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Preface

All the truths are easy to understand once they are discovered;
the point is to discover them.

Galileo Galilei

A moment of truth in mathematics is an instant between infinity
when it was considered to be wrong and another infinity when it
is considered to be trivial.

Henri Poincaré

Variational analysis, as now understood, is a relatively young area of mathemat-
ics. From one side, it can be viewed as an outgrowth of the calculus of variations,
constrained optimization, and optimal control, and also of variational principles in
mathematical physics and mechanics that go back to the 18th century. On the other
hand, modern variational principles and techniques are largely based on perturba-
tions, approximations, and the (unavoidable) usage of generalized differentiation.
All of this requires developing new forms of analysis and thus manifests the cre-
ation of a new discipline in mathematics that strongly combines and unifies analytic
and geometric ideas.

Although some particular aspects of variational analysis have been reflected in
the monographic literature earlier (beginning with its starting point—beautiful con-
vex analysis), the first systematic monograph on this subject covering its key ingre-
dients in finite-dimensional spaces was the book by Rockafellar and Wets “Varia-
tional Analysis” (Springer, 1998), where this very name was coined. Since then a
great many publications have appeared on numerous issues of variational analysis
and its applications, including several monographs. Among them is the two-volume
monograph by the author “Variational Analysis and Generalized Differentiation, I:
Basic Theory, II: Applications” (Springer, 2006) devoted to infinite-dimensional as-
pects of variational analysis and generalized differentiation with a broad spectrum
of applications.

This new book presented to the reader’s attention pursues several goals. The first
goal is to give a systematic and easily understandable exposition of the key concepts
and facts of variational analysis with selected applications in finite-dimensional
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spaces. It is done in Chapters 1-6 that also contain, besides basic material, some
recent developments in this vein. We view these chapters as the basis for a self-
contained course on variational analysis for beginners, which is accessible to gradu-
ate students in mathematics as well as in applied sciences and engineering. To create
a usable text for teaching variational analysis, with plenty of exercises as well as il-
lustrative figures and examples, is one of the underlying goals of this book.

Here we follow a dual-space approach, which doesn’t rely on tangential ap-
proximations of sets and related constructions for functions and mappings in primal
spaces, but instead focuses directly on dual-space approximations, which are dual
to none. One of the reasons for this is that duality objects generated by any tan-
gential approximation are automatically convex while the latter property provides
significant limitations for generalized differentiation and its applications. This issue
is revealed and largely discussed in the basic text and commentaries therein. On the
other hand, dealing with nonconvex objects requires the usage of new machinery of
analysis that is different from the conventional convex separation and the like. The
major tool for such analysis is provided by a geometric variational principle known
as the extremal principle for set systems, which is strongly employed in the book.

This approach leads us to developing an easy path to variational analysis and its
applications presented in the book. The finite-dimensional framework allows us to
significantly simplify the exposition and proofs of major results. It has been revealed
that dual-space objects are actually more beautiful and perfect than their primal-
space counterparts and bring us, as a rule, to more natural and complete results. One
can observe an analogy with Plato’s theory of Forms (or Ideas, eidos), which are
dual objects to some extent while providing the most accurate representations of
reality in the intelligible realm.

Yet another goal of this book is encouraging the interested readers to learn more
on variational analysis and to develop their research skills in this field by performing
(at least partly) the exercises presented after the basic material of each chapter. The
reader can find hints and references for more difficult exercises and also discussions
on challenging open questions in the commentaries. A number of exercises deal with
problems in infinite-dimensional spaces (while presenting the corresponding defini-
tions and supporting material), and some of them are referred to in the subsequent
chapters of the book.

Chapters 7-10 are devoted concern recent results on applications of varia-
tional analysis to important classes of advanced problems in optimization, mi-
croeconomics, and related areas. They are presented in full generality of infinite-
dimensional spaces and mostly address researchers, graduate students, and practi-
tioners in these (fairly broad) particular fields while may be of interest for larger
communities of mathematicians and economists. The results obtained demonstrate
the strength of variational analysis and dual-space constructions in solving concrete
problems that may not even be of a variational nature.

Let us briefly describe the main content of each of the ten chapters.

Chapter 1 presents the basic constructions of first-order generalized differentia-
tion studied and applied in the book. Developing a geometric approach to general-
ized differentiation, we consider first the nonconvex (basic, limiting) normal cone
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to locally closed sets and then define in its terms the coderivative of set-valued
mappings as well as the basic and singular subdifferentials of extended-real-valued
functions. Various representations and properties of these constructions and their re-
lationships with other objects of generalized differentiability in variational analysis
(including tangentially generated ones) are investigated in detail. The given proofs
are mostly simplifications and improvements in finite dimensions of those devel-
oped in the author’s previous book [522] in more general settings. Some new results
and proofs are also presented here. Infinite-dimensional extensions and related de-
velopments are discussed in the exercise and commentary sections.

The main material of Chapter 2 concerns extremal principles for finitely many
and countably many systems of sets, which play a crucial role in the developed
dual-space geometric approach to variational analysis and generalized differentia-
tion. Our major extremal principle is expressed in terms of basic normals to finitely
many closed sets and can be considered as a nonconvex variational counterpart of
the classical convex separation. Its proof is given by using the method of metric
approximations (MMA), which manifests one of the most fundamental ideas of
modern variational analysis to implement approximation, perturbation, and limit-
ing procedures. The basic extremal principle and its infinite-dimensional versions
(discussed in exercises and commentaries) are strongly employed in all the book
chapters. In Chapter 2 this is applied to derive the major normal cone intersection
and subdifferential sum rules. We also present here more recent results concern-
ing extensions of the extremal principle to countable systems of sets, which seem
to be attractive for their own sake and various applications while being motivated
by problems of semi-infinite programming considered in the subsequent chapters.
The proofs of the countable versions of the extremal principle are given by using
the MMA and reveal some new phenomena even for finitely many closed sets in
extremal systems.

Another theme of Chapter 2 concerns variational principles for extended-real-
valued functions that are different from but somewhat related to extremal principles
for sets in both finite and infinite dimensions. The finite-dimensional geometry al-
lows us to derive a general variational principle, which is simple to prove, useful
in applications, and contains known versions of such results in finite dimensions.
Infinite-dimensional extensions and relationships with lower and upper subdifferen-
tial principles for extended-real-valued functions are discussed in the exercise and
commentary sections of this chapter.

In Chapter 3 we combine the study of two major topics of variational analysis,
which seem not to be connected at the first glance but actually occur to be deeply in-
terrelated. They concern the main well-posedness properties of set-valued mappings
(Lipschitzian stability, metric regularity, and linear openness/covering) and their
coderivative characterizations—from one side, and a comprehensive coderivative
calculus from the other. The developed proofs in both directions are based on ap-
plying the extremal and variational principles. Furthermore, the usage of coderiva-
tive calculus allows us to determine broad classes of parametric variational systems
whose solution maps fail to be metrically regular. In the exercise and commentary
session of this chapter we discuss, besides infinite-dimensional extensions, a variety
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of other well-posedness properties useful in variational analysis and its applications
and also formulate some challenging open problems in these and related areas.

Chapter 4 is devoted to developing a comprehensive subdifferential calculus
for both basic and singular limiting subgradients of extended-real-valued func-
tions. A major role is played by evaluating subgradients for a general class of
marginal/optimal value functions, which is the key for deriving chain, product,
quotient, minimum, maximum, and other rules of subdifferential calculus. Another
major ingredient of subdifferential calculus highly important in what follows is a
variety of mean value theorems for nonsmooth functions presented in this chapter
together with some impressive applications.

Chapter 5 deals with global and local monotonicity of set-valued operators. The
importance of such properties has been well recognized in variational analysis, op-
timization, and numerous applications. There is an enormous amount of publica-
tions devoted to these and related topics. Here we present a new view on maximal
monotonicity properties by developing their complete coderivative characteriza-
tions with the usage of machinery of variational analysis and generalized differen-
tiation. The main results are obtained for the notions of global maximal monotonic-
ity and strong local maximal monotonicity, while we discuss further perspectives,
challenging open questions, and formulate several conjectures. Among strong ad-
vantages of the obtained characterizations are extensive calculus rules available for
coderivatives, which allow us to deal with structural problems and open the gate for
further developments. We also discuss in this chapter some related regularity and
stability/calmness notions for set-valued mappings, particularly of the subdifferen-
tial type.

The first part of Chapter 6 presents refined necessary optimality conditions for
general constrained problems of nondifferentiable programming that are expressed
in terms of the first-order constructions of generalized differentiation considered in
Chapter 1. The obtained optimality conditions are given in both lower subdifferen-
tial and upper subdifferential forms and are derived by direct applications of the
extremal and variational principles together with the developed calculus rules. Then
we present applications of these results to important classes of bilevel optimiza-
tion problems, which are intrinsically nonsmooth even in the case of smooth initial
data. The value function approach allows us to reduce such problems to single-level
programs with nonsmooth data and then apply the results obtained above in nondif-
ferentiable programming by using subdifferential rules for marginal/optimal value
functions established in Chapter 4. In the exercise and commentary sections of this
chapter we discuss other approaches to bilevel programming and draw the reader’s
attention to unsolved problems in this and related areas.

Chapter 7 is devoted to the systematic application of the underlying constructions
and techniques in variational analysis and generalized differentiation to a compre-
hensive study of semi-infinite programs (SIPs) satisfying some linearity or convexity
assumptions on the problem data. Problems of this type involving infinite linear and
convex inequality constraint systems have a long history in optimization theory and
applications, especially for systems indexed by compact sets. We show here that
the usage of advanced variational techniques, quite recently developed in this area,
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allows us to offer new viewpoints and derive enhanced results on Lipschitzian sta-
bility and optimality conditions for SIPs with arbitrary (in particular, countable)
index sets. Furthermore, calculating the basic and singular subgradients of value
functions in SIPs with DC (difference of convex) objectives leads us to new opti-
mality and stability conditions in DC infinite programs and yields by implementing
the value function approach to refined optimality conditions for the class of convex
bilevel SIPs. Taking into account that SIPs always involve, due to their very essence,
infinite dimensionality even in the case of finite-dimensional decision spaces, we
present the main material in this and subsequent chapters in general Banach (or
Asplund if needed) spaces.

Chapter 8 continues our considerations of SIPs while concentrating on noncon-
vex problems under different assumptions on the functions involved in infinite sys-
tems (differentiability, Lipschitz continuity, and lower semicontinuity). Motivated
by eventual applications to nonconvex SIPs, various approaches and strategies are
tested, which lead us to variational and calculus results of their own importance
with large spectra of other applications. We mention here calculations of normals
to infinite intersections of nonconvex sets, subdifferentiation of suprema of nons-
mooth functions over noncompact index collections, Lipschitzian stability and met-
ric regularity of nonconvex cone-constrained systems, etc. All the results obtained
in these directions are quite recent and haven’t appeared before in the monographic
literature.

Chapter 9 deals with problems of set and set-valued optimization, which are rel-
atively new in optimization theory and have become particularly attractive to math-
ematicians, applied scientists, and practitioners during recent years, largely due to
practical demands. They are essentially more involved in many aspects in compar-
ison with single-valued vector objectives that are usual in multiobjective optimiza-
tion. In this chapter we develop a dual-space variational approach to general classes
of such problems, which results in establishing existence theorems for Pareto-type
optimal solutions and robust necessary optimality conditions for them expressed in
terms of coderivatives and novel subdifferential constructions for set-valued map-
pings with partially ordered values. Our main attention is paid to the so-called rel-
ative Pareto solutions to multiobjective problems, which unify the conventional ef-
ficient and weakly efficient solutions with more flexible notions of set optimality.
The basic machinery for the implementation of this approach includes, besides the
underlying extremal principle, extended versions of the Ekeland-type and subdif-
ferential variational principles for set-valued mappings. This approach leads us to
new results not only for set-valued problems but also for conventional problems of
vector optimization in both finite and infinite dimensions.

The final Chapter 10 concerns applications of the advanced variational and gen-
eralized differential techniques presented in this book to microeconomic modeling.
The main goal is to establish two-sided relationships between models of welfare
economics and appropriate problems of ser-valued optimization, and then to study
both of them in parallel by using the developed tools and results of variational anal-
ysis. This approach occurs to be beneficial in both directions. From one side, it
allows us to design a class of set-valued optimization problems and define new
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types of fully localized solutions to them that correspond to conventional as well
as to less understood notions of Pareto-type optimal allocations (set-valuedness of
the objective is crucial here!). On the other hand, natural concepts of set optimal-
ity for multiobjective problems induce new notions of Pareto-type optimal alloca-
tions, which admit adequate economic interpretations. Having the aforementioned
equivalence relationships, we apply the developed tools of variational analysis and
generalized differentiation, mainly revolved around an appropriate version of the
extremal principle, to deriving unified necessary conditions for the corresponding
notions of optimal solutions in the designed problems of set-valued optimization,
which generate in turn novel versions of the so-called fundamental second welfare
theorem for marginal price equilibria in nonconvex models of welfare economics
with finite- and infinite-dimensional commodity spaces.

It should be emphasized that giving a large number of exercises in this book
plays a special and highly important role in its design. Besides the standard inten-
tion of exercises to help readers in better understanding the basic material, they
encourage them to significantly develop research skills and the ability to work in-
dependently in the broad areas covered by the book. On the other hand, precise
definitions and result formulations in many exercises make this part of the book a
handy reference source to enormous material available now in the (first-order) state-
of-the-art variational analysis and its applications in both finite-dimensional and
infinite-dimensional spaces. We also formulate in the exercise sections some open
problems and conjectures and then discuss them in the corresponding commentaries.
Such a book design allows us to present here a massive amount of fundamental and
newer developments together with further perspectives.

Each chapter of the book ends with an extensive commentary section. The main
purpose of the commentaries is to emphasize the essence of major results, track
the genesis of ideas, provide historical comments, and illuminate challenging open
questions and directions of future research from the author’s viewpoints. The book
includes a large (definitely incomplete) list of references related to the topics and
results mentioned in the text that may help the reader in the further study of vari-
ational analysis and its applications. For the reader’s convenience, we list the titles
of all the statements, remarks, and exercises together with the glossary of notation
and acronyms as well as an abundant subject index that illustrates the broadness of
topics covered by the book and the alternative terminology widely spread in vari-
ational analysis and generalized differentiation. In the latter we mostly follow the
monographs by Rockafellar and Wets [678] and by the author [522, 523]. The de-
tailed subject index allows the reader to quickly find topics of particular interest and
directs him/her, through the commentaries and reference list, to additional sources.

We envision that the book will be useful for large groups of graduate students,
researchers, and practitioners in various areas of mathematical sciences, operations
research, and applications, particularly to those in economics, mechanics, engineer-
ing, and behavior sciences. Our trust is that the book will help the reader to share
the author’s admiration of the beauty and harmony of variational analysis. We also
hope that it will encourage the reader to study more in this exciting area, to employ
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variational ideas and results in different fields of mathematics and applications, and
to get involved in further active research.

Parts of this book have been used by the author in teaching many classes at Wayne
State University and other institutions worldwide. The author much appreciates use-
ful feedback that has come from his former and current graduate students over the
years. Special thanks go to Truong Bao, Hong Do, Alexander Kruger, Nguyen Mau
Nam, Tran Nghia, Dat Pham, Ebrahim Sarabi, and Bingwu Wang. All the figures
are made by Nguyen Van Hang, in addition to her great help in reviewing the
manuscript. The author is gratefully indebted to three anonymous referees of the ini-
tial book submission in June 2017 and two referees of the revision for their helpful
remarks and suggestions, which have been fully incorporated into the final version.

A lot of material presented here is based on the author’s joint papers with his
brilliant collaborators that are listed in the references. Many thanks are owed to each
of them. Grants from the National Science Foundation and the Air Force Office
of Scientific Research were essential to carry out and complete this project. The
author is also very grateful to Elizabeth Loew, Executive Editor in Mathematics of
Springer New York, for her attention and excellent pieces of advice in all the stages
of preparation and publication of this book.

Above all, the deepest gratitude and love go to my wife Margaret for her enor-
mous support, understanding, and help over the years.

Ann Arbor, MI, USA Boris S. Mordukhovich
January 2018
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Chapter 1 ®

Constructions of Generalized Check or
Differentiation

This chapter is devoted to the exposition of basic tools of first-order generalized
differentiation in variational analysis. We follow here the routes of the dual-space
geometric approach to generalized differentiation in the vein of [507, 522], which
revolves around approximation techniques and set extremality. Starting with the
nonconvex robust construction of the normal cone to sets, we continue with the
coderivative of single-valued and set-valued mappings and the subdifferential of
(extended-)real-valued functions . For simplicity of the exposition and to empha-
size the essence of major variational ideas, our main presentation in Chapters 1-6 is
given in finite-dimensional spaces, while we discuss infinite-dimensional extensions
in exercises and commentaries to each chapter with the hints and references therein.

Thus, unless otherwise stated, all the spaces under consideration in Chapters 1-6
are finite-dimensional and Euclidean with the inner product (-, -) and the norm || - ||;
we often use the standard notation X = R” for them. By By, or simply by B if no
confusion arises, we denote the closed unit ball centered at the origin of the space
in question, while B, (x) stands for the closed ball centered at x with radius r > 0 .
In the same way, the closed unit ball in the dual space X*—when it appears—is often
denoted by By« or simply by B*.

Given a nonempty set 2 C X, the symbols

cl 2, co, clco2, bd2, and int2

stand for the standard notions of the closure, convex hull, closed convex hull, bound-
ary, and interior of the set €2, respectively.

Recall that aset Cisaconein X if 0 € C and Ax € C forall x € C and A > 0.
The conic hull of Q2 C X is defined by

cone 2 := {axeX|aZO, er}
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2 1 Constructions of Generalized Differentiation

unless otherwise stated. In some situations, which will be specifically emphasized
(mostly in Chapters 7, 8), the symbol “cone 2" signifies the convex conic hull of the
set in question. The linear combination of two sets 21, Q2 C X is

a1 + o2 = {Oélxl +052x2| x1 € Qq, x3 € Qz},

where the symbol := means “equal by definition” and where o1, oy € R are scalars
from (—o0, 00). Dealing with the empty set J, we use the conventions that Q2+ :=
@, that o) := P if « € R\ {0} and a¥ := {0} if @ = 0, and that inf@ := oo,
sup @ ;= —oo, and ||@|| := oco.

Along with single-valued mappings usually denoted by f: R" — R™, we of-
ten consider set-valued mappings (or multifunctions) F: R” = R™ with values
F(x) C R™ in the collection of all the subsets of R” (and similarly, of course, in
infinite dimensions). The limiting construction

Lim sup F(x) := {y € Rm‘ Axxy — X, yp — y with y € F(xg)
xX—X (11)
for all keN::{l,z,...}]

is known as the Painlevé-Kuratowski outer/upper limit of F at x. All the mappings
considered below are proper, i.e., F(x) # () for some x € X.

1.1 Normals and Tangents to Closed Sets

In our geometric approach to generalized differentiation, we start with constructing
normals to nonempty sets 2 C R”, which is crucial for the whole theory. Given
X € 2, suppose in what follows (unless otherwise stated) that €2 is locally closed
around x € €, i.e., there is r > 0 such that the set 2 N B, (x) is closed. This
doesn’t actually restrict the generality since otherwise we can pass to the closure
of 2. Anyway, the closedness of sets is truly essential for furnishing most of the
variational arguments involving limiting procedures.

Although the local closedness assumption for sets, together with the correspond-
ing closed-graph assumption for (set-valued) mappings and lower semicontinuity
one for (extended-real-valued) functions, is standing in this book, from time to time,
we’ll remind the reader about it to emphasize the issue.

1.1.1 Generalized Normals

Given a set 2 C R”, associate with it the distance function

dist(x; Q) = da(x) = insf2 Ix —zll, xeR", (1.2)
zZ€
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and define the Euclidean projector of x € R" to Q by
Nx; Q) = Mo@x) == {we Q| |lx —w| = dist(x; )}. (1.3)

Under the imposed local closedness of €2 around x € 2, we have IT(x; ) # @ for
all x € R” sufficiently close to this point.

Definition 1.1 (Basic Normals to Sets). Let 2 C R” with x € Q. The (basic)
NORMAL CONE fo 2 at x is defined by

N(x; Q) = No(x) := Limsup [cone(x — TT(x; Q))] (1.4)

xX—X

via the outer limit (1.1). Each v € N (x; 2) is called a BASIC or LIMITING NOR-
MAL to Q2 at x and is represented as follows: there are sequences xp — X,
wy € I (xg; ), and o > 0 such that a(x — wy) — v as k — oo.

It is obvious that (1.4) is a closed cone in R”. A remarkable property of this

cone is the possibility to use it for a complete characterization of boundary points

for locally closed sets, which can be treated as a nonconvex counterpart of the
supporting hyperplane theorem for convex sets; cf. Proposition 1.7.

Proposition 1.2 (Normal Cone Characterization of Boundary Points). For x €
Q to be a boundary point of Q, it is necessary and sufficient that N (x; Q2) # {0},
i.e., the normal cone (1.4) is nontrivial at x.

Proof. It is obvious from (1.4) that N (x; Q) = {0} if x € int 2. When x € bd 2,
there is a sequence {x;} C R” \ @ such that x; — X as k — oo. Pick now a
projection wi € IT(xg; 2) for all k sufficiently large, denote oy 1= ||xx — wyg 1-1,
and consider the vectors vy := ax(xx — wy) with |Jug|| = 1. Taking a subsequence
of {v} that converges to some v € R" with |v]| = 1, we get v € N(x; ) by the
normal cone construction in Definition 1.1. A

Another important property of the normal cone (1.4), which can be easily de-
duced from the definition, is its robustness, i.e., stability with respect to small per-
turbations of the initial point. In what follows we use the notation

xiz)i < x — x with x € Q.
Proposition 1.3 (Robustness of Basic Normals). We always have

N(x; Q) =LimsupN(x; 2), x € Q.
Q _
X—>X

The following simple but useful product property of the normal cone is also a
direct consequence of the definition.
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Proposition 1.4 (Basic Normals to Products of Sets). Ler Q; C R", Q; C R”
with (X1, X2) € Q1 x Q9. Then we have the product formula

N((x1,X2); Q1 X Q2) = N(x1; Q1) x N(x2; Q).

Recall that a set Q2 is convex if z+a(x —z) € Qforany x,z € Qand « € [0, 1],
i.e., together with any points x, z € €2, it contains the entire line segment connecting
these points. The following example illustrates that the normal cone (1.4) may be
nonconvex in very simple settings.

Example 1.5 (Nonconvexity of the Basic Normal Cone). Consider the closed set
Q:={(x,y) € R?| y > —|x|}. It is easy to see that

N((0,0); Q) = {(v,v) e R?| v < 0} U {(v, —v) e R*| v > 0},

which is a nonconvex subset of R?; see Fig. 1.1.

Q N((0,0);9)

Fig. 1.1 Nonconvexity of the basic normal cone

The next theorem shows that the normal cone (1.4) to 2 at x can be equivalently
described via the outer limit (1.1) of some convex sets of generalized normals to 2
at points near x.

Given x € Q, define the collection of regular normals to 2 at x by
Jimsup 227X 0} (1.5)

e llz—=xl
—>X

N Q) = No(x) = [v cR"

and for every ¢ > O consider its e-enlargement

limsupM < 8}, (1.6)

ﬁg(x; Q) = {v eR”
o llz—x]
—>X

which reduces to ﬁ()_c; Q) = ﬁo(i; Q) when ¢ = 0. R
Observe that the convex cone (1.5) may be trivial, i.e., N (x; Q) = {0}, for bound-
ary points of closed sets as in Example 1.5 with x = (0, 0). This phenomenon vio-
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lates a natural expectation from any normal cone to a closed set at boundary points.
On the other hand, the following Theorem 1.6 tells us that elements of N (x; Q) at
nearby points can be used for constructing “real” normals to sets. It motivates us
to label the collection of regular normals (1.5) as the prenormal cone to 2 at x;
it is also used in the literature as the “regular normal cone.” Note that the second
representation in (1.7) shows that the limiting process therein is stable with respect
to e-enlargements of the prenormal cone. Such a stability is essential to justify a
number of significant results of variational analysis and generalized differentiation;
see below.

Theorem 1.6 (Equivalent Descriptions of Basic Normals). Given any x € Q C
R", we have the following representations of the basic normal cone:

N(; ) = Limsup N (x; Q) = Limsup N, (x; Q). (1.7)
2z 3z
el0

Proof. We split the proof into several steps, which are of their own interest.
Step 1: If x e R" and w € Tl(x; ), then x — w € ﬁ(w; Q) and thus

N(&; Q) C Limsup N(x; Q).

Qo
X—>X

Indeed, pick z € Q and get by the choice of w that |w — x> < ||lz — x||> =
[(w—x)+ (z — w)||*; hence 0 < ||z — w||*> + 2(w — x, z — w). This yields

limsup 22— W) _

limsup ||z — w| =0,
Q lz —xIl
—>X

Q
=X

N =

which shows that x —w € N (w; £2). To justify now the displayed inclusion, for any
v € N(x; Q), we have oy (x;y — wr) — v with some x; — X, wg € (xg; ), and
oy > 0. It follows from the above that x; — wi € N (wy; ) and thus o (x — wy) €
ﬁ(wk; Q) with wy —Q> X due to ||wxy — xk|l < |lxx — x| for all k € N. This gives us
the claimed inclusion.

Step 2: For any elements wy, € TI(x + av; Q) with0 # v € Ivg(x; Q), x € Q,

e >0, and o > 0, we have the relationship

lwa = xIl _

lim sup 2e.

o0 o

Indeed, it follows from the choice of wy that ||(x + av) — we > < ||(x + av) —
x||? = |lev||?, which implies the equivalent conditions

lwe — x| (v, W — X)
[ <2 ]

[lwe — x[1 + 20 (v, x — wy) < 0] &= <
o lwa — x|
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It follows further from the classical Cauchy-Schwarz inequality that

lwe — x> < 20(v, wy — x) < 20rf|v]| - [y — x]|
and so ||lwy — x|| < 2a|lv]| = 0as « | 0. Thus the choice of v yields

(v, we —x) . (v,z—x)
_— msup ——— < g,

lim su
P Q llz — x|
—X

al0 X —wall

which justifies by (1.6) the claimed estimate.
Step 3: We have the inclusion

Lim sup ﬁg(x; Q) C Limsup ﬁ(x; Q).
Q Q

xX—>X x—X

el0

To show this, take any v from the left-hand side set above and by (1.1) find
ex 4 0, xk iz) x,and v € ﬁgk (xx; 2) such that vy — v as k — oo. By Step 2 there
are wx € Q2 and oy | 0 satisfying

wy € I(xg + oy Q) and [Jwg — xill < 2erax, k€N,

\iv\hich implies that wy —>A)E when k — oco. As shown in Step 1, (xx + axvr) — wi €
N (wg; €2) and so, since N (wy; €2) is a cone,

1 1 ~
v+ — (o —wi) = —((Xk + agvg) — wk) € N(wy; £2).
o o

The latter implies that vy + %(xk — wg) — v as k — 00, which therefore justifies
the statement claimed in this step.

Step 4: We have the inclusion
N(x: Q) C N@x; Q) forall x € Q.

To verify it, take any v € N(x; Q) and for large k € N define z; := x + %v and
pick wr € TT(x + %v; 2). Then we get v = k(zx — x) = v + k(wg — x), where
v = k(zx — wg) € cone (zk — I (zg; Q)) and z; — x. It follows from Step 2 that
k(wr — x) — 0 and so vy — v, which justifies the claimed statement.

Step 5: We have the inclusion
Limsup N(x; Q) C N(&; Q).
xg)f

Indeed, taking v from the set on the left-hand side above gives us vy — v and

Xk 2 X with v € ﬁ(xk; 2). Denote G (z) := cone [z —I1(z; 2)] and get from (1.4)
and Step 4 that N (x; ) C Limsup,_,, G(z). Hence for each k € N we find z; €
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R" and y; € G(zx) with ||zx — xx|| < 1/k and ||yx — vg|| < 1/k. Since 7z — x
and yy — v, this ensures that v € Limsup,_, ; G(x) = N(X; €2), which justifies
the claimed inclusion and thus completes the proof. A

The next proposition shows that for convex sets 2 both constructions (1.4)
and (1.5) reduce to the normal cone of convex analysis.

Proposition 1.7 (Normals to Convex Sets). Let Q2 be convex, and let X be any point
of Q2. Then we have the representations

Ne(E: Q) = v eR"| (v,x — %) <ellx — X forall xR}, e>0, (1.8)

NG =NGEGQ) ={veR"| (v,x —3) <O0forall x€Q}.  (1.9)

Proof. The inclusion “2” in (1.8) obviously holds for an arbitrary set 2. To verify
the opposite inclusion in (1.8) when 2 is convex, fix any ¢ > 0, take v € ﬁg (x; Q),
and then fix x € Q. By the convexity of €2, we have that x4 := x+a(x —x) € Q for
all0 < a <1 with x4, — x as« | 0. Taking any y > 0 and using definition (1.6)
give us

(v, x¢ —X) < (6 + Y)|lxe — x|| forall small @ > O.

Substituting the expression for x, into this inequality justifies (1.8). The representa-
tion (1.9) for N (x; 2) follows from (1.8) taken at any x € 2 by passing to the limit
due to Theorem 1.6. A

1.1.2 Tangential Preduality

It follows from (1.9) that Proposition 1.2 reduces for convex sets €2 to the fact that
for any x € bd 2 there is 0 # v € R” with (v, x) < (v, X) whenever x € Q. This is
the classical supporting hyperplane theorem, which is equivalent to the separation
theorem for convex sets and plays a fundamental role in convex analysis and its
various extensions. One of the implementations of this fundamental result is the

duality/polarity correspondence
NX;QD=T"(x;Q) :={ve ]R"| (v,w) <0 forall we T(x; SZ)} (1.10)

between the normal cone to comvex sets given in (1.9) and the tangent cone
Tx;R2) = clfw € R"| 3o > 0 with x + aw € €} of convex analysis.

Note to this end that the duality scheme of type (1.10) has been conventionally
used in nonsmooth analysis to define normal cones to nonconvex sets via some tan-
gential approximations. It is easy to see that any normal cone obtained in this scheme
is automatically convex, even when the generating tangential approximation is not.
This shows that our basic normal cone (1.4) cannot be tangentially generated due to
its intrinsic nonconvexity. However, it is not the case for the prenormal cone (1.5),
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which is convex and in fact can be obtained by the duality scheme from the follow-
ing tangential approximation.

Definition 1.8 (Contingent Cone). Given Q2 C R” and x € 2, the CONTINGENT
CONE to Q2 at X is defined by

_ . Q—X
T (x; ) := Lim sup
110

(1.11)

via the outer limit (1.1). Each w € T (x; 2) is called a TANGENT to Q at X and
is represented as follows: there are sequences {x;} C Q and {ax} C Ry such that
X —> X and ag(xpy — x) — w as k — oQ.

When 2 is convex, the contingent cone (1.11) agrees with the classical tangent
cone of convex analysis, while in general it may be nonconvex as for the set Q :=
{(x1,x0) € R?| xo = |x1]} at ¥ = (0,0), where T'(x; ) = Q. Let us now show
that its (convex) dual cone is exactly the prenormal cone (1.5).

Proposition 1.9 (Duality Between the Prenormal and Contingent Cones). For
any Q C R" and x € Q, we have the duality correspondence

NG Q) = T Q)

between the prenormal cone (1.5) and the contingent cone (1.11).

Proof. Fix any vectors v € ﬁ()?; Q) and w € T(x;<2). By (1.11) there are se-
quences f; | 0 and wy — w with X + frw € Q for all k € N. Substituting this
combination into (1.5) and picking any y > 0, we get

(v, wg) < yllwg]|l for all large k € N.

ljgssing here to the limit as k — oo shows that (v, w) < 0, and thus we get
N(x; Q) C T*(x; Q) by the dual cone deﬁnitign in (1.10).
To verify the converse inclusion, fix v ¢ N(x; 2) and find by (1.5) a positive

Q
number y and a sequence x; — x such that
(v, xp — X) > yllxx — x|| foralllarge k € N;
so x; # X. Let a := ||xx — x||~! and suppose without loss of generality that

u% w as k — oo forsome w € R".

llxe — x|l
By construction (1.11) we have w € T (x; ) while (v, w) > y > 0 by passing to
the limit above. Thus we get v ¢ T*(x; ), which justifies the inclusion 7*(x; ) C
N (x; 2) and completes the proof of the proposition. A
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Combining Theorem 1.6 and Proposition 1.9 tells us that, although the normal
cone (1.4) cannot be tangentially generated at the point in question, it admits an
approximation by tangentially generated normals to the set at points nearby. This
phenomenon can be naturally labeled as tangential preduality for basic normals.
However, it is essentially finite-dimensional; see [522] and Section 1.5 below for
more details.

1.1.3 Smooth Variational Description

We conclude this section with a variational property of regular normals giving their
smooth description, which is convenient for applications. By Theorem 1.6 this pro-
vides a smooth limiting description of the normal cone (1.4). Everywhere we under-
stand differentiability of ¢ : R" — R at x with the derivative/gradient Vo (x) € R”
in the standard (Fréchet) sense

— () — (Vo(X), x —

lim p(x) — @(x) (_tp(X) X —X) _0 (1.12)
x> X flx — x|l

while the smoothness (of class Cl) property of ¢ around x is its differentiability on

a neighborhood U of x with the continuous gradient Vg : U — R”.

Theorem 1.10 (Smooth Variational Description of Regular Normals). Let Q@ C
R" with x € Q. Then regular normals to X can be described in the following two
equivalent ways:

(i) We have v € N (x; ) if and only if there is a neighborhood U of X and a
function : U — R such that v is differentiable at x with Vi (x) = v and ¥
achieves its local maximum relative to Q2 at x.

(ii) We have v € N(X; Q) if and only if there is a smooth and concave function
Y on R" such that Vi (x) = v and  achieves its global maximum relative to Q
uniquely at x.

Proof. It is not hard to verify (i) based on definition (1.5). Indeed, for any ¥ : U —
R with the properties from (i), we have

Yx)=v&x)+ (v,x —x)+o(|lx —x||) <¢¥(x) forall x € U.

Henc}g (v,x —x)4o(|Jx —x|) <Oand v € ﬁ(i; 2) by (1.5). Conversely, for any
v € N(x; 2), consider the function

min{O, (v, x —)E)} if x € Q,
(v, x —X) otherwise,

v(x) = {

which surely satisfies the properties listed in (i).

To justify (ii), we need to verify the “only if” part the proof of which is essentially
more involved. We split it into several steps.
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Step 1: Let p: [0,00) — [0, 00) be a function having the right-hand derivative
0’y (0) and satisfying the conditions

p0) = ,0;(0) =0 and p(t) <a+ Bt forall t >0

with some positive constants o and B. Then there exist y > 0 and a nondecreasing,
convex, and C-smooth Sfunction o : [0,2y) — [0, co) such that

0(0) =0/(0) =0 and o(t) > p(t) for t € (0,2y).
To construct o, choose a sequence of gy > 0 with ar41 < %ak and
() + 12 <27 ® D¢ if 1 €10, a] forall k € N.
Lety := %al and define r: [0, 2y] — [0, 00) by r(0) := 0, r(ax) := 27k, and so

that r is linear on [ag+1, ax] for all k € N. Then define ¢ : [0, 2y) — [0, c0) by

t
o(t) :=/ r(&)dé for t € [0,2y)
0

and show that it possesses all the required properties. Its smoothness, monotonicity,
convexity, and the equalities o (0) = o_’,_ (0) = 0 follow directly from the defini-
tion and standard facts of real analysis. To check the remaining properties of o, fix
t € (0,2y) and observe that t € [aky1, ax) for some k € N. Then, by the above
constructions of ¢ and r, we get

! ak+1 t api1
/ r(€)dé + f1 r()ds = / 2~ Dgg + /1 2~ g

k+1 2 Ak+1 k+1 2 %k+1

o(t)

v

I — a1 k41

= 1 T 2 oras > P

which justifies all the properties of o (¢) listed above.

Step 2: Let p: [0, 00) — [0, 00) be given as in Step 1. Then there is a nondecreas-
ing, convex, and C L_smooth function t: [0, 00) — [0, 00) such that

7(0) =1/.(0) =0 and ©(t) > p(t) forall t > 0.

Given the numbers «, 8 > 0 and the function o (¢) built above, choose A > 1
with Ao (y) > « + By, and consider the following two cases in constructing the
function t(¢) with the claimed properties:

(a) Let Ao’ (y) < B. Take u > A with uo’'(y) = B and define

(1) ._{/w(t) if 0<r<y,
T o)+ B —y) if t>y.
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It is easy to see that this function is nondecreasing, convex, and continuous ev-
erywhere on [0, 00) including t = y. Moreover, v’ (y) = uo’(y) and 7/ (y) =
B = wa’(y) due to the choice of w, which implies the continuous differentia-
bility of 7 on [0, 00). It follows from the definition of t and the assumptions on
p that 7(0) = ‘L'/+(O) = 0,that 7(¢) > o(¢t) > p(t) for 0 < ¢t < y, and that
T(t) = po(y) + Bt —y) > a+ Bt = p(¢t) for t > y. This ensures the required
properties of t(-) in the case under consideration.

(b) Let Aa’(y) > B. In this case we define a nondecreasing and convex function
7 : [0, 00) — [0, 00) by

ro(t) if 0<t<y,

0= {)‘U(V) —hyo'(y) o'yt if 1>y

Again, a straightforward verification yields that 7 (¢) is a C'-smooth function [0, co)
satisfying all the requirements on [0, y]. By the choice of 1, we get

) >a+ By +rd'(¥)t—y)>a+By+B(t—y)=a+ Bt > p(t)

for t > y, which verifies the statement claimed in Step 2.
Step 3: Let v € ﬁ(i; Q). Then there is a function ¥ : R" — R having all the
properties listed in assertion (ii).

To proceed, consider the positive-valued function

p@) :=sup{(v,.x —%) | x € Q, |lx —x| <t} for 1 >0, (1.13)

which clearly satisfies all the assumptions formulated in Step 1 due to the definition
of regular normals. By Step 2 we get the corresponding function 7: [0, c0) —
[0, o0) and construct ¢ : R" — R by

Y(x) = —(lx — %) — lx — X + (v,x — %), xeR"

Note that this function is concave on R” with 1/ (x) = 0 since t(-) is convex and
nondecreasing on [0, oo) with 7(0) = 0. We also have

Y(x) + x — %I < —p(llx — %) + (v,x — %) <0 =Y () forall x € Q,

which implies that 1 (x) achieves its global maximum over €2 uniquely at x. Observe
that v (x) is differentiable at any x # x due the smoothness of the function (-)
and the Euclidean norm || - || at nonzero points of R”. To justify (ii), it remains to
observe that ¢ (x) is differentiable at x = x with Vi (x) = v, which follows from
the smoothness of t(¢) with r_"_ (0) = 0 by the classical chain rule. This completes
the proof of the theorem. A
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1.2 Coderivatives of Mappings

In this section we consider generalized differentiation of set-valued map-
pings/multifunctions F: R” = R™ with the values F(x) C R”™ which may
be, in particular, empty or singletons. If the latter is the case for all x, we usually
use the standard notation f: R” — R™ for single-valued mappings.

1.2.1 Set-Valued Mappings

Given F: R" = R™, we say that it is closed-valued, convex-valued, . .., if all
the values F(x) are closed, convex, ..., respectively. With each mapping F, we
associate its main geometric description—the graph

gph F := {(x,y) e R" x Rm| y € F(x)}
and denote its domain, kernel, and range by
dom F := {x e R"| F(x) # 0}, kerF:={x eR"[0€ F(x)},
rge F:={y e R"|3x e R" with y € F(x)},
respectively. The (direct) image of a set 2 C R” under F is
F(Q) :={yeR"|3x € Q with y e Fx)},
while the inverse image/preimage of ® C R™ under this mapping is
F7'(©) :={x eR"| Fx) N © # 7},

which reduces to f~1(®) = {x € R"| f(x) € O} in the single-valued case. The
inverse mapping F~': R™ = R” to F is defined by

Fl(y) = {x € R"| y € F(x)}.
It is clear that dom F~! = rge F, that rge F~1 = dom F, and that
gph F~! = {(r,x) e R" xR"| (x,y) € gph F}.

We say that F': R" = R™ is locally bounded around x if there is a neighborhood
U of x such that the image set F(U) is bounded in R™.

Recall also that a mapping F': R" = R™ is positively homogeneous if 0 € F(0)
and F(ax) D aF(x) forall ¢ > 0, x € R"; i.e., its graph is a cone in R"” x R™.
The norm of a positively homogeneous mapping is given by

IFI = sup {llyll | y € F(x) and |x| < 1}. (1.14)
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1.2.2 Coderivative Definition and Elementary Properties

Now we are ready to define our main generalized differential concept for mappings
called the coderivative. We proceed geometrically and associate the coderivative
with the normal cone (1.4) to the graph of the given set-valued or single-valued
mapping. The term “coderivative” reflects the dual-space nature of this construction
for mappings generated by the normal cone to sets. As follows from the discussion
in Section 1.1, the basic coderivative defined below is a nonconvex-valued mapping
that is not dual to any derivative-like objects generated by tangential approximations
of sets.

In accordance with Section 1.1, we consider without loss of generality set-valued
mappings whose graphs are locally closed around the reference points.

Definition 1.11 (Basic Coderivative of Set-Valued Mappings). Consider
F:R" = R"™ withdom F # (), and let (x,y) € gph F. The (basic) CODERIVA-
TIVE of F at (X, y) is a multifunction D*F (x, y): R™ = R" with the values

D*F(x,5) () := {u e R"| (u, —v) € N((X,3); gph F)}, veR", (115
generated by the normal cone (1.4) to the graph of F at (X, y).

Defining then the precoderivative (known also as the regular coderivative) of F
at (x, y) via the prenormal cone (1.5) by

D*F(%,7)(v) := {u € R"| (u, —v) € N((&,7); gph F)}, veR"™ (116
and, employing Theorem 1.6, we get the limiting representation

D*F(%,7)(#) = Limsup D*F(x,y)(v) (1.17)

gphF _ _
(x, )= (%.y)
vV—>v

and the similar one in terms of the e-enlargements 5§F (x, y) of (1.16) defined via
ﬁg((x, y); gph F) as ¢ | 0. In what follows we omit y in notation (1.15) and (1.16)
if the mapping is single-valued at x.

It should be mentioned that employing in (1.15) the basic normal cone construc-
tion from (1.4) to the graphical set gph ' C R" x R™ requires the usage of the
Euclidean norm ||(x, y)|| = /llx||*> + ||¥]|?> on the product space, which is very
beneficial in many situations due to remarkable variational and smoothness (off the
origin) properties of the Euclidean norm. However, in those proofs below which
are based on the equivalent representations of basic normals from Theorem 1.6 im-
plemented in (1.17), it is more convenient to employ the sum norm on the product
X x Y given by

G, W= llxll + [yl forall x € X, y €Y. (1.18)
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It is not hard to check that the representations in (1.7) and (1.17) are invariant with
respect to any equivalent norm used on the space in question. Recall to this end that
all the norms on a finite-dimensional space are equivalent.

Observe that both basic and regular coderivatives are positively homogeneous
with respect of their argument v. We show next that for single-valued mappings
F = f: R" — R™ smooth around the reference point x, they both are single-
valued and linear in v, thus being reduced to the adjoint/transpose Jacobian matrix
Vfx)*: R" — R”" applied to v; we keep the notation V f(x) for the Jacobian
matrix. As always, by smoothness (i.e., of class C]) of f around x, we mean
its continuous differentiability on a neighborhood of x. Note that the vast major-
ity, if not all, of the results given in this book for smooth mappings hold true for
those, which are merely strictly differentiable at x with the strict derivative operator
Vf(x): R" - R™ in the sense that

g SO R -VIO&—2)
im =

X,z>% lx —zl

0. (1.19)

However, proofs in the strict differentiable case are usually more involved, and we
restrict ourselves to C!-smooth mappings for simplicity; cf. [522, 523].

Proposition 1.12 (Coderivatives of Smooth Mappings). Let the mapping
f:R" — R™ be of class C' around %. Then we have the representations
D*f(x)(v) = B*f(i)(v) = {Vf()?)*v} Sorall veR™,

Proof. Note first that the inclusion u € D* f(x)(v) means by definition that

U,z =x) = (v, f@) = fO)) < y(lz = xIl + 1 f @ = FOI)

for an arbitrary number y > 0 when z is sufficiently close to x. On the other hand,
by the differentiability of f at x, we have that

(u—VFx) v, z—x) <ylz—x|.

Combining these facts with the definition of the adjoint operator shows that
5*f(x)(v) = {Vf(x)*v} for all x close to x. Passing here to the limit as x — X
and using the continuity of V f together with the coderivative representation (1.17)
justify the formula for D* f (x)(v). A

Another simple and expected coderivative representation holds for convex-graph
multifunctions, i.e., those for which the set gph F is convex.

Proposition 1.13 (Coderivatives of Convex-Graph Mappings). Let the graph of
F:R" = R™ be convex. Then
D*F (%, 7)(v) = D*F (%, §)(v)

=feer|wn = mx fwn- @]

forall (x,y) € gph F and v € R™.
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Proof. It follows from the normal cone representations in Proposition 1.9. A

In general the coderivative may take nonconvex and also empty values. Let us
illustrate this by direct calculations based on the definition.

Example 1.14 (Coderivative Calculations).
(i) Consider first the function f(x) := |x| on R and calculate its coderivative at
x = 0. Using the normal cone definition (1.4) gives us (see Fig. 1.2)

N((0,0); gph f) = {(x, ) e R?| y = Ix| & y < —Ixl}.
Thus the coderivative (1.15) of this function is calculated by

[—v,v] if v >0,

D*f(0)(v) =

{—v,v} if v<O

and has, in particular, nonconvex values when v < 0. Note that the precoderiva-
tive (1.16) in this case is given by

[—v,v] if v=0,

D*f(0)(v) =
1] if v<O.

(ii) For another function f(x) := |x|* with o € (0, 1), we have
N((0,0); gph f) = {(x, y) € R?| y < 0}
(see Fig. 1.3), and hence the coderivative (1.15) takes empty values

R R if v=>0,
D* f(0)(v) = D* f(0)(v) =
¢ if v<O.

Fig. 1.2 Coderivative of f(x) = |x|
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A A
gphf

—

N((0,0);ephf)  D*f(0)(v) =0 D*f(0)(v)
(v<0) (v>0)

Fig. 1.3 Coderivative of f(x) = [x|*, 0 <a < 1

1.2.3 Extremal Property of Convex-Valued Multifunctions

Now we present an important result revealing an extremal property of convex-valued
multifunctions formulated via the basic coderivative. This property is useful for var-
ious applications; see, e.g., Section 1.5. The proof is simple enough due to the usage
of some previous considerations.

A set-valued mapping F: R" = R™ is said to be inner/lower semicontinuous at
the domain point x € dom F if we have

F(%) = Liminf F (x) := {y| Vo O 53y 5y, e Fa)d (1.20)
X—>X

in terms of the Painlevé-Kuratowski inner/lower limit F at x.

Theorem 1.15 (Extremal Property of Convex-Valued Mappings via Their Ba-
sic Coderivative). Ler F: R" = R be inner semicontinuous at x € dom F and
convex-valued around this point, and let v € dom D*F (x, y) for some y € F(X).
Then we have the extremal property

,y) = mi V) 1.21
(v, y) yg}plg)(v y) (1.21)

Proof. By v € dom D*F(x, y) and the coderivative definition (1.15), there is
u € R" with (u, —v) € N((x,y); gph F). By Theorem 1.6 we find sequences
(X, yi) = (x, y) with y; € F(xy) and (ug, vg) — (u, v) such that

lim sup (uk,x—Xk)—Wk,y—yk)EO’ ke

(e, y) = G vl

gph F
(x, )= (xk, yk)

Putting there x = xj; shows that —v; € N (yk; F(xg)). Since all the sets F(xi)
are convex, we get from Proposition 1.9 that (vi, y — yx) > O forany y € F(xy).
Suppose now that there is ¥ € F(X) such that (v,y) < (v, y). Then the inner
semicontinuity of F at X gives us a sequence y; — y with y; € F(x;), and so

(vk, Yk — yk) < O for all large k.

The obtained contradiction completes the proof of the theorem. A
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The following example with two parts shows that both assumptions of Theo-
rem 1.15 are essential for the validity of the extremal property (1.21).

Example 1.16 (Assumptions of Theorem 1.15 Are Essential for the Validity of
the Extremal Property).

(i) First we show that the convex-valuedness assumption is essential for the ful-
fillment of the extremal property (1.21) of inner semicontinuous mappings. Consider
the set-valued mapping F: R = R defined by

F(x):={—Ix], x|} for x e R (1.22)

(see Fig. 1.4), which is clearly nonconvex-valued at any x # 0 while being inner
semicontinuous at x = 0 due to the equalities

Liminf F(x) = {0} = F(0).

It is easy to see that the normal cone to the graph of (1.22) at (0, 0) is
N((0,0: gph F) = {(x.y) € R?| y =x} U{(x.») € R y = —x},
and so the coderivative D*F (0, 0)(v) of (1.22) is calculated by

{—v,v} for v>0,
D*F(0,0)(v) =40 for v =0,
{v, —v} for v < 0.

It follows from here that for v = 1 € dom D* F (0, 0), we have (v, 0) = 0 while

min (v, y) = min{v, 0,
yeF(0)< y) yeR( ) #

and thus the extremal property (1.21) fails for F from (1.22).

(ii) Next we demonstrate that property (1.21) may be violated for convex-valued
multifunctions, which are not inner semicontinuous at the reference points. Define
the convex-valued mapping F': R = R by (see Fig. 1.5)

A

IN((0,0): gph F) . .

Fig. 1.4 Coderivative of F(x) := { — |x|, |x|}
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1 for x > 0,
F(x):={[-1,1] for x =0, (1.23)
—1 for x <0,

which is not inner semicontinuous at x = 0 due to

Liminf F(x) = # F(0) = [~ 1. 1].

Then for the point (x, ¥) = (0, 1) € gph F, we have
N((0,1); gph F) = {(u,v) e R*| u <0, v >0} U {(u,v) € R*| uv = 0},
which readily implies that dom D* F (0, 1) = R. Hence

min vy =—-v<v-1 forany v >0
yEF(0)

This shows that the extremal property (1.21) fails for F from (1.23).

gphF D*F(0,1)(v)
N((0,1); gphF
((0,1); gphF) ; ;

Fig. 1.5 Violation of the extremal property without inner semicontinuity

1.3 First-Order Subgradients of Nonsmooth Functions

This section presents the major first-order subdifferential constructions for
extended-real-valued functions mainly used in what follows and then describes
some of their fundamental properties and interrelations.

1.3.1 Extended-Real-Valued Functions

In this book we make a terminological distinction between mappings and func-
tions. By (single-valued or set-valued) mappings, we understand correspondences
with values in multidimensional (finite-dimensional or infinite-dimensional) spaces,
without any ordering on them. The term “functions” is used for mappings that take
real values with the natural order on R. In fact, it is more convenient for various
reasons to consider extended-real-valued functions, which may take values in the
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extended real line R := (=00, 00] = R U {oo}. One of the reasons is to include
sets into the functional framework by associating a set Q C R" with its indicator
function

0 if x e Q,
oo  otherwise.

6(x; Q) = {

We always suppose that a function ¢ : R* — R is proper, i.e.,
domg := {x e R"| p(x) < 00} # ¥

for its domain. Note that for definiteness the main attention is paid to “lower”
properties of functions largely motivated by applications to minimization problems;
that’s why we exclude the value —oo from consideration. The “upper” properties
and the corresponding upper constructions for ¢ can be obtained symmetrically by
passing to —¢. We’ll do it when it becomes necessary.

From the viewpoint of lower properties, the most appropriate general concept
for functions under consideration in variational analysis and optimization is lower
semicontinuity, in contrast to continuity in classical analysis. Recall that ¢ : R" —
R is lower semicontinuous (1.s.c.) at ¥ € dom @ if

¢(%) < liminf o (x).
X—>X

Unless otherwise stated, in what follows we consider extended-real-valued func-
tions ¢ that are Ls.c. around the reference point x, i.e., have this property at any
point in some neighborhood of x. This corresponds to the local closedness of the
epigraphical set, or the epigraph,

epip == {(xr,a) e R" x R| o > 9(x)}
around the point (x, ¢(x)) € gph ¢. Throughout the book we use the notation
x5 ¥ e x> & with o(x) = @(x),

where the condition ¢(x) — ¢(x) is redundant if ¢ is continuous at x. Note that for

. . . - . Q
the indicator function ¢(x) = §(x; 2), the notation x £ 5 agrees with x — x for
sets in Section 1.1 and that the lower semicontinuity of ¢ around X € dom ¢ reduces
to the local closedness of 2 around x € 2.

1.3.2 Subgradients from Normals to Epigraphs

Similarly to the coderivative case for mappings, we define next the basic and
singular limiting subdifferentials (collections of the corresponding subgradients)
of extended-real-valued functions geometrically via the basic normals taken from
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Definition 1.1. But instead of applying normals to graphs, we deal now with
epigraphs of functions exploiting the natural order structure on R. First we observe
the following structure of the normal cone (1.4) to epigraphs.

Proposition 1.17 (Basic Normals to Epigraphs). Let ¢: R* — R and (X, @) €
epi¢. Then A > 0 for every (v, —A) € N((Xx, @); epi @), and so there are uniquely
defined subsets D, D*° C R" providing the representation

N((x, @) epig) = {A(v,=D)|ve D, A >0} U{(v,0)| ve D>}
Proof. Taking any (v, —X) € N((x,a);epig) and using Theorem 1.6, find se-
quences (xg, otx) e (x, @), vy — v, and Ar — X such that

lim sup Ok, X = Xieh = M — o) <0 forall k e N.
l(x, ) = (e, )l

epig
(x,0)—> (xk, k)

Letting here x = x;, o = o + 1 and then passing to the limit as k — oo, we get
A > 0. This easily implies the claimed representation, where the closedness of the
sets D and D®° follows from that of the normal cone (1.4). A

The set D in Proposition 1.17 describes “sloping” normals, while D° consists of
“horizontal” normals to the epigraph. We define via these sets the basic and singular
subdifferentials of the function ¢ at x as follows.

Definition 1.18 (Basic and Singular Subdifferentials of Functions). Let
¢: R" — R be finite at x € domg. Then the collection of BASIC SUBGRADI-
ENTS, or the (basic) SUBDIFFERENTIAL, of ¢ at X is defined by

dp() := {v e R"| (v, —1) € N((&, ¢(¥)); epig)}. (1.24)

The collection of SINGULAR SUBGRADIENTS, or the SINGULAR SUBDIFFEREN-
TIAL, of ¢ at this point is defined by

3%p) := {v e R"| (v,0) € N((¥, p(¥)); epig)}. (1.25)

We’ll see below that the subgradient sets (1.24) and (1.25) are much different
from each other and play significantly distinct roles in variational analysis and op-
timization while they enjoy similar and rather comprehensive calculus rules. The
basic subdifferential d¢(x) reduces to the usual gradient {V¢(x)} for smooth func-
tions and to the subdifferential of convex analysis when ¢ is convex. The singular
subdifferential 3°°¢(x) reduces to {0} for locally Lipschitzian functions; so it has
never appeared in classical analysis and has not been designated in the subdifferen-
tial framework of convex analysis as well.

We begin with the extended-real-valued setting of indicator functions when con-
structions (1.24) and (1.25) agree and reduce to the normal cone (1.4) for the set in
question. This easily follows from the definitions and Proposition 1.4.
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Proposition 1.19 (Subgradients of Indicator Functions). For any set @ C R”
and point X € 2, we have the representations

98(x; Q) = dF8(x; Q) = N(x; Q).

Let us present another property, which is shared by both subdifferential construc-
tions from Definition 1.18 and easily follows from Proposition 1.3.

Proposition 1.20 (Robustness of the Basic and Singular Subdifferentials). For
any ¢: R" — R and x € dom ¢, we have

d¢(x) = Limsup d¢p(x) and 9%°¢(x) = Limsup d%¢(x).
4

- Y _
X—>X X—>X
Next we calculate both basic and singular subdifferentials from Definition 1.18
and illustrate some of their properties for simple functions on R.

Example 1.21 (Subgradients of Simple Functions on R).
(i) Consider first the convex function ¢(x) := |x|. Then we easily see from
definition (1.4) or representation (1.9) that

N((0,0); epip) = {(x,y) € Rz, y < —lx|} and thus d¢(0) =[—1,1]

in accordance with convex analysis; see Fig. 1.6. However, changing the sign of the
function gives us a completely different picture. Indeed, for ¢ (x) := —|x|, the nor-
mal cone N ((0, 0); epi ¢) is calculated in Example 1.5, and thus d¢(0) = {—1, 1},
i.e., the subdifferential (1.24) is nonconvex; see Fig. 1.7. Note that in both cases of
¢(x) = |x| and ¢(x) = —|x|, we have 3¢ (0) = {0}.

(ii) Next consider the continuous while not Lipschitz continuous function
@(x) := x'/3 for which we easily get from the definitions that

N((0,0); epig) = {(x,0) € R*| x > 0} with 3¢(0) =¥, 3°¢(0) = [0, 00),
which illustrates that the subdifferential (1.24) may be empty; see Fig. 1.8.

(iii) If we replace the function in (ii) by ¢(x) := x!/ 3 forx < 0and ¢(x) := 0
for x > 0, then

epip

9¢(0)

|
s
U

N((0,0)wpie)

Fig. 1.6 Subdifferential of ¢(x) = |x|
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A A A
epip
9¢(0)
& o = T &
S
N((0,0):¥xip)
Fig. 1.7 Subdifferential of ¢ (x) = —|x|
A A A
epip
9p(0) =0
N((0,0); epip) 9p(0) = [0, 00)
ks IR
Fig. 1.8 Subdifferential and singular subdifferential of ¢ (x) = x!3
A A A
epip
N((0,0); epigp) 9™¢(0) = [0, 00)
9p(0) = {0}
R

Fig. 1.9 Subdifferential and singular subdifferential of ¢(x) = x3if x < 0and o(x) = 0if
x>0

N((0,0); epig) = {(x,0) € R*| x > 0} U{(0, y) e R*| y <0}

with ¢ (0) = {0} and 3*°¢(0) = [0, c0); see Fig. 1.9. This shows, in particular, that
the basic subdifferential (1.24) of a continuous function may be a singleton, while
the function is nonsmooth around the point in question.

(iv) The last example in this vein illustrates yet another, rather opposite feature
of the subdifferential (1.24): it may not be a singleton for a continuous function
that is differentiable at the reference point (1.12) but not strictly differentiable at
it and hence not of class C! around this point. Indeed, define ¢(x) := xZsin(1 /x)
for x # 0 and ¢(0) := 0. This function is obviously differentiable at zero with
¢’(0) = 0, while 9¢(0) = [—1, 1].
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It is easy to deduce from Proposition 1.2 that we may have dp(x) = @ only
when 0%¢(x) # {0}. Indeed, since (X, ¢(x)) is a boundary point of the epi-
graph epi ¢ which is locally closed around it, there is a nonzero vector (v, —A) €
N((x, ¢(x)); epi ¢). The emptiness of d¢(x) implies that . = 0, and thus 0 # v €
9% @ (x). Note that the triviality condition 9 ¢(x) = {0} is not necessary for the
nonemptiness of the basic subdifferential dp(x). The latter is always the case for
the indicator function in Proposition 1.19 and may also occur when ¢ is continuous
around x as demonstrated in Example 1.21(iii).

On the other hand, in the examples given above, the triviality condition
0%°p(x) = {0} relates to the local Lipschitz continuity of ¢ around x. The
next theorem shows that it is indeed a characterization and describes behavior
of the basic subdifferential of locally Lipschitzian functions. Recall that a mapping
f:R* — R™ defined near x is locally Lipschitzian around this point with some
modulus € > 0 if there is a neighborhood U of x such that

If(x) = f@I < €lx —z|| forall x,zeU. (1.26)

Theorem 1.22 (Subdifferentials of Locally Lipschitzian Functions). Ler
¢: R" — R with ¥ € dome. Then it is locally Lipschitzian around X with
some modulus £ > 0 if and only if 9°¢(x) = {0}. In this case dp(x) # @ and, for
a fixed Lipschitz modulus £, we have

lv|| < £ whenever v € 0p(X). (1.27)

Proof. Suppose that ¢ is Lipschitz continuous on some convex neighborhood U of
x with modulus ¢, and show that for any A > 0, we have the implication

(v, —2) € N((F, ¢(X)); epig) = [lv]| < . (1.28)

By the normal cone definition (1.4) with the usage of the Euclidean norm on R"” x R,
it suffices to verify that

(w, 1) € M((x, @); epig) = [lw — x| < Llp —af
for the Euclidean projector I1(-; epi ¢). Assuming the contrary gives us

¥ —wl —£€pn —)
(2 + Dllx — wll

xZw and y =

Denoting z := w+ y(x — w) and v := u + y€||x — w||, we have that z € U by the
convexity of U. The Lipschitz continuity of ¢ ensures that (z, v) € epig. It is not
hard to check for the Euclidean norm || - || that

V2 — —
o) — vl = EZNEUZD ey — w, ol
£+ 1
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which contradicts the choice of (w, u) € IT((x, «); epi¢) and so justifies (1.28).
This yields that 3¢ (x) = {0} for A = 0 in (1.28) and that ||v]| < £ for A > 0.

To complete the proof, it remains to show that the condition 9*¢(x) = {0} im-
plies that ¢ is locally Lipschitzian around x. This follows from the coderivative
criterion for the Lipschitz-like property of general multifunctions derived in Theo-
rem 3.3; see also Theorem 4.15 for another proof. A

1.3.3 Subgradients from Coderivatives

It is clear from Definition 1.18 that both basic and singular subdifferentials of
¢: R" — Rat x € dom ¢ can be expressed via the coderivative

dp(X) = D*Ey(X, (X)) (1), 0%¢(X) = D*Ey(X, ¢(X))(0)
of the epigraphical multifunction E,: R" = R associate with ¢ by
Eo(x):={a eR|a > px)}. (1.29)

The next theorem important in what follows shows that, for the class of l.s.c.
functions under consideration, we can replace E, in the coderivative representation
of d¢p(x) by the function ¢ itself, having also a useful relationship between ¢ (x)
and D*(x)(0) when ¢ is continuous around x.

Theorem 1.23 (Subdiffergltials from Coderivatives of l.s.c. and Continuous
Functions). Let ¢ : R" — R be finite around x. Then we have

dp(X) = D*p(x)(1). (1.30)
If in addition ¢ is continuous around x, then
3%p(x) C D*p(x)(0). (1.31)

Proof. We split the proof into several steps remembering that ¢ is Ls.c. around x,
which is our standing assumption.

Step 1: For any sequence (xi, ax) i (x, ¢(x)) as k — 00, there is a subsequence
{xk;} of {xk} such that

(xx;5 (k) — (¥, (X)) as j — oo.

To proceed, assume first that the set S := {xi| ¢(x) < ¢(xx), k € N} consists of
infinitely many elements. By passing to the limit in

P(X) < @(xx) <oy forall xp € S
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and taking into account that o — @(X) as k — oo, we get lim ¢(xx) = @(x)
S _
Xg—>X
that verifies the claim in this case. In the remaining case where the set S is finite,
we suppose without loss of generality that ¢p(x;) < ¢(x) for all £ € N and thus get

lim sup ¢ (xx) < ¢(x), which implies in turn that
k— 00

klijolow(xk) = @(x)

since ¢ is l.s.c. at x. It justifies the claim in this case as well.

Step 2: We have the inclusion D*¢(x)(1) C d¢(X).
This means that the following implication holds:

(v, =1) € N((F, p(X)); gph @) = (v, —1) € N((F, ¢(¥)); epi ).

To verify it, pick any (v, —1) € N((x, ¢(x)); gph¢) and find by Theorem 1.6
sequences (vk, Ax) — (x, —1) and x; — X such that the inclusions (vg, Ax) €
N ((xk, ¢(xx)); gph @) hold for all k € N. Suppose without loss of generality that
Axr = —1 for all k € N and show now that (vx, —1) € ﬁ((xk, ©(xr)); epip) along
some subsequence of {x;}. In fact, we select this subsequence from Step 1 with no
relabeling.

Arguing by contradiction, assume that the claimed inclusion is violated for some
fixed k and then find a number y € (0, 1) and a sequence of pairs (z;, ;) &g
(xk, ¢(xr)) as j — oo such that

(k, 2j — xx) + (@(xx) —aj) > v II(zj, aj) — (xk, ()|l forall j e N.
Since aj > ¢(z;) and @(z;) — @(xx) as j — oo, we have
(zj = Xk, () — @Dl < 1(zj — xk, o0 — @)l + o — ¢(z)),
which implies in turn the estimate
(ks 2j — 1) + o) — 9(z) > vll(z), ¢(z;)) — (X, () |

for all j € N. This means that (vg, —1) ¢ N((xx, @(xx)); gph @), which is a con-
tradiction by taking into account the choice of the (sub)sequence {x;} from Step 1.
Thus we have the inclusion D*¢(x)(1) C d¢(x) in (1.30).

Step 3: For any set 2 C R" locally closed around x, we have

N(x; 2) C N(x;bd2) atevery x € bdQ2.

To verify this, take 0 7 v € N (x; €2) and by Theorem 1.6 find sequences xi 2 X
and vy — v with v, € N (xg; Q) forall k € N. Since ||vk| > O when £ is sufficiently
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large, this implies by (1.5) that x; € bd €2 for such k. The claim now follows from
the observation that

N(; Q1) C N(&; Q) whenever Q5 C Q; and ¥ € Q,

which can be easily checked by definition (1.5).

Step 4: We have the inclusion d¢(x) C D*@p(x)(1).
Since the set epi ¢ is closed around (x, ¢(x)), it follows from Step 3 that

N((%, p(X)); epig) C N((X, (X)); bd(epi p)),
and so it remains to verify the implication
[(v, =1) € N((F, p(¥)); bd(epip)) ] = [(v, —1) € N((F, ¢(X)); gph¢)].

To proceed, pick (v,—1) € N((x,¢(x));bd(epig)) and find (vg,Ax) —

bd(epi
W, —1) and (@) "B (& (@) as k — oo such that (v, —) €
N ((xk, ¢(x)); bd(epi ¢)) whenever k € N. Let Ay = —1 without loss of gen-

erality and for all (x, o) € [Bl/k(xk) X (ot — %, o + %)] Nbd(epip) get

1
(v =) = (@ —ap) < 7 (I = 0l + o — e (1.32)
when £ is large. Similarly to Step 2, select by the lower semicontinuity of ¢ a sub-

sequence of {x;} (no relabeling) such that (xx, (xx)) — (¥, ¢(x)) as k — oo.
Then (1.32) implies that along this subsequence we have

1
(i, x—x1) — (0 —(xi)) — (9 (xp) —ox) < A (IIX—Xk I +|Of—<P(Xk)|+|<P(Xk)—Olk|>

forall (x, a) € [Bi/k(xk) x (ax — rk, o + ri)| Nbd(epi ¢), where such a sequence
rr 4 0 exists due to o — @ (xx) — 0. By (xx, ax) € bd(epig) C epig due to the
Ls.c. of g, it yields ¢(xx) < a and therefore

1
(e x =) = (o = ) = 2 (I = el + o = o)1)
for all (x, ) € gphg close to xi, ¢(xg). Thus we arrive at

lim su (v, x — x) — (@ — @(x0)) 1
L ey o TR

.0 ()

which means that (vg, —1) € I/V\% ((xx, ¢(xx)); gph @) for each k. It tells us by pass-

ing to the limit as k — oo that (v, —1) € N((x, ¢(X)); gph @), i.e., v € D*p(x)(1).
This justifies the claim and hence representation (1.30).

Step 5: If ¢ is continuous around x, then we have inclusion (1.31).
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Indeed, it follows from the continuity of ¢ around x that gph¢ = bd(epi¢).
Hence the result of Step 3 ensures the validity of the inclusion

N((F, ¢(¥)); epig) C N((X, ¢(¥)); gph o),

which readily implies (1.31) and completes the proof of the theorem. A

Observe that the inclusion in (1.31) is generally strict. To illustrate it, consider
the following example of a continuous function ¢: R — R with ¢(x) := —x!/3,
x >0, and p(x) := 0, x < 0. From Definition 1.1 we calculate the normal cone to
the epigraph and graph of this function at the origin by

N((0,0); epig) = {(v,0) e R*| v <0} U{(0,v) € R*| v <0}

and N((0,0); gphgp) = N((O0,0);epip) U RZ: see Fig. 1.10. It shows that
0% ¢(0) = (—o0, 0] and D*¢(0)(0) = (—o0, o0) with the strict inclusion (1.31).

epip

N((0,0); epip) 0p(0) = (—op, 0]

N((0,0); gphyp)

Fig. 1.10 Singular subdifferential vs. coderivative of ¢(x) = 0 if x < 0 and p(x) = —x173 if
x>0

The precise relationship (1.30) between the coderivative (1.15) and the basic sub-
differential (1.24) allows us to deduce subdifferential results from coderivative ones,
which is useful in what follows. Let us derive in this way an implementation of
Proposition 1.12 in the case of functions.

Corollary 1.24 (Subgradients of Smooth Functions). Let ¢ : R” — R be of class
C! around . Then we have dp(x) = {Vp(x)}.

Proof. Follows from Theorem 1.23 and Proposition 1.12. A
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Note that the reduction of the subgradient set d¢(x) to a singleton is actually
a characterization of strict differentiability (1.19) for locally Lipschitzian func-
tions (1.26); see Theorem 4.17. The elementary functions considered in Exam-
ple 1.21 demonstrate that both Lipschitz continuity and strict differentiability vs.
merely differentiability are essential in this characterization.

As shown in Example 1.21(i), the basic subgradient set d¢(x) is nonconvex for
simple functions like ¢(x) = —|x| at x = 0. Similarly to the case of normals (and
much related to it), we can approximate the subdifferentials (1.24) and (1.25) at x
by some convex sets of subgradients of ¢ taken at points nearby.

1.3.4 Regular Subgradients and e-Enlargements

Given a function ¢ : R” — R and a point ¥ € dom g, define the collection of regular
subgradients, or the presubdifferential, of ¢ at X by

Vo(F) = {v e R| limipf EX — D 70 x 75 0} (1.33)
X—>X ||)C — X ||
and for each ¢ > 0, consider its e-enlargement
%o(X) = {v e R"| liminf £ Z#W = 0. x = 5) —g] (1.34)
X—>X ||)C - )C||

with dp@(¥) = d¢(¥). Note that dp(X) = {V@(X)} when ¢ is differentiable (not
necessary strictly) at x but (1.33) may also reduce to a singleton in the nondifferen-
tiable case, which can be observed from the examples above.

For convex functions ¢: R" — R (i.e., those whose epigraphs are convex sets) ,
we have the following subgradient descriptions, which show, in particular, that both
subgradient sets (1.25) and (1.33) reduce in this case to the classical subdifferential
of convex analysis.

Proposition 1.25 (Subgradients and ¢-Subgradients of Convex Functions). Let
¢: R" — R be convex. Then

’5590()?) = {v € R"| (v, x —Xx) <) —eX)+ellx —x|| forall x € R”}
whenever x € dom ¢ and ¢ > 0. Furthermore, we have representations
dp(@) = {v e R"| (v,x —X) < p(x) — 9(X) forall x € R"}. (1.35)

0%¢(x) = N(x; domg) = {v € R”| (v, x —x) <0 forall x € domfp}.

Proof. Note that the inclusion “D>” for 5gwg) is obvious. To verify the opposite
inclusion, pick an arbitrary subgradient v € 9,¢(x) and observe directly from defi-
nition (1.34) for any given n > 0 that the function

P(x) =) — &) — (v, x —X) + (¢ + n)llx — x|
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attains a local minimum at x. Since ¥ is convex, X is its global minimizer, i.e.,
9(x) = 9(x) = 9(F) — (v, x = %) + (¢ +n)llx — X[ = 9(F) =0

for all x € R". Taking into account that n > 0 was chosen arbitrarily, we get the
claimed representation of d.¢(x) for all ¢ > 0. Furthermore, it follows from the
epigraph convexity and the normal cone representation (1.9) that

Nepig (¥, (X)) = {v, V)| (v, 1), (x, @) — (X, 9(X))) < 0 for all (x, ) € epig},

which implies by (1.24), (1.25) the formulas for d¢(x) and 3¢ (X). A
It is easy to verify that the sets (1.33) and (1.34) are convex while may be trivial
for simple nonconvex Lipschitzian functions like ¢ (x) = —|x|, where 9.9 (0) = ¢

for ¢ = 0 and small ¢ > 0. On the other hand, we’ll see below that these sets
considered at points x near x can be used for approximating the subdifferential
d@(x). Similarly to the case of normals, the regular subgradient collection (1.33)
plays a role of the presubdifferential in subdifferential theory, along with their -
subgradient enlargements (1.34). We obviously have

9:8(%; Q) = N+ (3; ) whenever ¥ € Q and & > 0

for set indicator functions. The next result reveals deeper relationships between (reg-
ular) e-normals and e-subgradients including the underlying case of ¢ = 0 most
important in what follows. As mentioned above, the norm on R” x R used in the
proofis || (x, &) || = ||x|| + || by (1.18).

Theorem 1.26 (Geometric Descriptions of Regular Subgradients and Their ¢-
Enlargements). Let ¢ : R" — R with x € dom ¢. Then

%@ C {v eR"| (v, —1) € No((F, p(X)); epig)} forall & > 0.

Conversely, whenever 0 < ¢ < 1, we have the implication
(v, —1) € N ((¥, 9(¥)); epip) == v € 0¢, p(K)
with e := e(1 + |[v|])/(1 — ¢€). Therefore
Vo) = [v e R"| (v, —1) € N((&, 9(¥)); epig)]. (1.36)

Proof. Pick any v € 58(,0()2) and show that (v, —1) € ﬁg((i, ©(x)); epig) for each
& > 0. Indeed, it follows from definition (1.34) that for any y > O there is a neigh-
borhood U of x with

o) — (&) — (v, x —X) > —(¢ + y)|Ix — X|| whenever x € U.

This readily gives us for any x € U and o > ¢(x) that

(v, x =X)+ @) —a < (e+ I a) = & eI,
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which implies by definition (1.6) with ¢ > 0 for 2 = epi¢ that v € 58g0(i).

To verify the converse implication above, fix ¢ € [0, 1) and assume on the con-
trary that v ¢ 58 ,¢(x) with &1 > 0O specified in the statement. Then there are y > 0
and a sequence x; — X such that

oxr) — (X)) — (v, xp —x)+ (&1 + Y)llxx — x|l <O forall k € N,
Letting o := @ (x) + (v, xy —Xx) — (61 + ¥)|lxx — X ||, observe that oy — @(X) as

k — oo and that (xg, o) € epig for all k € N. It implies with the usage of the sum
norm (1.18) on the product space that

(v, xx — X) — (o — @(X)) _ (&1 + Y)llxe — x|l
ks ) — (X, @Ol l(xx — X, (v, xk — X) — (1 + ) lxk — XDl
ety €1

> > =
L+l + € +y)  T+lvl+e

for all k € N due to y > 0 and the choice of ¢;. This clearly implies that (v, —1) ¢
N ((x, ¢(x)); epi ), which justifies the claimed implication. Representation (1.36)
follows by combining the statements above for ¢ = 0. A

The geometric representation of regular subgradients in (1.36) allows us to de-
duce their properties from those obtained above for regular normals. The next result
establishes in this way a smooth variational description of regular subgradients for
general extended-real-valued functions.

Theorem 1.27 (Smooth Variational Descriptions of Regular Subgradients). Let
¢: R" — R be finite at . Then v € la\(p()f) if and only if there is a function : U —
R defined on some neighborhood U of x and Fréchet differentiable at x such that
V(X)) = @(x), Vi (x) = v and that ¥ (x) — ¢(x) achieves a local maximum on U at
x = X. If furthermore ¢ is bounded from below on R", then we can choose ¥ to be
concave and smooth on R" and such that vy (x) — ¢ (x) achieves its global maximum
on R" uniquely at x = x.

Proof. The first part of this result follows directly from geometric representa-
tion (1.36) of regular normals in Theorem 1.26 and the smooth variational descrip-
tion of regular normals given in Theorem 1.10. To verify the second part, pick any
NS 5(,0 (x) and observe that the function

p(1) :==sup{p(*) — p(x) + (v,.x —X)| x e X +1B}, >0,

satisfies the assumptions of Step 2 in the proof of Theorem 1.10 by the imposed
boundedness of ¢ from below. Having 7 : [0, c0) — [0, 00) constructed therein, we
can easily see that the function

Y(x) = —t(lx — %) — lx — X + o(®) + (v, x = %), xR,

enjoys all the properties claimed in this corollary. A
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1.3.5 Limiting Subdifferential Representations
Next we derive limiting representations of the basic and singular subdifferentials of
@ at x € dom ¢ and present some of their useful consequences.

Theorem 1.28 (Limiting Representations of Basic and Singular Subgradients).
Let ¢ : R" — R be finite at x. Then we have the representations

dp(x) = Lim supfa\ga(x) = Lim supfa\ggo(x), (1.37)
x5 x5
el0
3%¢(x) = Limsup Ad¢(x) = Limsup A9¢(x). (1.38)
x5 PR
240 x,el0

Proof. We begin by verifying that the subgradient set d¢(x) belongs to the first
limit in (1.37) while observing that the inclusion “C” in the second representa-
tion of (1.37) is obvious. Pick any v € d¢(x) and get by definition (1.24) that
(v, —1) € N((x, ¢(x)); epi ¢). Then by the first representation of the normal cone in

Theorem 1.6, we find sequences (xi, o) e (x, p(x)) and (vg, —Ax) — (v, —1)
as k — oo such that

(vk, =) € N((xk, a); epig) forall k € N. (1.39)

Suppose without loss of generality that A = 1 for all k and get ax = ¢(xx) by
Exercise 1.62. Then we have from (1.36) that vy € d¢(xx), which means by (1.1)

that the vector v belongs to the outer limit Lim sup5¢ (x)asx £ 5
To proceed further with the proof of (1.37), take v from the rightmost set therein

and find some sequences ¢; | 0, xx £ X, and vy — v satisfying
v € Og (xx) forall k € N.
For any k we get from the first inclusion in Theorem 1.26 that

(vk, —1) € Neg (v, p(xp); epig), k € N

Passing now to the limit as k — oo gives us by Theorem 1.6 the inclusion (v, —1) €
N((x, ¢(X)); epi ¢), which ensures by (1.24) that v € d¢(x) and thus completes the
proof of both representations in (1.37).

To justify the first singular subdifferential representation in (1.38), pick v from
the set on the right-hand side therein and find by definition (1.1) sequences Ax | O,

Xk i ¢ X, and vy — v as k — oo such that vy € Ak/a\w(xk) for all k € N. This
implies by (1.33) and the conic structure of N (-; epi @) that we have (1.39) with
ar = ¢(xg), which ensures by passing to the limit as k — oo that v € 3¢ (x) due
to definition (1.25).
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To proceed with verifying the opposite inclusion in (1.38), pick v € 3®p(x)
and get (v,0) € N((x,p(x));epig). Then Theorem 1.6 generates sequences

(xk, ag) e (x, (x)) and (vg, Ax) — (v,0) as k — oo such that the inclusions
in (1.39) hold. We can put o = ¢ (xy) in (1.39) and easily see as in Proposition 1.17
that Ay > O for all k € N. There are two cases to consider: either (a) A; > 0 or (b)
M = 0 along some subsequence of k — oo. In case (a) we have v € Akla\w(xk) and
thus conclude that v belongs to the outer limit on the right-hand side of (1.38). Case
(b) reduces to (a) by showmg that in thls case the sequence {vk} can be slightly ad-
justed so that there are (g, —kk) € N((xk ¢ (xr)); epi @) with kk J0and vy — v
as k — oo. The proof of this adjustment is technically involved and is omitted here;
see [678, Theorem 8.9] and [522, Lemma 2.37] for different detailed arguments.
The second representation in (1.38) is justified similarly to the case of (1.37). A

Note that the second representations in (1.37) and (1.38) justify the stability of
the limiting representation of d¢(x) with respect to the presubdifferential enlarge-
ment. Such a stability is clearly related to that in the normal cone representations of
Theorem 1.6. Let us demonstrate the importance of it in the proof of the following
useful property of singular subgradients.

Proposition 1.29 (Singular Subgradients Under Lipschitzian Additions). Let
¢: R" — R be finite at x € dom ¢, and let y: R" — R be locally Lipschitzian
around this point. Then

3% (p + ) (x) = 3%p(X).
Proof. Given v € 9°°(¢ + ¥)(x), find by definition (1.25) sequences y; | O,
(xk» k) PLLY) &, (¢ +¥)(X)), vg = v, vy — 0, and n; | 0 such that
(Vk, x — xk) + (@ — ax) < ye(llx — xgll + o — akl)

for all (x, ) € epi (¢ + ) with x € xx + nB and | — ax| < nx as k € N. Take a
Lipschitz constant £ > 0 of ¢ around x from (1.26) and denote 7y := n;/2(£ + 1)

and oy = ay — ¥ (xx). Then (xi, o) ﬂ (x, ¢(x)) and
(x,a+y(x)) eepilp+v), [(@+¢¥(x)— ol <nk
whenever (x, a) € epig, x € x; + 7B, and |a — & | < 7x. Hence
(ks x — xpe) 4+ v — &) < exe(llx — xx |l + oo — &k |) with e := yr (1 +€) + |vg|€

for any (x, @) € epip with x € x; + 7B and |a — a)| < 7. This yields (vg, vg) €
]’V\Sk((xk, ap); epig) forall k € N, and so (v, 0) € N((x, ¢(X)); epi @) since ¢; | 0
as k — oo. Thus we get the inclusion “C” in the statement above. Applying it to
the sum ¢ = (¢ + ¥) + (—¥) gives us 3%p(x) C I (¥ + ¢)(x), which justifies
the claimed equality and completes the proof. A
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It is easy to observe that the convex set of regular subgradients (1.33) for any
extended-real-valued function ¢ admits the dual representation

5§0()€) = {v € R”] (v, w) <dp(x; w) forall we R"} (1.40)
via the contingent derivative of ¢ at x € dom ¢ in the direction w defined by
do(x; w) :==inf{v € R| (w,v) € T((¥, p(X)); epigp)} (1.41)

geometrically in terms of the contingent cone (1.11) to the epigraph. This is similar
to the duality relationship between the prenormal and contingent cones to closed
sets in Proposition 1.9 It follows directly from the definitions that epidg(x; ) =
Tepi (X, 9(x)) and that dp(x; w) can be described analytically via the lower limit
of difference quotient

p(x +12) — p(X)

: (1.42)

do(x;w) = 1igi£f
110

Observe that we can equivalently let z = w in (1.42) if ¢ is locally Lipschitzian
around x. Note also that our basic subdifferential (1.24), being nonconvex, cannot
be generated in the duality scheme of type (1.40) by any directional derivative. On
the other hand, the approximation results of Theorem 1.28 show that it can be done
in the limiting procedure.

We’ll see in Chapters 2—4 that, in spite of (actually due to) their nonconvexity,
the basic and singular subdifferentials as well as the normal cone and coderivative
associated with them enjoy comprehensive calculus rules and other properties cru-
cial for applications, while their regular counterparts are inadequate in themselves
for a satisfactory theory and applications.

Let us first present some simple albeit important properties that are shared by
basic and regular subgradients.

Proposition 1.30 (Elementary Rules for Basic and Regular Subgradients). Let
¢: R" — R be finite at x. The following assertions hold:
(i) (GENERALIZED FERMAT RULE) If X is a local minimizer of ¢, then

0 € dp(x) and 0 € dp(X).

These conditions agree and are sufficient for global minima when ¢ is convex.
(ii) (SUM RULES WITH DIFFERENTIABLE ADDITIONS) Let ¥ : R" — R be
differentiable at x. Then we have

AW + @) (F) = VY (F) + dp(3).
If furthermore r is of class C' around this point, then

AW +¢)(X) = VY (x) + dp(X).
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Proof. When x is a local minimizer of ¢, we get directly from definition (1.33)
that v = 0 is a regular subgradient of ¢. The second inclusion in (i) follows from
that of 5(;)()2) C d¢(x), which in turn is a consequence of representation (1.37) in
Theorem 1.28. If ¢ is convex, the sets é\(p()f) and d¢(x) agree with each other by
Proposition 1.25, and the condition 0 € d¢(x) ensures that x is a global minimizer
of ¢ by the subdifferential representation therein.

The inclusion “C” in the rule for ’8\(1# + @) (x) is verified directly by definition.
The opposite one follows from it by applying to ¢ = (¢ + ¢) + (—). To obtain
the sum rule for basic subgradients, we pass to the limit from its regular counterpart
at points nearby with the usage of Theorem 1.28. A

The limiting representation (1.37) of basic subgradients via regular ones is conve-
nient for their calculations in multidimensional spaces. The next example illustrates
this for two Lipschitz continuous functions on R.

Example 1.31 (Subdifferential Calculations for Lipschitzian Functions).
(i) Consider first the function ¢ : R2 — R defined by

@(x1,x2) == |x1| — |x2| for (x1,x2) € R?,

which is Lipschitz continuous on R? and differentiable at every (x1,x2) € R? with
both nonzero components x1, x. We have

V(p(-x19x2) € {(11 1)’ (17 _1)’ (_17 1)7 (_19 _1)}

for all such (x1, x2). Itis easy to calculate regular subgradients of ¢ at any (x1, x2) €
R? by definition (1.33):

(1, —1) ifx; >0, x2 >0,
(-1,-1 ifx; <0, x2 >0,
(-1,1) ifx; <0, x2 <0,
590()61,)62): (1, 1) ifx; >0, x2 <0,

(,-D|—1=<v=1}ifx; =0, x>0,
(,D|-1<v=1} ifx;=0 x <0,
] ifXQZO.

Employing Theorem 1.28 gives us the basic subdifferential (see Fig. 1.11)

3¢(0,0) ={(w, D] -1 <v=1}U{@,-D|-1=<v =1}

(ii) Consider next the more complicated function:

@(x1,x2) i= | [x1| + x2| for (x1,x2) € R?,
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A
1

9¢(0,0)

Fig. 1.11 Basic subdifferential of ¢(x1, x2) = |x1| — [x2]

\/
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which is also Lipschitz continuous on R2. Based on their definition (1.33), we cal-

culate regular subgradients of ¢ at any x € R? by

(1,1
(=1, =D
(=L 1D
(1, -1

dp(x1,x) ={ {w, D] -1<v<1
(v, v) —1§v§1%
(v, —v)|-1=<v=1}
(i, v)| vi] < vy < 1}
]

if xq
ifx1
ifx1
ifx1
ifx1
if x1
if xq
if x;
if xq

By Theorem 1.28 we then calculate (see Fig. 1.12)

39(0,0) = {(vr, v)| lvil <v2 <1} U{(i,v)| v2=—|ui], =1 < vy <

> 0,
> 0,
<0,
<0,
=0,
> 0,
<0,
=0,
=0,

Fig. 1.12 Basic subdifferential of ¢ (x1, x2) = | |x1| + x2|.

x1 +x2 > 0,
X1 +x2 <0,
X1 —x2 <0,
x1 —xp > 0,

xp > 0,
X1 +x2 =0,
x1—x2=0,
x2 =0,
xy < 0.
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Now we apply both representations of basic subgradients in (1.37) of Theo-
rem 1.28 to derive the important scalarization formula for expressing the coderiva-
tive (1.15) of a single-valued Lipschitzian mapping f: R” — R via the subdiffer-
ential (1.24) of the scalarization (v, f)(x) := (v, f(x)), x € R".

Theorem 1.32 (Coderivative Scalarization). Ler f: R* — R™ be continuous
around x. Then we have the inclusion

d(v, f)(x) C D* f(xX)(v) forall veR".
If in addition f is locally Lipschitzian around x, then
D* f(x)(v) = d{v, f)(x) forall v eR™.

Proof. Picking any # € d(v, f)(x) and using the first representation in (1.37) give
us sequences xy — X and uy — u such that u; € 5(1}, f)(xx) for k € N. By
definition (1.33) for each k, there exist a neighborhood Uy of x; and a number
vk > 0 satisfying the inequality

(v, /X)) = (v, [Yxk) = (uk, x — xx) = —yxllx — xgll when x € Uy,
which ensures in turn the relationship

. (g, x — xx) — (v, f(x) — fO))
im sup =Wk
x—x e =Xk, fO0) — fOa)l

Hence (uy, —v) € ﬁyk((xk, f(xx)); gph f) for each k € N, which gives us u €
D* f(x)(v) by Theorem 1.6 and the coderivative definition (1.15).

To prove the opposite inclusion, pick u € D* f(x)(v) and by Theorem 1.6 find
Xy — X, ur — u, and vy — v such that (ug, —v;) € ﬁ(xk, f(xx)); gph f) for
k € N. Hence there exist g | 0 and y, | 0 with

(k, x — xi) — (v, f(0) — fQ)) < e+ Ollx — x|l forall x € x + miB,
where ¢ > 0 is a Lipschitz modulus (1.26) for f around x. This yields
u € B, (v, f)(x) with g := y(1 4 £) + £l — v]| L 0

and gives us by Theorem 1.28 that u € d(v, f)(x). A

1.3.6 Subgradients of the Distance Function

We conclude this section with calculating the basic subdifferential of the distance
function dg(x) from (1.2) associated with a nonempty (locally closed) set €2. This
function is intrinsically nonsmooth while being globally Lipschitzian on R” with



1.3 First-Order Subgradients of Nonsmooth Functions 37

modulus ¢ = 1. Subdifferential properties of dg at the given point x depend on
the location of x: either in-set x € Q or out-of-set x ¢ 2. The following theorem
presents formulas for calculating regular and basic subgradients at both in-set and
out-of-set points.

Theorem 1.33 (Subdifferentiation of the Distance Function at In-Set and Out-
of-Set Points). For the distance function dg(x), the following hold:
(i) If x € 2, then we have that

9do (%) = No(¥) NB and ddo(X) = No(¥) NB. (1.43)
(ii) If x ¢ 2, then we have via the Euclidean projector Tlg that
X—w
—— if llq(x) = {w}, ¥ — o (X
ddo ) = | 1K —wl ddo(F) = ~ 112 g

do(X)
0 otherwise;

Proof. We split the proof into several major steps of their own interest.
Step 1: Forany x € 2, the first formula in (1.43) holds.
Indeed, picking v € ddq(x) with x € 2 gives us by (1.33) that

d —do(x) — (v, x — x ) X — %
0 < liminf () o) — (v, x =) = — lim sup —(v x—X)
Q

— (1.45)
llx — x|l

o2 o =l
which shows by (1.6) that v € ﬁg (x). Furthermore, the Lipschitz continuity of dg
with constant £ = 1 immediately implies that

UV, X — X .
OXZD e, ol <1,

lim sup —
X—>X ||)C - x”

and so ddg (x) C Na (x)NB. To justify the opposite inclusion, take any v € Na x)N
B and observe from (1.45) that it remains to consider the underlying “liminf” therein
for x — x with x ¢ Q. To proceed, fix x ¢ Q with do(x) > 0 and find 4 € 2 such
that

0 < llx —ull < do(x) + Ilx — %%,

Then for any x sufficiently close to x, we have
lu =% < x —ull + lx — 2|l < dox) + llx — |* <3]x — %l (1.46)

This, with taking the estimates in (1.46) and ||v|| < 1 into account, allows us to
derive the following chain of inequalities:
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_ %) — _ i _ _ —_ 512 = _x
liminfdQ(X) do(X) - (v, x —X) > liminf llx —ull —llx XII_ (v, x — X)
X—X [[x — x| X—x lx — x|l
x¢Q x¢Q

. limipf[(l — vl - Ux —ull (v, u —_X>]
X% llx — x|l llx — x|
x¢Q
JU—X . . 3(v,u —x
> —limsupw > min {0,—11msup(vu—_x)} > 0,
oz e —xl . llu—x|
x¢Q2 u—Xx

Together with the equality in (1.45), it shows that ﬁg x)NB C 5(19 (x) and thus
ensures the validity of the first formula in (1.43).

Step 2: Forany x ¢ Q2 and w € Tlg(x), we have the inclusion
3dgo(¥) C No() N B.

To verify it, pick v € 5619 (x) and deduce from Theorem 1.22 that ||v|| < 1. It
follows from the definitions that for any y > 0 there is v > 0 such that

(v,x —x) <dq(x) —da(X) +yllx — x| = do(x) — ¥ —w[ +ylx — x|l

if |[x — x| < v. Fix w € Q with ||[w — w| < v and observe by using ||[(w — w +
X)—Xx|| <vanddg(w —w+x) < ||lw—w+Xx —w| = ||x — w] that

(v,w—w) <dow—w+X) - [[¥x —w|+ylw-w|=<ylw-wl,

which shows that v € N, o (w) and thus justified the claimed inclusion.

Step 3: For any x € 2 the second formula in (1.43) holds.

Indeed, take v € ddq(x) and find by the subdifferential construction some se-
quences xxy — X, vy — v with v € 5dg(xk) as k € N. Picking wy € Tlgq(xg)
for large k, we get that wy — X and vy € No(wp) NB by Step 2. It tells us that
v € Nq(x) N B by passing to the limit as k — o0. To prove next the opposite in-
clusion, fix any v € Nq(x) N B and find sequences x; — X and vy — v such that
x; € Qand v, € Ng(xx) for all k € N. Define

Uk

=% ren,
Y a1 S

and observe that w; € B, w; € ﬁg (xx), and thus wy € 5dg (xx) by Step 1. Since
the sequence {wy} also converges to v, we get v € ddq(x) and therefore complete
the proof of assertion (i) of the theorem.

Step 4: For any x ¢ Q2 the contingent derivative of the distance function ¢(x) =
dq(x) at x in the direction z € R" admits the representation

dg(¥)() = min {<|)|‘x__—wz>

= ‘ W e ng(w)}. (1.47)
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To verify this, we use the equivalent representation

do(: 2) = liminf 28T 12 =90 (1.48)
t10 t
of the contingent derivative (1.41) of a locally Lipschitzian function that easily fol-
lows from the analytic description (1.42). For ¢(x) = dgq(x) and any projection
w € Ig(x), we deduce from (1.48) and the differentiability of the norm function
¥(x) ;= ||x]| at X # 0 with Vi (x) = = that

Tl

X +1z—wl =[x —wll _ (x —w,z)

do(x; z) <liminf = ——,
(X 2) < limd : Iz — ol

and thus we get the inequality “<” in (1.47). To justify the opposite inequality
in (1.47), fix z € R", take a sequence of #; | O for which the limit in (1.48) is
realized as ¢(x) = dq(x), and select wy € [1q(x + t;z) for large k. Since

do(X + 1z) = X + iz — will < da(x) + &zl = da(X),

we may assume that wy — w as k — oo for some w € INg(x). By wy € Q we
have |x — wg]|| > ||x — w] and so

do(X + tz) —do(X) _ [IX + fez — wiell — [IX — will
1y - 1y '

This yields the inequality “>" in (1.47) by (¥ (x), x — x) < ¥ (x) — ¥ (x) due the
convexity of the norm function ¢ = ||x||.

Step 5: For any x ¢ Q2 we have both formulas in (1.44).

It follows from the duality correspondence of Proposition 1.9 between the regular
normal cone and the contingent cone and from the above formula (1.48) for ¢(x) =
dq(x) that

do(x +1tz) —do(x
(v, 2) < lim inf o(r + Zt) 2 poral zeR”].
t

Bdo (%) = [v eR"

Combining this with (1.47) tells us that v € 5dg (x) if and only if

(v,2) = (- 2) forall z €R", i € Ma(®),
X —wl|
which implies the first formula in (1.44). We can derive the second formula therein

by using the first one, representation (1.37), and the definitions. A

Observe that the formulation and proof of Theorem 1.33 are more involved in the
out-of-set case in comparison with the in-set one. Let us develop another approach
to subdifferentiation of the distance function at out-of-set points x ¢ €2 involving
the p-enlargement of Q relative to x defined by

Qp) = [x e R"| do(x) < p} with p = da(X). (1.49)
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Note that the p-enlargement of €2 is always closed for any p > 0, even when €2 is
not. Furthermore, 2(p) = 2 + pB if Q is closed.

First we present a useful result on calculating regular subgradients of dg at x ¢ 2
via regular normals to the p-enlargement (1.49) at this point.

Lemma 1.34 (Regular Subgradients of the Distance Function via Regular Nor-
mals to Enlargements). For any x ¢ Q C R", we have

Bdg(¥) = N(%; 2(0) N {v e R"| |lv] = 1}. (1.50)
Proof. We start by checking the representation
dop)(x) =dq(x) — p forany x ¢ Q(p) and p > 0. (1.51)

To proceed, fix x ¢ Q(p) and take any u € Q(p) with do(u) < p. Then for every
y > 0, there is u,, € Q satisfying

lu —uy || <do@)+y <p+vy,
which yields in turn the estimates
lu —xll = lluy — xIl = lluy —ull = do(x) = lluy, —ull = do(x) —p —y.

Since the estimate ||u — x|| > dq(x) — p — v holds forallu € Q2(p) and all y > 0,
we obtain the inequality

dqp)(x) = da(x) — p.
To verify the opposite inequality in (1.51), consider the continuous function
o) ==da(tx + (1 —u), €0, 1],

for a fixed point # € . Since ¢(0) = 0 and ¢(1) > p, there is 7y € (0, 1) with
@(ty) = p by the classical intermediate value theorem. Putting z := fox + (¢ — fo)u,
we have dq(z) = p and ||x — u|| = ||lx — z|| + |[v — u]||. Hence

lx —ull = llx —zll +da@) = llx —zll +p

by u € Q and z € Q(p), which ensures the validity of (1.51) .

Using this representation of dg,), we justify now representation (1.50) starting
with the inclusion “C” therein. Pick any v € ddq(x) and fix y > 0. Then by the
construction of regular subgradients, there is v > 0 for which

(v,x —Xx) <dg(x) —dq(x) + y|lx — x| whenever x € x + vB.

It ensures that (v, x — x) < y||lx — x| forall x € (x +vB) N QQ)) by virtue of
do(x) —dq(x) <0asx € Q(p) with p = dg(x). This yields v € N(x; Q2(p)).
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Let us show that ||v|| = 1 whenever v € 5dg (x). Use again the definition of
regular subgradients of dg at x with y and v, put

r= min{l, Y, ;_},
1+ dq(x)

and choose x, € Q so that |X — x,|| < dq(X) + r2. For x := X + r(x, — X), we
obviously have the estimates

lx —%|| < rllx — x|l < rda(X) +r* < r(l + dsz(i)) =V,
which lead us to the relationships

(v,x — %) < [lx — % — ¥ — xp [l + 72 + yrlI ¥ — x|
= —rllx — x| + 7% +er||¥ — x|

Taking into account the above choice of x tells us that
(W, 2, —x) < =llx = x| + (X + lIx = x]D),
which readily ensures the estimates

(v, X — x) 1 1
syl —— ) = -y (1 + —),
x ==l () 2 (1 am)

and thus ||v]| > 1. Since ||v|| < 1 by the Lipschitz continuity of dg with modulus
£ =1, we conclude that ||v|| = 1 and get the inclusion “C” in (1.50).

To justify the opposite inclusion in (1.50), fix v € ]V()E; Q(p)) with ||v]| = 1 and
then take arbitrary y > 0 and n € (0, 1). By the first relationship in (1.43), we get
v e 5dg(p) (x), and hence there is v; > 0 such that

(v, x —x) <dgq(p)(x) —da)(*) + yllx — x|| whenever x € x + vB.
It follows from the representation of dg,) established above that
(v, x —X) <dg(x) —dq(x) + y|lx — x| whenever x € ()? + vﬂB%) \ Q2(p).

On the other hand, the inclusion v € N (x; Q(p)) implies the existence of v; > 0
ensuring the estimate

(v,x — %) < (y/2)llx — x|l forall x € (X + v,B) N Q(p).
Since ||v|| = 1, we choose u € R" such that ||u]| = 1 and (v,u) > 1 — 5. Fix
v3 € (0,v2/2) and x € (x + v3B) N Q2(p) and put o, := dq(x) — dq(x) > 0. Then
x +ou € Q(p) N (x + vB) due to

do(x + oxu) < dq(x) + oy = dq(x) = p and
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X +oxu —x|| < |lx — X[ +0x <2|x —X|| < 2v3 <1y,
which implies that (v, x + oyu — x) < y||x — x|| and hence

(v, x +oxu —x) = (v, oxu) < yllx —x|| —ox(l —1n)

(v, x —x) =
< ylx — x| + (da(x) — do(X))(1 —n).

Since n > 0 was chosen arbitrarily, we have
(v,x = x) < yllx —x|| + do(x) — do(x) whenever x € (x + 13B) N Q2(p),

and ﬁlerefore the latter holds for all x € x 4+ vB with v := min{vy, v3}. Thus we get
v € ddq(x) and complete the proof of the lemma. A

The obtained result (1.50) justifies an exact counterpart of the first relationship
in (1.43) in the case of regular subgradients of the distance function at out-of set
points and regular normals to the enlargement (1.49). A natural question arises about
the validity of a corresponding counterpart of the second relationship in (1.43) for
basic subgradients and normals. The following simple example in R? shows that the
answer is negative for the crucial inclusion

ddo (%) C N(%; (p)) NB with p = do(x) > 0. (1.52)

Example 1.35 (Basic Subgradients of the Distance Function Are Not Repre-
sented via Basic Normals to Enlargements). Consider the set

Q:={(x1,x) e R2| X2 x3 > 1}

with ¥ = (0,0) ¢ . In this case do(x) = 1, Q(p) = Q+ pB = R? with p = 1,
and hence N (¥; 2 (p)) = {0}. On the other hand, it is easy to see that

do(x1,x2) = 1 —/x} +x3,

and so ddq(x) = Sg2. This shows that inclusion (1.52) fails.

To establish a correct relationship between subgradients of the distance function
at out-of-set points and basic normals to the enlargement (1.49), we need to nar-
row the collection of basic subgradients from ddg(x) at x ¢ €. It is done below
by observing that the limiting procedure employed for this purpose employs regular
subgradients of the distance function not at all the points x; — X but only at those
where the function values are fo the right of d(x; 2). In this way we arrive at the fol-
lowing right-sided limiting subdifferential of an extended-real-valued function that,
along with its modification, is useful for various applications; see more discussions
in Section 1.5.

Definition 1.36 (Right-Sided Subdifferential). Given ¢: R" — R finite at X, de-
fine the RIGHT-SIDED LIMITING SUBDIFFERENTIAL of ¢ at x by
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d>¢(x) := Lim sup/E)\fp(x), (1.53)
¢+ _
X—>X

where x (p—J; X means that x — X with ¢(x) — ¢(X) and ¢(x) > @(X).

It follows directly from the construction in (1.53) that
Jp(X) C d-9(X) C do(¥)

while 9>¢(x), in contrast to d¢(x), may be empty for simple nonsmooth Lips-
chitzian functions as in Example 1.35. Observe the following useful properties. The
obtained result (1.50) justifies an exact counterpart of the first relationship in (1.43)
in the case of regular subgradients of the

Proposition 1.37 (Some Properties of the Right-Sided Subdifferential). Let
¢: R" — R be finite at x.
(i) If x is a local minimizer of ¢, then

0>p(x) = dp(x), andso 0 € 3>@(x).

(ii) We have the stability property with respect to e-enlargements:

3> ¢(X) = Limsup d,¢(x). (1.54)
x‘p—ti
el0

Proof. Property (i) follows from (1.53) and the definition of local minimizers. To
verify (ii), we proceed as in the proof of (1.37) in Theorem 1.28. A

Now we are ready to establish relationships between the right-sided subgradients
of the distance function and basic normals to enlargements.

Theorem 1.38 (Right-Sided Subgradients of the Distance Function and Basic
Normals at Out-of-Set Points). Given a set 9 # Q C R" and a point x ¢ <,
denote p = dq(x) and consider the p-enlargement Q2 (p) of Q2 defined in (1.49).
Then the following relationships hold:

d=do(x) C [N(x; Q(p)) NB]\ {0}, (1.55)
N(x: Q(p) = | r9=da (). (1.56)
A>0

Proof. To verify (1.55), pick any v € 9>dq(x) and by (1.53) find x4 — Xx with
do(xr) > do(x) and v — v satisfying vy € 5dg(xk), k € N. It follows from
Lemma 1.34 that ||vg|| = 1 when k sufficiently large, and so |[v] = 1. Denote
for convenience Q2 (x) := Q(p) with p = dq(x) and consider the following two
cases, which fully cover the situation: (a) There is a subsequence of {x;} such that
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dq(xx) = dq(x) along this subsequence. (b) Otherwise. Since dg(x;) > dq(X) in
this case, we have that x; ¢ 2(x) for k € N sufficiently large.

In case (a) we get from Lemma 1.34 that vy € N (xx; 2(x)) along this subse-
quence and then arrive at (1.55) by passing to the limit as k — oo.

Considering case (b), recall by (1.51) that

do(x) = do(x) + dqx)(x) whenever x ¢ Q(X).
Therefore for every k € N, we have the conditions
vk € ddo(xk) = 5[0'52 (X) + da @) | (k) = Bdg ) (xe)

along the sequence under consideration. Denoting &4 := ||x; — x|, deduce from the
proof of Theorem 1.33(i) the existence of {X;} C € (x) such that

1% — xkll < dog (i) < & and v € N(¥: Q). keN.

which yields v € N (x; €2(x)) by passing to the limit as k — oo and thus completes
the verification of inclusion (1.55).

Observe that the inclusion “D>” in (1.56) follows directly from (1.55). To verify
the opposite inclusion therein, pick v € N ()E; Q()E)) and suppose that v # 0; the
alternative case is trivial. Then there are some sequences x; — X with x;y € Q(x)
and vy — v such that vy € ﬁ(xk; Q(x)) for all k € N. Since ||vg|| > O when £ is
sufficiently large, we deduce from Lemma 1.34 that

vk € lukldda(xp) as k — oo.

Note that dg(xx) < p by the choice of x; € €(x), while the strict inequality
dq(xr) < p is not possible for large k due to 0 # v € ﬁ(xk; Q(x)). Selecting
now a convergent subsequence of ||vg|| and using Definition 1.36 of the right-sided
subdifferential, we find A > O such that v € Ld>dgq(x), which justifies (1.54) and
completes the proof of the theorem. A

1.4 Exercises for Chapter 1

Exercise 1.39 (Properties of Generalized Normals).

(i) Show that the normal cone N (x; 2) in definition (1.4) can change if another norm on R” is
used instead of the Euclidean one, even for convex sets 2.

(ii) Show that the collection of regular normal N (x; ©2) defined by (1.5) in grbitrary Banach
spaces is invariant with respect to any equivalent norm on this space. Is it true for N, (x; €2) defined
in (1.6) as ¢ > 0?

(iii) Verify the decreasing property

ﬁg(i; Q) C f\’;(i; €27) whenever x € Q> C 27 and ¢ > 0.

Does this hold for the normal cone N (x; €2) defined by (1.4) or by using (1.7)?
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Exercise 1.40 (Sequential vs. Topological Weak™ Outer Limits). Let F: X = X™* be a set-
valued mapping between a Banach space X and its dual X*. The sequential weak™ outer limit of
F as x — X is defined by

Limsup F(x) := {x* € X* | 3 sequences xx — X and X 5o
v E (1.57)
with x; € F(x;) forall k € N},

The ropological weak* outer limit of F as x — X is defined in scheme (1.57) by replacing the
weak™® convergence of sequence x; — x* by that of nets. Both limits reduce to the Painlevé-
Kuratowski outer limit (1.1) if X is finite-dimensional.

(i) Give an example where the topological weak* outer limit of some mapping F at X is strictly
larger than the sequential weak® outer limit of F' at this point.

(ii) Show that the conclusion of (i) holds also in the case where the weak™ convergence of nets
in the definition of the topological outer limit is replaced by the weak* convergence of bounded
nets.

Exercise 1.41 (Asplund Spaces). A Banach space X is called Asplund (or it has the Asplund
property) if every convex continuous function ¢ : U — R on an open convex set U C X is Fréchet
differentiable on a dense subset of U. Show that

(i) The Asplund property of X is equivalent to the Fréchet differentiability of every convex
continuous function ¢ : X — R at some point of X.

(ii) The space X is Asplund if and only if for every separable subspace Z C X its dual subspace
Z* C X* is separable as well.

(iii) If X is Asplund, then unit ball B* C X* is weak™ sequentially compact.

(iv) The product X x Y of two Asplund spaces is Asplund.

Hint: Consult the books [255, 522, 638] and the references therein.

Exercise 1.42 (Representation of ¢-Normals). Consider the following statement: Given a (lo-
cally closed) set & C X with X € € and given any numbers ¢ > 0 and y > 0, we have the
inclusion _ R

N.&e {N(x; sz)‘ xeQn(F+ yIB)} + (e + y)B*,

where the sets of e-normals in X* are defined as in (1.6) by using the canonical pairing (x*, x)
between X and X*.

(i) Deduce this statement from the proof of Theorem 1.6 for X = R".

(ii) Verify this statement in the case where X is an Asplund space and compare it with the proof
of [522, Theorem 2.34] based on the variational result (fuzzy sum rule from the extremal principle)
formulated below in Exercise 2.26.

Exercise 1.43 (Basic Normals in Banach and Asplund Spaces). Let 2 C X be a subset of
a Banach space with x € Q. The (basic, limiting) normal cone to Q at x is defined by via the
sequential weak™* outer limit (1.57) by,

N(X; Q) := Limsup N, (x; Q) = { x* e X*| Iseqs. &g | 0, x¢ 3 %,
Q _
= F (1.58)

xS x* with xf € Ne (s Q)},

(i) Show that the normal cone (1.58) can be equivalently represented as

N(x; Q) = Limsupﬁ(x; Q) = { x* e X*| 3 seqs. xx 2) X,
25 (1.59)
X Z x* with x; € ﬁ(xk; Q)}
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if X is Asplund. Hint: Use the results from Exercise 1.42(ii) and Exercise 1.41(iii).

(ii) Give an example showing that set (1.58) may be strictly larger than (1.59) for closed sets in
non-Asplund spaces.

(iii) Give examples in both Asplund and non-Asplund settings of Banach spaces showing that
replacing the sequential weak™ convergence in (1.58) and (1.59) by the weak™ convergence of
bounded nets results in strictly larger sets.

Exercise 1.44 (Robustness of Generalized Normals in Finite and Infinite Dimensions). Let
) # Q C X be an arbitrary (closed) subset of a Banach space X. R

(i) Does the robustness property of Proposition 1.3 hold for the prenormal cone N(-; 2) in
finite-dimensional spaces?

(ii) Give an example demonstrating that the robustness property fails in R” for the convexified
normal cone defined in (1.61), which can be represented as

NG Q) :=cleoNF; Q), ieQcR (1.60)

Hint: Verity first the representation in (1.60) and compare it with Exercise 4.36(iii).

(iii) Show that Proposition 1.3 doesn’t generally hold even for cones 2 in Hilbert spaces X;
compare it with [522, Example 1.7].

(iv) Give sufficient conditions for robustness of N (-; 2) in infinite dimensions. Hint: Compare
the latter with [522, Theorem 62].

Exercise 1.45 (Normals to Products of Sets in Banach Spaces). Let Q2| C X and 2, C X; be
nonempty subsets of Banach spaces.

(i) Does a counterpart of Proposition 1.4 hold for regular normals?

(ii) Establish corresponding relationships for e-normals to products of sets.

(iii) Show that Proposition 1.4 holds for basic normals defined by (1.58).

(iv) Does a counterpart of the product formula from Proposition 1.4 hold for the convexified
normal cone (1.60)?

Exercise 1.46 (Convexified Normal Cone to Lipschitzian Manifolds). A set 2 C RY is called
a Lipschitzian manifold of dimension d < ¢ around z € Q if there is f: R" — R locally
Lipschitzian around x such that 7 = (x, f(x)) and the set €2 is locally homeomorphic around z to
the graph of f. The set 2 is strictly smooth at Z if f can be selected as strictly differentiable (1.19)
at x.

(i) Show that, besides graphs of locally Lipschitzian mappings, Lipschitzian manifolds include
graphs maximal monotone operators as in (4.27), subgradient mappings for convex and more
generally prox-regular functions ¢ : R” — R as in Definition 3.27, etc. Hint: Compare with [676,
678].

(ii) Prove that the convexified normal cone (1.60) to a Lipschitzian manifold 2 C R? around
z of dimension d is not a one-sided cone but a linear subspace of dimension greater than g — d,
which equals to g — d if and only if Q is strictly smooth at z. Hint: Compare with the proof in
[676] while simplifying it by using dual/normal vs. primal/tangent arguments similarly to those in
[522, Theorem 3.62].

(iii) Derive a Banach space extension of the “subspace property” result from (i) for the Clarke
normal cone defined by the dual correspondence

NGE Q) =T Q)F = {x* € X*| (x*,x) <0 forall x € T(¥; )} (1.61)

via his (always convex) regular tangent cone to Q2 at x € Q given by

T Q) = {w c X‘ V seqs. fx 4 0, xx 5 ¥ 324 = % with Z"t;x" = w}.
k

Hint: Proceed as in the proof of [522, Theorem 3.62].
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Exercise 1.47 (Basic Normals in Hilbert Spaces). Let X be a Hilbert space, and let Q C X with
x € Q. Establish an appropriate counterpart of representation (1.4) of the basic normal cone defined
in (1.59), where the “Limsup” in (1.4) and (1.59) are taken with respect to the weak topology of
X* = X. Hint: Use the projection descriptions from [167, Proposition 1.1.3].

Exercise 1.48 (Normal-Tangent Relationships). Let X be a Banach space, and let 2 C X with
x € Q. Define the contingent cone T (x; 2) to € at x as in (1.11) with the outer limit taken in the
norm topology of X. The weak contingent cone Ty (x; Q2) is the collections of w € X such that
there are sequences {x;} C € and {ox} C Ry with x4 — x strongly in X and o (x — X) —> w
weakly in X as k — oo.

(i) Prove the duality relationship

N(E; Q) C Ty (% Q) = [x* e X*| (x*, w) <0 forall we Ty (F; D}, (1.62)

where the equality holds if X is reflexive. Hint: Compare with [522, Theorem 1.10].

(ii) Give an example where T (x; Q) # Tw(x; ) in the case of reflexive spaces, and so the
equality in (1.62) fails if Ty (x; 2) is replaced by T (x; ).

(iii) Do we have the converse duality N* (x; Q) =T(x; Q) inR"?

(iv) Obtain relationships between T (¥; ), Tw (X; R2), and T (¥; ) in finite and infinite dimen-
sions. Hint: See [522, Theorem 1.9] and the references therein.

(v) Show that, along with the duality construction (1.61), the converse duality N* (x; Q) =
T (%; ) holds in arbitrary Banach spaces.

Exercise 1.49 (Normals to Contingent Cones). For any 2 C R” and X € €, we have the fol-
lowing relationships:

() Nx; Q) = N(O; T (x; Q)).

(ii) N(O; T(x; 2)) C N(x; Q2). Hint: Compare with the results and proofs in [678, Proposi-
tion 6.27] and [568, Corollary 6.5]

(iiii) Give an example showing that the inclusion in (ii) is strict in R2.

(iii) Do the relationships in (i) and (ii) hold in infinite dimensions?

Exercise 1.50 (Boundary Points and Convex Separation).

(i) Derive the classical convex separation theorem in R” from Proposition 1.2.

(ii) Give an example of the failure of Proposition 1.2 in infinite dimensions.

(iii) Derive sufficient conditions for the validity of Proposition 1.2 for closed convex and non-
convex sets in Hilbert spaces.

Exercise 1.51 (Variational Characterization of Regular Normals). Following the proof of The-
orem 1.10, clarify that:

(i) Assertion (i) therein holds in any Banach spaces.

(ii) Assertion (ii) therein holds in Fréchet smooth spaces, i.e., such Banach (actually Asplund)
spaces where there is an equivalent norm (renorming) Fréchet differentiable at every nonzero point.
Is the Fréchet smooth property of Banach spaces necessary for the validity of the smooth varia-
tional description in (ii)?

(iii) It is said that a Banach space X admits an S-smooth bump function of a given class S if
there is b: X — R such that b(:) € S, b(xp) # 0 for some xo € X, and b(x) = 0 whenever x lies
outside a ball in X. Let S stand either for the class of Fréchet smooth and Lipschitz continuous
functions or for the class of C!-smooth and Lipschitz continuous functions on X. Show that the
existence of S-smooth bump functions on X ensures the descriptions of regular normals to any
set 2 C X as in assertion (ii) while replacing Fréchet smooth and concave functions therein by
S-smooth functions of the aforementioned classes. Is the existence of S-smooth bump functions
on X necessary for such descriptions?

Hint: Compare this with [257, Theorems 4.1 and 4.2] and [523, Theorem 1.30].
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Exercise 1.52 (Strictly Differentiable Mappings). Let f: X — Y be a mapping between Ba-
nach spaces, and let x € X.

(i) Show that the strict differentiability of f at x yields the local Lipschitz continuity of f
around this point.

(ii) Give an example of a continuous function f: R — R, which is Fréchet differentiable at x
as in (1.12) but not strictly differentiable at this point.

(iii) Give an example of a Lipschitz continuous function f: R — R, which is strictly differen-
tiable at x but not of class C! around this point.

Exercise 1.53 (Adjoints to Surjective Linear Operators). Let A: X — Y be a linear bounded
operator between Banach spaces, and let A*: Y* — X* be the adjoint operator to A. Assume that
A is surjective (AX = Y), which reduces to the full rank m < n of A when X = R", Y = R".
Then for any y* € Y*, we have

1A% I = lly* | with k= inf [14*y) | "1 = 1} € (0, 00).

In particular, A* is injective, i.e., A*y[ # A*y3 if y| # y3.
Hint: Use the classical open mapping theorem; cf. [522, Lemma 1.18].

Exercise 1.54 (Normals to Inverse Images of Sets Under Differentiable Mappings). Let
f: X — Y be amapping between Banach spaces that is strictly differentiable at x as in (1.19) and
such that the derivative operator V f(x): X — Y is surjective, andlet ® C Y with y := f(x) € ©.

(i) Show that ﬁ(f; f‘1(®)) = Vf()?)*ﬁ(j}; ®). Is the surjectivity of V f(x) essential here?
Is it possible to replace the strict differentiability of f at x by its Fréchet differentiability at this
point if dimY < 00?

(ii) Verify the basic normal formula

N(%: f71(®) = VFE*NG; 0).

Is the strict differentiability of f at x essential here in the case of dimY < oo?
Hint: Compare it with the proofs of [522, Theorems 1.14 and 1.17] and simplify them in the
case of finite-dimensional spaces.

Exercise 1.55 (Normal Regularity of Sets). A subset 2 C X of a Banach space is normally
regular atx € Qif N(x; Q) = ﬁ()’c; Q).

(i) Show that every convex set is normally regular at each of its point.

(i) Consider that preimage Q := f~!(®) of ® C ¥ under a mapping f: X — ¥ between
Banach spaces and assume that f is strictly differentiable at x € Q2 with the surjective derivative
V f(x). Verify that 2 is normally regular at x if and only if ® is normally regular at y := f(x).
Hint: Use the results of Exercises 1.54 and 1.53.

(iii) Let € C R” be a Lipschitzian manifold around ¥ € Q. Show that the set 2 is normally
regular at x if and only if it is strictly smooth at this point. Hint: Employ the results of Exer-
cise 1.46(ii).

Exercise 1.56 (Coderivatives of Mappings Between Banach Spaces). Let F: X =3 Y be a set-
valued mapping between Banach spaces, and let (x, y) € gph F.

(i) The normal coderivative D}, F(X,y): Y* = X* of F at (X,y) € gphF is defined by
scheme (1.15) by using the normal cone (1.58) to the graph = gph F' at this point, and thus it
admits the weak™® sequential limiting representation

DyF(%.5)(*) = Limsup DIF(x,y)(y"). 7 er* (1.63)
w2 @.5)

¥ 5%, 610
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via the e-coderivative mapping (x, y, y*, &) > 5:F(x, y)(y*) given by
DIF(x, (") == [x* € X*| (x*, =y*) € Ne((x, y); gph F)},  y* e Y™ (1.64)

Show that ¢ can be equivalently dropped in (1.63), i.e., Z)\;* can be replaced by the precoderiva-
tive/regular coderivative D* as in finite dimensions (1.17), provided that the spaces X and Y are
Asplund. Hint: Use Exercises 1.41(iv) and 1.43(i).

(ii) The mixed coderivative D}, F (X, y): Y* =3 X* of F at (¥, ) € gph F is

Dy F(x,y(*) = Lims}lp 5;‘F(x,y)(y*), yterr, (1.65)
2 (& 5)

N

y*=y*,el0

i.e., it is defined by replacing the weak™ convergence y* %, $* with the norm convergence ||y* —
¥*|| = 0in Y*. Show similarly to (i) that ¢ can be equivalently dropped in (1.65) when both spaces
X and Y are Asplund. Furthermore, give an example showing that the sets in (1.65) may be strictly
smaller than those in (1.63) for each y* even for Lipschitz continuous mappings F = f: R — Y
with values in Hilbert spaces. Hint: Compare with [522, Example 1.35].

Exercise 1.57 (Coderivatives of Differentiable Mappings). Let F = f: X — Y be a single-
valued mapping between Banach spaces, and let x € X.

(i) Assume that f is Fréchet differentiable at x, i.e., (1.19) holds with z = X. Verify the regular
coderivative representation

D*f@)(y*) = {VfE@*y*} forall y* eY*.
(ii) Assume that f is strictly differentiable at x as in (1.19). Show that
Dy f(®)(y) = Dy fE*) ={Vf )y} forall y*er*

(iii) Is the strict differentiability assumption essential for the coderivative representations in
(i1)? Is it necessary for the validity of these representations?

Hint: To justify (i), proceed as in the proof of Proposition 1.12. The proof of (ii) requires the
careful usage of the strict derivative definition; cf. [522, Theorem 1.38].

Exercise 1.58 (Coderivatives of Convex-Graph and Convex-Valued Multifunctions Between
Banach Spaces). Let F': X = Y be a set-valued mapping between Banach spaces, and let (x, y) €
gph F.

(i) Assume that F is convex-graph and check that for all y* € Y*, we have

D*F(%,5)(y*) = D}, F(%, $)(y*) = Dy F (&, ) (")

=[rex e n-pt =m0 0 -0t 0]

(ii) Assume that F is convex-valued around X and inner semicontinuous at x; the latter is
defined in (1.20) without any change in Banach spaces. Show that the result of Theorem 1.15
holds for both normal and mixed coderivatives.

Exercise 1.59 (Coderivatives of Indicator Mappings). Given Banach spaces X and Y, consider
a nonempty set 2 C X and define the indicator mapping A: X — Y of the set Q2 relative to the
range space Y by
on._ JO0eYif xeQ,
A ) "{@ if x¢Q.
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Check that for any x € © and y* € Y*, we have
DIAG () =N @), £20;
Dy A Q") = Dy AE () = NE: Q).

Exercise 1.60 (Graphical Regularity of Mappings). Let F: X =3 Y be a set-valued mapping
between Banach spaces, and let (x, y) € gph F. N

(i) F is N-regular at (x, y) if Dy, F(x, y)(y*) = D*F(x, y)(y*) for all y* € Y*. Indicate
classes of mappings that are N-regular and show that this property fails, in particular, for any
f+R* — R™, which is locally Lipschitzian around X but not strictly differentiable at this point.
Hint: Use results from previous exercises. N

(ii) F is M-regular at (x, y) if Dy, F (%, y)(y*) = D*F(x, y)(y*) for all y* € Y*. Construct a
mapping that is M-regular but not N-regular at a given point.

(iii) Let F = f: R" — R™ be Lipschitz continuous around x. Show that f is graphically
regular at x if and only if it is strictly differentiable at this point. Hint: Use the subspace prop-
erty of the convexified normal cone from Exercise 1.46(ii) and compare with the proof of [522,
Theorem 1.46].

(iv) Consider another approach to the result in (iii) and its infinite-dimensional extensions based
on the coderivative scalarization as in [522, Subsection 3.2.4].

Exercise 1.61 (Coderivative Chain Rules with Surjective Derivatives of Inner Mappings). Let
g: X — Yand F: Y =2 Z be mappings between Banach spaces, and let Z € (F o g)(X). Assume
that g is strictly differentiable at x with the surjective derivative Vg(x). Then the following hold:

D*(F 0 g)(%,2) = Vg(X)*D*F(g(¥), 2),

D*(F 0 g)(¥,2) = Vg(X)*D*F(g(%), 2)
for both D* = D}, D},. Moreover, F o g is N-regular (resp. M-regular) at (X, ) if and only if F
has the corresponding regularity property at (g(x), z). Hint: Apply the results from Exercises 1.54
and 1.53; see [522, Theorem 1.66] for more details.

Exercise 1.62 (Slanted Regular Normals to Epigraphs). Let X be Banach, and let : X — R
be L.s.c. around X € dom ¢. Show that the inclusion (v, —A) € I/V\(x, a); epig) with A > 0 implies
that « = ¢(x). Hint: Proceed by the definitions by using arguments similar to those in Step 4 of
Theorem 1.23.

Exercise 1.63 (s-Subgradients of Locally Lipschitzian Functions). Let X be a Banach space,
p: X — R be locally Lipschitzian around x with modulus ¢ > 0, and /8\”0()?) be the e-
subdifferential of ¢ at x defined as in (1.34) for any ¢ > 0.

(i) Show that there is > 0 such that

lx*] < €+e forall x* € d,p(x), x €+ nB.
(ii) Show that there is n > 0 such that
x|l < e(1+€) forall (x*,0) € Ne((x, 9(x)); epig), x € X + 1B,
Ix*|| < €+e(1+¢€) forall (x*,—1) € 1/\75(()6, ©(x)); epi<p), x € X +nB.
Hint: Proceed by the definitions.

Exercise 1.64 (Smooth Variational Descriptions of Regular Subgradients in Infinite Dimen-
sions). Let ¢: X — R be finite at ¥, and let x* € dp(X).

(i) Show that the first assertion of Theorem 1.27 holds in arbitrary Banach space X, while the
second one requires that X admit a Fréchet smooth renorming. Furthermore, in the latter case, we
have the enhanced minimum condition



1.4 Exercises for Chapter 1 51
e(x) — Y (x) — |x — X|I> = @) — ¥ (%) forall x € X. (1.66)

(ii) Derive appropriate analogs of (1.66) in Banach spaces admitting S-smooth bump functions
of the classes listed in Exercise 1.51(iii).

Hint: Proceed similarly to the proof of Theorem 1.27 with taking into account the results of
Exercise 1.51 and compare this with [522, Theorem 1.88].

Exercise 1.65 (Basic Subdifferential in Infinite Dimensions). Let X be Banach. Define the basic
subdifferential of ¢: X — R at X € dom ¢ geometrically

dp(x) = {x* S X*| x*, -1 € N(()E, ©(X)); epi<p)} (1.67)

via the basic/limiting normal cone (1.58) in Banach spaces.
(i) Show that d¢(x) from (1.67) admits the following analytic representation

dp(x) := Lim sup/a\ggo(x) (1.68)
xi}
el0

via the sequential weak™ outer limit (1.57) of e-subgradients at points nearby. Hint: Deduce it from
definition (1.58) and Theorem 1.26, which holds in an arbitrary Banach space without any change
in the proof.

(ii) Let X be Asplund. Show that d¢(x) admits the equivalent representation

3(¥) := Lim sup d¢(x). (1.69)

x—>Xx
Hint: Employ the result from Exercise 1.43(i).

Exercise 1.66 (Subgradients of the Norm and Negative Norm Functions).
(i) Consider the norm function ¢(x) := ||x|| defined on an arbitrary Banach space X. Based on
the definitions, show that

R B* if ¥ =0,
dp(x) = dp(x) =
[x* € X*| lx*]l = 1, (x*, %) = | %]} if & #0.

(ii) Based on the above definitions, calculate /a\(p()f) and d¢(x) for p(x) := —||x|| at x = 0 and
X # 0in (a) finite-dimensional Euclidean and non-Euclidean spaces, (b) Asplund spaces, and (c)
Banach while not Asplund spaces.

Exercise 1.67 (Subgradients of Strictly Differentiable Functions). Let X be Banach, and let
@: X — R be strictly differentiable at x.

(i) Show that 5@()?) = dp(x) = {V(p()?)}.

(ii) Is the strict differentiability of ¢ at x necessary for the validity of the second equality in (i)
when ¢ : R" — R is Fréchet differentiable at x?

Exercise 1.68 (Singular Subdifferential in Infinite Dimensions). Let X be Banach. Define the
singular subdifferential of ¢: X — R at X € dom ¢ by

9 @(x) := Lim sup Aggw(x) (1.70)
55
A, el0

via the sequential weak™ outer limit (1.57) in Banach spaces.
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(i) Assume that X is Asplund and show that in this case

3% ¢(x) := Lim sup A0p(x), (1.71)
PA-
240
i.e., & > 0 can be equivalently dismissed in (1.70).
(ii) Verify that in Asplund spaces we have the geometric representation

0%p(x) = {x* € X*} (x*,0) € N(()?, ©(X)); epigo)}. (1.72)

Hint: Compare this with [522, Theorem 2.28] and simplify the proof in Hilbert spaces following
the approach developed in [470].

(iii) Does representation (1.72) hold in general Banach spaces with the normal cone defined
in (1.58) and the singular subdifferential defined in (1.70)?

Exercise 1.69 (Basic and Singular Subgradients of Lipschitzian Functions in Banach
Spaces). Let X be a Banach space, and let ¢: X — R be a locally Lipschitzian function
around x with modulus £ > 0.

(i) Prove the subgradient estimate (1.27). Hint: Use (1.68) and Exercise 1.63(i).

(ii) Prove that 9®°¢(x) = {0}. Hint: Use (1.70) and Exercise 1.63(i).

(iii) Give an example showing that the condition 3*°¢(x) = {0} doesn’t imply the local Lips-
chitz continuity of ¢ in infinite dimensions.

Exercise 1.70 (Scalarization of the Regular and Mixed Coderivatives in Banach Spaces). Let
f: X — Y be a mapping between Banach spaces, which is assumed to be locally Lipschitzian
around x. _ .

(i) Show that D* f (x)(y*) = a(y*, f)(x) for all y* € Y*.

(i) Show that D}, f (X)(X)(y*) = 8(y*, f)(¥) for all y* € Y*. Hint: Proceed as in the proof of
Theorem 1.32 with using the e-enlargements in (1.65) and (1.68) as well the norm convergence on
Y* in the construction of D}, f (X, y)(y*).

(iii) Give an example showing that the scalarization formula in (i) is violated for the normal
coderivative of Lipschitzian mappings with values in Hilbert spaces.

(iv) Does an analog of the scalarization formula hold for the coderivative generated by the
convexified normal cone to graphs of locally Lipschitzian mappings between finite-dimensional
spaces?

Exercise 1.71 (Scalarization of the Normal Coderivative for Strictly Lipschitzian Mappings).
Let X, Y be Banach, and let f: X — Y be locally Lipschitzian around x. It is w*-strictly
Lipschitzian at x if there is a neighborhood V of 0 € X such that for any u € X and

any sequences x; — X, tx | 0, and y; %, 0, we have (yi k) — 0ask — oo with

e =1 U (e + ) = f G-

(i) Show that any mapping f strictly differentiable at X is w™*-strictly Lipschitzian at this point
and find other conditions ensuring the validity of the w*-strict Lipschitzian property of f at x.

(i) Show that the w*-strict Lipschitzian property of f at x implies that for any sequences
ex 4 0, xp — X, and (v, x{) € gph 5;1 f (xx), we have the implication

. w* . WX
Vi > 0=x"—0 as k — oco.

(iii) Assuming that X is Asplund and that f is w*-strictly Lipschitzian at x, justify the scalar-
ization formula for the normal coderivative:

Dy f(D)(™) = 3(y*, f)(x) forall y* € Y*.

Hint: Use (ii) and compare it with the proof of [522, Theorem 3.28].
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Exercise 1.72 (Subgradients of Compositions with Surjective Derivatives of Inner Map-
pings). Consider the composition ¢ o g of a mapping g: X — Y between Banach spaces and
a function ¢: ¥ — R. Assume that g is strictly differentiable at ¥ with the surjective deriva-
tive Vg(x) and that ¢ is finite at y := g(x). Verify the following subdifferential chain rules:
(g 0 g)(X) = Vg(X)*dp(y),

d(@og)(¥) = Vg(X)*0p(y), and 9% (¢ o g)(X) = Vg(X)*d% ¢ ().
Hint: Deduce these equalities from the coderivative calculus in Exercise 1.61 by considering
there the epigraphical multifunction F' = E,, defined in (1.29).

Exercise 1.73 (Proximal Subgradients and Their Limits in Hilbert Spaces). Let ¢: X — R,
where X is a Hilbert space. The proximal subdifferential of ¢ at x € domg is defined as the
collection of proximal subgradients

p(x) —p(X) — (x*, x — X)

Ipe(x) := {x* € X*| liminf - > —oo}.
xX—X H)C —)C”2

(i) Show that dp @(x) C 5(,0 (x) and that the proximal subgradient set dp¢(X) may not be closed
in R” in contrast to dp(x).

(ii) Give an example showing that the set dpp(X) may be empty even for smooth functions on
finite-dimensional spaces.

(iii) Show that for any x* € 5(,0()2), there are sequences xj % %and x; € dp@(xy) such that
llx; —x*|| — 0 as k — oo. Hint: Compare this with the proof in [472, Theorem 5.5] and simplify
it in the case of X = R".

(iv) Based on (iii) and (1.69), derive the limiting subdifferential representation

dp(x) = Limsup dpe(x).
Y -

X—=>X

Exercise 1.74 (Subdifferential Regularity of Functions). Let X be a Banach space. A function
@: X — Ris subdifferentially or epigraphically regular at X € dom ¢ if its epigraph is normally
regular at (x, ¢(X)).

(i) Show that the function ¢ is subdifferentially regular at x if and only if

dp(x) :5(,0()2) and 3%¢p(x) = {v € X*| (v,0) € I’V\(()E, ©(X)); epigo)}, (1.73)

where the first equality in (1.73) is known as the lower regularity of ¢ at x.

(ii) Show that for locally Lipschitzian functions ¢ on arbitrary Banach spaces, the subdifferen-
tial regularity and lower regularity of ¢ at X are equivalent, while it is not the case in general even
for X = R.

(iii) It follows from Theorem 1.33 that the distance function dg for @ C R” is lower regular
at x €  if and only if the set 2 is normally regular at this point, while dg is lower regular at
x ¢ Q if and only if the Euclidean projector I1(x; 2) is a singleton. Do these facts hold in infinite
dimensions?

Exercise 1.75 (Upper and Symmetric Subdifferentials). Given a function ¢: X — [—00, 00)
finite at X on a Banach space X, define the upper subdifferential and upper singular subdifferential
of ¢ at x by, respectively,

T == —3(=p)(®), 3 TpF) = —I%(=)(@). (1.74)

The symmetric subdifferential and the symmetric singular subdifferential of ¢ at x are defined by,
respectively,

300(%) 1= 0p(F) UdToE), 8%°%(F) 1= 0%p(F) U™ To(%). (1.75)
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(i) Check the plus-minus symmetry properties of the constructions in (1.75):
(=) () = =% (@), 30 (=p)(¥) = —9°p(¥)
(ii) Let ¢ be locally Lipschitzian around x with modulus £ > 0. Check that
300 (%) = {0} and ||x*| < ¢ forall x* € 8% (%).

Exercise 1.76 (Upper Regular Subgradients and Subdifferential Characterization of Fréchet
Differentiability). Define the collection of upper regular subgradients of ¢ : X — [—00, 00) finite
at X by 3T (¥) := —d(—9)(X), i.e.,

lim sup o) — @) = T X = 1) = 0}»

) = {x* € X* =
xX—>X ”x - x”

(1.76)

(i) Give examples showing that the sets 5(/)(2) and 5*’(/)()?) may be empty simultaneously for a
continuous function ¢ : R — R and that /'()\(p (x) may be a singleton when ¢ is not Fréchet differen-
tiable at x.

(jj) Show that ¢ is Fréchet dﬁferentiablg at x if and only if we have simultaneously 5(p (x)#0
and 3" (X) # ¥ in which case 9 Tp(X) = dp(¥) = {Vp(X)}.

Exercise 1.77 (Epigraphical Regularity and Symmetric Subgradients for Convex Functions).
Let ¢: X — R be convex on a Banach space X. Show that ¢ is epigraphically regular at every
X € dom ¢, and we have

30p(x) = 0¢(x) = {x* € X*| (x*,x —X) < p(x) —p(x) forall x € X}.

Hint: All the claimed properties but the representation for 8%(x) in Banach spaces are ver-
ified similarly to the proof of Proposition 1.25. To justify the latter representation, it remains to
show that 3" ¢(X) C d¢(¥) for convex functions. The latter can be proved by applying (1.68) to
—J(—¢)(x) and observing that the condition :/8\8(—(p)(x) # () for some x and ¢ > 0 ensures that
¢ is bounded from above around x and thus d¢(x) = d¢(x) # @ due the convexity of ¢. Then
apply Exercise 1.76(ii) and compare with [522, Theorem 1.93] for more details.

Exercise 1.78 (Characterizations of Two-Sided Regularity for Continuous Functions). A
function ¢ : X — [—00, 00) finite at X is upper regular at this point if 3¢ (%) = /E)\Jr(p(i), i.e., the
function —¢ is lower regular at x.

(i) Show that the graphically regular of ¢ at X (in both sense of Exercise 1.60 for ¥ = R)
implies that ¢ is simultaneously lower and upper regular at this point. The converse holds if ¢
is locally Lipschitzian around x. Hint: Use the corresponding Banach space extension of (1.30)
Theorem 1.23 and the result of Exercise 1.75(ii).

(ii) Check that the strict differentiability of ¢ at X ensures both lower and upper regularity of ¢
at this point. The converse holds if ¢ is locally Lipschitzian around x and dim X < oo. Hint: To
verify the converse statement, use Exercise 1.60(iii).

Exercise 1.79 (Generalized Directional Derivative and Generalized Gradient). Let X be a
Banach space.

(i) Assume that ¢: X — R is locally Lipschitzian around x. The (Clarke) generalized direc-
tional derivative of ¢ at X in the direction w € X is

0/=. s o(x +tw) —e(x)
¢°(X; w) := limsup ——8™

x—>X t

tl0

(1.77)

and the corresponding generalized gradient of ¢ at X is

Jp(X) = {x* € X*| (x*, w) < ¢°(¥; w) forall we X}. (1.78)
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Show that the function w +— ¢°(x; w) is convex and satisfies the condition ¢°(x, —w) =
—@°(x; w), which implies the plus-minus symmetry

(=) () = —p(X). (1.79)

(ii) Verify that the convexified normal cone (1.61) admits the representation

NG Q) = cl*{ U AﬁdQ()E)} (1.80)
2>0

via the (topological) weak™ closure of the cone spanned on the generalized gradient (1.78) of the
Lipschitzian distance function, which induces the corresponding subdifferential of a general (1.s.c.)
function ¢: X — R atx € domg by

JpE) == {x* € X*| (x*, —1) € N((%, p(¥)); epip)}. (1.81)
(iii) Show that for any ¢: R" — R finite at X, we have the representation
p(x) = cleo[09(X) + 0%p(X)], (1.82)
which leads us in the case of locally Lipschitzian functions to the following ones:
3p(F) = codp(x) = codT () = co 3% (x). (1.83)

Hint: For (i) and (ii), consult [165]. To verify (iii), deduce (1.82) from (1.60) and then derive all
the conditions in (1.83) from (1.82) by using Theorem 1.22 and the symmetry relationship (1.79)
for locally Lipschitzian functions.

Exercise 1.80 (Generalized Jacobian of Lipschitzian Mappings and Subgradients of Scalar-
izations). Let f: R" — R be locally Lipschitzian around x. By the classical Rademacher theo-
rem (see, e.g., [678, Theorem 9.60]), f is differentiable almost everywhere around x. The (Clarke)
generalized Jacobian 3 f (x) of f at ¥ is a nonempty compact subset of R"*" defined as the convex
hull of the set

{lim V f(xo)| xc > X, k — oo, f is differentiable at x; }

via the limit of the Jacobian matrix V f (xx) for f at x.

(i) Show that for m = 1, the generalized Jacobian of f at x reduces to the generalized gradient
of f at this point. Hint: Proceed by the definitions with the usage of the classical Fubini theorem;
compare it with [165, Theorem 2.5.1].

(ii) Show that for any m € N, we have the following relationships:

D* f(x)(v) = (v, fI(X) = co{A*v! Ae gf()'c)} whenever v € R”.

Hint: Use (i), (1.83), and the coderivative scalarization from Theorem 1.32.

(iii) Establish appropriate infinite-dimensional versions of the relationships in (ii) for locally
Lipschitzian mappings defined on Asplund spaces. Hint: Use the scalarization results from Ex-
ercises 1.70 and 1.71 together with Preiss’ extension [647] of the Rademacher theorem to such
mappings.

Exercise 1.81 (More Subgradient Calculations).

(i) Consider all the functions ¢: R — R from Example 1.21(i—iv) and calculate for them the
subgradient sets 9+ ¢(0), 3T ¢(0), 3%(0), 3 (0), 3%+ (0), and 3°%¢(0). Draw the correspond-
ing figures.

(ii) Consider the two Lipschitz functions ¢: R? — R from Example 1.31, calculate for them
the subgradient sets 9+ ¢(0, 0), 3+ ¢(0, 0), 80<p(0, 0), and 3¢(0, 0), and then draw the illustrating
figures.
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(iii) Define the functions ¢ : R> — R by
o1, x2) = |xi|* =[xl @1, x) = x| — xlf, @@ x) =[x = |xlf

for any o, 8 € (0, 1). galculate for these functions the sets 5(/)(0, 0), 5*’(/)(0, 0), d¢(0,0),
9T ¢(0, 0) Bogo(O, 0), and d¢(0, 0) as well as their singular counterparts 3>°¢(0, 0), 3°>T¢(0, 0),
3%°0¢(0, 0) with the corresponding geometric illustrations.

Exercise 1.82 (Duality for Regular Subgradients and Contingent Derivatives in Finite and
Infinite Dimensions).
(i) Given ¢ : R" — R and x € dom ¢, show that

() = {v e R"| (v, w) < dp(F; w) forall weR"},

where dg(x; w) is the contingent derivative from (1.41) and (1.42).
(ii) Does this representation hold in infinite dimensions?

Exercise 1.83 (Relationships Between Directional Derivatives). Let X be a Banach space, and
let 9: X — R be finite X.

(i) Assuming that the classical directional derivative of the function ¢ at the point X in the
direction w € X given by

¢ (& w) = lim PET W) ~ 90 (1.84)
t}0 t
exists whenever w € X, show that dp(X; w) < ¢'(x; w) for the contingent derivative (1.42), where
the inequality may be strict for continuous functions on R.

(i) Assuming that ¢ is locally Lipschitzian around x, show the relationship do(x; w) <
¢°(X; w) between the generalized directional derivatives (1.42) and (1.77) for all w € X, where
the inequality may be strict when X = R.

(iii) Assuming that ¢ is locally Lipschitzian around x and that ¢’ (x; w) exists for all w € X,
show that the inequality ¢’ (X; w) < ¢°(X; w) may be strict even for X = R. The case of equality
therein is known as the tangential, directional, or Clarke regularity of ¢ at x. Show that it always
holds for convex function and that we have dg(x) = ¢°(x) under this regularity.

Hint: See [124, 125] for detailed comparisons between the aforementioned and other regularity
notions in variational analysis.

Exercise 1.84 (Calculus of Right-Sided Subgradients). Clarify which calculus properties are
available for the right-sided subdifferential (1.53).

Exercise 1.85 (Subdifferentiation of the Distance Function in Infinite Dimensions). Let ¢}
Q2 C X, where X is Banach.

(i) Derive counterparts of Theorem 1.33(i) and Lemma 1.34 for e-normals and e-subgradients
at in-set and out-of-set points.

(ii) Prove the corresponding extensions of Theorem 1.33(i) and Theorem 1.38 in arbitrary Ba-
nach spaces X.

Hint: Use Ekeland’s variational principle (see Chapter 2) and compare with the proofs in [522,
Theorems 1.97, 1.99, 1.101].

Exercise 1.86 (Subgradients of the Distance Function via Projection Points).

(i) Show that in any infinite-dimensional Hilbert space X, there is a closed set 2 such that the
formula for ddg (x) in Theorem 1.33(ii) is violated. Hint: Construct €2 as an orthonormal basis of
X and take x =0 ¢ Q.

(ii) Let 2 C X be an nonempty subset of a Banach space X, and let x ¢ €. We say that the
best approximation problem is well posed for 2 at x if either (a) for every sequence of x; — x
with g, do(xx) # @ as g | O there is a sequence of wy € TI(xx; 2) that contains a convergent
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Q _ _ - .
subsequence or (b) every sequence of x; — X such that | x;y — X|| — dq(X) as k — oo contains a
convergent subsequence.
Show that the defined well-posedness property for €2 at X ensures the validity of

ddo®c |J [Nw: @) NnB] (1.85)
well(x:2)

(iii) Let X be a reflexive Banach space with an equivalent Kadec norm, i.e., such that the strong
and weak convergences agree on the boundary of the unit sphere. Verify that the best approximation
roblem is well posed on 2 and hence (1.85) holds if either €2 is weakly closed or €2 is closed and
ddq(x) # 0.
Hint: Compare with the approach and results in [522, Theorem 1.105 and Corollary 1.106] for
the proofs of the corresponding assertions in (ii) and (iii).

Exercise 1.87 (Fermat-Torricelli-Steiner Problems). Given an arbitrary number of closed sub-
sets Q; C R"asi = 1,...,s, consider the generalized Fermat-Torricelli-Steiner problem [536]
defined by

s
minimize Zin (x) overall x € R". (1.86)

i=1

The classical Fermat-Torricelli problem corresponds to (1.86) with three singletons €2; in R2, while
the Steiner problem deals with any finite number of points on the plane: see Section 1.5 for more
discussions and references. Using Proposition 1.30(i) and Theorem 1.33(ii) as well as the classi-
cal subdifferential sum rule of convex analysis, find exact the solutions to problem (1.86) in the
following two cases:

(i) The sets ;,i =1, ..., s, are disjoint interval [a;, b;] on the real line with a; < b) < ay <
by < ... <ag < by.

(ii) The sets €2; are three pairwise disjoint balls on the plane.

Hint: See [537, Chapter 4] for formulations and solutions of various location problems involv-
ing the distance function and its extensions.

1.5 Commentaries to Chapter 1

Section 1.1. The central construction in the developed approach to variational analysis and gen-
eralized differentiation is that of the normal cone to a locally closed set from Definition 1.1. This
construction and the corresponding subdifferential of extended-real valued functions were intro-
duced by the author as a by-product of his method of metric approximations in the beginning of
1975 when he was not even familiar with Clarke’s work on generalized gradients. It was first writ-
ten and published in the author’s paper [502] (initially rejected!), not in [528] as stated in [375];
there is a reference in [528] to [502] while not vice versa. Following this scheme of [502] for
problems of time optimal control with nonsmooth constraints, the initial applications were given
in the early papers by the author and Kruger [439, 503, 528] for various optimal control problems.
The normal cone notion of [502], widely spread in variational analysis under the names of ba-
sic/general, limiting, or Mordukhovich normal cone, has been the key and striking departure from
the conventional scheme of defining a normal cone to a set via duality (1.10) from a tangential
approximation, which corresponds for functions to defining a subdifferential via duality from a
directional derivative. As discussed above, the latter approach unavoidably leads one to convex
sets of normals and subgradients, while our constructions are intrinsically nonconvex. Besides the
inspiration from convex analysis, the underlying idea behind the construction of generalized nor-
mals via duality from tangential approximations relates to the well-accepted approach of deriving
necessary conditions in constrained optimization by selecting convex subcones of certain tangent
cones to sets associated with optimal solutions and then applying a convex separation theorem; see,
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e.g., Dubovitskii and Milyutin [234], Girsanov [296], and Neustadt [606]. A similar idea has been
widely implemented in establishing the so-called marginal price equilibria in nonconvex models
of welfare economics starting with Guesnerie [313]. The approach suggested in [502] is princi-
pally different from all the previous developments and leads us to the robust nonconvex normal
cone (1.4) satisfying, together with the associated subdifferential and coderivative constructions
for functions and multifunctions, comprehensive calculus rules at the points in question, without
any appeal to tangential approximations.
Note that the convex closure of the basic normal cone

NE: Q) :=clcoN(x:; Q), *eQ,

as in (1.60) agrees with the convexified/Clarke normal cone to Q at x defined in [163], based on
Clarke’s dissertation [162] under the direction of Rockafellar, by the duality scheme (1.10) via the
(automatically convex) tangent cone introduced therein. The convexity of these tangent and nor-
mal cones provides the possibility to strongly use the machinery of convex analysis and to develop
extensive calculus rules and various applications first for the corresponding generalized gradients
of locally Lipschitzian functions by Clarke [165] and then for certain non-Lipschitzian cases of
sets and functions by Rockafellar [671, 675]. At the same time, it has been realized after a while
that the convexity of the normal cone N (X; Q) in (1.60) creates serious obstacles in deriving satis-
factory necessary optimality conditions and adequate formalizations of marginal price equilibria in
economic modeling; see Mordukhovich [507] and Khan [412]. Furthermore, it is proved by Rock-
afellar [676] that Clarke’s normal cone to a Lipschitzian manifold of dimension d in R" (i.e., a set
locally homeomorphic around the point in question to the graph of a locally Lipschitzian mapping)
inevitable has to be a linear subspace with dimension greater than n — d unless the manifold was
“strictly smooth” at this point. As an illustration, see the set &2 = gph |x| in Example 1.14(i), where
N((0,0); Q) = R2. It shows that for such graphical sets, the convexification operation in (1.60)
may enlarge the normal cone dramatically to the extent of loosing any useful information about
optimality and/or equilibria. Observe to this end that graphical sets always appear in the coderiva-
tive construction of Definition 1.11 and that, besides graphs of single-valued Lipschitz continuous
mappings, Lipschitzian manifolds (or graphically Lipschitzian mappings) include graphs of set-
valued subgradient mappings for convex and more general prox-regular functions ¢: R* — R
as well as maximal monotone operators, which play a crucial role in many aspects of variational
analysis and optimization; see [676] and the books [522, 523, 678] for more details. Note also that
the convexification operation in (1.60) may violate the robustness property of N (x; §2) as for the
set @ = {(x1,x2,x3) € R x3 = |xjx2|} at ¥ =0 € R,

Both limiting representations of the normal cone in (1.7) were given in the papers by Kruger
and Mordukhovich [440, 441] with the original proof (cf. [522, Theorem 1.6]) different fr)gm that
presented above. Furthermore, it has been realized in [441, 440] that the prenormal cone N (x; 2)
in (1.5), known as the regular or Fréchet normal cone, occurs to be dual by Proposition 1.9 to
the contingent/tangent cone from Definition 1.8 introduced simultaneously and independently by
Bouligand [123] and Severi [687] (in fact, this notion goes back to the early work by Peano as well
as a number of other notions related to differentiability, tangency, and set limits; see the historical
investigation by Dolecki and Greco [218] with the references therein). Thus the combination of the
first limiting representation of the normal cone in Theorem 1.6 with the result of Proposition 1.9
shows that the normal cone construction employed by Rockafellar and Wets [678] is equivalent to
the original definition of the normal cone (1.4) from [502].

Recall that the original author’s construction of the normal cone and its equivalent descrip-
tion in terms of limits of tangents are finite-dimensional. The Banach space extension of N (x; 2)
corresponding to the second representation in (1.7) has been suggested in [440, 441] and then
further elaborated in Kruger’s dissertation [426] conducted under the author’s direction and fully
reflected in [428, 430] as well as in the books [507, 522, 523] with carefully written commentaries
therein. This extension defined the normal cone N (x; ) via the weak™ sequential convergence of
e-normals in the space X* dual to a Fréchet smooth space X. Symbolically it is represented in the
sequential outer limit form
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N (x; Q) := Limsup I/V\g(x; Q)

x 25, el0

as in (1.58). Note that, although the exact nature of the weak™® closure was not explicitly specified
in [440, 441], it was clear from the proofs given therein that the weak™ limit was taken in the se-
quential sense due to the classical fact of functional analysis on the weak* sequential compactness
of bounded sets in duals to Fréchet smooth spaces. Unfortunately, these well-known observations
haven’t been reflected in [375]. Note to this end that all the aforementioned publications by the
author and Kruger (including the mimeographed papers [427, 428, 440] written in Russian) have
been widely distributed from the very beginning among experts on nonsmooth analysis in the
former Soviet Union and partly abroad and have been discussed in the seminar and conference
meetings.

In the final line of developments in this direction, the author and Shao [580] justified the possi-
bility to equivalently drop & in (1.58), i.e., to get the representation

N(&; Q) = Limsup N(x; Q)

Q _
X—=>X

from (1.59) as the definition of the normal cone in (1.7) via the sequential weak® outer limit (1.1)
of regular/Fréchet normals (1.5) for closed sets in Asplund spaces. Since this class is essentially
broader than the Fréchet smooth one considered in the aforementioned work by Kruger and Mor-
dukhovich, the refined construction (1.59) allows us to improve the results obtained therein in the
Fréchet smooth setting. Note that the possibility to pass from (1.58) to (1.59) is a highly nontrivial
fact based, among other devices, on the Borwein-Preiss variational principle [108] and the method
of separable reduction by Fabian [254]; see more discussions and references in [522]. Recall that
Asplund spaces form a remarkable and beautiful subclass of Banach spaces that contains, in par-
ticular, every reflexive space (as Fréchet smooth), every space admitting a Fréchet smooth bump
function, every space with a separable dual, etc.; see also Exercise 1.41. As shown in [522, 580],
the Clarke normal cone (1.61), defined in Banach spaces via the tangential duality [165], reduces
to the convexified normal (1.60) provided that the space X is Asplund and the closure operation
in (1.60) is taken in the weak™* topology of X*.

In some infinite-dimensional situations, it is useful to consider a modified limiting normal cone
construction, where the weak* convergence in (1.58) is replaced by the norm/strong convergence
in dual spaces. This has been first done in [277] under the name of the “norm-limiting normal
cone” and recently was nicely implemented in [494] under the name of the “strong limiting normal
cone” to study optimization problems with complementarity constraints in Lebesgue spaces.

The variational description of regular normals in Theorem 1.10(i) holds in any Banach space
as observed in [519], while the more delicate one in (ii) requires a Fréchet smooth renorming; see
Fabian and Mordukhovich [257], where the reader can find other versions under some smooth
bump geometric assumptions on the space in question. Another proof of the smooth variational de-
scription in Theorem 1.10 is given by Rockafellar and Wets [678] in finite dimensions but without
the conclusion on convexity of the smooth support function v therein.

Section 1.2. The coderivative construction of Definition 1.11 was introduced by the author [504]
motivated by deriving necessary optimality conditions in optimization problems with nonsmooth
equality constraints and describing the adjoint system in the extended Euler-Lagrange conditions
for optimal control of differential inclusions. Theorem 1.15 useful in optimal control can be found
in [504]. As we see, the coderivative plays a role of a generalized adjoint derivative for nons-
mooth and set-valued mappings. Note that, being nonconvex-valued, the coderivative D* F (X, ¥)
of F: R" =3 R™ cannot be obtained by duality via any tangentially generated derivative of F at
(x, ¥); in particular, by the contingent/graphical derivative

DFE, 3)w) = {veR"| (u,v) € T((X,5);gph F)}, ueR", (1.87)
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introduced by Aubin [34] motivated by different applications; see also [36]. Previous develop-
ments in this direction based on tangential approximations of graphs can be found in Pshenichnyi
[648, 649] as “locally adjoint mappings” for convex-graph and convex-valued multifunctions.
Serious disadvantages of the graphical derivative (1.87), which it shares with the contingent and
regular normal cones, are nonrobustness and a poor calculus that create obstacles for applications.
This is not the case of the basic coderivative D* along with the basic normal cone from Def-
inition 1.1 and its infinite-dimensional extensions. The principal importance of the coderivative
construction in variational analysis is revealed in the subsequent material of this book; see also the
prior monographs [507, 522, 523, 678] and the references therein.

For mappings F: X =3 Y between infinite-dimensional spaces, there are two distinct exten-
sions of our basiﬁ coderivative (1.15) from the viewpoint of taking the limit in (1.17), where the
precoderivative D* F (known also as the regular/Fréchet coderivative) is defined in (1.16) via the
prenormal cone N to the graph of F or via the e-enlargements N, in (1.6). These enlargements are
needed in the case of general Banach spaces X and Y while it suffices to use N when both spaces
are Asplund. The first extension, called the normal coderivative D}“\, F(x,y), is defined by the
same formula (1.15) as in finite dimensions, while the normal cone N (-; gph F') therein is given
by (1.58) or by (1.59) in Asplund spaces, which corresponds to the weak™ convergence of both se-
quences (x;, —y;) from the cone N ((x¢, yi): gph F) C X* x Y* orits g;-enlargements; see (1.63).
In the second extension, introduced by the author in [514] as the mixed coderivative Dy, F (X, y),
we take advantages of the product structure of X* x Y* and use the strong convergence of y{ in Y'*
while still employing the weak® convergence of x;7 in X*. This gives us (1.65), where we can put
& = 0 if both spaces X and Y are Asplund. It is obvious that D}, F (X, y)(y*) C Dx F(x, y)(¥™),
that these coderivatives agree when dim ¥ < 0o, and that they reduce to the basic coderivative from
Definition 1.11 when dim X < oo as well. In infinite dimensions the coderivatives D}, and D},
enjoy similar and rather comprehensive (in Asplund spaces) calculus rules while both being im-
portant in variational analysis and its applications; see, e.g., [522, 523] and the material presented
below.

Finally, we observe here that the extremal property of Theorem 1.15, which holds in terms of the
normal coderivative for convex-valued multifunctions between arbitrary Banach spaces, shows in
particular that the coderivative Euler-Lagrange condition in optimal control of Lipschitzian differ-
ential inclusions obtained first by the author in [504] yields the Weierstrass-Pontryagin maximum
condition in the convex-valued setting; see [507, 522, 523] for further discussions.

Section 1.3. Subdifferential theory of variational analysis has started from convex analysis with the
fundamental developments by Fenchel, Moreau, and Rockafellar on generalized differentiation of
convex functions; see the books [105, 352, 667, 678] for historical comments and references and
also the recent one [537] for simplified proofs of the key results of convex subdifferential calculus
based on a geometric variational approach. In particular, convex analysis offers a monumental idea
of a set-valued extension of the classical gradient to nondifferentiable functions known now as
the subdifferential or the subgradient mapping. Considering extended-real-valued functions, con-
vex analysis strongly unifies analytic and geometric ideas revolving around convexity. Observe
to this end that, although the classical definition of the convex subdifferential (1.35) is analytic,
geometric considerations based on convex separation/supporting hyperplane theorems have been
behind major results of subdifferential theory for convex functions including their subdifferentia-
tion (dp(x) # ¥), on the relative interior of the domain, subdifferential calculus rules, etc. It has
also been realized from the early days of convex analysis that subgradients of convex functions
can be obtained geometrically via epigraphical normals as in (1.24). Nonconvex counterparts of
these geometric ideas are underlying in subdifferential theory for general functions developed in
this book following those in [507, 522].

On the other hand, it is well known that every convex function ¢: X — R on a Banach space
X (and in more general linear topological settings) admits at any X € dom¢ and w € X the
(one-sided) directional derivative ¢’ (X; w) as in (1.84), which is convex in w and generates the
subdifferential (1.35) by the duality

0p(x) = {v € X*| (v, w) < ¢'(x;w) forall we X}. (1.88)
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This duality scheme has become the dominating source of constructing various subdifferentials
for nonconvex functions via appropriately defined generalized directional derivatives known under
different names; see, e.g., (1.42) and the comprehensive comments on such constructions in the
books [522, 678] with the references therein. The most successful attempt in this vein is general-
ized directional derivative ¢°(x; w) for locally Lipschitzian functions defined by Clarke [163] as
in (1.77). The Lipschitz continuity of ¢ around x and the automatic convexity of (1.77) in direc-
tions are very essential for satisfactory properties of the corresponding generalized gradient 3¢ (%)
obtained from (1.77) by the duality scheme (1.88) as given in (1.78). To recover the generalized
gradient [163] for Ls.c. functions by scheme (1.88), Rockafellar [669] introduced a significantly
more complicated directional derivative. It reduces to (1.77) for locally Lipschitzian functions ¢
while loosing some nice properties known for (1.78) in the Lipschitzian case. In particular, ro-
bustness and certain important calculus rules are generally lost for this construction even in finite
dimensions.

It has been really surprising from the beginning that, despite its nonconvexity and no relation to
any directional derivative, these and much better properties hold for the basic/limiting subdifferen-
tial (1.24) from Definition 1.18 that appeared first in Mordukhovich [502] and then employed in a
number of publications (not so many though till 1988) summarized in the book [507]; see also the
commentaries in [522, 678] for major developments and references during that period.  Overall, it
has been achieved by developing variational/extremal principles and techniques which are at the
core of variational analysis; see more on it in the next Chapter 2.

Let us now comment on the main results presented in Section 1.3 and their infinite-dimensional
extensions. The subdifferential description of locally Lipschitzian functions in Theorem 1.22 and
the singular subdifferential construction (1.25) were given in Kruger and Mordukhovich [504] ,
while the singular subdifferential representation (1.38) in an equivalent limiting form via proxi-
mal subgradients was established by Rockafellar [672] together with the singular subdifferential
characterization of local Lipschitz continuity given in Theorem 1.22; see also [678], where the
first representation in (1.38) is taken for the definition of 3*°¢(x) as the collection of “horizon
subgradients” of ¢ at x, and [522] for infinite-dimensional extensions. Observe that the original
proof of (1.38) in [672] (reproduced in [678, Theorem 8.9]) and those given in various infinite-
dimensional settings [110, 370, 470, 522, 655] are heavily technically involved. Note also that the
singular subdifferential characterization 9°°¢(x) = {0} of local Lipschitz continuity for functions
on Asplund spaces obtained in [522, Theorem 3.52] requires the additional “sequential normal
epi-compactness” condition on ¢ at X, which is automatic in finite dimensions.

Recall that, in contrast to classical analysis with its plus-minus symmetry for derivatives, con-
vex analysis is “unilateral” (the expression of Moreau [593]). The negation of a convex function
@ is not convex anymore (except of the linear case), and the generalized differential properties of
— are significantly different from those for ¢. The subdifferential of a concave function ¢: X —
[—o0, 00) at X with ¢(x) > —oo is defined by Rockafellar [667] as d¢(X) := —d(—¢)(X) also
being called the “superdifferential” of ¢ or—even better—the “upper subdifferential” of ¢ at this
point. The situation is different for Clarke’s generalized gradient of locally Lipschitzian function,
which possesses the classical plus-minus symmetry 3(—¢)(X) = —d¢(X) and thus doesn’t distin-
guish between convex and concave functions as well as between maxima and minima. It seems to
be rather unnatural for nonsmooth functions and doesn’t follow the line of convex analysis.

In the case of our basic subdifferential from Definition 1.18, we don’t have such a symmetry,
and it makes sense to consider along with the (lower) subdifferential constructions (1.24) and (1.25)
their upper counterparts 37 ¢(X) and 3°> (%) defined by (1.74), which may be significantly
different from the lower ones as, e.g., for the simplest one-dimensional function ¢(x) = |x|,
where 37¢(0) = {—1, 1}. Furthermore, the unions of the lower and upper constructions, defined
as the symmetric basic and singular subdifferentials in (1.75), enjoy the plus-minus symmetry
80(—(p)()2) = —80(,0()2) and 300’0(—40)(2) = —800’0(,0()2). Note that these symmetric construc-
tions are generally nonconvex, that for convex functions ¢, the set 3°¢(x) reduces to the subdif-
ferential of convex analysis, while for locally Lipschitzian functions, it may be essentially smaller
than d¢(X). In fact, for functions ¢: R? — R Lipschitzian around %, we have by (1.83) that
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Clarke’s generalized gradient (%) is the convex hull of each of the sets dp (%), 8¢ (¥), and
3% ().

Let us illustrate these relationships for the functions ¢: R> — R from Example 1.31. For
@(x1, x2) = |x1| — |x2| from (i) therein, we have

390,00 ={(-Lvy eR} -1=<v=1}U{(l,v) eR} -1=<v =<1},

which yields that 80<p(0, 0) is the boundary of the unit square in R2, while 3¢(0, 0)) is the whole
unit square; see Fig. 1.13. For the function ¢(x1, x2) = | |x{| + x2| in Example 1.31(ii), we have
the subdifferential calculations

390,00 = {(v, - e R} -1 <v =< 1}u{d, -D}U{(-1, D}

A A A
1 1 1
-1 T -1 T -1 T
-1 -1 -1
(a) 0% ¢(0,0) (b) 0%(0,0) (c) 9(0,0)

Fig. 1.13 Different subdifferentials of ¢ (x1, x2) = |x1| — |x2|

and thus 30¢(0, 0) = 9¢(0,0) U {(v, —1)] — 1 < v < 1}, where d¢(0, 0)) is calculated in Ex-
ample 1.31(ii), while 3¢(0, 0) is again the whole unit sphere in R2. Note that this function is
taken from Warga [736], where his derivate container A%p(0, 0) is also depicted on this figure.
It is proved in [507, Theorem 2.3] (for Lipschitzian functions in [440]) that for any function
@: R" — R continuous around ¥, we have 3% (%) C A%p(X); see also [522, Corollary 2.48]
and the references therein for infinite-dimensional extensions including mappings between Banach
spaces (Fig. 1.14).

A A A
. 1 . 1 1
-1 T -1 T —1 T
-1 -1 -1
(a) 9*(0,0) (b) 8%(0,0) (c) A%(0,0)

Fig. 1.14 Different subdifferentials of ¢ (x, x3) = } [x1] + x2|
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Theorem 1.23 appears here for the first time in the general case of l.s.c. functions, and its proof
holds in any Banach space by taking into account definition (1.58) of the normal cone in this
setting. When ¢ is continuous around X, a somewhat different proof was given by the author in
[522, Theorem 1.80].

To discuss next the limiting connections between the basic subdifferential and its presubdif-
ferential/regular counterpart, note that the latter construction appeared first in Bazaraa, Goode, and
Nashed [74] in finite-dimensional spaces under the name of “the set of >-gradients.” Then it has
been used in many publications under various names; in particular, as the “Fréchet subdifferential”
by analogy with the classical Fréchet derivative (1.12); see, e.g., [114, 375, 522]. The term “regular
subgradient” for any v € d¢(x) was suggested in Rockafellar and Wets [678] motivated probably
by the property of lower regularity 0¢p(x) = ()(p(x) holding for certain classes of nice functions
such as smooth, convex, amenable ones, etc. Note that B(o(x) is also known as the “subdifferen-
tial in the sense of viscosity solutions” (or the viscosity subdifferential as suggested by Borwein
and Zhu [113, 114]) and has been widely used, starting with the paper by Crandall and Lions
[183], in partial differential equations of the Hamilton-Jacobi type with a great many applications;
see, e.g., [67, 136, 182] and the bibliographies therein. Finally, the “presubdifferential” (similarly
“prenormal” and “precoderivative”) terminology comes from the abstract presubdifferential theory
by Thibault and Zagrodny [710], where the regular/Fréchet-like constructions take a prominent
role.

Along with the set 5(/: (x) of lower subgradients, its upper counterpart 5*’(,0()2) = —5(—(/1) (x)
was also introduced in [74] under the name of “the set of < gradients” and then was called in
[183] the superdifferential in the sense of viscosity solutions. It is easy to see that the sets 8(p(x)
and 8+g0(x) are nonempty simultaneously if and only if ¢ is Fréchet differentiable at x. Thus,
contrary to (1.75), the corresponding “symmetric” set ¢ 30 o(x) = Bcp(x) U 8+<p(x) doesn’t play
any independent role, since it always reduces to either 8<p(x) or g+ @(X).

Considering the e-subgradient sets (1.34) goes back to Kruger and Mordukhovich [441, 440]
motivated by seeking a convenient description of basic subgradients in Banach spaces corre-
sponding to their second representation in (1.37) of Theorem 1.28. Note that the Fréchet-type
e-subgradients d.¢(x) for convex functions are different from the approximate e-subgradients
dg(X) in the sense of convex analysis; see Proposition 1.25 for the representation of ’8\,;(/1()2) in
the convex case while

0e0(X) := {x* € X*| o(x) —@(x) < {(x*,x — X) + & whenever x € X}

for the approximate e-subdifferential of convex analysis. The exact formulations and the presented
proof of the relationships with e-normals in Theorem 1.26 are due to Kruger [427, 430]. The first
representation of basic subgradients in (1.37) in finite dimensions follows directly from properties
of the Euclidean norm exploited in Theorem 1.6 and thus shows that general subgradients in Rock-
afellar and Wets [678] are the same (1.24) as introduced by the author [502]. However, the validity
of this representation (without & > 0 involved) in an arbitrary Asplund space is a deep variational
fact revealed by the author and Shao [580] based on the previous developments; cf. the normal
cone commentaries above and the book [522] for more details and references. Note that the first
representation in (1.37) for any Ls.c. function ¢ : X — R is actually a characterization of Asplund
spaces as shown by Fabian and Mordukhovich [257]; see also [522].

The smooth variational description of regular subgradients from Theorem 1.27 was established
in [257] in Fréchet smooth spaces, where it was shown that this smooth renorming assumption
is also necessary for the concavity of the smooth support function v in Theorem 1.27; see [257]
for other smooth variational descriptions in infinite-dimensional spaces. A weaker version of this
result without the convexity property of ¥ in finite dimensions was given in [678, Proposition 8.5]
based on the reduction to the corresponding description of regular normals.

The dual representation (1.40) of regular subgradients via the contingent directional derivative
introduced by Penot [634] in form (1.42) follows directly from the definitions, while this fact
is essentially finite-dimensional; see [522] and the references therein for some analogs of (1.9)
and (1.40) via the weak contingent cone and the weak contingent derivative in reflexive spaces.
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The other line of extensions of the author’s generalized differential constructions to objects in
infinite-dimensional spaces has been developed by Ioffe in the series of publications starting from
1981 under different names (M -subdifferential, analytic and geometric “approximate” subdiffer-
entials, their nuclei, etc.), while all of them reduce to [502] in finite dimensions. He was well
familiar with and fully acknowledged the previous aforementioned developments by the author in
finite dimensions and then with the joint work by the author and Kruger [440, 441] and by Kruger
alone [427, 428] in Fréchet smooth spaces. It is written, e.g., in the first part [364] of Ioffe’s original
work [364, 365] on “approximate subdifferentials” containing the core of his subsequent develop-
ments in this direction: “It all essentially arises from thinking over Mordukhovich’s approximate
approach to necessary conditions for an extremum [502].” This is reflected by the “approximate”
term for such subgradients that doesn’t correspond to the conventional approximate subgradients
used in convex analysis; see, e.g., the book [352].

We are not going to discuss here the essence of the “approximate subdifferentials” and their
comparison with the our basic subdifferential constructions in infinite dimensions while referring
the reader to [522, Subsections 2.6.9 and 3.2.3] and the commentaries therein for a full account.
Note that the best of his constructions, called “nuclei of the geometric subdifferential and the geo-
metric normal cone” [369], satisfy strong calculus rules in general Banach spaces, being however
significantly more complicated and always larger than our basic sequential constructions discussed
above. Observe to this end that the claims made in [369, Proposition 8.2] and [370, Theorem 1]
about the relationships between the “approximate” and our constructions in infinite dimensions
are incorrect; in fact, the opposite inclusions hold strictly even for Lipschitz continuous functions
in C*°-smooth spaces as shown by Borwein and Fitzpatrick [101]; see also [522, Example 3.61].
The mistakes in the proofs of [369, 370] came from the confusion between the sequential and
topological weak* closures. Comprehensive relationships between the sequential limiting and “ap-
proximate” subdifferentials of integral functionals in the LY(T; R") (non-Asplund) space have
been recently established by Jourani and Thibault [403].

Let us proceed with commentaries on other topics and results presented in Sections 1.3 and 1.4.
The scalarization formula of Theorem 1.32 was first obtained by Kruger [426, 428] for locally Lip-
schitzian mappings f: X — R™ on Banach spaces; cf. also [368] when X is finite-dimensional.
The extension of this result to the mixed coderivative (1.65) of Lipschitzian mappings between
arbitrary Banach spaces was given by the author and Shao [584]; see also [522, Theorem 1.90].
The normal coderivative counterpart of the scalarization is significantly more involved; see [580]
for mappings f: X — Y from Asplund to general Banach spaces that are strictly Lipschitzian
at x; as shown in [709], this notion goes back to the basic version of “compactly Lipschitzian”
behavior introduced and studied by Thibault [704] in connection with subdifferential calculus for
vector mappings . An improved version of the normal coderivative scalarization result was derived
by the author and Wang [590] for the weaker “w™*-strictly Lipschitzian” mappings and was also
presented in [522, Theorem 3.28] with more discussions therein.

The classical distance function dg(x) is intrinsically nondifferentiable while Lipschitz contin-
uous, and its generalized differentiation has played a significant role in nonsmooth analysis from
the very beginning. It has been well recognized the importance of the distance function in imple-
menting variational techniques involving, e.g., penalization in constrained optimization and via the
powerful Ekeland’s variational principle [249, 250]. Theorem 1.33 in finite-dimensional Euclidean
spaces goes back to [507, Proposition 2.7] and [678, Example 8.53] (with a new and complete proof
given here), while its infinite-dimensional versions are significantly more involved; see the book
[522] and the more recent paper [535] for a comprehensive account.

To the best of our knowledge, e-subgradients of the distance function dg for closed subsets of
Banach spaces were first calculated by Kruger [427] for any ¢ > 0 at both in-set and out-of-set
points. However, his proof in the out-of-set case via e-normals to the p-enlargement

Q(p) == {x € X| da(x) < p} with p = da(¥)

was incomplete, and then it was further clarified by Bounkhel and Thibault [125]. The in-set case
for ddg(x) in Theorem 1.33(i) was also considered by Ioffe [370], while the result for the basic
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subdifferential ddq(x) at X € 2 in general Banach spaces was first derived by Thibault [706] by
using Ekeland’s variational principle.

Observe that the out-of-set point results in Theorem 1.33(ii) are essentially finite-dimensional
and depend on the Euclidean norm on R”. Their various infinite-dimensional counterparts for reg-
ular and basic subgradients of dg via the corresponding normals to the projection Il as well as
to the enlargement 2 (p) were obtained by the author and Nam [530, 531]. In particular, it was re-
vealed there the failure—even in finite dimensions—of an expected counterpart of the relationship
between ddg(x) at X ¢ Q2 and the normal cone to the enlargement 2(p) similar to that in Theo-
rem 1.33(i) for x € Q. To get an appropriate version of this result, the right-sided subdifferential
of p: X - Rat X € dom ¢ was introduced in [530] by

-9 (%) = Limsup dg(x), (1.89)
@

+_
X—>X

where the symbol x (p—+> X indicated that x — x with ¢(x) — ¢(x) and ¢(x) > ¢(x). Then it was
shown therein (see also [522, Theorem 1.101]) that

N(&: Q(p)) = | ] 29-da(x) with p = dq(¥)
2>0

for closed subsets of arbitrary Banach spaces. Some extended and axiomatically defined versions
of the right-sided subdifferential for the distance function ddg(x) at the out-of-set point x were
introduced by the author and Mou [529] under the names of the sequential and topological outer
regular subdifferentials. These constructions were efficiently used in [529] to derive necessary op-
timality conditions for optimization problems on metric spaces with inclusion constraints given in
arbitrary Banach spaces via approximately convex sets in the sense of Ngai, Luc, and Théra [609].
Yet another enhanced version of the right-sided subdifferential (1.89) with replacing “>" by the
strict inequality “>"" was defined by loffe and Outrata [376] in finite-dimensional spaces under the
name of the outer subdifferential similar to [529] while the constructions are essentially different.
This outer subdifferential of [376] and the corresponding notion of outer coderivative were utilized
in [376] and then in [138, 465, 637] for various applications to optimization and related topics.
We refer the reader to the recent paper by Ivanov and Thibault [381] for the impressive usage of
the right-sided subdifferential (1.89) in the study of minimum time functions.

Another interesting research topic is subdifferentiation of nonsmooth integral functionals (gen-
eralized Leibniz rules), which has received a growing interest over the recent years from both
viewpoints of variational theory and applications; see, e.g., [1, 149, 169, 295, 330, 572, 636] and
the references therein. In particular, the papers by Ackooij and Henrion [1] and by Hantoute, Hen-
rion, and Pérez-Aros [330] contain impressive results via basic subgradients and generalized gradi-
ents in the framework of probability functions for parameter-dependent random inequality systems
under the Gaussian distribution. The results by Mordukhovich and Sagara [572] concern nons-
mooth versions of the Leibniz rule, in terms of the aforementioned subdifferential constructions,
for Gelfand integral functionals on general measure spaces as well as on those with saturated mea-
sures, where the rather involved weak*-closure operation for integral values can be avoided. The
applications of there results are given in [572] to stochastic dynamic programming and economic
modeling. Economically motivated deterministic applications of these subgradients to cooperative
games suggested by Sagara [683] have been recently provided by Adam and Kroupa [4].

The directional limiting subdifferential together with the corresponding normals and coderiva-
tives was introduced and investigated in the joint papers by the author and Ginchev [293, 294] with
involving tangential directions in the limiting process. These constructions were used in [293, 294]
for deriving more selective necessary conditions in constrained optimization. Strong results in this
vein for directional metric regularity and subregularity were established by Gfrerer [281, 282]
with various applications to optimization; see also Thinh and Chuong [711] for further develop-
ments and applications to multiobjective problems. We specially emphasize the recent papers by
Gfrerer and Outrata [287, 289] who obtained, by developing a primal-dual directional variational
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approach, efficient conditions for Lipschitzian stability of solution maps to parametric generalized
equations and applied them to broad spectrum of problems in mathematical programming with
equilibrium constraints, conic programming, etc. Note to this end that the “directional” terminol-
ogy proposed by Penot [637] concerns constructions of the Dini-Hadamard type and their limits,
which are completely different from those discussed above. The reader can find more information
about other subdifferential (in particular, moderate/Michel-Penot and linear/Treiman) as well as
subderivative constructions for extended-real-valued functions, used in variational analysis and not
considered here, in [496, 522, 637, 685, 678, 715, 716] and the references therein.

Yet another topic of recent developments concerns subdifferential properties and recent appli-
cations of the so-called minimum time functions defined by

r(x; Q) = ZiélsfzpF(Z —-x), x€X, (1.90)

where F C X is a closed, convex, and bounded with O € int ', where
pru) :=inf{t > 0| t~lue F}

is its Minkowski gauge, and where 2 C X is a closed while generally nonconvex farget set. When
F is the closed unit ball B of the space X, we have pr(u) = |lu||, and (1.90) reduces to the distance
function dg. It has been well recognized that the minimum time functions generated by various
sets F and €2 play an important role in many aspects of variational analysis, optimization, control
theory, partial differential equations, approximation theory, etc.; see, e.g., [66, 136, 171, 176, 334,
380, 381, 534, 535, 601] and the references therein, where some subgradient properties of (1.90)
and their applications can be found. We mention, in particular, the papers [171, 176, 334, 380, 381,
534, 535, 601] for various results in this direction involving the aforementioned subdifferential
constructions. Furthermore, recently some of these subdifferential results have been successfully
applied in [122, 535, 536, 537, 542, 543, 544, 602, 604] and other publications to solving a number
of facility location problems whose original versions go back to Fermat, Torricelli, Sylvester,
Steiner, and Weber. Strong interest has been revived to investigate problems of this type due to
their importance in location science, optimal networks, wireless communications, etc.; see [13,
488, 615, 616, 682] and the references therein.

Recent years have witnessed a rapidly growing interest to algorithmic aspects of optimization
involving basic subgradients and their applications to numerical analysis; see, e.g., [31, 32, 33, 46,
47,48,71,72,73, 118, 78, 81, 90, 91, 92, 134, 148, 190, 229, 233, 231, 306, 309, 310, 315, 344,
346, 333, 413, 422, 452, 457, 460, 458, 465, 466, 467, 480, 566, 640, 639, 679, 680, 761, 762]
among other publications. In particular, a largely unexplored algorithmic area concerns the usage
of basic subgradients in automatic/algorithmic differentiation [308]; see [68, 307, 309, 410] for
related results and discussions in some special settings highly important in applications. Note that
the papers [68, 410] impressively demonstrate algorithmic advantages of Nesterov’s lexicographi-
cal differentiation [605] for these classes of nonsmooth functions.

Section 1.4. This section collects some additional material related to the basic content of Sec-
tion 1.1-1.3 and infinite-dimensional extensions of the results presented therein. Along with rather
simple exercises that require just the clear understanding of the basic material and performing cal-
culations, the reader can find in Section 1.4 more involved results with the hints to solving the
problems and the references to the corresponding publications. We specially emphasize the un-
solved issues concerning the development of adequate calculus rules for the right-sided subdiffer-
ential (1.53), which are largely open in both finite and infinite dimensions; see Exercise 1.84. The
same can be said about its “>" (outer) counterpart discussed in the commentaries above and the
corresponding outer coderivative from [376]. Resolving these issues would be of great importance
for various applications.



Chapter 2 ®

Fundamental Principles of Variational G
Analysis

This chapter is devoted to the exposition and developments of the fundamental prin-
ciples of variational analysis, which play a crucial role in resolving many issues
of variational theory and applications by employing optimization ideas and tech-
niques. In our geometric dual-space approach to variational analysis, the major re-
sult in this direction is the extremal principle for closed sets, which can be treated
as a variational nonconvex counterpart of the powerful convex separation principle
with no presence of convexity. We derive the basic version of the extremal princi-
ple for finitely many sets and then continue with new developments for countable
set systems. Related variational principles for extended-real-valued functions are
also discussed in the main exposition here as well as in the exercise and commen-
tary parts. As a direct consequence of the extremal principle, we establish in this
chapter the normal cone intersection rule, which is the key result of the noncon-
vex generalized differential calculus allowing us to derive via a geometric approach
comprehensive calculus rules for the robust generalized differential constructions
of Chapter 1. Roughly speaking, the extremal principle and related variational ideas
are solely responsible for the validity of comprehensive calculus rules for the non-
convex limiting constructions under consideration that occur to be essentially better
in comparison with their convex counterparts. This partly justifies the name of “vari-
ational analysis” for our discipline.

2.1 Extremal Principle for Finite Systems of Sets

In this section we define and study the notion of local extremality of a given point
relative to a system of finitely many sets.
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2.1.1 The Concept and Examples of Set Extremality

We begin with the definition of the extremal system of finitely many sets. Although
it is not used in the definition, suppose unless otherwise stated that all the sets are
locally closed around the point in question. This is our standing assumption, which
is indeed needed in the proofs of the basic extremal principle and the related results
presented below.

Definition 2.1 (Local Extremality of Finitely Many Sets). Let 21, ..., Q2 with
s > 2 be nonempty subsets of R", and let x be their common point. We say that X is a
LOCALLY EXTREMAL POINT of the set system {21, ..., Qy} if there are sequences
{aix} C R" fori = 1,...,s and a neighborhood U of x such that aj; — 0 as
k — oo and

<Qi — aik) NU =0 foralllarge k € N. 2.1
i=1

In this case we say that {21, ..., Qs, X} is an EXTREMAL SYSTEM in R".

In the sequel we’ll drop the word “locally” for x in Definition 2.1 if U = R"
in (2.1). In fact, it is possible to assume without loss of generality that U = R" in
all the (local) results below concerning locally extremal points.

Geometrically the local extremality of sets at a common point means that they
can be locally “pushed apart” by a small perturbation/translation of at least one of
them. For s = 2, the local extremality of {€2, €22, X} can be equivalently described
as follows: there exists a neighborhood U of x such that for any ¢ > 0, there is
a € ¢B with (21 +a) N Q2 NU = §J; see Fig.2.1(a). Obviously, the condition
Q1 N Q2 = {x} doesn’t necessarily imply that x is a locally extremal point of
{1, Q2}. A simple example is given by the two sets on the plane 2] := {(v, v)| v €
R} and 2, := {(v, —v)| v € R}

?

«

(a) (521+G)QQQOU:®

Fig. 2.1 Extremal systems of sets
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It is easy to see that any boundary point x of a closed set 2 is a locally extremal
point of the pair {1, 27} with Q; := @ and 2, := {x}; see Fig.2.1(b). Further-
more, the geometric notion of local extremality for set systems can be treated as a
direct extension of local optimality of feasible solutions to optimization problems.
Indeed, consider the general problem of constrained optimization with the scalar
objective given by

minimize ¢(x) subjectto x € Q C R”,

where the constraint set €2 is closed and the cost/objective function ¢ is l.s.c. around
x. It follows directly from the definitions that any locally optimal solution x € 2 to
this problem generates the locally extremal point (X, ¢(x)) of the system of locally
closed sets {Q1, 22} in R"*! defined by

Qp:=epig and 2, = Q2 x {p(X)}.

To verify the extremality condition (2.1) in Definition 2.1, take the sequences
arr = (0,v) C R" x R, ayr := 0 and the neighborhood U = O x R therein,
where v; 1 0 and where O is a neighborhood of the local minimizer x. In the sub-
sequent sections of this chapter and in other chapters of the book, the reader can
find many examples of extremal systems in optimization-related (including those of
vector and set optimization) and equilibrium problems, variational principles, gen-
eralized differential calculus, economic modeling, etc.

Let us now compare the introduced notion of set extremality with the conven-
tional separation property for finitely many sets, not necessarily convex, which have
a common point. Recall that such sets ; C R" asi =1, ..., s are said to be sepa-
rated if there exist vectors v; € R", not equal to zero simultaneously, and numbers
«; € R for which

(vi, x) <a; whenever x € Q2;, i=1,...,s, 2.2)

vi+...+v, =0, and o1+ ... +a;, =0. 2.3)

A crucial issue of this definition is the existence of vectors v; and numbers «;
satisfying (2.2) and (2.3). Although the notion of separation is defined in the general
setting, we are able to justify its applicability only in the convex case in connection
with set extremality. This is done in the next proposition.

Proposition 2.2 (Extremality and Separation). Ler Q1, ..., Q; for s > 2 be sub-
sets of R" having at least one common point. The following hold:

(i) If these sets are separated, then the system {21, ..., g, X} is extremal with
U = R” for every common point X of these sets.

(ii) The converse is true if all the sets Q2; are convex.

(iii) Thus the convex sets 1, ..., Qg are separated in R" if and only if each of
their common point is extremal.
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Proof. Suppose that 2; are separated with vs # O for definiteness. Pick any a € R”
with (vg, a) > 0 and put a; := a/k for all k € N. Let us verify that

QN..NQ_1N(Q; —ar) =0, keN,

which obviously implies the extremality of {21, ..., €, X} for every common point
Xx. Assuming the contrary and taking any x from the above intersection, we get by
the separation property that

(i, x)<a;, i=1,...,5s =1, and (vs,x+ar) <a;, keN.

Summing this up gives us oy + ... + a5 > %(vs, a) > 0, which is a contradiction
that justifies (i). The converse assertion in (ii) follows from the extremal principle
of Theorem 2.3 and the normal cone expression (1.9) for convex sets. Assertion (iii)
is a direct consequence of (i) and (ii). A

2.1.2 Basic Extremal Principle and Some Consequences

The next result establishes the underlying extremal principle for systems of finitely
many sets in finite-dimensional spaces. It shows, in particular, that the set extremal-
ity, but not relationships (2.2) and (2.3), is a natural variational counterpart of sep-
aration for nonconvex sets, and that the extremal principle is an appropriate varia-
tional counterpart of the separation theorem in nonconvex settings. The proof of the
extremal principle is based on the method of metric approximations, which provides
a constructive approximation of the extremal set system under consideration by fam-
ilies of unconstrained optimization problems with cost functions smooth around the
points of interest.

Theorem 2.3 (Basic Extremal Principle). Let {21, ..., Q, X} with s > 2 be an
extremal system in R"™. Then there are basic normals

v, e N(x; ), i=1,...,s, 2.4)
to the sets Q2; at the locally extremal point X such that
vit...+v=0and il +...+ |vl® = 1. (2.5)

Proof. Without loss of generality, suppose that U = R" in the definition of the ex-
tremal point x € 1N...N;. Take the sequences {a;x} from Definition 2.1, and for
eachk = 1,2,..., consider the following problem of unconstrained minimization
overall x € R”:

s 1/2
minimize di(x) := [Zdistz(x + ai; sz,-)] + |lx — x||% (2.6)

i=1
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Since the function dy is continuous and its level sets are bounded, there is an optimal
solution xj to (2.6) by the classical Weierstrass theorem. Due to the extremality of
X in (2.1), we readily have that

s 1/2
a = [Zdistz(xk + aik; Qi)] > 0.
i=1

Furthermore, the optimality of x in (2.6) ensures that

s 12
de(xe) = e+ i = #12 = [ D awel?] 4 0,
i=l

which implies that x; — x and o | 0 as k — oo. Now foreachi = 1,...,s
we pick an arbitrary Euclidean projection w;x € IT(xx + ajx; €2;) and consider yet
another unconstrained optimization problem over x € R":

s 1/2
minimize pr(x) = [ Y I +ai —wiel?] T+ x = FE @)

i=1

which obviously has the same optimal solution x; as (2.6). Since oy > 0 and the
Euclidean norm || - || is smooth on R" \ {0}, the function p (x) is continuously differ-
entiable around x, and so (2.7) is a smooth problem of unconstrained minimization.
Thus the classical Fermat stationary rule yields

V(o) = ) vik + 2 — ) =0, 2.8)
i=1

where vy = (x¢ + ajx — wig)/ok, i = 1,..., s, with
lviell® + ... + lvskll> = 1 forall k € N.

By the compactness of the unit sphere in R”, we find vectors v; e R",i =1, ..., s,
satisfying the nontriviality condition in (2.5) and such that v;; — v; as k — oo.
Passing to the limit in (2.8) gives us also the first equation in (2.5). Finally, it follows
directly from the definition of basic normals in (1.4) that each v; satisfies (2.4),
which thus completes the proof of the theorem. A

For the case of two sets 21, €2, in the extremal system, the relationships of the
extremal principle in Theorem 2.3 reduce to

0#veNGE Q)N (= NGE ). (2.9)

When both €1 and 2; are convex, we have from (2.9) by the normal cone represen-
tation for convex sets (1.9) that

(v, x1) < (v, x2) forall x;1 € Q1 and x; € Qp with v # 0,
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which is the contents of the classical separation theorem for two convex sets. This
allows us to get a full characterization of extremal points of finitely many convex
sets via their relative interiors ri ;, i.e., the interior of each convex set 2; in Theo-
rem 2.3 with respect to its affine hull ; see, e.g., [667].

Corollary 2.4 (Relative Interiority Condition for Extremality of Convex Sets).
A system of convex sets {Q1, ..., Q, X} with s > 2 is extremal at each of their
common point x if we have the condition

i N...Nri R =0. (2.10)

Proof. The separation result from [667, Theorem 11.3]) tells us that the condition
ri 21 Nri 2y = @ is necessary and sufficient for the so-called proper separation of
two convex sets in R”; hence it yields the usual separation property for two sets. This
allows us to conclude by induction that (2.10) ensures the separation of many convex
sets in the sense discussed above. Since extremality and separation are equivalent
for convex sets by Proposition 2.2, we get (2.10) as a sufficient condition for set
extremality. A

Note that the convexity of 2; is essential for the validity of Corollary 2.4. Indeed,
let 21 be the union of the first and third quadrants and €2, be the union of the
second and fourth quadrants of the plane with the common point (0, 0), which is
not extremal, while condition (2.10) holds; see Fig.2.2.

Fig. 2.2 Extremality and relative interior

When x is a boundary point of the closed (not necessarily convex) set €2, applying
Theorem 2.3 to the extremal system {2, {x}, X} gives us that N (X; ) # 0, i.e., we
recover the result of Proposition 1.2.

Observe that the basic extremal principle of Theorem 2.3 is given in the ex-
act/pointbased form involving only the locally extremal point X in question. The
next consequence of Theorem 2.3 in the finite-dimensional setting considered here
is the following approximate extremal principle, which plays an independent role in
infinite dimensions; see Sections 2.5 and 2.6.
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Corollary 2.5 (Approximate Extremal Principle). Ler {Qq, ..., Qg, X} with s >
2 be an extremal system in R". Then for any number ¢ > 0, there are points x; €
Q; N (x + eB) and approximate normals

vieNGE Q) +6B, i=1,...,s, 2.11)
such that both relationships in (2.5) are satisfied.

Proof. It follows directly from the extremal principle of Theorem 2.3 and the first
limiting representation of basic normals in Theorem 1.6. A

It is easy to see that the result of Corollary 2.5 is in fact equivalent to the basic
extremal principle of Theorem 2.3 in the finite-dimensional setting under consider-
ation since we can get (2.4) by passing to the limit from (2.11) due to (2.5) and the
compactness of the unit sphere in R”.

2.2 Extremal Principles for Countable Systems of Sets

Next we consider appropriate versions of set extremality and extremal principles
for collections of infinite/countable systems of sets. This issue is significantly more
involved in comparison with finite systems of sets, even in the presence of convex-
ity. The study of extremality of infinite set systems is important for many aspects
of variational analysis and optimization, in particular for problems of semi-infinite
programming considered later in Chapter 8.

2.2.1 Versions of Extremality for Countable Set Systems

In contrast to the constructions and results above concerning finite systems of sets,
the following notions of the conic and tangential/contingent extremality play a cru-
cial role in the study of infinite set systems.

Definition 2.6 (Conic and Contingent Extremal Systems). We say that:

(a) A countable system of cones {A;}ien C R" is EXTREMAL AT THE ORIGIN, or
simply {A;}ienN is an EXTREMAL SYSTEM OF CONES, if there is a bounded sequence
{a;}ien C R" such that

o0
ﬂ(Ai —a;) = 0. (2.12)
i=1

(b) Let {Q2}ien C R"™ be a countable system of sets with X € ﬂ;‘i]Q,’, and let
T (x; 2;) be the contingent cone (1.11) to 2; at x. Then {2, X}ijeN is a CONTIN-
GENT EXTREMAL SYSTEM with the CONTINGENT LOCALLY EXTREMAL POINT X
if the conic system {T (x; Q;)}ieN is extremal at the origin.
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Note that in this way, we can naturally define other types of tangential extremal
systems by replacing T (x; €2;) in Definition 2.6(b) with other tangent cones to €2; at
X, but the main tangential extremal principle presented below in this section essen-
tially uses specific properties of the contingent cone.

Observe also that the extremality notions in Definition 2.6 obviously apply to the
case of systems containing finitely many sets; indeed, in such a case, the other sets
reduce to the whole space R”. It is easy to check that any finite system of cones
{A1, ..., A} is extremal at the origin if and only if x = 0 is a locally extremal
point of {Aq, ..., A} in the sense of Definition 2.1. However, in general the local
extremality (2.1) and the contingent extremality from Definition 2.6 are independent
notions even in the case of two sets in R

Example 2.7 (Contingent Extremality vs. Local Extremality).
(i) Consider the function ¢(x) := xsin(1/x) for x # 0 with ¢(0) = 0, and
construct the closed sets in R? by

Qp:=epip and Q2 := (R x R_) \ int Q7.

Take x = (0, 0) € 21 N 2, and observe that the contingent cones to €21 and 2, at
X are calculated, respectively, by

T(x; Q) =epi(—|-]) and T(¥; Q) =R x R_.

It is easy to conclude that x is a locally extremal point of {€21, €2} but not a contin-
gent locally extremal point of this set system; see Fig. 2.3.

. o UALONONN

L S PRI

Fig. 2.3 Local extremality but not contingent local extremality

(ii) Define the two closed subsets of R? by
Qpi={(x,y) e R} y>—x?} and @ :=RxR_.

The contingent cones to €21 and 2, at x = (0,0) are T(x; 21) = R x Ry and
T (x; 22) = R x R_. It shows that {21, €27, X} is a contingent extremal system but
not an extremal system from Definition 2.1; see Fig. 2.4.
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A
o T((0,0); 1)

sy T((0,0):%)

Fig. 2.4 Contingent local extremality but not local extremality

2.2.2 Conic and Contingent Extremal Principles

Our goal now is to derive meaningful extremality conditions for countable conic and
contingent systems from Definition 2.6 via the basic normal cone (1.4) to the sets
involved. Let us first formulate and discuss such conditions and then justify them
under appropriate assumptions.

Definition 2.8 (Extremality Conditions for Countable Systems of Sets). Consid-
ering countable set systems from Definition 2.6, we say that:

(a) The system of cones {A;}ieN in R" satisfies the CONIC EXTREMALITY CON-
DITIONS at the origin if there are normals v; € N(0; A;) fori € N with

21 21
2
Ziu,:o and Zy””i” =1. (2.13)
i=1 i=1

(b) The system of sets {Q2;}ieN in R" satisfies the CONTINGENT EXTREMALITY
CONDITIONS at x € ﬂ?ilQ,- if the systems of their contingent cones {T (X; Qi }ieN
satisfies the conic extremality conditions from (a).

(¢) The system of sets {Q2; }ieN in R" satisfies the NORMAL EXTREMALITY CON-
DITIONS at x € ﬂ;’ilQi if there are basic normals v; € N(x; ;) fori € N
satisfying the relationships in (2.13).

It is easy to see that the introduced contingent and normal extremality conditions
are equivalent if all the sets €2; are either cones with x = 0 or convex near x.
We will prove below that the contingent extremality conditions always imply the
normal ones. However, the opposite implication doesn’t hold even for systems of
two sets in R2. Indeed, consider the two sets from Example 2.7(i) for which x =
(0, 0) is a locally extremal point in the sense of Definition 2.1. Thus the normal
extremality conditions, which reduce in this case to (2.4) and (2.5), hold by the
basic extremal principle of Theorem 2.3. On the other hand, we can directly check
by the calculation of Example 2.7(i) that the contingent extremality conditions are
violated for these sets.

The following conic extremal principle (CEP) justifies the validity of the conic
extremality conditions from Definition 2.8(a) for any countable extremal systems
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of nonoverlapping cones. Its proof is based on a countable extension of the method
of metric approximations used in the proof of Theorem 2.3. The countability of the
system requires additional arguments, which take into account the conic structure
of the sets involved.

Theorem 2.9 (Conic Extremal Principle). Let {A;};en be an extremal system of
cones in R" with the NONOVERLAPPING PROPERTY

ﬂAi = {0}. (2.14)

Then the conic extremality conditions from Definition 2.8(a) hold. Furthermore, for
eachi € N, there is x; € A; such that v; € N (x;; A;) for the corresponding basic
normal v; € N(0; A;) satisfying (2.13).

Proof. By Definition 2.6(a) of conic extremal systems, find a bounded sequence
{ai}ien C R"™ with property (2.12), and consider the problem:

1

0o 2

1

minimize ¢(x) := |: E idistz(x + aj; Ai):| over x € R". (2.15)
i=1

Step 1: Problem (2.15) admits an optimal solution.

Indeed, since the function ¢ in (2.15) is continuous on R” due the uniform con-
vergence of the series therein, it suffices to show that there is @ > 0 for which the
level set {x € R"| ¢(x) < infe + «} is bounded and then to apply the classi-
cal Weierstrass theorem. Suppose by the contrary that the level sets are unbounded
whenever o > 0 and, for any k € N, find x; € R" satisfying

1
lxill > k and @(x;) < infe + o

Setting uy := xi/||xx|| and taking into account that all A; are cones give us

1
1 1 : 1 . 1
—— () = —dist (uk + — Ai> < (mf(p + —) -0
llxx |l =2 IIXkII llxx || k

as k — oo. Furthermore, there is M > 0 such that for large k € N, we get

dist (Mk +— i) < Huk + — H
||xk|| ||Xk||

Suppose without relabeling that uy — u as k — oo for some u € R”". Passing
now to the limit above and employing the uniform convergence of the series therein
together with the fact that a; /|| x¢|| — O uniformly ini € N due the boundedness of
{ai}ien, we have
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© 3
[Z Edistz(u;Ai):| =0.
i=1

This implies by the nonoverlapping condition (2.14) that u € ()72 A; = {0}. The
latter is impossible due to ||#|| = 1, which contradicts our intermediate assumption
on the unboundedness of the level sets for ¢ and thus justifies the existence of an
optimal solution X to problem (2.15).

Step 2: Reduction to smooth unconstrained optimization.
Observe first that for any closed cone A C R" and any w € A, we have

N(w, A) C N(0; A). (2.16)
Indeed, pick any v € N (w; A), and get by definition (1.5) that

) (v, x —w)
limsup ——
A lx — wll

X—w

Fixx € A,t > 0,and letu := x/t. Then x/t € A, tw € A, and

) (v, x —tw) . Hu, (x/1) —w) . (v, u —w)
limsup ——— = limsup ————— =limsup ——— <0,
A llx —tw] a /1) —wll a - lu—=wl
—>tw xX—>tw u—w

which gives us v € ﬁ(tw; A). Letting ¢t — 0 yields v € N(0; A) and so (2.16).

To proceed further, deduce from the cone extremality of {A;};cy and the con-
struction of ¢ in (2.15) that ¢(X) > 0. Pick any w; € TI(X + a;; A;) asi € N, and
get from (2.16) and the proof of Theorem 1.6 that

X+a —w; € H_l(w,-; Aj) —w; C N(wi; Ai) C N(@©O; Aj). .17
Moreover, the sequence {a; — w;};cn is bounded in R” due to ||x + a; — w;|| =

dist (x + a;; A;) < ||x + a;||. Considering now the unconstrained problem

1
o]

| 2
minimize ¥ (x) := |:Z Ellx +a; — w,-||2:| over x € R", (2.18)

i=1
observe from ¥ (x) > ¢(x) > ¢(X) = ¥ (X) that its optimal solution is the same X

as for (2.15). To verify the smoothness of 1 around X, define the function

o0

1
9(x) = ZE”X —z,-!

i=1

2
, xeR"
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and show that it is continuously differentiable on R” with the derivative

2

Indeed, it is easy to see that both series above converge for every x € R”. Taking
now any u, £ € R" with the norm || || sufficiently small, we have

lu+E 1P —llull*—=2¢u, &) = lul*+2(u, £)+IE NI —llul*~2(u, &) = |E]1* = o(IE]).

Thus it follows for any x € R” and y close to x that

2 =) = (Vo). y —x)

o0

1
>y = al? e =zl 2 = 20y — )]

Il
Mg'l
R —

- lly = x> = o(lly — xID.
1

This justifies that V9 (x) is the derivative of ¢ at x, which is obviously continuous on
R”. Then the claim follows from the smoothness of the function /7 around nonzero
points and the fact that v (X) # 0 due to the cone extremality.

Step 3: Applying the Fermat stationary rule.

The above derivative calculation gives us by the stationary principle that

[e.¢]

Vo (%) Zlv 0 with v ! (~+ w) i e N
X) = — VU = j = —=\X a; — w; ), 1 .
— 2! 1 1 w(x) 1 1
This implies by (2.17) that v; € ﬁ(wi; A;) C N(O; A;) forall i € N. Furthermore,
it follows from the constructions of v; and i that

o0
1
Zz—muzz

which thus completes the proof of the theorem. A

The following example demonstrates that the setting of Theorem 2.9 is essential
for the validity of the extremality conditions therein.

Example 2.10 (Nonoverlapping Property and Conic Structure of Sets Are Es-
sential for the Validity of CEP).

(i) Let us first show that the conclusion of Theorem 2.9 may fail for countable
extremal systems of convex cones in R? if the nonoverlapping property (2.14) is
violated. Define the convex cones A; C R? as i € N by
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2 X .
A1 :=R x R4 and A,-::{(x,y)eR yff} for i =2,3,...
]

as depicted in Fig. 2.5. Observe that for any number v > 0, we have

(a1+0, v))ﬂ(im) =0,

showing that the system {A;};cN is extremal at the origin. On the other hand,
o0
(A =R x {0},
i=1

i.e., the nonoverlapping property (2.14) is violated. Furthermore, we can easily cal-
culate the corresponding normal cones by

N(©0; A)={r(0, —1)| » = 0} and N(0; Aj)={r(~1.i)| A >0}, i=2,3,....
Taking now any v; € N(0; A;) asi € N, observe the equivalence

1 Al 00 A . . .
[gfvi =O] = [?(O’_l)+;§(_l”) =0 with 2; >0 as IGN].

% N((0,0); A

X = IR 0}

1oy

N((0,0); Ay) Ay

Fig. 2.5 Failure of CEP without nonoverlapping

This implies that A; = 0 and hence v; = 0 for all i € N. Thus the nontriviality
condition in (2.13) is not satisfied, which shows that the conic extremal principle
fails for the extremal countable system of cones.

(ii) Next we demonstrate that the extremality conditions of Theorem 2.9 are vio-
lated if the sets A; C R? are convex with the nonoverlapping property, while some
of them are not cones. Indeed, consider a countable system of closed and convex
sets in R? defined by

Ari={(x.y) e R y > x?} and A, := [(x,y) GRZ‘ y < f}fori —2.3,...
l
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as shown in Fig.2.6, and observe that only the set A is not a cone and that the
nonoverlapping property (2.14) is satisfied. Furthermore, the system {A;};cn is ex-
tremal at the origin in the sense that (2.12) holds. However, the arguments sim-
ilar to part (i) of this example show that the extremality conditions (2.13) with
v; € N(0; ;) as i € N fail to fulfill.

Ay

A;

{(6:0)3

D2

N((0,0); Ay) A,

Fig. 2.6 Failure of CEP without conic structure

Our next result is the following contingent extremal principle for contingent ex-
tremal systems of sets from Definition 2.6(b) justifying the validity of both con-
tingent and normal extremality conditions from Definition 2.8(b,c) for contingent
locally extremal points of such systems.

Theorem 2.11 (Contingent Extremal Principle for Countable Systems of Sets).
Let x € ﬂ?i 1 i be a contingent locally extremal point of a countable system of
sets {Q;}ien in R". Assume that the contingent cones T (X; ;) to the sets Q; at x

don’t overlap
[e¢)

N {T()E; szi)} = {o}.

i=1
Then there are vectors v; € R" for i € N satisfying simultaneously the contingent
extremality conditions from Definition 2.8(b) and the normal extremality conditions
from Definition 2.8(c).

Proof. The existence of v; € N(0; A;) with A; = T(x;Q;), i € N, satisfying
the extremality conditions (2.13) under the assumed nonoverlapping property of
{T (x; 2i)}ien follows directly from Definition 2.6(b) of contingent locally extremal
points and the conic extremal principle of Theorem 2.9. To derive from this the
claimed normal extremality condition, it suffices to show that for any set 2 C R”
locally closed around x € €2, we have the inclusion

N(@O; A) C N(x; ) with A :=T(x; Q). (2.19)

To verify this inclusion, pick any v € N(0; A), and by Definition 1.8 of the contin-
gent cone 7T (x; €2), find sequences #x | 0and vy € N(wg; Tx) with Ty := (Q—Xx) /1
such that wy — 0 and vy — v as k — 00. We have N (wg; Tx) = N (xi; 2) for
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Xi := X +twg — X and conclude therefore by the robustness property from Propo-
sition 1.3 that v € N (x; 2). This justifies (2.19) and thus completes the proof of the
theorem. A

2.3 Variational Principles for Functions

In this short section, we discuss some results known as variational principles for
lower semicontinuous functions. They play a crucial role in infinite-dimensional
variational analysis, where they are strongly connected with appropriate versions
of the extremal principle for systems of two sets; see [522, Chapter 2]. In finite-
dimensional spaces, variational principles are rather elementary (they are in fact
consequences of the classical Weierstrass existence theorem for l.s.c. functions and
finite-dimensional geometry), while even in this case, they provide useful conclu-
sions convenient for applications.

Following the conventional terminology of variational analysis, by variational
principles, we understand a group of results stating that for any Ls.c. and bounded
from below function ¢: R” — R and any given point xo close enough to its mini-
mum, there is an arbitrarily small perturbation 0(-) such that the resulting function
¢ + 6 achieves its minimum at some point x near xg. In the rest of this section, we
assume unless otherwise stated that ¢ : R” — R is a proper Ls.c. and bounded from
below extended-real-valued function while postponing infinite-dimensional discus-
sions till Sections 2.5 and 2.6.

2.3.1 General Variational Principle

The following result presents a general variational principle in the finite-
dimensional setting under consideration.

Theorem 2.12 (General Variational Principle in Finite Dimensions). Ler
¢: R" — R be under the standing assumptions made, and let 0: R" — R,
be Ls.c. satisfying the growth condition 6(x) — oo as |x|| — oo. Then for any
g, A > 0and any xo € R" with ¢(xg) < infp + ¢, there is x € R" such that

9(X) < p(x) + (e/A)[0(x — x0) — 0(X — x0)] forall x eR".  (2.20)
Furthermore, in the case of 6(0) = 0, we have the estimates
@(x) < p(xo) and 0(x — xp) < A.

If in addition the function 0 is subadditive on R", i.e., 0(x + z) < 6(x) + 0(z) for
all x, z € R", then it follows from (2.20) that

X)) <)+ (8/)»)9()6 —X) forall x e R", 2.21)

where the inequality is strict for all x # x if x = 0 is the only root of 6(x) = 0.



82 2 Fundamental Principles of Variational Analysis
Proof. Consider the unconstrained optimization problem:
minimize ¥ (x) := @(x) + (¢/1)0(x —xp) over x € R". (2.22)

Since ¢ is bounded from below and 6 satisfies the imposed growth condition , the
level sets {x € R"| ¥(x) < y} of ¥ are bounded and thus compact in R” due to the
lower semicontinuity of the function ¢ in (2.22). Then the classical Weierstrass the-
orem ensures the existence of an optimal solution x to (2.22), which verifies (2.20).
When 6(0) = 0, we directly deduce from (2.20) that ¢(x) < @(xp) by putting
x = xg therein and that 6 (x — x¢) < A. If furthermore 6 is subadditive, then (2.20)
yields (2.21) by applying the former to the representation x —xg = (x —X)+ (X —xp).
The last statement of the theorem obviously follows from (2.21). A

Loosely speaking, the result of Theorem 2.12 tells us that for any ¢ optimal (or
suboptimal) starting point xg in the problem of minimizing the function ¢, there
exists another & optimal vector x arbitrarily close to xo by modulus 6 such that x
is an exact solution for the perturbed optimization problem in (2.20). Specifying
6 in Theorem 2.12 gives us various versions of the variational conditions therein.
In particular, for 8(x) := ||x||, we arrive at the following conditions of Ekeland’s
variational principle, which has a great many consequences and applications in both
finite and infinite dimensions; see below.

Corollary 2.13 (Ekeland’s Variational Principle). Let ¢, xo, and ¢ be given as in
Theorem 2.12. Then for every A > 0, there is X € R" such that ||x — xoll < X,

¢(¥) < ¢(x0), and
(X)) < px)+ (8/A)||x — Xx|| whenever x # Xx. (2.23)

Observe that the suboptimal solution x in Corollary 2.13 satisfies the following
almost stationary condition

Vo)l < /2 (2.24)

provided that ¢ is differentiable at x. Indeed, it follows by applying the elementary
sum rule from Proposition 1.30(ii) to the inclusion 0 € 5((,0 + 6)(x) from Propo-
sition 1.30(i) with 0(x) := (¢/A)|lx — x| due to the optimality of x for this sum
and the fact that 9(]| - —x||)(x) = B in convex analysis. We’ll see below that the
flexibility of choosing an auxiliary function 6 in Theorem 2.12, not just as the norm
I - |I, allows us to gain more information for applications.

2.3.2 Applications to Suboptimality and Fixed Points

Note that the almost stationary condition (2.24) and its verification based on Corol-
lary 2.13 unavoidably require the differentiability of ¢ via the application of Propo-
sition 1.30(ii). However, we can derive in this way some extended conditions for
suboptimal points of smooth and nonsmooth functions ¢ by an appropriate choice



2.3 Variational Principles for Functions 83

of perturbations 6 in the general variational principle of Theorem 2.12. The next
theorem contains two independent versions of subdifferential almost stationary
conditions obtained in this way for suboptimal solutions. The first one is expressed
in terms of (lower) regular subgradients from é\(p()f), while the other condition
is given in a new enhanced form via the entire set of upper regular subgradients
from 5"%0()2) = —5(—(,0)()?) provided that this set is nonempty. The proof of the
latter result invokes the smooth variational description of regular subgradients from
Theorem 1.27.

Theorem 2.14 (Subdifferential Almost Stationary Conditions for Suboptimal
Solutions). Let ¢, ¢, A, and xo be as in Theorem 2.12. Then there exist a suboptimal
solution x € R" and a regular subgradient v € la\go()f) such that || x — xg| < A,
0(x) < @(xp), and ||v|| < e/A. If furthermore 5‘%)()?) # (), then in addition the
latter estimate holds for any v € 5"‘(,0()?).

Proof. Taking ¢, X, and x¢ from Theorem 2.12, we select

2

A(x) := , x eR"

1
Ty | <
and find a vector x € By, (x¢) with ¢(x) < ¢(xp), minimizing the function

&

m”x —onz over x € R".

U (x) == o(x) +
Applying now both parts of Proposition 1.30 to the sum ¢ (-) shows that
o~ _ £ _
0 € dp(® + 55 (¥ —x0),

which justifies, by taking into account the estimate 6 (x — xp) < A for the selected
function 6(-), the first stationary condition of the theorem.

To verify the second statement of the theorem under the assumption that
5*’(,0()2) # V¥, we proceed as follows. Employing Corollary 2.13 gives us a vec-
tor x € R” satisfying (2.23). Pick now any v € —d(—¢)(x), and apply to it the first
smooth variational description in Theorem 1.27. This allows us to find a function ¥
defined on a neighborhood of x such that v is Fréchet differentiable at x and obeys
the conditions

Y(X) =¢(k), VY(E)=v, and ¥(x) > ¢(x) forall x € R".

Combining it with (2.23) shows that the function ¢ (x) = ¥ (x) + (¢/A)[|x — X||
attains a local minimum at x. Then it follows from Proposition 1.30(i,ii) that

0 € 3p(X) = V(%) +'5( —;z||)()z) Cot E]B%,

“)
A

which verifies that ||v|| < /A and completes the proof of the theorem. A
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Observe that for functions ¢ differentiable at x, both subdifferential stationary
conditions in Theorem 2.14 reduce to (2.24).

Finally in this section, we show that the general variational principle of Theo-
rem 2.12 implies the following fixed point result for set-valued mapping without
standard continuity and contraction assumptions.

Proposition 2.15 (Fixed Points). Ler F: R" = R" be a set-valued mapping
with nonempty values, and let the functions ¢, 0 satisfy all the conditions of Theo-
rem 2.12. Assume in addition that

forall x € R" thereis y € F(x) with 0(y —x) < o(x) —(y). (2.25)

Then there are points x € R" and y € F(x) such that 6(y — x) = 0, which implies
that F admits a fixed point X € F(x) provided that x = 0 is the only root of the
equation 0(x) = 0. Furthermore, the validity of condition (2.25) for all y € F(x)
ensures that F(x) = {x).

Proof. Taking A = 2¢, we get from (2.21) of Theorem 2.12 that
0(y —3) = 2(¢(X) — ¢(y)) forall y e F(x).

This implies by assumption (2.25) with x = X that 6 (x — y) = 0 for some point y €
F(x), and hence we arrive at the fixed point statement of the corollary. Moreover,
the fulfillment of (2.25) for any y € F(x) tells us that y = x whenever y € F(x)
and thus completes the proof of the corollary. A

2.4 Basic Intersection Rule and Some Consequences

In this section, we first employ the extremal principle for systems of two closed sets
in Theorem 2.3 to establish the fundamental intersection rule for limiting normals
that plays the underlying role in deriving other calculus rules of generalized differ-
entiation and their applications. Some of its direct consequences for normals and
subgradients needed in what follows are also presented here.

2.4.1 Normals to Set Intersections and Additions

The following theorem on representing the normal cone to intersections of two
closed sets is crucial for all the major results of generalized differential calculus
involving the nonconvex robust constructions of Chapter 1.

Theorem 2.16 (Basic Intersection Rule). Let Q, Q2 C R” be such that x € Q1N
0, and let the NORMAL QUALIFICATION CONDITION

N@E QDN (= NG ) = (0) (2.26)
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be satisfied. Then we have the inclusion
N(Gx; Q1N CNE; Q)+ NG Q). (2.27)

Furthermore, (2.27) holds as equality, and the set Q21 N Q3 is normally regular at x
provided that both sets Q1 and 2, are normally regular at this point.

Proof. To verify (2.27), pick any v € N (x; 21 N 22), and by the first representation
of Theorem 1.6, find sequences x; — x and vy — v such that

Xk € Q1N and vg € Ny Q1 N Q) forall k e N.

Select an arbitrary sequence of g | 0 as k — oo, and for any fixed k € N, define
two closed sets in R"**! by

A =Q; xRy and

2.28
Ay = [(.)| x € 2. (v x —xi) —ellx — el = o). Z2D

By the set construction in (2.28) and definition (1.5) of regular normals, we have
that (xg, 0) € A1 N Ay and that

Alﬂ(AZk—(O,v))ﬂ(U x R) =@ forall v > 0,

where U is a suitable neighborhood of x;. This means that (xi, 0) is a locally ex-
tremal point of the set system {A1, Ao }. Applying the extremal principle from The-
orem 2.3 to this system at (xi, 0) for each k € N gives us pairs (ug, Ax) € R” x R
with || (ug, Ax)|| = 1 satisfying the inclusions

(ug, rx) € N((xk, 0); A1) and (—uy, —Ar) € N((xk, 0); A2k)~ (2.29)

By the compactness of the unit sphere in R"*!, we get without loss of generality
that (ug, Ag) — (u, A) as k — oo for some pair (u, A) € R? x R with ||(u, A)|| = 1.
The robustness property of basic normals from Proposition 1.3 ensures by the first
inclusion in (2.29) that (u,A) € N((x,0); Q21 x Ry), which implies in turn by
Proposition 1.4 that

ue N(x; ) and A <0. (2.30)

Furthermore, using the structure of Ay in (2.28) and both representations of basic
normals in (1.7) allows us to conclude that

(=hv—u, 1) € N((x,0); 22 x Ry). (2.31)

To show next that . < 0, suppose on the contrary that A = 0, which implies
by (2.30) and (2.31) that 0 £ u € N(x; 1) N (—N(x; 22)). This is impossible
by the assumed qualification condition (2.26). Thus we can take A = —1 and get
from (2.31) that w := v — u € N(x; 22), which verifies that the selected vector v
belongs to the right-hand side of (2.27).
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To prove the last statement of the theorem, observe first that the inclusion
N(x; Q1N Q) D NG; Q1) + N(x; Q22)

is always satisfied. Assuming now that both sets €21 and €2, are normally regular at
X in the sense of (1.55), we get

N QD+NGE; Q) = NG Q)+NGE: Q) € NG QiNQ) C NG Q1NQ).

which verifies the opposite inclusion in (2.27) and so completes the proof. A

As we’ll see below, the obtained intersection rule is the key result of generalized
differential calculus in variational analysis. Let us now present some of its rather
straightforward consequences. The first one is an extension of the intersection rule
to finitely many sets.

Corollary 2.17 (Normals to Finite Set Intersections). Let 21, ..., Qg withs > 2
be subsets of R" such that X € N;_,2;, and let the system

v, ENKX; ), i=1,...,5, vi+...+tv;,=0

has only the trivial solution vi = ... = vy = 0. Then we have the inclusion

N(;z; ﬂsz,-) CNG Q) +...+ NG Q), (2.32)

i=1

which holds as equality if all the sets 2; are normally regular at x. In this case the
intersection M;_, 2 is also normally regular at X.

Proof. Arguing by induction and having in hands the intersection rule for two sets,
suppose now that this rule holds for s — 1 sets, and then represent the intersection
Q=Q1N...NQsof s >2setsas 2 = A N Ay with A| := ﬂf;:Qi and A =
Q. It is easy to check that the qualification condition imposed on {21, ..., Q2 }
yields the validity of (2.26) for {A1, A2}. Thus applying Theorem 2.16 to the two-
set intersection A1 N Aj and using the induction assumption justify inclusion (2.32).
We also get in this way the regularity and equality statements when all the sets €2;
are normally regular at x. A

The next consequence of Theorem 2.16 provides a useful sum rule for sets, which
holds without imposing any qualification condition.

Corollary 2.18 (Normals to Sums of Sets). Ler 21, 2, C R”, and let x € Q1 +
Q». Assume that the set-valued mapping S: R" = R?" defined by

S(x) := {(xl,xz) e R2”| X|+x2=x, x1 €Qq, x2 € 522}, x e R",
is locally bounded around x. Then we have the inclusion

NEa+Q)c | Nes Q)N Nes; Q).

(x1,x2)€S(X)
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Proof. Observe first that the closedness of 21 and €2, and the uniform boundedness
of S(x) around X ensure that the set Q1 + 2 is locally closed around x. Pick any
v € N(x; 21+42), and by Theorem 1.6, find sequences x; — x with x; € Q1+
and vy — v such that v; € ﬁ(xk; Q1 + 7). Considering the sets A := Q1 x R"
and A, := R" x Q,, it is not hard to check that

(v, v) € N ((rig, x20); A1 N Az) whenever (xi, xo) € S(x) (2.33)

for all k£ € N. Taking such a sequence of (x1x, x2x) and employing again the uniform
boundedness of S(x) around x give us some (X, X2) € S(x) such that (xx, x2) —
(x1, x2) along a subsequence. By passing to the limit in (2.33) as k — oo, we get
vectors ug, up € R” with

(u1,0) € N((x1. %2): A1), (0,u2) € N((X1. %2): Az), (v,v) = (u1,0) + (0, u),

which implies that u; € N(x1; 1), ua € N(x2; 1), and u; = up = v. This
verifies that v € N (x1; 1) N N(Xx2; ©22) and thus completes the proof. A

2.4.2 Subdifferential Sum Rules

Now we turn to subgradients of extended-real-valued l.s.c. functions and deduce
directly from Theorem 2.16 the following subdifferential sum rules for both basic
and singular subgradients in Definition 1.18. This theorem plays the underlying role
in subdifferential calculus (see Section 4.1) as well as in deriving other results and
various applications presented in the book.

Theorem 2.19 (§ubdifferential Sum Rules for Two Ls.c. Functions). Let
01, 02: R" — R be such that x € dome; fori = 1,2, and let the (singular)
SUBDIFFERENTIAL QUALIFICATION CONDITION

9%¢1(X) N (= 8%p2(X)) = (0} (2.34)
be satisfied. Then we have the sum rule inclusions
d(@1 + 92)(X) C g1 (x) + 9¢2(x), (2.35)

I%(p1 + ¢2)(X) C I%@1(X) + 9% 92 (X). (2.36)

If furthermore both functions @1, @y are lower regular at X, then the sum ¢ + @2
also has this property and (2.35) holds as equality. The equality holds also in (2.36),
and the function @1 + @y is epigraphically regular at x if both functions ¢1, @2 are
epigraphically regular at this point.
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Proof. Let us derive inclusions (2.35) and (2.36) for basic and singular subgradients
simultaneously by reducing both of them to Theorem 2.16. Taking v from either
3(p1 + @2)(X) or 3% (@1 + ¢2)(X), we get by Definition 1.18 that

(v, —=2) € N((X, (¢1 + ¢2)(X)); epi (¢1 + ¢2)) witheither A =1 or A =0,
respectively. Denote &; := ¢; (x) fori = 1, 2, and consider the sets
Qi ={(r,a1,0) eR" xRxR|o; = i (x)}, i=1,2

It is easy to observe that (v, —A, —A) € N((x, a1, &2); 21 N Q2). Applying now
the intersection rule of Theorem 2.16 to this set intersection with taking into ac-
count that the subdifferential qualification condition (2.34) ensures the validity of
the normal one (2.26) for the sets €2; constructed above gives us pairs (v;, —A;) €
N((x,a;); epig;) fori = 1,2 such that

(U, _)"9 _)") = (Ulv _)"ls 0) + (U2, Oa _)"2)

Thus we get v = vy + vy with either v; € dg;(x) or v; € 0%¢;(x) asi = 1,2
depending on the choice of A = 0, 1 in the arguments above. This verifies the sum
rule inclusions in (2.35) and (2.36).

If both ¢ are lower regular at X, in the sense of dg; (x) = 5<p,- (x)fori =1, 2 (see
Exercise 1.74), then the equality and regularity statements of the theorem follow
from (2.35), and the inclusion

(@1 + 92)(F) D 391 (F) + 092 (%)

the validity of which for arbitrary functions ¢; can be immediately deduced from
definition (1.33). The last statement of the theorem is verified similarly by using the
second representation of Exercise 1.74(ii). A

We conclude this section with the following two direct corollaries of Theo-
rem 2.19. The first one concerns semi-Lipschitzian sum SL(X), i.e., sums of two
functions ¢ + @2 one of which is l.s.c. around x, while the other is locally Lips-
chitzian around this point.

Corollary 2.20 (Semi-Lipschitzian Sum Rule for Basic Subgradients). Let
(o1, 92) € SL(X). Then we have the basic subgradient inclusion (2.35).

Proof. Follows from Theorem 2.19 due to 9®¢(x) = {0} for locally Lipschitzian
functions, which ensures the validity of (2.34) by Theorem 1.22. A

Note that for any pair (¢1, ¢2) € SL(x), the singular subdifferential inclu-
sion (2.36) always holds as equality. This has been justified by the direct proof of
Proposition 1.29 but can also be deduced from inclusion (2.36) by applying it to the
sum ¢ = (p1 + ¢2) + (—¢1) and using the characterization of the local Lipschitz
continuity from Theorem 1.22.
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The next corollary is an extension of Theorem 2.19 to finite sums.

Corollary 2.21 (Subgradients for Sums of Finitely Many ls.c. Functions). Ler
¢:R" — Rfori =1,...,s5 be such that x € N;_ dom g;, and let the following
qualification condition be satisfied:

[vi € 9%¢i(X), i=1,....5|vi+...+v,=0] = vi=...=v,=0, 237)

which is surely the case where all but one of ¢; are locally Lipschitzian around x.
Then we have the subdifferential sum rules

o1+ ...+ @) (X) CIp1(X) + ... + dps(X), (2.38)

3% (@1 4 ...+ 95)(X) C %@ (X) + ... + 0%, (), (2.39)

where (2.38) holds as equality if all ¢; are lower regular at X. In this case the sum
@1+ ...+ @5 is lower regular at x as well. The equality also holds in (2.39), and
the sum @1 + ... + @ is epigraphically regular at x if all the functions ¢; are
epigraphically regular at this point.

Proof. From the case of s = 2 in Theorem 2.19, we can justify the general case of
s > 2 by induction, where the qualification condition (2.37) at the current step is
verified by using (2.39) at the previous step of induction. A

In the subsequent parts of the book (see, in particular, Sections 3.2 and 4.1 to-
gether with the exercises and commentary sections), we’ll employ the basic intersec-
tion rule of Theorem 2.16 and its subdifferential consequences from Theorem 2.19
to deriving a number of calculus rules for coderivatives and subgradients of vari-
ous compositions. To deal efficiently with set-valued and single-valued mappings,
we study in the next chapter some fundamental well-posedness properties, which
are of their own interest for numerous aspects of variational analysis and optimiza-
tion while being used therein for developing and verifying a variety of results on
generalized differential calculus.

2.5 Exercises for Chapter 2

Exercise 2.22 (Convex Separation for Finitely Many Sets). Deduce from the extremal principle
of Theorem 2.3 the convex separation theorem for s > 2 sets in R” under the relative interiority
condition (2.10) in R”.

Exercise 2.23 (Interiors of Sets in Extremal Systems). Let 2, ..., Q; be subsets of a Ba-
nach space X such that the first s — 1 of them has nonempty interiors. Show that if the system
{1, ..., Qq, x} is locally extremal in the sense of Definition 2.1 considered in Banach spaces,
then we have

ity N...NintR_1 N NU =07

When does the converse assertion hold?
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Exercise 2.24 (Approximate Extremal Principle in Infinite Dimensions).

(i) Prove that the approximate extremal principle from Corollary 2.5 holds in Fréchet smooth
spaces. Hint: Use an appropriate modification of the method of metric approximations, complete-
ness of the space in question, and the Fréchet differentiability of an equivalent norm. Compare
with the proof of [522, Theorem 2.10].

(ii) Check that the approximate extremal principle holds in Asplund spaces, being in fact a
characterization of this class of Banach spaces. Hint: Use the method of separable reduction to
reduce the Asplund space setting to the Fréchet smooth one in accordance with the proof of [522,
Theorem 2.20].

Exercise 2.25 (Density Results). Let 2 C X be a proper (and closed) subset of an Asplund
space X. Show that the approximate extremal principle in X yields the validity of the following
statements:

(i) Nonlinear Bishop-Phelps theorem: the set

{x ebd Q| N(x; ) # (0}}

is dense on the boundary bd €2 for any such Q. Hint: Given any x € bd €2, apply the approximate
extremal principle from Exercise 2.24(ii) to the extremal system {2, {x}, X}, and compare it with
[522, Corollary 2.21] for this and other boundary characterizations of Asplund spaces.

(ii) Verify that for convex sets €2, the density result from (i) reduces to the classical Bishop-
Phelps theorem on the density of support points on the boundary of 2 (see, e.g., [638, Theo-
rem 3.18]) while in the case of an Asplund space X.

(iii) Density of regular subgradients: the set

{(x, p(x)) € X x R| Bp(x) # 0}

is dense on the graph of ¢ for every Ls.c. function ¢: X — R. Hint: Derive this from the approxi-
mate extremal principle, and compare with [522, Corollary 2.29].

Exercise 2.26 (Fuzzy Sum Rule from the Extremal Principle). Let ¢;: X — R be locally
Lipschitzian around x, and let ¢ : X — R be l.s.c. around this point. Show that for any ¢ > 0, the
following “fuzzy” sum rule holds:

dp+o@mc U [foe)+ea] +e8 (2.40)
xi €U (i .X,€)

where U (g, x, €) :={x € X| ||x — X|| < &, |px) — ¢(x)| < &}. Hint: Assuming without loss of
generality that x = 0 is a local minimizer of ¢ + ¢2 and that ¢;(0) = ¢2(0) = 0, consider the
system of sets

Qp :=epig;, = {(x,oz) e X x R} ¢m(x) < —a}.

which is locally extremal at (0, 0). Apply to it the approximate extremal principle, and compare
with [522, Lemma 2.32].

Exercise 2.27 (Weak Fuzzy Sum Rule). Let X be an Asplund space, and let ¢y, ..., ¢5: X — R
be L.s.c. functions on X. Prove that forany x € X, ¢ > 0, x* € /8\(@ + ...+ ¢s)(x), and any weak*
neighborhood V* of 0 € X* there are x; € x +¢B and x;* € d¢; (x;) such that |; (x;) —¢; (X)| < &
foralli =1,...,s and

N
x*e le* + V*.
i=1

Hint: Use the density subdifferential result from Exercise 2.25(ii) and properties of infinite
convolutions; cf. [254, Theorem 2].
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Exercise 2.28 (Sequential Normal Compactness of Sets). Let 2 be a subset of a Banach space
X, and let x € Q. We say that Q2 is sequentially normally compact (SNC) at x if for any sequences
(xk, x> &) C X x X* x Ry we have

[ 2% 2050, & L0, 5] € Noy (s ] = Ixfl > 0 as k — o0, (241)

(i) Show that we can equivalently put & = 0 in (2.41) if X is Asplund (and 2 is locally closed
around X in our standing assumption). Hint: Employ Exercise 1.42.

(ii) The affine hull of 2, aff 2, is the smallest affine set containing €2; its closure is denoted by
aff Q. The codimension codim(aff ) of aff 2 is the dimension of the quotient space X \ (aff Q—x),
which is independent of x € aff 2. Show that the SNC property of 2 at X implies that the subspace
aff (Q N U) is of finite codimension for any neighborhood U of x. In particular, a singleton in X is
SNC if and only if dim X < oo. Hint: Use the fundamental Josefson-Nissenzweig theorem telling
us that for any infinite-dimensional Banach space X, there is a sequence of unit vectors x; € X*
that weak™ converges to zero; see [207, Chapter 12].

(iii) The relative interior of Q, 1i 2, is the interior of Q with respect to aff . Prove that
for convex sets Q2 with ri2 # (), the SNC property of Q at every x €  is equivalent to
codim(aff Q) < oo. Hint: Apply the representation of e-normals to convex sets from Proposi-
tion 1.7 (which holds in any Banach space) to the given set 2 at X with respect to the subspace
aff Q; see [522, Theorem 1.21].

Exercise 2.29 (Epi-Lipschitzian and Compactly Epi-Lipschitzian Sets). We say that @ C X
is COMPACTLY EPI-LIPSCHITZIAN (CEL) around ¥ € € if there are a compact set C C X,
neighborhoods U of x, O of 0 € X, and y > 0 such that

QNU+10 CQ+1C forall t e (0,y). (2.42)

The set 2 is said to be EPI-LIPSCHITZIAN around x if C in (2.42) can be selected as a singleton.
Verify the following statements, where X is an arbitrary Banach space unless otherwise stated:

(i) If the set 2 is CEL around X, then it is SNC at this point. Hint: Compare it with the proof of
[522, Theorem 1.26].

(ii) The SNC property is strictly weaker than the CEL one in every X for which the dual ball
B* is not weak™ sequentially compact, in particular in the classical spaces [°° and L*°[0, 1]. Hint:
Find this in [259].

(iii) There is a nonseparable Asplund space X admitting a C*°-smooth renorm and a closed
convex cone 2 C X such that € is SNC at the origin but not CEL around x = 0. Hint: Compare it
with [259] and [522, Example 3.6].

(iv) A convex set Q2 is epi-Lipschitzian around any x € € if and only if int Q2 # ¢. Hint:
Compare it with the proof of [522, Proposition 1.25].

Exercise 2.30 (SNC Property for Inverse Images of Sets Under Differentiable Mappings Be-
tween Banach Spaces). Let f: X — Y be a between Banach spaces that is strictly differentiable
at x with the surjective derivative V f(x), and let ® be a subset of Y containing y := f(x). Show
that the set £~ (®) is SNC at ¥ if and only if © is SNC at . Hint: Use the classical open map-
ping theorem together with the result of Exercise 1.53, and compare it with the proofs of [522,
Lemma 1.16 and Theorem 1.22].

Exercise 2.31 (Exact Extremal Principle in Infinite Dimensions).

(i) Use the approximate extremal principle to show that the exact/pointbased extremal principle
of Theorem 2.3 holds provided that the dual unit ball B* C X* is sequentially weak™ compact (as
in the case of Asplund spaces; see Exercise 1.41(iii)) and that all but one sets Q;,i =1, ..., s, are
SNC at their locally extremal point x. Hint: Compare it with [522, Theorem 2.22].

(i) Show that any infinite-dimensional separable Banach space contains an extremal system of
two convex compact sets, which are not SNC and for which the relationships of the exact extremal
principle fail.
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Exercise 2.32 (Nontriviality of Basic Normals and Subgradients from the Extremal Princi-
ple). Derive from the exact extremal principle the following statements in any Banach space X: ,

(i) Let 2 C X be proper, closed, and SNC at x € bd Q2. Then N (x; ) # {0}.
(ii) Let ¢ : X — R be locally Lipschitzian around x. Then d¢(x) # @.

Exercise 2.33 (Global Set Extremality and Separation). We say that two nonempty subsets
Q1, 7 of alocally convex topological vector space X form a (globally) extremal system if for any
neighborhood V of the origin in X there exists a vector a € X such that

acV and (Q+a)N2 =40. (2.43)

(i) Compare this notion with the local set extremality from Definition 2.1.

(ii) Verify that the sets €2; and Q, form an extremal system in the sense of (2.43) if and only if
0 ¢ int(2] — 22). Show furthermore that the extremality of 2, 2, implies that (int 2;)NQy =0
while the opposite implication fails.

(iii) Prove that the global extremality of convex sets €21, €2, together with the difference interi-
ority condition int(2; — €2») # ¢ yields the separation property

sup {(x*, x) < inf (x*, x) for some x* # 0. (2.44)

xeQ xey

(iv) Show that the separation property (2.44) always implies the global set extremality (2.43),
without imposing either the convexity of €2, €2, or the difference interiority condition int(2; —
Q) # ¢ as in (iii).

Hint: Use the definitions, and apply the convex separation theorem to the sets A := Q] — Q2
and A, := {0} in (iii). Compare it with the proof of [538, Theorem 2.2].

Exercise 2.34 (Approximate and Exact Versions of the Convex Extremal Principle in Banach
Spaces). Let 21 and 2, be closed and convex subsets of a Banach space X, and let x be any
common point of the sets 1, 2.

(i) Show that the extremality of €2, €2 in the sense of (2.43) yields the validity of the ap-
proximate extremal principle relationships: for any ¢ > 0, there exist x; € Bg(x) N ; and
x} € N(xje; i) +eB* asi = 1, 2 such that

xf4x5=0 and []x{] =[x}l = 1.

(ii) Assuming that one of the sets 21, 2 is SNC at X, prove that the above extremality of
these sets is equivalent to the approximate extremal principle conditions in (ii) as well as to the
separation property (2.44).

(iii) Deduce from (ii) the seminal Bishop-Phelps theorem on the density of the support points
on boundaries of closed and convex subsets of general Banach spaces.

Hint: To verify (i), invoke the Ekeland’s variational principle, and compare this with the proof
of [538, Theorem 2.5].

Exercise 2.35 (Violation of the Conic Extremal Principle in Hilbert Spaces). Let X be an
arbitrary Hilbert space with dim X = oo. Give an example of half-spaces {A;};cN satisfying the
assumptions of Theorem 2.9 for which CEP fails.

Exercise 2.36 (Weak Contingent Extremal Principle in Reflexive Spaces). We say that x €
Ni_,; is a weak contingent locally extremal point of the set systems {Q, ..., Q} in X if the
system of weak contingent cones {Tw (x; 2;)},i = 1, ..., s, is extremal at the origin in the sense
of Definition 2.6(a). Assume that x is such a point and that the space X is reflexive.

(i) Show that the approximate extremal principle holds at x.

(ii) Assume in addition that all but one of the sets 2;,i = 1, ..., s, are SNC at x, and show
that in this case the exact extremal principle holds at x.
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Hint: Verify first that the SNC property of €2; at x yields this property for Ty (X; €2;) at the
origin, and then proceed as in the proof of [568, Theorem 7.3].

Exercise 2.37 (Rated Extremal Principle in Finite Dimensions).We say that X € N}_,€; is
a (locally) rated extremal point of rank a € [0, 1) for the set system {21, ..., Q,} in a Banach
space X if there are sequences {ajx} C X,i = 1,...,s, and a positive number y such that
rr := max; ||ajx|| = 0 as k — oo and

(Qi —aix) N (¥ + yr{B) =9 forlarge k € N.
1

5

i

(i) Give an example of two sets in R? for which ¥ = (0, 0) is a rated extremal point with
a = 0.5 while not being locally extremal in the sense of Definition 2.1.

(ii) Show by using the method of metric approximations that any rated extremal point of rank
a € [0, 1) for systems of finitely many (closed) sets in R" satisfies the relationships of the ba-
sic/exact extremal principle.

(iii) Give an example illustrating the failure of this result for o = 1.

(iv) Show that a rated extremal point X of rank o € [0, 1) satisfies the relationships of the
approximate extremal principle in Asplund spaces and the relationships of the exact extremal prin-
ciple if all but one of the sets 2; are SNC at x.

(v) Provide an extension of the rated extremal principle for infinitely many sets under an ap-
propriate growth condition of the rate rank.

Hint: Proceed as in the case of « = 0, and compare with [567].

Exercise 2.38 (Ekeland’s Variational Principle in Metric Spaces). Let (X, d) be a metric space.
Show that the conditions of Ekeland’s variational principle formulated in Corollary 2.13 with the
norm || - || replaced by the distance function d(-, -) hold under the completeness of the space X.
Furthermore, the validity of these conditions characterize the completeness of (X, d).

Hint: Starting with the given point xo and assuming that ¢ = A = 1 without loss of generality,
construct the iterates {xx} by

Xk+1 € T(xg) and @(xg4+1) < inf @(x) + keN,
xeT (xi)

z l
where T'(x) := {u € X| ¢(u) + d(x, u) < ¢(x)}. Observing that the sets 7 (xx) are nonempty and
closed with T (xx+1 C T (xx) and diam 7 (xx) — 0 as k — oo, conclude by the completeness of
X that NZ2 | T'(xx) = {x} for some X € X, which is actually the required point. Compare this with
[522, Theorem 2.26], where the converse statement is also verified.

Exercise 2.39 (Lower Subdifferential Variational Principle). Prove that for every (l.s.c. and)
bounded from below function ¢: X — R on an Asplund space X, for any ¢, A > 0 and xo € X
with ¢(xg) < infx ¢ + ¢, there are x € X and

x* € dp(X) with || —xol < A, @(F) < i%f(p +e, |Ix*| < e/A.

Hint: Employ Ekeland’s variational principle and then the approximate extremal principle in
Asplund spaces; compare it with [522, Theorem 2.28].

Exercise 2.40 (Upper Subdifferential Variational Principle). Prove that for every (l.s.c. and)
bounded from below function ¢ : X — R on a Banach space X, for any ¢, A > 0 and xo € X with
@(x0) < infy ¢ + ¢, there exists X € X with ||X — xo|| < X and ¢(X) < infy ¢ + € such that

x* < e/ forall x* € 3t ().
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Hint: Combine the usage of Ekeland’s variational principle with the first part of Theorem 1.27
(smooth variational description) and Proposition 1.30(ii), which both hold in general Banach
spaces; compare it with [522, Theorem 2.30] and the proof of the second part of Theorem 2.14.

Exercise 2.41 (Smooth Variational Principles in Asplund Spaces).

(i) Prove the following smooth variational principle, which is an enhanced version of the
Borwein-Preiss one: Given a (l.s.c. and) bounded from below function ¢: X — R on a Fréchet
smooth space X, for any €, A > 0 and xo € X with ¢(x9) < infx ¢ + ¢, there is a concave Fréchet
smooth function ¥ : X — R such that [|x — xo|| < A, ¢(x) < infx ¢ + &, |V (X)| < &/A, and

e(F) =¥ (F), @) =¥ ) + |lx — x> whenever x € X. (2.45)

The Fréchet smoothness of X is also necessary for the concavity of iy in (2.45).

Hint: To verify the sufficient part of this statement, use the proofs of Theorem 1.10(ii) and
its subgradient counterpart in Theorem 1.27 holding in any Fréchet smooth space; see Exer-
cise 1.51(ii). To justify the necessity part, apply (2.45) to ¢(x) := 1/||x||, find the corresponding
function ¥, form the convex and Fréchet smooth function p(x) := —¢(x 4+ v) + 1/||v|, and
consider the Minkowski gauge

g() :=inf{A > 0| x € AQ} with Q:={x € X| p(x) < 1/QIvID},

which defines the equivalent norm n(x) := g(x) + g(—x) on X. Since p is of class ¢! and convex,
the Fréchet differentiability of g on X \ {0} is equivalent to the Gateaux one, and thus it remains to
check that dg(x) is a singleton at nonzero points as in the proof of the corresponding parts of [522,
Theorem 2.31].

(ii) Derive the S-smooth versions (while without the concavity property of ) of (i) for As-
plund spaces admitting S-smooth bump functions of the classes listed in Exercise 1.51(iii). Hint:
Compare this with [522, Theorem 2.31](ii).

Exercise 2.42 (Regular Normals to Set Intersections via the Extremal Principle). Let 1, 2,
be (closed) subsets of an Asplund space X, and let x € €1 N 2.

(i) Shoy that for any x* € N(x; Q1 N Q2y) and ¢ > 0, there exist A > 0, x; € Q; N (X + eB),
and x]" € N(x;; ;) +eB*, i = 1, 2, such that

ax* =x{+x3, max {A, ||x*||} =1. (2.46)

Hint: Proceed similarly to the proof of Theorem 2.16 with applying the approximate extremal
principle instead of the exact one by using the sum norm (1.18) on X x R. Compare this with
[522, Lemma 3.1].

(ii) Obtain conditions ensuring that . # 0 in (2.46). Hint: Consult with [583] for various results
of this type and their uniform versions.

Exercise 2.43 (Intersection Rules for Basic Normals to Nonconvex Sets in Asplund Spaces).
We say that the sets {2, 2>} in a Banach space X satisfies the limiting qualification condition at
X € Q) Nif

[llxf, + x5l —> 0 as k > ool = x} = x5 =0

for any sequences x;x ﬁi X, xj 2 x¥,and g | 0 with x, € ﬁsk (xik; Q4),i =1,2.

(i) Let X be Asplund. Based on (1.59), show that & can be dropped in the definition above and
that the limiting qualification condition is implied by the normal one (2.26). Give an example of
sets for which the reverse implication fails.

(ii) Prove the validity of the basic intersection rule (2.16) in Asplund spaces provided that the
limiting qualification condition holds and one of the sets €2; is SNC at x. Hint: Pass to the limit
from the fuzzy intersection rule of Exercise 2.42, and compare with the proof of a more general
result in [522, Theorem 3.4].
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(iii) Give an example showing that the SNC assumption is essential for the validity of the
intersection rule even in the Hilbert space setting.

(iv) Consider the intersection of finitely many subsets of an Asplund space with x € Q :=
Q1 N...N Ky, and verify the inclusion

NG, Q) CN(Gx; Q)+ ...+ N(x; Q) (2.47)

provided that all but one of the sets €2; are SNC at x and that the following normal qualification
condition for finitely many sets is satisfied:

[¥f4+... +x=0, xfeNGW]=x =0, i=1,...,s.

Show that €2 is normally regular at x and (2.47) holds as equality if all €2; are normally regular at
X. Hint: Proceed by induction with the usage of (2.47) for s = m, m > 2, to verify the validity of
the normal qualification condition for s = m + 1.

Exercise 2.44 (Normals to Intersections of Convex Sets in Locally Convex Topological Vector
Spaces). Let 2] and €2, be nonempty convex subsets of a LCTV space X, and let x € Q1 N 2.
(i) Assuming that there is a bounded convex neighborhood V of X such that

0e int(SZl — (22N V)), (2.48)
prove the precise normal cone intersection formula
N(x; Q1 NQ2) = NE&; Q1)+ N(X; Q22). (2.49)
Hint: Show that the convex sets
O := Q1 x[0,00) and O, := {(x,pL) e X xR| xeQNV, u< (x*,x—)?)}

form an extremal system (2.1), and then proceed by applying the convex extremal principle from
Exercise 2.34; compare it with the proof of [538, Theorem 3.1].

(ii) Establish relationships between (2.48), the condition O € int(2; — £27), and the classical
qualification condition 2] N (int ;) # @ for the validity of the normal cone formula (2.49) in
general LCTV spaces and also in normed spaces.

(iii) Assuming that X is Banach, that both sets 21, €2, are closed, and that int(2] — Q27) # ¢,
prove the equivalence

[0 € core(Q2] — Qz)] — [O € int(2) — Qz)],
where the symbol “core” stands for the algebraic core of a set defined by
coreQ2 := {x € 52| Vv e X 3y > 0suchthat x +rv € Q whenever [t| < y}.

Hint: Use the equality int Q2 = core 2 that holds for closed and convex subsets of Banach spaces;
see, e.g., [114, Theorem 4.1.8].

Exercise 2.45 (Preservation of the SNC Property for Set Intersections). Let ©2; and 2, be
subsets of an Asplund space X, and let x € 21 N Q.

(i) Prove that if both 2; are SNC at x and the normal qualification condition (2.26) holds,
then @27 N Q2 is also SNC at x. Hint: Apply the result from Exercise 2.42 based on the extremal
principle, and compare with the proof of a more general statement in [522, Theorem 3.79].

(ii) Show that the normal qualification condition (2.26) is essential in infinite dimensions. Could
it be replaced by the limiting qualification condition?

(iii) Derive an extension of (i) to the case of finitely many sets.
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Exercise 2.46 (Inner Semicontinuity on the Graph and Inner Semicompactness on the Do-
main). Let F: X =2 Y be a set-valued mapping between Banach spaces, and let (x, y) € gph F.

.. . . . - = dom F
We say that F is inner semicontinuous at the graph point (x, y) if for every sequence xj N
there is a sequence y; € F(xx) that converges to y as k — oo. The mapping F is inner semicom-

pact at the domain point x if for every sequence xj dﬂ x, there is a sequence y; € F(xi) that
contains a convergent subsequence as k — oo.

(i) Observe that the inner semicontinuity of F at (x, y) for every y € F(x) reduces to the inner
semicontinuity of F at the domain point x from (1.20).

(ii) Check that if F is a locally compact near x (i.e., the image of a neighborhood U of x under
F is enclosed into a compact set; this corresponds to the local boundedness of ¥ when dimY < oo
as defined in Subsection 1.2.1), then F is inner semicompact around this point, i.e., foreachx € U.

(iii) Give an example showing that, in contrast to the inner semicontinuity above, the inner
semicompactness can’t be equivalently formulated via the convergence of the entire sequence {yx},
k € N and requires passing to a subsequence.

Exercise 2.47 (Normals to Sums of Sets in Infinite Dimensions). Let 2, Q> C X for an As-
plund space X with X € Q1 + €5, and let §: X = X? be defined by

Sx) = {(xl,xz) e X x X! X1 +x2=x, x] €RQ1, X2 € Qz}. (2.50)

Verify the following sum rules for basic normals:
(i) If the mapping S in (2.50) is inner semicompact at x, then

NEGQ+@)C | NG QD NNG; Q).

(x1,x2)€S(X)
(ii) If S is inner semicontinuous at (x, x1, xp) for some (x1, X) € S(x), then
N(x; Q1+ Q2) C N(xp; Q1) NN (x2; 2).

__ Hint: Reduce it to the intersection rule from Exercise 2.43 for the sets 51 = Q1 x X and
Q) := X x Q) in the Asplund space X2, compare with [522, Theorem 3.7].

Exercise 2.48 (SNC Property Under Set Additions). Let X be Asplund, and let 2, 2, C X
with ¥ € Q1 + Q. Define a set-valued mapping S: X = X2 by (2.50), and prove that the set
Q1 + 29 is SNC at x if either

(a) S is inner semicompact at x, and for each (x1, x2) € S(x), one of the sets €21, €25 is SNC at
x1 and xy, respectively, or

(b) S is inner semicontinuous at (X, Xz, X) with some (X, x3) € S(x), and one of the sets
Q1, 7 is SNC at x| and x», respectively.

Hint: Check the SNC property of the sum €21 + €2 by reducing it to that for the intersection of
51 ) §~22 C X? as in Exercise 2.47; compare with [522, Theorem 3.73].

Exercise 2.49 (SNEC Property of Extended-Real-Valued Functions). A function ¢: X — R
on a Banach space X is sequentially normally epicompact (SNEC) at x € dom ¢ if its epigraphical
set is SNC at (x, ¢(x)).

(i) Show that the SNC property of ¢ at x (i.e., of its graph at (x, ¢(x)) implies that both ¢ and
—¢ are SNEC at this point. Does the reverse implication hold?

(ii) Show that the local Lipschitz continuity of ¢ around x implies both SNC and SNEC prop-
erties of ¢ at this point.

Hint: These properties are epigraphical and graphical specifications of the relationships in Ex-
ercise 2.29 for the case of extended-real-valued functions.
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Exercise 2.50 (Subgradient Description of the SNEC Property). Let X be Asplund. Then the
SNEC property of any (l.s.c.) function ¢: X — R at x € dom ¢ admits the following subgradient

description: for every sequences x £ ¥, A 4 0,and xf € Akgw(xk), we have the implication

*
x,’(‘2>0=>||x,f||—>0 as k — oo.

Hint: Use description (1.71) of singular subgradients in Asplund spaces, and compare the proof
with the one given in [522, Corollary 2.39].

Exercise 2.51 (Basic Normals and the SNC Property for Sets Defined by Inequality Con-
straints). Let X be an Asplund space.
(i) Consider the level set Q := {x € X| ¢(x) < 0}, where ¢: X — R is merely Ls.c. around
X with ¢(x) = 0. Assume that 0 ¢ d¢(x) and that ¢ is SNEC at x. Show that  is SNC at the
reference point and that
N(%; Q) C [cone dp(¥)] U 8% p(X),

where the equality holds if ¢ is epigraphically regular at x. Hint: To verify the SNC property of
Q at x, apply the result of Exercise 2.45 to the intersection of € := epi¢ and Q = {(x,®) €
X x R| @ = 0}. In this way the claimed normal cone representations can be deduced from Exer-
cise 2.43(ii) in Asplund spaces and from Theorem 2.16 in finite dimensions.

(ii) Consider the set 2 := {x € X| ¢;(x) <0, i =1, ..., m}, and denote by

1) :={i ef{l,...,m}| ¢;(x) =0} 2.51)

the set of active constraint indices. Assume that the functions ¢; are locally Lipschitzian around
x for i € I(x) and upper semicontinuous for i € {1,...,m} \ I(x). Show that the constraint
qualification condition

0 ¢ co[9g; (¥)| i € 1(X)]

ensures the simultaneous validity of the SNC property of 2 at x and the inclusion
NGE ) cl { inawi(x)( M= 0, higi (@) =0,i=1, m}

which holds as equality if ¢; are lower regular at x for all i € I(x). In this case the set Q is
normally regular at x. Hint: Use the results from (i) and the intersection rules for the normal cone
and SNC property from Exercises 2.43 and 2.45.

(iii) Obtain extensions of (ii) to the case where ¢; are merely l.s.c. fori € I(x).

Exercise 2.52 (Basic Normals and the SNC Property for Sets Defined by Equality Con-
straints). Let X be an Asplund space.

(i) Consider the set 2 := {x € X| ¢(x) = 0}, where ¢: X — R is continuous around X € €.
Show that the condition 0 ¢ d¢(x) U d(—¢)(X) ensures that the set €2 is SNC at x and that the
inclusion

N(F Q) C [cone {9p(F) Ud(—0) ()] U [1%0(F) U™ (—) ()]

holds with the equality and normal regularity of €2 therein if ¢ is strictly differentiable at x. Hint:
Apply the result from Exercise 2.45(i) to the intersection of the sets 2] := gphg and Q, :=
{(x, ) € X x R| @ = 0} to verify the SNC property of 2 at x and then Exercise 2.45(ii) to get the
claimed normal cone representations.

(ii) Let Q := {x € X| ¢i(x) = 0, i = 1,...,m}, where all the functions ¢; are lo-
cally Lipschitzian around x. Assume the validity of the constraint qualification condition 0 ¢
co {Bgoi X)UI(—g)X)|i=1,..., m}. Then the set €2 is SNC at x, and we have the inclusion

NG Q) C {Z/\i[a(pimua(f@)(ﬁ)]| M0, 0= 1m}
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which holds as equality with the normal regularity of €2 if ¢; are strictly differentiable at x. Hint:
Combine the result from (i) with those in Exercises 2.43 and 2.45.
(iii) Extend (ii) to the case where ¢; are merely continuous around X.

Exercise 2.53 (Basic Normals and the SNC Property of Constraint Systems in Nonlinear
Programming). Let X be an Asplund space. Consider the set

Q={reX|gx)<0,i=1,....,m and g;(x)=0, i=m+1,....,m+r}.

(i) Assume that all the functions ¢; are strictly differentiable at x, and impose the Mangasarian-
Fromovitz constraint qualification (MFCQ):

(@) Vout1(X), ..., Vg4, (x) are linearly independent;

(b) there is u € X satisfying the conditions

(Voi(®),u) <0, i € [(¥), and (Vi (@), u) =0, i=m~+1,....,m+r,

where I (x) is defined in (2.51). Show that in this case, the set €2 is SNC and normally regular at x,
and we have the normal cone representation

m+r
NG Q) = { ZA;VW()E)’ 2 >0, Agi(E) =0 for i=1,...,m,
i=1

and A; € R for i:m+1,...,m—|—r}.

Hint: Deduce these results from the previous exercises and the fact that dp(x) = {Ve(x)} for
strictly differentiable functions.

(ii) Assume that all the functions ¢; are locally Lipschitzian around x. Formulate the corre-
sponding generalized version of MFCQ in this case, and derive extensions of the normal cone
representation and SNC results from (i) to the nondifferentiable case. Hint: Compare these results
with [523, Theorem 3.86].

Exercise 2.54 (Subdifferential and SNEC Sum Rules for Functions Defined on Infinite-
Dimensional Spaces).

(i) Extend the subdifferential sum rules of Theorem 2.19 for (locally l.s.c.) functions
@1,92: X — R on an Asplund space X provided that one of them is SNEC at x. Hint: Pro-
ceed as in the proof of Theorem 2.19 by the reduction to the normal cone intersection rule from
Exercise 2.43 under the normal qualification condition.

(ii) Show that the sum ¢ + ¢> is SNEC at x € dom ¢; N dom ¢, if both functions ¢; have this
property and the qualification condition (2.34) holds. Hint: Reduce this to the SNC result for sets
from Exercise 2.45(i).

(iii) Let @1, ¢2: X — R be convex functions on a LCTV space X. Using the geometric ap-
proach implemented in the proof of Theorem 2.19, derive the convex subdifferential sum rule from
the intersection rule given in Exercise 2.44(i).

Exercise 2.55 (Minimality of the Basic Subdifferential). Let 5’(;): X =2 X* be an abstract
presubdifferential on the class of 1.s.c. functions ¢: X — R with ¢(¥) < oo defined on a Banach
space X and satisfied the following properties:

(a) E):(p(u) =0%¢(x +u)forg(u) :=¢(x+u)andx,u € X.

(b) d°¢(x) is contained in the subdifferential of convex analysis for convex continuous func-
tions represented in the form

©(x) = (x*, x) + ¢llx|| whenever x* € X*, ¢ > 0. (2.52)

(c) For any n > 0 and any functions ¢;, i = 1,2, such that ¢; is of type (2.52) and the
sum ¢ + ¢ attains its local minimum at x = 0, there are x1, xo € nB satisfying the conditions
lp2(x2) — ¢2(0)] < n and
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0 €9°¢1(x1) +0°p2(x2) + nB".
Prove that we always have the inclusion

do(¥) C Limsup 3°p(x)
(4

X=X

for the basic subdifferential d¢(x) via the sequential weak™ limit of 5‘(,0()5).

Hint: Proceed by using the analytic representation (1.68) of the basic subdifferential, and check
that the presubdifferential d¢ from (1.33) satisfies all the properties listed in (a)—(c) in the case of
Asplund spaces. Compare it with [580, Theorem 9.7].

2.6 Commentaries to Chapter 2

Section 2.1. The single most important conceptual ingredient of our geometric dual-space approach

to variational analysis is the extremal principle for systems of sets as well as its proof based on
the method of metric approximations (MMA) initiated by the author [502, 504] in the context of
general problems of optimization and control. Recall that the very notion of the (basic) normal
cone (1.4) appears in [502] as a by-product of the method of metric approximations.

The term “extremal principles” for geometric variational principles of the type presented in
Section 2.1 was coined by the author in [511], while the result of Theorem 2.3 has been derived
earlier via the MMA in finite-dimensional spaces in the joint papers with Kruger [440, 441] under
the name of “generalized Euler equation.” It has also been extended therein to Fréchet smooth
spaces in an approximate form by involving e-normals (1.6) as ¢ > 0. The Euler equation termi-
nology came from the analogy with the “abstract Euler equation” used by Dubovitskii and Milyutin
[234] to describe the result of conic convex separation in their scheme of obtaining necessary opti-
mality conditions in problems of optimization and control. As proved in [579], the e-version of the
extremal principle from [440, 441] happened to be equivalent to the “fuzzy sum rule” suggested
later by Ioffe [367].

The approximate extremal principle in the enhanced form of Corollary 2.5, playing a crucial
role in infinite-dimensional spaces, was established by Mordukhovich and Shao [579] as a charac-
terization of Asplund spaces via variational arguments involving Fréchet-like subgradients. Other
proofs of this result are given in [580] by using the characterizations of well-posedness from [578]
(cf. Section 3.1) and in [258, 522] by employing the method of separable reduction; see the cited
publications for more details, discussions, and references. The state of the art of this method and
its relationships with the approximate extremal principle can be found in the recent paper by Ciith
and Fabian [187]. The line of equivalences from [579], with adding more results therein, was ex-
tended by Zhu [786] to Banach spaces with bornological smooth renorms. In parallel Borwein,
Mordukhovich, and Shao [107] established the equivalence of bornological versions of the ap-
proximate extremal principle in Banach spaces with smooth renorms (resp. bump functions) to the
smooth variational principles by Borwein and Preiss [108] (resp. by Deville, Godefroy and Zizler
[205]). Some versions of the extremal principle and related results in terms of abstract normal
cones and subdifferentials in Banach spaces can be found in [468, 515, 522].

The exact/limiting form (2.4)—(2.5) of the extremal principle holds in any Asplund space [580]
provided that all but one set 2; are sequentially normally compact (SNC) at X in the sense of (2.41)
introduced by the author and Shao in [582] (preprint of 1994) together with its partial counterpart
(PSNC) for mappings F: X =3 Y as in (3.65). Then these properties were further developed
and applied in [581] and subsequent publications. It turns out that the SNC property holds in
any Banach spaces for sets that are compactly epi-Lipschitzian (CEL) in the sense of Borwein
and Stréjwas [109], which extends the epi-Lipschitzian property by Rockafellar [669]; see Exer-
cise 2.29 for the definitions and more references. On the other hand, its PSNC counterpart is valid
for any Lipschitz-like multifunction between Banach spaces as follows from the coderivative crite-
rion for the Lipschitz-like property discussed in [522] and Chapter 3 below. While both SNC and
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CEL properties are automatic in finite dimensions (and PSNC for F: X =3 Y is automatic when
dim X < o0), well-developed calculus/preservation rules are available in [522, 589], the proofs of
which are based on the extremal principle; see Sections 2.5 and 3.4. Note that topological coun-
terparts of these properties (nets instead of sequences in the weak™ convergence on dual spaces)
were developed by Penot [635] (preprint of 1995). We refer the reader to [106] for complete char-
acterizations of the CEL property of convex sets, to [371] for comparisons between the SNC and
CEL properties for closed sets in Banach spaces, and to [259] for relationships between the SNC
property and its topological counterpart; see [522, Remark 1.27] for a detailed summary. Further
results and applications in this direction can be found in [731, 732].

A certain modification of global extremality for sets in LCTV spaces, which doesn’t require
the set closedness and nonempty intersection and occurs to be especially useful in the study of
convex sets, has been recently suggested and investigated by the author and Nam [538]. Enhanced
versions of the extremal principle in both approximate and exact forms were obtained in [538] in
LCTV and normed spaces frameworks and then applied to generalized differential and conjugate
calculi of convex sets and functions via a variational geometric approach; see [538, 541] and also
Exercises 2.33 and 2.34 for some results and discussions.

Extended versions of extremal principle in both approximate and exact forms, involving nonlin-
ear deformations of sets and set-valued mappings defined on metric spaces, were introduced and
developed by Mordukhovich, Treiman, and Zhu [586] being particularly motivated by applications
to some problems of multiobjective optimization; see Chapter 9. Another version of the nonconvex
separation theorem for sets was established by Borwein and Jofré [102]. Further developments
and applications in this direction can be found in [50, 114, 265, 433, 523, 685, 773, 774,777, 787]
along with other publications. We also mention here important results on the so-called nonlinear
separation that were initiated by Gerstewitz (Tammer) [278] who was motivated by developing
new scalarization techniques in vector optimization. Her idea was greatly elaborated and applied
in many subsequent works; see, Egs., [245, 279, 300, 321, 385, 389, 407, 409] and the references
therein.

Section 2.2. The material of this section is rather fresh and has never appeared in the monographic
literature. It concerns extremality notions and various extensions of the extremal principle to infi-
nite (actually countable) systems of sets in finite-dimensional spaces. Besides being of undoubted
mathematical interest for their own sake, this topic has been motivated by applications to optimiza-
tion problems of semi-infinite programming considered in Chapters 7 and 8 below. Section 2.2
mostly follows the recent papers by Mordukhovich and Phan [568, 569] in the case of finite di-
mensions, while we present infinite-dimensional extensions and the rated version of the extremal
principle from [567] in Section 2.5. The reader is referred to the subsequent papers by Kruger and
Lopez [436, 437] for further developments and applications in this direction based on somewhat
different ideas.

Section 2.3. Ekeland’s variational principle formulated in Corollary 2.13 is one of the first and most
powerful results of modern variational analysis. From the very beginning [248, 249], it has been
proved in complete metric spaces (characterizing in fact their completeness) by a rather compli-
cated device involving transfinite induction and the Zorn lemma. A constructive proof in complete
metric spaces was presented in [250] based on a personal communication with Michael Crandall;
see Exercise 2.38. Observe that, being a metric space results, Ekeland’s principle brought new and
very important information in finite-dimensional spaces as well. Its short proof in R” was given by
Hiriart-Urruty [349].

The finite-dimensional geometry allows us to obtain a variational result in the general form of
Theorem 2.12 taken from the author’s early book [507]. By the choice of the function 6 therein
we can unify, in particular, Ekeland’s principle and various smooth variational principles. This
is useful in several applications as shown, e.g., in Theorem 2.14 and Proposition 2.15 also taken
from [507]. Besides the Borwein-Preiss and Deville-Godefroy-Zizler variational principles and
their enhanced forms, other smooth variational principles were obtained in the author’s joint paper
with Fabian [257]; see Exercise 2.41 for some results in this direction. It is remarkable to see,
e.g., that the Fréchet renorming of Banach spaces is not only sufficient but also necessary for
the smoothness and concavity of perturbations as in Exercise 2.41(i). The reader can find more
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information about various smooth variational principles in appropriate infinite-dimensional spaces
and their relationships with the extremal principles in [522, Chapter 2] and the references therein.

In [522, Subsection 2.3.2] the reader can also find other, less known albeit very useful, types of
variational principles. The first one, the lower subdifferential variational principle, was established
by Mordukhovich and Wang [587] as yet another characterization of Asplund spaces. This result
has the same form as Ekeland’s variational principle while replacing the minimization condition
in (2.23) by the subgradient estimate ||x*|| < &/A for some x* € 5(,0 (x) at the suboptimal point
X, which is a nonsmooth extension of the almost stationary condition (2.24); see Exercise 2.39.
The other result, obtained in the author’s joint paper with Nam and Yen [546] and named there
the upper subdifferential variational principle, justifies the validity of the latter estimate for all
x* € 3T (X) in an arbitrary Banach space provided that 9 T ¢(x) # @; see Exercise 2.40. This also
reduces to the almost stationary condition (2.24) when ¢ is Fréchet differentiable at x.

Section 2.4. The results of this section (except Corollary 2.18 that is taken from [678]) are
based on the author’s paper [505], where the normal and subdifferential qualification condi-
tions (2.26) and (2.34) were first introduced and the underlying intersection and sum rules
(2.27), (2.35) were derived by the method of metric approximations; see [507, 522] for com-
prehensive accounts. Some (directionally) Lipschitzian versions of these results can be found
in Ioffe [365] and Kruger [428, 430]. Another paper by Ioffe [368] dealt, by using a penalty
function method clearly inspired by the MMA (which was acknowledged therein as well as in
[364, 365]), with the case of l.s.c. functions on R” under essentially more restrictive tangential
qualification conditions formulated in terms of the directional derivative construction by Rock-
afellar [670] and the tangent cone by Clarke. More recent finite-dimensional results in this di-
rection were established by Ioffe and Outrata [376] under certain calmness and metric qualifi-
cation conditions. Various infinite-dimensional versions of the presented results were given in
[114, 369, 375, 398, 399, 518, 522, 533, 580, 588, 610, 637, 685] and the references therein.
Some of these and related results can be found in exercises to Chapters 2—4. Note, in particular, the
validity of the comprehensive extensions of Theorems 2.16, 2.19 and their corollaries to the case
of Asplund spaces under SNC assumptions of type (2.41) as well as its functional counterparts. As
mentioned above such properties are automatic in finite dimensions and also hold in (generalized)
Lipschitzian settings of Banach spaces; see [522] for more details.

The major qualification condition (2.26) was introduced in [505] under the name of the “gen-
eralized nonseparation property” for nonconvex sets in finite dimensions in order to derive the
basic intersection rule in Theorem 2.16 by using the method of metric approximations. Its nega-
tion, which amounts to the relationships of the exact/basic extremal principle, was called in [505]
the “generalized separation property.” Both names reflect the fact that these properties are non-
convex generalizations of the corresponding ones for convex sets; see [507] for more details and
discussions. Condition (2.26) was studied and applied in [522] under the name of the “normal
qualification condition,” which allowed us to derive the intersection rule for basic normals in fi-
nite and infinite dimensions. However, the weaker “limiting qualification condition” was proved
to be sufficient for deriving the intersection rule in Asplund spaces under appropriate SNC/PSNC
assumptions; see [522, Theorem 3.4].

More recently, another line of impressive applications of the qualification condition (2.26) has
been developed in algorithmic aspects of feasibility and optimization for nonconvex problems. A
pioneering work in this direction was done by Lewis, Luke, and Malick [458] who established a
linear rate of local convergence of a nonconvex version of the (von Neumann) alternating projec-
tion algorithm and its averaged projection modification in the problem of finding an intersection
point of two (and finitely many) nonconvex sets in R” under the qualification condition (2.26)
and its version for finitely many sets presented in Corollary 2.17. Analyzing the connection with
the original development in (2.26) and the exact extremal principle while giving its algorithmic
description, the authors of [458] interpreted the basic qualification condition (2.26) as the “linear
regular intersection” of closed sets and made connections with metric regularity notions considered
below in Chapter 3.
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Further striking developments of the variational analysis approach to algorithmic issues were
made by Bauschke et al. in [71, 72]. The authors of [71, 72] introduce a new notion of the “re-
stricted normal cone” to closed sets in R”, which is an extension of our basic normal cone (1.4)
while allowing them to essentially weaken the assumptions of [458] to obtain a local linear conver-
gence of the alternating projection algorithm. The other paper [73] develops these ideas to solve
numerically a sparsity optimization problem with affine constraints.

Lewis and Malick [459] were the first to establish an equivalence between the qualification
condition (2.26) and the classical transversality condition in differential geometry for C2-smooth
manifolds by using the coderivative criterion for metric regularity from Theorem 3.3(ii); the lat-
ter actually ensures such an equivalence for general closed sets in finite dimensions. Subsequent
results on a local linear convergence of alternative projections and related algorithms for nons-
mooth and nonconvex problems of feasibility and optimization have been recently developed in
[229, 438, 480, 481, 617] and other publications with certain modifications of the normal qualifi-
cation/transversality condition (2.26) defined under the names of “intrinsic transversality, separable
intersection, subtransversality,” etc. The transversality language was used in the recent book [375]
without mentioning the introduction of (2.26) and the original derivation of the intersection rule
under this qualification condition in [505] as well as omitting the references to the original paper
[459] on transversality in the alternating projection algorithm and to a major contribution in this
direction developed by Noll and Rondepierre [617] (preprint of 2013) concurrently to the paper by
Drusvyatskiy, loffe, and Lewis [229].

The subdifferential qualification condition (2.34) was also first introduced in the author’s pa-
per [505] for establishing the basic subdifferential sum rule in Theorem 2.19. This result plays a
crucial role in deriving other rules of subdifferential calculus and is deduced from the basic inter-
section rule of Theorem 2.16. The subdifferential qualification condition parallel to (2.34) while
expressed via singular subgradients generated by the convexified normal cone was independently
introduced by Rockafellar [675] who used it to obtain major calculus rules for Clarke’s subgra-
dients of extended-real-valued l.s.c. functions on finite-dimensional spaces. Conditions of these
types and their indicator function versions as in (2.26) were the first ones to express qualifica-
tion requirements in subdifferential calculus and constraint qualifications in nonsmooth optimiza-
tion in the same (dual) terms as calculus rules and necessary optimality conditions. That was the
reason to label such conditions in Ioffe [369] as well as in [376] and other publications as the
“Mordukhovich-Rockafellar (MR) subdifferential qualification conditions.” This name and any re-
lated discussions on (2.26) and (2.34) with the references to [505, 675] were not presented in [375],
while the known qualification conditions for calculus rules were basically reformulated therein by
using the transversality-related terminology.

Section 2.5. Most of the exercises presented in this section have hints and references to the publi-
cations, where the reader can find more details and sources. We comment only on the minimality
result given in Exercise 2.55, which is taken from [580, Theorem 9.7] and [522, Proposition 2.45].
The origin of it should be traced to [368, Theorem 9] and [505, Theorem 4], where the minimality
property was proved under somewhat different subdifferential requirements in finite dimensions.
Note that the subsequent result by Ioffe [369, Proposition 8.2] doesn’t imply that the nucleus of his
G-subdifferential is smaller than our basic subdifferential d¢(x) as mistakenly claimed therein.
The mistake is due to the fact that the mapping x +— d¢(x) may not be of closed-graph in the
normx weak™® topology of X x X* even for Lipschitzian functions on Asplund spaces. As the
reader can see, the result presented in Exercise 2.55 yields that the basic subdifferential dp(x) is
the smallest among all natural subdifferential constructions that are sequentially outer/upper semi-
continuous on gph ¢. This includes, in particularly, all the “approximate” subdifferentials.



Chapter 3 )

Well-Posedness and Coderivative Check or
Calculus

This chapter concerns the study of two important topics in variational analysis that
don’t seem to be related to each other at the first glance. The first topic revolves
around certain well-posedness issues for set-valued mappings/multifunctions, which
constitute a large area of great significance for variational theory and its numerous
applications. The area of well-posedness covers “good” properties of multifunctions
that are desired to get achieved in the framework of variational analysis, optimiza-
tion, equilibria, control, etc. It has been undoubtedly recognized from the viewpoints
of both variational theory and applications that such properties include those known
as Lipschitzian stability, metric regularity, and covering/linear openness, which are
fundamental in fact for the whole field of nonlinear analysis, not only for its varia-
tional aspects. Properties of this type are defined in terms of a given multifunction
and have nothing to do with notions of (generalized) differentiation.

It occurs nevertheless that the aforementioned properties admit complete gualita-
tive and quantitative characterizations via our basic coderivative of multifunctions
calculated exactly at the reference points. Such pointbased (i.e., expressed entirely
at the point in question) coderivative criteria for general closed-graph multifunc-
tions are derived in this chapter. However, applying them efficiently to particular
models of optimization, equilibria, control, etc. requires comprehensive calculus
rules, which open the gate to deal with structural mappings. The required point-
based coderivative calculus is presented below under certain pointbased qualifica-
tion conditions. On the other side of developments, the obtained coderivative char-
acterizations of the well-posedness properties allow us to verify that the imposed
qualification conditions automatically hold for large classes of multifunctions sat-
isfying these properties. Furthermore, involving the coderivative characterizations
and calculus rules brings us to a rather surprising conclusion that the property of
metric regularity fails to fulfill for major classes of variational systems given as so-
lution maps to parametric generalized equations, variational inequalities , etc. Thus
the results presented in this chapter fully justify two-sided relationships between
well-posedness and pointbased coderivative calculus. Many other related results and
well-posedness properties in finite and infinite dimensions are presented and largely
discussed in the exercise and commentary sections.
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3.1 Well-Posedness Properties of Multifunctions

We start by formulating the fundamental well-posedness properties of multifunc-
tions, which will be then characterized in terms of the coderivative (1.15).

3.1.1 Paradigm in Well-Posedness

In this chapter we mainly deal with multifunctions F: R” = R™ between finite-
dimensional spaces with discussing infinite-dimensional issues in the exercise and
commentary sections. While multifunctions under consideration are generally set-
valued, it doesn’t exclude of course a single-valued case where F' is denoted by
F = f: R" — R™ for notational convenience.

Definition 3.1 (Well-Posedness Properties). Let F: R" = R™, and let (x,y) €
gph F be the reference point. We say that:

(a) F has the COVERING PROPERTY around (x, y) with modulus k > 0 if there
are neighborhoods U of x and V of y such that

F(x)NV +krB C F(x +rB) whenever x +rB C U as r > 0. (3.1

The supremum of all the moduli {«'} for which (3.1) holds with some neighborhoods
U and V is called the EXACT COVERING BOUND of F around (x, y) and is denoted
by cov F(x, y).

(b) F is METRICALLY REGULAR around (X, y) with modulus v > 0 if there are
neighborhoods U of x and V of y such that

dist(x; F_l(y)) < /Ldist(y; F(x)) forall x eU, yeV. 3.2)

The infimum of all the moduli {1} for which (3.2) holds with some neighborhoods U
and V is called the EXACT REGULARITY BOUND of F around (x, y) and is denoted
by reg F(x, y).

(¢) F is LIPSCHITZ-LIKE around (X, y) with modulus £ > 0O if there are neigh-
borhoods U of x and V of y such that

Fx)yNV c F(u) +£||lx —ul|lB forall x,u e U. 3.3)

The infimum of all the moduli {£} for which (3.3) holds with some neighborhoods
U and V is called the EXACT LIPSCHITZIAN BOUND of F around (x,y) and is
denoted by lip F (x, y).

All the three properties in Definition 3.1 are stable/robust with respect to small
perturbations of the reference point (x, y). They postulate a “good behavior” of F
around (x, y) and are highly interconnected; see Theorem 3.2.

The covering property is also known as openness with linear rate or linear open-
ness of F around (x, y). For single-valued mappings f it somewhat relates, while
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being essentially different for nonlinear mappings, to a conventional openness prop-
erty of f at X meaning that the f-image of every neighborhood of x contains/covers
a neighborhood of f(x) or equivalently

f(x) €int f(U) for any neighborhood U of x. 34

Property (3.1) postulates more, even for single-valued mappings: it ensures the uni-
Sformity of covering around x with linear rate quantified by k. The cubic function
f(x) = x> on R gives a simple example of a mapping having the openness prop-
erty (3.4) at x = 0 while not that with linear rate; see Fig. 3.1.

U>z

(a) f(z) eint((f(U)) ) f(z) + krB ¢ f(z +rB)

Fig. 3.1 Openness (a) but not linear openne,

ocal Lipschitzian behavior (1.26), while in the compact-valued case with

=A™ in (3.3), it reduces to the standard (Hausdorff) local Lipschitzian property
of/multifunctions. In the general case of V in (3.3), this condition is also known as
the pseudo-Lipschitz or Aubin property, which is a graphical localization of Lips-
chitzian behavior for set-valued mappings.

The following result shows that all the properties from Definition 3.1 are in fact
equivalent with the precise relationships between their exact bounds.

Theorem 3.2 (Equivalence Between Well-Posedness Properties). Let F': R" =
R™ with (x, y) € gph F. The following are equivalent:
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Fig. 3.2 Metric regularity.

(i) F enjoys the covering property around (X, y) if and only if it is metrically
regular around this point. In this case we have

cov F(%, 7) = (reg F(%, 7).

(ii) F is Lipschitz-like around (x,y) if and only if the inverse mapping
F~1: R™ = R" is metrically regular around (3, X). In this case we have

lip F(X, 7) =reg F~ (¥, X).

Proof. Let us give the proof of these equivalences, which holds also with small
changes for appropriate semilocal and modifications of the local notions from Def-
inition 3.1 in both finite and infinite dimensions; see Sections 3.4 and 3.5. We split
the proof into several steps of their own interest.

Step 1: Metric regularity in (3.2) can be equivalently verified only for vectors
(x,y) € U x V satisfying the estimate dist(y; F(x)) < y for some y > 0.

To verify this, let us show that for any 1, y > 0 there is v > 0 such that (3.2)
holds for all x € x + vB and y € y + vB provided that it is valid for x €
X+ nBand y € y + nB with dist(y; F(x)) < y. Given (u, n, y), denote v :=
min{n, yu/(u + 1)} and check that (3.2) holds forallx € x +vBand y € y + vB
with dist(y; F(x)) > y. Observe that dist(x; F_l(y)) < pdist(y; F(x)) for such
x, y due to dist(y; F(x)) <|ly — ¥|| <v < y. This gives us

dist(x; F~'() < dist(%; F~' () + llx = %Il < pdist(y; F@®) + Iy — %
Sully=yl+lx =% <vp+1 < yu < pdist(y; F(x))
by the choice of v and thus verifies the statement of Step 1.
Step 2: Metric regularity implies covering with cov F(x, y) > (reg F (x, ¥))™\.

Take 1, u > 0 such that (3.2) Eolds forx € U :=int(x + nB) and y € V with
some V. Define v := min{n, 1}, U := int (x + vIB) and then pick

veint(Fx) NV + (r/w)B) with x +rB c U forsome r > 0.
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By these constructions and the assumed estimate (3.2), we conclude that
dist(x; F~'(v)) < r for such (x, v, r), which allows us to choose u € F~!(v)
withu € 1(x +rB) and v € F(u) C F(1(x + rB)). This ensures that

int (F(x) nvV + /,L_IFIB) - F(int (x + rB)) whenever x +rB C U.
Taking now an arbitrary small ¢ > O gives us the inclusions
FX)NV+(u+e)"'rB C int (F(x)NV+u~'rB) C F(int (x +rB)) C F(x+rB)

when x 4+ rB C U. This justifies the covering property with cov F(x,y) >
(reg F (x, 7))~ ! while the case of reg F(x, y) = 0O is trivial.
Step 3: Covering implies metric regularity with cov F(x, j) < (reg F(x, y))~..
Indeed, by the covering property, we find «, n > 0 such that
Fx)NV +«xrB C F(x +rB) whenever x +rB C U :=int(x + nB), r >0

for some neighborhood V' of y. Denote v := n/2, U := int (x +vB), y :=«n/2,
and show that (3.2) holds for all x € U and y € V with dist(y; F(x)) < y/2. This
is sufficient for metric regularity due to Step 1. To proceed, fix such a pair (x, y)
and consider any number « satisfying dist(y; F(x)) < o < y. Then

yeFx)NV 4+krB and x +rB C U with r := a/k.

The covering property ensures the existence of u € x +rB with u € F~!(y), which
implies that dist(x; F~'(y)) < ||lx —u| < r = a/k. Passing now to the limit as
o | dist(y; F(x)) gives us the following estimate:

dist(x; F~'(y)) < «~'dist(y; F(x)) for those x € Uand yeV

that satisfy dist(y; F(x)) < y. It justifies the statement of this step with
cov F(X, 7) < (reg F(x, ¥))~! and thus completes the proof of assertion (i).

Step 4: Lipschitz-like property of F implies metric regularity of F~' with the
estimate reg F~1(y, ) < lip F(X, ¥).
To verify it, let £ := lip F (¥, ¥) and for any & > 0 get

Fx)NV C Fu)+ (€ +¢)||x — u||B whenever x,u € U
with some neighborhoods U of x and V of y. This tells us that
dist(y; F(u)) < (€ +e)llx —ull if y€ Fx)NV and x,u € U.
Take r > 0 with x 4+ rB C U and observe from the above that

dist(y; F(w)) < (€ + &) dist(u; F~1(y)) (3.5)
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whenever u € ¥ +rB, y € V,and F~1(y) N (X + rB) # @. It is easy to check that
this ensures the validity of (3.5) for all u € U:=x+ (r/3)B and y € V satisfying
dist(u; F~'(y)) < y := r. Taking into account the statement proved in Step 1 and
the arbitrary choice of ¢ > 0, we conclude that F~! is metrically regular around
(5, %) withreg F~1(3, X) < lip F (%, ¥).

Step 5: Metric regularity of F~' implies the Lipschitz-like property of F with the
estimate lip F (X, y) < reg F~1(y, ¥).

Indeed, denoting & := reg F (7, X) and picking any & > 0 give us

dist(y; F(u)) <(m-+e) dist(u; Ffl(y)) forall ue U and yeV
with some neighborhoods U of x and V of y, which yields in turn that
Fx)ynV Cc F(u)+ (m+2¢)|ju —x||B forall x,u e U.

This verifies the claimed assertion and completes the proof of (ii). A

3.1.2 Coderivative Characterizations of Well-Posedness

The established equivalences show that any necessary and/or sufficient condition
and modulus estimates obtained for one of the three well-posedness properties from
Definition 3.1 imply the corresponding assertions for the other ones. The following
principal result provides complete characterizations of these properties for general
closed-graph (of our standing assumption) multifunctions with calculating the exact
bounds of their moduli via the coderivative (1.15) precisely at the point in question.

Theorem 3.3 (Coderivative Criteria for Well-Posedness of Multifunctions). Let
F:R" = R™ with (x,y) € gph F. Then we have the following characterizations
of the well-posedness properties:

(i) F enjoys the covering property around (X, y) if and only if

ker D*F (x, y) = {0}. (3.6)
In this case the exact covering bound of F around (X, y) is calculated by
cov F(&, ) = inf {lull | u € D*F(& $)(©), vl =1]. (3.7)

(ii) F is metrically regular around (X, y) if and only if condition (3.6) holds. In
this case the exact regularity bound of F at (x, y) is calculated by

reg F(X,5) = |ID*F (&, )~ = ID*F~' 3, DI, (3.8)

where the norm of a positively homogeneous mapping is defined in (1.14).
(iii) F' is Lipschitz-like around (x, y) if and only if

D*F (%, 3)(0) = {0}. (3.9)
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In this case the exact Lipschitzian bound of F around (X, y) is calculated by
lip F(x,y) = [D*F(x, Y. (3.10)

Proof. We split the proof into three major steps of their own interest.

Step 1: If F is Lipschitz-like around (x, y), then
ID*F(x, )|l <lip F(¥,y) < 00 (3.11)

and therefore the injectivity condition (3.9) holds.
To proceed, observe first that (3.11) yields the validity of (3.9) by

lull < ID*F(x, )l - llv]| forall u e D*F(x,y)(v), veR™

We verify (3.11) by showing that the Lipschitz-like property of F around (x, y) with
modulus ¢ > 0 implies that

ID*F(x, y)|| < ¢. (3.12)

Assuming this property, pick any u € D*F(x,y)(v) and by using the limit-

ing coderivative representation (1.17) find sequences (xi, Vi) gp—hf (x,y) and
(ug, vg) — (u,v) such that (ug, —vr) € ﬁ((xk, yr); gph F) for all £k € N. Fix
any k sufficiently large, and observe that, due to the aforementioned robustness of
the Lipschitz-like property, F is Lipschitz-like around (x, yx) with the same mod-
ulus ¢, which we assume to be positive by taking into account that the case of £ = 0
is trivial. This means that there exists > 0 such that

FxX)N(r+nB) C F(z) +£||x —z||B forall x,z € x; + 2nB.

Employing definition (1.5) of regular normals, for any ¢; > 0 we can find a positive
number v < min{n, £n} such that

(ur, 7 — xk) — (e, w — i) < ex(llz — xeell + llw — yxll) (3.13)

whenever (z, w) € gph F with ||z — x¢|| < v and ||[w — yx|| < v. Choose z €
x + min{v, v€~!}B and observe that ||z — xi|| < ||z — x|| + |lx — x|l < 27. Using
the above Lipschitz-like relationship with y € F(x) N (yx + nB) and the chosen
vector z allows us to find w € F(z) satisfying

lw—yll <Lllx —z|| < Emin{v,é‘lv} = min {Zv, v} <.
If 0 < £ < 1, then we have the estimates
lz —xkll <v and [Jw — yll < €v,

which imply by (3.13) that v|jug| < €v|lvk|l + ex(v + £v) and hence
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lukll < Lllvkll + ex (1 + £).

In the remaining case where £ > 1 we have ||z — x|l < v€~ ! and |w — y|| < v,
which imply in turn that v~ ||ug || < v|lvgll + ex(v + £~ ') and hence

lurll < Llloell + ex(1 +0).

Passing now to the limit as k — oo with g | 0 and taking into account the second
representation of the normal cone in (1.7), we arrive at (3.12) and thus verify the
assertion claimed in this step.

Step 2: The kernel condition (3.6) ensures the covering property of F around (x, y)
with the exact bound estimate

cov F(x,y) > inf{lluII

ue D*F(X, 5)(v), v = 1} > 0. (3.14)

Denote a(F, x,y) := inf{||u|| | u € D*F(x,y)(v), |lv| = 1} in (3.14) and
observe that condition (3.6) yields a(F, y, x) > 0. Indeed, assuming the contrary
brings us to a contradiction due to the robustness property of the normal cone. Thus
to prove the statements of this step, it suffices to show thatevery 0 < ¥ < a(F, x, y)
is a covering modulus of F around (x, ¥). Supposing that it is not true for some fixed
0 <k <a(F,x,Yy), the negation of (3.1) gives us sequences xy — X, yx — y, and
re 4 0 as well as z; € R satisfying

Yk € F(xi), llzx — yill < krg, zi ¢ F(x) forall x € By, (xp). (3.15)
Fix k € N and define the set Ex and the function 6 : R" x R™ — R, by
Ey == (gph F) N ((x, yo) + rxB) and 6k (x, y) == [lx[| + rellyll,

where B stands for_the closed unit ball of R” x R™. Consider now the L.s.c. function
o . R" x R™ — R with the (extended) nonnegative values

oc(x,y) =Ny — zill + 8((x, ¥)s Ex),  (x,y) e R" x R™,

and apply to it Theorem 2.12 with e, = «krg, Ay = rp — r,f, the initial point
(xx, ¥k), and the function 6; defined above. Taking into account that ¢y (xz, yk) < &
by (3.15) and the structures of ¢ and Ej, we find a pair (Xz, yx) € gph F with
| Xk, Y&) — (xk, Yi) |l < rg such that the function

K _ -
Yo, ) = Dy = 2l (= Sl relly = 5l ) + (e, ): gph F)

attains its unconditional local minimum on R” x R™ at (x, yx). Note that ¥ can
be treated as the sum of two functions, one of which is convex and Lipschitz contin-
uous, while the other is 1.s.c. around (X, yx). Applying now Corollary 2.20 to this
sum and using subdifferentiation of the (convex) norm function at zero and nonzero
points (see Exercise 1.66) together with the condition z; ¢ F(xx) by (3.15) give us
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uy and vy satisfying

uy € D*F Xy, yi)(ve) with Jlug| < 1 i and |vk] = 1 as k — oo.

Thus we get (u, v) such that (ux, vy) — (u, v) along a subsequence and that
lull <« with u € D*F(x, y)(v),

where the latter is due to the robustness property from Proposition 1.3. The obtained
contradiction justifies the assertions of Step 2.

Step 3: Completing the proof of the theorem.

It follows from the results established in Steps 1 and 2 due to the equivalences of
Theorem 3.2 and the relationship

[D*FT'F(5.5)(0) = {0}] <= [ker D*F (%, ) = {0}]
between the coderivatives of F and its inverse as well as the one
/I =inf{vl |y € He, el =1}

holding for any positively homogeneous multifunction. A

Before presenting several consequences of Theorem 3.3 in this section (and more
later on), let us draw the reader’s attention to some principal issues concerning the
coderivative criterion for the Lipschitz-like property.

Remark 3.4 (Discussions on the Coderivative Characterization of Lipschitzian
Behavior). Observe the following:

(i) The approach of classical analysis is from continuity to differentiability, where
smooth functions form a subclass of Lipschitz continuous ones. Here we have the
opposite direction for nonsmooth and set-valued mappings: from generalized differ-
entiability to Lipschitz continuity, where the coderivative allows us to fully charac-
terize Lipschitzian behavior of multifunctions.

(ii) Lipschitz continuity in both classical and set-valued frameworks can be
viewed as continuity with linear rate, where the rate of linearity is crucial for char-
acterizing such continuity as well as the equivalent notions of linear openness and
(first-order) metric regularity in Theorem 3.3.

(iii) Replacing in the coderivative criterion (3.9) the basic normal cone to the
graph of F by Clarke’s convexification (1.60) leads us to the condition

[(u,0) € N((x,5);gph F)] = u =0, (3.16)

which is sufficient for the Lipschitz-like property of F around (x, y) but far removed
from the necessity; see [512, 513] for further details. Amazingly it never holds even
in the trivial case where the mapping F = f: R" — R" is single-valued and locally
Lipschitzian while nonsmooth around x. It follows from Rockafellar’s theorem on
the subspace property of the convexified normal cone; see Exercise 1.46(ii). This
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phenomenon is also valid for Lipschitzian manifolds (or graphically Lipschitzian
set-valued mappings) that are not “strictly smooth” at the reference point; see more
discussions in Section 1.5.

3.1.3 Characterizations in Special Cases

This subsection concerns deriving from the coderivative characterizations of The-
orem 3.3 for general closed-graph multifunctions some useful consequences in re-
markable special cases. We start with characterizing the classical (Hausdorff) lo-
cal Lipschitz continuity of multifunctions meaning that (3.3) holds with V = R™.
Recall that the (local) uniform boundedness of set-valued mappings is defined in
Subsection 1.2.1.

Corollary 3.5 (Coderivative Criterion for Local Lipschitz Continuity of Set-
Valued Mappings). Let F': R" = R™ be locally bounded around x € dom F, for
any y € F(x). Then the mapping F is locally Lipschitzian around x if and only if
we have the condition

D*F(x,y)(0) = {0} forall y € F(X).
In this case the exact Lipschitzian bound of F around X is calculated by
lip F(X) = max {|D*F (X, y)|l | § € F(®)}.

Proof. Observe that, under the assumptions made, the local Lipschitzian property
of F around x is equivalent to its Lipschitz-like property around (x, y) for every
y € F(x). This follows from the classical fact that any open covering of a closed and
bounded set in finite dimensions can be reduced to a finite subcovering. It implies
also that

lip F(¥) = max {lip F(%, y)| y € F(¥)},

where the maximum is realized due to the upper semicontinuity of lip F(-, -) on the
graph of F. This allows us to deduce the claimed statements from the corresponding
ones in Theorem 3.3(iii). A

In the next corollary we present characterizations of metric regularity and cover-
ing for set-valued mappings with convex graphs, where the coderivative calculation
allows us to describe the criteria and exact bound formulas entirely in terms of the
range and graph of the given mapping.

Corollary 3.6 (Metric Regularity and Covering of Convex-Graph Multifunc-
tions). Assume that the graph of F: R" = R"™ is convex and pick some y € rge F.
Then the validity of both metric regularity and covering properties of F around
(%, 7) for any ¥ € F~Y(3) is equivalent to 3 € int(rge F). In this case the corre-
sponding exact bounds are calculated by
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reg F(%, 5) = max {lvl] (w.x =) < (v,y = 5) forall (x,y) e gph P},

lull <1

cov F(X,y) = min {||M||

min (U, x — %) < (v,y— ) foral (x,y) EgphF}.
vil=

Proof. Follows from Theorem 3.3(i,ii) due to the coderivative representation for
convex-graph mappings in Proposition 1.13. A

We conclude this section with consequences of Theorem 3.3 applied to two
classes of single-valued mappings. The first class contains locally Lipschitzian ones
for which the criteria and exact bounds for metric regularity and covering are ex-
pressed via basic subgradients of the corresponding scalarization.

Corollary 3.7 (Metric Regularity and Covering of Single-Valued Locally Lip-
schitzian Mappings). Let f: R" — R™ be locally Lipschitz around x. Then f is
metrically regular and enjoys the covering property around this point if and only if
we have the implication

[0€d(, HX)]=v=0.

In this case the exact regularity and covering bounds are calculated by
reg () = max (vl | u € 3w, )@, Null <1},

cov f(F) = min{||u||

wedw, @, vl =1}.

Proof. Follows from Theorem 3.3(i,ii) due to the coderivative scalarization of The-
orem 1.32 for locally Lipschitzian mappings and the norm definition (1.14). The
maximum and minimum in the exact bound formulas are realized due to the robust-
ness property of the basic subdifferential. A

The last corollary of Theorem 3.3 presented here provides complete characteri-
zations of metric regularity and covering for smooth mappings.

Corollary 3.8 (Metric Regularity and Covering of Smooth Mappings). Let
f:R" - R™ withm < n be smooth around x. Then it is metrically regular and
enjoys the covering property around this point if and only if its Jacobian matrix
V f(x) has full rank:

rank V f(X) = m, or equivalently V f(X)R" = R". (3.17)

In this case the exact regularity and covering bounds are calculated by

reg f(¥) = | (Vf(f)*)q‘

, cov f(X) = min {[|Vf @ 0| | vl = 1}. (3.18)

If furthermore m = n, then we have
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- ——1—1
cov f(x) = [IVf@x) .

Proof. Follows from Theorem 3.3, or from Corollary 3.7, due to the coderivative
representation for smooth mappings by Proposition 1.12. Let us also present another
proof of the sufficiency of the surjectivity condition (3.18) for the covering/metric
regularity property of f around x, which works for strictly differentiable mappings
between arbitrary Banach spaces. Put A := V f(x). The open mapping theorem
implies by the surjectivity of A (see Exercise 1.53) that for any y from the image
space there is x € A~!(y) satisfying

Il < allyl with " = inf {1 4%l | o) =1}. (3.19)

Using the strict differentiability of f at X, for every y € (0, u~!), we find a neigh-
borhood U of x such that

If(x1) = f(x2) = A(x1 —x2) || < yllxi — x|l forall xi,x € U.
Our aim now is to justify the inclusion

fFAO+w''=yyBc f&+rB) for T+rBCcU, r>0  (3.20)

meaning that f enjoys the covering property around x with modulus k = ="' — y.

Since y > 0 can be taken arbitrarily small, we get from (3.20) that
cov /(&) = u =int [IVF@ ] | ol =1},

which verifies the covering property of f with the equality in (3.18) by taking into
account that the opposite inequality follows directly from Step 1 in the proof of
Theorem 3.3 and the equivalences of Theorem 3.2 held in any Banach spaces. Note
that we cannot generally claim that the minimum is realized in the exact bound
formula of (3.18) in infinite dimensions.

Thus it remains to verify inclusion (3.20), where we can obviously take x = 0
and f(X) = 0 without loss of generality. The latter means that for every y € (u~! —
y)rB the equation y = f(x) has a solution x € rB C U.

To justify (3.20) via the above claim, fix y € ¥ with |y|| < (™" — y)r and
construct the desired solution x as the limit of a sequence {x;}, k = 0,1,...,
recurrently defined in the following way. Starting with xg := 0, we use (3.19) to
construct x; by the iterative procedure of Newton’s type, which is known as the
Lyusternik-Graves iterative process (see Section 3.5):

-1

Axp =y — f(xk—1) + Axp—y with [xg — xp—1ll < plly — =)l

for all k € N. It follows from the above construction that

lxe1 — Xl < w(uy)X Iyl and
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k k
el < Yl = xjall < syl (uy)? ™!

Jj=1 j=1
<ulyl/A—py)=Ilyl/w =) <r

for every k € N. Therefore {x;} is a Cauchy sequence that converges to some x with
llx]| < r. Passing to the limit in these iterations as k — oo, we arrive at y = f(x)
and thus complete the alternative proof of the sufficiency. A

3.2 Coderivative Calculus

This section contains basic calculus rules for the coderivative (1.15) of set-valued
mappings satisfying our standing closed-graph (i.e., continuity in the single-valued
case) assumption. Although the results below are given for mappings between finite-
dimensional spaces, it is more convenient here to use the star-notation (x*, y*,
etc.) to signify dual-space variables; see also Sections 3.5 and 3.4 for infinite-
dimensional extensions.

3.2.1 Coderivative Sum Rules

We start with sum rules, which invokes (in one part) the inner semicontinuity notion
for set-valued mappings at graph points defined and discussed in Exercise 2.46.
Observe that a multifunction F is inner semicontinuous at (x, y) € gph F if it is
Lipschitz-like around this point.

Given two closed-graph multifunctions Fp, F>: R" = R™, consider the auxil-
iary mapping S: R” x R™ = R?" given by

S, ) :=={1,y2) e R" xR"| y1 € Fi(x), y2 € F2(x), y = y1 + 2}, (321

and derive now two related while independent coderivative sum rules.

Theorem 3.9 (General Sum Rules for Coderivatives). Let F;: R* = R™ for
i =1,2 andlet (x,y) € gph (F| + F>). The following assertions hold:

(i) Fix (y1,y2) € S(x,¥) from (3.21), and suppose that this mapping is inner
semicontinuous at (x, y, ¥1, y2) and that the qualification condition

D*Fi(x,5)(0) N (= D*F2(%, 72)(0)) = {0} (3.22)
is satisfied. Then for all y* € R™, we have the inclusion
D*(F\ + F2)(X, ) (") C D*Fi(x, y1)(y") + D*F2(%, y2) (). (3.23)

If one of the mappings F;, say F), is single-valued and continuously differentiable
around x, then (3.23) becomes the equality
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D*(F1 4+ F2)(x, ) (") = VFI(X)*y* + D*Fy(x, y — F1(X))(y") (3.24)

for all y* € R™ without any other assumptions.

(ii) Suppose that the mapping S in (3.21) is locally bounded around (x, y) and
that the assumptions in (1) ensuring (3.23) hold for every pair (y1, y2) € S(x, y).
Then for all y* € R™, we have the inclusion

DR+ REHOHC | [DRE IO + D RE Y]
(31,52)€8(x,y)

Proof. First we justify inclusion (3.23) in assertion (i). Take any (x*, y*) with x* €
D*(F) + F»)(x, ¥)(y*) and find by definition (1.15) and the first representation
in (1.7) sequences (xi, yx) € gph (F1+F2) and (x;/, —y]) € Ng, (xk, y); gph (F1+
F>)) such that (x¢, yu) — (X, ), x; — x*, and y{ — y* as k — oo. Due to the
assumed inner semicontinuity of the mapping S from (3.21) at (x, y, y1, y2), we get
a sequence (yix, y2r) — (V1, ¥2) with (yix, y2k) € S(xx, yx) for all k € N. Define
further the sets

Qi == {(x,y1, ) eR" xR" xR"| (x,y;) e gph F;}, i=1,2,

that are locally closed around (/):c, ¥1, y2) with (xg, Y1k, Y2k) € 1N Q). Itis easy to
check that (x, =y, =) € N((xk, yix, y2c); 21 N Q2) for all k € N, which tells
us by passing to the limit as k — oo that

(-X*s _y*’ _)’*) € N(()Ev .)_}19 yz)s Ql N QZ)

Now we apply Theorem 2.16 to the above set intersection observing that the nor-
mal qualification condition (2.26) for these sets reduces to (3.22). The intersection
rule (2.27) ensures in this setting the existence of

(@}, =y1) € N((%, 31); gph F1) and (x3, —y3) € N((X, 52); gph F2)

such that (x*, —y*, —y*) = (x|, =y}, 0) + (x5, 0, —y3). This readily shows that
x* = x{ + x5 with x]" € D*F;(x, y;)(y*), i = 1, 2 and thus justifies (3.23).

To finish the proof of assertion (i), it remains to verify equality (3.24) if F
is single-valued and smooth around x. In this case we have D*F|(x)(y*) =
{V F1(x)*y*}. Hence the qualification condition (3.22) holds automatically and the
mapping S in (3.21) is obviously locally bounded around (x, y). The inclusion “C”
in (3.24) follows directly from (3.22) and Proposition 1.12. Applying it to the sum
F, = (F| + F2) + (—F1), we arrive at the opposite inclusion in (3.24) and thus
justify the claimed sum rule equality.

To verify (ii), observe that the local boundedness of S around (x, ¥) implies the
existence of a subsequence of (yix, y2r) € S(xk, yk), which converges to some
(»1, y2). It follows from the standing closed-graph assumptions imposed on F;, i =
1, 2, that (y1, y2) € S(x, y). Then we proceed as in the proof of assertion (i) and
complete the proof of the theorem. A
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The following result reveals an important consequence of Theorem 3.9, which
tells us that the qualification condition (3.22) holds automatically if one of the map-
pings F; is Lipschitz-like around the corresponding point. It is due to the coderiva-
tive characterization of this property established in Section 3.1.

Corollary 3.10 (Coderivative Sum Rules for Lipschitz-Like Multifunctions).
Suppose in the framework of Theorem 3.9(i) that one of the mappings F; is Lipschitz-
like around the corresponding point (x,y;), i = 1,2. Then the sum rule inclusion
(3.23) holds. If in the setting of Theorem 3.9(ii) the Lipschitz-like property is im-
posed on one of F; around (x, y;) for every (y1, y2) € S(x,y), then we have the
sum rule inclusion therein.

Proof. The validity of the qualification condition (3.22) under the imposed
Lipschitz-like assumptions follows from Theorem 3.3(iii). A

3.2.2 Coderivative Chain Rules

Our next theorem unifies several coderivative chain rules providing independent
results of the inclusion and equality types in large generality. The composition (F o
G): R" = RY of two set-valued mappings F: R” = R? and G: R" = R" is
naturally defined by

(FoG) = |J F»= {z c Rq‘ 3y € G(x) with z € F(y)}, x R,
VG ()

Theorem 3.11 (General Coderivative Chain Rules). Given F: R™ = R? and
G:R" = R", let x € (F o G)(X), and consider the mapping

S5(x.2) =G NF ') ={yeGw|zeFy) (3.25)

for all (x,z) € R" x RY. The following assertions hold:
(i) Fix y € S(x, z) in (3.25) and suppose that the mapping S is inner semicontin-
uous at (x, z, y) and that the qualification condition

D*F(3,2)(0) Nker D*G(X, ¥) = {0} (3.26)
is satisfied. Then for all z* € RY we have the inclusion
D*(F 0 G)(x,2)(z") C D*G(X, y) o D*F (¥, 2)(z"). (3.27)

(ii) Suppose that the mapping S in (3.25) is locally bounded around (x, 7) and
that the qualification condition (3.26) holds for every y € S(x, 7). Then for all
z* € RY we have the inclusion

DFot)E D C | [PP6E 9o D FGDE]
yeS(x,2)
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(iii) Let G = g be single-valued and continuously differentiable around x with
y = g(x). Then we have the equality

D*(F o g)(x,2)(z") = Vg(X)* o D*F(3,2)(z%), z*eRY, (3.28)

when either the Jacobian matrix Vg(x) has full rank or the qualification condi-
tion (3.26) is satisfied and F is graphically regular at (y, 7). In the latter case the
composition F o g is graphically regular at (X, 7).

Proof. To verify assertion (i), define ®: R" x R” = RY by
®(x,y) := F(y) + A((x, y); gph G) for (x,y) € R" x R", (3.29)

where A(-; gph G) is the indicator mapping of the set gph G relative to RY con-
sidered in Exercise 1.59. It follows from the sum rule of Theorem 3.9(ii) and the
result of the aforementioned exercise applied to the mapping @ in (3.29) that for
any z* € RY we have the inclusion

D*®(x,y,2)(z") C (0, D*F()(z")) + N((x, y); gph G) (3.30)

under the validity of the qualification condition (3.26). On the other hand, it can
be deduced from the construction of @ in (3.29) and the first representation of the
normal cone in Theorem 1.6 that

D*(F 0 G)(%,7)(z") C {x* e R"| (x*,0) € D*® (%, 7,2)(z")} (33D

for all z* € R? under the assumed inner semicontinuity of the mapping S at
(x, zZ, y). Combining (3.30) and (3.31) gives us the chain rule inclusion (3.28).

The proof of (ii) is similar to (i). Now we justify assertion (iii), where (3.28)
is the equality version of (3.27) for smooth inner mappings. Let us start with
showing that inclusion (3.31) holds as equality provided that g is locally Lip-
schitzian around X with some modulus £ > 0. Indeed, take any (x*, z*) with
(x*,0) € D*®(x, g(x), 2)(z*) and by (1.17) find sequences (xx, zx) — (X, z) and
(xps vi> zg) — (x*, 0, 2%) such that zx € F(g(xx)) and

lim sup (O v =2, (x, 8(x), 2) — (xk, 8(xi), 26))

X=X, 22k l(x, g(x), 2) — (xp, g(xk), zi) |l
Z€F (g(x))

<0

for all kK € N. It implies by the local Lipschitz continuity of g that

(g, x — xx) — (2,2 — 2k)

lim sup
X=X, 22k G, 2) — G, 2l
z€F (g(x))

< €+ DIyl Lo,

and thus (0, x*) € D*(F o g)(x, 7)(z*) by (1.15) and the second representation of
basic normals in Theorem 1.6. This verifies the equality in (3.31).
It is straightforward to observe from the definitions that we always have
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D*®(%, 3, 2)(z*) (0, D*F(3)(z) + N((%, 5); goh G), z* e RY,

and so (3.30) becomes an equality if both F and G are graphically regular at the
corresponding points. When G = g is single-valued, the graphical regularity for
g holds with D*g(x)(y*) = {Vg(x)*y*} if g is of class C' around x. (It actually
reduces to the strict differentiability of g at this point; see [522, Theorem 1.46] and
Exercise 1.60(iii) above.) Combining this with the equality in (3.31) justifies the
equality and regularity statement in (iii) under the graphical regularity assumption
imposed on F.

It remains to verify equality (3.28) when Vg (y) has full rank; note that the graph-
ical regularity of F o g is not claimed in this case. Let I be the identity operator on
RZ. Then (g, I): R* x R — R™ x RY is of class C' around (¥, 7) with full
rank of V(g, I)(X, 7). It is easy to see that (g, I)~!(gph F) = gph(F o g). Thus
the chain rule (3.28) follows from representation of normals to inverse images of
smooth mappings given in Exercise 1.54(ii). A

There are a great many useful consequences of Theorem 3.11. We present some
of them in this and the next sections, while others are formulated as exercises be-
low. Let us start with efficient conditions ensuring the validity of the underlying
qualification condition (3.26), and hence the coderivative chain rules, due to the
well-posedness characterizations of Section 3.1.

Corollary 3.12 (Coderivative Chain Rules for Lipschitz-Like and Metrically
Regular Mappings). Fix Z € (F o G)(X) and y € G(X) N F~1(2) and suppose that
the mapping S in (3.25) is inner semicontinuous at (x, Z, y). Then the coderivative
chain rule (3.27) holds if either F is Lipschitz-like around (v, 7) or G is metrically
regular around (x, y). Alternatively, the local boundedness of S around (x, z7) and
the validity of either the Lipschitz-like property of F around (y, 7) or metric regu-
larity of G around (x,y) for every y € S(x, z) ensure the chain rule inclusion in
Theorem 3.11(ii).

Proof. Follows from Theorem 3.11 due to the coderivative characterizations of the
well-posedness properties in Theorem 3.3. A

The following corollary of Theorem 3.11 allows us to evaluate normals to inverse
images of sets under set-valued mappings. For brevity we consider only the case
corresponding to the local boundedness of S in Theorem 3.11.

Corollary 3.13 (Normals to Inverse Images). Given G: R" = R" and ® C R"
with ¥ € G~1(®), suppose that the mapping x — G(x) N O is locally bounded
around x and that the qualification condition

N@; ®) Nker D*G(F, ¥) = {0} forall 5 € G(X)N©O (3.32)

is satisfied, which is automatic when G is metrically regular around (x, y). Then we
have the inclusion

NEGT@) cJ[P'6E HOM| v e NG 0), FeGne),
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which becomes an equality when G = g is single-valued and continuously differen-
tiable around x and either V g(x) has full rank or © is normally regular at y. In the
latter case, the set g~ (©) is normally regular at X.

Proof. Observe the composite representation of the inverse image
A(x; GT1(@)) = (F o G)(x) with F(y) := A(y; ©)

via the indicator mappings of the sets in question relative to any space RY as de-
fined in (1.59). Then the claimed results follow directly from Theorem 3.11 applied
to this composition. Note that the case where Vg (x) has full rank in this corollary
recovers the calculation formula for normals to inverse images formulated in Exer-
cise 1.54(ii). A

3.2.3 Other Rules of Coderivative Calculus

The next theorem, which is in fact a consequence of Theorems 3.9 and 3.11, ap-
plies to general binary operations on set-valued mappings including addition, sub-
straction, various kinds of multiplication and division , as well as taking maxima,
minima, etc. We formalize this via the following h-compositions

(F1 0 F)@) = {h1,y2)| y1 € Fu@), 12 € B0}

of two multifunctions F;: R" = R" and F»: R" = R/, where the single-valued
mapping i: R™ x R/ — RY represents various binary operations. For brevity we
present only the inclusion formula for coderivatives corresponding to the case of
inner semicontinuity in Theorem 3.11.

Theorem 3.14 (Coderivatives of Compositions with Respect to Binary Oper-
ations). For Fi: R" = R™ and F»: R" = R, consider their h-composition

h h
F| o F> with some h: R" x Rl — RY. Pick 7 € (Fi ¢ F>)(X) and suppose
that the set-valued mapping S: R" x R? = R™ x R! defined by

S(x,2) == {1, y) e R" xR y; € Fi(x), z=h(y1, )}

is inner semicontinuous at the given (x,z,y) € gph S with y = (y1, y2) and that h
is locally Lipschitzian around y. Then for all z* € R? we have

h - - - - - -
DFeR)ED | [PPREIOD+ D RE 0D
O7.3)€D*h(3)(z*)

Proof. Define F: R” = R” x R/ by F(x) := (F(x), F>(x)), and get

D*F(x, )31, y3) C D*Fi(X, y)(]) + D*F2(x, 32)(33). (3.33)
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Indeed, this follows by applying Theorem 3.9 to the sum F = Fi + F, where
Fi(x) := (F1(x),0) and F>(x) := (0, F»(x)). Since

(F1 & F)(x) = (h o F)(x)

and £ is locally Lipschitzian around y, we employ the chain rule of Corollary 3.12
to i o F. Combining it with (3.33) justifies the claimed result. A

We conclude this section by illustrating the application of Theorem 3.14 to cal-
culate the coderivative of inner product

(F1, F2)(x) == {{y1. »2)| yi € Fi(x), i = 1,2}
of set-valued mappings Fy, F>: R" = R™.

Corollary 3.15 (Coderivatives of Inner Products). Given v € (F1, F>)(x) and
yi € F;i(x) witha = (y1, y2), suppose that the mapping

(. v) = {1, y2) € R*™| y; € Fi(x), v = (y1, )}

is inner semicontinuous at (X, v, y1, y2) and that the qualification condition (3.22)
is satisfied. Then for all . € R we have

D*(Fi, B)(x, D)%) C D*Fi(%, y1)(A32) + D*Fa (%, 52) (A51).

Proof. Follows from Theorem 3.14 with h(y1, y2) = {(y1, ¥2). A

3.3 Coderivative Analysis of Variational Systems

Now we consider a broad class of parametric variational systems (PVS)
Sx):={yeR"|0e f(x.y) + 0}, xeR" (3.34)

defined by single-valued mappings f and set-valued mappings Q. Employing and
further developing appropriate results of coderivative calculus allow us to express
the coderivative of § via the corresponding constructions for the initial data f
and Q. Using these calculations, the coderivative criteria for well-posedness, and
the subsequent analysis leads us to a rather surprising (at the first glance) conclu-
sion that the naturally desired well-posedness property of metric regularity fails for
PVS (3.34) in fairly general settings.

3.3.1 Parametric Variational Systems

The parametric formalism of generalized equations (GEs) is given by
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0€e f(x,y)+ Q(y) with x e R", y e R, (3.35)

where f: R" x R" — R is a single-valued base mapping dependent on both
the decision variable y and the parameter variable x, while Q: R = RY is a
parameter-independent set-valued field mapping. This formalism and the GE name
were coined by Robinson [661] for the case where Q(y) is the normal cone mapping
to a convex set. The GE model (3.35) has been well recognized as a convenient
framework to study a variety of qualitative and quantitative/numerical aspects of
variational analysis, equilibria, etc. not only in finite-dimensional but also in infinite-
dimensional spaces; see Sections 3.4 and 3.5. Note that in the original setting of the
normal cone mapping Q(y) := N(y; ) in (3.35) generated by a convex set €2, the
GEs under consideration can be rewritten in the form of parameterized variational
inequalities:

find y € R™ suchthat {(f(x,y),v—y) >0 forall v e, (3.36)

which cover various complementarity problems, KKT (Karush-Kuhn-Tucker) sys-
tems of first-order conditions in constrained optimization, etc.

The set-valued mapping x — S(x) of the parameter x defined in (3.34) is known
as the solution map associated with GE (3.34). Important issues in the theory and
applications of parametric GEs revolve around well-posedness properties of their
solution maps. The three fundamental robust properties of this type have been stud-
ied and characterized above via coderivatives in the general framework of set-valued
mappings. Natural questions arise about the validity of these properties in the par-
ticular framework of solution mappings to parametric GEs. Having in hand the ob-
tained coderivative criteria for well-posedness and the developed rules of coderiva-
tive calculus allows us to efficiently resolve these issues for PVS. In fact, a lot has
been done in this direction for the Lipschitz-like property of (3.34), a crucial ingre-
dient of robust Lipschitzian stability of parametric GEs; see, e.g., [522, Chapter 4].
The outcome for Lipschitzian stability of (3.34) is generally positive: it holds un-
der unrestrictive qualification conditions imposed on the initial data of (3.35). In
contrast we show below that this is not the case for the metric regularity and the
equivalent covering/linear openness properties, which fail, in particular, in the case
of subdifferential PVS where Q stands for subdifferential/normal cone mappings
generated by convex and other types of “nice” functions. Observe that the situation
is completely different for the general case of parametric constraint systems (PCS)
given in the form

Fx):={yeR" gx,y) €®}, xeR" (3.37)

where both Lipschitz-like and metric regularity properties hold under unrestrictive
assumptions; see Section 3.5. The main difference between PVS and PCS is the
underlying subdifferential/normal cone structure of the multivalued field part Q(y)
in (3.34), which accumulates variational information on the model (variational in-
equalities, KKT optimality conditions, etc.).
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In the rest of this section, we assume that the base mapping f in (3.35) is contin-
uously differentiable around the reference point (x, y) satisfying z := — f(x,y) €
Q(y) and its partial derivative with respect to the parameter x is surjective at this
point, i.e., the Jacobian matrix V, f(x, y) is of full rank in finite dimensions; see
Sections 3.4 and 3.5 for some relaxations of this assumptions. Recall also that our
standing hypotheses include the local closed-graph requirement of the field map-
ping Q.

The following result presents an exact calculation of the coderivative of the solu-
tion map (3.34) via the Jacobian of f and the coderivative of Q.

Proposition 3.16 (Coderivative Calculation for General PVS). Under the im-
posed full-rank assumption, the coderivative of (3.34) is calculated by

D*S(, )(*) = [x* cR"

Az* e R? with x* = V, f(x, y)*z%,

38)
—¥* € Yy [ 5T + DTG, D)
for any y* € R™. In particular, we have the relationship
ker D*S(x, y) = —D*Q (¥, 2)(0). (3.39)

Proof. It is easy to observe the representation

gph S = {(x,y) e R" x R"| g(x,y) € O} = ¢7'(®)
with g(x,y) := (% —f(x, y)) and O :=gph Q.

We deduce from the above structure of g that Vg(x, y) is surjective if and only
if Vi f(x, y) is surjective. Applying the normal cone formula from Exercise 1.54(i)
and performing elementary calculations give us representation (3.38). To verify now
the relationship in (3.39), take any y* € ker D*S(x, y) and by the kernel definition
and formula (3.38) such z* € RY that

0=Vef(x, )" and —y" € V, f(¥, )"+ D*Q(5,2)(z). (3.40)

Since V, f(x, y) is surjective, the first equality in (3.40) yields z* = 0. Hence the
second equality therein reduces to —y* € D*Q(y, z)(0), which ensures the inclu-
sion “C” in (3.39). The opposite inclusion in (3.39) follows trivially from (3.38)
even without using the surjectivity of V, f(x, y). A

Now we consider two kinds of structural PVS, where the set-valued part Q
in (3.34) is represented via some compositions of particular mappings that over-
whelmingly arise in theoretical and practical models of optimization, equilibria,
economics, mechanics, etc.; see more comments in Section 3.5. The first class of
structural PVS is described in the form

S@)={yeR"[0e f(x,») +3W o)}, (3.41)
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where f: R" x R" — R™ and g: R" — R/ are single-valued, where {: R” —

R is extended-real-valued, and where dp: R™ = R™ is a subgradient mapping
generated by a function ¢: R™ — R, which is represented as the composition
¢(y) = (¢ o g)(y). Borrowing the mechanical terminology, we label (3.41) as

subdifferential PVS with composite potentials.

To calculate the coderivative of (3.41) with subsequent applications to metric
regularity, we invoke coderivative calculus allowing us to deduce from Proposi-
tion 3.16 an efficient representation of D*S(x, y) entirely in terms of the given data
of (3.41). Furnishing this requires a new second-order subdifferential constructions
introduced as follows.

Definition 3.17 (Second-Order Subdifferential). Ler ¢ : R* — R be finite at X,
and let x* € d¢(x). Then the SECOND-ORDER SUBDIFFERENTIAL of ¢ at X rela-
tive to x* is defined by

p(x, ¥ (u) == (D*E)go)()f, w), ueR?, (3.42)
via the coderivative of the first-order subgradient mapping dp: R" = R", where
we drop indicating X* = Vo (x) when d¢(X) is a singleton.

It follows from Proposition 1.12 and Corollary 1.24 that the second-order subdif-
ferential mapping (3.17) reduces to the (symmetric) Hessian matrix VZ¢(x) linearly
applied to u € R" if ¢ is C>-smooth around %, i.e.,

Fo®) W) = {Ve@)*u} = [Vie@u}, ueR". (3.43)

This allows us to treat u +— 82<p()2, X*)(u) as a (positively homogeneous) general-
ized Hessian mapping for extended-real-valued functions.

The next result provides a precise calculation of the coderivative for the subdif-
ferential PVS of type (3.41).

Proposition 3.18 (Coderivative Calculation for Subdifferential PVS with Com-
posite Potentials). Lez (x, y) € gph S for 3.41) withg := — f(x,y) € (Y og)(¥).
In addition to the full-rank assumption on Vy f (x, y), suppose that g: R™ — RP is
C2-smooth around y with the full -rank derivative Vg (). Let v € R? be a (unique)
solution to the system

q=Vg(@*v with v € 0y (w) and W := g(3). (3.44)
Then the coderivative of S at (x, y) is calculated by
D*S(x,y)(y*) = {x* e R" Ju € R™ with x* =V, f(x, y)*u,
—y* € Vy f (X, ))*u + V0, ) (9)*u + Vg(3)*9*¢ (w, 1) (Ve (F)u)

(3.45)
!

via the second-order subdifferential (3.42) of . Furthermore, we have

ker D*S(%, 3) = —Vg(3)*8%y (, 0)(0). (3.46)
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Proof. Using Theorem 3.16 with Q = (¥ o g) in the composite subdifferential
model (3.41), we get due to the construction of 929 in (3.42) that

D*S(, ) (%) = {x* cR"

Ju € R™ with x* = V, f(x, ¥)*u,
=Y € Vo (R U+ 02 (¥ 0 8) 5 D).

The second-order subdifferential chain rule from Exercise 3.78(i) applied to the
composition ¥ o g gives us under the assumptions made that

(¥ 0 8) (3, 9)w) = V0, &) (7)*u + Vg (3)*0*y (w, 1) (Ve(Pu). (3.47)

Substituting (3.47) into the above expression for D*S(x, y)(y*), we arrive
at (3.45). The relationship in (3.46) follows from employing the second-order
chain rule (3.47) in formula (3.39) with Q = d(y o g). A

Next we consider yet another specification of PVS in (3.34) given by
S)={yeR"|0e f(x,y)+ (¥ o g)M}, (3.48)

where the field Q is a composition of the basic subdifferential of ¥ : R”? — R and
a mapping g: R™ — R?” and where f: R" x R™ — R”. Note that such subdif-
ferential PVS with composite fields are distinct from those in (3.41) with composite
potentials having different ranges of applications. In particular, formalism (3.48)
encompasses perturbed implicit complementarity problems of the type: find y € R™
satisfying the relationships

f(x’y)20$ y_g(xv)’)Zoy <f(x1y)7y_g(xsy))=07

where the first two inequalities are understood in the vector sense.

The following proposition contains coderivative evaluations for (3.48) with and
without the full-rank assumptions on the Jacobian matrix Vg ().

Proposition 3.19 (Coderivative Evaluations for PVS with Composite Fields).
Consider PVS (3.48) with (x,y) € gphS under the full-rank assumption on
V. f(X, ), where g: R™ — RP is of class C' around 3, while ¥ : R — R is
finite at w := g(y). The following assertions hold:

(i) If the Jacobian matrix V g(y) has full rank, then

D*S(x, y)(y*) = { x* € R"| Ju € R? with x* =V, f(x, y)*u,
—Y* €V, fE )+ Ve 0 @, W)

(3.49)

for all y* € R™, where g := — f (x, ¥). Moreover, we have the relationship

ker D*S(x, 7) = —=Vg(3)*3*¥ (w, §)(0). (3.50)
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(ii) Let the mapping 0y : RP = R? be closed-graph around (w, q), and let the
full-rank assumption on V g(y) be replaced by the qualification condition

9y (w, §)(0) Nker Vg(3)* = {0}. (3.51)

Then we have the inclusion “C” in both formulas (3.49) and (3.50).

Proof. Applying formula (3.38) of Proposition 3.16 to the composite field Q =
dYr o g gives us the representation

D*S(x, »(y*) = { x* € R"| Ju € R? with x* =V, f(X, y)*u,
—y* € Vy f(F. ) u+ D (0% 0 8) (5. W)}

(3.52)

for the mapping S from (3.48). To proceed further, we need to use an appropriate
chain rule for evaluating the coderivative of the composition dv o g. In case (i) it
follows from Theorem 3.11(iii) under the full-rank assumption that

D*(3y 0 8)(3, P (w) = Ve Y (@, W), u€R?, (3.53)

where the closed-graph property of the subgradient mapping F = 9 is not needed
in this case; see [522, Theorem 1.66]. Substituting this chain rule into (3.52), we
get (3.49) and similarly derive (3.50) from (3.39).

In case (ii) we apply the coderivative chain rule held as the inclusion “C” from
Theorem 3.11(i) with D*g(¥)(y*) = {Vg(y)*y*}, where the closed-graph property
of 91 is required in the proof; cf. [522, Theorem 3.16]. The qualification condi-
tion (3.26) reduces in this case to (3.51), while the chain rule inclusion (3.27) yields
“C” in both formulas (3.49) and (3.50). A

3.3.2 Coderivative Conditions for Metric Regularity of PVS

In this subsection, based on the coderivative characterization of metric regularity for
general closed-graph multifunction from Theorem 3.3(ii) and the exact coderivative
calculation for PVS (3.34) given in Proposition 3.16, we establish conditions ensur-
ing metric regularity of general PVS and their important specifications. The latter
requires applying coderivative calculus.

The first theorem concerns general PVS (3.34) and contains, in particular, the
equivalence statement regarding the well-posedness properties of metric regular-
ity for solution maps to GEs (3.35) and Lipschitzian behavior of their fields at the
corresponding points.

Theorem 3.20 (Metric Regularity of General PVS). Under the standing assump-
tions made, we have that the solution map S in (3.34) is metrically regular around

(x,y) € gph S if and only if

D*Q(3,2)(0) = {0} with Z7:=—f(X, ) € Q()), (3.54)
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i.e., it is equivalent to the Lipschitz-like property of the field Q around (y, 7). Fur-
thermore, the exact regularity bound of S around (x, y) is calculated by

reg S(X, y) =maX{||y*|| | 32 € RY with |V f(X, 9)*2* < 1,

(3.55)
—* € Vo f (R, )2+ DFOGL D).
Proof. Since the solution map S(-) is clearly closed-graph around (x, y) in the set-
ting of the theorem, characterization (3.54) of its metric regularity around this point
follows from Theorem 3.3(ii) and formula (3.39) in Proposition 3.16. The Lipschitz-
like property of Q around (y, z) is the result of Theorem 3.3(iii). The exact bound
representation (3.55) is a consequence of the general formula (3.8) and the coderiva-
tive calculation for PVS in (3.38). The maximum is attained in (3.55) due to the
assumed surjectivity of V, f(x, y) in the finite-dimensional setting under consider-
ation. A

Now we derive two consequences of Theorem 3.20 for the subdifferential PVS
considered above based on calculating the coderivative of Q as in the proofs of
Propositions 3.18 and 3.19. Note that, besides the coderivative calculation in (3.54),
we need also checking the closed-graph property of the fields in these systems,
which is the standing assumption of Theorem 3.20.

Corollary 3.21 (Metric Regularity of Subdifferential PVS with Composite Po-
tentials). In addition to the assumptions of Proposition 3.18, suppose that the sub-
gradient mapping 0y : RP = RP is closed-graph around (w, v) in the notation
therein. Then S in (3.41) is metrically regular around (X, y) if and only if 9y is
Lipschitz-like around (w, v).

Proof. The first-order subdifferential chain rule in Exercise 1.72 clearly implies
that the closed-graph assumption on 9 ensures this property of the mapping Q =
d(g o) and hence of S in (3.41). It follows from Theorem 3.20 and Definition 3.17
of the second-order subdifferential that S from (3.41) is metrically regular around
(x, y) if and only if we have

D*Q(3,3)(0) := 3*(¥ 0 g) (5, §)(0) = {0}. (3.56)

Applying now the second-order subdifferential chain rule (3.47) tells us that (3.56)
is equivalent to the condition

Vg(3)*ay (w, v)(0) = {0},

which is equivalent in turn to 3%y (w, v)(0) = {0} due to the surjectivity of Vg(y);
see Exercise 1.53. The latter is a characterization of the Lipschitz-like property
of the subgradient mapping 9y around (w, v) by Theorem 3.3(iii). Note that we
can arrive at the same conclusion by using the kernel formula (3.46) due to Theo-
rem 3.3(ii). A

The next corollary concerns metric regularity of the second type (3.48) of the
subdifferential PVS under consideration.
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Corollary 3.22 (Metric Regularity of Subdifferential PVS with Composite
Fields). In the setting of Proposition 3.19(1), suppose in addition that the subgradi-
ent mapping 0y : R? = R? is closed-graph around (w, q). Then the solution map
S from (3.48) is metrically regular around (x, y) if and only if 0V is Lipschitz-like
around (w, q).

Proof. Since both mappings Q = 0¥ o g and S are obviously closed-graph under
the imposed assumptions, the claimed metric regularity assertion reduces by Theo-
rem 3.20 and the coderivative criteria of Theorem 3.3 to check that

either D*(0y o g)(y, ¢)(0) = {0} or ker S(x, y) = {0}.
Both conditions above are equivalent to
V() Y @, §)(0) = {0}

by using the chain rule equality from Theorem 3.11(iii) in the first case and by
formula (3.50) from Proposition 3.19 in the second one. The latter condition can be
equivalently rewritten as AY2(w, q)(0) = {0} by the injectivity of Vg(y)* as in the
proof of Corollary 3.21, and thus we characterize the Lipschitz-like property of the
subgradient mapping dyr around (w, gq). A

Note that the local closedness assumption imposed of the subdifferential graph
gph 0y in Corollaries 3.21 and 3.22 surely holds if v is continuous around the
corresponding points. This immediately follows from the robustness of our basic
subdifferential; see graphs Proposition 1.20. On the other hand, the subdifferen-
tial closed-graph property holds also for some remarkable classes of extended-real-
valued functions. In particular, it happens for every (locally) l.s.c. convex function
¥ : R? — R; this can be deduced directly from Proposition 1.25 by the classical
subdifferential definition of convex analysis. In fact, the closed-graph property is
satisfied for subgradients of a significantly broader class of extended-real-valued
amenable functions defined as follows.

Definition 3.23 (Amenable and Strongly Amenable Functions). A function
¢: R" — R is AMENABLE at X € dom g if there is a neighborhood U of X on
which ¢ is represented as a composition 0 o h of a C'-smooth mapping h: U — R™
and a convex Ls.c. function 6 : R™ — R with

9%°0(5) Nker VA(X)* = {0} for 3 := 6(%).

The function ¢ is STRONGLY AMENABLE at X if the inner mapping h: U — R™
above can be selected as C*>-smooth on U.

Besides convex and smooth functions, amenability encompasses various com-
positions that naturally appear in numerous settings of variational analysis and con-
strained optimization, in particular, those written in the unconstrainedextended-real-
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valued framework; see Exercise 3.88 for some properties of amenable functions and
Section 3.5 for more discussions.

We’ll employ strongly amenable functions in the next subsection.

3.3.3 Failure of Metric Regularity for Major Classes of PVS

Here we use the coderivative characterizations of metric regularity for PVS obtained
above to reveal that this property fails for major classes of such systems, particularly
those having a subdifferential/normal cone descriptions that is typical in optimiza-
tion and equilibria. This strictly distinguishes metric regularity of PVS from the
well-posedness property of their robust Lipschitzian stability, in contrast to the case
of general PCS (3.37).

An important fact, which eventually rules out the validity of metric regularity for
subdifferential PVS generated by nonsmooth convex functions and the like, is the
following specification of the fundamental Kenderov’s theorem on monotone lower
semicontinuous operators; see [408]. The standard local monotonicity property of
a set-valued operator 7: R* = R" around (x, y) € gph F means that there are
neighborhoods U of x and V of y with

(v —vo,u; —uz) >0 forall (ug,vy), (uz,v2) € gphT N (U x V).

Proposition 3.24 (Single-Valuedness of Lipschitz-Like Monotone Operators).
Let T: R" = R" be locally monotone and Lipschitz-like around (x,y) € gphT.
Then it is single-valued around (x, y).

Proof. Arguing by contradiction, suppose that T is multivalued in any neighborhood
of (x, ¥). Then there exist sequences xx — X and yi, ux € T (xg) with (yk, ur) —
(v, y) such that uy # yi for all k € N. Denote ay := ||ux — yk|| > 0 and z; :=
(ur — yr)/ax for which we have

(up, zk) = ax + (x> zk), k€ N. (3.57)

The assumed Lipschitz-like property of 7" around (X, y) gives us the existence of
positive numbers £ and y such that

T(x)NBy,(x) C T)+Lllx —ul|B forall x,u € B, (y).
Choose now a sequence of vy > 0 satisfying the conditions
Vi 4 0 with vy < ar/2€ as k — oo. (3.58)
Since xg, xx + vkzk € By (x) for large k, the Lipschitz-like property of T yields

lve — yrll < €y for some v € T (xx) N By (). (3.59)
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Employing the local monotonicity property of 7 around (x, y) tells us that

(v — ug, xg + v — x¢) >0,
which implies by (3.57) the inequalities

(Vk, zk) = (uk, 26) = ax + (Vk, 2k)-

It follows from here the choice of v; in (3.58) and the estimate in (3.59) that

ax + (Ve 2k) < (i, 2k) < (ks 2) + vk < {yk, 2k) +ax/2,

a contradiction, which verifies the single-valuedness of T around x. A

The following result, utilizing this proposition and the equivalence relationship
of Theorem 3.20, reveals the failure of metric regularity for a general class of
PVS (3.34) with monotone fields. Recall again that the lower semicontinuity of
extended-real-valued functions is our standing assumption.

Theorem 3.25 (Failure of Metric Regularity for PVS with Monotone Fields).
In addition to the standing assumption of Theorem 3.20, suppose that the field map-
ping Q is monotone around (y, 7) and that there is no neighborhood of y on which
0 is entirely single-valued. Then PVS (3.34) is not metrically regular around the
reference point (x,y) € gph S.

Proof. It follows from Theorem 3.20 in the general setting under consideration that
the metric regularity of the solution map S in (3.34) around (x, y) is equivalent to
the Lipschitz-like property of the field Q around (y, z). The imposed local mono-
tonicity of Q around this point yields the single-valuedness of Q around y by Propo-
sition 3.24. This contradicts the assumption of the theorem and thus completes its
proof. A

Since the set-valuedness of field mappings is a characteristic feature of gener-
alized equations as a satisfactory model to describe variational systems (otherwise
they reduce just to standard equations, which are not of particular interest in the vari-
ational framework under consideration), the conclusion of Theorem 3.25 reads that
variational systems with monotone fields are not metrically regular under the Jaco-
bian full-rank assumption on base mappings that doesn’t seem to be restrictive in the
GE setting. A major consequence of Theorem 3.25 is the following corollary con-
cerning subdifferential systems with convex potentials, which encompass the classi-
cal cases of variational inequalities and complementarity problems in (3.36).

Recall that a function ¢: R” — R finite at X is Gdteaux differentiable at this
point with the Gateaux derivative dg(x) if
im P& +1w) — @(x) —tH{dp(x), w)

i
t—0 t
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for any direction w € R”; similarly in infinite dimensions. It is obvious that the
Fréchet differentiability of ¢ at x implies the Gateaux one with the same derivative
dp(x) = Ve(x); see also Exercise 3.90 for other properties.

Corollary 3.26 (Failure of Metric Regularity for Subdifferential PVS with
Convex Potentials). Ler Q(y) = 0¢(y) in the setting of Theorem 3.25, where
¢: Y — R is a convex function finite at y but not Gateaux differentiable around
this point. Then S is not metrically regular around (x, y).

Proof. Observe first that the assumptions imposed on ¢ ensure that the subgradi-
ent mapping Q(y) = d¢(y) is closed-graph. Furthermore, the fundamental result
on monotone operators (due to Moreau and Rockafellar) establishes the maximal
monotonicity of the convex subgradient mapping x — 9d¢(x). Thus the conclusion
of the corollary follows from the well-known fact of convex analysis that the sub-
differential of such a function is a singleton at the reference point if and only if
the function is Gateaux differentiable at it; see, e.g., [638, 667] and the references
therein on these classical results. A

Note that the classical settings of variational inequalities and complementarity
problems in (3.36) correspond to the highly nonsmooth (extended-real-valued) case
of the convex indicator functions ¢(y) = §(y; 2) in (3.34). In fact, essentially more
general nonconvex subdifferential structures of parametric variational systems pre-
vent the fulfillment of metric regularity for PVS (3.34) without reducing them to the
case of field monotonicity while by using appropriate calculus rules for coderiva-
tives and second-order subdifferentials.

The next major result provides a significant extension of Corollary 3.26 to non-
convex subdifferential structures of fields with composite potentials (3.41), being
however fully independent of Theorem 3.25 that imposes field monotonicity. We
now deal with the case of Q(y) = d¢(y), where the nonconvex potential ¢ admits a
composite representation ¢ = ¥ o g via a C2-smooth mapping g: R” — R?” and an
extended-real-valued function v : R” — R belonging to a broad class of functions
well-recognized in variational analysis.

Definition 3.27 (Prox-Regularity and Subdifferential Continuity).
(i) A function ¢: R" — R is PROX-REGULAR at X € dom¢ FOR SOME v €
dp(x) ifitis l.s.c. around x and there are y > 0, n > 0 such that

o) = o)+ (v,u —x) — gHu — x||2 whenever v € d¢p(x)
with |[v—10|| <y, llu—x[ <y, lx =X <y, p(x) <pX) +y.

If this holds FOR ANY v € d¢(X), @ is said to be PROX-REGULAR AT X.

(ii) A function ¢: R" — R is SUBDIFFERENTIALLY CONTINUOUS af X FOR
SOME v € d¢(x) if ¢o(xx) — @(x) whenever xp — X, vy — v ask — o0
with vi € dp(xr). When this property holds FOR ANY v € d¢(X), ¢ is said to be
SUBDIFFERENTIALLY CONTINUOUS at x.
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For brevity we label as continuously prox-regular any extended-real-valued func-
tion satisfying both properties in Definition 3.27. Such functions are overwhelm-
ingly involved in many areas of variational analysis and optimization, especially
those related for second-order aspects and applications; see more discussions in
Section 3.5. In particular, this class includes every l.s.c. and convex and—more
generally—strongly amenable function as well as functions of class C!'! around x,
i.e., such that there is a neighborhood U of x on which ¢ is smooth and its derivative
is Lipschitz continuous; see Exercise 3.92.

The following lemma of its own interest allows us to establish the failure of
metric regularity for subdifferential PVS with composite potentials given by contin-
uously prox-regular functions.

Lemma 3.28 (Continuously Prox-Regular Functions with Lipschitz-Like Sub-
differentials). Ler ¢ : R” — R be continuously prox-regular at X € int(dom ) for
some v € 0¢(x), and let the subgradient mapping d¢p: R" = R" be Lipschitz-like
around (%, v). Then there is a neighborhood U of X such that ¢ is of class C"' on
U.

Proof. See the hints and discussions in Exercise 3.93. A

Now we are ready to justify the failure of metric regularity for subdifferential
PVS (3.41) involving continuously prox-regular functions.

Theorem 3.29 (Failure of Metric Regularity for Subdifferential PVS with Con-
tinuously Prox-Regular Potentials). In addition to the assumptions of Corol-
lary 3.21, suppose that \r is continuously prox-regular at w = g(y) for the sub-
gradient v € 3y (w), which is uniquely determined by Vg(y)*v = — f(x, y). Then
PVS (3.41) is not metrically regular around (X, y) provided that v is not Gdteaux
differentiable around w.

Proof. It follows from Corollary 3.21 that the metric regularity of S from (3.41)
around (x, y) is equivalent to the Lipschitz-like property of the subgradient mapping
oy around (w, v). Further, the imposed continuous prox-regularity of ¥ at w allows
us to conclude by Lemma 3.28 that the latter property of dv implies that ¢ €
C"! around x. This yields by Exercise 3.90(ii) the Gateaux differentiability of v
around w, which shows that § cannot be metrically regular around (x, y) by the last
assumption of the theorem. A

The following result is a clear consequence of Theorem 3.29. However, we
present its direct proof independent of Lemma 3.28.

Corollary 3.30 (Failure of Metric Regularity for Composite Subdifferential
PVS with Strongly Amenable Potentials). In addition to the assumptions of
Proposition 3.18, suppose that  is convex and finite at w = g(y) while not
Gdteaux differentiable around this point. Then the parametric variational system
S from (3.34) is not metrically regular around (x, y).



3.4 Exercises for Chapter 3 133

Proof. Observe that according to Definition 3.23, the potential ¢ = o g is strongly
amenable at y and that the subgradient mapping 91 : R? = R? is locally closed-
graph due to the assumptions imposed on ; see Exercise 3.88. Since all the re-
quirements of Corollary 3.21 are met, we conclude that the metric regularity of
S around (x, y) is equivalent to the Lipschitz-like property of 9 around (w, v),
where v € 3y (w) is uniquely determined by Vg(y)*v = —f(x, y). Arguing fi-
nally as in the proof of Corollary 3.26 shows that 9 is not Lipschitz-like (w, v)
and thus completes the proof. A

Next we obtain conditions ensuring the failure of metric regularity for subdiffer-
ential PVS with composite fields (3.48) involving continuously prox-regular func-
tions in their subdifferential components.

Theorem 3.31 (Failure of Metric Regularity for PVS with Composite Fields
Containing Subdifferentials of Prox-Regular Functions). In addition to the as-
sumptions of Corollary 3.22, suppose that \ is continuously prox-regular at w =
g(y) for the subgradient ¢ :== — f(Xx,y) € oy (w) and that  is not Gdteaux dif-
ferentiable around w. Then the solution map S from (3.48) fails to be metrically
regular around (x, y).

Proof. It follows from Corollary 3.22 that the metric regularity of S around (x, y) is
equivalent to the Lipschitz-like property of i around (w, g) under the assumptions
therein. Employing now Lemma 3.28 tells us that ¢ must be of class C!*! around
w, which shows that S cannot be metrically regular around (x, y) due to the last
assumption of the theorem. A

3.4 Exercises for Chapter 3

Exercise 3.32 (Relations for Openness and Covering Properties).

(i) Show that the function f(x) = x™ on R possesses the conventional openness property (3.4)
at x = O for any odd number 1 # m € N, but for m > 3 it doesn’t satisfies the covering
property (3.1), i.e., openness with linear rate.

(ii) Formulate extensions of these properties to set-valued mappings between metric spaces in
terms of the distance functions.

Exercise 3.33 (Lipschitz-Like Property via Distance Functions).

(i) Formulate an equivalent description of the Lipschitz-like property for set-valued mappings
F: X =2 Y between metric spaces via their distance functions.

(ii) Show that F is Lipschitz-like around (x, y) € gph F if and only if the function (x, y)
dist(y; F(x)) is Lipschitz continuous around this point. Hint: Proceed by the definitions and com-
pare it with [674, Theorem 2.3] and [522, Theorem 1.41].

Exercise 3.34 (Lipschitz Continuity of Locally Compact Multifunctions) Let F': X =X Y be a
set-valued mapping between Banach spaces.
(i) Let F be compact-valued on a given subset U C X. Show that the Lipschitz continuity of
F on U with modulus £ > 0 (i.e., the validity of (3.3) with V = Y) is equivalent to the Lipschitz
continuity
haus(F(u), F(x)) </{L|x —u| forall x,u e U

of the single-valued mapping x — F(x) from U to the collections of the compact subset of Y
equipped with the Pompeiu-Hausdorff metric
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haus(£2;, 27) ::inf{n > 0| Q) C Q2+ 1B, Q) CQ +nIB%}.

(i) Let F be locally compact around x € dom F, i.e., the values F(x) for all x near x are
enclosed into a compact set. Check that F is locally Lipschitzian around x if and only if it is
Lipschitz-like around (x, y) for every y € F(x). In this case the exact Lipschitzian bound lip F(x)
of F around ¥ is calculated by

lip F(¥) = max {lip F (¥, )| § € F(X)} < .

(iii) Do (i) and (ii) hold for mappings between general metric spaces?
Hint: To verify (ii), proceed with selecting of a finite covering of a compact set by a collection
of neighborhoods; compare it with the proof in [522, Theorem 1.42].

Exercise 3.35 (Coderivatives of Lipschitzian Mappings Between Banach Spaces). Let
F: X =3 Y be a mapping between Banach spaces, and let ¢ > 0.

(i) Assume that F is Lipschitz-like around some (X, y) € gph F with modulus £ > 0 and show
that there exists a number n > 0 such that

sup {|Ix*|| | x* € DIF(x. ))(y")} < Clly* |l +e(1+0), y*e¥*, (3.60)
whenever x € X + nB and y € F(x) N (¥ + nB). Furthermore, we have
Dy F(x,5)(0) = {0} and ||D}, F(x, y)| <lip F(X, ) < oco. (3.61)

(ii) If F is locally Lipschitzian around some X € dom F with modulus £ > 0, then there exists a
number 1 > 0 such that (3.60) holds for all x € x +nB and y € F(x). Furthermore, the conditions
in (3.61) are satisfied for any y € F(x).

Hint: To verify (3.60), proceed similarly to Step 1 in the proof of Theorem 3.3 and then pass to
the limit as (x, y) — (x, y) and ¢ | O by the mixed coderivative construction (1.65); compare it
with the proofs of [522, Theorems 1.43 and 1.44].

Exercise 3.36 (Semilocal Metric Regularity). Following [510], we say that a set-valued mapping
F: X = Y between Banach spaces is semilocally metrically regular around X € dom F (resp.
around y € rge F) with modulus p > 0 if estimate (3.2) holds with a neighborhood U of x and
V =Y (resp. with a neighborhood V of y and U = X) subject to the condition dist(y; F(x)) <y
for some y > 0. The infimum of such moduli is denoted by reg F (x) (resp. by reg F(y)).

(i) Verify that F is locally Lipschitzian around ¥ € dom F if and only if F~! is semilocally
metrically regular around X € rge F~! with lip F () = reg F~!(¥).

(ii) Assume that F' is locally compact around x € dom F, and show that F' is semilocally
metrically regular around this point if and only if it is (locally) metrically regular around (x, y) in
the sense of Definition 3.1(b) for every y € F(x).

(iii) Assume that F~! is locally compact around j € rge F and show that F is semilocally
metrically regular around this point if and only if it is (locally) metrically regular around (x, y) for
every ¥ € F1(y).

Hint: Proceed similarly to the proof in the local case of Theorem 3.2 with taking into account
the results of Exercise 3.34(ii).

Exercise 3.37 (Equivalences Between Local Well-Posedness Properties in Banach Spaces).
Let F: X =2 Y be a set-valued mapping between Banach spaces, and let (x, ¥) € gph F. Check
that Theorem 3.2 and its proof hold in this setting.

Exercise 3.38 (Semilocal Covering). A set-valued mapping F: X = Y between Banach spaces
has the semilocal covering property around x € dom F with modulus « > 0 if there is a neigh-
borhood U of x such that inclusion (3.1) holds with V = Y. The supremum of all such moduli is
denoted by cov F(x).
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(i) Verify that F has the semilocal covering property around x € dom F' if and only if it is
semilocally metrically regular around this point. In this case we have the modulus relationship
cov F(x) = 1/reg F (x).

(ii) Assume that F' is locally compact around x, and show that in this case the semilocal cover-
ing property of F around X is equivalent to the (local) covering property of F around (X, y) from
Definition 3.1(a) for every y € F(x).

Hint: To justify (i), proceed by the definitions and compare it with the proof of [522, Theo-
rem 1.52]. This yields (ii) by taking into account Exercise 3.36(iii).

Exercise 3.39 (Global Well-Posedness Properties and Their Comparisons).

e The global counterpart of the covering property from Definition 3.1(i) is clearly formulated
for mappings between metric spaces as follows. Let F: X =3 Y, let Bx (x, r) be the closed ball of
X centered at x with radius » > 0, and let

9 (A) = sup{r > 0| By (x,r) C A}

for some A C X. Given 2 C X and ® C Y, we say (cf. [505, 507] and [522, Definition 1.51(i)])
that F has the «-covering property relative to Q and © if

Bx(x,r) C Q= [By(F(x)N®,kr) C F(Bx(x,r)]. (3.62)

o Another global k-covering property of the mapping F': X =3 Y relative to the sets Qcx
and ® C Y was introduced in [26] via the following implication:

Bx(x,r) C Q= [By(F(x), Kr) ne c F(Bx(x, r))]A (3.63)

@ More recently yet another version of the x-covering property of F: X =3 Y relative to
Q C Xand ® C Y with (x,y) € (2 x ®) N gph F has been considered in [375] and labeled
there as sur(F, ﬁ, @, ¥, k, X, y). This property means that, given a modulus « > 0, the following
implication holds:

[x € Bx(xo, 7). r € [0,y]] = [By(F(x) N By(yo.ky),kr) N U C F(Bx(x,r))].

(i) Prove that sur(F,?Z, @,y, k,X,y) =>(3.62) provided that By (®,«xy) C @ ® C
By(y,ky), Q@ C an By (%, y),and 9 () < y. Show also that the converse implication (3.62)=—>
sur(F, 2, ®, y, k, x, y) holds whenever Bx(Q N Bx(x,y),y) C K, Bx(X,2y) C 2, and
By (3. k) C ©. - o

(ii) Show that (3.62)==>(3.63) provided that ® C ® and By ((~), Kz?(SZ)) C ©. Conversely,
verify that (3.63)==(3.62) if 2 C Q and By (0, k9 () C ©.

(iii) Formulate metric regularity and Lipschitzian counterparts of the above properties, and
establish relationships between them.

Hint: To verify (i) and (ii), proceed by the definitions and compare it with the proof given in
[789, Theorem 1].

Exercise 3.40 (Metric Regularity of Differentiable Mappings in Banach Spaces). Let f: X —
Y be a single-valued mapping between Banach spaces.

(i) Assume that f is Fréchet differentiable at x, and show that the space V f(x) X is closed in Y
provided that f is metrically regular at x. Hint: Use the iterative procedure as in the proof of [522,
Lemma 1.56].

(ii) Assume that f is strictly differentiable at X and show that the surjectivity of V f(x): X —
Y is necessary and sufficient for the metric regularity of f around x with the validity of the ex-
act bound formulas (3.18), where “min” is replaced by “inf” in the second one. Hint: Deduce the
necessity of the surjectivity condition V f(x)X = Y from ker V f(x)* = {0} due to (i), (3.61),
and Exercises 3.37, 1.57(ii). To justify the sufficiency, proceed as in the alternative proof of Corol-

lary 3.8.
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Exercise 3.41 (Neighborhood Characterizations of Lipschitz-Like Multifunctions in As-
plund Spaces). Let F': X =2 Y be a (locally closed-graph) mapping between Asplund spaces. The
following assertions are equivalent:

(a) F is Lipschitz-like around (x, ).

(b) There are positive numbers £ and 7 such that

sup {Ix*11| % € D*Fer, () | = 1y

whenever x € B,(X), y € F(x) N By(), and y* € Y*.

Furthermore, the exact Lipschitzian bound of F around (X, y) is calculated by
lip F(7.5) = inf sup {|D"F(x, Il | x € By(), y € Fo N B, ().
7>

Hint: Consider first the finite-dimensional case and derive this from Theorem 3.3(iii) and the
coderivative representation (1.17). In the Asplund space case, proceed similarly to the proof of
[522, Theorem 4.1] for the covering property.

Exercise 3.42 (Sequential and Partial Sequential Normal Compactness of Mappings). A set-
valued mapping F: X =3 Y between Banach spaces is said to be sequentially normally compact
(SNC) at (x, y) € gph F if for any sequence (&x, Xk, Yk, x,’:, y,’(") € [0,00) X (gph F) x X* x Y*
we have the implication

[e6 40, (30 > G 9, (9D > 0,0,

. (3.64)

(F 97D € Ny (Coks 30 200 F) | = I1GE, 5l = 0 as & — oo.
The mapping F is partially sequentially normally compact (PSNC) at (x, y) for any sequence
(8k, Xk, Vi, X5, 1) € [0, 00) x (gph F) x X* x Y* we have

[Sk 10, (g, k) = (%, ), xf %0, ly{ll — 0, (3.65)
(x5, ) € ﬁek ((ka’k); gph F)] = [lx{| - 0 as k — oco.

If F is single-valued at x, the indication of y = F(x) above is omitted.

(i) Check that the SNC property of the mapping F at (x, y) € gph F is equivalent to the SNC
property of its graph at the same point.

(ii) Show that we can equivalently put &y = 0 in (3.65) if X and Y are Asplund.

(iii) Verify that, besides the obvious cases where dim X < oo and where F is SNC at (x, y), the
PSNC property of F at (¥, y) holds for any mapping F: X =3 Y which is Lipschitz-like around
(x, ¥). Hint: Use Exercise 3.35(1).

Exercise 3.43 (Coderivative Normality). A mapping F: X = Y between Banach spaces is
called coderivatively normal at (x, y) € gph F if

1Dy F(x, 3|l = |IDy F (X, y)Il. (3.66)

(i) We obviously have (3.66) if Dy, F(x, y)(y*) = Dy F(x, y)(y*) for all y* € Y*. Does the
converse implication hold when dim Y = oo?

(ii) Give an example showing that (3.66) may fail for a Lipschitzian mapping f: R — H with
values in any separable infinite-dimensional Hilbert space Y.

(iii) Derive sufficient conditions for coderivative normality of set-valued mappings with values
in infinite-dimensional spaces. Hint: Distill this from the results of the previous exercises and
consult also with [522, Proposition 4.9].
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Exercise 3.44 (Pointbased Characterizations of Lipschitz-Like Property in Asplund Spaces).
Let F: X =3 Y be a set-valued mapping between Asplund spaces that is closed-graph around
(x,y) € gph F by our standing assumption.

(i) Prove that F is Lipschitz-like around (x, y) € gph F if and only if it is simultaneously
PSNC at this point and satisfies the condition D}, F (X, y)(0) = {0}.

(ii) Verify the exact bound estimates

Dy F(x, )l <lip F(x, ) < Dy F(x, 3 (3.67)

in the following cases: (a) arbitrary Banach spaces X and Y for the lower estimate and (b) dim X <
oo and Y is Asplund for the upper one.

(iii) Is the condition dim X < oo essential for the upper estimate in (3.67)?

Hint: Proceed by passing to the limit in the corresponding conditions of Exercise 3.41 and
compare it with the proof of [522, Theorem 4.10].

Exercise 3.45 (Local Lipschitz Continuity of Extended-Real-Valued Functions). Let ¢: X —
R be a (I.s.c.) function on an Asplund space X, and let ¥ € 1(dom ¢). Prove that ¢ is locally
Lipschitzian around x if and only if 3*°¢(x) = {0} and ¢ is SNEC at x.

Hint: Apply the coderivative criterion for Lipschitz-like property of set-valued mappings from
Exercise 3.44(i) to the epigraphical multifunction x — epi ¢.

Exercise 3.46 (Lipschitzian Properties of Convex-Graph Multifunctions). Let F': X =2 Y be a
convex-graph multifunction between Asplund spaces, and let x € dom F'. The following assertions
are equivalent:

(a) There is y € F(x) such that F' is Lipschitz-like around (X, y).

(b) The range of F~!is SNC at ¥ and N (x; rge F~') = {0}.

(¢) X is an interior point of the range of F~!.

(d) F is Lipschitz-like at (x, y) for every y € F(X).

If in addition dim X < oo, then whenever y € F(x) we have the exact bound formula
lip F(x,5) = sup {llx*|l | (x*,x —%) < (y*,y — ) forall (x,y) € gphF}.
ly*i<t
Hint: Derive this from Exercise 3.44 by using the particular coderivative form for convex-graph
multifunctions; compare this with the proof of [522, Theorem 4.12].

Exercise 3.47 (Neighborhood Characterizations of Metric Regularity and Covering). Let
F: X 3 Y be a set-valued mapping between Asplund spaces.
(i) Given (x, y) € gph F, show that the following assertions are equivalent:

(a) F is metrically regular around (x, ).
(b) We have Z(F, X,y) < 0o, where
Rﬂaw:jgmﬂu>0MWMSMﬁw x* € D*F(x, )y,
xeB,®. yeF@N B,,(y)}.
Furthermore, the exact regularity bound of F around (x, y) is calculated by
reg F (X, §) = b(F. %, )

= inf sup {15 F(x, ) 7'l | x € By (D). y € Fo N B, ().
n>

(ii) Given x € dom F, obtain versions of the assertions in (i) for the semilocal metric regularity
of the mapping F around x.
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(iii) Derive the corresponding counterparts of the assertions in (i) and (ii) for the (local) cover-
ing and semilocal covering properties of the mapping F'.

Hint: Deduce (i) from the results on the Lipschitz-like property in Exercise 3.41 and the equiv-
alence in Exercise 3.37. Proceed similarly (ii) and (iii).

Exercise 3.48 (Pointbased Characterizations of Metric Regularity in Infinite Dimensions).
Given a set-valued mapping F: X =3 Y between Banach spaces, the reversed mixed coderivative
of F at (x, y) € gph F is defined by

Dy FE, 9" = {x* € X*| y* € =Dy F 13, D) (—x"}, y*er?, (3.68)

via the mixed coderivative (1.65) of the inverse mapping F~!: ¥ = X.

(i) Provided that X and Y are Asplund, verify that F is metrically regular (or has the cov-
ering property) around (x, y) if and only if F —1is PSNC at (7, %) and the kernel condition
kerDj, F(x, y) = {0} is satisfied.

(ii) Show that the “only if” part of (i) holds in the general Banach space setting.

(iii) Derive estimates and precise coderivative formulas for calculating the exact bounds
reg F(x,y) and cov F(x, y).

(iv) Show that for any separable Banach space X, there is a convex-valued mapping F: X = X
which doesn’t have the covering and metric regularity properties around (0, 0) € gph F' while
kerD}, F (0, 0) = {0}.

Hint: To get (i)—(iii), apply the results of Exercise 3.44 to the inverse mapping F~! due to
the equivalence relationships from Exercise 3.37. To verify (iv), construct a mapping F by us-
ing a countable basis in X such that the PSNC property fails for F~!; compare this with [522,
Example 4.19].

Exercise 3.49 (Metric Regularity and Covering Properties for Convex-Graph Multifunc-
tions). Derive characterizations of metric regularity and covering properties of convex-graph mul-
tifunctions F': X =3 Y in the framework of Exercise 3.46. Hint: Combine the results of Exer-
cises 3.37 and 3.46, and compare it with the classical Robinson-Ursescu theorem in Banach spaces;
see Section 3.5.

Exercise 3.50 (Covering Relative to Mappings and Sets). Given mappings F': X = Y and
Q: X =2 X between Banach spaces, x > 0, and x € Q(x) N dom F, we say [505] that F has
the covering property around X relative to the mapping €2 (in particular, relative to the set 2 when
Q(x) = Q) with some modulus « > 0 if there is a neighborhood U of x such that

F(x)+«krB C F((x +rB)N Q(x)) whenever x +rB C U, r > 0. (3.69)

(i) In the finite-dimensional setting, introduce the relative covering constant

K(F,Q, %) = inf{||u1 +u|

uy € D*F (X, 5)(v), us € N(E: Q(F)), § € F(®), vl = 1}

and show that the condition « (F, 2, x) > 0 is necessary and sufficient for the validity of the
relative covering property of F with respect to €2 around x with some modulus « > 0 provided
that F is locally Lipschitzian around x and that €2 is normally semicontinuous at x in the following
sense:

[xk dﬂf X, ug SMQ X, Uy > v, Vg € N(uk; Q(xk))] == v E N()E; SZ()E)).

Hint: Proceed similarly to the proof of Theorem 3.3, and compare it with the corresponding
arguments in [507, Theorem 5.3].

(ii) Show that the mapping ©2: R” = R”" is normally semicontinuous at x in the following two
cases: (a) Q(x) = Q around x and (b) Q(-) is convex-valued around x and inner semicontinuous
at this point. Any other sufficient conditions?
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(iii) Derive extensions of the results in (i) and (ii) to infinite-dimensional spaces.

Exercise 3.51 (Metric Subregularity and Calmness of Multifunctions). Let F: X =3 Y be a
set-valued mapping between Banach spaces, and let (X, y) € gph F. The mapping F is metrically
subregular at (x, y) with modulus p > O if estimate (3.2) holds while y = y therein. The cor-
responding semilocal versions of metrical subregularity of F at x € dom F and y € rge F are
defined similarly to the case of semilocal metric regularity in Exercise 3.36. The mapping F is
calm at (x, y) with modulus £ > 0 if inclusion (3.3) holds while u = x. If in the lattercase V =Y,
the mapping F is called upper (or outer) Lipschitzian at x € dom F.

(i) Construct examples of mappings between finite-dimensional spaces that are metrically sub-
regular (resp. calm) at some point (x, y) while not metrically regular (resp. Lipschitz-like) around
this point.

(ii) Establish two-sided relationships between the metric subregularity (resp. semilocal metric
regularity) and calmness (resp. upper Lipschitzian) properties of F and its inverse at the corre-
sponding points similarly to those given in Theorem 3.2 and Exercise 3.36. Hint: Proceed as in the
proof of Theorem 3.2.

(iii) Formulate an appropriate “subcovering/subopenness” property of multifunctions
F: X =3 Y together with its semilocal version and establish the corresponding relationships
with metric subregularity and calmness/upper Lipschitzian properties of F and F~! defined above
in this exercise.

Exercise 3.52 (Second-Order Growth Conditions for Metric Regularity and Metric Subreg-
ularity of Subdifferential Mappings).

(i) Let ¢: X — R be convex and Ls.c. function on a Hilbert space X with ¥ € dom¢ and
v € d¢(x). Verify that the subgradient mapping d¢: X =3 X is metrically regular around (x, v) if
and only if there exist neighborhoods U of x and V' of v along with some y > 0 such that

@9)"'(v) £ forall veV and
o(x) =) —(v,u—x)+y distz(x; (8¢)*'(v)) forallx e U,u € (9p)~'(v),v e V.

Hint: Use the construction of the subdifferential in convex analysis together with Ekeland’s varia-
tional principle, and compare it with the proof of [20, Theorem 3.6]. Does this proof hold in any
Banach space X?

(ii) Let ¢: X — R be convex and Ls.c. function on a Banach space X with ¥ € dom¢ and
v € dp(x). Show that ¢ is metrically subregular at (x, v) if and only if there is a neighborhood
U of x and a constant y > 0 such that the following second-order/quadratic growth condition is
satisfied:

o(x) > p(X) — (0, X —x) + ydistz(x; (8(,0)’1(1'))) whenever x € U.

Hint: Proceed similarly to (i) and compare it with the proofs of [20, Theorem 3.3] for Hilbert
spaces and [21, Theorem 2.1] in the general Banach space setting.

(iii) Establish extensions of the results in (i) and (ii) to the basic subdifferential of 1.s.c. functions
defined on Asplund spaces, with quantitative interrelations between constants in quadratic growth
and metric regularity/subregurity, provided that x is a local minimizer of ¢. Hint: Proceed as in the
proofs of [232, Theorem 3.1 and Corollary 3.2] in the case of metric subregularity.

(iv) Clarify interconnections between the above second-order growth conditions for metric sub-
regularity of the subgradient mappings d¢ and those for the upper Lipschitzian property of the
() ~! discussed in Exercise 3.55(ii—iv).

Exercise 3.53 (Preservation of Calmness and Metric Subregularity Under Intersections). Let
Fi1: X1 =2 Y and F>: X2 =2 Y be set-valued mappings between metric spaces. Define the inter-
section mapping (F) N F): (X1 x X3) =3 Y by

(F1 N F)(x1, x2) := Fi(x)) N Fa(x2), x1 € X1, x2 € Xo.
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(i) Assume that F; and F, are calm at (x;,x) € gph F| and (X3, x) € gph F2, respectively,
that ;- Lis Lipschitz-like around (x, x2), and that xo — Fj(x1) N F>(x) is calm at (X3, x). Then
show that the intersection mapping F1 N F; is calm at (X1, X2, X). Hint: Compare with the proof of
[420, Theorem 2.5].

(ii) Obtain relationships between the exact calmness bound of F| N F, at (X1, X2, X) and the
exact bounds of the other properties involved in (i).

(iii) Establish counterparts of (i) and (ii) for the metric subregularity of F| N F3.

Exercise 3.54 (Outer Derivative of Multifunctions). The outer derivative of F: R" = R™ at
X € dom F in the direction # € R”" is defined by

_ 1= Mpe (FG+1

DF(®)@) := Lim sup F(")(t @+ ) (3.70)
110
u—i

where (1 —Ie)(O) :={z—w € R"|z € O, w € [1g(z)} with the Euclidean projector I1g(z) of
z to the (locally clgsed) set 2 taken from (1.3).

(i) Show that D F (x) (i) reduces to the contingent derivative D F'(x) (i) from (1.87) provided
that F(x) is a singleton.

(ii) Assume that ¥ is a local minimizer of ¢ : R” — R and verify that

DE,(X)(u) = {0} forall u € R",

where E,: R" =2 R is an epigraphical multifunction associated with ®.

(iii) Supposing that the set F'(x) is bounded, show that for any v € DF (x)(0) there is z € F(x)
such that v € N(z; F(x)).

Hint: Proceed directly by using the corresponding definitions.

Exercise 3.55 (Upper Lipschitzian Mappings and Inverse Subdifferentials).

(i) Prove that F': R" =3 R" is upper Lipschitzian at x € dom F if and only if the graph of the
outer coderivative (x, u) — DF (x)(u) is (locally) closed and we have DF (x)(0) = {0}. Hint:
Combine the construction in (3.70) with the definition of the upper Lipschitzian property in finite
dimensions; cf. [771, Theorem 3.2].

(ii) Let ¢ : R” — R be L.s.c. on R”, and let the inverse (3¢)~!: R” = R” to the basic subdif-
ferential mapping be upper Lipschitzian at the origin. Show that for any set  C (3¢)~!(0) there
are positive constants y and v such that

¢(x) > infg + y dist? (x; (2 + 2vB) N (39) ' (0)) if x € Q@+ vB. (3.71)

Hint: Use the finite-dimensional variational principle from Theorem 2.12 with a Lipschitzian sub-
additive function 6 : R” — R satisfying d0(0) C B therein, and then apply the semi-Lipschitzian
subdifferential sum rule from Corollary 2.20. Compare this with the proof of [771, Theorem 4.2].

(iii) Assume that ¢ in (i) is convex and that (3¢)~'(0) s . Verify that the quadratic
growth condition (3.71) is necessary and sufficient for the upper Lipschitzian property of
(@p)~': R" =3 R" at the origin, and that (3.71) can be equivalently rewritten in the simpli-
fied form

o(x) <info +y distz(x; (atp)_l(O)) whenever x € (atp)_l(O) + vB.

Hint: Use the subdifferential expression for convex functions; cf. [771, Theorem 4.3].

(iv) Employing the infinite-dimensional versions of the results mentioned in the hint to (ii),
extend this statement to the case of Asplund spaces and then show that characterization (iii) holds
in any Banach space. What about an infinite-dimensional extension of the outer derivative charac-
terization in (i)?
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(v) Clarify the possibility to characterize the calmness and metric subregularity properties
of multifunctions between finite-dimensional and infinite-dimensional spaces via an appropriate
derivative construction of type (3.70) .

Exercise 3.56 (Semimetric Regularity of Multifunctions). Let F: X =3 Y be a mapping be-
tween Banach spaces, 2 C X, and ¥ € Q2 Ndom F. Consider the set

S:={x € Q| F(x) N F() # 0}
and say [505] that F is semimetrically regular at x relative to 2 if
dist(x; §) < u B(F(X), F(x)) forall x € Q, |lx —%| <y (3.72)
for some w, y > 0 via the Hausdorff semidistance from ®; to ®, defined by

B(O1,02) := sup inf [lx —u].

xe® ue®,

(i) Compare this notion with metric subregularity and its semilocal version defined in the cor-
responding setting of Exercise 3.51.

(i) In the finite-dimensional setting, suppose that there are y, b > 0 such that for any x € Q\ S
with ||x — x|| < y, the mapping F is outer semicontinuous, the function x + dist(z; F(x)) is
locally Lipschitzian when z € F(x), and the condition

sup inf{ lluy +uzll | u1 € D*F(x, y)(v), y € II(z; F(x)),
zeF(X)
woy—z2=lly—zl, lvll=1 us e N(x; )} > b

is satisfied. Then the mapping F is semimetrically regular at x relative to the set €2, and we have
the modulus estimate p > b~'in (3.72).

(iii) Derive an extension of (ii) to the case of Asplund spaces.

Hint: Consider the function ¢, (x) := dist(z; F(x)) +§&(x; ©) on (2\ $) N By, (), and proceed
similarly to Step 2 in the proof of Theorem 3.3 with the usage of the subdifferential sum rule and
subdifferentiation of the distance function at out-of-set points; compare it with the proof of [507,
Theorem 5.4] in finite dimensions.

Exercise 3.57 (Interconnections Between Semimetric Regularity and Covering of Mappings
Relative to Sets). In the setting of Exercise 3.50 with Q(-) = €, suppose that F is locally Lips-
chitzian around x. Verify the following assertions (i) and (ii) in the case of X = R" and Y = R":

(i) If « (F, 2, x) > 0 for the relative covering constant of F' with respect to the set €2, then the
mapping F' is semimetrically regular at X relative to 2.

(ii) If F is not semimetrically regular at x relative to €2, then there are elements y € F (%),
v e R" with [[v]| = 1, and u € D*F (X, y)(v) such that —u € N(X; ).

(iii) Extend the results of (i) and (ii) to infinite-dimensional spaces X and Y.

Hint: Proceed by the definitions with using the results from Exercises 3.50and 3.56 and the
above coderivative properties of Lipschitzian multifunctions under appropriate sequential normal
compactness in infinite dimensions. Compare it with the proof of [507, Corollary 5.4.1] in the case
of finite-dimensional spaces.

Exercise 3.58 (Metric Hemiregularity of Multifunctions). A set-valued mapping F: X =2 Y
between Banach spaces is said to be metrically hemiregular at (x, y) € gph F with modulus ;© > 0
if there is a neighborhood V C Y of y such that

dist(¥, F~'(») < ully — yIl forall y e V. (3.73)

The infimum of {u} over all the combinations (., V) for which (3.73) holds is called the exact
hemiregularity bound of F at (x, y) and is denoted by hemireg F'(x, y). Furthermore, F is strongly
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metrically hemiregular at (x, y) with modulus . > 0 if there are neighborhoods U C X of x and
V C Y of  such that (3.73) holds and that F~! admits a single-valued localization on U x V
meaning that the mapping y — F~!(y) N U is single-valued on V.

(i) Show that a linear bounded operator A: X — Y is metrically hemiregular at every point
x € X if and only if it is surjective. In this case we have the relationships

hemreg A = reg A = ||(A")!],

where hemreg A stands for the common exact hemiregularity bound of A at all the points x € X.
Hint: Proceed by the definitions.

(ii) Prove that F: X =3 Y is strongly hemiregular at (x, y) if and only if the inverse mapping
F~': Y = X admits acalm single-valued localization s(-) around (y, x) with the equality between
the corresponding exact bounds

hemreg F(x, y) = clms(y).

Hint: Proceed by the definitions and compare with the proof of [23, Proposition 5.8].
(iii) Given an example of a function f: R? — R, which is metrically hemiregular at the origin
while not being metrically regular around this point.

Exercise 3.59 (Coderivative Sum Rules in Infinite Dimensions). Let F;: X = Y,i = 1,2, be
set-valued mappings between Banach spaces with (x, y) € gph (F| + F>).

(i) Suppose that the mapping F| is single-valued and Fréchet differentiable at x. Then for all
y* € Y* we have the equality

D*(Fi + F)(E 5)(y*) = VFI(E)'y* + D*F2(5 — Fi(©)) 0").

If furthermore F is strictly differentiable at x, then equality (3.24) holds for both limiting coderiva-
tives D* = Dy, D},. Hint: To justify the inclusions “C” in the sum rules above for each case
5*, Dy, and Dy, proceed similarly to the proof of [522, Theorem 1.38] by using the correspond-
ing definitions. To verify the opposite inclusions therein, apply the established ones “C” to the sum
(F1 + F2) + (—F1).

(ii) Let X and Y be Asplund while Fy, F, be arbitrary (closed-graph) multifunctions. Fix
(31,¥y2) € S(x,y) from (3.21) and suppose that this mapping is inner semicontinuous at
(X, y,y1, y2), that either F; is PSNC at (x, y;) or F> is PSNC at (x, y2) and that the qualifi-
cation condition (3.22) is valid in terms of the mixed coderivative D* = Dj,. Then show that the
sum rule (3.23) holds for both coderivatives D* = D}, D},. Check that all the assumptions above
are satisfied if either Fj or F; is Lipschitz-like at the corresponding point (X, ¥;),i = 1, 2.

Hint: Proceed similarly to the proof of Theorem 3.9(i) with using the result of Exercise 2.42(i)
and the subsequent limiting procedure under the imposed PSNC conditions. Then use (3.61) and
Exercise 3.42(iii) for Lipschitz-like multifunctions. Compare this with the proof of [522, Theo-
rem 3.8].

(iii) Clarify whether the N-regularity (resp. M-regularity) assumptions on both multifunction
F; at (x, y;) ensures the equality and the corresponding regularity property of F| + F at (x, y).

(iv) Derive an infinite-dimensional counterpart of Theorem 3.9(ii).

Exercise 3.60 (Coderivative Intersection Rules). Let F|, F>: X =3 Y be set-valued mappings
between Asplund spaces, let (x, y) € gph F; N gph F>, and let the graphical normal qualification
condition

N((x.y): gph F1) N[ — N((x, y); gph F2)] = {0}
be satisfied. Assume also that one of the mappings F;, i = 1,2, is SNC at (x, y). Then for all
y* € Y*, we have the inclusion

PiFNFENOY C | [PEAGE HOD + Dy G 0D,
yyi=y
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which holds as equality when both F; are N-regular at (x, y). Hint: Apply the normal intersection
rule from Theorem 2.16 to the sets 2; = gph F;, i = 1,2, and its infinite-dimensional extension
from Exercise 2.43(iv).

Exercise 3.61 (Chain Rules for Coderivatives in Infinite Dimensions). Let G: X = Y and
F: Y =2 Z be (closed-graph) mappings between Asplund spaces, and let 7 € (F o G)(x). Consider
the set-valued mapping S: X x Z =3 Y defined as in (3.25) and verify the following chain rule
assertions:

(i) Given y € S(x, z), assume that S is inner semicontinuous at (x, z, y), that either F is PSNC
at (¥,7) or G~!is PSNC at (¥, ¥), and that

Dy F(3,2(0)N (- Dy G~'(3,%)(0) = {0},

which all hold if either F is Lipschitz-like around (y, z) or G is metrically regular around (x, y).
Then for both coderivatives D* = D3, D}, we have the inclusion

D*(F 0 G)(x,2)(z") C DyG(¥,§) o D*F(3,2)(z"), "€ Z"

Hint: Apply the corresponding coderivative sum rule of Exercise 3.59(ii) to the mapping ®: X x
Y =% Z from (3.29). The validity of the imposed assumptions for the mentioned classes of F and
G follows from Exercises 3.42(iii), 3.44(i), and 3.37.

(iii) Given y € S(x,z), assume that S is inner semicontinuous at (x,z, y) and that F is
Lipschitz-like around (y, z). Verify that

Dy(F o G)(,2)(0) C {x* € X*| x* € D};G(*, )(0)}.

Hint: Proceed in the way of proving the mixed coderivative sum rule in Exercise 3.59(ii)
with employing Exercise 2.42(ii) and applying it ® from (3.29). Then use the coderivative con-
dition (3.60) for Lipschitz-like mappings before passing to the limit; see the proof of [522, Theo-
rem 3.14] for more details.

Exercise 3.62 (Product Rules for Coderivatives in Finite and Infinite Dimensions). Let
F(x):= Fi(x) X Fp(x) forallx € X with F;: X =3 Y, and let y := (y1, y») with y; € F;(x) as
i=12.

(i) Assume that both spaces X and Y are finite-dimensional and that the qualification condi-
tion (3.22) is satisfied. Show that

D*F (%, y)(y*) C D*Fi(x, y)(y]) + D*F2 (X, y2)(y3) forall y* = (y{, y3) € Y* x Y7,

where the equality holds if each F; is graphically regular at (x, y;), i = 1, 2. Hint: Following the
proof of [202, Proposition 3.2], observe that gph F = f~1(®) for

f,y) = filx,y) x fa(x,y), fi(x,y:), and © := gph F| x gph F>

and apply the representations of the normals to inverse images from Corollary 3.13.
(ii) Extend the results in (i) to products of finitely many multifunctions.
(iii) Derive counterparts of (i) and (ii) for the case of Asplund spaces X and Y.

Exercise 3.63 (Partial Coderivatives). Consider a mapping F: X x ¥ =% Z between Asplund
spaces with (X, y,Z) € gph F. The partial coderivative D} F(x,y, z) of F with respect to x at
(x, y, z) is the coderivative of F'(-, ) at (x, 7). Impose the assumptions that F is PSNC at (x, y, Z)
and that

0,y") € Dy F(x,5,2)(0) = y* =0,
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which are automatic when F is Lipschitz-like around (X, y, z). Then prove that
DIF(x,5,2)(z") Cproj D*F(x,5,2)(z"), "€ Z,

for both coderivatives D* = Dy, D}, where the symbol “proj, ” signifies the projection of the set
D*F(x,y,2)(z") C X* x Y* on X*. Show furthermore that this inclusion holds as equality if F
is N-regular (resp. M-regular) at (x, ¥, z), which ensures the corresponding regularity property of
x = F(x,y)at (x, 7).

Hint: Apply Theorem 3.11(iii) and its Asplund space extensions from Exercise 3.61(ii) to the
composition F(-,y) = F o g with g(x) := (x, ).

Exercise 3.64 (Basic Normals to Inverse Images in Infinite Dimensions). Let x € G LH©),
where G: X =2 Y is a multifunction between Asplund spaces and where © is a nonempty subset
of Y. Assume that the set-valued mapping x — G(x) N O is inner semicompact at x and that for
every y € G(x) N © the following hold: (a) Either G~ ! is PSNC at (3, x), or ® is SNC at y. (b)
The pair {G, O} satisfies the qualification condition

N(5; ©) Nker D%, G (X, 7) = {0}.

Prove that under these assumptions we have the inclusion
NG G'©) c J[Ph6E HoM| v e NG o), FeG@ne)

which holds as equality if G = g is single-valued and strictly differentiable at x and either the
derivative operator Vg(x): X — Y is surjective or ® is normally regular at x. Show also that in
the latter case the set g~ !(®) is normally regular at .

Hint: Proceed as in the proof of Corollary 3.13 with employing the coderivative chain rule and
regularity assertion from Exercise 3.61(ii).

Exercise 3.65 (Coderivatives of Special Compositions of Mappings Between Asplund
Spaces). Derive infinite-dimensional versions of Theorem 3.14 and Corollary 3.15 proceeding
in the same way as in the proofs therein while using the above coderivative calculus rules in the
Asplund space settings. Hint: Compare this with [522, Theorem 3.18 and Corollary 3.19].

Exercise 3.66 (PSNC and SNC Properties of Mappings Under Summation). Let Fi, I, be
closed-graph set-valued mappings between Asplund spaces X and Y, and let (x, y) € gph (F1 +
F>). Assume that the mapping S: X x ¥ = Y2 defined by (3.21) is inner semicompact at (x, y).
Prove the following statements:

(i) If for every (y1, y2) € S(x,y) each F; is PSNC at (x, y;), respectively, and if the mixed
qualification condition (3.82) is satisfied, then F| 4+ F> is PSNC at (x, y).

(ii) If in the setting of (i) each F; is SNC at (x, y;) and if the (normal) qualification condi-
tion (3.22) with D* = D;’:, is satisfied, then F; 4+ F» is SNC at (x, y).

Hint: Proceed according to the definitions by applying the normal intersection rules from Ex-
ercises 2.42 and 2.43 for (i) and (ii), respectively. Compare this with the proofs of [522, Theo-
rems 3.88 and 3.90] based on the extremal principle.

Exercise 3.67 (SNC Properties of Inverse Images of Sets Under Set-Valued Mappings Be-
tween Asplund Spaces). Consider the inverse image G~!'(®) of ® C Y under a mapping
G: X =3 Y between Asplund spaces. Which SNC/PSNC requirements do we need to impose
on G and O to ensure the SNC property of G~ (®) at X under an appropriate qualification condi-
tion of type (3.32)? Hint: Apply the result formulated in Exercise 2.42 and compare it with [522,
Theorem 3.84].

Exercise 3.68 (PSNC and SNC Properties of Mappings Under Compositions). Consider the
composition F o G of set-valued mappings G: X =2 Y and F: Y =3 Z between Asplund spaces
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with Z € (F o G)(x), and assume that the mapping S from (3.25) is inner semicompact at (X, z).
Prove the following statements:
(i) If for all y € S(x, z) both G and F are PSNC at (x, y) and (¥, z), respectively, and if the
qualification condition
D}, F(3,2)(0) Nker DG (%, 3) = (0)

is satisfied, then the composition F o G is PSNC at (x, 2).

(ii) If for all y € S(x,z) both G and F are SNC at (x, y) and (y, z), respectively, and if the
(normal) qualification condition (3.26) with D* = Dy, is satisfied, then the composition F o G is
SNC at (x, 2).

Hint: Apply intersection rules from Exercises 2.42 and 2.43 to the sets €1 := gph G x Z and
Q, := X x gph F. Compare this with [522, Theorems 3.95 and 3.98].

Exercise 3.69 (PSNC Property for Sets in Products of Two Spaces). Given aset 2 C X x Y
in the product of Banach spaces, we say that it is PSNC at (x, y) € X x Y with respect to X if for

any sequences &k | 0, (xk, Yk) E> (x,y) and (x{, y}) € f\’;k ((xk, yk); ©2) we have the implication

[Iyill = 0, x¢ % 0] = lIxfll — 0 as k — oo

(i) Show that it is possible to equivalently put ey = 0 if both spaces X, Y are Asplund. Hint:
Use Exercise 1.42.

(ii) Prove in the Asplund space setting that for any (locally closed) sets 21, 22 C X x Y such
that €21 is SNC at (x,y) C 2 x €2 and 7 is PSNC at (x, y) with respect to X, we have the
PSNC property of 2 N 2, at (x, y) with respect to X if

N, ) Q)N (= NE, 7); ) =1{0,0).
Hint: Simplify the proof of [522, Theorem 3.79] based on the extremal principle.

Exercise 3.70 (Preservation of the Lipschitz-Like Property Under Various Operations). Ob-
tain conditions ensuring the preservation of the Lipschitz-like property with exact bound relation-
ships for set-valued mappings between Asplund spaces under the following operations:

(i) For compositions F o G of G: X =% Y and F: Y =3 Z. Hint: Use the coderivative criterion
for the Lipschitz-like property and the chain rules for coderivatives together with the corresponding
PSNC calculus; cf. [522, Theorem 4.14].

(ii) For sums of mappings Fi, F>: X = Y. Hint: Use the coderivative criterion for the
Lipschitz-like property and the sum rules for the mixed coderivative together with the correspond-
ing PSNC calculus presented above; cf. [522, Theorem 4.16].

Exercise 3.71 (Metric Regularity and Covering Under Compositions).

(i) In the framework of Exercise 3.70(i), obtain conditions ensuring the preservation of the met-
ric regularity and covering properties with exact bound relationships. Hint: Apply Exercise 3.70(i)
to the composition (F o G)™! = G™1 o F71.

(i) Could we proceed in the same way with sums Fj + F»?

Exercise 3.72 (Coderivatives of General Parametric Constraint Systems). Consider the class
of PCS in form (3.37), where g: X x Y — Z is a mapping between Banach spaces that is strictly
differentiable at (x, y) € gph F with the surjective derivative Vg(x, y). Denoting 7 := g(x, y) €
©, show that:

(i) The normal coderivative of F is calculated by

Dy F(E, 5)(Y") = {x* € X*| (¢, —y") € Vg(%, 5)*N(Z: ©)}, (3.74)

where the above representation also holds true for the mixed coderivative Dy, F (%, y) if dimZ <
oo (and obviously if dimY < o0). Hint: Use the normal cone formula for inverse images from
Exercise 1.54(ii), and compare with [522, Theorem 4.31(i)].
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(ii) Formula (3.74) can be also for calculating the reversed mixed coderivative 5*,;,, F(x,y)
provided that, besides the trivial case of dim X < 0o, ® is DUALLY NORM-STABLE at 7 in the
sense that N(z; ®) = N (z; ®), where

_ @ _ . . o~
NG ©) = {2 € X*| 3er 4 0, 2563 2, f 0 2% with 2f € Ny (21 ©), k — oo}

Note that, besides the obvious case of dim Z < oo, every set © that is normally regular at 7 is
dually norm-stable at this point. Hint: Compare with [277, Theorem 3.2].

(iii) Derive counterparts of formula (3.74) for all the three coderivatives under consideration in
the case of Asplund spaces X, Y, and Z, where the surjectivity condition on Vg(x, y) is replaced
by the constraint qualification

N(z; ®) NkerVg(x, y)* = {0} (3.75)

provided that © is normally regular at Z and either it is SNC at Z or g~! is PSNC at (Z, X, 7).
Hint: Use representations of basic normals to inverse images from Exercise 3.64 together with
SNC/PSNC preservation rules under composition from Exercise 3.68, and compare this with [522,
Theorem 4.31(ii)] and [277, Theorem 3.2(ii)].

Exercise 3.73 (Coderivatives of Constraint Systems in Nonlinear Programming). Parametric
constraint systems in nonlinear programming are given by

Fx):={yeY|gix,y)<0,i=1,....m @i(x,y)=0, i=m+1,....m+r},

where all the functions ¢;,i = 1, ..., m+r, are strictly differentiable at the feasible point (x, y) €
gph F. Denoting by

1G5 ={ie{l,....,m}| @:(x,5) =0}

the collectNion of active constraint indices, verify that all the three coderivatives D* =
D3}, Dy, Dy, of F at (X, y) admit the representation

D*F (R, 5)(y*) = {x* € X*

@ =y e Y MVeiE ),
iel(x,y)
A >0, ie{l,...,m}m(x,y)}

with y* = (A1, ..., Amyr) € R™* in each of the following cases:

(i) Both spaces X and Y are Banach, and the linear independence constraint qualification
(LICQ) holds at (x, y), i.e., the active constraint gradients Vg, (x,y), i € I(x,y), are linearly
independent in X* x Y*.

(ii) Both spaces X and Y are Asplund and the MFCQ condition from Exercise 2.53 while with
respect to (x, y) holds at (x, y).

Hint: Deduce this from Exercise 3.72(i,ii), respectively.

Exercise 3.74 (Coderivatives of Constraint Systems in Nondifferentiable Programming). Let
F and I (x, y) with (x, y) € gph F be defined as in Exercise 3.73, and let the spaces X and Y be
Asplund. Assume that all the functions ¢;,i = 1, ..., m+r, are locally Lipschitzian around (x, y)
and that

3 G = 0] = [A,« =0, iel(x y)]

iel(x,y)

whenever A; > Ofori € I(X,¥), (x],y/) € ;i (x,y) fori € {1,...,m}NI(X, y),and (x, y}) €
;i (X, y) U d(—¢;)(x,y) fori =m +1,...,m + r. Then we have
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DL F(E, §)(v*) C {x* e x*

G =ye Y ke EF)
ie{l,...mNI(x,y)
m+r
+ Y k(00 & HUIe)E D), iz 0 as i€ 1E D).
i=m+1

Hint: Deduce it from Exercise 3.64, where ©® C R™*" and G: X — R™*" are clearly defined
by the constraint system under consideration, and use the subdifferential sum rule for Lipschitzian
functions; compare it with [522, Corollary 4.36].

Exercise 3.75 (Coderivatives of Implicit Multifunctions). Consider the implicit multifunction
defined by

F(x):={yeY|gl y =0},

where g: X x Y — Z be a mapping between Banach spaces that is strictly differentiable at
some point (x, y) satisfying g(x, y) = 0 with the derivative Vg(x, y). Verify the coderivative
representations

Dy F(&, (") = Dy F(F, $)(y") = {x* € X*| (x*, —y*) € Vg(¥, )*Z*}.

and show that the same representation holds for D}, F(x, y) provided that either Y or Z is finite-
dimensional. Hint: Deduce it from Exercise 3.72 with ® = {0}.

Exercise 3.76 (Coderivatives of Parametric Variational Systems). Consider the setting of
Proposition 3.16 for PVS (3.34) and justify the following extensions of the results therein in fi-
nite and infinite dimensions:

(i) Formulas (3.38) and (3.39) hold true if the mapping f: R" — R™ is merely strictly differ-
entiable at (x, y) with the full rank of V, f(x, y).

(i) Let f: X — Y be a mapping between arbitrary Banach spaces that is strictly differentiable
at (x, y) with the surjective derivative V, f(x, y). Then the reversed mixed coderivative of PVS is
calculated by

Az* € Z* with x* =V, f(x, y)*z*,

DS ) (%) = {x* € X*
—V* €V, fR T + D} 0 D |-

Furthermore, we have the relationship
ker D}y S(x, §) = =D}, (3, )(0).

Hint: Proceeding as in the proof of Proposition 3.16, both assertions can be deduced from Ex-
ercise 3.72(ii) if either dim X < oo or the set ® = gph Q is dually norm-stable at (z, ). To avoid
these assumptions, conduct a more delicate analysis involving [522, Lemma 1.16] and compare
with [277, Theorem 4.1].

Exercise 3.77 (Second-Order Subdifferentials of Smooth Functions).

(i) Show that representations (3.43) with u € X** are valid in any Banach space X if ¢ is con-
tinuously differentiable around X and its derivative mapping x + Ve(x) is strictly differentiable
at this point.

(ii) Verify whether the results of (i) hold for the normal (resp. mixed) second-order subdiffer-
ential of ¢ at X relative to X* € d¢(x) defined, respectively, by

ZpE, ¥ W) = (Dyde) &, )W), ue X™, (3.76)
Ao, T () := (D} de) (X, ¥ W), ue X*. (3.77)
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Exercise 3.78 (Second-Order Subdifferential Chain Rules).

(i) Prove the second-order subdifferential chain rule (3.47) under the assumptions imposed in
Proposition 3.18.

(ii) Justify the validity of the mixed second-order subdifferential counterpart of (3.47) formu-
lated via (3.77) in arbitrary Banach spaces:

3 (Vo g)3. ) = VD, g)(3)*u + Vg3 a ¥ (w, 0)(Ve()* u), ue X*,

provided that g is C2-smooth around ¥ with the surjective derivative.

(iii) Under which conditions the second-order chain rule above holds for the normal second-
order subdifferential (3.76)?

Hint: Compare with the proof of [522, Theorem 1.127] with its simplification in the case of
finite-dimensional spaces.

Exercise 3.79 (Reversed Mixed Coderivative of Subdifferential PVS with Composite Poten-
tials). Consider the parametric variational system S: X =3 Y defined in form (3.41) by using the
mappings f: X x ¥ — Y*, g: ¥ — W,and ¢: W — R with arbitrary Banach spaces X, Y, and
W. Assume that f is strictly differentiable at (x, y) with the surjective partial derivative V, f(x, y)
and that g is C2-smooth around 7 with the surjective derivative Vg (7). Let # € W* be uniquely de-
termined by (3.44) with g := — f(x, y) € (¢ o g)(y). Show that the reversed mixed coderivative
of S at (x, y) is calculated by

5*}(45(2, y(*) = {x* € X*| u € Y™ with x* = V, f(x, y)*u,
—y* € Vy f (R, )u+ VA0, g)(3)*u + Ve(3)* 3, ¥ (w, ﬁ)(Vg@)**u)},

and furthermore we have the relationship
ker Dy S(&, ) = —Vg(3)" 3 ¥ (i, 9)(0).

Hint: Proceed as in the proof of Proposition 3.18 with the usage of the second-order chain
rule from Exercise 3.78(ii).

Exercise 3.80 (Reversed Mixed Coderivative of Subdifferential PVS with Composite Fields).
Consider the setting of Proposition 3.19 with the mappings g: ¥ — W, f: X x ¥ — W*, and
¥: W — R between Banach spaces under the surjectivity assumption on the partial derivative
Vi f (&, ).

(i) Assume that Vg(y) is surjective, and show that we have

DS )% = {x* e X*

Ju € W** with x* =V, f(x, y)*u,
¥ € V) (& 3+ Ve () 9 (0, )|
for all y* € Y* with the additional relationship

ker D}y S(%, 5) = —Vg(3)* 839, §)(0).

(ii) Let the spaces X, Y and both spaces W and W* be Asplund. Assume that the subgradient
mapping 9y : W = W* is graph-closed around (w, ¢), that PSNC is valid at this point, and that
the second-order qualification condition is satisfied:

0% (1, §)(0) Nker Vg ()* = {0}.

Show that the inclusion “C” holds in both formulas presented in (i).
Hint: Combine the results of Exercise 3.76(ii) with the coderivative chain rule in the inclusion
form from [522, Theorem 3.16].
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Exercise 3.81 (Metric Regularity of General PCS). Let (x, y) € gph F for the parametric con-
straint system F from (3.37), where g: X x Y — Z is a mapping between Banach spaces that is
strictly differentiable at (x, y) with z := g(x, y) € ©.

(i) Assume that the derivative operator Vg(x, y) is surjective and that either ® is dually norm-
stable at 7 or dim X < oo. Show that the condition

0,y") € Vg(x,)*N(z; ©) = y* =0 (3.78)

is necessary for the metric regularity of F around (x, y) while being also sufficient for this property
if either Y is Asplund and ® is SNC at 7 or dim ¥ < oo. In the latter case we have the exact bound
formula

reg F(E,5) =sup { "]l | ", ") € Ve ' NG 0), Il 1] (3.79)

(ii) Assume that all the spaces X, Y, and Z are Asplund, that the constraint qualification (3.75)
is satisfied, and that ® is SNC at z. Then condition (3.78) is sufficient for the metric regularity of
F around (x, y) while being also necessary for this property if ® is normally regular at z. If in
addition dim Y < oo, we have (3.79).

Hint: Combine the results of Exercises 3.48 and 3.72.

Exercise 3.82 (Metric Regularity of Constraint Systems in Nonlinear Programming). Show
that in the setting of Exercise 3.73(ii) the implication

Y MV =0l=[ X uV,eE 5 =0]

iel(x,y) iel(x,y)

fora; > 0ifi € {I,...,m}NI(x,y)and A; € R otherwise is necessary and sufficient for the
metric regularity of F around (x, y). Furthermore, the exact bound formula

regF(;E,i):max{ H 3 A,-quzi(x,y)H subject to H > x,-vxwi(x,y)Hsl}
iel(7,5) iel (3.5

holds, where A; satisty the sign and complementary slackness conditions as above.

Hint: Combine the results presented in Exercises 3.48 and 3.73(ii). Verify that the maximum is
realized in the exact bound formula due to the imposed Mangasarian-Fromovitz constraint qualifi-
cation; cf. the proof of [522, Corollary 4.39].

Exercise 3.83 (Metric Regularity of Implicit Multifunctions). Consider the implicit multifunc-
tion F in the setting of Exercise 3.75, and show that the condition

[Vig(®, 3)*z* = 0] => [V,g(X, §)*z* = 0] whenever z* € Z*

is necessary and sufficient for the metric regularity of F around (x, y) provided that X is Asplund
and that either Y is Asplund and dim Z < oo or dimY < oo. Verify that in the latter case we have
the exact bound formula

reg F (¥, y) = max { | V,g(x, 5)*z*| ‘ [VigGe, 3)*z*| < 1, 2 € Z*}.

Hint: Combine the results presented in Exercises 3.48 and 3.75.

Exercise 3.84 (Metric Regularity of General PVS in Asplund Spaces). Consider the general
PVS in form (3.34), where f: X x Y =2 Z is a mapping strictly differentiable at (x, y) € gph S
with the surjective partial derivative Vy f(x,y) and where Q: Y = Z is closed-graph around
(y,2) with z := — f(x, ¥). Assume that both spaces X and Y are Asplund while Z is arbitrarily
Banach.
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(i) Show that S is metrically regular around (X, y) if and only if Q is PSNC at (y, z) and
condition (3.54) holds with D* = Dj,, and therefore the metric regularity of S around (X, y) is
equivalent to the Lipschitz-like property of Q around (y, z).

(ii) Verify the exact bound formula (3.55), with replacing “max” therein by “sup,” provided that
dimY < oo and Q is coderivatively normal at (¥, ).

(iii) Find sufficient conditions ensuring that the maximum is attained in the exact bound formula
forreg S(x, y).

Hint: Use the Asplund space extensions of the coderivative criterion for metric regularity from
Exercise 3.48 and the calculation of the reversed mixed coderivative in Exercise 3.76 together with
the equivalence between the PSNC properties of Q around (7, z) and S~ around (¥, X). Compare
it with [277, Theorem 5.6].

Exercise 3.85 (Metric Regularity and Subregularity of PVS in Banach Spaces). Consider the
PVS setting of Exercise 3.84 in the case of arbitrary Banach spaces X and Y under the surjectivity
assumption on V, f(x, y).

(i) Verify the equivalence between the metric regularity of S around (x, y) and the Lipschitz-
like property of Q around (3, 2).

(ii) Show that the equivalence holds true for the case of metric subregularity of S at (x, y) and
the calmness property of Q at (y, z).

Hint: To justify both (i) and (ii), use the Lyusternik-Graves iterative process as in the alternative
proof of Corollary 3.8; cf. [22, Theorem 3.3].

Exercise 3.86 (Metric Regularity of PVS with Composite Potentials in Infinite Dimensions).
Based on the characterization of metric regularity of general PVS from Exercise 3.84(i) and the
second-order subdifferential chain rule from Exercise 3.78(ii), derive an infinite-dimensional coun-
terpart of Corollary 3.21.

Hint: Verify by using the second-order subdifferential chain rule from Exercise 3.78(ii) that the
PSNC property of Q = d(¥ og) at (y, q) is equivalent to the PSNC property of 3y around (w, v).

Exercise 3.87 (Metric Regularity of PVS with Composite Fields in Infinite Dimension). Con-
sider the setting of Exercise 3.80(i) under the additional assumptions that the spaces X and Y are
Asplund and that the graph of 9y : W = W* is closed around (w, ¢). Show that S from (3.48)
is metrically regular around (x, y) if and only if the subdifferential mapping dv is Lipschitz-like
around (w, q).

Hint: Verify that the PSNC property of d o g at (y, w) is equivalent to this property of 9 at
(w, g) under the imposed surjectivity assumption on Vg(y), and then use the coderivative criterion
from Exercise 3.48(i) together with the expression of kerD}, S(¥, ¥) presented in Exercise 3.80.

Exercise 3.88 (Some Properties of Amenable Functions). Let ¢: R — R, and let ¥ € dom g.
Show that the following hold:

(i) If ¢ is amenable or strongly amenable at x, it maintains the corresponding property around
this point.

(ii) If ¢ is amenable at x, it is subdifferentially regular at this point.

(iii) The maximum of finitely many functions ¢; € C! is amenable at the corresponding point.
Hint: See [678, Section 10F].

Exercise 3.89 (Failure of Metric Regularity for PVS with Monotone Fields in Infinite-
Dimensional Spaces).
(i) Based on the proof of Theorem 3.25 and the conclusions of Exercises 3.84(i) and 3.85(i),
show that the result of Theorem 3.25 holds for PVS in Asplund and Banach spaces, respectively.
(ii) Give an example showing that a nonrobust counterpart of Theorem 3.25 for the metric sub-
regularity of PVS as in Exercise 3.51 doesn’t hold even for one-dimensional monotone mappings

0:R=R.
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Exercise 3.90 (Gateaux Differentiability). Let ¢ : R” — R be finite at X.

(i) Does the Gateaux differentiability of ¢ imply its continuity at x?

(ii) Show that the Gateaux differentiability of ¢ at X € int(dom ¢) is equivalent to the Fréchet
differentiability at this point provided that ¢ is locally Lipschitzian around x. Hint: Compare with
the proof in [537, Proposition 3.2].

(iii) Does the assertion in (ii) holds in infinite dimensions?

(iv) Assuming the convexity of ¢, show that the Gateaux differentiability of ¢ at x € int(dom ¢)
is equivalent to its Fréchet differentiability at x and holds if and only if the subdifferential d¢(x)
is a singleton. Hint: Compare with [537, Theorem 3.3].

Exercise 3.91 (Metric Regularity and Subregularity of PVS with Convex Subdifferential
Fields in Finite and Infinite Dimensions).

(i) Based on the proof of Corollary 3.26 and the conclusions of Exercises 3.84(i) and 3.85(i),
establish extensions of the obtained result on the failure of metric regularity for subdifferential
PVS with convex potentials without Gateaux differentiability to the cases of Asplund and Banach
spaces, respectively.

(ii) Give an example showing that the result of Corollary 3.26 doesn’t hold if metric regularity
is replaced by metric subregularity. Hint: Let f(x, y) := x, and let the field 0: R = R be given
by

2f(k+1)7 2,,(] for y = 2*(/</3)’
2—(k+1) for ye (2(7(k+1)/3), 2,(,(/3))’
0():=10 for y =0,
—27k, —2=k+D] for y =27/,
o=+ for y € (—2-*3) _2-k+D/3)

as depicted in Fig.3.3. Verify that PVS (3.34) is not metrically regular around (0, 0) while it
is strongly q-subregular of any order ¢ € (0, 2] at this point; compare it with [564] and see
Section 3.5 and also Chapter 5 for more discussions.

Fig. 3.3 Metric regularity vs. subregularity

Exercise 3.92 (Classes of Continuously Prox-Regular Functions). Prove that the following
classes of functions ¢ : R" — R are continuously prox-regular:

(i) If ¢ is L.s.c. and convex, then this holds at any x € dom ¢.

(ii) If ¢ is strongly amenable at X, then this holds on a neighborhood of x.
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(iii) Let ¢ € C'! on an open set U, i.e., it is continuously differentiable with the Lipschitz
continuous gradient Vg on U. Then ¢ is continuously prox-regular on U.
Hint: Compare it with [678, Section 13.F].

Exercise 3.93 (Continuously Prox-Regular Functions with Lipschitz-Like Subdifferentials
in Finite and Infinite Dimensions).

(i) Prove Lemma 3.28 by using the fact that the local single-valuedness of any mapping
F: R" = R" is equivalent to the simultaneous validity of its maximal hypomonotonicity (see
Chapter 5 below) and Lipschitz-like property around (x, y) with some y € F(x). Hint: Compare
it with [455].

(ii) Prove a Hilbert space extension of Lemma 3.28 by using properties of the Moreau envelope
ofp: X —> TR defined, given arate A > 0, by

. 1 )
0100 = inf (p() + = lv —ul?). x e X,
Hint: Compare it with the proof of [45, Theorem 5.3].

Exercise 3.94 (Failure of Metric Regularity for Subdifferential PVS with Composite Prox-
Regular Potentials in Infinite Dimensions). Consider the class of subdifferential PVS with com-
posite potentials (3.41), where f: X x Y — Y* is a mapping between Asplund spaces that is
strictly differentiable at (x, y) with — f(x, y) € d(¥ o g)(¥) and with the surjective partial deriva-
tive V, f (X, ¥), where g: Y — W is a C2-smooth mapping around y with the surjective derivative
at w := Vg(7) € dom v, and where ¥ : W — R is not Géteaux differentiable at this point. Then
the metric regularity of (3.41) around (x, y) fails in the following cases:

(i) W is Hilbert and v is continuously prox-regular at w for the subgradient v € 0y (w), which
is uniquely determined by Vg(3)*v = — f(x, ¥). Hint: Proceed as in the proof of Theorem 3.29
with the usage of Exercise 3.93(ii).

(ii) W is Banach and v is convex and L.s.c. around w. Hint: Using the equivalence from Exer-
cise 3.85(i) together with the second-order chain from Exercise 3.78(ii), reduce the metric regular-
ity of S in (3.41) around (x, y) to the Lipschitz-like property of the subdifferentiable mapping 0y
around (w, v), which fails for the function 1 under the imposed assumptions; cf. Exercise 3.91(1).

Exercise 3.95 (Failure of Metric Regularity for Subdifferential PVS with Composite Fields
in Infinite Dimensions). Let S be given by (3.48) with (x, ) € gph S, where f: X x Y — W*is
strictly differentiable at (x, y) with the surjective partial derivative V, f(x, y), where g: ¥ — W
is strictly differentiable y with the surjective derivative g(¥), and where ¥ : W — R is not Giteaux
differentiable at w := g(w). Assume also that X and Y are Asplund. Then S which is not metrically
regular around (x, y) fails in the following two cases:

(i) W is Hilbert and y is continuously prox-regular at w for the subgradient ¢ := — f(x, y) €
Y (w). Hint: Proceed as in the proof of Theorem 3.31 with the usage of assertion (ii) from Exer-
cise 3.93 instead of (i) therein.

(ii) W is Banach and v convex and l.s.c. around w. Hint: Using the result of Exercise 3.87, re-
duce the metric regularity of S in question to the Lipschitz-like property of the convex subgradient
mapping 9y around (w, ¢). Show that the latter fails by combining the results of Exercises 3.89(i)
and 3.91(1).

3.5 Commentaries to Chapter 3

Section 3.1. The well-posedness properties discussed in Section 3.1 are fundamental in many areas
of nonlinear analysis and its applications, particularly in those involving variational issues. In the
commentaries to the author’s book [522], the reader can find detailed discussions on the history of
these notions, the genesis of ideas in their developments, and relationships between them that are



3.5 Commentaries to Chapter 3 153

reflected in Theorem 3.2. Some additional material, alternative terminology, and related properties
can be found in the monographs [227, 375, 420, 678, 685]. The most recent one [375] contains
a systematic study of regularity notions, their various aspects, and many applications in metric,
Banach, and finite-dimensional spaces with a broad involvement of Ekeland’s variational principle.
However, some discussions presented therein are clearly and unfortunately biased, incomplete, and
misleading; see, e.g., the corresponding commentaries to this and two previous chapters.

In what follows we mainly comment on some results in finite-dimensional and Banach
spaces that are related to the contents of this book. The most impressive developments on
well-posedness, which are not discussed in this book, include—from the author’s viewpoint—
the usage of slopes introduced in analysis by De Giorgi, Marino, and Tosques [191] and first
brought to the theory of metric regularity and related topics by Azé, Corvellec, and Lucchetti
[44] (preprint of 1998) and the research on various aspects of directional metric regularity
that were initiated by Arutyunov and his collaborators (see, e.g., [24, 25, 27, 29]) and then
were further developed in numerous publications as in [28, 282, 375, 613] and the references
therein.

All the three equivalent well-posedness properties from Definition 3.1 have numerous applica-
tions in variational analysis and optimization including those presented in this book. As mentioned,
we place this topic in one chapter with coderivative calculus due to the underlying coderivative
criteria for well-posedness established in Theorem 3.3. The given proof of this theorem, which
mainly follows the original proof in [S07, Theorem 5.2] (precisely formulated in [505]) for the
case of covering, is based on variational arguments, although there is no optimization involved
in its statement. Note that the proof of the Lipschitzian part of this result given in the book by
Rockafellar and Wets [678, Theorem 9.40] under the name of “Mordukhovich criterion” is much
different from our proof while it is also based on optimization ideas married to finite-dimensional
geometry. In the other direction, the necessity of the obtained coderivative characterization of well-
posedness is crucial for the coderivative calculus developed in Section 3.2, since it allows us to
reveal broad classes of mappings for which, e.g., the major sum and chain rules hold.

The coderivative criterion (3.6) of Theorem 3.3 with the precise formula (3.7) for the exact
covering bound first appeared in the author’s paper [505, Theorem 8] even in a more general
form, although it was announced and discussed much earlier in seminar talks and private commu-
nications. In the beginning, this criterion came as a big surprise, to the degree of not accepting
its correctness. It was probably related to the fact that the author’s result concerned the covering
property around the reference point but not at the point in question (what is now called “metric
subregularity”—see below) as, e.g., in the book [378] and the subsequent papers [363, 366, 368],
where sufficient conditions for the latter property and related nonrobust ones were obtained under
certain assumptions on smooth and nonsmooth operators. Note that the robustness (“around”) re-
quirements for covering and metric regularity properties as in Definition 3.1 were pioneered and
strongly emphasized by A. A. Milyutin; see, e.g., [217] where a sufficient condition for the “cover-
ing in a neighborhood” property was obtained for single-valued Lipschitzian mappings in terms of
Clarke’s generalized gradient with mentioning the nonadequateness of the result obtained in such
terms even in simple finite-dimensional cases of Lipschitzian operators.

Observe to this end that the crucial advantage of the coderivative criteria for well-posedness, in
contrast to other known conditions in this direction formulated in terms of nonrobust constructions
in primal and dual spaces, slopes, etc., is the presence of comprehensive pointbased coderivatives
calculus, which is not available for the latter objects. This robust calculus allows us to deal with
various composite models of optimization, variational analysis, and their applications as demon-
strated, e.g., in [522, 523, 678] among numerous publications including this book.

In [505, 507] we also addressed a more general notion of relative k-covering for a set-valued
mapping F: R" = R™ with respect to another one G: R” =3 R" as x € G(x) around x
(in particular, with respect to a set 2 when G(x) := x 4+ ) formulated as follows: there is a
neighborhood U of x such that inclusion (3.69) holds with some modulus « > 0. While (3.69)
can be immediately reformulated for set-valued mappings between metric spaces, we obtained
in [505, Theorem 8] and [507, Theorem 5.3] in the case of finite dimensions (with the proof in
vein of Theorem 3.3) its coderivative characterization in the form « (F, G, x) > 0 via the rela-
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tive covering constant k (F, G, x) defined in Exercise 3.50. Furthermore, it has been established
in [505, 507] that « (F, G, x) gives the exact bound of covering moduli ¥ > 0 in (3.69). Various
modified versions of relative covering of set-valued mappings with respect to sets as well as in-
terconnected notions of relative metric regularity have been recently studied in the literature; see,
e.g., [25, 26, 27, 30, 86, 238, 372, 375, 522, 591, 613, 721, 789] for more details and references.
Detailed comparisons between major notions of local and global covering properties have been
recently done in [789, 790]; see Exercise 3.39 for the global covering and related versions.

As mentioned in Corollary 3.8, for smooth single-valued mappings F = f, the coderivative
condition (3.6) reduces to the surjectivity (full rank in finite dimensions) of the derivative operator
V f(x), which is the classical Lyusternik-Graves regularity condition discovered independently
by Lyusternik [483] and Graves [305] for properties related, respectively, to metric regularity and
covering/openness in the modern terminology. It follows from Theorem 3.3 that this condition is
not only sufficient but also necessary for the properties under consideration. Moreover, we have
the exact bound formulas for the corresponding moduli that had never been an issue in classical
nonlinear analysis. Note that the necessity statement in Theorem 3.3 as well as in the “smooth”
Corollary 3.8 is due (besides of the aforementioned robustness) to a linear rate of the covering
and metric regularity properties that has revealed only in the modern framework of analysis. While
in finite dimensions the necessity in Corollary 3.8 follows directly from Theorem 3.3 and the
coderivative representation for smooth mappings, the Banach space version of this implication
requires nontrivial considerations; see [522, Lemma 1.56 and Theorem 1.57].

Corollary 3.6 is a finite-dimensional version of the fundamental Robinson-Ursescu theorem for
convex-graph mappings/convex processes between Banach spaces; see [658, 659, 726]. Similarly
to the case of smooth mappings, the original contributions addressed to sufficient conditions for
metric regularity and covering without paying attention to their necessity and exact bound for-
mulas; see more comments in [522]. Further extensions of the Lyusternik-Graves and Robinson-
Ursescu theorems can be found, e.g., in [161, 178, 222, 227, 239, 375, 448, 719, 721]. Remarkable
applications of covering and metric regularity properties to fixed and coincidence points were given
in [25, 26, 28, 87, 222, 239, 372, 501] and the references therein.

Let us mention to this end brand new applications of the covering property and machinery
of variational analysis to feedback stabilization of dynamical (continuous-time and discrete-time)
control systems obtained in the author’s joint paper with Gupta, Jafari, and Kipka [316]. A sem-
inal result in this direction is due to Brockett [129] who proved, via degree theoretic topological
techniques, that the openness property (3.4) of a smooth mapping f: R" x R™ — R" below is
necessary for local asymptotic stabilization of the nonlinear ODE control system

Xx=f(x,u), t>0, (3.80)

by means of continuous stationary feedback laws. As well recognized, the openness property of f
fails to be sufficient for such a stabilization. It is shown in [316], via variational techniques, that
replacing openness by linear openness/covering/metric regularity of f allows us to obtain efficient
conditions on the system data and linear openness moduli supporting the sufficiency in Brockett’s
theorem and providing local exponential stabilization of (3.80) by means of continuous stationary
feedback regulators. In this way new conditions ensuring the necessity of linear openness for both
local exponential and asymptotic stabilization of (3.80) by means of stationary continuous as well
as smooth feedback laws are derived in [316]. Some counterparts of these results are established
in [316] by the developed variational approach for asymptotic feedback stabilization of nonlinear
discrete-time control systems.

The coderivative criterion of the Lipschitz-like property in Theorem 3.3(iii) first appeared in
[508] with the proof essentially different from [505, 507] for covering/metric regularity character-
izations; see also [513]. Note that the obtained coderivative characterization strongly departs from
the previous sufficient conditions for this “pseudo-Lipschitzian” property given by Aubin [35] and
Rockafellar [674] in terms of Clarke’s normal cone to the graph. As discussed in Remark 3.4(iii),
for single-valued and major classes of set-valued mappings the latter conditions hold in fact only
in smooth settings. Comprehensive treatments of the well-posedness properties, their nonlocal ver-
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sions, and their coderivative characterizations in finite dimensions were given in [510]. As demon-
strated in [522, 523, 678], such dual-space characterizations play a fundamental role in many
aspects of variational analysis due to their robustness and full coderivative calculus. We refer to
[227, 375, 420] to different characterizations of well-posedness via generalized derivatives in pri-
mal spaces, which may lack robustness and calculus rules but still can be useful in certain settings.
Some combined primal-dual characterizations of well-posedness were given in [280, 281, 282,
630, 631]. Applications of well-posedness criteria to inverse and implicit (multi)functions can be
found, e.g., in [23, 30, 114, 227, 238, 287, 382, 420, 444, 445, 450, 453, 454, 653, 664, 725, 751].

The most recognized and useful nonrobust Lipschitzian behavior of multifunctions is the up-
per Lipschitzian property of F at x introduced by Robinson [661] in form (3.3) with # = X and
V = R™. It is often called nowadays the calmness of F at x. The same name is associated with its
graphical version at (x, y) € gph F, which is written as (3.3) with u = X being equivalent to the
metric subregularity (the term coined by Dontchev and Rockafellar [678]) of the inverse mapping.
The latter property, known also as “regularity at a point,” goes back to Ioffe and Tikhomirov [378]
in the case of single-valued mappings, while its full set-valued version is due to Ye and Ye [746]
called there “pseudo-upper Lipschitz continuity.” The fundamental result by Robinson [663] jus-
tifies the validity of the upper Lipschitzian property for piecewise polyhedral mappings between
finite-dimensional spaces. Crucial contributions to the study and applications of these properties to
broad classes of optimization and equilibrium problems have been made by Henrion, Outrata, and
their collaborators; see, e.g., [287, 335, 337, 338, 340, 341, 622]. In particular, Henrion and Outrata
were the first [337] to obtain efficient coderivative/subdifferential conditions for calmness of mul-
tifunctions in terms of our basic constructions. Observe close relationships of calmness and metric
subregularity properties with error bounds in optimization, which go back to Hoffman [353] for
linear inequality systems; see [42, 256, 363, 375, 434, 466, 467, 607, 612] for more recent develop-
ments. We refer the reader to, e.g., [18, 22, 23, 86, 138, 139, 209, 216, 227, 240, 260, 280, 290, 299,
327, 375, 376, 384, 414, 420, 454, 485, 594, 595, 693, 719, 720, 723, 745, 770, 776, 779, 782]
for numerous results in these directions and applications to variational problems. An interesting
survey of recent results on metric subregularity utilizing normal cones and coderivatives is given
by Zheng [772].

The aforementioned nonrobustness of calmness and metric subregularity doesn’t allow to de-
velop adequate calculus/preservation results for them, their stability with respect to perturbation,
and restricts therefore the scope of their applications. In the joint paper with Gfrerer [285], we in-
troduced a certain uniform metric subregularity property for solution maps to parametric constraint
systems

glx,p) e C CR™ with x e R" and p € P, (3.81)

where the set C is closed and the perturbation parameter p belongs to a topological space P.
Such a stability property has been actually considered by Robinson [660] in the case where C is a
convex cone, and so we labeled this property in [285] as the Robinson stability of (3.81). The paper
[285] contains verifiable first-order and second-order conditions ensuring the Robinson regularity
of (3.81) and its robustness in the classes of perturbations under consideration.

Note further that g-versions of both metric regularity and subregularity properties (as well as
their other well-posedness equivalents) have been also considered in the literature [158, 274, 419,
276, 283, 465, 435, 752, 765, 780], where the main attention and valuable applications were given
for the Holder case of 0 < ¢ < 1. It is easy to see that there is no sense to consider the case of
g > 1 for metric g-regularity, since only constant mappings satisfy estimate (3.2) with replacing
dist(y, F'(x)) by dist?(y, F(x)) when ¢ > 1. But it is different for g-subregularity with y =y
therein, where the case of ¢ > 1 is nontrivial and occurs to be important for both variational theory
and applications. The general case of metric g-subregularity and its strong q-subregularity counter-
part whenever g > 0 has been recently studied by the author and Ouyang [564] with characterizing
these properties for subdifferential variational systems. Furthermore, using strong g-subregularity
with ¢ > 1 in [564] allowed us to obtain higher convergent rates in quasi-Newton methods of
solving generalized equations in comparison with the corresponding results by Dontchev [221]
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who extended the celebrated Dennis-Moré theorem [192] for nonlinear equations; see also the re-
cent paper [160] for further extensions and various applications. Note also that similar conclusions
on better convergence rates were deduced in the joint paper with Li [465] for the proximal point
method to find zero s of maximal monotone operators in Hilbert spaces under the Holder metric
g-subregularity with0 < ¢ < 1.

It is worth mentioning yet another nonrobust metric hemiregularity property of set-valued map-
pings defined in Exercise 3.58, together with its strong counterpart, following the paper by Aragén
and Mordukhovich [23], where it was studied and applied to deriving enhanced versions of im-
plicit multifunction theorems and stability of generalized equations. Hemiregularity can be viewed
as a symmetric counterpart of subregularity with fixing the domain point x instead of the range
one y. As mentioned in the final version of [23], hemiregularity was independently examined by
Kruger, in his extended study [433] of various well-posedness properties of set-valued mappings,
under the name of “metric semiregularity.” The latter name was earlier used by Piihl and Schi-
rotzek [650] for a completely different regularity property; see also the book [685, Section 10.6].
To avoid confusions, we coined the “hemiregularity” terminology in [23]. The inverse property to
metric hemiregularity was defined (but not investigated) by Klatte and Kummer [420, p. 10] as
“Lipschitz lower semicontinuity,” while the inverse one to strong metric hemiregularity was des-
ignated in [23] as the “calm single-valued localization” discussed in Exercise 3.58(ii). Note the
quite recent study by Uderzo [725] containing, in particular, a new implicit multifunction theorem
under hemiregularity (complemented to the one in [23]) and applications to exact penalization in
constrained optimization.

Next let us comment on infinite-dimensional extensions of the coderivative characterizations
of well-posedness properties in Theorem 3.3. As in [522], in infinite dimensions we distinguish be-
tween two types of characterizations of well-posedness: neighborhood and pointbased (sometimes
called “pointwise” or “point”) ones. The former criteria involve not only the point in question but
a neighborhood of it, while the latter ones have the pointbased form of Theorem 3.3 but under
additional assumptions that automatically hold in finite dimensions.

Neighborhood characterizations of the covering property were initiated by Kruger for map-
pings between Fréchet smooth spaces; see [432]. His results of the dual nature (the first one was
announced in [429] for locally Lipschitzian functions by using e-subdifferentials of type (1.34) as
¢ > 0) were formulated in terms of several neighborhood constants defined via two-parametric
constructions depending on ¢ and the neighborhood size. The author and Shao [578] essentially
improved such characterizations by using merely the regular/Fréchet coderivative D*F (i.e., with
& = 0) in Asplund spaces and also established their counterparts for nonlocal well-posedness prop-
erties. Sufficient neighborhood conditions with corresponding modulus estimates in terms of other
subdifferential constructions in the suitable “trustworthy” Banach spaces were derived by loffe;
see [375] and the references therein. We also mention primal-space neighborhood developments
by Kummer [444, 445] (presented in his book with Klatte [420]) via the so-called Ekeland’s points.

Comprehensive pointbased extensions of the coderivative characterizations of well-posedness
in Theorem 3.3 were obtained by the author [514] for closed-graph mappings F: X = Y be-
tween Asplund spaces (with necessary conditions holding in any Banach spaces) in terms of the
mixed coderivative (1.65) and the PSNC property of F at (x,y) € gph F defined in (3.65). For
the case of Lipschitzian behavior the obtained characterizations are presented in Exercise 3.44;
see also [522, Theorem 4.10] for more information. Observe that the exact bound formula (3.10)
is split now into the two inequalities in (3.67), and thus the full infinite-dimensional counterpart
of the coderivative criterion of Theorem 3.3 requires imposing the coderivative normality from
Exercise 3.43 introduced and studied in [522]. We refer the reader to [581, 582] for previous point-
based sufficient conditions of well-posedness for mappings between Asplund spaces in terms of the
normal coderivative D}*v as well as to [371, 375, 397, 398, 402, 635, 637] for related sufficiency
results based on other coderivatives in suitable Banach spaces and the corresponding counterparts
of the PSNC property discussed in more detail in [522]. Observe also that the papers by Jourani and
Thibault [402] and by Ioffe [371] contained necessary pointbased conditions for well-posedness
expressed in terms of the “approximate coderivative” (cf. Section 1.5) and addressed, in the case of
the Lipschitz-like property, to set-valued mappings F': X = Y with a Banach domain space X and
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a finite-dimensional image space Y. However, the exact pointbased bound estimates of type (3.67)
were not obtained in the aforementioned publications.

A very interesting recent development has been done by Clason and Valkonen [169] on ap-
plications of the author’s coderivative criterion [510] to the study of stability of saddle points for
a broad class of constrained optimization problems in Hilbert spaces, including inverse problems
with PDE constraints. A main ingredient of their approach was to reduce the infinite-dimensional
setting under consideration to a finite-dimensional one by using pointwise subdifferentiation of in-
tegral functionals and thus avoiding any SNC-type assumptions. In this way they obtained explicit
stability conditions for various infinite-dimensional problems arising, in particular, in parameter
identification, image processing, and PDE-constrained optimization.

We conclude the commentaries to this section by mentioning some applications of the dis-
cussed well-posedness properties of mappings and their generalized derivative characterizations to
numerical aspects of variational analysis and the convergence of algorithms, which can be found
[19, 71, 72, 73, 206, 227, 260, 344, 354, 384, 420, 421, 458, 480, 566, 665, 727] and the ref-
erences therein. Note also the pioneering paper by Dontchev, Lewis, and Rockafellar [224] who
established relationships between well-posedness and ill-posedness properties via calculating the
radius of metric regularity by using the author’s coderivative characterizations and the exact bound
formulas from Theorem 3.3. In this way they justified connections between the radius of metric
regularity and Renegar’s “distance to infeasiblity”” [657] arising in complexity theory for linear and
conic programming. We also refer the reader to [227, 375, 522] for more comments and references
on infinite-dimensional extensions.

Section 3.2. The coderivative calculus results presented in this section were first established by
the author [511] for general multifunctions between finite-dimensional spaces based on the ex-
tremal principle. The sum rule of Theorem 3.9 was derived earlier in the author’s paper [509] by
direct applying the method of metric approximations. This sum rule as well as the chain rule of
Theorem 3.11(ii) were then reproduced in [678] by using another device.

The infinite-dimensional setting is more diverse and comprehensively presented in the author’s
book [522] mostly dealing with multifunctions between Asplund spaces and mainly based on the
previous publications [514, 532, 581, 584, 588]. Although the proofs in [522] went in the same
direction as in [511], the techniques were more involved and the spectrum of the results obtained,
and the assumptions imposed were essentially broader while reducing to [511] in finite dimensions.
In [522] we developed parallel calculus rules for both normal and mixed coderivatives with the
qualification conditions expressed in terms of the mixed coderivative having an essential advantage
in comparison with the normal one from this viewpoint; see Exercises 3.59-3.61. In particular, we
have the following sum rule for both coderivatives D* = Dy, D}, of the set-valued mappings
F1, F> between Asplund spaces:

DR+ FENOYC ) [PRGE 0N+ DRG] v e v,
(31,72)€8(%.5)

at (x, y) € gph (F1 + F>) provided that the mapping S from (3.21) is inner semicompact at (x, y)
as defined in Exercise 2.46, that

Dy Fi(E, y)0) N (= Dy (X, 2)) = (0}, (51, 72) € S&, ), (3.82)

and that for each (y1, y2) € S(x,y) either F| is PSNC at (x, y;) or F> is PSNC at (x, yp). It
follows from (the necessity part of) the infinite-dimensional coderivative characterizations of well-
posedness discussed above in Exercise 3.48 and the commentaries to Section 3.1 that both the
mixed qualification condition (3.82) and the PSNC assumptions are satisfied if either one from
F1, F, is Lipschitz-like around the corresponding points of S(x, y). More diverse results of the
inclusion and equality types were developed in [522] for coderivative chain rules and their conse-
quences for set-valued and single-valued mappings between infinite-dimensional spaces.

Some of the discussed coderivative chain and sum rules for mappings between Asplund (or
Fréchet smooth) spaces were then reproduced in the books [114, 637, 685], where the reader
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could also find certain “fuzzy” (neighborhood) versions. A number of calculus rules for (normal)
coderivatives generated by normal cones/subdifferentials of other types were considered, e.g., in
[369, 375,400, 401, 533, 585] in appropriate Banach spaces. We specially emphasize the results by
Toffe [369, 371] and Jourani and Thibault [400, 401] who developed extended coderivative calculus
rules for the normal coderivatives generated by various approximate subdifferential constructions
(see Section 1.5) in arbitrary Banach spaces.

Section 3.3. This section is devoted to coderivative analysis and some applications of the paramet-
ric variational systems described as (3.34) in finite dimensions with infinite-dimensional extensions
discussed in Section 3.4. The well-developed coderivative calculus plays a crucial role in this anal-
ysis and applications. The presented results are mostly taken from the book [522, Section 4.4]
(coderivative calculus) and the subsequent papers [277, 524] (applications to metric regularity).

Coderivative calculus opens the gate to effectively evaluate the basic coderivative (1.15)—as
well as its normal and mixed versions in infinite dimensions—of the parametric variation sys-
tems (3.34), which is the solution map to Robinson’s generalized equation (3.35). It allows us to
implement these calculations to the obtained coderivative criteria for the well-posedness proper-
ties from Section 3.1 and their infinite-dimensional extensions, together with evaluating the cor-
responding exact bounds of moduli. In contrast to [522], where the main attention was drawn
to Lipschitzian stability, now we mostly concentrate on metric regularity. The metric regularity
property for (3.34) occurs to be more involved in comparison with its Lipschitz-like counter-
part for PVS and often fails in the most natural PVS settings as shown in Subsection 3.3.3. This
phenomenon was first revealed by the author in [524] and then was investigated in various pub-
lications dealing with different classes of PVS in both finite and infinite dimensions; see, e.g.,
[22, 41, 45, 155, 277, 404, 666, 719]. The proof of Proposition 3.24 follows [223]; cf. also [227,
Theorem 3G.5].

The results of Section 3.3 and the exercises for it concerning the structural PVS with composite
potentials (3.41) and composite fields (3.48) utilize the notion of the second-order subdifferential
(or generalized Hessian) (3.42) introduced by the author in [508] and then developed and applied
in numerous publications. The original motivation came from using the coderivative criterion and
calculus rules to derive verifiable conditions for Lipschitzian stability of parametric variational
systems; see [508, 509, 510, 511, 512, 513, 514]. Then important early contributions were made
by Rockafellar and his collaborators [456, 642] to studying the remarkable notions of #ilt and full
stability of local minimizers in finite-dimensional optimization introduced therein; see also the
book by Bonnans and Shapiro [96] concerning tilt perturbations and related quadratic/second-
order growth conditions. Note that second-order growth conditions of this type were used in the
pioneering paper by Zhang and Treiman [771] in connection with the upper Lipschitzian property
of the inverse to the basic subdifferential of l.s.c. functions in finite dimensions while providing a
complete characterization of the latter property for l.s.c. convex functions; see the exact formula-
tions in Exercise 3.55. Similar growth conditions were developed by Aragén and Geoffroy [20, 21]
for characterizations of metric regularity and subregularity properties as well as their strong coun-
terparts for the convex subdifferential in Hilbert and Asplund spaces; see also Mordukhovich and
Nghia [551] as well as Exercises 3.52 and 5.27. Some nonconvex versions for the basic subgradi-
ent mapping with quantitative interrelations between the corresponding constants were obtained in
[551] and the joint author’s paper with Drusvyatskiy and Nghia [232] in the Asplund space setting;
see Sections 5.3 and 5.4. Note that quite recent algorithmic applications of second-order growth
conditions for metric subregularity of subgradient mappings arising in semidefinite programming
have been developed by Cui, Sun, and Toh [186].

In recent years, the area of second-order variational analysis involving (3.42) and associated
second-order constructions has drawn a strong and steadily growing attention with well-developed
calculus and great many applications to various classes of finite- and infinite-dimensional problems
in optimization, stability, equilibrium, control, mechanics, economics, electronic, etc., as well as
to practical models described via first-order gradient/subgradient and normal cone data.

Among the most impressive developments and applications of this “dual-space” direction in
second-order variational analysis, we mention the following (this list is by far incomplete): well-
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developed second-order calculus [517, 522, 539, 557, 558, 570, 625]; calculations of the second-
order subdifferentials for maximum functions as well as for separable piecewise-C2, extended
piecewise linear, and extended piecewise linear-quadratic functions [252, 557, 570, 573, 574];
calculations of the second-order subdifferentials of the indicator function (i.e., coderivatives of
the normal cone) for polyhedral, generalized polyhedral, and polyhedric convex sets in finite and
infinite dimensions [49, 225, 336, 342, 552, 741]; second-order characterizations of convexity
and monotonicity properties of functions and mappings [150, 152, 153, 154, 555]; evaluations
of the second-order constructions for broad classes of nonpolyhedral moving sets appeared in
numerous applications [2, 5, 6, 8, 82, 143, 144, 151, 172, 174, 208, 286, 288, 339, 340, 361,
599, 621, 627, 654, 747]; characterizations of Robinson’s strong regularity for variational systems
[225, 336, 556, 570, 571, 742]; characterizations of tilt stability of local minimizers in various
classes of optimization problems [230, 232, 243, 284, 461, 551, 554, 559, 743, 765, 780, 781];
characterizations of full Lipschitzian and Holderian stability of local minimizers in nonlinear pro-
gramming, conic programming, and optimal control [456, 552, 556, 563, 573, 571]; characteriza-
tions of full stability for solutions to general and particular classes of parametric variational systems
[555]; characterizations of metric regularity, subregularity, and their strong counterparts for first-
order subdifferentials and their relationships with second-order growth conditions [21, 43, 230,
232,551, 554, 733, 734, 780]; characterizations of Kojima’s strong stability of variational systems
[552, 556, 576]; sensitivity and stability analysis with respect to robust and nonrobust properties of
solution maps for constrained optimization, variational and quasivariational inequalities, and equi-
librium problems [283, 285, 286, 287, 328, 336, 337, 338, 335, 339, 340, 451, 453, 454, 508, 513,
522,558, 561, 562, 575, 576, 625, 654, 742]; characterizations of weak sharp minimizers and their
stable higher-order extensions [780, 781]; no-gap second-order necessary and sufficient optimality
conditions for some classes of constrained and vector optimization problems [358, 359]; neces-
sary optimality and stationarity conditions for mathematical programming and control problems
with equilibrium constraints [3, 78, 267, 314, 338, 341, 346, 290, 523, 620, 623, 745, 746, 780];
necessary optimality and stationarity conditions for equilibrium problems with equilibrium con-
straints [340, 342, 560, 622]; stability of discrete approximations and necessary optimality con-
ditions for controlled sweeping processes [5, 127, 143, 144, 172, 173, 174]; stability and opti-
mization of PDE systems [169, 346, 347, 623, 730]; qualitative characteristics of nonconvex gra-
dient flows and nonlinear evolution equations [497, 681]; characterizations of critical multipliers
in variational systems with eliminating slow convergence of primal-dual methods in optimization
[577]; applications to second-order cone programming, semidefinite programming, circular cone
programming, and second-order complementarity [208, 289, 390, 561, 562, 563, 747, 766, 784];
applications to bilevel programs, bilevel optimal control, and hierarchical optimization [51, 79,
80, 198, 199, 200, 202, 341, 767, 768, 769]; applications to viability issues for dynamical systems
[266]; applications to numerical methods of optimization (proximal, trust-region, quasi-Newton
ones, etc.) [21, 231, 451, 465, 539, 564, 652]; applications to various problems in mechanics
[2, 174, 423, 557, 621]; applications to stochastic analysis and optimization [340, 626, 739]; ap-
plications to economic modeling [560, 622]; applications to electronics [6, 8, 127]; applications to
micromagnetics and related topics [423]; applications to electricity spot markets [38, 340, 342];
applications to the crowd motion model of traffic flow [144]; etc. Second-order variational analysis
and its applications are the subjects of the author’s book in progress [527].

The class of prox-regular and subdifferentially continuous functions and their amenable sub-
classes were introduced by Poliquin and Rockafellar [641] in finite dimensions while playing a
crucial role in second-order variational analysis. Besides the publications on second-order analysis
listed above, prox-regular functions and associated sets as well as their favorable subclasses have
been intensively studied and applied in a vast literature that covers both finite-dimensional and
infinite-dimensional settings; see, e.g., [7, 45, 83, 175, 332, 678] and the references therein. Note
that the notion of prox-regularity for closed sets in finite-dimensional spaces is equivalent to the
notion well known in geometric measure theory as sets of positive reach introduced and largely
studied by Federer [263].
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Section 3.4. This section mostly presents some notions and results, which are extensions of the
basic material (including approaches and proof techniques) developed in the main sections of this
chapter in finite-dimensional spaces. The reader can find more discussions and references in the
exercise hints. We particularly draw the reader’s attention to the notions of relative covering and
semimetric regularity of set-valued mappings from Exercises 3.50 and 3.56 introduced and partly
investigated in the early author’s work [505, 507] that require further developments and applica-
tions in both finite-dimensional and infinite-dimensional (Banach, metric) spaces. The properties
of metric and strong metric hemiregularity defined in Exercise 3.58 and discussed in the commen-
taries above are also largely underinvestigated from both viewpoints of efficient certifications and
applications. Yet another topic of profound interest concerns the notion of outer derivative of set-
valued mappings between finite-dimensional spaces (3.70) introduced by Zhang and Treiman [771]
who used it for the pointbased characterization of the upper Lipschitzian property of multifunc-
tions and then applications to inverse subdifferential mappings presented in Exercise 3.55. As men-
tioned above, the upper Lipschitzian property—together with its calmness and metric subregularity
counterparts—has recently drawn much attention in variational theory and numerous applications,
and thus developing these lines of research would be very important in variational analysis. Some
properties of the outer derivative are obtained in [771] (see, in particular, Exercise 3.54), but this
is definitely not sufficient for desired applications, which require more developed calculus rules
for (3.70) and its graphical version at (x, y) € gph F needed for the study of calmness and metric
subregularity of set-valued mappings.



Chapter 4 ®
First-Order Subdifferential Calculus Creck fo

This chapter concerns generalized differential properties of extended-real-valued
functions ¢ : R" — R that are assumed, unless otherwise stated, to be lower semi-
continuous around references points. Our main purpose here is to develop compre-
hensive calculus rules for the basic subdifferential (1.24) and singular subdiffer-
ential (1.25) of such functions. Recall that general sum rules for them have been
obtained in Section 2.4 as consequences of the intersection rule for basic normals;
these results can be also deduced from the coderivative sum rules of Theorem 3.9.
In this chapter we concentrate on deriving other major results of first-order subdif-
ferential calculus including subdifferentiation of marginal/optimal value functions,
general chain rules with their implementations to subdifferentiation of products,
quotients, minimum, and maximum functions, and various versions of the subdif-
ferential mean value theorem with some applications to variational analysis in non-
smooth settings.

4.1 Subdifferentiation of Marginal Functions

In this section we focus on evaluating basic and singular subgradients for a broad
class of the marginal functions defined by

p(x) = inf {p(x, »)| y € G}, 4.1)

where ¢: R” x R" — R is a (L.s.c.) extended-real-valued function and where
G:R" = R™ is a (closed-graph) set-valued constraint mapping that described
parameter-dependent/moving constraint sets. The given marginal function (4.1) can
be interpreted, in particular, as the (optimal) value function in the problem of para-
metric optimization given by

minimize ¢(x,y) subjectto y € G(x)
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with the cost/objective function ¢ and the constraint multifunction G, where y and
x are the decision and parameter variables, respectively. A characteristic feature of
marginal functions of type (4.1) is their intrinsic nondifferentiability regardless the
smoothness of cost functions and the simplicity of moving constraint sets. As we’ll
see below, constructive evaluations of both the basic and singular subdifferentials
under consideration are crucial for resolving major issues of subdifferential calcu-
lus as well as for deriving optimality conditions in various classes of optimization
problems, sensitivity and stability analysis, as well as numerous applications in vari-
ational and nonvariational settings.

To evaluate basic and singular subgradients of the marginal function (4.1), define
the argminimum mapping M : R" = R™ by

M) ={y e Gx)| p(x,y) = ux)} 4.2)

and obtain subdifferential results of two kinds depending on either inner semiconti-
nuity or local boundedness assumptions imposed on the mapping M.

Theorem 4.1 (Basic and Singular Subgradients of Marginal Functions). For the
marginal function (4.1) with x € dom u the following hold:

(i) Fix y € M(x) from (4.2), and suppose that M is inner semicontinuous at
(x, ¥) and that the qualification condition

%9, ) N[~ N(@&, 7): gph G)] = {0} 4.3)
is satisfied. Then we have the subdifferential upper estimates

mwmc  J  [rrpeEnoe), (4.4)
(x*,y*)€dg(x,y)

e U [+ 06E o) (4.5)

(x*,y*)€d®p(x,3)

(ii) Let the argminimum mapping (4.2) be locally bounded around x with M (x) #
#, and let condition (4.3) hold for any y € M (x). Then

woc U [ non]

(x*,y")€dp(¥, )
yeM(x)

cumc U [HpreEnon)]
(") €d®p (R, 5)
yEM(X)
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Proof. To justify assertion (i), consider the function
B(x,y) == (x,y) +8((x, ¥); gph G), (x,y) € R* x R™,
and verify in its terms the subdifferential upper estimates
In) C {x*| (*,00 € 09 (x, y}, 0%°u@) C {x*| ", 0) € 3°D(x, )}

We first prove the upper estimate for o (x). Pick x* € du(x) and by (1.37) find

sequences X £ % and xp — x* withx} € 5;L(xk), k € N. Hence for any ¢ | 0
there exists i | O such that for each fixed number k € N we have

(xf,x —xx) < u(x) — w(xe) + exllx — x|l whenever x € xi + niB.
This implies by the constructions of u, ¥, and M that

((r 0), (x, ) — (o o)) < D2Cx, y) — 0ok, vi) + e (llx — xiell + 1y — welD)

for all yy € M(x;) and (x, y) € (xg, yx) + nkB. Thus (x;, 0) € /Z)\gkﬁ(xk, Yk). Since
M is inner semicontinuous at (X, y), we get a sequence of yx € M (x;) converging
to y. Observe that ¥ (xg, yx) — (X, y) due to w(xx) — w(x), which therefore
ensures that (x*, 0) € 39 (x, y) by passing to the limit as k — oo and so justify the
claimed inclusion for du(x) via 39 (x, y). To deduce from here the subdifferential
estimate (4.4), we apply to the sum in 9 the basic subdifferential sum rule (2.35) un-
der the qualification condition (2.34), which reduces in this case to the one assumed
in (4.3).

To verify further the inclusion for 9% u(x) via 39 (x, y), pick a singular sub-
gradient x* € 0%°u(x), take any g, | 0, and by (1.38) find sequences xj £ X,
(x5, ve) — (x*,0), and ng | O satisfying

(g, x — xp) + vl — ) < ex(llx — xill + la — )

for all (x, @) € epiu, x € xx + B, and |@ — x| < 1. The inner semicontinuity

M
of (4.2) ensures the existence of yi ﬁ'i) y and a; | ¥ (x) such that
(7, 0, vg) € Ne((xx, vk, )i epi®),  k €N,

which gives us by passing to the limit as k — oo that (x*, 0) € 3°°®¥(x). We finish
the proof of (i) by applying the singular subdifferential sum rule (2.36) to the sum in
¥ under the validity of the qualification condition (4.3). The verification of assertion
(i) is similar to the above. A

The main assumption of Theorem 4.1 is the qualification condition (4.3),
which in fact holds in the following major settings due to the obtained coderiva-
tive/subdifferential characterizations of well-posedness. For brevity we discuss the
qualification condition (4.3), which in fact holds in the following major settings due
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to the obtained coderivative/subdifferential characterizations this only in case (i) of
Theorem 4.1.

Corollary 4.2 (Marginal Functions with Lipschitzian and Metrically Regular
Data). Given y € M(x), suppose that the argminimum mapping (4.2) is inner
semicontinuous at (x, y) and that either ¢ is locally Lipschitzian around (x, y) or
¢ = @(y) and G is metrically regular around (x, y). Then both inclusions (4.4) and
(4.5) are satisfied.

Proof. If ¢ is locally Lipschitzian around (X, y), we have 0®¢(x, y) = {0} by
Theorem 1.22, and thus (4.3) holds. For ¢ = ¢(y), the qualification condition (4.3)
can be equivalently written as

9®p(y) Nker D*G(x, y) = {0}

and hence holds by Theorem 3.3 if G is metrically regular around (x, y). A

Another useful consequence of Theorem 4.1 provides efficient conditions for
locally Lipschitz continuity of a general class of marginal functions.

Corollary 4.3 (Local Lipschitz Continuity of Marginal Functions). The follow-
ing assertions hold for the class of marginal functions u from (4.1):

(i) Assume that the argminimum mapping (4.2) is inner semicontinuous at some
point (x,y) € gph M and that the cost function ¢ is locally Lipschitzian around this
point. Then w is Lipschitz continuous around X provided that it is Ls.c. around x
and that G is Lipschitz-like around (X, y).

(ii) Assume that M in (4.2) is locally bounded around x € dom M and that ¢ is
locally Lipschitzian around (x, y) for any y € M (x). Then w is Lipschitz continuous
around X provided that it is l.s.c. around this point and that G is Lipschitz-like
around (x; y) whenever y € M(X).

Proof. It is sufficient to verify assertion (i), since the proof of (ii) is similar. The
assumed local Lipschitz continuity of ¢ ensures the validity of the qualification
condition (4.3) and reduces (4.5) to

3 n(x) C D*G(%, ¥)(0).

It follows from Theorem 3.3(iii) that D*G(x, y)(0) = {0} by the Lipschitz-like
property of G around (x, y). Thus 3°°u(x) = {0}, which yields the Lipschitz con-
tinuity of u around x by Theorem 1.22. A

The next theorem, which can also be treated as a consequence of Theorem 4.1
with some elaborations, concerns subdifferentiation of the infimal convolution de-
fined for two functions ¢1, ¢ : R” — R by

(01 ® 2)(x) :=inf {1 (x1) + @2(x2)| x1 + x2 = x}. (4.6)

Let us associate with (4.6) the convolution mapping C: R" = R>" given by
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Cx) = {(x1, x| x1 +x2=x, p1(x1) + 2(x2) = (p1 D 2) )} (4.7)

Theorem 4.4 (Subdifferentiation of Infimal Convolutions). Given a point x €
dom C for the mapping C from (4.7), the following assertions hold:

(i) Fix (x1, x2) € C(x), and assume that the convolution mapping (4.7) is inner
semicontinuous at (x, X1, Xx2). Then we have the inclusions

(@1 ® 2)(X) C g1 (X1) N g2 (X2),

3% (@1 ® 2)(X) C 0% (X1) N 0% ¢a(X2).

(ii) If the convolution mapping (4.7) is locally bounded around X, then

dpop)®c  |J  deiE) N,
(x1,%2)eC(x)

WCeom@®c  |J %) NI%eE).

(x1,%2)€C(%)

Proof. It is sufficient to justify assertion (i) while noting that the proof of (ii) is sim-
ilar. It follows from definition (4.6) that the infimal convolution admits the marginal
function representation:

(01 ® 92) () = inf {@(x, x1, x2)| (x1, %) € G)}, x eR", (4.8)
where ¢: R” x R" x R” — Rand G: R” = R" x R” are given, respectively, by
p(x,x1,x2) = @1 (x1) + 92(x2),  G(x) == {(x1,x2) € R¥| x| + x5 = x},

and where the argminimum mapping (4.2) reduces to (4.7) in this case. To check
now the qualification condition (4.3), observe that

®@(X, X1, X2) = (0, 0%¢1(X1), 3%°¢2(X2)) and
N((%,%1,%)); gph G) = {(v, —v, —v) € R*| v € R"},
and so (4.3) holds in the framework of (4.8). The latter formula yields

W= = = _ JHudif vy = vy,
DRG(x, %1, ¥2) (w1, v) = {V) otherwise.
Substituting this into (4.4) and (4.5) with taking into account that

I (X, X1, ¥2) = (0, 31 (X1), dg2(¥2)),

we arrive at the claimed representations in (i). A
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4.2 Subdifferentiation of Compositions

When the mapping G = g: R" — R is single-valued in (4.1), the marginal func-
tion reduces to the (generalized) composition

(pog)x):=p(x,gx)), xeR", (4.9)

and thus we can deduce from Theorem 4.1 extended subdifferential chain rules and
their various consequences. The next theorem gives us also some cases of equalities
and subdifferential regularity of compositions, which seem to be specifically related
to single-valuedness of the constraint mapping in (4.1). Note that the first part of
this theorem holds in the Asplund space setting, while the second part is valid in
any Banach spaces; see Exercise 4.28.

Theorem 4.5 (Basic and Singular Subdifferentials of General Compositions).
Consider composition (4.9) with an extended-real-valued function ¢ : R* xR™ — R
and a mapping g: R" — R™ that is locally Lipschitzian around x with y = g(x).
The following assertions hold:

(i) The qualification condition (4.3) with G = g ensures the validity of the subd-
ifferential upper estimates

ipo)rc  |J  [rHovtem®]. (4.10)
(x*,y*)€dp(x,y)

™ pogmc  J  [vHant @] @.11)
(%, ¥ €00 (.5)

with the equality in (4.10) if either the outer function ¢ is of class C' around (%, 7)
or it is lower regular at (X, y) and the inner mapping g is of class C' around x; in
the latter case, the composition ¢ o g is lower regular at Xx.

(ii) If ¢ is strictly differentiable at (X, y), then we always have the equality

(g 08)(X) = Vip(x, 3) + 8{Vyp (&, ), g)(X). (4.12)

Proof. To justify (i), observe that inclusions (4.10) and (4.11) reduce to (4.4)
and (4.5), respectively, for locally Lipschitzian mappings g due to the scalarization
formula of Theorem 1.32. We get furthermore the equalities

In@) = {x*| («*,00 € 09 (x, 9}, 9°uE) = {x*| *,0) € 3°V (X, )}

via the function ¢+ defined in the proof of Theorem 4.1, provided that G = g is
locally Lipschitzian around x without any additional assumptions. This can be ver-
ified similarly to the proof of Theorem 3.11(iii). Then the equality and regularity
statements in (i) follow by applying the corresponding results of Proposition 1.30
and Theorem 2.19 to the sum form of .
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To prove now assertion (ii), take an arbitrary sequence y; | 0 and get, by the
assumed strict differentiability (1.19) of ¢ at (x, y), such ; | O that

lo(u, gw)) — p(x, 8(x)) = (Vip(X, 3), u — x) = (V40 (X, 7), g(u) — g(x))|
< ¥i(lu —xll + llgw) — g(x)|) forall x,u € B, (¥), jeN.

Pick further x* € d(pog)(x), and @d by the first representation in (1.37) sequences

xp — X and x{ — x* with x; € 9(p o g)(xx), k € N. This allows us to select a
subsequence k; — oo as j — 00 so that ||lxx; — X|| < n;/2 and

o (x, g(0)) = @(xk;s 8(xk))) = (6, ¥ — xi)) = —e lx — x|

whenever ¢; | Oas j — oo and x € xi; + (17;/2)B. Combining the relationships
above gives us the estimate

(Vy(/’(ia y),g(.x)_g(xkj))_(x;:] - x‘p(iv _)_/),.x_.xkj)
> —[ex; + v+ D]llx — xx; || for x € xi; + (n;/2)B,

where £ is a Lipschitz constant of g around x. This yields
xf, = Vep(E, 5) € By (Vyp (R, 7). g)(xk;) with vj = ek, + v (€ + 1),

which ensures the validity of the inclusion “C” in (4.12) by passing to the limit
as j — oo and using the second representation in (1.37). To verify the opposite
inclusion in (4.12), it suffices to employ the similar arguments to the above starting
with an arbitrary subgradient x* € 9(V,¢(x, y), g) (). A

Next we derive several remarkable consequences of Theorem 4.5; see also ex-
ercises in Section 2.5 for more results in this direction. Let us start with the chain
rules of the inclusion type for basic and singular subgradients of the standard com-

positions ¢ o g = ¢(g(x)) in (4.9).

Corollary 4.6 (Chain Rules for Basic and Singular Subgradients). Ler
¢: R™ — R do not depend on the first variable in (4.9), and let g: R" — R™ be
locally Lipschitzian around x. Impose the qualification condition

%9 () Nkerd(-, g)(x) = {0}.
Then we have the subdifferential chain rules
dpopx®c |J 0% 0@, ¥@epx®mc J 0% .
y*ede(y) y*ed®e(y)

Proof. It follows from the above that the qualification condition (4.3) reduces to the
one imposed here if ¢ = ¢(y) and G = g is locally Lipschitzian. Then the claimed
chain rules are specifications of (4.10) and (4.11). A
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The next two corollaries of Theorem 4.5 present subdifferential product and quo-

tient rules in inclusion and equality forms.

Corollary 4.7 (Subdifferential Product Rules). Let ¢;: R" — Ri=1,2 be
Lipschitz continuous around x. The we have the product rules

(@1 - 92)(X) = 3(p2(X)p1 + @1 (X)) (X),

(g1 - @2)(X) C 3(p2(B)1)(X) + 3 (01 (X)2) (X),

where the latter holds as equality and the product ¢ - @2 is lower regular at X if
both functions ¢2(X)¢@1 and @1 (X))o are lower regular at this point.

Proof. To verify the first product rule, represent ¢ - ¢, as composition (4.9) with
¢:R?> > Rand g: R” — R? defined by

o1, y2) = y1 - y2 and g(x) := (g1 (x), p2(x)).

Then Theorem 4.5(ii) gives the claimed equality. Employing therein the subdiffer-
ential sum rule of Corollary 2.20 gives us the second product rule as inclusion,
where the equality and regularity statements follow from the corresponding results
of Theorem 2.19. A

Corollary 4.8 (Subdifferential Quotient Rules). Let ¢;: R” — R fori = 1,2 be
Lipschitz continuous around x with ¢2(x) # 0. Then we have

’

o1\, (p2De1 —@1(X)e2)(X)
ol — =
(5:)® TG

o1\ - 0(p2(D)e1)(X) — 3(e1(X)p2) (X)
ol — ,
(§) @< [P

where the latter holds as equality and the quotient @1/, is lower regular at x if
both functions ¢2(X)@1 and —1(X)¢@y are lower regular at this point.

Proof. Similar to Corollary 4.7 with ¢(y1, y2) := y1/y> therein. A

4.3 Subdifferentiation of Minima and Maxima

Next we proceed with evaluating basic and singular subdifferentials of minima and
maxima of finitely many functions defined, respectively, by

(ming;)(x) == min{e;(x)| i =1,...,s}, (4.13)

(maxgoi)(x) = max{<p,~(x)| i =1, s} “4.14)
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where ¢;: X — R with s > 2. Functions of these two classes are intrinsically
nonsmooth (even when all ¢; are linear), while their generalized differentiabil-
ity properties are very different and cannot be reduced to each other by taking
the negative sign; compare, e.g., the simplest functions |x| = max{x, —x} and
—|x| = min{x, —x}, and see Fig.4.1. This issue has been well realized in convex
analysis, while the difference can’t be recognized by Clarke’s generalized gradi-
ent (1.78) with its plus-minus symmetry, which implies the equality

9(ming;)(¥) = 3(max ¢;)(¥)

for arbitrary locally Lipschitzian functions ¢;. The usage of our nonconvex unilat-
eral constructions fully recognizes this difference via the following calculus rules
for evaluating subgradients of the minimum and maximum functions.

Let us start with the minimum function and define the set of active indices

Inin(¥) :={i € {1,...,5}| @i(x) = (ming;)(x)}, xeR".

y = max{—=z,z}

v
v

y = min{ —z, z}

Fig. 4.1 Maximum and minimum functions.

Proposition 4.9 (Basic and Singular Subdifferentials of Minimum Functions).
Considering (4.13), fix x € ﬂledom ;. Then we have

d(ming)(® | [390,-()2)‘ i e Imin(i)}, (4.15)

9% (min ;) (¥) c | {a%,-oz)’ i€ Imin()E)}. (4.16)

Proof. We verify only (4.15), since representation (1.38) of the singular subdifferen-
tial allows us to proceed similarly in the proof of (4.16). Take a sequence of x; € R"
such that x; — x and ¢; (xx) — (ming;)(x) fori ¢ Inin(x). Using the lower semi-
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continuity of ¢; at x (our standing assumption), we get Imin(xx) C Inmin(X). It easily
follows from definition (1.33) that

3(ming;) () € | {00 (x0)] i € Inin(®)}. ke N. 4.17)

This yields by passing to the limit in (4.17) due to representation (1.37) of basic
subgradients that (4.15) holds. The proof of (4.16) is similar by using the singular
subdifferential representation (1.38). A

Although our standing assumption is the lower semicontinuity of the functions in
question (unless otherwise stated), in the following theorem on subdifferentiation of
the maximum function (4.14), we impose the upper semicontinuity (u.s.c.) of some
functions under consideration. Denote

Inax(¥) = {i € {1,....s}| @i (%) = (max ;) (D)},

A(X) = {(M,.-.,M)

=0 Y =14 (es® = (maxi)(®) =0}.
i=1

Theorem 4.10 (Subdifferentiation of Maximum Functions). Let ¢; be Ls.c.
around X fori € Inax(X) and be u.s.c. at x fori ¢ Imax(Xx). Then:

(i) Under the validity of the qualification condition (2.37) considered only for
i € Imax(X), we have the inclusions

d(maxp)® c(J| X modn@®| (a0 e ),

i € Imax (X)

3°°(max ¢;)(x) C Z 3% @i (X),

1€ Imax (¥)

where ) o d¢(X) is defined as Lo@(x) for A > 0 and as 0®°¢(x) for A = O. If fur-
thermore each ¢; for i € Imax(X) is epigraphically regular at X, then the maximum
function is also epigraphically regular at this point, and both inclusions above hold
as equalities.

(i) Suppose that each ¢;, i = 1, ..., s, is Lipschitz continuous around x. Then
we have the inclusion

a(maxg)@® cJfo( X mear)®| Gk € a@),

i€ Imax (X)

where the equality holds and the maximum functions are lower regular at X if each
@i, I € Imax(X), is lower regular at this point.

Proof. Denoting & := (max (pi)()f), observe that (x, @) is an interior point of the
set epi¢; for any i ¢ Ipnax(X) due to the upper semicontinuity assumption. Then
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assertion (i) follows from the intersection rule of Corollary 2.17 applied to the
epigraphs epig;, i = 1,...,s, at (¥, @).

To verify assertion (ii), which provides a better upper estimate of the basic subdif-
ferential for the case of Lipschitzian functions, we represent the maximum function
as the composition ¢ o g with

o1, ... ys) =max {y, ..., ys} and g(x) :== (@1 (x), ..., @5 (x)).

Then we apply to this composition the chain rule from Corollary 4.6 (with the equal-
ity and normal regularity statement therein) by taking into account the well-known
formula for subdifferentiation of the convex function ¢ in the composition, which
follows in turn from the equality in (). A

4.4 Mean Value Theorems and Some Applications

It has been well recognized in mathematics that the classical Lagrange mean value
theorem is one of the central results of real analysis that plays a crucial role in a
variety of applications. This section contains several extended versions of the mean
value theorem in the absence of differentiability. We also present some of their strik-
ing applications to important topics of variational analysis.

4.4.1 Mean Value Theorem via Symmetric Subgradients

Let us begin with deriving a generalized mean value theorem for continuous func-
tions, which we obtain in the Lagrangian form with replacement of the classical
gradient by a proper (actually minimal for such a form) subdifferential construction.
This construction is the symmetric subdifferential

39(x) 1= dp(X) U [ — d(—9) ()] (4.18)

some properties of which are discussed in Exercise 1.75. Its singular counterpart
809 (x) from (1.75) is used to formulate the appropriate qualification condition
needed for the validity of the following extended mean value theorem. For given
a, b € R" we use the notation

b-a)" = {x*eR"| (x*b—a)=0}, [a,bl:={a+t(b—a)|0=<t=<1]}
with (a, b), (a, b], and [a, b) defined accordingly.

Theorem 4.11 (Symmetric Subdifferential Mean Value Theorem for Continu-
ous Functions). Let ¢: R" — R be continuous on an open set containing [a, b],
and let the qualification condition

3% (x) N (b — a)* = {0} forevery x € (a,b)
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be satisfied. Then we have the mean value inclusion
o) —¢(a) € (80g0(c), b— a) for some c € (a, b). 4.19)
Proof. Let us first justify the existence of a real number 6 € (0, 1) such that
9(b) — p(a) € p(a +0(b — a)), (4.20)

where on the right hand we have the symmetric subdifferential (1.75) of the function
t > ¢pa+t(b—a))att =06.To proceed, define ¢: [0, 1] — R by

P(t) :=g(a+t(b—a)+i(p@ —e®), 0<r<I,

and observe that ¢ is continuous on [0, 1] with ¢ (0) = ¢ (1) = ¢(a). The classical
Weierstrass theorem tells us that ¢ attains its minimum and maximum on [0, 1].
Excluding the trivial case where i is constant on [0, 1], we get an interior point
6 € (0, 1) at which ¢ attains either the minimal or maximal value over [0, 1]. Then
it follows from the generalized Fermat rule of Proposition 1.30(i) and its upper
counterpart in the case of maxima that 0 € 3% (). Observing that ¢ is the sum
of two functions one of which is smooth, we apply the elementary sum rule from
Proposition 1.30(ii) and arrive at (4.20).
Represent now the function in (4.20) as the composition

go(a—i—t(b —a)) = ((pog)(t) with g(t) :=a+t(b—a), 0<t<I1.

Applying finally the subdifferential chain rule of Corollary 4.6 and its upper coun-
terpart to this composition gives us the mean value inclusion (4.19) with ¢ :=
a + 6(b — a) under the imposed qualification condition. A

Corollary 4.12 (Symmetric Subdifferential Mean Value Theorem for Lips-
chitzian Functions). If ¢ be Lipschitz continuous on an open set containing [a, b],
then (4.19) holds. If in addition ¢ is lower regular on the interval (a, b), then we
have the inclusion

@(b) — ¢(a) € (dp(c), b — a) for some c € (a, b). 4.21)

Proof. It follows from Theorem 1.22 that the qualification condition of Theo-
rem 4.11 is automatic for Lipschitzian functions. It remains to verify (4.21) under
the assumed lower regularity. To this end we get from Theorem 4.5(i) that the lower
regularity of ¢ at ¢ = a + 6(b — a) yields the lower regularity of the function
t > gpla+tb—a)) =(pog)(t)atd. Thuswe get d(p o g)(@) = d(pog)(O) £
by Theorem 1.22 due to the Lipschitz continuity of ¢ o g. It easily implies that
at (pog)®) C 5((,0 o g)(0); see Exercise 1.76(i). In this case it follows from the
proof of (4.20) in Theorem 4.11 that

p(b) — p(a) € ¥(p o g)®) C d(pog)®),

and thus we arrive at (4.21) by using Corollary 4.6. A
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Note that the lower regularity assumption is essential for the validity of the ex-
tended mean value theorem in form (4.21). A simple counterexample is provided by
@(x) 1= —|x| on [a, b] = [—1, 1] with dp(0) = {—1, 1} and 3°¢(0) = [—1, 1].
This shows that (4.19) holds while (4.21) doesn’t.

4.4.2 Approximate Mean Value Theorems

Next we present a mean value theorem of a new type, which has never appeared in
the classical or convex analysis. Results of this type apply to lower semicontinuous
extended-real-valued functions and are known as approximate mean value theorems
(AMVT); see more commentaries in Section 4.6. Such results occur to be very in-
strumental in variational analysis, which is partly demonstrated in the rest of this
section. The formulation of the following version of AMVT involves the regular
subdifferential (1.33).

Theorem 4.13 (Approximate Mean Value Theorem for Ls.c. Functions). Ler
¢: R" — R be finite at two given points a # b, and let ¢ € [a, b) belong to
the nonempty set of minimizers for the function

b _
v =) - LD Dl xetanl
Ib —al

@ -~ s
Then there are sequences x; — c and x; € d¢(xy) satisfying

b _
liminf(x}, b — x¢) > o) =@, . (4.22)
k—00 ||b — 11||
liminf(x}, b —a) > ¢(b) — ¢(a). (4.23)

k— 00

If furthermore ¢ # a, then we have the equality

lim (x;, b —a) = ¢(b) — ¢(a).

k— 00
Proof. Observe first that the function v defined in the theorem is l.s.c., and hence
it attains its minimum over [a, b] at some point c. Since ¥ (a) = ¥ (b), we can
always take ¢ € [a, b). Suppose without loss of generality that ¢(a) = ¢(b), which
gives us ¥ (x) = ¢(x) for all x € [a, b]. The lower semicontinuity of ¢ ensures the
existence of r > 0 such that ¢ is bounded from below on the set ® := [a, b] + rB
by some y € R. Thus the function ¥ (x) := ¢(x) + §(x; ®) is L.s.c. and bounded
from below on the whole space R". For any fixed k € N take r;x € (0, r) such
that p(x) > ¢(c) — k=2 whenever x € [a, b] + B and choose 7, > k satisfying
Yy + tyre > @(c) — k2. Thus we have

p(c) = O(c) < inﬂ{ D (x) + k2 with M (x) := 0 (x) + tkdist(x; [a, b]).
xe n
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Apply to 9 (x) the Ekeland’s variational principle from Corollary 2.13 with the
parameters ¢ = k2 and A = k. In this way we find x; € R” with

e —cll < k™' Orak) < Ok(e) = @), Dr(xk) < Dre(x) +klx — x|

for all x € R”. The latter means that the function 9% (x) + k~'||x — xi| attains its
minimum at x = x;. Hence we deduce from the subdifferential Fermat and sum
rules of Proposition 1.30(i) and Corollary 2.20, respectively, that

0€ dd(xx) +k~'B forall ke N

via the (dual) unit ball B C R” due to d|| - ||(0) = B. Now using the first representa-
tion in (1.37) of Theorem 1.28 for the basic subdifferential, applying again the sum
rule from Corollary 2.20 to the sum in ¢ with taking into account that x; € int®

for large k, we find sequences uy £ C, Vg —> C,Uf € 5¢(uk), vi € adist(vg; [a, b]),
and e € B such that

luf + nevf +k~tef | = 0 as k — oo, (4.24)
where |[vf|| < 1 by Proposition 1.33 and, obviously,
(i, b—ug) < dist(b; [a, b]) - dist(vk; [a, b]) <0, keN.

Our next goal is to construct a point wy € [a, b] for each k € N so that it en-
joys properties similar to vg. We do it by picking an arbitrary projection wy €
IT(vk; [a, b]) and observing that

(Wi, b —wk) = (v, b— vk) + (v, vk — wy) < dist(b; [a, b]) — dist(vk; [a, b])
+ 0N - llve — weell < —dist(vg; [a, b]) + dist(v;: [a, b]) = 0.

This yields (v}, b—a) < Oforlarge k € N since wy — ¢ # band (x —b)|y—b| =
(y = b)||x — b|| for x, y € [a, b]. It follows now from (4.24) that

liminf(u}, b — ug) > 0 and liminf(uf, b —a) > 0,

k—o0 k—o00
which verify (4.22) and (4.23). If finally ¢ # a, then v, # a for large k € N, and
hence (vj, b — ¢) = 0. This readily implies that (u;, b — a) — 0 by the above
arguments and thus completes the proof of the theorem. A

Next we show that the crucial mean value inequality (4.23) holds even if ¢ (b) =
oo and implies a useful estimate of the increment for a given l.s.c. function via its
regular subdifferential. Furthermore, we establish the limiting counterparts of these
relationships for Lipschitzian functions.
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Corollary 4.14 (Mean Value Inequalities). The following assertions hold:

(i) Let ¢: R" — R be finite at a € R"*. Then for any b € R”" there exist a point
c € la, b] and sequences xj £ ¢, xj € 5@()6/() satisfying the mean value inequality
(4.23). Furthermore, for each ¢ > 0 we have the estimate

lp(b) — p(@)| < |Ib—allsup {|x*|| | x* € Bo(c). c € [a.b]+eB}. (4.25)
(i) If ¢ is Lipschitz continuous on an open set containing [a, b], then

(x*,b —a) > @) — p(a) for some x* € dp(c) with c € [a, b),

lp(b) — ¢(@)| < lIb —alsup {|x*|l | x* € Bg(c), ¢ € [a,b)}.

Proof. To verify the mean value inequality in (i), it remains to consider the case
where ¢(b) = oo. In this case it suffices to apply (4.23) for each s € N to the
sequence of the modified functions

_ e ifx #0b,
s (x) = {(p(a) +s ifx =b.

The increment estimate in (i) immediately follows from (4.23).

To justify (ii), employ Theorem 4.13 to find ¢ € [a, b), x;x — ¢, and x;: € 5(p(xk)
satisfying (4.23), and observe by definition (1.33) of regular subgradients that the
Lipschitz continuity of ¢ ensures the uniform boundedness of the sequence {x;'}.
Thus it contains a convergence subsequence which limit x* belongs to the basic
subdifferential d¢(c) due to (1.37). Then the mean value inequality in (ii) follows
by passing to the limit in (4.23). It readily implies the increment estimate in (ii). A

Note that the mean value inequality in Corollary 4.14(ii) provides a unilateral
version (inequality vs. equality) of the extended mean value theorem for Lips-
chitzian functions from Corollary 4.12 by using only the basic subdifferential in-
stead of its symmetric counterpart (4.18) without lower regularity.

4.4.3 Subdifferential Characterizations from AMVT

Finally in this section, we present several remarkable consequences of the approx-
imate mean value theorem. The first one concerns subdifferential characterizations
of local Lipschitz continuity of lower semicontinuous functions.

Theorem 4.15 (Subdifferential Characterizations of Local Lipschitz Continu-
ity). Given ¢ : R" — R with X € dom ¢, and given a constant £ > 0, the following
properties are equivalent:

(a) There exists a positive number y such that

ﬁgo(x) C B whenever ||x — x| <y, |ekx)—eX)| <y.



176 4 First-Order Subdifferential Calculus

(b) There is a neighborhood U of x on which 5(/7()6) C {B.
(¢) ¢ is Lipschitz continuous around X with modulus £.

Furthermore, the local Lipschitz continuity of ¢ around x with SOME MODULUS
£ > 0 is equivalent to the singular subdifferential condition 9> ¢ (x) = {0}.

Proof. Suppose without loss of generality that x = 0 and ¢(x) = 0, and verify
first the validity of implication (a)=(b) with U := n(intB) in (b) for some constant
n > 0. This means that in the setting of (a), there is n > 0 such that |p(x)| < y
for all ||x|| < n. Observe that the lower semicontinuity of ¢ around x = 0 allows
us to find v > 0 so that p(x) > —y if ||x|| < v. Denote n := min{v, y, y/£},
where the case of £ = 0 is included and thus reduces 7 to min{v, ¥}, and then show
that ¢(x) < y whenever ||x|| < min{y, y/£}. This would surely justify the claimed
implication.

Suppose on the contrary that there exists b € R” with ||b| < min{y, y/¢} and
¢(b) > y. Consider the function

¢ (x) := min{e(x), y} onR" with ¢(0) =0, ¢(b) =y

satisfying all the assumptions of Theorem 4.13, and apply to it the mean value in-

equality (4.23). This gives us ¢ € [0, b) and xi —¢> c,x; € 5(15 (xx) with

liminf(x, b) > ¢(b) — ¢(0) =y, liminf x; || > y/Ibll > €.
k— 00 k—o00

Recall that the point ¢ is a minimizer of the function
Y (x) = ¢x) — b1~ Ix ]| (¢ (b) — $(0)) on [0, b],

which yields ¢ (¢) < y bl !|lc|l < y. Hence ¢(xx) < y along xx 15) c telling us
that ¢ (xx) = ¢ (xg) for large k. We get furthermore that

3 (x) C dp(xx) by ¢(x) < p(x), x € R",

and so x; € 5¢(xk). Since [|lx;|| > £, it contradicts (a) and verifies (a)=(b).

Implication (b)=>(c) follows from the increment estimate in Corollary 4.14(i),
implication (c)=>(b) is an easy consequence of the definition, while (b)=>(a) is triv-
ial. It has been proved in Theorem 1.22 that 3*°¢(x) = {0} for locally Lipschitzian
functions; so it remains to verify the opposite implication. Due to the equivalence
(a)<(c), it suffices to show that (a) holds with some £, y > 0.

If it doesn’t, find x % % and xi e 5(,0 (xx) with ||lx;|| — oo. This yields

*

oo = o
(nx;:u’ ||x;:||) & NG euiepig). ke N
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Normalizing X}’ := x}/[lx/]l, select a subsequence of {x;’} that converges to some
x* with ||x*|| = 1 and (x*,0) € N((x, ¢(X)); epi ). This contradicts the imposed
condition d*°p(x) = {0} and thus completes the proof. A

Theorem 4.15 readily implies a subdifferential extension of the fundamental re-
sult of classical analysis that bridges differentiation and integration, namely, the
only function having zero derivative on an open set is constant.

Corollary 4.16 (Subdifferential Characterization of Constancy for l.s.c. Func-
tions). Consider ¢: U — R on an open set U C R". Then ¢ is locally constant on
U if and only if we have

x* € dp(x) = x* =0 forall x € U.
This is equivalent to ¢ being constant on U if U is connected.

Proof. Immediately follows from Theorem 4.15 with £ = 0 therein. A

The next remarkable consequence of AMVT is the following subdifferential
characterizations of strictly differentiable functions (1.19). The functions from Ex-
ample 1.21 illustrate that imposing Lipschitz continuity as well as strict differentia-
bility are essential for the validity of the obtained equivalences.

Theorem 4.17 (Subdifferential Characterizations of Strict Differentiability).
Given a (Ls.c.) function ¢: R* — R finite at ¥ and given a vector * € R", the
following properties are equivalent:

(a) ¢ is Lipschitz continuous around X, and for every sequences x;y — X and
xXi e 5¢(xk) we have x| — x* as k — oo.

(b) ¢ is Lipschitz continuous around x with d¢(x) = {x*}.

(¢) ¢ is strictly differentiable at x with Vo (x) = x*.

Proof. Suppose without loss of generality that x = 0, ¢(0) = 0, and x* = 0. To
verify (a)=>(b), pick x* € d¢(0) and find x;y — 0 and x; € gw(xk) with x — x*.
It follows from (a) that x* = 0, i.e., d¢(0) = {0} and (b) holds.

To show next that (b)=>(c), observe that the strict differentiability of ¢ at x € R”
with x* = Vg (X) can be equivalently described as

lim [sug ‘ o+ ”’t) oW o M)H —0 (4.26)
o0 ue

for any bounded and closed set C C R”. Arguing by contradiction, suppose that
there is such C for which the limit in (4.26) either doesn’t exist or is not zero. In
both cases select subsequences xy — 0, . | 0, and uy € C so that

i ok + trug) — e(xx)
m =

k—o00 178

> 0.
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Then the mean value inequality (4.23) gives us ¢ € R” and x;: € 5(/) (cr) with
dist(cx; Do, xi + tued) < k71 (s ) = @ 0o + ) — o) — k™!

and thus ¢, — 0. By the compactness of C, find a subsequence of {u;} converging to
some u € C. Also, the boundedness of the sequence {x;’} due to the local Lipschitz
continuity of ¢ allows us to select its subsequence which converges to some x* €
d¢(0). Passing now to the limit above shows that

> 0,

. X+ truy) — @(x
bl = % u) > lim 20T Z oG _
k— 00 174

which tells us that x* # 0 and hence contradicts (b).

To verify finally (c)=(a), recall first that the local Lipschitz continuity of ¢
around x = 0 always follows from the strict differentiability of ¢ at this point;
see Exercise 1.52. It remains to justify the limiting relationship in (a) with x* = 0.
For any sequences x; — 0 and x;’ € 5¢(xk), we have

. 9(x) = @(xg) — (X, x — xg)
lim inf
XX llx — xil

>0

and hence for every yx | 0, find neighborhoods Uy of x; with
(x5 x —x) < @(x) — o) + yillx — x|l on Up.

Fix u € B and take t > 0 so small that x := x + k + tu € Ug. Then

- @ (xg + tu) — (xg)

(xg,u) < ; + villull.

Replacing u by —u in the above inequality, we arrive at the estimates

l‘ p—
e ‘w(xk+ ut) w(xk)‘ +y and
o(xp + 1u) — o(xx)
SUP{|<XZ‘,M>|}§SHPH H+Vk,
ueB ueB t
which imply in turn the limiting relationship
t —
lim [x}[| < lim [sup ok + tu) = ¢ (k) H + lim y;.
k— o0 k—00,t0L,cn t k— 00
Thus we get x; — 0 as k — oo and complete the proof of theorem. A

Starting from the next theorem and then continuing it in this section and also
in Chapter 5, we proceed with the study of various kinds of monotonicity of func-
tions and operators, which plays a fundamental role in many aspects of variational
analysis and optimization.
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The result below concerns monotonicity of extended-real-valued functions. It
provides, in particular, a subdifferential extension of the classical fact, based on
the Lagrange mean value theorem, that a smooth function whose derivative is non-
positive must itself be nonincreasing.

Theorem 4.18 (Subdifferential Characterization of Monotonicity for Ls.c.
Functions). Let ¢: U — R be defined on an open subset U C R", and let
K C R" be a cone with its polar K* = {x* € R"| (x*,x) <0, x € K}. Then the
following properties are equivalent:

(a) The function ¢ is K -nonincreasing, i.e.,

x,u €U, u—x € K= o) < o).
(b) For every x € U we havegw(x) C K*.

Proof. To verify (a)=(b), take any vectors x € U and x* € 5<p (x). Given y > 0,
find by the subgradient definition such n > 0 that x + nB C U and

(x*,u—x) <o) —@x)+vy|u—=x| forall u € x + nB.

Fix w € K and plug into this inequality # := x + tw with ¢t > 0 and t|w] < n.
Then the K -monotonicity property in (a) tells us that

ey < PO — 9@

+ylwl = ylwl.

Since this holds for any y > 0, we arrive at (x*, w) < 0 and justify therefore the
subdifferential inclusion in (b).

To verify the opposite implication (b)=>(a), suppose the contrary, and find points
x,u € U satisfyingu —x € K and ¢(u) > ¢(x). Applying the mean value inequal-
ity from Corollary 4.14(i), we get ¢ € [x, u] and sequences xx — ¢, x; € Ego(xk)
satisfying the conditions

liminf(x{,u —x) > o(u) —p(x) >0, keN.

k—o00

This yields (x,f, u — x) > 0 for large k and contradicts (b). A

The last application of AMVT in the section is to the monotonicity of sub-
gradient mappings generated by l.s.c. functions. Recall that a set-valued mapping
T: R" = R" is globally monotone on R" if

(v —v2,u; —up) >0 forall (uy,vy), (u2,v2) € gphT. (4.27)
The mapping T is globally maximal monotone on R" if gphT = gph S for any
monotone operator §: R” = R” with gph T C gph S.

It is well known in convex analysis that the subgradient mapping for a 1.s.c. con-
vex function ¢: R" — R is globally maximal monotone. The next theorem shows
that the global monotonicity (not even maximal) of either the regular subdifferential
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mapping or the basic subdifferential one for a l.s.c. function ¢ yields the convexity
of ¢.

Theorem 4.19 (Subdifferential Monotonicity and Convexity for ls.c. Func-
tions). Given ¢: R" — R, suppose that either 8<p or 9@ is a globally monotone
operator on R". Then the function ¢ must be convex on R".

Proof. As follows from the limiting representation of d¢ via 5<p in Theorem 1.28, it
suffices to prove the claimed result just for 5(;), since the global monotonicity of this
mapping implies that for dg.

Let us first show that the global monotonicity of the regular subdifferential map-
ping 5(/) implies its representation

5<p(x) = {v € R”| (v,u —x) <) —@(x) forall u e R”} (4.28)

in the form of the subdifferential of convex analysis whenever x € dom ¢. Since
the inclusion “D>” in (4.28) is obvious, we proceed with the proof of the opposite
inclusion by using AMVT. Pick x, u € domg and v € 5(,0 (x). Applying (4.22) gives
us sequences x;y — ¢ € [u, x) and v € 5<p(xk) such that

llx —ull
liminf(vg, x — xi).
[x —cll k—o0

p(x) —o(u) <

The global monotonicity of 5(/) in (4.27) and the equality ||x — u||(x —¢) = (x —
u)||x — c|| ensure the validity of the conditions

o) — gty < 1
TErk:

llmmf( —xk) = (v, x —u),

which justify the inclusion “C” in (4.28) and so the claimed representation.

Using (4.28) and employing AMVT again, we show next that ¢ is convex. For any
u, x € dom ¢ consider its convex combination w := Au+(1—A)x with0 < A < 1.1t
follows from the variational arguments of Theorem 2.14 (see also Exercise 2.25(i))

that the domain of 8<p is dense in the graph of ¢. This gives us a sequence uy L
with 8<p(uk) # (. Fixing k, we can always suppose that 0 € 8<p(uk) Let us verify
that wy € dom ¢ for wy := Auy + (1 — A)x. Assuming the contrary, take o > ¢(x)
and define the function

V(z) = {@(Z) if 7 # wy,

o if z = wg.

Applying to it the mean value inequalities of Theorem 4.13 gives us ¢ € [x, wy) and
sequences z,, — ¢, Uy, € 0¥ (z,,) as m € N such that
wi — cll

hmlnf(vm, Wk —Zm) = —— (o — ¢(x)) > 0,
m—>00 lwe — x|l

hmmf(vm, Wi —Xx) > a— p(x).
m— 00
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We deduce from the monotonicity of 5(,0 and the choice of 0 € 5(/) (uy) that

0 > liminf(vy,, ux — z;») = liminf{v,,, wy — z,,) + liminf(v,,, ux — wy)
m—00 m—00 m— 00

= liminf(vy, wi — zm) + 2711 = A) liminf(v,,, wg — x)
m—00 m—0o0

=271 =) (= p().

It contradicts the assumption on o > @(x) and hence shows that wy; € dom g.

To continue verifying the convexity of ¢, we split the subsequent proof into the
consideration of two cases regarding the role of wy = Augx + (1 — X)x as local
minimizers of ¢. Suppose without loss of generality that the assumptions of either
Case 1 or Case 2 are satisfied for all £k € N.

Case 1: Let wy be a local minimizer of ¢. In this case we have 0 € 5<p(wk). Then
representation (4.28) gives us ¢(x) > @(wg) and p(ugx) > @(wg), which yields
rAp(ug) + (1 — M)e(x) > ¢(wy). Letting k — oo, we arrive at

rp(u) + (1 —Mex) = p(w) = (p()»u + (- A)x), (4.29)

which justifies the convexity of ¢ in this case.

Case 2: Let wy be not a local minimizer of ¢. Select si so that ||sy — wg|| < k~! and
©(sx) < @(wg). For any fixed k, we apply again Theorem 4.13 to the function ¢ on
the interval [sg, wg]. It gives us ¢x € [sx, wi) and sequences z,, — ¢k as m — 0O
and vy, € 'E;go (zm) satisfying the conditions

. lwe — ckll
liminf{v,,, wr — zp) > —(go(wk) — <p(sk)) > 0,
m—00 lwe — skl

which imply by representation (4.28) that
o) — @@m) = (Vms X — zZm),  PWE) — ©(Zm) = (U, Uk — Zm)-

This readily yields by passing to the limit as m — oo and using the imposed lower
semicontinuity of ¢ that

Apui) + (1 = Me(x) = liminf [(zm) + (om, wi — zm)] = @(cx), k€N

Letting finally k — oo gives us (4.29), which verifies the convexity of ¢ in this case
and thus completes the proof of the theorem. A

4.5 Exercises for Chapter 4

Exercise 4.20 (Subdifferentials of Marginal Functions in Infinite Dimensions). Consider the
class of marginal functions of type (4.1), where the (locally 1.s.c.) cost function ¢ : X — R and the
(locally closed-graph) constraint mapping G: X =3 Y act in the Asplund space setting.
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(i) Show that the results of Theorem 4.1(i) hold in this setting with D*G = D;’(,G if either ¢ is
SNEC at (x, y) or G is SNC at this point.

(ii) Clarify whether the normal coderivative of G can be replaced by the mixed one in (i). Are
any changes needed in the Asplund space version of Corollary 4.3?

(iiii) Assuming that ¢ = ¢(y) and G~! is PSNC at (¥, X) instead of the SNC property property
of G imposed in (i), verify that the inclusions

mw®c |J brGE DO, *u®mc |J DyGE HGM
y*edg () ¥*€0%0(5)

hold under validity of the mixed qualification condition
0%¢(3) N D3G5, 0)(0) = {0)

replacing the normal one (4.3) in assertion (i).

(iv) Derive Asplund space versions of the results in Theorem 4.1(ii).

(v) Show that if ¢ is locally Lipschitzian around (x, y) and M is inner semicontinuous at this
point, then we have

9®°u(x) C Dy G(x, y)(0). (4.30)

Obtain a counterpart of this statement when M is merely inner semicompact at x.

Hint: To justify (i,iii,iv), proceed similarly to the proof of Theorem 4.1 with employing the
subdifferential sum rules in Asplund spaces. To verify (v), use the singular subdifferential descrip-
tion (1.71) from Exercise 1.68, and then apply the fuzzy sum rule from Exercise 2.26. Compare it
with the proofs of [522, Theorem 3.38].

Exercise 4.21 (Extended Inner Semicontinuity and Inner Semicompactness of Set-Valued
Mappings). Given ;: X — R finite at x, we say that a mapping F: X = Y between Banach

. . . . = = . domF _ .
spaces is u-inner semicontinuous at (x, y) € gph if for every sequence xy —> X with u(xx) —
n(x) there is a sequence of y; € F(xx) converging to y. This mapping is p-inner semicompact
at x if for every sequence xi £ % there is a sequence yy € M (x;) that contains a convergent
subsequence.

(i) Obtain extensions of the results presented in Theorem 4.1 and Exercise 4.20 to the cases
where the argminimum mapping M is assumed to be u-inner semicontinuous and p-inner semi-
compact, respectively.

(ii) Construct examples showing that the results from (i) under the extended inner semicontinu-
ity and semicompactness assumptions strictly improve the corresponding ones from Theorem 4.1
and Exercise 4.20.

Exercise 4.22 (Equality Representations for Subgradients of Marginal Functions). Let X and
Y be arbitrary Banach spaces, and let the cost function ¢ in (4.1) be Fréchet differentiable at
(x,y) € gph M. Assume that the argminimum mapping (4.2) admits an upper Lipschitzian selector
near (X, y), i.e., there is h: dom G — Y such that h(x) = y and h(x) € M(x) for all x in a
neighborhood of x.

(i) Show that in this case we have the equality

IE) = Vi@, 7) + D*G(%, 7)(Vyo (&, 3)).

(ii) Assume in addition that both X and Y are Asplund, that ¢ is strictly differentiable at (x, y),
that M is p-inner semicontinuous at (X, y), and that G is N-regular at this point. Show that in this
case p is lower regular at x and we have

Iu(x) = Veo(x, 3) + DyG(%, 7) (Vye(x, 7).



4.5 Exercises for Chapter 4 183

Hint: To verify (i), proceed by using the definitions. The inclusion “C” in the formula of (ii) is
taken from Exercise 4.20, while the opposite inclusion therein follows from (i) under the imposed
N-regularity assumption on G.

Exercise 4.23 (Regular Subgradients of Optimal Value Functions for Parametric Nonlinear
Programs). Consider the marginal function (4.1) with the constraint mapping G: X =3 Y given
by

G(x) = {er‘ 0, y) <0 for i=1,....m, s
i(x,y) =0 for i:m+1,...,m+r},

where p from (4.1) is known in this case as the (optimal) value function for mathematical programs
with finitely many inequality and equality constraints.

(i) Let X and Y be Banach. Given (x, y) € gph M, suppose that all the functions ¢; are Fréchet
differentiable at (x, y) and continuous around this point, and then define the following sets of
Lagrange multipliers A = (A1, ..., Apyr) € R™ by

m+r
Vyp(%, 5) + Y LiVyei(,5) =0,
i=1

A >0, Aigi(F,3) =0 for i=1,,..,m},

AG,§) = {A € R"HT

(4.32)

m—+r

AG 5y = (A e Ry 4 Y AV (5 5) =0, 4y 2 0,

i=1

2i@i(E, 7) =0 for i = 1,...,m}, vt e Y*

Assuming that 5*’(0()?, y) # @ for the cost function in (4.1) and the LICQ condition from Exer-
cise 3.73(i) holds for ¢;,i = 1...,m +r, at (x, y), prove the inclusion

m—+r

umc N U [#+XwveE )] (4.33)

(x*,y*)€dt p(x,7) FMEARF,T,y*) i=1

(i) Assuming in addition to (i) that ¢ is Fréchet differentiable at (x, y) and the solution
map (4.2) admits an upper Lipschitzian selector around this point, show that (4.33) holds as the
equality:

m+r
o= U [Veo@n+ Y uVens 9]

AEA(X,Y) i=1

(iii) Let in the setting of (i) the spaces X and Y be Asplund, and let the functions ¢;, i =
1,...,m + r, be strictly differentiable at (x, y). Show that in this case we have inclusion (4.33)
under the MFCQ condition from Exercise 2.53 imposed on the constraint functions ¢; of two
variables. Does it hold if ¢; are merely Fréchet differentiable at (x, y) and the spaces X and Y are
Asplund?

Hint: To verify (i), first check that

wmc () [+DGCEHOY] (4.34)
(x*,y*) €Nt p(E,5)
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in the general framework of (4.1) provided that /8\+(p()'c, y) # @. This can be done by using the
smooth variational description of regular subgradients from Theorem 1.27 and Exercise 1.64(i).
Then employ in the setting of (4.31) the representation of regular normals to inverse images of
graphs under Fréchet differentiable mappings with surjective derivatives; see Exercise 1.54(i). The
equality representation in (ii) follows from Exercise 4.22(i) under the imposed assumptions. As-
sertion (iii) follows from (4.34) and Exercise 3.73(ii). Compare this with [547, Theorem 4 and
Corollary 2].

Exercise 4.24 (Subgradients of Optimal Value Functions for Parametric Nondifferentiable
Programs). Let G: X =3 Y in (4.1) be given by (4.31), let X and Y be Asplund, and let ¢;, i =
1,...,m+r,belocally Lipschitzian around (x, y) € gph M. Assume that only (A1, ..., Ap4,r) =
0 satisfies the relationships

m m+r

0e ;xiamf, N+ Z+1 2i(09i (%, 5) U (=) (%, 9)), @35
i= i=m

Oty ooy ) € R Migi(E,5) =0 as i =1,...,m.

(i) Show that if 5*’(,0(&, y) # §, then we have the inclusion

*,0) € (¢, y) + Y 1idgi (%, 7)

/E)\M()E) C m { u* e X*

(*,y)ETT P(E.5) i=1
m+r
+ Ai(asoi(x,y)ua(—so,-)(i,w)},
i=m+1
where the multipliers (A1, ..., A,+,) are taken from (4.35).
(ii) Show that if ¢ is locally Lipschitzian around (X, y) and M is p-inner semicontinuous at
this point, then with (A1, ..., Ay4,) from (4.35), we have the inclusions

W*,0) € (X, §) + Y _ 2idei (%, 5)

i=l

I C {u* e x*

m+r
+ 2 ki 5 Uag) @) |
i=m+1

*,0) € Y 1idgi (X, 5)

i=1

a®u(x) C { u* e X*

m+r
+ Y MR D U E D).
i=m+1
(iii) If ¢ and ¢;, i = 1, ..., m + r, are strictly differentiable at (x, y) and the MFCQ condition
is satisfied at this point, we have the inclusions

m+r
@ c | [+ Y uVen@ 5],

AEA(X,Y) i=1

>u@®c U [%mwwm],

AeA®(x,y) i=I
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where A (X, y) is taken from (4.32) and where by A®(x, y) is defined by

m+r
DMV (E ) =0, ki 20, higi(F. ) =0 for i =1,....m].

i=l1

{)L c Rm+r

Hint: Deduce it from the subdifferential inclusions for marginal functions given in (4.34) and
Exercise 4.20(i), respectively, due to the coderivative for G in (4.31) taken from Exercise 3.74.
Compare this with [547, Theorems 5 and 7].

Exercise 4.25 (Lipschitz Continuity of Marginal Functions in Finite and Infinite Dimen-
sions). Consider the framework of Corollary 4.3, where ¢: X — R and G: X = Y act between
Asplund spaces.

(i) Present verifiable conditions in terms of the given data ¢ and G ensuring that the marginal
function (4.1) is l.s.c. around X € dom p.

(ii) Show that assertion (i) of Corollary 4.3 holds without any change in Asplund spaces, while
assertion (ii) therein also holds with replacing the local boundedness of M around X by the the
local semicompactness property of M at this point.

(iii) Verify that assertions (i) and (ii) of Corollary 4.3 are satisfied under the less restrictive -
inner semicontinuity and p-inner semicompactness assumptions on M at (x, y) and x, respectively;
see Exercise 4.21 for the definitions.

(iv) Derive sufficient conditions for local Lipschitz continuity of optimal value functions in
problems of mathematical programming with equality and inequality constraints described by Lip-
schitzian and smooth functions. Show, in particular, that p(x) is locally Lipschitzian around x
under the Mangasarian-Fromovitz constraint qualification in the classical nonlinear programming
in finite dimensions.

Hint: To verify (i)—(iii), proceed as in the proof of Corollary 4.3 by using the Asplund space
results from Exercises 3.44, 3.45 and the subdifferential description of the SNEC property in Ex-
ercise 2.50; compare this with the proof of [532, Theorem 5.2]. To get (iv), use the inclusion for
9°°u(x) obtained in Exercise 4.24 together with the subdifferential characterization of local Lip-
schitz continuity from the last statement of Theorem 4.15 in R” and Exercise 4.34(ii) in Asplund
spaces.

Exercise 4.26 (Subdifferentials of Infimal Convolutions in Asplund Spaces). Establish exten-
sions of Theorem 4.4 to infimal convolutions (4.6) of functions ¢y, ¢>: X — R defined on Asplund
spaces. Hint: Proceed as in the proof of Theorem 4.4 with applying the corresponding results from
Exercise 4.20.

Exercise 4.27 (Subdifferentiation of Marginal Functions and Infimal Convolutions in Finite-
Dimensional and Infinite-Dimensional Convex Settings).

(i) Consider the class of marginal functions (4.1), where ¢: R” — R is convex, and where
G: R" =2 R™ has the convex graph. Show that for any X € dom M we have the equality in (4.4)
whenever y € M (x) is such that the qualification condition (4.3) is satisfied (in particular, when
the cost function ¢ is continuous at (¥, y)) without imposing any additional assumptions.

(ii) Verify that the first inclusion in Theorem 4.4(i) holds as equality for any (X1, xX2) € C(x)
without any additional assumptions.

(iii) Establish extensions of assertions (i) and (ii) to arbitrary Banach spaces.

Hint: To justify (i), proceed by the definitions of the convex constructions involved and the
subdifferential sum rule of convex analysis. Derive (ii) as a consequence of (i), and compare this
with the proofs of [537, Theorem 2.61 and Corollary 2.65]. Verify that this approach works in
arbitrary Banach spaces.

Exercise 4.28 (Subgradients of Compositions in Infinite Dimensions).

(i) Show that the results of Theorem 4.5(i) hold in the case of Asplund spaces X and Y under
the additional assumptions that either ¢ is SNEC at (x, y) or g is SNC at x. Verify furthermore that
the C! property of ¢ and g in the regularity statements can be replaced by the strict differentiability
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requirement on ¢ and g at the corresponding points. Justify finally yet another case of the equality
in (4.10): g is N-regular at x and dimY < oo. Hint: Proceed as in the proof of Theorem 4.5(i)
with employing infinite-dimensional extensions of the facts used therein, which are discussed in
the exercises above. Compare this with the proof in [522, Theorem 3.41].

(ii) Verify that the equality in (4.12) of Theorem 4.5(ii) holds for any Banach spaces X and Y
provided that ¢ is strictly differentiable at (x, y). Show in addition that ¢ o g is lower regular at x
if g is M-regular at this point. Is the latter assumption essential for the lower regularity of ¢ at x in
finite dimensions? Hint: To justify (4.12), proceed as in the proof of Theorem 4.5(ii) and compare
it with [522, Theorem 1.110].

Exercise 4.29 (Subdifferential Product and Quotient Rules in Infinite Dimensions). Show that
the first equalities in the product and quotient rules of Corollaries 4.7 and 4.8 hold in arbitrary
Banach spaces, while the inclusion and regularity statements therein are valid in the Asplund space
setting. Hint: Proceed as in the proofs of Corollaries 4.7 and 4.8 with the usage of the infinite-
dimensional chain and sum rules from Exercises 4.28(ii) and 2.54(i), respectively.

Exercise 4.30 (Partial Subgradients). Let both spaces X and Y be Asplund, and let the function
¢: X x Y — Renjoy the SNEC property at (x, y) € dom ¢ and satisfy the qualification condition

[0,y%) € 3%¢(x, )] = y* =0.
(i) Prove that the following hold for partial basic and singular subdifferentials:

qo(X,§) C {x* e X*| Iy* e Y* with (x*,y*) € do(¥, )}, (4.36)

0°p(X, §) C {x* € X*| Iy* e Y* with (x*, y*) € 3%(x, ) }. (4.37)

(ii) Check that both assumptions imposed above on ¢ are satisfied whenever ¢ is locally Lip-
schitzian around (x, y), and then give examples of non-Lipschitzian functions for which (4.36)
and (4.37) hold.

(iii) Show that the inclusions in both (4.36) and (4.37) may be strict, while the equality holds
in (4.36) if ¢ is lower regular at (x, y). Verify that the equality holds in (4.37) if ¢ is epigraphically
regular at (x, y), and show furthermore that ¢(-, y) is lower regular (resp. epigraphically regular)
at x provided that ¢ possess the corresponding property at (x, y).

Hint: Represent ¢(x, y) in the composition form (¢ o g)(x) with g(x) := (x, y), and then apply
the results of Exercise 4.28(i).

Exercise 4.31 (Regular and Limiting Subgradients of Minimum Functions).

(i) Show that the inclusions in (4.15) and (4.16) hold in arbitrary Banach spaces. Hint: Pro-
ceed as in the proof of Proposition 4.9 by using representation (1.68) of basic subgradients and
definition (1.70) of singular subgradients in Banach spaces.

(ii) Does inclusion (4.16) hold if the geometric representation(1.72) is taken as the definition
of the singular subdifferential in Banach spaces?

(iii) Verify the following equality in terms of regular subgradients

Aming)(® = () i@

i€ Iyin (%)

for any lL.s.c. functions ¢; on Banach spaces. Hint: Compare [329, Proposition 2.5].

(iv) Give examples showing that neither the equalities in (4.15) and (4.16) nor counterparts of
the equality in (iii) hold for basic and singular subgradients of l.s.c. functions defined on finite-
dimensional spaces.
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(v) Obtain precise equalities for calculating regular and basic subdifferentials for minima of two
convex polyhedral functions in finite dimensions. Hint: Compare this with the results and proofs
in [329, Theorems 3.1-3.3].

Exercise 4.32 (Subgradients of Maximum Functions on Asplund Spaces). Derive all the state-
ments of Theorem 4.10 for functions defined on Asplund spaces and compare them with [522,
Theorem 3.46].

Exercise 4.33 (Symmetric Subdifferential Mean Value Theorem in Asplund Spaces). Show
that Theorem 4.11 holds in Asplund spaces provided that both ¢ and —¢ are SNEC at every x €
(a, b). Are any changes needed in the formulation of Corollary 4.12 in the case of functions on
Asplund spaces? Hint: Proceed as in the proofs of the finite-dimensional versions with the usage
of the chain rule from Exercise 4.28(i). Compare this with [522, Theorem 3.47 and Corollary 3.48].

Exercise 4.34 (Approximate Mean Value Theorem and Some of Its Applications in the
Framework of Asplund Spaces).

(i) Show that AMVT and its consequences from Section 4.4, with the exception of the last
assertion of Theorem 4.15, hold without any changes in Asplund spaces.

(ii) Verify that all the assertions of Theorem 4.15 are equivalent to the validity of 3¢ (x) = {0}
together with the SNEC property of ¢ at x.

Hint: Proceed similarly to the proofs given in finite dimensions with employing the corre-
sponding calculus results in Asplund spaces from the exercises above; compare with [522, Subsec-
tion 3.2.2].

Exercise 4.35 (Approximate Mean Value Theorem via Basic Subgradients).

(i) Show that AMVT and its consequences in Section 4.4 hold with replacing regular subgradi-
ents by basic subgradients.

(ii) Are the latter results in terms of basic subgradients are equivalent to those given via regular
subgradients in finite dimensions and in Asplund spaces?

Exercise 4.36 (Relationships Between Basic Normals and Subgradients and Their Clarke
Counterparts in Asplund Spaces). Show that the following assertions hold in any Asplund space
X:

(i) Let ¢: X — R be locally Lipschitzian around x. Then

Ap(x) = cl*co dp(X),

where generalized gradient d¢(x) of a locally Lipschitz function is defined by (1.78) and where
the basic subdifferential d¢(x) is represented by (1.69) in Asplund spaces.

(ii) Let ¥ € Q C X, where Q is locally closed around X € € as in our standing standing
assumption. Then we have

N(x; Q) =cl*coN(x; ),

where the Clarke normal cone N(x; Q) is taken from (1.80).
(iii) Let ¢ : X — R be L.s.c. around X as in our standing assumption. Then

9(x) = cl*co[p(X) + 0%p(¥)],

where 3¢ (%) is defined by (1.81) and where d*°¢(x) is taken from (1.71).

Hint: First justify (i) by applying AMVT to the limiting description (1.77) of the generalized di-
rectional derivative ¢°(x; h) in the generalized gradient constriction (1.78), and then proceed with
(ii) and (iii) by using the definitions therein; compare this with the proof of [522, Theorem 3.57].
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4.6 Commentaries to Chapter 4

Sections 4.1-4.3. Marginal/optimal value functions constitute one of the most fundamental objects
of variational analysis. They have never been seriously investigated in frameworks of classical
analysis due to their intrinsic nonsmoothness, which is always the case unless quite restrictive and
unnatural assumptions are imposed. This was actually what L. C. Young meant by observing in
the 1930s that, roughly speaking, the limitations of many results of the calculus of variations came
from the absence of an adequate nonsmooth analysis; see [753]. It would not be an exaggeration
to say that marginal functions manifest the essence of modern techniques in variational analysis
involving perturbation and approximation procedures with the subsequent passing to the limit.
Subdifferentiation of marginal functions evaluates rates of change under parameter perturbations,
which is crucial for sensitivity analysis while in fact leads us to a much larger scope of applica-
tions as, in particular, shown above. Besides sensitivity issues, subdifferential analysis of marginal
functions has been recognized as an important machinery for the study of viscosity and minimax
solutions of Hamilton-Jacobi equations, deterministic and stochastic dynamic programming, feed-
back control design, differential game theory, deterministic and stochastic optimal control, bilevel
programming, economic growth modeling, etc.; see, e.g., [67, 93, 100, 117, 165, 167, 195, 198,
199, 215, 268, 271, 416, 425, 522, 540, 629, 698, 699, 712, 713, 729, 748] with more discussions
and references therein.

The principal result of Sections 4.1-4.3 is Theorem 4.1 on the subdifferential estimates for
marginal functions (4.1). It was obtained in full generality of finite-dimensional spaces in the au-
thor’s paper [508], while the basic subdifferential estimate (4.4) with ¢(x, y) = ¢(y) was estab-
lished by the author earlier [S05, 507]. In the unconstrained case of G(x) = R™ in (4.1), both
basic and singular subdifferential estimates were given by Rockafellar [675]; cf. also [672]. The
full Asplund space extension of Theorem 4.1 can be found in the paper by the author and Shao
[580], while some previous results were derived by Thibault [706] in Fréchet smooth spaces; see
also [14, 117, 532, 546, 547] for more recent developments and applications.

When the mapping G in (4.1) is single-valued, the subdifferential formulas of Theorems 4.1
and 4.5 evaluate basic and singular subgradients of generalized compositions. Moreover, the singu-
lar subdifferential estimate (4.5) in the set-valued case of G allows us to obtain verifiable conditions
ensuring the local Lipschitz continuity of marginal functions due to its singular subdifferential char-
acterization of Theorem 1.22; see more discussions in Section 1.5. The latter direction has been
largely explored, e.g., in [472, 508, 512, 513, 522, 532, 600, 603, 672, 675, 678, 729].

The subdifferential chain rules, where ¢(x, y) = ¢(y) in the composition, and related results
presented in Sections 4.1-4.3 under the general assumptions imposed therein are mainly based on
the author’s developments from [505, 507]. Their Lipschitzian counterparts were derived by Kruger
[428, 430] in Fréchet smooth spaces; see also loffe [365] for parallel Lipschitzian results concern-
ing certain versions of the “approximate” subdifferentials in Banach spaces. An upper estimate of
d(¢ o g)(x) for non-Lipschitzian functions was obtained in [368] under a tangential qualification
condition essentially more restrictive in comparison with that in [505]. Asplund space versions
of the subdifferential calculus results given in these sections were established by the author and
Shao in [580] and then further elaborated in [522, 588]. Let us mention more recent results on
calculating the basic subdifferential of the minimum and maximum functions (including equality
therein) obtained in [329, 680] with rather surprising applications in [329] to deriving necessary
and sufficient conditions for DC (difference of convex) optimization problems. We also refer the
reader to [114, 135, 167, 369, 375, 376, 398, 399, 610, 637, 678, 685, 729] for other calculus
results involving limiting and “approximate” subgradients.

Note that putting ¢(y) = 8(y; ®) in the obtained chain rule formulas for either d(¢ o g) or
3%°(¢ o g) allows us to evaluate the normal cone to the inverse image N()?; g‘l(@))) of the set
® under the mapping g, which in fact was derived in Corollary 3.13 even for set-valued map-
pings G as a consequence of the chain rule for coderivatives. The first results of the inclusion
type for representing the normal cone to direct images G(®) of sets under smooth single-valued
mappings between finite-dimensional spaces were obtained by Rockafellar [675]; see also [678,
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Theorem 6.43]. They were significantly extended, for both single-valued and set-valued mappings
G, in the joint paper by the author with Nam and Wang [545] in Asplund and general Banach
spaces, being also new in finite dimensions. An important role in this derivation (different from
[675, 678]) was played by the notion of restrictive metric regularity introduced and investigated by
the author and Wang [591]. Some of these results in Asplund spaces have been recently reproduced
by Penot [637].

Section 4.4. The first mean value theorem for nonsmooth Lipschitzian functions was obtained by
Lebourg [449] in terms of Clarke’s generalized gradient. The nonconvex subdifferential versions
as in Theorem 4.11 and Corollary 4.12 go back to Kruger and Mordukhovich (see [428, 431,
505, 507]) and are based on the corresponding subdifferential chain rules for Lipschitzian and
non-Lipschitzian functions. The Asplund space version of Theorem 4.11 from [505] was given in
[580]; see also [522, Theorem 3.47]. Note that this result requires two-sided generalized differential
constructions 8%¢ and 3°>%¢ in both mean value inclusion (4.19) and the supporting qualification
condition of the theorem. Nevertheless, it provides an essential improvement of Lebourg’s mean
value theorem, since the symmetric subdifferential 3% may be much smaller than the generalized
gradient even for simple nonsmooth Lipschitzian functions as those considered in Example 1.31.

Approximate mean value theorems (AMVT) of the type presented in Theorem 4.13 are new
in analysis being significantly different from the conventional Lagrangian framework. The major
difference is that the results of the new type apply to the general class of l.s.c. extended-real-
valued functions providing mean value inequalities instead of equalities or inclusions as in (4.19).
The first result of this type was obtained in variational analysis by Zagrodny [756] in terms of
Clarke’s subgradients of 1.s.c. functions defined on Banach spaces. Then Thibault observed [707]
that Zagrodny’s approach led us in fact to appropriate versions of AMVT for a broad class of
subdifferentials (called “presubdifferentials” in [710]) satisfying natural requirements in suitable
Banach spaces. The AMVT version in terms of regular and limiting subgradients can also be found
in Loewen [471, 472] for L.s.c. functions on Fréchet smooth spaces, while the mean value inequal-
ity (4.25) for Lipschitzian functions was obtained earlier by Borwein and Preiss [108] in the same
framework. The full Asplund space version of Theorem 4.13 and Corollary 4.14 was given by
the author and Shao [580] (see also [522]) with the variational proof presented above and being
different in some essential points from those given in [108, 472, 756]. More recently [714] Trang
has shown that the Asplund property of the space in question is also necessary for the validity of
AMVT in the form of [580]. Mean value inequalities of the so-called multidirectional type were
initiated by Clarke and Ledyaev [166] and further developed in [39, 114, 167, 637] and other
publications.

The regular subdifferential characterizations (a) and (b) of local Lipschitz continuity in Theo-
rem 4.15 were given by Loewen [472] in Fréchet smooth spaces and then by the author and Shao
[580] in Asplund spaces. The limiting subdifferential characterization of Theorem 4.15(c) in finite
dimensions was also obtained by another way in Theorem 1.22 of Chapter 1 and was discussed in
Section 1.5. Its Asplund space version (with the additional SNEC property of ¢ in the last assertion
of Theorem 4.15) was given in [522, Theorem 3.52].

The results of Theorems 4.17 and 4.18 are also taken from Loewen [472] (with simplified
proofs), where the conditions of Theorem 4.17 were proved to characterize strict Hadamard dif-
ferentiability of functions defined on Fréchet smooth spaces; the latter notion reduces to the usual
(Fréchet) strict differentiability in finite dimensions. Asplund space versions of both Theorems 4.17
and 4.18 were given in [580]; see [522] for more details. A proximal subdifferential counterpart of
Theorem 4.18 was derived in [168] for l.s.c. functions on Hilbert spaces.

Monotonicity of set-valued mappings has been widely recognized as one of the most important
concepts in variational analysis and its applications. We refer the reader to the monograph by Rock-
afellar and Wets [678, Chapter 12] for a variety of results on monotonicity and detailed comments
on the history and genesis of major ideas; see also [37, 70, 112, 116, 126, 130, 185, 323, 486,
638, 656, 689, 690] for some additional material and further applications. A fundamental result
of convex analysis and monotone operator theory, which goes back to Minty, Moreau, and finally
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Rockafellar (see [678] for more details), is the maximal monotonicity of subdifferential mappings
d¢ generated by L.s.c. convex functions ¢: X — R. Theorem 4.19, which is mainly based on the
paper by Correa, Jofré, and Thibault [181] (see also the references therein for the previous results
in this direction), shows that the convexity of ¢ is in fact necessary for the monotonicity (even
not the maximal one) of d¢. Its Asplund space version was presented in [522, Theorem 3.56].
Furthermore, Daniilidis and Georgiev [189] established the equivalence between the approximate
convexity of a locally Lipschitzian function on an arbitrary Banach space and the submonotonicity
of its (Clarke) generalized gradient at the point in question.

Section 4.5. As in the case of the previous chapters, the material included in this exercise section
presents some additional results and infinite-dimensional extensions of the basic facts and proofs
given in Sections 4.1-4.3. The reader can find more information in the references included in the
hints to the corresponding exercises and also in the above commentaries on the main theorems.



Chapter 5 )

Coderivatives of Maximal Monotone Check for
Operators

In this chapter we employ the tools of variational analysis and generalized differen-
tiation developed above to study global and local monotonicity of set-valued oper-
ators. Our main attention is paid to the properties of global maximal monotonicity
and strong local maximal monotonicity, which both have been well recognized as
fundamental notions in many areas of nonlinear analysis, optimization, variational
inequalities, and numerous applications. The main results below provide complete
coderivative characterizations of the monotonicity concepts under consideration
for the general class of set-valued operators. Although we present these charac-
terizations in finite dimensions, they hold with minimal adjustments (if any) in the
framework of Hilbert spaces. Among other things, the mean value inequality from
Corollary 4.14(i) plays a crucial role in the proofs of the obtained coderivative char-
acterizations.

5.1 Coderivative Criteria for Global Monotonicity

We begin with the study of global monotonicity while recalling that the definitions
of (globally) monotone and maximal monotone operators T : R" = R” have been
already presented in (4.27) of Section 4.4, where we characterized monotonicity of
subdifferential operators.

5.1.1 Maximal Monotonicity via Regular Coderivative

The following hypomonotonicity properties of set-valued operators play a significant
role in the subsequent results of this chapter.

© Springer International Publishing AG, part of Springer Nature 2018 191
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Definition 5.1 (Hypomonotonicity). Let T: R" = R" be a set-valued mapping,
and let I : R" — R" be the identity operator on R". We say that:

(i) T is GLOBALLY HYPOMONOTONE on R" if there is r > 0 such that the
mapping T + r1 is monotone on R". This means that the inequality

(v — Vo, Uy —uz) > —rlluy — uz|? (5.1)

holds for all pairs (u1, v1), (U2, v2) € gph T.

(ii) T is SEMILOCALLY HYPOMONOTONE around x € dom T if there exist a
neighborhood U of X and r > 0 such that (5.1) holds for all (uy, vy), (uz, v2) €
gph T N (U x R"). We say that T is semilocally hypomonotone ON Q C R" if it is
semilocally hypomonotone around each x € Q NdomT.

(iii) 7 is LOCALLY HYPOMONOTONE around (x,v) € gphT if there exist a
neighborhood U x V of (x, v) and a number r > 0 such that (5.1) holds for all
pairs (u1, v1), (ua,v2) € gphT N (U x V).

Note that the classes of hypomonotone operators of all the three types defined
above are fairly broad while containing, in particular, locally monotone operators,
Lipschitz continuous single-valued mappings, and also subgradient mappings gen-
erated by continuously prox-regular functions that are especially important in the
framework of second-order variational analysis; see Section 3.5 for more discus-
sions and references.

The following theorem characterizes the global maximal monotonicity of set-
valued operators via their global hypomonotonicity and the positive-semidefiniteness
condition for their regular coderivatives (1.16).

Theorem 5.2 (Regular Coderivative and Global Hypomonotonicity Criterion
for Maximal Monotonicity). Let T : R? = R”" be a set-valued mapping with
closed graph. The following assertions are equivalent:

(i) T is globally maximal monotone on R".

(i) T is globally hypomonotone on R" and we have

(z, w) > 0 whenever 7 € B*T(u, v)(w) and (u,v) € gphT. 5.2)

Proof. To verify (i)=(ii), it suffices to show that the maximal monotonicity of T
implies the positive-semidefiniteness condition (5.2) by taking into account that the
hypomonotonicity of T in (ii) obviously follows from its monotonicity. We proceed
by recalling the classical Minty theorem (see, e.g., [70, Theorem 21.1]), which tells
us that the maximal monotonicity of T ensures that for any A > 0 the resolvent R) =
(I + AT)~" is single-valued and nonexpansive (i.e., globally Lipschitz continuous
on its domain with constant £ = 1) and that dom R, = R”. Picking an arbitrary pair
(w, z) € gph ﬁ*T(u, v), we deduce from the sum rule for the regular coderivative
in Exercise 3.59(i) that

2w e D*Ry(u + hv, u)(—z — A w).
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Since R; is nonexpansive, it follows from the neighborhood version of the coderiva-
tive criterion for the Lipschitz-like property in Theorem 3.3(iii) (see Exercise 3.41
and [522, Theorem 4.7] in Asplund spaces) that || —A " 'w]|| < || —z—A"'w]|, which
clearly implies that

AW < =z = 27wl =zl 4+ 227z, w) + AT ]

and yields in turn that 0 < A||z||> + 2(z, w) for all A > 0. Letting A | O tells us that
(z, w) > 0 and thus justifies (5.2).

To verify the converse implication (ii)=>(i), suppose that 7 is hypomonotone and
that condition (5.2) is satisfied. Then there is some number » > 0 such that T +r1 is
monotone. Take any s > r and define F : R" = R” by gph F := gph (T + sI)~".
For any (v;, u;) € gph F,i = 1,2, we have (u;, v; — su;) € gph T and thus deduce
from (5.1) that

2
(vi —sur —va +suz, ur —uz) = —rlluy —uzl”.
The latter implies in turn that the inequalities
2
lvi = vall - llur — wzll = (vi — va, w1 —u2) > (s —r)lluy — uz|l

hold, which allow us to arrive at the estimate

lvr — vall (5.3)

lur — uz|l <

s—r

verifying that F is single-valued and Lipschitz continuous on its domain with mod-
ulus (s — )~ 1. Fix now any z € R” and define ¢, : R” — R by

(z, F(v)) if v € dom F,
00 otherwise.

Pz (v) = { (5.4)

Since gph T is closed, it is easy to check that gph F is also closed in R"” x R". Next
we show that ¢, is L.s.c. on R". Arguing by contradiction, suppose that there exist
¢ > 0 and a sequence vy converging to some v € R” such that ¢, (v;) < ¢, (v) — €.
If ¢, (v) = oo, then v ¢ dom F while vy € dom F. It follows from (5.3) that
lF(v) — Fop)ll < (s — )" vk — vjll, and so {F(vy)} is a Cauchy sequence
converging to some # € R". Hence the sequence (vk, F(vr)) € gph F converges
to (v,u) € gph F due to the closedness of gph F. This gives us F(v) = u and
contradicts the condition v ¢ dom F. In the remaining case of ¢, (v) < oo, we get
from (5.3) and (5.4) the estimates

lpz (Vi) — @ () < izl - [F(v) = F)|I < llz]l -

vk —vll = 0,
s—r

which also contradict the assumption ¢, (vr) < ¢;(v) — €. This justifies the lower
semicontinuity of ¢, on the space R” for any fixed z € R”.
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To prove now that T is monotone, pick two pairs (u;, v;) € gph T, and get
(vi,u;) € gph F with y; :=v; +su;, i =1,2.
Applying the mean value inequality (4.25) to ¢, tells us that

(2, ur —u2)| = @z (y1) — ¢ (y2)| (5.5)
< ly1 = y2llsup {wll | w € 9¢-(y), y € [y1. y2] + ¢B}

for any fixed ¢ > 0. Since 5% (y) =0 if y ¢ dom ¢;, it suffices to consider the case
where y € dom g, N ([y1, y2] + eB) = dom F N ([y1, y2] + €B) in (5.5). Take any
y from the latter set, and observe that

w € 5*F(y)(z) whenever w € 5goz(y). (5.6)
Indeed, it follows from the definition of w € /8\% (y) that

limi @ (V) — @ (y) —{w, v —y)
iminf

>0,
vy lv—yll

which can be equivalently written by the construction of ¢, in (5.4) as

lim (z, F(v)) — (2, F(y)) — (w, v — y)
im inf

dmr o=yl

> 0.

The latter readily implies that

(zou — F(y)) —{w,v—y) -
o=yl +llu—FMI —

lim inf
gph F
(v,u)y ™= (v, F(y))

Hence we get from the definitions in (1.33), (1.5), and (1.16) that
(w, —2) € N((y, F()); gph F) <= w € D*F(y)(z) = DX(T +s)"' () (2),

and therefore —z € 5*(T +sI)(F(y), y)(—w). It easily follows from the elemen-
tary sum rule for the regular coderivative in Exercise 3.59(i) that

—z+swe DT(F(y),y —sF(»)(—w). (5.7)
Combining this with (5.2) tells us that (—z + sw, —w) > 0, which yields
Izl - lwll = (z, w) = sfw] (5.8)
and implies furthermore together with the estimate (5.5) that

-1
[z, ur —u2)| < szl - llyr = y2ll.



5.1 Coderivative Criteria for Global Monotonicity 195
Since this inequality holds for all z € R”, we get
-1 _ 1
luy —uzll < s7 iyt — y2ll = s llvr +su1 — v2 — suz|
and then deduce by the Euclidean norm property that

s2luy — u2|? < |(v1 — v2) +s(ug —u2)|?
= [lvr — v21® + 2s{(v1 — v2, uy — uz) + s%|luy — uz .

Therefore we arrive at the inequality
1 2
0< 2—||v1 —v||” + (v — v2,u1 —up) forany s > r.
s
Passing there to the limit as s — oo shows that

0 < {vy —v2,u; —up) forall (uy,vy), (uz,v2) € gphT

and thus justifies the monotonicity of the operator 7.
It remains to prove that 7' is maximal monotone. Since T is proper, there exists a
pair (ug, vo) € gph T such that

ug = (T + sI)fl(yo) with yg := vg + sug.

Applying again the mean value inequality (4.25) to the function ¢, defined in (5.4),
we verify that the estimate

o= (») — @ (0)| < Iy — yoll sup {lwll | w € Bg:(x), x € [y, yol + eB}

is valid for any y € R". It follows similarly to the proof of (5.8) that ||w|| < szl
for all w € d¢,(x) withx € dom F N ([y, yo] + ¢B). This gives us due to the above
mean value inequality that

l9:(») — @:(v0)| < s izll - Iy — yoll-

Hence ¢,(y) < oo and so F(y) # @ for all y € R", which means that dom (T +
sI)~! = R". Employing again the aforementioned Minty theorem and taking into
account the monotonicity of 7' justified above, we conclude that 7' is maximal
monotone and thus complete the proof of the theorem. A

5.1.2 Maximal Monotone Operators with Convex Domains

Our next goal is to obtain another version of the coderivative characterization in
Theorem 5.2 with replacing the global hypomonotonicity of 7 in assertion (ii) by a
semilocal hypomonotonicity. Establishing such a result requires an additional con-
vexity assumption on the domain of T, which is shown below to be essential by
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providing a counterexample. To proceed in this direction, we first present the fol-
lowing lemma, where the semilocal monotonicity of T : R" = R” is defined as in
Definition 5.1(ii) with » = 0 in (5.1).

Lemma 5.3 (Semilocal Monotonicity of Set-Valued Mappings with Convex Do-
mains). Let T : R" = R”" be semilocally monotone on R", and let its domain dom T
be convex. Then T is globally monotone on R”.

Proof. Pick any (u1, vy), (u2,v2) € gphT, and get [u,uz] C domT by the
assumed convexity of dom 7. Since T is semilocally monotone, for each vector
x € [uy, up] there is a number y, > 0 such that

(y1 = y2, x1 —x2) = 0 if (x1, y1), (x2,y2) € gph T N (int B, (x) x R"). (5.9)
By compactness of [u1, us], find x; € [u1, up] withi =1, ..., m satisfying
m
[, us] C U int(x; + yx,B).
i=1
Thus there exist numbers 0 =ty <t < ... < t; = 1 such that
[@;,@j4+1] C int(x; + yy,B) with some i:=i; € {1,...,m}
for each j € {0, ...,k — 1}, where &; := uy + t;(up — uy). Since we have u; €

[u1,uz] C domT for each j € {0, ..., k}, there are vectors v; € T (u;) satisfying
Vo = vy and U = vy. It follows from (5.9) that

(tiv1 =)V —Vj,up —ur) = (Ujy1 — V), Ujy1 —uj) >0,

which implies that (Vj 1 — v, u2 —u1) > 0 whenever j € {0, ...,k — 1}. Hence
k—1
(v — v ug — 1) = Y (V41 — V), uz —u1) = 0,
j=0
which justifies the global monotonicity of the operator 7. A

Now we are ready to obtain a semilocal counterpart of the coderivative charac-
terization in Theorem 5.2 under the convexity assumption on dom 7. Example 5.5
below demonstrates that the latter assumption cannot be dropped. Since the proof of
the following theorem is similar in some places to that of Theorem 5.2, we omit the
corresponding details.

Theorem 5.4 (Regular Coderivative and Semilocal Hypomonotonicity Crite-
rion for Maximal Moneotonicity). Let T : R" = R” be a set-valued mapping of
closed graph and convex domain. Then the following are equivalent:

(i) T is globally maximal monotone on R".

(ii) T is semilocally hypomonotone on R", and the positive-semidefiniteness reg-
ular coderivative condition (5.2) is satisfied.
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Proof. Implication (i)=(ii) follows from Theorem 5.2. To verify the converse impli-
cation, suppose that condition (5.2) holds and that T is semilocally hypomonotone.
This allows us to find, for each x € dom T, numbers y,r > 0 such that (5.1) is
fulfilled whenever (u1, v1), (u2, v2) € gph T N (B, (x) x R"). Take now any s > r,
and define the mapping F : R* = R” by

gph F := gph (T +s)~' N (R" x (X + ¥B)).

Picking arbitrary pairs (v;, ;) € gph F,i = 1,2, we have (u;, v; —su;) € gphT N
(B, (x) x R"). It follows from the semilocal hypomonotonicity that

2
(vi —suy —v2 +suz, uy —uz) > —rlluy —uz|”.

Similarly to (5.5) we deduce from the latter that

lg — uzll <

P lvi — vl forall (vi,uy), (va,us) € gph F. (5.10)
This implies that F is single-valued and Lipschitz continuous on dom F. For any
fixed vector z € R” define the function ¢. : R” — R as in (5.4) and prove similarly
to Theorem 5.2 that ¢, is L.s.c. on R".

Pick further arbitrary pairs (u1, v1), (u2,v2) € gphT N (int B, (x) x R") and
fix v € T(x). Then F(y;) = u; € B,(x) with y; := v; + su;. Applying the
mean value inequality (4.25) for any ¢ € (0, /s) gives us estimate (5.5). Similarly
to (5.6) we get dg-(y) C D*F(y)(z) if y € dom FN([y1, y2]+&B) and then for any
y € dom FN([y1, y2]+¢eB) find yo € eBandt € [0, 1] withy = ty;+(1—1)y2+yp.
Since F (v + sx) = x, it follows from (5.10) that

IIF(yl) — x| =1F@yr + A =1)y2 4 yo) = F(v 4+ sx)||
= sTr“tyl + A =0y2+yo—v—sxf

_1 - -
=3 _r||l(vl +sur) + (1 —1)(v2 + suz) + yo — v — sx||

1
= st = o)+ st =) + (A =02 =) +sU = )2 =) + yol

IA

1 _ _ - -
——[#llor = 3141 = D)z = Blstlur = F+s(1 = 1)z = Fl+1yol ]

IA

_ _ s - -
[ max {llon = 3l ez = 311} + 2] + —— max {Jlur = %I, l1uz = 1}
STV s —r

s —r

IA

_ _ s - -
[ max {Ijor = 31 llv2 = 81} 4+ V5| + —— max {Jus = FIl. 2 = 71}

Taking now into account that the choice of (u1, v1), (42, v2), (x,v) € gphT N
(int B, (x) x R") was independent of the parameter s > r and that max{|u; —
x|, llu2 — x||} < y, we can find a large number M > 0 for which

1 _ _ N _ -
:max{”vl —ofl, lva — ol + s} + :max{”ul — Xl luz — %N} <y
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whenever s > M. This together with the above estimate of || F(y) — x|| ensures the
inclusion F(y) € int B, (x) and thus the equalities

N((y, F(»)): gph F) = N((y, F(;)); gph (T +s1)7' 0 (R" x B, (¥))
=N((y. F(y): gph (T +sD)71),

which clearly imply in turn the relationship
D*F(y)(2) = D*(T +sD~" (y. F») (@.

Arguing similarly to (5.7), for any w € 5(/)1 (y) C B*F(y)(z), we get from the latter
equality that —z + sw € D*T(F(y),y — sF(y))(—w). It follows from (5.2) that
(—z + sw, —w) > 0, which yields

2 .
Izl - lwll = (z, w) = slw|®, ie., |zl = slw].

This together with (5.5) tells us that

1
(2 ur —uz) = —liyr = 2l - llzll-

Since the obtained estimate holds for any z € R", we have

2 1 1 2 1 2
lur—uz|” < S—2||y1—Y2|| = S—2||v1+su1—v2—suzll = S—zll(vl—vz)+S(u1—u2)Il
and hence arrive at the inequality

1 2
0<—|lvi —v2||“+2(vy — vo,uy —up) when s > M.
s
Passing there to the limit as s — oo shows that
0 < (vy — vy, u; —up) forall (uy,vy), (uz,v2) € gphT N (intBy()E) X R”)),

which verifies the semilocal monotonicity of T at any x € dom 7. Since the domain
of T is assumed to be convex, Lemma 5.3 tells us that 7 is globally monotone. Now
we are in a position to apply Theorem 5.2 and conclude therefore that T is a globally
maximal monotone operator on R”. A

It is well known in monotone operator theory that the maximal monotonicity of
T always yields the convexity of the closure of the domain cl(dom T); see, e.g., [70,
Corollary 21.12]. This naturally gives a raise to the question whether Theorem 5.4
is true when the condition on the convexity of dom 7 is replaced by the convexity of
cl(dom T'). The following simple example shows that it is not true, and consequently
that the convexity assumption on dom 7 in Theorem 5.4 cannot be dropped.
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Example 5.5 (Semilocal Monotonicity Doesn’t Yield the Convexity of the Do-
main). Define the mapping 7 : R = R by

| =x7Vif x e R\{0},
T = {@ if x=0.

Observe that the operator 7 is semilocally monotone on R, its graph gph T is
closed, its domain dom 77 = R\ {0} is nonconvex, while the closure of the domain
cl(dom 7)) = R is convex (Fig.5.1). Moreover, it is obvious that all the conditions
in (ii) of Theorem 5.4 hold, but T is not globally monotone on R.

5.1.3 Maximal Monotonicity via Limiting Coderivative

The next theorem provides other coderivative characterizations of global maxi-
mal monotonicity, where the regular coderivative condition (5.2) is replaced by the
positive-semidefiniteness imposed on our basic/limiting coderivative (1.15). These
characterizations are clearly equivalent to those presented in Theorems 5.2 and 5.4,
but it is more convenient here to derive them by passing to the limit in (5.2). Note
that the limiting coderivative characterizations have a strong advantage in compar-
ison with (5.2) due to comprehensive calculus rules for (1.15) presented in Sec-
tions 3.2 and 3.4, which are not available for its regular (precoderivative) counter-
part (1.16).

gphT

om7’

d

B

Fig. 5.1 Semilocal monotonicity but not global monotonicity.

Theorem 5.6 (Limiting Coderivative Characterizations of Global Maximal
Monotonicity). Let T : R" = R” be a set-valued mapping with closed graph. The
following assertions are equivalent:

(i) T is globally maximal monotone on R".

(ii) T is globally hypomonotone on R", and for any (u, v) € gph T we have
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(z, w) > 0 whenever z € D*T (u, v)(w), w € R". 5.11)

If in addition the operator domain dom T is convex, then the global hypomonotonic-
ity in assertion (ii) can be equivalently replaced by the semilocal one.

Proof. Implication (ii)=(i) is straightforward from Theorem 5.2 due to
D*T (u, v)(w) C D*T(u, v)(w) forall (u,v) € gph7 and w € R".

Thus (5.2) follows from (5.11), and T is maximal monotone by Theorem 5.2.

To justify the converse implication (i)=-(ii), suppose that (i) holds, and
so (5.2) is valid due to Theorem 5.2. Picking any vectors (u#,v) € gphT and
7z € D*T(u, v)(w) and using definition (1.15) of the basic coderivative, we find

sequences (g, Vi) gp—h>T (u, v) with zx — z and wy — w satisfying the inclusion
Zk € B*T(uk, vr) (wy) for all k € N. It follows from (5.2) that (zz, wg) > 0. Letting
k — oo implies that (z, w) > 0, which verifies (5.11).

Assuming now the convexity of the domain dom 7 and employing Lemma 5.3
allow us to replace the global hypomonotonicity in (ii) by the semilocal hypomono-
tonicity while using Theorem 5.4 instead of Theorem 5.2. A

Remark 5.7 (Preservation of Maximal Monotonicity). Well-developed coderiva-
tive calculus presented in Sections 3.2 and 3.4 opens the gate to derive via (5.11) ver-
ifiable conditions ensuring the preservation of maximal monotonicity under various
operations performed over maximal monotone operators. The results in this direc-
tion involve qualification conditions for the validity of the corresponding coderiva-
tive calculus rules.

The following one-dimensional example shows that the hypomonotonicity condi-
tions in (ii) of Theorems 5.2, 5.4, and 5.6 are essential for the obtained coderivative
characterizations of maximal monotonicity.

Example 5.8 (Hypomonotonicity Conditions Are Essential). Given positive 7,
define the set-valued mapping 7 : R = R with full domain by

T(x) :=nx+1[0,1] forall x € R.
It is easy to calculate directly by the definitions that

{0} if w=0, v—rnue,]1),
{pw} if w=>0, v—nu=0,
{pw} if w=<0, v—nu=1,

] otherwise.

D*T (u, v)(w) = D*T(u, v)(w) =

Thus both coderivative conditions (5.2) and (5.11) are satisfied. However, T is not
globally monotone on R (Fig. 5.2). The reason is that this mapping is not semilocally
(and hence not globally) hypomonotone.
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A » A A
T(z) N((u,nuX\ 1); gphT) DT (u, //u\(z/z;)
ephT L | 7 ______ N__L_________ (w =0y

—w o
< > - D T(u,0)(0)
—w e 0<v—nu<l)

7777777777777777777 D/’/'F(?L. nu + 1)(w)
- (w<0)
N ((u,nX); gphT)

Fig. 5.2 Coderivative of T (x) = nx + [0, 1] with n > 0.

Finally in this section, we derive from the obtained results complete coderivative
characterizations of a stronger version of global monotonicity for set-valued map-
pings. We say that T : R" = R" is strongly globally maximal monotone on R" with
modulus k > 0 if it is globally maximal monotone and the shifted mapping 7' — « 1
is globally monotone on R”, i.e.,

(v1 — v, uy — uz) > klluy — ua)|® forall (uy,vy), (uz, v2) € gphT.

Minty’s theorem ensures that 7 is strongly globally maximal monotone on R” with
k > 0if and only if T — « [ is globally maximal monotone on R”.

Corollary 5.9 (Coderivative Characterizations of Strong Global Maximal
Monotonicity). Let T : R" = R” be a set-valued mapping with closed graph. The
following are equivalent:

(i) T is strongly globally maximal monotone on R" with modulus k > 0.

(ii) T is globally hypomonotone on R", and for any (u, v) € gph T we have

(z,w) > k|w|® whenever z € D*T(u, v)(w), w € R".
(iii) T is globally hypomonotone on R", and we have
(z, w) > /<||w||2 whenever z € D*T (u, v)(w), w € R"

for any (u,v) € gphT. If in addition the operator domain dom T is convex, then
the global hypomonotonicity in assertions (ii) and (iii) can be equivalently replaced
by its semilocal counterpart.

Proof. Define S := T — « I, and immediately deduce from the coderivative sum
rules in Exercise 3.59(i,ii) the following equalities

5*T(u, v)(w) = 5*S(u, v—ku)(w) + kw,
D*T (u, v)(w) = D*S(u, v — ku)(w) + kw

holding for all (#, v) € gphT and w € R". Thus the validity of (ii) (resp. (iii)) for
T is equivalent to the fulfillment of all the conditions in Theorem 5.2(ii) (resp. in
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Theorem 5.4(ii)) for the operator S; it is obvious for hypomonotonicity. Applying
now Theorem 5.2 and Theorem 5.4, respectively, we get that either assertion (ii) or
(iii) of this corollary is equivalent to the global maximal monotonicity of S. Since
the latter is equivalent to the global strong maximal monotonicity of 7 with modulus
k, we complete the proof. A

5.2 Coderivative Criteria for Strong Local Monotonicity

In this section we study strong local monotonicity properties of set-valued opera-
tors and provide their complete coderivative characterizations of their maximality.
Similarly to the global monotonicity investigated in Section 5.1, the techniques de-
veloped here also use a variational approach and generalized differentiation while
being largely different from and more involved in comparison with global maximal
monotonicity. We essentially exploit now the strong local nature of the maximal
monotonicity under consideration.

5.2.1 Strong Local Monotonicity and Related Properties

The following local monotonicity properties of operators are studied below. Recall
that we have already used local monotonicity in Subsection 3.3.3.

Definition 5.10 (Locally Monotone and Strongly Monotone Operators). Let
T:R" = R" with (x,v) € gph T. We say that:

(i) T is LOCALLY MONOTONE around (X, v) if there exists a neighborhood U x V
of this point such that

(v —v2,uy —u2) >0 forall (uy,v1), (u2,v2) € gphT N (U x V).

(ii) T is STRONGLY LOCALLY MONOTONE around (x,v) with modulus
k > 0 if there exists a neighborhood U x V of (x,v) such that for any pair
(u1,v1), (uz, v2) € gph T N (U x V) we have the estimate

(V1 — V2, uy —u2) > klluy — ua|l®. (5.12)

(iii) 7' is STRONGLY LOCALLY MAXIMAL MONOTONE around (x, v) with mod-
ulus k > 0 if there exists a neighborhood U x V of (x, v) such that (ii) holds and
that gphT N (U x V) = gph S N (U x V) for any globally monotone operator
S: R* = R” satisfying the inclusion gph T N (U x V) C gph S.

In what follows we present complete coderivative characterizations of the strong
local maximal monotonicity of set-valued operators while connecting this property,
via coderivatives, with local hypomonotonicity from Definition 5.1(iii). To proceed,
consider first the notions of single-valued localizations of set-valued mappings that
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are important for the study and applications of strong local monotonicity and related
properties.

Definition 5.11 (Single-Valued Localizations). Given F: R" = R"™ with
(x,y) € gph F, we say that F admits a SINGLE-VALUED LOCALIZATION around
(x,y) if there is a neighborhood U x V. C R" x R™ of (x,y) such that the
mapping F:U—>V defined via gph F := = gph F N (U x V) is single-valued on
U with dom F = U. Furthermore, F admits a LIPSCHITZIAN SINGLE-VALUED
LOCALIZATION around (X, y) if the mapping Fis Lipschitz continuous on U.

If the mapping F in Definition 5.11 is generally set-valued, it is said to be just a
localization of F relativelyto U x V.

Using the second part of Definition 5.11, we formulate now the following well-
posedness property related to our study in Section 3.1. Theorem 3.2(ii) tells us that
this property can be viewed as a Lipschitzian single-valued localization of metric
regularity for the mapping in question.

Definition 5.12 (Strong Metric Regularity). We say that F: R* = R" is
STRONGLY METRICALLY REGULAR around (X, y) € gph F with modulus € > 0 if
the inverse mapping F~' admits a single-valued localization around (3, X), which
is Lipschitz continuous around y with modulus £.

The next result characterizes the strong local maximal monotonicity of T via
Lipschitzian single-valued localizations of the inverse 7! that indeed distinguishes
strong local maximal monotonicity from merely strong local monotonicity. In addi-
tion to qualitative characterizations, the theorem below provides some quantitative
relationships between the corresponding moduli.

Theorem 5.13 (Strong Local Maximal Moneotonicity via Lipschitzian Localiza-
tion). Given a set-valued operator T : R" = R" with (x,v) € gphT and given
k > 0, the following assertions are equivalent:

(i) T is strongly locally maximal monotone around (X, v) with modulus .

(ii) T is strongly locally monotone around (x, v) with modulus k, and its inverse
T~ admits a Lipschitzian single-valued localization around (v, X).

(iii) 7~ admits a single-valued localization ¥ relative to some neighborhood
V x U of (v, X) such that for all vy, vo € V we have

|1 = v2) = 2c[9 (1) =P (W] < llv1 = v2ll, (5.13)

which implies that © is locally Lipschitzian around (v, ) with modulus k ~", and so
T is strongly metrically regular around (x, v) with the same modulus.

Proof. To verify (i)=(ii), take by (i) a neighborhood U x V of (x, v) such that (5.12)
holds and we have gph T N (U x V) = gph SN (U x V) for any globally monotone
operator S: R" x R"” with gph T N (U x V) C gph S. Define

Je,v) = (u,v—«u) on R" xR", W:=J (U xYV)



204 5 Coderivatives of Maximal Monotone Operators

and deduce from (5.12) that the operator F: R” = R” constructed by gph F :=
gph (T — «I) N W via the identity mapping [ is globally monotone on R”. Indeed,
whenever (u;, v;) € gph F we get

(ui, vi +ku;) € gphT N JN (W) =gphT N (U x V) for i =1,2.
It follows from the strong local monotonicity (5.12) of T that
(V1 + kuy — v — kg, uy — u2) > klluy — uz %,

which yields (v; — vy, u1 — uz) > 0 and thus verifies the global monotonicity of
F. Consider now the (global) maximal monotone extension R of F (see, e.g., [70,
Theorem 20.21]) for which we have the inclusion

gph(F+x)N (U xV)=gphT N(U x V) C gph(R+«I).

The local maximal monotonicity of T relative to the neighborhood U x V implies
that gph 7T N (U x V) = gph (R +«I) N (U x V), and therefore

gphT~'N(V x U) =gph (R+«D)~' N (V x U). (5.14)

The aforementioned Minty theorem tells us that dom (R + « 1 )~! = R” and that the
operator (R + « 1)~ is single-valued and Lipschitz continuous on R”. Combining
this with (5.14) ensures that the set

Vii=R+cDWU) NV =[R+cD' ] W)nv

is a neighborhood of © by noting from (5.14) that (v, X) € gph (R +« 1)~ N (V x
U) and using the fact that V; is the inverse image of the neighborhood U via the
continuous map (R + «/ y~L. Furthermore, it follows from (5.14) that T~1(v) =
(R+kI)~"(v) forall v € V;. Thus the localization S: V; — U defined via gph S =
gph T~ N (V] x U) is single-valued and Lipschitz continuous on V. This verifies
implication (i)=>(ii).

To justify (ii))=>(iii), find by (ii) a neighborhood U x V of (x, v) on which (5.12)
holds and such that the localization © of 7! is single-valued and Lipschitz contin-
uous on V x U. Then it follows from (5.12) that

i = v2 = 26 (u1 —u2)|* = lvi — v2ll* — 4 [(v1 — va, uy — uz) — «lluy — uz||?]
< llvr — w2l if (v, u1), (v2, u2) € gph N(V x U),

which yields (5.13) and thus verifies the main statement in (iii). To show further
that (5.13) readily implies that ¥ is locally Lipschitz continuous around (v, x) with
modulus «~! (and hence T is strongly metrically regular around (X, ¥) with the
same modulus according to Definition 5.12), take u; := ¥ (v;), i = 1, 2, and deduce
from (5.13) that
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0 < [lvr —vall® = [lvr — v2 — 2k (uy — un)||?
= 4k [(v1 — v, uy — uz) — llur — uz?].

This implies in turn the estimates
2
lor —vall - lur — uzll = (v — v2, w1 —u2) > wcllur —uz|l”, (5.15)

which therefore justify the additional claims in (iii).

It remains to verify implication (iii)=(i). Having by (iii) the neighborhood V x U
of (v, X) on which 7~! admits the single-valued localization ¥ and (5.12) holds,
pick any (uy, vy), (u2, v2) € gph TN(U x V) for which we getu; = 9 (v;),i =1, 2,
and the strong local monotonicity condition (5.12) is satisfied as proved in (5.15).
Let us finally check the local maximality of T .

To proceed, take any globally monotone operator S: R? = R” satisfying the
inclusion gph 7 N (U x V) C gph S, and conclude by (5.13) that

(y —v,0(y) —u)>0 forany y eV, (u,v) e gphSN U x V). (5.16)

Fix an arbitrary vector z € R”, and find ¢ > 0 such that v + ez € V. Since
¥ (V) C U, we have ¥ (v + €z) € U. This tells us together with (5.16) that

<v+sz—v,l9(v+sz)—u):s(z,ﬁ(v+sz)—u>20,

which clearly yields (z, ¥ (v+ez)—u) > 0. Letting now ¢ | 0 implies that (z, ¥ (v)—
u) > 0 due to the continuity of ©# shown above. Since this holds for any z € R”, we
get ¥ (v) = u,ie., (u,v) € gphT N (U x V). Therefore

gph SN U x V) CgphT N(U x V),

which verifies the strong local maximal monotonicity of 7 relative to U x V and
thus completes the proof of the theorem. A

5.2.2 Strong Local Maximal Monotonicity via Coderivatives

The next theorem presents the principal result of this section on characterizing
strongly locally maximal monotone (closed-graph) operators via their local hy-
pomonotonicity coupled with a strengthened positive-definiteness condition ex-
pressed in terms of the precoderivative/regular coderivative (1.16) at neighborhood
points. The result obtained provides also a quantitative relation involving moduli of
strong local maximal monotonicity.

Theorem 5.14 (Neighborhood Coderivative Characterization of Strong Local
Maximal Moneotonicity). Given a set-valued mapping T : R" = R”" with (x,v) €
gph T, fix a number k > 0. The following are equivalent:

(i) T is strongly locally maximal monotone around (x, v) with modulus «.
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(ii) T is locally hypomonotone around (x, v), and there is n > 0 such that
(z.w) = kllwl? if z € D*T(u,v)(w), (u,v) € gphT N By(¥, ). (5.17)

Proof. To justify (i)=>(ii), note that the local hypomonotonicity is trivial under (i),
and by Theorem 5.13 find a single-valued localization ¢ of T~ relative to a neigh-
borhood V x U of (v, x) such that (5.13) holds. As proved above, this yields the
Lipschitz continuity of # on V with modulus x ~!. To proceed with verifying the
coderivative condition (5.17), choose > 0 satisfying B, (x, v) C U x V and then
pick (u,v) € gphT N By(x,v) and z € 5*T(u, v)(w). Given any ¢ > 0 and
using (1.16), we select  so small that

(2 x —u) = (w,y —v) < e(llx —ull + Iy — vll) (5.18)

for all (x, y) € gphT N By (u, v). When ¢ > 0 is also small, consider u; := (v;)
with v; := v+ t(z — 2kw) € V, and get from the continuity of @ that (u;, v;) —
(u,v) as t | 0. Suppose without loss of generality that (i, v;) € By(u, v) for all
t > 0. Replacing (x, y) in (5.18) by (u;, v;) and using (5.13) give us

e(llur — ull + vy = vll) = (2, ur —u) — (w, v; — v)
=, —v) + 2w, uy — u) — tH{w, 7 — 2kw)
>kt — ul|? 4 26 (w, uy — u) — t{w, z — 2kw)
> st Mug — ul|® = 2cllw]] - flu; — ull
+tx||w|? = t{w, z — kw)
> —t{w,z —kw) = —t{z, w) + tx||w]>.

Since ¥ is Lipschitz continuous on V with modulus « ~!, we have

e(llur —ull + llv, —vll) = (19 (v) — @) + llv, — v]l)
<e(k v — vl + llo, = vll)
=e M+ Dlvy, — vl = et~ + Dz — 2cw]],

which together with the estimates above yields
(@ow) +e™ + Dz — 2w > «flwl]*.

Passing to the limit as ¢ | 0 gives us (z, w) > «k |lw|? and thus justifies (5.17).

To verify next the converse implication (ii)=>(i), observe that by Theorem 5.13
we only need to show that the inverse operator 7! admits a Lipschitz continuous
single-valued localization ¥ around (v, x) satisfying estimate (5.13). This is done
in the following two claims.

Claim 1. 7~ admits a Lipschitz continuous localization 9 around (v, ).

To justify this claim, choose n > 0 so small that the set gphT N B, (x, v) is
closed and there is a positive number r for which

(V) — V2, x1 —x2) > —r|lx1 —x2? (5.19)
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if (x1, v1), (x2, v2) € gph T N By, (x, v). Pick any s > r and define
Jo(u,v) := (v +su,u) for (u,v) e R" x R".

Denoting further W, := Jy(B,(x,v)), observe that int Wy = Js(int B,(x, v))
is a neighborhood of (v + sx,x). It follows from (5.19) that for any pair
(v1, x1), (12, x2) € gph(T + sD™L N W,, we have (x;,v; — sx;) € gph T N
JS_I(WS) =gphT N B, (x, v). Thus (5.19) tells us that

2
(Vi —sx1 —v2 +sx2, X1 —x2) = —rllx; —x2fl7,
which clearly implies the estimates
2
lvr —vall - llx1 — x2ll = (i — v2, x1 — x2) > (s = r)llx1 — x2f|  (5.20)

showing that the mapping (T + s/)~! admits a single-valued localization denoted
by f. Taking now any (v, u) € gph f N (int W) with u = f(v) and any (w, ) €
X x X withw € 5*f(v)(z), we get that w € 5*(T + sI)~Y(v, u)(z) and hence
—z € 5*(T + s1)(u, v)(—w). It follows from the equality sum rule for the regular
coderivative in Exercise 3.59(i) that —z+sw € B*T(u, v—su)(—w). Since (u, v—
su) = J7 (v, u) € J7(int Wy) = int B, (%, ©), we deduce from (5.17) that (—z +
sw, —w) > k|lw|?* and thus

Izl lwll = (2. w) = (e +9)llwl>.
To proceed further, for any z € B define the function ¢, : R” — R by

_ )& fw) if vedomf,
$:(v) == { 00 otherwise
and verify similarly to the proof of Theorem 5.2 that it is l.s.c. on R”. Applying the
mean value inequality (4.25) to ¢, fix y € (0, n/3) and pick two pairs (u;, v;) €
gphT N B, (x, v),i = 1, 2. By the construction of f, we get (y;, ;) € gph f with
vi '= v; + su;. Taking any ¢ € (0, y) and applying the increment estimate (4.25) to
@, on [y, y2] with the chosen ¢ give us

o) — @z ()] < llyr — y2ll sup {[wll | w € 3z, £)(3). y € [y1. y2] + eB}.

For any y € dom f N ([y1, y2]+¢B), there are some ¢ € [0, 1] and yg € B such
that y = ty; + (1 — t)y2 4 yo. Then it follows that

ly —v—sxll =llty1 + (1 =1)y2 +y0 — v — sx]|
= lt(y1 —v—sx)+ (1 —1)(y2 — v —s%) + yoll
= [[t (v +suy — v — %) + (1 — £)(v2 + suz — v — sx) + yol|
< t(llvr = vll+sllur — X))+ =) (llvz — vll+slluz — X1+ yoll
Sty +sy)+A =Dy +sy) +te=0+s5)y +e < 2+95)y.
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We easily get from the latter estimate and (5.20) that

1) =N =1fG) = f@+sDI < (s =)y = —sx]|

<G-nC+9y. 62D
Furthermore, it follows from the above that
Iy =sf) =l = [y —v—s¥—s(f(y) - 5| (522)

<Q+9)y+s6—nT'2+9y.

By choosing y sufficiently small, we deduce from (5.21) and (5.22) that

70, £ ) = (FO), y = sf () € int By (&, v),

which tells us that (y, f(y)) € J (int By (x, 17)) = int W;. Moreover, it is easy
to see from the definitions that 5(z iy C D* f () (z). Taking into account that
(v, f(y)) € gph (T +sI) I'Nint W, and the constructions of f and ¢,, we conclude
that D*f(y)(z) = D*(T + sI)~'(y, f(»))(z), which ensures by the increment
estimate above that

[z, fF 1) = FODN = le: () = ()] < Iy = yall e 4+ 9) 7 iz

for all z € B. Remembering the definitions of y; above implies that

luy —uzll = 1 f (1) — fFODI
< @k + )"y — 2l = (e + )" v + sup — v2 — sus|,

which yields in turn the inequality
( + ) ur —uzll < [[(v1 —v2) + s —u2) || < llvr — vall + sllur — u2ll.
Thus we arrive at the estimate
icllur —uzll < flor —vall if (ui, v1), (u2,v2) € gphT N By (x,v). (5.23)

It remains to show that 7~! admits a single-valued Lipschitzian localization
around (v, x). To verify it, observe from (5.17) that

Izl = kllw| forall z € D*T (u, v)(w), (u,v) € gph T N B, (X, D),

which is a neighborhood version of the coderivative characterization of metric reg-
ularity of T around (x, v) in Theorem 3.3(ii) (see Exercise 3.47 and [522, Theo-
rem 4.5] for more details). This allows us to find positive numbers @ and v, where
w can be taken as k!, such that

dist(¥; 77" (v)) < pdist(v; T(¥)) < ullv — o] forall v e By(v)
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which ensures that 7! (v) N int B, (x) # @ for all v € int B, (v). Defining finally
the mapping ¥ from int B, (v) into int By, (X) by

gph ¥ := gph T7'n (int B, (v) x int Blw(i)) with dom ¢ = int B, (v),

we get dom ¢ = int B, (v). It follows directly from (5.23) that ¥ is single-valued

and Lipschitz continuous on its domain with modulus « .

Claim 2. The single-valued Lipschitzian localization 9 of T~ taken from Claim 1
satisfies the additional condition (5.13).

To verify this claim, for any z € B define &,(v) := (z,v — 2«0 (v)) as v €
int By, (v). Pick any o, ¢ > 0 with @ + ¢ < v and any vy, v2 € By (v). Similarly to
the proof of the increment estimate for ¢, in Claim 1 with the chosen ¢ therein, we
deduce from the mean value inequality that

|&.(v1) — & (v2)] < llvr — v2llsup {[lwl| | w € B&.(v), v € [v1, v2] + eB}.

Since v € int B, (v) foreach v € [vy, v2]+¢€B, itis easy to get from the construction
of &, and the elementary calculus rules as above that

w € /B\éz(v) Cz— 2K5*19(v)(2) =z— 2K5*T’1(v)(z),
which tells us that 2«) "' (z — w) € B*T_l(v)(z) or equivalently
—z € D*T(9(v), v)(20) ' (w — 2)).
It thus follows from the coderivative condition (5.17) that
(=2, 20~ (w = 2) = «ll20) " (w = D)%,

which easily implies in turn that ||w|| < | z||. This together with the increment
estimate for &, established above ensures that

&, (v) =&, (v2)| = (2, v1 =2V (V1) —V2+2k T (v2)) < [lvi—v2]l-l|z]l forall z € B.
Remembering the definition of &,, we derive from the latter that
lvr —v2 = 2«[P (v1) — F ()]l < [lvr — v2|| whenever vy, v2 € By (V),

which verifies condition (5.13) and hence justifies Claim 2. The proof of the theorem
is complete by combining Claim 1 and Claim 2. A

Let us present a remarkable consequence of Theorem 5.14 for detecting strong
metric regularity of set-valued mappings.

Corollary 5.15 (Sufficient Conditions for Strong Metric Regularity). The con-

ditions of Theorem 5.14(ii) ensure that the mapping T is strongly metrically regular

around (x, v) with modulus P
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Proof. By Theorem 5.13 it follows from assertion (i) of Theorem 5.14, while it
has also been deduced directly from hypomonotonicity and the coderivative condi-
tion (5.17) in the proof of the latter theorem. A

5.2.3 Pointbased Coderivative Characterizations

We conclude this section by deriving a pointbased characterization of strong max-
imal monotonicity for Lipschitz-like mappings via positive-definiteness of the ba-
sic/limiting coderivative (1.15). The next theorem and its corollary below are natural
extensions to set-valued and nonsmooth mappings of the classical characterization
of the strong local monotonicity for a smooth mapping via positive-definiteness of
its Jacobian matrix.

Theorem 5.16 (Pointbased Coderivative Conditions for Strong Local Maximal
Monotonicity). Let T : R" = R". The following assertions hold:

(i) The strong local maximal monotonicity of T around (x,v) € gph T implies
that the coderivative D*T (X, v) is em positive-definite, i.e.,

(z,w) > 0 forany z € D*T(x,v)(w) with w # 0. (5.24)

(i) If T is single-valued and Lipschitz continuous around X, then the positive-
definiteness condition (5.24) is necessary and sufficient for the strong local maximal
monotonicity of T around this point.

Proof. It is easy to see by passing to the limit that (5.17) always implies (5.24),
and thus we get (i) by employing Corollary 5.15. Let us now verify assertion (ii)
assuming that 7T is single-valued and locally Lipschitzian around x. First we check
that 7' is automatically locally hypomonotone around x in this case. Indeed, take
a Lipschitz constant £ > 0 of T around x, and define 7: R" — R" by g(u) :=
T (u) + £u. Then we have

(T (u1) — T(u2), uy — uz) + Ll|luy — uz|?

(g(ur) — guz), uy —up) =
> —|Tu1) — T - lluy — uzll + €lluy — uzl* > 0,

which therefore yields the local hypomonotonicity of 7" around x. Invoking The-
orem 5.14, it remains to show that (5.24) ensures the validity of (5.17). Arguing
by contradiction, suppose that (5.24) holds while (5.17) doesn’t. Hence we find a
sequence (Ui, wi, Zx) satisfying

up — %, 7k € D*Tup)(wr), {2k, wi) <k~ Ywel|? forall k € N.

Letting wy := wi/||lwk|l, Zk := zx/||wk || and using the Lipschitz property of 7 with
modulus ¢ > 0 yield as in the proof of Theorem 3.3 that

Zell < Lllwk|l = €, ke N.
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Select convergent subsequences of {wy} and {Zx} and then find (w, z) such that
(wg, Zk) — (w, 7). Passing now to the limit as k — oo and using the limiting

coderivative representation (1.17), we get z € D*T (x)(w) with ||w| = 1. Further-
more, it follows from (Zx, wx) < k~! that (Z, w) < 0, which contradicts (5.24) and
thus completes the proof of the theorem. A

Remark 5.17 (Pointbased Coderivative Criteria for Strong Local Maximal
Monotonicity of Mappings). A natural question arises about the possibility to ex-
tend the pointbased coderivative characterization of Theorem 5.16(ii) to set-valued
mappings. Observe first that the answer is negative if the mapping T in question is
Lipschitz-like around (x, v), provided that we keep the local hypomonotonicity as-
sumptions coming from Theorem 5.14. As shown by Levy and Poliquin [455], the
simultaneous validity of the Lipschitz-like and local hypomonotonicity properties
of a mapping around the reference point is equivalent to the single-valuedness and
Lipschitz continuity of the mapping around this point.

On the other hand, it is shown by the author and Nghia [555] that the point-
based condition (5.24) completely characterizes, together with the local hypomono-
tonicity of T, the strong local maximal monotonicity of subgradient (highly non-
Lipschitzian) mappings T = d¢ generated by extended-real-valued functions
¢: R" — R that belong to a broad class of continuously prox-regular functions.
As mentioned in Section 3.5, the latter class plays a crucial role in second-order
variational analysis, optimization, and their numerous applications; see the books
[527, 678] and the discussions above.

5.3 Exercises for Chapter 5

Exercise 5.18 (Hypomonotonicity of Single-Valued Mappings).

(i) Let T: X — X be a single-valued mapping on a Hilbert space X. Prove that T is locally
hypomonotone around x provided that it is locally Lipschitzian around this point. Hint: Compare
it with the proof of [455, Theorem 1.2] given in the case of finite-dimensional spaces.

(ii) Does (i) hold if 7: X =% X is a set-valued mapping admitting a Lipschitzian single-valued
localization around (x, v) € gph T'?

(ii) Is (i) valid for continuous single-valued mappings?

Exercise 5.19 (Hypomonotonicity of Subgradient Mappings). Let f: R" — R be Ls.c. as in
our standing assumption.

(i) Show that 9: R” =3 R”" is semilocally hypomonotone around x if and only if there is a
positive number p such that the function f + p|| - ||? is convex on a neighborhood of x. Hint:
Deduce it from [678, Theorem 12.17].

(ii) Does the characterization in (i) hold in Hilbert spaces?

Exercise 5.20 (Calculus of Hypomonotonicity). Let X be a Hilbert space, and let 77: X — X
be continuous around x with vy := T'(x). Show that:

(i) If T,: X =2 X is locally hypomonotone around (x, vp) € gph 73, then the sum 7} + T3 is
locally hypomonotone around (X, 1 + v2).

(ii) If 7 : X =2 X is semilocally hypomonotone around x, then the sum 7} 4 T is semilocally
hypomonotone around this point.

(iii) Formulate and prove a version of this rule for global hypomonotonicity.

Hint: Proceed by the definitions of the corresponding hypomonotonicity notions.



212 5 Coderivatives of Maximal Monotone Operators

Exercise 5.21 (Global Maximal Monotonicity for Mappings with Convex Domains). Recon-
struct all the details in the proof of Theorem 5.4.

Exercise 5.22 (Coderivative Characterizations of Global Maximal Monotonicity for Set-
Valued Mappings in Infinite Dimensions). Let 7: X =3 X be a (closed-graph) set-valued opera-
tor defined on a Hilbert space X.

(i) Check that Theorem 5.2 and Theorem 5.4 hold true in Hilbert spaces.

(ii) Formulate and prove a Hilbert space version of Theorem 5.6 in terms of the mixed coderiva-
tive of T'; cf. [153]. Give an example that the usage of the normal coderivative in (5.11) doesn’t
provide a necessary condition for global maximal monotonicity in infinite dimensions.

Exercise 5.23 (Coderivative Characterizations of Global Monotonicity for Single-Valued
Continuous Mappings).

(i) Show that hypomonotonicity requirements are not needed in the coderivative characteriza-
tions of Theorems 5.2, 5.4, and 5.6 for single-valued continuous mappings 7 : R" — R”; cf. [154].
Is it true for 7: X — X in Hilbert spaces?

(ii) Find general conditions unifying hypomonotonicity of set-valued mappings and continuity
of single-valued ones for the validity of the coderivative characterizations of global monotonicity
in Section 5.1 in finite and infinite dimensions.

(iii) Using the symmetric subdifferential mean value theorem in Asplund spaces discussed in
Exercise 4.33, derive appropriate versions of (i) for single-valued continuous mappings 7: X —
X* in the case of Asplund spaces X.

Exercise 5.24 (Coderivative Characterizations of Global Strong Maximal Monotonicity in
Hilbert Spaces). Derive Hilbert space extensions of the coderivative characterizations of this prop-
erty presented in Corollary 5.9. Hint: Follow the proof of Corollary 5.9 by using the results taken
from Exercise 5.22.

Exercise 5.25 (Preservation of Global Maximal Monotonicity and Strong Monotonicity Un-
der Sums and Compositions).

(i) Based on the pointwise coderivative characterizations of global maximal monotonicity and
strong monotonicity obtained in Subsection 5.2.3 and their infinite-dimensional versions from the
exercises above, establish verifiable conditions for the preservation of these properties under sums
and compositions by using the pointwise coderivative calculus developed in Chapter 4.

(ii) Compare the results obtained via (i) with known conditions for preserving maximal mono-
tonicity; in particular, with Rockafellar’s theorem [668] about the maximal monotonicity of sums
under certain interiority assumptions.

Exercise 5.26 (Coderivative Characterizations of Local and Semilocal Maximal Monotonic-
ity). Investigate the possibilities for deriving coderivative characterizations of the types given in
Theorems 5.2, 5.4, and 5.6 for the notions of local and semilocal maximal monotonicity intro-

Exercise 5.27 (Strong Metric Regularity of the Convex Subdifferential). Let X be a Banach
space, and let ¢: X — TR be a l.s.c. convex function.

(i) Prove that for any (x, v) € gph d¢ the following assertions are equivalent:

e The subgradient mapping d¢: X = X* is strongly metrically regular around (x, v) with
modulus « > 0.

o There are neighborhoods U of ¥ and V of # such that the mapping (3¢) ! admits a single-
valued localization ¥ : V — U around (¥, x) and that for any pair (v, u) € gph® = gph (3¢)~! N
(V x U) we have the second-order growth condition

1
ox) > o)+ (v,x —u)+ 2—I|x — 1,t||2 whenever x € U. (5.25)
K

Hint: Use the maximal monotonicity of the subdifferential mapping d¢: X =2 X™ and Fenchel
duality; compare it with the proof of [551, Theorem 3.1].
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(ii) Is strong metric regularity equivalent to metric regularity of d¢ around the same point in
this setting? Hint: Use Kenderov’s theorem [408], and compare this with the characterization of
the metric regularity of d¢ given in Exercise 3.52.

Exercise 5.28 (Metric Regularity and Strong Metric Regularity of the Basic Subdifferential).
Let ¢: X — R be an arbitrary Ls.c. function on an Asplund space X, and let (X, v) € gphd¢ for
the basic subgradient mapping (1.69).

(i) Prove that the following statements are equivalent:

e The subdifferential d¢ is metrically regular around (x, v) with modulus x > 0, and there
exist a real number r € [0, x ') and neighborhoods U of X and V of © such that for any pair
(u,v) € gphap N (U x V) we have

o(x) > o) + (v, x —u) — %distz(x; (39)"'(v)) whenever x e U.

e There exist neighborhoods U of x and V of v such that for any v € V there is a point
u € (3p)~'(v) N U satisfying (5.25)

o The subdifferential d¢ is metrically regular around (x, v) with modulus ¥ > 0, and there are
neighborhoods U of x and V of v such that

@(x) > @(u)+ (v,x —u) forall x e U and (u,v) € gphdp N U x V).

e The point x is a local minimizer of the function x — ¢(x) — (v, x), and the subdifferential
d¢ is strongly metrically regular around (x, v) with modulus «.

Hint: Proceed as in the proofs of [551, Theorem 3.2] with the usage of Ekeland’s variational
principle, the semi-Lipschitzian sum rule for the basic subdifferential, and the maximal monotonic-
ity of the subdifferential of convex analysis.

(ii) Let X be Hilbert. Then all the statements above are equivalent to:

e 0f is metrically regular around (x, v) with modulus ¥ > 0, and there are some r € [0, kh
and neighborhoods U of x, V of v such that

o) > @)+ (v, x —u) — %le—ull2 forall x € U, (u,v) € gphdp N (U x V).

Hint: Arguing by contradiction, consider the function ¥ (x) := ¥ (x) + %llx — %13, and show
that 9y is metrically regular around (¥, x*) with modulus 1~ . Then apply (i) and use the paral-
lelogram law in Hilbert spaces; cf. [232, Corollary 3.8].

Exercise 5.29 (Equivalent Regularity Properties for C2-Smooth Functions). Let ¢: R” —
R be twice continuously differentiable around its local minimizer x. Check that the following
properties are equivalent:

(a) The gradient mapping Vg : R" — R”" is metrically regular around (x, 0).

(b) The gradient mapping V¢ is strongly metrically regular around (x, 0).

(¢) The Hessian matrix V2¢(X) is positive-definite.

(d) ker V2¢(x) = {0} for the Hessian kernel ker V2 (%) := {u| VZ¢(X)u = 0}.

Hint: Deduce it from well-known facts of nonlinear analysis.

Exercise 5.30 (Equivalent Second-Order Conditions for Regularity Properties of Prox-
Regular Functions). Let ¢: R” — R be both prox-regular and subdifferentially continuous at x
for 0 € dp(x).

(i) Prove that the following conditions are equivalent:

(a) The subgradient mapping d¢: R” = R”" is metrically regular around (x, 0) and the gener-
alized Hessian 8%¢(x, 0) is positive-semidefinite in the sense that

(v, u) > 0 whenever v € Bzw(X,O)(u), ueR".
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(b) The subgradient mapping d¢ is strongly metrically regular around (¥, 0) and X is a local
minimizer of ¢.
(c) The generalized Hessian 82g0()2, 0) is positive-definite in the sense that

(v, u) >0 whenever v € Bzw(i, 0)(u), u #0.

(d) ker %¢(x, 0) = {0} and 9%¢ (¥, 0) is positive-semidefinite.

Hint: Use the coderivative criterion for metric regularity from Theorem 3.3(ii), and proceed as
in the proof of [232, Theorem 4.13].

(i) Show that in the case where ¢ € C? around a local minimizer ¥ of ¢ the equivalent condi-
tions in (i) reduce to those in Exercise 5.29.

(iii) Given an example showing that the positive-semidefiniteness of the generalized Hessian
8%¢(x, 0) is not necessary for the local optimality of ¢ at ¥ even in the case of fully amenable
functions ¢: R2 — R.

Exercise 5.31 (Equivalence of Metric Regularity to Strong Metric Regularity of the Basic
Subdifferential). Let ¢ : R” — R be prox-regular and subdifferentially continuous at x for v = 0,
and let x be a local minimizer of ¢.

(i) Prove or disprove that the basic subgradient mapping d¢ is metrically regular around (x, v)
if and only if it is strongly metrically regular around this point. Hint: Compare it with the results
presented in Exercises 5.29 and 5.30, and see the corresponding discussions in Section 5.4.

(ii) Show that the equivalence (i) is certainly false outside the class of prox-regular and subdif-
ferentially continuous functions on R

Exercise 5.32 (Strong Metric Subregularity and Isolated Calmness). A mapping F: X =3 Y
between Banach spaces is STRONGLY METRICALLY SUBREGULAR at (X, y) € gph F with a posi-
tive modulus p if there exist neighborhood U of x and V of y such that we have the estimate

lx = x|| < udist()‘z; F(x)Nn V) forall x € U.

The mapping F: X =2 Y enjoys the isolated calmness property at (x, y) € gph F with modulus
£ > 0 if there are neighborhoods U of x and V of y such that

Fx)NnV Cc{y}+¢||x —x||B forall x € U.

Ifalso F(x) NV # @ for all x € U, then F has the robust isolated property at (X, y).

(i) Show that the isolated calmness of F at (x, y) is equivalent to the strong metric subregu-
larity of the inverse mapping F~! at (¥, ). What about relationships between moduli and their
exact bounds? Hint: Proceed similarly the proof of Theorem 3.2, and compare it with [227, Theo-
rem 31.3].

(ii) Find conditions on F ensuring that the isolated calmness of F at (x, y) agrees with its
robust counterpart, and give an example that this fails in general.

(iii) Which property of the inverse mapping F~! at (¥, ¥) is equivalent to the robust isolated
calmness of F at (x, y)?

Exercise 5.33 (Graphical Derivative Characterizations of Isolated Calmness of Multifunc-
tions). Let F: R” = R™, and let (X, ¥) € gph F.
(i) Show that the graphical derivative condition

DF(x, y)(0) = {0}
in terms of (1.87) is necessary and sufficient for the isolated calmness of F at (x, y). Hint: Proceed

directly by the definitions of isolated calmness and graphical derivative, and compare it with the
proofs of sufficiency in [417] and of necessity in [453].
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(ii) Verify the possibility to deduce the calmness characterization in (i) from that for the upper
Lipschitzian property via the outer derivative (3.70) from [771] presented in Exercise 3.55(i). Hint:
Use the result of Exercise 3.54(i).

(ii) Derive a formula for the exact bound of isolated calmness in (i). Hint: Compare it with the
result and proof in [227, Theorem 4E.1] for the equivalent property of strong metric regularity.

(iii) Do the results in (i) and (ii) hold in infinite dimensions?

Exercise 5.34 (Strong Metric Subregularity and Strong Local Monotonicity of the Convex
Subdifferential). Let ¢: X — R be a l.s.c. convex function on a Banach space X, and let v €
d¢(x). Prove that the following are equivalent:

(a) The subdifferential mapping d¢ is strongly metrically subregular at (x, v).

(b) There exist a neighborhood U of x and a constant > 0 such that

P(x) > () + (0, x — %) + yllx — %||* forall x € U.

(c) There exist a neighborhood U of x and a constant y > 0 such that
(D—v,x—x)>ylx —%||* forall x € U, v € dp(X).

Hint: Deduce it from Exercise 5.27(i) and the definitions; cf. [21, Theorem 3.6].

Exercise 5.35 (Strong Metric Subregularity of the Basic Subdifferential). Given a 1.s.c. func-
tion ¢: X — R on an Asplund space X and given a pair (X, o € gph d¢, consider the following
two statements:

(a) The subdifferential d¢ is strongly metrically subregular at (x, v) with modulus x > 0, and
there are real numbers r € (0, «~!) and v > 0 such that

o(x) > @(F) + (3, x — ¥) — %le — 7| forall x €%+ vB.
(b) There are real numbers «, n > 0 such that
o) > p(x)+ (v, x —Xx) + %Hx —)Ell2 forall x € x + nB.

(i) Prove that (a)==>(b) holds, where & may be chosen arbitrarily in (0, x ~!).
(ii) Verify that the converse implication (b)==>(a) also holds if in addition there is some number
B € [0, ) with

o(x) > p(x) + (v, x —x) — gllx - )E||2 for all (x,v) € gphdp N [()E, v) + nB].

Hint: Deduce both conclusions from the results presented in Exercise 5.28(i) by proceeding
similarly to the proof of [232, Corollary 3.3].

Exercise 5.36 (Strong Local Maximal Monotonicity in Hilbert Spaces). Let 7: X = X be a
set-valued operator defined on a Hilbert space X.

(i) Analyzing the proofs of Theorem 5.13 and Theorem 5.14, check that these results hold in
infinite dimensions.

(i) Is it true for Theorem 5.16 in terms of the mixed coderivative DK,, ?

Exercise 5.37 (Coderivative Conditions for Strong Metric Regularity). Construct examples in
finite-dimensional spaces showing that the conditions of Corollary 5.15 and of Theorem 5.16 are
not necessary for strong metric regularity in both set-valued and single-valued cases.

Exercise 5.38 (Limiting Coderivative Characterization of Local Strong Maximal Mono-
tonicity). Let 7: R* = R” be a (closed-graph) set-valued mapping with (x, v) € gph 7. Prove
or disprove the following conjecture: T is locally strongly maximal monotone around (x, v) if and
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only if T is locally hypomonotone around (x, v) and the positive-definiteness condition (5.24) is
satisfied; cf. Remark 5.17.

Exercise 5.39 (Coderivative Characterizations of Strong Semilocal Monotonicity). Investi-
gate the possibilities for deriving coderivative characterizations of the types given in Theorems 5.14
and 5.16 for the notion of strong semilocal monotonicity introduced similarly to semilocal hy-
pomonotonicity in Definition 5.1(ii).

5.4 Commentaries to Chapter 5

Section 5.1. As already mentioned in Section 4.6, global monotonicity and especially its max-
imal manifestation have been highly recognized among the most fundamental developments of
nonlinear and variational analysis with great many applications to theoretical and numerical as-
pects of optimization-related and equilibrium problems; see, e.g., the references given above. The
approaches and results presented in this chapter are based on quite recent developments while com-
municating new ideas in the study and applications of monotonicity by using the appropriate tools
of generalized differentiation in variational analysis.

The main results of Section 5.1 (Theorems 5.2, 5.4, and 5.6), as well as their infinite-
dimensional versions formulated in the exercises, are taken from the author’s joint paper with
Chieu, Lee, and Nghia [153], which contains complete coderivative characterizations of global
maximal monotonicity for general set-valued operators in Hilbert spaces. These results present
far-going nonsmooth extensions of the classical criterion for monotonicity of smooth functions in
terms of the positive-semidefiniteness of their derivatives. Note that the mixed coderivative (1.65)
is used in Theorem 5.6 for the limiting characterization (5.11) in infinite dimensions.

Implication (i)=>(ii) of Theorem 5.6 was first obtained by Poliquin and Rockafellar [642] in
finite dimensions and then was extended in [152, 551] to Hilbert spaces; we follow here the proof
given in [551]. For single-valued continuous mappings in Hilbert spaces, the regular coderivative
characterization (5.2) of global monotonicity was obtained by Chieu and Trang [154], while its
limiting version of Theorem 5.6 was given in [154] in finite-dimensional spaces.

To the best of our knowledge, the concept of hypomonotonicity was introduced by Rockafellar
[673] who utilized its semilocal (in our terminology) version for certain subdifferential operators;
see also [641, 678]. Local hypomonotonicity was employed by Levy and Poliquin [455] in the
study of Lipschitzian stability, by Pennanen [633] in developing the proximal point and related
methods of numerical optimization, and by the author and Nghia [555] in characterizing the strong
local maximal monotonicity property of general operators (see Section 5.2) with applications to
full stability of parametric variational systems. Global hypomonotonicity was implemented, e.g.,
in the book by Burachik and Iusem [130] (see also the references therein) to study enlargements of
monotone operators.

It is important to emphasize that all the three classes of hypomonotone operators considered in
Definition 5.1 are sufficiently broad and contain, in particular, Lipschitzian single-valued mappings
and set-valued subdifferential mappings generated by “nice” functions, which are prox-regular and
subdifferentially continuous (for local hypomonotonicity), lower—C? on open sets (for the semilocal
version), etc.; see [641, 678] for more details. That is, the hypomonotonicity properties are not
restrictive for numerous applications in variational analysis and optimization.

The notion of global strong monotonicity, which maximality is characterized in Corollary 5.9,
goes back to Zarantonello [759, 760] who used it for justifying the convergence of some numerical
algorithms to solve functional equations.

Section 5.2. The results presented in this section are taken from the paper by Mordukhovich and
Nghia [555], which contains also their applications to second-order (particularly full stability of
subdifferential variational systems) in finite and infinite dimensions. The main emphasis here is
on verifiable characterizations of local strong maximal monotonicity of set-valued mappings given
in Theorem 5.13 and Theorem 5.14 and the pointbased coderivative criterion of Theorem 5.16
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in the case of single-valued Lipschitzian ones, while the condition obtained therein is necessary
for such a monotonicity in the general set-valued setting; see also Remark 5.17. Observe that the
proofs of Theorems 5.13 and 5.14 work in any Hilbert space, but Theorem 5.16 seems to be finite-
dimensional.

It follows from Theorem 5.16 that the positive-definiteness coderivative condition (5.24) is suf-
ficient for the strong metric regularity of T around X, i.e., for the existence of a single-valued
Lipschitzian localization of the inverse mapping 7! around (7 (), X). This notion is an abstract
version of Robinson’s strong regularity originally introduced [662] for solution maps to general-
ized equations via their linearization; see [227] for more discussions. A necessary and sufficient
condition for the latter property was established by Kummer [443] in terms of Thibault’s strict
derivative [705] of T at x; see also [678] for more details on this construction. Recall to this end
that the coderivative condition (5.24) provides a complete characterization of the local strong max-
imal monotonicity of 7 around X, which is a much weaker property than strong metric regularity
around this point.

Observe that there are different motivations and formalizations of local maximal monotonic-
ity (compare, e.g., [112, 455, 633, 641, 642]). This book and the preceding paper [555] adopt
in the setting of strong local monotonicity the one defined by Poliquin and Rockafellar [642, p.
290]. In this way, besides complete coderivative characterizations of strong local maximal mono-
tonicity, we obtain verifiable sufficient conditions for strong metric regularity. Note that for locally
monotone mappings, we have in fact the equivalence between metric regularity and strong metric
regularity around the reference point; see [227, Theorem 3G.5], which is a particular case of the
fundamental result by Kenderov [408] already used in Chapter 3.

Section 5.3. The coderivative approach to global and local maximal monotonicity and the re-
sults presented in this chapter open new perspectives in the study and applications of maximal
monotonicity in both finite and infinite dimensions. Some of the challenging open questions are
formulated as “exercises” in Section 5.3. To this end we mention Exercises 5.25, 5.26, and 5.39
and the related Remarks 5.7 and 5.17.

Second-order growth conditions for strong metric regularity of the convex and basic subdif-
ferentials presented in Exercises 5.27 and 5.28 are mainly taken from Mordukhovich and Nghia
[551], with the quantitative relations therein; see also Aragén and Geoffroy [20, 21] and Drusvy-
atskiy and Lewis [230] for some related results in this direction. Note that the monotonicity issues
play a significant role in the proofs; cf. the papers by Rockafellar and his collaborators [456, 642]
on stability of local minimizers, which have also been behind the motivations and results of [551].

The results of Exercise 5.30 are obtained by Drusvyatskiy, Mordukhovich, and Nghia [232],
where the authors formulated the statement of Exercise 5.31 as a conjecture. Besides the C2-
smooth cases presented in Exercise 5.29, this conjecture is known to be true for broad classes of
continuously prox-regular functions ¢ : R" — R; in particular, for convex ones due to Kenderov’s
theorem [408] and the maximal monotonicity of the convex subdifferential, for functions of the
type ¢(x) = ¢@o + dq(x) with ¢p € C?anda polyhedral convex set 2 due to Dontchev and Rock-
afellar [225], and for functions of the latter type with 2 being a second-order/Lorentz cone due to
Outrata and Ramirez [625], as well as in the setting of Exercise 5.30. However, in the general case
of prox-regular and subdifferentially continuous functions, this conjecture remains a challenging
and very important open question.

The notion of strong metric subregularity and the equivalent notion of isolated calmness for
inverse mappings have been long time studied in the literature under different names (or without
giving a name); see, e.g., [94, 220, 226, 417, 420, 453, 632, 677] for early publications. The afore-
mentioned terminology was suggested by Dontchev and Rockafellar and by now has been widely
used; see [227] along with the recent publications [20, 21, 23, 151, 160, 228, 232, 286, 433, 561,
562,577, 724].

Although the explicit proof of sufficiency of the graphical derivative condition for isolated
calmness in Exercise 5.33(i) is given by King and Rockafellar [417] and the necessity of this
condition is proved by Levy [453], this criterion is actually goes back to the earlier paper by
Rockafellar [677]. It also can be deduced from Zhang and Treiman [771]; see Exercise 5.33(ii).
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The quadratic growth and strong monotonicity characterizations of strong metric subregularity
of the convex subdifferential from Exercise 5.34 are due to Aragén and and Geoffroy [20, 21],
while the results for the basic subdifferential with the quantitative interplay between constraints
in Exercise 5.35 are taken from Drusvyatskiy, Mordukhovich, and Nghia [232]. It is easy to find
functions ¢ : R — R for which the strong metric subregularity of the basic subdifferential at lo-
cal minimizers cannot be characterized by the quadratic growth of ¢; see [232]. It is shown lately
by Drusvyatskiy and Ioffe [228] that such a characterization holds for the class of subdifferen-
tially continuous and semialgebraic functions ¢: R" — R, which is different from both classes
of C2-smooth and convex functions while being nevertheless important for some applications in
variational analysis and nonsmooth optimization.

Quite recently [209], a robust version of isolated calmness for a set-valued mapping F at
(x, y) € gph F with the additional requirement that F(x) N U # ¢ for all x € V has been labeled
as the robust isolated calmness. Note that this property was actually employed earlier in particular
settings without naming it; see [94, 226, 420, 632]. If the set-valued mapping F is lower semicon-
tinuous at (x, y) in the standard topological sense, then isolated calmness implies its robust coun-
terpart. However, it doesn’t hold in general as shown, e.g., in [562, Example 6.4]. In fact, the usage
of robust isolated calmness in numerical optimization has been recognized in the literature starting
with the 1990s. In particular, the sharpest result for the sequential quadratic programming (SQP)
method for solving NLPs, obtained by Bonnans [94], imposes the strict Mangasarian-Fromovitz
constraint qualification together with the conventional second-order sufficient condition for NLPs.
As later proved by Dontchev and Rockafellar [226, Theorem 2.6], the simultaneous validity of
these conditions characterizes robust isolated calmness of solutions maps of canonically perturbed
KKT systems in NLPs. Recently this result has been extended by Ding, Sun, and Zhang [209]
to some nonpolyhedral problems of constrained optimization under the so-called strict Robinson
constraint qualification . Mordukhovich and Sarabi [577] characterized robust isolated calmness
for generalized KKT systems in problems of composite optimization relating this notion to non-
criticality of Lagrange multipliers associated with local minimizers for such problems. The latter
notion extends the one introduced by Izmailov and Solodov [383] for the classical KKT systems in
NLPs. Furthermore, it is shown in [577] that the Lipschitz-like property of solution maps to gener-
alized KKT systems for composite optimization problems yields their robust isolated calmness at
the corresponding points.



Chapter 6 )

Nondifferentiable and Bilevel Creck fo
Optimization

It is not accidental that we unify the exposition of these two areas of optimization
theory in one chapter. It has been widely recognized that problems of nondiffer-
entiable/nonsmooth optimization (i.e., those containing nondifferentiable functions
and/or sets with nonsmooth boundaries in their objectives and/or constraints) natu-
rally and frequently appear in different aspects of variational analysis and numerous
applications while being very challenging from both theoretical and algorithmic
viewpoints. On the other hand, problems of bilevel optimization are intrinsically
nonsmooth, even in the case of fully smooth data at their lower and upper levels. In
fact, they can be reduced to single-level optimization problems, but the price to pay
is the unavoidable presence of nonsmooth functions as a result of such reductions,
regardless of smoothness assumptions imposed on the given data.

The main emphasis of this chapter is obtaining efficient first-order necessary op-
timality conditions for problems of nondifferentiable programming and then apply-
ing them to bilevel programs with smooth and nonsmooth functions at both levels
of optimization. To proceed in these directions, we rely on the constructions and
results of variational analysis and generalized differentiation developed in the pre-
vious chapters of the book.

6.1 Problems of Nondifferentiable Programming

We start with deriving necessary optimality conditions for problems of nonsmooth
minimization with geometric constraints given by closed sets and then extend them
to general problems of nondifferentiable programming with functional constraints
described by finitely many inequalities and equalities.
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6.1.1 Lower and Upper Subdifferential Conditions

Given ¢: R” — R and Q C R”, consider the problem:
minimize ¢(x) subjectto x € Q. 6.1)

Our goal here is to obtain necessary conditions for (feasible) local minimizers
x € dome N 2 in (6.1). We derive two different types of necessary optimality
conditions. Conditions of the first type, called the lower subdifferential optimality
conditions, are expressed in terms of the basic subdifferential (1.24) under appro-
priate qualification conditions formulated in terms of the singular subdifferential
(1.25). Conditions of the second type, called the upper subdifferential optimality
conditions, make use of the upper regular subdifferential (1.76) of the cost function
@ that is equivalently described as

(@) = —0(—p)(X), |pE)] < 0. (6.2)

Note that (6.2) may be empty for broad classes of nonsmooth functions (e.g., for
convex functions nondifferentiable at x) while giving more selective necessary con-
ditions for minimization than the lower subdifferential ones in certain “upper regu-
lar” settings; see the results, examples, and discussions below.

As before, we always assume without loss of generality that cost functions are
l.s.c. around the reference points (although it is not needed for upper subdifferential
conditions) and constraint sets are locally closed around them.

The following theorem contains necessary optimality conditions of both types for
problem (6.1). Observe that both of them are derived from the variational/extremal
principles. Indeed, the upper subdifferential conditions are induced by the smooth
variational description of regular subgradients. To establish the lower subdifferential
optimality conditions, we employ the basic subdifferential sum rule, which follows
from the extremal principle. In fact, the extremal principle can be used directly;
see, e.g., the proof of Theorem 6.5 below for problems involving functional and
geometric constraints.

Theorem 6.1 (Optimality Conditions for Problems with a Single Geometric
Constraint). Let x € domg N Q be a local optimal solution to the minimization
problem (6.1). The following assertions hold:

(i) The entire set of upper regular subgradients satisfies the inclusions

~9Tp(®) C NE; Q), —3Tp{E C NG Q). (6.3)
(ii) Under the qualification condition
I%(x) N (= N(x; Q) = {0} (6.4)
, we have the lower subdifferential relationships

dpX) N (= NE; Q) #0, ie, 0€ )+ NE; Q). (6.5)
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Proof. _To justify assertion (1), it suffices to verify only the first inclusion in (6.3)
since N (x; ) C N(x; Q) by Theorem 1.6. To proceed with this task, suppose
that 9+ (X) # ¥ (there is nothing to prove otherwise), and pick any v € 3 "¢ (x).
Using (6.2) and applying the first part of Theorem 1.27 (which holds without the
L.s.c. assumption on ¢), we find a function ¢ : R” — R with ¢/(x) = ¢(x) and
Y(x) > @(x) whenever x € R” such that ¢ is (Fréchet) differentiable at x and
Vir(x) = v. It gives us

Y(x) =) < @) <Y(x) forall x € Q closeto x
showing therefore that x is a local minimizer of the constrained problem:
minimize V¥ (x) subjectto x € ,

where the cost function is differentiable at x. This problem can be equivalently
written in the form of unconstrained optimization:

minimize ¥(x) +8(x; Q), x € R".

Employing in the latter setting the generalized Fermat rule from Proposition 1.30(i)
and then the regular subdifferential sum rule from Proposition 1.30(ii) with taking
into account that Vi (x) = v, we get

0€d(¥ +8(:Q)E) =VY@ +NE Q) =v+ NG Q).

This yields —v € ﬁ(i; Q) forany v € 5+<p()2) and thus verifies (i).
To prove assertion (ii), we apply the generalized Fermat rule to the local optimal
solution x of problem (6.1) written in the unconstrained form:

minimize ¢(x) +8(x; RQ), x € R",
and then deduce from the basic subdifferential sum rule of Theorem 2.19 that
0€d(p+8(5Q))F) CIpE) + N Q)

provided the validity of the qualification condition (6.4) due to Proposition 1.19.
This verifies (6.5) and completes the proof of the theorem. A

Let us discuss some particular features of the lower and upper subdifferential
conditions from Theorem 6.1 and relationships between them.

Remark 6.2 (Upper vs. Lower Subdifferential Optimality Conditions).
(i) Note first that in the case where ¢ is (Fréchet) differentiable at x, the optimal-
ity conditions in (6.3) reduce to

—Vo(E) e N(x;Q), —Vo() € N&; Q),
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while only the second inclusion can be derived from (6.5) provided that ¢ is strictly
differentiable at x. On the other hand, the upper subdifferential conditions in (6.3)
are trivial when 5*(/)()2) = (), which is the case of, e.g., convex continuous functions
nondifferentiable at x. In contrast, the lower subdifferential condition (6.5) is non-
trivial for broad collections of nonsmooth functions including, e.g., every locally
Lipschitzian function ¢ for which dp(x) # ¥ and the qualification condition (6.4)
holds due to 3*°¢(x) = {0} by Theorem 1.22.

(ii) Note also that the triviality condition 5+<p()2) = () itself is an easy checkable
necessary condition for optimality in (6.1) provided that ¢ is nondifferentiable at x
and 2 = R”. Indeed, in this case, we have the inclusion 0 € 5(0()2) # () by the
generalized Fermat rule and hence 5"’(0()2) = {) by the simple observation from
Exercise 1.76(ii).

(iii) Recall that ¢ is upper regular at x if 5“'(,0()2) = 3T (X). Note that, besides
concave functions and differentiable ones, this class includes, e.g., a rather large
class of semiconcave functions important in various applications to optimization
and control; see, e.g., [136, 523]. If ¢ is upper regular at x and locally Lipschitzian
around this point, we have 5‘*‘(;)()?) = —03(—¢)(x) # 0 by Theorem 1.22, i.e., the
upper subdifferential conditions in (6.3) definitely give us a nontrivial information.
Furthermore, in this case, we also have d¢(x) = 5+¢()E) for Clarke’s generalized
gradient due to its plus-minus symmetry (1.79). Taking into account that the inclu-
sions in (6.3) are valid for the entire set of upper subgradients, these observations
show that the upper subdifferential optimality conditions may have sizable advan-
tages over the lower subdifferential ones from Theorem 6.1(ii).

(iv) Let us consider in more detail problems of concave minimization, i.e., when
the cost function ¢ is concave in (6.1). This class is of significant interest for various
aspects of optimization theory and applications; in particular, from the viewpoints
of global optimization; see, e.g., [355]. When ¢ is concave and continuous around
x, it follows from Exercise 1.77 that

dp(X) C atp(x) =3 Te(F) # 0.

Then comparing the second inclusion in (6.3) (which is even weaker than the first in-
clusion therein) with the lower subdifferential condition in (6.5), we see that the nec-
essary condition of Theorem 6.1(i) requires that every element v of the set 5+<p(£)
must belong to — N (x; €2), instead of that some element v from the smaller set ¢ (x)
belongs to —N (x; 2) in Theorem 6.1(ii). Let us illustrate it by the following simple
example:

minimize ¢(x) := —|x| subjectto x € Q:=[-1,0] C R.

Obviously x = 0 is not an optimal solution to this problem. However, it cannot be
taken away by the lower subdifferential condition (6.5) due to

3p0) = {—1,1}, N(@©; Q) =[0,00), and —1e —N(0;).
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On the other hand, checking the upper subdifferential condition (6.3) gives us
e =[-1,1] and [-1,1]¢ N(0; ),

which confirms that x = 0 is not optimal in (6.1), and thus (6.3) is a more selective
necessary condition for optimality in the problem under consideration.

Observe further that minimization problems for differences of two convex (DC)
functions can be equivalently reduced to minimizing concave functions subject to
convex constraints. This allows us to deduce necessary conditions for such problems
from the upper subdifferential conditions of Theorem 6.1(1).

Proposition 6.3 (DC Optimization Problems). Consider the problem:
minimize ¢1(x) —@2(x), x €R", (6.6)

where @1, ¢>: R" — R are convex under the convention that 0o — 00 = 00.
Then x is a local minimizer of (6.6) if and only if the pair (x, ¢1(x)) gives a local
minimum to the following problem on minimizing a concave function subject to
convex geometric constraints:

minimize ¥ (x,®) = o — @2(x) subjectto (x,w) € epi¢;. (6.7)

Moreover, the upper subdifferential condition (6.3) for (6.7) reduces to the (lower)
subdifferential inclusion d¢@y(x) C 9¢1 (X).

Proof. If x solves (6.6) locally, i.e., there is a neighborhood U of x such that
P1(X) —2(X) < @1(x) — @2(x) forall x € U,
then for @ := ¢1(x), we obviously have
o —@r(x) <o —@a(x) whenever (x,a) € (U x R)Nepigy,

which means that (x, @) locally solves problem (6.7). Conversely, suppose that there
exist & > 0 and a neighborhood U of x such that

P1(X) —@2(%) < —@2(x) forall @ = ¢i(x), x €U, |la —g1(x)] <e.

Since ¢; is convex and finite around x by the ibove, it is (Lipschitz) continuous
around this point. Thus there is a neighborhood U of x on which

lo1(x) —p1(F)] < &, andso @1 (%) — ¢2(X) < ¢1(x) —2(x), x€U.

This verifies that x is a local solution to (6.6).
It remains to show that the upper subdifferential optimality condition

— 9Ty (%, ¢1 (X)) C N((F, ¢1(3)); epigi) (6.8)
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for (6.7) reduces to the subdifferential inclusion claimed in the proposition. Indeed,
we get by the direct calculations that

—0t Y (%, 1(5) =B(p2 — @) (¥, 1 (X)) = d2(¥) x {0} + {0} x {1}
= 0g2(x) x {—1}.

Hence the upper subdifferential inclusion (6.8) implies that
(v, =1) € N((&. ¢1()): epigy) forall v € dga(¥),

which is equivalent to v € d¢;(x) for all v € d¢y(x) and thus justifies the claimed
necessary optimality condition d¢;(x) C d¢1(X) in (6.6). A

The crucial advantage of the second upper subdifferential inclusion in (6.3) in
comparison with the first one and also a strong feature of the lower subdifferential
qualification and optimality conditions are well-developed calculus rules available
for basic normals and subgradients in contrast to their regular counterparts. In partic-
ular, calculus results obtained in Chapter 2 allow us to derive various consequences
of both assertions (i) and (ii) of Theorem 6.1 in cases where 2 is represented as a
product and a sum of finitely many sets, as an inverse image of another set under a
set-valued mapping, as a system of inequalities and/or equalities, etc. Qualification
conditions that ensure the validity of the obtained representations of N (x; 2) are
transferred in this way into constraint qualifications under which the corresponding
necessary optimality conditions hold in the qualified/normal/KKT (Karush-Kuhn-
Tucker) form, i.e., with no (=1) multiplier associated with the cost function; see
below.

Next we present both upper and lower subdifferential optimality conditions ob-
tained in this scheme for problems with finitely many geometric constraints.

Proposition 6.4 (Optimality Conditions for Problems with Many Geometric
Constraints). Consider the problem:

minimize @(x) subjectto x € Q; for i =1,...,s, (6.9)

and suppose that x € dome N Q21 N ... N 2 is a local minimizer for (6.9). Then
the following upper subdifferential and lower subdifferential necessary optimality
conditions hold at x:

(i) Under the validity of the constraint qualification

[vi+...4v =0, v e N& Q)| = v, =0 forall i =1,...,s, (6.10)
we have the upper subdifferential inclusion
o) C NG QD) + ... + N Q).

(ii) Under the validity of the qualification condition
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N
[U+Zv,~ —0 for ved®e), v eN()E;Qi)] s v=u=...=p =0
i=1
stronger than (6.10), we have the lower subdifferential inclusion
0e€dp(x)+ N(x; Q)+ ...+ N(x; Q).

Proof. Necessary optimality conditions in both assertions (i) and (ii) follow directly
from the corresponding results of Theorem 6.1 and the normal intersection rule for
finitely many sets given in Corollary 2.17. A

6.1.2 Finitely Many Inequality and Equality Constraints

Let us consider here the problem of nondifferentiable programming:

minimize @o(x) subject to

pi(x) <0, i=1,...,m,
0i(x)=0, i=m+1,...,m+4+r,
xeQCR"

6.11)

with finitely many inequality and equality constraints while keeping geometric con-
straints as well. In what follows we derive various necessary optimality conditions
of both lower subdifferential and upper subdifferential types for local solutions to
program (6.11) depending on assumptions imposed on their initial data and proof
techniques. Our first theorem presents general necessary optimality conditions of
the lower subdifferential type expressed via normals and subgradients of each func-
tion and set in (6.11) separately. The proof is based on the direct application of the
extremal principle from Theorem 2.3. Recall that, unless otherwise stated, all the
functions in question are assumed to be lower semicontinuous around the reference
points.

Theorem 6.5 (Lower Subdifferential Conditions via Normals and Subgradi-
ents of Separate Constraints). Let X be a feasible solution to (6.11), that is, a local
minimizer for this problem. The following necessary optimality conditions hold at
x:

(i) Assume that the equality constraint functions ¢; are continuous around X
foralli = m+1,...,m + r. Then there are elements (v;, A;) € RrHl fori =
0,...,m 4+ r, not equal to zero simultaneously, and a vector v € R" such that
Ai >0fori=0,...,mand

(vo, —20) € N((X, go(X)); epigi), v € N(F; Q), (6.12)

(vi, —hi) € N((X,0);epig), i=1,...,m, (6.13)
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(vi, —Aj) € N(()E, 0); gphga,-), i=m+1,...,m+r, (6.14)
m—+r
vt Y v =0. (6.15)
If in addition the function @; is u.s.c. at x for some i € {1, ..., m} with ¢;(x) < 0,
then A; = 0. If this happens for alli = 1, ..., m, then we have the complementary

slackness conditions for the inequality constraints

Aigi(x)=0, i=1,...,m. (6.16)
(ii) Assume that the functions ¢; are Lipschitz continuous around X for all i =
0, ...,m +r. Then there are multipliers (Mg, . .., Am+r) 7 O such that
m m—+r
0e Y mdni®+ Y M[dn® U@ |+ NED, 617
i=0 i=m+1

Ai>0,i=0,....m+r, and Aigi(x)=0,i=1,...,m. (6.18)

Proof. To justify (i), assume without loss of generality that ¢g(x) = 0. Then it is
easy to check that (x, 0) is a locally extremal point of the following system of locally
closed sets in the product space R” x R"+"+1.

Ql = {(x’a07~--a(¥rn+r)|05izfpi(x)}a i=09'~'ama
Qi :Z{(xaa07~--aarn+r)|05iZ(Pi(x)}, i=m+17--~am+r’
Qury1 = Q2 x {0}.

Applying the extremal principle of Theorem 2.3 immediately gives us the re-
lationships in (6.12)—(6.15). It follows from Proposition 1.17 that A; > 0 for
i = 0,...,m. To finish the proof of (i), it remains to show that the complemen-
tary slackness conditions in (6.16) hold for each i € {1,...,m} with ¢;(x) < O
provided that ¢; is u.s.c. at x. Indeed, we get from this assumption that ¢; (x) < 0
for all x around x, and so (x, 0) is an interior point of the epigraph of ¢;. Thus
N((x,0); epig;) = {0} and (v;, A;) = (0, 0) for such i.

Assertion (ii) easily follows from (i) due to Theorem 1.22, which shows that the
normal cone to the epigraph of a locally Lipschitzian function ¢; is fully determined
by the (basic) subdifferential of ¢;. In the case of gph ¢; for the equality constraints,
we deal with the epigraph of either ¢; or —¢; scaled by the corresponding nonneg-
ative multiplier A; due to Proposition 1.17. A

The necessary optimality conditions of Theorem 6.5 are given in the non-
qualified/Fritz John form, which doesn’t ensure that A9 # 0 for the multiplier asso-
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ciated with the cost function. However, it is not hard to deduce from them (or from
the qualification conditions in the calculus rules employed in the proofs) appropri-
ate constraint qualifications of the generalized Mangasarian-Fromovitz and other
types, which yield Ao = 1; see, e.g., [523, Chapter 5] with the commentaries and
references therein as well as the exercises in Section 6.4.

Observe that for standard nonlinear programs (6.11) with smooth functions ¢;
and Q = R", the necessary optimality conditions of Theorem 6.5(ii) agree with the
classical Lagrange multiplier rule. However, it is not the case for problems with
nonsmooth equality constraints. Indeed, in the latter case, the result obtained in
Theorem 6.5(ii) involves nonnegative multipliers A; associated with the the unions
Ap;(X) U d(—¢i)(x)asi =m+1,...,m + r, which are {Vg; (x), =V, (x)} for
smooth functions. It is not hard to deduce from (6.17) and (6.18) a more conven-
tional form of the generalized Lagrange multiplier rule with no sign condition for
the equality multipliers, but in this way we arrive at a weaker necessary optimality
condition as shown in Example 6.7 below. To proceed, recall the two-sided version
of the basic subdifferential

3% (%) = dp(x) U 87 (%),
which is the symmetric subdifferential (1.75) already used in the book.

Corollary 6.6 (Equality Constraints via Symmetric Subgradients). Let x be a
local minimizer of (6.11) under the assumptions of Theorem 6.5(ii). Then there exists
a nonzero collection of multipliers (Aq, ..., Amsr) € R satisfying the sign
conditions A; > 0 fori =0, ..., m, the complementary slackness condition (6.16),
and the symmetric Lagrangian inclusion

m m-+tr
0> ndpi(®) + Y 2% + NG Q). (6.19)
i=0 i=m+1

Proof. Follows directly from Theorem 6.5(ii) due to the (proper) inclusion
IM[d@(x) Ud(—9)(@)] C A[3%() U (- 3%()]. 1 €eR,

applied to the functions ¢;,i =m + 1,...,m 4+ r,in (6.17). A

6.1.3 Examples and Discussions on Optimality Conditions

Now we present several examples illustrating the difference between the obtained
versions of the generalized Lagrange multiplier rule and compare them with other
major versions known in nonsmooth optimization.

Example 6.7 (Nonnegative Sign vs. Symmetric Lagrangian Inclusions). As
shown above, inclusion (6.17) with all the nonnegative multipliers always implies
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the symmetric one (6.19) with A; € Rasi =m+1, ..., m +r. The following two-
dimensional problem with a single equality constraint confirms that the converse
implication doesn’t hold. Consider the problem:

minimize x; subjectto ¢i(xq, x2) := @(x1,x2) +x1 =0, (6.20)

where ¢ is taken from Example 1.31(ii). It follows from the subdifferential calcula-
tion therein that the set d¢;(0, 0) U d(—¢1)(0, 0) in (6.17) is

{Wr,v) € R vy — 1] vy < 1JU{(vr, —[vr — 1D]0 < v <2}
Uf{(vr, D| =2 < v <0} U {(=2, -1}

as depicted on Fig. 6.1(a). The symmetric subdifferential of ¢ is
8%91(0,0) = d(0,0) U {(v, —D)| = 1 < v < 1} + (1,0

with d¢ (0, 0) calculated in Example 1.31(ii); see Fig. 6.1(b). It is now easy to check
that the nonnegative sign inclusion (6.17) allows us to exclude the feasible solution
x = (0, 0) from the candidates for optimality, while the symmetric one (6.19) is
satisfied at the nonoptimal point X.

A A
1 1
721 711 /1\ 2= : + 2 >
. B 1<A
(a) 9¢1(0,0) U d(—41)(0,0) (b) 8%1(0,0)

Fig. 6.1 Subdifferentials of g1 (x1, x2) = ||x1| + x2| + x1 at (0, 0).

Example 6.8 (Comparison with the Convexified/Clarke Version of the La-
grange Multiplier Rule). Clarke’s version [164, 165] of the Lagrange multiplier
rule for nondifferentiable programming (6.11) with Lipschitzian data is given
in the form of Corollary 6.6 where the nonconvex subdifferentials d¢;(x) for
i =0,...,mand 80<p,~()2) fori =m+1,...,m + r, as well as the normal cone
N (x; 2), are replaced by their convexified counterparts:

m-+r
0e Y 1dgi(¥) + N(E: Q). 6.21)
i=0
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This version is obviously weaker than (6.6) and doesn’t allow us to exclude the
nonoptimal solution x in problem (6.20) of the preceding Example 6.7. Moreover,
Clarke’s version (6.21) fails to recognize nonoptimal solutions even in much less
sophisticated examples from unconstrained nonsmooth optimization and also for
problems with only inequality constraints. One of the reasons for this is that, due
to the plus-minus symmetry of d¢, condition (6.21) does not distinguish between
minima and maxima and also between inequality constraints of the “<” and “>”
types. It makes an easy task to construct examples for which (6.21) is satisfied at
clearly nonoptimal points.
(i) First consider the simplest unconstrained minimization problem:

minimize ¢(x) := —|x| overall x € R,

where x = 0 is a point of maximum, not minimum. Nevertheless, we have 0 €
3p(0) = [—1, 1] while 0 ¢ d¢(0) = {—1, 1}.

(ii) The second example in this direction concerns the following two-dimensional
problem with a single nonsmooth inequality constraint:

minimize x; subjectto ¢(xq, x2) := |x1| — |x2] <O0.

We have here 0¢(0,0) = {(vi,v2)|] -1 < vy < l,vy = 1, orvy = —1} by
Example 1.31(i), and hence the point x = (0, 0) is ruled out from optimality by
Corollary 6.6, while the usage of the generalized gradient 3¢ (0, 0) = {(vy, v2)| —
1 <v; <1,—1 <wvy <1} doesn’t allow us to do it by (6.21).

Example 6.9 (Comparison with Warga’s Version of the Lagrange Multiplier
Rule). Another extension of the Lagrange multiplier rule to problems of nondif-
ferentiable programming (6.11) with @ = R" and Lipschitzian functions ¢; was
obtained by Warga [736, 737] in terms of his derivate containers A%;(x) in the
form of Corollary 6.6 with the Lagrangian inclusion

m—+r

0¢ Z 1iA3¢; (%). 6.22)
i=0

Note that the set A%p (%) is generally nonconvex, possesses the classical plus-minus
symmetry, and may be strictly smaller than Clarke’s generalized gradient d¢(X).
As shown in [522, Corollary 2.48], we always have 3% (¥) c A%p(x). Hence the
necessary optimality conditions of Theorem 6.5(ii) and Corollary 6.6 definitely yield
the result of (6.22). Let us illustrate that the improvement is strict in both cases of
equality and inequality constraints.

(i) For the case of only equality constraints in (6.11), the claimed strict inclusion
follows from Example 6.7 with the constraint function ¢; defined in (6.20). Indeed,
condition (6.22) is satisfied at the nonoptimal point x = (0, 0), while (6.19) con-
firms its nonoptimality. Recall that the derivative container A%¢(X) for the function
¢ in this example is depicted on Fig. 1.13.
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(ii) To demonstrate the advantage of (6.17) for nondifferentiable programs with
inequality constraints, consider the problem

minimize x; subjectto ¢q(x1, x2) := @(x1,x2) +x2 <0,

where ¢ is taken from Example 1.31(ii) and its subdifferential d¢ (0, 0) is calculated
therein. Hence we have

391(0,0) = {(vi, )| vl +1 < vy <2} U {1, 12)| 0 < v2 = —Jvy| + 1}

as depicted on Fig. 6.2. This shows that the result of Theorem 6.5(ii) (same in Corol-
lary 6.6) allows us to rule out the nonoptimal point x = (0, 0), while it cannot be
done by using Warga’s condition (6.22).

Next we derive yet another type of lower subdifferential optimality conditions
for problem (6.11) with Lipschitzian data that are expressed in the condensed form
via the basic subdifferential (1.24) of Lagrangian combinations of the initial data.
Consider the standard Lagrangian

LA, oy Amgr) 1= Ao@o(X) + ..o+ Apgr @ur (%)

involving the cost function and all the functional (while not geometric) constraints
and also the extended Lagrangian

Lo(x; 20, oy Amtr) 1= 20@0(X) + ... + Appr @mtr (X) + 8(x;5 Q)
involving also the set geometric constraint via its indicator function.

A
2

-1 1

Fig. 6.2 Basic subdifferential of ¢;(x1, x2) = ||x1| + xz| + xp at (0, 0).

Theorem 6.10 (Condensed Lower Subdifferential Optimality Conditions). Let
X be a local minimizer of problem (6.11) under the assumptions of Theorem 6.5(ii).
Then there are multipliers Ay, . . . , Am+r, N0t equal to zero simultaneously, satisfying
(6.16) and the condensed Lagrangian inclusions

0€0xLo(X, A0, -y Amgr) C 0 L(X, A0, ooy Apgr) + N(X; ). (6.23)
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Proof. Note that the second inclusion in (6.23) follows from the first one due to the
subdifferential sum rule from Corollary 2.20. To justify the first inclusion therein,
consider the set

E@o, .y Qar, Q) 1= { (X, 00, .oy Cpgr) € RTMFTH 3 € Q0 (x) < o,

i=0,...,m; ¢i(x) =«aj, i=m+1,...,m+r}

and suppose without loss of generality that ¢g(x) = 0. Denoting now by U a
neighborhood of the local minimizer x in (6.11), we claim that the pair (x,0) €
R" x R™**1 is an extremal point of the closed set system

Q:=E&(wo, ..., Omtr, Q) and Q2 :=clU x {0}. (6.24)

Indeed, we obviously have (x, 0) € ;N Q27 and (21 — (0, v, 0,...,0)NQy = ¢,
k € N, for any sequence of negative numbers v; 1 0 by the local optimality of x in
(6.11). Applying to this system the basic extremal principle from Theorem 2.3 gives
us multipliers (Ao, ..., Aym+r) 7 O satisfying the inclusion

(01 _)"07 ey _)\err) € N((iv O)v g((p07 ooy Om+rs Q))v (625)

which implies the conditions in (6.16) due to the structure of the set €21 in (6.24).
Furthermore, it follows from the scalarization formula of Theorem 1.32 and its proof
that (6.25) can be equivalently rewritten as the first inclusion in (6.23) under the
assumed local Lipschitz continuity of ¢;. A

If the geometric constraint set 2 is convex, the second inclusion in (6.23) can be
written in the form of the abstract maximum principle.

Corollary 6.11 (Abstract Maximum Principle in Nondifferentiable Program-
ming). Suppose that the set Q2 is convex in the assumptions of Theorem 6.10. Then

there are multipliers (Ao, ..., Am+r) 7 0 such that
(v, x) = mag)zi(v, x) forsome v € —0,L(X, A0, ..., m,).
xXe

Proof. It follows from Theorem 6.10 by the representation of the normal cone to
convex sets given in Proposition 1.7. A

We conclude this section by deriving upper subdifferential necessary optimal-
ity conditions for (6.11) that are independent of the obtained lower subdifferential
conditions; see more discussions in Remark 6.2.

Theorem 6.12 (Upper Subdifferential Optimality Conditions in Nondifferen-
tiable Programming). Let x be a local minimizer of problem (6.11). Assume
that the functions @; are locally Lipschitzian around x for the equality indices
i=m+1,...,m+r. Then for any v; € 5+g0i()2), i =0,...,m, there are multi-
pliers (Ao, ..., Am+r) # 0 satisfying (6.16) and the inclusion
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m m+r
~ S hvi e a( 3 Ai(p;)(i) FNGE Q). (6.26)
i=0 i=m+1

Proof. Suppose without loss of generality that 5+<pi x) #@fori =0,...,m.
Applying the second part of Theorem 1.27 to —v; € 5(—@)()?) (we can always
assume that the functions —¢; are bounded from below, which is actually not needed
for the localized version of Theorem 1.27 used in what follows) allows us to find
functions v¥; : R — R fori =0, ..., m satisfying

Yi(x) = ¢i(x) and v¥;(x) > ¢;(x) around X

and such that each ; (x) is continuously differentiable around x with the gradient
Vi (x) = v;. Itis easy to check that x is a local solution to the following optimiza-
tion problem of type (6.11) but with the cost and inequality constraint functions
continuously differentiable around x:

minimize Yo(x) subjectto

Yix) <0, i=1,...,m,
oix)=0, i=m+1,....m+r,
xeQCR".

(6.27)

To arrive finally at (6.26), it remains to apply to the solution x of (6.27) the second
Lagrangian inclusion in (6.23) of Theorem 6.10 and then to use therein the elemen-
tary subdifferential sum rule from Proposition 1.30(ii). A

Employing further in (6.26) the subdifferential sum rule for Lipschitzian func-
tions from Corollary 2.20 and weakening in this way the necessary optimality con-
ditions for the case of equality constraints, we can express them in forms (6.17) and
(6.19) via the corresponding subdifferential constructions for the separate functions
i, i=m—+1,....m+r.

6.2 Problems of Bilevel Programming

In this section we begin considering a remarkable class of problems in hierarchical
optimization known as bilevel programming and also as Stackelberg games. Such
problems are highly interesting and challenging in optimization theory and impor-
tant for numerous applications. There is an enormous bibliography on bilevel pro-
gramming and related topics; see commentaries and references in Section 6.5 for
more discussions on major approaches and results.

Our primary goal here is to reduce bilevel programs to those in nondifferentiable
programming considered above and derive in this way several types of necessary
optimality conditions in terms of the initial bilevel data by using the results of Sec-
tion 6.1 together with subdifferentiation of marginal functions and other machinery
of variational analysis.
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6.2.1 Optimistic and Pessimistic Versions

Bilevel programming deals with problems of hierarchical optimization that address
minimizing a given upper-level/leader’s objective function f(x, y) from R" x R™
to R subject to the upper-level constraints x € 2 C R" along an optimal solution
y = y(x) to the parametric lower-level/follower’s problem

minimize, ¢(x, y) subjectto y € G(x) (6.28)

with the objective/cost ¢: R" x R”™ — R and the constraint set-valued mapping
G: R" = R™. For simplicity we confine ourselves to the case where the lower-
level constraints are given by the parameterized inequality systems

G(x) :={y e R"| g(x,y) <0}, (6.29)

where g = (g1, ..., &p): R" x R" — RP? and the vector inequality for g are un-
derstood componentwise. As follows from the proofs below, appropriately modified
similar results can be derived for other types of constraints in (6.28).

Note that the bilevel optimization problem formulated above is not fully deter-
mined when the solution/argminimum map

S(x) := argmin{p(x, y)| y € G(x)}, x eR", (6.30)

for the lower-level problem is set-valued, since in this case we did not specify how to
choose a single-valued decision function y(x). To deal with such a typical situation,
the two major versions, known as optimistic and pessimistic models, have been
designated in bilevel programming. We always suppose that the argminimum sets
S(x) are nonempty around the reference point.

The optimistic version in bilevel programming is formulated as follows:

minimize f,,,(x) subjectto x € £,

where fop (x) 1= inf{f(x, y)| ye S(x)}, (6.31)

which means that the decision y(x) is chosen in S(x) to benefit the objective f,p;.
As usual, a point x € € is called a global (local) optimistic solution to (6.31) if
Jopt(X) = fope(x) for all x € 2 (sufficiently close to x). From the economics
viewpoint , this corresponds to a situation where the follower participates in the
profit of the leader, i.e., there exists some cooperation between both players on the
upper and lower levels.

However, it would not always be possible for the leader to convince the follower
to make choices that are favorable for him or her. Hence it is necessary for the upper-
level player to reduce damages resulting from undesirable selections on the lower
level. This brings us to the pessimistic version in bilevel programming formulated
in the following way:
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minimize fpes(x) subjectto x € €2,

where fpes (x) :=sup { f(x, )| y € S(x0)}. (6.32)

We can see that (6.32) is a special type of minimax problems, which challenges
come from the complicated structure of the moving set S(x) 