequency increases from bottom to top in
each of these figures. The fact that the relative positions of these formant frequencies
can be duplicated and recognized by a wide variety of people of both sexes is what
makes oral communication possible. The second formant, which is sometimes called
the “Hub,” is the resonance that changes the most in going from one vowel sound
to another. Its frequency is highest for [ee] and lowest for [oo] and can change by a
factor of almost three. The effect, of course, is very striking in the case of diphthongs
which consist of a transition between two vowel sounds. (See Fig. 6.23.)

The trick in producing a powerful singing voice in which the text can also
be understood is to adjust (or “tune”) these resonances, especially the first three
formants, to coincide with harmonics of the vocal folds. This tuning process can
increase the sound level of the voice by as much as 30 dB (a factor of 1000 in.
intensity!)14 Ideally, one would like to obtain a match with at least four, but that
is hard to accomplish in practice for low voices and nearly impossible with the
soprano voice. As noted above, the fourth is often tuned down to match the third.
But, these resonances in the vocal tract are physically interrelated and cannot all
be tuned independently. The problem is least severe with bass voices where the

14Tenor Franco Corelli, after singing a duet with Eileen Farrell, said: “Who is this woman? She
has made me deaf!” [See the obituary of Eileen Farrell by A. Tommasini, The New York Times,
3/25/2002, p. B7.]
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Fig. 6.22 Frequency distributions and formant patterns for common vowel sounds. Frequencies
increase from bottom to top. The second formant F2 is called the Hub (indicated by >) and plays
a principal role in identifying individual vowels. Note that the Hub ( > ) decreases from left to
right in the above examples. Typical values of frequency are shown for women (W) and men (M)
(sources: Appelman 1967 and Potter et al. 1947)

Fig. 6.23 Formant patterns for several diphthongs. Note that each diphthong has two Hubs (2)
corresponding to the two vowel sounds involved (source: Potter et al. 1947)

vocal fold harmonics are closely spaced and cover a large range. But, the problem
becomes more difficult with the soprano voice where a lot of the singing involves
a pitch which is higher than the first formant of the speaking voice. As a result, the
soprano singer is often forced to match the second formant to the pitch of her voice
and then try to tune the higher formants to match the third or fourth harmonic of
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the vocal fold—for example, by moving the tongue and opening the jaw. One can
sometimes hear this transition occurring in a singer after the note has been initially
sounded, thus producing a kind of “blooming” effect loosely analogous to a note
being sounded on an oboe or violin with delayed introduction of vibrato. In this
tuning process, the formant pattern is often changed from that for the original vowel
sound with the result that identification of a particular vowel is blurred. The sound
can be very beautiful, but it often becomes hard to understand the text.

6.3.2 Registers of the Voice

As briefly mentioned in connection with Fig. 6.2, there are different possible lateral
modes of oscillation of the vocal folds, and, because of the elastic nature of
the tissue, these different modes may have nonharmonically related fundamental
frequencies with little overlap of their fundamental resonances. But, the harmonics
produced in the sound of the voice arise from the time-dependent shape of the bursts
of air transmitted through the vocal fold and have no simple direct relationship
(other than fundamental frequency) to the spatial modes of vibration. The sound
spectrum, of course, is modified by the resonant formants in the vocal tract.

Singers refer to these spatial modes of vibration as different “registers” of the
voice, but the terms are not the same as those used to describe registers in wind
instruments. The names given the vocal registers are largely subjective and are often
derived from sensations felt by musicians while singing.

These sensations naturally arise from different parts of the anatomy related to the
production of sound: Hence, they involve the diaphragm, the muscles controlling the
lungs, the vibration in the throat, and in the resonant formants in the neck, mouth,
and head. One finds descriptions from singers such as that given by Birgit Nilsson
(1984): “You must always be open, here and there [touching her forehead and lower
abdomen]. . . I always want a very, very deep support for the breath. The whole body
has to work. . . The key to producing the sound lies in support from downstairs.”

The vocal folds are much more than a two-dimensional pair of elastic bands.
They are three-dimensional in character, covered with mucosa, and can take on
complex variations in shape and thickness during “phonation” (the production of
sound). In the “Heavy Register” (see below), glottal closure is complete and starts in
the lower part of the fold, where the tissue is drawn together initially by the action of
muscles around the larynx and the closure is then completed by the Bernoulli effect.
While the glottis is closed, the two halves of the fold effectively roll upward against
each other to the top part of the fold before the two halves separate. (See Fig. 6.24.)

In the “Falsetto Register,” the upper part of the fold stretches out tightly on each
side of the glottis, making each half of the fold very thin and preventing the glottis
from closing completely. When the vocal fold is viewed from above in stroboscopic
illumination (using a frequency slightly different than the vocal resonance so that
the folds appear to open and close slowly), it is easy to distinguish visually between
those two registers of the voice. With the “falsetto” (high-pitched) register, the vocal
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Fig. 6.24 Vibration of the
Vocal Folds shown in a
vertical cross-section through
the middle of the vocal folds
during the production of a
single sound. The perspective
is from the front of the
larynx. Before the vibration
starts (1), the folds are
together. They separate as the
air is forced upward through
the trachea (2–7) and then
come together again as the
sound ceases (8) (figure
reproduced from Robert T.
Sataloff (1992), with the
permission of the author)
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fold is stretched and appears at maximum closure as a long narrow slit that is slightly
open. In contrast, with the “heavy” register, the length of the fold is noticeably
shorter and the closure of the glottis is complete along most of the fold, although
there is a slight opening at the front.

Laryngologists prefer to talk in terms of “laryngeal registers,” of which only three
have definitely been identified according to Baken (1998):

1. The Heavy Register or Modal Register is most commonly used by untrained
singers and runs from about 75 to 450 Hz in men and 130 to 520 Hz in women.
This register may include the “chest,” “head,” “low,” “mid,” and “high” registers
described by singers.

2. The Pulse Register, occurs in the low end of the frequency range, from 20 to
45 Hz in men and 25 to 80 Hz in women. The term is used synonymously with
“vocal fry,” “glottal fry,” and “strohbass” (German, for “straw bass”). Here, the
output from the larynx tends noticeably to have a double-pulse character. (See
later discussion of the Tuvan Throat Singer.)

3. The Falsetto or Loft Register (sometimes called the Light Register) occurs at the
high end of the spectrum (275 to 620 Hz in men and 490 to 1130 Hz in women).

The Pulse Register seems associated with massive vocal folds that are completely
relaxed—so much so that the ventricular folds may actually lie on top of the vocal
folds, thereby increasing the effective mass and lowering the resonant frequency
(see Allen and Holien 1973.)

The Falsetto or Loft Register is just the opposite. The tension is extremely high
and causes the vocal folds to be thinned out so much that often no vocal fold
contact occurs during phonation. That is, the glottis does not quite close during
the fundamental singing cycle. However, the glottal opening is spread out fairly
uniformly over the length of the fold. Both the intensity and harmonic content in
this register are less pronounced than in the Heavy Register and the intensity is
determined almost entirely by the rate of air flow through the vocal fold, rather than
the muscles of the larynx (Hirano 1970).

The Heavy or Modal Register is characterized by a larger opening at the front of
the vocal fold, producing a slightly “-shaped” aperture in the glottis as viewed from
the top at near-maximum closure. Here, because the glottis closes almost completely
during part of the cycle, both the intensity and the harmonic content tend to be
much greater than in the “falsetto” mode. Switching from the “Heavy” register to
the “Light” (Falsetto) register is primarily controlled by the vocalis muscle.15 From
stroboscopic images of the glottal shape, one can easily recognize changes between
these two registers. The vocalist’s art consists in part of striving to develop smooth
transitions between the Heavy and Light registers. (See Fig. 6.25.)

15See Gray’s Anatomy (Williams and Warwick, 1980, pp. 1234–1238) for illustrations and a
discussion of the musculature of the larynx. There are three principal, but complex muscles
controlling the vocal fold: the vocalis, the cricothyroid, and the crico-arytenoid. Hirano (1970) has
reported substantial research on the role of these three muscles in controlling the singing voice.
Also, see Sundberg (1987) and Sataloff (1992).
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Fig. 6.25 Upper Left to Upper Right: Transition from the “Heavy” register (left) to the “Falsetto”
or “Light” register (right) during phonation in the vocal folds of a professional soprano at the point
of maximum closure of the glottis. The lower figures show the results of vocal abuse. Lower Left:
Nodule on a male singer’s vocal folds that arose from improper vocal practice. (Note the posterior
glottal chink.) Right: Vocal fold from a male rock singer. Note the nodules, the scar tissue, and
gnarled appearance (drawn by the author from the Morrison 1983 stroboscopic tapes)

Surprisingly, there is little significant difference between the maximum vocal
intensities of trained and untrained singers. But, there is a major difference in the
damage done to the vocal fold from singing in the two cases. Due to bad vocal attack
and “vocal fry,” the vocal folds of country western singers and rock singers who have
never had formal voice training are often gnarled, scarred, swollen, and covered
with nodules and lesions that produce posterior glottal chinks and prevent complete
closure of the glottis (Morrison 1983). Surprisingly, some of those problems are
curable over a period of time just by expert vocal instruction. However, in severe
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cases such as that of Elton John, surgery has been required to restore the singing
voice (Sataloff 1992).

In addition to the harmonic content, vibrato is generally added to the singing
voice which impresses a frequency (and sometimes amplitude) modulation on
the sound. That can occur in different ways: one by actually varying the pitch
(and harmonic frequencies) of the voice by muscles controlling the vocal fold as
generally done by operatic singers; the other by varying the formant resonances
(waggling the tongue or opening and closing the jaw) as done by some popular
singers. (Examples come to mind ranging from the vocal sounds portrayed by
Hollywood “Indians” to festive, ululating Arab women.)

6.4 Spectra of the Operatic Voice

In this section, spectra of several leading operatic soloists are presented with the
thought that they should “speak [i.e., sing] for themselves.” The following examples
were all taken from the Verdi Requiem, where isolated solo notes are few and far
between.16 One has to catch those moments “on the fly,” as done here by the use
of a real-time Fast Fourier Transform analyzer (often abbreviated FFT).17 I chose
that work as an example because Verdi was one of the great masters at writing vocal
music with orchestral accompaniment. It also happens to be one of my favorite
pieces and the particular performance one of the finest I have heard.18 Some purists
may argue that the Requiem is not really an opera, but in the hands of Verdi it
certainly presents the characteristic features of operatic singing. One main point of
the present examples is to illustrate how singers can manage to be heard over an
orchestra, not to mention an accompanying chorus. In each of the four following
cases, the main components of the spectrum of the singer are indicated in music
notation above the orchestral accompaniment that follows one measure after the
solo vocal note. The harmonic amplitudes displayed in the following examples are
all on a linear, rather than a logarithmic scale. (They are not in dB.) Similarly, the
frequency is on a linear scale in order to make it easy to identify the harmonics
(which are always equally spaced in frequency).

Because of the transient nature of the selections chosen, the waveforms are
not precisely periodic over the observation intervals. However, they are at least
quasiperiodic and provide a realistic indication of the spectra found in performance.
Another problem in interpreting the data arises from the fact that the singers

16London recordings CD 1 (411945-2) and Cd 2 (411946-2) recorded in Vienna in October, 1967
with soloists Joan Sutherland, Marilyn Horne, Luciano Pavarotti, and Martti Talvela. Sir Georg
Solti conducted the Vienna State Opera Chorus and the Vienna Philharmonic; however, all but the
soloists have been cut out of the spectra presented here.
17See the discussion of Fourier analysis in Chap. 1 and Appendix C.
18But, the reader should be warned that the text deals with some pretty grim stuff.
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Fig. 6.26 Bass: Martti Talvela. The isolated low A occurs in the shattered silence at the end of
the Tuba mirum from the Dies irae. The music has just changed key in the Molto meno mosso
section. The note is the last one in the section and becomes the bottom of an A-major chord
when the orchestra comes in on the last measure. It is the “pe” in the phrase “Mors . . . stu-pe-bit”
(meaning “Death . . . benumbing”). Since the part is marked “pianissimo,” one might not expect
much harmonic content. However, most of the energy is actually in the treble clef in the fourth
harmonic of the voice at A = 440 Hz. The presence of the second, third, fourth, and fifth harmonics
gives the impression that the pitch is 110 Hz, even though the first few harmonics are much weaker
than the one two octaves above the fundamental. The spectrum illustrates how a low-voiced singer
can “focus” his voice so as to provide harmonics above the pitch of the orchestra when it enters on
the final chord

generally use vibrato, hence the harmonics (or overtones) are smeared out somewhat
in the following spectra. The harmonic content of the voice, of course, changes as
the singer moves from one register to another. As is the case with most instruments,
as the pitch goes up, the harmonic content generally goes down. Relatively low notes
have been selected here to illustrate the large harmonic content that can occur in the
singing voice. With the lower-pitched voices (including the mezzo-soprano), much
of the energy is contained in the first few even harmonics (especially, the fourth and
sixth).

The spectra of operatic singers shown in Figs. 6.26, 6.27, 6.28, 6.29, and 6.30
have several interesting features. First, there is a predominance of even harmonics
(especially, the fourth) of the vocal fold resonance, one minor exception being the
presence of a strong fifth harmonic component in the sample of the tenor voice
(Fig. 6.27). In the case of both the bass (Fig. 6.26) and the tenor (Fig. 6.27), the
strongest harmonic is not at the frequency of the note sung. With the bass, the



6.4 Spectra of the Operatic Voice 281

Fig. 6.27 Tenor: Luciano Pavarotti. There are almost no isolated tenor notes in the entire Requiem.
The spectrum is from the Offertory where a note on E natural is accompanied by a “pianississimo”
(ppp) violin tremolo. The text at that point was “fac-eas, Domine” (“make them to pass, Oh
Lord. . . [from Hell unto life everlasting]”). The spectrum has more higher harmonics than any
other voice studied. There is almost no seventh harmonic. The fundamental frequency (F0) is an
octave below the note in the score. The illusion of the treble E is created by the second, fourth,
sixth, eighth, and tenth harmonics of F0, which create a harmonic series based on the treble E in
the score

strongest component was the fourth harmonic—two octaves above the note in the
score. The impression of a low A at F0 = 110 Hz in that instance comes about from
the numerous harmonics of F0 in the spectrum. At the same time, the presence of
the strong fourth harmonic (at 440 Hz) makes it easier to hear the bass above the
orchestra when it enters in the following measure. With the tenor (Fig. 6.27), the
strong harmonics also extend far above the notes in the orchestral score that enter
after the solo voice. Interestingly, the strongest component is one octave below the
note in the score. The illusion that the tenor is singing a treble E at 662 Hz is created
by the second, third, fourth, and fifth harmonics of 662 Hz in the overtone series of
F0 = 331 Hz.

With the mezzo soprano (Fig. 6.28), the fundamental (F0 = 440 Hz) and its
fourth harmonic are of about the same intensity, with much additional energy in
the sixth. The voice easily stands out above the following orchestral chord (inverted
dominant seventh in A major) based on C�. The soprano spectrum in Fig. 6.29
consists mostly of first and second harmonic of F0 = 623 Hz and is easily heard
over the other solo voices. The unusual appearance of the waveform is due to varying
amounts of second harmonic during the sample interval.
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Fig. 6.28 Mezzo Soprano: Marilyn Horne. The opening note (immediately following the bass
note in Fig. 8.27) starts the phrase “Liber scriptus proferetur” (meaning “The written record shall
be cited”). As with the Bass spectrum in Fig. 6.28, the fourth harmonic is strong

6.4.1 Castrati

Starting in the early 1600s at about the time of Jacobi Peri’s Euridice (1600) and
Monteverdi’s Orfeo (1607) until the middle of the nineteenth century, the castrato
played a major role in opera. To put it medically, these people had been subjected
to a bilateral orchiectomy (surgical removal of both testes) before their voices
changed at puberty. They became so prevalent in the musical world that the very
word musico (Italian for “musician”) became synonymous with castrato. It has
been argued that at least two of them, Farinelli (née Carlo Broschi, 1705–1782)
and Gasparo Pacchierotti, were the greatest singers ever known. The stage name
Farinelli was probably derived from the Italian word pharinge meaning “pharynx”
or “throat;” thus, “Farinelli” would mean “Little Throat.” Mozart used castrati in at
least two of his operas (Idomeneo and La Clemenza di Tito) and one might argue
that the “Queen of the Night” aria from the Magic Flute could have been written
with a castrato in mind.19 (The aria goes up to a high F , which would have been
much easier for a castrato to hit than for an adult female soprano and the opera was

19According to operatic soprano (Bartoli 2002), arias written for castrati are “very demanding”
and require an “incredible range.”
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Fig. 6.29 Soprano: Joan Sutherland. The E-flat is near the end of Offertory (“ad vietam,” meaning
[to pass unto life] “everlasting”). Principally, first and second harmonic with a trace of third through
sixth. The unusual waveform arises from varying relative amounts of second harmonic

written just after La Clemenza di Tito, which featured the castrato role of Sextus.
However, die Zauberflöte was written in German rather than Italian—the language
of the great castrati, and the role was sung by Mozart’s first love and sister-in-
law, Josepha Weber Hofer, on opening night.20) Mozart clearly was intrigued by
male sopranos, having met the Florentine-born castrato Giovanni Manzuoli (1720–
1782) during his early visit to London circa 1764. During his later trip to Italy in
1770, he renewed his acquaintance with Manzuoli and met the legendary Farinelli
as well. One of Mozart’s encounters with young castrati singers was described in
a letter from Milan dated 3rd February, 1770 from his father to his mother. At that
time, the young Mozart was “composing two Latin motets for two castrati, one
fifteen and the other sixteen years old. . . whom he could refuse nothing because
they. . . sing beautifully.” Mozart was just fourteen himself, and, though he abhorred
the operation, he wished he could have taken the two fellows back with him to
Salzburg. In 1771, Manzuoli came out of retirement at Mozart’s request (“like a
good castrato”) to sing at Milan in the first performance of Mozart’s early opera

20According to his former student, Ignaz von Seyfried, Mozart’s last words while delirious in his
final illness were, “. . . hush! now Hofer is taking the high F . . . ” He thought he was attending a
performance of the Magic Flute and listening to the “Queen of the Night” aria. (See Neumayr
1994, p. 166.)
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Ascanio in Alba (K.111), written for the wedding of Archiduke Ferdinand of Austria
and Maria Ricciarda of Medina. (See Mersmann 1972; Heriot 1975; Hansell 1980;
Sadie 1980; Walker 1980; Pleasants 1981; Schonberg 1985.)

Castration not only produced male sopranos, but an array of other physical and
psychological deformities.21 There were other reasons for the practice of castration
than the role of castrati in Italian opera. Those ranged from the creation of eunuchs
to serve as guards in the harems of Asia, through the penalty for adultery in ancient
Egypt, to religious reasons (see Mathew 19:12). Only in Italy, however, was it done
for the sake of music. Because the practice was illegal in Italy, descriptions of the
procedure are unavailable. It is thought that the victims were given opium and placed
sitting in a hot bath to soften the tissues of the scrotum before the surgeon’s knife
was applied. At the onset of puberty, the pliable membranous part of the vocal folds
of both boys and girls is of about the same length. During puberty, the androgen
hormones released from the testes stimulate the rapid growth and lengthening of
the vocal folds, with the result that in the adult male they have nearly doubled in
length. As noted earlier, the frequency of vibrating strings varies inversely with
their length and the same is true with the vocal folds. Consequently, the adult male
voice typically drops by nearly an octave from its childhood value. The female
vocal folds also increase somewhat in length after puberty but by much smaller
amounts. However, if castration is performed well-before the onset of puberty, the
male vocal fold does not increase significantly in length at all. Consequently, the
adult castrato could sing with a pitch that was actually higher than that of an adult
female soprano. This feature was much sought after by a number of the famous
operatic composers—especially, Monteverdi, Scarlatti, HÃd’ndel, Glück, Mozart,
and Bellini. The results were so popular that by the eighteenth century 70% of all
male opera singers were castrati. It is thought that in the eighteenth century, as
many as 4000 boys were castrated in Italy for this purpose, with the usual age for
the operation being at 6–8 years. But, the operation was against the law in Italy and
was performed in a clandestine way. Most of the children had been sold by poor
parents to singing schools. One of the strong influences behind this practice was the
Roman Catholic Church: Women were not allowed to perform in musical services
because St. Augustine had forbidden their active participation. Castrati provided
an alternative to conventional soprano singers and were employed in the Church
starting in the early fifteenth century. References to their presence in the Sistine
Choir date to about 1565 and their use was reported in churches in Spain and Munich
from about the same period (Walker 1980; Peschel and Peschel 1987).

In spite of popular rumors that flourished in the eighteenth century, it seems
improbable that the castrati could have been active in either heterosexual or
homosexual affairs. Instead, they were wracked with medical and psychological
disabilities. For example, the castrato Filippo Balatri actually wrote about the
torment that asexuality caused him. Although in love with a beautiful girl at one

21Farinelli’s body was exhumed recently to study the physical characteristics of the singer (NY
Times 7/12/2006, p. AR2).
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point, he felt obliged “to give up women” because he had been emasculated. The
other cause of psychological torment among these people arose from abnormal
physiological development. The same androgen hormone that causes the vocal folds
to double in length after puberty and the penis to develop in normal males, also stops
bone growth in the legs and arms, a process called “osseous maturation.” As a result,
the castrati acquired freakish proportions with limbs much too long for their body
lengths, something defined medically as “eunuchoid appearance.” In addition, they
tended to develop large fatty deposits localized in the hips, breasts, and buttocks.
Consequently, the more famous castrato singers were caricatured and otherwise
lampooned (Peschel and Peschel 1987).

The use of castrati singers in opera pretty well died out in the early nineteenth
century. Neither Verdi nor Wagner were interested in writing for them. Giovanni
Battista Vellutti, who died in 1861, was probably the last great male operatic
soprano. The use of castrati was outlawed in the Roman Catholic Church by edict
of Pope Pius X in 1903. The last known castrato was Alessandro Moreschi (1858–
1922), who was a member of the Sistine Choir from 1883 to 1912 and was said to
have had a voice “as pure and bright as the sound of silver.” Although he was not
one of the great singers, he lived long enough to have made cylinder phonograph
recordings between 1902 and 1904. His recorded selections included the Bach-
Gounod Ave Maria, Mozart’s Ave verum, and the Crucifixus from Rossini’s Petite
Messe Solenelle. Although the recording technology was “early Edison” and the
singer himself must have deteriorated from his prime, his recordings do provide
some sense of the unusual upper range of the castrato voice. He could still hit a
high C in 1902, but it was on a scale where A ≈ 412 Hz, and the then high C was
approximately the present B natural.

Although there are no completely isolated spots in the recording where Moreschi
was singing alone, there was one place in the Ave Maria where he hit a high B
(written C, but actually 988 Hz) under conditions where I was able to filter out the
piano, violin, and clarinet accompaniment by inserting a high-pass filter that fell off
at 20 dB per octave below 1000 Hz. Comparison with and without the filter showed
that the recorded spectrum of Moreschi’s voice was unaffected by this filtering
process.22 Although there was some variation between different samples taken from
the same section of the record, it was clear that the strong fundamental frequency
at close to 1 kHz was definitely accompanied by at least weak second and third
harmonics. The results are shown in Fig. 6.30, where I have added the spectrum
obtained from a recent digital recording of a boy soprano (Max Emanuel Cencié)
singing the same note. Although one would expect the vocal fold frequencies to
be roughly the same for a boy soprano and a castrato, the head resonances in the
castrato would probably tend to be lower in frequency. (As discussed above, the

22The filtering also removed an annoying low-frequency “rumble” in the original cylinder
recording. The early Edison recordings used the “hill and dale” method of modulation in which the
stylus moved up and down, rather than horizontally and were much more susceptible to mechanical
rumbling noise than later lateral recordings. The filter also removed a similar rumbling noise in the
Valente (1960) recording which was traced to singing by the pianist Rudolph Serkin.
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Fig. 6.30 Comparison of four different singers hitting the same high note (high B natural). From
top to bottom: Moreschi 1902; Cencié 1990; Valente 1960; and Litten 1963 (see text)

bones of the castrato tended to keep on growing long after puberty.) The difference
between those two spectra is probably due largely to high-frequency fall-off in the
early (1902) Edison recording of Moreschi. The actual spectrum of the castrato
was probably intermediate between the limits shown in the upper two traces of the
figure.23 Representative spectra obtained from recordings of the same piece and note
sung by two different female sopranos are also shown in the bottom of the figure.
The three lower traces were all taken on the high B natural that occurs toward the
end of the slow section of Schubert’s Der Hirt auf dem Felsen (“The Shepherd on
the Crag”) using the same low-frequency rejection filter (sources: Moreschi 1902;
Schonberg 1984; Cencié 1990; Valente 1960; and Litten 1963).

It is of interest to see what a modern soprano does with even higher notes.
Towards the end of the Queen of the Night aria in Mozart’s opera The Magic Flute,
there is a long melismatic sequence ending on an arpeggio going up to a high F .
Understandably, relatively few recordings of that aria are available. However, data
from one sung by the Russian soprano Edita Gruberova are shown in Fig. 6.31. She
not only hit the high F , but exceeded it slightly (the note is actually closer to F�)

23One should note that the spectral distribution varies throughout the vocal range. For example,
spectra taken of the boy soprano on the note D natural just before the high B showed nearly equal
amounts of first and third harmonic, but almost no second harmonic, with some fourth and very
little fifth, sixth, and seventh.
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Fig. 6.31 The first and second harmonic of the high F near the end of the Queen of the Night aria
as sung by Edita Gruberova (1988). The same low-frequency rejection filter was used here as in
Fig. 6.30

and produced a second harmonic of equal strength. Hence, it is clear that there are
occasional sopranos who are well-enough equipped to sing parts that could have
been originally written for a castrato. However, the quality of the voice could differ
significantly between the male castrato of previous centuries and the present-day
female soprano: The “Heavy” register in the castrato would have contained more
harmonic content than the “Falsetto” register of the female soprano. That would
come about because the glottis closes more completely in the lower register. (See
the previous discussion of the laryngeal registers.) Because the adult female soprano
would have a voice significantly lower in pitch than a castrato (or a boy soprano, too,
for that matter), she would be obliged to use the falsetto register for some parts that
might have been sung in the lower register by the castrato of Mozart’s time.

A movie entitled Farinelli was made in 1994 of the romanticized life of Carlo
Broschi (1705–1782), one of the great Italian castrati (Fig. 6.32), using more current
recording technology to simulate his voice. There was, of course, no castrato soloist
available to record the sound track, and the singing consisted of a skillful editing
job combining the range of a male counter tenor (Derek Lee Ragin) and of a female
soprano (Ewa Maijas Gadilewska) going up to high D (near two octaves above
middle C). But, it did provide some sense of the type of sound that would have
been produced by the famous castrato. (See Farinelli 1994.) With the disappearance
of the castrato from the operatic stage, the problem remains of how to perform the
parts originally written for them. In most cases, sopranos now take over the role.
As shown in Fig. 6.31, some are fully capable of doing so. But, those listeners who
have a penchant for performance on original “period instruments” must find that
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Fig. 6.32 Caricature of the
castrato Farinelli, née Carlo
Broschi (from the Bettman
Archive)

solution frustrating. Once in a while, a courageous counter tenor who has not had
the operation will attempt the parts, sometimes with disastrous results.

6.4.2 Die Kunst der Jodel

Yodeling (from the German verb, Jodeln) is a type of singing often characterized
by rapid transitions through wide intervals on the musical scale using jumps
between different registers of the voice. The technique is very popular in the
Swiss and Austrian Alps and is also a basic feature of African Pygmy music,
which was generally admired by the ancient Egyptians. There, the voice often
leaps by intervals of fourths, fifths, and sixths. (See Cooke 1980.) In recent years,
it has also been adopted as a form of folk music in the southern USA, not to
mention the performance of classical music in Australia. In a sense, yodeling
involves the opposite goal to that of the operatic singer, who strives for seamless
transitions between the Heavy and Falsetto registers. In yodeling, one exaggerates
the difference (Fig. 6.33).

In looking for recorded examples of yodeling, I was struck by the fact that some
“country western” singers who practice the art seem to have burned out their normal
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Fig. 6.33 Spectra from the Falsetto and Heavy registers of a popular country-western yodeler

voices. Although they may have a very pleasant and smooth falsetto range, it is often
without much harmonic content. Similarly, their Heavy registers sometimes suggest
the symptoms of inadequate vocal training discussed previously. As an example,
the spectra (on a linear amplitude scale) from a CD recording of one anonymous
popular country-western yodeler are shown in Fig. 6.35.

In contrast, equivalent spectra from a digital recording of the champion Aus-
tralian classical yodeler Mary Schroeder (1999) are shown in Fig. 6.34. Purists
probably will not care much for her settings of Rossini’s William Tell Overture
or Mozart’s Symphony No. 40 in G Minor, but her vocal pyrotechniques are truly
amazing. The remarkable thing is that she can jump back and forth rapidly between
a falsetto spectrum with eight strong harmonics to a Heavy register showing at least
three formants and perhaps 20 harmonics.

(Note that the frequency scale in Fig. 6.34 extends up to 5 kHz, in contrast to the
2 kHz range in Fig. 6.33.) Nevertheless, one senses that the normal Heavy register
must suffer from the strenuous and rapid register changes in yodeling.

6.5 Vocal “Chords”

6.5.1 The Gyütö Tantric Choir

Buddhist Monks from the Gyütö Tantric Choir (originally from Tibet, but now in
forced exile at a monastery in Bomdi-La, India) use a style of singing that at least
dates to the fifteenth century in which each individual voice appears to produce three
widely spaced tones simultaneously. It is said that it takes the novice 3 years to learn
the technique and that the practice may have been brought to Tibet from India during
the eleventh century. Digital recordings of a number of chants by the Tantric Choir
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Fig. 6.34 Spectra from the Australian champion yodeler, Mary Schroeder (1999)

are available on a Compact Disc. (See Gyütö Monks 1986.) Unfortunately, with the
annexation of Tibet by the Chinese mainland government, the Gyütö Monks have
already become an endangered species. A basic problem in studying the sound from
these recordings is that the Monks generally sing in groups. One really needs an
isolated voice to study the vocal mechanism. Fortunately, brief passages for solo
voice sometimes mark the beginning of a chant. Such a section occurs at the start
of the Windham Hill CD recording where the lead monk begins alone. That excerpt
was used to obtain the data shown in Fig. 6.37.

Their singing is reminiscent of the sound of bag pipes due to the constant
presence of a bass drone accompanying the chords that are two octaves higher. The
apparent drone pitch ranges chromatically throughout the recording from Bb to C,
corresponding to frequencies ranging from about 58 to 65 Hz. The “drone” stands
out very clearly because its pitch is so widely separated from the higher tones.

Analysis of the spectrum suggests that it simply consists of a vocal fold pitch
of F0 = 60 Hz with widely spaced harmonics—the strongest components being at
N = 2, 4, 5, and 7. From Fig. 6.35, the most important frequencies are 60, 120, 240,
300, and 420 Hz, which approximate notes on the well-tempered scale indicated by
the music notation shown in the figure. The notes form a diminished seventh chord
on B, with a missing F .

I was prepared to believe that the 60-Hz drone frequency actually was present
until I looked at the waveform and spectrum of the sound. As can be seen from
the upper part of Fig. 6.35, the waveform is closely periodic at a frequency of
60 Hz, but there is almost no energy in the fundamental. (See the lower part of
the figure.) The result is not too surprising since it would take a closed pipe about
four feet long to resonate at that frequency. (The vocal fold could, of course, merrily
buzz away at 60 Hz without any significant acoustic coupling to the outside world.)
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Fig. 6.35 Spectral data analyzed for a single monk, using one stereo channel of a CD recording
by the Tibetan Tantric Choir. (See Gyütö Monks 1986.) The waveform (upper part of the figure) is
periodic at 60 Hz, but the spectral amplitudes (lower part of the figure) contain almost no energy at
60 Hz

Unless these monks suffered from an extreme form of Marfan syndrome (a condition
in which bones are abnormally elongated and heart valves are often defective),24

significant acoustic coupling to the air at that frequency would not be expected. Yet,
the sensation of the low pitch is clearly present and 60-Hz components permeate
the spectrum. The presence of the second, fourth, fifth, and seventh harmonic of F0
in Fig. 6.35 not only provides the impression of a strong 60-Hz pitch (frequency
F0) but also results in widely spaced peaks in the spectrum suggesting the sound
of a chord. As discussed in Chap. 5, psychoacoustic properties of the ear can create
the impression of a low-frequency tone when only a few higher harmonics of that
frequency are present. The psychological effect is similar to that used to create the
illusion of a very low-pitched organ pipe through use of shorter pipes tuned to the
harmonics of the missing fundamental; if enough harmonics are present, the ear
thinks that the fundamental is actually there.

As is well known in the electronics world, a nonlinear element (that is, one
whose output amplitude is not simply proportional to the input, and hence is not
a linear function of the input) can effectively multiply two oscillating waves at

24See Braunwald (1984, p. 1666).
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two different frequencies together. That process produces harmonics of the two
separate frequencies and additional terms at the sum and difference frequencies
of the input signal components involved.25 There is little doubt that the vocal
tract contains nonlinearities. For example, the sound produced by the vocal folds
contains numerous harmonics which must arise through some nonlinear process.
Some simple physical models favor even harmonic production in the human voice,
the most straightforward being one that involves a quadratic nonlinearity.26 The
peak labeled “A” in Fig. 6.35 is the second harmonic of the vocal fold resonance (F0)
and “2A” is the second harmonic of that. Those two frequencies would normally be
expected and are also characteristic of the bass, tenor, and mezzo-soprano operatic
voices discussed before.

The strong peak labeled “D” in the figure is probably the result of carefully tuning
a narrowed F1 formant to the seventh harmonic of F0. The monks seem to be able
to reduce the width of the cavity resonances in the vocal tract enough so as to isolate
individual harmonics of the vocal fold (here, the seventh). That might be done by
narrowing the mouth opening (as in sounding the vowel OO with the tongue arched
as in Fig. 6.22) to cut down radiation loss. It is possible to show that the full width at
half-maximum intensity response of the first resonance in the closed-pipe model of
the vocal tract is ΔFcav ≈ F1L/π , where L is the fractional energy loss per round
trip of the running wave. (See Appendix A.) For ΔF to be less than F0 ≈ 60 Hz
(the vocal fold harmonic spacing), the round trip energy loss only has to be less than
about 45% and would provide a cavity Quality Factor of Q ≈7. (See Appendix A.)
Hence, by partially closing the mouth, isolating one vocal fold harmonic in an F1
resonance (at ≈420 Hz) seems possible. However, isolating a single harmonic in an
F2 resonance (≈ 3F1 ≈ 1260 Hz) would probably be out of the question.

The remaining important spectral component at D–A could then result as a
difference frequency produced by “nonlinear mixing.” Nonlinear mixing of two

25This result follows by application of simple trigonometric identities. Let the two signals be sin A

and cos B, where A = 2πF1t and B = 2πF2t and t is the time. Consider the general identities,
sin(A + B) = sin A cos B + cos A sin B

sin(A − −B) = sin A cos B − cos A sin B

Adding the two relations yields
2 sin A cos B = sin(A + B) + sin(A − B)

Hence, multiplying two separate oscillating waves together yields waves at frequencies F1F2.
To see how the process generates the second harmonic, just let A = B in the above expressions.
26The response of any continuously varying physical system can be expanded in a power series
in the stimulus. For example, suppose the lateral opening x of the vocal cords in respect to its
equilibrium position x0 is a function of the time-varying component of the pressure amplitude p

above the larynx. The corresponding power series (or Taylor series) could be written
x = x0 + ap + bp2 + cp3 + dp3 + . . . , where a, b, c, d, . . . are numerical coefficients which

might be determined from the derivatives dx/dp, d2x/dp2, and so on. Then, ap represents the
linear term, and bp2 represents the first nonlinear term. The requirement for making this expansion
is that the various derivatives are finite and continuous. The pressure-amplitude transmission and
reflection coefficients would be simply related to x (i.e., to the area of the opening). Similarly, the
effective spring constant in a mechanical model of the vocal fold could be expanded in a power
series in the deflection, as discussed in Appendix A.
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modes in the vocal tract can come about as follows: The constriction at the vocal
fold increases the reflection of sound waves coming down the throat from the mouth.
(See Fig. 6.6.) Hence, the reflected wave going back up to the mouth from the vocal
fold is “amplitude modulated” (multiplied) by the wave motion in the vocal fold
and therefore by the pressure above the fold. (The reflected waves moving upward
contribute to the formation of pressure standing waves in the vocal tract, whereas
the downward moving running waves that are not reflected by the vocal folds in
Fig. 6.6 are simply transmitted through the larynx and absorbed in the lungs.)

There is a striking similarity between the present case and that discussed in
a later chapter regarding multiphonic tones produced on the English horn and
oboe. Both cases are characterized by a highly periodic waveform with missing
fundamental, strong second harmonics and difference-frequency terms. Because
there is no vibrato in either case and the harmonics are locked in phase, the resultant
sound also has a strong “mechanical” tone quality.

6.5.2 The Tuva Throat Singer: A Siberian VASER?

A related style of singing is practiced by the so-called throat singers of Tuva
(pronounced “TuVAH”), who inhabit a region of southern Siberia. Most singers
use their throats, so the terminology may seem redundant. However, these singers
use the throat in a remarkable way. They not only produce two apparent tones at
once, but the low pitch can be even more startling than in the Tantric Choir. As with
the Gyütö Monks, a bag pipe-like drone is present which gives the impression of a
fundamental pitch of about 65 Hz, or a C two octaves below middle C on the piano,
and one higher tone which varies over a one-octave range starting at about the G
above middle C. That component carries the melody. Beyond that, the waveforms
they generate sometimes have a component at half the vocal fold resonance!

Fortunately, a high-quality digital recording is available of one isolated Tuvan
singer. (See TUVA 1990.) The waveforms and spectra shown in this section were
made from one channel of the first band of that recording. There are several
interesting features of the spectra.

First, the harmonics of the “drone” are very constant throughout the first band
of the recording and uniformly separated by about 65 Hz. As with the Gyütö
Monks, there is negligible energy radiated at that fundamental frequency. The lowest
frequency directly observable on the linear scale used in the present figures from the
recording was at 130 Hz, or the second harmonic of the perceived drone frequency.
As with the Gyütö Monks, weak harmonics of the vocal fold resonance are spread
throughout the spectrum. If you look at the spectrum with enough amplification, you
can see that there actually is a little energy radiated at 65-Hz, but that component
is down by about 15 dB from the adjacent signal at 130 Hz, the weakest component
observable in the present figures. Examples of two higher-pitched tones a fifth apart
are shown in Fig. 6.36 (N = 8) and Fig. 6.37 (N = 12).
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Fig. 6.36 Waveform and spectrum of a tone produced at 520 Hz = 8F0 (treble C) by one Tuva
singer. Weak harmonics spaced at 65 Hz create the illusion of a bass tone at F0 = 65 Hz which is
not actually present in the audio spectrum

As shown in Fig. 6.38, there are two strong formants (F1 and F2) involved and
a third one (F3) that is weakly excited. The singer is able to reduce the resonance
width of the lowest (F1) formant to about 65 Hz and tune that formant to individual
harmonics of the 65-Hz fundamental frequency. The second formant is about an
octave higher than the first, but has a much broader resonance in the order of 450 Hz
wide. From the results in Figs. 6.36 and 6.37, the first formant clearly can be tuned
over the range of at least 520–780 Hz, or four harmonics of F0 spaced at 65 Hz.
According to Levin and Edgerton (1999), the singer can tune the notes from about
392 to 784 Hz. The notes do not change continuously in frequency but jump from
one harmonic of F0 to another. During this process, the apparent 65-Hz pitch is kept
remarkably constant.

There is still another unusual property of the data in Fig. 6.38. As can be seen by
visual inspection of the waveform, it is actually periodic at a frequency of 32.3 Hz
or about half the value of the vocal fold resonance at F0 = 65 Hz. This singer may
actually be producing the first subharmonic of his normal vocal fold resonance. An
alternative explanation is that he has learned how to relax his vocal fold sufficiently
to produce the Pulse Register (“Strohbass”) in which the effective mass of the vocal
fold is increased (lowering the resonance frequency) by collapsing the ventricular
folds from above. One clue in support of that interpretation is the appearance of a
double pulse in the waveform. (See Fig. 6.38.) Again there is no significant energy
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Fig. 6.37 Waveform and spectrum of a tone produced at 780 Hz = 12F0 (treble G) by one Tuva
singer. Again, weak harmonics spaced at 65 Hz create the illusion of a bass tone at F0 = 65 Hz
which is not significantly present in the audio spectrum. The note at N = 12 is a fifth higher than
the note in Fig. 6.38, but the other spectral components are about the same

radiated at that extremely low frequency and there are certainly no resonances that
low in the vocal tract. It would take a closed pipe about 8-ft long to resonate at
32.3 Hz. This apparent subharmonic was not present on most notes, suggesting that
it was hard to produce. By applying enough magnification, one can actually see
the 32.3 Hz peaks in the spectrum, but they were down by about 35 dB from the
sixth harmonic of F0 at 390 Hz in Fig. 6.38. The latter in turn is about the smallest
component that shows up on the linear scale used in the spectral plot.

The tones sound very much like those from a Jew’s harp. Indeed, since the Tuva
singers are fond of the Jew’s harp as a musical instrument, it seems probable that
they are actually imitating the tone quality of the Jew’s harp in their singing. The
harmonics of F0 are analogous to those of the tongue of the Jew’s harp and changing
between different high-Q resonances of the vocal tract is similar to the method used
to produce tunes on that instrument. One can also get subharmonics on the Jew’s
harp. (See Fig. 6.12 and associated discussion.) In each case, cavity losses can be
reduced greatly by keeping the mouth nearly closed. That, in turn, can provide the
narrow resonances observed in the lowest formant. In the present case, the Q of the
F1 resonance is given by Q ≈ F1/ΔF ≈ 10, where ΔF is the full resonance width
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Fig. 6.38 Waveform and spectrum of a tone produced at 780 Hz = 12F0 (treble G) by one Tuva
singer, but shown on a much broader frequency scale. As before, weak harmonics spaced at 65 Hz
create the illusion of a bass drone at F0 = 65 Hz which is not significantly present in the audio
spectrum. The example here is remarkable in that the waveform is periodic at half the drone
frequency. Note the double-pulse character which may be indicative of the “Strohbass” register.
The spectrum indicates the presence of three formants: The very narrow, tunable one labeled F1,
together with a very broad formant (F2) about an octave higher, and a weakly excited formant (F3)
in between the fourth and fifth harmonics of F1

at half maximum response on an intensity scale. (For a discussion of cavity Q, see
Appendix A.) The narrow resonances achieved here are similar to those encountered
with the Gyütö Monks and probably produced in the same manner.

With such narrow resonances, the vocal tract would tend to interact nonlinearly
with the vocal folds in a way analogous to that in which the resonances in a brass
instrument couple with the vibrating lips to produce isolated notes. As discussed in a
later chapter, one usually needs at least two high-Q modes resonant on harmonically
related frequencies to produce stable oscillation in brass or reed instruments.
However, since there are no other high-Q modes present in the spectral data of the
Tuva singer shown here, the phenomenon of “gain narrowing” encountered in laser
physics may be involved. The vibrating vocal fold may provide enough gain in the
lowest mode to reduce the normal radiation loss through the mouth. The presence
of a round trip fractional energy gain G in the vocal tract would reduce the cavity
width to ΔF ≈ F1(L − G)π .

In the limit that G → L, a condition required for steady-state oscillation in a
laser, the spectral width would be limited only by the time duration of the coherent
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oscillation, or by random noise present in the mode. (See Bennett 1962, p. 54;
1977, p. 89.) It would indeed be ironic if these singers had been practicing a
form of vocal laser oscillation (or VASER—standing for “Voice Amplification by
Stimulated Emission of Radiation”) in southern Siberia for the last thousand years!

The main puzzle left is how the Tuva Throat singer can produce such low
sub-bass frequencies. As mentioned above, the sub-bass frequency may just be
an example of the “Strohbass” register in which the effective mass of the vocal
fold is increased substantially. However, the result might also come about from
subharmonic generation due to a quadratic nonlinearity in the vocal fold mechanism.
(See the discussion of the subharmonic oscillator in Appendix A.) One really needs
stroboscopic pictures of the vocal fold vibration from the throat of a Tuva singer to
determine what is actually happening.

Problems

6.1 An elephant has a trunk 6 ft long. If it is used as a closed pipe, what is the
fundamental resonance?

6.2 The Parasaurolophus walkeri had two long curved, trombone-like air passages
in its head leading from the nostrils to the back of its throat. (See Fig. 6.26.) If the
unfolded length of each air passage was about 6 ft, what would the fundamental
resonances and the first several modes have been? The two nostrils would not
have precisely the same length, so the sound from the two nostrils would probably
produce beats. A musically talented Parasaurolophus might be able to produce
harmonic intervals simultaneously like double stops on a violin (thirds, fourths,
fifths, etc.), in which case beats produced between the two nostrils could have a
mellowing effect like vibrato.

6.3 A resourceful SCUBA diver goes to a Halloween party disguised as Henry
Kissinger, whose speaking voice is at about low D� = 77.8 Hz. Unfortunately, the
pitch of his voice is about 120 Hz. To compensate for that failing, he fills his SCUBA
tank with a mixture of oxygen (molecular weight = 32) and krypton (molecular
weight = 84). (a) What is the average molecular weight of the gas in his SCUBA
tank? (b) What must mixture of oxygen and krypton be? Take the molecular weight
of air to be about 29. (Warning: Do not try this! It is very hard to get the krypton out
of your lungs.)

6.4 A counter tenor who normally can only reach high G at 1568 Hz wants to sing
the “Queen of the Night” aria from the Magic Flute, which goes up to a high F

(2793 Hz), almost an octave higher. If he fills a tank with a mixture of 20% oxygen
and 80% helium, will he be able to hit the note? (The molecular weights of air = 29,
helium = 4, and oxygen = 32.)



Chapter 7
Pipe Organs

7.1 Historical Background1

7.1.1 Introduction

Called “The King of the Instruments” by Mozart, the pipe organ is the oldest of the
keyboard instruments. Historians tell us they date to at least 246 BC. One of the
earliest (from the Hellenistic period) was in the form of a tree containing whistling
birds. (See Sonnaillon 1985.)

Organs operated by keyboards similar to those on harpsichords were prevalent
in Europe by the mid-1400s. Typically, there was one wind chest containing several
different kinds of pipes for each keyboard. Each such unit is thought of as an “organ”
by itself and, indeed, as more keyboards and pedals were added, more and more
“organs” were contained in one instrument. Thus in French, the word for a large
organ (grandes orgues) is nearly always used in the plural form (Fig. 7.1).

The sixteenth century “positiv” was a single keyboard instrument with one wind
chest and an air supply provided by manually operated bellows (Fig. 7.2). Several
different stops were often contained on such an organ, each containing a separate
“rank” or set of pipes with pitches covering the compass of the keyboard. As the
complexity of organs grew, more keyboards and wind chests were added, often
with couplers between the keyboards similar to those used later on two-manual
harpsichords. The “positiv” organ was frequently retained on large organs with the
exception that it was often placed behind the organist—hence the term “ruckpositiv.”
Especially in Germany in the sixteen hundreds, the simple positiv was enhanced
with more elaborate structures (“brustwerks” and “oberwerks” or “hauptwerks,”

The original version of this chapter was revised: Equation on page 319 was corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-92796-1_8

1For histories of the organ, see (1766), Vol. 1, Audsley (1905), Vol. 1 and Sonnaillon (1985). The
author is indebted to Bernard Sonnailion for permission to reproduce illustrations from his book.
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Fig. 7.1 Bellows-pumped
bird whistles thought to be
the earliest form of the pipe
organ

Fig. 7.2 A sixteenth-century
positiv by an unknown
builder (courtesy of the
Historiches Museum, Basle)

for example) placed in front of and above the organist, some with wind chests
containing pipes of 16- to 32-ft length. During Bach’s time, the tallest pipes were
confined to the pedal section of the organ and often placed in so-called pedal towers
on either side of the console. It is thought that Bach himself did not have pipes
of more than 8-ft length accessible from the keyboards. Producing the powerful
low frequency notes was delegated to the “pedal” section and operated by his feet.
Indeed, for most of his life as an organist in Leipzig, Bach only had an organ with
two manuals and pedals. Of course, he had choir boys to change the stops and pump
the bellows. Some very large baroque pipe organs employed teams of grown men
working foot-operated bellows (See Fig. 7.3). Contemporary organs usually employ
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Fig. 7.3 Possible “Winding”
for a very large baroque pipe
organ

large motor-driven blowers, often located in the basement of the church or concert
hall in order to reduce extraneous sounds from the machinery.2

Organists have the curious convention of labeling the different stops according
to the length of an open pipe required to produce the same pitch as the lowest C on
the keyboard (or pedal board). Because closed pipes produce a fundamental pitch
that is half that of open pipes of the same length, one finds, for example, that the
active length of a 16-ft “gedekt” or “bourdon” (closed pipe) is actually only about
8-ft long. (The “foot” of the pipe, which tapers from a small opening on the pipe
board to the much wider diameter of the pipe itself, often adds another few feet to
the overall length.) On the other hand, a 16-ft open principal or “diapason” pipe will
generally have an active length that really is 16-ft long.

2One of the dangers of putting the blower in the basement was illustrated at Cornell University
in the late 1960s. Unknown to the organist, the basement had been flooded by spring rains. He
went directly to the console and flipped the switch to turn the motor on. Within a few minutes the
entire organ was filled with water! Another problem with such a location for the blower is that the
basement air is apt to have rather different temperature and humidity content than that in the room
containing the wind chests with the result that the pipes may be thrown out of tune.
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7.2 Structure of an Organ

A common design for baroque organs is outlined in Fig. 7.4. The organist sits
on a bench in front of the “ruckpositiv” at a console below the “oberwerk” or
“hauptwerk” and in front of the “brustwerk.” In early organs, actions involving
mechanical linkages called “trackers” were used to couple the depression of a key
on the console or pedal to the opening of a “pallet valve” under the wind chest that
let air into a channel for a particular note on the keyboard to be sounded. Slider
valves placed perpendicularly to the note channels and operated by draw knobs at
the side of the console would allow air to enter any pipe in a specified rank for which
the pallet valve had been opened. The slider-stops consisted of strips of wood with
holes cut in them at the pipe spacing for each rank.

The basic mechanism3 was fairly simple and some of these tracker-action organs
are still working some 300 years after they were made.

Figure 7.5 illustrates the working of a tracker action wind chest. Vertical rods
(trackers) pull down pallet valves when the corresponding keys are depressed on
a manual. That lets air into the appropriate note channel. If the slider valve for a

Fig. 7.4 Schematic drawing of the position of the organist with respect to the ruckpositiv (left),
the brustwerk (middle right), the hauptwerk (upper middle), the pedals (middle bottom), and the
wind supply (right) on a baroque organ. As some organists have sadly learned, the blast of sound
from the brustwerk, which hits the organist in the face, can lead to deafness (The drawing is partly
based on an illustration in 1768, volume II)

3For a more complete discussion of these mechanisms, see Audsley (1905, Vol. 2) and Sonnaillon
(1985).
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Fig. 7.5 “Exploded” view of a tracker-action wind chest

particular rank of pipes is open (pulled to the left in the drawing), air is let into the
pipe corresponding to the key depressed on the manual.

The operation of a pipe organ involves rather complex switching problems which
were solved with great ingenuity by baroque builders such as Arp Schnitger (1648–
1719) and Andreas Silberman (1678–1734), who made pipe organs at the time of
Bach. One wants to insure that only the notes depressed on the keyboard and the
ranks of pipes selected are sounded. The tracker action wind chest in Fig. 7.5 clearly
accomplishes this objective. However, the connecting linkages were amazingly
complex in design. As an example, the arrangement of trackers for one such German
organ is shown in Fig. 7.6.

As evident from Fig. 7.6, the vertical motion of the tracker rods is translated
laterally from the note spacing on the keyboard to the pipe spacing on the wind
chest. That is accomplished through a structure of roller bars on the large triangular
frame in Fig. 7.6 of the type illustrated below (Fig. 7.7).

Figure 7.8 is a schematic drawing for the air supply of an organ. The main
difference between this one and its older predecessors is the incorporation of a
blower powered by electricity. Air comes in from the left passing through a curtain
valve regulator and from there into a large reservoir with an expansion bellows on
top. Pressure regulation arises from the connection by a rod between the top of the
bellows and the roller curtain in the regulator valve. As the top of the bellows rises,
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Fig. 7.6 The connection between vertical trackers and the wind chest pallet valves on one German
organ containing a 52-note keyboard (after Audsley 1905, vol. 2)

Fig. 7.7 Method of displacing vertical pull-down motion horizontally on a tracker-action organ
(after Audsley 1905)

Fig. 7.8 Air supply for a modern organ
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the curtain is pulled up gradually, closing off the air path from the blower. (It is
shown nearly closed in Fig. 7.8.) As the pressure in the reservoir is consumed by
playing the organ, the top of the bellows slowly drops down allowing the curtain to
be retracted on a spring-loaded roller. The assembly works somewhat like an upside
down window shade and the restoring spring on the roller keeps the curtain under
moderately constant tension. The mechanism affords a particularly simple method
of controlling the air pressure. A weight placed on top of the bellows determines the
air pressure.

In addition to maintaining constant wind pressure in the organ (an important
function since the pitch of the pipes varies with the pressure), the mechanism
provides a simple way to introduce vibrato (or tremolo) in the organ. One way
of achieving that goal is to place a motor on top of the air reservoir that turns a
shaft with an off-center weight mounted on it as shown in the figure. As that weight
moves up and down a periodic variation in the air pressure is introduced at the
motor rotation frequency. Generally the speed of the tremolo is fast compared to
the normal rate at which pressure is consumed by the organ and the curtain valve
doesn’t work fast enough to remove the vibrato. The tremolo rate varies a good deal
among organs. Some makers prefer a rather slow tremolo, whereas others shoot for
something more approaching that of a good violin or oboe vibrato (perhaps 6 Hz).

It should be acknowledged that there are many variants in use for producing and
controlling the wind pressure on a pipe organ. (See, for example, Audsley 1905,
Vol. 2.) In some cases cones are raised and lowered in a conical regulator valve,
and in others various complex pneumatic oscillators have been designed as tremolo
engines. However, the ones discussed above are among the simplest (Fig. 7.9).

7.2.1 Baroque Organs

It may help to understand the switching operation by thinking of the situation
schematically in terms of the matrix outlined in Fig. 7.10. This figure could actually
be part of the wiring diagram for an organ using direct-electric pipe valves.

Suppose we regard each of the solid circles as an electromagnetically operated
(solenoid) valve for each pipe. (We, of course, assume these are all mounted on
the inside of a wind chest containing air at the pressure needed to operate all the
pipes.) For example, to turn on the 8-ft rank, a switch is closed that allows current
to flow from a power supply along the lowest horizontal wire from the left at the “8-
ft” designation. We also assume that when any key is depressed, it closes a switch
that can return current to the power supply from the wire running vertically above
the key. Then, when the 8-ft rank is turned on and the lowest C on the keyboard is
depressed, current flows through the first junction at the lower left in the diagram,
down through the vertical wire through the switch on the C key, and back to the
power supply. That current causes the solenoid valve below the first pipe in the 8-
ft rank to open, letting air flow into the pipe. The same process clearly works in
principle for any number of ranks and for any note on the keyboard. This approach



Fig. 7.9 Examples of Baroque organs. (a) Sixteenth century organ rebuilt by Andreas Silbermann
in 1711 and located in the Peter Church of Basel, Switzerland. The organ has since been renovated
by several other builders. (b) Examples of Baroque organs. Large tracker-action organ in the



Fig. 7.9 (continued) Nikolaikirche at Altenbruch, Germany, originally built in 1497–1498 by
Johannes Coci. According to Sonnaillon (1985, p. 100), substantial modifications were made by
several builders, including Johann Werner Kapmeyer, a pupil of Art Schnitger in 1730. The organ
was restored by Rudolf von Beckerath in 1967 (photograph courtesy of Bernard Sonnaillon)
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Fig. 7.10 Diagram to
illustrate the switching
process used to open stops
and sound individual notes on
a wind chest (see text)

actually works quite well for low wind pressures, although the solenoid valves
usually require transistorized switches to handle the necessary currents.4 In practice,
there are usually only 61 notes on any one contemporary organ manual (as opposed
to the 88 on the piano keyboard) and only a half-dozen or so different ranks on a
given wind chest. Some additional switching methods are required to couple the
pipes on different wind chests together.

7.2.2 Modern Organs

For higher-pressure organs (say more than 5-in. of water5), various mechanical
and electromechanical methods have been devised for accomplishing the same
objectives. Although mechanical linkages (“trackers”) were used for hundreds of
years, other methods briefly mentioned above for handling the switching problem
were incorporated in the nineteenth century. As the wind pressure and the number
of stops in different wind chests were increased, it became harder and harder to push
the keys down.6 This difficulty became more noticeable in French organs such as
those initiated by Aristide Cavaillé-Coll (1811–1899) in Paris, who designed the
instruments in Notre Dame, the Basilica of Ste. Clotilde and the Church of St.
Sulpice. Toward the end of the nineteenth century larger and larger air pressure
was required to increase the loudness of the pipes in huge cathedrals and went
from 2 or 3 in. of water characteristic of the pressure produced by blowing a pipe

4The Peterson Company in Alsip, Illinois, for example, makes such valves and control circuits in
conveniently applicable form for low-pressure organs.
5This curious unit for pressure is based on the method used to measure air pressure in organ wind
chests. A U-tube manometer is partially filled with water and one end connected inside the wind
chest. The pressure above local atmospheric pressure then corresponds to the difference in water
level between the two halves of the manometer. Typically, a person blowing a flute or recorder
only generates a pressure of a few inches of water and early organ pipes were adjusted for that
range. However, that is not the same for modern reed instruments. Oboist Robert Bloom told me
that Arthur Benade once hooked up a water-filled manometer to a rubber tube in order to measure
the pressure in the oboist’s mouth. He then asked Bloom to play a note on the oboe. Bloom obliged
and shot all the water out of the manometer up to the ceiling!
6Leonard Brain once told me that his brother, Dennis—the famous British horn player—had
practiced regularly on a stiff tracker action organ to develop strong finger muscles.
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with the human mouth, to pressures of more than 20 in. of water needed to operate
some modern reed pipes. By 1900, electropneumatic actions were incorporated to
reduce the mechanical effort required to play such a large organ. However, with
many large organs using such electromechanical amplification, long time delays
are encountered after the keys are depressed before the pipes sound. Professional
organists somehow adapt to this situation, but the secret seems to be to avoid
listening to the music. Some have argued that large delays are inevitable in big
cathedrals anyway due to the finite velocity of sound. The problem becomes still
worse when different organs controlled by the same console are positioned all over
a large building.7

One way of characterizing an organ is simply by the total number of pipes. Some
have a horrendous number. The new Disney Hall organ in Los Angeles has 6325
pipes, and the new organ in Verizon Hall in Philadelphia has 6932 pipes. You might
think that those are really large numbers until you examine some of the organs
made in the early twentieth century. For example, the Newberry Organ in Woolsey
Hall at Yale has 12,617 pipes and the Wanamaker organ in Philadelphia has 30,067
pipes. Such large organs have pipe rooms that seem like small cities. As an example,
the layout in Woolsey Hall at Yale University for the Newberry organ is shown in
Fig. 7.11—a space 80-ft wide, 40-ft high and 10-ft deep. This organ was originally
built in 1901 by Hutchings, was nearly doubled in size in 1915 by Steere, and greatly
enlarged in 1928 by the Skinner Organ Company.8

Pipe organs of this size are especially appropriate for compositions of the late
nineteenth century such as those by Charles-Marie Widor in which huge masses
of sound are desired. I once measured sound pressure levels of close to 100 dB
from the Newberry organ over the entire first balcony at the rear of Woolsey Hall
while University organist Charles Krigbaum was playing a Toccata by Widor. (The
656,000 cubic-ft hall was filled with some 2700 people—graduating students and
their friends and relatives.) This organ has two 20 HP blowers (one for back-
up purposes) in the basement that can each produce enormous amounts of air at
pressures of over 15 in. of water. Indeed, the fluctuating air pressure coming out
of the top of the bass reeds provides a hazard for low-flying wild life. On at least
one occasion, a 32-ft bombarde was put out of commission when a bat was sucked
into the end of the pipe! The list of stops for the Newberry organ is contained in
Appendix E.9

The console for the Newberry organ with its four keyboards and huge array of
stops is pretty awe-inspiring, but it nevertheless pales in comparison with that for
the Wanamaker organ (Fig. 7.12). We won’t even attempt to provide the stop list for

7One Italian organ virtuoso said very proudly that he had mastered a technique for playing on two
different manuals controlling pipes at the front and back of his church so that the sound arrived at
his location in phase. (Pity the poor people in between!)
8The author is indebted to the Yale University Curators of Organs, Nicolas Thompson-Allen and
Joseph Dzeda, for helpful discussions regarding the Newberry organ.
9A study of loudness contours for the Newberry organ was given by Harrison and Thompson-Allen
(1996).
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Fig. 7.11 The Yale University Newberry Organ Bottom: View from inside Woolsey Hall (Photo-
graph courtesy of Joseph Dzeda) Top: View of the organ behind the front pipes (Drawing by Kurt
Bocco of West Haven, CT)

that organ, although it is available from the “Friends of the Wanamaker Organ” in
Pennsylvania.10,11 The original design of the Wanamaker organ was by the famous
British architect George Ashdown Audsley. It was built by the Murray Harris

10The “Friends of the Wanamaker Organ” (a non-profit organization) is located at 105 Charles
Drive G-3, Bryn Mawr, PA 19010–2313.
11According to the Guinness Book of Records, the largest and loudest organ in the world is the
one in the Atlantic City Convention Hall; that one is said to have 33,114 pipes and a console with
seven keyboards.
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Fig. 7.12 Console of the Wanamaker organ designed by William Boone Fleming (added in 1928)
(photograph courtesy of the “Friends of the Wanamaker Organ”)

Company in Los Angeles, and was featured in the 1904 St. Louis World’s Fair. (It
took 13 railroad freight cars to bring the organ from its factory to Philadelphia early
in the twentieth century!) The organ occupies three floors in the old Wanamaker
department store building and has a console reminiscent of the cockpit on a large jet
plane.

However, “biggest” is not necessarily “best”—especially for playing the organ
works of Johann Sebastian Bach. There, a relatively small number of carefully
chosen, low-pressure pipes can be more effective. For example, such pipework
can provide a much clearer development of a multi-voiced fugue or of a four-part
chorale than the muddier sound obtained from high-pressure organs with multiple
“expression” pedals contained in large cathedrals.12

12“Expression pedals” control the opening and closing of Venetian-blind-like “swell louvers”
surrounding some organs and provide crescendo and diminuendo changes while the organist is
playing. Bach did not have (or possibly want) such things and depended instead on having stops
changed while playing.
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A movement back to lower-pressure organs began early in the twentieth century,
led by people such as Albert Schweitzer and E. Power Biggs. Schweizer said,
“With the pneumatic action one communicates with his instrument by telegraph.”13

Biggs in particular played the role of a kind of “Johnny Appleseed” and went about
persuading numerous churches in the New England area to turn in their huge electro-
pneumatic organs for low-pressure tracker-action instruments reminiscent of those
used at the time of Bach.

Companies such as the Andover Organ Company in Methuen and that of Charles
Fiske in Gloucester (both near Boston, Massachusetts) sprang into existence and
began installing such instruments all around the country. Of course, builders such
as Pflentrop in Holland and Rudolph von Beckerath and the Hillebrand Brothers in
Germany had been making tracker-action instruments all along.

During the 1960s, New Haven went from a city largely dominated by electro-
pneumatic organs made by the local Hall Company to a place containing at least
four large tracker-action organs of both domestic and European origin.

One wonders what the future will offer. Digital electronics has already been felt
and companies such as Allen Organs in Macungie, PA offer so-called “computer
organs” that feature digitally encoded waveforms captured from real pipes. These
can sound at least as good as recordings played over a “Hi-Fi” system. However, the
best way to simulate the sound from an organ pipe is still to get a pipe and blow air
through it.

Organ control circuitry has already benefited largely from the MIDI industry.14

Instead of requiring huge bundles of wire characteristic of the early electropneu-
matic organs, one can now use standard MIDI interfaces with just a few wires to
couple wind chests to large, moveable consoles.

Miniaturized transistor circuits have also made the associated electronic hard-
ware much more compact. At the moment, the most effective use of digital
techniques seems to be merely through the control of more conventional organ pipes
and wind chests. Small churches on tight budgets might use MIDI techniques to
play back recordings through their pipe organs of the pulse sequences generated
by occasional outstanding musicians. Of course, if enough purely electronic organs
permeate the landscape, the public may forget what a real organ sounds like. The
listener might want to see whether the output from a MIDI keyboard and synthesizer
is preferable to the sound from a real piano. (As Arthur Schnabel once implied, the
most important thing about playing music anyway is the space between the notes.)

13Carl Weinrich, “Albert Schweitzer’s Contribution to Organ Building” in Albert Schweitzer
Jubilee Book, edited by A. Roback (Greenwood Press, 1970), p. 222.
14MIDI stands for “Musical Instrument Digital Interface,” a technology now used in the electronic
keyboard and synthesizer world.
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7.3 Organ Pipes

A rudimentary discussion of open and closed pipes was given in Chap. 1. Here, we
will consider properties of different organ pipes in more detail.

7.3.1 Edge Tones and Air Reeds

Flue pipes are excited by the vortex motion produced when air impinges on a wedge,
as illustrated in Fig. 7.13. Here a jet of air (actually a small sheet of air perpendicular
to the paper) travels from the left at velocity V, initially hitting the lower side of the
wedge a distance L from the orifice. (That distance is often called the “cut-up” by
organ builders.) It then creates a vortex that circles backward and deflects the air
stream upward as indicated by the curved arrow in the diagram. The sheet of air
then hits the top side of the wedge (at the right in Fig. 7.13) where another vortex is
created, circling in a reverse path and deflecting the air stream back downward in the
diagram. In the meantime, the original lower vortex has moved further to the right.
This process results in the stream of air being switched back and forth in the space
between the original orifice and the tip of the wedge, producing a kind of vibrating
“air reed.” (Similar action is used to excite the resonances in an orchestral flute or to
produce the sound you hear when you blow over the top of a soda bottle.) As time
continues, a periodic sequence of vortices travels to the right along both the top and
bottom of the wedge. (Such a sequence of vortices is known by fluid dynamicists as
a “von Kármán street”; for example, see Van Dyke (1982).)

The frequency with which the air stream vibrates is at least roughly proportional
to the ratio V/L and for greatest efficiency that frequency should be tuned to the
fundamental resonance of the pipe. For example, to make high-pressure pipes work
well on a low-pressure organ, one needs to “lower the cut up” (i.e., shorten the
length L) so that the time taken for air to travel that distance is about the same in

Fig. 7.13 Generation of an edge tone (see text)
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both pipes. That is just one of several adjustments that may be required in “voicing”
the pipes on an organ.15

When the wedge occurs at the entrance to an organ pipe, periodic running
waves from the vortices inside the pipe result in standing waves that reinforce the
oscillation of the air reed. In practice it takes many cycle periods at the fundamental
pipe resonance frequency for the oscillation to build up to a steady-state value. (See
Fig. 2.8 of Chap. 2.) That time is easily estimated from the Q or width of the pipe
resonance, as discussed in Appendix A, and is determined by the energy loss in the
resonator. With low-pressure pipes, this start-up transient has a characteristic sound
similar to that produced when air rushes over the teeth in the production of sibilants.
It is often described by the onomatopoetic term, “chiff,” where the syllable “chi” is
pronounced as in the word “children.” Some people like this sound and some do
not. In high-pressure organs the turbulence that produces “chiff” may also result
in unstable pipe oscillation. That effect is often reduced by a process known as
“nicking.” One takes a set of needles or a narrow file to produce several parallel
deep diagonal scratches across the “languid”.16 The “languid” is the insert—often
made of lead—used in pipes to produce reflections at the entrance to the resonator.

7.3.2 Pipe Construction

The time-honored way of making metal pipe walls is illustrated in Fig. 7.14.
Mixtures of tin and lead (typically 1 part tin to 4 parts lead) are melted together
in a furnace to create something called “spotted metal” and moved in a bucket like
the one shown hanging from a chain at the left of Fig. 7.14. The liquid metal is then
poured into the wooden trough marked A that has a slotted opening at the bottom.
The man at the right then moves the trough (now labeled B in the lower figure) to
the right at a uniform rate while the metal flows out the bottom onto a long wooden
table. After the metal cools, the resulting spotted metal sheet is rolled about the
lengthwise axis and soldered along the seam to form a cylindrical metal pipe. The
design of the toe attached to the cylinder depends on whether it is to be a flue pipe
or a reed pipe.

Lead is used in many parts of pipe organs—in the material for the walls of metal
pipes, in the languids of flue pipes and the base of reed pipes. Lead is also very
effective in damping wall vibrations in organ pipes. Recently, the European Union
has declared pipe organs to be health hazards due to their lead content.17 But this

15In a pinch, lowering the cut-up (reducing L) can be accomplished for small pipes by gluing a
piece of heavy lead tape across the top of the “edge.”
16One can reduce the effects of nicking by taking out the languid and covering the scratches with
the same sort of heavy lead tape used to lower the cut-up. Alternatively, the lead surface of the
languid may be scraped flat with a sharp knife, or for wood pipes, the nicks may be filled with glue
or plastic wood.
17Alan Cowell in the New York Times, 3/22/2006, p. A8
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Fig. 7.14 Method of making the wall material for a metal pipe (from Bédos de Celles, 1766-1778,
reproduced by courtesy of the Beinecke Music Library at Yale University)

amazing ruling only applies to organs in which electrically pumped air is forced
through the pipes. Organs using hand-operated bellows pumps are still allowed!
The basic conjecture is nonsense. The vapor-pressure of lead at room temperature
is almost immeasurably small (probably about 10−12 Torr). Of course, if you heat
it, the vapor pressure will go up. For example, it hits about 3 × 10−9 Torr at 600 K.
(Standard atmospheric pressure is 760 Torr.)

Narrow scale (small diameter compared to the active length) open pipes are the
basic building blocks of a pipe organ and give the instrument its characteristic
“organ” sound. The smaller the scale, the larger the harmonic content of the pipe
for a given wind pressure. These higher modes of the pipe are excited by the vortex
motion illustrated in Fig. 7.13 and are phase-locked by the nonlinear characteristics
of the air flow about the edge. As the scale becomes wider (larger ratio of diameter
to length), the higher modes are less excited and a “flutier” sound is produced.

Of course, pipes differ in pitch as well as harmonic content or timbre. The typical
large pipe organ has a set of open-principal (or “diapason”) foundation stops at 8,
4, 2, 1-ft pitch. These successive pitches, of course, can be used to create a sound
emphasizing even harmonics of the basic 8-ft pitch on the keyboard. In addition
to those, many organs contain so-called “mutation stops” at pitches such as 22/3,
13/5, 11/7, and so on. These correspond to the odd harmonics (3rd, 5th, 7th, etc.)



316 7 Pipe Organs

Fig. 7.15 Open flue pipe

Fig. 7.16 Closed metal pipe

of the 8-ft pitch. Thus, one can build up a kind of Fourier series of harmonics
to produce various tone colors. Very interesting contrasts can then be effected by
the choice of stops on different keyboards. Although it is probably misleading to
think of synthesizing the sound of orchestral instruments too literally in this way,
a choice of 8, 22/3, 13/5 -ft stops will produce a clarinet-like sound, whereas the
combination of 8, 4, and 1-ft stops will sound more like an oboe. Some organs have
“mixture” stops in which depressing a single key automatically sounds several ranks
that are carefully tuned to be harmonically related. Some of these sound almost
indistinguishable from reed stops (Fig. 7.15).

As discussed in Chap. 1 and Appendix F, closed pipes only support odd-
harmonic modes of the fundamental pitch. Hence, if one wanted to simulate a
clarinet sound, it would pay to start with a closed pipe before adding mutations. As
with open pipes, closed pipes are made with both metal (as in Fig. 7.16) and wood.
Really large pipes are generally easier to make out of wood and for larger lengths
can be fairly stable. Short wooden pipes tend to fluctuate a great deal in pitch due
to humidity changes. Hence, there is a tendency to make pipes of metal when 4-ft
or less pitch is required. The pipe “ears” are put in to minimize the spreading of
the sheet of air and to avoid interference from neighboring pipes. In some cases,
bending the ears can provide fine tuning.

Wooden pipes of either closed or open variety are usually made with rectangular
cross sections for ease in construction. Some people believe that wooden pipes have
a mellower tone quality than metal ones. There is apt to be more damping of the
higher-frequency modes by the wooden wall vibrations. However, this difference
may depend on the thickness and density of the material. Wooden pipes usually
have thicker walls than metal ones, and with some metal pipes there is considerable
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wall vibration. For example, wrapping layers of lead tape around the middle of a
metal pipe often changes the radiated tone quality. But there is no doubt that metal
pipes tend to remain in tune longer than wooden ones.

A variant on the closed metal pipe is the “Rohr flute” or “Chimney Flute.”
(“Rohr” means “tube” in German, whereas “chimney” is more self-evident.)
Examples of the two pipes are shown in Figs. 7.17 and 7.18. There is relatively little
difference in tone quality between these two ways of dealing with the cavity. Having
the tube project inward does make the pipe less susceptible to mechanical damage.
In both forms of the resonator, the narrower diameter tube tends to enhance the fifth
harmonic from the cavity, producing a very pleasing bell-like, clarinet sound.

Helmholtz found experimentally that the fifth harmonic is much stronger in the
chimney flute than in a closed pipe of the same fundamental length, but according
to Audsley (1905, Vol. 2, p. 538) no one has yet provided a simple theoretical
explanation of the phenomenon.18 Although it is not clear that that situation still
holds, consider the following approximate explanation.

In the lower portion of Fig. 7.18, the pipe consists of two coupled cavities in
series, the larger-diameter partially closed pipe of length L and the shorter open
pipe of length �. (In the drawing, l/L ≈ 0.3.) It is a property of the wave equation
that governs the solutions for the normal pipe modes that the pressure standing wave
must be continuous in its value and slope at the boundary between the two media

Fig. 7.17 Enlargement of the
Rohr flute drawing showing
where the nicking of the
languid would occur

Fig. 7.18 Examples of a rohr flute and a chimney flute (after Audsley 1905)

18Perhaps in response to this challenge, Bouasse and Fouché (1929) devoted an entire chapter
(number IX) to the analysis of this question, but their explanation is not really simple.
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at any instant in time. The fifth harmonic of the basic cavity of length L has a
wavelength of 4L/5. (As shown in Chap. 1 the lowest mode for the closed pipe has a
wavelength of 4L.) Because the two cavities are open to each other, the wavelength
for the fifth harmonic must be the same in the short section and match in value
and slope. The solution in the short section must go to zero at the opening of the
short tube to the air at the right and be a maximum at the junction of the two pipes
where the air pressure for the larger pipe is a maximum. For the waveform to be
continuous at that junction, the short section must have a quarter of the wavelength
for the normal lowest mode, which for an open pipe of that length is 2�. For the
wavelengths in the two sections to be equal at the fifth harmonic of the large partially
closed pipe, 4L/5 = 2�, which means that l/L ≈ 0.4. (The discrepancy from the
ratio obtained from the drawing may arise from the difference in tube diameters.)
Audsley notes that the sound is about the same when the short tube is inverted, as in
the top of the drawing. In that case, the short tube protrudes into the larger one by
a distance l equal to half the large tube wavelength for the fifth harmonic (or 2L/5)
and its opening is again at a pressure maximum within the large closed pipe. Hence,
the same enhancement of the fifth harmonic should occur in both configurations
shown in Fig. 7.17. In either case, the small tube provides a resonant transmission
filter for the fifth harmonic. In practice the small tube length is adjusted for best
sound by the pipe maker.

Wooden pipes are usually made of rectangular cross section, as shown in
Fig. 7.19. The closed pipe (upper figure) has a movable tuning plug at one end.
These produce primarily first and third harmonics, have a somewhat clarinet-like
tone and go under the name “gedeckt” (or “gedakt” in old German) or “pedal
bourdons.” They are often used in places where vertical space is at a premium
because the fundamental pitch is half that for an open pipe of the same length.
They are often found in mechanical organs such as those programmed for use in
“merry-go-rounds.” Some open pipes are carefully sawed off to the correct length
for a desired pitch. Others (especially, “melodia”) have a soft metal flap fastened
to one side at the open end that can be bent at a slight angle across the opening to
change the pitch. There are slight changes required in the position of the air sheet
and edge between open and closed pipes. The edge must protrude inward somewhat
on closed pipes and is usually flush with the outer wall on open pipes.

Fig. 7.19 Closed (top) and Open (bottom) wooden pipes (after Audsley 1905)
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Fig. 7.20 Pressure variation
along the z axis of a conical
pipe of length L for the first
three modes

7.3.3 Conical Pipes

Tapered pipes of several varieties are found in different pipe organs, among them
the spitzflute (“pointed flute”) and gemshorn (“goat’s horn”). If the pipe is made of
a perfect cone of narrow vertex angle, it supports exactly the same set of frequencies
as an open pipe of the same length. (See Appendix F.) This comes about because the
pressure has a maximum at the closed pointed end and a minimum at the large open
end. To excite such a pipe with an “air reed” or flue, the edge tone must be placed
at the wide, low-pressure end. (In contrast a tapered reed pipe would have the reed
at the vertex.) The pressure variation along the pipe axis is more complex than with
an open cylindrical pipe. There, the variation is sinusoidal. Here, the pressure along
the pipe axis varies as

P(z) ∝ sin kzz

kzz
(7.1)

where z is the distance from the vertex and kz is the propagation vector
along the length of the pipe from which the resonant frequencies are determined.
The boundary condition that determines the allowed wavelengths (hence resonant
frequencies) is simply that the pressure must go to zero at the large end while being
nonzero at the vertex. Thus

kzL = nπ , and fn = n
c

2L
where n = 1, 2, 3, . . . (7.2)

The pressure variation along the pipe axis is shown in Fig. 7.20 for the first three
modes of the conical pipe.
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Fig. 7.21 Representative conical organ pipes. From top to bottom: spitzflöte (two views),
spitzgedackte, gemshorn, and a typical reed pipe

The air flow is greatest where the acoustic pressure is near zero and least where
the acoustic pressure is a maximum. Thus, flue pipes have the edge tone at the large
open end of the cone, whereas reed pipes (trumpets and tubas) have the reed at the
high-pressure pointed end. High-pressure is needed to force a mechanical reed to
vibrate, whereas low pressure (large air flow) is required for the air reed in a flue
pipe such as the gemshorn or spitzflöte. For practical reasons, conical pipes are
generally made from metal. (See Fig. 7.21.)

7.3.4 Reed Pipes

The reed-pipe assembly shown at the left of the bottom example in Fig. 7.21 consists
of the number of components illustrated in Fig. 7.22. The assembled “boot” has a
metal outer casing that protects the more delicate inner parts. The protruding tuning
wire is attached to a mechanical “embouchure” for the reed. The shallot (left in
Fig. 7.22) is made of brass, is roughly similar to the mouthpiece on a clarinet to
which a flat brass or bronze reed (center in Fig. 7.22) is attached, and is mounted
in a lead block (at the right in Fig. 7.22) containing the tuning wire. However, in
contrast to clarinet reeds, the brass reed has to be curved away from the shallot in
order to work. (With the clarinet mouthpiece, the “lay” is curved away from the
reed.)

One of the more interesting reed pipes from a scientific point of view is the
“rohr schalmei.” (See Fig. 7.23.) This pipe is of the opposite configuration to the
chimney flute or rohr flute in that the extra resonator is larger in diameter than the
tube connecting it to the boot. It is normally used as an open pipe and the extra
resonator is tuned to the second harmonic of the full active length of the pipe. It has
a single reed of the type illustrated in Fig. 7.22 and produces a sound reminiscent
of small crows. In contrast, the Krummhorn uses a similar reed but has a resonator
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Fig. 7.22 Components
contained in the “boot” of a
German-style reed pipe
(photograph by the author)

Fig. 7.23 A rohr schalmei reed pipe (as in “rohr flute,” the word “rohr” is simply the German
word for “tube”)

consisting entirely of a long copper tube nearly closed by a cap at the end. In contrast
to the rohr schalmei, the krummhorn has a more muffled sound.

7.3.5 Toe Board Channeling

One often-ignored problem has to do with turbulent eddy currents of air produced
when a pipe valve is suddenly opened. If the valve is located directly below a hole
leading into the toe of the pipe, vortices are formed similar to those produced when
a sink or bathtub is drained of water. (See left side of Fig. 7.24.) These vortices
have a very audible modulation effect on the sound of the pipe and careful builders
take pains to prevent their occurrence. One simple approach is illustrated at the
right in Fig. 7.24. Here, a section of a toe board is shown that is made up of three
layers of wood that are glued together after appropriate milling. The basic idea is
to interrupt the formation of a vortex by breaking up the air path as shown by the
arrows at the right in the figure. Many wooden pipes have an offset air channel
in their base that can also reduce the effects of vortex formation. In practice, the
flexible tubes sometimes used to provide air for offset pedal pipes probably serve
the same purpose. However, metal pipes are particularly subject to this problem
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Fig. 7.24 Method (right) to
reduce vortex formation (left)
when the pipe valve is opened

because the conical boot is generally open inside. Some builders fill the boot with
loosely spaced steel wool to reduce vortex formation.

7.3.6 Pipe Configurations and Coupling

Three common organ pipe configurations are shown in Fig. 7.25. One might think
that the relative desirability of the three is simply a matter of visual appeal. However,
there are practical acoustic differences in the three geometries. Closely spaced low-
frequency pipes tend to interact with each other by radiation through the air when
they are of comparable frequency. The situation is analogous to that of the coupled
oscillators discussed in Appendix A and of the interaction between pairs of strings
tuned to the same note on the piano, not to mention the interaction between body
and string resonances in the violin that result in “Wolf Tones.” The closer the
two resonators are in frequency, the stronger the interaction—especially with open
pipes. As in the previous examples discussed, this coupling effect tends to push the
fundamental pipe resonances away from each other. Although configuration (a) in
Fig. 7.25 might seem to be the easiest arrangement for tuning purposes, it also has
the most closely spaced pipes for adjacent notes on the scale. Configuration (b) has
greater separation, except for the two lowest pipes in the middle. But grouping (c)
has the largest separation between all the low frequency pipes in closely ascending
frequency and should provide the best decoupling between the different resonators.
(As a practical matter, configuration (c) also permits putting a catwalk above the
shortest pipes to give the tuner better access to individual ranks in a large wind
chest.)

Finally, one should acknowledge that the ultimate arrangement for decoupling
low frequency pipes is that used by Frank Gehry in the pedal section of the organ
in the new Disney Concert Hall in Los Angeles. Here, the pipes are mounted at
random angles with respect to the vertical and coupling between them should be
entirely negligible. The sound from the different pipes would also be dispersed in
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Fig. 7.25 Three common organ pipe configurations

Fig. 7.26 Pedal pipes in the
Disney Concert Hall organ

very different directions, hence there would also be minimum coupling of energy
from different pipes into the same acoustic modes of the hall. (See Fig. 7.26.)19

There is another type of interaction that occurs between pipes that are fed by
the same note channel in a wind chest such as that illustrated in Fig. 7.5. When
the different pipes are nearly harmonically related (as they are by definition with
mutation stops), the different ones powered by the same air channel will tend to
lock together in precisely harmonic intervals. This frequency locking effect occurs
through the nonlinear action of the air reeds in the different pipes and makes it very
difficult to tune the individual resonators. However, once the individual pipes have
been tuned, the locking effect is beneficial in that it provides precise tuning of the
harmonic intervals.

7.3.7 Resultant Low Frequency Pipes and Mixtures

When the human ear is presented with a number of harmonics of a low frequency
tone, it hears the fundamental pitch even when the fundamental is missing alto-

19One humorist commented that the photograph should really be captioned, “After the Earthquake.”
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Table 7.1 Frequencies and harmonics involved in a 32-ft resultant stop

Phantom 32-ft pipe 17.2, 34.4, 51.6, 68.7, 85.9, 103.1, 120.3, 137.5 154.8 Hz

Open 16-ft pipe –, 34.4, –, 68.8, –, 103.1, –, 137.5, – Hz

Closed 5.33-ft pipe –, –, 51.6, –, –, –, –, –, 154.8 Hz

Harmonic 1 2 3 4 5 6 7 8 9

gether. That fact has been used in the design of many pipe organs to extend the
apparent stop list to lower and lower pitch. The technique is sometimes described
by the term “resultant.” Both the nonlinearity in the ear and the fact that its response
falls off rapidly at very low frequencies help in the deception.

To illustrate, suppose you wanted to give the impression of a 32-ft open pipe and
only had room for a16-ft open pipe above the wind chest. The first nine harmonics
of a 32-ft open pipe are shown in Table 7.1. The ear cuts off completely by about
16 Hz, so the first harmonic of a 16-ft open pipe would scarcely be heard at all,
even if it were actually there. We could simulate the apparent sound of a 32-ft open
pipe by using two pipes on each note. For example, by starting with an open 16-ft
pipe to produce the sound at 34.4 Hz, we could get strong overtones at 68.8, 103.1,
and 137.5 Hz. A 5.33-ft closed pipe would provide sound at 51.6 and 154.8 Hz.
Hence, these two pipes combined would produce the 2nd, 3rd, 4th, 6th, 8th, and
9th harmonics of our non-existent 32-ft pipe and fool the ear into thinking that the
17.2 Hz tone was actually present. If these two pipes were placed on a common note
channel, their fundamental frequencies would also tend to lock in phase on all of the
harmonics produced. However, there are some things that are not simulated in this
process. A real 32-ft pipe could make the building shake—a sensation some people
enjoy. (Earthquake frequencies tend to peak at frequencies of about 16-Hz—a region
where you can feel the vibrations even though you cannot hear them effectively.)

The exact mechanism by which the ear senses the low frequency sounds is
somewhat in dispute. Helmholz provided an explanation based on the nonlinearities
in the ear itself. He argued that those nonlinearities would generate difference tones
and among them the fundamental frequency of the missing pipe would dominate.
Others think that the ear has the capability of recognizing periodicity in the resultant
waveform. If all the real tones are phase-locked (or approximately so), the overall
acoustic waveform will indeed be periodic at the missing fundamental frequency.
Some digital tuning meters are actually based on the principle of recognizing the
fundamental period in a waveform rather than its pitch and the human ear and brain
may well do the same thing.

“Mixture stops” utilize similar combinations of pipes and are very effective for
simulating the sound of reeds. A reed pipe generally has much a richer harmonic
content than a single flue pipe. By choosing three or more different flue pipes for
each note in a mixture, it is possible to provide remarkable simulation of the sound
of a reed. One might ask, “Why not just use the reed pipe alone?” One reason is that
flue pipes tend to be far more stable in both pitch and tone quality than reeds and
are much easier to voice. However, the wind chests do take up more space.
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7.3.8 Scaling

As is intuitively obvious, the diameters of flue pipes in a given rank must decrease
with increasing pitch. Further, the decrease should be monotonic and follow some
systematic method to determine the change on successive notes. This problem
occupied many of the early pioneers in organ building and a number of different
solutions were proposed. Some have the diameter halving at the 16th step and others
at the 17th or 18th and even at the 20th, 22nd, or 24th step. The problem was
discussed in detail by Audsley (1905, Vol. 2, Chapter 37). According to Audsley,
many agreed that the most satisfactory choice consists of halving the diameter at
the 16th step, a scaling recommended by J.G. Töpfer of Weimar in 1833. This
scaling appears to have been adopted by most German and French builders. Audsley
provided many pages of numerical tables of the diameter change for different
versions of scaling. However, anyone with a modern pocket calculator can work
out the intervals more quickly by calculating the diameter D from an equation of
the form

D = D0e
−kN (7.3)

where D0 is the initial pipe diameter, N is the number of pipes above the initial
one, and k is determined by the halving point. For example, if the scale halves at the
16th step,

k = loge 2

16
≈ 0.0433217 . . . (7.4)

In addition to the point at which the halving occurs, the scale of a rank of pipes is
also defined in terms of the flue diameter of the lowest pipe.

One of the nice things about this kind of scaling is that the tone quality changes
continuously as you go from one note to the next. That is particularly advantageous
in playing fugues on an organ because the tone quality within the same rank,
although basically similar, will be noticeably different in voices that enter a fifth
apart. For that reason, organists usually play the opening voices of a fugue using the
same stop or stop combination.

7.3.9 Unusual Pipes

There are a few unusual pipes worth brief mention:
Strings are generally open flue pipes of narrow scale in which a horizontal

wooden rod is placed in the air stream at the middle of the air reed at the flue end of
the pipe, often supported by the “ears” of the pipe using small nails driven into
the rod through holes in the ears. The location of the rod requires very critical
adjustment. The rod produces extra turbulent vortex motion at about twice the
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normal frequency, thereby enhancing the second harmonic and creating a slight
buzzing sound reminiscent of the scraping of a rosined bow on a stringed instrument.
The higher pitched strings often have a small brass knife-edge inserted in the air
stream instead of a rod. These rods are used on pipes ranging from the 16-ft (open)
violone to higher-pitched 8-ft violas and other pipes. They are also used on closed
wooden pipes under the name Lieblich Gedekt. But strings are very hard to voice at
low pressure levels.20

The Harmonic Flute is used in many organs and consists of a narrow scale
(because the fundamental is suppressed), open flue pipe with a small hole drilled in
the sidewall at the mid-point of the active length. The hole, located at the maximum
pressure point for the fundamental resonance, reduces the intensity of that mode and
the tone quality consists heavily of second and higher harmonics.

The labial reeds are flue pipes designed to enhance the main overtone differences
characterizing certain reeds without encumbering the tuner with the necessity of
more frequent tunings. The Labial Clarinet is a closed flue pipe with resonant
cavities designed to enhance the third and fifth harmonics. The Labial Oboe is a
narrow scale open flue pipe with a slight taper that is adjusted to simulate the sound
of an oboe without using a reed.

The Bärpfeife is a reed pipe with double- or triple-cone open resonators tuned to
32-, 16-, or 8-ft pitch. The Rankett is a folded, closed reed pipe also used at 32-, 16-
and 8-ft pitch on Baroque style organs. These pipes occupy far less height than flue
pipes of the same pitch and tend to be used primarily in small organs.

The Cymbalstern is another stop used on organs at the time of Bach. It consisted
of a rotating star placed at the top of the organ on which several high-pitched bells
were attached. The stop was often turned on during the final measures of a large
fugue to add sparkle to the tone quality.

The Nachtigall a stop consisting of two open pipes blown by a common air source
with the open end immersed in water to imitate the sound of a nightingale.

The Weinpfeife is a stop introduced by Alf Laukhuff of Franfkfurt, a pipe with
wine tap where the flue normally goes.

Problems

7.1 Problem. What it the total weight (including the top plate) needed on a 2 3 ft
air pressure regulator of the type shown in Fig. 7.5 to provide an air pressure of 2 in.
of water? (Note: the density of water is 1 g/cm3, there are 2.54 cm per inch and 1 kg
= 2.20 pounds.)

20I once purchased a book on Pipe Voicing with the object of learning how to voice string pipes
myself. I eagerly read the tome from cover to cover, but was dismayed by the comment on the last
page: “String pipes are much too hard to voice and will not be discussed here.” However, I learned
enough about the problem to see what the author meant!
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7.2 Problem. A physicist buys a rank of open flue pipes that have been voiced for
5-in wind pressure. By what fraction must he reduce the cut-up to operate them on
his wind chest at 2-in. pressure?

7.3 Problem. The same physicist decides that, rather than changing the cut-up on
each pipe, he would increase the toe-hole diameter by about

√
(5/2) to let more air

flow into the pipe. Explain why that might work.

7.4 Problem. Suppose you want to construct a rohr schalmei pipe tuned to middle
C. What would the lengths of the copper tube and the large resonant cavity be? Take
the velocity of sound to be 1100 ft/s.

7.5 Problem. A certain labial oboe (flue pipe without a reed) is made from a narrow-
scale tapered pipe, closed at the vertex. Why would you expect that geometry?

7.6 Problem. Suppose you only have 9 ft of vertical space above the wind chest and
want to simulate the sound of a 16-ft open pipe. How could you do it in the available
space?

7.7 Problem. Suppose you want to design a chimney flute tuned to A=440 Hz. What
cavity lengths would you use? Take the velocity of sound to be 1100 ft/s.

7.8 Problem. A certain organ has a rank of open principals that starts on a C with
a diameter of 8.20-in and the C one octave above has a diameter of 5.80-in. How
many steps are required for the diameter to be reduced by one-half?

7.9 The Newberry organ at Yale University has a 64-ft “Gravissima Resultant” stop
(see Appendix E) composed of two pipes for each note for the first twelve. The first
note consists of a 32-ft diapason (open principal) and a 32-ft Bordon at “quint”
pitch (i.e., a closed pipe of ten and two-thirds feet actual length, or twenty-one and
one-third feet effective pitch). Explain how this combination would simulate a 64-ft
pipe.
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The inadvertently published equations have been corrected as mentioned below.

Chapter 1
Page 16

The beta symbol in the below equation in this page has been removed and corrected
to appear as below:

≈ 1449 + 4.6T + (1.34 − 0.01T )/(S − 35) + 0.0216z m/s

Equation 1.26: (Page 25)

The letter “M” next to the lambda symbol has been made as a subscript, the letter “S”
next to “V” has been made as a subscript in two instances and one set of parentheses
has been removed in (c − VS)
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C2 Correction to: The Science of Musical Sound

Chapter 2
Equation 2.8: (Page 40)

A space has been added between “sin nx” and “[n odd]”

y = sin x + 1
3 sin 3x + 1

5 sin 5x + · · · + 1
n

sin nx [n odd].

Equation 2.9: (Page 41)

The n exponent of −1 has been made as a whole to the power of (−1)n

y = sin x − 1
2 sin 2x + 1

3 sin 3x − 1
4 sin 4x + · · · + (−1)n

n
sin nx

Chapter 4: (Page 108)
In Eq. 4.2, the second sin has been non italicised.

Chapter 7: (Page 319)
In Eq. 7.1, first z in denominator has been made as a subscript.

Appendix A
The equal to symbol between M and d2x

dt2 has been deleted in Eq. A.1.

The numeral 0 has been added as a subscript to omega squared in the line before
equation A.2, as given here: ω2

0 = K/M and in Eq A.2: The ω0 has been squared to
appear as given here: ω2

0

Eq A.3: The indent before the word “where” has been removed. (Page 330)

In the line before eq A.4, the numeral 0 has been added to omega as a subscript and
in the line before eq A.6, the numeral 0 has been added to x as a subscript in two
instances, as shown below:

x = x0 sin ωt , then v = dx/dt = ωx0 cos ωt

Eq A.6: In the second line, a plus sign has been added between sin2 ω0t and
cos2 ω0t :
1
2Kx0

2(sin2 ω0t + cos2 ω0t)

In the line after eq A.6, the contents in parentheses has been changed as shown
below:

ω0 = K/M and (sin2 ω0t + cos2 ω0t) = 1

Eq A.7: The subscript “1” in “K1x” has been removed and made to appear as “Kx”.
(Page 330)

In the last line in code in page 346, the first instance of NEXT T has been deleted
and made to appear as below

REM P l o t or P r i n t r e s u l t s here NEXT T



Correction to: The Science of Musical Sound C3

The figure referred to has been modified as Fig. A.3 in the last line of page 335
and in page 347, the first equation in the caption for Fig. A.8 has been modified as
“γ = 0.5ω0”

Appendix B
In Eq. B.9, the last equal to sign following “−k2”, has been deleted. (Page 359) and
in Eq. B.11, “cos” has been non italicised. (Page 359)

In page 366 and in Eq. B.27, the numeral “2” in “T 2” has been made as a subscript
the indent near the word “where” in page 367 & below Eq. B.38 (Page 360), has
been removed.

In Eq. B.31, the irrelevant characters “nx2dxdI t2dxor” has been deleted.
(Page 367)



Appendix A
The Harmonic Oscillator

Properties of the harmonic oscillator arise so often throughout this book that it
seemed best to treat the mathematics involved in a separate Appendix.

A.1 Simple Harmonic Oscillator

The harmonic oscillator equation dates to the time of Newton and Hooke. It follows
by combining Newton’s Law of motion (F = Ma, where F is the force on a mass
M and a is its acceleration) and Hooke’s Law (which states that the restoring force
from a compressed or extended spring is proportional to the displacement from
equilibrium and in the opposite direction: thus, FSpring = −Kx, where K is the
spring constant) (Fig. A.1). Taking x = 0 as the equilibrium position and letting the
force from the spring act on the mass:

M
d2x

dt2 + Kx = 0. (A.1)

Dividing by the mass and defining ω2
0 = K/M , the equation becomes

d2x

dt2
+ ω2

0x = 0. (A.2)

As may be seen by direct substitution, this equation has simple solutions of the
form

x = x0 sin ω0t or x0 = cos ω0t, (A.3)

The original version of this chapter was revised: Pages 329, 330, 335, and 347 were corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-92796-1_8
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Fig. A.1 Frictionless
harmonic oscillator showing
the spring in compressed and
extended positions

where t is the time and x0 is the maximum amplitude of the oscillation. The angular
resonance frequency ω0 is related to the cyclical resonance frequency F0 and period
T (= 1/F0) of the oscillator by ω0 = 2πF0 = 2π/T where

ω0 =√
K/M. (A.4)

A.2 Energy

Without dissipation, the total energy in the oscillator at any instant in time is constant
and given by

Energy = 1

2
(Mv2 + Kx2), (A.5)

where the first term is the kinetic energy of the moving mass (v = dx/dt) and
the second term is the potential energy stored in the spring. The energy oscillates
back and forth between those two forms during alternate half periods. At the turning
points, where the velocity of the mass is zero, the energy is stored in the spring. At
x = 0, where the velocity is maximum, the energy is all kinetic. If x = x0 sin ωt ,
then v = dx/dt = ωx0 cos ωt and

Energy = 1

2
[M(ω0x0 cos ω0t)

2 + K(x0 sin ω0t)
2]

= 1

2
Kx0

2(sin2 ω0t + cos2 ω0t) = Kx0
2

2
, (A.6)

where again ω0 = K/M and (sin2 ω0t + cos2 ω0t) = 1. Regardless of its kinetic
energy the particle is trapped in a potential well of the type shown in Fig. A.2. Since
the restoring force from the spring is

F ≡ −dU

dx
= −Kx, the potential is U(x) = Mω2

0x
2

2
, (A.7)

where x is defined with respect to the equilibrium position of the oscillator and
U = 0 at x = 0.
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Fig. A.2 Potential well for the simple harmonic oscillator. In this model the particle is bound,
regardless of its kinetic energy

A.3 The Damped Simple Harmonic Oscillator

In any real system there will be a “damping” force due to friction that at low
velocities takes the form

FDamping = −Γ
dx

dt
, (A.8)

where Γ is a damping constant characteristic of the system. The total force acting
on the mass M now becomes F = Ma = −Γ dx/dt − Kx. Hence, the equation of
motion becomes

M
d2x

dt2 Γ
dx

dt
+ Kx = 0. (A.9)

Dividing through by the mass and moving everything to the left side puts the
equation for the damped simple harmonic oscillator in the more convenient form,

dx

dt2 + γ
dx

dt
+ ω2

0x = 0 (A.10)

where we have defined γ = Γ/M as the damping constant per unit mass. Exact
solutions to this equation may be obtained in the following straightforward manner.
Substituting a trial solution, x = eμt , gives a quadratic equation

μ2 + γμ + ω2
0 = 0, (A.11)
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that has μ± roots of the form

μ± = −γ

2
± iω0

√
1 −

(
γ

2ω0

)2

(A.12)

where i2 ≡ −1. The solutions without a driving term are of the form x = Aeμ+t +
Beμ−t , where A and B are complex constants determined by the initial conditions
(i.e., the displacement from equilibrium and the velocity at t = 0).

For (γ /2ω0)
2 < 1, which is typical of resonant systems, the roots have an

imaginary component that leads to free oscillation at a frequency

ω ≈ ω0 − γ 2

8ω0
+ Order

{
ω0

(
γ

4ω0

)2
}

(A.13)

that is damped at the amplitude decay rate γ . For γCrit = 2ω0, no oscillation occurs,
the damping is fastest and is said to be “Critical.” For (γ /2ω0)

2 << 1, one solution
is

x(t) ≈ x0e
−γ t/2 sin ω0t, (A.14)

which corresponds to giving the mass an initial velocity kick at x = 0 and t = 0. In
this case the total energy in the oscillator decays with time as

Total Energy ∝ |x(t)2| ∝ eγ t . (A.15)

Note that the energy decay rate is a factor of 2 faster than the amplitude decay
rate simply because the energy in this classical motion problem is proportional to
the square of the amplitude.

A.4 Resonance or Cavity Width and Quality Factor (Q)

Because the amplitude of the damped oscillator decays with time, the spectrum of
its motion is spread out in frequency about ω0. Regardless of the initial conditions
chosen, we know that the total energy decays as shown in Eq. (A.15). Since x(t) is
of the form exp(−γ t/2 + iω0t), the Fourier transform of the amplitude is of the
general form,

|x| ∝
∫ ∞

0
x(t)e−iωt dt ∝ 1

|γ /2 + i(ω − ω0)| . (A.16)



A The Harmonic Oscillator 333

Hence, the spectral distribution of energy in the resonant mode will be of the
form

|xω|2 ∝ 1

|1 +
(

ω−ω0
γ /2

)2|
, (A.17)

which is sometimes called a “Lorentzian” function of the frequency and, provided
(ω − ω0)2 >> (γ/2)2, is symmetric about the angular resonant frequency ω0 with
full cavity width at half-maximum energy response given by Δω = γ 2πΔF . The
quantity

ΔFcav = γ

2π
= f

π

c

4L
(A.18)

is sometimes called the cavity resonance width. In general, for standing-wave
resonances in a long cavity such as an organ pipe, γ = f (c/2L) where c is the
running wave velocity, L is the cavity length, and f is the round trip fractional
energy loss. For example, for a closed-pipe model of the first formant (F1) of the
vocal tract,

ΔFcav = F1
f

π
. (A.19)

The Quality Factor, or Q of a resonance, is defined traditionally by the relation

Q = 2π
Energy Stored

Energy Lost per Cycle
= ω0

Energy Stored

Rate of Energy Loss
, (A.20)

where the rate of energy loss is γ × (Energy Stored). Noting that γ = Δω, an
alternative expression for the Quality Factor is

Q = ω0

Δω
= F0

ΔF
, (A.21)

where F0 is the cyclical resonance frequency and ΔF is the full cyclical width at
half-maximum energy response, both measured in Hz.

A.5 Driven Damped Oscillation

When a sinusoidal or cosinusoidal driving term of the type

E(t) = E cos ωt (A.22)
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is added to the damped oscillator, the equation becomes

d2x

dt2 + γ
dx

dt
+ ω2

0x = E(t) (A.23)

where E(t) on the right-hand side represents the driving force per unit mass. This
equation has the closed-form solution

x = E

D
sin(ωt + Φ), (A.24)

where the denominator D is given by

D =
√

(ω2 − ω2
0)

2 +
(γω

M

)2
(A.25)

and the phase angle is

Φ = cos− 1
( γ

MD

)
radians. (A.26)

The introduction of damping causes the oscillator to lag in phase from the driving
term. Without damping, |x| → ∞ as ω → ω0.

A.6 Electric Circuit Equivalent of the Damped Driven
Oscillator

The equation for the damped, driven oscillator has an exact equivalent in the series
LCR (inductance-capacitance-resistance) circuit shown in Fig. A.3. Written in terms
of the charge q on the condenser C, the equation for the voltage drop around the loop
becomes

L
d2q

dt2 + R
dq

dt
+ q

C
= E(t), (A.27)

where the current i = dq/dt , and we have made use of the basic relations for ac

voltage drops across the circuit elements: VL = Ldi/dt = Ld2q/dt2 (Henry’s
Law), VR = Ri = Rdq/dt (Ohm’s Law), and VC = q/C (Faraday’s Law).
By comparison with the original equation for the oscillator, we find the equivalent
relationships in Table A.1.

One may determine the steady-state behavior of a linear resonant circuit using
complex ac circuit analysis. In this analysis, one usually assumes that the transient
solution has died down to a steady complex current of constant amplitude and phase
running through the various resistive and reactive elements of the circuit and that
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Fig. A.3 Series resonant
LCR circuit driven by a
sinusoidal EMF
(electro-motive force)

Table A.1 Electrical and
mechanical equivalent
parameters

AC circuit Mechanical oscillator

Charge, q ⇒ x Amplitude

Current, i ⇒ v Velocity

Inductance, L ⇒ M Mass

Resistance, R ⇒ γ Damping constant

Capacitance, C ⇒ 1/K 1/(Spring constant)

EMF, E(t) ⇒ F(t)/M = E(t) Driving force

AC circuit mechanical oscillator

the real part of the resultant voltage drops correspond to values one would measure.
Thus, if the current running through a circuit loop is of the form1

i = i0e
jωt = i0(cos ωt + j sin ωt), (A.28)

the voltage drops across the elements L (inductance), R (resistance), and C
(capacitance) may be written as

VL = L
di

dt
= i(jωL), VR = iR, and VC = q

C
= 1

C

∫ t

i0e
jωtdt = i

( −j

ωC

)
.

(A.29)
Note that in the expression for VC we have made use of the fact that the charge on
the capacitance is the integral of the current over time; i.e., the current feeding the
capacitance is i = dq/dt , where q is the time-dependent charge on the capacitance.

In applying this convention, one makes use of Kirchoff’s Laws: (1) The sum of
the voltage drops around a closed loop equals the sum of the Emfs (“electromotive
forces”), which is a statement of the conservation of energy; (2) The sum of the
currents at any junction must be zero, which is a statement of the conservation of
charge. Using the methods and notation of complex steady-state ac circuit analysis
just discussed, the loop equation for the circuit in Fig. A.3 may be written

1The relation eiθ = cos θ + i sin θ where i2 = −1 is known as Euler’s formula and may be derived
from the infinite series for ex and those for cos θ and sin θ by letting x = iθ . This type of ac circuit
analysis was invented by Campbell, a research engineer at the A.T. & T Company in 1911, who
referred to it as “Cisoidal Oscillations”—an abbreviation for “cos i sin” Campbell (1911).
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E = i

[
R + j

(
ωL − 1

ωC

)]
. (A.30)

The magnitude of the current is

|i| = E√
R2 +

(
ωL − 1

ωC

)2
(A.31)

and it lags the driving voltage in phase by φ where

tan− 1φ = −ωL − 1
ωC

R
≈ (ω2 − ω2

0)

ωL/R
≈ (ω0 − ω)

Δω/2
. (A.32)

Here, the final approximation holds near resonance where ω is close to ω0.
The power loss in the resistor is

PR = |i|2R = E2/R

1 + (ω2−ω2
0)

(ωL/R)2

(A.33)

and is of resonant Lorentzian shape with full width at half maximum given by

Δω ≈ R/L ≈ 2πΔF. (A.34)

The Q or “Quality Factor” of the circuit is then

Q = ω0/Δω ≈ ω0L/R. (A.35)

These properties are summarized in Fig. A.4.

A.7 A Different Approach

Normally, one uses ac circuit analysis to determine steady-state currents in the
presence of applied Emfs. However, useful results are obtained even when E = 0
in Fig. A.3. In that case, we can use the loop equation to determine the (complex)
frequency, an approach that gives the transient behavior of the circuit. Hence, if the
Emf is zero in Fig. A.3, we get

i

[
R + j

(
ωL − 1

ωC

)]
= 0. (A.36)
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Fig. A.4 Power resonance and phase shifts in the series LCR circuit, related to the properties of
the driven, damped mechanical oscillator

Assuming that i �= 0 (i.e., that there is some initial charge or current flowing
in the circuit), the large square bracket must equal zero and we obtain a quadratic
equation in ω:

ω2 − jω
R

L
− 1

LC
= 0, (A.37)

whose roots are

ω = j
R

2L
± ω0

√
1 −

(
R

2ω0L

)2

. (A.38)

If we substitute this expression back into Euler’s formula, we get

ejωt = e
R
2L

t e
±jω0

√
1−

(
R

2ω0L

)2
t
, (A.39)

where the first exponential describes damping of the current and the second
exponential gives the oscillatory solution through use of Euler’s formula with a real
frequency

ω = ±ω0

√
1 −

(
R

2ω0L

)2

. (A.40)
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Hence, the “steady-state “solution can actually give us the transient behavior of the
circuit. (Note that the sign on the real part of the frequency merely alters the phase of
the oscillation.) The damped oscillatory solution is, of course, the same one we got
earlier for the behavior of the damped mechanical oscillator using a trial solution of
the type eμt . The present approach provides a less tedious way to analyze coupled
circuits, if you are comfortable with ac circuit analysis.

A.8 Coupled Oscillations, Wolf Tones and the Una Corda
Piano Mode

The double-strung pianos dating from the early work of Bartolomeo Cristofori
provide an interesting example of mode coupling with unusual potential for musical
expression. The physical processes involved were discussed qualitatively in Chap. 4.
We would like to show here that it is easy to derive the important quantitative
properties of the coupled system from an electric circuit model. As implied by
the term “double-strung,” each note on the piano has two strings tuned closely to
the same pitch, each of which can be represented as a damped harmonic oscillator.
We will only consider the fundamental resonances of the strings here, although the
present method could easily be extended to include harmonics of each fundamental
frequency. In the piano, the motion of the two strings is coupled through their
attachment to the bridge, which in turn transfers energy to the soundboard. We
will represent this situation by the pair of coupled circuits shown in Fig. A.5. For
simplicity, we will assume that the corresponding circuit elements are identical and
that each oscillator is initially tuned approximately to the same frequency given by
ω2

0 = 1/LC. (One might represent a string resonance and the other an air resonance
in a violin.)

The coupled circuits in Fig. 4.5 result in two loop equations:

i1

[
R + j

(
ωL − 1

ωC

)]
− i2R = 0 (A.41)

and

Fig. A.5 Coupled circuit
model for one note on a
double-strung piano. The two
current magnitudes may be
different
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− i1R + i2

[
Rj

(
ωL − 1

ωC

)]
= 0. (A.42)

Solving both of these equations for i1/i2, we obtain

i1

i2
= R

R + j
(
ωL − 1

ωC

) =
R + j

(
ωL − 1

ωC

)

R
(A.43)

Hence, we get an equation involving the complex frequency,

(
ωL − 1

ωC

)(
ωL − 1

ωC
− 2jR

)
= 0, (A.44)

which has two distinct solutions for ω2 yielding roots for ω,

ω = ±ω0 and ω = j
R

L
± ω0

√
1 −

(
R

ω0L

)2

. (A.45)

The first mode has no loss and oscillates at the resonant frequency, ω0. The second,
lossy mode has the real component of its frequency shifted downward in magnitude
to

ω = ω0

√
1 −

(
R

ω0L

)2

(A.46)

and an amplitude decay rate of R/L, which is twice as large as that for either LCR
loop by itself. Note that the Q of each resonant circuit is ω0L/R � 1. Hence,
the second term in the square root provides a small, real correction to the resonant
frequency, although the shift is larger than in either single isolated LCR loop alone.

The two coupled modes of oscillation may be interpreted in terms of the coupled
circuits shown in Fig. A.6. Here, the same current magnitude i flows in both loops,
but in different directions for the two different normal modes. The even-symmetric
mode on the left is the high-loss mode (with decay rate of R/L) since the two
currents flowing through the resistance are in phase. It corresponds to the normal
position of the hammer on the piano in which both strings are struck simultaneously.
Striking both strings in the normal hammer position is equivalent to depositing the
same charge on each capacitor at t = 0. The odd-symmetry mode at the right is the
low-loss mode and would correspond to a case in the piano where both undamped
strings were hit simultaneously with hammers moving in opposite directions. In the
circuit, opposite charges would have to be placed suddenly on the two capacitors
at t = 0. For the odd-symmetric case (the right side of Fig. A.6), the mode has no
loss at all because the two equal currents flowing through the resistor are 180°out of
phase. In the piano, that mode corresponds to periodic pulses from the two strings
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Fig. A.6 The even-symmetric (left) and odd-symmetric (right) modes of the coupled circuit (the
current magnitudes are all equal)

arriving at the bridge out of phase. A similar situation arises in the case of “Wolf
Tones” on bowed stringed instruments. (See Chap. 5.)

However, pure excitation of the odd-symmetry mode would not occur in a normal
piano because only the right-hand string is struck (in the double-strung piano) by the
hammer with the una corda pedal depressed. (The hammer is shifted to the right so
as to hit only one string, with both strings undamped.) Hence, to simulate the actual
una corda case, we need to take the difference between equal amounts of the two
normal coupled-circuit modes. Thus, initially,

iUnaCorda = iEvenSymmetric − iOddSymmetric. (A.47)

This combination localizes the current on the right side of the coupled circuit
when the hammer hits, after which the even-symmetric component rapidly dies
out leaving only the long-lived odd-symmetric mode still oscillating. Because the
odd-symmetric mode has the least loss (no loss at all for the idealized circuit in
Fig. A.6), the excitation would always tend to settle down in the odd-symmetry
mode with frequency ω0. The apparent pitch goes up slightly as the high-loss mode
dies out. In reality there is some loss in the vibrating strings themselves due to air
resistance. That could easily be included in the electric circuit model by adding a
small resistance in series with each coil in the separate current loops. A reactive
component could also be added in series with the load resistance R representing
loss to the soundboard. Because equal currents flow in the two loops in the odd-
symmetric mode, the crescendo effect described in Chap. 4 after the string is struck
(produced by damping one string in the una corda mode after the sound decays)
would be limited to about 20Log102 ≈ 6 dB, or about the amount observed
experimentally.
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A.9 Harmonics and Subharmonics

As discussed throughout this book, most musical instruments produce waveforms
that are at least quasi-periodic and contain harmonics. These harmonics often result
from some nonlinearity in the oscillatory system, for example, the vibrating reed
in a woodwind, or the vibrating lips of the brass instrumentalist. In general, by
“nonlinearity” we mean that the output amplitude from the system does not rise in
simple direct proportion to the amplitude of the input signal as it would if the system
were perfectly linear (i.e., if the output simply varied as the first power of the input).
Instead, the output amplitude may depend on various powers of the input amplitude.
As a general rule, if we feed a sinusoidal signal into such a system, signals at
different frequencies that are harmonically related to the fundamental (i.e., are given
by integer multiples of the original frequency) will appear in the output. Further,
these harmonics are generally phase-locked to the fundamental frequency. This can
be understood in terms of basic trigonometry relations. For example, if you square
a sinewave, you will get a signal varying as the second harmonic of the input signal
which is in phase with the fundamental; if you cube the signal, the third harmonic
is produced; and so on. More strikingly, if you feed two signals with different
frequencies into the system, the output may contain extraneous signals at the sum
and difference frequencies of the two original frequencies.2 All of these effects can
be simply explained (albeit, tediously in some instances) through application of the
basic trigonometry identities such as those treated in high school.

Under some conditions, the output may even contain subharmonics of the
input frequency; i.e., frequencies that are lower than the input driving frequency.
Understanding how to produce subharmonics used to be a mysterious art. To quote
one of the pioneers who first demonstrated their existence in electromechanical
systems, “Most authors pass over this question in silence, as they take it for granted
that the occurrence of subharmonics is an impossibility.” (Pedersen 1934)3

It is useful to treat the simple mechanical oscillator model of Fig. A.1 with the
inclusion of nonlinear terms in the spring constant. As we will show, this model can
produce both harmonics and subharmonics, not to mention rectification.

2To see how these extraneous frequencies come about, just consider the trigonometric identity,
2 sin(A) cos(B) = sin(A+B)+sin(A−B). Let A = 2πF0t and B = 2πF t be the higher frequency
resonance. Multiplying the two waves together yields “sidebands” at F = F0. If F = NF0, where
N = 1, 2, 3, 4, etc., “sidebands” spaced by F0 will occur throughout the entire spectrum, even if
there is no strong acoustic wave at F0.
3“Hi-Fi” enthusiasts will want to note that Pedersen got interested in this subject because his Jensen
high-fidelity loudspeaker was producing both first and second subharmonics of sinusoidal tones.
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A.10 The Nonlinear Oscillator

In general, one expects the oscillator equation will become nonlinear at large enough
amplitudes. For example, when x is sufficiently negative the spring will compress,
the coils will touch and a large repulsive force will occur. At large positive values
of x, the spring constant will begin to decrease and the restoring force will saturate.
Assuming that the restoring force from the spring is a continuous function of x with
continuous derivatives, it can be expanded in a power series of the form

F = −[K1x + K2x
2 + K3x

3 + . . .] (A.48)

where x is the departure from equilibrium position at x = 0. K1 is just the normal
spring constant and may be expressed in terms of ω0. Then, the driven oscillator
equation may be rewritten

d2x

dt2 + γ
dx

dt
+ ω2

0

[
x + x2

Xq

+ x3

Xc

]
= E sin ωt (A.49)

where γ is the damping term from friction per unit mass and the coefficients Xq

and Xc have been defined to have dimensions of length and length-squared and
describe the amounts of quadratic and cubic nonlinearity. We will ignore terms
higher than cubic in x. Here, E is the driving acceleration per unit mass at frequency
ω that would be supplied by the Bernoulli effect in the real case. The quadratic
term will yield both even harmonics and subharmonics, as well as rectification;
the cubic term provides odd harmonics; and with both terms present, additional
sum and difference terms arise. The term on the right-hand side of the equation
represents the driving force per unit mass. It could be sinusoidal at the normal
resonant frequency ω0. To investigate subharmonic production, it is useful to replace
the driving frequency by 2ω0. Then the subharmonic appears at ω0. Stable solutions
to nonlinear equations have very specific phase relationships that are determined
by the parameters of the system. Closed-form solutions to this type of nonlinear
equation have been investigated in the past, but are extraordinarily tedious to derive
and usually only hold for very small driving terms.4 However, it is relatively easy to
solve the equation numerically with a computer.

4Lord Rayleigh (1877) investigated low-amplitude solutions to nonlinear differential equations
of this type in closed form. Also see, Hartley (1939), Hussey and Wrathall (1936) and Pedersen
(1934) for approaches to the closed-form solution of similar nonlinear equations.
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A.11 Potential Wells for the Nonlinear Oscillator

As shown in Fig. A.2, the potential well for the ideal linear oscillator has even
symmetry about the equilibrium point (x = 0) and can trap the mass regardless
of its kinetic energy. The situation changes drastically when we add a quadratic
nonlinearity.

The potential curve shown at the left in Fig. A.7 is for an oscillator containing
both linear and quadratic terms. Here, the restoring force is of the form,

F ≡ −dU

dx
= −K1x − K2x

2, hence U(x) = ω2
0

[
x2

2
+ x3

3Xq

]
, (A.50)

where again U ≡ 0 at x = 0, but we have written U as the potential per unit
mass. As can be seen from the figure, the quadratic force term reduces the potential
barrier on one side of equilibrium, while increasing it on the other. The result is
that the mass can now escape from the well at the left if it acquires enough kinetic
energy from the driving force to reach the top of the potential bump.5 (The top of
the bump occurs at x = −Xq and is of magnitude ΔU = ω2

0X
2
q/6.) Consequently,

the oscillator with only the addition of a quadratic force term tends to be unstable,
except at very low driving amplitudes where the kinetic energy per unit mass is kept
less than ω2

0X
2
q/6. With a large enough damping constant, the loss of energy inhibits

the escape of the mass over the potential bump. However, if γ is made very large,
the harmonic (and subharmonic motion) is damped out as well.

Finally, the potential well on the right in Fig. A.7 includes the effect of both
quadratic and cubic force terms. Here,

F ≡ −dU

dx
= −K1x − K2x

2 − K3x
3 and U(x) = ω2

0

[
x2

2
+ x3

3Xq

+ x4

4X2
c

]
.

(A.51)
The cubic term in the spring constant introduces a stabilizing term to the potential.
Hence, with the cubic force term present, stable solutions are obtained at very much
larger driving amplitudes than with the quadratic term alone. Surprisingly, with the
cubic term present, finite solutions exist at resonance for large driving amplitudes
even without the presence of damping. However, in that case, the oscillator never
settles down to a steady-state solution.

5This same phenomenon occurs in the dissociation of diatomic molecules.
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Fig. A.7 Potential wells for nonlinear oscillators containing quadratic (left) and both quadratic
and cubic forces (right)

A.12 Numerical Solutions to the Non-linear Oscillator
Equation

The driven oscillator equation with nonlinear terms is exceedingly tedious to solve
in closed form. However, numerical solutions with a computer are straightforward
using a computational method previously developed by the author (Bennett 1976,
p. 200). Here, the main trick is to minimize numerical errors that tend to build up in
successive integration intervals. That objective may be accomplished by expanding
the acceleration in a Taylor series in the time and integrating that series term-by-term
over an interval, t , that is small compared to the period of the driving oscillation.

First, we rewrite the basic equation with the acceleration on the left-hand side.
For example, the equation for the driven, damped oscillator with quadratic and cubic
nonlinear terms given above can be rewritten

a = d2x

dt2
= E sin ωt − γ

dx

dt
− ω2

0

[
x + x2

Xq

+ x3

Xc

]
. (A.52)

Note that we now have an explicit closed-form expression for the acceleration
that can be differentiated as many times as we want to obtain the coefficients
in the Taylor series. Thus, after the small time interval t, the new values for the
acceleration, velocity, and position will be given by

a′ = a + bt + c
t2

2! + d
t3

3! + Order(t4) = dv

dt
(A.53)

v′ = v + at + b
t2

2! + c
t3

3! + d
t4

4! + Order(t5) = dx

dt
(A.54)
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x′ = x + vt + a
t2

2! + b
t3

3! + c
t4

4! + d
t5

5! + Order(t6) (A.55)

where we have integrated the successive equations term-by-term and have included
constants of integration (the values of the quantities x, v, and a at t = 0) in each
case. The errors in a′ are now of order t4 and those for the new position of the
particle x′ are of order t6. Hence, by making t sufficiently small, we can make the
results as precise as we wish.

Putting these expressions into a reiterative computer loop where at each succes-
sive step one sets the initial values of a, v, and x to be the values computed for a′, v′,
x′ at the end of the last interval t yields x as a function of time to high accuracy. One
could, of course, add more and more terms to the Taylor series for a, but terminating
the series as shown above is more than adequate for the present examples.

The equations for a, v, and x are especially adaptable to inclusion in a computer
program loop of the type used in BASIC or FORTRAN. One can simplify the
numerical equations further by adopting a time scale in which the time increment t is
defined to be unity. In that case the important program steps for solving the nonlinear
oscillator may be written as follows. First, we define some constants dependent on
the parameters of the oscillator.

Driving frequency Resonant frequency

W = ω W0 = ω_0

W2 = W ∗ W W02 = W0*W0

W3 = W ∗ W2

Damping constant per unit mass

G = γ

In terms of these computer variables, the equation for the acceleration becomes

AE ∗ SIN(W ∗ T )G ∗ V W02 ∗ (XX ∗ X/XqX ∗ X ∗ X/Xc)dV/dT . (A.56)

For example, choosing the oscillator period to be 60 time units (or ω0 = 2π/60),
means that a step size of t = 1 leads to an error ≈ 5 parts in 1010 in the calculation of
x over one increment. One typically wants to do the calculation over a time interval
Tmax ≈ 5 oscillator periods for the transient solution to settle down to a steady-state
solution.

The initial conditions on position and velocity are:
X = V = 0
The reiterative loop equations then take the form in BASIC:6

6Or in FORTRAN, DO T = 0,Tmax,1 followed by END DO instead of NEXT T.
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FOR T = 0 TO T max ’ w i t h i m p l i e d s t e p s o f T = 1
S1 = SIN (W ∗ T ) ’W = D r i v i n g Frequency . S1 and C1

are d e f i n e d t o a v o i d
C1 = COS(W ∗ T ) ’ r e c a l c u l a t i n g t h e SIN and COS w i t h i n

each i t e r a t i o n
A = E∗S1−G∗V−W02∗ (X+X∗X/ Xq+X∗X∗X/ Xc )
B = W∗E∗C1−G∗A−W02∗ (V+2∗X∗V/ Xq+3∗X∗X∗V/ Xc )
C = −W2∗E∗S1−G∗B−W02∗ (A+2∗(X∗A+V∗V ) / Xq+3∗(2∗X∗V∗V

+X∗X∗A ) / Xc )
D = −W3∗E∗C1−G∗C−W02∗ (B+2∗(V∗A+X∗B+2∗V∗A ) / Xq )
D = D−W02∗3∗ (2∗V∗V∗V+4∗X∗V∗A+2∗X∗V∗A+X∗X∗B ) / Xc
X = X+V+A/2+B/6+C/24+D/120 ’ Use V t o f i n d X b e f o r e

chang ing V
V = V + A + B / 2 + C / 6 + D / 24
REM P l o t or P r i n t r e s u l t s h e r e NEXT T

Note that A = dV/dt , B = dA/dt , C = dB/dt , D = dC/dt and that the time
scale was defined so that t = 1 in the Taylor expansion for A and step size in the
loop on T .

A.13 Examples of Nonlinear Oscillator Solutions

Solutions of the nonlinear equation containing both quadratic and cubic force terms
are shown in Fig. A.8, where it was assumed that Xq = Xc = 10 and the driving
frequency was tuned to the normal resonance frequency, ω0. A damping constant
γ = 0.5ω0 was chosen for this illustration.

Time increases from t = 0 at the left of each trace in Fig. A.8 and the full
transient response of the oscillator for the mass starting from rest at x = 0 is
shown for increasing values of the driving amplitude, E. The driving term is shown
in dotted lines and the oscillator response is in solid curves. For E = 0.01 (the
lowest curve), the response is nearly sinusoidal. However, as the driving amplitude
increases, various even and odd harmonics develop in the waveform. The behavior
of the oscillator becomes very complex when the excursion of the mass reaches
the critical region where x ≈ Xq = Xc = 10. For the conditions assumed, that
point occurs at E ≈ 0.1. Although the different Fourier amplitudes are continuous
in their dependence on E, there are discontinuities in slope that appear when new
harmonics cross threshold. Many of these discontinuities result in a reversal of
the direction of the dependence of a given harmonic on excitation level. As a
result, small changes in E can produce large changes in the spectral distribution.
Even harmonics are present that also oscillate with increasing excitation level, but
decrease in relative importance above E ≈ 0.05. The cubic characteristic dominates
at large excitation levels where one sees a series of peaks in the different odd
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Fig. A.8 Solutions to the nonlinear oscillator equation when driven at the normal oscillator
resonance frequency with γ = 0.5ω0, and Xq = Xc = 10. E increases from bottom to top.
The driving wave (amplitude E) is shown dotted. A histogram of the relative spectral amplitudes is
shown at the right in each case, normalized to the response at the driving frequency (the first term
represents the response at DC)
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harmonics. The waveform amplitude saturates above E ≈ 0.5, although more
and more ripples occur with increasing excitation. That behavior is characteristic
of many reed and brass instrument, not to mention the human voice. Above the
saturation level, the sensation of further loudness arises primarily due to the increase
in harmonic content rather than output power.

The relative harmonic amplitudes for N = 0, 1, 2, 3, . . . , 10 normalized to the
fundamental component (N = 1) are shown at the right in Fig. A.8 as a histogram,
as determined by Fourier analysis. (N = 0 corresponds to a DC rectification term.)
Rectification, harmonics, and even subharmonics are an automatic consequence of
the nonlinearities assumed. Although subharmonics are not shown in the Fourier
spectrum of Fig. A.8, their production in the case of a strong quadratic nonlinear
term is discussed in the chapter on the human voice.

A.14 Dynamic Chaos

At very high values of the driving force E, the nonlinear oscillator begins to exhibit
characteristics of chaos in its motion. As an extreme example, consider the case
where there is no damping force at all in the presence of large quadratic and cubic
terms in the spring constant with high values of a periodic driving force. Here, even
though the solutions are still bound and have strong spectral components at the
driving frequency and its higher harmonics, the solutions are not periodic (i.e., they
don’t repeat themselves from one period to the next). Hence, the oscillator motion
becomes unpredictable in detail from one cycle of the driving frequency to the next.
An example of this behavior is shown in Fig. A.9. It is not clear that this regime
of the nonlinear mechanical oscillator has any direct relevance to the behavior of
the real human voice or other musical instruments. But some laryngologists have
suggested that dynamic chaos may be present in vibrations of the vocal fold in the

Fig. A.9 Example of chaotic behavior of the nonlinear oscillator. Here, the damping has been
eliminated altogether (γ = 0) and the oscillator is driven at a very high excitation level (E = 1).
As before, the driving term is at the normal resonance frequency and indicated by dotted lines.
Note that the waveform does not repeat itself precisely from one period to the next
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singing voice. (See Sataloff et al. 1998 and Hawkshaw et al. 2001.) However at the
present time, these suggestions seem largely to be speculation drawn by analogy to
other biomechanical systems where chaos has actually been observed.

A.15 Subharmonic Solutions

There is some indication that subharmonics may be present in some musical
instruments. For example, the subtones produced by violinist Mari Kimura through
use of very large bowing pressure were interpreted by her as subharmonics. (See
Chap. 5.) Similarly, the extremely low frequencies produced by the Gyütö monks
and the Tuva throat singers might also be due to subharmonic generation. (See
Chap. 6 on the singing voice (Fig. A.10).)

Figure A.11 shows a subharmonic solution to the nonlinear oscillator when it
only contains a quadratic nonlinear term in the spring constant. As discussed above,
the oscillator is highly unstable under these conditions. A very weak potential well
exists to trap the mass and the driving force has to be exceedingly small (or the

Fig. A.10 Variation of
Fourier coefficients for
nonlinear oscillator solutions
of the type in Fig. A.9. As a
function of driving amplitude
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Fig. A.11 Subharmonic solution to the forced nonlinear oscillator containing a quadratic term in
the spring constant

damping very high) to prevent the oscillator from flying apart, which will happen if
|x| ≥ Xq .

To illustrate a subharmonic solution, it is useful to assume that the driving
acceleration is applied at twice the resonant frequency of the normal linear oscillator.
Hence, we will assume

E(t) = E sin(2ω0t) (A.57)

as indicated by the dotted lines in Fig. A.11. The subharmonic then occurs at ω0. The
damping constant γ for the solution in the figure was chosen to be much smaller than
the value (2ω0) for critical damping in order to enhance production of the suboctave
harmonic. (Although adding a large damping term would increase the stability of
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the oscillator, it would suppress the subharmonic component.) The solution shown
includes the transient response when the driving force is initially turned on with
the particle at rest at x = 0. The oscillator amplitude (solid curve) decays into
the steady-state solution at the extreme right of the figure, where the fact that it is
periodic in half the driving frequency is easily seen by eye. The first two Fourier
coefficients and their phases are shown in Fig. A.11, where C(1) is the subharmonic
amplitude and C(2) is the amplitude of the response at 2ω0.

The phases of the two components (Φ1, Φ2) in Fig. A.11 vary in a complex
manner with the driving amplitude. As previously noted, the oscillator with a
quadratic nonlinearity acts as a rectifier. That is, a significant DC (“Direct Current”)
offset occurs in the solutions. With the human voice, the latter might correspond
to a net average opening of the glottis which increases with driving amplitude. As
discussed above, the presence of a cubic force term results in a stable potential well.
A cubic (or at least an odd-symmetric force term) is also to be expected with most
mechanical oscillators on a physical basis. As the spring in the mechanical oscillator
compresses, the coils will eventually touch each other, creating a strong repulsive
force back toward the equilibrium position (x = 0). An analogous situation occurs
in the larynx when the glottis completely closes. At the other extreme, a large
opening of the glottis would result in increased contact with other tissue in the
larynx and provide a similar repulsive force back toward equilibrium. Hence, there
is justification for an odd-symmetric force at large amplitudes and a cubic term is
the simplest one to incorporate. However, the presence of the cubic term produces
odd harmonics and reduces the subharmonic content.

A.16 The Relaxation Oscillator

A relaxation oscillator was used in the Dudley VODER discussed in the chapter on
speech synthesis and a mechanical analog to the relaxation oscillator occurs in the
grab-slip phenomenon in bowed strings discussed in the chapter on bowed strings.
A very simple version is shown in Fig. A.12.

In Fig. A.12, a battery or other DC (“Direct Current”) voltage supply at the left
charges the capacitor C by means of a current i = dq/dt flowing through the
resistor R. Ignoring the neon tube at the right of the circuit for the moment, the
charge q flowing to the capacitor would obey the equation,

Fig. A.12 A simple
relaxation oscillator circuit
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E = R
dq

dt
+ q

C
, (A.58)

where E is the battery voltage (or “electromotive force”). Dividing the equation
by R and using the integrating factor e(t/RC), it is seen that the voltage across the
capacitor is

V (t) = q(t)

C
= E

[
1 − et/RC

]
, (A.59)

where we have assumed that there was no initial charge on the capacitor before
connecting the battery. Expanding the exponent,

V (t) = E
t

RC
+ Order

(
t

RC

)2

. (A.60)

Hence, for t � RC, the voltage V (t) rises linearly with time.
It is a characteristic of neon bulbs that once the voltage reaches a threshold value

called the “ignition voltage,” a value somewhat above the ionization potential of
the neon atom (≈ 21.6 V) but dependent on the pressure and electrode geometry,
a discharge occurs through the gas. The discharge current persists until the voltage
drops below the “extinction voltage,” a value somewhat below the first excited state
of the atom (≈ 11.5 V), but again modified by the geometry and pressure. Hence,
the capacitor, C, will be repeatedly charged up through the resistor R and then
discharged through the neon bulb. The period for this process will be in the order
of RC (a time constant characteristic of the circuit), but will be modified by the
magnitude of the power supply voltage.

If the discharge through the neon bulb occurred instantaneously, the output
voltage V (t) in the limit that t«RC would approach an ideal sawtooth waveform,
which has harmonic amplitudes that decrease as 1/n, where n is the harmonic
number; i.e., the power spectrum falls off as 1/n2. For example, if the RC time
constant were adjusted so that the fundamental frequency of the oscillator were
120 Hz (typical of the vocal cord resonance in an adult male and the source
frequency used in the Dudley VODER and VOCODER), the power spectrum of
the oscillator would be distributed as shown by the solid line in Fig. A.13. In
practice, the discharge time is not zero and is limited by drift mobilities of ions
and electrons and other collision processes in the neon tube to values somewhat
less than a millisecond (but also modified by pressure and tube geometry). The
finite discharge time can reduce the harmonic output of the relaxation oscillator
significantly, as shown by the histogram in Fig. A.13. The histogram was computed
by Fourier analysis for an assumed discharge time of 2/3 of a millisecond. The
minima at the harmonics for N = 13 and 26 correspond to multiples of the ratio of
the oscillator period to the discharge time (≈13:1).

The limitations of the simple oscillator in Fig. A.12 may be overcome by using
more complex circuitry such as that shown in Fig. A.14. For example, the capacitor
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Fig. A.13 Power spectrum for a relaxation oscillator with finite discharge time compared with the
spectrum from an ideal sawtooth waveform. The histogram was computed from the square of the
Fourier coefficient amplitudes for the waveform

Fig. A.14 Relaxation oscillator used in the Dudley VODER (a manually operated synthetic
speaker) first exhibited at the 1939 San Francisco Exhibition and New York World’s Fair.
Reproduced from Dudley (1939) by permission of Lucent Bell Laboratories, Jean Dudley Tintle
and Richard Dudley. The spectrum produced by this circuit closely matched that for the Ideal
Sawtooth shown in Fig. A.13

could be charged by a constant current generator to provide greater linearity during
the charging cycle and the discharge of the capacitance could be achieved through
a triggered, high- mutual-conductance tube or avalanche diode. Dudley’s oscillator
was actually the inverse of the circuit shown in Fig. A.12. He used a gas triode with
a control grid and filament to charge the capacitance (in ≈ 0.3 ms). The capacitance
was then allowed to discharge by itself with roughly a 0.8-ms time constant. The
period of his oscillator (nominally ≈ 10 ms) was varied by biasing the control
grid on the gas tube. Because the discharge pulse occupied a small fraction of the
period, the power spectrum was very close to that for the ideal sawtooth shown in
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Fig. A.13.7 (Contemporary VOCODERS such as the MAM Model VF-11 use linear
sawtooth generators that do not depend on gas discharge tubes.)

A.17 The Helmholtz Resonator

A number of acoustical problems can be analyzed in terms of Helmholtz Resonators.
The diagram in Fig. A.15 is useful in deriving the resonant frequency of such a
volume resonator.

We first want to calculate the change in pressure in the large volume that occurs
when the gas (not necessarily just air) contained in the small cylinder is pushed into
the sphere of initial volume V0. Since a small volume of gas is added and we are
ultimately going to consider changes in which that volume of gas goes in and out of
the sphere, it is appropriate to think of the process as one in which there is no net
heat flow in or out of the system. For such an “adiabatic” process involving an ideal
gas, it is shown in thermodynamic texts that8

PV γ = constant, with γ = Cp/CV , (A.61)

where P is the pressure of gas occupying volume V and γ is the ratio of specific
heats for the gas at constant pressure CP and constant volume CV . The ratio γ varies
appreciably depending on the molecular complexity of the gas. (See Table A.2.)

Now suppose a piston of area A is pushed through the cylinder of length L in
Fig. A.14 forcing the gas from the small volume

ΔV = A × L (A.62)

Fig. A.15 Schematic
diagram of a Helmholtz
oscillator of volume V0

7See Dudley 1939; Figs, 7, 10, and 11.
8See, e.g., Zemansky (1951, Section 6.7.)



A The Harmonic Oscillator 355

Table A.2 Values of γ for different common gases near room temperature

Gas Wet air Helium Argon Hydrogen Nitrogen Carbon dioxide Methane

γ 1.37 1.67 1.67 1.40 1.40 1.29 1.30

Source: Zemansky (1951, pp. 129, 130). Zemansky notes that a method for measuring γ was
devised by Rüchhardt in 1929 in which the mass of air in the Helmholtz cylinder was replaced
by a small metal ball fitting snugly in the tube and measuring the oscillation frequency when the
apparatus was oriented with the tube in the vertical direction

into the sphere. Differentiating Eq. (A.60) yields

ΔPV γ γPV γ−1ΔV = 0, (A.63)

where ΔP is the change from the initial pressure P in the sphere due to the change
in gas volume ΔV . Rearranging that equation,

ΔP = γPΔV/V. (A.64)

Hence, the change in pressure in the sphere is

ΔP = γPAL

V0
(A.65)

which results in a force pushing back on the hypothetical piston per unit length of
the cylinder (i.e., the effective “spring constant” K for the system) given by

K = γPA2

V0
. (A.66)

One thus has a situation where a pressure fluctuation pushing in on the cylinder
of gas with mass ρAL activates harmonic oscillation. Comparing these results with
the basic harmonic oscillator equations [Eq. (A.1) through Eq. (A.4)], the oscillation
frequency at resonance is seen to be

ω0 = 2πf0 =
√

γPA2

V0
/
√

ρAL =
√

γPA

ρLV0
. (A.67)

The resonant frequency can be rewritten in terms of the velocity of sound c in the
gas as

f0 = c

2π

√
A

LV0
where c =

√
γP

ρ
(A.68)



Appendix B
Vibrating Strings and Membranes

B.1 The Wave Equation for the Vibrating String

Just as with the harmonic oscillator described in Appendix A, the differential
equation describing the motion of a vibrating string can be derived by a simple
application of Newton’s law of motion, F = ma. Here, it is especially important to
realize that both the force F and the acceleration a are vectors (i.e., have direction
as well as magnitude).

Consider the element of string under tension T between positions x and x + Δx

along the horizontal axis as shown in Fig. B.1. We assume that the magnitude of the
tension is constant throughout the length of the string and that the deflection y(x) in
the vertical direction is small. By small, we mean specifically that the angle θ that
the curve makes with respect to the x-axis is small enough so that

sin θ = tan θ = ∂y

∂x
(B.1)

at each point on the curve. The net force on the string in the vertical (y) direction is
then given by the difference in y components (each of form T sin θ ) of the tension
between x and x + Δx. Defining μ to be the mass per unit length and using
approximation B.1, the net vertical component of Newton’s equation acting on the
differential string element Δx with mass Δm = μΔx becomes

Fy ≈ T

[(
∂y

∂x

)

x+Δx

−
(

∂y

∂x

)

x

]
= Δmay = μΔx

∂2y

∂t2 . (B.2)

(The horizontal components of force cancel within the present approximation.)
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Fig. B.1 Forces on a differential element of a vibrating string

Next, we expand the function y/x in a Taylor series about the point x, noting1

(
∂y

∂x

)

x+Δx

=
(

∂y

∂x

)

x

+ ∂

∂x

(
∂y

∂x

)

x

Δx1 + Order(Δx2). (B.3)

Substituting Eq. (B.3) into the left side of Eq. (B.2) gives

Fy ≈ T
∂

∂x

(
∂y

∂x

)

x

Δx1 + Order(Δx2). (B.4)

Substituting Eq. (B.4) into Eq. (B.2) and taking the limit as Δx → 0 yields

T
∂2y

∂x2 = μ
∂2y

∂t2 (B.5)

which is the same as the wave equation,

∂2y

∂x2
= 1

c2

∂2y

∂t2
(B.6)

1The Taylor series permits evaluating any well-behaved function f(x) at a point displaced to x+Δx

by the infinite series

f (x + Δx) = f (x) +
(

∂y
∂x

)
x
Δx1 + 1

2

(
∂2y

∂x2

)
x
Δx2 + 1

3!
(

∂3y

∂x3

)
x
Δx3 + . . . Here, we simply

let f (x) = ∂y/∂x.
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given in Chap. 1, provided the velocity of the wave is

c =
√

T

μ
(B.7)

Note that μ is in units of mass per unit length.

B.2 General Solution of the Wave Equation

Equation (B.6) is linear and can be solved by separating the space- and time-
dependent variables through a substitution of the type

y(x, t) = X(x)T (t) (B.8)

where X(x) is only a function of x and T (t) is only a function of t . Substituting this
definition into Eq. (B.6) and dividing by y(x, t) yields

1

X(x)

∂2X(x)

∂x2
= 1

c2T (t)

∂2T (t)

∂t2
≡ −k2 = constant. (B.9)

That is, the only way the left side of the equation (which depends only on x) could
equal the right side (which depends only on t) for all values of x and t is to have both
sides equal to the same constant, chosen here to be −k2 to insure that it is a negative
value. (If we had chosen a positive constant at this point the solutions would not be
oscillatory.) Equation (B.9) implies two separate differential equations,

∂2X(x)

∂x2 + k2X(x) = 0 and
∂2T (t)

∂t2 + k2c2T (t) = 0. (B.10)

These equations are both of the Harmonic Oscillator type discussed in Appendix A
and have solutions of the form

X(x) ∝ sin kx and T (t) cos ωt or T (t) ∝ sin ωt (B.11)

provided k2c2 = ω2. (The solution X(x) ∝ cos kx, although perfectly valid, would
not satisfy the boundary conditions on x in the present problem.) The requirement
that X(x) = 0 at both x = 0 and x = L in Eq. (C.11) is satisfied by

kn = nπ/L where n = 1, 2, 3, . . . , hence, ωn = knc = nπc/L. (B.12)

The cyclical resonant frequencies are then given by Fn = ωn/2π = nc/2L as
we showed in Chap. 1 by two different methods. Note that the spatial boundary
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conditions in Eq. (B.12) are what actually determine the resonant frequencies of
the string. Again, because the wave equation is linear, any linear combination of
solutions of the type described by Eq. (B.11) is a solution to Eq. (B.6). The most
general solution is of the form originally given by Daniel Bernoulli,

y(x, t) =
∞∑

n=1

An sin(nπx/L) cos(2πnF0t) or
∞∑

n=1

An sin(nπx/L) sin(2πnF0t).

(B.13)
The form on the left containing cos(2πnF0t) is most useful when the shape of
the string is known at t = 0 (as in the case of the plucked string). The second
form containing sin(2πnF0t) is most useful when the initial conditions involve the
velocity at some point on the string, because there one needs to evaluate ∂y/∂t ∝
cos(2πnF0t) at t = 0 (as for a string struck by a piano hammer, or bowed on a
violin).2

B.3 The Plucked String

Here, the first form of the solution given in Eq. (B.13) is the most useful. At t = 0,
the string is distorted into a triangular shape of the type shown in Fig. B.2. [But
keep in mind that the solutions given above apply for sufficiently small deflections
of the string such that the approximation in Eq. (B.1) is satisfied. Figure B.2 greatly
exaggerates the relative size of the deflection for the sake of illustration.]

Consider what happens when a string is plucked at t = 0 at some specific point
x = P0 along its length, L. If the amplitude of the string at t = 0 at the plucking
point is A, we see from Eq. (1) that

Fig. B.2 Shape of a plucked
string at t = 0 (the amplitude
is greatly exaggerated)

2The point in both cases is, of course, that cos(2πnF0t) = 1 at t = 0, which leaves we with
y(x, 0) = ∑∞

n=1 An sin(nπx/L).
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y(x, 0) = f (x) =
{

Ax/P 0, for 0 ≤ x ≤ P0

A(L − x)/(L − P0), for P0 ≤ x ≤ L.
(B.14)

From Eq. (B.13) at t = 0,

f (x) =
∞∑

n=1

An sin(nπx/L). (B.15)

Here, we can use the same orthogonality properties of the sine function summarized
in Chap. 1 to obtain the values of the coefficients An, yielding

An = 2

L

∫ L

x=0
f (x) sin(nπx/L)dx. (B.16)

The integral must be broken into two parts in accordance with the form of f (x)

given in Eq. (B.14). The spectral amplitudes are then determined from

An = 2

L

∫ P0

x=0
(Ax/P0) sin(nπx/L)dx+ 2

L

∫ L

P0

[A(L−x)/(L−P0)] sin(nπx/L)dx.

(B.17)
Integrating by parts and collecting terms, one obtains

An = 2AM2

(M − 1)n2π
sin(nπ/M) (B.18)

for the spectral distribution, where M = L/P0 is a measure of the plucking point
and it is assumed that n = 1, 2, 3, . . . is an integer. (M does not have to be an
integer.) Note that for M = 2 (plucking at the mid-point), one only gets odd
harmonics and that An = 0 for n equal to integral multiples of M .

The time-dependent motion of the string is then obtained by substituting the
amplitude coefficients An from Eq. (B.18) back into the original equation for y(x, t)

given at the left of Eq. (B.13). Examples of the motion are shown in Chap. 3.

B.4 The Struck String

Some instruments (especially, various forms of the piano and a few Hungarian
instruments such as the Cembalom used by Kodaly) hit the string with a hammer. In
this case, the right-hand solution in Eq. (B.13) is the appropriate form to start with
because the boundary condition at t = 0 is one on velocity. Hence, we will start
with a solution of the form,
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y(x, t)

∞∑
n=1

An sin(nπx/L) sin(2πnF0t). (B.19)

The velocity distribution over the string is obtained by taking ∂y/∂t , giving

v(x, t) = ∂y(x, t)

∂t
= 2πF0

∞∑
n=1

nAn sin(nπx/L) cos(2πnF0t). (B.20)

In principle one could integrate the equation over some finite pulse duration during
which the hammer was in contact with the string. However, we shall just assume
here that a velocity distribution is suddenly imparted to the string by the hammer
before the string has a chance to move. The approximation will be best for the
low notes on the instrument where the vibrational periods are longest. In that
approximation the velocity distribution at t = 0 is given by

v(x, 0) = V (x) = 2πF0

∞∑
n=1

nAn sin(nπx/L). (B.21)

Then, in analogy with Eq. (B.16), the spectral coefficients are given by3

An = 1

nF0L

∫ L

0
V (x) sin(nπx/L)dx. (B.22)

As an example, consider a hammer that imparts a rounded velocity distribution to
the string of the type shown in Fig. B.3, for which the velocity distribution is given
by

V (x) = V0

[
1 −

(
P0 − x

R

)2
]

for P0 − R ≤ x ≤ P0 + R (B.23)

and V (x) is assumed to be zero everywhere else. V (x) has a rounded maximum
value of V0 at x = P0, with an effective width of 2R. (Roughly speaking, R
corresponds to the hammer radius at the tip.) Although the shape was arbitrarily
assumed, it is not unlike that found at the top of felt hammers currently used in
grand pianos.

For the assumption in Eq. (B.23), the spectral coefficients in Eq. (B.22) become

3i.e., noting that for m, n integers,
∫ L

0 sin(mx/L) sin(nx/L)dx =
{

L/2, for m = n.

0, for m �= n.
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Fig. B.3 Shape of the
velocity pulse given by
Eq. (B.23)

An = V0
2H 2

n4π4F0

{
− cos nπ

(
H + M

MH

)
+ cos nπ

(
H − M

MH

)

−nπ

H
sin nπ

(
H − M

MH

)
− nπ

H
cos 2π

(
H + M

MH

)} (B.24)

where n is the harmonic number, H = L/R (the string length divided by the
hammer radius) and M = L/P0 (the ratio of the string length to the striking point,
in analogy to the case of the plucked string). As in the case of the plucked string,
Eq. (B.24) gives only odd harmonics when M = 2, or the string is struck in the
middle. Also, An = 0 for n = M (or the string is struck at a node for the M th

harmonic). In this approximation, voicing the hammer corresponds to adjusting the
value of H .

The shape of the string as a function of time is obtained by putting the values of
An from Eq. (B.24) back into the right-hand side of Eq. (B.13). Immediately after
the hammer hits the string, a narrow pulse (of width 2τ at the left of Fig. B.5) pops
up at the striking point (x = P0, occurring at t = 0 in the figure). This narrow
pulse consists of two equal-amplitude, oppositely-directed running waves. As time
increases, the initial pulse broadens until the wave running to the left bounces off
the support at x = 0, where it undergoes a “hard” reflection and changes sign.
Now negative, it travels back in the +x direction, canceling out its previous positive
portion. Meanwhile, the running wave initially moving to the right has continued
on its way. The result of adding these two running waves together is an isolated
broader, positive pulse (at the right in Fig. B.4) that runs the length of the string.

The rise and fall times (τ ) of this wider pulse are each equal to half of the initial
narrow-pulse duration. However, the breadth of the wide pulse is determined by the
time delay taken for that half of the initial pulse that bounces off the support at
x = 0 to get back to the striking point at x = P0. Hence, as indicated in the figure,
the broad pulse time duration is 2P0/c, where c is the velocity of the wave. After
reaching the point x = L, two “hard” reflections (in succession for each running
wave) occur which send an inverted pulse back toward x = 0. Examples of these
solutions, together with their spectral distribution, are shown in Chap. 4.
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Fig. B.4 Pulses launched on the string by the striking process. Left: The initial pulse at the striking
point. Right: The broader pulse running down the string after the first reflection

B.5 The Bowed String

As described in Chap. 5, the excitation of a violin string consists of a stick-slip
process which is repeated at the fundamental round-trip frequency (c/2L) and
causes pulses to run back and forth on the string of length L. The problem is different
from the plucked- and struck-string problems treated above in that the string at the
contact point (which we will again take to be x = P0) is forced to move at about
the constant velocity of the bow until slipping occurs. When the string does slip,
it returns rapidly to its initial point where it is again grabbed by the bow and the
process repeats. The string displacement thus executes a sawtooth motion at the
point P0. Helmholtz (1885, pp.384–386) presented an approximate solution to the
problem in which he assumed straight-line motion in the two halves of the stick-
slip cycle. He then used Fourier analysis of this sawtooth motion and expressed the
spectral amplitudes in the solution to the string equation in terms of those Fourier
coefficients. The idealized motion is illustrated in Fig. B.5, where will assume the
amplitude varies from −1 to +1 in the vertical direction and note that the vertical
displacements are centered about the time axis.

As in the case of the struck string waveform, we will take the general solution
for the shape of the string to be

y(x, t) =
∞∑

n=1

An sin(nπx/L) sin(2πnF0t). (B.25)

But here, the boundary condition that determines the expansion coefficients An is
on the time-dependent saw-tooth motion at the bowing point x = P0 shown in
Fig. B.5. In Helmholtz’s formulation of the problem, he expressed one cycle of the
motion in a general Fourier series including both sine and cosine terms in the time.
He then shifted the time axis to obtain a result involving a series of sine terms only.
Although that approach is perfectly valid and straightforward, there is a lot tedious
algebra required to keep track of all the terms. It is simpler to note at the start from
symmetry that, if we choose the origin of the time axis to be centered in the slip
cycle as shown in Fig. B.6, one only needs sine terms in the Fourier series. Thus, the
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Fig. B.5 Slightly more than two idealized Stick-Slip cycles, corresponding to up-bowing. The
total period is T = T1 + T2, where T1 is the “Stick” time and T2 is the “Slip” time

Fig. B.6 Choice of time
origin to simplify the
calculation of the Fourier
series

series for the motion at the bowing point may be written

y(P0, t) =
∞∑

n=1

Cn sin(2πnF0t). (B.26)

The Fourier coefficients are then given by

Cn = 2

T

∫ +T/2

T/2
sin(2πnF0t)dt

= 2

T

∫ −T2/2

−T/2

(
t + T

2

)
sin(2πnF0t)dt

+ 2

T

∫ +T2/2

−T2/2

[
T2

2
−

(
t + T2

2

)]
2

T2
sin(2πnF0t)dt
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+ 2

T

∫ T/2

T2/2

[
−T1

2
+

(
t − T2

2

)]
2

T1
sin(2πnF0t)dt,

which simplifies to

Cn = − 2

n2π2

(
T

T1

) (
T

T2

)
sin

(
nπ

T2

T

)
where T = T1 + T2. (B.27)

One then substitutes Eq. (B.27) in Eq. (B.26) and compares the result with
Eq. (B.25) for x = P0. It is then seen that

y(x, t) = −A

∞∑
n �=L/P0

2

n2π2

(
T

T1

)(
T

T2

)
sin(nπT2/T )

sin(nπP0/L)
sin(nπx/L) sin(2πnF0t),

(B.28)
where A has been introduced as an amplitude scaling factor and Eq. (B.28) was used
to compute the figures illustrating the Helmholtz method in Chap. 5. The singularity
that would occur if L/P0 were an integer is avoided by setting the partial amplitude
to zero for that harmonic. (That particular harmonic would not be excited because
the bow would be at a node.) For more general behavior such as that reported by
Pickering for real strings and discussed in Chap. 5, one must use the general form
of the Fourier series including cosine terms in which the Fourier coefficients are
computed numerically by methods equivalent to those discussed in Appendix C.

B.6 The Torsional Wave Equation4

As discussed in Chap. 5, the generation of torsional waves is important in the case
of large diameter bowed strings under large bowing force. In this case, a form of
the wave equation analogous to that in Eq. (B.5) also applies, but with very different
wave velocity.

First, consider a hollow uniform cylinder of radius r and thickness dr stretched
in the x-direction with the angular rotation at point x along the cylinder given by
∂ϕ/∂x. The shear force on the cylinder material is given by nr∂ϕ/∂x where n is
defined as the “rigidity” given by

n ≡ Y

2(μ + 1)
where

Lateral Contraction

Longitudinal Extension
, (B.29)

Y is Young’s modulus, and by definition

4Nearly all treatises on mechanics ignore the torsional wave equation. The present derivation is
based on one given by Lord Rayleigh (1877, pp. 243–254.)
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Longitudinal Extension ≡ Actual Length − Natural Length

Natural Length
. (B.30)

The quantity n lies between Y/2 and Y/3 for different materials.
The moment of inertia dI for a hollow cylinder of length dx is given by

dI = ρ2πr3drdx

where ρ is the mass density. The net change in resisting torque from shear over that
length is

ΔTorque = n2πr3drdx
∂2ϕ

∂x2 = n
dI

ρ

∂2ϕ

∂x2 dx

where we have made use of a Taylor expansion to show that

(
∂ϕ

∂x

)

x+dx

−
(

∂ϕ

∂x

)

x

= ∂2ϕ

∂x2 dx

Applying Newton’s law relating torque and angular acceleration, we get the
torsional wave equation,

n
dI

ρ

∂2ϕ

∂x2
dx = dI

∂2ϕ

∂t2
dx or

∂2ϕ

∂x2
= 1

n/ρ

∂2ϕ

∂t2
. (B.31)

Hence, the torsional waves have a velocity given by

cT =
√

n

ρ
. (B.32)

Note that the radial dependence of the moment of inertia cancelled out in these
equations. Therefore, the result for cT is independent of the radial mass distribution
as long as it has axial symmetry. One, of course, needs to know the values of the
mass density ρ and of n from Eq. (B.30) for the string material in order to compute
the velocity.

B.7 The Vibrating Membrane as a Two-Dimensional String

The extension of the wave equation to two-dimensional form follows in a straight-
forward manner from the derivation of the vibrating string equation given at the start
of this appendix. Here, we will consider a thin membrane extending in the x and y

directions with small vibrational amplitude in the z direction.
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Fig. B.7 View looking down
on the membrane

Here, we use a two-dimensional extension of the argument given in connection
with Fig. B.1. (See Fig. B.7.) The constant tension T will now be per unit length
along the x and y directions and we are concerned with the net restoring force in
the z-direction acting on a differential mass element Δm = μΔxΔy, where σ is the
mass density per unit area of the membrane. Applying Newton’s Law to the motion
in the z-direction for this differential membrane element, we get

Fz ≈ TxΔy

[(
∂z

∂x

)

x+Δx

−
(

∂z

∂x

)

x

]
+ TyΔX

[(
∂z

∂y

)

y+Δy

−
(

∂z

∂y

)

y

]
Δx

= Δmaz = σΔxΔy
∂2z

∂t2 .

As with the one-dimensional case, we can get the component of force normal to
the surface by expanding the functions dz/dx and dz/dy in a Taylor series about
the point x, y noting that

(
∂z

∂x

)

x+Δx

=
(

∂z

∂x

)

x

+ ∂

∂x

(
∂z

∂x

)

x

Δx1 + Order(Δx2) and

(
∂z

∂y

)

y+Δy

=
(

∂z

∂y

)

y

+ ∂

∂y

(
∂z

∂y

)

y

Δy1 + Order(Δy2)

Substituting in the force equation and neglecting quadratic terms in Δx, Δy, we get

Fz ≈ Ty

∂

∂x

(
∂z

∂x

)

x

Δx1 + Tx

∂

∂y

(
∂z

∂y

)

y

Δy1 + Order(Δx2,Δy2)

where we have assumed that Tx might not be equal to Ty for the sake of generality.
(That permits having different wave velocities in the two orthogonal directions.)
Substituting in the force equation and taking the limit as Δx,Δy → 0, we get a
non-isotropic form of the two-dimensional wave equation
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(
1

Ty

)
∂2z

∂x2
+

(
1

Tx

)
∂2z

∂y2
= σ

TxTy

∂2z

∂t2
.

Of course, if Tx = Ty , this expression reduces to the more usual isotropic form of
the two-dimensional wave equation,

∂2z

∂x2 + ∂2z

∂y2 = 1

c2

∂2z

∂t2 (B.33)

for which the wave velocity, c, is the same in both directions. That is,

c =
√

T

σ
for T = Tx = Ty. (B.34)

With the isotropic case, the variables are easily separable and we can write

Z(x, y, t) = X(x)Y (y)T (t) (B.35)

which substituted in the wave equation yields

1

X(x)

∂2X(x)

∂x2
+ 1

Y (y)

∂2Y (y)

∂y2
= 1

c2T (t)

∂2T (t)

∂t2
≡ −k2 = contant. (B.36)

The solutions must be valid for all values of x, y, and t and the only way that can
happen is for the separate terms to equal constants. Here as in the one-dimensional
case, we take a negative definite constant for the time-dependent part of the solution
to insure stable oscillatory solutions. The first two terms on the left of the equation
may be rewritten

1

X(x)

∂2X(x)

∂x2
= −k2

x,
1

Y (y)

∂2Y (y)

∂y2
= −k2

y, where k2
x + k2

y = k2 (B.37)

where kx and ky are constants. This substitution gives rise to solutions of the form

X(x) ∝ sin kxx and / or cos kxx

Y (y) ∝ sin kyy and / or sin kyy

T (t) ∝ cos ωt and / or sin ωt

(B.38)

where Z(x, y, t) is given by the product of the three.
Spatial boundary conditions determine the resonant frequencies. For example, if

the membrane is clamped on all edges, the solutions must have zero amplitude there
and the appropriate spatial functions are

X(x) ∝ sin kxx and Y (y) ∝ sin kyy (B.39)
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with

kx = nxπ/Lx and ky = nyπ/Ly where nx, ny = 1, 2, 3, . . . (B.40)

The oscillation frequencies of these modes are then given by

ωn = c

√
k2
x + k2

y = πc

√(
nx

Lx

)2

+
(

ny

Ly

)2

. (B.41)

The equations for the homogeneous membrane give rise to modes of the type
illustrated in Fig. B.8.

Solutions for the nonisotropic membrane are of interest because of their relation-
ship to those in thin soundboards (for example, in harpsichords and violins) in which
the velocity of wave propagation is quite different in the two principal orthogonal
directions. The solutions in that case may be obtained in exactly the same way using
the principle of separability. However, it is easier to note that the solutions for the
non-isotropic case may be obtained from those for the isotropic case by a simple
coordinate transformation of the type

x′ = Tyx and y′ = Txy. (B.42)

Hence, the case of nonequal velocities in the two orthogonal directions has solutions
that are equivalent to the isotropic case with different relative dimensions of the
rectangular membrane.

Fig. B.8 Modes for a rectangular membrane (or drumhead) in which the tensions (wave velocities)
are equal in both coordinate directions and the sides are in the ratio of 2:3
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As noted above, the equation of motion in this case is of the form

(
1

Ty

)
∂2z

∂x2 +
(

1

Tx

)
∂2z

∂y2 =
(

σ

TxTy

)
∂2z

∂t2 (B.43)

Again the equation is separable in the time and space variables by the substitution

Z(x, y, t) = X(x)Y (y)T (t). (B.44)

Hence

(
1

TyX(x)

)
∂2X(x)

∂x2 +
(

1

TxY (y)

)
∂2Y (y)

∂y2 = σ

TxTy

(
1

T (t)

)
∂2T (t)

∂t2

= −ω2 = constant (B.45)

where a negative constant was again chosen to assure a stable oscillatory solution
with angular frequency ω. For the two terms on the left of the equation to add up to
a constant, each must separately be constant. Hence,

∂2X(x)

∂x2 + ω2
xTyX(x) = 0 and

∂2Y (y)

∂y2 + ω2
yTxY (y) = 0 (B.46)

with solutions

X(x) ∝ sin ωx

√
Tyx and Y (y) ∝ sin ωy

√
Txy, (B.47)

where

ωx

√
Ty = nxπ/Lx and ωy

√
Tx = nyπ/Ly where nx, ny = 1, 2, 3, . . . (B.48)

That is, the modes are determined by the spatial boundary condition that the
vibrational amplitudes are zero on the boundaries; that is, we assume the membrane
is clamped on the edges. The oscillatory frequency for a given mode is then given
by

ω =
√

ω2
x + ω2

y = π

√
n2

x/L
2
xTy + n2

y/L
2
yTx (B.49)

and they, in general, will not be harmonically related.
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B.8 Circular Membranes

Drums utilize circular membranes in most cases. These are easiest to treat using
circular (or cylindrical) coordinates. Consider a coordinate system where the radius
vector r is in the xy plane at angle φ with respect to the x axis (Fig. B.9). (The new
and old z-axes are identical.)

It may be shown that the two-dimensional wave-equation operator transforms as5

∂2A(x, y)

∂x2
+ ∂2A(x, y)

∂y2
= 1

r

∂

∂r

(
r
∂A(r, ϕ)

∂r

)
+ 1

r2

∂2A(r, ϕ)

∂ϕ2
. (B.50)

Hence, the wave equation in circular coordinates becomes

1

r

∂

∂r

(
r
∂A

∂r

)
+ 1

r2

∂2A

∂ϕ2 = 1

c2

∂2A

∂t2 where c =
√

T

σ
(B.51)

c is the running wave velocity (assumed to be the same in all directions), T is the
constant tension per unit length around the circumference, and σ is the mass density
per unit area.

Again, we can separate the variables in the form

A(r, ϕ, t) = R(r)Φ(ϕ)T (t), (B.52)

where T (t) cos(ωt) or T (t) = sin(ωt).

Fig. B.9 Relation of
rectangular and cylindrical
coordinates

5See, e.g., Weatherburn (1951), pp. 15 and 16.
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Then we get

∂2Φ

∂ϕ2 + m2Φ = 0 where Φ(ϕ) = cos(mϕ) or Φ(ϕ) = sin(mϕ). (B.53)

Because Φ(ϕ) must be periodic in 2π so that the function closes on itself in one
revolution about z-axis, we must have m = 1, 2, 3, 4, . . . This condition means that

∂2R

∂r2 + 1

r

∂R

∂r
+

(
ω2

c2 − m2

r2

)
R = 0, (B.54)

which is known as Bessel’s Equation and has solutions of the form

Jm(x) =
∞∑

p=0

(−1)p
(x/2)m+2p

p!(m + p)! . (B.55)

where Jm(x) is a Bessel function of real argument of order m.6 Hence, the radial
solutions for the circular membrane are of the form

R(r) ∝ Jm

(ω

c
r
)

= Jm(kr). (B.56)

A particular time-dependent solution is then

A(r, ϕ, t) ∝ cos(mϕ)Jm(km,nr) cos(2πfm,nt). (B.57)

The nodal diameter for a particular allowed solution is determined by the value of
m and arises from the periodicity requirement on Φ(ϕ). The allowed values of the
parameter k are then determined by the requirement that the rim of the circular drum
corresponds to a root n of the Bessel function of that particular order, m. Thus, the
resultant values of k depend on two integers, m and n. The frequency of the mode
of vibration then is given by

fm,n = km,nc

2π
(B.58)

To illustrate a particular mode for a circular kettle drum of radius, R0, it is
necessary to scale the argument of the Bessel function so that it goes through zero
for a particular root when r = R0. Thus, a given kettle drum mode distribution
would be proportional to

6During the Great Depression, mathematicians were hired by the WPA to compute tables of Bessel
Function up to order 600 or more and in high precision. These tables, which are now totally
obsolete if any rudimentary computer is available, were stored in the basement of Low Library
at Columbia University.
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Table B.1 Values of km,n (roots) for the Bessel function Jm

m, n 1 2 3 4 5

0 2.40483 5.52008 8.65373 11.7915 14.9309

1 3.83171 7.01559 10.1735 13.3237 16.4706

2 5.13562 8.41724 11.6198 14.796 17.9598

3 6.38016 9.76102 13.0152 16.2235 19.4090

4 7.58834 11.0647 14.3725 17.616 20.8269

Computed by the author

cos(mϕ)Jm

(
km,n

r

R0

)
. (B.59)

Approximate values for the first few roots of the Bessel function Jm are given in
Table B.1. (Such modes are sometimes called “eigen functions” and the quantities
km,n are “eigen values.”) Representative kettledrum mode shapes are shown in
Fig. B.10 in 3-D.
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Appendix C
Fourier Analysis

We will include here some of the mathematical details dependent on calculus that
were omitted in Chap. 2, together with a working program for discrete Fourier
analysis. We will restrict the discussion to “well-behaved” periodic functions which
obey

V (θ + 2π) = V (θ), (C.1)

for which Fourier (1822) showed that the function V (θ) may be written

V (θ) = C0 +
∞∑

n=1

An sin nθ +
∞∑

n=1

Bn cos nθ. (C.2)

We wish to evaluate the DC constant C0 together with the harmonic coefficients An

and Bn.
Determining the DC constant in Eq. (C.2) is particularly easy. Recalling the fact

that the definite integral is just equal to the area under the curve,1 it is apparent
that the integrals of all the sine and cosine terms in Eq. (C.2) over one period
will identically vanish; i.e., the sine and cosine functions have equal areas above
and below the horizontal axis. Hence, in averaging Eq. (C.2) over one fundamental
period, all of the sin nθ and cos nθ terms will drop out, leaving

C0 = 1

2π

∫ 2π

0
V (θ)dθ (C.3)

1The fact that the area under the curve in the integrand is given by the definite integral between
two points on the horizontal axis is sometimes called “The Fundamental Theorem of Calculus.”
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where, as indicated using a notation invented by Fourier himself, the definite integral
runs from 0 to 2π radians.

Determining the coefficients An and Bn for the waveform is a little harder. Here,
we will make use of something known as the “orthogonality” of the sine and cosine
functions over one period.2 You can show from trigonometric identities that3

∫ 2π

0
sin mθ cos nθdθ = 0 (C.4)

for all integral values of m and n.
Similarly, it can be shown that4

∫ 2π

0
sin mθ sin nθdθ =

∫ 2π

0
cos mθ cos nθdθ =

{
π, for m = n.

0, for m �= n.
(C.5)

where m and n are integers.
To evaluate the general coefficient Am, multiply both sides of Eq. (C.2) by sin mθ

and integrate from 0 to 2π . All the terms in the Fourier series then vanish except for

Am = 1

π

∫ 2π

0
V (θ) sin mθdθ. (C.6)

Similarly to get Bm, multiply Eq. (C.2) by cos mθ obtaining

Bm = 1

π

∫ 2π

0
V (θ) cos mθdθ. (C.7)

Then, as shown in Chap. 2, we may rewrite V (θ) as

V (θ)C0 +
∞∑

n=1

Cn sin(nθ + ϕn), (C.8)

2The term arises because the sines and cosines can be regarded as projections of orthogonal
“vectors” in a multi-dimensional space in the sense that their generalized dot- (or scalar-) products
vanish.
3Since

2 sin mθ cos nθ = sin(m + n)θ + sin(m − n)θ

and m and n are integers, the integrals of the sine functions on the right side of this identity
over one period must vanish.
4E.g., consider the identity

2 sin mθ sin nθ = cos(m + n)θ cos(m − n)θ .
If m �= n, integrals over one period on the right side both vanish. But if m = n, the second term

on the right side of the trig identity is cos(0) = 1. Hence, for m = n,∫ 2π

0 sin mθ sin nθdθ = 1
2

∫ 2π

0 dθ = π
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where the constants are given by

Cn =
√

A2
n + B2

n for n ≥ 1 and ϕn = arctan(Bn/An). (C.9)

The procedure for determining the Fourier coefficients then consists of computing
the integrals in Eqs. (C.3), (C.6), and (C.7), which generally must be done
numerically from digital samples of the waveform over one period. Then one uses
Eq. (C.9) to determine the net harmonic amplitude and phase. There is one pitfall to
avoid in computing the phase from the arctangent relation in Eq. (C.9). Computer
programming languages and pocket calculators do not always have provision for
automatically putting the angle whose tangent is (B/A) in the correct quadrant. If
the computer only deals with the numerical result from evaluating x = B/A, it
cannot tell what the quadrant should be from the statement φ = ATN(x). If A is
positive, the answer for φ will be correct and the angle will fall in either the first
or fourth quadrant. However, if A is negative, the answer will be wrong and should
fall in the second or third quadrant. The problem is solved in BASIC by including
statements such as

ATN(B/A)

IF A < 0THEN φ = φ + π.
(C.10)

The FORTRAN programming language has a single arctangent statement of the
type ATAN2(B/A) that takes care of the problem. If any phase angle were off by
π , reconstruction of the waveform from the Fourier coefficients would give the
wrong shape. Of course, the spectrum of harmonic amplitudes wouldn’t be altered.
Reconstruction of the original waveform is, of course, obtained by substituting
the coefficients Cn and φ back into Eq. (C.8). If the reconstructed waveform does
not match the original, you have either made a mistake or have not taken enough
harmonics into account. (See Fig. 2.12.)

C.1 Energy Distribution in a Fourier Series

It is generally true in classical physics (i.e., non quantum-mechanical problems) that
the energy in a vibrating system is proportional to the square of the amplitude of the
disturbance. That fact is shown in detail for the harmonic oscillator in Appendix A.
What we are interested in here is the average value of the square of the amplitude
over the fundamental period of the Fourier series. The relative values are usually of
main concern rather than the absolute values. Suppose we have a waveform of the
type



380 C Fourier Analysis

y(t) =
∞∑

n=1

Cn sin(nωt + ϕn). (C.11)

Then, the average energy over one cycle is5

Energy ∝ 1

T

∫ 2π

0
y(t)2dt =

∞∑
n=1

C2
n (C.12)

where T = 1/f = 2π/ω is the fundamental period of the waveform. Hence, the
relative energy in the nth harmonic is simply proportional to C2

n .

C.2 Program for Discrete Fourier Analysis6

The following program is written in BASIC, but could easily be rewritten in
FORTRAN or another language. In what follows, REM means a remark that is
ignored by the computer. Explanatory comments after the apostrophe (’) are also
ignored when the computer runs.

REM Dimension s t a t e m e n t s 7

DIM A( 5 0 ) , B( 5 0 ) , C( 5 0 ) , P ( 5 0 ) ’ For F o u r i e r
c o e f f i c i e n t s

DIM V( 2 5 5 ) ’ To s t o r e t h e Data
Pi = 4∗ATN ( 1 . 0 ) ’ Pi = Greek \ p i

REM E n t e r d a t a f o r one p e r i o d = P8

READ P

5To prove the statement, note that y2(t) could be written
y(t)2 = ∑∞

n=1 Cn sin(nωt + ϕn)
∑∞

m=1 Cm sin(mωt + ϕn).

Hence,
Energy ∝ 1

T

∑∞
n=1

∑∞
m=1 CnCm

∫ T

0 sin(nωt + ϕn) sin(mωt + ϕn)dt

where the terms for m �= n vanish because of orthogonality of the sine functions.
6Note: In order to save running time, it really pays to compile the program.
7Arrays are just subscripted variables; e.g., A(N) is the same as the mathematical variable AN.
Dimension(DIM) statements tell the computer to set aside the maximum number of elements that
could appear in the array; e.g., DIM A(50) means that there could be 50 elements (harmonics) in
array A(N).
8The READ statement assigns the next previously unread number within DATA statements in
the program to a given variable. E.g., here P = 109, which is the total number of points in the
following DATA statements and V(1) = 3. The loop structure, FOR I = 1 TO P permits using
the same statement, READ V(I), within the loop over and over for P times. The loop is closed by
the NEXT I statement. Note that the waveform is periodic. (The first and last points are both equal
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FOR I =1 TO P
READ V( I ) NEXT I

REM Mode−Locked Garden Hose ( n o r m a l i z e d t o ±1000)
REM P= Number o f p o i n t s i n P e r i o d = t h e f i r s t datum

DATA 109
DATA 3 , 2 0 , 4 3 , 6 8 , 1 1 1 , 1 7 6
DATA 273 ,426 ,634 ,861 ,1000 ,989
DATA 864 ,705 ,563 ,452 ,358 ,273
DATA 199 ,136 ,85 ,45 ,17 , −14
DATA −40 ,−63 ,−85 ,−105 ,−125 ,−129
DATA −151 ,−162 ,−165 ,−165 ,−165 ,−165
DATA −170 ,−165 ,−170 ,−170 ,−170 ,−173
DATA −173 ,−170 ,−162 ,−159 ,−156 ,−153
DATA −151 ,−142 ,−139 ,−136 ,−131 ,−128
DATA −128 ,−128 ,−125 ,−119 ,−114 ,−108
DATA −102,−94,−91,−91,−91,−91
DATA −91,−91,−91,−91,−91,−91
DATA −85,−82,−82,−80,−74,−74
DATA −74,−80,−80,−80,−80,−80
DATA −82,−82,−82,−85,−88,−91
DATA −91,−91,−91,−91,−91,−85
DATA −82,−80,−74,−71,−68,−65
DATA −60,−57,−45,−37,−28,−14
DATA 3

REM Fundamenta l f r e q u e n c y i n Hz
DATA 307 .692 ’ Not used i n t h i s program

REM D i s p l a y of t h e Waveform9

Xmax=550 ’Xmax and Ymax are t h e maximum number
Ymax=500 ’ o f p i x e l s a v a i l a b l e and vary w i t h t h e
computer
REM P l o t H o r i z o n t a l Axis

Pen=0
X=0

Y=Ymax / 2
GOSUBS PLOT

to 3.) The DATA were all taken with an A- to-D (Analog-to-Digital) converter with 1 part in 1000
resolution, hence are in the range 1000.
9Xmax and Ymax are the maximum number of points (“pixels”) used on the plotting device. Pen is
a “Pen- Lift” variable. (Imagine plotting on an old-fashioned xy-recorder.) See Subroutine PLOT:
for its meaning.
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Pen=1
X=Xmax
GOSUB PLOT

REM P l o t Waveform
Pen=0
FOR I =1 TO P

Y=0.5∗Ymax∗(1+V( I ) / 1 0 0 0 )
X=( I −1)∗Xmax / ( P−1)
GOSUB PLOT

Pen=1
NEXT I

REM Chosing t h e maximum number o f ha rmon ic s 10

PRINT ‘ ‘Nmax ’ ’
INPUT Nmax
REM Harmonic A n a l y s i s 11

A0=2∗ Pi / ( P−1) ’ A0 i s a c o n s t a n t used i n t h e loop
on N.

FOR N=0 TO Nmax ’ N=0 c o r r e s p o n d s t o t h e c o n s t a n t or
DC term

A(N)=0
B(N)=0
FOR I =1 TO P

A(N)=A(N)+V( I )∗ SIN (N∗A0∗ ( I −1))
B(N)=B(N)+V( I )∗COS(N∗A0∗ ( I −1))

NEXT I
A(N)=A(N) ∗ 2 / ( P−1)
B(N)=B(N) ∗ 2 / ( P−1)

10Normally one could simply estimate the maximum number of harmonics (Nmax) from the
number of wiggles in one period of the waveform and INPUT (enter) that number from the
keyboard. The present case is tricky because the waveform is a sharp pulse without wiggles. One
way is to make a guess (e.g., Nmax = 20) and see how closely the waveform reconstructed from
the Fourier coefficients agrees with the original. Then increase (or decrease) Nmax as needed. See
Fig. 2.12.
11This part of the program takes most of the running time. A(N) and B(N) correspond to the
Fourier amplitudes given by the integrals in Eq. (C.6) and (C.7). They are done here numerically
by a method equivalent to drawing straight lines between the successive points and adding up
the areas (the “trapezoidal Rule”). Each variable A(N) and B(N) is initially set to zero and the
increments repeatedly added within the loop FOR I = 1 TO P-1 in a series of the typeA(N)0.5(y1+
y2)Δx0.5(y2 + y3)Δx + . . . + 0.5(yP−1 + yP )Δx= (y1 + y2 + y3 + . . . + yP−1)Δx + 0.5(yP −
y1)Δxwhich simplifies because yP = y1 (i.e., the series is periodic.) Here, e.g., yi = V (I) ∗
SIN(N ∗ A0 ∗ (I − 1)) and Δx = 1. The net Fourier amplitude C(N) and phase P(N) are
computed using Eqs. (C.6), (C.7), and (C.8).
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C(N)=SQR(A(N)∗A(N)+B(N)∗B(N) )
IF N>0 THEN P (N)=ATN(B(N ) / A(N) ) ’ a v o i d DC term
IF A(N) <0 THEN P (N)=P (N)+ Pi ’ a r c t a n g e n t

problem
NEXT N
REM DC or c o n s t a n t te rm next

C( 0 ) =B ( 0 ) / 2
REM P l o t His togram of t h e C o e f f i c i e n t s

REM Find Maximum Harmonic c o e f f i c i e n t , Cmax
Cmax=−1E30 ’A n e g a t i v e number below t h e

s m a l l e s t l i k e l y C(N)
FOR N=1 TO Nmax

IF C(N) >Cmax THEN Cmax=C(N)
NEXT N

FOR N=1 TO Nmax
X=(N−1)∗Xmax / Nmax

Y=0
Pen=0

GOSUB PLOT
Y=C(N)∗Ymax / Cmax

Pen=1
GOSUB PLOT

NEXT N

C.3 Additional Waveforms

Additional musical instrument waveforms are presented below in the same format
as that given above for the garden hose for those who might like to study them
and for use elsewhere in this book. These data were taken in Davies Auditorium
at Yale, using a high-quality Sennheiser MKH104 omnidirectional microphone
with uniform response (±1 dB) over the range from 50 Hz to 20 kHz and the
Hewlett-Packard equipment shown in Fig. 2.9. The 10-bit A-to-D converter used
had a dynamic range of about 60 dB. The instruments were played without vibrato
by professional musicians to whom the author is greatly indebted. The brass
instruments were played by James Undercoffler; the violins, by Syoko Aki; the
oboe, heckelphone, krummhorn and rohr schalmei by James Ryan; and flute and
piccolo by Leone Buyse. I am indebted to the late William Liddell for the use of
his krummhorns, to Richard Rephann for the loan of the historic brass instruments
from the Yale Instrument Collection, and to Robert Sheldon of the Smithsonian
Collection in Washington, DC for playing the serpent. The heckelphone was loaned
by the Yale Concert Band and the rohr schalmei was borrowed from the author’s
personal pipe organ.
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F-Cornet

DATA 107
DATA −4 ,44 ,114 ,163 ,212 ,249
DATA 280 ,301 ,311 ,319 ,321 ,321
DATA 311 ,290 ,259 ,223 ,166 ,111
DATA 57 ,5 , −47 ,−83 ,−106 , −122
DATA −124,−119,−98,−83,−67,−52
DATA −41,−47,−62,−83,−109,−150
DATA −192 ,−231 ,−259 ,−285 ,−301 ,−303
DATA −293 ,−269 ,−228 ,−166 ,−96 ,−13
DATA 78 ,174 ,275 ,370 ,477 ,578
DATA 681 ,777 ,870 ,948 ,995 ,1000
DATA 974 ,886 ,764 ,617 ,433 ,244
DATA 67 ,−101 ,−238 ,−345 ,−412 ,−448
DATA −461 ,−448 ,−415 ,−383 ,−337 ,−301
DATA −272 ,−259 ,−251 ,−269 ,−301 ,−332
DATA −365 ,−399 ,−425 ,−446 ,−453 ,−456
DATA −446 ,−425 ,−399 ,−383 ,−368 ,−355
DATA −347 ,−337 ,−329 ,−301 ,−262 ,−241
DATA −210,−166,−117,−65,−4
REM C o r n e t Frequency i n Hz
DATA 316 .075

Piccolo Trumpet

DATA 168
DATA −5 ,97 ,195 ,280 ,367 ,450
DATA 530 ,610 ,680 ,755 ,807 ,857
DATA 898 ,935 ,967 ,982 ,997 ,1000

P i c c o l o Trumpet DATA −755 ,−720 ,−673 ,−623 ,−563 ,−500
DATA 168 DATA −433 ,−355 ,−272 ,−193 ,−110 ,−5
DATA −5 ,97 ,195 ,280 ,367 ,450 REM P i c c o l o Trumpet

Frequency i n Hz
DATA 530 ,610 ,680 ,755 ,807 ,857 DATA 597 .672
DATA 898 ,935 ,967 ,982 ,997 ,1000
DATA 995 ,987 ,965 ,940 ,910 ,875
DATA 835 ,797 ,742 ,695 ,637 ,585
DATA 527 ,475 ,417 ,357 ,302 ,247
DATA 187 ,130 ,85 ,37 , −10 , −50
DATA −80 ,−110 ,−140 ,−160 ,−180 ,−193
DATA −203 ,−200 ,−200 ,−193 ,−170 ,−155
DATA −130 , −93 ,−55 ,−12 ,35 ,77
DATA 125 ,177 ,227 ,277 ,325 ,367
DATA 408 ,450 ,490 ,517 ,545 ,567
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DATA 580 ,587 ,590 ,590 ,580 ,560
DATA 540 ,515 ,485 ,450 ,408 ,367
DATA 327 ,285 ,240 ,190 ,147 ,97
DATA 55 ,15 , −35 , −65 , −100 , −133
DATA −155 ,−180 ,−200 ,−215 ,−230 ,−233
DATA −245 ,−245 ,−242 ,−245 ,−242 ,−240
DATA −238 ,−235 ,−238 ,−235 ,−235 ,−242
DATA −253 ,−260 ,−265 ,−282 ,−300 ,−320
DATA −343 ,−363 ,−390 ,−413 ,−440 ,−463
DATA −490 ,−513 ,−535 ,−557 ,−583 ,−603
DATA −623 ,−643 ,−660 ,−680 ,−690 ,−715
DATA −733 ,−753 ,−773 ,−793 ,−810 ,−830
DATA −845 ,−857 ,−873 ,−875 ,−875 ,−882
DATA −873 ,−870 ,−857 ,−835 ,−810 ,−785
DATA −755 ,−720 ,−673 ,−623 ,−563 ,−500
DATA −433 ,−355 ,−272 ,−193 ,−110 ,−5
REM P i c c o l o Trumpet Frequency i n Hz
DATA 597 .672

REM V i s u a l r e c o n s t r u c t i o n from t h e F o u r i e r
c o e f f i c i e n t s 12

Pen=0
FOR I =1 TO P

V( I )=C( 0 ) ’ c o n s t a n t or DC term
FOR N=1 TO Nmax

V( I )=V( I )+C(N)∗ SIN (N∗A0∗ I +P (N) )
NEXT N
Y=0.5∗Ymax∗(1+V( I ) / 1 0 0 0 )

X=( I −1)∗Xmax / ( P−1)
GOSUB PLOT

Pen=1
NEXT I

REM Dummy I n p u t t o r e t a i n d i s p l a y
INPUT Q$

12Here, we reconstruct the Fourier Series to compare with the original waveform initially stored
in V(I). (The contents of the array V(I) are changed when the program runs.) Note that without
the constant or DC term, the reconstructed waveform may be offset vertically from the original
waveform. An effective DC offset can sometimes arise from the presence of low-frequency
background noise that is unrelated to the waveform of interest. Several languages also permit
constructing the sound of the waveforms, in which case the fundamental frequencies contained
in the last DATA statement is important.
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END

SUBROUTINE13

PLOT

RETURN

REM Pen=0 p l o t s p o i n t s a t (X, Ymax−Y) , wi th o r i g i n
a t ( 0 , Ymax )

REM Pen=1 Draws l i n e from l a s t p o i n t t o c o o r d i n a t e s
(X, Ymax−Y)

IF Pen=0 THEN POINT (X, Ymax−Y)
IF Pen=1 THEN LINE (X, Ymax−Y)

Note: Some programming languages permit constructing the sound of the
waveform. The fundamental frequencies for each waveform are included in Hz in
the DATA statements for that purpose.

French Horn (Loud)

DATA 151
DATA 21 ,112 ,188 ,242 ,273 ,318
DATA 356 ,387 ,399 ,394 ,385 ,371
DATA 349 ,309 ,264 ,200 ,133 ,76
DATA 3 8 , 2 1 , 1 7 , 1 7 , 2 6 , 5 2
DATA 67 ,95 ,121 ,147 ,159 ,171
DATA 176 ,166 ,157 ,143 ,140 ,138
DATA 128 ,124 ,124 ,124 ,133 ,143
DATA 147 ,147 ,143 ,140 ,135 ,133
DATA 1 1 9 , 1 0 5 , 9 3 , 7 6 , 6 2 , 2 6
DATA −12 ,−52 ,−95 ,−138 ,−181 ,−214
DATA −252 ,−283 ,−299 ,−314 ,−309 ,−295
DATA −268 ,−249 ,−240 ,−233 ,−214 ,−195
DATA −166 , −128 , −76 , −10 ,64 ,121
DATA 176 ,216 ,245 ,273 ,285 ,295
DATA 292 ,292 ,302 ,314 ,333 ,340

13The instructions POINT (X,Y) and LINE (X,Y) are intended to plot a point at coordinates X,
Y whenPen = 0 and a line from the previously plotted point to coordinates X, Y if Pen = 1,
respectively, assuming the origin is in the lower left-hand corner. Plotting commands of this type
are contained in most languages, but with varying designations. Most languages now put the origin
in the upper left hand corner of the plotting device, in which case one needs to replace Y by
Ymax-Y as has been done in the subroutine here. One may also need scaling factors dependent
on the maximum number of pixels available in the x and y directions. The convention on naming
subroutines varies from one version of BASIC to another. In some versions the term PLOT has a
different, specific meaning built into the operating system.
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DATA 349 ,347 ,347 ,349 ,375 ,428
DATA 508 ,575 ,627 ,656 ,672 ,679
DATA 684 ,684 ,689 ,684 ,670 ,641
DATA 596 ,551 ,508 ,451 ,380 ,304
DATA 214 ,128 ,45 , −43 , −164 , −314
DATA −461 ,−589 ,−670 ,−703 ,−717 ,−743
DATA −791 ,−846 ,−895 ,−931 ,−960 ,−988
DATA −1000 ,−971 ,−924 ,−886 ,−855 ,−838
DATA −836 ,−841 ,−838 ,−829 ,−774 ,−698
DATA −613 ,−527 ,−437 ,−335 ,−219 ,−95
DATA 21
REM French Horn Frequency i n Hz DATA 222 .488

French Horn (Soft)

DATA 151
DATA 4 , 4 6 , 8 7 , 1 2 1 , 1 5 4 , 1 8 3
DATA 212 ,231 ,262 ,272 ,291 ,297
DATA 306 ,297 ,297 ,291 ,283 ,268
DATA 264 ,247 ,237 ,229 ,216 ,206
DATA 200 ,191 ,179 ,166 ,158 ,141
DATA 131 ,116 ,121 ,112 ,106 ,104
DATA 1 0 0 , 9 8 , 9 6 , 8 3 , 8 7 , 7 9
DATA 7 3 , 7 1 , 6 2 , 5 6 , 4 8 , 4 0
DATA 4 0 , 4 2 , 4 6 , 5 4 , 5 8 , 6 2
DATA 6 4 , 7 1 , 6 7 , 7 3 , 7 1 , 7 1
DATA 75 ,81 ,96 ,104 ,114 ,133
DATA 156 ,166 ,183 ,212 ,225 ,247
DATA 272 ,297 ,322 ,349 ,372 ,399
DATA 422 ,441 ,462 ,484 ,499 ,516
DATA 528 ,541 ,555 ,563 ,563 ,572
DATA 570 ,563 ,555 ,545 ,528 ,511
DATA 486 ,464 ,424 ,391 ,356 ,308
DATA 262 ,218 ,164 ,116 ,56 , −10
DATA −71 ,−135 ,−210 ,−279 ,−345 ,−407
DATA −482 ,−541 ,−607 ,−661 ,−719 ,−773
DATA −825 ,−867 ,−911 ,−940 ,−965 ,−979
DATA −996 ,−1000 ,−994 ,−983 ,−973 ,−950
DATA −925 ,−892 ,−857 ,−811 ,−767 ,−717
DATA −659 ,−603 ,−536 ,−468 ,−403 ,−343
DATA −285 ,−233 ,−175 ,−127 ,−71 ,−25
DATA 4
REM S o f t Fr . Horn Frequency i n Hz DATA 223 .294

Ophicleide

DATA 196
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DATA −4 ,−117 ,−186 ,−235 ,−283 ,−324
DATA −348 ,−393 ,−421 ,−421 ,−377 ,−324
DATA −247 , −170 , −73 ,40 ,126 ,170
DATA 158 ,142 ,113 ,45 , −32 , −81
DATA −138 ,−202 ,−259 ,−287 ,−312 ,−340
DATA −360 ,−364 ,−364 ,−377 ,−364 ,−348
DATA −316 ,−308 ,−287 ,−275 ,−291 ,−324
DATA −348 ,−377 ,−393 ,−413 ,−405 ,−389
DATA −364 ,−340 ,−328 ,−324 ,−324 ,−312
DATA −291 ,−259 ,−259 ,−259 ,−267 ,−287
DATA −291 ,−283 ,−279 ,−247 ,−170 ,−73
DATA 49 ,158 ,259 ,372 ,462 ,526
DATA 579 ,607 ,611 ,607 ,575 ,518
DATA 462 ,417 ,401 ,385 ,360 ,332
DATA 308 ,300 ,267 ,235 ,178 ,121
DATA 7 7 , 3 2 , 2 4 , 3 2 , 6 1 , 8 1
DATA 8 9 , 9 3 , 1 0 9 , 9 7 , 9 7 , 1 0 5
DATA 134 ,194 ,251 ,255 ,186 ,77
DATA −24,−85,−101,−97,−85,−101
DATA −101 , −40 ,40 ,105 ,142 ,142
DATA 154 ,186 ,223 ,271 ,316 ,381
DATA 421 ,421 ,405 ,364 ,328 ,304
DATA 316 ,364 ,421 ,478 ,518 ,514
DATA 486 ,413 ,304 ,142 , −89 , −348
DATA −632 ,−911 ,−1219 ,−1510 ,−1741
DATA −1915 ,−1960 ,−1911 ,−1781 ,−
DATA 1603 , −1381 , −1154
DATA −927 , −700 , −462 , −219 ,28 ,235
DATA 429 ,595 ,749 ,879 ,955 ,996
DATA 1000 ,1000 ,972 ,964 ,935 ,866
DATA 777 ,688 ,599 ,514 ,437 ,364
DATA 304 ,255 ,211 ,170 ,158 ,142
DATA 126 ,121 ,130 ,126 ,130 ,142
DATA 142 ,126 ,89 , −4
REM O p h i c l e i d e Frequency i n Hz
DATA 85 .103

Serpent

DATA 203
DATA −5 ,53 ,113 ,167 ,207 ,237
DATA 233 ,223 ,207 ,170 ,140 ,90
DATA 47 ,−7 ,−47 ,−87 ,−107 ,−113
DATA −107 , −80 , −43 ,10 ,73 ,133
DATA 187 ,223 ,250 ,263 ,263 ,250
DATA 223 ,200 ,157 ,130 ,73 ,20
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DATA −40 ,−97 ,−147 ,−200 ,−240 ,−267
DATA −287 ,−280 ,−267 ,−240 ,−203 ,−180
DATA −163 ,−133 ,−123 ,−127 ,−120 ,−123
DATA −127 ,−123 ,−130 ,−133 ,−127 ,−133
DATA −133 ,−113 ,−107 ,−73 ,−30 ,37
DATA 103 ,160 ,210 ,237 ,240 ,250
DATA 237 ,207 ,170 ,127 ,90 ,73
DATA 60 ,50 ,40 ,23 ,20 , −13
DATA −47 ,−80 ,−120 ,−150 ,−187 ,−193
DATA −193 ,−173 ,−150 ,−133 ,−107 ,−80
DATA −57 , −50 , −43 ,0 ,60 ,143
DATA 237 ,323 ,440 ,533 ,620 ,687
DATA 740 ,747 ,640 ,460 ,253 ,20
DATA −353 ,−737 ,−1053 ,−1333 ,−1497
DATA −1527 ,−1440 ,−1273 ,−993 ,−667
DATA −327 , −20 ,210 ,340 ,340 ,260
DATA 160 ,80 , −7 , −20 ,50 ,147 ,277
DATA 420 ,553 ,667 ,773 ,853 ,943
DATA 997 , 1000 ,970 ,927 ,810
DATA 673 ,500 ,273 ,40 , −193
DATA −387,−507,−560
DATA −540 ,−447 ,−337 ,−217 ,−93 ,23
DATA 83 ,130 ,147 ,143 ,140 ,140
DATA 147 ,153 ,167 ,173 ,153 ,117
DATA 77 ,23 , −40 , −60 , −100 , −133
DATA −173 ,−203 ,−240 ,−267 ,−280 ,−280
DATA −300 ,−287 ,−273 ,−257 ,−257 ,−230
DATA −227 ,−213 ,−207 ,−213 ,−200 ,−193
DATA −163,−150,−110,−70,−5
REM S e r p e n t Frequency i n Hz
DATA 61 .702

Andreas Amati Violin (G String)

DATA 171
DATA 14 ,−153 ,−330 ,−507 ,−641 ,−732 ,−
DATA 813 ,−900 ,−967 ,−1000
DATA −967 ,−880 ,−737 ,−603 ,−498 ,−450 ,−
DATA 426 ,−431 ,−440 ,−426
DATA −402 ,−354 ,−306 ,−330 ,−335 ,−306 ,−
DATA 273 , −177 ,53 ,211 ,364
DATA 474 ,545 ,593 ,608 ,641 ,641 ,603
DATA 574 ,493 ,431 ,416 ,431
DATA 5 1 2 , 6 0 3 , 6 5 1 , 6 5 1 , 5 8 4 , 4 5 9 , 3 1 6 ,
DATA 187 ,86 ,0 , −100 , −177
DATA −234 ,−273 ,−239 ,−177 ,−100



390 C Fourier Analysis

DATA 33 ,134 ,201 ,220 ,249 ,278
DATA 335 ,392 ,469 ,507 ,469 ,383 ,297
DATA 191 ,124 ,72 ,91 ,124
DATA 148 ,225 ,354 ,550 ,775 ,895
DATA 880 ,689 ,397 ,144 , −10 ,29
DATA 144 ,239 ,311 ,278 ,206 ,163
DATA 234 ,335 ,383 ,440 ,392
DATA 258 ,33 , −62 , −24 ,57 ,115
DATA 96 ,29 , −124 , −234 , −249
DATA −182 , −38 ,57 ,110 ,115 ,124
DATA 144 ,230 ,340 ,440 ,474
DATA 402 ,301 ,196 ,67 , −62 , −201
DATA −344 ,−445 ,−464 ,−388
DATA −273 , −144 , −38 ,129 ,244 ,392
DATA 507 ,531 ,512 ,435
DATA 378 ,354 ,344 ,378 ,435 ,536
DATA 646 ,737 ,766 ,699 ,627
DATA 545 ,512 ,478 ,474 ,459 ,402
DATA 378 ,354 ,335 ,340 ,344
DATA 340 ,301 ,249 ,167 ,77 ,14
REM Amati V i o l i n Frequency i n Hz
DATA 196 .71

Ordinary Violin (G String)

DATA 130
DATA 76 ,389 ,686 ,854 ,945 ,980
DATA 872 ,600 ,290 ,27
DATA −75 ,7 ,168 ,325 ,456 ,566
DATA 662 ,748 ,796 ,761
DATA 644 ,491 ,336 ,226 ,137 ,111
DATA 157 ,254 ,332 ,403
DATA 496 ,606 ,690 ,690 ,597 ,440
DATA 254 ,77 , −102 , −215
DATA −296 ,−354 ,−407 ,−460 ,−513 ,−566
DATA −637 ,−746 ,−878 ,−976
DATA −1000 ,−912 ,−743 ,−584 ,−454
DATA −341 , −186 ,49 ,270 ,440
DATA 531 ,518 ,458 ,389 ,350 ,305
DATA 237 ,166 ,115 ,53
DATA −18 ,−62 ,−82 ,−111 ,−146 ,−146
DATA −122 ,−58 ,−2 ,31
DATA 5 3 , 5 3 , 2 7 , 0 , 7 , 4 9
DATA 124 ,212 ,281 ,369
DATA 467 ,549 ,566 ,451 ,283 ,53
DATA −104,−170,−146,−86
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DATA −53 , −33 ,31 ,119 ,181 ,243
DATA 310 ,296 ,184 , −31
DATA −283 ,−442 ,−515 ,−546 ,−540
DATA −558 ,−580 ,−617 ,−642 ,−666
DATA −639 ,−577 ,−584 ,−692 ,−808 ,−878
DATA −816 ,−569 ,−199 ,76
REM V i o l i n Frequency i n Hz
DATA 194 .41

Oboe (Lauré)

DATA 194
DATA 2 ,−181 ,−397 ,−581 ,−717 ,−809
DATA −839 ,−829 ,−777 ,−697 ,−596 ,−486
DATA −370 ,−261 ,−159 ,−79 ,−10 ,45
DATA 82 ,107 ,127 ,149 ,161 ,174
DATA 179 ,179 ,174 ,169 ,156 ,149
DATA 134 ,124 ,104 ,84 ,55 ,15
DATA −35 ,−79 ,−112 ,−144 ,−159 ,−164
DATA −161 ,−159 ,−154 ,−151 ,−159 ,−161
DATA −164 ,−169 ,−159 ,−144 ,−114 ,−84
DATA −50 , −10 ,37 ,84 ,127 ,179
DATA 218 ,246 ,261 ,253 ,223 ,176
DATA 127 ,69 ,10 , −40 , −77 , −122
DATA −159 ,−189 ,−223 ,−251 ,−270 ,−283
DATA −288 ,−280 ,−273 ,−263 ,−258 ,−258
DATA −258 ,−258 ,−258 ,−258 ,−251 ,−243
DATA −241 ,−231 ,−218 ,−208 ,−191 ,−169
DATA −154 ,−139 ,−124 ,−122 ,−122 ,−129
DATA −141 ,−154 ,−159 ,−159 ,−156 ,−151
DATA −139 ,−129 ,−122 ,−124 ,−129 ,−134
DATA −151 ,−169 ,−179 ,−199 ,−208 ,−231
DATA −243 ,−253 ,−258 ,−258 ,−251 ,−238
DATA −213 ,−191 ,−161 ,−139 ,−104 ,−74
DATA −40 , −5 ,27 ,55 ,77 ,89
DATA 9 7 , 9 7 , 9 4 , 8 7 , 7 4 , 6 0
DATA 37 ,15 , −20 , −60 , −104 , −156
DATA −213 ,−280 ,−347 ,−409 ,−474 ,−526
DATA −566 ,−588 ,−586 ,−558 ,−499 ,−422
DATA −330 , −221 , −109 ,15 ,136 ,256
DATA 377 ,501 ,620 ,739 ,831 ,913
DATA 960 ,993 ,1000 ,995 ,983 ,963
DATA 938 ,913 ,883 ,856 ,821 ,789
DATA 752 ,715 ,663 ,600 ,496 ,355
DATA 176 ,2
REM Oboe Frequency i n Hz
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DATA 259 .581

Heckelphone

DATA 130
DATA −8 ,142 ,250 ,308 ,300 ,283
DATA 2 6 2 , 1 9 6 , 5 8 , 3 3 , 4 2 , 4 2
DATA 29 ,−8 ,−54 ,−104
DATA −225 ,−321 ,−417 ,−475 ,−488
DATA −417 ,−242 ,0
DATA 217 ,225 ,346 ,608 ,867 ,1000
DATA 942 ,642 ,25 , −50 , −108 , −267
DATA −475 ,−650 ,−667 ,−471 ,−217 ,−204
DATA −167 , −25 ,171 ,317 ,417 ,425
DATA 329 ,308 ,229 ,92 , −50 , −142
DATA −208 ,−267 , −358 ,−425 ,−458 ,−454
DATA −425 , −388 , −304 , −221 ,13 ,142
DATA 262 ,346 ,392 ,425 ,442 ,425
DATA 238 ,158 ,75 , −33 , −125 , −242
DATA −367 ,−450 , −388,−317,−233
DATA −142 , −75 ,13 ,112 ,192 ,225
DATA 258 ,292 ,292 ,250 ,175 ,46 , −104
DATA −254 ,−292 ,−321 ,−317 ,−292 ,−25
DATA −188 , −121 ,50 ,196 ,396 ,612
DATA 746 ,725 ,608 ,479 , 262 ,167
DATA 50 ,−117 ,−283 ,−400 ,−417 ,−350
DATA −67 ,108 ,258 ,367 ,442 ,475
DATA 500 ,458 , −17 , −321 , −600 , −817
DATA −892 ,−808 ,−671 ,−538 ,−192 ,−8
REM Heckelphone Frequency i n Hz
DATA 129 .777

Krummhorn

DATA 174
DATA −59 ,−91 ,−157 ,−216 ,−100 ,−78
DATA −162 , −176 ,333 ,1000 ,623 , −130
DATA −412 , −355 , −100 ,422 ,853 ,850
DATA 490 ,−100 ,−623 ,−760 ,−760 ,−603
DATA −150 ,255 ,157 , −169 , −277 , −196
DATA −250 , −309 , −150 ,113 ,206 ,279
DATA 377 ,331 ,108 , −74 , −51 ,15
DATA 145 ,353 ,510 ,507 ,333 ,164
DATA 93 ,152 ,243 ,341 ,431 ,439
DATA 419 ,373 ,257 ,230 ,186 ,59
DATA 64 ,135 ,201 ,206 ,86 , −78
DATA −194 , −196 , −142 , −83 ,47 ,103
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DATA 39 ,−32 ,−91 ,−167 ,−199 ,−120
DATA 0 , 3 4 , 2 7 , 5 4 , 8 3 , 1 1 8
DATA 125 ,137 ,196 ,230 ,174 ,115
DATA 83 ,20 , −120 , −316 , −471 , −412
DATA −277 , −81 ,152 ,211 ,47 , −137
DATA −267 ,−353 ,−319 ,−176 ,−69 ,−25
DATA 10 ,47 ,93 ,100 ,132 ,142
DATA 142 ,162 ,157 ,105 ,27 , −44
DATA −78 ,−110 ,−118 ,−110 ,−78 ,−44
DATA −32,−51,−74,−98,−103,−137
DATA −137 ,−110 ,−78 ,−88 ,−113 ,−123
DATA −78,−34,−5,−20,−88,−196
DATA −353 ,−451 ,−453 ,−512 ,−534 ,−578
DATA −534 ,−446 ,−397 ,−324 ,−306 ,−358
DATA −306 , −245 , −140 , −61 ,69 ,96
DATA 162 ,152 ,142 ,172 ,213 ,289
DATA 294 ,294 ,309 ,225 ,145 , −59
REM Krummhorn Frequency i n Hz DATA 192 .52

Rohrschalmei (Laukuft)

DATA 129
DATA 4 ,−94 ,−132 ,−186 ,−172 ,−224
DATA −256 ,−202 ,−146 ,−116 ,−68 ,−20
DATA −36 ,−64 ,−64 ,−104 ,−168 ,−136
DATA −98 , −16 ,82 ,126 ,212 ,158
DATA 158 ,152 ,20 , −80 , −188 , −282
DATA −206 ,720 ,692 ,444 ,1000 ,648
DATA 694 ,230 ,68 , −228 , −938 , −826
DATA −726 , −830 , −474 , −168 ,126 ,322
DATA 376 ,562 ,408 ,280 ,316 ,206
DATA 40 ,16 , −44 , −96 , −178 , −168
DATA −170 ,−194 ,−242 ,−402 ,−568 ,−488
DATA −584 ,−754 ,−604 ,−410 ,−370 ,−32
DATA 144 ,476 ,542 ,678 ,848 ,816
DATA 638 ,272 ,146 , −176 , −320 , −420
DATA −482 ,−450 ,−400 ,−202 ,−43 ,−132
DATA −40 ,56 , −16 ,0 , −36 ,88
DATA 172 ,246 ,414 ,404 ,366 ,430
DATA 364 ,276 ,88 , −48 , −124 , −282
DATA −272 , −238 ,−314 ,−306 ,−282 ,−306
DATA −266 , −136 , −124 ,12 ,52 ,128
DATA 212 ,166 ,262 ,220 ,192 ,164
DATA 152 ,78 ,4
REM R o h r s c h a l m e i Frequency i n Hz
DATA 259 .674
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Flute

DATA 192
DATA 18 ,−54 ,−75 ,−101 ,−134 ,−165
DATA −178 ,−247 ,−281 ,−291 ,−335 ,−376
DATA −428 ,−425 ,−464 ,−438 ,−446 ,−425
DATA −402 ,−412 ,−330 ,−299 ,−250 ,−160
DATA −82 ,21 ,93 ,180 ,216 ,317
DATA 325 ,358 ,320 ,289 ,255 ,222
DATA 1 4 4 , 1 1 9 , 1 1 1 , 8 5 , 5 , 2 6
DATA 5,−34 ,−52 ,−57 ,−106 ,−67
DATA −64 ,−75 ,−34 ,−34 ,8 ,−5
DATA 36 ,59 ,101 ,111 ,90 ,119
DATA 119 ,98 ,39 ,57 ,15 , −26
DATA 3 ,15 ,0 ,8 ,8 , −41
DATA −62 ,−77 ,−106 ,−126 ,−183 ,−232
DATA −260 ,−240 ,−253 ,−247 ,−191 ,−157
DATA −103 , −67 , −26 ,28 ,108 ,131
DATA 250 ,340 ,430 ,503 ,595 ,634
DATA 660 ,698 ,675 ,619 ,526 ,448
DATA 369 ,340 ,206 ,124 ,88 , −26
DATA −82 ,−178 ,−250 ,−291 ,−302 ,−371
DATA −407 ,−410 ,−436 ,−464 ,−521 ,−559
DATA −582 ,−652 ,−765 ,−881 ,−920 ,−972
DATA −912 ,−910 ,−838 ,−678 ,−577 ,−479
DATA −353 , −247 , −134 , −21 ,62 ,121
DATA 155 ,216 ,204 ,193 ,222 ,201
DATA 204 ,216 ,237 ,291 ,376 ,428
DATA 585 ,799 ,840 ,892 ,959 ,1000
DATA 907 ,747 ,588 ,430 ,222 , −46
DATA −289 ,−376 ,−518 ,−598 ,−655 ,−655
DATA −621 ,−526 ,−459 ,−327 ,−188 ,−26
DATA 90 ,170 ,268 ,361 ,454 ,454
DATA 443 ,485 ,495 ,423 ,407 ,348
DATA 291 ,227 ,144 ,77 ,62 ,18
REM F l u t e Frequency i n Hz
DATA 262 .05

Piccolo

DATA 170
DATA −11 ,34 ,101 ,100 ,218 ,276
DATA 333 ,391 ,451 ,508 ,556 ,590
DATA 631 ,643 ,679 ,695 ,706 ,707
DATA 706 ,695 ,667 ,652 ,631 ,604
DATA 590 ,542 ,525 ,487 ,460 ,422
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DATA 388 ,362 ,341 ,326 ,307 ,295
DATA 276 ,269 ,247 ,240 ,247 ,237
DATA 225 ,218 ,192 ,189 ,168 ,151
DATA 1 3 4 , 1 0 6 , 9 1 , 7 4 , 5 3 , 3 6
DATA 36 ,14 ,−10 ,−29 ,−34 ,−62
DATA −77 ,−86.−115 ,−115 ,−125 ,−129
DATA −139 ,−146 ,−149 ,−146 ,−153 ,−146
DATA −146 ,−137 ,−137 ,−127 ,−127 ,−118
DATA −108,−89,−72,−55,−38,−10
DATA 24 ,48 ,94 ,125 ,170 ,206
DATA 247 ,285 ,317 ,353 ,388 ,408
DATA 436 ,458 ,460 ,484 ,494 ,477
DATA 482 ,468 ,458 ,451 ,429 ,412
DATA 388 ,369 ,345 ,331 ,321 ,293
DATA 266 ,249 ,216 ,199 ,173 ,161
DATA 115 ,86 ,46 ,22 , −14 , −70
DATA −120 ,−182 ,−245 ,−317 ,−386 ,−480
DATA −556 ,−616 ,−686 ,−751 ,−815 ,−859
DATA −897 ,−935 ,−959 ,−981 ,−993 ,−990
DATA −990 ,−1000 ,−993 ,−993 ,−964 ,−954
DATA −959 ,−930 ,−914 ,−887 ,−887 ,−856
DATA −811 ,−763 ,−731 ,−671 ,−631 ,−568
DATA −499 ,−444 ,−367 ,−317 ,−261 ,−175
DATA −118 , −62,−11
REM P i c c o l o Frequency i n Hz
DATA 593 .877

C.4 Program for Discrete Fourier Analysis

The following program is written in MATLAB using much of the same code from
the original BASIC program by Bennett.

C.4.1 Contents

• Load waveform data for one period
• Variables
• Compute the Fourier Coefficients
• Plot the Waveform
• Plot Histogram of the Coefficients
• Reconstruct the Waveform from the Fourier Coefficients
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• Plot the Waveform

clear all;

C.4.2 Load waveform data for one period

Call load_waveforms.m

load_waveforms;

C.4.3 Variables

% Choose the maximum number of harmonics
Nmax=20;

% Select which waveform to analyze
waveform = ’gardenhose’;

switch waveform
case ’gardenhose’

V=gardenhose;
strLegend=sprintf(’Garden Hose\nf_{n=1}
=307.692 Hz’);

case ’fcoronet’
V=fcoronet;
strLegend=sprintf(’F-Cornet\nf_{n=1}
=316.075 Hz’);

case ’piccolotrumpet’
V=piccolotrumpet;
strLegend=sprintf(’Piccolo Trumpet\nf_{n=1}
=597.672 Hz’);

case ’frenchhornloud’
V=frenchhornloud;
strLegend=sprintf(’French Horn (Loud)\nf_{n=1}
=222.488 Hz’);

case ’frenchhornsoft’
V=frenchhornsoft;
strLegend=sprintf(’French Horn (Soft)\nf_{n=1}
=223.294 Hz’);

case ’ophicleide’
V=ophicleide;

http://../html/load_waveforms.html
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strLegend=sprintf(’Ophicleide\nf_{n=1}
=85.103 Hz’);

case ’serpent’
V=serpent;
strLegend=sprintf(’Serpent\nf_{n=1}
=61.702 Hz’);

case ’amativiolin’
V=amativiolin;
strLegend=sprintf(’A.Amati Violin (G)\nf_{n=1}
=196.71 Hz’);

case ’violin’
V=violin;
strLegend=sprintf(’Ordinary Violin
(G)\nf_{n=1}=194.41 Hz’);

case ’oboelaure’
V=oboelaure;
strLegend=sprintf(’Oboe (Laure)\nf_{n=1}
=259.581 Hz’);

case ’heckelphone’
V=heckelphone;
strLegend=sprintf(’Heckelphone\nf_{n=1}
=129.777 Hz’);

case ’kurmhorn’
V=krummhorn;
strLegend=sprintf(’Krummhorn\nf_{n=1}
=192.52 Hz’);

case ’rohrschalmei’
V=rohrschalmei;
strLegend=sprintf(’Rohrschalmei (Laukuft)\
nf_{n=1}
=259.674 Hz’);

case ’flute’
V=flute;
strLegend=sprintf(’Flute\nf_{n=1}=262.05 Hz’);

case ’piccolo’
V=piccolo;
strLegend=sprintf(’Piccolo\nf_{n=1}
=593.877 Hz’);

end
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C.4.4 Compute the Fourier Coefficients

Call fouriercoef_trapezoid.m

[A0 A B0 B C0 C PHI]=fouriercoef_trapezoid(V,Nmax);

C.4.5 Plot the Waveform

figure;
plot(V./max(abs(V)),’Color’,’k’,’LineWidth’,3)
line([0 length(V)],[0 0],’Color’,’k’,’LineWidth’,1)
set(gca,’LineWidth’,2,’FontSize’,14)
set(gca,’YLim’,[-1.1 1.1],’YTick’,[0]);
set(gca,’XLim’,[0 length(V)],’XTick’,[]);
xlabel(’Time’,’FontSize’,14);
ylabel(’Microphone Signal’,’FontSize’,14);
pbaspect([2 1 1])
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C.4.6 Plot Histogram of the Coefficients

figure;
stem([1:Nmax],C./max(C),’Color’,’k’,’LineWidth’,3,
’Marker’,’none’)
set(gca,’YLim’,[0 1],’YTickLabel’,[]);
set(gca,’XLim’,[0 Nmax],’XTick’,[0:2:Nmax]);
set(gca,’LineWidth’,2,’FontSize’,14)
xlabel(’Harmonic Number, (n)’,’FontSize’,14);

http://../html/fouriercoef_trapezoid.html
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ylabel(’Fourier Coefficients, C(n)’,’FontSize’,14);
pbaspect([2 1 1])
text(12,.8,strLegend,’FontSize’,14,
’HorizontalAlignment’,’left’);
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C.4.7 Reconstruct the Waveform from the Fourier Coefficients

P=length(V);
for I=1:P

V2(I)=C0;
for N=1:Nmax

V2(I)=V2(I)+C(N)*sin(N*A0*(I-1)+PHI(N));
end

end

C.4.8 Plot the Waveform

figure; hold on;
plot(V./max(abs(V)),’Color’,’k’,’LineWidth’,3)
plot(V2./max(abs(V2)),’--’,’Color’,’b’,’LineWidth’,3)
line([0 length(V)],[0 0],’Color’,’k’,’LineWidth’,1)
set(gca,’LineWidth’,2,’FontSize’,14)
set(gca,’YLim’,[-1.1 1.1],’YTick’,[0]);
set(gca,’XLim’,[0 length(V)],’XTick’,[]);
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xlabel(’Time’,’FontSize’,14);
ylabel(’Microphone Signal’,’FontSize’,14);
clear strLegend;
strLegend{1}=’Recorded Waveform’;
strLegend{2}=sprintf(’Reconstructed Waveform,
Nmax = %u’, Nmax);
legend(strLegend);
pbaspect([2 1 1])

Recorded Waveform

Time

0

M
ic

ro
ph

on
e 

S
ig

na
l

Reconstructed Waveform, Nmax = 20

C.5 Additional Waveforms

Additional musical instrument waveforms are presented below in the same format
as that given above for the garden hose for those who might like to study them
and for use elsewhere in this book. These data were taken in Davies Auditorium
at Yale, using a high-quality Sennheiser MKH104 omnidirectional microphone
with uniform response (±1 dB) over the range from 50 Hz to 20 kHz and the
Hewlett-Packard equipment shown in Fig. 2.9. The 10-bit A-to-D converter used
had a dynamic range of about 60 dB. The instruments were played without vibrato
by professional musicians to whom the author is greatly indebted. The brass
instruments were played by James Undercoffler; the violins, by Syoko Aki; the
oboe, heckelphone, krummhorn and rohr schalmei by James Ryan; and flute and
piccolo by Leone Buyse. I am indebted to the late William Liddell for the use of
his krummhorns, to Richard Rephann for the loan of the historic brass instruments
from the Yale Instrument Collection, and to Robert Sheldon of the Smithsonian
Collection in Washington, DC for playing the serpent. The heckelphone was loaned
by the Yale Concert Band and the rohr schalmei was borrowed from the author’s
personal pipe organ.
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C.5.1 Contents

• Mode-Locked Garden Hose (normalized to +/- 1000)
• F-Cornet
• Piccolo Trumpet
• French Horn (Loud)
• French Horn (Soft)
• Ophicleide
• Serpent
• Andreas Amati Violin (G String)
• Ordinary Violin (G String)
• Oboe (Laure)
• Heckelphone
• Krummhorn
• Rohrschalmei (Laukuft)
• Flute
• Piccolo

C.5.2 Mode-Locked Garden Hose (normalized to +/- 1000)

%DATA 109 % P = Number of points in Period = the first
datum gardenhose=[...
3,20,43,68,111,176,...
273,426,634,861,1000,989,...
864,705,563,452,358,273,...
199,136,85,45,17,-14,...
-40,-63,-85,-105,-125,-129,...
-151,-162,-165,-165,-165,-165,...
-170,-165,-170,-170,-170,-173,...
-173,-170,-162,-159,-156,-153,...
-151,-142,-139,-136,-131,-128,...
-128,-128,-125,-119,-114,-108,...
-102,-94,-91,-91,-91,-91,...
-91,-91,-91,-91,-91,-91,...
-85,-82,-82,-80,-74,-74,...
-74,-80,-80,-80,-80,-80,...
-82,-82,-82,-85,-88,-91,...
-91,-91,-91,-91,-91,-85,...
-82,-80,-74,-71,-68,-65,...
-60,-57,-45,-37,-28,-14,...
3];
% Fundamental frequency in Hz
%DATA 307.692
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C.5.3 F-Cornet

%DATA 107
fcoronet=[...
-4,44,114,163,212,249,...
280,301,311,319,321,321,...
311,290,259,223,166,111,...
57,5,-47,-83,-106,-122,...
-124,-119,-98,-83,-67,-52,...
-41,-47,-62,-83,-109,-150,...
-192,-231,-259,-285,-301,-303,...
-293,-269,-228,-166,-96,-13,...
78,174,275,370,477,578,...
681,777,870,948,995,1000,...
974,886,764,617,433,244,...
67,-101,-238,-345,-412,-448,...
-461,-448,-415,-383,-337,-301,...
-272,-259,-251,-269,-301,-332,...
-365,-399,-425,-446,-453,-456,...
-446,-425,-399,-383,-368,-355,...
-347,-337,-329,-301,-262,-241,...
-210,-166,-117,-65,-4];
% Cornet Frequency in Hz
%DATA 316.075

C.5.4 Piccolo Trumpet

%DATA 168
piccolotrumpet=[...
-5,97,195,280,367,450,...
530,610,680,755,807,857,...
898,935,967,982,997,1000,...
995,987,965,940,910,875,...
835,797,742,695,637,585,...
527,475,417,357,302,247,...
187,130,85,37,-10,-50,...
-80,-110,-140,-160,-180,-193,...
-203,-200,-200,-193,-170,-155,...
-130,-93,-55,-12,35,77,...
125,177,227,277,325,367,...
408,450,490,517,545,567,...
580,587,590,590,580,560,...
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540,515,485,450,408,367,...
327,285,240,190,147,97,...
55,15,-35,-65,-100,-133,...
-155,-180,-200,-215,-230,-233,...
-245,-245,-242,-245,-242,-240,...
-238,-235,-238,-235,-235,-242,...
-253,-260,-265,-282,-300,-320,...
-343,-363,-390,-413,-440,-463,...
-490,-513,-535,-557,-583,-603,...
-623,-643,-660,-680,-690,-715,...
-733,-753,-773,-793,-810,-830,...
-845,-857,-873,-875,-875,-882,...
-873,-870,-857,-835,-810,-785,...
-755,-720,-673,-623,-563,-500,...
-433,-355,-272,-193,-110,-5];
% Piccolo Trumpet Frequency in Hz
%DATA 597.672

C.5.5 French Horn (Loud)

%DATA 151
frenchhornloud=[...
21,112,188,242,273,318,...
356,387,399,394,385,371,...
349,309,264,200,133,76,...
38,21,17,17,26,52,...
67,95,121,147,159,171,...
176,166,157,143,140,138,...
128,124,124,124,133,143,...
147,147,143,140,135,133,...
119,105,93,76,62,26,...
-12,-52,-95,-138,-181,-214,...
-252,-283,-299,-314,-309,-295,...
-268,-249,-240,-233,-214,-195,...
-166,-128,-76,-10,64,121,...
176,216,245,273,285,295,...
292,292,302,314,333,340,...
349,347,347,349,375,428,...
508,575,627,656,672,679,...
684,684,689,684,670,641,...
596,551,508,451,380,304,...
214,128,45,-43,-164,-314,...
-461,-589,-670,-703,-717,-743,...
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-791,-846,-895,-931,-960,-988,...
-1000,-971,-924,-886,-855,-838,...
-836,-841,-838,-829,-774,-698,...
-613,-527,-437,-335,-219,-95,...
21];
% French Horn Frequency in Hz
%DATA 222.488

C.5.6 French Horn (Soft)

%DATA 151
frenchhornsoft=[...
4,46,87,121,154,183,...
212,231,262,272,291,297,...
306,297,297,291,283,268,...
264,247,237,229,216,206,...
200,191,179,166,158,141,...
131,116,121,112,106,104,...
100,98,96,83,87,79,...
73,71,62,56,48,40,...
40,42,46,54,58,62,...
64,71,67,73,71,71,...
75,81,96,104,114,133,...
156,166,183,212,225,247,...
272,297,322,349,372,399,...
422,441,462,484,499,516,...
528,541,555,563,563,572,...
570,563,555,545,528,511,...
486,464,424,391,356,308,...
262,218,164,116,56,-10,...
-71,-135,-210,-279,-345,-407,...
-482,-541,-607,-661,-719,-773,...
-825,-867,-911,-940,-965,-979,...
-996,-1000,-994,-983,-973,-950,...
-925,-892,-857,-811,-767,-717,...
-659,-603,-536,-468,-403,-343,...
-285,-233,-175,-127,-71,-25,...
4];
% Soft Fr. Horn Frequency in Hz
%DATA 223.294
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C.5.7 Ophicleide

%DATA 196
ophicleide=[...
-4,-117,-186,-235,-283,-324,...
-348,-393,-421,-421,-377,-324,...
-247,-170,-73,40,126,170,...
158,142,113,45,-32,-81,...
-138,-202,-259,-287,-312,-340,...
-360,-364,-364,-377,-364,-348,...
-316,-308,-287,-275,-291,-324,...
-348,-377,-393,-413,-405,-389,...
-364,-340,-328,-324,-324,-312,...
-291,-259,-259,-259,-267,-287,...
-291,-283,-279,-247,-170,-73,...
49,158,259,372,462,526,...
579,607,611,607,575,518,...
462,417,401,385,360,332,...
308,300,267,235,178,121,...
77,32,24,32,61,81,...
89,93,109,97,97,105,...
134,194,251,255,186,77,...
-24,-85,-101,-97,-85,-101,...
-101,-40,40,105,142,142,...
154,186,223,271,316,381,...
421,421,405,364,328,304,...
316,364,421,478,518,514,...
486,413,304,142,-89,-348,...
-632,-911,-1219,-1510,-1741,...
-1915,-1960,-1911,-1781,-1603,-1381,-1154,...
-927,-700,-462,-219,28,235,...
429,595,749,879,955,996,...
1000,1000,972,964,935,866,...
777,688,599,514,437,364,...
304,255,211,170,158,142,...
126,121,130,126,130,142,...
142,126,89,-4];
% Ophicleide Frequency in Hz
%DATA 85.103
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C.5.8 Serpent

%DATA 203
serpent=[...
-5,53,113,167,207,237,...
233,223,207,170,140,90,...
47,-7,-47,-87,-107,-113,...
-107,-80,-43,10,73,133,...
187,223,250,263,263,250,...
223,200,157,130,73,20,...
-40,-97,-147,-200,-240,-267,...
-287,-280,-267,-240,-203,-180,...
-163,-133,-123,-127,-120,-123,...
-127,-123,-130,-133,-127,-133,...
-133,-113,-107,-73,-30,37,...
103,160,210,237,240,250,...
237,207,170,127,90,73,...
60,50,40,23,20,-13,...
-47,-80,-120,-150,-187,-193,...
-193,-173,-150,-133,-107,-80,...
-57,-50,-43,0,60,143,...
237,323,440,533,620,687,...
740,747,640,460,253,20,...
-353,-737,-1053,-1333,-1497,...
-1527,-1440,-1273,-993,-667,...
-327,-20,210,340,340,260,...
160,80,-7,-20,50,147,277,...
420,553,667,773,853,943,...
997, 1000,970,927,810,...
673,500,273,40,-193,...
-387,-507,-560,...
-540,-447,-337,-217,-93,23,...
83,130,147,143,140,140,...
147,153,167,173,153,117,...
77,23,-40,-60,-100,-133,...
-173,-203,-240,-267,-280,-280,...
-300,-287,-273,-257,-257,-230,...
-227,-213,-207,-213,-200,-193,...
-163,-150,-110,-70,-5];
% Serpent Frequency in Hz
%DATA 61.702
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C.5.9 Andreas Amati Violin (G String)

%DATA 171
amativioling=[...
14,-153,-330,-507,-641,-732,-813,-900,-967,-1000,...
-967,-880,-737,-603,-498,-450,-426,-431,-440,-426,...
-402,-354,-306,-330,-335,-306,-273,-177,53,211,364,...
474,545,593,608,641,641,603,...
574,493,431,416,431,...
512,603,651,651,584,459,316,...
187,86,0,-100,-177,...
-234,-273,-239,-177,-100,...
33,134,201,220,249,278,...
335,392,469,507,469,383,297,...
191,124,72,91,124,...
148,225,354,550,775,895,...
880,689,397,144,-10,29,...
144,239,311,278,206,163,...
234,335,383,440,392,...
258,33,-62,-24,57,115,...
96,29,-124,-234,-249,...
-182,-38,57,110,115,124,...
144,230,340,440,474,...
402,301,196,67,-62,-201,...
-344,-445,-464,-388,...
-273,-144,-38,129,244,392,...
507,531,512,435,...
378,354,344,378,435,536,...
646,737,766,699,627,...
545,512,478,474,459,402,...
378,354,335,340,344,...
340,301,249,167,77,14];
% Amati Violin Frequency in Hz
%DATA 196.71

C.5.10 Ordinary Violin (G String)

%DATA 130
violin=[...
76,389,686,854,945,980,...
872,600,290,27,...
-75,7,168,325,456,566,...
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662,748,796,761,...
644,491,336,226,137,111,...
157,254,332,403,...
496,606,690,690,597,440,...
254,77,-102,-215,...
-296,-354,-407,-460,-513,-566,...
-637,-746,-878,-976,...
-1000,-912,-743,-584,-454,...
-341,-186,49,270,440,...
531,518,458,389,350,305,...
237,166,115,53,...
-18,-62,-82,-111,-146,-146,...
-122,-58,-2,31,...
53,53,27,0,7,49,...
124,212,281,369,...
467,549,566,451,283,53,...
-104,-170,-146,-86,...
-53,-33,31,119,181,243,...
310,296,184,-31,...
-283,-442,-515,-546,-540,...
-558,-580,-617,-642,-666,...
-639,-577,-584,-692,-808,-878,...
-816,-569,-199,76];
% Violin Frequency in Hz
%DATA 194.41

C.5.11 Oboe (Laure)

%DATA 194
oboelaure=[...
2,-181,-397,-581,-717,-809,...
-839,-829,-777,-697,-596,-486,...
-370,-261,-159,-79,-10,45,...
82,107,127,149,161,174,...
179,179,174,169,156,149,...
134,124,104,84,55,15,...
-35,-79,-112,-144,-159,-164,...
-161,-159,-154,-151,-159,-161,...
-164,-169,-159,-144,-114,-84,...
-50,-10,37,84,127,179,...
218,246,261,253,223,176,...
127,69,10,-40,-77,-122,...
-159,-189,-223,-251,-270,-283,...
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-288,-280,-273,-263,-258,-258,...
-258,-258,-258,-258,-251,-243,...
-241,-231,-218,-208,-191,-169,...
-154,-139,-124,-122,-122,-129,...
-141,-154,-159,-159,-156,-151,...
-139,-129,-122,-124,-129,-134,...
-151,-169,-179,-199,-208,-231,...
-243,-253,-258,-258,-251,-238,...
-213,-191,-161,-139,-104,-74,...
-40,-5,27,55,77,89,...
97,97,94,87,74,60,...
37,15,-20,-60,-104,-156,...
-213,-280,-347,-409,-474,-526,...
-566,-588,-586,-558,-499,-422,...
-330,-221,-109,15,136,256,...
377,501,620,739,831,913,...
960,993,1000,995,983,963,...
938,913,883,856,821,789,...
752,715,663,600,496,355,...
176,2];
% Oboe Frequency in Hz
%DATA 259.581

C.5.12 Heckelphone

%DATA 130 [JLR probably a typo, should be 138]
%[JLR] Note: There are two typos in the manuscript
which are fixed here heckelphone=[...
-8,142,250,308,300,283,...
262,196,58,33,42,42,...
29,-8,-54,-104,...
-225,-321,-417,-475,-488,...
-417,-242,0,...
217,225,346,608,867,1000,...
942,642,25,-50,-108,-267,...
-475,-650,-667,-471,-217,-204,...
-167,-25,171,317,417,425,...
329,308,229,92,-50,-142,...
-208,-267, -358,-425,-458,-454,...
-425,-388,-304,-221,13,142,...
262,346,392,425,442,425,...
238,158,75,-33,-125,-242,...
-367,-450,-388,-317,-233,...
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-142,-75,13,112,192,225,...
258,292,292,250,175,46,-104,...
-254,-292,-321,-317,-292,-250,... %[JLR] last point
changed to -250
-188,-121,50,196,396,612,...
746,725,608,479,262,167,...
50,-117,-283,-400,-417,-350,...
-67,108,258,367,442,475,...
500,458,-17,-321,-600,-817,...
-892,-808,-671,-538,-192,-8];
% Heckelphone Frequency in Hz
%DATA 129.777

C.5.13 Krummhorn

%DATA 174
krummhorn=[...
-59,-91,-157,-216,-100,-78,...
-162,-176,333,1000,623,-130,...
-412,-355,-100,422,853,850,...
490,-100,-623,-760,-760,-603,...
-150,255,157,-169,-277,-196,...
-250,-309,-150,113,206,279,...
377,331,108,-74,-51,15,...
145,353,510,507,333,164,...
93,152,243,341,431,439,...
419,373,257,230,186,59,...
64,135,201,206,86,-78,...
-194,-196,-142,-83,47,103,...
39,-32,-91,-167,-199,-120,...
0,34,27,54,83,118,...
125,137,196,230,174,115,...
83,20,-120,-316,-471,-412,...
-277,-81,152,211,47,-137,...
-267,-353,-319,-176,-69,-25,...
10,47,93,100,132,142,...
142,162,157,105,27,-44,...
-78,-110,-118,-110,-78,-44,...
-32,-51,-74,-98,-103,-137,...
-137,-110,-78,-88,-113,-123,...
-78,-34,-5,-20,-88,-196,...
-353,-451,-453,-512,-534,-578,...
-534,-446,-397,-324,-306,-358,...



C Fourier Analysis 411

-306,-245,-140,-61,69,96,...
162,152,142,172,213,289,...
294,294,309,225,145,-59];
% Krummhorn Frequency in Hz
%DATA 192.52

C.5.14 Rohrschalmei (Laukuft)

%DATA 129
rohrschalmei=[...
4,-94,-132,-186,-172,-224,...
-256,-202,-146,-116,-68,-20,...
-36,-64,-64,-104,-168,-136,...
-98,-16,82,126,212,158,...
158,152,20,-80,-188,-282,...
-206,720,692,444,1000,648,...
694,230,68,-228,-938,-826,...
-726,-830,-474,-168,126,322,...
376,562,408,280,316,206,...
40,16,-44,-96,-178,-168,...
-170,-194,-242,-402,-568,-488,...
-584,-754,-604,-410,-370,-32,...
144,476,542,678,848,816,...
638,272,146,-176,-320,-420,...
-482,-450,-400,-202,-43,-132,...
-40,56,-16,0,-36,88,...
172,246,414,404,366,430,...
364,276,88,-48,-124,-282,...
-272, -238,-314,-306,-282,-306,...
-266,-136,-124,12,52,128,...
212,166,262,220,192,164,...
152,78,4];
% Rohrschalmei Frequency in Hz
%DATA 259.674

C.5.15 Flute

%DATA 192
flute=[...
18,-54,-75,-101,-134,-165,...
-178,-247,-281,-291,-335,-376,...
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-428,-425,-464,-438,-446,-425,...
-402,-412,-330,-299,-250,-160,...
-82,21,93,180,216,317,...
325,358,320,289,255,222,...
144,119,111,85,5,26,...
5,-34,-52,-57,-106,-67,...
-64,-75,-34,-34,8,-5,...
36,59,101,111,90,119,...
119,98,39,57,15,-26,...
3,15,0,8,8,-41,...
-62,-77,-106,-126,-183,-232,...
-260,-240,-253,-247,-191,-157,...
-103,-67,-26,28,108,131,...
250,340,430,503,595,634,...
660,698,675,619,526,448,...
369,340,206,124,88,-26,...
-82,-178,-250,-291,-302,-371,...
-407,-410,-436,-464,-521,-559,...
-582,-652,-765,-881,-920,-972,...
-912,-910,-838,-678,-577,-479,...
-353,-247,-134,-21,62,121,...
155,216,204,193,222,201,...
204,216,237,291,376,428,...
585,799,840,892,959,1000,...
907,747,588,430,222,-46,...
-289,-376,-518,-598,-655,-655,...
-621,-526,-459,-327,-188,-26,...
90,170,268,361,454,454,...
443,485,495,423,407,348,...
291,227,144,77,62,18];
% Flute Frequency in Hz
%DATA 262.05

C.5.16 Piccolo

%DATA 170
piccolo=[...
-11,34,101,100,218,276,...
333,391,451,508,556,590,...
631,643,679,695,706,707,...
706,695,667,652,631,604,...
590,542,525,487,460,422,...
388,362,341,326,307,295,...
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276,269,247,240,247,237,...
225,218,192,189,168,151,...
134,106,91,74,53,36,...
36,14,-10,-29,-34,-62,...
-77,-86.-115,-115,-125,-129,...
-139,-146,-149,-146,-153,-146,...
-146,-137,-137,-127,-127,-118,...
-108,-89,-72,-55,-38,-10,...
24,48,94,125,170,206,...
247,285,317,353,388,408,...
436,458,460,484,494,477,...
482,468,458,451,429,412,...
388,369,345,331,321,293,...
266,249,216,199,173,161,...
115,86,46,22,-14,-70,...
-120,-182,-245,-317,-386,-480,...
-556,-616,-686,-751,-815,-859,...
-897,-935,-959,-981,-993,-990,...
-990,-1000,-993,-993,-964,-954,...
-959,-930,-914,-887,-887,-856,...
-811,-763,-731,-671,-631,-568,...
-499,-444,-367,-317,-261,-175,...
-118, -62,-11];
% Piccolo Frequency in Hz
%DATA 593.877

C.6 Harmonic Analysis

This part of the program takes most of the running time. A(N) and B(N) correspond
to the Fourier amplitudes given by the integrals in Eqs. (C.6) and (C.7). They are
done here numerically by a method equivalent to drawing straight lines between the
successive points and adding up the areas (the “trapezoidal Rule”).

function [A0 A B0 B C0 C PHI]
=fouriercoef_trapezoid(V,Nmax)

% The net Fourier amplitude C(N) and phase PHI(N)
are computed using
% Eqs (C.6), (C.7), and (C.8).

% Check for input errors
error(nargchk(1, 2, nargin));
if (nargin < 2); Nmax = 20; end;
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P=length(V);

A0=2*pi/(P-1); % A0 is a constant used in the loop on N.

for N=1:Nmax % FOR N=0 TO Nmax
% N=0 corresponds to the constant or DC term,
we will calculate it later

A(N)=0;
B(N)=0;

for I=1:P % FOR I=1 TO P
A(N)=A(N)+V(I)*sin(N*A0*(I-1));
B(N)=B(N)+V(I)*cos(N*A0*(I-1));

end; % NEXT I

A(N)=A(N)*2/(P-1);
B(N)=B(N)*2/(P-1);
C(N)=sqrt(A(N)*A(N)+B(N)*B(N));

%IF N>0 THEN P(N)=ATN(B(N)/A(N)) % avoid DC term
PHI(N)=atan(B(N)/A(N));
%IF A(N)<0 THEN P(N)=P(N)+Pi ’arctangent problem
if (A(N) < 0); PHI(N)=PHI(N)+pi; end;

end; %NEXT N

% DC or constant term (A0 calculation above)
B0=sum(V)*2/(P-1);
C0=B0/2;

Published with MATLAB�7.12



Appendix D
The Well-Tempered Scale

The numbers here were computed to 0.06 ppm and rounded off to the nearest
0.01 Hz assuming the 1936 international convention that A4 = 440.0000 Hz, using
21/12 = 1.05946310. Note as a check: 1.0594631012 = 2.00000012

Frequency in Hz

A 27.50 55.00 110.00 220.00 440.00 880.00 1760.00 3520.00 7040.00 14080.00

A� 29.14 58.27 116.54 233.08 466.16 932.33 1864.66 3729.31 7458.62 14917.25

B 30.87 61.74 123.47 246.94 493.88 987.77 1975.53 3951.07 7902.13 15804.27

C 32.70 65.41 130.81 261.63 523.25 1046.50 2093.00 4186.01 8372.02 16744.04

C� 34.65 69.30 138.59 277.18 554.37 1108.73 2217.46 4434.92 8869.85 17739.69

D 36.71 73.42 146.83 293.66 587.33 1174.66 2349.32 4698.64 9397.28 18794.55

D� 38.89 77.78 155.56 311.13 622.25 1244.51 2489.02 4978.03 9956.07 19912.13

E 41.20 82.41 164.81 329.63 659.26 1318.51 2637.02 5274.04 10548.08 21096.17

F 43.65 87.31 174.61 349.23 698.46 1396.91 2793.83 5587.65 11175.31 22350.61

F� 46.25 92.50 185.00 369.99 739.99 1479.98 2959.96 5919.91 11839.83 23679.65

G 49.00 98.00 196.00 392.00 783.99 1567.98 3135.96 6271.93 12543.86 25087.72

G� 51.91 103.83 207.65 415.30 830.61 1661.22 3322.44 6644.88 13289.75 26579.51
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Solutions

Problems of Chap. 1

1.1 The oil would spread out very rapidly over the water, reducing its surface tension
and thereby preventing wave motion at the short wavelengths characterized by the
ripples.

1.2 (a) 3.11 m. (b) 615 THz.

1.3 Answers: The frequency is 233.08/(1.441 × 1017) = 1.62 × 10−15 Hz. The
period is 6.183 × 1014 s = 19.59 million years.

1.4 (a) 633 nm. (b) 43.6 ft.

1.5 (a) 3.8. (b) 2.7

1.6
From the original length of the string, one expects frequencies at nc/2L where n

= 1,2,3,. . . . But because of reflections from the kink you also get odd harmonics of
3c/8L and of 3c/4L. Note that the string is free to move up and down at the kink,
so that the frequencies on either side of the kink are determined by only one “hard”
phase shift per round trip, and the resonances have the same form as those for a
closed pipe.

1.7 (a) Multiples of 110 Hz. (Neglecting phase shift and time delays in the amplifier,
the running wave phase shift would be 2πfL/c per trip around the loop.) (b) It would
oscillate at some other frequency if there were significant phase shift in the amplifier
(e.g., from tone controls or a large gain variation with frequency.)

1.8 Answer: The pipe is closed at the top, initially by the flap valve, and then by
the water flowing down the pipe. The fundamental frequency of the pipe starts out
at c/4L = 46 Hz, with odd harmonics at 138, 230,. . . Hz. As the water goes down
the pipe, the acoustic length shortens and the pitch for each harmonic goes up.
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1.9 The main frequencies are 523 Hz, 622 Hz, 740 Hz, 932 Hz, 1570 Hz, 1865 Hz,
2217 Hz, and 2797 Hz. Starting at C above A=440 Hz, the notes are C, E, G, B,
G, B, D, and F. (See figure for musical notation.) The first two intervals are minor
thirds, giving the whistle its characteristic, mournful sound. The bottom half might
be regarded as a half-diminished seventh. The second half is just the first chord
raised by a twelfth. (The lower chord would resolve on a diminished seventh and
then on a B minor chord) (Fig. S.1).

1.10 Answers: Hard phase shifts occur at both the ceiling and the floor, hence
one might expect the main resonances to be given approximately by fn = nc/2L.
Resonances do occur at those frequencies (multiples of 55 Hz.) But because the floor
is in the focal plane of the concave ceiling, resonances also occur at fn = nc/8L.
(The running wave from a point source on the floor makes eight transits to the ceiling
and back before it closes on itself.) Assuming the radius of curvature of the ceiling is
20 ft and twice the ceiling height, the main resonances would occur every 13.75 Hz
throughout the audio band. (Speech is totally unintelligible, but the mumbling sound
is impressive.)

1.11 One reason is that the open end of a closed pipe radiates as a monopole source
(equally in all directions), whereas an open pipe acts like a dipole with the maximum
radiated intensity going in the vertical direction (unless the pipe is turned 90◦).

1.12 By listening to the full Doppler shift on the bells at grade crossings, he or she
could determine the median pitch and the total fractional change in frequency on the
Well Tempered Scale. From that, one could calculate the speed.

1.13 Answers: (a) 38.2 mph. (b) About one whole step.

1.14 The Doppler effect from sound reflected by the rotating blades creates a
warbling effect.

1.15 (a) 676 Hz. (b) 786 Hz. (c) 738 Hz.

1.16 +715 Hz. (Note that the velocity of the image of the radar gun is twice the
speed of the car.)

1.17 Answer: c/4L = 1040/(4 × 6.9) = 37.7 Hz.

1.18 Answer: Since f = 65.4 Hz, λ = c/f = 1087/65.4 = 16.6 ft.

Fig. S.1 The steam engine
whistle
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Problems of Chap. 2

2.1 ΔF ≈ 2πΔt ≈ 0.032 Hz.

2.2 (a) To go through 50 Hz would require at least
Δt ≈ 1

2πΔF
= 1

2π50 = 318 ms.
Therefore, to go through 10,000 Hz, it would take a minimum of about 64 s, or

(b) a scanning rate of 156 Hz/s.

2.3 See Eqs. (2.7) and (2.8)

2.4 10 dB

2.5 20Log10(80 × 5280/10) + 60 = 152 dB

2.6 Serber was about 15.4 miles away. Los Alamos was about 250 miles from the
test site. The blast would have been about 24 dB louder at Serber’s position.

2.7 20Log10[3000/1] + 60 ≈ 129 dB (or about as loud as a rock band in a typical
concert setting).

2.8 About 60 dB (≈ 20Log101024.)

2.9 About 96 dB (≈ 20Log10216 = 320Log102). But as shown by Bennett (1948),
one gets an extra 3 dB by averaging the quantization errors in most systems.

2.10 Answer: The sound intensity per unit area would be attenuated by a factor
of 36, which corresponds to a decrease of 16 dB. Hence, the sound level at the
neighbor’s house should be about 64 dB (something between normal conversation
and shouting at 4 ft).

2.11 Answer: (a) 20Log10(4) ≈ 12 dB. (b) 10Log10(4) ≈ 6 dB.

2.12

Frequency (Hz) 31.5 63 125 250 500 1000 2000

Signal (dB) 65 78 88 80 70 67 50

Amplitudes (÷1000) ≈ 1.8 7.9 25 10 3.2 2.2 0.3

2.13

Frequency (Hz) 31.5 63 125 250 500 1000 2000 4000 8000

Signal (dB) 50 52.5 52.5 55 60 67.5 60 57.5 52.5

Amplitudes (÷100) ≈ 3.2 4.2 4.2 5.6 10 23 10 7.5 4.2
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2.14

n = 1 3 5 7 9 11

dB 0 −9.5 −14 −17 −19 −21

2.15 A closed organ pipe.

2.16 The spectral components would have side bands at ±6 Hz.

Problems of Chap. 3

3.1 If only one coil located at x0 were used, nulls in the spectrum would occur
at nπx0

L
= mπ where m = 1, 2, 3, . . . hence, at the harmonics n = L/x0 ≈

9, 18, 27, . . .

3.2 If the output voltages from the two coils in Fig. 3.10 were added, the result
would be

V (t) ∝ ∑∞
n=1 An {sin[nπ(x0 + a)/L] + sin[nπ(x0 − a)/L)]} fn(t)

= 2
∑∞

n=1 An sin
(

nπx0
L

)
cos

(
nπa
L

)
fn(t) and the spectrum would have minima

at n = m L
x0

and n = (2m − 1) L
2a

where m = 1, 2, 3 . . . which for the dimensions
given in the text would occur at n ≈ 9, 18, 26, 27, 36, 43, etc.

3.3 The separation between the negative and positive peaks for the 56.8 Hz
resonance should correspond to half the wavelength of the surface wave along the
grain direction. Hence, for the long dimension assumed above, λ/2 ≈ 28.1 inches
and the surface wave velocity would be about

cSurface = λf ≈ (56.2)(56.8) = 3192 in./s ≈ 266 ft/s, or about 1/4 of that for
the velocity of sound in air.

3.4 The frequency is F = 261.6 Hz. The tension = 6.64 106 dynes = 14.9 lbs.

3.5 We want the density per unit length to be the same. Hence, the cross-sectional
area of the wire should be 1.4/7.83 = 0.1788 times that of the gut string, or the
diameter of the steel wire should be 0.423 × 0.029 in. = 0.012 in.

Problems of Chap. 4

4.1 Answer: About 9.4 times for the Stein prellmechanik action, 9.2 times for the
Broadwood action, and 9.5 times for the Streicher action.
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4.2 Answer: Remove all the dampers for notes on that chord before dropping it.
(Don’t try that with a good piano!!! If the cast iron frame breaks, it is virtually
impossible to repair it.)

4.3 Answer: The highest loss (symmetric) mode occurs when all three strings are
in phase. Intermediate loss modes occur when one string is 180◦ out of phase with
the other two. The lowest loss (odd-symmetric) mode occurs when the outer strings
are 180◦ out of phase and the middle string is not vibrating.

4.4 Answer. The strength of the wire increases with its cross-sectional area, but
so does its density per unit length. Hence, the ratio of the breaking tension to the
density per unit length is about constant and that ratio determines the wave velocity,
hence the pitch, at the breaking point.

4.5 The wavelength is λ ≈ 2 × 72 = 144 in.; hence, the wave velocity c = λf =
144 × 87.3 = 12,571 in./s ≈ 1048 ft/s.

4.6 The tension is about 9 × 107 dynes ≈ 202 pounds of force.

4.7 About 29 lbs, or about 6 lbs more than to bring the string up to normal pitch.
(It takes about 1.26 × 202 ≈ 255 lbs of force to break the string. The mechanical
advantage of the tuning hammer is 10/0.1125 ≈ 8.9)

4.8 About 388 ft/s. (The maximum and minimum are separated by half a wave-
length.)

4.9 For F2, about 3.001; for C9, about 6.8.

Problems of Chap. 5

5.1 Answer: E= 3 × 440/2 = 660 Hz, D= 2 × 440/3 = 293.33 Hz, G = 2 ×
293.33/3 = 195.55 Hz. On the WTS, E = 659.25 Hz, D = 293.66 Hz, and G =
196.00 Hz.

5.2 For the A string, c = 2 × 33 × 440 = 29,040 cm/s; for the G string, c =
12,906 cm/s.

5.3 μ = T/c2 = 2.838 × 10−5 g/cm3.

5.4 195.55 Hz.

5.5 391.1 − 330 = 61.1 Hz, or B two octaves below middle C.

5.6 The difference frequency is an octave below the D, so the “Tartini Tone” doesn’t
stand out the way it would for a double third or fourth.

5.7 1490/8 = 186 strokes per second.
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Problems of Chap. 6

6.1 c/4L ≈ 43 Hz.

6.2 Open pipe resonances would occur at about 92 Hz, 184 Hz, 276 Hz, and so on.

6.3 (a) The voice frequency is proportional to 1/
√

M , where M is the effective
molecular weight of the gas in the lungs. Therefore our SCUBA diver wants M to
be about 29 × (120/77.8)2 ≈ 69.

(b) Let X = the fraction of oxygen in the tank and Y = the fraction of krypton
in the tank. Then X + Y = 1 32X + 84Y = 69

Solving these two equations yields X ≈ 0.288 for the fraction of oxygen, and
Y ≈ 0.712 for the fraction of krypton.

6.4 No. He’ll only be able to reach 2725 Hz (about halfway between E and F.)

Problems of Chap. 7

7.1 Answer: The total pressure from a 2-inch difference in the height of water per
unit area in a U-tube manometer is 5.08 g/cm2. The air-pressure regulator area is
6 ft2 = 864 in.2 = 5574 cm2. Hence the total weight needed is about 28.3 kg ≈ 62 lbs.

7.2 As a first approximation, the air velocity producing the edge tone in Fig. 7.13 is
simply proportional to the air pressure. Hence the cut-up (L in the figure) should be
reduced by 2/5 = 0.4 on each pipe.

7.3 Up to some point, the pressure in the toe of the pipe would increase
proportionally to the area of the toe-hole after the pipe has been turned on.

7.4 From Appendix D, the fundamental pitch should be 261.6 Hz. Since the Rohr
Schalmei is an open pipe, the overall length should be L = 1100/(2261.6) = 2.10 ft
= 25.2 in. Since the large cavity is tuned to the second harmonic of the pipe, both it
and the copper tube should be 25.2/2 = 12.6 in. long.

7.5 Answer: The orchestral oboe is made from a narrow-scale conical piece of
wood. (Of course, the reed is placed at the vertex where the pressure is a maximum.)

7.6 Use two pipes for each note, chosen to produce successive harmonics of a 16-ft
open pipe. The ear will then interpret the combination as having 16-ft pitch. An 8-ft
closed pipe would provide the fundamental pitch and its odd harmonics. Adding an
open 8-ft pipe would provide the needed even harmonics. If the two are on the same
note channel, they will also tend to lock in phase.

7.7 The total length of the large diameter semi-closed pipe should be L =
1100/(4440) = 0.625 ft = 7.5 in. The length of the short open pipe at the end
should be tuned to the fifth harmonic of 440 Hz = 2200 Hz. Hence, the short length
should be about 1100/(2 × 2200) = 0.25 ft = 3 in.
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7.8 From Eq. (7.3),
8.20
5.80 = 12k or k = 0.346/12 = 0.0289 We want N such that loge(2) =

0.0289N or N = 24 steps.

7.9 Answer: The 32-ft diapason is an open pipe with harmonics at 32-, 16-, and
8-ft pitch (the second, fourth, sixth, and eighth harmonic of the non-existent 64-ft
pipe). The bordon is a closed pipe with a fundamental that is a fifth higher (i.e., third
harmonic) than its nominal 64 foot pitch. Hence, the combination has frequencies
at the second, third, fourth, sixth, and eighth harmonic of the phantom 64-ft pipe
and the human ear will conclude that it actually has 64-ft pitch, even though the
fundamental is completely missing. Assuming the velocity of sound is 1100 ft/sec,
the frequencies would be:

64-ft open 8.59, 17.18, 25.7, 34.4, 42.9, 51.5, 60.1, 68.7, 77.3 Hz 32-ft
Diapason—– 17.18, —–, 34.4, —–, 51.5, —-, 68.7, —- Hz 32-ft Bordon Quint
—–, 25.7, —-, —-, —-, —-, —-, 77.3 Hz Effective harmonic 2 3 4 6 8 9
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