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8.1 Enhancing Compute Through Programmable Logic

Continuous, unabated performance increases are an innate part of the computerworld
from the invention of the first microprocessor until today. This trend appears to be,
however, slowly but steadily coming to an end. Single thread performance gains have
been slow to extract from each new technology node for more than 10 years. This
was countered successfully by a massive push into parallel computing in the form of
multi-core, multi-threaded processors which continues until the present, albeit while
showing clear signs of running out of steam. The reason is that parallelism isn’t a
silver bullet that can be applied to every problem in infinite amount. Many common
applications can’t be parallelized further, and thus, any gains that can be extracted
by increasing the number of cores and/or threads are limited to only small subset of
all applications.

This has led academia and industry alike in search of a solution that will allow for
the processing of the massive heaps of data that are being collected throughout the
world by sensors, cameras, the Internet, etc. Themost promising fruit of that research
has by far been heterogeneous compute, a concept that encompasses anything from
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CPUs with different core types on the same processor die to modern SoCs that
include CPUs, GPUs and custom accelerators or custom processors like Google’s
Tensor Processing Unit [8] or Micron’s Automata Processor [13].

These solutions are trying to address the processing of massive data, principally
in the cloud but also increasingly at the edge, where a big part of that data is being
generated. Both of these fields are ripe for exploration where a multitude of concepts
are vying for domination. Regardless of the details of each architecture, the basic
premise and ingredients are always the same, as are the issues plaguing the current
cloud-centric paradigm which they’re trying to solve, namely:

• Heaps of data being directed to the cloud for processing and/or storage, leading to
congestion at the network leading to and from the data centers.

• Unacceptably high decision-making latency leading to delays in taking action
based on collected data.

The former is a direct result of the centralized architecture, which treats edge
nodes as simple data collection points and/or actuators and ships all the data to one
or more massive data centers for analysis. As the number of edge devices explodes
and the data they collect diversifies, the traffic being fed into data centers will be
strained to the extreme, which means that either the network will become congested
or unacceptably high investment into infrastructure will be required to avoid this.
Congestion on the path to and from the data center will unavoidably lead to the
second issue, latency. Decision-making latency means the time it takes to reach a
decision regarding an action to be taken and implement that actionwherever required,
usually at the networks edge. Currently in order for this to happen, data needs to be
sent up to the cloud, sifted through and the decision needs to propagated downward
to the edge again over multiple, potentially unreliable hops. Thus, it is clear that there
are tangible benefits to accelerating tasks into the cloud but also to shifting parts of the
processing load toward the networks edge. This translates into increased processing
requirements for small, low power mist and fog nodes, which are currently not up to
the task and which can’t simply use the powerful CPUs found in contemporary data
centers due to power constraints. This makes the case for compute acceleration that
delivers significant performance gains at low power consumption at the edge even
more prescient than in the cloud.

One alternative that can offer impressive performance increase while maintaining
very low power consumption, a feature critical in power-strapped edge nodes, are
FPGAs. There’s a long literature of examples where FPGAs provide impressive
performance benefits in comparison to standard CPUs, which Sirowy and Fiorin
sum up excellently [11]. At the same time, FPGAs can be reprogrammed quickly
and infinitely so the tasks assigned to them can vary over time making them easily
adaptable to changing demands and capable of receiving updated dynamically in the
field. That being said, programmable logic has been marred by several caveats that
hinder its adoption:

• While FPGAs are reprogrammable, the process does not allow for automated,
remote deployment of tasks from a distance. Typically, programming has to be
performed with a cable attached to the device.
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• FPGAdevelopment requires very esoteric knowledge of the target device including
low-level details like pin assignments and interface standards.
This chapter proposed the Programmable Compute Platform (PCP) which
addresses and alleviates both of these concerns by offering:

• A system consisting of both HW and SW that allows for the integration of an
FPGA into the edge and/or cloud and the remote (re)deployment of tasks to it over
a standard SW stack.

• A working hardware system with strictly defined, intuitive interfaces where tasks
can work in a plug-and-play manner thus reducing the overhead to develop tasks
for remote deployment.

In the current iteration of the platform, this is accomplished by utilizing a novel
device called an FPGA SoC. We use this device to achieve an optimal division of
labor between the A9 CPUs and the FPGA, with the CPUs executing the SW that
enables the remote deployment of an HW task (similar to an HW virtual machine)
on the programmable logic. This includes an agent that can reply to queries about the
devices state and can receive a HWVM image and deploy it to the HW and/or create
virtual network interfaces to integrate the device seamlessly into service function
chains.

Our system is at the stage of a functioning proof of concept with all of the manda-
tory HW and SW components up and running on the Xilinx ZC706 development
board. An h264 decoder is used as a test HW VM to highlight the benefits of using
an FPGA as an accelerator and the performance and power advantages it brings.

The remainder of this chapter is organized as follows: Section 8.2 provides an
overview of existing efforts in this area. Section 8.3 introduces the programmable
cloud platform and its components, while Sect. 8.3.3 explains the changes made to
the OpenStack controller to make it FPGA-aware. Section 8.4 provides preliminary
results both for the platform and the HW VM being tested, and finally, Sect. 8.5
summarizes our findings and provides pointers for future work.

8.2 Prior Efforts in Virtualizing Programmable Logic

Research in integrating FPGAs in the existing cloud infrastructure is scarce though
the topic has been gaining traction as of late. Edge acceleration has on the other hand
been flying completely under the radar so far, even at a conceptual level. On the cloud
front, the handful of research papers can be found on the subject is summarized here,
with all of them converging on a single approach:

• Extending OpenStack Nova to allow for the deployment of FPGA-based systems.
• Provision of a static area in the FPGA to allow for the deployment of the NFs.
• A dynamically reconfigurable area in the FPGA in which the user will be able to
deploy his NFs.

More specifically, Buma et al. [3] introduce a framework for deploying the so-
called Virtualized FPGA Resources (VFRs) to an FPGA which focuses on the HW
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side of the problem. They take advantage of the OpenStack service called glance
to deploy VM packages which contain FPGA bitstreams to the device. These are
then picked up by an agent (running in SW on the compute node), which unpacks
the VM and deploys the bitstream to the device. The advantage of this approach is
that the FPGA is completely abstracted from OpenStack. Deployment of a VM from
its perspective remains does not change in the slightest since the whole process is
handled in the agent on the compute node. The agent manages the FPGA, which
is divided into a static and a dynamic part. The static part contains all the modules
necessary for the deployment of the VFRs and for the communication between the
external world and the VFRs (including a network and a DRAM interface). It also
performs the necessary handshaking between the VFR and the agent to start and stop
it when deploying or retracting it. The dynamic area is where the VFRs are actually
programmed. A NetFPGA-10G board is used for a simple prototype, which uses a
load balancer application to demonstrate primarily the feasibility of the concept, but
also the performance gains that can be reaped by migrating from an SW VM to an
FPGA-based one.

Another similar if somewhat more comprehensive effort was published by
Chen et al. [4]. This work includes many common elements with the system to
be developed within this project. More specifically, it uses adapted OpenStack to
deploy HW VM images to the FPGA in which it implements a layered architecture
that enables the programmable logic in the FPGA to run these HWVMs in isolation.
On the HW level, the programmable logic can be both space- and time-shared by
introducing the notion of a segregated accelerator region in which the HW VMs are
slotted in. Additionally, a static area is reserved on the programmable logic, which
regulates access to DMA resources among the accelerators and manages jobs in
them. On top of this HW infrastructure, there are three SW layers that facilitate the
deployment and control of the HW VMs from host SW whether that is the cloud
controller or SW running locally on the processor. The main limitation of this work
is the limited connectivity offered to the accelerators (only a DMA connection to
DRAM) and the fact that there is no provision for HW/SW VMs. Furthermore, the
paper does not go into detail about how OpenStack had to be extended to support
FPGA-based VMs.

A third approach for deploying VNFs to FPGA-based systems was published by
Ge et al. [7]. This work shares a lot of commonalities with the [2] in that the pro-
grammable logic is divided into slots for accelerators to which tasks are dispatched.
The accelerators are slotted in using partial reconfiguration which is handled by a
VM running on standard x86 processor. Additionally, each accelerator is deployed
over its own SW VM via OpenStack. This means that having an SW component is
mandatory even if its just a shell for deploying an accelerator. In the system described
it appears that both OpenStack and VMs are not tightly integrated into this system,
meaning that the heterogeneity of the system is hidden from these components.

Another indispensable element of any virtualized system is the Hypervisor. Of
particular interest for this work are potential Hypervisors that can be executed on the
ARMA9 processors found on an FPGA SoC. One possible alternative was presented
by Pham et al. [10]. The system introduces in this paper encompasses a wider system
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than just the Hypervisor. That system is based on the time-multiplexing of tasks on
the programmable logic to accelerate SW executed on the Hypervisor. To accomplish
this it creates an overlay onto the programmable fabric to allow for coarse-grained
core design and deployment. The most interesting part of this work is the Hypervisor
which runs on the ARMA9 cores and is based on the Codezero Hypervisor fromBell
Labs. This could be reused in our effort, granted that the source code is available;
however, modifications will most certainly have to be made to:

• Allow it to run on the ARM A9s found on the Zynq.
• Allow it to virtualize the FPGA resource.
• Communicate in a compatible manner with OpenStack Nova.

The effort required by each of these changes remains to be evaluated.
It’s clear from the short overview provided in this section that while all existing

solutions appear to agree on the basic features required for FPGA cloud integration,
all of the platforms end up leaving something to be desired. PCP rectifies this by
ticking all the boxes and offering a straightforward, intuitive FPGA-based device for
the cloud end the edge.

8.3 A Virtualizable, Remotely Manageable FPGA SoC
Platform

This section provides a detailed overview of the FPGA SoC-based programmable
cloud platform. It consists of a hardware and a software component that together
allows for the remote deployment of hardware tasks on the FPGA by using standard
cloudmanagement software, namely OpenStack. The hardware component is further
elaborated upon in Sect. 8.3.1. The software running on the FPGASoC’s ARMCPUs
allows the integration of the platform into OpenStack and is explained in Sect. 8.3.2.
Finally, the changes that were performed in the OpenStack controller in order to
allow it to utilize programmable logic-based devices are highlighted in Sect. 8.3.3.

PCPmakes some concessions in order to simplify the design and strike an optimal
balance between design complexity (and thus the overhead of managing the VMs’
deployment) and the flexibility offered to the user. The first of the two decisions that
were made were to only allow one HW VM to be deployed on the programmable
fabric at any given time. This was done to avoid the complexities of parallel deploy-
ment of HW tasks on the FPGA. These have been discussed in detail in the past [1, 2,
9] and always led to unmanageable overhead and complicate the design of the hard-
ware tasks for the system excessively thus negating part of the advantages of such a
platform. The second decision was to allow for only pure HW VMs to be deployed.
Since an FPGA SoC consists of a pair of ARM A9 CPUs and programmable logic,
it is in principle possible to have VMs that are made up of a software part running on
the ARM and a hardware part running on the programmable logic. The reason this
was rejected for the PCP this is that the ARM A9 CPU currently available in FPGA
SoC devices is not directly virtualizable itself, which increases the complexity of the
task and reduces its appeal since the processors in the PCP already had their work cut
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out for them. Future FPGA SoCs like Xilinx’s MPSoC [15] will include four ARM
A53 CPUs which pack more punch and are directly virtualizable, which will make
HW/SW VMs a more interesting endeavor.

8.3.1 Hardware

PCP allows for the deployment of tasks onto the programmable logic, which can
be swapped in and out by the OpenStack controller as required. To accomplish this,
we utilize a feature present in modern FPGA called dynamic partial reconfiguration
(DPR). DPR allows part of the programmable fabric to be reprogrammed on the
fly, while the remainder of the device continues to operate as intended. The PCP
uses DPR to update the HW VM that is executed on the programmable logic on the
fly. As such, the programmable logic in the programmable cloud platform is further
subdivided into two parts, the static and the dynamic one, a typical arrangement in
systems that utilize dynamic partial reconfiguration to change the functionality of a
section of the device. This division is reflected in Fig. 8.1.

The static area is ancillary and enables the reconfiguration of the dynamic one,
as well as the interconnection of the processor system (PS) with the dynamic area.
It contains an AXI interconnect and AXI DMA module which connect the PS to the
programmable logic (PL) as well as the PCAP that performs the reconfiguration of
the dynamic area. The AXI DMAmodule contains two channels: one for data traffic
to and from theHWVMand one used for sendingmonitoring data from theVM to the
monitoring SWon the CPU. It doesn’t implement Scatter–Gather DMA functionality
as this would lead to higher resource usage due to the additional complexity and the

Fig. 8.1 Overview of the programmable cloud platform hardware/software architecture
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expected benefit for our system is infinitesimal. The AXI communication fabric runs
at 150MHz and has a width of 64 bits thus providing enough bandwidth to and from
the dynamic area. An important goal for the static area is that it remains as small as
possible to allow for the bulk of the programmable resources to remain available for
the HWVMs. In the PCP the static area occupies approx. 6000 LUTs and 3500 FFs,
which is less than 4.5% of the available resources on the used FPGA SoC device

The dynamic area is the larger part of the PL and is where the HWVM is deployed
after receiving it over the OpenStack worker. The HW VM that is being deployed
contains the user accelerator and a monitoring component as mentioned previously.
This component is provided as part of the platform; however, the accelerator designer
must feed it with the appropriate monitoring data which will then be send to the PS.

8.3.2 Software

A large part of the innovation in the programmable cloud platform comes from
its software. At the core of the software is the modified, programmable logic-aware
OpenStack (compute) worker node which is assisted by low-level software that inter-
faces with the Xilinx DMA driver, the DevC driver that feeds data into the PCAP, an
FPGA component that is responsible for performing the actual DPR, and a pseudo
libvirt library that poses as a counterpart to the worker and answers queries regard-
ing the available resources of the device through an extended API as described in
Sect. 8.3.3. As the FPGASoC in the PCP is single-tenant, the libvirt is a, respectively,
simple component. From a high-level perspective, workers executing a modified ver-
sion of the compute service client are responsible for managing the VMs. Quite sim-
ilar to its original purpose, workers can deploy, terminate, and reboot VMs, as well
as run monitoring services to provide valuable information such as FPGA resource
utilization. Given the simplicity of HWVMdeployment in PCP, this module is at this
stage, respectively, simple but it is bound to grow more complicated as the platform
develops.

Additionally, the worker can take of the migration of an HW from one FPGA to
another. This is a nontrivial exercise in an FPGA-based VM, as the entire config-
uration of the programmable logic has to be read out of the device, and then send
to a remote node which will redeploy this to a different FPGA. In order for this to
happen, execution of the HW VM has to halt first, which means that the worker
stops accepting new data for this host, waits for all processing to complete, and then
starts reading out the FPGA configuration, which is packaged and then passed on to
the OpenStack controller over the network for deployment on a different node. The
redeployment process is identical to the deployment of a new VM from a worker
perspective. It is worth noting that since programmable logic configuration are com-
pletely bound to a specific device type, an HW VM that has been read out from a
specific Zynq device (say the Zynq 7045 used in the PCP) can’t be automatically
deployed to a Zynq 7030 but only to a different Zynq 7045. This limits the flexibility
of the migration process, but is a fundamental limitation of how configuration files
for FPGAs work.
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Furthermore, an overlay to the Xilinx DMA driver has been written which takes
care of all the low-level driver functions necessary to create and initialize the DMA
channels for reading and writing to the device and presents a character device driver
in order to simplify data copying from the OpenStack worker to the PL. Special care
has been given to make this a zero-copy driver to maximize the impact of the SW
stack on performance.

An important aspect that must be taken care off in the software stack is the syn-
chronization between data traffic and the deployment of a new VM. It is imperative
that when the VM is retired and the programmable fabric is to be reconfigured,
all pending transactions between the VM and the SW have been completed. This
includes all DMA transactions for both the actual accelerator and any monitoring
data that might be transferred at any given time. If stale data remains in the AXI
interconnect, then this will lead to unpredictable behavior from which it might be
impossible to recover. The SW stack takes special care of this by synchronizing
the threads passing the data from the OpenStack agent on to the fabric. Thus when
a new deployment request comes down for execution, the software is notified and
stops receiving new transfers from that point on, while at the same time locking the
deployment thread until all outstanding transactions have completed. The VM image
(essentially the bitstream) can then be passed on to DevC driver which will perform
the reconfiguration. The locks will then be released so traffic can start flowing again
to and from the accelerator.

Finally, the software stack includes a monitoring component which reads the
monitoring data of the dedicated AXI DMA channel, writes them into a local file,
and transmits them to a remote server over the well-known curl utility, which has
been cross compiled for the Zynq platform.

8.3.3 Making OpenStack FPGA-Aware

When it comes to deploying a VM using a multi-tenant OpenStack topology, the
OpenStack compute worker node is only one side of the coin. The other side is the
OpenStack controller node which is responsible for running services that direct and
manage the deployment of tasks in the pool of worker nodes it supervises. It also
provides a single point of access through API services for communication with the
other components of OpenStack. Deploying an HW VM correctly requires not only
an adapted worker but also and an FPGA-aware OpenStack Controller node. Related
aspects of the controller’s functionality that were taken into account and modified in
order to make it FPGA-aware for the needs of the proposed solution are listed below:

• Adaptationof the scheduler service to recognize, locate, andmanageprogrammable
logic-based devices and assignHWVMs to them. The allocation ofVMs to tenants
is done based on several filtering functions that apply criteria to select the most
suitable tenant that will host a VM. The selection is done based on a predefined
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set of metrics and information gathered from the monitoring services running on
the worker nodes.

• The OpenStack Nova API service has been extended in order to include the calls
to platform-specific functions. In this direction, additional commands have been
added to the API that allows the management of the HW VM images by iden-
tifying and deploying them. So far the changes are command-line only. It goes
without saying the extensions on the Nova API are backward compatible and are
implementedwith respect to theNova developers policies. This is accomplished by
taking advantage of the APIMicroversions framework that allows for specification
of the API version that will be used in any circumstance.

• The Conductor service that also runs on the Controller node had to be slightly
adapted in order to maintain access to the default relational database used by
OpenStack for storing stateful information regarding the status of the platform.
OpenStack’s messaging queue is put to use to an extent that allows the brokerage
of our system-specific messages between worker nodes, API service, scheduler,
and the network service described below.

Another important aspect of deploying VMs over OpenStack is the provision and
management of basic networking services. For the allocation of IP addresses and
setup and configuration of the virtual networks of the host nodes (PCPs), a Nova-
network service runs on the controller node that provisions services such as NAT
and DHCP. A Nova-network client that executes on the worker node is responsible
for configuring the network interface of the respective PCP-host. The Nova-network
service was selected over the more advanced OpenStack Network Service (neutron)
due to the added complexity and due to the fact that our requirements at this stage of
the platform do not command for advanced networking topologies, or services such
as load balancers and VPN which are offered by neutron.

Since the PCP is a compute only node, our modifications focused on the Nova
component which is responsible for managing compute tasks but also extend to
Glance, which administers the VM images used to deploy the VMs. Thus, the Glance
component was modified to be able to manage HWVMs. Glance can now store these
VMs and identify which ones are destined for FPGA SoCs and which not, avoiding
mishaps during deployment.

It’s worth noting that the changes performed are generic and do not limit PCP to
being used with the development system currently used. Instead, any FPGA SoC can
be used and even any FPGA provided its connected to a processor which can act as
proxy for the OpenStack worker.

8.4 Experimental Results

PCP has been implemented using a Xilinx ZC706 development board which contains
a Zynq xc7z045 FPGA SoC device. The board contains a Gigabit Ethernet interface
which is used to connect the CPUs to the OpenStack controller and the traffic source
and sink and an SD card which contains the boot image for the A9 CPUs. Thus, net-
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Fig. 8.2 Distribution of time
lost during the deployment
of an HW virtual machine

Fig. 8.3 Distribution of time
required to migrate a virtual
machine from one FPGA
SoC node to another

work traffic entering the system is fed directly into the CPU for processing meaning
all traffic to and from the accelerator goes through the A9s. This is mandatory since
OpenStack has to perform network address translation on incoming data, which is
performed at the SW level.

Evaluating the performance of our platform entails two separate aspects. First
of all, we must ensure that the software stack running on the relatively weak A9
processors doesn’t limit the capabilities of the programmable logic meaning that all
OpenStack-related functionality is performed in a timely fashion. Furthermore, it is
equally important to show that the HW VM running on the system’s programmable
fabric can indeed provide tangible benefits for a common application (Fig.8.5).

Another important aspect of VM deployment is migrating a VM from one node to
another. This processwas described inSect. 8.3.2 and entails readingout theHWfrom
the programmable logic via the DevC driver, sending it to the OpenStack controller
and then redeploying it to a newdevice.We havemeasured the time thewhole process
takes and provided the data, breaking it down into its constituent parts (Fig. 8.2).
Figure 8.3 illustrates the results averaged out over a set of 100 measurements.

The figure shows that reading the configuration out of the existing deployment
(including stopping all traffic to that VM first) takes up only a small fraction of
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Fig. 8.4 Distribution of
overhead when transmitting
data through the SW stack

the total time it takes to migrate the VM completely. Migration time stands for the
time required to send the data back to the OpenStack controller, while redeployment
involves all the tasks detailed in Fig. 8.3, which are repeated when the VM is passed
on to a new FPGA SoC node.

In order to evaluate the overhead caused by OpenStack processing on the Zynq’s
PS subsystem, we measure the time it takes to deploy one HWVM from the moment
the appropriate command is passed to the controller, until the completion of the
partial reconfiguration on the programmable fabric. Figure 8.3 illustrates how much
time each part of the deployment cycle takes. The total process takes almost exactly
20 s with the bulk of the time being consumed by the setup of the compute instance
followed closely by the creation of the necessary virtual network interfaces. While
not negligible this time is on par with the deployment of SW VMs especially when
one considers that an HW VM is readily available after being instantiated whereas
an SW VM also has a substantial boot time. The actual reconfiguration of the fabric
itself takes only a fraction of a second and can be safely ignored in this context.

The second facet that needs to be evaluated is whether the overhead incurred
on the data when passing through the OpenStack worker during the HW VM’s
operation is low enough as well as the identification of sources of delay so that
future improvements may be targeted accordingly. Figure 8.4 provides an overview
of the form of a normalized pie chart of where in the software stack the time is spent
when sending and receiving data traffic from and to the HW VM.

It’s obvious from the above that the bulk of the processing cycles goes into TCP
and OpenStack processing. TCP/IP is well known to be a processor cycle-hog [6],
and this is verified on this platform as well even when only using a 1Gbps link. It is
clear that the current software would not be able to support higher network data rates
unless some sort of TCP acceleration (e.g., [12]) was utilized. This however would
be implemented in the programmable logic and thus siphon resources away from
the dynamic area and would still require the data to be shipped to the processor for
the required OpenStack processing. OpenStack itself performs address translation
on all incoming and outgoing packets, which is the reason behind its high cycle use.
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Fig. 8.5 Performance comparison of various implementations of the h264 decoder with a Xeon
E5-2637 for a VGA video

A straightforward solution would be to simplify this processing given that PCP is
a single-tenant platform, and thus, cohabitation of multiple user VMs is precluded.
This is consigned to future work.

For the evaluation of the PCP, we have developed an h264 video decoder based on
the OpenH264 software code provided by Cisco [5]. That code was reworked exten-
sively to convert it to synthesizable C++ code which was then fed into Vivado HLS.
There are three different versions of the design as shown in Fig. 8.5. The leftmost
version represents the initial synthesizable version with no additional optimizations
applied. The changes in this version can be essentially summed up in eliminating
dynamic memory management prevalent in many areas of the original code. Thus
the buffers and the context for each NAL [14] are now statically allocated.

The middle version includes optimizations made to the function hierarchy to
minimize the impact of function calls,while the rightmost version represents a version
that has been optimized and parallelized until the whole of the dynamic area was used
up. It’s worth noting that despite these modifications, the code was never rewritten
from the ground up, and thus, it still maintains a structure which is not necessarily
optimal for an HW module. Nevertheless, it shows that even with relatively modest
reworking of existing SW code, considerable benefits can be reaped with the PCP.

Besides performance, resource use is an important parameter in FPGA designs.
Table 8.1 provides the resource use numbers for the three variations of our h264
decoder.We can see that, as expected, the higher performing,more optimized variants
consume significantly higher resources with the parallel implementation occupying a
sizable chunk of the Zynq 7045 device used. Take in correlationwith the performance
number in Fig. 8.5 we can see that attaining a significant boost in comparison to
standard x86 CPUs requires that a considerable part of the whole device is used
(keep in mind that the number quoted on Table 8.1 does not include the overhead for
the static area of our design, which is roughly 4.5% of the resources, as stipulated in
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Table 8.1 h264 Decoder resource use on a Zynq 7045 FPGA SoC

LUTs (%) FFs (%) BRAM (%) DSP (%)

Baseline 31172/14.26 35151/8.04 19/3.57 36/3.96

Function
optimization

71526/37.72 74062/16.94 36/6.67 78/8.7

Parallel 151381/69.25 148561/33.98 85/15.63 156/17.34

Total (Zynq 7045) 218600/100 437200/100 545/100 900/100

Sect. 8.3.2). This vindicates our decision to keep the dynamic area single-tenant in
order to simplify the design of the system.

8.5 Conclusions

This paper introduced the programmable cloud platform, an FPGA SoC-based sys-
tem which allows programmable logic to be exposed as a resource over a standard
cloud environment like OpenStack. The system utilizes the devices ARMA9 proces-
sors to run the OpenStack agent and thus frees the programmable logic to accelerate
tasks which are deployed as HW VMs. We use an application amenable to FPGA
acceleration like h264 decoding to show that the platform allows for the swift deploy-
ment of the VNF and can feed it with sufficient data to reap tangible performance
benefits. However, the cost of running OpenStack on a relatively weak processor is
significant, and thus, one of the key issues to be tackled in the immediate future is
the streamlining of the SW part to minimize this overhead. Additional work includes
the extension of the platform’s capabilities by integrating additional interfaces into
the dynamic area.
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