
Chapter 7
Semi-infinite Programs with Some
Convexity

This and the next chapters of the book contain mainly some recent applications of
the constructions and results of variational analysis and generalized differentiation
presented above, as well as new developments required for such applications, to a re-
markable class of optimization problems unified under the name of semi-infinite pro-
gramming (SIP). We also use the abbreviations “SIP” for a particular semi-infinite
program and “SIPs” as plural. The SIP terminology comes from the fact that orig-
inally this class of optimization problems concerned minimizing real-valued func-
tions on finite-dimensional spaces subject to infinitely many inequality constraints
usually indexed by a compact set. Over the years, the theory and applications of SIP
have been evolved to include optimization problems with noncompact index sets
and on infinite-dimensional spaces. Sometimes SIPs with infinite-dimensional deci-
sion spaces are labeled as problems of “infinite programming,” while here we prefer
to use the conventional SIP terminology regardless of the decision space dimension.
As seen, the underlying style in the previous chapters was to present major results in
finite-dimensional spaces and then to discuss infinite-dimensional extensions only
in exercise and commentary sections. In contrast, the standing framework of this
and the next chapters is, unless otherwise stated, the general Banach space setting.
The main reasons for it are as follows:

(1) Due to their essence, SIPs always contain an infinite-dimensional part and
require the usage of infinite-dimensional analysis for their investigation.

(2) The major results obtained below are formulated exactly in the same way in
both cases of finite-dimensional and Banach decision spaces.

(3) Many practically meaningful models can be described as SIPs with infinite-
dimensional decision spaces. In particular, this is the case of the water resource
optimization problem, which is formulated and solved in Section 7.2 by using the
necessary optimality conditions obtained therein.
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260 7 Semi-infinite Programs with Some Convexity

7.1 Stability of Infinite Linear Inequality Systems

In this section, we study the sets of feasible solutions to SIPs described by the pa-
rameterized infinite systems of linear inequalities

F(p) := {x ∈ X
∣∣ 〈a∗

t , x〉 ≤ bt + pt , t ∈ T
}
, p = (pt )t∈T , (7.1)

with an arbitrary index set T , where x ∈ X is a decision variable belonging to a
Banach space X and where p = (pt )t∈T ∈ P is a functional parameter taking
values in the prescribed Banach space P of perturbations specified below. The data
of (7.1) are given as follows:

• a∗
t ∈ X∗ are fixed for all t ∈ T . We use the same notation for the given norm

‖ · ‖ on X and the corresponding dual norm on X∗ defined by

‖x∗‖ := sup
{〈x∗, x〉∣∣ ‖x‖ ≤ 1

}
, x∗ ∈ X∗.

• bt ∈ R are fixed for all t ∈ T . We identify the collection {bt | t ∈ T } with the
real-valued function b : T → R.

• pt = p(t) ∈ R for all t ∈ T . These functional parameters p : T → R

are our varying perturbations, which are taken from the Banach parameter space
P := l∞(T ) of all bounded functions on T with the supremum norm ‖p‖∞ :=
sup
{|p(t)| ∣∣ t ∈ T

}
. When T is compact and p(·) are restricted to be continuous

on T , the parameter space P reduces to C(T ).

It is obvious that the space l∞(T ) is never finite-dimensional when the index set
T is infinite. Moreover, in the infinite-dimensional case, the space l∞(T ) is never
Asplund; see [638, Example 1.21].

The primary goal of this section is to calculate the coderivative of the set-valued
mapping F defined in (7.1) as well as the coderivative norm of F at the reference
point entirely in terms of the initial data of (7.1). Based on this, we derive here a
complete coderivative characterization of the Lipschitz-like property of F in the
form identical to the finite-dimensional setting of Chapter 3. Furthermore, the ob-
tained coderivative calculation is the key of deriving necessary optimality conditions
for SIPs with linear inequality constraints of type (7.1) in Section 7.2 and then in
turn becomes crucial to investigate SIPs described by convex inequalities and the
like in the subsequent Section 7.3.

Recall that the coderivative of any mapping F : X →→ Y between Banach spaces
studied in this and the next chapters is considered in the usual “normal” sense as in
finite dimensions. This means that, given any (x̄, ȳ) ∈ gph F , the coderivative of F

at (x̄, ȳ) is the mapping F : Y ∗ →→ X∗ defined by

D∗F(x̄, ȳ)(y∗) := {x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gph F

)}
(7.2)

for y∗ ∈ Y ∗ via the corresponding normal cone to the graph of F at (x̄, ȳ).
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7.1.1 Lipschitz-Like Property and Strong Slater Condition

Since we are in the general Banach space setting, the symbol w∗-lim signifies here
the weak∗ topological limit in the dual space in question. This corresponds to the
convergence of nets denoted usually by {x∗

ν }ν∈N . In the case of sequences, we re-
place the symbol N by the standard natural series notion N = {1, 2, . . .}. For an
arbitrary index set T , denote by R

T the product space of λ = (λt | t ∈ T ) with
λt ∈ R for all t ∈ T . Finally, let R(T ) be the collection of multipliers λ ∈ R

T such
that λt 
= 0 for finitely many t ∈ T , and let R(T )

+ be the positive cone in R
(T ) defined

by

R
(T )
+ := {λ ∈ R

(T )
∣∣ λt ≥ 0 for all t ∈ T

}
. (7.3)

Note also that throughout this chapter, the symbol “cone �” stands for the convex
conic hull of the set in question.

Let us now recall a well-recognized qualification condition for SIPs with infi-
nite linear inequality constraints and then show that it provides, along with other
conditions, an equivalent description of the Lipschitz-like property of the constraint
mapping F from (7.1).

Definition 7.1 (Strong Slater Condition). We say that the infinite linear inequality
system (7.1) satisfies the STRONG SLATER CONDITION (SSC) at p = (pt )t∈T if
there exists x̂ ∈ X such that

sup
t∈T

[〈a∗
t , x̂〉 − bt − pt

]
< 0. (7.4)

Furthermore, every point x̂ ∈ X satisfying condition (7.4) is a STRONG SLATER

POINT for system (7.1) at p = (pt )t∈T .

Define further the parametric characteristic sets

C(p) := co
{
(a∗

t , bt + pt )
∣∣ t ∈ T

}
, p ∈ l∞(T ), (7.5)

and suppose without loss of generality that p̄ = 0 ∈ l∞(T ) is the designated nomi-
nal parameter. First, we verify the following equivalences.

Theorem 7.2 (Equivalent Descriptions of the Lipschitz-Like Property for Infi-
nite Linear Systems). Given p ∈ domF for (7.1) in the Banach decision space X,
the following properties are equivalent:

(i) F is Lipschitz-like around (p, x) for all x ∈ F(p).
(ii) p ∈ int(domF).
(iii) F satisfies the strong Slater condition at p.
(iv) (0, 0) /∈ cl∗C(p) via the characteristic set in (7.5).

Finally, the boundedness of
{
a∗
t | t ∈ T

}
ensures the equivalence of (i)–(iv) to:

(v) there exists x̂ ∈ X such that (p, x̂) ∈ int(gphF).
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Proof. The equivalence between (i) and (ii) is a consequence of the Robinson-
Ursescu theorem and the equivalence between the Lipschitz-like property of the
convex-graph mapping F and the metric regularity/covering properties of its in-
verse; see Theorem 3.2 and Corollary 3.6 together with the corresponding exercises
and commentaries in Sections 3.4 and 3.5.

To verify implication (iii)⇒(ii), suppose that x̂ is a strong Slater point for system
(7.1) at p and find ϑ > 0 such that

〈a∗
t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T .

Then it is obvious that for any q ∈ l∞(T ) with ‖q‖ < ϑ , we have x̂ ∈ F(p +
q). Therefore p + q ∈ domF , and thus (ii) holds. To justify further the converse
implication (ii)⇒(iii), take p ∈ int(domF), and then get p + q ∈ domF provided
that qt = −ϑ as t ∈ T and that ϑ > 0 is sufficiently small. Thus every x̂ ∈ F(p+q)

is a strong Slater point for the infinite system (7.1) at p.
Next we show that (iii)⇒(iv). Arguing by contradiction, suppose that (0, 0) ∈

cl∗C(p). Then there exists a net {λν}ν∈N ∈ R
(T )
+ satisfying the equality

∑
t∈T λtν =

1 for all ν ∈ N and the limiting condition

(0, 0) = w∗- lim
ν∈N

∑

t∈T

λtν

(
a∗
t , bt + pt

)
. (7.6)

If x̂ is a strong Slater point for system (7.1) at p, we find ϑ > 0 such that

〈a∗
t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T .

Then condition (7.6) leads us to the contradiction

0 = 〈0, x̂〉 + 0 · (−1) = lim
ν∈N

∑

t∈T

λtν

(〈a∗
t , x̂〉 + (bt + pt ) · (−1)

) ≤ −ϑ,

which thus justifies (iii)⇒(iv). To verify the converse implication (iv)⇒(iii), we
employ the dual description of the consistency in (7.1) given by

p ∈ domF ⇐⇒ (0,−1) /∈ cl∗cone
{
(a∗

t , bt + pt )
∣∣ t ∈ T

}
, (7.7)

which is discussed in Exercise 7.71 and the commentaries in Section 7.7. Then the
classical strong separation theorem gives us (0, 0) 
= (v, α) ∈ X × R with

〈
a∗
t , v
〉+ α(bt + pt) ≤ 0, t ∈ T , and 〈0, v〉 + (−1)α = −α > 0. (7.8)

Using (iv), we get (0, 0) 
= (z, β) ∈ X × R and γ ∈ R for which

〈a∗
t , z〉 + β(bt + pt ) ≤ γ < 0 whenever t ∈ T . (7.9)

Consider now the combination (u, η) := (z, β) + λ(v, α), and select λ > 0 such
that η < 0. Defining x̂ := −η−1u, we deduce from (7.8) and (7.9) that
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〈a∗
t , x̂〉 − bt − pt = −η−1(〈a∗

t , u〉 + η(bt + pt )
) ≤ −η−1γ < 0.

Hence x̂ is a strong Slater point for system (7.1) at p, i.e., (iii) holds.
It remains to consider condition (v). It is easy to see that (v) always implies (iv)

and so the other conditions of the theorem. Suppose now that the set
{
a∗
t | t ∈ T

}

is bounded, and show that (iii) implies (v). Select M ≥ 0 such that
∥∥a∗

t

∥∥ ≤ M for
every t ∈ T , and take x̂ ∈ X satisfying (7.4). Denote

γ := − sup
t∈T

[〈
a∗
t , x̂
〉− bt − pt

]
> 0

and consider any pair
(
p′, u

) ∈ l∞(T ) × X such that

‖u‖ ≤ η := γ / (M + 1) > 0 and
∥∥p′∥∥ ≤ η.

It is easy to see that for such (p′, u) and every t ∈ T , we have

〈
a∗
t , x̂ + u

〉− bt − pt − p′
t ≤ −γ + M ‖u‖ + ∥∥p′∥∥ ≤ η (M + 1) − γ = 0,

and so
(
p + p′, x̂ + u

) ∈ gphF . Thus (p, x̂) ∈ int(gphF), which verifies implica-
tion (iii)⇒(v) and completes the proof of the theorem. �

7.1.2 Coderivatives for Parametric Infinite Linear Systems

In this subsection, we calculate the coderivative D∗F(0, x̄) as in (7.2) of the
parametric infinite system (7.1) at the reference point (0, x̄) and also its norm
‖D∗F(0, x̄)‖ entirely via the initial data of (7.1). Recall that the dual space l∞(T )∗
to the parameter space in (7.1) is isometric to the space ba(T ) of all the bounded
and additive measures μ(·) on subsets of T with the norm

‖μ‖ := sup
A⊂T

μ(A) − inf
B⊂T

μ(B).

In what follows a dual element p∗ ∈ l∞(T )∗ is identified with the corresponding
measure μ ∈ ba(T ) satisfying the canonical duality relationship

〈μ,p〉 =
∫

T

pt μ(dt), p = (pt )t∈T .

To proceed further, we need the following extension of the classical Farkas
lemma to the case of infinite linear inequality systems; see Exercise 7.73 and the
corresponding commentaries in Section 7.7.

Proposition 7.3 (Extended Farkas Lemma for Infinite Linear Inequalities). Let
p ∈ domF for the infinite system (7.1), and let (x∗, α) ∈ X∗ × R. The following
assertions are equivalent:

(i) We have 〈x∗, x〉 ≤ α whenever x ∈ F(p), i.e.,
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[〈a∗
t , x〉 ≤ bt + pt for all t ∈ T

] �⇒ [〈x∗, x〉 ≤ α
]
.

(ii) The pair (x∗, α) satisfies the inclusion

(x∗, α) ∈ cl∗cone
[{

(a∗
t , bt + pt)

∣∣ t ∈ T
} ∪ {(0, 1)}] with 0 ∈ X∗.

Using Proposition 7.3, we first describe the normal cone to the graph

gphF = {(p, x) ∈ l∞(T ) × X
∣∣ 〈a∗

t , x〉 ≤ bt + pt for all t ∈ T
}

at the reference point (0, x̄) ∈ gphF . Recall that δt stands for the classical Dirac
function/measure at t ∈ T satisfying

〈δt , p〉 = pt as t ∈ T for p = (pt )t∈T ∈ l∞(T ). (7.10)

Proposition 7.4 (Graphical Normals for Infinite Linear Systems). Let (0, x̄) ∈
gphF for the mapping F from (7.1), and let (p∗, x∗) ∈ l∞(T )∗ × X∗. Then we
have (p∗, x∗) ∈ N((0, x̄); gphF) if and only if

(
p∗, x∗, 〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt , a

∗
t , bt )

∣∣ t ∈ T
} ∪ {(0, 0, 1)}], (7.11)

where 0 ∈ l∞(T )∗ and 0 ∈ X∗ stand for the first and second entry of the last triple,
respectively. Furthermore, the inclusion (p∗, x∗) ∈ N ((0, x̄) ; gphF) implies that
p∗ ≤ 0 in the space ba (T ), i.e., p∗ (A) ≤ 0 for all A ⊂ T .

Proof. It is easy to see that

gphF = {(p, x) ∈ l∞(T ) × X
∣∣ 〈a∗

t , x〉 − 〈δt , p〉 ≤ bt for all t ∈ T
}
,

and therefore we have (p∗, x∗) ∈ N((0, x̄); gphF) if and only if

〈p∗, p〉 + 〈x∗, x〉 ≤ 〈x∗, x̄〉 for every (p, x) ∈ gphF . (7.12)

Employing now the equivalence between (i) and (ii) in Proposition 7.3, we conclude
that (p∗, x∗) ∈ N((0, x̄); gphF) if and only if inclusion (7.11) holds.

To justify the last statement of the proposition, for every set A ⊂ T , consider its
characteristic function χA : T → {0, 1} defined by

χA (t) :=
{

1 if t ∈ A,

0 if t /∈ A.

It is obvious that the inclusion (p, x) ∈ gphF implies that (p + λχA, x) ∈ gphF
for each λ > 0. Replacing now in (7.12) the pair (p, x) by (p + λχA, x), dividing
both sides of the inequality by λ, and then letting λ → ∞ give us

〈
p∗, χA

〉 =
∫

T

χA (t) p∗ (dt) = p∗ (A) ≤ 0,
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which completes the proof of the proposition. �
The representation of graphical normals obtained in Proposition 7.4 is crucial to

calculate the coderivative of D∗F(0, x̄) defined via the normal cone to the gphF at
(0, x̄) according to (7.2).

Theorem 7.5 (Coderivative Calculation). Given x̄ ∈ F(0) for the infinite system
(7.1), we have that p∗ ∈ D∗F(0, x̄)(x∗) if and only if

(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

{
(−δt , a

∗
t , bt )

∣∣ t ∈ T
}
. (7.13)

Proof. It follows from the coderivative definition and Proposition 7.4 that p∗ ∈
D∗F(0, x̄)(x∗) if and only if

(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt , a

∗
t , bt )

∣∣ t ∈ T
} ∪ {(0, 0, 1)}]. (7.14)

To justify the coderivative representation claimed in the theorem, we need to show
that inclusion (7.14) yields in fact the “smaller” one in (7.13). Assuming indeed that
(7.14) holds, we find by (7.14) some nets {λν}ν∈N ⊂ R

(T )
+ and {γν}ν∈N ⊂ R+

satisfying the limiting relationship

(
p∗,−x∗,−〈x∗, x̄〉) = w∗- lim

ν∈N

(∑

t∈T

λtν(−δt , a
∗
t , bt ) + γν(0, 0, 1)

)
, (7.15)

where λtν stands for the t-entry of λν = (λtν)t∈T as ν ∈ N . The component struc-
ture of (7.15) tells us that

0 = 〈p∗, 0〉 + 〈−x∗, x̄〉 + (−〈x∗, x̄〉)(−1) = lim
ν∈N

(∑

t∈T

λtν

(〈a∗
t , x̄〉 − bt

)− γν

)
.

Taking into account the definition (7.3) of the positive cone R
(T )
+ and that (0, x̄)

satisfies the infinite inequality system in (7.1), we get limν∈N γν = 0. This justifies
(7.13) and thus completes the proof of the theorem. �

The next consequence of Theorem 7.5 is useful in what follows.

Corollary 7.6 (Limiting Coderivative Description). If p∗ ∈ D∗F(0, x̄)(x∗) in
the setting of Theorem 7.5, then there is a net {λν}ν∈N ⊂ R

(T )
+ with

∑

t∈T

λtν → ∥∥p∗∥∥ = − 〈p∗, e
〉
,
∑

t∈T

λtνa
∗
t

w∗−→ −x∗, and
∑

t∈T

λtνbt → − 〈x∗, x̄
〉
.

Proof. Theorem 7.5 gives us a net {λν}ν∈N ⊂ R
(T )
+ such that

∑

t∈T

λtνδt
w∗−→ −p∗,

∑

t∈T

λtνa
∗
t

w∗−→ −x∗, and
∑

t∈T

λtνbt → − 〈x∗, x̄
〉
.
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This readily implies the relationships
〈
∑

t∈T

λtνδt , e

〉

=
∑

t∈T

λtν → 〈
p∗,−e

〉 =: λ ∈ [0,∞) .

Since the dual norm on X∗ is w∗-lower semicontinuous, we have

∥∥p∗∥∥ ≤ lim inf
ν∈N

∥∥∥∥∥

∑

t∈T

λtνδt

∥∥∥∥∥
≤ lim inf

ν∈N
∑

t∈T

λtν = λ.

Furthermore, it follows from the norm definition that
∥∥p∗∥∥ = sup

‖p‖≤1

〈
p∗, p

〉 ≥ 〈p∗,−e
〉 = λ,

which yields ‖p∗‖ = − 〈p∗, e〉 and thus completes the proof. �
Now we proceed with the exact calculation of the coderivative norm

‖D∗F(0, x̄)‖ := sup
{‖p∗‖ ∣∣ p∗ ∈ D∗F(0, x̄)(x∗), ‖x∗‖ ≤ 1

}
(7.16)

entirely via the initial data of the infinite linear inequality system (7.1). A part of
our analysis is the following proposition on properties of the characteristic set (7.5)
at p = 0 in connection with strong Slater points of (7.1).

Proposition 7.7 (Strong Slater Points Relative to the Characteristic Set). Given
x̄ ∈ F(0), consider the set

S := {x∗ ∈ X∗∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}

(7.17)

built upon C(0) from (7.5). The following assertions hold:
(i) Let x̄ be not a strong Slater point of the infinite system (7.1) at p = 0, and let

the coefficient collection {a∗
t | t ∈ T } be bounded in X∗. Then the set S in (7.17) is

nonempty and w∗-compact in X∗.
(ii) Let x̄ be a strong Slater point of (7.1) at p = 0. Then S = ∅ in (7.17).

Proof. To justify (i), assume that x̄ is not a strong Slater point for the infinite system
(7.1) at p = 0. Then there is a sequence {tk}k∈N ⊂ T such that limk(〈a∗

tk
, x̄〉 −

btk ) = 0. The boundedness of {a∗
t | t ∈ T } implies by the classical Alaoglu-Bourbaki

theorem that this set is relatively w∗-compact in X∗, i.e., there is a subnet {a∗
tν
}ν∈N

of the latter sequence that w∗-converges to some element u∗ ∈ cl∗{a∗
t | t ∈ T }. This

yields limν∈N btν = 〈u∗, x̄〉 and

(
u∗, 〈u∗, x̄〉) = w∗- lim

ν∈N
(
a∗
tν
, btν

) ∈ cl∗C(0),

which justifies the nonemptiness of the set S in (7.17).
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To verify the w∗-compactness of S, observe that the boundedness of the set A :=
{a∗

t | t ∈ T } implies this property of cl∗coA; the latter set is actually w∗-compact
due to its automatic w∗-closedness. Note further that the set S in (7.17) is a preimage
of cl∗C(0) under the w∗-continuous mapping x∗ �→ (x∗, 〈x∗, x̄〉), and thus it is w∗-
closed in X∗. Since S is a subset of cl∗coA, it is also bounded and hence w∗-compact
in X∗. We are done with (i).

To proceed with (ii), let x̄ be a strong Slater point of system (7.1) at p = 0, and
let γ := − supt∈T

{〈
a∗
t , x̄
〉− bt

}
. Then we have the inequality

〈
x∗, x̄

〉 ≤ β − γ whenever
(
x∗, β

) ∈ cl ∗C (0) ,

which justifies (ii) and thus completes the proof of the proposition. �
Now we are ready to calculate the coderivative norm ‖D∗F(0, x̄)‖ entirely in

terms of the given data of the infinite system (7.1) in Banach spaces.

Theorem 7.8 (Calculating the Coderivative Norm). Let x̄ ∈ domF for the in-
finite system (7.1), which satisfies the strong Slater condition at p = 0. Then the
following assertions hold under the boundedness of {a∗

t | t ∈ T }:
(i) If x̄ is a strong Slater point for F at p = 0, then ‖D∗F(0, x̄)‖ = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the coderivative norm

(7.16) is positive and is calculated by

‖D∗F(0, x̄)‖ = max
{
‖x∗‖−1

∣∣∣
(
x∗, 〈x∗, x̄〉) ∈ cl∗C(0)

}
. (7.18)

Proof. To verify assertion (i), suppose that x̄ is a strong Slater point for the system
F at p = 0. It follows from the proof of implication (iii)⇒(v) in Theorem 7.2 that
(0, x̄) ∈ int(gphF) and hence N((0, x̄); gphF) = {(0, 0)}. Thus (i) follows from
definitions of the coderivative and its norm.

To prove assertion (ii), take x∗ ∈ X∗ such that (x∗, 〈x∗, x̄〉) ∈ cl ∗C (0); the latter
set is nonempty according to Proposition 7.7. Then there exists a net {λν}ν∈N ⊂
R

(T )
+ with

∑
t∈T λtν = 1 for all ν ∈ N such that

∑

t∈T

λtνa
∗
t

w∗−→ x∗ and
∑

t∈T

λtνbt → 〈
x∗, x̄

〉
.

Form further the net elements p∗
ν ∈ l∞(T )∗ by

p∗
ν := −

∑

t∈T

λtνδt , with
∥∥p∗

ν

∥∥ = 〈p∗
ν ,−e

〉 = 1, ν ∈ N ,

and find by the Alaoglu-Bourbaki theorem a convergent subnet p∗
ν

w∗−→ p∗ for
some p∗ ∈ l∞(T )∗ with ‖p∗‖ ≤ 1. Employing the same arguments as in the proof
of Corollary 7.6, we conclude that

1 = lim
ν∈N

∑

t∈T

λtν = ∥∥p∗∥∥ = 〈p∗,−e
〉
. (7.19)
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Furthermore, it follows by passing to the limit that

(
p∗, x∗,

〈
x∗, x̄

〉) ∈ cl ∗co
{(−δt , a

∗
t , bt

) ∣∣ t ∈ T
}
,

which implies by the coderivative calculation of Theorem 7.5 that

p∗ ∈ D∗F(0, x̄)(−x∗). (7.20)

Suppose now that x∗ = 0 in (7.20). Since p∗ 
= 0 by (7.19), we get from (7.20)
that D∗F(0, x̄)(0) 
= {0}. It tells us by Exercise 3.35(i) and the graph convexity
of F that F is not Lipschitz-like around (0, x̄) and therefore it cannot satisfy the
strong Slater condition by implication (iii)⇒(i) in Theorem 7.2. This contradicts
the assumption imposed in the theorem.

Thus x∗ 
= 0 in (7.20), and we derive from the latter relationship that

∥∥x∗∥∥−1
p∗ ∈ D∗F(0, x̄)

(
− ∥∥x∗∥∥−1

x∗) ,

which gives us in turn the estimate

∥∥D∗F(0, x̄)
∥∥ ≥

∥∥∥
∥∥x∗∥∥−1

p∗
∥∥∥ = ∥∥x∗∥∥−1

and hence justifies the inequality “≥” in (7.18).
It remains to prove the opposite inequality in (7.18). For the nonempty and w∗-

compact set S in (7.17), we have 0 /∈ S by Theorem 7.2, and the function x∗ �→
‖x∗‖−1 is w∗-upper semicontinuous of on S. Thus the supremum in the right-hand
side of (7.18) is attained and belongs to (0,∞). Then condition (v) in Theorem 7.2
implies that (0, x̂) ∈ int(gphF) for some x̂ ∈ X and so 0 ∈ int(domF). Moreover,
we have that p∗ ∈ D∗F(0, x̄) (−x∗) if and only if (p∗, x∗) ∈ N ((0, x̄) ; gphF),
which is equivalent to

〈
p∗, p

〉+ 〈x∗, x
〉 ≤ 〈x∗, x̄

〉
for all (p, x) ∈ gphF . (7.21)

This allows us, by taking into account that 0 ∈ int(domF), to arrive at

p∗ ∈ D∗F(0, x̄) (0) ⇐⇒ 〈
p∗, p

〉 ≤ 0 for all p ∈ domF ⇐⇒ p∗ = 0. (7.22)

Observe furthermore that, since x̄ is not a strong Slater point for F at p = 0, we
have (0, x̄) /∈ int(gphF) and thus conclude by the classical separation theorem that
there is a pair (p∗, x∗) 
= (0, 0) for which condition (7.21) holds. Employing (7.22),
we have x∗ 
= 0 and p∗ ∈ D∗F(0, x̄) (−x∗).

Take now p∗ ∈ D∗F(0, x̄) (−x∗) with ‖x∗‖ ≤ 1, and suppose that x∗ 
= 0; the
arguments above ensure the existence of such an element. By Corollary 7.6, there is
a net {λν}ν∈N ⊂ R

(T )
+ for which

γν :=
∑

t∈T

λtν → ∥∥p∗∥∥= − 〈p∗, e
〉
, x∗

ν :=
∑

t∈T

λtνa
∗
t

w∗−→ x∗,
∑

t∈T

λtνbt → 〈
x∗, x̄

〉
.
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Taking M ≥ ∥∥a∗
t

∥∥ for every t ∈ T , we get the estimate
∥∥x∗

ν

∥∥ ≤ Mγν whenever ν ∈ N

and also the limiting relationships

0 <
∥∥x∗∥∥ ≤ lim inf

ν∈N
∥∥x∗

ν

∥∥ ≤ M lim inf
ν∈N

γν = M
∥∥p∗∥∥ ,

which ensure that p∗ 
= 0. It follows furthermore that

∥∥p∗∥∥−1 (
x∗,
〈
x∗, x̄

〉) ∈ cl∗C(0).

Remembering finally that 0 < ‖x∗‖ ≤ 1, we arrive at the estimates

∥∥p∗∥∥ ≤
∥∥∥
∥∥p∗∥∥−1

x∗
∥∥∥

−1 ≤ max
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x̄〉) ∈ cl∗C(0)

}
,

which justify the inequality “≤” in (7.18) and thus complete the proof. �

7.1.3 Coderivative Characterization of Lipschitzian Stability

In this subsection, we employ the above coderivative analysis married to appropri-
ate techniques in linear SIPs to establish the coderivative criterion of Lipschitzian
stability (in the sense of the validity of the Lipschitz-like property) for infinite linear
systems (7.1) with precise calculation of the exact Lipschitzian bound lipF(0, x̄).
Surprisingly, the obtained results look exactly like in the finite-dimensional setting
of Theorem 3.3 for general closed-graph multifunctions, while in the case here we
can express both the coderivative criterion and exact Lipschitzian bound entirely in
terms of the given data of (7.1).

First, we present necessary and sufficient condition for the Lipschitz-like prop-
erty of F around the reference point (0, x̄) in the form of (3.9).

Theorem 7.9 (Coderivative Criterion for the Lipschitz-Like Property of Lin-
ear Infinite Systems). Let x̄ ∈ F(0) for the infinite inequality system (7.1). Then F
is Lipschitz-like around (0, x̄) if and only if

D∗F(0, x̄)(0) = {0}. (7.23)

Proof. The “only if” part follows from the proof in Step 1 of Theorem 3.3 valid in
arbitrarily Banach spaces. To justify now the “if” part of the theorem, suppose on the
contrary that D∗F(0, x̄)(0) = {0}, while the mapping F is not Lipschitz-like around
(0, x̄). Then, by the equivalence between properties (i) and (iv) in Theorem 7.2, we
get the inclusion

(0, 0) ∈ cl∗co
{
(a∗

t , bt ) ∈ X∗ × R
∣∣ t ∈ T

}
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meaning that there is a net {λν}ν∈N ∈ R
(T )
+ with

∑
t∈T λtν = 1, ν ∈ N , and

w∗- lim
ν∈N

∑

t∈T

λtν(a
∗
t , bt ) = (0, 0). (7.24)

Since the net {∑t∈T λtν(−δt )}ν∈N is obviously bounded in l∞(T )∗, the Alaoglu-
Bourbaki theorem ensures the existence of its subnet (no relabeling) that w∗-
converges to some element p∗ ∈ l∞(T )∗, i.e.,

p∗ = w∗- lim
ν∈N

∑

t∈T

λtν(−δt ). (7.25)

It follows from (7.25) by the Dirac function definition that

〈p∗,−e〉 = lim
ν∈N

∑

t∈T

λtν = 1, where e = (et )t∈T with et = 1 for all t ∈ T ,

which yields p∗ 
= 0. Furthermore, combining (7.24) and (7.25) tells us that

(p∗, 0, 0) = w∗- lim
ν∈N

∑

t∈T

λtν(−δt , a
∗
t , bt ) with p∗ 
= 0,

and therefore, by the explicit coderivative description of Theorem 7.5, we get the
inclusion p∗ ∈ D∗F(0, x̄)(0)\{0}, which contradicts the assumed condition (7.23).
This verifies the sufficiency part of the coderivative criterion (7.23) for the Lipschitz-
like property and thus completes the proof of the theorem. �

Our next goal is to calculate the exact Lipschitzian bound lipF(0, x̄). To proceed,
observe the following limiting representation of lip F(x̄, ȳ) via the distance function
to a set that holds for any mapping F : X →→ Y :

lip F(z̄, ȳ) = lim sup
(z,y)→(z̄,ȳ)

dist
(
y;F(z)

)

dist
(
z;F−1(y)

) where 0/0 := 0. (7.26)

To begin with, form the closed affine half-space

H(x∗, α) := {x ∈ X
∣∣ 〈x∗, x〉 ≤ α

}
for (x∗, α) ∈ X∗ × R

and derive the distance function representation known as the Ascoli formula.

Proposition 7.10 (Ascoli Formula). We have

dist
(
x;H(x∗, α)

) =
[〈x∗, x〉 − α

]
+

‖x∗‖ , (7.27)

where [γ ]+ := max{γ, 0} for γ ∈ R and 0/0 := 0.

Proof. In the case of x ∈ H(x∗, α), representation (7.27) is obvious. Consider now
that case of x /∈ H(x∗, α), and define the associated optimization problem
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minimize ‖u − x‖ subject to u ∈ H(x∗, α), (7.28)

where an optimal solution exists; see Exercise 7.75. Let ū ∈ H(x∗, α) be any so-
lution to (7.28). Applying the generalized Fermat rule and then the subdifferential
sum rule b valid due to the continuity of u �→ ‖u − x‖ yields

0 ∈ ∂‖ · −x‖(ū) + N
(
ū;H(x∗, α)

)
(7.29)

with ū 
= x. Since we have in this case that

∂‖ · −x‖(ū) = {u∗ ∈ X∗∣∣ ‖u∗‖ = 1, 〈u∗, ū − x〉 = ‖ū − x‖}

and that N(ū;H(x∗, α)) = cone{x∗} if 〈x∗, ū〉 = α with N(ū;H(x∗, α)) = {0}
otherwise, it tells us by (7.29) that

〈x∗, ū〉 = α and ‖x∗‖ · ‖ū − x‖ = 〈x∗, x − ū〉.
This implies in turn the equalities

‖ū − x‖ = 〈x∗, x〉 − 〈x∗, ū〉
‖x∗‖ = 〈x∗, x〉 − α

‖x∗‖ =
[〈x∗, x〉 − α

]
+

‖x∗‖
and thus justifies the Ascoli formula (7.27). �

The next two propositions, which are certainly of their own interest, establish
extensions of the Ascoli formula first to the case of convex inequalities and then to
infinite systems of linear inequalities instead of the single one as in (7.27). These
results play a significant role in what follows for computing the exact Lipschitzian
bound lipF(0, x̄). In their proofs, we use elements of the classical duality theory of
convex analysis in Banach spaces; see, e.g., [757].

Given a proper (may not be convex) function ϕ : X → R, recall that its (always
convex) Fenchel conjugate ϕ∗ : X∗ → R is defined by

ϕ∗ (x∗) := sup
{ 〈

x∗, x
〉− ϕ (x)

∣∣ x ∈ X
}
. (7.30)

First, we provide an extension of the Ascoli formula from (single) linear to convex
inequalities by using the Fenchel conjugate (7.30).

Proposition 7.11 (Extended Ascoli Formula for Single Convex Inequalities).
Let g : X → R be a (proper) convex function, and let

Q := {y ∈ X
∣∣ g(y) ≤ 0

}
. (7.31)

Assume the fulfillment of the classical Slater condition: there is x̂ ∈ X with g(̂x) <

0. Then the distance function to the set Q in (7.31) is calculated by

dist(x;Q) = max
(x∗,α)∈epi g∗

[〈x∗, x〉 − α
]
+

‖x∗‖ . (7.32)



272 7 Semi-infinite Programs with Some Convexity

Proof. Observe that the nonemptiness of Q in (7.31) yields α ≥ 0 whenever
(0, α) ∈ epi g∗ and that the possibility of x∗ = 0 is not an obstacle in (7.32) under
the convention 0/0 := 0. The distance function dist(x;Q) is nothing else but the
optimal value function in the parametric convex optimization problem.

minimize ‖y − x‖ subject to g(y) ≤ 0. (7.33)

Since the Slater condition holds for (7.33) by our assumption, we have the strong
Lagrange duality in (7.33) by, e.g., [757, Theorem 2.9.3], which yields

dist(x;Q) = max
λ≥0

inf
y∈X

{‖y − x‖ + λg(y)
}

= max

{
max
λ>0

inf
y∈X

{‖y − x‖ + λg(y)
}
, inf

y∈X
‖y − x‖

}

= max

{
max
λ>0

inf
y∈X

{ ‖y − x‖ + λg(y)
}
, 0

}
.

Applying now the classical Fenchel duality theorem to the inner infimum problem
above for a fixed λ > 0, we get

inf
y∈X

{‖y − x‖ + λg(y)
} = max

y∗∈X∗
{− ‖ · −x‖∗(−y∗) − (λg)∗(y∗)

}
. (7.34)

Furthermore, it is well known in convex analysis that

‖· − x‖∗ (−y∗) =
{ 〈−y∗, x〉 if ‖y∗‖ ≤ 1,

∞ otherwise.

Substituting it into formula (7.34) leads us to

inf
y∈X

{ ‖y − x‖ + λg (y)
} = max‖y∗‖≤1

{ 〈
y∗, x

〉− (λg)∗
(
y∗) }

= max
‖y∗‖≤1, (λg)∗(y∗)≤η

{ 〈
y∗, x

〉− η
}

= max‖y∗‖≤1, λg∗(y∗/λ)≤η

{ 〈
y∗, x

〉− η
}

= max‖y∗‖≤1, (1/λ)(y∗,η)∈epi g∗
{ 〈

y∗, x
〉− η

}
.

This ensures, by denoting x∗ := (1/λ)y∗ and α := (1/λ)η, that

inf
y∈X

{ ‖y − x‖ + λg(y)
} = max

(x∗,α)∈epi g∗, ‖x∗‖≤1/λ
λ
{ 〈

x∗, x
〉− α

}
.

Combining the latter with the formulas above, we arrive at
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dist(x;Q) = max
{

max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

λ
{ 〈

x∗, x
〉− α

}
, 0
}

= max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

{
λ
[ 〈

x∗, x
〉− α

]
+
}
.

(7.35)

It is easy to observe the following relationships hold for any λ > 0:

max
(0,α)∈epi g∗ λ

{ 〈0, x〉 − α
} = max

g∗(0)≤α
λ
( 〈0, x〉 − α

) = λ
(− g∗(0)

)

≤ λ inf
x∈X

g(x) ≤ λg(̂x) < 0.

Taking this into account, we deduce from (7.35) the equalities

dist(x;Q) = max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

{
λ
[ 〈

x∗, x
〉− α

]
+
}

= max
(x∗,α)∈epi g∗ max‖x∗‖≤1/λ

{
λ
[ 〈

x∗, x
〉− α

]
+
}

= max
(x∗,α)∈epi g∗

[ 〈x∗, x〉 − α
]
+

‖x∗‖ ,

which justify (7.32) and thus complete the proof of the proposition. �
The next proposition provides the required extension of the Ascoli formula (7.27)

to the case of the infinite inequality systems (7.1) in Banach spaces.

Proposition 7.12 (Extended Ascoli Formula for Infinite Linear Systems). As-
sume that the infinite linear system (7.1) satisfies the strong Slater condition at
p = (pt )t∈T . Then for any x ∈ X and p ∈ l∞ (T ), we have

dist
(
x;F(p)

) = max
(x∗,α)∈cl∗C(p)

[ 〈x∗, x〉 − α
]
+

‖x∗‖ . (7.36)

If in addition X is reflexive, then (7.36) can be simplified by

dist
(
x;F(p)

) = max
(x∗,α)∈C(p)

[ 〈x∗, x〉 − α
]
+

‖x∗‖ . (7.37)

Proof. Observe that the infinite linear system (7.1) can be represented as

F(p = {x ∈ X
∣∣ g(x) ≤ 0

}
, (7.38)

where the convex function g : X → R is given in the supremum form

g(x) := sup
t∈T

(
ft (x) − pt

)
with ft (x) := 〈a∗

t , x〉 − bt . (7.39)
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The assumed strong Slater condition for F(p) ensures the validity of the classical
Slater condition for g from Proposition 7.11. To employ the result therein in the
framework of (7.38), we need to calculate the Fenchel conjugate to the supremum
function in (7.39). It can be done by (see Exercise 7.77)

⎧
⎨

⎩
epi g∗ = epi

{
supt∈T (ft − pt )

}∗ = cl∗co

(
⋃

t∈T

epi
(
ft − pt

)∗
)

= cl∗C(p) + R+(0, 1) with 0 ∈ X∗,
(7.40)

where the weak∗ closedness of the set cl∗C(p) + R+(0, 1) is a consequence of
the classical Dieudonné theorem; see, e.g., [757, Theorem 1.1.8]. Thus we get the
distance formula (7.36) from Proposition 7.11 in general Banach spaces.

To justify the simplified distance formula (7.37) in the case of reflexive spaces,
suppose on the contrary that it doesn’t hold. Then there is a scalar β ∈ R such that
we have the strict inequalities

max
(x∗,α)∈cl∗C(p)

[ 〈x∗, x〉 − α
]
+

‖x∗‖ > β > sup
(x∗,α)∈C(p)

[ 〈x∗, x〉 − α
]
+

‖x∗‖ . (7.41)

This yields the existence of (x̄∗, ᾱ) ∈ cl∗C(p) with x̄∗ 
= 0 satisfying
[ 〈x̄∗, x〉 − ᾱ

]
+

‖x̄∗‖ > β.

Taking into account that X is reflexive and that C(p) is convex and then employing
the Mazur weak closure theorem, we can replace the weak∗ closure of C(p) by its
norm closure in X∗. This allows us to find a sequence (x∗

k , αk) ∈ C(p) converging
by norm to (x̄∗, ᾱ) as k → ∞. Hence we get

lim
k→∞

[ 〈
x∗
k , x
〉− αk

]
+∥∥x∗

k

∥∥ =
[ 〈x̄∗, x〉 − ᾱ

]
+

‖x̄∗‖ > β,

and therefore there exists k0 ∈ N for which

[ 〈
x∗
k0

, x
〉
− αk0

]
+∥∥∥x∗

k0

∥∥∥
> β.

The latter contradicts (7.41) and thus completes the proof. �
The following example shows that the reflexivity of the decision space X is an

essential requirement for the validity of the simplified distance formula (7.37), even
in the framework of (nonreflexive) Asplund spaces.

Example 7.13 (Failure of the Simplified Distance Formula in Nonreflexive As-
plund Spaces). Consider the classical space c0 of real number sequences converging
to zero and endowed with the supremum norm. This space is known to be Asplund
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while not reflexive. Let us show that the simplified distance formula (7.37) fails in
X = c0 (the classical space of sequences converging to zero, with the supremum
norm) for a rather plain linear system of countable inequalities. Of course, we need
to demonstrate that the inequality “≤” is generally violated in (7.37), since the op-
posite inequality holds in any Banach space. Form the infinite (countable) linear
inequality system

F(0) := {x ∈ c0
∣∣ 〈e∗

1 + e∗
t , x〉 ≤ −1, t ∈ N

}
, (7.42)

where e∗
t ∈ l1 has 1 as its t th-component, while all the remaining components are

zeros. System (7.42) can be rewritten as

x ∈ F(0) ⇐⇒ x(1) + x(t) ≤ −1 for all t ∈ N.

Observe that for z = 0, we have dist(0;F(0)) = 1, and the distance is realized at,
e.g., u = (−1, 0, 0, . . .). Indeed, passing to the limit in x(1)+x(t) ≤ −1 as t → ∞
and taking into account that x(t) → 0 by the structure of the space of c0, we get
x(1) ≤ −1. Furthermore, it can be checked that

(e∗
1,−1) ∈ cl∗C(0), 〈e∗

1, x − u〉 ≤ 0 for all x ∈ F(0),

dist
(
z;F(0)

) = ‖z − u‖ = 〈e∗
1, z − u〉 = 〈e∗

1, z〉 − (−1)

‖e∗
1‖ .

On the other hand, for the pair (x∗, α) ∈ X∗ × R given by

(x∗, α) :=
(
e∗

1 +
∑

t∈N
λte

∗
t ,−1

)
∈ C(0) with λ ∈ R

(N)
+ and

∑

t∈N
λt = 1,

we can directly verify that ‖x∗‖ = 2 and hence
[〈x∗, z〉 − α

]
+

‖x∗‖ = 1

2
,

which shows that the equality in (7.37) is violated for the countable system (7.42)
in the nonreflexive Asplund space X = c0.

Prior to deriving the main result of this subsection on the precise calculation of
the exact Lipschitzian bound for the infinite system (7.1) at the reference point, we
need the following technical assertion.

Lemma 7.14 (Closed-Graph Property of Characteristic Sets). The set-valued
mapping l∞ (T ) � p �→ cl∗C(p) ⊂ X∗ × R generated by the characteristic sets
(7.5) is closed-graph in the norm×weak∗ topology of �∞(T ) × (X∗ × R), i.e., for
any nets {pν}ν∈N ⊂ l∞ (T ),

{
x∗
ν

}
ν∈N ⊂ X∗, and {βν}ν∈N ⊂ R, satisfying the

conditions pν → p, x∗
ν

w∗−→ x∗, βν → β, and
(
x∗
ν , βν

) ∈ cl∗C (pν) for every
ν ∈ N , we have the inclusion (x∗, β) ∈ cl∗C (p).
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Proof. Arguing by contradiction, suppose that (x∗, β) 
∈ cl∗C (p). Then the clas-
sical strict separation indexconvex separation theorem allows us to find a nonzero
pair (x, α) ∈ X × R and real numbers γ and γ ′ satisfying

〈
x∗, x

〉+ βα < γ ′ < γ ≤ 〈a∗
t , x
〉+ (bt + pt ) α for all t ∈ T .

Hence there exists a net index ν0 ∈ N such that

〈
x∗
ν , x
〉+ βνα < γ ′ and ‖α (p − pν)‖ ≤ γ − γ ′ whenever ν � ν0.

This ensures therefore the validity of the estimates

〈
a∗
t , x
〉+ α (bt + ptν) = 〈

a∗
t , x
〉+ α (bt + pt ) + α (ptν − pt )

≥ γ − ‖α (pν − p)‖ ≥ γ ′ for all t ∈ T .

The latter implies that γ ′ ≤ 〈z∗, x〉 + ηα for all (z∗, η) ∈ cl ∗C(pν) whenever
ν � ν0. Thus we arrive at the contradiction

〈
x∗
ν , x
〉+ βνα < γ ′ ≤ 〈x∗

ν , x
〉+ βνα, ν � ν0,

which completes the proof of the lemma. �
Now we are ready to provide a precise calculation of the exact Lipschitzian bound

of F around (0, x̄) in the general Banach space setting.

Theorem 7.15 (Calculating the Exact Lipschitzian Bound of Infinite Linear
Systems). Let x̄ ∈ F(0) for the linear infinite inequality system (7.1). Suppose
that F satisfies the strong Slater condition at p = 0 and that the coefficient set
{a∗

t | t ∈ T } is bounded in X∗. The following assertions hold:
(i) If x̄ is a strong Slater point for F at p = 0, then lipF(0, x̄) = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the exact of F around

(0, x̄) is calculated by

lipF(0, x̄) = max
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}

> 0 (7.43)

via the w∗-closure of the characteristic set (7.5) at p = 0.

Proof. To verify (i), recall from the proof of Theorem 7.8(i) that the assumptions
made imply that (0, x̄) ∈ int(gphF), which in turn yields lipF(0, x̄) = 0 by the
definition of the exact Lipschitzian bound.

Next we justify the more difficult assertion (ii) of the theorem while assuming
that x̄ is not a strong Slater point for F at p = 0. Observe that by Proposition 7.7,
the set under the maximum operation on the right-hand side in (7.43) is nonempty
and w∗-compact in X∗. Thus the maximum over this set is realized and is finite. The
inequality “≥” in (7.43) follows from the estimate

lipF(0, x̄) ≥ ‖D∗F(0, x̄)‖
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taken from Exercise 3.35(i) and then combined with formula (7.18) for calculating
the coderivative norm of the infinite inequality system (7.1) derived in Theorem 7.8.
Thus it remains to verify the opposite inequality “≤” in (7.43).

To proceed, let M := supt∈T

∥∥a∗
t

∥∥ < ∞, and observe that the inequality “≤”
in (7.43) is obvious when L := lipF (0, x̄) = 0. Suppose now that L > 0, and
consider any pair (p, x) sufficiently close to (0, x̄) in representation (7.26) of the
exact Lipschitzian bound lipF(0, x̄). By L > 0, we can confine ourselves to the
case of (p, x) /∈ gphF . It follows from the structure of F that

0 < dist
(
p;F−1(x)

) = sup
t∈T

[〈a∗
t , x〉 − bt − pt

]
+. (7.44)

Moreover, we have the relationships

〈
a∗
t , x
〉− bt − pt = 〈

a∗
t , x − x̄

〉+ 〈a∗
t , x̄
〉− bt − pt

≤ M ‖x − x̄‖ + ‖p‖ for all t ∈ T ,

which allow us to conclude that

0 < sup
(x∗,β)∈cl∗C(p)

[ 〈
x∗, x

〉− β
]
+ = sup

(x∗,β)∈cl∗C(p)

{ 〈
x∗, x

〉− β
}

≤ M ‖x − x̄‖ + ‖p‖ for all x ∈ X and p ∈ P.

(7.45)

Consider further the set

C+ (p, x) := { (x∗, β
) ∈ cl∗C (p)

∣∣ 〈x∗, x
〉− β > 0

}
,

which is obviously nonempty, and denote

M(p,x) := sup
{ ∥∥x∗∥∥−1 ∣∣ (x∗, β

) ∈ C+ (p, x)
}
.

In our setting, we get 0 ∈ int(domF) (see Exercise 7.72(i)) and therefore p ∈
domF for all p ∈ l∞(T ) sufficiently close to the origin. In this case, the set
C+(p, x) cannot contain any element of the form (0, β), since the contrary would
yield β < 0 by the definition of C+(p, x), while Proposition 7.3 tells us that β ≥ 0.
Thus we conclude that 0 < ‖x∗‖ ≤ M whenever (x∗, β) ∈ C+ (p, x) and, in
particular, M(p,x) ∈ (0,∞]. It follows furthermore that

sup(x∗,β)∈cl∗C(p)

[ 〈x∗, x〉 − β
]
+

‖x∗‖
sup(x∗,β)∈cl∗C(p)

[ 〈x∗, x〉 − β
]
+

=
sup(x∗,β)∈cl∗C(p)

〈x∗, x〉 − β

‖x∗‖
sup(x∗,β)∈cl∗C(p)

{ 〈x∗, x〉 − β
} ≤ M(p,x),

where the latter inequality ensures the estimate

L ≤ lim sup
(p,x)→(0,x̄), x /∈F(p) 
=∅

M(p,x) := K.



278 7 Semi-infinite Programs with Some Convexity

Considering next a sequence (pk, xk) → (0, x̄) with xk /∈ F(pk) 
= ∅ and

L ≤ lim
k→∞ M(pk,xk) = K,

we select a sequence {αk}∞k=1 ⊂ R such that

lim
k→∞ αk = K and 0 < αk < M(pk,xk) as k ∈ N.

Take now
(
x∗
k , βk

) ∈ C+ (pk, xk) with αk <
∥∥x∗

k

∥∥−1 for all k ∈ N. Since the se-
quence

{
x∗
k

}
k∈N ⊂ X∗ is bounded, it contains a subnet

{
x∗
ν

}
ν∈N that w∗-converges

to some x∗ ∈ X∗. Denoting by {pν}, {xν}, {βν}, and {αν} the corresponding subnets
of {pk}, {xk}, {βk}, and {αk}, we get from (7.45) that

0 <
〈
x∗
ν , xν

〉− βν ≤ M ‖xν − x̄‖ + ‖pν‖ .

Hence
〈
x∗
ν , xν

〉 − βν → 0, which implies by the constructions above that βν →
〈x∗, x̄〉. We deduce from Lemma 7.14 that

(
x∗,
〈
x∗, x̄

〉) ∈ cl∗C (0) ,

and then Theorem 7.2 ensures that x∗ 
= 0.
To finalize verifying the inequality “≤” in (7.43), observe that

∥∥x∗∥∥ ≤ lim inf
ν∈N

∥∥x∗
ν

∥∥ ≤ lim
ν∈N

1

αν

= 1

K

due to
∥∥x∗

ν

∥∥ ≤ α−1
ν and limν∈N αν = K , which gives us

L ≤ K ≤ 1

‖x∗‖ ≤ max
{ ∥∥z∗∥∥−1 ∣∣ (z∗,

〈
z∗, x̄

〉) ∈ cl∗C (0)
}
.

Remembering the notation above, we complete the proof of the theorem. �
Summarizing the obtained results on the calculations of the coderivative norm in

Theorem 7.8 and the exact Lipschitzian bound in Theorem 7.15 allows us to arrive
at the unconditional relationship between these quantities for the infinite linear in-
equality system F with an arbitrary Banach decision space X that is expressed by
the same formula as the one (3.10) derived in Theorem 3.3 for set-valued mappings
between finite-dimensional spaces.

Corollary 7.16 (Relationship Between the Exact Lipschitzian Bound and
Coderivative Norm). Let x̄ ∈ F(0) for the infinite system (7.1) satisfying the
strong Slater condition at p = 0, and let the coefficient set {a∗

t | t ∈ T } be bounded
in X∗. Then we have the equality

lipF(0, x̄) = ‖D∗F(0, x̄)‖. (7.46)
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Proof. If x̄ is a strong Slater point for F at p = 0, then we get equality (7.46) by
comparing assertions (i) in Theorem 7.8 and Theorem 7.15, which yield

lipF(0, x̄) = ‖D∗F(0, x̄)‖ = 0.

If x̄ is not a strong Slater point for F at p = 0, then (7.46) follows from comparing
assertions (ii) in Theorem 7.8 and Theorem 7.15, which give us the same formula
for calculating both ‖D∗F(0, x̄)‖ and lipF(0, x̄). �

7.2 Optimization Under Infinite Linear Constraints

In this section, we derive necessary optimality conditions for SIPs with general non-
smooth cost functions over feasible solution sets governed by infinite linear con-
straint systems of type (7.1). The calculation of the coderivative of the feasible so-
lution map given in Section 7.1 plays a crucial role in deriving necessary optimality
conditions of both upper and lower subdifferential types presented below. The re-
sults obtained are then applied to solving an optimization problem of a practical
interest arising in water resource modeling.

7.2.1 Two-Variable SIPs with Infinite Inequality Constraints

We deal here with the following SIP problem:

minimize ϕ(p, x) subject to x ∈ F(p), (7.47)

where ϕ : P × X → R := (−∞,∞] is an extended-real-valued cost function
(generally nonsmooth and nonconvex) defined on the product of Banach spaces and
where F : P →→ X is a set-valued mapping of feasible solutions

F(p) := {x ∈ X
∣∣ 〈a∗

t , x〉 ≤ bt + 〈c∗
t , p〉, t ∈ T

}
(7.48)

with an arbitrary (possibly infinite) index set T and with some fixed elements
a∗
t ∈ X∗, c∗

t ∈ P ∗, and bt ∈ R for all t ∈ T . Note that our considerations in
Section 7.1, conducted mainly from the viewpoints of Lipschitzian stability of para-
metric mappings F(p), concern the case of (7.48) with P = l∞(T ) and c∗

t = δt

(Dirac measure), but the coderivative calculation given therein can be easily adapted
to the case of (7.48).

Observe that the optimization in (7.47) is taken with respect to both variables
(p, x), which are interconnected through the infinite inequality system (7.48). This
means in fact that we have two groups of decision variables represented by x and
p. One player specifies p, and the other solves (7.47) in x subject to (7.48) with the
specified p as a parameter. The first one, having the same objective, varies his/her
parameter p to get the best outcome via the so-called optimistic approach. We could
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treat this as a two-level design: optimizing the basic parameter p at the upper level,
while at the lower level, the cost function is optimized with respect to x for the
given p. The reader is referred to, e.g., [442], and the bibliography therein for var-
ious tuning and tolerancing problems of such types arising in engineering design.
Another area where two-variable SIPs governed by (7.47) and (7.48) with Banach
decision spaces X and P naturally appear concerns optimization of water resources.
A practical problem of this type is introduced and studied in Subsection 7.2.4.

We can notice some similarity between the two-variable optimization problem in
(7.47) and (7.48), treated above as a two-level optimistic design, and the optimistic
model of bilevel programming that was considered in Chapter 6 for finitely many
constraints and will be studied in Section 7.5.4 for infinitely many ones. The main
difference between these classes is that (7.48) is a constraint system described by
finitely many or infinitely many inequalities, while the corresponding parameter-
dependent set S(·) at the upper level of bilevel programming is given by a varia-
tional system of optimal solutions to a lower-level problem of parametric optimiza-
tion.

Keeping the same notation as in Section 7.1, we proceed now with deriving two
types of necessary optimality conditions for the SIP given in (7.47) and (7.48).

7.2.2 Upper Subdifferential Optimality Conditions for SIPs

Let us begin with upper subdifferential optimality conditions for problem (7.47) and
(7.48) that utilize the upper regular subdifferential (6.2) of the cost function (7.47)
along with the precise coderivative calculation for the infinite inequality constraint
system in (7.48).

Recall the well-known Farkas-Minkowski property for (7.48) that amounts to
saying that the conic convex hull

cone
{
(−c∗

t , a
∗
t , bt ) ∈ P ∗ × X∗ × R

∣∣ t ∈ T } (7.49)

is weak∗ closed in the dual space P ∗ × X∗ × R.

Now we are ready to formulate and prove upper subdifferential necessary opti-
mality conditions for the SIP in (7.47) and (7.48) in general Banach spaces.

Theorem 7.17 (Upper Subdifferential Conditions for SIPs with Linear In-
equality Constraints). Let (p̄, x̄) ∈ gphF ∩ dom ϕ be a local minimizer for the
two-variable SIP given by (7.47) and (7.48). Then every upper regular subgradient
(p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) satisfies the asymptotic optimality condition

− (p∗, x∗, 〈p∗, p̄〉 + 〈x∗, x̄〉) ∈ cl ∗cone
{
(−c∗

t , a
∗
t , bt )

∣∣ t ∈ T
}
. (7.50)

If furthermore the Farkas-Minkowski property (7.49) holds for (7.48), then (7.50)
can be equivalently written in the upper subdifferential KKT form: for every
(p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄), there are multipliers λ = (λt )t∈T ∈ R

(T )
+ satisfying
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(p∗, x∗) +
∑

t∈T (p̄,x̄)

λt (−c∗
t , a

∗
t ) = 0, (7.51)

where R
(T )
+ is defined in (7.3) and where

T (p̄, x̄) := {t ∈ T
∣∣ 〈a∗

t , x̄〉 − 〈c∗
t , p̄〉 = bt

}
. (7.52)

Proof. Pick any (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄), and, employing the first part of Theo-
rem 1.27 which holds in arbitrary Banach spaces (see Exercise 1.64), construct a
function s : P × X → R such that

s(p̄, x̄) = ϕ(p̄, x̄), ϕ(p, x) ≤ s(p, x) for all (p, x) ∈ P × X, (7.53)

and s(·) is Fréchet differentiable at (p̄, x̄) with ∇s(p̄, x̄) = (p∗, x∗). Taking into
account that (p̄, x̄) is a local minimizer in (7.47), (7.48) and that

s(p̄, x̄) = ϕ(p̄, x̄) ≤ ϕ(p, x) ≤ s(p, x) for all (p, x) ∈ gphF near (p̄, x̄)

by (7.53), we deduce that (p̄, x̄) is a local minimizer for the auxiliary problem

minimize s(p, x) subject to (p, x) ∈ gphF (7.54)

with the objective s(·) that is Fréchet differentiable at (p̄, x̄). Rewriting (7.54) in the
infinite-penalty unconstrained form

minimize s(p, x) + δ
(
(p, x); gphF)

via the indicator function of gphF , observe directly from definition (1.33) of the
regular subdifferential at a local minimizer that

(0, 0) ∈ ∂̂
[
s + δ(·; gphF)

]
(p̄, x̄). (7.55)

Since s(·) is Fréchet differentiable at (p̄, x̄), we easily get from (7.55) that

(0, 0) ∈ ∇s(p̄, x̄) + N
(
(p̄, x̄); gphF),

which implies by ∇s(p̄, x̄) = (p∗, x∗) and the coderivative definition (1.15) that
−p∗ ∈ D∗F(p̄, x̄)(x∗). It follows from the proof of Theorem 7.5 that the latter
coderivative condition can be constructively described in terms of the initial problem
data as follows:

(− p∗,−x∗,−(〈p∗, p̄〉 + 〈x∗, x̄〉)) ∈ cl∗cone
{
(−c∗

t , a
∗
t , bt )

∣∣ t ∈ T
}
. (7.56)

Thus (7.56) justifies the asymptotic condition (7.50) for the given upper subgradient
(p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄). If the Farkas-Minkowski property (7.49) is satisfied, then the
operation cl∗ in (7.50) can be omitted, and we arrive at the KKT condition (7.51)
while completing the proof of the theorem. �
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The essence of upper subdifferential conditions in the general framework of min-
imization has been discussed above in Remark 6.2, which equally applies to the SIP
setting of Theorem 7.17. The following consequence of the obtained results is used
in Subsection 7.2.4 when both spaces X and P are Banach.

Corollary 7.18 (Necessary Conditions for SIPs with Fréchet Differentiable
Costs). In the setting of Theorem 7.17, suppose that the cost function ϕ is
Fréchet differentiable at the local optimal solution (p̄, x̄) with the derivative
(p∗, x∗) = ∇ϕ(p̄, x̄). Then (7.50) holds and further reduces to (7.51) if in ad-
dition system (7.48) enjoys the Farkas-Minkowski property.

Proof. It follows directly from Theorem 7.17 since in this case we have
∂̂+ϕ(p̄, x̄) = {∇ϕ(p̄, x̄)} for the regular upper subdifferential of ϕ. �

Observe that in the general settings of Theorem 7.17 and Corollary 7.18, the
necessary optimality condition (7.50) is obtained in the normal form meaning that
we have a nonzero (λ0 = 1) multiplier associated with the cost function without any
constraint qualification. However, this condition is expressed in the asymptotic form
involving the weak∗ closure of the set on the right-hand side of (7.50). This feature
partly relates to considering arbitrary index sets in the SIP constraint (7.48) but may
also be exhibited in problems with compact index sets as shown in Subsection 7.2.4.

The latter phenomenon doesn’t appear under the validity of Farkas-Minkowski
property (7.49), which ensures the more conventional KKT form (7.51). Let us
present another consequence of Theorem 7.17, where the Farkas-Minkowski prop-
erty holds and gives us KKT (7.51).

To proceed, we need the following adaptation of the strong Slater condition
(SSC) from Definition 7.1 to the case of the constraint system (7.48): SSC holds
for (7.48) if there is a pair (p̂, x̂) ∈ P × X such that

sup
t∈T

[〈a∗
t , x̂〉 − 〈c∗

t , p̂〉 − bt

]
< 0. (7.57)

The reader can easily check the validity of the equivalent descriptions of SSC for
(7.48) similar to those given in Theorem 7.2.

Corollary 7.19 (Upper Subdifferential Conditions in KKT Form). Suppose that
T is a compact Hausdorff space, that both X and P are finite-dimensional, that the
mapping t �→ (a∗

t , c∗
t , bt ) is continuous on T , and that SSC (7.57) holds. Then for

any (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄), there are multipliers λ = (λt )t∈T ∈ R
(T )
+ such that the

KKT condition (7.51) is satisfied.

Proof. To check the fulfillment of the Farkas-Minkowski property under the assump-
tions imposed in the corollary, we observe first that the boundedness and closed-
ness of the set {(c∗

t , a
∗
t , bt )| t ∈ T } (and hence of its convex hull by the classical

Carathéodory theorem) follow from the continuity of t �→ (c∗
t , a

∗
t , bt ) and compact-

ness of T . Using this boundedness and the equivalence (ii)⇔(iii) in the counterpart
of Theorem 7.2 for (7.48) gives us the condition
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(0, 0, 0) /∈ co
{
(−c∗

t , a
∗
t , bt )

∣∣ t ∈ T
}
. (7.58)

As well known in convex analysis (see, e.g., [667, Corollary 9.6.1]), the valid-
ity of (7.58) in this setting yields the closedness of the convex conic hull of
{−c∗

t , a
∗
t , b∗

t )| t ∈ T }, and thus the Farkas-Minkowski property holds. �

7.2.3 Lower Subdifferential Optimality Conditions for SIPs

Now we turn to lower subdifferential optimality conditions for the SIP under con-
sideration, which use the basic subgradients (1.24) of the cost function ϕ in (7.47).
Our standing assumption in this subsection is that both spaces X and P are Asplund.
Recall also that the lower semicontinuity of ϕ, which is the standing assumption in
this book, is essential here, while it is not needed for the upper subdifferential results
of Subsection 7.2.2.

The lower subdifferential conditions for the SIP in (7.47) and (7.48) derived be-
low differ from their upper subdifferential counterparts in assumptions as well as
in conclusions even for the case of finite-dimensional decision spaces. Observe that
the following theorem utilizes both basic (1.24) and singular (1.25) subgradients of
the cost function.

Theorem 7.20 (Lower Subdifferential Conditions for SIPs with Linear In-
equality Constraints). Let (p̄, x̄) ∈ gphF ∩ dom ϕ be a local minimizer for the
SIP under consideration. Suppose also that:

(a) either ϕ is locally Lipschitzian around (p̄, x̄);
(b) or int(gphF) 
= ∅ (which is true, in particular, when SSC (7.57) holds and

the set {(a∗
t , c∗

t )| t ∈ T } is bounded in X∗ × P ∗) and the system

(p∗, x∗) ∈ ∂∞ϕ(p̄, x̄),

−(p∗, x∗, 〈(p∗, x∗), (p̄, x̄)〉) ∈ cl ∗cone
{
(−c∗

t , a
∗
t , bt )

∣∣ t ∈ T
} (7.59)

admits only the trivial solution (p∗, x∗) = (0, 0).
Then there is a basic subgradient pair (p∗, x∗) ∈ ∂ϕ(p̄, x̄) satisfying the asymp-

totic optimality condition (7.50). If in addition the Farkas-Minkowski property
(7.49) holds for (7.48), then there are subgradients (p∗, x∗) ∈ ∂ϕ(p̄, x̄) and multi-
pliers λ = (λt )t∈T ∈ R

(T )
+ satisfying the KKT condition

(p∗, x∗) +
∑

t∈T (p̄,x̄)

λt (−c∗
t , a

∗
t ) = 0 (7.60)

with the active index set T (p̄, x̄) defined in (7.52).

Proof. The SIP in (7.47) and (7.48) can be equivalently written as

minimize ϕ(p, x) + δ
(
(p, x); gphF). (7.61)
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Applying the generalized Fermat rule to (p̄, x̄) in (7.61) gives us

(0, 0) ∈ ∂
[
ϕ + δ(·; gphF)

]
(p̄, x̄) (7.62)

in terms of the basic subdifferential of the summation function in (7.62). By using
an Asplund space version of the subdifferential sum rule from Exercise 2.54(i) with
taking into account that the product of two Asplund spaces is Asplund and that
the SNC property holds for solid convex sets by Exercise 2.29(ii), we deduce from
(7.62) the validity of the inclusion

(0, 0) ∈ ∂ϕ(p̄, x̄) + N
(
(p̄, x̄); gphF) (7.63)

provided that either ϕ is locally Lipschitzian around (p̄, x̄) as assumed in (a) or the
interior of gphF is nonempty and the qualification condition

∂∞ϕ(p̄, x̄) ∩ [− N
(
(p̄, x̄); gphF)] = {(0, 0)} (7.64)

is satisfied as assumed in (b). It follows from the proof of Theorem 7.2 that the strong
Slater condition (7.57) and the boundedness of {(a∗

t , c∗
t )| t ∈ T } surely imply that

the interior of gphF is nonempty. Using now the coderivative description obtained
in Theorem 7.5 while modifying it for the case of F from (7.48) shows that the
qualification condition (7.64) can be equivalently written as the triviality of solutions
to system (7.59) imposed above. In the same way, we reduce (7.63) to the validity of
(7.50) for some (p∗, x∗) ∈ ∂ϕ(p̄, x̄). If furthermore the Farkas-Minkowski property
(7.49) is satisfied for (7.48), then the operation cl∗ in (7.50) can be omitted. Thus
we arrive at the KKT condition (7.60) and complete the proof of the theorem. �

Similarly to Subsection 7.2.2, we can derive from Theorem 7.20 the lower subdif-
ferential counterpart of Corollary 7.19. Observe that the corresponding consequence
of Theorem 7.20 involving an appropriate differentiability of the cost function in
(7.47) holds under more restrictive assumptions in comparison with Corollary 7.18:
besides the Asplund property of X and P , we have to assume the strict differentia-
bility of ϕ at (p̄, x̄).

7.2.4 Applications to Water Resource Optimization

This subsection provides applications of the obtained general results for SIPs to a
water resource optimization problem of a practical interest. We formulate the water
recourse model and reduce it to a two-variable SIP over a compact index set with
Banach decision spaces. The usage of the necessary optimality conditions for such
problems established above allows us to determine optimal decision strategies and
suggest efficient ways of their realizations.



7.2 Optimization Under Infinite Linear Constraints 285

The water resource problem under consideration is inspired by a continuous-
time network flow model formulated in [15]. Consider a system of n reservoirs
R1, . . . , Rn from which a time-varying water demand is required during a fixed
continuous-time period T = [t, t]. Let ci be the capacity of the reservoir Ri , and
let water flow into Ri at rate ri(t) for each i = 1, . . . , n and t ∈ T . Denote by
D(t) the rate of water demand at t , and suppose that all these nonnegative functions
r1, . . . , rn and D are piecewise continuous on the compact interval T and are known
in advance. If there is enough water to fill all the reservoir capacity, then the rest can
be sold to a neighboring dry area provided that the demand is satisfied. Conversely,
if the inflows are short and the reservoirs have free capability for holding additional
water, then some water can be bought from outside to meet the inner demand in the
region; see Fig. 7.1.

r1(·) r2(·) rn−1(·) rn(·)

x1(·)
x2(·) xn−1(·)

xn(·)

D(·)

c1 c2 cn−1 cn

Inflow

Reservoir

Demand

R1 R2 Rn−1 Rn

Fig. 7.1 Reservoirs.

Denote by xi(t) the rate at which water is fed from the reservoir Ri at time t ∈ T .
It is natural to assume in our basic model that xi ∈ C(T ) for all i = 1, . . . , n. The
feeder constraints can be expressed by

0 ≤ xi(t) ≤ ηi, i = 1, . . . , n, (7.65)

with fixed bounds ηi ≥ 0. The selling rate of water from the reservoir Ri at time t is
given by dpi(t), which means that pi(t) is the quantity of water sold until instant t

and depending on t continuously on the time interval T . Without loss of generality,
suppose that pi

(
t
) = 0 for all i = 1, . . . , n. Observe that we are actually buying

water at time t ∈ T if the selling rate dpi(t) is negative. Denoting further by si ≥ 0
the amount of water initially stored in Ri , we describe the storage constraints by

0 ≤
∫ t

t

[
ri(τ ) − xi(τ )

]
dτ −

∫ t

t

dpi(τ ) + si

=
∫ t

t

[
ri(τ ) − xi(τ )

]
dτ − pi(t) + si

≤ ci for all t ∈ T and i = 1, . . . , n

(7.66)
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and arrive at the following problem of water resource optimization:
⎧
⎪⎨

⎪⎩

minimize ϕ(p, x) subject to (7.65), (7.66),

and
n∑

i=1

xi(t) ≥ D(t) for all t ∈ T ,
(7.67)

where the cost function ϕ(p, x) is determined by the cost of water, environmental
requirements in the region, and the technology of reservoir processes in the water
resource problem. It is clear that we should impose the relationship

D(t) ≤
n∑

i=1

ηi, t ∈ T ,

in order to ensure the consistency of the constraints in (7.67).
Let us show that problem (7.67) can be reduced to the SIP form in (7.47), (7.48)

with two groups of variables (p, x) ∈ C(T )n × C(T )n. To proceed, define the fol-
lowing t-parametric families of functions on T :

δt (τ ) :=
{

0 if t ≤ τ < t,

1 otherwise; αt (τ ) :=
{

τ if t ≤ τ < t,

t otherwise.

Both families {δt | t ∈ T } and {αt | t ∈ T } are subsets of the dual space C(T )∗. In
fact, the Riesz representation theorem ensures that each function γ : T → R of
bounded variation on T determines a linear functional on C(T ) by

z �→ 〈γ, z〉 :=
∫ t

t

z(τ ) dγ (τ), z ∈ C(T ),

via the Stieltjes integral. It is easy to check that

∫ t

t

xi(τ ) dτ = 〈αt , xi〉, dαt (τ ) = χ[t,t](τ ) dτ for t ∈ T ,

where χ[t,t] is the standard characteristic function of the interval [t, t]. Moreover,
for each element z ∈ C(T ), we have

〈δt , z〉 = z (t) , t ∈ T ,

and thus δt can be identified in this context with the Dirac measure at t , which
justifies the δ-notation above. Consider further the functions

βi(t) :=
∫ t

t

ri(τ ) dτ for i = 1, . . . , n, t ∈ T ,
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and notice that the constraints in (7.66) can be rewritten as
{ 〈δt , pi〉 + 〈αt , xi〉 ≤ βi(t) + si,

−〈δt , pi〉 − 〈αt , xi〉 ≤ ci − si − βi(t),
(7.68)

while the one in (7.67) admits the form

n∑

i=1

〈δt , xi〉 ≥ D(t), t ∈ T . (7.69)

Observing finally that the constraints in (7.65) can be equivalently given by

0 ≤ 〈δt , xi〉 ≤ ηi, i = 1, . . . , n, t ∈ T , (7.70)

we arrive at the following reduction result.

Proposition 7.21 (Water Resource Problem as SIP in Banach Spaces). The
problem of water resource optimization (7.67) is equivalent to the two-variable SIP
of type (7.47) and (7.48) in the space C(T ) × C(T ):

minimize ϕ(p, x) subject to (7.68), (7.69), and (7.70) (7.71)

with the data δt , αt , βt , ci , si , ηi , and D defined above.

Now we examine the possibility to apply the obtained necessary optimality con-
ditions for SIPs to the case of the water resource model (7.71). Since the space C(T )

for both variables x and p in our model is not Asplund, we proceed with applying
the upper subdifferential optimality conditions of Theorem 7.17 and consider for
definiteness the case where the cost function ϕ is Fréchet differentiable at the refer-
ence point, i.e., apply the optimality conditions of Corollary 7.18. For simplicity of
notation, suppose in what follows that n = 1 in (7.71), and write (p, x, β, c, s, η)

instead of (p1, x1, β1, c1, s1, η1).
Using the initial data of problem (7.71), define the following convex conic hull

in the dual space C(T )∗ × C(T )∗ × R by

K(T ) := cone

⎧
⎨

⎩

[(
δt , αt , β(t) + s

)
,
(− δt ,−αt , c − s − β(t)

)
,

(
0,−δt ,−D(t)

)
,
(
0, δt , η

)
over all t ∈ T

]

⎫
⎬

⎭
, (7.72)

which is a specification of (7.49) for the water recourse problem (7.71). Given a
solution pair (p̄, x̄), consider the sets of active indices corresponding to all the in-
equality constraints in (7.71) formed as

⎧
⎪⎪⎨

⎪⎪⎩

T1(p̄, x̄) := {t ∈ T
∣∣ 〈δt , p̄〉 + 〈αt , x̄〉 = β(t) + s

}
,

T2(p̄, x̄) := {t ∈ T
∣∣ − 〈δt , p̄〉 − 〈αt , x〉 = c − s − β(t)

}
,

T3(p̄, x̄) := {t ∈ T
∣∣ − 〈δt , x〉 = −D(t)

}
,

T4(p̄, x̄) := {t ∈ T
∣∣ 〈δt , x̄〉 = η

}
.

(7.73)
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The next result provides necessary conditions for local minimizers in the water
recourse optimization problem (7.71).

Proposition 7.22 (Necessary Optimality Conditions for Water Resource Opti-
mization). Let (p̄, x̄) be a local minimizer in problem (7.71). Assume that the cost
function ϕ : C(T ) × C(T ) → R is Fréchet differentiable at (p̄, x̄), and consider the
cone K(T ) defined in (7.72). Then we have the inclusion

−(∇pϕ(p̄, x̄),∇xϕ(p̄, x̄), 〈∇pϕ(p̄, x̄), p̄〉 + 〈∇xϕ(p̄, x̄), x̄〉) ∈ cl ∗K(T ).

If furthermore the cone K(T ) is weak∗ closed, then there exist generalized multipli-
ers λ = (λt )t∈T , μ = (μt )t∈T , γ = (γt )t∈T , and ρ = (ρt )t∈T ∈ R

(T )
+ satisfying the

following KKT relationship:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(∇pϕ(p̄, x̄),∇xϕ(p̄, x̄)
) =

∑

t∈T1(p̄,x̄)

λt (δt , αt )

+
∑

t∈T2(p̄,x̄)

μt (−δt ,−αt ) +
∑

t∈T3(p̄,x̄)

γt (0,−δt ) +
∑

t∈T4(p̄,x̄)

ρt (0, δt ) ,

(7.74)

where the sets of active indices Ti(p̄, x̄), i = 1, . . . , 4, are defined in (7.73).

Proof. This follows from the necessary optimality conditions in Corollary 7.18 ap-
plied to problem (7.71) taking into account the specification of the characteristic
cone (7.49) for problem (7.71) obtained in (7.72) and then expressed via the active
index sets from (7.73) corresponding to the infinite inequality constraints in (7.68)–
(7.70). �

Observe that the optimality conditions obtained in Proposition 7.22 provide a
valuable insight to our understanding of optimal strategies for the water resource
problem. Indeed, it follows from the structures of constraints in (7.71) and their
active index sets that the time inclusion t ∈ T1(p̄, x̄) means that at this moment t

the reservoir is empty, while the one of t ∈ T2 (p̄, x̄) means that at this time the
quantity of water inside the reservoir given by 〈δt , p〉+ 〈αt , x〉− s −β(t) attains its
maximum level c, i.e., the reservoir is full. Similarly the inclusions t ∈ Ti(p̄, x̄) for
i = 3, 4 signify, respectively, that the water is flowing at its minimum rate or at its
maximum rate to satisfy the demand. The KKT relationship (7.74), valid under the
Farkas-Minkowski condition, reflects therefore that the “dual action” (p∗, x∗) is a
linear combination of these “bang-bang” strategies with the corresponding weights
(λ, μ, γ, ρ). The general asymptotic optimality condition of the proposition indi-
cates from this viewpoint that, in the absence of the Farkas-Minkowski property, the
optimal impulse can be approximated by such combinations.

Finally in this section, we fully characterize the setting of Proposition 7.22 in
which the Farkas-Minkowski property is satisfied for problem (7.71).
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Proposition 7.23 (Farkas-Minkowski Property in Water Resource Optimiza-
tion). Let T̃ be a nonempty subset of the time interval T = [t, t] in (7.71). Then the
cone K(T̃ ) from (7.72) is weak∗ closed in C(T )∗ × C(T )∗ × R if and only if the set
T̃ consists of a finite number of indices.

Proof. The “if” part easily follows from the definitions. Let us justify the “only if”
part arguing by contradiction and taking into account that the space C(T ) is sepa-
rable. Suppose that the set T̃ is infinite and pick for simplicity a strictly monotone
(increasing or decreasing) sequence {tk}k∈N in T̃ , which therefore converges to some
point of T . It is not hard to check that the sequence in C(T )∗ × C(T )∗ ×R given by

{ k∑

j=1

1

j2

(
δtj , αtj , β(tj ) + s

)}

k∈N (7.75)

weak∗ converges to the triple (δ, α, b) defined by

〈(δ, α, b) , (p, x, q)〉 := 〈δ, p〉 + 〈α, x〉 + bq (7.76)

via the componentwise relationships

〈δ, p〉 :=
∞∑

j=1

1

j2 p
(
tj
)
, 〈α, x〉 :=

∞∑

j=1

1

j2

∫ tj

t

x (t) dt, b :=
∞∑

j=1

1

j2

(
β(tj ) + s

)
.

Indeed, the weak∗ convergence of the above sequence follows directly from the
boundedness of the set

{(
δtj , αtj , β(tj ) + s

)}
k∈N in C(T )∗ × C(T )∗ × R and the

convergence of the series
∞∑

j=1

1
j2 .

Let us now show that (δ, α, b) /∈ K(T̃ ), and thus the cone K(T̃ ) is not weak∗
closed. To verify it, observe that the inclusion (δ, α, b) ∈ K(T̃ ) yields

δ =
∑

t∈T̃

λt δt for some λ ∈ R
(T̃ )
+ ,

which gives us a function δ ∈ C(T )∗ that is discontinuous only on a finite subset of
T . It is easy to check at the same time that this component δ of the triple above is

the weak∗ limit of the functions
k∑

j=1

1
j2 δtj as k → ∞, and hence it is discontinuous

on the infinite set {tk}k∈N. The obtained contradiction completes the proof of the
proposition. �

One of the remarkable consequences of Proposition 7.23 is that the Farkas-
Minkowski property doesn’t hold for the water resource problem (7.71) on the com-
pact continuous-time interval T = [t, t]. On the other hand, this result justifies yet
another interpretation of the optimality conditions of Proposition 7.22 correspond-
ing to the efficient realization of control strategies for reservoirs. Since in practice
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the measuring and control processes for the water resource model under considera-
tion are implemented only at discrete instants of time, we can consider a discretiza-
tion T̃ of the time interval T and then apply the KKT conditions of Proposition 7.22
on T̃ .

7.3 Infinite Linear Systems Under Block Perturbations

In this section, we consider a class of infinite inequality constraint systems under
block perturbations. Besides being of an undoubted interest in semilinear program-
ming for its own sake, systems of this type eventually cover infinite convex inequal-
ity systems by using Fenchel duality. For brevity, we consider only the issues related
to coderivative analysis of infinite linear block-perturbed and convex systems and
its applications to characterizing Lipschitzian stability, i.e., we aim to develop con-
vex counterparts of the results given in Section 7.1. It is not hard to observe that the
coderivatives results obtained in this way can be equally applied to deriving both up-
per and lower subdifferential optimality conditions for SIPs with infinite constraints
under consideration similarly to those obtained in Section 7.2 for the linear ones.

Our approach is as follows. We first consider infinite linear systems with block
perturbations and extend to this case the results of Section 7.1. Then the results ob-
tained are applied to infinite convex systems by using their linearization via Fenchel
conjugates. As a by-product of our developments, we remove the boundedness as-
sumption previously imposed on the coefficient of linear and convex systems in the
case of reflexive decision spaces.

7.3.1 Description of Infinite Linear Block-Perturbed Systems

Given an arbitrary set T 
= ∅, consider its partition

J := {Tj | j ∈ J
}

with Tj 
= ∅ for all j ∈ J

indexed by a fixed set J 
= ∅ so that we have

T =
⋃

j∈J

Tj with Ti ∩ Tj = ∅ if i 
= j,

where the sets Tj , j ∈ J , in the partition are referred to as blocks.
Given further a decision Banach space and coefficients (a∗

t , bt ) ∈ X∗ ×R, t ∈ T ,
consider the block-perturbed system

σJ (p) := { 〈a∗
t , x
〉 ≤ bt + pj , t ∈ Tj , j ∈ J

}
(7.77)

with the perturbation parameter p = (
pj

)
j∈J

ranging in the Banach space l∞(J ).
The zero function p̄ = 0 is regarded as the nominal parameter, which corresponds
to the nominal system
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σ(0) := { 〈a∗
t , x
〉 ≤ bt , t ∈ T

}
(7.78)

independently on the partition J . The two extreme partitions

Jmin := {T } and Jmax := { {t} ∣∣ t ∈ T
}

(7.79)

are called the minimum partition and the maximum partition, respectively.

Our major attention is focused in what follows on coderivative analysis of the
feasible solution map FJ : l∞(J ) →→ X generated by (7.77) as

FJ (p) := {x ∈ X
∣∣ x is a solution to σJ (p)

}
(7.80)

and its applications to a complete characterization of Lipschitzian stability for (7.80)
via the given data of the nominal system (7.78). Then we proceed with further ap-
plications to infinite convex inequality systems.

7.3.2 Stability of Block-Perturbed Systems via Coderivatives

First, we present the following coderivative calculation for FJ at the reference
point, where δj stands for the Dirac measure at j ∈ J given by

〈
δj , p

〉 := pj for p = (pj

)
j∈J

∈ l∞ (J ) .

Proposition 7.24 (Coderivative Calculation for Block-Perturbed Linear Sys-
tems). Let x̄ ∈ FJ (0) for the mapping FJ : l∞(J ) →→ X from (7.80). Then we
have p∗ ∈ D∗FJ (0, x̄) (x∗) if and only if

(
p∗,−x∗,− 〈x∗, x̄

〉) ∈ cl∗cone
{ (−δj , a

∗
t , bt

) ∣∣ j ∈ J, t ∈ Tj

}
.

Proof. It can be done by following the lines in the proof of Theorem 7.5 and the
preceding propositions of Subsection 7.1.2. �

Similarly to (7.5), define the characteristic set for (7.77) by

CJ (p) := co
{
(a∗

t , bt + pj )
∣∣ t ∈ Tj , j ∈ J

} ⊂ X∗ × R (7.81)

at p ∈ l∞(J ) and consider its specification at p = 0, which actually doesn’t depend
on J but just on the nominal system (7.78):

C (0) = co
{ (

a∗
t , bt

) ∣∣ t ∈ T
}
.

The strong Slater condition (SSC) for the nominal system σ(0) and the correspond-
ing strong Slater point x̂ are specifications of Definition 7.1 for p = 0.

We have the following equivalent relationships, which extend the equivalencies
in Theorem 7.2 to the case of linear block-perturbed systems with taking into ac-
count some other results and proofs developed in Section 7.1.
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Proposition 7.25 (Characterizations of the Lipschitz-Like Property for Linear
Systems Under Block Perturbations). Given x̄ ∈ FJ (0) for the feasible solution
map (7.80), the following are equivalent:

(i) FJ is Lipschitz-like around (0, x̄).
(ii) D∗FJ (0, x̄)(0) = {0}.
(iii) SSC holds for σ (0).
(iv) 0 ∈ int(domFJ ).
(v) FJ is Lipschitz-like around (0, x) for all x ∈ FJ (0).
(vi) (0, 0) /∈ cl∗ C (0).

Proof. Implication (i)⇒(ii) is verified, due to D∗
MFJ (0, x̄) = D∗

NFJ (0, x̄) by the
graph convexity of FJ (0, x̄), in Step 1 of Theorem 3.3 the proof of which holds
without change in any change in arbitrary Banach space; see Exercise 3.35. The
verification of the converse application (ii)⇒(i) follows the lines in the proof of
Theorem 7.9 with the usage of Proposition 7.24. Since the conditions involved in
(iii) and (vi) don’t depend on partitions, the equivalence between them reduces to
(iii)⇔(iv) for p = 0 in Theorem 7.2. Following the proof of (ii)⇔(iii) in Theo-
rem 7.2 allows us to establish the equivalence between (iii) and (iv) for the max-
imum partition J = Jmax in (7.79), which obviously implies that (iii)⇒(iv) for
an arbitrary partition J . The converse implication (iv)⇒(iii) holds by considering
a constant perturbation p ≡ ε with ε > 0 being sufficiently small to ensure that
p ∈ int(domFJ ) by taking into account that constant perturbations (corresponding
to the minimum partition J = Jmin in (7.79)) are surely a particular case of block
perturbations. The equivalent relationships in (i)⇔(iv) and (iv)⇔(v) follow from the
classical Robinson-Ursescu theorem and the equivalence between the Lipschitz-like
property of a mapping and the metric regularity/covering properties of the inverse;
see Theorem 3.2, Corollary 3.6, and the corresponding commentaries in Section 3.5.
This completes the proof of the proposition. �

Now we proceed with evaluating the exact Lipschitzian bound of the mapping
(7.80) under block perturbations. Prior to establishing the main result in this direc-
tion, we present several propositions of their independent interest.

Proposition 7.26 (Relationships Between Exact Lipschitzian Bounds of Block-
Perturbed Systems). Let x̄ ∈ FJ (0) for the feasible solution map from (7.80).
Then we have in the notation of (7.79) that

lipFmin (0, x̄) ≤ lipFJ (0, x̄) ≤ lipFmax (0, x̄) .

Proof. We rely on the Lipschitzian bound representation given in (7.26). Consider
the nontrivial case where SSC is satisfied at the nominal system σ (0); otherwise
all the exact Lipschitzian bounds above are equal to ∞ according to the equivalence
(i)⇔(iii) in Proposition 7.25. Note that the mappings Fmin, FJ , and Fmax act in the
spaces R, l∞(J ), and l∞(T ), respectively. For each ρ ∈ R, let pρ be the constant
function pρ ≡ ρ on J , and for each p ∈ l∞ (J ), denote by pT the piecewise
constant function on T defined as pj on the block Tj , j ∈ J . Let us further verify
the two inequalities:
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dist
(
ρ;F−1

min (x)
)

≥dist
(
pρ;F−1

J (x)
)

, dist
(
p;F−1

J (x)
)

≥dist
(
pT ;F−1

max (x)
)

valid for any x ∈ X. Indeed, we obviously have that F−1
J (x) = ∅ yields F−1

min (x) =
∅ and similarly for the second inequality above.

Consider now the nontrivial case where both of these sets are nonempty. Thus
we get for some sequence {ρr }r∈N ⊂ F−1

min (x) that

dist
(
ρ;F−1

min (x)
)

= lim
r∈N

|ρ − ρr | = lim
r∈N
∥∥pρ − pρr

∥∥ ≥ dist
(
pρ;F−1

J (x)
)

by taking into account that ρr ∈ F−1
min (x) if and only if pρr ∈ F−1

J (x).
Finally, we appeal to representation (7.26) of the exact Lipschitzian bound com-

bined with the directly verifiable equalities

Fmin (ρ) = FJ
(
pρ

)
and FJ (p) = Fmax (pT ) ,

which thus allow us to complete the proof of the proposition. �
The next proposition establishes relationships between the coderivative norms of

(7.80) corresponding to different partitions.

Proposition 7.27 (Coderivative Norms for Block-Perturbed Systems). Consider
the feasible solution mappings (7.80) corresponding to an arbitrary partition J and
to the minimum one (7.79). Then for any x̄ ∈ FJ (0), we have

∥∥D∗Fmin (0, x̄)
∥∥ ≤ ∥∥D∗FJ (0, x̄)

∥∥ . (7.82)

Proof. Observe that FJ (0) = Fmin (0) since both sets therein reduce to the nom-
inal one; hence x̄ ∈ Fmin (0). According to the coderivative norm definition, pick
arbitrarily x∗ ∈ X∗ with ‖x∗‖ ≤ 1, and consider the nontrivial case where there
exists μ ∈ R\{0} with μ ∈ D∗Fmin (0, x̄) (x∗). The coderivative calculation in
Proposition 7.24 entails the existence of a net {λν}ν∈N with λν = (λtν)t∈T ∈ R

(T )
+

as ν ∈ N satisfying the condition

(
μ,−x∗,− 〈x∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T

λtν

(−1, a∗
t , bt

)
. (7.83)

Looking at the first coordinates in (7.83) and setting γν :=∑t∈T λtν , we get −μ =
lim
ν∈N

γν > 0, and hence γν > 0 for ν sufficiently advanced in the directed set N , say

for all ν without loss of generality. This gives us

(
μ−1x∗,

〈
μ−1x∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T

γ −1
ν λtν

(
a∗
t , bt

) ∈ cl ∗C (0) . (7.84)

For each ν ∈ N , consider next ην = (
ηjν

)
j∈J

∈ R
(J )
+ with ηjν := ∑

t∈Tj
γ −1
ν λtν ,

which yields
∑

j∈J ηjν = 1. Since the net {∑j∈J ηjν

(−δj

)}ν∈N is contained in the
ball Bl∞(J )∗ , the Alaoglu-Bourbaki theorem tells us that a certain subnet (indexed
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without relabeling by ν ∈ N ) weak∗ converges to some p∗ ∈ l∞ (J )∗ with ‖p∗‖ ≤
1. Denoting by e ∈ l∞ (J ) the function whose coordinates are identically 1, we get
the equality

〈
p∗,−e

〉 = lim
ν∈N

∑

j∈J

ηjν = 1, and so
∥∥p∗∥∥ = 1.

Appealing now to (7.84) shows for the subnet under consideration that
(
p∗, μ−1x∗,

〈
μ−1x∗, x̄

〉)
= w∗- lim

ν∈N
∑

j∈J

∑

t∈Tj

γ −1
ν λtν

(−δj , a
∗
t , bt

)
.

Employing then the coderivative description from Proposition 7.24 yields

p∗ ∈ D∗FJ (0, x̄)
(
−μ−1x∗) .

Since −μ > 0, the positive homogeneity of the coderivative implies that

−μp∗ ∈ D∗FJ (0, x̄)
(
x∗) ,

which ensures in turn by the coderivative norm definition that
∥∥D∗FJ (0, x̄)

∥∥ ≥ ∥∥−μp∗∥∥ = −μ = |μ| .
Since the number μ ∈ D∗Fmin (0, x̄) (x∗) was chosen arbitrarily, we arrive at (7.82)
and thus complete the proof of the proposition. �

To proceed further, we make for notational convenience the convention that
sup ∅ := 0, which allows us to get the equality

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

= 0

for a strong Slater point x̄ of σ(0). Indeed, it is easy to check that for such a point
x̄, there is no element u∗ ∈ X∗ satisfying

(
u∗, 〈u∗, x̄〉 ) ∈ cl ∗C (0).

Note that the converse statement doesn’t hold in general. To illustrate it, consider
the system σ (0) := {tx ≤ 1/t as t = 1, 2, . . .} in R. On the one hand, observe
that x̄ = 0 is not a strong Slater point of this system. On the other hand, we have
{u∗ ∈ R| (u∗, 〈u∗, x̄〉) ∈ cl ∗C(0)} = ∅.

Recall also that the failure of SSC for σ(0) tells us by Proposition 7.25 that
(0, 0) ∈ cl ∗C(0), which ensures under the convention 1/0 := ∞ that for any feasi-
ble point x̄ of σ (0), we have the relationship

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

= ∞.

These observations are useful in deriving the following lower estimate of the
coderivative norm for the minimum partition, which is an important step to obtain
the main result of this section.
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Proposition 7.28 (Lower Estimate of the Coderivative Norm for the Minimum
Partition). Consider the mapping Fmin : R →→ X defined by the minimum partition
Jmin in (7.79), and pick any x̄ ∈ Fmin (0). Then we have

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

≤ ∥∥D∗Fmin (0, x̄)
∥∥ . (7.85)

Proof. Let us check first that ‖D∗Fmin (0, x̄)‖ = ∞ provided that SSC for σ (0).
Indeed, in this case, Proposition 7.25 tells us that (0, 0) ∈ cl ∗C (0), which yields in
turn the existence of a net {λν}ν∈N with λν = (λtν)t∈T ∈ R

(T )
+ and

∑
t∈T λtν = 1

as ν ∈ N satisfying the condition

(
0, 0
) = w∗- lim

ν∈N
∑

t∈T

λtν

(
a∗
t , bt

)
.

The latter obviously implies that
(− 1, 0, 0

) = w∗-limν∈N
∑

t∈T λtν

(−1, a∗
t , bt

)
,

i.e., by Proposition 7.24 we get the inclusion

−1 ∈ D∗Fmin (0, x̄) (0) .

Since D∗Fmin (0, x̄) is positively homogeneous, the coderivative norm definition
ensures the validity of the claimed condition ‖D∗Fmin (0, x̄)‖ = ∞.

Next we consider the nontrivial case where SSC holds for σ (0) and the set of
elements u∗ ∈ X∗ with (u∗, 〈u∗, x̄〉) ∈ cl ∗C (0) is nonempty. Take such an element
u∗, and observe that the fulfillment of SSC for σ (0) yields u∗ 
= 0 according to
Proposition 7.25. The choice of u∗ allows us to find a net {λν}ν∈N with λν =
(λtν)t∈T ∈ R

(T )
+ and

∑
t∈T λtν = 1 as ν ∈ N satisfying

(
u∗,
〈
u∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T

λtν

(
a∗
t , bt

)
,

which can be equivalently rewritten in the form

(− 1, u∗,
〈
u∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T

λtν

(−1, a∗
t , bt

)
.

This implies that −1 ∈ D∗Fmin (0, x̄) (−u∗), and hence

− ∥∥u∗∥∥−1 ∈ D∗Fmin (0, x̄)
(
− ∥∥u∗∥∥−1

u∗) ,

which ensures by the definition of the coderivative norm that

∥∥D∗Fmin (0, x̄)
∥∥ ≥ ∥∥u∗∥∥−1

.

Since the element u∗ was chosen arbitrarily from those satisfying the inclusion
(u∗, 〈u∗, x̄〉) ∈ cl ∗C (0), we arrive at the claimed lower estimate (7.85) of the
coderivative norm and thus complete the proof of the proposition. �
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Now we are ready to establish the main result of this subsection.

Theorem 7.29 (Evaluation of Coderivative Norms for Block-Perturbed Sys-
tems). For any x̄ ∈ FJ (0), we have the relationships

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x̄〉 ) ∈ cl ∗C (0)

}
≤ ‖D∗Fmin (0, x̄)‖ ≤ ∥∥D∗FJ (0, x̄)

∥∥

≤ lipFJ (0, x̄) ≤ lipFmax (0, x̄) .

Furthermore, if either the coefficient set {a∗
t | t ∈ T } is bounded in X∗ or the space

X is reflexive, then all the above inequalities hold as equalities.

Proof. Recall as above that the lower estimate

‖D∗FJ (0, x̄)‖ ≤ lipFJ (0, x̄) (7.86)

follows from the proof of Step 1 Theorem 3.3 in arbitrary Banach spaces. Applying
now (in this order) Propositions 7.28 and 7.27, formula (7.86), and Proposition 7.26
verifies the chain of inequalities claimed in the theorem.

To verify the equalities therein under the additional assumptions made, consider
first the case where the coefficient set {a∗

t | t ∈ T } is bounded in X∗. Then using
Theorem 7.15 adapted to the current notation gives us

lipFmax (0, x̄) ≤ sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

(7.87)

in the nontrivial case where SSC holds for the nominal system σ (0).
It remains to consider the case where the space X is reflexive and to justify the

upper estimate (7.87) provided the validity of SSC for σ(0). Employing in this case
the Mazur weak closure theorem allows us to replace the weak∗ closure cl ∗C (0)

of the convex set C (0) by its norm closure cl C (0). Suppose that (7.87) fails, and
choose β > 0 such that

lipFmax (0, x̄) > β > sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉) ∈ cl C (0)
}

. (7.88)

Using the distance representation (7.26) of the exact Lipschitzian bound and the
first inequality in (7.88) gives us sequences pr = (ptr )t∈T → 0 and xr → x̄ along
which we have the relationship

dist
(
xr ;Fmax(pr)

)
> β dist

(
pr ;F−1

max(xr )
)

for all r ∈ N, (7.89)

which readily implies that the quantity

dist
(
pr ;F−1

max (xr )
) = supt∈T

[〈
a∗
t , xr

〉− bt − ptr

]
+

= sup
(x∗,α)∈Cmax(pr )

[〈
x∗, xr

〉− α
]
+

(7.90)
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is finite. It follows from Proposition 7.25 due to the assumed SSC that Fmax (pr) 
=
∅ for r ∈ N sufficiently large, say, for all r ∈ N without loss of generality. Further-
more, under this condition, we have

lim
r→∞ dist

(
xr ;Fmax

(
pr

)) = 0; (7.91)

see Exercise 7.86 for more discussions. Assume without loss of generality the va-
lidity of SSC for the system σmax(pr) and then deduce from the extended Ascoli
formula (7.37) for infinite linear systems in Proposition 7.12, which holds in reflex-
ive spaces, the representation

dist
(
xr ;Fmax (pr)

) = sup
(x∗,α)∈Cmax(pr )

[〈x∗, xr 〉 − α
]
+

‖x∗‖ , r ∈ N.

This allows us to find
(
x∗
r , αr

) ∈ Cmax (pr) as r ∈ N satisfying

0 < dist
(
xr ,Fmax (pr)

)−
〈
x∗
r , xr

〉− αr∥∥x∗
r

∥∥ <
1

r
. (7.92)

Furthermore, by (7.89) and (7.90), we can choose
(
x∗
r , αr

)
in (7.92) so that

β dist
(
pr ;F−1

max (xr )
)

<

〈
x∗
r , xr

〉− αr∥∥x∗
r

∥∥ ≤ dist
(
pr ;F−1

max (xr )
)

∥∥x∗
r

∥∥ . (7.93)

Since dist(pr ;F−1
max (xr )) > 0 (otherwise both sides of (7.89) would be equal to

zero, which is not possible), it follows from (7.93) that ‖x∗
r ‖ < β−1 for all r ∈ N.

Thus, by the weak∗ sequential compactness of the unit balls in duals to reflexive
spaces, we select a subsequence

{
x∗
rk

}
k∈N that weak∗ converges to some x∗ ∈ X∗

with ‖x∗‖ ≤ β−1. Then (7.91) and (7.92) yield

lim
k∈N

〈
x∗
rk

, xrk

〉− αrk∥∥x∗
rk

∥∥ = 0, and so lim
k∈N
( 〈

x∗
rk

, xrk

〉− αrk

) = 0.

The latter implies by the normal convergence of
{
xrk

}
k∈N to x̄ that

lim
k∈Nαrk = lim

k∈N
〈
x∗
rk

, xrk

〉 = 〈x∗, x̄
〉
.

Then we deduce from
(
x∗
rk

, αrk

) ∈ Cmax
(
prk

)
the existence of multiplies λrk =

(λtrk )t∈T such that λtrk ≥ 0, only finitely many of them are not zero, and

∑

t∈T

λtrk = 1, and (x∗
rk

, αrk ) =
∑

t∈T

λtrk

(
a∗
t , bt + ptrk

)
, k ∈ N.
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Combining the above equations gives us the relationships

(
x∗,
〈
x∗, x̄

〉 ) = w∗ - lim
k∈N(x∗

rk
, αrk ) = w∗ - lim

k∈N
∑

t∈T

λtrk

(
a∗
t , bt + ptrk

)

= w∗ - lim
k∈N
∑

t∈T

λtrk

(
a∗
t , bt

) ∈ cl C (0) ,

where the last equality comes from limk→∞
∥∥prk

∥∥ = 0. Observe finally that x∗ 
= 0
due to the validity of SSC for σ (0) by Proposition 7.25. Hence

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl C (0)
}

≥ ∥∥x∗∥∥−1 ≥ β,

which contradicts (7.88) and thus completes the proof of the theorem. �

7.3.3 Applications to Infinite Convex Inequality Systems

Here we consider parameterized convex inequality systems given by

σ(p) := {ϕj (x) ≤ pj , j ∈ J
}
, (7.94)

where J is an arbitrary index set and where the functions ϕj : X → R, j ∈ J ,
are l.s.c. (our standing assumption) and convex on the Banach space X. As above,
the functional parameter p belongs to l∞(J ) and the zero function p̄ = 0 is the
nominal parameter. Our goal is to characterize Lipschitzian stability of the convex
system (7.94) around p̄ = 0 by applying the obtained results for block-perturbed
linear systems. We can do it with the help of the Fenchel conjugate (7.30) defined
for each function ϕj by

ϕ∗
j (u∗) := sup

{ 〈
u∗, x

〉− ϕj (x)
∣∣ x ∈ X

} = sup
{ 〈

u∗, x
〉− ϕj (x)

∣∣ x ∈ dom ϕj

}
.

Indeed, the classical Fenchel duality theorem tells us that relationship

ϕ∗∗
j = ϕj on X with ϕ∗∗

j :=
(
ϕ∗

j

)∗

holds under the assumptions made. Using this, we get for each j ∈ J that the convex
inequality ϕj (x) ≤ pj turns out to be equivalent to the linear system

{〈
u∗, x

〉− ϕ∗
j

(
u∗) ≤ pj , u∗ ∈ dom ϕ∗

j

}
(7.95)

in the sense that they have the same solution sets. Denote

T :=
{(

j, u∗) ∈ J × X∗∣∣ u∗ ∈ dom ϕ∗
j

}
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and observe that T can be partitioned as

T =
⋃

j∈J

Tj with Tj := {j}× dom ϕ∗
j . (7.96)

In this way the right-hand side perturbations on the nominal convex system σ(0)

correspond to block perturbations of the linearized nominal system σJ (0) with the
partition J := {

Tj | j ∈ J
}
. It is important to realize to this end that the feasible

solution map F : l∞(J ) →→ X to (7.94) given by

F(p) := {x ∈ X
∣∣ x is a solution to σ(p)

}
(7.97)

and the one for the block-perturbed linearized system FJ with the partition J :={
Tj | j ∈ J

}
are exactly the same mapping. This allows us to implement the re-

sults of Subsection 7.3.1 to characterizing Lipschitzian stability of infinite convex
systems. It is not hard to check that the convex counterpart of the characteristic set
CJ (p) from (7.81) is

C (p) := co
{(

u∗, ϕ∗
j (u∗) + pj

) ∣∣∣ j ∈ J, u∗ ∈ dom ϕ∗
j

}

= co
(⋃

j∈J
gph (ϕj − pj )

∗) ⊂ X∗ × R.
(7.98)

Observe that for the convex system σ (0) under consideration, the corresponding
SSC reads as supt∈T ϕt (̂x) < 0 for some x̂ ∈ X and that x̂ is a strong Slater point
for σ (0) if and only if

sup
(j,u∗)∈T

{ 〈
u∗, x̂

〉− ϕ∗
j

(
u∗) } < 0.

The next result provides calculating the coderivative of the solution map (7.97)
to the original infinite convex system (7.94) in terms of its initial data.

Proposition 7.30 (Calculating Coderivatives for Infinite Convex Systems). Take
x̄ ∈ F (0) for the solution map (7.97) to the convex system (7.94). Then we have
p∗ ∈ D∗F (0, x̄) (x∗) if and only if

(
p∗,−x∗,− 〈x∗, x̄

〉 ) ∈ cl∗cone
(⋃

j∈J

( {−δj

}× gph ϕ∗
j

))
. (7.99)

Proof. It follows directly from its linear counterpart in Proposition 7.24. �
Now we are ready to present the major result of this subsection proving an evalu-

ation of the exact Lipschitzian bound for the feasible solution map (7.97) for infinite
convex inequality systems.

Theorem 7.31 (Evaluation of the Coderivative Norm for Infinite Convex Sys-
tems). For any x̄ ∈ F (0) from (7.97), we have the relationships
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sup
{ ∥∥u∗∥∥−1

∣∣∣
(
u∗,
〈
u∗, x̄

〉 ) ∈ cl ∗co
(⋃

j∈J

gph ϕ∗
j

)}
≤ ∥∥D∗F (0, x̄)

∥∥ ≤ lipF (0, x̄) .

If furthermore either the set
⋃

j∈J dom ϕ∗
j is bounded in X∗ or the space X is re-

flexive, then the above inequalities hold as equalities.

Proof. It follows from Theorem 7.29 applied to the linear system (7.95) with block
perturbations by employing the above linearization procedure and the coderivative
calculation given in Proposition 7.30. �

The next example shows that the boundedness assumption, which looks quite
natural in the linear setting, may fail for very simple convex systems.

Example 7.32 (Failure of the Boundedness Assumption for Infinite Convex In-
equality Systems). Consider the following single convex inequality involving one-
dimensional decision and parameter variables:

x2 ≤ p with x, p ∈ R.

The linearized system associated with it reads as follows:

{
ux ≤ u2

4
+ p, u ∈ R

}
,

and thus the boundedness assumption of Theorem 7.31 fails.

7.4 Metric Regularity of Infinite Convex Systems

In this section, we develop another approach to well-posedness of infinite convex
constraint systems concentrating mainly on their metric regularity. The study of
well-posedness in Chapter 3 reveals that, although metric regularity of general mul-
tifunctions is equivalent to the Lipschitz-like property of their inverses, the former
is unnatural (fails as a rule), while the latter holds under unrestrictive qualification
conditions for broad classes of set-valued mappings known as parametric paramet-
ric variational systems (PVS); see Section 3.3. The situation is parametric constraint
systems (PCS) different for parametric constraint systems, where both metric regu-
larity and Lipschitzian properties can be studied in parallel and are satisfied under
similar (symmetric) constraint qualifications; cf. Section 3.3 and [522, Section 4.3].
The infinite constraint systems considered in Sections 7.1 and 7.3 belong to the lat-
ter category, and so their metric regularity and Lipschitzian stability can be studied
and characterized in a parallel way.

In fact, full characterizations of metric regularity for the infinite linear and convex
inequality systems considered in Sections 7.1 and 7.3 can be derived from the equal-
ities for their exact Lipschitzian bounds, which are reciprocal to the exact bounds of
metric regularity. However, the aforementioned calculation of the exact Lipschitzian
bound in Theorem 7.31 (which extends the previous ones for linear systems) is jus-
tified under the imposed boundedness assumption, which is rather restrictive (as
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shown in Example 7.32) while cannot be removed in the given proof unless the
decision space is reflexive.

The new approach to characterizing metric regularity of infinite convex systems
developed below is completely different from the one employed in the previous sec-
tions of this chapter. It first concerns the study of metric regularity of general mul-
tifunctions with closed and convex graphs for which we establish formulas for the
precise calculation of the exact regularity bound in arbitrary Banach spaces with-
out imposing any qualification conditions while with involving ε-coderivatives. Our
approach to these issues is based on reducing metric regularity of such mappings to
the unconstrained minimization of DC (difference of convex) functions. In this way
we obtain regularity criteria for general convex-graph multifunctions and then apply
them to metric regularity of infinite convex systems. It allows us not only to cover
the case of infinite convex inequalities in arbitrary Banach spaces without imposing
the aforementioned boundedness assumption but also to include additional linear
equality and convex geometric constraints into consideration.

7.4.1 DC Optimization Approach to Metric Regularity

Recall in accordance with (3.2) in Definition 3.1, a set-valued mapping F : X →→ Y

between metric spaces is metrically regular around (x̄, ȳ) ∈ gph F with modulus
μ > 0 if there are neighborhoods U of x̄ and V of ȳ such that

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)

)
for any x ∈ U and y ∈ Y.

The exact regularity bound reg F(x̄, ȳ) of F around (x̄, ȳ) is the infimum of all
such moduli μ. It is easy to observe directly from the definition that the metric
regularity (3.2) is amount to saying that (x̄, ȳ) is a local minimizer of the following
unconstrained optimization problem:

minimize μ dist
(
y;F(x)

)− dist
(
x;F−1(y)

)
(7.100)

over (x, y) ∈ X × Y . Throughout this and the next subsections, we consider, unless
otherwise stated, multifunctions F between arbitrary Banach spaces with closed
and convex graphs. Observe that (7.100) is a DC minimization problem. Problems
of this type are briefly studied in Section 6.1 and in much more details in Section 7.5
while from different prospectives.

To proceed, we need to recall some notions and facts from convex analysis
and DC optimization. Given a convex function ϕ : X → R and ε ≥ 0, the ε-
subdifferential of ϕ at x̄ ∈ dom ϕ is defined by

∂εϕ(x̄) := {x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) + ε, x ∈ X
}
, (7.101)

which reduces to the subdifferential of convex analysis for ε = 0; this construction is
also known as the approximate subdifferential of ϕ at x̄ if ε > 0. We put ∂εϕ(x̄) := ∅
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if x̄ /∈ dom ϕ. Note that (7.101) for ε > 0 is different from the ε-enlargement
∂̂εϕ(x̄) of the regular subdifferential from (1.34) in the case of convex functions
under consideration; see Proposition 1.25. The following ε-subdifferential sum rule
is well known in convex analysis:

∂ε(ϕ1 + ϕ2)(x̄) =
⋃

ε1+ε2=ε
ε1,ε2≥0

[
∂ε1ϕ1(x̄) + ∂ε2ϕ2(x̄)

]
(7.102)

provided that one of the functions ϕi is continuous at x̄ ∈ dom ϕ1 ∩ dom ϕ2; see
Exercise 7.93 for more discussions.

Given a convex set � ⊂ X, we have the collection of (convex) ε-normals

Nε(x̄;�) := ∂εδ(x̄;�) = {x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ε for all x ∈ �
}
, ε ≥ 0,

which can be equivalently represented in the form

Nε(x̄;�) = {x∗ ∈ X∗∣∣ σ�(x∗) ≤ 〈x∗, x̄〉 + ε
}
, (7.103)

where σ� stands for the support function of � defined by

σ�(x∗) := sup
{〈x∗, x〉∣∣ x ∈ �

}
, x∗ ∈ X∗.

Again note that convex ε-normals in (7.103) are different as ε > 0 from regular
ε-normals in N̂ε(x̄;�) defined in (1.6) for general (including convex) sets.

The ε-coderivative of a set-valued mapping F : X →→ Y at (x̄, ȳ) ∈ gph F is
defined by the usual scheme via ε-normals to the graph

D∗
εF (x̄, ȳ)(y∗) := {x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ Nε

(
(x̄, ȳ); gph F

)}
(7.104)

for ε ≥ 0 with D∗
0F(x̄, ȳ) = D∗F(x̄, ȳ). The ε-coderivative norm is given by

‖D∗
εF (x̄, ȳ)‖ := sup

{‖x∗‖ ∣∣ x∗ ∈ D∗
εF (x̄, ȳ)(y∗), y∗ ∈ BY ∗

}
. (7.105)

If F is metrically regular around (x̄, ȳ), we get from Theorem 3.3(ii), by observing
that this part holds in any Banach space, that D∗F−1(ȳ, x̄)(0) = {0}, and thus arrive
at the norm representation via the unit sphere SX∗ :

‖D∗F−1(ȳ, x̄)‖ = sup
{‖y∗‖ ∣∣ y∗ ∈ D∗F−1(ȳ, x̄)(x∗), x∗ ∈ SX∗

}
. (7.106)

The following two results from DC programming in Banach spaces involving
ε-subgradients of convex functions (7.101) are important in the proof of the main
theorem in the next subsection.

Lemma 7.33 (Necessary and Sufficient Conditions for Global DC Minimizers).
Let ϕ1, ϕ2 : X → R be convex functions. Then x̄ is a global minimizer of the
unconstrained DC program given by
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minimize ϕ1(x) − ϕ2(x) over x ∈ X (7.107)

if and only if ∂εϕ2(x̄) ⊂ ∂εϕ1(x̄) for all ε ≥ 0.

Note that the necessity of the obtained subdifferential inclusion with ε = 0 for
local minimizers of (7.107) is established in Proposition 6.3 as a consequence of up-
per subdifferential conditions in unconstrained optimization; see more discussions
and references in Exercise 7.94(i,ii). The next result provides a sufficient condition
of this type for local minimizers of (7.107); see Exercise 7.94(iii,iv) for the proof
and discussions.

Lemma 7.34 (Sufficient Conditions for Local DC Minimizers). Let ϕ1, ϕ2 :
X → R be convex functions, and let ϕ2 be continuous at the point x̄ ∈ dom ϕ1 ∩
[int(dom ϕ2)]. Then x̄ is a local minimizer of (7.107) if there is ε0 > 0 such that
∂εϕ2(x̄) ⊂ ∂εϕ1(x̄) for all ε ∈ [0, ε0].

7.4.2 Metric Regularity of Convex-Graph Multifunctions

Now we are ready to establish the main result on calculating the exact regularity
bound of closed- and convex-graph multifunctions via their ε-coderivatives at the
reference points. The next theorem presents two limiting formulas for calculating
this bound in general Banach spaces.

Theorem 7.35 (ε-Coderivative Formulas for the Exact Regularity Bound).
Given a point (x̄, ȳ) ∈ gph F , assume that ȳ ∈ int(rge F). Then we have

reg F(x̄, ȳ) = lim
ε↓0

‖D∗
εF−1(ȳ, x̄)‖, (7.108)

reg F(x̄, ȳ) = lim
ε↓0

[
sup
{ 1

‖x∗‖
∣∣∣ x∗ ∈ D∗

εF (x̄, ȳ)(y∗), y∗ ∈ SY ∗
}]

. (7.109)

Proof. Since ȳ ∈ int (rge F), it follows from the Robinson-Ursescu theorem in
Banach spaces (see Corollary 3.6 and Exercise 3.49) that F is metrically regular
around (x̄, ȳ), i.e., there are η,μ > 0 such that

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)

)
for all (x, y) ∈ Bη(x̄, ȳ). (7.110)

Consider now the convex functions ϕ1, ϕ2 on X × Y defined by

ϕ1(x, y) := dist
(
y;F(x)

)
and ϕ2(x, y) := dist

(
x;F−1(y)

)
(7.111)

and deduce from the covering property of F equivalent to metric regularity that
there is r > 0 such that B2r (ȳ) ⊂ F(x̄ +BX). Combining this with the construction
of ϕ2 in (7.111) provides the estimate

ϕ2(x, y) ≤ ‖x − x̄‖ + 1 whenever y ∈ B2r (ȳ),
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which tells us that ϕ2 is upper bounded around (x̄, ȳ), and thus it is locally Lip-
schitzian around this point due to the well-known result of convex analysis; see,
e.g., [757, Corollary 2.2.13]. Implementing our approach to metric regularity, we
conclude that (x̄, ȳ) is a local minimizer of the DC program:

minimize μϕ1(x, y) − ϕ2(x, y) subject to (x, y) ∈ X × Y, (7.112)

and consequently it is a global minimizer of the DC function

(
μϕ1 + δ(·;Bη(x̄, ȳ))

)
(x, y) − ϕ2(x, y) over (x, y) ∈ X × Y. (7.113)

Applying Lemma 7.33 to the DC program (7.113) gives us the inclusion

∂εϕ2(x̄, ȳ) ⊂ ∂ε

(
Kϕ1 + δ(·;Bη(x̄, ȳ))

)
(x̄, ȳ) for all ε ≥ 0.

Since the function δ((·, ·);Bη(x̄, ȳ)) is continuous at (x̄, ȳ), it follows from the ε-
subdifferential sum rule (7.102) that the latter inclusion reduces to

∂εϕ2(x̄, ȳ) ⊂
⋃

ε1+ε2=ε
ε1,ε2≥0

[
∂ε1(Kϕ1)(x̄, ȳ) + ∂ε2δ

(·;Bη(x̄, ȳ)
)
(x̄, ȳ)

]

=
⋃

ε1+ε2=ε
ε1,ε2≥0

[
∂ε1(Kϕ1)(x̄, ȳ) + ε2

η
BX∗×Y ∗

] (7.114)

due to the fact that ∂εδ(·;Br(x))(x) = ε
r
BX∗ for all ε ≥ 0 and r > 0.

Let us next calculate the ε-subdifferentials of the functions Kϕ1 and ϕ2 from
(7.111) at (x̄, ȳ) by using their Fenchel conjugates (7.30) and the obvious ε-
subdifferential representation for any convex function ϕ : X → R:

∂εϕ(x̄) = {x∗ ∈ X∗∣∣ ϕ∗(x∗) ≤ 〈x∗, x̄〉 − ϕ(x̄) + ε
}
, ε ≥ 0.

In this way we get that (x∗, y∗) ∈ ∂ε1(μϕ1)(x̄, ȳ) if and only if

(μϕ1)
∗(x∗, y∗) ≤ 〈x∗, x̄〉 + 〈y∗, ȳ〉 + ε1, (7.115)

which ensures in turn by elementary transformations that

(μϕ1)
∗(x∗, y∗) = sup

x,y

(
〈x∗, x〉 + 〈y∗, y〉 − μ dist

(
y;F(x)

))

= sup
x,y

(
〈x∗, x〉 + 〈y∗, y〉 − inf

u

(
μ‖y − u‖ + δ(u;F(x))

))

= sup
u,x,y

(
〈x∗, x〉+〈y∗, y−u〉+〈y∗, u〉−μ‖y − u‖−δ

(
u;F(x)

))

= sup
u,x,y

(
〈x∗, x〉 + 〈y∗, u〉 − δ

(
u;F(x)

)+ 〈y∗, y〉 − μ‖y‖
)

= σgphF (x∗, y∗) + δ
(
y∗;μBY ∗

)
.

By using (7.103) and (7.115), the latter implies that
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∂ε1(μϕ1)(x̄, ȳ) = Nε1

(
(x̄, ȳ); gph F

) ∩ (X∗ × μBY ∗
)
. (7.116)

Similarly, by taking into account the form of ϕ2 in (7.111), we arrive at

∂εϕ2(x̄, ȳ) = Nε

(
(x̄, ȳ); gph F

) ∩ (BX∗ × Y ∗). (7.117)

Thus the inclusion in (7.114) reduces to the following:

Nε

(
(x̄, ȳ); gph F

) ∩ (B∗ × Y ∗) ⊂
⋃

ε1+ε2=ε
ε1,ε2≥0

Nε1

(
(x̄, ȳ); gph F

) ∩ (X∗ × μB∗)

+ε2

η
BX∗×Y ∗ .

(7.118)

To justify the equality in (7.108), let us fix ε > 0 and pick any (x∗, y∗) ∈
BX∗ × Y ∗ satisfying y∗ ∈ D∗

εF−1(ȳ, x̄)(x∗), which means that (−x∗, y∗) ∈
Nε((x̄, ȳ); gph F). It follows from (7.118) that there exist a number ε1 ∈ [0, ε]
and ε1-normals (u∗, v∗) ∈ Nε1((x̄, ȳ); gph F) satisfying the estimates ‖v∗‖ ≤ μ

and ‖y∗ − v∗‖ ≤ (ε − ε1)η
−1. Hence, we get the inequalities

‖y∗‖ ≤ ‖v∗‖ + (ε − ε1)η
−1 ≤ μ + εη−1.

Observe from (7.105) that the function ε �→ ‖D∗
εF−1(ȳ, x̄)‖ is nondecreasing,

which implies therefore the relationships

lim
ε↓0

‖D∗
εF−1(ȳ, x̄)‖ = inf

ε>0
‖D∗

εF−1(ȳ, x̄)‖ ≤ inf
ε>0

(
μ + εη−1

)
.

Letting μ ↓ reg F(x̄; ȳ) above gives us the estimate

lim
ε↓0

‖D∗
εF−1(ȳ, x̄)‖ ≤ reg F(x̄, ȳ). (7.119)

It follows from (7.119) that the equality in (7.108) is trivial if reg F(x̄, ȳ) = 0.
Considering further the case of reg F(x̄, ȳ) > 0, we deduce from the definition of
the exact regularity bound that (x̄, ȳ) is not a local minimizer of the DC problem
(7.112) when 0 < μ < reg F(x̄, ȳ). Then Lemma 7.34 allows us to find sequences
εk ↓ 0 and (x∗

k , y∗
k ) ∈ ∂εk

ϕ2(x̄, ȳ) such that (x∗
k , y∗

k ) /∈ ∂εk
(μϕ1)(x̄, ȳ) as k ∈ N.

Combining this with (7.116) and (7.117) implies that

‖x∗
k ‖ ≤ 1 and ‖y∗

k ‖ > μ for all k ∈ N. (7.120)

Since B2r (ȳ) ⊂ F(x̄ + BX) as mentioned, (7.117) and (7.120) yield

εk ≥ sup
(x,y)∈gphF

(
〈x∗

k , x − x̄〉 + 〈y∗
k , y − ȳ〉

)

≥ supy∈B2r (ȳ)

(〈y∗
k , y − ȳ〉)− ‖x∗

k ‖ ≥ 2r‖y∗
k ‖ − ‖x∗

k ‖ ≥ 2rμ − ‖x∗
k ‖.

(7.121)
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By εk ↓ 0 as k → ∞, we have ‖x∗
k ‖ ≥ 2rμ − εk ≥ rμ for sufficiently large k.

Suppose without loss of generality that ‖x∗
k ‖ ≥ rμ for all k ∈ N, and define

ỹ∗
k := y∗

k ‖x∗
k ‖−1, x̃∗

k := −x∗
k ‖x∗

k ‖−1, and ε̃k := εk‖x∗
k ‖−1.

Then ‖x̃∗
k ‖ = 1, ε̃k ↓ 0, and ỹ∗

k ∈ D∗̃
εk

F−1(ȳ, x̄)(̃x∗
k ). We get from (7.120) that

sup
{‖y∗‖ ∣∣ y∗ ∈ D∗̃

εk
F−1(ȳ, x̄)(y∗), x∗ ∈ SX∗

} ≥ ‖ỹ∗
k ‖ = ‖y∗

k ‖ · ‖x∗
k ‖−1 > μ.

Letting k → ∞ and μ ↑ reg F(x̄, ȳ) tells us that

lim
ε↓0

sup
{‖y∗‖∣∣ y∗ ∈ D∗

εF−1(ȳ, x̄)(x∗), x∗ ∈ SX∗} ≥ reg F(x̄; ȳ),

which yields the equality in (7.108) by using (7.119).
It remains to prove formula (7.109). By the arguments similar to those following

(7.121), we arrive at the relationships

D∗
εF (x̄, ȳ)(y∗) ∩ rBX∗ = ∅ for all 0 < ε < r and y∗ ∈ SY ∗ . (7.122)

Pick any (x∗, y∗) ∈ X∗ × SY ∗ such that x∗ ∈ D∗
εF (x̄, ȳ)(y∗) for some 0 < ε < r .

Define further x̂∗ := −x∗‖x∗‖−1, ŷ∗ := −y∗‖x∗‖−1, and ε̂ := ε‖x∗‖−1. This
ensures that x̂∗ ∈ SX∗ , ‖ŷ∗‖ = ‖x∗‖−1, and ŷ∗ ∈ D∗̂

εF−1(ȳ, x̄)(̂x∗). Observe from
(7.122) that ε̂ ≤ εr−1, and thus we have

‖x∗‖−1 = ‖ŷ∗‖ ≤ ‖D∗̂
εF−1(ȳ, x̄)‖ ≤ ‖D∗

εr−1F
−1(ȳ, x̄)‖.

This together with (7.108) yields the inequality “≥” in (7.109) by letting ε ↓ 0.
To justify the converse inequality in (7.109), note first that it obviously holds

when reg F(x̄, ȳ) = 0. If reg F(x̄, ȳ) > 0, we get from the equality in (7.108) and
the norm definition in (7.105) that there exists a sufficiently small number 0 < s <

reg F(x̄, ȳ) ensuring the validity of the condition

D∗
εF−1(ȳ, x̄)(x∗) ∩ sBY ∗ = ∅ for all 0 < ε < s and x∗ ∈ SX∗ .

The arguments similar to those after (7.122) give us the estimate

‖D∗
εF−1(ȳ, x̄)‖ ≤ sup

{ 1

‖x∗‖
∣∣∣x∗ ∈ D∗

εs−1F(x̄, ȳ)(y∗), y∗ ∈ SY ∗
}
. (7.123)

Indeed, pick (y∗, x∗) ∈ Y ∗ × SX∗ with y∗ ∈ D∗
εF−1(ȳ, x̄)(x∗) and get ‖y∗‖ > s.

Then for x̃∗ := x∗‖y∗‖−1 and ỹ∗ := y∗‖y∗‖−1, we have ‖x̃∗‖−1 = ‖y∗‖, ỹ∗ ∈ SY ∗ ,
and x̃∗ ∈ D∗

ε
‖y∗‖

F(x̄, ȳ)(ỹ∗) ⊂ D∗
εs−1F(x̄, ȳ)(ỹ∗), which yields (7.123). Combining

finally (7.108) with (7.123) justifies the inequality “≤” in (7.109) and thus completes
the proof of the theorem. �

The following consequence of Theorem 7.35 and the classical Brøndsted-
Rockafellar density theorem of convex analysis (see, e.g., [638, Theorem 3.17])
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establish a precise formula for the exact regularity bound of a closed convex multi-
function F between Banach spaces by using the coderivative of F−1 instead of its
ε-counterparts while involving points around the reference one.

Corollary 7.36 (Calculating the Exact Regularity Bound via Coderivatives at
Nearby Points). In the setting of Theorem 7.35, we have

reg F(x̄, ȳ) = lim
ε↓0

[
sup
{
‖D∗F−1(y, x)‖ over

(x, y) ∈ gph F ∩ Bε(x̄, ȳ)
}]

.
(7.124)

Proof. To verify the inequality “≥” in (7.124), observe from (7.110) that for any
μ > reg F(x̄, ȳ) and any sufficiently small ε > 0, we get

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)

)
for all (x, y) ∈ Bε(̃x, ỹ)

whenever (̃x, ỹ) ∈ Bε(x̄, ȳ). It follows from (7.108) that

μ ≥ lim
η↓0

‖D∗
ηF−1(ỹ, x̃)‖ ≥ ‖D∗F−1(ỹ, x̃)‖ for all (̃x, ỹ) ∈ gph F ∩ Bε(x̄, ȳ).

This clearly implies the estimate

μ ≥ lim
ε↓0

[
sup
{
‖D∗F−1(y, x)‖

∣∣∣ (x, y) ∈ gph F ∩ Bε(x̄, ȳ)
}]

.

Letting there μ ↓ reg F(x̄, ȳ), we arrive at the inequality “≥” in (7.124).
To prove the converse inequality in (7.124), take an arbitrary ε > 0, and ob-

serve from Theorem 7.35 that reg F(x̄, ȳ) ≤ ‖D∗
ε2F

−1(ȳ, x̄)‖. This allows us to

find (x∗, y∗) ∈ X∗ × Y ∗ satisfying the condition y∗ ∈ D∗
ε2F

−1(ȳ, x̄)(x∗), i.e.,
(−x∗, y∗) ∈ Nε2((x̄, ȳ); gph F). We have furthermore that

‖x∗‖ ≤ 1 and ‖y∗‖ + ε ≥ reg F(x̄, ȳ). (7.125)

By the Brøndsted-Rockafellar theorem, there are (xε, yε) ∈ gph F ∩ Bε(x̄, ȳ) and
(−x∗

ε , y∗
ε ) ∈ N((xε, yε); gph F) satisfying ‖x∗

ε −x∗‖ ≤ ε and ‖y∗
ε −y∗‖ ≤ ε. Thus

we get ‖x∗
ε ‖ ≤ ‖x∗‖ + ε ≤ 1 + ε and ‖y∗‖ ≤ ‖y∗

ε ‖ + ε, and thus

‖y∗‖ ≤ (1 + ε)‖D∗F−1(yε, xε)‖ + ε.

Combining this with (7.125) yields the estimate

reg F(x̄, ȳ) ≤ (1 + ε) sup
{
‖D∗F−1(y, x)‖

∣∣∣ (x, y) ∈ gph F ∩ Bε(x̄, ȳ)
}

+ 2ε,

which ensures the inequality “≤” in (7.124) while letting ε ↓ 0. �
The next consequence of Theorem 7.35 concerns calculating the exact covering

bound of closed- and convex-graph multifunctions. This is indeed a major result of
this section, which accumulates the previous developments.
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Corollary 7.37 (Calculating the Exact Covering Bound for Convex-Graph
Multifunctions). Given a point (x̄, ȳ) ∈ gph F with ȳ ∈ int(rge F), the exact
covering bound of F at (x̄, ȳ) is calculated by

cov F(x̄, ȳ) = lim
ε↓0

[
inf

x∗∈X∗ inf
y∗∈SY∗

(
‖x∗‖ + σgphF−(x̄,ȳ)(x

∗, y∗)
ε

)]
.

Proof. Define � := gph F − (x̄, ȳ). Since the number cov F(x̄, ȳ) is the reciprocal
of reg F(x̄, ȳ), it suffices to show that

reg F(x̄, ȳ) = lim
ε↓0

[
sup

x∗∈X∗
sup

y∗∈SY∗

(
‖x∗‖ + σ�(x∗, y∗)

ε

)−1] =: α. (7.126)

By (7.109), we find sequences εk ↓ 0 and (x∗
k , y∗

k ) ∈ X∗ × SY ∗ such that
x∗
k ∈ D∗

εk
F (x̄, ȳ)(y∗

k ), which amounts to σ�(x∗
k ,−y∗

k ) ≤ εk due to (7.103), and
that ‖x∗

k ‖−1 → reg F(x̄, ȳ) as k → ∞. Hence

sup
x∗∈X∗

sup
y∗∈SY∗

(
‖x∗‖ + σ�(x∗, y∗)√

εk

)−1 ≥
(
‖x∗

k ‖ + σ�(x∗
k ,−y∗

k )√
εk

)−1

≥
(
‖x∗

k ‖ + √
εk

)−1
,

which yields the inequality “≤” in (7.126) by passing to the limit as k → ∞.
Conversely, if the right-hand side of (7.126) is 0, the equality in (7.126) is obvi-

ous. Otherwise, we find sequences ε̃k ↓ 0 and (̃x∗
k , ỹ∗

k ) ∈ X∗ × SY ∗ with

β <
(
‖x̃∗

k ‖ + σ�(̃x∗
k , ỹ∗

k )

ε̃k

)−1 → α as k → ∞ (7.127)

for some β > 0. It follows that σ�(̃x∗
k , ỹ∗

k ) ≤ ε̃kβ
−1 for all k ∈ N, which gives us

x̃∗
k ∈ D∗̂

εk
F (x̄, ȳ)(−ỹ∗

k ) with ε̂k := ε̃kβ
−1 → 0 by (7.103). Hence, we have

(
‖x̃∗

k ‖ + σ�(̃x∗
k , ỹ∗

k )

ε̃k

)−1 ≤ ‖x̃∗
k ‖−1

≤ sup
{
‖x∗‖−1

∣∣∣ x∗ ∈ D∗̂
εk

F (x̄, ȳ)(y∗), y∗ ∈ SY ∗
}
.

(7.128)

Substituting the regularity formula (7.109) into (7.128) and using (7.127), we arrive
at α ≤ reg F(x̄, ȳ) and thus complete the proof of the corollary. �

Finally in this subsection, let us introduce an additional condition, which helps
us to remove ε > 0 in the exact bound formula (7.108) and get the precise equality
(7.130) for calculating the exact regularity bound of closed- and convex-graph mul-
tifunctions between arbitrary Banach spaces as in case (3.8) of set-valued mapping
between finite-dimensional spaces. Note that assumption (8.84) holds in the SIP set-
ting of Subsection 7.4.3 and also when dim Y < ∞, while X is an arbitrary Banach
space.
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Theorem 7.38 (Calculating the Exact Regularity Bound via the Basic
Coderivative Norm). In the setting of Theorem 3.8, assume in addition that

�(SY ∗) ⊂ SY ∗ , (7.129)

where the set �(SY ∗) is defined sequentially by

�(SY ∗) :=
{
y∗ ∈ Y ∗

∣∣∣ ∃ εk ↓ 0, y∗
k ∈ SY ∗ such that D∗

εk
F (x̄, ȳ)(y∗

k ) 
= ∅
and y∗ is a weak∗ cluster point of y∗

k

}
.

Then the exact regularity bound is calculated by

reg F(x̄, ȳ) = ‖D∗F−1(ȳ, x̄)‖. (7.130)

If furthermore reg F(x̄, ȳ) > 0, we get the improved formula

reg F(x̄, ȳ) = sup
{‖x∗‖−1

∣∣ x∗ ∈ D∗F(x̄, ȳ)(y∗), y∗ ∈ SY ∗
}
. (7.131)

Proof. Note that the equality in (7.130) is trivial when reg F(x̄, ȳ) = 0. Otherwise,
it follows from (7.109) that there are sequences εk ↓ 0 and x∗

k ∈ D∗
εk

F (x̄, ȳ)(y∗
k )

such that ‖x∗
k ‖ > 0, ‖y∗

k ‖ = 1, and

reg F(x̄, ȳ) = lim
k→∞ ‖x∗

k ‖−1. (7.132)

Since the sequence {x∗
k } is bounded by (7.132), we get from (7.129) and Alaoglu-

Bourbaki theorem that there is a subnet (x∗
α, y∗

α, εα) of (x∗
k , y∗

k , εk) weak∗ converg-
ing to some (x̄∗, ȳ∗, 0) ∈ X∗ × SY ∗ × R. Note further that

〈x̄∗, x − x̄〉 − 〈ȳ∗, y − ȳ〉 = lim
α

〈x∗
α, x − x̄〉 − 〈y∗

α, y − ȳ〉 ≤ lim sup
α

εα = 0

for all (x, y) ∈ gph F , which yields x̄∗ ∈ D∗F(x̄, ȳ)(ȳ∗). Moreover, the classical
uniform boundedness principle tells us that ‖x̄∗‖ ≤ lim inf

α
‖x∗

α‖. This together with

(7.132) ensures the validity of the inequalities

reg F(x̄, ȳ) ≤ 1

‖x̄∗‖ ≤ sup
{ 1

‖x∗‖
∣∣∣x∗ ∈ D∗F(x̄, ȳ)(y∗), ‖y∗‖ = 1

}
. (7.133)

Combining the latter with (7.109) yields (7.131). Furthermore, observe that x̂∗ :=
x̄∗‖x̄∗‖−1 ∈ SX∗ and ŷ∗ := ȳ∗‖x̄∗‖−1 ∈ D∗F−1(ȳ, x̄)(̂x∗). Hence we get from
(7.133) and (7.106) the relationships

reg F(x̄, ȳ) ≤ ‖ŷ∗‖ = ‖x̄∗‖−1 ≤ ‖D∗F−1(ȳ, x̄)‖,
which together with (7.108) yield (7.130) and thus complete the proof. �
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It is obvious that assumption (7.129) automatically holds when Y is finite-
dimensional. More subtle, it also holds under the validity of the condition

cl ∗{y∗ ∈ SY ∗
∣∣ σ�(x∗, y∗) < ∞, x∗ ∈ X∗} ⊂ SY ∗ , (7.134)

with � := gph F − (x̄, ȳ) due to the proper/strict inclusion

�(SY ∗) ⊂ cl ∗
[⋃

ε≥0

{
y∗ ∈ SY ∗

∣∣∣ D∗
εF (x̄, ȳ)(y∗) 
= ∅

}]

= cl ∗{y∗ ∈ SY ∗
∣∣ σ�(x∗, y∗) < ∞, x∗ ∈ X∗}.

(7.135)

7.4.3 Applications to Infinite Convex Constraint Systems

Here we develop applications of the results obtained in Subsection 7.4.2 to the spe-
cial class of set-valued mappings F : X →→ Y := Z × l∞(T ) given by

F(x) :=
{{

(z, p) ∈ Y
∣∣Ax = z, ft (x) ≤ pt , t ∈ T

}
if x ∈ C,

∅ otherwise,
(7.136)

which describes, in particular, sets of feasible solutions in parameterized SIPs with
infinitely many inequality as well as equality and geometric constraints.

The data of (7.136) are as follows: A : X → Z is a bounded linear operator
between two Banach spaces; the functions ft : X → R are l.s.c. and convex for
all t from the arbitrary index set T ; and C is a closed and convex subset of X with
nonempty interior. These assumptions clearly imply that F in (7.136) is closed-
and convex-graph multifunction, and so we can implement the results on metric
regularity at (x, (z, p)) ∈ gph F obtained above to the infinite constraint system
(7.136) provided the validity of the underlying condition

(z, p) ∈ int(rge F). (7.137)

Note that this condition clearly implies that z ∈ int(AX), which ensures that A is an
open mapping, and hence it must be surjective.

Throughout this section, we denote f (x) := supt∈T ft (x) and suppose that the
space Z × l∞(T ) is equipped with the maximum product norm

‖(z, p)‖ = max
{‖z‖, ‖p‖} for all z ∈ Z, p ∈ l∞(T ).

As mentioned above, F is metrically regular around (x, (z, p)) ∈ gph F if and
only if condition (7.137) holds. This motivates us to introduce a qualification condi-
tion via the initial data of (7.136), which ensures the validity of (7.137) and extend
the usual strong SSC typically employed for infinite linear and convex inequality
systems to the more general constraint case of (7.136).
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Definition 7.39 (Bounded Strong Slater Condition). We say that the infinite sys-
tem (7.136) satisfies the BOUNDED STRONG SLATER CONDITION (BOUNDED SSC)

at (z, p) ∈ Z × l∞(T ) if there is x̂ ∈ int C such that the function f is bounded from
above around x̂, that Ax̂ = z, and that

sup
t∈T

[ft (̂x) − pt ] < 0. (7.138)

Note that the Slater-type notion introduced in Definition 7.39 is generally differ-
ent for infinite linear and convex systems from the strong Slater condition studied
and applied in Sections 7.1 and 7.3. In the particular case of C = X, Z = {0},
and ft (x) = 〈a∗

t , x〉 − bt with (a∗
t , bt ) ∈ X∗ × R considered in Section 7.1, our

bounded SSC is clearly weaker than the usual SSC provided that the coefficient
set {a∗

t | t ∈ T } is bounded in X∗, which is the underlying assumption therein.
The following example demonstrates that it may be strictly weaker even in the one-
dimensional case of X = R.

Example 7.40 (Bounded from Above Linear Constraint Functions with Un-
bounded Coefficients). Let X = R, Z = {0}, T = (0, 1), and ft (x) = − 1

t
x + t in

(7.136). Note that

ft (x) = −1

t
x + t = −1

t
x − t + 2t ≤ −2

√
x + 2t for all x > 0, t ∈ T .

Taking x̂ = 4 and x̄ = 1, we observe that ft (̂x) < −2, ft (x̄) ≤ 0, and the supremum
function f is bounded from above around x̂. However, the coefficient set

{− 1
t

∣∣ t ∈
T
}

is obviously unbounded.

The next proposition shows that the bounded SSC introduced is a sufficient con-
dition for the validity of (7.137) while being in fact “almost necessary” for this, up
to the upper boundedness of the supremum function f .

Proposition 7.41 (Bounded Strong Slater Condition and Metric Regularity).
Let (z, p) ∈ rge F for the infinite system (7.136). Then the bounded SSC for F

at (z, p) implies the validity of (7.137). Conversely, if (7.137) holds, then there is
x̂ ∈ int C such that Ax̂ = z and that (7.138) is satisfied.

Proof. To verify the first part, suppose that the bounded SSC holds for F at (z, p).
Then there are x̂ ∈ ıC and ε > 0 such that the supremum function f is upper
bounded around x̂ with A(̂x) = z and f p(̂x) < −ε, where

f p(·) := sup
t∈T

{
ft (·) − pt

}
for p ∈ l∞(T ).

Note that the function f p(·) is obviously a proper, l.s.c., convex, and upper bounded
around x̂. We know from convex analysis that in this case it is continuous at x̂.
Since A is surjective and x̂ ∈ int C, the classical open mapping theorem allows
us to find 0 < s ≤ ε

2 such that Bs(z) ⊂ A(Br (̂x) ∩ C) for r > 0. Picking any
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(z′, p′) ∈ Bs(z, p), there exists x ∈ Br (̂x) ∩ C with Ax = z′ and so that for each
t ∈ T , we have

f p′
(x) ≤ f p(x) + s ≤ f p(x) − f p(̂x) + s + f p(̂x)

≤ f p(x) − f p(̂x) + s − ε ≤ f p(x) − f p(̂x) − ε/2 ≤ 0

when r is sufficiently small. This yields (z′, p′) ∈ rge F , which implies in turn that
the inclusion Bs(z, p) ⊂ rge F holds.

To justify the necessity part, observe that (z, (pt −ε)t∈T ) ∈ rge F for some ε > 0
if (z, p) ∈ int(rge F). Hence there is x̂ ∈ X such that Ax̂ = z and ft (̂x) − pt ≤ −ε

as t ∈ T , which thus completes the proof. �
Now we proceed with calculating the exact regularity bound for the constraint

system (7.136) at (x̄, (z̄, 0)) ∈ gph F based on the results of Subsection 7.4.2. It
follows from Theorem 7.35 that reg F(x̄, (z̄, 0)) can be calculated via the norms of
ε-coderivatives. The next result, which is certainly of its own interest, accomplishes
an important step in this direction.

Theorem 7.42 (Explicit Form of ε-Coderivatives for Infinite Convex Systems).
Let F be the infinite constraint system (7.136), and let (x̄, (z̄, 0)) ∈ gph F . Then for
each ε ≥ 0, we have the ε-coderivative representation

D∗
εF
(
x̄, (z̄, 0)

)(
S(Z×l∞(T ))∗

) = {x∗∣∣(x∗, 〈x∗, x̄〉 + ε) ∈ M
}
, (7.139)

where x∗ ∈ X∗ and M is defined, with C0 := C ∩ dom f , by

M :=
⋃

z∗∈BZ∗
cl ∗[(1 − ‖z∗‖) co

(⋃

t∈T

epi f ∗
t

)
+ epi δ∗(·;C0)

]
+ (A∗z∗, 〈z∗, z̄〉).

Proof. To verify the inclusion “⊂” in (7.139), pick (z∗, p∗) ∈ S(Z×l∞(T ))∗ and
x∗ ∈ D∗

εF (x̄, (z̄, 0))(z∗, p∗). Then we have ‖z∗‖ + ‖p∗‖ = 1 and

〈x∗, x − x̄〉 − 〈z∗, z − z̄〉 − 〈p∗, p〉 ≤ ε for all (x, z, p) ∈ gph F,

which can be equivalently represented by

〈x∗ − A∗z∗, x − x̄〉 − 〈p∗, p〉 ≤ ε

if (x, p) ∈ C0 × l∞(T ), ft (x) − 〈δt , p〉 ≤ 0, t ∈ T ,
(7.140)

via the Dirac measure δt ∈ (l∞(T ))∗ at t . It follows from the extended Farkas
lemma in Proposition 7.3 that (7.140) reads as

(
p∗, x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉 + ε

)

∈ cl∗
[
cone

{⋃

t∈T

{δt } × epi f ∗
t

}
+ {0} × epi δ∗(·;C0)

]
. (7.141)

Hence there exist nets {λν}ν∈N ⊂ R
(T )
+ , {(v∗

ν , sν)}ν∈N ⊂ epi δ∗(·;C0), and
{(u∗

tν , rtν)}ν∈N ⊂ epi f ∗
t for each t ∈ T such that
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(
p∗, x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉+ε

)=w∗- lim
ν∈N

[∑

t∈T

λtν(δt , u
∗
tν , rtν)+(0, v∗

ν , sν)
]
.

Observe from the latter equality that p∗ = w∗- lim
ν∈N

∑

t∈T

λtνδt . Thus we have

lim sup
ν∈N

∑

t∈T

λtν ≥ sup
‖p‖≤1

lim
ν∈N

∑

t∈T

λtνpt

= sup‖p‖≤1〈p∗, p〉 = ‖p∗‖ ≥ 〈p∗, e〉 = lim
ν∈N

∑

t∈T

λtν

(7.142)

with e ∈ l∞(T ) satisfying et = 1 for all t ∈ T . This yields

1 − ‖z∗‖ = ‖p∗‖ = lim
ν∈N

∑

t∈T

λtν . (7.143)

If ‖z∗‖ = 1, we get from the above the relationships

〈x∗ − A∗z∗, x − x̄〉 − ε = 〈x∗ − A∗z∗, x〉 − (〈x∗ − A∗z∗, x̄〉 + ε)

= lim
ν∈N

[∑

t∈T

λtν〈u∗
tν , x〉 + 〈v∗

ν , x〉
]

− lim
ν∈N

[∑

t∈T

λtνrtν − sν

]

≤ lim sup
ν∈N

[∑

t∈T

λtν

(〈u∗
tν , x〉 − ft (x) − rtν + f (x)

)+ 〈v∗
ν , x〉 − sν

]

≤ lim sup
ν∈N

[∑

t∈T

λtν

(
f ∗

t (u∗
tν
) − rtν + f (x)

)+ δ∗(·;C0)(v
∗
ν ) − sν

]

≤ lim sup
ν∈N

∑

t∈T

λtνf (x) = 0 for any x ∈ C0.

It follows from (7.30) that (x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉 + ε) ∈ epi δ∗(·;C0); so

(x∗, 〈x∗, x̄〉 + ε) ∈ epi δ∗(·;C0) + (A∗z∗, 〈A∗z∗, x̄〉)
= epi δ∗(·;C0) + (A∗z∗, 〈z∗, z̄〉) ⊂ M.

If ‖z∗‖ < 1, it doesn’t restrict the generality due to (7.143) to suppose that
∑

t∈T λtν > 0 for all ν ∈ N and to define λ̃tν := λtν∑
t ′∈T λt ′ν

for each t ∈ T

and ν ∈ N . It tells us by the “w∗- lim” expression after formula (7.141) that

(x∗, 〈x∗, x̄〉 + ε) = w∗- lim
ν∈N

[∑

t∈T

λtν(u
∗
tν , rtν) + (v∗

ν , sν)
]

+ (A∗z∗, 〈z∗, z̄〉)

= (1 − ‖z∗‖)w∗- lim
ν∈N

[∑

t∈T

λ̃tν(u
∗
tν , rtν) + (v∗

ν , sν)
]

+ (A∗z∗, 〈z∗, z̄〉) ⊂ M.

Thus we get (x∗, 〈x∗, x̄〉 + ε) ∈ M and justify the inclusion “⊂” in (7.139).
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To verify the converse inclusion in (7.139), pick any element x∗ ∈ X∗ satisfying
(x∗, 〈x∗, x̄〉 + ε) ∈ M . Hence we find a unit functional z∗ ∈ BZ∗ as well as nets
{λν}ν∈N ⊂ R

(T )
+ , {(v∗

ν , sν)}ν∈N ⊂ epi δ∗(·;C0), and {(u∗
tν , rtν)}ν∈N ⊂ epi f ∗

t ,
t ∈ T , such that

∑
t∈T λtν = 1 and

(x∗, 〈x∗, x̄〉 + ε) = (1 − ‖z∗‖)w∗- lim
ν∈N

[∑

t∈T

λtν(u
∗
tν , rtν) + (v∗

ν , sν)
]

+(A∗z∗, 〈z∗, z̄〉).
Defining p∗

ν := (1−‖z∗‖)∑t∈T λtνδt , deduce that ‖p∗
ν‖ = 1−‖z∗‖ while arguing

similarly to the proof of (7.142). It follows from the classical Alaoglu-Bourbaki
theorem that there exists a subnet of p∗

ν (without relabeling), which weak∗ converges
to some p∗ ∈ B(l∞(T ))∗ . By using again the arguments as in the proof of (7.142),
we get ‖p∗‖ = 1 − ‖z∗‖ and then obtain (7.141). Due to the equivalence between
(7.140) and (7.141), this justifies the inclusion “⊃” in (7.139) and thus completes
the proof of the theorem. �

In the coderivative case of Theorem 7.42 (i.e., if ε = 0), we can equivalently
modify the representation in (7.139) and provide its further specification.

Proposition 7.43 (Explicit Forms of the Coderivative for Infinite Convex Sys-
tems). Let (x̄, (z̄, 0)) ∈ gph F for the constraint system (7.136). Then we have the
coderivative representation

D∗F
(
x̄, (z̄, 0)

)(
S(Z×l∞(T ))∗

) = {x∗ ∈ X∗∣∣ (x∗, 〈x∗, x̄〉) ∈ L
}

(7.144)

with L :=
⋃

z∗∈BZ∗
cl ∗[(1−‖z∗‖) co

(⋃

t∈T

gph f ∗
t

)
+gph δ∗(·;C0)

]
+(A∗z∗, 〈z∗, z̄〉).

Furthermore, the term gph δ∗(·;C0) above can be dropped if x̄ ∈ int C0.

Proof. To verify the inclusion “⊂” in (7.144), for any x∗ ∈ D∗F(x̄, (z̄, 0))(z∗, p∗)
with ‖z∗‖ + ‖p∗‖ = 1, we deduce from the proof of Theorem 7.42 the validity
of inclusion (7.140) with ε = 0. This allows us to find nets {λν}ν∈N ⊂ R

(T )
+ ,

{ρν}ν∈N ⊂ R+, {(v∗
ν , sν)}ν∈N ⊂ gph δ∗(·;C0), and {(u∗

tν , rtν)}ν∈N ⊂ gph f ∗
t for

each t ∈ T providing the limiting representation

(
p∗, x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉) = w∗- lim

ν∈N
∑

t∈T

λtν(δt , u
∗
tν , rtν)

+(0, v∗
ν , sν) + (0, 0, ρν).

(7.145)

Similarly to the proof of Theorem 7.42, suppose without loss of generality that∑
t∈T λtν = 1 − ‖z∗‖ for all ν ∈ N and then get

rtν = f ∗
t (u∗

tν) ≥ 〈u∗
tν , x̄〉 − ft (x̄) ≥ 〈u∗

tν , x̄〉 and sν = δ∗(·;C0)(v
∗
ν ) ≥ 〈v∗

ν , x̄〉.
This implies together with (7.145) the relationships
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〈x∗ − A∗z∗, x̄〉= lim
ν∈N

[∑

t∈T

λtνrtν+sν+ρν

]
≥ lim sup

ν∈N

[∑

t∈T

λtν〈u∗
tν , x̄〉+〈v∗

ν , x̄〉

+ρν

]
≥ 〈x∗ − A∗z∗, x̄〉 + lim sup

ν∈N
ρν,

which ensure that lim supν∈N ρν = 0. Then it follows from (7.145) that

(x∗, 〈x∗, x̄〉) = w∗- lim
ν∈N

∑

t∈T

λtν(u
∗
tν , rtν) + (v∗

ν , sν) + (A∗z∗, 〈z∗, z̄〉) ∈ L,

and thus we arrive at the inclusion “⊂” in (7.144). The verification of the opposite
inclusion in (7.144) follows the lines in the proof of Theorem 7.42.

Finally, let x̄ ∈ int C0 and pick x∗ ∈ D∗F(x̄, (z̄, 0))(z∗, p∗) with (z∗, p∗) ∈
S(Z×l∞(T ))∗ . Using the notation from the proof of (7.144) above, we have

0 = 〈x∗ − A∗z∗, x̄〉 − 〈x∗ − A∗z∗, x̄〉 = lim
ν∈N

[∑

t∈T

λtν(〈u∗
tν , x̄〉 − rtν)

〈v∗
ν , x̄〉 − stν

]
≤ − lim sup

ν∈N
sup
x∈C0

[〈v∗
ν , x〉 − 〈v∗

ν , x̄〉] ≤ − lim sup
ν∈N

η‖v∗
ν‖,

where η > 0 is such that Bη(x̄) ⊂ C0. This implies that lim supν∈N ‖v∗
ν‖ = 0, and

so we can remove gph δ∗(·;C0) in the representation of L in (7.144). �
The next major result provides a precise calculation of the exact regularity bound

of the infinite constraint system (7.136) entirely via its initial data.

Theorem 7.44 (Exact Regularity Bound of Infinite Constraint Systems). Given
(x̄, (z̄, 0)) ∈ gph F for the infinite system in (7.136), assume that the bounded
SSC from Definition 7.39 holds at (z̄, 0). Then the exact regularity bound of F at
(x̄, (z̄, 0)) is calculated by

reg F(x̄, (z̄, 0)) = lim
ε↓0

[
sup
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉 + ε) ∈ M
}]

, (7.146)

where M is defined in Theorem 7.42. If in addition 0 < dim Z < ∞, then

reg F(x̄, (z̄, 0)) = ‖D∗F−1((z̄, 0), x̄)‖
= sup

{
‖x∗‖−1

∣∣∣ (x∗, 〈x∗, x̄〉) ∈ L
}
,

(7.147)

where the set L is defined in Proposition 7.43.

Proof. It follows from Proposition 7.41 that (z̄, 0) ∈ int(rge F), i.e., the mapping
F is metrically regular around (x̄, (z̄, 0)). Substituting the ε-coderivative expression
from Theorem 7.42 into the exact bound formula (7.109) of Theorem 7.35, we arrive
at the limiting representation (7.146).

Let us now justify the equalities in (7.147) under the finite dimensionality of Z.
By Theorem 7.38 and Proposition 7.43, we need to check that (7.129) holds and
that reg F(x̄, (z̄, 0)) > 0. To proceed, take any ε > 0 and (z∗, p∗) ∈ S(Z×l∞(T ))∗
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satisfying DεF(x̄, (z̄, 0))(z∗, p∗) 
= ∅. By the same arguments as in the proofs of
(7.141) and (7.143), we get the inclusion

p∗ ∈ (1 − ‖z∗‖) cl ∗co
{
δt

∣∣ t ∈ T
}
.

It shows that the set cl ∗{(z∗, p∗) ∈ S(Z×l∞(T ))∗ | D∗
εF (x̄, (z̄, 0))(z∗, p∗) 
= ∅} is

contained in the following one:

cl ∗ ⋃

z∗∈BZ∗

[{
z∗}× (1 − ‖z∗‖) cl ∗co

{
δt

∣∣ t ∈ T
}]

. (7.148)

Further, we deduce from the proof of (7.143) that cl ∗co {δt | t ∈ T } ⊂ S(l∞(T ))∗ .
Since dim Z < ∞, the latter implies that the set in (7.148) is a subset of S(Z×l∞(T ))∗ ,
which ensures the validity of (7.129).

It remains to verify that reg F(x̄, (z̄, 0)) > 0. We can easily see that

D∗F−1((z̄, 0), x̄
)
(x∗) ⊃ {(z∗, 0) ∈ Z∗ × (l∞(T ))∗

∣∣ A∗z∗ = x∗}.

Since the operator A is surjective, we clearly have ‖(A∗)−1‖ > 0. This allows us
to conclude that ‖D∗F−1((z̄, 0), x̄)‖ > 0, which yields reg F(x̄, (z̄, 0)) > 0 by
Theorem 7.35 and thus completes the proof. �

It immediately follows from Theorem 7.38 that the exact bound formula

reg F
(
x̄, (z̄, 0)

) = ∥∥D∗F−1((z̄, 0), x̄
)∥∥ (7.149)

holds also in the case of dim Z = 0. Recall that the Lipschitzian counterpart of
(7.149) is proved for infinite linear inequality systems in Corollary 7.16 and for
infinite convex inequality systems in Theorem 7.31 (with no equality and geomet-
ric constraints) under the boundedness assumptions therein. As discussed above,
these assumptions are essentially stronger than the bounded SSC imposed in Theo-
rem 7.44; see Example 7.40.

A natural question arising from Theorem 7.44 is whether the exact regularity
bound expression (7.149) holds for infinite-dimensional spaces Z. The following
counterexample is constructed for the case of the classical Asplund space Z = c0,
which has been already used above (i.e., the space of sequences of real numbers
converging to zero and endowed with the supremum norm).

Example 7.45 (Failure of the Exact Bound Formula for Countable Inequal-
ity and Equality Constraints in Asplund Spaces.) Let X = Z = c0 and
T = N. Define a linear operator A : X → Z by Ax := (x2, x3, . . .) for all
x = (x1, x2, . . .) ∈ X. It is easy to see that A is bounded and surjective. We form a
set-valued mapping F : c0 →→ c0 × l∞ of type (7.136) by

F(x) := {(z, p) ∈ Z × l∞
∣∣ Ax = z, x1 + xn + 1 ≤ pn, n ∈ N

}
(7.150)
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for any x ∈ X. Take x̄ := ( − 1
n

)
n∈N, z̄ := Ax̄, and x̂ := (−2,− 1

2 ,− 1
3 , . . .) ∈ X.

Observe that the bounded strong Slater condition of Definition 7.39 is satisfied at x̂

for (7.150) and that x̄ ∈ F−1(z̄, 0). Defining further

xk :=
(

− 1,−1

2
, . . . ,− 1

k − 1
,

1

k
,− 1

k + 1
,− 1

k + 2
, . . .

)
,

zk :=
(

− 1

2
, . . . ,− 1

k − 1
,

2

k
,− 1

k + 1
,− 1

k + 2
, . . .

)

shows that xk → x̄ and zk → z̄ in c0. Moreover, we have the equalities

dist
(
(zk, 0);F(xk)

) = max
{

sup
n

(xk
1 + xk

n + 1)+, sup
n

| xk
n+1 − zk

n|
}

= 1

k

with α+ = max{0, α} as usual. It is easy to calculate the inverse mapping value
F−1(zk, 0) = {(a, zk

1, z
k
2, . . .) ∈ c0| a ≤ − 2

k
− 1}, which gives us

dist
(
xk;F−1(zk, 0)

) = max
{(

xk
1 + 2

k
+ 1
)

+, sup
n

|xk
n+1 − zk

n|
}

= 2

k
.

It follows from the distance expressions above that reg F(x̄, (z̄, 0)) ≥ 2. Thus the
exact bound formula (7.149) fails if we show that

‖x∗‖ ≥ 1 for all x∗ ∈ D∗F
(
x̄, (z̄, 0)

)(
S(Z×l∞)∗

)
. (7.151)

To verify (7.151), employ the explicit coderivative form from Proposition 7.43
that gives some us z∗ ∈ BZ∗ with

(x∗, 〈x∗, x̄〉) ∈ cl ∗[(1 − ‖z∗‖) co
{
(δ1 + δn,−1)

∣∣ n ∈ N
}]+ (A∗z∗, 〈z∗, z̄〉),

where δn ∈ c∗
0 and 〈δn, x〉 = xn for all x ∈ c0 and n ∈ N. Hence there is a net

(λν)ν∈N ⊂ R
(N) such that

∑
n∈N λnν = 1 − ‖z∗‖ for all ν ∈ N and that

(x∗, 〈x∗, x̄〉) = w∗- lim
ν∈N

∑

n∈N
λnν(δ1 + δn,−1) + (A∗z∗, 〈z∗, z̄〉),

which readily implies the limiting relationships

0 = lim
ν∈N

∑

n∈N
λnν(−〈δ1 + δn, x̄〉 − 1) = lim

ν∈N
∑

n∈N

λnν

n
. (7.152)

Since c∗
0 = l1, we write z∗ in the form (z∗

1, z
∗
2, . . .) ∈ l1 and observe that

A∗z∗ = (0, z∗
1, z

∗
2, . . .) ∈ l1. Thus for any ε > 0, there is k ∈ N sufficiently

large and such that
∑∞

n=k+1 |z∗
n| ≤ ε, which ensures that ‖A∗z∗ − ẑ∗

k‖ ≤ ε with
ẑ∗
k := (0, z∗

1, . . . , z
∗
k, 0, 0, . . .) ∈ l1. Define further x̂∗

k by
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x̂∗
k := w∗- lim

ν∈N
∑

n∈N
λnν(δ1 + δn) + ẑ∗

k,

take ek := (1, sign(z∗
1), . . . , sign(z∗

k), 0, . . .) ∈ c0, and get ‖ek‖ = 1 with

‖x̂∗
k ‖ ≥ 〈̂x∗

k , ek〉 = lim
ν∈N

∑

n∈N
λnν(e

k
1 + ek

n) +
k∑

n=1

z∗
ne

k
n+1

≥ lim
ν∈N

∑

n∈N
λnν +

k∑

n=1

|z∗
n| − lim sup

ν∈N

k+1∑

n=1

λnν.

(7.153)

It follows from the equations in (7.152) that

0 ≤ lim sup
ν∈N

k+1∑

n=1

λnν ≤ (k + 1) lim sup
ν∈N

∑

n∈N

λnν

n
= 0.

Combining this with (7.153) gives us the estimates

‖x̂∗
k ‖ ≥ 1 − ‖z∗‖ +

k∑

n=1

|z∗
n| ≥ 1 − ‖z∗‖ + ‖z∗‖ − ε = 1 − ε.

It is clear furthermore that ‖x∗ − x̂∗
k ‖ = ‖A∗z∗ − ẑ∗

k‖ ≤ ε. Thus we arrive at

‖x∗‖ ≥ ‖x̂∗
k ‖ − ‖x∗ − x̂∗

k ‖ ≥ 1 − ε − ε = 1 − 2ε for all ε > 0,

yielding ‖x∗‖ ≥ 1 and (7.151). This confirms the failure of (7.149).

The next example shows that the formula (7.149) for calculating the exact reg-
ularity bound fails when dim Z = ∞ even for constraint systems (7.136) with a
single convex inequality, while both spaces X and Z are Asplund.

Example 7.46 (Failure of the Exact Bound Formula for Single Inequality and
Infinite-Dimensional Equality Constraints). Let X = Z = c0 and T = {1}.
Define the linear operator A : X → Z as in Example 7.45, and consider F :
X →→ Z × R given by

F(x) := {(z, p) ∈ Z × R
∣∣ Ax = z, f (x) ≤ p

}
for any x ∈ X,

where f (x) := sup{x1 + xn + 1| n ∈ N} with dom f = X. Then we have

dist
(
(zk, 0);F(xk)

) = k−1 and dist
(
xk;F−1(zk, 0)

) = 2k−1

in the notation of Example 7.45, and so reg F(x̄, (z̄, 0)) ≥ 2. Also

epi f ∗ = cl ∗co
{
(δ1 + δn,−1)

∣∣ n ∈ N
}+ {0} × R+, (7.154)
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which follows from the well-known formula for general supremum functions:

epi f ∗ = cl ∗co
⋃

t∈T

(
epi f ∗

t

)
. (7.155)

Picking now any x∗ ∈ D∗F(x̄, (z̄, 0))(S(Z×R)∗) and using Theorem 7.42 together
with representation (7.155), we arrive at

(x∗, 〈x∗, x̄〉) ∈ cl ∗[(1 − ‖z∗‖) co
{
(δ1 + δn,−1)

∣∣ n ∈ N
}]+ (A∗z∗, 〈z∗, z̄〉).

As in Example 7.45, this gives us ‖x∗‖ ≥ 1, and thus (7.149) fails.

The following result provides efficient conditions, which ensure the validity of
the major regularity formula (7.149) when dim Z = ∞. The given proof is different
from that of (7.147) in Theorem 7.44 with dim Z < ∞. In particular, it doesn’t
rely on condition (7.129) that may not hold. Indeed, even in the simplest setting of
T = ∅, the left-hand side of (7.129) is cl ∗SZ∗ , which is obviously not a subset of
SZ∗ when dim Z = ∞.

Theorem 7.47 (Exact Bound Formula for Finite Inequality and Infinite Equal-
ity Constraints). In the case of arbitrary Banach spaces X and Z in (7.136), assume
that the index set T is finite, that

ft (x) = 〈a∗
t , x〉 − bt for all x ∈ X, t ∈ T with (a∗

t , bt ) ∈ X∗ × R,

and that, given (x̄, (z̄, 0)) ∈ gph F , the constraint mapping F satisfies the standard
Slater condition at (z̄, 0) with x̄ ∈ C. Then formula (7.149) holds.

Proof. Letting T := {1, . . . , k}, observe that dom f = X and so C0 = C in the
notation of Theorem 7.42. Since we obviously have

epi f ∗
n = (a∗

n, bn) + {0} × R+ and {0} × R+ + epi δ∗(·;C) ⊂ epi δ∗(·;C)

for any z∗ ∈ BZ∗ and n ∈ {1, . . . , k}, it follows that
(
1 − ‖z∗‖)co

{
epi f ∗

t

∣∣ ∈ T
}+ epi δ∗(·;C0) = (

1 − ‖z∗‖)co
{
(a∗

n, bn)
∣∣1 ≤ n ≤ k

}

+epi δ∗(·;C).

The latter set is clearly weak∗ closed in X∗×R, and hence the set M in Theorem 7.42
is represented by

M =
⋃

z∗∈BZ∗

{
(1 − ‖z∗‖)co

{
(a∗

n, bn)
∣∣1 ≤ n ≤ k

}+ epi δ∗(·;C) + (A∗z∗, 〈z∗, z̄〉)
}
.

Invoking now the result in the first part of Theorem 7.44, we find sequences of
x∗
m ∈ X∗, λm ∈ R

k+, (v∗
m, sm) ∈ epi δ∗(·;C), and z∗

m ∈ BZ∗ for all m ∈ N such that
∑k

n=1 λm
n = 1 − ‖z∗

m‖ and
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(
x∗
m, 〈x∗

m, x̄〉 + m−1
)

=
k∑

n=1

λm
n (a∗

n, bn) + (v∗
m, sm)

+(A∗z∗
m, 〈z∗

m, z̄〉)
(7.156)

with the upper estimate of the regularity bound

reg F
(
x̄, (z̄, 0

)
) ≤ ‖x∗

m‖−1 + o(1) =
∥∥∥

k∑

n=1

λm
n a∗

n + v∗
m + A∗z∗

m

∥∥∥
−1 + o(1).

It follows from considering the second components in (7.156) that

1

m
= 〈x∗

m, x̄〉 + 1

m
− 〈x∗

m, x̄〉 =
k∑

n=1

λm
n bn + sm −

k∑

n=1

λm
n 〈a∗

n, x̄〉 − 〈v∗
m, x̄〉

≥
k∑

n=1

λm
n (bn − 〈a∗

n, x̄〉) + sm − 〈v∗
m, x̄〉 ≥

k∑

n=1

λm
n (bn − 〈a∗

n, x̄〉) ≥ 0.

Since ‖λm‖ ≤ 1, we suppose that λm → λ ∈ R
k+ as m → ∞ and thus deduce

from the above that
∑k

n=1 λn(bn − 〈a∗
n, x̄〉) = 0 by passing to the limit as m → ∞.

Defining further the sequences of

εm :=
k∑

n=1

|λm
n − λn|, ηm :=

k∑

n=1

λn + ‖z∗
m‖, x̂∗

m :=
k∑

n=1

λna
∗
n + A∗z∗

m,

note that εm = o(1) and ηm = 1 − o(1). Then Proposition 7.43 tells us that

η−1
m x̂∗

m ∈ D∗F
(
x̄, (z̄, 0)

)(
S(Z×Rk)∗

)
.

Moreover, the same arguments as in the proof of the second part of Proposition 7.43
show that ‖w∗

m‖ → 0. It follows therefore that

‖x∗
m − x̂∗

m‖ =
∥∥∥

k∑

n=1

(λm
n − λn)a

∗
n + w∗

m

∥∥∥ ≤ εm sup
1≤n≤k

‖a∗
n‖ + ‖w∗

m‖ = o(1),

which implies together with the above estimates of reg F
(
x̄, (z̄, 0)) that

reg F
(
x̄, (z̄, 0)

) ≤ (‖x̂∗
m‖ + o(1)

)−1 + o(1) ≤ (ηm‖η−1
m x̂∗

m‖ + o(1)
)−1 + o(1)

≤ [(1 − o(1)) inf
{‖x∗‖∣∣ (x∗, 〈x∗, x̄〉) ∈ L

}+ o(1)
]−1 + o(1).

Letting m → ∞ therein, we arrive at

reg F
(
x̄, (z̄, 0)

) ≤ sup
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉) ∈ L
}
,
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which yields (7.149) and thus completes the proof of the theorem. �

7.5 Value Functions in DC Semi-infinite Optimization

In this section, we continue investigating SIPs in general Banach (and partly in As-
plund) spaces while considering now the minimization of DC objectives subject to
infinite convex inequality constraints with arbitrary index sets. As mentioned ear-
lier, the abbreviation “DC” stands for the difference of convex functions, which have
been recognized as a convenient form for representing various remarkable classes of
problems important in optimization and its applications. Our main attention is paid
here to the study of subdifferential properties of (nonconvex) marginal/value func-
tions in parametric versions of such SIPs. Based on these developments, we present
applications to sensitivity analysis and necessary optimality conditions in DC SIPs
considered in both nonparametric and parametric settings as well as to bilevel semi-
infinite programs with fully convex data in Banach and Asplund spaces.

7.5.1 Optimality Conditions for DC Semi-infinite Programs

Consider first nonparametric SIPs with DC objectives and infinite convex con-
straints and obtain necessary optimality conditions for them (necessary and suffi-
cient for fully convex problems) under weakest qualification conditions. These re-
sults of their own interest are instrumental to derive in what follows subdifferential
formulas for value functions in parametric versions of such SIPs with subsequent
applications to optimality conditions and Lipschitzian stability under perturbations.
In this subsection, we study the problem

{
minimize ϑ(x) − θ(x) subject to
ϑt (x) ≤ 0, t ∈ T , and x ∈ �,

(7.157)

where T is an arbitrary index set, where � ⊂ X is a closed and convex subset of
a Banach space X, and where the functions ϑ, θ, ϑt : X → R are l.s.c. and convex.
Being oriented toward minimization, we impose by convention that ∞ − ∞ :=
∞ along with the standard operations involving ∞ and −∞. The set of feasible
solutions to (7.157) is denoted by

� := � ∩ {x ∈ X
∣∣ ϑt (x) ≤ 0 for all t ∈ T

}
. (7.158)

Using the infinite product notation R
T ,R(T ), and R

(T )
+ from Subsection 7.1.1, define

supp λ := {t ∈ T | λt 
= 0} for any λ ∈ R
(T ), and observe that

λu :=
∑

t∈T

λtut =
∑

t∈supp λ

λtut whenever u ∈ R
T .
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Recall next definition (7.30) of the Fenchel conjugate, and introduce the fol-
lowing dual-space qualification condition, which plays a crucial role in deriving
necessary optimality conditions of the KKT type for (7.157).

Definition 7.48 (Closedness Qualification Condition). We say that the triple
(ϑ, ϑt ,�) in problem (7.157) satisfies the CLOSEDNESS QUALIFICATION CONDI-
TION (CQC) if the set

epi ϑ∗ + cone
{⋃

t∈T

epi ϑ∗
t

}
+ epi δ∗(·;�)

is weak∗ closed in the product space X∗ × R.

Note that the introduced CQC is not a “constraint qualification” since it involves
not only constraint but also cost functions, namely, the plus part ϑ of the cost in
(7.157). The closest constraint qualification to CQC is the following one, where the
cost term epi ϑ∗ in Definition 7.48 is omitted: the set

cone
{⋃

t∈T

epi ϑ∗
t

}
+ epi δ∗(·;�) is weak∗ closed (7.159)

in X∗ ×R. This condition known as the convex Farkas-Minkowski constraint qual-
ification (convex FMCQ) reduces to the Farkas-Minkowski property (7.49) for lin-
ear infinite systems of type (7.48). The reader can check that FMCQ (7.159) implies
CQC in the following two cases: either ϑ is continuous at some feasible point x ∈ �

in (7.158), or the convex conic hull cone(dom ϑ − �) is a closed subspace of X. It
has been well recognized in semi-infinite programming that dual qualification con-
ditions of the CQC and Farkas-Minkowski type for infinite convex systems strictly
improve primal ones of the Slater type; see Exercise 7.98 and the corresponding
commentaries in Section 7.7.

To proceed, we recall some needed results of convex analysis summarized in
the following two lemmas. The first one contains relationship between epigraphical
duality and subdifferential calculus.

Lemma 7.49 (Epigraphical and Subdifferential Sum Rules). Let the functions
ϕ1, ϕ2 : X → R be l.s.c. and convex, and let dom ϕ1 ∩ dom ϕ2 
= ∅. Then the
following conditions are equivalent:

(i) The set epi ϕ∗
1 + epi ϕ∗

2 is weak∗ closed in X∗ × R.
(ii) The conjugate epigraphical rule holds

epi (ϕ1 + ϕ2
)∗ = epi ϕ∗

1 + epi ϕ∗
2 .

Furthermore, we have the subdifferential sum rule

∂(ϕ1 + ϕ2)(x̄) = ∂ϕ1(x̄) + ∂ϕ2(x̄)

provided that the aforementioned equivalent conditions are satisfied.
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The next result presents an appropriate extension of the Farkas lemma to the case
of epigraphical convex systems.

Lemma 7.50 (Generalized Farkas Lemma for Epigraphical Systems). Given
α ∈ R, the following conditions are equivalent:

(i) ϑ(x) ≥ α for all x ∈ �;

(ii)
(
0,−α

) ∈ cl ∗(epi ϑ∗ + cone
[⋃

t∈T

epi ϑ∗
t

]
+ epi δ∗(·;�)

)
.

Now we are ready to establish necessary optimality conditions for the DC pro-
gram under consideration in (7.157). Given x̄ ∈ � ∩ dom θ , define the set of active
constraint multipliers by

A(x̄) := {λ ∈ R
(T )
+
∣∣ λtϑt (x̄) = 0 for all t ∈ supp λ

}
. (7.160)

Theorem 7.51 (Necessary Optimality Conditions for DC Semi-infinite Pro-
grams). Let x̄ ∈ � ∩ dom ϑ be a local minimizer for problem (7.157) satisfying
the CQC requirement. Then we have the inclusion

∂θ(x̄) ⊂ ∂ϑ(x̄) +
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

λt∂ϑt (x̄)
]

+ N(x̄;�). (7.161)

Proof. There are two possible cases regarding x̄ ∈ � ∩ dom ϑ : either x̄ /∈ dom θ

or x̄ ∈ dom θ . In the first case, we have ∂θ(x̄) = ∅, and hence (7.161) holds auto-
matically. Considering the remaining case of x̄ ∈ dom θ , find by the subdifferential
definition of convex analysis such x∗ ∈ X∗ that

θ(x) − θ(x̄) ≥ 〈x∗, x − x̄〉 for all x ∈ X.

This implies that the reference local minimizer x̄ for (7.157) is also a local mini-
mizer for the following convex SIP:

{
minimize ϑ̃(x) := ϑ(x) − 〈x∗, x − x̄〉 − θ(x̄)

subject to ϑt (x) ≤ 0, t ∈ T , and x ∈ �.
(7.162)

Since (7.162) is convex, its local minimizer x̄ is its global solution, i.e.,

ϑ̃(x̄) ≤ ϑ̃(x) for all x ∈ �.

Then Lemma 7.50 tells us that the latter is equivalent to the inclusion

(
0,−ϑ̃(x̄)

) ∈ cl ∗(epi ϑ̃∗ + cone
[⋃

t∈T

epi ϑ∗
t

]
+ epi δ∗(·;�)

)
.

Observing from the structure of ϑ̃ in (7.162) that epi ϑ̃∗ = (−x∗, θ(x̄) − 〈x∗, x̄〉) +
epi ϑ∗, we get therefore the relationship
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(
0,−ϑ̃(x̄)

) ∈ (− x∗, θ(x̄) − 〈x∗, x̄〉)
+cl ∗

(
epi ϑ∗ + cone

[⋃

t∈T

epi ϑ∗
t

]
+ epi δ∗(·;�)

)
. (7.163)

Furthermore, the assumed CQC ensures that (7.163) is equivalent to
(
x∗,−ϑ̃(x̄) − θ(x̄) + 〈x∗, x̄〉)

∈
(

epi ϑ∗ + cone
[⋃

t∈T

epi ϑ∗
t

]
+ epi δ∗(·;�)

)
. (7.164)

Now applying the useful representation

epi ϕ∗ =
⋃

ε≥0

{(
x∗, 〈x∗, x〉 + ε − ϕ(x)

)∣∣∣ x∗ ∈ ∂εϕ(x)
}
, (7.165)

which is valid for all x ∈ dom ϕ, to the conjugate functions ϑ∗, ϑ∗
t , and δ∗(·;�)

with taking into account the structure of the positive cone R
(T )
+ in (7.3) and noting

that −ϑ̃(x̄) − θ(x̄) + 〈x∗, x̄〉 = 〈x∗, x̄〉 − ϑ(x̄), we find

ε, εt , γ ≥ 0, u∗ ∈ ∂εϑ(x̄), λ ∈ R
(T )
+ , u∗

t ∈ ∂εt ϑt (x̄), and v∗ ∈ ∂δγ (x̄;�)

satisfying the following two equalities:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x∗ = u∗ +
∑

t∈T

λtu
∗
t + v∗,

〈x∗, x̄〉 − ϑ(x̄) = 〈u∗, x̄〉 + ε − ϑ(x̄) +
∑

t∈T

λt

[
〈u∗

t , x̄〉 + εt − 〈ϑ∗
t , x̄〉

]

+〈v∗, x̄〉 + γ − δ(x̄;�).

Since x̄ ∈ �, the first equality above allows us reducing the second one to

ε +
∑

t∈T

λtεt −
∑

t∈T

λtϑt (x̄) + γ = 0. (7.166)

The feasibility of x̄ for problem (7.157) and the choice of (ε, λt , γ ) yield

ε ≥ 0, γ ≥ 0, λt ≥ 0, and λtϑt (x̄) ≤ 0 for all t ∈ T ,

and therefore we get from (7.166) that in fact ε = 0, γ = 0, λtϑt (x̄) = 0, and
λtεt = 0 for all t ∈ T . Furthermore, the latter implies that εt = 0 for all t ∈ supp λ.
Hence we obtain the inclusions

u∗ ∈ ∂ϑ(x̄), u∗
t ∈ ∂ϑt (x̄), and v∗ ∈ ∂δ(x̄;�) = N(x̄;�),

which allow us to conclude from the above that

x∗ ∈ ∂ϑ(x̄) +
∑

t∈supp λ

λt∂ϑt (x̄) + N(x̄;�) with λtϑt (x̄) = 0 for t ∈ supp λ.



7.5 Value Functions in DC Semi-infinite Optimization 325

This justifies (7.161) and thus completes the proof of the theorem. �
Let us present two useful consequences of Theorem 7.51 concerning subdiffer-

ential/normal cone calculus for infinite convex systems.

Corollary 7.52 (Subdifferential Sum Rule Involving Convex Infinite Con-
straints). Let x̄ ∈ � with θ(x̄) = 0 and ϑ(x̄) < ∞, and let (ϑ, ϑt ,�) satisfy all the
assumptions of Theorem 7.51. Then we have the equality

∂
(
ϑ + δ(·;�)

)
(x̄) = ∂ϑ(x̄) +

⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+ N(x̄;�).

Proof. The inclusion “⊃” in the claimed sum rule can be derived directly from the
definitions. To verify the opposite inclusion therein, pick an arbitrary subgradient
x∗ ∈ ∂(ϑ + δ(·;�))(x̄) with x̄ ∈ � ∩ dom ϑ , and get

ϑ(x) − ϑ(x̄) ≥ 〈x∗, x − x̄〉 whenever x ∈ �,

which means by the construction of � in (7.158) that x̄ is a (global) minimizer for
the following DC program with infinite constraints:

{
minimize ϑ(x) − θ̃ (x) with θ̃ (x) := 〈x∗, x − x̄〉 + ϑ(x̄)

subject to ϑt (x) ≤ 0 for all t ∈ T , and x ∈ �.
(7.167)

Applying Theorem 7.51 to problem (7.167) and taking into account the structure of
the linear function θ̃ therein, we get from (7.161) that

∂θ̃(x̄) = {x∗} ⊂ ∂ϑ(x̄) +
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+ N(x̄;�),

which justifies the claimed inclusion and thus completes the proof. �
The next corollary provides a calculation of the normal cone to the feasible con-

straint set � in terms of its initial data of (7.12) and the set of active constraint
multipliers (7.160).

Corollary 7.53 (Normal Cone Calculation for Convex Infinite Constraints). As-
sume that ϑt and � satisfy the assumptions of Theorem 7.51 with CQC specified as
FMCQ (7.159). Then for any x̄ ∈ �, we have

N(x̄;�) =
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+ N(x̄;�).

Proof. Follows from Corollary 7.52 by letting ϑ(x) ≡ 0 therein. �
The final result of this subsection concerns the convex SIP, which is a specifica-

tion of (7.157) with θ ≡ 0. We show that in this case the necessary conditions of
Theorem 7.51 are also sufficient for (global) optimality.
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Theorem 7.54 (Necessary and Sufficient Optimality Conditions for Convex
SIPs). Let x̄ ∈ � be a feasible solution to problem (7.157) with θ ≡ 0 and
ϑ(x̄) < ∞, and let the assumptions of Theorem 7.51 be satisfied. Then x̄ is optimal
to this problem if and only if there is λ ∈ R

(T )
+ such that the following generalized

KKT condition holds:

0 ∈ ∂ϑ(x̄) +
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+ N(x̄;�). (7.168)

Proof. The necessary of (7.168) for optimality in this problem follows immediately
from Theorem 7.51 with θ(x) ≡ 0. To justify the sufficiency part, suppose that
(7.168) holds with some λ ∈ A(x̄); the latter implies, in particular, that ∂ϑt (x̄) 
= ∅
whenever t ∈ supp λ. Then we find x∗ ∈ X∗ satisfying the inclusions −x∗ ∈
N(x̄;�) and

x∗ ∈ ∂ϑ(x̄) +
∑

t∈supp λ

∂ϑt (x̄) ⊂ ∂
(
ϑ +

∑

t∈T

λtϑt

)
(x̄).

This tells by the construction of convex subgradients that

ϑ(x) +
∑

t∈T

λtϑt (x) ≥ ϑ(x̄) +
∑

t∈T

λtϑt (x̄) + 〈x∗, x − x̄〉 ≥ 0 (7.169)

for all x ∈ X. Since λtϑt (x̄) = 0 for all t ∈ T by λ ∈ A(x̄) in (7.160) and since
−x∗ ∈ N(x̄;�), we get from (7.169) and the normal cone structure that

ϑ(x) +
∑

t∈T

λtϑt (x) − ϑ(x̄) ≥ 〈x∗, x − x̄〉 ≥ 0 for all x ∈ �,

which yields by (7.158) and (7.160) the inequality

ϑ(x) ≥ ϑ(x) +
∑

t∈T

λtϑt (x) ≥ ϑ(x̄) whenever x ∈ �

and thus verifies the claimed global optimality of x̄. �

7.5.2 Regular Subgradients of Value Functions for DC SIPs

Let us now consider the parametric version of the DC semi-infinite program (7.157)
formalized, with a bit different notation, as

minimizey ϕ(x, y) − ψ(x, y) subject to y ∈ F(x) ∩ G(x), (7.170)

where the moving (parameterized by x) constraint sets are given by

F(x) := {y ∈ Y
∣∣ (x, y) ∈ �

}
, (7.171)
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G(x) := {y ∈ Y
∣∣ ϕt (x, y) ≤ 0, t ∈ T

}
. (7.172)

In what follows, we assume, unless otherwise stated, that the spaces X and Y are
Banach, that T is an arbitrary index set, that the functions ϕ,ψ, ϕt : X × Y → R

are l.s.c. and convex, and that the set � is closed and convex.
The main object of our study in the rest of this section is the (optimal) value

function in (7.170) defined by

μ(x) := inf
{
ϕ(x, y) − ψ(x, y)

∣∣ y ∈ F(x) ∩ G(x)
}
, (7.173)

which is nonconvex unless ψ ≡ 0. The value function (7.173) belongs to the general
class of marginal functions whose subdifferential properties have been studied in
Section 4.1; see also the corresponding commentaries in Section 4.6. However, the
results obtained therein are expressed in terms of the coderivative of the constraint
mapping in (7.170), while the major goal of our study here is to derive subdifferen-
tial results for (7.173) expressed entirely via the initial data of (7.170) with taking
into account the infinite inequality constraint nature of (7.172) and the DC structure
of the cost function in (7.170).

In this subsection, we concentrate on evaluating the regular subdifferential of
(7.173), which is defined in Banach spaces exactly as in finite dimensions (1.33).
The results obtained are of their own interest, while they also can be considered,
together with similar calculations for the ε-enlargements (1.34), as approximating
tools for evaluating the limiting (both basic and singular) subdifferentials of the
value function, which are the most valuable applications to DC semi-infinite opti-
mization and Lipschitzian stability of (7.170). The necessary optimality conditions
for the nonparametric DC version (7.157) obtained in Subsection 7.5.1 play a sig-
nificant role in our subdifferential device. For brevity, we confine ourselves here
to considering only regular subgradients of (7.173) while leaving the ε-case as an
exercise for the reader.

In the next theorem and further results below, we use the notation

M(x) := {y ∈ F(x) ∩ G(x)
∣∣ μ(x) = ϕ(x, y) − ψ(x, y)

}
, (7.174)

� := � ∩ {(x, y) ∈ X × Y
∣∣ ϕt (x, y) ≤ 0 for all t ∈ T

}
, (7.175)

�(x̄, ȳ, y∗) :=
{
λ ∈ R

(T )
+
∣∣∣ y∗ ∈ ∂yϕ(x̄, ȳ) +

∑

t∈supp λ

λt∂yϕt (x̄, ȳ)

+Ny

(
(x̄, ȳ);�

)
, λtϕt (x̄, ȳ) = 0 as t ∈ supp λ

}
,

(7.176)

where Ny((x̄, ȳ);�) stands for the subdifferential of the indicator function y �→
δ((x̄, y);�) at ȳ; the notation Nx((x̄, ȳ);�) below is similar.

Theorem 7.55 (Upper Estimate for Regular Subgradients of Value Functions
in DC SIPs). Let dom M 
= ∅, and let CQC from Definition 7.48 be satisfied for the
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triple (ϕ, ϕt ,�) in (7.170). Then, given any (x̄, ȳ) ∈ gph M ∩ dom ∂ψ and γ > 0,
we have the inclusion

∂̂μ(x̄) ⊂
⋂

(x∗,y∗)∈∂ψ(x̄,ȳ)

{
∂xϕ(x̄, ȳ) − x∗ +

⋃

λ∈�(x̄,ȳ,y∗)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]}

+Nx

(
(x̄, ȳ);�

)+ γB∗.

Proof. Fix (x̄, ȳ) ∈ gph M ∩ dom ∂ψ , u∗ ∈ ∂̂μ(x̄), and (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Pick-
ing an arbitrary positive number γ and using the definition of regular subgradients,
find η > 0 such that

μ(x) − μ(x̄) − 〈u∗, x − x̄〉 + γ ‖x − x̄‖ ≥ 0 if x ∈ x̄ + ηB. (7.177)

Since μ(x̄) = ϕ(x̄, ȳ)−ψ(x̄, ȳ) by ȳ ∈ M(x̄) and since μ(x) ≤ ϕ(x, y)−ψ(x, y)

for all (x, y) ∈ �, we get from (7.177) and (x∗, y∗) ∈ ∂ψ(x̄, ȳ) that

0 ≤ ϕ(x, y) − ϕ(x̄, ȳ) − ψ(x, y) + ψ(x̄, ȳ) − 〈u∗, x − x̄〉 + γ ‖x − x̄‖
≤ ϕ(x, y) − ϕ(x̄, ȳ) − 〈u∗ + x∗, x − x̄〉 − 〈y∗, y − ȳ〉 + γ ‖x − x̄‖

for (x, y) ∈ � ∩ [(x̄ + ηB) × Y ] with ϕt (x, y) ≤ 0, t ∈ T . Consider the function

ϑ(x, y) := ϕ(x, y) − ϕ(x̄, ȳ) − 〈u∗ + x∗, x − x̄〉 − 〈y∗, y − ȳ〉 + γ ‖x − x̄‖,
which is l.s.c. and convex on X × Y . It follows from (7.177) and the construction of
ϑ that (x̄, ȳ) is a solution to the following nonparametric convex SIP:

{
minimize ϑ(x, y) with respect to both (x, y) subject to
ϕt (x, y) ≤ 0 as t ∈ T , (x, y) ∈ � ∩ [(x̄ + ηB) × Y

]
.

(7.178)

The technical Lemma 7.56, which is presented for convenience after the proof of
the theorem, tells us the CQC requirement on (ϕ, ϕt ,�) imposed in this theorem
yields the validity of CQC for (7.178). Applying now the optimality conditions from
Theorem 7.54 to (7.178) gives us λ ∈ R

(T )
+ such that

0 ∈ ∂ϑ(x̄, ȳ) +
∑

t∈supp λ

λt∂ϕt (x̄, ȳ) + N
(
(x̄, ȳ);� ∩ [(x̄ + ηB) × Y ])

with λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ.

Since (x̄, ȳ) ∈ ı[(x̄ + ηB) × Y ], it follows from the classical subdifferential rule of
convex analysis and the construction of ϑ that

∂ϑ(x̄, ȳ) = ∂ϕ(x̄, ȳ) + (−u∗ − x∗,−y∗) + (γB∗) × {0}.
Thus we get by (i)⇒(iii) in Lemma 7.49 applied to the indicator functions
δ((x̄, ȳ);�) and δ((x̄, ȳ); (x̄ + ηB) × Y ) that
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N
(
(x̄, ȳ);� ∩ [(x̄ + ηB) × Y ]) = N

(
(x̄, ȳ);�

)
.

Substituting this into the above optimality condition for (7.178) with taking into
account the well-known relationships

∂ϕ(x̄, ȳ) ⊂ ∂xϕ(x̄, ȳ) × ∂yϕ(x̄, ȳ) and ∂ϕt (x̄, ȳ) ⊂ ∂xϕt (x̄, ȳ) × ∂yϕt (x̄, ȳ)

ensures the fulfillment of the two inclusions

u∗ ∈ ∂xϕ(x̄, ȳ) − x∗ +
∑

t∈supp λ

λt∂xϕt (x̄, ȳ) + Nx

(
(x̄, ȳ);�

)+ γB∗,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂yϕt (x̄, ȳ) + Ny

(
(x̄, ȳ);�

)

with λtϕt (x̄, ȳ) = 0, t ∈ supp λ. This verifies by (7.176) the claimed estimate of
∂̂μ(x̄) by the construction in (7.176) and Lemma 7.56 justified below. �
Lemma 7.56 (Relationships Between Parametric and Nonparametric CQC).
The validity of CQC for (ϕ, ϕt ,�) imposed in Theorem 7.55 yields the fulfillment of
this condition for the nonparametric problem (7.178).

Proof. In the notation of Theorem 7.55, take (x̄, ȳ) ∈ gph M∩dom ∂ψ with (x̄, ȳ) ∈
dom ϕ ∩ �, and define the convex and continuous function

ξ(x, y) := −ϕ(x̄, ȳ) − 〈u∗ + x∗, x − x̄〉 − 〈y∗, y − ȳ〉 + γ ‖x − x̄‖
on X × Y that gives us the representation ϑ = ϕ + ξ . Substituting the latter into
the assumed CQC for (ϕ, ϕt ,�) and using the epigraphical rule from Lemma 7.49
with taking into account that the continuity of δ(·; (x̄ + ηB∗) × Y ) at the interior
point (x̄, ȳ), we conclude that the corresponding set in the CQC property for (7.178)
reduces to

epi ϕ∗ + cone
[⋃

t∈T

epi ϕ∗
t

]
+ epi δ∗(·;�) + epi

[
ξ + δ

(·; (x̄ + ηB) × Y
)]∗

.

On the other hand, by Lemma 7.49, the CQC requirement for (ϕ, ϕt ,�) yields

epi
(
ϕ + δ(·;�)

)∗ = epi ϕ∗ + cone
[⋃

t∈T

epi ϕ∗
t

]
+ epi δ∗(·;�).

Substituting this equality into the aforementioned CQC set for (ϕ, ϕt ,�), we ex-
press the latter set as follows:

epi
(
ϕ + δ(·;�)

)∗ + epi
[
ξ + δ

(·; (x̄ + ηB) × Y
)]∗

,

which in turn reduces to the form

epi
[
ϕ + δ(·;�) + ξ + δ(·; (x̄ + ηB) × Y )

]∗
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by using Lemma 7.49 and the continuity of the function ξ + δ
(·; (x̄ + ηB) × Y

)
at

(x̄, ȳ) ∈ dom
(
ϕ + δ(·;�)

)
. The latter set is weak∗ closed in X∗ × Y ∗ × R as the

epigraph of the conjugate function to ϕ + δ(·;�) + ξ + δ(·; (x̄ + ηB) × Y ). Thus
we are done with the proof of this lemma. �

As a consequence of Theorem 7.55, we derive necessary optimality conditions
for the parametric DC program (7.170) that are upper subdifferential conditions
according to the terminology of Section 6.1. Indeed, they involve all the upper sub-
gradients of the concave function −ψ at the reference point, which reduce to sub-
gradients of the convex function ψ in the cost of (7.170).

Corollary 7.57 (Upper Subdifferential Conditions for Parametric DC SIPs).
Given a parameter value x̄ ∈ dom M in (7.174), let ȳ be a (global) optimal so-
lution to the parametric DC program

minimize ϕ(x̄, y) − ψ(x̄, y) subject to y ∈ F(x̄) ∩ G(x̄) (7.179)

with F and G from (7.171) and (7.172), respectively, under the standing assump-
tions made. Suppose in addition that ∂̂μ(x̄) 
= ∅ for the value function (7.173) under
the CQC property for (ϕ, ϕt ,�). Then for each (x∗, y∗) ∈ ∂ψ(x̄, ȳ) and γ > 0,
there are u∗ ∈ X∗ and λ ∈ R

(T )
+ from (7.3) such that

u∗ + x∗ ∈ ∂xϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂xϕt (x̄, ȳ) + Nx

(
(x̄, ȳ);�

)+ γB∗,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂yϕt (x̄, ȳ) + Ny

(
(x̄, ȳ);�

)
,

λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ.

Proof. Follows directly from the upper estimate in Theorem 7.55 due to ∂̂μ(x̄) 
= ∅
and the construction of the KKT multiplier set in (7.176). �

The most restrictive and not easily verifiable assumption in Corollary 7.57 is that
of ∂̂μ(x̄) 
= ∅. In the next subsection, we derive improved necessary optimality
conditions for (7.170) while replacing the restrictive requirement on ∂̂μ(x̄) 
= ∅ by
more natural and verifiable assumptions in the case of Asplund spaces. This comes
as a consequence of upper estimates for basic and singular subgradients of the DC
value function (7.173) in more general settings.

7.5.3 Limiting Subgradients of Value Functions for DC SIPs

We begin with the constructive evaluation of the basic subdifferential (1.24) of the
value function (7.173) and obtain two independent results in this direction under
different assumptions and with completely different proofs. Recall from Section 1.5
(see also [522] for more details) that the basic subdifferential of any ϕ : X → R on
a Banach space X at x̄ ∈ dom ϕ is defined by
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∂ϕ(x̄) := Lim sup
x

ϕ→x̄, ε↓0

∂̂εϕ(x) (7.180)

via the sequential outer limit of the ε-subdifferential mappings ∂̂εϕ : X →→ X∗ of ϕ

at points nearby. If ϕ is l.s.c. around x̄ and the space X is Asplund, then ε > 0 can
be equivalently omitted in (7.180); see [522, Theorem 2.34].

For the first result, we need the following condition on the minus term ψ in
(7.173), which allows us to derive a tight upper estimate of ∂μ(x̄).

Definition 7.58 (Inner Subdifferential Stability). We say that a convex function
ψ : X → R is INNER SUBDIFFERENTIALLY STABLE at x̄ ∈ dom ψ if

Lim inf
x

dom ψ−→ x̄

∂ψ(x) 
= ∅, (7.181)

where Lim inf stands for the Painlevé-Kuratowski inner limit (1.20) with the usage
of the weak∗ sequential convergence on X∗.

Note that (7.181) reduces to a singleton in the case of general Banach spaces if ψ

is Gâteaux differentiable on a neighborhood of x̄ and its Gâteaux derivative operator
dψ : X → X∗ is continuous with respect to the weak∗ topology of X∗. The next
proposition relaxes the smoothness assumption around x̄ provided that the closed
unit ball B∗ in X∗ is weak∗ sequentially compact. This latter property holds for
general classes of Banach spaces X, in particular; for those admitting an equivalent
norm Gâteaux differentiable at nonzero points (Gâteaux smooth), for weak Asplund
spaces that includes every Asplund space and every weakly compactly generated
space, every reflexive and every separable space, etc.; see, e.g., [255] for more de-
tails.

Proposition 7.59 (Sufficient Conditions for Inner Subdifferential Stability). Let
X be a Banach space such that the closed unit ball B

∗ is weak∗ sequentially
compact in X∗, and let ψ be convex, continuous, and Gâteaux differentiable at
x̄ ∈ int(dom ψ). Then ψ is inner subdifferentially stable at x̄.

Proof. Take any sequence xk → x̄ as k → ∞ and suppose that it entirely be-
longs to some neighborhood U ⊂ dom ψ of x̄. It follows from the continuity of
the convex function ψ at x̄ that it is actually Lipschitz continuous around x̄, and
hence its subdifferential mapping ∂ψ(·) is bounded in X∗ by the Lipschitz constant
of ψ ; see Exercises 1.69(i) and 7.102. This implies by using the weak∗ sequential
compactness of the dual ball B∗ that every subset of the set

V ∗ := {x∗ ∈ X∗∣∣ ∃ x ∈ U with x∗ ∈ ∂ψ(x)
}

contains a subsequence converging in the weak∗ topology of X∗. Then picking any
sequence of subgradients x∗

k ∈ ∂ψ(xk), we suppose without loss of generality that

there is x∗ ∈ X∗ such that x∗
k

w∗→ x∗ as k → ∞. It follows from convex sub-
differential definition (1.35) with ε = 0 that x∗ ∈ ∂ψ(x̄). Since ψ is continu-
ous and Gâteaux differentiable at x̄, we have from standard convex analysis that
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∂ψ(x̄) = {dψ(x̄)}, and therefore x∗
k

w∗→ dψ(x̄) as k → ∞. This clearly verifies the
inner subdifferential stability (7.181) of ψ at x̄. �

It is not hard to give various examples of functions, which are not Gâteaux differ-
entiable at the reference point while being inner subdifferentially stable at it. Such
functions can be constructed by the following scheme. Take a closed and convex
subset � of a Gâteaux smooth space X, a point x̄ ∈ bd �, and a function θ(x)

that is convex, continuous, and Gâteaux differentiable on an open set containing x̄.
Then define ψ : X → R as ψ(x) := θ(x) on � and as ψ(x) := ∅ otherwise. It
follows from Definition 7.58 and Proposition 7.59 that Lim inf ψ in (7.181) reduces
to {dθ(x̄)}, and thus we have the inner subdifferential stability of ψ at x̄. Observe
that

∂ψ(x̄) = dθ(x̄) + N(x̄;�)

by the subdifferential sum rule from Lemma 7.49 due the assumed continuity of θ .
Taking into account our convention on ∞ − ∞ = ∞, we get a boundary domain
point x̄ ∈ bd(dom ψ), which is a local minimizer for the DC function ϕ−ψ provided
that dom ϕ ⊂ dom ψ .

Now we are ready to establish the aforementioned tight upper estimate of basic
subgradients of the value function (7.173) under the inner subdifferential stability
of ψ in (7.170). This result requires also the inner semicontinuity property (1.20) of
the argminimum mapping M(·) from (7.174).

Theorem 7.60 (Basic Subgradients of DC Value Functions Under Inner Subd-
ifferential Stability). Given (x̄, ȳ) ∈ gph M in (7.170), suppose that M(·) is inner
semicontinuous, that ψ is inner subdifferentially stable, and that CQC holds for
(ϕ, ϕt ,�) at this point. Then for any fixed (x∗, y∗) ∈ Lim inf

(x,y)
dom ψ−→ (x̄,ȳ)

∂ψ(x, y), we

have the inclusion

∂μ(x̄) ⊂ ∂xϕ(x̄, ȳ) − x∗ +
⋃

λ∈�(x̄,ȳ,y∗)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]

+ Nx

(
(x̄, ȳ);�

)

with the set of KKT multipliers �(x̄, ȳ, y∗) defined in (7.176).

Proof. Fix the pair (x∗, y∗) from the theorem formulation, and pick an arbitrary

subgradient u∗ ∈ ∂μ(x̄). Then definition (7.180) gives us sequences εk ↓ 0, xk
μ→

x̄, and u∗
k ∈ ∂̂εk

μ(xk) with u∗
k

w∗→ u∗ as k → ∞. Fixing k ∈ N and using εk-
subgradient construction (1.34) for u∗

k , we find ηk > 0 such that

〈u∗
k, x − xk〉 ≤ μ(x) − μ(xk) + 2εk‖x − xk‖ if x ∈ xk + ηkB. (7.182)

The inner semicontinuity of M(·) at (x̄, ȳ) allows us to find a sequence of yk ∈
M(xk) that contains a subsequence converging to ȳ; we suppose that yk → ȳ

for all k → ∞. By the choice of (x∗, y∗), there is a sequence of subgradients

(x∗
k , y∗

k ) ∈ ∂ψ(xk, yk) with (x∗
k , y∗

k )
w∗→ (x∗, y∗) as k → ∞. It follows from (7.174)
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and (7.182) that

〈u∗
k, x − xk〉 ≤ ϕ(x, y) − ψ(x, y) − ϕ(xk, yk) + ψ(xk, yk)

+2εk

(‖x − xk‖ + ‖y − yk‖
) ≤ ϕ(x, y) − ϕ(xk, yk) − 〈x∗

k , x − xk〉 − 〈y∗
k , y − yk〉

+2εk

(‖x − xk‖ + ‖y − yk‖
)

for all (x, y) ∈ � ∩ ((xk, yk) + ηkB
)
.

The latter implies in turn that the inequality

〈u∗
k + x∗

k , x − xk〉 + 〈y∗
k , y − yk〉 ≤ ϕ(x, y) − ϕ(xk, yk)

+2εk

(‖x − xk‖ + ‖y − yk‖
)

valid for all such (x, y) can be written as the ε-subdifferentials inclusion

(u∗
k + x∗

k , y∗
k ) ∈ ∂̂2εk

(
ϕ + δ(·;�)

)
(xk, yk) for all k ∈ N.

Passing now to the limit as k → ∞ and taking into account the weak∗ convergence

(u∗
k + x∗

k , y∗
k )

w∗→ (u∗ + x∗, y∗), we get from definition (7.180) that

(u∗ + x∗, y∗) ∈ ∂
(
ϕ + δ(·;�)

)
(x̄, ȳ). (7.183)

Since the function ϕ+δ(·;�) is convex on X×Y , the basic subdifferential in (7.183)
reduces to the one of convex analysis. Thus applying to (7.183) the subdifferential
sum rule for infinite systems from Corollary 7.52, which holds under the imposed
CQC, gives us the inclusion

∂
(
ϕ + δ(·;�)

)
(x̄, ȳ) ⊂ ∂ϕ(x̄, ȳ) +

⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]

+ N
(
(x̄, ȳ);�

)

with A(x̄, ȳ) = {λ ∈ R
(T )
+ | λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ}. Substituting it into

(7.183) and taking into account the aforementioned relationships between the full
and partial subdifferentials of convex functions, we arrive at

⎧
⎪⎪⎨

⎪⎪⎩

u∗ ∈ ∂xϕ(x̄, ȳ) − x∗ +
∑

t∈supp λ

λt∂xϕt (x̄, ȳ) + Nx

(
(x̄, ȳ);�

)
,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂yϕt (x̄, ȳ) + Ny

(
(x̄, ȳ);�

)

for some λ ∈ A(x̄, ȳ). This completes the proof of the theorem. �
As discussed above, the inner subdifferential stability of the minus term ψ in

(7.170) required in Theorem 7.60 is a rather restrictive requirement. In the next the-
orem, we replace it by a much more flexible assumption on ψ that holds, in particu-
lar, for any continuous convex functions. The upper estimate for basic subgradients
of (7.173) obtained under the following assumption is less precise in comparison
with Theorem 7.60 while being sufficient for the majority of applications including
those in this book.
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Definition 7.61 (Subdifferential Boundedness). We say that a convex function
ψ : X → R is SUBDIFFERENTIALLY BOUNDED around x̄ ∈ dom ψ if for any

sequences εk ↓ 0 and xk
dom ψ−→ x̄ as k → ∞ there is a sequence of x∗

k ∈ ∂εk
ψ(xk),

k ∈ N, such that the set {x∗
k | k ∈ N} is bounded in X∗.

As mentioned, this property holds for a broad class of convex functions.

Proposition 7.62 (Sufficient Condition for Subdifferential Boundedness of
Convex Functions). Let ψ : X → R be a convex function continuous at
x̄ ∈ int(dom ψ). Then ψ is subdifferentially bounded around this point.

Proof. As well known in convex analysis (see Exercise 7.102), the continuity of a
convex function ψ at the reference point x̄ ∈ int(dom ψ) yields that ψ is locally
Lipschitzian around x̄. On the other hand, the local Lipschitz continuity of any (not
only convex) function ensures the uniform boundedness of subgradients around the
point in question; see Exercise 1.69. Furthermore, ∂ψ(x) ⊂ ∂εψ(x) for any ε >

0. Taking now arbitrary sequences εk ↓ 0 and xk
dom ψ−→ x̄ as k → ∞, we have

x∗
k ∈ ∂εk

ψ(xk) for any sequence of subgradients x∗
k ∈ ∂ψ(xk). This justifies the

subdifferential boundedness of ψ . �
The following theorem provides a result independent of Theorem 7.60. Its proof

involves the classical Brøndsted-Rockafellar theorem on subdifferential density in
convex analysis, which is a predecessor and convex counterpart of the fundamental
Ekeland’s variational principle.

Theorem 7.63 (Basic Subgradients of Value Functions in DC Programs Under
Subdifferential Boundedness). Suppose that for both spaces X and Y the dual unit
balls are sequentially weak∗ compact, that the argminimum mapping (7.24) is inner
semicontinuous at some point (x̄, ȳ) ∈ gph M , that ψ in (7.173) is subdifferentially
bounded around (x̄, ȳ), and that CQC holds for (ϕ, ϕt ,�). Then we have the upper
estimate

∂μ(x̄) ⊂ ∂xϕ(x̄, ȳ) +
⋃

(x∗,y∗)∈∂ψ(x̄,ȳ)

{
− x∗ +

⋃

λ∈�(x̄,ȳ,y∗)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]}

+Nx

(
(x̄, ȳ);�

)
.

Proof. Pick any u∗ ∈ ∂μ(x̄), and similar to the proof of Theorem 7.60, find se-

quences εk ↓ 0, xk
μ→ x̄, and u∗

k ∈ ∂̂εk
μ(xk) satisfying u∗

k

w∗→ u∗ as k → ∞. Then
we get ηk ↓ 0 such that inequality (7.182) holds and, by the assumed inner semi-
continuity of M(·), obtain a sequence of yk ∈ M(xk) converging to ȳ as k → ∞.
Select further νk > 0 with 2

√
νk < ηk and, by taking into account that νk ↓ 0 and

(xk, yk) → (x̄, ȳ) and by employing the subdifferential boundedness of ψ , find a
sequence of (x∗

k , y∗
k ) ∈ ∂νk

ψ(xk, yk) such that the set {(x∗
k , y∗

k ) ∈ X∗ × Y ∗| k ∈ N}
is bounded. It follows from the structure of the ε-subdifferential mapping (7.101)
that (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Similar to the proof of Theorem 7.60, we derive from
(7.182) the inequality
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〈u∗
k + x∗

k , x − xk〉 +〈y∗
k , y − yk〉 − νk ≤ ϕ(x, y) − ϕ(xk, yk)

+2εk

(‖x − xk‖ + ‖y − yk‖
)

held for all (x, y) ∈ � ∩ ((xk, yk) + ηkB
)
. This implies that

(u∗
k + x∗

k , y∗
k ) ∈ ∂νk

ϑk(xk, yk), k ∈ N, (7.184)

in terms of the ε-subdifferentials (with ε := νk) of the convex l.s.c. functions ϑk(·)
given in the summation form

ϑk(x, y) : = ϕ(x, y) + δ
(
(x, y);� ∩ [(xk, yk) + ηkB])

−ϕ(xk, yk) + 2εk

(‖x − xk‖ + ‖y − yk‖
)
.

(7.185)

Applying now to the elements in (7.184) the Brøndsted-Rockafellar density theo-
rem, we find pairs (̃xk, ỹk) ∈ dom ϑk and (̃x∗

k , ỹ∗
k ) ∈ ∂ϑk(̃xk, ỹk) satisfying for all

k ∈ N the following inequalities:

‖x̃k − xk‖ + ‖ỹk − yk‖ ≤ √
νk and

‖x̃∗
k − (u∗

k + x∗
k )‖ + ‖ỹ∗

k − y∗
k ‖ ≤ √

νk.
(7.186)

They imply by the constructions above and the choice of νk that

〈̃x∗
k , x − x̃k〉 + 〈ỹ∗

k , y − ỹk〉 ≤ ϑk(x, y) − ϑk(̃xk, ỹk) ≤ ϕ(x, y) − ϕ(̃xk, ỹk)

+2εk

(‖x − xk‖ + ‖y − yk‖
)− 2εk

(‖x̃k − xk‖ + ‖ỹk − yk‖
)

≤ ϕ(x, y) − ϕ(̃xk, ỹk) + 2εk

(‖x − x̃k‖ + ‖y − ỹk‖
)

for all (x, y) ∈ � ∩ ((xk, yk) + ηkB
)
, which yields in turn the inclusions

(̃x∗
k , ỹ∗

k ) ∈ ∂̂2εk

(
ϕ + δ(·;�)

)
(̃xk, ỹk), k ∈ N. (7.187)

It easily follows from the convergence (xk, yk) → (x̄, ȳ), (u∗
k + x∗

k , y∗
k )

w∗→ (u∗ +
x∗, y∗) and from the norm estimates in (7.186) that

(̃xk, ỹk) → (x̄, ȳ) and (̃x∗
k , ỹ∗

k )
w∗→ (u∗ + x∗, y∗) as k → ∞.

Thus passing to the limit in (7.187) as k → ∞ and using construction (7.180) of the
basic subdifferential, we arrive at inclusion (7.183) as in the proof of Theorem 7.60,
where the basic subdifferential agrees with the subdifferential of convex analysis for
the convex function ϕ + δ(·;�). Proceeding finally as in the proof of Theorem 7.60
by employing the subdifferential sum rule from Corollary 7.52, we complete the
proof of the theorem. �

Our next results concern the singular subdifferential ∂∞μ(x̄) of the DC value
function (7.173). According to (1.38) and Exercise 1.68, the singular subdifferential
of any l.s.c. ϕ : X → R on a Banach space X is defined by
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∂∞ϕ(x̄) := Lim sup
x

ϕ→x̄
λ, ε↓0

λ̂∂εϕ(x) (7.188)

via the sequential outer limit, where ε > 0 can be omitted if X is Asplund.

Theorem 7.64 (Singular Subgradients of Value Functions in DC Programs).
Suppose that the assumptions of Theorem 7.63 are satisfied with replacing CQC for
(ϕ, ϕt ,�) by the corresponding FMCQ (7.159) for (ϕt ,�) in (7.170). Assume in
addition that � ⊂ dom ϕ for the set of feasible solutions (7.175). Then we have the
upper estimate

∂∞μ(x̄) ⊂
⋃

λ∈�∞(x̄,ȳ)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]

+ Nx

(
(x̄, ȳ);�

)
, (7.189)

where the set of singular multipliers is defined by

�∞(x̄, ȳ) :=
{
λ ∈ R

(T )
+
∣∣∣ 0 ∈

∑

t∈supp λ

λt∂yϕt (x̄, ȳ) + Ny

(
(x̄, ȳ);�

)
,

λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ
}
.

Proof. Pick any u∗ ∈ ∂∞μ(x̄), and by (7.188), find sequences

λk ↓ 0, εk ↓ 0, xk
μ→ x̄, u∗

k ∈ ∂̂εk
μ(xk) with λku

∗
k

w∗→ u∗ as k → ∞.

Following the proof of Theorem 7.63, select sequences

νk ↓ 0 as k → ∞, yk ∈ M(xk), and (x∗
k , y∗

k ) ∈ ∂νk
ψ(xk, yk), k ∈ N,

such that {(x∗
k , y∗

k )} weak∗ converges in X∗ ×Y ∗ to some (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Fur-
ther, the application of the Brøndsted-Rockafellar theorem to the function ϑk(x, y)

from (7.185) gives us sequences of (̃xk, ỹk) ∈ dom ϑk and (̃x∗
k , ỹ∗

k ) ∈ ∂ϑk(̃xk, ỹk)

satisfying the estimates in (7.186) and the subdifferential inclusions (7.187) for all
k ∈ N. Using the convexity of ϕ + δ(·;�) and the assumption on � ⊂ dom ϕ allows
us to rewrite (7.187) as

〈̃x∗
k , x − x̃k〉 + 〈ỹ∗

k , y − ỹk〉 ≤ ϕ(x, y) − ϕ(̃xk, ỹk) + 2εk

(‖x − x̃k‖ + ‖y − ỹk‖
)

for all (x, y) ∈ � and k ∈ N. This implies, by picking any γ > 0 and employing
the lower semicontinuity of ϕ around (x̄, ȳ), that

λk

[〈̃x∗
k , x − x̃k〉 + 〈ỹ∗

k , y − ỹk〉
] ≤ λk

[
ϕ(x, y) − ϕ(̃xk, ỹk) + 2εk

(‖x − x̃k‖
+‖y − ỹk‖

)] ≤ λk

[
ϕ(x, y) − ϕ(x̄, ȳ) + γ + 2εk

(‖x − x̃k‖ + ‖y − ỹk‖
)]

for all (x, y) ∈ � and all k ∈ N sufficiently large. Passing now to the limit as k → ∞
and taking into account that the sequence {ỹ∗

k } is bounded in Y ∗, that λk ↓ 0, and

that λkx̃
∗
k

w∗→ u∗ by (7.186), we get the relationship
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〈u∗, x − x̄〉 ≤ 0 for all (x, y) ∈ �,

which can be rewritten as (u∗, 0) ∈ N((x̄, ȳ);�). Applying the normal cone calcu-
lus for infinite systems from Corollary 7.53 gives us

(u∗, 0) ∈
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]

+ N
(
(x̄, ȳ);�

)

with A(x̄, ȳ) = {λ ∈ R
(T )
+ | λtϕt (x̄, ȳ) = 0, t ∈ supp λ}. The latter yields (7.189)

and thus completes the proof of the theorem. �
The next theorem presents applications of the upper estimates for both basic and

singular subdifferentials of the value function (7.173) established in Theorems 7.63
and 7.64 to derive efficient conditions ensuring the local Lipschitz continuity of
(7.173) via the initial data as well as necessary optimality conditions for local op-
timality in the parametric DC semi-infinite program under consideration. The ob-
tained results essentially use the Asplund property of the parameter space X; this is
not required for the decision space Y .

Recall that characterizing the local Lipschitz continuity of any l.s.c. function
ϕ on an Asplund space presented in Exercise 4.34(ii) involves both the triviality
condition ∂∞ϕ(x̄) = {0} for the singular subdifferential and the SNEC property
of ϕ at the reference point in the case of infinite dimensions. While the condition
∂∞μ(x̄) = {0} for the value function (7.173) is straightforward from Theorem 7.64,
it is not the case for SNEC, which is fully independent from the above triviality
condition. Nevertheless, the following lemma of its own interest shows that for the
general class of marginal/value functions, including the one in (7.173), the SNEC
property holds under natural assumptions on the initial problem data.

Lemma 7.65 (SNEC Property of Marginal Functions). Let

μ(x) := inf
{
φ(x, y)

∣∣ y ∈ �(x)
}
, x ∈ X, (7.190)

where X is Asplund, where the argminimum map

x �→ S(x) := {y ∈ �(x)
∣∣ φ(x, y) = μ(x)

}

is inner semicontinuous at some point (x̄, ȳ) ∈ gph S and where φ is locally Lips-
chitzian around this point. Then (7.190) is SNEC at x̄ provided that it is l.s.c. around
x̄ and that the mapping � therein is Lipschitz-like around (x̄, ȳ).

Proof. To verify the SNEC property of (7.190) at x̄, we use its subdifferential
characterization presented in Exercise 2.50. Based on this, take any sequences

λk ↓ 0, xk
μ→ x̄, and x∗

k ∈ λk∂̂μ(xk) with x∗
k

w∗→ 0, and then show that ‖x∗
k ‖ → 0

along some subsequence. To proceed, employ the inner semicontinuity of S(·) at
(x̄, ȳ) and select a sequence of yk ∈ S(xk) whose subsequence converges (with no
relabeling) to ȳ. Take x̃∗

k ∈ ∂̂μ(xk) such that x∗
k = λkx̃

∗
k . Since x̃∗

k is a regular
subgradient of ϕ at xk , for any η > 0, there is γ > 0 such that
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〈̃x∗
k , x − xk〉 ≤ μ(x) − μ(xk) + η‖x − xk‖ whenever x ∈ xk + γB.

Considering the extended-real-valued function

ξ(x, y) := φ(x, y) + δ
(
(x, y); gph �

)
for all (x, y) ∈ X × Y,

we easily conclude from the above that

〈
(̃x∗

k , 0), (x − xk, y − yk)
〉 ≤ ξ(x, y) − ξ(xk, yk) + η

(‖x − xk‖ + ‖y − yk‖
)

whenever (x, y) ∈ (xk, yk) + γB, which means that (̃x∗
k , 0) ∈ ∂̂ξ(xk, yk).

Fix now an arbitrary sequence εk ↓ 0 as k → ∞. Since ξ is locally Lipschitzian
around (x̄, ȳ), while X and Y are Asplund, we apply the fuzzy sum rule from Ex-
ercise 2.42 to the summation function ξ at (xk, yk) and thus find, by taking into
account the convergence above, sequences

(x1k, y1k)
φ→ (x̄, ȳ), (x2k, y2k)

gph �−→ (x̄, ȳ) as k → ∞,

(x∗
1k, y

∗
1k) ∈ ∂̂φ(x1k, y1k), and (x∗

2k, y
∗
2k) ∈ N̂

(
(x2k, y2k); gph �

)

such that λk‖(x∗
1k, y

∗
1k)‖ → (0, 0) with the estimates

‖x̃∗
k − x∗

1k − x∗
2k‖ ≤ εk and ‖y∗

1k + y∗
2k‖ ≤ εk as k ∈ N. (7.191)

This implies that λk‖y∗
2k‖ → 0 as k → ∞. Taking now into account that

(
λkx

∗
2k, λky

∗
2k

) ∈ N̂
(
(x2k, y2k); gph �) ⇐⇒ λkx

∗
2k ∈ D̂∗�(x2k, y2k)(−λky

∗
2k)

and that � is Lipschitz-like around (x̄, ȳ) with some modulus � > 0, we get from
the coderivative estimate for Lipschitz-like mappings (see implication (a)⇒(b) of
Exercise 3.41, which holds in any Banach space) that

‖λkx
∗
2k‖ ≤ �‖λky

∗
2k‖ for large k ∈ N.

This clearly yields λk‖x∗
2k‖ → 0. Combining the latter with (7.191) and with x∗

k =
λkx̃

∗
k , we conclude that ‖x∗

k ‖ → 0 as k → ∞ and thus justify the SNEC property
of μ at x̄ claimed in the lemma. �

Now we are ready to establish the aforementioned major theorem.

Theorem 7.66 (Lipschitz Continuity of Value Functions and Optimality Con-
ditions for Parametric DC SIPs). Let the parameter space X be Asplund in the
assumptions of Theorem 7.64 and suppose in addition that

{ ⋃

λ∈�∞(x̄,ȳ)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]

+ Nx

(
(x̄, ȳ);�

)} = {0}. (7.192)

Then the value function μ(·) is locally Lipschitzian around x̄ provided that it is l.s.c.
around this point (which is ensured by the inner semicontinuity of M(·) around
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(x̄, ȳ)) in each of the following two cases: either (a) dim X < ∞ or (b) both ϕ

and ψ are continuous at (x̄, ȳ), and the constraint mapping x �→ F(x) ∩ G(x) is
Lipschitz-like around (x̄, ȳ).

If furthermore CQC holds for (ϕ, ϕt ,�), then we have the following necessary op-
timality conditions for the (global) minimizer ȳ of the DC program (7.179): there
are (x∗, y∗) ∈ ∂ψ(x̄, ȳ), u∗ ∈ X∗, and λ ∈ R

(T )
+ satisfying

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u∗ + x∗ ∈ ∂xϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂xϕt (x̄, ȳ) + Nx

(
(x̄, ȳ);�

)
,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂yϕt (x̄, ȳ) + Ny

(
(x̄, ȳ);�

)
,

λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ.

(7.193)

Proof. If (7.192) holds, then ∂∞μ(x̄) = {0} by Theorem 7.64. Further, it is easy to
derive directly from the definitions that the lower semicontinuity of μ(·) around x̄

follows from the inner semicontinuity of M(·) around (x̄, ȳ). Thus the local Lips-
chitz continuity of μ(·) around x̄ is a consequence of Theorem 1.22 in the case (a)
where X is finite-dimensional.

In case (b), recall that the continuity of the convex functions ϕ and ψ at (x̄, ȳ)

implies their Lipschitz continuity around this point, and thus μ(·) is SNEC at x̄ due
to Lemma 7.65. This verifies the first part of the theorem.

To justify the second part on the necessary optimality conditions, observe that any
ȳ ∈ M(x̄) under the consideration in this theorem is a global solution to (7.179).
It follows from the local Lipschitz continuity of μ around x̄ that ∂μ(x̄) 
= ∅; see
Exercise 2.32(ii). Thus using the upper estimate of ∂μ(x̄) in Theorem 7.63 under
the assumed CQC for (ϕ, ϕt ,�), we conclude that the set on the right-hand side
of this estimate is nonempty as well. This yields the claimed necessary optimality
conditions (7.193) by construction (7.176) of the KKT multiplier set �(x̄, ȳ, y∗). �

Note that, in contrast to the necessary optimality conditions of Corollary 7.57,
the results of (7.193) give us lower subdifferential optimality conditions in the en-
hanced form (with γ = 0 instead of γ > 0 in Corollary 7.57) under different
while easily verifiable assumptions. Note also that the results of Sections 7.1 and
7.3 provide characterizations of the Lipschitz-like property of the infinite constraint
inequality system in (7.179) entirely via the functions ϕt for the cases of linear,
block-perturbed, and convex structures.

Convex (ψ ≡ 0) and concave (ϕ ≡ 0) SIPs are particular cases of the DC
programs under consideration, and so the obtained results for general DC SIPs can
be directly applied to these important cases with the corresponding specifications.
Furthermore, the convex case allows us to derive new results, which cannot be de-
duced from those for general DC SIPs obtained above. The next theorem establishes
a precise formula (equality, not inclusion) for calculating the subdifferential of the
convex value function in such SIPs.

Theorem 7.67 (Calculating Subgradients of Value Functions in Convex SIPs).
Consider the value function μ(·) from (7.173) with ψ ≡ 0, and suppose that CQC
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holds for the convex triple (ϕ, ϕt ,�) in general Banach spaces. Then μ(·) is convex,
and its subdifferential at x̄ ∈ dom μ is calculated by

∂μ(x̄) =
{
x∗ ∈ X∗

∣∣∣ (x∗, 0) ∈ ∂ϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]

+N
(
(x̄, ȳ);�

)}
for any ȳ ∈ M(x̄),

where A(x̄, ȳ) := {λ ∈ R
(T )
+
∣∣ λtϕt (x̄, ȳ) = 0, t ∈ supp λ

}
.

Proof. The convexity of the value function (7.173) with ψ ≡ 0 and all the convex
data easily follows from its definition and the convexity assumptions. To verify first
the inclusion “⊂” in the claimed formula for ∂μ(x̄), we proceed as in the proof of
Theorem 7.55 by taking γ = 0 and η = ∞.

To justify the opposite inclusion, pick any x∗ from the right-hand side therein and
thus find λ ∈ A(x̄, ȳ), (u∗, v∗) ∈ ∂ϕ(x̄, ȳ), (u∗

t , v
∗
t ) ∈ ∂ϕt (x̄, ȳ), and (̃u∗, ṽ∗) ∈

N((x̄, ȳ);�) satisfying the equality

(x∗, 0) = (u∗, v∗) +
∑

t∈supp λ

λt (u
∗
t , v

∗
t ) + (̃u∗, ṽ∗).

It follows from the construction of A(x̄, ȳ) that for the chosen pairs (u∗, v∗),
(u∗

t , v
∗
t ), and (̃u∗, ṽ∗), we have the relationships

⎧
⎨

⎩

ϕ(x, y) − μ(x̄) = ϕ(x, y) − ϕ(x̄, ȳ) ≥ 〈u∗, x − x̄〉 + 〈v∗, y − ȳ〉,
0 ≥ λtϕt (x, y) − λtϕt (x̄, ȳ) ≥ λt 〈u∗

t , x − x̄〉 + λt 〈v∗
t , y − ȳ〉, t ∈ supp λ,

0 ≥ 〈̃u∗, x − x̄〉 + 〈̃v∗, y − ȳ〉 whenever (x, y) ∈ �,

which imply together with the above equality that

ϕ(x, y) + δ
(
(x, y);�

)− μ(x̄) ≥ 〈x∗, x − x̄〉 for all (x, y) ∈ X × Y.

The latter shows in turn that μ(x) − μ(x̄) ≥ 〈x∗, x − x̄〉 for all x ∈ X and hence
completes the proof of the theorem. �

7.5.4 Bilevel Semi-infinite Programs with Convex Data

In this subsection, we return to optimistic bilevel programs studied in Chapter 6
for the case of finitely many inequality constraints at the lower level described by
smooth as well as by locally Lipschitzian functions on finite-dimensional spaces.
Here we consider fully convex bilevel programs in arbitrary Banach spaces with in-
finite constraints and derive for them necessary optimality conditions, which cannot
be deduced from the results of Chapter 6 even in the case finitely many constraints
in R

n. Developing the value function approach allows us to reduce the bilevel pro-
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grams under consideration to single-level DC SIPs and then apply the results ob-
tained above in Section 7.5.

Consider the optimistic bilevel program
{

minimize f (x, y) subject to
y ∈ M(x) := {y ∈ G(x)

∣∣ ϕ(x, y) = μ(x)
}
,

(7.194)

where M(x) is the set of optimal solutions to the lower-level problem

minimize ϕ(x, y) subject to y ∈ G(x) := {y ∈ Y
∣∣ ϕt (x, y) ≤ 0, t ∈ T

}

with an arbitrary index set T , and where μ(·) is the optimal value function of the
parametric lower-level problem defined by

μ(x) := inf
{
ϕ(x, y)

∣∣ y ∈ G(x)
}
. (7.195)

The standing assumption of this section is that the bilevel problem (7.194) is fully
convex on the Banach spaces X, Y meaning that all the functions there are l.s.c. and
convex with respect to both variables.

To evaluate subgradients of the value function (7.195) and derive necessary op-
timality conditions for (7.194), we proceed via penalization under partial calmness.
Observe that all the results of Subsection 6.2.3 apply to problem (7.194) with no
change. Based on them, we get that any partially calm feasible solution (x̄, ȳ) to
(7.194) is a local optimal solution to the single-level program:

{
minimize κ−1f (x, y) + ϕ(x, y) − μ(x)

subject to ϕt (x, y) ≤ 0, t ∈ T ,
(7.196)

where κ > 0 is the constant of partial calmness, provided that the upper-level ob-
jective f is continuous at (x̄, ȳ). Let us first efficiently evaluate the convex subdif-
ferential of the value function (7.195) in the lower-level program.

Theorem 7.68 (Subgradients of Value Functions in Convex Bilevel Programs).
Let (x̄, ȳ) be a partially calm feasible solution to the fully convex bilevel program
(7.194). Suppose that CQC holds for (ϕ, ϕt ) and that f is continuous at (x̄, ȳ). Then
there is a number κ > 0 such that

∂μ(x̄) × {0} ⊂ κ−1∂f (x̄, ȳ) + ∂ϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]
,

where the set A(x̄, ȳ) of active constraint multipliers is defined in Theorem 7.67. In
particular, we have the upper estimate

∂μ(x̄) ⊂ κ−1∂xf (x̄, ȳ) + ∂xϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]
.
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Proof. The second inclusion in the theorem clearly follows from the first one; so we
verify the latter. The assumptions made ensure that (x̄, ȳ) a local minimizer of the
penalized problem (7.196), which is a DC SIP of type (7.157) described by the l.s.c.
convex functions

ϑ(x, y) := κ−1f (x, y) + ϕ(x, y), θ(x, y) := μ(x), ϑt (x, y) := ϕt (x, y)

with � = X × Y in (7.11). Let us check that the imposed CQC for (ϕ, ϕt ) yields
the validity of CQC for (ϑ, ϑt ). Using the structure of the feasible set

� := {(x, y) ∈ X × Y
∣∣ ϕt (x, y) ≤ 0 for all t ∈ T

}

in (7.196), the well-known conjugate representation from convex analysis

epi (ϕ1 + ϕ2)
∗ = cl ∗(epi ϕ∗

1 + epi ϕ∗
2 ), (7.197)

which is valid for any l.s.c. convex functions such that dom ϕ1 ∩ dom ϕ2 
= ∅ with
omitting the weak∗ closure if one of the functions is continuous at some point x̄ ∈
dom ϕ1 ∩ dom ϕ2, and then employing the imposed CQC give us

epi ϑ∗ + cone
[⋃

t∈T

epi ϑ∗
t

]
= epi

(
κ−1f

)∗ + epi ϕ∗ + cone
[⋃

t∈T

epi ϕ∗
t

]

= epi
(
κ−1f

)∗ + epi
(
ϕ + δ(·;�)

)∗ = epi
(
ϑ + δ(·;�)

)∗
.

Applying further (7.197) without the closure operation to the above sum function ϑ

with the continuous term f implies that

epi ϑ∗ + cone
[⋃

t∈T

epi ϑ∗
t

]
= epi

(
κ−1f

)∗ + epi ϕ∗ + cone
[⋃

t∈T

epi ϕ∗
t

]

= epi
(
κ−1f

)∗ + epi
(
ϕ + δ(·;�)

)∗ = epi
(
ϑ + δ(·;�)

)∗

and thus allows us to conclude that the set

epi ϑ∗ + cone
[⋃

t∈T

epi ϑ∗
t

]
is weak∗ closed in X∗ × Y ∗ × R.

This is exactly the CQC property needed for the application of Theorem 7.51 to
(7.196). Employing the latter result and the subdifferential sum rule

∂ϑ(x̄, ȳ) = ∂
(
κ−1f + ϕ

)
(x̄, ȳ) = κ−1∂f (x̄, ȳ) + ∂ϕ(x̄, ȳ),

which holds by the continuity of f , we arrive at the first inclusion claimed in the
theorem and thus complete the whole proof. �

Next we establish the main result of this subsection providing necessary opti-
mality conditions for the fully convex bilevel programs with an arbitrary (finite or
infinite) number of inequality constraints.
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Theorem 7.69 (Necessary Optimality Condition for Fully Convex Bilevel
SIPs). Let (x̄, ȳ) be a partially calm optimal solution to the fully convex bilevel
program (7.194). Suppose that CQC holds for the lower-level program in (7.194),
that the upper-level objective f is continuous at (x̄, ȳ), and that ∂μ(x̄) 
= ∅ for
the convex value function (7.195). Then for each ỹ ∈ M(x̄) from the argminimum
set in (7.194), there exist a number κ > 0 and multipliers λ = (λt ) ∈ R

(T )
+ and

β = (βt ) ∈ R
(T )
+ from the positive cone in (7.3) such that we have the following

relationships:

0 ∈ ∂xf (x̄, ȳ) + κ
[
∂xϕ(x̄, ȳ) − ∂xϕ(x̄, ỹ)

]+
∑

t∈supp λ

λt∂xϕt (x̄, ȳ)

−κ
∑

t∈supp β

βt∂xϕt (x̄, ỹ),

0 ∈ ∂yf (x̄, ȳ) + κ∂yϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂yϕt (x̄, ȳ),

0 ∈ ∂yϕ(x̄, ỹ) +
∑

t∈supp β

βt∂yϕt (x̄, ỹ),

λtϕt (x̄, ȳ) = βtϕt (x̄, ỹ) = 0 for all t ∈ T .

Proof. Since ∂μ(x̄) 
= ∅, we take x∗ ∈ ∂μ(x̄) and by Theorem 7.68 find κ > 0 and
λ ∈ R

(T )
+ satisfying the inclusion

κ(x∗, 0) ∈ ∂f (x̄, ȳ) + κ∂ϕ(x̄, ȳ) +
∑

t∈supp λ

λt∂ϕt (x̄, ȳ) (7.198)

with λtϕt (x̄, ȳ) = 0 as t ∈ supp λ. On the other hand, picking ỹ ∈ M(x̄) and
applying to x∗ ∈ ∂μ(x̄) the result of Theorem 7.67 give us β ∈ R

(T )
+ such that

x∗ ∈ ∂xϕ(x̄, ỹ) +
∑

t∈supp β

∂xϕt (x̄, ỹ), 0 ∈ ∂yϕ(x̄, ỹ) +
∑

t∈supp β

∂yϕt (x̄, ỹ),

and βtϕt (x̄, ỹ) = 0 for all t ∈ supp β. Substituting this into (7.198) leads us to the
claimed necessary optimality conditions. �

As an immediate consequence of Theorem 7.69, we get the following necessary
optimality conditions for the bilevel SIP (7.194) involving only the reference opti-
mal solution (x̄, ȳ).

Corollary 7.70 (Specification of Necessary Optimality Conditions for Bilevel
SIPs). Let (x̄, ȳ) be an optimal solution to (7.194) under the assumptions of Theo-
rem 7.69. Then there are κ > 0 and λ, β ∈ R

(T )
+ such that
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0 ∈ ∂xf (x̄, ȳ) + κ
[
∂xϕ(x̄, ȳ) − ∂xϕ(x̄, ȳ)

]+
∑

t∈T

[(
λt − κβt

)
∂xϕt (x̄, ȳ)

]
,

0 ∈ ∂yf (x̄, ȳ) + κ∂yϕ(x̄, ȳ) +
∑

t∈T

λt∂yϕt (x̄, ȳ),

0 ∈ ∂yϕ(x̄, ȳ) +
∑

t∈T

βt∂yϕt (x̄, ȳ),

λtϕt (x̄, ȳ) = βtϕt (x̄, ȳ) = 0 for all t ∈ T .

Proof. Follows directly from Theorem 7.69 by putting ỹ = ȳ ∈ M(x̄) in the neces-
sary optimality conditions obtained therein. �

It has been well recognized in convex analysis that the subdifferentiability as-
sumption ∂μ(x̄) 
= ∅ imposed in Theorem 7.69 and Corollary 7.70 is not restrictive.
In particular, it holds in the Banach space setting of (7.195) under certain primal and
dual qualification conditions; see Exercise 7.110.

7.6 Exercises for Chapter 7

Exercise 7.71 (Dual Description of Consistency for Infinite Linear Inequality Systems). Ver-
ify the equivalence in (7.7) by using convex separation. Hint: Compare it with the proof of [210,
Theorem 3.1].

Exercise 7.72 (Interiority Conditions for Infinite Linear Systems). Prove the following state-
ments for infinite inequality systems F in (7.1):

(i) If gphF 
= ∅ and the set {a∗
t | t ∈ T } is bounded, then int(gphF) 
= ∅. Hint: Proceed

similarly to the proof of implication (iii)⇒(v) in Theorem 7.2.
(ii) int(domF) 
= ∅ if gphF 
= ∅ without the boundedness assumption.

Exercise 7.73 (Extended Farkas Lemma). Verify Proposition 7.3. Hint: Compare it with the
proof in [210, Lemma 2.4].

Exercise 7.74 (Distance Function Representation of the Exact Lipschitzian Bound). Verify
formula (7.26). Hint: Employ the equivalent between the Lipschitz-like property of F and the
metric regularity one for F−1 established in Theorem 3.2(ii) with the exact bound relationship
therein, and then proceed by using Definition 3.1(b) of the exact regularity bound for F−1.

Exercise 7.75 (Existence of Best Approximations). Justify the existence of solutions to the opti-
mization problem (7.28). Hint: Use the Alaoglu-Bourbaki theorem and the continuity of the map-
ping x∗ �→ 〈x∗, x〉 in the weak∗ topology of X∗.

Exercise 7.76 (Fenchel Conjugates). Given a proper function ϕ : X → R, verify the convexity
and lower semicontinuity of the Fenchel conjugate (7.30).

Exercise 7.77 (Fenchel Conjugates for Suprema of Linear Functions). Prove the representa-
tions in (7.40). Hint: Compare it with [121] and [297].

Exercise 7.78 (Coderivative Calculation for Infinite Linear Inequality Systems). Calculate the
coderivative for the general linear inequality system given in (7.48). Hint: Proceed as in the proof
of Theorem 7.5.

Exercise 7.79 (Farkas-Minkowski Property for Infinite Linear Inequalities). Give sufficient
conditions for the validity of the Farkas-Minkowski property (7.49) for the infinite linear system
(7.48).
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Exercise 7.80 (Equivalent Descriptions of the Strong Slater Condition for the Infinite Linear
Inequality Systems). Formulate and prove a counterpart of Theorem 7.2 for the infinite linear
constraint systems defined in (7.48).

Exercise 7.81 (Farkas-Minkowski Property from Strong Slater Condition).
(i) Verify that (7.58) implies the Farkas-Minkowski property in finite dimensions provided that

the set co{−c∗
t , a

∗
t , bt )| t ∈ T } is compact, and clarify whether the latter condition is essential for

this statement.
(ii) Does it hold in infinite-dimensional spaces?
(iii) Does it hold in infinite dimensions if the set on the right-hand side of (7.58) is replaced by

its weak∗ closure?
(iv) Does the strong Slater condition (7.57) for infinite linear systems always imply the Farkas-

Minkowski property in finite-dimensional spaces?

Exercise 7.82 (Nonempty Graphical Interior for Infinite Linear Systems). Let X and P be
arbitrary Banach spaces in (7.48).

(i) Show that SSC (7.57) and the boundedness of the set {(a∗
t , c∗

t )| t ∈ T } in X∗ × P ∗ imply
that int(gphF) 
= ∅.

(ii) Is either of these conditions necessary to have int(gphF) 
= ∅?
(iii) Is either of these conditions essential to have int(gphF) 
= ∅?

Exercise 7.83 (Lower Subdifferential Optimality Conditions in the KKT Form). Formulate
and prove a lower subdifferential counterpart of Corollary 7.19.

Exercise 7.84 (Coderivatives of Block-Perturbed Infinite Linear Systems). Give a detailed
proof of Proposition 7.24.

Exercise 7.85 (Characterization of SSC for Block-Perturbed Linear Systems). Give a detailed
proof of the equivalence (iii)⇔(iv) in Proposition 7.25. Hint: Consider first the case of the maxi-
mum partition J = Jmax, and compare it with the proof in [298, Theorem 6.1].

Exercise 7.86 (Distance Function for Maximum Partition).
(i) Given a direct proof of assertion (7.91).
(ii) Prove that SSC for σ(0) is equivalent to the inner/lower semicontinuity of Fmax (cf. [211,

Theorem 5.1]), and deduce from it the property in (7.91).

Exercise 7.87 (Characteristic Set for Infinite Convex Inequalities). Obtain the characteristic
set representation for convex inequality systems in (7.98) from that in (7.81) for block-perturbed
linear systems.

Exercise 7.88 (Calculation of the Coderivative Norm for Convex Systems).
(i) Give an example when the equality holds in the setting of Theorem 7.31, while the set⋃

j∈J dom ϕ∗
j is unbounded.

(ii) Is the reflexivity of X necessary for the equalities in Theorem 7.31?
(iii) Is the reflexivity of X essential for the equalities in Theorem 7.31?

Exercise 7.89 (Coderivative Criterion for Lipschitzian Stability of Convex Systems). Formu-
late and prove a convex counterpart of Proposition 7.25.

Exercise 7.90 (Metric Regularity from Lipschitzian Stability for Infinite Convex Inequality
Systems). Derive a characterization of metric regularity for infinite convex inequality systems from
the equality formula for the exact Lipschitzian bound obtained in Theorem 7.31.

Exercise 7.91 (Optimality Conditions for SIPs with Block-Perturbed Linear Constraints).
Derive upper and lower subdifferential optimality conditions for minimizing extended-real-valued
function subject to the infinite linear block-perturbed inequality constraints (7.77) in Banach and
Asplund spaces, respectively.
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Exercise 7.92 (Necessary Optimality Conditions for SIPs with Convex Inequality Con-
straints). Derive upper and lower subdifferential optimality conditions for minimizing extended-
real-valued function subject to the infinite convex inequality constraints (7.94) in Banach and
Asplund spaces, respectively.

Exercise 7.93 (Sum Rule for ε-Subgradients of Convex Functions). Given convex functions
ϕ1, ϕ2 : X → R one of which is continuous at x̄ ∈ dom ϕ1 ∩ dom ϕ2, justify the ε-subdifferential
sum rule (7.102). Hint: Modify known proofs of the classical Moreau-Rockafellar theorem for the
case of ε > 0 in (7.102); compare it, e.g., with the proof given in [757, Theorem 2.8.7].

Exercise 7.94 (Optimality Conditions in DC Programming). Consider the DC program defined
in (7.107).

(i) Give a proof of the characterization of global minimizers in Lemma 7.33, and compare it
with the one in [348].

(ii) Is the subdifferential inclusion formulated in Lemma 7.33 necessary for the local optimality
of x̄ in (7.107)?

(iii) Verify the sufficient condition for local minimizers in Lemma 7.34. Hint: Compare it with
the proof in [235] given under the Lipschitz continuity of ϕ2 around x̄, and check that the latter
assumption is equivalent to the continuity of ϕ2 at x̄.

(vi) Is the condition of Lemma 7.34 necessary for the local optimality in (7.107)?

Exercise 7.95 (Conditions for Calculating the Exact Regularity). Verify the relationships in
(7.135), and show that the inclusion therein is generally strict.

Exercise 7.96 (Fenchel Conjugates for Suprema of Convex Functions).
(i) Given a direct proof of representation (7.154).
(ii) Verify formula (7.155) for the supremum of convex functions f (x) := supt∈T ft (x). Hint:

Deduce this, e.g., from [352, Vol. 2, Theorem 2.4.4].

Exercise 7.97 (Relationships Between CQC and FMCQ for Infinite Convex Systems). Con-
sider the DC optimization problem (7.157), its feasible set � (7.158), and the qualification condi-
tions CQC (7.48) and FMCQ (7.159).

(i) Show that FMCQ⇒CQC if ϑ in (7.157) is continuous at some x ∈ �.
(ii) Show that FMCQ⇒CQC if cone(dom ϑ − �) is a closed subspace of X.
(iii) Give examples showing that CQC and FMCQ are generally independent.

Exercise 7.98 (Slater Constraint Qualification for Infinite Convex Systems). The convex in-
equality system {ϑt (x) ≤ 0, t ∈ T ⊂ R

m, x ∈ R
n} satisfies the Slater qualification condition

(SCQ) if T is compact, the mapping (t, x) �→ ϑt (x) is continuous on T ×R
n, and there is x0 ∈ R

n

such that ϑt (x0) < 0 for all t ∈ T .
(i) Show that SCQ⇒FMCQ if the set � in (7.158) with � = R

n is bounded.
(ii) Give an example of an infinite convex inequality system with n = 2 and m = 1 for which

the converse implication in (i) is violated.

Exercise 7.99 (Conjugate Epigraphical and Subdifferential Sum Rules).
(i) Give a detailed proof of Lemma 7.49 and compare it with [131].
(ii) Construct an example showing that the subdifferential sum rule doesn’t imply the epigraph-

ical one therein.
(iii) Compare the equivalent epigraphical qualification conditions for the subdifferential sum

rule given in Lemma 7.49 with other qualification conditions for this rule well recognized in convex
and variational analysis in both finite and infinite dimensions; see [667, 757] and also the singular
subdifferential condition (2.34) from Theorem 2.19 and Exercise 2.54(i).

Exercise 7.100 (Epigraphical Farkas Lemma).
(i) Give a detailed proof of Lemma 7.50 and compare it with [212].
(ii) Under which assumptions the weak∗ closure in Lemma 7.50(ii) can be replaced by the norm

closure and when any closure operation can be omitted therein?
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Exercise 7.101 (Epigraphs of Conjugate Functions via ε-Subdifferentials). Give a proof of
representation (7.165) and compare it with [387].

Exercise 7.102 (Local Lipschitz Continuity of Convex Functions). Show that any convex func-
tion, which is continuous at some interior point of its domain, is locally Lipschitzian around this
point.

Exercise 7.103 (Estimates for ε-Subgradients of Value Functions in DC SIPs). Derive a coun-
terpart of Theorem 7.55 for ε-subgradients (1.34) of (7.173).

Exercise 7.104 (Basic Subgradients of DC Value Functions Under Extended Inner Semicon-
tinuity). Using the definition of μ-inner semicontinuity given in Exercise 4.21, perform the fol-
lowing:

(i) Prove extended versions of Theorems 7.60, 7.63, and 7.64 with replacing the inner semicon-
tinuity of the mapping M(·) therein by its μ-inner semicontinuity.

(ii) Construct examples showing the extensions obtained in this way are strictly better than the
original formulations.

Exercise 7.105 (Closed-Graph Property of Subdifferential Mappings for l.s.c. Convex Func-
tions on Banach Spaces).

(i) Let ϕ : X → R is a l.s.c. convex function on a Banach space. Prove that the graph of
x �→ ∂εϕ(x) is closed in X × X∗ for any ε ≥ 0.

(ii) Show that (x∗, y∗) ∈ ∂ψ(x̄, ȳ) in the proof of Theorem 7.63.

Exercise 7.106 (Relationships Between Subdifferential Upper Estimates for DC Value Func-
tions). Let μ(·) be the DC value function (7.173).

(i) Give an example showing that the upper estimate of ∂μ(x̄) from Theorem 7.60 may be better
than the one in Theorem 7.63.

(ii) Investigate the possibilities to obtain upper estimates for ∂μ(x̄) by passing to the limit
from that for regular subgradients in Theorem 7.55 in the case of Asplund (in particular,
finite-dimensional) spaces and from the corresponding counterpart of Theorem 7.55 for the
ε-enlargements ∂̂εμ(·) in more general Banach space settings.

(iii) Clarify the same issues as in (ii) for the singular subdifferential ∂∞μ(x̄).

Exercise 7.107 (Lipschitz-Like Property of Feasible Solution Maps for Parameterized Ver-
sions of DC SIPs).

(i) Show that the Lipschitz-like property of the feasible solution map x �→ F(x) ∩ G(x) in the
framework of Theorem 7.66 is essential for the validity of both stability and optimality conclusions
of this theorem.

(ii) Based on characterizing the Lipschitz-like property of the infinite inequality systems in
(7.172) obtained in Sections 7.1 and 7.3, impose appropriate assumptions on the constraint set �

in (7.171) ensuring the feasible solution map x → F(x) ∩ G(x) is Lipschitz-like at the reference
point.

Exercise 7.108 (Upper Subdifferential Estimate for Value Functions in Convex SIPs). Give a
detailed proof of the upper estimate of ∂μ(x̄) in Theorem 7.67.

Exercise 7.109 (Conjugate Epigraphical Representations). Verify representation (7.197), and
show that the weak∗ closure can be omitted therein if one of the functions is continuous at some
common point of the domains dom ϕi , i = 1, 2. Hint: Compare it with the corresponding results
and proofs in [116, 757].

Exercise 7.110 (Subdifferentiation of Value Functions for Convex Programs).
(i) Find appropriate qualification conditions ensuring subdifferentiability of value functions

for convex programs with finitely many constraints in both finite and infinite dimensions. Are
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Slater-type and subdifferential Mangasarian-Fromovitz constraint qualifications sufficient for this
property?

(ii) Find appropriate qualification conditions ensuring subdifferentiability of value functions for
convex SIPs in Banach spaces. Hint: Proceed first with dual constraint qualifications of the FMCQ
and CQC types and then with primal ones of the Slater type; compare this with [210].

Exercise 7.111 (Value Functions and Optimality Conditions for Fully Convex SIPs with
Upper-Level Constraints). Extend the results of Subsection 7.5.4 to bilevel SIPs with convex
constraints at the upper level.

Exercise 7.112 (Comparison Between Lipschitzian and DC Approaches to Convex Bilevel
Programs). Compare the necessary optimality conditions for fully convex bilevel programs con-
taining finitely many inequality constraints that follow from Lipschitzian problems (see Theo-
rems 6.21 and 6.23 and Exercise 6.46) with those obtained in Theorem 7.69 and Corollary 7.70
when the index set T is finite.

7.7 Commentaries to Chapter 7

Sections 7.1–7.3. Semi-infinite programs constitute a remarkable class of optimization problems
that are intrinsically infinite-dimensional even in the case of linear inequality constraints on finite-
dimensional decision variables. Their systematic study has started in the 1960s for SIPs with linear
inequality systems and compact index sets being mainly motivated by applications to approxima-
tion theory, linear optimal control, and practical optimization models; see more information in
[15, 298, 345] and their references. Then the study and applications have been extended to con-
vex and also nonconvex while differentiable inequality systems over compact index sets as, e.g.,
in [96, 137, 394, 395, 396, 418, 442, 696, 783]. Note that the index set compactness was very
essential in the obtained methods and results in these and related studies. More recently, further
developments have been done for linear and convex systems with arbitrary index sets by using
different techniques; see [139, 140, 141, 142, 210, 211, 212, 261, 299, 331, 464], among other
publications. The major issues addressed in the SIP literature concerned well-posedness and ill-
posedness properties, qualitative/topological and quantitative/Lipschitz-type stability analysis of
parameterized feasible and optimal solution sets, necessary and sufficient optimality conditions,
numerical methods, as well as various applications.

The material presented in Sections 7.1–7.3 is based on the author’s joint papers with Cáno-
vas, López, and Parra [140, 141, 142] dealing with robust Lipschitzian stability of parameterized
infinite systems of linear, block-perturbed, and convex inequalities, necessary optimality condi-
tions for minimizing nonsmooth functionals constrained by such systems, and some applications
to water resource optimization. As seen above, methods and results of variational analysis and
generalized differentiation presented in the previous chapters played a crucial role in these devel-
opments.

Section 7.4. This section is based on the author’s joint paper with Nghia [548]. Note that, while the
approach of [140] led us to complete qualitative and quantitative characterizations of the Lipschitz-
like property of solution sets to linear infinite inequalities under adequate assumptions, its exten-
sion [142] to convex infinite inequalities via linear block perturbations and Fenchel duality ended
up with a rather restrictive boundedness condition in the case of nonreflexive spaces; see Theo-
rem 7.31 and Example 7.32. The latter condition was dismissed for a larger setting of perturbed
infinite convex inequality and linear equality systems as a consequence of more general results
on metric regularity of convex-graph multifunctions between arbitrary Banach spaces. The novel
approach of [548] reduced the study of metric regularity for such mappings to the unconstrained
minimization of DC functions and brought us to precise calculation of the exact regularity bounds
of convex-graph multifunctions and infinite constraint systems via ε-coderivative and coderivative
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norms. Lemma 7.33 from global DC optimization was established by Hiriart-Urruty [348], while
its local counterpart in Lemma 7.34 was obtained by Dür [235].

Corollary 7.37, summarizing the previous developments of this section, presents a major result
of [548] allowing us to precisely calculate the exact covering bound of a general convex-graph
multifunction between Banach spaces without additional assumptions. It implies, in particular, the
regularity formula (7.149) for infinite convex constraint systems under the bounded SSC intro-
duced in [548]. Note that another proof of (7.149) is given, in a different form under a certain
uniform boundedness condition on the functions ft , in the parallel study [373] based on the previ-
ous developments in [377] on perfect regularity for convex-graph multifunctions. However, there
is a mistake in the proof of the aforementioned result in [373] due to the incorrect application on
p. 1025 therein of the classical Sion’s minimax theorem [691] whose assumptions fail to fulfill in
the setting under consideration in [373].

Section 7.5. This section is mainly based on the author’s joint paper with Dinh and Nghia [215]
and is devoted to the subdifferentiation of the optimal value functions in DC SIPs with various
applications. Note that the optimal value/marginal function for such problems is generally non-
convex, while evaluating its both basic and singular limiting subdifferentials gives us a crucial
information concerning sensitivity analysis, optimality conditions, and their applications in finite
and infinite dimensions. An important role in our analysis is played by the closedness qualifica-
tion conditions from Definition 7.48, introduced and comprehensively studied by the same team
[214] in the general LCTV space setting. In the latter paper the reader can find more discussions
on the genesis of CQC and its relationships with the Farkas-Minkowski property as well as with
other well-recognized constraint qualifications for finite and infinite convex systems of both pri-
mal and dual types; cf. also [116, 120, 121, 212, 213, 303, 479, 757] and the references therein.
Lemma 7.49, taken from Burachik and Jeyakumar [131], provides probably the weakest condi-
tions for the validity of the convex subdifferential sum rule in Banach spaces. Note that the equiv-
alence between assertions (i) and (ii) in this result follows from the well-known formula (7.197).
Lemma 7.50 established by Dinh et al. [212] is yet another extension of the classical Farkas lemma
to infinite convex constraint systems; see the recent survey [213] on more results and discussions
in this direction. Lemma 7.65 of its own interest is taken from the author’s paper with Nam [532].

The last subsection of Section 7.5 implements the value function approach described in Chap-

ter 6, together with the subdifferential results obtained above in this section, to the case of fully

convex bilevel semi-infinite programs in Banach spaces indexed by arbitrary sets. Observe that in

this way, we are able to significantly improve the results presented in Chapter 6, while specified to

the fully convex setting, even for finitely many inequality constraints in finite-dimensional spaces.

Section 7.6. This section contains various exercises with different levels of difficulties concern-

ing all the basic material presented in Chapter 7. As usual, we provide hints and references for

the most difficult exercises. Similarly to the results of Chapter 6 on bilevel programs with finitely

many constraints, relaxing the partial calmness assumption remains a challenging issue. It seems

also that the pessimistic version of bilevel SIPs is Terra incognita in bilevel optimization.
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