
Chapter 6
Nondifferentiable and Bilevel
Optimization

It is not accidental that we unify the exposition of these two areas of optimization
theory in one chapter. It has been widely recognized that problems of nondiffer-
entiable/nonsmooth optimization (i.e., those containing nondifferentiable functions
and/or sets with nonsmooth boundaries in their objectives and/or constraints) natu-
rally and frequently appear in different aspects of variational analysis and numerous
applications while being very challenging from both theoretical and algorithmic
viewpoints. On the other hand, problems of bilevel optimization are intrinsically
nonsmooth, even in the case of fully smooth data at their lower and upper levels. In
fact, they can be reduced to single-level optimization problems, but the price to pay
is the unavoidable presence of nonsmooth functions as a result of such reductions,
regardless of smoothness assumptions imposed on the given data.

The main emphasis of this chapter is obtaining efficient first-order necessary op-
timality conditions for problems of nondifferentiable programming and then apply-
ing them to bilevel programs with smooth and nonsmooth functions at both levels
of optimization. To proceed in these directions, we rely on the constructions and
results of variational analysis and generalized differentiation developed in the pre-
vious chapters of the book.

6.1 Problems of Nondifferentiable Programming

We start with deriving necessary optimality conditions for problems of nonsmooth
minimization with geometric constraints given by closed sets and then extend them
to general problems of nondifferentiable programming with functional constraints
described by finitely many inequalities and equalities.
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220 6 Nondifferentiable and Bilevel Optimization

6.1.1 Lower and Upper Subdifferential Conditions

Given ϕ : Rn → R and � ⊂ R
n, consider the problem:

minimize ϕ(x) subject to x ∈ �. (6.1)

Our goal here is to obtain necessary conditions for (feasible) local minimizers
x̄ ∈ dom ϕ ∩ � in (6.1). We derive two different types of necessary optimality
conditions. Conditions of the first type, called the lower subdifferential optimality
conditions, are expressed in terms of the basic subdifferential (1.24) under appro-
priate qualification conditions formulated in terms of the singular subdifferential
(1.25). Conditions of the second type, called the upper subdifferential optimality
conditions, make use of the upper regular subdifferential (1.76) of the cost function
ϕ that is equivalently described as

̂∂+ϕ(x̄) = −̂∂(−ϕ)(x̄), |ϕ(x̄)| < ∞. (6.2)

Note that (6.2) may be empty for broad classes of nonsmooth functions (e.g., for
convex functions nondifferentiable at x̄) while giving more selective necessary con-
ditions for minimization than the lower subdifferential ones in certain “upper regu-
lar” settings; see the results, examples, and discussions below.

As before, we always assume without loss of generality that cost functions are
l.s.c. around the reference points (although it is not needed for upper subdifferential
conditions) and constraint sets are locally closed around them.

The following theorem contains necessary optimality conditions of both types for
problem (6.1). Observe that both of them are derived from the variational/extremal
principles. Indeed, the upper subdifferential conditions are induced by the smooth
variational description of regular subgradients. To establish the lower subdifferential
optimality conditions, we employ the basic subdifferential sum rule, which follows
from the extremal principle. In fact, the extremal principle can be used directly;
see, e.g., the proof of Theorem 6.5 below for problems involving functional and
geometric constraints.

Theorem 6.1 (Optimality Conditions for Problems with a Single Geometric
Constraint). Let x̄ ∈ dom ϕ ∩ � be a local optimal solution to the minimization
problem (6.1). The following assertions hold:

(i) The entire set of upper regular subgradients satisfies the inclusions

−̂∂+ϕ(x̄) ⊂ ̂N(x̄;�), −̂∂+ϕ(x̄) ⊂ N(x̄;�). (6.3)

(ii) Under the qualification condition

∂∞ϕ(x̄) ∩ ( − N(x̄;�)
) = {0} (6.4)

, we have the lower subdifferential relationships

∂ϕ(x̄) ∩ ( − N(x̄;�)
) �= ∅, i.e., 0 ∈ ∂ϕ(x̄) + N(x̄;�). (6.5)
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Proof. To justify assertion (i), it suffices to verify only the first inclusion in (6.3)
since ̂N(x̄;�) ⊂ N(x̄;�) by Theorem 1.6. To proceed with this task, suppose
that ̂∂+ϕ(x̄) �= ∅ (there is nothing to prove otherwise), and pick any v ∈ ̂∂+ϕ(x̄).
Using (6.2) and applying the first part of Theorem 1.27 (which holds without the
l.s.c. assumption on ϕ), we find a function ψ : Rn → R with ψ(x̄) = ϕ(x̄) and
ψ(x) ≥ ϕ(x) whenever x ∈ R

n such that ψ is (Fréchet) differentiable at x̄ and
∇ψ(x̄) = v. It gives us

ψ(x̄) = ϕ(x̄) ≤ ϕ(x) ≤ ψ(x) for all x ∈ � close to x̄

showing therefore that x̄ is a local minimizer of the constrained problem:

minimize ψ(x) subject to x ∈ �,

where the cost function is differentiable at x̄. This problem can be equivalently
written in the form of unconstrained optimization:

minimize ψ(x) + δ(x;�), x ∈ R
n.

Employing in the latter setting the generalized Fermat rule from Proposition 1.30(i)
and then the regular subdifferential sum rule from Proposition 1.30(ii) with taking
into account that ∇ψ(x̄) = v, we get

0 ∈ ̂∂
(

ψ + δ(·;�)
)

(x̄) = ∇ψ(x̄) + ̂N(x̄;�) = v + ̂N(x̄;�).

This yields −v ∈ ̂N(x̄;�) for any v ∈ ̂∂+ϕ(x̄) and thus verifies (i).
To prove assertion (ii), we apply the generalized Fermat rule to the local optimal

solution x̄ of problem (6.1) written in the unconstrained form:

minimize ϕ(x) + δ(x;�), x ∈ R
n,

and then deduce from the basic subdifferential sum rule of Theorem 2.19 that

0 ∈ ∂
(

ϕ + δ(·;�)
)

(x̄) ⊂ ∂ϕ(x̄) + N(x̄;�)

provided the validity of the qualification condition (6.4) due to Proposition 1.19.
This verifies (6.5) and completes the proof of the theorem. �

Let us discuss some particular features of the lower and upper subdifferential
conditions from Theorem 6.1 and relationships between them.

Remark 6.2 (Upper vs. Lower Subdifferential Optimality Conditions).
(i) Note first that in the case where ϕ is (Fréchet) differentiable at x̄, the optimal-

ity conditions in (6.3) reduce to

−∇ϕ(x̄) ∈ ̂N(x̄;�), −∇ϕ(x̄) ∈ N(x̄;�),
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while only the second inclusion can be derived from (6.5) provided that ϕ is strictly
differentiable at x̄. On the other hand, the upper subdifferential conditions in (6.3)
are trivial when̂∂+ϕ(x̄) = ∅, which is the case of, e.g., convex continuous functions
nondifferentiable at x̄. In contrast, the lower subdifferential condition (6.5) is non-
trivial for broad collections of nonsmooth functions including, e.g., every locally
Lipschitzian function ϕ for which ∂ϕ(x̄) �= ∅ and the qualification condition (6.4)
holds due to ∂∞ϕ(x̄) = {0} by Theorem 1.22.

(ii) Note also that the triviality condition ̂∂+ϕ(x̄) = ∅ itself is an easy checkable
necessary condition for optimality in (6.1) provided that ϕ is nondifferentiable at x̄

and � = R
n. Indeed, in this case, we have the inclusion 0 ∈ ̂∂ϕ(x̄) �= ∅ by the

generalized Fermat rule and hence ̂∂+ϕ(x̄) = ∅ by the simple observation from
Exercise 1.76(ii).

(iii) Recall that ϕ is upper regular at x̄ if ̂∂+ϕ(x̄) = ∂+ϕ(x̄). Note that, besides
concave functions and differentiable ones, this class includes, e.g., a rather large
class of semiconcave functions important in various applications to optimization
and control; see, e.g., [136, 523]. If ϕ is upper regular at x̄ and locally Lipschitzian
around this point, we have ̂∂+ϕ(x̄) = −∂(−ϕ)(x̄) �= ∅ by Theorem 1.22, i.e., the
upper subdifferential conditions in (6.3) definitely give us a nontrivial information.
Furthermore, in this case, we also have ∂ϕ(x̄) = ̂∂+ϕ(x̄) for Clarke’s generalized
gradient due to its plus-minus symmetry (1.79). Taking into account that the inclu-
sions in (6.3) are valid for the entire set of upper subgradients, these observations
show that the upper subdifferential optimality conditions may have sizable advan-
tages over the lower subdifferential ones from Theorem 6.1(ii).

(iv) Let us consider in more detail problems of concave minimization, i.e., when
the cost function ϕ is concave in (6.1). This class is of significant interest for various
aspects of optimization theory and applications; in particular, from the viewpoints
of global optimization; see, e.g., [355]. When ϕ is concave and continuous around
x̄, it follows from Exercise 1.77 that

∂ϕ(x̄) ⊂ ∂+ϕ(x̄) = ̂∂+ϕ(x̄) �= ∅.

Then comparing the second inclusion in (6.3) (which is even weaker than the first in-
clusion therein) with the lower subdifferential condition in (6.5), we see that the nec-
essary condition of Theorem 6.1(i) requires that every element v of the set ̂∂+ϕ(x̄)

must belong to −N(x̄;�), instead of that some element v from the smaller set ∂ϕ(x̄)

belongs to −N(x̄;�) in Theorem 6.1(ii). Let us illustrate it by the following simple
example:

minimize ϕ(x) := −|x| subject to x ∈ � := [−1, 0] ⊂ R.

Obviously x̄ = 0 is not an optimal solution to this problem. However, it cannot be
taken away by the lower subdifferential condition (6.5) due to

∂ϕ(0) = {−1, 1}, N(0;�) = [0,∞), and − 1 ∈ −N(0;�).
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On the other hand, checking the upper subdifferential condition (6.3) gives us

̂∂+ϕ(0) = [−1, 1] and [−1, 1] �⊂ N(0;�),

which confirms that x̄ = 0 is not optimal in (6.1), and thus (6.3) is a more selective
necessary condition for optimality in the problem under consideration.

Observe further that minimization problems for differences of two convex (DC)

functions can be equivalently reduced to minimizing concave functions subject to
convex constraints. This allows us to deduce necessary conditions for such problems
from the upper subdifferential conditions of Theorem 6.1(i).

Proposition 6.3 (DC Optimization Problems). Consider the problem:

minimize ϕ1(x) − ϕ2(x), x ∈ R
n, (6.6)

where ϕ1, ϕ2 : Rn → R are convex under the convention that ∞ − ∞ := ∞.
Then x̄ is a local minimizer of (6.6) if and only if the pair (x̄, ϕ1(x̄)) gives a local
minimum to the following problem on minimizing a concave function subject to
convex geometric constraints:

minimize ψ(x, α) := α − ϕ2(x) subject to (x, α) ∈ epi ϕ1. (6.7)

Moreover, the upper subdifferential condition (6.3) for (6.7) reduces to the (lower)
subdifferential inclusion ∂ϕ2(x̄) ⊂ ∂ϕ1(x̄).

Proof. If x̄ solves (6.6) locally, i.e., there is a neighborhood U of x̄ such that

ϕ1(x̄) − ϕ2(x̄) ≤ ϕ1(x) − ϕ2(x) for all x ∈ U,

then for ᾱ := ϕ1(x̄), we obviously have

ᾱ − ϕ2(x̄) ≤ α − ϕ2(x) whenever (x, α) ∈ (U × R) ∩ epi ϕ1,

which means that (x̄, ᾱ) locally solves problem (6.7). Conversely, suppose that there
exist ε > 0 and a neighborhood U of x̄ such that

ϕ1(x̄) − ϕ2(x̄) ≤ α − ϕ2(x) for all α ≥ ϕ1(x), x ∈ U, |α − ϕ1(x̄)| < ε.

Since ϕ1 is convex and finite around x̄ by the above, it is (Lipschitz) continuous
around this point. Thus there is a neighborhood ˜U of x̄ on which

|ϕ1(x) − ϕ1(x̄)| < ε, and so ϕ1(x̄) − ϕ2(x̄) ≤ ϕ1(x) − ϕ2(x), x ∈ ˜U.

This verifies that x̄ is a local solution to (6.6).
It remains to show that the upper subdifferential optimality condition

−̂∂+ψ
(

x̄, ϕ1(x̄)
) ⊂ N

(

(x̄, ϕ1(x̄)); epi ϕ1
)

(6.8)



224 6 Nondifferentiable and Bilevel Optimization

for (6.7) reduces to the subdifferential inclusion claimed in the proposition. Indeed,
we get by the direct calculations that

−̂∂+ψ
(

x̄, ϕ1(x̄)
) = ̂∂

(

ϕ2 − α
)(

x̄, ϕ1(x̄)
) = ∂ϕ2(x̄) × {0} + {0} × {−1}

= ∂ϕ2(x̄) × {−1}.
Hence the upper subdifferential inclusion (6.8) implies that

(v,−1) ∈ N
(

(x̄, ϕ1(x̄)); epi ϕ1
)

for all v ∈ ∂ϕ2(x̄),

which is equivalent to v ∈ ∂ϕ1(x̄) for all v ∈ ∂ϕ2(x̄) and thus justifies the claimed
necessary optimality condition ∂ϕ2(x̄) ⊂ ∂ϕ1(x̄) in (6.6). �

The crucial advantage of the second upper subdifferential inclusion in (6.3) in
comparison with the first one and also a strong feature of the lower subdifferential
qualification and optimality conditions are well-developed calculus rules available
for basic normals and subgradients in contrast to their regular counterparts. In partic-
ular, calculus results obtained in Chapter 2 allow us to derive various consequences
of both assertions (i) and (ii) of Theorem 6.1 in cases where � is represented as a
product and a sum of finitely many sets, as an inverse image of another set under a
set-valued mapping, as a system of inequalities and/or equalities, etc. Qualification
conditions that ensure the validity of the obtained representations of N(x̄;�) are
transferred in this way into constraint qualifications under which the corresponding
necessary optimality conditions hold in the qualified/normal/KKT (Karush-Kuhn-
Tucker) form, i.e., with no (=1) multiplier associated with the cost function; see
below.

Next we present both upper and lower subdifferential optimality conditions ob-
tained in this scheme for problems with finitely many geometric constraints.

Proposition 6.4 (Optimality Conditions for Problems with Many Geometric
Constraints). Consider the problem:

minimize ϕ(x) subject to x ∈ �i for i = 1, . . . , s, (6.9)

and suppose that x̄ ∈ dom ϕ ∩ �1 ∩ . . . ∩ �s is a local minimizer for (6.9). Then
the following upper subdifferential and lower subdifferential necessary optimality
conditions hold at x̄:

(i) Under the validity of the constraint qualification

[

v1 + . . . + vs = 0, vi ∈ N(x̄;�i)
] ⇒ vi = 0 for all i = 1, . . . , s, (6.10)

we have the upper subdifferential inclusion

−̂∂+ϕ(x̄) ⊂ N(x̄;�1) + . . . + N(x̄;�s).

(ii) Under the validity of the qualification condition
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[

v +
s

∑

i=1

vi = 0 for v ∈ ∂∞ϕ(x̄), vi ∈ N(x̄;�i)
]

⇒ v = v1 = . . . = vs = 0

stronger than (6.10), we have the lower subdifferential inclusion

0 ∈ ∂ϕ(x̄) + N(x̄;�1) + . . . + N(x̄;�s).

Proof. Necessary optimality conditions in both assertions (i) and (ii) follow directly
from the corresponding results of Theorem 6.1 and the normal intersection rule for
finitely many sets given in Corollary 2.17. �

6.1.2 Finitely Many Inequality and Equality Constraints

Let us consider here the problem of nondifferentiable programming:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize ϕ0(x) subject to
ϕi(x) ≤ 0, i = 1, . . . , m,

ϕi(x) = 0, i = m + 1, . . . , m + r,

x ∈ � ⊂ R
n

(6.11)

with finitely many inequality and equality constraints while keeping geometric con-
straints as well. In what follows we derive various necessary optimality conditions
of both lower subdifferential and upper subdifferential types for local solutions to
program (6.11) depending on assumptions imposed on their initial data and proof
techniques. Our first theorem presents general necessary optimality conditions of
the lower subdifferential type expressed via normals and subgradients of each func-
tion and set in (6.11) separately. The proof is based on the direct application of the
extremal principle from Theorem 2.3. Recall that, unless otherwise stated, all the
functions in question are assumed to be lower semicontinuous around the reference
points.

Theorem 6.5 (Lower Subdifferential Conditions via Normals and Subgradi-
ents of Separate Constraints). Let x̄ be a feasible solution to (6.11), that is, a local
minimizer for this problem. The following necessary optimality conditions hold at
x̄:

(i) Assume that the equality constraint functions ϕi are continuous around x̄

for all i = m + 1, . . . , m + r . Then there are elements (vi, λi) ∈ R
n+1 for i =

0, . . . , m + r , not equal to zero simultaneously, and a vector v ∈ R
n such that

λi ≥ 0 for i = 0, . . . , m and

(v0,−λ0) ∈ N
(

(x̄, ϕ0(x̄)); epi ϕi

)

, v ∈ N(x̄;�), (6.12)

(vi,−λi) ∈ N
(

(x̄, 0); epi ϕi

)

, i = 1, . . . , m, (6.13)
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(vi,−λi) ∈ N
(

(x̄, 0); gph ϕi

)

, i = m + 1, . . . , m + r, (6.14)

v +
m+r
∑

i=0

vi = 0. (6.15)

If in addition the function ϕi is u.s.c. at x̄ for some i ∈ {1, . . . , m} with ϕi(x̄) < 0,
then λi = 0. If this happens for all i = 1, . . . , m, then we have the complementary
slackness conditions for the inequality constraints

λiϕi(x̄) = 0, i = 1, . . . , m. (6.16)

(ii) Assume that the functions ϕi are Lipschitz continuous around x̄ for all i =
0, . . . , m + r . Then there are multipliers (λ0, . . . , λm+r ) �= 0 such that

0 ∈
m

∑

i=0

λi∂ϕi(x̄) +
m+r
∑

i=m+1

λi

[

∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)
]

+ N(x̄;�), (6.17)

λi ≥ 0, i = 0, . . . , m + r, and λiϕi(x̄) = 0, i = 1, . . . , m. (6.18)

Proof. To justify (i), assume without loss of generality that ϕ0(x̄) = 0. Then it is
easy to check that (x̄, 0) is a locally extremal point of the following system of locally
closed sets in the product space R

n × R
m+r+1:

�i := {

(x, α0, . . . , αm+r )
∣

∣ αi ≥ ϕi(x)
}

, i = 0, . . . , m,

�i := {

(x, α0, . . . , αm+r )
∣

∣ αi = ϕi(x)
}

, i = m + 1, . . . , m + r,

�m+r+1 := � × {0}.
Applying the extremal principle of Theorem 2.3 immediately gives us the re-
lationships in (6.12)–(6.15). It follows from Proposition 1.17 that λi ≥ 0 for
i = 0, . . . , m. To finish the proof of (i), it remains to show that the complemen-
tary slackness conditions in (6.16) hold for each i ∈ {1, . . . , m} with ϕi(x̄) < 0
provided that ϕi is u.s.c. at x̄. Indeed, we get from this assumption that ϕi(x) < 0
for all x around x̄, and so (x̄, 0) is an interior point of the epigraph of ϕi . Thus
N((x̄, 0); epi ϕi) = {0} and (vi, λi) = (0, 0) for such i.

Assertion (ii) easily follows from (i) due to Theorem 1.22, which shows that the
normal cone to the epigraph of a locally Lipschitzian function ϕi is fully determined
by the (basic) subdifferential of ϕi . In the case of gph ϕi for the equality constraints,
we deal with the epigraph of either ϕi or −ϕi scaled by the corresponding nonneg-
ative multiplier λi due to Proposition 1.17. �

The necessary optimality conditions of Theorem 6.5 are given in the non-
qualified/Fritz John form, which doesn’t ensure that λ0 �= 0 for the multiplier asso-
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ciated with the cost function. However, it is not hard to deduce from them (or from
the qualification conditions in the calculus rules employed in the proofs) appropri-
ate constraint qualifications of the generalized Mangasarian-Fromovitz and other
types, which yield λ0 = 1; see, e.g., [523, Chapter 5] with the commentaries and
references therein as well as the exercises in Section 6.4.

Observe that for standard nonlinear programs (6.11) with smooth functions ϕi

and � = R
n, the necessary optimality conditions of Theorem 6.5(ii) agree with the

classical Lagrange multiplier rule. However, it is not the case for problems with
nonsmooth equality constraints. Indeed, in the latter case, the result obtained in
Theorem 6.5(ii) involves nonnegative multipliers λi associated with the the unions
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄) as i = m + 1, . . . , m + r , which are {∇ϕi(x̄),−∇ϕi(x̄)} for
smooth functions. It is not hard to deduce from (6.17) and (6.18) a more conven-
tional form of the generalized Lagrange multiplier rule with no sign condition for
the equality multipliers, but in this way we arrive at a weaker necessary optimality
condition as shown in Example 6.7 below. To proceed, recall the two-sided version
of the basic subdifferential

∂0ϕ(x̄) = ∂ϕ(x) ∪ ∂+ϕ(x̄),

which is the symmetric subdifferential (1.75) already used in the book.

Corollary 6.6 (Equality Constraints via Symmetric Subgradients). Let x̄ be a
local minimizer of (6.11) under the assumptions of Theorem 6.5(ii). Then there exists
a nonzero collection of multipliers (λ0, . . . , λm+r ) ∈ R

m+r+1 satisfying the sign
conditions λi ≥ 0 for i = 0, . . . , m, the complementary slackness condition (6.16),
and the symmetric Lagrangian inclusion

0 ∈
m

∑

i=0

λi∂ϕi(x̄) +
m+r
∑

i=m+1

λi∂
0ϕi(x̄) + N(x̄;�). (6.19)

Proof. Follows directly from Theorem 6.5(ii) due to the (proper) inclusion

|λ|[∂ϕ(x̄) ∪ ∂(−ϕ)(x̄)
] ⊂ λ

[

∂0ϕ(x̄) ∪ ( − ∂0ϕ(x̄)
)]

, λ ∈ R,

applied to the functions ϕi , i = m + 1, . . . , m + r , in (6.17). �

6.1.3 Examples and Discussions on Optimality Conditions

Now we present several examples illustrating the difference between the obtained
versions of the generalized Lagrange multiplier rule and compare them with other
major versions known in nonsmooth optimization.

Example 6.7 (Nonnegative Sign vs. Symmetric Lagrangian Inclusions). As
shown above, inclusion (6.17) with all the nonnegative multipliers always implies
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the symmetric one (6.19) with λi ∈ R as i = m+ 1, . . . , m+ r . The following two-
dimensional problem with a single equality constraint confirms that the converse
implication doesn’t hold. Consider the problem:

minimize x1 subject to ϕ1(x1, x2) := ϕ(x1, x2) + x1 = 0, (6.20)

where ϕ is taken from Example 1.31(ii). It follows from the subdifferential calcula-
tion therein that the set ∂ϕ1(0, 0) ∪ ∂(−ϕ1)(0, 0) in (6.17) is

{

(v1, v2) ∈ R
2
∣

∣ |v1 − 1| ≤ v2 ≤ 1
} ∪ {

(v1,−|v1 − 1|)∣∣0 ≤ v1 ≤ 2
}

∪{(v1, 1)
∣

∣ − 2 ≤ v1 ≤ 0
} ∪ {

(−2,−1)
}

as depicted on Fig. 6.1(a). The symmetric subdifferential of ϕ1 is

∂0ϕ1(0, 0) = ∂ϕ(0, 0) ∪ {

(v,−1)
∣

∣ − 1 ≤ v ≤ 1
} + (1, 0)

with ∂ϕ(0, 0) calculated in Example 1.31(ii); see Fig. 6.1(b). It is now easy to check
that the nonnegative sign inclusion (6.17) allows us to exclude the feasible solution
x̄ = (0, 0) from the candidates for optimality, while the symmetric one (6.19) is
satisfied at the nonoptimal point x̄.

−2 −1 2

1

−1

1

1

−1

21

(a) ∂ϕ1(0, 0) ∪ ∂(−ϕ1)(0, )b()0 ∂0ϕ1(0, 0)

Fig. 6.1 Subdifferentials of ϕ1(x1, x2) = ∣

∣|x1| + x2
∣

∣ + x1 at (0, 0).

Example 6.8 (Comparison with the Convexified/Clarke Version of the La-
grange Multiplier Rule). Clarke’s version [164, 165] of the Lagrange multiplier
rule for nondifferentiable programming (6.11) with Lipschitzian data is given
in the form of Corollary 6.6 where the nonconvex subdifferentials ∂ϕi(x̄) for
i = 0, . . . , m and ∂0ϕi(x̄) for i = m + 1, . . . , m + r , as well as the normal cone
N(x̄;�), are replaced by their convexified counterparts:

0 ∈
m+r
∑

i=0

λi∂ϕi(x̄) + N(x̄;�). (6.21)
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This version is obviously weaker than (6.6) and doesn’t allow us to exclude the
nonoptimal solution x̄ in problem (6.20) of the preceding Example 6.7. Moreover,
Clarke’s version (6.21) fails to recognize nonoptimal solutions even in much less
sophisticated examples from unconstrained nonsmooth optimization and also for
problems with only inequality constraints. One of the reasons for this is that, due
to the plus-minus symmetry of ∂ϕ, condition (6.21) does not distinguish between
minima and maxima and also between inequality constraints of the “≤” and “≥”
types. It makes an easy task to construct examples for which (6.21) is satisfied at
clearly nonoptimal points.

(i) First consider the simplest unconstrained minimization problem:

minimize ϕ(x) := −|x| over all x ∈ R,

where x̄ = 0 is a point of maximum, not minimum. Nevertheless, we have 0 ∈
∂ϕ(0) = [−1, 1] while 0 /∈ ∂ϕ(0) = {−1, 1}.

(ii) The second example in this direction concerns the following two-dimensional
problem with a single nonsmooth inequality constraint:

minimize x1 subject to ϕ(x1, x2) := |x1| − |x2| ≤ 0.

We have here ∂ϕ(0, 0) = {(v1, v2)| − 1 ≤ v1 ≤ 1, v2 = 1, or v2 = −1} by
Example 1.31(i), and hence the point x̄ = (0, 0) is ruled out from optimality by
Corollary 6.6, while the usage of the generalized gradient ∂ϕ(0, 0) = {(v1, v2)| −
1 ≤ v1 ≤ 1,−1 ≤ v2 ≤ 1} doesn’t allow us to do it by (6.21).

Example 6.9 (Comparison with Warga’s Version of the Lagrange Multiplier
Rule). Another extension of the Lagrange multiplier rule to problems of nondif-
ferentiable programming (6.11) with � = R

n and Lipschitzian functions ϕi was
obtained by Warga [736, 737] in terms of his derivate containers 
0ϕi(x̄) in the
form of Corollary 6.6 with the Lagrangian inclusion

0 ∈
m+r
∑

i=0

λi

0∂ϕi(x̄). (6.22)

Note that the set 
0ϕ(x̄) is generally nonconvex, possesses the classical plus-minus
symmetry, and may be strictly smaller than Clarke’s generalized gradient ∂ϕ(x̄).
As shown in [522, Corollary 2.48], we always have ∂0ϕ(x̄) ⊂ 
0ϕ(x̄). Hence the
necessary optimality conditions of Theorem 6.5(ii) and Corollary 6.6 definitely yield
the result of (6.22). Let us illustrate that the improvement is strict in both cases of
equality and inequality constraints.

(i) For the case of only equality constraints in (6.11), the claimed strict inclusion
follows from Example 6.7 with the constraint function ϕ1 defined in (6.20). Indeed,
condition (6.22) is satisfied at the nonoptimal point x̄ = (0, 0), while (6.19) con-
firms its nonoptimality. Recall that the derivative container 
0ϕ(x̄) for the function
ϕ in this example is depicted on Fig. 1.13.
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(ii) To demonstrate the advantage of (6.17) for nondifferentiable programs with
inequality constraints, consider the problem

minimize x2 subject to ϕ1(x1, x2) := ϕ(x1, x2) + x2 ≤ 0,

where ϕ is taken from Example 1.31(ii) and its subdifferential ∂ϕ(0, 0) is calculated
therein. Hence we have

∂ϕ1(0, 0) = {

(v1, v2)
∣

∣ |v1| + 1 ≤ v2 ≤ 2
} ∪ {

(v1, v2)
∣

∣ 0 ≤ v2 = −|v1| + 1
}

as depicted on Fig. 6.2. This shows that the result of Theorem 6.5(ii) (same in Corol-
lary 6.6) allows us to rule out the nonoptimal point x̄ = (0, 0), while it cannot be
done by using Warga’s condition (6.22).

Next we derive yet another type of lower subdifferential optimality conditions
for problem (6.11) with Lipschitzian data that are expressed in the condensed form
via the basic subdifferential (1.24) of Lagrangian combinations of the initial data.
Consider the standard Lagrangian

L(x, λ0, . . . , λm+r ) := λ0ϕ0(x) + . . . + λm+rϕm+r (x)

involving the cost function and all the functional (while not geometric) constraints
and also the extended Lagrangian

L�(x; λ0, . . . , λm+r ) := λ0ϕ0(x) + . . . + λm+rϕm+r (x) + δ(x;�)

involving also the set geometric constraint via its indicator function.

−1 1

2

1 ∂ϕ1(0, 0)

Fig. 6.2 Basic subdifferential of ϕ1(x1, x2) = ∣

∣|x1| + x2
∣

∣ + x2 at (0, 0).

Theorem 6.10 (Condensed Lower Subdifferential Optimality Conditions). Let
x̄ be a local minimizer of problem (6.11) under the assumptions of Theorem 6.5(ii).
Then there are multipliers λ0, . . . , λm+r , not equal to zero simultaneously, satisfying
(6.16) and the condensed Lagrangian inclusions

0 ∈ ∂xL�(x̄, λ0, . . . , λm+r ) ⊂ ∂xL(x̄, λ0, . . . , λm+r ) + N(x̄;�). (6.23)
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Proof. Note that the second inclusion in (6.23) follows from the first one due to the
subdifferential sum rule from Corollary 2.20. To justify the first inclusion therein,
consider the set

E(ϕ0, . . . , ϕm+r , �) :=
{

(x, α0, . . . , αm+r ) ∈ R
n+m+r+1

∣

∣

∣ x ∈ �,ϕi(x) ≤ αi,

i = 0, . . . , m; ϕi(x) = αi, i = m + 1, . . . , m + r
}

and suppose without loss of generality that ϕ0(x̄) = 0. Denoting now by U a
neighborhood of the local minimizer x̄ in (6.11), we claim that the pair (x̄, 0) ∈
R

n × R
m+r+1 is an extremal point of the closed set system

�1 := E(ϕ0, . . . , ϕm+r , �) and �2 := cl U × {0}. (6.24)

Indeed, we obviously have (x̄, 0) ∈ �1 ∩�2 and (�1 − (0, νk, 0, . . . , 0))∩�2 = ∅,
k ∈ N, for any sequence of negative numbers νk ↑ 0 by the local optimality of x̄ in
(6.11). Applying to this system the basic extremal principle from Theorem 2.3 gives
us multipliers (λ0, . . . , λm+r ) �= 0 satisfying the inclusion

(0,−λ0, . . . ,−λm+r ) ∈ N
(

(x̄, 0); E(ϕ0, . . . , ϕm+r , �)
)

, (6.25)

which implies the conditions in (6.16) due to the structure of the set �1 in (6.24).
Furthermore, it follows from the scalarization formula of Theorem 1.32 and its proof
that (6.25) can be equivalently rewritten as the first inclusion in (6.23) under the
assumed local Lipschitz continuity of ϕi . �

If the geometric constraint set � is convex, the second inclusion in (6.23) can be
written in the form of the abstract maximum principle.

Corollary 6.11 (Abstract Maximum Principle in Nondifferentiable Program-
ming). Suppose that the set � is convex in the assumptions of Theorem 6.10. Then
there are multipliers (λ0, . . . , λm+r ) �= 0 such that

〈v, x̄〉 = max
x∈�

〈v, x〉 for some v ∈ −∂xL(x̄, λ0, . . . , λmr ).

Proof. It follows from Theorem 6.10 by the representation of the normal cone to
convex sets given in Proposition 1.7. �

We conclude this section by deriving upper subdifferential necessary optimal-
ity conditions for (6.11) that are independent of the obtained lower subdifferential
conditions; see more discussions in Remark 6.2.

Theorem 6.12 (Upper Subdifferential Optimality Conditions in Nondifferen-
tiable Programming). Let x̄ be a local minimizer of problem (6.11). Assume
that the functions ϕi are locally Lipschitzian around x̄ for the equality indices
i = m + 1, . . . , m + r . Then for any vi ∈ ̂∂+ϕi(x̄), i = 0, . . . , m, there are multi-
pliers (λ0, . . . , λm+r ) �= 0 satisfying (6.16) and the inclusion
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−
m

∑

i=0

λivi ∈ ∂
(

m+r
∑

i=m+1

λiϕi

)

(x̄) + N(x̄;�). (6.26)

Proof. Suppose without loss of generality that ̂∂+ϕi(x̄) �= ∅ for i = 0, . . . , m.
Applying the second part of Theorem 1.27 to −vi ∈ ̂∂(−ϕi)(x̄) (we can always
assume that the functions −ϕi are bounded from below, which is actually not needed
for the localized version of Theorem 1.27 used in what follows) allows us to find
functions ψi : Rn → R for i = 0, . . . , m satisfying

ψi(x̄) = ϕi(x̄) and ψi(x) ≥ ϕi(x) around x̄

and such that each ψi(x) is continuously differentiable around x̄ with the gradient
∇ψi(x̄) = vi . It is easy to check that x̄ is a local solution to the following optimiza-
tion problem of type (6.11) but with the cost and inequality constraint functions
continuously differentiable around x̄:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize ψ0(x) subject to
ψi(x) ≤ 0, i = 1, . . . , m,

ϕi(x) = 0, i = m + 1, . . . , m + r,

x ∈ � ⊂ R
n.

(6.27)

To arrive finally at (6.26), it remains to apply to the solution x̄ of (6.27) the second
Lagrangian inclusion in (6.23) of Theorem 6.10 and then to use therein the elemen-
tary subdifferential sum rule from Proposition 1.30(ii). �

Employing further in (6.26) the subdifferential sum rule for Lipschitzian func-
tions from Corollary 2.20 and weakening in this way the necessary optimality con-
ditions for the case of equality constraints, we can express them in forms (6.17) and
(6.19) via the corresponding subdifferential constructions for the separate functions
ϕi , i = m + 1, . . . , m + r .

6.2 Problems of Bilevel Programming

In this section we begin considering a remarkable class of problems in hierarchical
optimization known as bilevel programming and also as Stackelberg games. Such
problems are highly interesting and challenging in optimization theory and impor-
tant for numerous applications. There is an enormous bibliography on bilevel pro-
gramming and related topics; see commentaries and references in Section 6.5 for
more discussions on major approaches and results.

Our primary goal here is to reduce bilevel programs to those in nondifferentiable
programming considered above and derive in this way several types of necessary
optimality conditions in terms of the initial bilevel data by using the results of Sec-
tion 6.1 together with subdifferentiation of marginal functions and other machinery
of variational analysis.
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6.2.1 Optimistic and Pessimistic Versions

Bilevel programming deals with problems of hierarchical optimization that address
minimizing a given upper-level/leader’s objective function f (x, y) from R

n × R
m

to R subject to the upper-level constraints x ∈ � ⊂ R
n along an optimal solution

y = y(x) to the parametric lower-level/follower’s problem

minimizey ϕ(x, y) subject to y ∈ G(x) (6.28)

with the objective/cost ϕ : Rn × R
m → R and the constraint set-valued mapping

G : Rn →→ R
m. For simplicity we confine ourselves to the case where the lower-

level constraints are given by the parameterized inequality systems

G(x) := {

y ∈ R
m
∣

∣ g(x, y) ≤ 0
}

, (6.29)

where g = (g1, . . . , gp) : Rn × R
m → R

p and the vector inequality for g are un-
derstood componentwise. As follows from the proofs below, appropriately modified
similar results can be derived for other types of constraints in (6.28).

Note that the bilevel optimization problem formulated above is not fully deter-
mined when the solution/argminimum map

S(x) := argmin
{

ϕ(x, y)
∣

∣ y ∈ G(x)
}

, x ∈ R
n, (6.30)

for the lower-level problem is set-valued, since in this case we did not specify how to
choose a single-valued decision function y(x). To deal with such a typical situation,
the two major versions, known as optimistic and pessimistic models, have been
designated in bilevel programming. We always suppose that the argminimum sets
S(x) are nonempty around the reference point.

The optimistic version in bilevel programming is formulated as follows:

minimize fopt (x) subject to x ∈ �,

where fopt (x) := inf
{

f (x, y)
∣

∣ y ∈ S(x)
}

,
(6.31)

which means that the decision y(x) is chosen in S(x) to benefit the objective fopt .
As usual, a point x̄ ∈ � is called a global (local) optimistic solution to (6.31) if
fopt (x̄) ≤ fopt (x) for all x ∈ � (sufficiently close to x̄). From the economics
viewpoint , this corresponds to a situation where the follower participates in the
profit of the leader, i.e., there exists some cooperation between both players on the
upper and lower levels.

However, it would not always be possible for the leader to convince the follower
to make choices that are favorable for him or her. Hence it is necessary for the upper-
level player to reduce damages resulting from undesirable selections on the lower
level. This brings us to the pessimistic version in bilevel programming formulated
in the following way:
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minimize fpes(x) subject to x ∈ �,

where fpes(x) := sup
{

f (x, y)
∣

∣ y ∈ S(x)
}

.
(6.32)

We can see that (6.32) is a special type of minimax problems, which challenges
come from the complicated structure of the moving set S(x) as the solution set to
the lower-level optimization problem.

Our main attention in this chapter is paid to the optimistic version, although we’ll
present some comments on the pessimistic version as well. Further, we’ll discuss in
the exercise and commentary sections of this chapter a multiobjective approach to
problems of bilevel programming that can be applied to both optimistic and pes-
simistic versions by reducing them to constrained multiobjective optimization prob-
lems studied in Chapter 9.

6.2.2 Value Function Approach

There are several approaches to optimistic bilevel programs known in the literature;
see Section 6.5 for more discussions and references. We concentrate here on the
so-called value function approach, which involves the optimal value function of the
lower-level problem (6.28) defined by

μ(x) := inf
{

ϕ(x, y)
∣

∣ y ∈ G(x)
}

, x ∈ R
n, (6.33)

and provides a reformulation of the bilevel problem (6.31) in the form

minimize f (x, y) subject to x ∈ �,

g(x, y) ≤ 0, and ϕ(x, y) ≤ μ(x).
(6.34)

It is easy to see that problem (6.34) is globally equivalent to the original optimistic
bilevel program (6.31). The next proposition reveals relationships between local
solutions to these problems. To give its exact formulation and proof, we introduce
the two-level value function

η(x) := inf
{

f (x, y)
∣

∣ g(x, y) ≤ 0, ϕ(x, y) ≤ μ(x)
}

, x ∈ R
n, (6.35)

and then define the corresponding modification of the solution map (6.30) by

˜S(x) := argmin
{

ϕ(x, y)
∣

∣ g(x, y) ≤ 0, f (x, y) ≤ η(x)
}

. (6.36)

We obviously have ˜S(x) ⊂ S(x) for all x ∈ R
n.

Proposition 6.13 (Local Optimal Solutions to Optimistic Bilevel Programs). Let
˜S(x) be defined in (6.36). The following assertions hold:

(i) If x̄ is a local optimal solution to (6.31), then for any ȳ ∈ ˜S(x̄), the pair (x̄, ȳ)

is a local optimal solution to problem (6.34).
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(ii) Conversely, let (x̄, ȳ) be a local optimal solution to (6.34) for some ȳ ∈ ˜S(x̄),
and let the mapping ˜S be inner semicontinuous at (x̄, ȳ). Then x̄ is a local optimal
solution to the original optimistic bilevel problem (6.31).

Proof. We verify (i) arguing by contradiction. Suppose that (x̄, ȳ) with some ȳ ∈
˜S(x̄) is not a local optimal solution to (6.34). Then we find a sequence of (xk, yk)

with xk → x̄, yk → ȳ so that xk ∈ �, g(xk, yk) ≤ 0, ϕ(xk, yk) ≤ μ(xk), and
f (xk, yk) < f (x̄, ȳ) = η(x̄) for all k ∈ N. It follows from the construction of
η(·) in (6.35) that η(xk) ≤ f (xk, yk). This shows that fopt (xk) < fopt (x̄), which
contradicts the local optimality of x̄ in (6.31).

To justify (ii), suppose that x̄ is not a local optimal solution to (6.31) while the
assumptions in (ii) are satisfied. Then we find a sequence xk → x̄ with xk ∈ � such
that fopt (xk) < fopt (x̄) for all k. Since ˜S is inner semicontinuous at (x̄, ȳ), there is a
sequence of yk ∈ ˜S(xk) with yk → ȳ. This implies by (6.36) that ϕ(xk, yk) = μ(xk),
g(xk, yk) ≤ 0, and f (xk, yk) < f (x̄, ȳ), which contradicts the local optimality of
(x̄, ȳ) in (6.34). �

The obtained results (see also Exercise 6.36) allow us to adequately replace the
original optimistic bilevel problem (6.31) by the problem of constrained optimiza-
tion (6.34) of the type considered in Section 6.1 and derive necessary optimality
conditions for (6.31) from those for (6.34). Observe to this end that problem (6.34)
is written in form (6.11) of nonlinear programming without equality constraints,
where the inequality constraint

ϕ(x, y) − μ(x) ≤ 0 (6.37)

unavoidably involves the nondifferentiable function μ(x) of the marginal type (4.1)
the generalized differential properties of which were studied in Section 4.1. Note
however that the designated constraint (6.37) contains the term −μ(x), different
from μ(x) in generalized differentiation, and that the constraint mapping G in (6.33)
is given in the particular form (6.29).

It turns out that, even in the case where the upper-level constraint set � reduces to
the whole space Rn or it is described by smooth inequalities, the usual Mangasarian-
Fromovitz and other standard constraint qualifications as well as their natural exten-
sions are violated; see more in Section 6.5.

6.2.3 Partial Calmness and Weak Sharp Minima

To overcome these difficulties, we present a qualification condition of another type
that allows us to incorporate the troublesome constraint (6.37) into a penalized cost
function and deal with it by using appropriate calculus rules of generalized differ-
entiation. Consider a perturbed version of (6.34) with the linear parameterization of
constraint (6.37) defined as follows:

minimize f (x, y) subject to x ∈ �, g(x, y) ≤ 0,

and ϕ(x, y) − μ(x) + ϑ = 0, ϑ ∈ R.
(6.38)
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Definition 6.14 (Partial Calmness). The unperturbed problem (6.34) is PAR-
TIALLY CALM at its feasible solution (x̄, ȳ) if there exist a constant κ > 0 and a
neighborhood U of the triple (x̄, ȳ, 0) ∈ R

n × R
m × R such that

f (x, y) − f (x̄, ȳ) + κ|ϑ | ≥ 0 (6.39)

for all (x, y, ϑ) ∈ U feasible to (6.38).

The next result reveals the role of partial calmness in bilevel programming.

Proposition 6.15 (Penalization via Partial Calmness). Let (x̄, ȳ) be a partially
calm feasible solution to problem (6.34), and let f be continuous at this point. Then
(x̄, ȳ) is a local optimal solution to the penalized problem

minimize f (x, y) + κ
(

ϕ(x, y) − μ(x)
)

subject to x ∈ � and g(x, y) ≤ 0,
(6.40)

where the constant κ is taken from (6.39). Conversely, any local optimal solution
(x̄, ȳ) to (6.40) with some number κ > 0 is partially calm in (6.34).

Proof. By the assumed partial calmness, we get κ and U for which (6.39) holds. It
follows from the continuity of f at (x̄, ȳ) that there are numbers γ > 0 and η > 0
such that V := [(x̄, ȳ) + ηB] × (−γ, γ ) ⊂ U and that

|f (x, y) − f (x̄, ȳ)| ≤ κγ whenever (x, y) − (x̄, ȳ) ∈ ηB.

This allows us to establish the relationship

f (x, y) − f (x̄, ȳ) + κ
(

ϕ(x, y) − μ(x)
) ≥ 0 (6.41)

whenever (x, y) ∈ [(x̄, ȳ) + ηB] ∩ gph G with G defined in (6.29) and x ∈ �.
Indeed, for (x, y, μ(x) − ϕ(x, y)) ∈ V , we deduce (6.41) directly from (6.39). If
otherwise (x, y, μ(x) − ϕ(x, y)) /∈ V , it follows that

ϕ(x, y) − μ(x) ≥ γ and so κ
(

ϕ(x, y) − μ(x)
) ≥ κγ.

This also implies (6.41) due to f (x, y)− f (x̄, ȳ) ≥ −κγ . To complete the proof of
the first assertion of the proposition, observe that ϕ(x̄, ȳ) − μ(x̄) = 0 since (x̄, ȳ)

is a feasible solution to (6.34). The converse statement follows directly from the
definitions while arguing by contradiction. �

It is easy to see that a verifiable sufficient condition for the desired partial calm-
ness is provided by the following notion of local weak sharp minima, which has
been well recognized in qualitative and numerical aspects of optimization.

Definition 6.16 (Local Weak Sharp Minima). Given Q ⊂ R
s , we say that P ⊂ Q

is a set of (LOCAL) WEAK SHARP MINIMA for a function φ : Rs → R over Q at
z̄ ∈ P with modulus α > 0 if

φ(z) ≥ φ(z̄) + α dist(z;P) for all z ∈ Q near z̄. (6.42)
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The next proposition presents the precise formulation and provides a simple
proof of the result needed in what follows with some uniformity in (6.42).

Proposition 6.17 (Partial Calmness from Uniform Weak Sharp Minima). Let
(x̄, ȳ) be a local optimal solution to the bilevel program (6.34) such that we have
the UNIFORM WEAK SHARP MINIMUM condition:

ϕ(x, y) − μ(x) ≥ α dist
(

y; S(x)
)

with some α > 0 (6.43)

for all (x, y) near (x̄, ȳ) with x ∈ � and y ∈ G(x). Assume that f is locally
Lipschitzian around (x̄, ȳ). Then problem (6.34) is partially calm at (x̄, ȳ).

Proof. Picking any triple (x, y, ϑ) feasible to problem (6.38) and sufficiently close
to (x̄, ȳ, 0), we have x ∈ �, y ∈ G(x), and ϕ(x, y) − μ(x) + ϑ = 0, where |ϑ | is
small enough. Using assumption (6.43) gives us some v ∈ S(x) with

ϕ(x, y) − μ(x) ≥ α

2
‖y − v‖ ≥ 0.

Since (x̄, ȳ) is a local optimal solution to (6.34), we get

f (x, y) − f (x̄, ȳ) ≥ f (x, y) − f (x, v) ≥ −�‖y − v‖
≥ −2�

α

(

ϕ(x, y) − μ(x)
)

= −κ|ϑ |

with κ := 2�/α, where � > 0 is a Lipschitz constant of f around (x̄, ȳ). This
justifies the partial calmness condition (6.39). �

Note that assumption (6.43) corresponds to the local weak sharp minimum con-
dition of Definition 6.16 at z̄ = (x̄, ȳ) with respect to y for any fixed feasible vector
x with the following data:

z := (x, y), φ(z) := ϕ(x, y), P := S(x), and Q := G(x). (6.44)

Observe also that the uniform weak sharpness in (6.43) requires that the constant
α > 0 therein can be selected uniformly in x. Proceeding in this way and deriv-
ing, in particular, sufficient conditions for (6.42) that being applied to (6.43) are
independent of x, would allow us to decrease serious difficulties in dealing with
nonsmooth marginal function (6.33) in the value function approach to optimistic
bilevel programs.

Let us now present an easily verifiable condition of this type for weak sharp min-
imizers in nonlinear programming, which is of its own interest while being useful
bilevel optimization; see below more discussions in this vein.

Proposition 6.18 (Sufficient Conditions for Weak Sharp Minima). Let z̄ be a
local optimal solution to the nonlinear program:

minimize φ(z) subject to ψi(z) ≤ 0 for i = 1, . . . , p, (6.45)
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where the functions φ,ψi : Rs → R as i ∈ I (z̄) := {i| ψi(z̄) = 0} are Fréchet
differentiable at z̄. Suppose that necessary optimality conditions for z̄ hold in the
qualified Karush-Kuhn-Tucker form

∇φ(z̄) +
∑

i∈I (z̄)

λi∇ψi(z̄) = 0 for some λi ≥ 0

and that the following kernel condition

⋂

i∈J

ker ∇ψi(z̄) = {0} with J := {

i
∣

∣ λi > 0
}

(6.46)

is satisfied. Then there exists a positive constant α such that

φ(z) − φ(z̄) ≥ α‖z − z̄‖ if ψi(z) ≤ 0 for i = 1, . . . , p (6.47)

whenever z is sufficiently close to z̄. Consequently, φ admits a set of local weak
sharp minima over Q := {z ∈ R

s | ψi(z) ≤ 0, i = 1, . . . , p
}

at z̄.

Proof. To justify (6.47) with some α > 0, suppose on the contrary that there exists
a sequence {zk} ⊂ Q with zk �= z̄ and zk → z̄ such that

φ(zk) − φ(z̄) ≤ 1

k
‖zk − z̄‖ for all k ∈ N. (6.48)

Let dk := zk−z̄
‖zk−z̄‖ and without loss of generality assume that dk → d as k → ∞

with ‖d‖ = 1. It follows from (6.48) by the (Fréchet) differentiability of φ at z̄

that 〈∇φ(z̄), d〉 ≤ 0. On the other hand, the assumed differentiability of the active
constraint functions at z̄ ensures that

〈∇ψi(z̄), d〉 ≤ 0 for all i ∈ I (z̄).

Using the last two inequalities and the imposed KKT condition tells us that

0 ≤ −〈∇φ(z̄), d〉 =
∑

i∈J

λi〈∇ψi(z̄), d〉 ≤ 0,

which yields 〈∇ψi(z̄), d〉 = 0 for all i ∈ J . Thus we have d = 0 by the kernel
condition (6.46), a contradiction that completes the proof. �

Observe that the kernel condition (6.46) is essential for Proposition 6.18 to hold.
Indeed, consider problem (6.45) with φ,ψ : R2 → R defined by

φ(z1, z2) := z2
1 − z2 and ψ(z1, z2) := z2.

Then Q = R × R− and z̄ := (0, 0) is the only solution to this problem. Since

ker ∇ψ(z̄) = R × {0},
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the kernel condition (6.46) is violated. It is easy to see that for any vector z =
(γ, 0) ∈ Q with γ �= 0, we have the equalities

φ(z) − φ(z̄) = γ 2 and ‖z − z̄‖ = γ,

which immediately imply that the conclusion in (6.47) doesn’t hold, since the num-
ber γ > 0 can be chosen arbitrarily small.

Besides the presented conditions for weak sharp minima and their uniform coun-
terparts, there are other sufficient conditions for these properties with various ap-
plications to partial calmness in bilevel programming and related topics; see more
details in Sections 6.4 and 6.5. In particular, partial calmness is always satisfied for
bilevel programs where lower-level problems are linear with respect to their lower-
level decision variables; see Exercise 6.37(i).

The following examples illustrate some possibilities of verifying partial calmness
in bilevel program via the results established above.

Example 6.19 (Verification of Partial Calmness via Penalization). Let us show
that the penalty function characterization of partial calmness in Proposition 6.15
is a convenient tool to verify the validity or failure of partial calmness in bilevel
programming. Consider first the fully nonlinear, at both lower and upper levels,
bilevel program (6.34) with (x, y) ∈ R

2, � = R, and

f (x, y) := (x − 1)2

2
+ y2

2
, S(x) = argmin

{x2

2
+ y2

2

}

.

It is easy to see that S(x) = {0} for all x ∈ R and that μ(x) = x2/2 for the
lower-level value function in (6.33). Furthermore, the pair (x̄, ȳ) = (1, 0) is the
only solution to the upper-level problem, and so it is an optimal solution to the
bilevel program under consideration. We have ϕ(x, y) − μ(x) = y2/2, and hence
the corresponding unconstrained penalized problem (6.40) is

minimize
(x − 1)2

2
+ y2

2
+ κ

y2

2

with no constraints on (x, y). Observe that for any κ > 0, the latter problem is
smooth and strictly convex and has the unique optimal solution (x̄, ȳ) = (1, 0).
Thus the initial bilevel program is partially calm at this point.

On the other hand, replacing the upper-level cost function f (x, y) by

(x − 1)2

2
+ (y − 1)2

2

and keeping the same lower-level problem gives us the bilevel program (6.34) with
the optimal solution (x̄, ȳ) = (1, 1), which fails to satisfy the partial calmness con-
dition. Indeed, it is easy to see that the corresponding penalized problem (6.40) has
the only optimal solution
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(

1,
1

1 + κ

)

�= (1, 1) whenever κ > 0.

Example 6.20 (Verification of Partial Calmness via Uniform Weak Sharp Min-
ima). Consider the constrained optimization problem in R

3:

minimize
x2

1

2
+ x2

2

2
subject to ai ≤ xi ≤ bi, i = 1, 2, 3. (6.49)

It is not hard to check that optimal solutions to this problem constitute the set of
weak sharp minima if either ai > 0 or bi < 0 for i = 1, 2; see Exercise 6.38(ii).
Thus Proposition 6.17 tells us that any bilevel program having (6.49) as its lower-
level problem with the above parameters ai, bi is partially calm at each of its local
optimal solutions.

Note that Example 6.19 shows that partial calmness in bilevel programs may
significantly depend on the structure of upper-level objectives. On the contrary, Ex-
ample 6.20 describes a class of multidimensional bilevel programs where partial
calmness holds independently of the upper level.

6.3 Bilevel Programs with Smooth and Lipschitzian Data

In this section we develop the value function approach to bilevel programming dis-
cussed above to obtain necessary optimality conditions in optimistic bilevel pro-
grams first with smooth and then with Lipschitzian initial data. For simplicity, con-
sider here the bilevel program (6.31) in the value/marginal function form (6.34) with
the upper-level constraint set � given by the inequalities

� := {

x ∈ R
n
∣

∣ h(x) ≤ 0
}

with h(x) = (

h1(x), . . . , hq(x)
)

, (6.50)

which are described by the real-valued functions hj . Our major results are derived
under the inner semicontinuity of the argminimum map S in (6.30) at the reference
local optimal solution (x̄, ȳ) by passing to problem (6.34) via Proposition 6.13.
Imposing further the partial calmness of (6.34) at the given local solution (x̄, ȳ)

and using Proposition 6.15, we reduce (6.34) to the single-level programming form
(6.40), which is essentially used in our proofs.

Observe that problem (6.40) with constraints (6.50) is written as

minimize f (x, y) + κ
(

ϕ(x, y) − μ(x)
)

subject to g(x, y) ≤ 0 and h(x) ≤ 0
(6.51)

for some κ > 0. Hence it can be treated as a particular case of the mathematical
program (6.11) with inequality constraints. The most essential specific features of
(6.51) are intrinsic nonsmoothness of the marginal function μ(x) from (6.33), re-
gardless of smoothness of the initial data, and the presence of function (6.33) in the
objective of (6.51) with the negative sign. Nevertheless, the above subdifferential re-
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sults for marginal functions and explicit representations of normals to sets described
by inequality constraints allow us to efficiently proceed in deriving necessary opti-
mality conditions for (6.34).

6.3.1 Optimality Conditions for Smooth Bilevel Programs

Given a feasible solution (x̄, ȳ) to the original optimistic bilevel program (6.34)
with the constraint set � defined in (6.50), denote by

I (x̄, ȳ) := {

i ∈ {1, . . . , p}∣∣ gi(x̄, ȳ) = 0
}

, J (x̄) := {

j ∈ {1, . . . , q}∣∣ hj (x̄) = 0
}

the collections of the corresponding active constraint indices. Considering first prob-
lem (6.34) with smooth initial data and following the traditional terminology in
bilevel programming, we say that (x̄, ȳ) is lower-level regular if for any nonnega-
tive numbers λi the implication

[
∑

i∈I (x̄,ȳ)

λi∇ygi(x̄, ȳ) = 0
]

⇒
[

λi = 0 whenever i ∈ I (x̄, ȳ)
]

(6.52)

holds. Similarly, x̄ is upper-level regular if
[

λj ≥ 0,
∑

j∈J (x̄)

λj∇hj (x̄) = 0
]

⇒
[

λj = 0 whenever j ∈ J (x̄)
]

. (6.53)

Now we are ready to present our first result on necessary optimality conditions
for the original optimistic version of bilevel programming (6.31) with the upper-
level constraint set � given in (6.50).

Theorem 6.21 (Optimality Conditions for Smooth Bilevel Programs, I). Let
(x̄, ȳ) be a local optimal solution to the bilevel program (6.31) with � from (6.50).
Assume that all the functions therein are smooth around (x̄, ȳ) and x̄, respectively,
and that the bilevel program is partially calm at (x̄, ȳ). Suppose further that (x̄, ȳ)

is lower-level regular, that x̄ is upper-level regular, and that the solution map S in
(6.30) is inner semicontinuous at (x̄, ȳ). Then there are numbers κ > 0, λ1, . . . , λp,
β1, . . . , βp, and α1, . . . , αq such that

∇xf (x̄, ȳ) +
p

∑

i=1

(βi − κλi)∇xgi(x̄, ȳ) +
q

∑

j=1

αj∇hj (x̄) = 0, (6.54)

∇yf (x̄, ȳ) + κ∇yϕ(x̄, ȳ) +
p

∑

i=1

βi∇ygi(x̄, ȳ) = 0, (6.55)
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∇yϕ(x̄, ȳ) +
p

∑

i=1

λi∇ygi(x̄, ȳ) = 0 (6.56)

with the following sign and complementary slackness conditions:

λi ≥ 0, λigi(x̄, ȳ) = 0 for all i = 1, . . . , p, (6.57)

βi ≥ 0, βigi(x̄, ȳ) = 0 for all i = 1, . . . , p, (6.58)

αj ≥ 0, αjhj (x̄) = 0 for all j = 1, . . . , q. (6.59)

Proof. Proposition 6.13(i) tells us that (x̄, ȳ) is a local optimal solution to (6.34),
even without the lower semicontinuity of S at (x̄, ȳ). Furthermore, the imposed par-
tial calmness ensures that (x̄, ȳ) is a local minimizer of the penalized problem (6.51)
with some fixed κ > 0. As mentioned above, the latter problem is a particular case
of the nondifferentiable program (6.11) with only the inequality constraints therein.
To apply to it the results of Theorem 6.5(ii), we need to check first that the marginal
function μ(x) from (6.33), where G(x) defined in (6.29) is locally Lipschitzian
around x̄ under the assumed lower-level regularity of (x̄, ȳ) in the bilevel program
under consideration.

Indeed, it is easy to see that the function μ(x) is l.s.c. around x̄. Since ȳ ∈ S(x̄),
the mapping M in (4.2) obviously reduces in this case to S that is assumed to be
inner semicontinuous at (x̄, ȳ), we deduce from formula (4.5) of Theorem 4.1(i) the
following inclusion:

∂∞μ(x̄) ⊂ D∗G(x̄, ȳ)(0) with G(x) = {

y ∈ R
m
∣

∣ g(x, y) ≤ 0
}

. (6.60)

The result of Exercise 2.51(ii) on representing the normal cone to the set

gph G = {

(x, y) ∈ R
n × R

m
∣

∣ gi(x, y) ≤ 0, i = 1, . . . , p
}

at (x̄, ȳ) tells us that D∗G(x̄, ȳ)(0) = {0} under the imposed lower-level regular-
ity. Thus we have ∂∞μ(x̄) = {0} from (6.60), which ensures that μ(·) is locally
Lipschitzian around x̄ due to Theorem 1.22; see also Exercise 4.25(iv).

Applying now the necessary optimality conditions of Theorem 6.5(ii) to problem
(6.51) at (x̄, ȳ) and then using the subdifferential sum rule from Proposition 1.30(ii)
give us multipliers λ ≥ 0, β1, . . . , βp, and α1, . . . , αq , not all zero, satisfying the
sign and complementary slackness conditions in (6.58) and (6.59) and the general-
ized Lagrangian inclusion

0 ∈ λ∇f (x̄, ȳ) + κλ∇ϕ(x̄, ȳ) + (

κλ∂(−μ)(x̄), 0
)

+
p

∑

i=1

βi∇gi(x̄, ȳ) +
q

∑

j=1

αj

(∇hj (x̄), 0
)

.
(6.61)
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It follows from the assumed lower-level regularity of (x̄, ȳ) and upper-level regu-
larity of x̄, combined with the sign and complementarity slackness conditions, that
λ �= 0 and hence λ = 1 without loss of generality. Since

∂(−μ)(x̄) ⊂ ∂(−μ)(x̄) = −∂μ(x̄) = −co ∂μ(x̄)

by (1.83) and (1.79) due to the Lipschitz continuity of μ(x), we can incorporate
into (6.61) with λ = 1 the basic subdifferential estimate (4.4) for the marginal
function with the smooth constraints (6.29) under the imposed inner semicontinuity
assumption on S at (x̄, ȳ). This gives us multipliers λ1, . . . , λp satisfying (6.56) and
(6.57) such that the conditions in (6.55) and

∇xf (x̄, ȳ) + κ∇xϕ(x̄, ȳ) − κ
[

∇xϕ(x̄, ȳ) +
p

∑

i=1

λi∇xgi(x̄, ȳ)
]

+
p

∑

i=1

βi∇xgi(x̄, ȳ) +
q

∑

j=1

αj∇hj (x̄) = 0

hold. Collecting the like terms in the latter equation, we arrive at the remaining
equality (6.54) and thus complete the proof of the theorem. �

Now we develop a different device of necessary optimality conditions for bilevel
programs, which brings us to results significantly different from Theorem 6.21 in
both assumptions and conclusions. To proceed, let us first present a lemma of its
own interest that is crucial in the device below. It concerns calculus of regular sub-
gradients, which is pretty limited in general (e.g., no sum rule, etc.) while happens
to contain a nice difference rule particularly important in applications to bilevel pro-
grams via the value function approach. Note that the proof of the following lemma
is based on the smooth variational description of regular subgradients taken from
Theorem 1.27. Observe also that the necessary optimality condition in this lemma
has been already deduced in Proposition 6.3 from the upper subdifferential one.

Lemma 6.22 (Difference Rule for Regular Subgradients). Let both functions
ϕ1, ϕ2 : Rn → R be finite at x̄, and let ̂∂ϕ2(x̄) �= ∅. Then we have

̂∂(ϕ1 − ϕ2)(x̄) ⊂
⋂

v∈̂∂ϕ2(x̄)

[

̂∂ϕ1(x̄) − v
]

⊂ ̂∂ϕ1(x̄) −̂∂ϕ2(x̄). (6.62)

This implies that any local minimizer x̄ of the difference function ϕ1 − ϕ2 satisfies
the necessary optimality condition

̂∂ϕ2(x̄) ⊂ ̂∂ϕ1(x̄). (6.63)

Proof. To verify the first inclusion in (6.62), fix any u ∈ ̂∂(ϕ1 − ϕ2)(x̄) and v ∈
̂∂ϕ2(x̄). Employing the first assertion of Theorem 1.27, find a real-valued function
s(·) defined on a neighborhood U of x̄ such that it is (Fréchet) differentiable at x̄

satisfying the relationships
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s(x̄) = ϕ2(x̄), ∇s(x̄) = v, and s(x) ≤ ϕ2(x) for all x ∈ U.

This yields due to definition (1.33) of the regular subgradient u ∈ ̂∂(ϕ1 − ϕ2)(x̄)

that for any ε > 0 there exists γ > 0 such that

〈u, x − x̄〉 ≤ ϕ1(x) − ϕ2(x) − (

ϕ1(x̄) − ϕ2(x̄)
) + ε‖x − x̄‖

≤ ϕ1(x) − s(x) − (

ϕ1(x̄) − s(x̄)
) + ε‖x − x̄‖

whenever ‖x − x̄‖ ≤ γ . The latter ensures by Proposition 1.30(ii) that

u ∈ ̂∂(ϕ1 − s)(x̄) = ̂∂ϕ1(x̄) − ∇s(x̄) = ̂∂ϕ1(x̄) − v,

which justifies the first inclusion in (6.62) and obviously yields the second one.
To verify (6.63), observe that it is trivial if ̂∂ϕ2(x̄) = ∅. Otherwise, pick v ∈

̂∂ϕ2(x̄) and deduce from (6.62) by the generalized Fermat rule that

0 ∈ ̂∂(ϕ1 − ϕ2)(x̄) ⊂ ̂∂ϕ1(x̄) − v,

which shows that v ∈ ̂∂ϕ1(x̄) and thus justifies the set inclusion (6.63). �
For simplicity we consider in the next theorem the optimistic bilevel problem

(6.31) without upper-level constraints.

Theorem 6.23 (Optimality Conditions for Smooth Bilevel Programs, II). Let
(x̄, ȳ) be a local optimal solution to problem (6.31) with � = R

n and with the func-
tions f, g1, . . . , gp, ϕ continuously differentiable around (x̄, ȳ). Assume that this
problem is partially calm at the point (x̄, ȳ), which is lower-level regular for (6.34),
and also that ̂∂μ(x̄) �= ∅ for lower-level value function (6.33). Then there exist
multipliers νi and βi as i = 1, . . . , p such that βi satisfy the sign and complemen-
tarity slackness conditions in (6.58), that νi satisfy the complementarity slackness
conditions

νigi(x̄, ȳ) = 0 for all i = 1, . . . , p,

and that the following equalities hold:

∇f (x̄, ȳ) +
p

∑

i=1

νi∇gi(x̄, ȳ) = 0,

∇yϕ(x̄, ȳ) +
p

∑

i=1

βi∇ygi(x̄, ȳ) = 0.

Proof. By Proposition 6.13(i) we get that (x̄, ȳ) is a local optimal solution to the
nondifferentiable program (6.34). It follows from Proposition 6.15 and the infinite
constraint penalization via the indicator function δ(·; gph G) that (x̄, ȳ) a local op-
timal solution to the unconstrained problem:

minimize f (x, y) + κ
(

ϕ(x, y) − μ(x)
) + δ

(

(x, y); gph G
)

, (6.64)
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where the constant κ > 0 is taken from the definition of partial calmness. Applying
now the necessary optimality condition (6.63) from Lemma 6.22 to the difference
function in (6.64), we get

(

κ̂∂μ(x̄), 0
) ⊂ ̂∂

(

f (·) + κϕ(·) + δ(·; gph G)
)

(x̄, ȳ). (6.65)

It is not hard to observe (cf. the proof of Theorem 4.1) that

(

̂∂μ(x̄), 0
) ⊂ ̂∂

(

ϕ(·) + δ(·; gph G)
)

(x̄, ȳ). (6.66)

Passing to the larger limiting subdifferential on the right-hand sides of (6.65) and
(6.66) and employing the elementary subdifferential sum rule, we have

(

κ̂∂μ(x̄), 0
) ⊂ ∇f (x̄, ȳ) + κ∇ϕ(x̄, ȳ) + N

(

(x̄, ȳ); gph G
)

,
(

̂∂μ(x̄), 0
) ⊂ ∇ϕ(x̄, ȳ) + N

(

(x̄, ȳ); gph G
)

.

Then the description of basic normals from Exercise 2.51 for sets given by inequal-
ity constraints under the imposed lower-level regularity ensures the existence of
multipliers λi and βi satisfying the sign and complementarity slackness conditions
in (6.57) and (6.58) as well as a vector v ∈ ̂∂μ(x̄) with

(v, 0) = ∇ϕ(x̄, ȳ) +
p

∑

i=1

λi∇gi(x̄, ȳ) and

κ(v, 0) = ∇f (x̄, ȳ) + κ∇ϕ(x̄, ȳ) +
p

∑

i=1

βi∇gi(x̄, ȳ).

Dividing the latter inclusion by κ > 0 and denoting ν := κ−1 while keeping the
same notation for the modified multipliers βi and collecting the like terms, we arrive
at the equalities claimed in the theorem. �

The following example, consisting of two parts, illustrates the possibility to solve
bilevel programs by using necessary optimality conditions obtained in Theorem 6.21
and Theorem 6.23, respectively.

Example 6.24 (Solving Bilevel Programs via Optimality Conditions).
(i) Applying the conditions of Theorem 6.21. Consider the bilevel program:

minimize f (x, y) := −y subject to y ∈ S(x),

where S : R →→ R is the solution map of the nonlinear lower-level problem:

minimize ϕ(x, y) := −y2 + x4 − 3x2 + 1 subject to
y ∈ G(x) := {

y ∈ R
∣

∣ y + x2 − 1 ≤ 0, −y + x2 − 1 ≤ 0
}

.

It is easy to check that the bilevel program in this example admits an optimal solu-
tion with x belonging to the interval [−1, 1]. Furthermore, we have
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S(x) = { − x2 + 1, x2 − 1
}

and μ(x) = −x2 for x ∈ [−1, 1].
This shows that S is inner semicontinuous at any point (x, y) ∈ gph S and the
lower-regularity assumption (6.52) is satisfied everywhere but (−1, 0) and (1, 0);
the upper regularity is automatic due to the absence of inequality constraints on the
upper level. Applying Theorem 6.21, we calculate

∇f (x, y) = (0,−1), ∇ϕ(x, y) = (4x3 − 6x,−2y),

∇g1(x, y) = (2x, 1), ∇g2(x, y) = (2x,−1)

and hence obtain the following relationships:

0 = (β1 − κλ1)2x + (β2 − κλ2)2x, 0 = −1 + κ(−2y) + β1(1) + β2(−1),

0 = −2y + λ1(1) + λ2(−1), 0 = λ1(y + x2 − 1) = λ2(−y + x2 − 1),

0 = β1(y + x2 − 1) = β2(−y + x2 − 1)

with κ > 0 and all the nonnegative multipliers. Solving the above system gives
us the points (x, y) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)} suspicious for optimality.
Comparing the value of the upper-level objective at these points, we arrive at the
pair (x̄, ȳ) = (0, 1) and check finally that the given bilevel program is partially
calm at (0, 1). Thus this pair is the unique optimal solution to the bilevel program
under consideration by Theorem 6.21.

(ii) Applying the conditions of Theorem 6.23. Consider the program:

minimize f (x, y) := −y subject to y ∈ S(x),

where S : R →→ R is the solution map for the lower-level problem:

minimize ϕ(x, y) := −y2 subject to
y ∈ G(x) := {

y ∈ R
∣

∣ − x + y4 − 1 ≤ 0, x + y4 − 1 ≤ 0
}

.

It is easy to see that this bilevel program admits an optimal solution. Then we calcu-
late the lower-level solution map by S(x) = {±√

1 − |x|} and the marginal function
by μ(x) = −√

1 − |x| for which ̂∂μ(x) �= ∅ on R. Applying the necessary opti-
mality conditions of Theorem 6.23 gives us the relationships

−ν1 + ν2 = 0, −1 + 4y3ν1 + 4y3ν2 = 0,

−2y + 4y3β1 + 4y3β2 = 0, ν1(−x + y4 − 1) = ν2(x + y4 − 1) = 0,

β1(−x + y4 − 1) = β1(x + y4 − 1) = 0, β1 ≥ 0, β2 ≥ 0.

Solving this system of equations, we obtain the points (x, y) = (0,±1). Comparing
the upper-level objective selects the point (0, 1). Since the bilevel program under
consideration is partially calm at (0, 1), we conclude that (0, 1) is the unique optimal
solution to this problem.
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6.3.2 Optimality Conditions for Lipschitzian Problems

Analyzing the proofs of Theorem 6.21 and Theorem 6.23, it is not difficult to ob-
serve that these proofs and the results used therein lead us to necessary optimal-
ity conditions for bilevel programs with Lipschitzian data. In the following Lip-
schitzian versions of necessary optimality conditions, we replace the gradients of
the Lipschitzian functions involved by their basic subgradients and reformulate the
upper-level regularity condition (6.53) as satisfied for all the subgradients of hj at
x̄ and the lower-level regularity condition (6.52) as satisfied for all (ui, vi) with
(ui, vi) ∈ ∂gi(x̄, ȳ). In this way we have:

Theorem 6.25 (Optimality Conditions for Lipschitzian Bilevel Programs, I).
Let (x̄, ȳ) be a local optimal solution to the bilevel program (6.31) with � from
(6.50). Suppose that all the functions therein are locally Lipschitzian around
(x̄, ȳ) and x̄, respectively, under the validity of the other assumptions of Theo-
rem 6.21. Then there exist a number ν > 0, multipliers λ1, . . . , λp, β1, . . . , βp,
and α1, . . . , αq as well as a vector u ∈ R

n such that conditions (6.57)–(6.59) are
satisfied together with

(u, 0) ∈ co ∂ϕ(x̄, ȳ) +
p

∑

i=1

λico ∂gi(x̄, ȳ) and

(u, 0) ∈ ∂ϕ(x̄, ȳ) + ν∂f (x̄, ȳ) +
p

∑

i=1

βi∂gi(x̄, ȳ) +
q

∑

j=1

αj

(

∂hj (x̄), 0
)

.

Theorem 6.26 (Optimality Conditions for Lipschitzian Bilevel Programs, II).
Let (x̄, ȳ) be a local optimal solution to problem (6.31) with � = R

n. Suppose that
all the functions therein are locally Lipschitzian around (x̄, ȳ) under the validity of
the other assumptions of Theorem 6.23. Then there exist a number ν > 0, nonneg-
ative multipliers λi and βi satisfying the complementary slackness condition (6.57)
and (6.58) as i = 1, . . . , p, and a vector u ∈ R

n such that we have the inclusions

(u, 0) ∈ ∂ϕ(x̄, ȳ) +
p

∑

i=1

λi∂gi(x̄, ȳ) and

(u, 0) ∈ ∂ϕ(x̄, ȳ) + ν∂f (x̄, ȳ) +
p

∑

i=1

βi∂gi(x̄, ȳ).

The proofs of these results as well as their several extensions are assigned in the
exercises of Section 3.4.

Remark 6.27 (Inner Semicompactness vs. Inner Semicontinuity of Solution
Maps). Observe that the necessary optimality conditions of Theorems 6.23 and 6.26
hold, in contrast to those in Theorems 6.21 and 6.25, without the inner semicontinu-
ity assumption on the solution map S (6.30). While the latter assumption is satisfied
in rather broad settings (e.g., when S is Lipschitz-like around (x̄, ȳ) and also when



248 6 Nondifferentiable and Bilevel Optimization

S(x̄) is a singleton but S(x) may not be for x close to x̄), it definitely doesn’t hold
in generality.

A significantly less restrictive assumption in the frameworks of Theorems 6.21
and 6.25 is provided by the inner semicompactness property of S at the domain point
x̄ defined in Exercise 2.46. In finite dimensions this property is rather close to the
local boundedness of S around x̄. The results obtained under the lower semicom-
pactness of S are different from their inner semicontinuity counterparts in that they
require considering all the vectors ȳ from the set S(x̄). The proofs go in the same
direction with replacing the results on the subdifferentiation of marginal functions
from Theorem 4.1(i) by their “union” versions from assertion (ii) therein.

Some consequences and specifications of the necessary optimality conditions for
bilevel programs with fully and partially convex (smooth and nonsmooth) struc-
tures can be derived from Theorems 6.25 and 6.26. However, significantly stronger
results for problems of these type will be obtained as consequences of those given in
Subsection 7.5.4. Hence we omit here formulating the corresponding consequences
of Theorems 6.25 and 6.26 while leaving this as exercises for the reader; see more
hints in Exercise 6.46.

6.4 Exercises for Chapter 6

Exercise 6.28 (Optimization Problems with Geometric Constraints).
(i) Derive necessary optimality conditions of Theorem 6.1(ii) and Proposition 6.4(ii) directly

from the extremal principle.
(ii) Extend the necessary optimality conditions of Theorem 6.1 and Proposition 6.4 to appro-

priate Banach spaces. Which assumption should be added to (6.4) to ensure the validity of The-
orem 6.1(ii) in infinite dimensions? Hint: Compare this with [523, Propositions 5.2 and 5.3 and
Theorem 5.5].

(iii) Construct an example of the optimization problem (6.1) with a Lipschitz continuous ob-
jective function ϕ defined on a Banach space X such that condition (6.5) doesn’t hold at a local
minimizer x̄ of this problem.

Exercise 6.29 (Problems of DC Programming).
(i) Extend the results of Proposition 6.3 to problems with convex geometric constraints of the

type x ∈ �.
(ii) Show that the convexity of the function ϕ1 in Proposition 6.3 can be replaced by the more

general property of quasiconvexity in the sense that

ϕ
(

λx1 + (1 − λ)x2
) ≤ max

{

ϕ(x1), ϕ(x2)
}

for all x1, x2 ∈ R
n, λ ∈ [0, 1].

(iii) Do all the results of Proposition 6.3 and the parts (i) and (ii) of this exercise hold in arbitrary
Banach spaces?

Exercise 6.30 (Necessary Conditions in Nondifferentiable Programming).
(i) Extend necessary optimality conditions of Theorem 6.5 for problems of nondifferentiable

programming of type (6.11) with finitely many geometric constraints.
(ii) Derive appropriate versions of Theorem 6.5 in Asplund spaces. Hint: Proceed as in the

proof of Theorem 6.5 with applying the corresponding results in infinite dimensions taken from
Exercises 2.31 and 1.69; compare with [523, Theorem 5.5].
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Exercise 6.31 (Extended Lagrangian Conditions for Lipschitzian Nondifferentiable Pro-
grams in Asplund Spaces). Consider the nondifferentiable program (6.11) described by locally
Lipschitzian functions on an Asplund space. Show that the necessary optimality conditions of The-
orem 6.10 hold true in this case.

Hint: Proceed by using the exact extremal principle from Exercise 2.31 and the subdifferential
sum from Exercise 2.54 in Asplund spaces; cf. [523, Theorem 5.24].

Exercise 6.32 (Constraint Qualifications in Nondifferentiable Programming).
(i) Based on Theorem 6.5(ii) and the normal cone representations from Exercises 2.51 and 2.52

in the case of locally Lipschitzian functions, derive constraint qualifications ensuring that λ0 = 1
in the optimality conditions of Theorem 6.5.

(ii) Which constraint qualifications correspond to those obtained in (i) in the case of smooth
constraint functions ϕi and � = R

n?
(iii) Derive extensions of the results in (i) to problems in Asplund spaces.

Exercise 6.33 (Necessary Optimality Conditions for Problems with Inclusion/Operator Con-
straints). Given ϕ : Rn → R, f : Rn → R

m, � ⊂ R
n, and � ⊂ R

m, consider the optimization
problem:

minimize ϕ(x) subject to f (x) ∈ �, x ∈ �, (6.67)

where f is strictly differentiable at the reference local minimizer x̄ ∈ f −1(�)∩� and its Jacobian
matrix ∇f (x̄) has full row rank.

(i) Prove that the upper subdifferential optimality condition

−̂∂+ϕ(x̄) ⊂ ∇f (x̄)∗N
(

f (x̄); �
) + N(x̄; �)

holds under the validity of the constraint qualification

∇f (x̄)∗N
(

f (x̄); �) ∩ ( − N(x̄; �)
) = {0}.

(ii) Derive lower subdifferential optimality conditions for x̄ in both qualified/KKT and non-
qualified/Fritz John forms.

(iii) Extend the results of (i) and (ii) to appropriate infinite-dimensional spaces and specify the
results for the operator constraints f (x) = 0 ∈ Y with dim Y = ∞.

Hint: Employ the corresponding calculus rules in the framework of Proposition 6.4 with �1 :=
f −1(�), �2 := �; compare it with [523, Theorems 5.7,5.8,5.11].

Exercise 6.34 (Optimization Problems with Inverse Image Constraints via the Extremal
Principle). Given ϕ : Rn → R, F : Rn →→ R

m, � ⊂ R
n, and � ⊂ R

m, consider the optimization
problem:

minimize ϕ(x) subject to F−1(�) ∩ �. (6.68)

(i) Let x̄ be a local minimizer for problem (6.68). Show that the point (x̄, ϕ(x̄)) is locally
extremal for the system of three sets in R

n × R:

�1 := epi ϕ, �2 := F−1(�), �3 := � × R.

(ii) Derive necessary optimality conditions for problem (6.68) by applying the extremal princi-
ple to the set system in (i).

(iii) Extend the result of (ii) to problem (6.68) in Asplund spaces.

Exercise 6.35 (Suboptimality Conditions in Nonlinear and Nondifferentiable Program-
ming). Consider problem (6.11), fix ε > 0, and recall that xε is an ε-optimal (suboptimal) solution
to this problem if it is feasible to (6.11) and satisfies the inequality ϕ0(xε) ≤ inf ϕ0(x) + ε, where
the infimum of ϕ0 is taken over all the feasible solutions to problem (6.11).
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(i) Assume that � = R
n and that the functions ϕ0, . . . , ϕm+r are strictly differentiable on the set

of ε-optimal solutions to (6.11) while ϕ1, . . . , ϕm+r satisfy the Mangasarian-Fromovitz constraint
qualifications (see Exercise 2.53) on this set. Then for any ε-optimal solution xε to (6.11) and any
γ > 0, there exist an ε-optimal solution x̄ to this problem and multipliers λ1, . . . , λm+r such that

‖x̄ − xε‖ ≤ γ, λi ≥ 0, λiϕi(x̄) = 0 for i = 1, . . . , m,
∥

∥

∥∇ϕ0(x̄) +
m+r
∑

i=1

λi∇ϕi(x̄)

∥

∥

∥ ≤ ε

γ
.

(ii) Assume that ϕi , i = 0, . . . , m+ r , are locally Lipschitzian on the set of ε-optimal solutions
to (6.11) and that � is closed therein. Then for any ε-optimal solution xε to (6.11) and any γ > 0,
there exist an ε-optimal solution x̄ to this problem and multipliers λ0, . . . , λm+r such that ‖x̄ −
xε‖ ≤ γ ,

∥

∥

∥

∑

i∈I (x̄)∪{0}
λix

∗
i + x∗

∥

∥

∥ ≤ ε

γ
,

∑

i∈I (x̄)∪{0}
λi = 1

with some λi ≥ 0 for i ∈ I (x̄) ∪ {0}, x∗ ∈ N(x̄; �), x∗
0 ∈ ∂ϕ0(x̄),

x∗
i ∈ ∂ϕi(x̄) for i ∈ {

1, . . . , m
} ∩ I (x̄), and

x∗
i ∈ ∂ϕi(x̄) ∪ ∂(−ϕi)(x̄) for i = m + 1, . . . , m + r.

(iii) Extend the results in (i) and (ii) to problems (6.11) in Asplund spaces.
Hint: Employ the subdifferential variational principle from Exercise 2.39 and then the subdif-

ferential sum rule from Corollary 2.20; cf. [523, Theorem 5.30].

Exercise 6.36 (Single-Level Reduction of Optimistic Bilevel Programs)
(i) Show that standard constraint qualifications (of the Mangasarian-Fromovitz type, etc.) fail

for the nondifferentiable program (6.34). Hint: Compare it with the results and proofs in [194, 745,
748].

(ii) Show that the inner semicontinuity assumption on the mapping ˜S from (6.36) at (x̄, ȳ) is
essential for the validity of Proposition 6.13(ii).

(iii) Prove that assertion (i) of Proposition 6.13 holds for some ȳ ∈ S(x̄) if the latter set from
(6.30) is assumed to be bounded and the upper-level cost function f (x̄, ·) is assumed to be l.s.c.
on S(x̄). Give examples showing that both of these assumptions are essential for the validity of the
result in question. Does it follow from the presented version of Proposition 6.13(i)?

Exercise 6.37 (Partial Calmness and Uniform Weak Sharp Minima in Bilevel Program-
ming). Consider the class of optimistic bilevel programs in form (6.34).

(i) Let � = R
n, and let gi in (6.34) be linear with respect y with dom G = R

n. Prove that
any local optimal solution (x̄, ȳ) to (6.34) is partially calm provided that f is locally Lipschitzian
around this point; compare with the results in [201, 748].

(ii) Construct an example of a bilevel program partially calm at its local optimal solution with-
out the validity of the uniform weak sharp minimum condition (6.43).

(iii) Construct an example of a bilevel program where the partial calmness condition fails at a
local optimal solution.

Exercise 6.38 (Sufficient Conditions for Uniform Weak Sharp Minima).
(i) Under which assumptions on problem (6.34) the pointwise local weak sharp minima as in

(6.42) with data (6.44) yields the uniform one as in (6.43)?
(ii) Show that the set of optimal solutions to problem (6.49) consists of weak sharp minimizers

if either ai > 0 or bi < 0 for i = 1, 2. Hint: Compare it with [133].
(iii) Derive sufficient conditions for uniform sharp minima in the case of quadratic lower-level

problems. Hint: Compare it with [748, 749].
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Exercise 6.39 (Kernel Condition for Weak Sharp Minima)
(i) Is the kernel condition (6.46) equivalent to a full rank property of a matrix?
(ii) Apply the kernel condition (6.46) in the parametric version of (6.45) with data (6.44) to

ensure the uniform weak sharp minima in bilevel programming.
(iii) Extend the result of Proposition 6.18 to Lipschitzian nonlinear programs, and apply it to

bilevel programs with nonsmooth data.

Exercise 6.40 (Inf-Differentiability and Dual Characterizations of Weak Sharp Minimizers).
Considering a function ϕ : Rn → R and a set � ⊂ R

n, we say as in [785] that ϕ is inf-differentiable
at x̄ ∈ dom ϕ relative to � if

lim inf
x

�→x̄, u→x̄

ϕ(u) − ϕ(x) − dϕ(x; u − x)

‖u − x‖ = 0, (6.69)

where the contingent directional derivative dϕ is taken from (1.42). In particular, if (6.69) holds
with � = R

n and with � = {x̄}, then ϕ is called to be inf-differentiable at x̄ and single inf-
differentiable at x̄, respectively.

(i) Verify that if ϕ is locally Lipschitzian around x̄, then it is single inf-differentiable at this
point. Could the later property hold for non-Lipschitzian functions?

(ii) Show that every convex function is inf-differentiable on any closed and bounded subset of
the interior of its domain.

(iii) Let ϕ be locally Lipschitzian around x̄, subdifferentially regular on the set Lϕ(x̄) := {x ∈
R

n| ϕ(x) = ϕ(x̄)} and inf-differentiable at x̄ relative to Lϕ(x̄). Prove that the existence of η, r > 0
such that the inclusion

N
(

x; Lϕ(x̄)
) ∩ ηB ⊂ ∂ϕ(x)

holds for any x ∈ Lϕ(x̄)∩Br(x̄) is necessary and sufficient for the following specification of local
weak sharp minima in Definition 6.16:

η dist
(

x; Lϕ(x̄)
) ≤ ϕ(x) − ϕ(x̄) whenever x ∈ Br(x̄).

Hint: Compare (i)–(iii) with the corresponding statements and proofs in [785].
(iv) Clarify possible counterparts of (iii) for the study of uniform weak sharp minima in para-

metric optimization and bilevel programs.

Exercise 6.41 (Regular Subgradients of Value Functions in Lower-Level Problems). Let μ(x)

be the optimal value function of the lower-level problem in (6.34).
(i) Give a detailed proof of inclusion (6.65) in general Banach spaces.
(ii) Show that the equalities don’t hold in (6.64) and (6.65) for problems with smooth data in

finite dimensions.

Exercise 6.42 (Comparing Necessary Optimality Conditions for Bilevel Programs with
Smooth Data). Construct examples in which all the assumptions of both Theorem 6.21 and The-
orem 6.23 are satisfied while the necessary optimality conditions obtained in these theorems are
independent.

Exercise 6.43 (Necessary Optimality Conditions in Lipschitzian Bilevel Programming). Con-
sider local optimal solutions to the optimistic model (6.31).

(i) Give a detailed proof of Theorem 6.25. Hint: Compare it with [195, 540].
(ii) Give a detailed proof of Theorem 6.26. Hint: Compare it with [540].
(iii) Extend these theorems to bilevel programs with Lipschitzian (and smooth) data in the

presence of equality constraints.
(iv) Derive versions of these results for bilevel problems in Asplund spaces. Hint: Apply the

calculus rules used in the proofs of Theorems 6.21 and 6.23, their equality constraint versions
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presented in Chapters 2 and 4, and their infinite-dimensional extensions discussed therein in the
commentaries and exercises.

(v) Investigate the possibility to improve the necessary optimality conditions in Theorems 6.21
and 6.25 by using the symmetric subdifferential ∂0μ(x̄) of the value function (6.33) instead of the
convexified one in their proofs.

Exercise 6.44 (Extended Inner Semicontinuity in Bilevel Programming). Obtain finite-
dimensional and Asplund space extensions of Theorems 6.21 and 6.25 with replacing the inner
semicontinuity of the solution map S(x) by its μ-inner semicontinuity defined in Exercise 4.21.
Hint: Proceed similarly the proofs of these theorems and compare it with [540].

Exercise 6.45 (Bilevel Programs with Inner Semicompact Solution Maps for Lower-level
Problems). Considering the solution map S(x) of the lower-level problem in (6.34), verify the
following assertions:

(i) S(x) may not be inner semicontinuous at (x̄, ȳ) as in Theorems 6.21 and 6.25.
(ii) Show that the necessary optimality conditions of Theorems 6.21 and 6.25 may fail without

the inner semicontinuity requirement imposed on S(x) at (x̄, ȳ) under the validity of the other
assumptions therein.

(iii) Derive the corresponding version of Theorems 6.21 and 6.25 with replacing the inner semi-
continuity of S(x) by its inner semicompactness as well as the more general μ-semicompactness
property. Hint: Proceed as discussed in Remark 6.27 in the case of finite-dimensional and Asplund
spaces.

Exercise 6.46 (Convex Bilevel Programs). Consider the bilevel program (6.31) and its partially
calm local optimal solution. Suppose that the lower-level cost and constraint functions are convex
jointly with respect to all their variables.

(i) Prove the convexity of the optimal value function (6.33).
(ii) Assuming that the upper-level cost and constraint functions are also fully convex, derive a

specification of Theorem 6.21 by using the decomposition property

∂ψ(x̄, ȳ) ⊂ ∂xψ(x̄, ȳ) × ∂yψ(x̄, ȳ)

valued for full and partial subdifferentials of convex continuous functions ψ and the symmetric
property ∂(−ϕ)(x̄) ⊂ −∂ϕ(x̄). Hint: Compare this with [195].

(iii) Assuming that all the functions involved in (6.31) are continuously differentiable in addi-
tion to full convexity at the lower level, derive a further specification of Theorem 6.21 by using the
equality formula

∂μ(x̄) =
⋃

(λ1,...,λp)∈
(x̄,ȳ)

{

∇xϕ(x̄, ȳ) +
p

∑

i=1

∇xgi(x̄, ȳ)
}

(6.70)

for the subdifferential of the optimal value function, where


(x̄, ȳ) :=
{

(λ1, . . . , λp) ∈ R
p
∣

∣

∣ ∇yϕ(x̄, ȳ) +
p

∑

i=1

λi∇ygi(x̄, ȳ) = 0,

λi ≥ 0, λigi(x̄, ȳ) = 0, i = 1, . . . , p
}

.

Hint: Deduce (6.70) from the equality representation

∂μ(x̄) =
⋃

(u,v)∈∂ϕ(x̄,ȳ)

{

u + D∗G(x̄, ȳ)(v)
}

for the subdifferential of the marginal function (6.33) with a convex function ϕ and a convex-graph
mapping G given in [537, Theorem 2.61] and the normal cone representations from Exercises 2.51
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and 2.52 with the equalities therein for convex functions due to the equality statement of Theo-
rem 2.26. Compare this with another approach to justify (6.70) with convex differentiable data
originated in [703].

(iv) Derive the corresponding consequences of Theorem 6.23 for convex bilevel programs with
continuous data cost functions and inequality constraints.

Exercise 6.47 (Hölder Subgradients in Bilevel Programming). Given a Banach space X, we
say as in [108] that x∗ ∈ X∗ is a Hölder subgradient of order s ≥ 0 for ϕ : X → R at x̄ ∈ dom ϕ

if there are constants C ≥ 0 and r > 0 such that

〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) + C‖x − x̄‖1+s for all x ∈ x̄ + rB. (6.71)

The collection of all x∗ satisfying (6.71) is called the s-Hölder subdifferential of ϕ at x̄ and is
denoted by ̂∂H(s)(x̄). The case of s = 0 in (6.71) reduces to the regular/Fréchet subdifferential,
while the case of s = 1 corresponds to the proximal subdifferential ∂pϕ(x̄) defined above. We also
consider the upper s-Hölder subdifferentials of ϕ at x̄ ∈ dom ϕ defined symmetrically by

̂∂+
H(s)ϕ(x̄) := −̂∂H(s)(−ϕ)(x̄).

Similarly to our basic subdifferential, let us introduce the limiting s-Hölder subdifferential ∂H(s)(x)

of ϕ at x̄ by taking the outer limit of ̂∂H(s)(x) as x
ϕ→ x̄.

(i) Show that the regular subgradient difference rule given in Lemma 6.22 can be extended to
the s-Hölder subdifferentials of any real order s ≥ 0. Hint: Proceed as in the proof of Lemma 6.22
and compare it with [540].

(ii) For each s ≥ 0, determine the classes of Banach spaces, where the limiting s-Hölder subdif-
ferential ∂H(s)(x̄) agrees with our basic limiting construction ∂ϕ(x̄), and where these constructions
may be different.

(iii) Derive counterparts of the necessary optimality conditions from Theorem 6.26 in terms of
the corresponding s-Hölder subdifferentials, and clarify whether they are different, in appropriate
Banach spaces, from those given in the theorem. Hint: For the latter part, apply the tools of analysis
developed in [108].

Exercise 6.48 (Mathematical Programs with Equilibrium Constraints). This class of opti-
mization problems (abbr. MPECs) is written in the form:

minimize f (x, y) subject to y ∈ S(x), x ∈ �, (6.72)

where f : X × Y → R is defined on finite-dimensional or infinite-dimensional spaces and where
S : X →→ Y is given, with q : X × Y → Z and Q : X × Y →→ Z, by

S(x) := {

y ∈ Y
∣

∣ 0 ∈ q(x, y) + Q(x, y)
}

, (6.73)

i.e., x �→ S(x) is the solution map to the parametric variational system in (6.73). The latter is
often labeled as the parameterized generalized equation (GE) if Q(x, y) = N(y; G(x)) for some
G : X →→ Y ; cf. Section 3.3 with a bit different notation.

(i) Derive necessary optimality conditions for abstract MPECs given in form (6.72) under the
most general assumptions on f (x, y) and S(x), and then deduce from them optimality conditions
for (6.73) entirely via the initial data q,Q,G. Provide specifications of the obtained results in the
case of finite-dimensional spaces. Hint: Reduce the models under consideration to those studied
in Section 6.1 and , then apply to the necessary optimality conditions therein the corresponding
results of generalized differential calculus. Compare it with [523, Section 5.2].

(ii) Under which assumptions the solution map S(x) for the lower-level problem (6.30) can be
equivalently written in the MPEC form (6.73)?

(iii) Investigate relationships between global and local solutions to optimistic bilevel programs
and to MPECs in (6.72), (6.73) for the case where the lower-level program in (6.28) is convex.
Hint: Consult [194] for problems with smooth data.
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Exercise 6.49 (Value Function Constraint Qualification). Consider the class of optimistic
bilevel programs defined by (6.72) with � = R

n and the solution map to the lower-level prob-
lem given as

S(x) := argmin
{

ϕ(x, y)
∣

∣ y ∈ G
}

for G := {

y ∈ R
m
∣

∣ gi(y) ≤ 0, i = 1, . . . , p
}

,

where ϕ : Rn ×R
m → R is convex and continuously differentiable in y together with the functions

gi : Rm → R. Following [341], introduce the parameterized sets

C(ν) := {

(x, y) ∈ R
n × R

m
∣

∣ ϕ(x, y) − μ(x) ≤ ν
}

, ν ∈ R,

involving the value function μ(x) from (6.33) for G(x) = G, and say that the value function
constraint qualification (VFCQ) is satisfied at (x̄, ȳ) ∈ gph S if the mapping C : R →→ R

n × R
m is

calm at (0, x̄, ȳ) as defined in Exercise 3.51.
(i) Verify that S(x) can be equivalently written, under the assumptions made, in the MPEC

form (6.73) with q(x, y) = ∇yϕ(x, y) and Q(x, y) = N(y; G). Hint: Use the classical necessary
and sufficient conditions in convex programming.

(ii) Show that if the bilevel program defined in this way has the uniform weak sharp minima
(6.43) around the local solution pair (x̄, ȳ), then VFCQ is satisfied at (x̄, ȳ). Give an example that
the reverse implication fails.

(iii) Verify that the validity of VFCQ at (x̄, ȳ) ensures that the partial calmness property holds
at this point, but not vice versa.

(iv) Assuming that the set G is bounded and that VFCQ is satisfied at (x̄, ȳ), prove that the
perturbation mapping

M(ν) := {

(x, y) ∈ R
n × R

m
∣

∣ ν ∈ ∇yϕ(x, y) + N(y; G)
}

, ν ∈ R, (6.74)

is calm at (0, x̄, ȳ) as defined in Exercise 3.51, while the latter property is strictly weaker than
VFCQ in the setting under consideration.

Hint: Consult [341] for the proofs of the results stated in (ii)–(iv).

Exercise 6.50 (Necessary Optimality Conditions for Optimistic Bilevel Programs Without
Imposing Partial Calmness).

(i) Investigate the possibility of deriving necessary optimality conditions for the optimistic
bilevel program (6.31) by applying the corresponding results of the Fritz John type from Section 6.1
to the equivalent nondifferentiable program (6.34).

(ii) With the usage of the necessary optimality conditions for problems in the general form
(6.72) obtained in [523, Subsection 5.2.1] and expressed via the basic coderivative S(x), while
normal and mixed versions of it in Asplund spaces, derive their specifications for bilevel program-
ming by evaluating the coderivatives of the solution map (6.30) to the lower-level problem. Hint:
Consult [198] and the references therein for evaluating the basic coderivative of S(x) in finite
dimensions.

(iii) Following the approach of [341] developed for the optimistic bilevel programs with convex
lower-level problems and the MPEC solution maps described in Exercise 6.49, derive necessary
optimality conditions for nonconvex bilevel programs with replacing the partial calmness as in
Theorem 6.21 by the calmness property of the perturbation mapping (6.74) at (0, x̄, ȳ) in the sense
of Exercise 3.51.

(iv) Compare the results of [341] with those presented in Section 6.3 in the same smooth and
convex setting, and then investigate the possibility of extending the approach of [341] to the more
general frameworks studied above.

Exercise 6.51 (Two-Level Value Function in Bilevel Programming). Consider the cost function
fopt (x) in (6.31) with S(x) taken from (6.30); fopt (x) is labeled as the two-level optimal value
function in bilevel programming [198].

(i) Evaluate the basic and singular subdifferentials of fopt , and then establish verifiable condi-
tions for the local Lipschitz continuity of this function around a local solution to the optimistic
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bilevel program (6.31) by using Corollary 4.3 and the Lipschitz-like property of S(x) via the
coderivative criterion from Theorem 3.3.

(ii) Apply (i) to deriving necessary optimality conditions in the original optimistic model (6.31),
which may not be locally equivalent to model (6.34) studied above; see Proposition 6.13. Compare
it with the results presented in Section 6.3.

(iii) Implement this approach to justifying various types of stationarity in optimistic bilevel
programming as formulated, e.g., in [198].

Hint: Consult [198] for the results, proofs, and additional material.

Exercise 6.52 (Necessary Optimality Conditions in Pessimistic Bilevel Programming). Con-
sider the class of pessimistic bilevel programs (6.32) with the cost function fpes(x) under the same
constraints as in (6.31).

(i) Employing the results of Exercise 6.51(i) on the local Lipschitz continuity Lipschitz continu-
ity of fopt with taking into account that fpes = −fopt , derive necessary optimality and stationarity
conditions for (6.32) from those in Exercise 6.51(ii,iii).

(ii) Derive upper subdifferential conditions for pessimistic bilevel programs from the corre-
sponding results of Section 6.1.

Hint: Consult [199] for more details on both (i) and (ii).

Exercise 6.53 (Multiobjective Approach to Bilevel Programming). Given an upper-level ob-
jective function f : X × Y → R and the solution map S : X →→ Y to the lower-level problem
as described in (6.30) in the cases of finite-dimensional or infinite-dimensional spaces X and Y ,
consider the set-valued mapping F : X →→ R given in the composition form F(x) := f (x, S(x))

for x ∈ X, and rewrite the upper-level problem of bilevel programming as follows:

minimize F(x) subject to x ∈ � (6.75)

with respect to the standard order on R, where the upper-level constraint set � in (6.75) can be
represented as or added by some other types of constraints (functional, operator, complementarity,
equilibrium, etc.).

(i) Applying to (6.75) the coderivative and subdifferential types of necessary optimality
conditions obtained in Section 9.4 for multiobjective optimization together with the coderivat-
ice/subdifferential chain rules for the composition f (x, S(x)) and then evaluating the coderivative
of S, derive necessary optimality conditions for bilevel programs in terms of their initial data.

(ii) Specify the results obtained in this way for optimistic and pessimistic models of bilevel
programming, and compare it with those derived and discussed above.

6.5 Commentaries to Chapter 6

Section 6.1. Deriving necessary optimality conditions for optimization problems with nonsmooth
data has been among early motivations to develop constructions and machinery of modern varia-
tional analysis and generalized differentiation. Nonsmoothness naturally appeared in the original
framework of optimal control problems starting from the mid-1950s; see [645]. A simple albeit
typical problem of this type was formulated as minimizing a cost function ϕ(x(1)) depending on
the right endpoints of trajectories for the ODE control system

dx

dt
= f (x, u), x(0) = x0 ∈ R

n, u(t) ∈ U, t ∈ T := [0, 1] (6.76)

over measurable (or piecewise continuous) control functions u(t) on T with values belonging to
the prescribed closed set U ⊂ R

m. Since the feasible control region U may be arbitrary (a typical
case is when U consists of finitely many points as in systems of automatic control), the formulated
optimal control problem can be treated as an optimization problem with irregular geometric con-
straints regardless of smoothness assumptions on the given functions ϕ and f . Furthermore, this
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problem can be equivalently rewritten in form (6.1) studied above, where � ⊂ R
n is the reachable

set of trajectory endpoints generated by feasible controls in (6.76). Optimal control theory from
the very beginning, while revolving around different proofs and extensions of the Pontryagin max-
imum principle, has been seeking appropriate techniques to deal with this intrinsic nonsmoothness.
It was a major driving force to develop modern forms of variational analysis that invoke generalized
differentiation.

Another remarkable class of intrinsically nonsmooth optimization problems was also discov-
ered in the mid-1950s and named dynamic programming by Bellman [77]. His “Principle of Op-
timality” led him to the so-called Bellman equation for the corresponding optimal value function
while assuming the smoothness of the latter. Since this assumption fails even in simple examples,
the Bellman equation plays just a heuristic role in some practical problems but generally may result
in wrong conclusions; see, e.g., [645]. Comprehensive theories of the Hamilton-Jacobi-Bellman
and related PDE equations with numerous applications have been developed in the frameworks
of viscosity and minimax solutions by using tools of generalized differentiation; see the books
[66, 136, 167, 268, 698] and the references therein.

In fact, intrinsic (often hidden) nonsmoothness already appears at the very fundamental level
of modern optimization for problems with inequality constraints

ϕi(x) ≤ 0, i ∈ I, (6.77)

where the index set I may be finite (while fairly large as, i.e., in linear programming) or infinite as
in semilinear programming studied below in Chapters 7 and 8. It is well recognized that the de-
velopment of efficient machinery for studying and solving optimization problems with inequality
constraints is probably the most monumental contribution of mathematical optimizers to society.
Saying this, we observe that the inequality constraints (6.77) closely relate to nonsmoothness even
in the case of finitely many linear functions ϕi . Geometrically it is manifested by the vertices of
convex polyhedra that are described by (6.77) and play a crucial role in the groundbreaking sim-
plex algorithm to solve linear programs. Analytically nonsmoothness is revealed via the equivalent
replacement of (possibly great many) inequality constraints in (6.77) by the single one

φ(x) := max
{

ϕi(x)
∣

∣ i ∈ I
} ≤ 0

given by the maximum function φ(x), which is nondifferentiable even in the case of two linear
functions on the real line: φ(x) = max{x,−x} = |x|. As the reader can see in this book, among
other numerous publications, maximum/supremum functions and their generalized differentiation
are highly important for the study and applications of various types of optimization and equilibrium
problems.

To complete these discussions on the role of nonsmoothness in optimization, observe that non-
differentiable functions unavoidably arise while applying perturbation and approximation tech-
niques, which are central in modern variational analysis, to problems with smooth initial data.
Also powerful variational principles (notably the Ekeland one) lead us to considering nonsmooth
optimization problems.

Now we comment on some specific results presented in Section 6.1 and the corresponding ex-
ercises from Section 6.4. Lower subdifferential optimality conditions in terms of basic normals and
subgradients were derived by using the method of metric approximations in the original publica-
tions by the author [502, 503, 504, 507] and those joint with Kruger [439, 440, 528]. Their infinite-
dimensional extensions were given in [441, 426, 430] for problems in Fréchet smooth spaces under
certain Lipschitzian assumptions and in [516, 523] for the case of Asplund spaces under SNC-type
requirements imposed on the sets, mappings, and functions in question. Clarke’s version (6.21)
of the generalized Lagrange multiplier rule was obtained in [164, 165], and Warga’s rule (6.22)
was derived in [736, 737]. Other results in this direction in both Fritz John and KKT forms under
various qualification conditions can be found in, e.g., [16, 84, 273, 326, 328, 366, 523, 678, 685]
and the references therein.
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Applications of necessary optimality conditions presume that optimal solutions exist. This is
not always the case, especially in infinite dimensions. One of the primary motivations for develop-
ing of Ekeland’s variational principle was to obtain the “almost stationarity” condition for “almost
optimal” (suboptimal) solutions formulated in (2.24). More general (lower) necessary suboptimal-
ity conditions for problems of nonlinear and nondifferentiable programming presented in Exer-
cise 6.35 are based on the lower subdifferential variational principle formulated in Exercise 2.39
and are taken from [523, 587], where the reader can find more discussions and references.

Upper subdifferential optimality conditions for minimization problems were initiated by the
author [519] who obtained the results presented in Section 6.1 and their counterparts for other
optimization problems in general Banach spaces; see also [523, Chapter 5]. As discussed in Re-
mark 6.2, upper subdifferential conditions may have serious advantages over lower subdifferential
ones provided that̂∂+ϕ(x̄) �= ∅. Various classes of such functions were discussed in [523, Subsec-
tion 5.5.4].

It is interesting to observe as in Proposition 6.3 that for problems of minimizing the DC (dif-
ference of convex) functions ϕ1(x) − ϕ2(x), the upper subdifferential condition (6.3) reduces to
the well-known one ∂ϕ2(x̄) ⊂ ∂ϕ1(x̄) as in [350]. Note that the class of DC functions as well
as its specifications and modifications play an important role in various qualitative and quan-
titative issues of optimization including its global aspects and numerical algorithms; see, e.g.,
[203, 302, 311, 327, 329, 350, 487, 355] among many other publications. Problems of this type
will be also studied in Chapter 7 below in the framework of semi-infinite programming.

Sections 6.2 and 6.3. Bilevel programs constitute a broad class of problems in hierarchical opti-
mization that is very interesting mathematically and important in applications. We refer the reader
to the book by Dempe [193] and more recent publications [177, 194, 195, 196, 197, 198, 199,
200, 201, 202, 341, 469, 540, 750, 763, 769, 764] for various versions in bilevel programming,
different approaches to their study, and numerous applications. A characteristic feature of bilevel
programs, which can be seen in all of their versions, reformulations, and transformations, is in-
trinsic nonsmoothness that creates serious theoretical and algorithmic challenges. Furthermore, it
has been well recognized that standard constraint qualifications in nonlinear and nondifferentiable
programming fail to fulfill in bilevel optimization.

The optimistic version is by far the most investigated one in bilevel programming, while
there are many unsolved theoretical questions therein, not even mentioning numerical algorithms.
Among several approaches to deriving necessary optimality conditions in optimistic bilevel pro-
grams, we present in Sections 6.2–6.3 the value function approach, which was initiated by Outrata
[619] for a particular bilevel optimization model. This approach explicitly manifests nonsmooth-
ness in bilevel programming via the nondifferentiable lower-level value function (6.33).

The value function approach to optimistic bilevel programs was greatly developed by Ye and
Zhu [748], who introduced the partial calmness condition that allowed them to reduce bilevel
programs to nonsmooth single-level ones via penalization. Combining it with Clarke’s generalized
differentiation, they derived in [748] necessary optimality conditions for bilevel programs in terms
of their initial data.

In this book we mainly follow the papers [195, 540] and further develop the value function
approach by employing our basic tools of generalized differentiation to express optimality condi-
tions for nondifferentiable programs from Section 6.1 and then to evaluate basic subgradients of
marginal/optimal value functions via the results of Section 4.1. Such a device allows us to essen-
tially improve necessary optimality conditions for optimistic bilevel programs obtained in [748]
and other publications. Note the importance of the rather surprising difference rule for regular sub-
gradients from Lemma 6.22 established in [546] by using the smooth variational description of
regular subgradients in Theorem 1.27.

The partial calmness assumption from Definition 6.14 plays an essential role in the value
function approach to bilevel programming. Although it is satisfied in many important settings,
it may fail in rather simple nonlinear examples; see the discussions above as well as the results in
[133, 201, 198, 748, 749]. A sufficient (while far from being necessary) condition for the validity
of partial calmness was introduced by Ye and Zhu [748] under the name of “uniformly weak sharp
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minima,” which could be seen as a version of sharp minima by Polyak [643, 644] and weak sharp
minima by Ferris [264]. In contrast to the latter two notions, which have been well investigated and
applied in the literature (see, e.g., [132, 133, 237, 335, 462, 495, 546, 608, 697, 744, 782, 785]),
uniform weak sharp minima have drawn much less attention. We refer the reader to [133, 327, 744,
748, 749] for some efficient conditions ensuring the validity of the uniform weak sharp minimum
estimate (6.43) and also to the discussions right before Proposition 6.18, which seems to be new.

There are several approaches to deriving necessary optimality and stationary conditions that

don’t employ partial calmness; see [51, 198, 199, 200, 201, 341, 750, 763]. We particularly

emphasize remarkable developments by Henrion and Surowiec [341] for the class of optimistic

bilevel programs with C2-smooth data and convex lower-level problems, where the solution

map to the lower-level problem can be equivalently rewritten in the MPEC form (6.73) with

q(x, y) = ∇yϕ(x, y) and Q(x, y) = N(y; G); see Exercise 6.49(i). They replace the partial

calmness assumption by the weaker calmness property of the perturbation mapping (6.74) in

the sense defined in Exercise 3.51. Imposing in addition the constant rank constraint qualifica-

tion in the lower-level problem (see [477, 499] for more details about the latter notion), Henrion

and Surowiec derive necessary optimality conditions (more precisely, M(ordukhovich)-stationarity

conditions) for optimistic bilevel programs, which have serious advantages in comparison with

the corresponding results of [195] in such settings. The reader may find more information about

MPECs and their applications in the fundamental monographs [482, 624] and the subsequent publi-

cations [3, 78, 267, 314, 338, 341, 346, 290, 523, 620, 623, 684, 745, 746, 780] among other works

with numerous references therein. See, in particular, the papers by Outrata [620] and Scheel and

Scholtes [684] for introducing various notions of stationarity for MPECs, which have been simi-

larly developed later in bilevel programming. Note to this end that, although MPECs [482, 624]

and bilevel programs have many things in common, these two classes of optimization problems

are essentially different in general; see the papers by Dempe and Dutta [194] and by Dempe and

Zemkoho [202] for various results and comprehensive discussions.

Section 6.4. This section contains exercises of different levels of difficulties on necessary optimal-

ity conditions in nonsmooth optimization and bilevel programming with hints and references when

needed. At the same time, we present here some challenging and largely open questions concern-

ing various issues of bilevel optimization. They include Exercise 6.38(i), Exercise 6.39(ii,iii), and

Exercise 6.40(iv) on uniform weak sharp minima, Exercise 6.43(v) on the usage of the symmetric

subdifferential of marginal functions for deriving necessary optimality conditions for bilevel pro-

grams, Exercise 6.50 on deriving necessary optimality conditions for optimistic bilevel programs

without the partial calmness assumption by using the approaches described therein, Exercise 6.52

and beyond on deriving necessary optimality and stationarity conditions for pessimistic bilevel pro-

grams that are considerably underinvestigated in the literature, and Exercise 6.53 on developing a

new multiobjective optimization approach to bilevel programs by using the procedure described

therein.
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