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Preface

All the truths are easy to understand once they are discovered;
the point is to discover them.

Galileo Galilei

A moment of truth in mathematics is an instant between infinity
when it was considered to be wrong and another infinity when it
is considered to be trivial.

Henri Poincaré

Variational analysis, as now understood, is a relatively young area of mathemat-
ics. From one side, it can be viewed as an outgrowth of the calculus of variations,
constrained optimization, and optimal control, and also of variational principles in
mathematical physics and mechanics that go back to the 18th century. On the other
hand, modern variational principles and techniques are largely based on perturba-
tions, approximations, and the (unavoidable) usage of generalized differentiation.
All of this requires developing new forms of analysis and thus manifests the cre-
ation of a new discipline in mathematics that strongly combines and unifies analytic
and geometric ideas.

Although some particular aspects of variational analysis have been reflected in
the monographic literature earlier (beginning with its starting point–beautiful con-
vex analysis), the first systematic monograph on this subject covering its key ingre-
dients in finite-dimensional spaces was the book by Rockafellar and Wets “Varia-
tional Analysis” (Springer, 1998), where this very name was coined. Since then a
great many publications have appeared on numerous issues of variational analysis
and its applications, including several monographs. Among them is the two-volume
monograph by the author “Variational Analysis and Generalized Differentiation, I:
Basic Theory, II: Applications” (Springer, 2006) devoted to infinite-dimensional as-
pects of variational analysis and generalized differentiation with a broad spectrum
of applications.

This new book presented to the reader’s attention pursues several goals. The first
goal is to give a systematic and easily understandable exposition of the key concepts
and facts of variational analysis with selected applications in finite-dimensional
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spaces. It is done in Chapters 1–6 that also contain, besides basic material, some
recent developments in this vein. We view these chapters as the basis for a self-
contained course on variational analysis for beginners, which is accessible to gradu-
ate students in mathematics as well as in applied sciences and engineering. To create
a usable text for teaching variational analysis, with plenty of exercises as well as il-
lustrative figures and examples, is one of the underlying goals of this book.

Here we follow a dual-space approach, which doesn’t rely on tangential ap-
proximations of sets and related constructions for functions and mappings in primal
spaces, but instead focuses directly on dual-space approximations, which are dual
to none. One of the reasons for this is that duality objects generated by any tan-
gential approximation are automatically convex while the latter property provides
significant limitations for generalized differentiation and its applications. This issue
is revealed and largely discussed in the basic text and commentaries therein. On the
other hand, dealing with nonconvex objects requires the usage of new machinery of
analysis that is different from the conventional convex separation and the like. The
major tool for such analysis is provided by a geometric variational principle known
as the extremal principle for set systems, which is strongly employed in the book.

This approach leads us to developing an easy path to variational analysis and its
applications presented in the book. The finite-dimensional framework allows us to
significantly simplify the exposition and proofs of major results. It has been revealed
that dual-space objects are actually more beautiful and perfect than their primal-
space counterparts and bring us, as a rule, to more natural and complete results. One
can observe an analogy with Plato’s theory of Forms (or Ideas, eidos), which are
dual objects to some extent while providing the most accurate representations of
reality in the intelligible realm.

Yet another goal of this book is encouraging the interested readers to learn more
on variational analysis and to develop their research skills in this field by performing
(at least partly) the exercises presented after the basic material of each chapter. The
reader can find hints and references for more difficult exercises and also discussions
on challenging open questions in the commentaries. A number of exercises deal with
problems in infinite-dimensional spaces (while presenting the corresponding defini-
tions and supporting material), and some of them are referred to in the subsequent
chapters of the book.

Chapters 7–10 are devoted concern recent results on applications of varia-
tional analysis to important classes of advanced problems in optimization, mi-
croeconomics, and related areas. They are presented in full generality of infinite-
dimensional spaces and mostly address researchers, graduate students, and practi-
tioners in these (fairly broad) particular fields while may be of interest for larger
communities of mathematicians and economists. The results obtained demonstrate
the strength of variational analysis and dual-space constructions in solving concrete
problems that may not even be of a variational nature.

Let us briefly describe the main content of each of the ten chapters.
Chapter 1 presents the basic constructions of first-order generalized differentia-

tion studied and applied in the book. Developing a geometric approach to general-
ized differentiation, we consider first the nonconvex (basic, limiting) normal cone
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to locally closed sets and then define in its terms the coderivative of set-valued
mappings as well as the basic and singular subdifferentials of extended-real-valued
functions. Various representations and properties of these constructions and their re-
lationships with other objects of generalized differentiability in variational analysis
(including tangentially generated ones) are investigated in detail. The given proofs
are mostly simplifications and improvements in finite dimensions of those devel-
oped in the author’s previous book [522] in more general settings. Some new results
and proofs are also presented here. Infinite-dimensional extensions and related de-
velopments are discussed in the exercise and commentary sections.

The main material of Chapter 2 concerns extremal principles for finitely many
and countably many systems of sets, which play a crucial role in the developed
dual-space geometric approach to variational analysis and generalized differentia-
tion. Our major extremal principle is expressed in terms of basic normals to finitely
many closed sets and can be considered as a nonconvex variational counterpart of
the classical convex separation. Its proof is given by using the method of metric
approximations (MMA), which manifests one of the most fundamental ideas of
modern variational analysis to implement approximation, perturbation, and limit-
ing procedures. The basic extremal principle and its infinite-dimensional versions
(discussed in exercises and commentaries) are strongly employed in all the book
chapters. In Chapter 2 this is applied to derive the major normal cone intersection
and subdifferential sum rules. We also present here more recent results concern-
ing extensions of the extremal principle to countable systems of sets, which seem
to be attractive for their own sake and various applications while being motivated
by problems of semi-infinite programming considered in the subsequent chapters.
The proofs of the countable versions of the extremal principle are given by using
the MMA and reveal some new phenomena even for finitely many closed sets in
extremal systems.

Another theme of Chapter 2 concerns variational principles for extended-real-
valued functions that are different from but somewhat related to extremal principles
for sets in both finite and infinite dimensions. The finite-dimensional geometry al-
lows us to derive a general variational principle, which is simple to prove, useful
in applications, and contains known versions of such results in finite dimensions.
Infinite-dimensional extensions and relationships with lower and upper subdifferen-
tial principles for extended-real-valued functions are discussed in the exercise and
commentary sections of this chapter.

In Chapter 3 we combine the study of two major topics of variational analysis,
which seem not to be connected at the first glance but actually occur to be deeply in-
terrelated. They concern the main well-posedness properties of set-valued mappings
(Lipschitzian stability, metric regularity, and linear openness/covering) and their
coderivative characterizations—from one side, and a comprehensive coderivative
calculus from the other. The developed proofs in both directions are based on ap-
plying the extremal and variational principles. Furthermore, the usage of coderiva-
tive calculus allows us to determine broad classes of parametric variational systems
whose solution maps fail to be metrically regular. In the exercise and commentary
session of this chapter we discuss, besides infinite-dimensional extensions, a variety
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of other well-posedness properties useful in variational analysis and its applications
and also formulate some challenging open problems in these and related areas.

Chapter 4 is devoted to developing a comprehensive subdifferential calculus
for both basic and singular limiting subgradients of extended-real-valued func-
tions. A major role is played by evaluating subgradients for a general class of
marginal/optimal value functions, which is the key for deriving chain, product,
quotient, minimum, maximum, and other rules of subdifferential calculus. Another
major ingredient of subdifferential calculus highly important in what follows is a
variety of mean value theorems for nonsmooth functions presented in this chapter
together with some impressive applications.

Chapter 5 deals with global and local monotonicity of set-valued operators. The
importance of such properties has been well recognized in variational analysis, op-
timization, and numerous applications. There is an enormous amount of publica-
tions devoted to these and related topics. Here we present a new view on maximal
monotonicity properties by developing their complete coderivative characteriza-
tions with the usage of machinery of variational analysis and generalized differen-
tiation. The main results are obtained for the notions of global maximal monotonic-
ity and strong local maximal monotonicity, while we discuss further perspectives,
challenging open questions, and formulate several conjectures. Among strong ad-
vantages of the obtained characterizations are extensive calculus rules available for
coderivatives, which allow us to deal with structural problems and open the gate for
further developments. We also discuss in this chapter some related regularity and
stability/calmness notions for set-valued mappings, particularly of the subdifferen-
tial type.

The first part of Chapter 6 presents refined necessary optimality conditions for
general constrained problems of nondifferentiable programming that are expressed
in terms of the first-order constructions of generalized differentiation considered in
Chapter 1. The obtained optimality conditions are given in both lower subdifferen-
tial and upper subdifferential forms and are derived by direct applications of the
extremal and variational principles together with the developed calculus rules. Then
we present applications of these results to important classes of bilevel optimiza-
tion problems, which are intrinsically nonsmooth even in the case of smooth initial
data. The value function approach allows us to reduce such problems to single-level
programs with nonsmooth data and then apply the results obtained above in nondif-
ferentiable programming by using subdifferential rules for marginal/optimal value
functions established in Chapter 4. In the exercise and commentary sections of this
chapter we discuss other approaches to bilevel programming and draw the reader’s
attention to unsolved problems in this and related areas.

Chapter 7 is devoted to the systematic application of the underlying constructions
and techniques in variational analysis and generalized differentiation to a compre-
hensive study of semi-infinite programs (SIPs) satisfying some linearity or convexity
assumptions on the problem data. Problems of this type involving infinite linear and
convex inequality constraint systems have a long history in optimization theory and
applications, especially for systems indexed by compact sets. We show here that
the usage of advanced variational techniques, quite recently developed in this area,
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allows us to offer new viewpoints and derive enhanced results on Lipschitzian sta-
bility and optimality conditions for SIPs with arbitrary (in particular, countable)
index sets. Furthermore, calculating the basic and singular subgradients of value
functions in SIPs with DC (difference of convex) objectives leads us to new opti-
mality and stability conditions in DC infinite programs and yields by implementing
the value function approach to refined optimality conditions for the class of convex
bilevel SIPs. Taking into account that SIPs always involve, due to their very essence,
infinite dimensionality even in the case of finite-dimensional decision spaces, we
present the main material in this and subsequent chapters in general Banach (or
Asplund if needed) spaces.

Chapter 8 continues our considerations of SIPs while concentrating on noncon-
vex problems under different assumptions on the functions involved in infinite sys-
tems (differentiability, Lipschitz continuity, and lower semicontinuity). Motivated
by eventual applications to nonconvex SIPs, various approaches and strategies are
tested, which lead us to variational and calculus results of their own importance
with large spectra of other applications. We mention here calculations of normals
to infinite intersections of nonconvex sets, subdifferentiation of suprema of nons-
mooth functions over noncompact index collections, Lipschitzian stability and met-
ric regularity of nonconvex cone-constrained systems, etc. All the results obtained
in these directions are quite recent and haven’t appeared before in the monographic
literature.

Chapter 9 deals with problems of set and set-valued optimization, which are rel-
atively new in optimization theory and have become particularly attractive to math-
ematicians, applied scientists, and practitioners during recent years, largely due to
practical demands. They are essentially more involved in many aspects in compar-
ison with single-valued vector objectives that are usual in multiobjective optimiza-
tion. In this chapter we develop a dual-space variational approach to general classes
of such problems, which results in establishing existence theorems for Pareto-type
optimal solutions and robust necessary optimality conditions for them expressed in
terms of coderivatives and novel subdifferential constructions for set-valued map-
pings with partially ordered values. Our main attention is paid to the so-called rel-
ative Pareto solutions to multiobjective problems, which unify the conventional ef-
ficient and weakly efficient solutions with more flexible notions of set optimality.
The basic machinery for the implementation of this approach includes, besides the
underlying extremal principle, extended versions of the Ekeland-type and subdif-
ferential variational principles for set-valued mappings. This approach leads us to
new results not only for set-valued problems but also for conventional problems of
vector optimization in both finite and infinite dimensions.

The final Chapter 10 concerns applications of the advanced variational and gen-
eralized differential techniques presented in this book to microeconomic modeling.
The main goal is to establish two-sided relationships between models of welfare
economics and appropriate problems of set-valued optimization, and then to study
both of them in parallel by using the developed tools and results of variational anal-
ysis. This approach occurs to be beneficial in both directions. From one side, it
allows us to design a class of set-valued optimization problems and define new
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types of fully localized solutions to them that correspond to conventional as well
as to less understood notions of Pareto-type optimal allocations (set-valuedness of
the objective is crucial here!). On the other hand, natural concepts of set optimal-
ity for multiobjective problems induce new notions of Pareto-type optimal alloca-
tions, which admit adequate economic interpretations. Having the aforementioned
equivalence relationships, we apply the developed tools of variational analysis and
generalized differentiation, mainly revolved around an appropriate version of the
extremal principle, to deriving unified necessary conditions for the corresponding
notions of optimal solutions in the designed problems of set-valued optimization,
which generate in turn novel versions of the so-called fundamental second welfare
theorem for marginal price equilibria in nonconvex models of welfare economics
with finite- and infinite-dimensional commodity spaces.

It should be emphasized that giving a large number of exercises in this book
plays a special and highly important role in its design. Besides the standard inten-
tion of exercises to help readers in better understanding the basic material, they
encourage them to significantly develop research skills and the ability to work in-
dependently in the broad areas covered by the book. On the other hand, precise
definitions and result formulations in many exercises make this part of the book a
handy reference source to enormous material available now in the (first-order) state-
of-the-art variational analysis and its applications in both finite-dimensional and
infinite-dimensional spaces. We also formulate in the exercise sections some open
problems and conjectures and then discuss them in the corresponding commentaries.
Such a book design allows us to present here a massive amount of fundamental and
newer developments together with further perspectives.

Each chapter of the book ends with an extensive commentary section. The main
purpose of the commentaries is to emphasize the essence of major results, track
the genesis of ideas, provide historical comments, and illuminate challenging open
questions and directions of future research from the author’s viewpoints. The book
includes a large (definitely incomplete) list of references related to the topics and
results mentioned in the text that may help the reader in the further study of vari-
ational analysis and its applications. For the reader’s convenience, we list the titles
of all the statements, remarks, and exercises together with the glossary of notation
and acronyms as well as an abundant subject index that illustrates the broadness of
topics covered by the book and the alternative terminology widely spread in vari-
ational analysis and generalized differentiation. In the latter we mostly follow the
monographs by Rockafellar and Wets [678] and by the author [522, 523]. The de-
tailed subject index allows the reader to quickly find topics of particular interest and
directs him/her, through the commentaries and reference list, to additional sources.

We envision that the book will be useful for large groups of graduate students,
researchers, and practitioners in various areas of mathematical sciences, operations
research, and applications, particularly to those in economics, mechanics, engineer-
ing, and behavior sciences. Our trust is that the book will help the reader to share
the author’s admiration of the beauty and harmony of variational analysis. We also
hope that it will encourage the reader to study more in this exciting area, to employ
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variational ideas and results in different fields of mathematics and applications, and
to get involved in further active research.

Parts of this book have been used by the author in teaching many classes at Wayne
State University and other institutions worldwide. The author much appreciates use-
ful feedback that has come from his former and current graduate students over the
years. Special thanks go to Truong Bao, Hong Do, Alexander Kruger, Nguyen Mau
Nam, Tran Nghia, Dat Pham, Ebrahim Sarabi, and Bingwu Wang. All the figures
are made by Nguyen Van Hang, in addition to her great help in reviewing the
manuscript. The author is gratefully indebted to three anonymous referees of the ini-
tial book submission in June 2017 and two referees of the revision for their helpful
remarks and suggestions, which have been fully incorporated into the final version.

A lot of material presented here is based on the author’s joint papers with his
brilliant collaborators that are listed in the references. Many thanks are owed to each
of them. Grants from the National Science Foundation and the Air Force Office
of Scientific Research were essential to carry out and complete this project. The
author is also very grateful to Elizabeth Loew, Executive Editor in Mathematics of
Springer New York, for her attention and excellent pieces of advice in all the stages
of preparation and publication of this book.

Above all, the deepest gratitude and love go to my wife Margaret for her enor-
mous support, understanding, and help over the years.

Ann Arbor, MI, USA Boris S. Mordukhovich
January 2018



Contents

1 Constructions of Generalized Differentiation . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Normals and Tangents to Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Generalized Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Tangential Preduality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Smooth Variational Description . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Coderivatives of Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Set-Valued Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Coderivative Definition and Elementary Properties . . . . . . . . 13
1.2.3 Extremal Property of Convex-Valued Multifunctions . . . . . . 16

1.3 First-Order Subgradients of Nonsmooth Functions . . . . . . . . . . . . . . . 18
1.3.1 Extended-Real-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Subgradients from Normals to Epigraphs . . . . . . . . . . . . . . . . 19
1.3.3 Subgradients from Coderivatives . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.4 Regular Subgradients and ε-Enlargements . . . . . . . . . . . . . . . 28
1.3.5 Limiting Subdifferential Representations . . . . . . . . . . . . . . . . 31
1.3.6 Subgradients of the Distance Function . . . . . . . . . . . . . . . . . . . 36

1.4 Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Commentaries to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Fundamental Principles of Variational Analysis . . . . . . . . . . . . . . . . . . . 67
2.1 Extremal Principle for Finite Systems of Sets . . . . . . . . . . . . . . . . . . . 67

2.1.1 The Concept and Examples of Set Extremality . . . . . . . . . . . . 68
2.1.2 Basic Extremal Principle and Some Consequences . . . . . . . . 70

2.2 Extremal Principles for Countable Systems of Sets . . . . . . . . . . . . . . . 73
2.2.1 Versions of Extremality for Countable Set Systems . . . . . . . . 73
2.2.2 Conic and Contingent Extremal Principles . . . . . . . . . . . . . . . 75

2.3 Variational Principles for Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.1 General Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.2 Applications to Suboptimality and Fixed Points . . . . . . . . . . . 82

xv



xvi Contents

2.4 Basic Intersection Rule and Some Consequences . . . . . . . . . . . . . . . . 84
2.4.1 Normals to Set Intersections and Additions . . . . . . . . . . . . . . . 84
2.4.2 Subdifferential Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.6 Commentaries to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Well-Posedness and Coderivative Calculus . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1 Well-Posedness Properties of Multifunctions . . . . . . . . . . . . . . . . . . . . 104

3.1.1 Paradigm in Well-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1.2 Coderivative Characterizations of Well-Posedness . . . . . . . . . 108
3.1.3 Characterizations in Special Cases . . . . . . . . . . . . . . . . . . . . . . 112

3.2 Coderivative Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.1 Coderivative Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.2 Coderivative Chain Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2.3 Other Rules of Coderivative Calculus . . . . . . . . . . . . . . . . . . . 120

3.3 Coderivative Analysis of Variational Systems . . . . . . . . . . . . . . . . . . . 121
3.3.1 Parametric Variational Systems . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.2 Coderivative Conditions for Metric Regularity of PVS . . . . . 126
3.3.3 Failure of Metric Regularity for Major Classes of PVS . . . . . 129

3.4 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.5 Commentaries to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4 First-Order Subdifferential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.1 Subdifferentiation of Marginal Functions . . . . . . . . . . . . . . . . . . . . . . . 161
4.2 Subdifferentiation of Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3 Subdifferentiation of Minima and Maxima . . . . . . . . . . . . . . . . . . . . . 168
4.4 Mean Value Theorems and Some Applications . . . . . . . . . . . . . . . . . . 171

4.4.1 Mean Value Theorem via Symmetric Subgradients . . . . . . . . 171
4.4.2 Approximate Mean Value Theorems . . . . . . . . . . . . . . . . . . . . 173
4.4.3 Subdifferential Characterizations from AMVT . . . . . . . . . . . . 175

4.5 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.6 Commentaries to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5 Coderivatives of Maximal Monotone Operators . . . . . . . . . . . . . . . . . . . 191
5.1 Coderivative Criteria for Global Monotonicity . . . . . . . . . . . . . . . . . . 191

5.1.1 Maximal Monotonicity via Regular Coderivative . . . . . . . . . . 191
5.1.2 Maximal Monotone Operators with Convex Domains . . . . . . 195
5.1.3 Maximal Monotonicity via Limiting Coderivative . . . . . . . . . 199

5.2 Coderivative Criteria for Strong Local Monotonicity . . . . . . . . . . . . . 202
5.2.1 Strong Local Monotonicity and Related Properties . . . . . . . . 202
5.2.2 Strong Local Maximal Monotonicity via Coderivatives . . . . . 205
5.2.3 Pointbased Coderivative Characterizations . . . . . . . . . . . . . . . 210

5.3 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.4 Commentaries to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



Contents xvii

6 Nondifferentiable and Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . 219
6.1 Problems of Nondifferentiable Programming . . . . . . . . . . . . . . . . . . . 219

6.1.1 Lower and Upper Subdifferential Conditions . . . . . . . . . . . . . 220
6.1.2 Finitely Many Inequality and Equality Constraints . . . . . . . . 225
6.1.3 Examples and Discussions on Optimality Conditions . . . . . . 227

6.2 Problems of Bilevel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.2.1 Optimistic and Pessimistic Versions . . . . . . . . . . . . . . . . . . . . . 233
6.2.2 Value Function Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.2.3 Partial Calmness and Weak Sharp Minima . . . . . . . . . . . . . . . 235

6.3 Bilevel Programs with Smooth and Lipschitzian Data . . . . . . . . . . . . 240
6.3.1 Optimality Conditions for Smooth Bilevel Programs . . . . . . . 241
6.3.2 Optimality Conditions for Lipschitzian Problems . . . . . . . . . . 247

6.4 Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.5 Commentaries to Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7 Semi-infinite Programs with Some Convexity . . . . . . . . . . . . . . . . . . . . . . 259
7.1 Stability of Infinite Linear Inequality Systems . . . . . . . . . . . . . . . . . . . 260

7.1.1 Lipschitz-Like Property and Strong Slater Condition . . . . . . . 261
7.1.2 Coderivatives for Parametric Infinite Linear Systems . . . . . . . 263
7.1.3 Coderivative Characterization of Lipschitzian Stability . . . . . 269

7.2 Optimization Under Infinite Linear Constraints . . . . . . . . . . . . . . . . . . 279
7.2.1 Two-Variable SIPs with Infinite Inequality Constraints . . . . . 279
7.2.2 Upper Subdifferential Optimality Conditions for SIPs . . . . . . 280
7.2.3 Lower Subdifferential Optimality Conditions for SIPs . . . . . 283
7.2.4 Applications to Water Resource Optimization . . . . . . . . . . . . 284

7.3 Infinite Linear Systems Under Block Perturbations . . . . . . . . . . . . . . . 290
7.3.1 Description of Infinite Linear Block-Perturbed Systems . . . . 290
7.3.2 Stability of Block-Perturbed Systems via Coderivatives . . . . 291
7.3.3 Applications to Infinite Convex Inequality Systems . . . . . . . . 298

7.4 Metric Regularity of Infinite Convex Systems . . . . . . . . . . . . . . . . . . . 300
7.4.1 DC Optimization Approach to Metric Regularity . . . . . . . . . . 301
7.4.2 Metric Regularity of Convex-Graph Multifunctions . . . . . . . . 303
7.4.3 Applications to Infinite Convex Constraint Systems . . . . . . . 310

7.5 Value Functions in DC Semi-infinite Optimization . . . . . . . . . . . . . . . 321
7.5.1 Optimality Conditions for DC Semi-infinite Programs . . . . . 321
7.5.2 Regular Subgradients of Value Functions for DC SIPs . . . . . 326
7.5.3 Limiting Subgradients of Value Functions for DC SIPs . . . . . 330
7.5.4 Bilevel Semi-infinite Programs with Convex Data . . . . . . . . . 340

7.6 Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
7.7 Commentaries to Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

8 Nonconvex Semi-infinite Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8.1 Optimization of Infinite Differentiable Systems . . . . . . . . . . . . . . . . . 351

8.1.1 Qualification Conditions for Infinite Systems . . . . . . . . . . . . . 352
8.1.2 Normal Cones to Nonconvex Infinite Constraint Sets . . . . . . 357



xviii Contents

8.1.3 Optimality Conditions for Nonlinear SIPs . . . . . . . . . . . . . . . . 368
8.2 Lipschitzian Semi-infinite Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

8.2.1 Some Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
8.2.2 Basic Subgradients of Supremum Functions . . . . . . . . . . . . . . 379
8.2.3 Optimality Conditions for Lipschitzian SIPs . . . . . . . . . . . . . . 387

8.3 Nonsmooth Cone-Constrained Optimization . . . . . . . . . . . . . . . . . . . . 390
8.3.1 Subgradients of Scalarized Supremum Functions . . . . . . . . . . 391
8.3.2 Pointbased Optimality and Qualification Conditions . . . . . . . 398
8.3.3 Qualified Optimality Conditions Without CQs . . . . . . . . . . . . 402
8.3.4 Well-Posedness of Cone-Constrained Systems . . . . . . . . . . . . 406
8.3.5 Optimality and Well-Posedness for Nonconvex SIPs . . . . . . . 412

8.4 Nonconvex SIPs with Countable Constraints . . . . . . . . . . . . . . . . . . . . 417
8.4.1 CHIP Properties for Countable Set Intersections . . . . . . . . . . 417
8.4.2 Generalized Normals to Countable Set Intersections . . . . . . . 425
8.4.3 Optimality Conditions Under Countable Constraints . . . . . . . 433

8.5 Exercises for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
8.6 Commentaries to Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

9 Variational Analysis in Set Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 451
9.1 Minimizers and Subdifferentials Induced by Cones . . . . . . . . . . . . . . 451

9.1.1 Minimal Points of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
9.1.2 Minimizers and Subdifferentials for Mappings . . . . . . . . . . . . 454

9.2 Variational Principles for Ordered Mappings . . . . . . . . . . . . . . . . . . . . 456
9.2.1 Limiting Monotonicity for Set-Valued Mappings . . . . . . . . . . 457
9.2.2 Variational Principle of Ekeland’s Type . . . . . . . . . . . . . . . . . . 460
9.2.3 Subdifferential Variational Principle for Mappings . . . . . . . . 464

9.3 Existence of Relative Pareto-Type Minimizers . . . . . . . . . . . . . . . . . . 467
9.3.1 Subdifferential Palais-Smale Conditions . . . . . . . . . . . . . . . . . 467
9.3.2 Existence of Solutions to Unconstrained Problems . . . . . . . . 468
9.3.3 Existence Theorems Under Explicit Constraints . . . . . . . . . . . 475

9.4 Optimality Conditions for Multiobjective Problems . . . . . . . . . . . . . . 478
9.4.1 Fermat Rules in Set-Valued Optimization . . . . . . . . . . . . . . . . 478
9.4.2 Optimality Conditions in Constrained Settings . . . . . . . . . . . . 483

9.5 Exercises for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
9.6 Commentaries to Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

10 Set-Valued Optimization and Economics . . . . . . . . . . . . . . . . . . . . . . . . . . 499
10.1 Economic Modeling via Set-Valued Optimization . . . . . . . . . . . . . . . . 499

10.1.1 Models of Welfare Economics . . . . . . . . . . . . . . . . . . . . . . . . . 499
10.1.2 Constrained Set-Valued Optimization . . . . . . . . . . . . . . . . . . . 501
10.1.3 Optimal Allocations as Fully Localized Minimizers . . . . . . . 502

10.2 Optimality Conditions with Full Localization . . . . . . . . . . . . . . . . . . . 505
10.2.1 Exact Extremal Principle in Product Spaces . . . . . . . . . . . . . . 506
10.2.2 Asymptotic Closedness of Sets . . . . . . . . . . . . . . . . . . . . . . . . . 507
10.2.3 Necessary Conditions for Localized Minimizers . . . . . . . . . . 509



Contents xix

10.3 Local Extended Second Welfare Theorems . . . . . . . . . . . . . . . . . . . . . 512
10.3.1 Results in General Commodity Spaces . . . . . . . . . . . . . . . . . . 512
10.3.2 Ordered Commodity Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
10.3.3 Properness for Weak Pareto Optimal Allocations . . . . . . . . . . 516

10.4 Global Extended Second Welfare Theorems . . . . . . . . . . . . . . . . . . . . 521
10.4.1 Net Demand Qualification Conditions . . . . . . . . . . . . . . . . . . . 521
10.4.2 Global Optimality in Welfare Economics . . . . . . . . . . . . . . . . 523

10.5 Exercises for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
10.6 Commentaries to Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

List of Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Glossary of Notation and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601



Chapter 1
Constructions of Generalized
Differentiation

This chapter is devoted to the exposition of basic tools of first-order generalized
differentiation in variational analysis. We follow here the routes of the dual-space
geometric approach to generalized differentiation in the vein of [507, 522], which
revolves around approximation techniques and set extremality. Starting with the
nonconvex robust construction of the normal cone to sets, we continue with the
coderivative of single-valued and set-valued mappings and the subdifferential of
(extended-)real-valued functions . For simplicity of the exposition and to empha-
size the essence of major variational ideas, our main presentation in Chapters 1–6 is
given in finite-dimensional spaces, while we discuss infinite-dimensional extensions
in exercises and commentaries to each chapter with the hints and references therein.

Thus, unless otherwise stated, all the spaces under consideration in Chapters 1–6
are finite-dimensional and Euclidean with the inner product 〈·, ·〉 and the norm ‖ · ‖;
we often use the standard notation X = R

n for them. By BX, or simply by B if no
confusion arises, we denote the closed unit ball centered at the origin of the space
in question, while Br(x) stands for the closed ball centered at x with radius r > 0 .
In the same way, the closed unit ball in the dual space X∗–when it appears–is often
denoted by BX∗ or simply by B

∗.
Given a nonempty set � ⊂ X, the symbols

cl�, co�, clco�, bd�, and int�

stand for the standard notions of the closure, convex hull, closed convex hull, bound-
ary, and interior of the set �, respectively.

Recall that a set C is a cone in X if 0 ∈ C and λx ∈ C for all x ∈ C and λ ≥ 0.
The conic hull of � ⊂ X is defined by

cone� := {
αx ∈ X∣∣ α ≥ 0, x ∈ �}
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2 1 Constructions of Generalized Differentiation

unless otherwise stated. In some situations, which will be specifically emphasized
(mostly in Chapters 7, 8), the symbol “cone�” signifies the convex conic hull of the
set in question. The linear combination of two sets �1,�2 ⊂ X is

α1�1 + α2�1 := {
α1x1 + α2x2

∣∣ x1 ∈ �1, x2 ∈ �2
}
,

where the symbol := means “equal by definition” and where α1, α2 ∈ R are scalars
from (−∞,∞). Dealing with the empty set ∅, we use the conventions that�+∅ :=
∅, that α∅ := ∅ if α ∈ R \ {0} and α∅ := {0} if α = 0, and that inf ∅ := ∞,
sup ∅ := −∞, and ‖∅‖ := ∞.

Along with single-valued mappings usually denoted by f : Rn → R
m, we of-

ten consider set-valued mappings (or multifunctions) F : Rn →→ R
m with values

F(x) ⊂ R
m in the collection of all the subsets of Rm (and similarly, of course, in

infinite dimensions). The limiting construction

Lim sup
x→x̄

F (x) :=
{
y ∈ R

m
∣∣∣ ∃ xk → x̄, yk → y with yk ∈ F(xk)

for all k ∈ N := {1, 2, . . .}
} (1.1)

is known as the Painlevé-Kuratowski outer/upper limit of F at x̄. All the mappings
considered below are proper, i.e., F(x) 
= ∅ for some x ∈ X.

1.1 Normals and Tangents to Closed Sets

In our geometric approach to generalized differentiation, we start with constructing
normals to nonempty sets � ⊂ R

n, which is crucial for the whole theory. Given
x̄ ∈ �, suppose in what follows (unless otherwise stated) that � is locally closed
around x̄ ∈ �, i.e., there is r > 0 such that the set � ∩ Br(x̄) is closed. This

doesn’t actually restrict the generality since otherwise we can pass to the closure
of �. Anyway, the closedness of sets is truly essential for furnishing most of the
variational arguments involving limiting procedures.

Although the local closedness assumption for sets, together with the correspond-
ing closed-graph assumption for (set-valued) mappings and lower semicontinuity
one for (extended-real-valued) functions, is standing in this book, from time to time,
we’ll remind the reader about it to emphasize the issue.

1.1.1 Generalized Normals

Given a set � ⊂ R
n, associate with it the distance function

dist(x;�) = d�(x) := inf
z∈� ‖x − z‖, x ∈ R

n, (1.2)
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and define the Euclidean projector of x ∈ R
n to � by

�(x;�) = ��(x) := {
w ∈ � ∣∣ ‖x − w‖ = dist(x;�)}. (1.3)

Under the imposed local closedness of � around x̄ ∈ �, we have �(x;�) 
= ∅ for
all x ∈ R

n sufficiently close to this point.

Definition 1.1 (Basic Normals to Sets). Let � ⊂ R
n with x̄ ∈ �. The (basic)

NORMAL CONE to � at x̄ is defined by

N(x̄;�) = N�(x̄) := Lim sup
x→x̄

[
cone

(
x −�(x;�))] (1.4)

via the outer limit (1.1). Each v ∈ N(x̄;�) is called a BASIC or LIMITING NOR-
MAL to � at x̄ and is represented as follows: there are sequences xk → x̄,
wk ∈ �(xk;�), and αk ≥ 0 such that αk(xk − wk) → v as k → ∞.

It is obvious that (1.4) is a closed cone in R
n. A remarkable property of this

cone is the possibility to use it for a complete characterization of boundary points
for locally closed sets, which can be treated as a nonconvex counterpart of the

supporting hyperplane theorem for convex sets; cf. Proposition 1.7.

Proposition 1.2 (Normal Cone Characterization of Boundary Points). For x̄ ∈
� to be a boundary point of �, it is necessary and sufficient that N(x̄;�) 
= {0},
i.e., the normal cone (1.4) is nontrivial at x̄.

Proof. It is obvious from (1.4) that N(x̄;�) = {0} if x̄ ∈ int�. When x̄ ∈ bd�,
there is a sequence {xk} ⊂ R

n \ � such that xk → x̄ as k → ∞. Pick now a
projection wk ∈ �(xk;�) for all k sufficiently large, denote αk := ‖xk − wk‖−1,
and consider the vectors vk := αk(xk − wk) with ‖vk‖ = 1. Taking a subsequence
of {vk} that converges to some v ∈ R

n with ‖v‖ = 1, we get v ∈ N(x̄;�) by the
normal cone construction in Definition 1.1. �

Another important property of the normal cone (1.4), which can be easily de-
duced from the definition, is its robustness, i.e., stability with respect to small per-
turbations of the initial point. In what follows we use the notation

x
�→ x̄ ⇐⇒ x → x̄ with x ∈ �.

Proposition 1.3 (Robustness of Basic Normals). We always have

N(x̄;�) = Lim sup
x
�→x̄

N(x;�), x̄ ∈ �.

The following simple but useful product property of the normal cone is also a
direct consequence of the definition.



4 1 Constructions of Generalized Differentiation

Proposition 1.4 (Basic Normals to Products of Sets). Let �1 ⊂ R
n, �2 ⊂ R

m

with (x̄1, x̄2) ∈ �1 ×�2. Then we have the product formula

N
(
(x̄1, x̄2);�1 ×�2

) = N(x̄1;�1)×N(x̄2;�2).

Recall that a set� is convex if z+α(x− z) ∈ � for any x, z ∈ � and α ∈ [0, 1],
i.e., together with any points x, z ∈ �, it contains the entire line segment connecting
these points. The following example illustrates that the normal cone (1.4) may be
nonconvex in very simple settings.

Example 1.5 (Nonconvexity of the Basic Normal Cone). Consider the closed set
� := {(x, y) ∈ R

2| y ≥ −|x|}. It is easy to see that

N
(
(0, 0);�) = {

(v, v) ∈ R
2
∣∣ v ≤ 0

} ∪ {
(v,−v) ∈ R

2
∣∣ v ≥ 0

}
,

which is a nonconvex subset of R2; see Fig. 1.1.

Ω N((0, 0); Ω)

Fig. 1.1 Nonconvexity of the basic normal cone

The next theorem shows that the normal cone (1.4) to � at x̄ can be equivalently
described via the outer limit (1.1) of some convex sets of generalized normals to �
at points near x̄.

Given x ∈ �, define the collection of regular normals to � at x by

N̂(x;�) = N̂�(x) :=
{
v ∈ R

n
∣∣∣ lim sup

z
�→x

〈v, z− x〉
‖z− x‖ ≤ 0

}
(1.5)

and for every ε > 0 consider its ε-enlargement

N̂ε(x;�) :=
{
v ∈ R

n
∣∣∣ lim sup

z
�→x

〈v, z− x〉
‖z− x‖ ≤ ε

}
, (1.6)

which reduces to N̂(x̄;�) = N̂0(x̄;�) when ε = 0.
Observe that the convex cone (1.5) may be trivial, i.e., N̂(x̄;�) = {0}, for bound-

ary points of closed sets as in Example 1.5 with x̄ = (0, 0). This phenomenon vio-
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lates a natural expectation from any normal cone to a closed set at boundary points.
On the other hand, the following Theorem 1.6 tells us that elements of N̂(x;�) at
nearby points can be used for constructing “real” normals to sets. It motivates us
to label the collection of regular normals (1.5) as the prenormal cone to � at x̄;
it is also used in the literature as the “regular normal cone.” Note that the second
representation in (1.7) shows that the limiting process therein is stable with respect
to ε-enlargements of the prenormal cone. Such a stability is essential to justify a
number of significant results of variational analysis and generalized differentiation;
see below.

Theorem 1.6 (Equivalent Descriptions of Basic Normals). Given any x̄ ∈ � ⊂
R
n, we have the following representations of the basic normal cone:

N(x̄;�) = Lim sup
x
�→x̄

N̂ (x;�) = Lim sup
x
�→x̄
ε↓0

N̂ε(x;�). (1.7)

Proof. We split the proof into several steps, which are of their own interest.

Step 1: If x ∈ R
n and w ∈ �(x;�), then x − w ∈ N̂(w;�) and thus

N(x̄;�) ⊂ Lim sup
x
�→x̄

N̂ (x;�).

Indeed, pick z ∈ � and get by the choice of w that ‖w − x‖2 ≤ ‖z − x‖2 =
‖(w − x)+ (z− w)‖2; hence 0 ≤ ‖z− w‖2 + 2〈w − x, z− w〉. This yields

lim sup
z
�→x

〈x − w, z− w〉
‖z− x‖ ≤ 1

2
lim sup
z
�→x

‖z− w‖ = 0,

which shows that x−w ∈ N̂(w;�). To justify now the displayed inclusion, for any
v ∈ N(x̄;�), we have αk(xk − wk) → v with some xk → x̄, wk ∈ �(xk;�), and
αk ≥ 0. It follows from the above that xk−wk ∈ N̂(wk;�) and thus αk(xk−wk) ∈
N̂(wk;�) with wk

�→ x̄ due to ‖wk − xk‖ ≤ ‖xk − x̄‖ for all k ∈ N. This gives us
the claimed inclusion.

Step 2: For any elements wα ∈ �(x + αv;�) with 0 
= v ∈ N̂ε(x;�), x ∈ �,
ε ≥ 0, and α > 0, we have the relationship

lim sup
α↓0

‖wα − x‖
α

≤ 2ε.

Indeed, it follows from the choice of wα that ‖(x + αv)−wα‖2 ≤ ‖(x + αv)−
x‖2 = ‖αv‖2, which implies the equivalent conditions

[‖wα − x‖2 + 2α〈v, x − wα〉 ≤ 0
] ⇐⇒

[‖wα − x‖
α

≤ 2
〈v,wα − x〉
‖wα − x‖

]
.
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It follows further from the classical Cauchy-Schwarz inequality that

‖wα − x‖2 ≤ 2α〈v,wα − x〉 ≤ 2α‖v‖ · ‖wα − x‖
and so ‖wα − x‖ ≤ 2α‖v‖ → 0 as α ↓ 0. Thus the choice of v yields

lim sup
α↓0

〈v,wα − x〉
‖x − wα‖ ≤ lim sup

z
�→x

〈v, z− x〉
‖z− x‖ ≤ ε,

which justifies by (1.6) the claimed estimate.

Step 3: We have the inclusion

Lim sup
x
�→x̄
ε↓0

N̂ε(x;�) ⊂ Lim sup
x
�→x̄

N̂ (x;�).

To show this, take any v from the left-hand side set above and by (1.1) find

εk ↓ 0, xk
�→ x̄, and vk ∈ N̂εk (xk;�) such that vk → v as k → ∞. By Step 2 there

are wk ∈ � and αk ↓ 0 satisfying

wk ∈ �(xk + αkvk;�) and ‖wk − xk‖ ≤ 2εkαk, k ∈ N,

which implies that wk → x̄ when k → ∞. As shown in Step 1, (xk +αkvk)−wk ∈
N̂(wk;�) and so, since N̂(wk;�) is a cone,

vk + 1

αk
(xk − wk) = 1

αk

(
(xk + αkvk)− wk

)
∈ N̂(wk;�).

The latter implies that vk + 1
αk
(xk − wk) → v as k → ∞, which therefore justifies

the statement claimed in this step.

Step 4: We have the inclusion

N̂(x;�) ⊂ N(x;�) for all x ∈ �.
To verify it, take any v ∈ N̂(x;�) and for large k ∈ N define zk := x + 1

k
v and

pick wk ∈ �(x + 1
k
v;�). Then we get v = k(zk − x) = vk + k(wk − x), where

vk := k(zk − wk) ∈ cone
(
zk −�(zk;�)

)
and zk → x. It follows from Step 2 that

k(wk − x) → 0 and so vk → v, which justifies the claimed statement.

Step 5: We have the inclusion

Lim sup
x
�→x̄

N̂ (x;�) ⊂ N(x̄;�).

Indeed, taking v from the set on the left-hand side above gives us vk → v and

xk
�→ x̄ with vk ∈ N̂(xk;�). DenoteG(z) := cone [z−�(z;�)] and get from (1.4)

and Step 4 that N̂(x;�) ⊂ Lim supz→x G(z). Hence for each k ∈ N we find zk ∈
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R
n and yk ∈ G(zk) with ‖zk − xk‖ ≤ 1/k and ‖yk − vk‖ ≤ 1/k. Since zk → x̄

and yk → v, this ensures that v ∈ Lim supx→x̄ G(x) = N(x̄;�), which justifies
the claimed inclusion and thus completes the proof. �

The next proposition shows that for convex sets � both constructions (1.4)
and (1.5) reduce to the normal cone of convex analysis.

Proposition 1.7 (Normals to Convex Sets). Let� be convex, and let x̄ be any point
of �. Then we have the representations

N̂ε(x̄;�) = {
v ∈ R

n
∣∣ 〈v, x − x̄〉 ≤ ε‖x − x̄‖ for all x ∈ �}, ε ≥ 0, (1.8)

N(x̄;�) = N̂(x̄;�) = {
v ∈ R

n
∣∣ 〈v, x − x̄〉 ≤ 0 for all x ∈ �}. (1.9)

Proof. The inclusion “⊃” in (1.8) obviously holds for an arbitrary set �. To verify
the opposite inclusion in (1.8) when � is convex, fix any ε ≥ 0, take v ∈ N̂ε(x̄;�),
and then fix x ∈ �. By the convexity of�, we have that xα := x̄+α(x− x̄) ∈ � for
all 0 ≤ α ≤ 1 with xα → x̄ as α ↓ 0. Taking any γ > 0 and using definition (1.6)
give us

〈v, xα − x̄〉 ≤ (ε + γ )‖xα − x̄‖ for all small α > 0.

Substituting the expression for xα into this inequality justifies (1.8). The representa-
tion (1.9) for N(x̄;�) follows from (1.8) taken at any x ∈ � by passing to the limit
due to Theorem 1.6. �

1.1.2 Tangential Preduality

It follows from (1.9) that Proposition 1.2 reduces for convex sets � to the fact that
for any x̄ ∈ bd� there is 0 
= v ∈ R

n with 〈v, x〉 ≤ 〈v, x̄〉 whenever x ∈ �. This is
the classical supporting hyperplane theorem, which is equivalent to the separation
theorem for convex sets and plays a fundamental role in convex analysis and its
various extensions. One of the implementations of this fundamental result is the
duality/polarity correspondence

N(x̄;�) = T ∗(x̄;�) := {v ∈ R
n
∣∣ 〈v,w〉 ≤ 0 for all w ∈ T (x̄;�)} (1.10)

between the normal cone to convex sets given in (1.9) and the tangent cone
T (x̄;�) := cl{w ∈ R

n| ∃α > 0 with x̄ + αw ∈ �} of convex analysis.

Note to this end that the duality scheme of type (1.10) has been conventionally
used in nonsmooth analysis to define normal cones to nonconvex sets via some tan-
gential approximations. It is easy to see that any normal cone obtained in this scheme
is automatically convex, even when the generating tangential approximation is not.
This shows that our basic normal cone (1.4) cannot be tangentially generated due to
its intrinsic nonconvexity. However, it is not the case for the prenormal cone (1.5),
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which is convex and in fact can be obtained by the duality scheme from the follow-
ing tangential approximation.

Definition 1.8 (Contingent Cone). Given � ⊂ R
n and x̄ ∈ �, the CONTINGENT

CONE to � at x̄ is defined by

T (x̄;�) := Lim sup
t↓0

�− x̄
t

(1.11)

via the outer limit (1.1). Each w ∈ T (x̄;�) is called a TANGENT to � at x̄ and
is represented as follows: there are sequences {xk} ⊂ � and {αk} ⊂ R+ such that
xk → x̄ and αk(xk − x̄) → w as k → ∞.

When � is convex, the contingent cone (1.11) agrees with the classical tangent
cone of convex analysis, while in general it may be nonconvex as for the set � :=
{(x1, x2) ∈ R

2| x2 = |x1|} at x̄ = (0, 0), where T (x̄;�) = �. Let us now show
that its (convex) dual cone is exactly the prenormal cone (1.5).

Proposition 1.9 (Duality Between the Prenormal and Contingent Cones). For
any � ⊂ R

n and x̄ ∈ �, we have the duality correspondence

N̂(x̄;�) = T ∗(x̄;�)
between the prenormal cone (1.5) and the contingent cone (1.11).

Proof. Fix any vectors v ∈ N̂(x̄;�) and w ∈ T (x̄;�). By (1.11) there are se-
quences tk ↓ 0 and wk → w with x̄ + tkwk ∈ � for all k ∈ N. Substituting this
combination into (1.5) and picking any γ > 0, we get

〈v,wk〉 ≤ γ ‖wk‖ for all large k ∈ N.

Passing here to the limit as k → ∞ shows that 〈v,w〉 ≤ 0, and thus we get
N̂(x̄;�) ⊂ T ∗(x̄;�) by the dual cone definition in (1.10).

To verify the converse inclusion, fix v /∈ N̂(x̄;�) and find by (1.5) a positive

number γ and a sequence xk
�→ x̄ such that

〈v, xk − x̄〉 > γ ‖xk − x̄‖ for all large k ∈ N;
so xk 
= x̄. Let αk := ‖xk − x̄‖−1 and suppose without loss of generality that

xk − x̄
‖xk − x̄‖ → w as k → ∞ for some w ∈ R

n.

By construction (1.11) we have w ∈ T (x̄;�) while 〈v,w〉 ≥ γ > 0 by passing to
the limit above. Thus we get v /∈ T ∗(x̄;�), which justifies the inclusion T ∗(x̄;�) ⊂
N̂(x̄;�) and completes the proof of the proposition. �
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Combining Theorem 1.6 and Proposition 1.9 tells us that, although the normal
cone (1.4) cannot be tangentially generated at the point in question, it admits an
approximation by tangentially generated normals to the set at points nearby. This
phenomenon can be naturally labeled as tangential preduality for basic normals.
However, it is essentially finite-dimensional; see [522] and Section 1.5 below for
more details.

1.1.3 Smooth Variational Description

We conclude this section with a variational property of regular normals giving their
smooth description, which is convenient for applications. By Theorem 1.6 this pro-
vides a smooth limiting description of the normal cone (1.4). Everywhere we under-
stand differentiability of ϕ : Rn → R at x̄ with the derivative/gradient ∇ϕ(x̄) ∈ R

n

in the standard (Fréchet) sense

lim
x→x̄

ϕ(x)− ϕ(x̄)− 〈∇ϕ(x̄), x − x̄〉
‖x − x̄‖ = 0 (1.12)

while the smoothness (of class C1) property of ϕ around x̄ is its differentiability on
a neighborhood U of x̄ with the continuous gradient ∇ϕ : U → R

n.

Theorem 1.10 (Smooth Variational Description of Regular Normals). Let � ⊂
R
n with x̄ ∈ �. Then regular normals to x̄ can be described in the following two

equivalent ways:
(i) We have v ∈ N̂(x̄;�) if and only if there is a neighborhood U of x̄ and a

function ψ : U → R such that ψ is differentiable at x̄ with ∇ψ(x̄) = v and ψ
achieves its local maximum relative to � at x̄.

(ii) We have v ∈ N̂(x̄;�) if and only if there is a smooth and concave function
ψ on R

n such that ∇ψ(x̄) = v and ψ achieves its global maximum relative to �
uniquely at x̄.

Proof. It is not hard to verify (i) based on definition (1.5). Indeed, for any ψ : U →
R with the properties from (i), we have

ψ(x) = ψ(x̄)+ 〈v, x − x̄〉 + o(‖x − x̄‖) ≤ ψ(x̄) for all x ∈ U.
Hence 〈v, x − x̄〉 + o(‖x − x̄‖) ≤ 0 and v ∈ N̂(x̄;�) by (1.5). Conversely, for any
v ∈ N̂(x̄;�), consider the function

ψ(x) :=
{

min
{
0, 〈v, x − x̄〉} if x ∈ �,

〈v, x − x̄〉 otherwise,

which surely satisfies the properties listed in (i).

To justify (ii), we need to verify the “only if” part the proof of which is essentially
more involved. We split it into several steps.
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Step 1: Let ρ : [0,∞) → [0,∞) be a function having the right-hand derivative
ρ′+(0) and satisfying the conditions

ρ(0) = ρ′+(0) = 0 and ρ(t) ≤ α + βt for all t ≥ 0

with some positive constants α and β. Then there exist γ > 0 and a nondecreasing,
convex, and C1-smooth function σ : [0, 2γ ) → [0,∞) such that

σ(0) = σ ′+(0) = 0 and σ(t) > ρ(t) for t ∈ (0, 2γ ).

To construct σ , choose a sequence of ak > 0 with ak+1 <
1
2ak and

ρ(t)+ t2 < 2−(k+3)t if t ∈ [0, ak] for all k ∈ N.

Let γ := 1
2a1 and define r : [0, 2γ ] → [0,∞) by r(0) := 0, r(ak) := 2−k , and so

that r is linear on [ak+1, ak] for all k ∈ N. Then define σ : [0, 2γ ) → [0,∞) by

σ(t) :=
∫ t

0
r(ξ)dξ for t ∈ [0, 2γ )

and show that it possesses all the required properties. Its smoothness, monotonicity,
convexity, and the equalities σ(0) = σ ′+(0) = 0 follow directly from the defini-
tion and standard facts of real analysis. To check the remaining properties of σ , fix
t ∈ (0, 2γ ) and observe that t ∈ [ak+1, ak) for some k ∈ N. Then, by the above
constructions of σ and r , we get

σ(t) ≥
∫ t

ak+1

r(ξ)dξ +
∫ ak+1

1
2 ak+1

r(ξ)dξ ≥
∫ t

ak+1

2−(k+1)dξ +
∫ ak+1

1
2 ak+1

2−(k+2)dξ

= t − ak+1

2k+1 + ak+1

2k+3 ≥ t

2k+3 > ρ(t),

which justifies all the properties of σ(t) listed above.

Step 2: Let ρ : [0,∞) → [0,∞) be given as in Step 1. Then there is a nondecreas-
ing, convex, and C1-smooth function τ : [0,∞) → [0,∞) such that

τ(0) = τ ′+(0) = 0 and τ(t) > ρ(t) for all t > 0.

Given the numbers α, β > 0 and the function σ(t) built above, choose λ > 1
with λσ(γ ) > α + βγ , and consider the following two cases in constructing the
function τ(t) with the claimed properties:

(a) Let λσ ′(γ ) ≤ β. Take μ ≥ λ with μσ ′(γ ) = β and define

τ(t) :=
{
μσ(t) if 0 ≤ t ≤ γ,

μσ(γ )+ β(t − γ ) if t > γ.
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It is easy to see that this function is nondecreasing, convex, and continuous ev-
erywhere on [0,∞) including t = γ . Moreover, τ ′−(γ ) = μσ ′(γ ) and τ ′+(γ ) =
β = μσ ′(γ ) due to the choice of μ, which implies the continuous differentia-
bility of τ on [0,∞). It follows from the definition of τ and the assumptions on
ρ that τ(0) = τ ′+(0) = 0, that τ(t) ≥ σ(t) > ρ(t) for 0 < t ≤ γ , and that
τ(t) = μσ(γ ) + β(t − γ ) > α + βt ≥ ρ(t) for t > γ . This ensures the required
properties of τ(·) in the case under consideration.

(b) Let λσ ′(γ ) > β. In this case we define a nondecreasing and convex function
τ : [0,∞) → [0,∞) by

τ(t) :=
{
λσ(t) if 0 ≤ t ≤ γ,

λσ(γ )− λγ σ ′(γ )+ λσ ′(γ )t if t > γ.

Again, a straightforward verification yields that τ(t) is a C1-smooth function [0,∞)

satisfying all the requirements on [0, γ ]. By the choice of λ, we get

τ(t) ≥ α + βγ + λσ ′(γ )(t − γ ) > α + βγ + β(t − γ ) = α + βt ≥ ρ(t)

for t > γ , which verifies the statement claimed in Step 2.

Step 3: Let v ∈ N̂(x̄;�). Then there is a function ψ : Rn → R having all the
properties listed in assertion (ii).

To proceed, consider the positive-valued function

ρ(t) := sup
{〈v, x − x̄〉 ∣∣ x ∈ �, ‖x − x̄‖ ≤ t

}
for t ≥ 0, (1.13)

which clearly satisfies all the assumptions formulated in Step 1 due to the definition
of regular normals. By Step 2 we get the corresponding function τ : [0,∞) →
[0,∞) and construct ψ : Rn → R by

ψ(x) := −τ(‖x − x̄‖)− ‖x − x̄‖2 + 〈v, x − x̄〉, x ∈ R
n.

Note that this function is concave on R
n with ψ(x̄) = 0 since τ(·) is convex and

nondecreasing on [0,∞) with τ(0) = 0. We also have

ψ(x)+ ‖x − x̄‖2 ≤ −ρ(‖x − x̄‖)+ 〈v, x − x̄〉 ≤ 0 = ψ(x̄) for all x ∈ �,
which implies thatψ(x) achieves its global maximum over� uniquely at x̄. Observe
that ψ(x) is differentiable at any x 
= x̄ due the smoothness of the function τ(·)
and the Euclidean norm ‖ · ‖ at nonzero points of Rn. To justify (ii), it remains to
observe that ψ(x) is differentiable at x = x̄ with ∇ψ(x̄) = v, which follows from
the smoothness of τ(t) with τ ′+(0) = 0 by the classical chain rule. This completes
the proof of the theorem. �
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1.2 Coderivatives of Mappings

In this section we consider generalized differentiation of set-valued map-
pings/multifunctions F : Rn →→ R

m with the values F(x) ⊂ R
m which may

be, in particular, empty or singletons. If the latter is the case for all x, we usually
use the standard notation f : Rn → R

m for single-valued mappings.

1.2.1 Set-Valued Mappings

Given F : Rn →→ R
m, we say that it is closed-valued, convex-valued, . . ., if all

the values F(x) are closed, convex, . . ., respectively. With each mapping F , we
associate its main geometric description—the graph

gphF := {
(x, y) ∈ R

n × R
m
∣∣ y ∈ F(x)}

and denote its domain, kernel, and range by

domF := {
x ∈ R

n
∣∣ F(x) 
= ∅}, kerF := {x ∈ R

n
∣∣ 0 ∈ F(x)},

rgeF := {
y ∈ R

m
∣∣ ∃ x ∈ R

n with y ∈ F(x)},
respectively. The (direct) image of a set � ⊂ R

n under F is

F(�) := {
y ∈ R

m
∣∣ ∃ x ∈ � with y ∈ F(x)},

while the inverse image/preimage of � ⊂ R
m under this mapping is

F−1(�) := {
x ∈ R

n
∣∣ F(x) ∩� 
= ∅},

which reduces to f−1(�) = {x ∈ R
n| f (x) ∈ �} in the single-valued case. The

inverse mapping F−1 : Rm →→ R
n to F is defined by

F−1(y) := {
x ∈ R

n
∣∣ y ∈ F(x)}.

It is clear that domF−1 = rgeF , that rgeF−1 = domF , and that

gphF−1 = {
(y, x) ∈ R

m × R
n
∣∣ (x, y) ∈ gphF

}
.

We say that F : Rn →→ R
m is locally bounded around x̄ if there is a neighborhood

U of x̄ such that the image set F(U) is bounded in R
m.

Recall also that a mapping F : Rn →→ R
m is positively homogeneous if 0 ∈ F(0)

and F(αx) ⊃ αF(x) for all α > 0, x ∈ R
n; i.e., its graph is a cone in R

n × R
m.

The norm of a positively homogeneous mapping is given by

‖F‖ := sup
{‖y‖ ∣∣ y ∈ F(x) and ‖x‖ ≤ 1

}
. (1.14)
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1.2.2 Coderivative Definition and Elementary Properties

Now we are ready to define our main generalized differential concept for mappings
called the coderivative. We proceed geometrically and associate the coderivative
with the normal cone (1.4) to the graph of the given set-valued or single-valued
mapping. The term “coderivative” reflects the dual-space nature of this construction
for mappings generated by the normal cone to sets. As follows from the discussion
in Section 1.1, the basic coderivative defined below is a nonconvex-valued mapping
that is not dual to any derivative-like objects generated by tangential approximations
of sets.

In accordance with Section 1.1, we consider without loss of generality set-valued
mappings whose graphs are locally closed around the reference points.

Definition 1.11 (Basic Coderivative of Set-Valued Mappings). Consider
F : Rn →→ R

m with domF 
= ∅, and let (x̄, ȳ) ∈ gphF . The (basic) CODERIVA-
TIVE of F at (x̄, ȳ) is a multifunction D∗F(x̄, ȳ) : Rm →→ R

n with the values

D∗F(x̄, ȳ)(v) := {
u ∈ R

n
∣∣ (u,−v) ∈ N((x̄, ȳ); gphF

)}
, v ∈ R

m, (1.15)

generated by the normal cone (1.4) to the graph of F at (x̄, ȳ).

Defining then the precoderivative (known also as the regular coderivative) of F
at (x̄, ȳ) via the prenormal cone (1.5) by

D̂∗F(x̄, ȳ)(v) := {
u ∈ R

n
∣∣ (u,−v) ∈ N̂((x̄, ȳ); gphF

)}
, v ∈ R

m, (1.16)

and, employing Theorem 1.6, we get the limiting representation

D∗F(x̄, ȳ)(v̄) = Lim sup

(x,y)
gphF−→(x̄,ȳ)
v→v̄

D̂∗F(x, y)(v) (1.17)

and the similar one in terms of the ε-enlargements D̂∗
εF (x, y) of (1.16) defined via

N̂ε((x, y); gphF) as ε ↓ 0. In what follows we omit ȳ in notation (1.15) and (1.16)
if the mapping is single-valued at x̄.

It should be mentioned that employing in (1.15) the basic normal cone construc-
tion from (1.4) to the graphical set gphF ⊂ R

n × R
m requires the usage of the

Euclidean norm ‖(x, y)‖ = √‖x‖2 + ‖y‖2 on the product space, which is very
beneficial in many situations due to remarkable variational and smoothness (off the
origin) properties of the Euclidean norm. However, in those proofs below which
are based on the equivalent representations of basic normals from Theorem 1.6 im-
plemented in (1.17), it is more convenient to employ the sum norm on the product
X × Y given by

‖(x, y)‖ := ‖x‖ + ‖y‖ for all x ∈ X, y ∈ Y. (1.18)
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It is not hard to check that the representations in (1.7) and (1.17) are invariant with
respect to any equivalent norm used on the space in question. Recall to this end that
all the norms on a finite-dimensional space are equivalent.

Observe that both basic and regular coderivatives are positively homogeneous
with respect of their argument v. We show next that for single-valued mappings
F = f : Rn → R

m smooth around the reference point x̄, they both are single-
valued and linear in v, thus being reduced to the adjoint/transpose Jacobian matrix
∇f (x̄)∗ : Rm → R

n applied to v; we keep the notation ∇f (x̄) for the Jacobian
matrix. As always, by smoothness (i.e., of class C1) of f around x̄, we mean
its continuous differentiability on a neighborhood of x̄. Note that the vast major-
ity, if not all, of the results given in this book for smooth mappings hold true for
those, which are merely strictly differentiable at x̄ with the strict derivative operator
∇f (x̄) : Rn → R

m in the sense that

lim
x,z→x̄

f (x)− f (z)− ∇f (x̄)(x − z)
‖x − z‖ = 0. (1.19)

However, proofs in the strict differentiable case are usually more involved, and we
restrict ourselves to C1-smooth mappings for simplicity; cf. [522, 523].

Proposition 1.12 (Coderivatives of Smooth Mappings). Let the mapping
f : Rn → R

m be of class C1 around x̄. Then we have the representations

D∗f (x̄)(v) = D̂∗f (x̄)(v) = {∇f (x̄)∗v} for all v ∈ R
m.

Proof. Note first that the inclusion u ∈ D̂∗f (x)(v) means by definition that

〈u, z− x〉 − 〈v, f (z)− f (x)〉 ≤ γ
(‖z− x‖ + ‖f (z)− f (x)‖)

for an arbitrary number γ > 0 when z is sufficiently close to x. On the other hand,
by the differentiability of f at x, we have that

〈u− ∇f (x)∗v, z− x〉 ≤ γ ‖z− x‖.
Combining these facts with the definition of the adjoint operator shows that
D̂∗f (x)(v) = {∇f (x)∗v} for all x close to x̄. Passing here to the limit as x → x̄

and using the continuity of ∇f together with the coderivative representation (1.17)
justify the formula for D∗f (x̄)(v). �

Another simple and expected coderivative representation holds for convex-graph
multifunctions, i.e., those for which the set gphF is convex.

Proposition 1.13 (Coderivatives of Convex-Graph Mappings). Let the graph of
F : Rn →→ R

m be convex. Then

D∗F(x̄, ȳ)(v) = D̂∗F(x̄, ȳ)(v)
=
{
u ∈ R

n
∣∣∣ 〈u, x̄〉 − 〈v, ȳ〉 = max

(x,y)∈gphF

[〈u, x〉 − 〈v, y〉]
}

for all (x̄, ȳ) ∈ gphF and v ∈ R
m.
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Proof. It follows from the normal cone representations in Proposition 1.9. �
In general the coderivative may take nonconvex and also empty values. Let us

illustrate this by direct calculations based on the definition.

Example 1.14 (Coderivative Calculations).
(i) Consider first the function f (x) := |x| on R and calculate its coderivative at

x̄ = 0. Using the normal cone definition (1.4) gives us (see Fig. 1.2)

N
(
(0, 0); gph f

) = {
(x, y) ∈ R

2
∣∣ y = |x| & y ≤ −|x|}.

Thus the coderivative (1.15) of this function is calculated by

D∗f (0)(v) =
⎧
⎨

⎩

[−v, v] if v ≥ 0,

{−v, v} if v < 0

and has, in particular, nonconvex values when v < 0. Note that the precoderiva-
tive (1.16) in this case is given by

D̂∗f (0)(v) =
⎧
⎨

⎩

[−v, v] if v ≥ 0,

∅ if v < 0.

(ii) For another function f (x) := |x|α with α ∈ (0, 1), we have

N
(
(0, 0); gph f

) = {
(x, y) ∈ R

2
∣∣ y ≤ 0

}

(see Fig. 1.3), and hence the coderivative (1.15) takes empty values

D∗f (0)(v) = D̂∗f (0)(v) =
⎧
⎨

⎩

R if v ≥ 0,

∅ if v < 0.

gphf

N((0, 0); gphf)

v v

D∗f(0)(v)

Fig. 1.2 Coderivative of f (x) = |x|
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gphf

N((0, 0); gphf) D∗f(0)(v)
(v ≥ 0)

D∗f(0)(v) = ∅
(v < 0)

Fig. 1.3 Coderivative of f (x) = |x|α, 0 < α < 1

1.2.3 Extremal Property of Convex-Valued Multifunctions

Now we present an important result revealing an extremal property of convex-valued
multifunctions formulated via the basic coderivative. This property is useful for var-
ious applications; see, e.g., Section 1.5. The proof is simple enough due to the usage
of some previous considerations.

A set-valued mapping F : Rn →→ R
m is said to be inner/lower semicontinuous at

the domain point x̄ ∈ domF if we have

F(x̄) = Lim inf
x→x̄

F (x) :=
{
y
∣∣ ∀ xk domF−→ x̄ ∃ yk → y, yk ∈ F(xk)} (1.20)

in terms of the Painlevé-Kuratowski inner/lower limit F at x̄.

Theorem 1.15 (Extremal Property of Convex-Valued Mappings via Their Ba-
sic Coderivative). Let F : Rn →→ R

m be inner semicontinuous at x̄ ∈ domF and
convex-valued around this point, and let v ∈ domD∗F(x̄, ȳ) for some ȳ ∈ F(x̄).
Then we have the extremal property

〈v, ȳ〉 = min
y∈F(x̄)〈v, y〉. (1.21)

Proof. By v ∈ domD∗F(x̄, ȳ) and the coderivative definition (1.15), there is
u ∈ R

n with (u,−v) ∈ N((x̄, ȳ); gphF). By Theorem 1.6 we find sequences
(xk, yk) → (x̄, ȳ) with yk ∈ F(xk) and (uk, vk) → (u, v) such that

lim sup

(x,y)
gphF−→(xk,yk)

〈uk, x − xk〉 − 〈vk, y − yk〉
‖(x, y)− (xk, yk)‖ ≤ 0, k ∈ N.

Putting there x = xk shows that −vk ∈ N̂(yk;F(xk)). Since all the sets F(xk)
are convex, we get from Proposition 1.9 that 〈vk, y − yk〉 ≥ 0 for any y ∈ F(xk).
Suppose now that there is ỹ ∈ F(x̄) such that 〈v, ỹ〉 < 〈v, ȳ〉. Then the inner
semicontinuity of F at x̄ gives us a sequence ỹk → ỹ with ỹk ∈ F(xk), and so

〈vk, ỹk − yk〉 < 0 for all large k.

The obtained contradiction completes the proof of the theorem. �
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The following example with two parts shows that both assumptions of Theo-
rem 1.15 are essential for the validity of the extremal property (1.21).

Example 1.16 (Assumptions of Theorem 1.15 Are Essential for the Validity of
the Extremal Property).

(i) First we show that the convex-valuedness assumption is essential for the ful-
fillment of the extremal property (1.21) of inner semicontinuous mappings. Consider
the set-valued mapping F : R →→ R defined by

F(x) := {− |x|, |x|} for x ∈ R (1.22)

(see Fig. 1.4), which is clearly nonconvex-valued at any x 
= 0 while being inner
semicontinuous at x̄ = 0 due to the equalities

Lim inf
x→0

F(x) = {0} = F(0).

It is easy to see that the normal cone to the graph of (1.22) at (0, 0) is

N
(
(0, 0); gphF

) = {
(x, y) ∈ R

2
∣∣ y = x

} ∪ {
(x, y) ∈ R

2
∣∣ y = −x},

and so the coderivative D∗F(0, 0)(v) of (1.22) is calculated by

D∗F(0, 0)(v) =
⎧
⎨

⎩

{−v, v} for v > 0,
0 for v = 0,
{v,−v} for v < 0.

It follows from here that for v = 1 ∈ domD∗F(0, 0), we have 〈v, 0〉 = 0 while

min
y∈F(0)〈v, y〉 = min

y∈R〈v, y〉 
= 0,

and thus the extremal property (1.21) fails for F from (1.22).
(ii) Next we demonstrate that property (1.21) may be violated for convex-valued

multifunctions, which are not inner semicontinuous at the reference points. Define
the convex-valued mapping F : R →→ R by (see Fig. 1.5)

F (x)

gphF N((0, 0); gphF )

v v

D∗F (0, 0)(v)

0x

Fig. 1.4 Coderivative of F(x) := {− |x|, |x|}
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F(x) :=
⎧
⎨

⎩

1 for x > 0,
[−1, 1] for x = 0,
−1 for x < 0,

(1.23)

which is not inner semicontinuous at x̄ = 0 due to

Lim inf
x→0

F(x) = ∅ 
= F(0) = [−1, 1].

Then for the point (x̄, ȳ) = (0, 1) ∈ gphF , we have

N
(
(0, 1); gphF

) = {
(u, v) ∈ R

2
∣∣ u ≤ 0, v ≥ 0

} ∪ {
(u, v) ∈ R

2
∣∣ uv = 0

}
,

which readily implies that domD∗F(0, 1) = R. Hence

min
y∈F(0) vy = −v < v · 1 for any v > 0

This shows that the extremal property (1.21) fails for F from (1.23).

1

−1

gphF

N((0, 1); gphF )

D∗F (0, 1)(v)

v v

0

Fig. 1.5 Violation of the extremal property without inner semicontinuity

1.3 First-Order Subgradients of Nonsmooth Functions

This section presents the major first-order subdifferential constructions for
extended-real-valued functions mainly used in what follows and then describes
some of their fundamental properties and interrelations.

1.3.1 Extended-Real-Valued Functions

In this book we make a terminological distinction between mappings and func-
tions. By (single-valued or set-valued) mappings, we understand correspondences
with values in multidimensional (finite-dimensional or infinite-dimensional) spaces,
without any ordering on them. The term “functions” is used for mappings that take
real values with the natural order on R. In fact, it is more convenient for various
reasons to consider extended-real-valued functions, which may take values in the
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extended real line R := (−∞,∞] = R ∪ {∞}. One of the reasons is to include
sets into the functional framework by associating a set � ⊂ R

n with its indicator
function

δ(x;�) :=
{

0 if x ∈ �,
∞ otherwise.

We always suppose that a function ϕ : Rn → R is proper, i.e.,

domϕ := {
x ∈ R

n
∣∣ ϕ(x) < ∞} 
= ∅

for its domain. Note that for definiteness the main attention is paid to “lower”
properties of functions largely motivated by applications to minimization problems;
that’s why we exclude the value −∞ from consideration. The “upper” properties
and the corresponding upper constructions for ϕ can be obtained symmetrically by
passing to −ϕ. We’ll do it when it becomes necessary.

From the viewpoint of lower properties, the most appropriate general concept
for functions under consideration in variational analysis and optimization is lower
semicontinuity, in contrast to continuity in classical analysis. Recall that ϕ : Rn →
R is lower semicontinuous (l.s.c.) at x̄ ∈ domϕ if

ϕ(x̄) ≤ lim inf
x→x̄

ϕ(x).

Unless otherwise stated, in what follows we consider extended-real-valued func-
tions ϕ that are l.s.c. around the reference point x̄, i.e., have this property at any
point in some neighborhood of x̄. This corresponds to the local closedness of the
epigraphical set, or the epigraph,

epiϕ := {
(x, α) ∈ R

n × R
∣∣ α ≥ ϕ(x)

}

around the point (x̄, ϕ(x̄)) ∈ gphϕ. Throughout the book we use the notation

x
ϕ→ x̄ ⇐⇒ x → x̄ with ϕ(x) → ϕ(x̄),

where the condition ϕ(x) → ϕ(x̄) is redundant if ϕ is continuous at x̄. Note that for

the indicator function ϕ(x) = δ(x;�), the notation x
ϕ→ x̄ agrees with x

�→ x̄ for
sets in Section 1.1 and that the lower semicontinuity of ϕ around x̄ ∈ domϕ reduces
to the local closedness of � around x̄ ∈ �.

1.3.2 Subgradients from Normals to Epigraphs

Similarly to the coderivative case for mappings, we define next the basic and
singular limiting subdifferentials (collections of the corresponding subgradients)
of extended-real-valued functions geometrically via the basic normals taken from
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Definition 1.1. But instead of applying normals to graphs, we deal now with
epigraphs of functions exploiting the natural order structure on R. First we observe
the following structure of the normal cone (1.4) to epigraphs.

Proposition 1.17 (Basic Normals to Epigraphs). Let ϕ : Rn → R and (x̄, ᾱ) ∈
epiϕ. Then λ ≥ 0 for every (v,−λ) ∈ N((x̄, ᾱ); epiϕ), and so there are uniquely
defined subsets D,D∞ ⊂ R

n providing the representation

N
(
(x̄, ϕ(x̄)); epiϕ

) = {
λ(v,−1)

∣∣ v ∈ D, λ > 0
} ∪ {

(v, 0)
∣∣ v ∈ D∞}.

Proof. Taking any (v,−λ) ∈ N((x̄, ᾱ); epiϕ) and using Theorem 1.6, find se-

quences (xk, αk)
epiϕ−→ (x̄, ᾱ), vk → v, and λk → λ such that

lim sup

(x,α)
epiϕ−→(xk,αk)

〈vk, x − xk〉 − λk(α − αk)
‖(x, α)− (xk, αk)‖ ≤ 0 for all k ∈ N.

Letting here x = xk , α = αk + 1 and then passing to the limit as k → ∞, we get
λ ≥ 0. This easily implies the claimed representation, where the closedness of the
sets D and D∞ follows from that of the normal cone (1.4). �

The setD in Proposition 1.17 describes “sloping” normals, whileD∞ consists of
“horizontal” normals to the epigraph. We define via these sets the basic and singular
subdifferentials of the function ϕ at x̄ as follows.

Definition 1.18 (Basic and Singular Subdifferentials of Functions). Let
ϕ : Rn → R be finite at x̄ ∈ domϕ. Then the collection of BASIC SUBGRADI-
ENTS, or the (basic) SUBDIFFERENTIAL, of ϕ at x̄ is defined by

∂ϕ(x̄) := {
v ∈ R

n
∣∣ (v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ

)}
. (1.24)

The collection of SINGULAR SUBGRADIENTS, or the SINGULAR SUBDIFFEREN-
TIAL, of ϕ at this point is defined by

∂∞ϕ(x̄) := {
v ∈ R

n
∣∣ (v, 0) ∈ N((x̄, ϕ(x̄)); epiϕ

)}
. (1.25)

We’ll see below that the subgradient sets (1.24) and (1.25) are much different
from each other and play significantly distinct roles in variational analysis and op-
timization while they enjoy similar and rather comprehensive calculus rules. The
basic subdifferential ∂ϕ(x̄) reduces to the usual gradient {∇ϕ(x̄)} for smooth func-
tions and to the subdifferential of convex analysis when ϕ is convex. The singular
subdifferential ∂∞ϕ(x̄) reduces to {0} for locally Lipschitzian functions; so it has
never appeared in classical analysis and has not been designated in the subdifferen-
tial framework of convex analysis as well.

We begin with the extended-real-valued setting of indicator functions when con-
structions (1.24) and (1.25) agree and reduce to the normal cone (1.4) for the set in
question. This easily follows from the definitions and Proposition 1.4.
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Proposition 1.19 (Subgradients of Indicator Functions). For any set � ⊂ R
n

and point x̄ ∈ �, we have the representations

∂δ(x̄;�) = ∂∞δ(x̄;�) = N(x̄;�).
Let us present another property, which is shared by both subdifferential construc-

tions from Definition 1.18 and easily follows from Proposition 1.3.

Proposition 1.20 (Robustness of the Basic and Singular Subdifferentials). For
any ϕ : Rn → R and x̄ ∈ domϕ, we have

∂ϕ(x̄) = Lim sup
x
ϕ→x̄

∂ϕ(x) and ∂∞ϕ(x̄) = Lim sup
x
ϕ→x̄

∂∞ϕ(x).

Next we calculate both basic and singular subdifferentials from Definition 1.18
and illustrate some of their properties for simple functions on R.

Example 1.21 (Subgradients of Simple Functions on R).
(i) Consider first the convex function ϕ(x) := |x|. Then we easily see from

definition (1.4) or representation (1.9) that

N
(
(0, 0); epi ϕ

) = {
(x, y) ∈ R

2
∣∣ y ≤ −|x|} and thus ∂ϕ(0) = [−1, 1]

in accordance with convex analysis; see Fig. 1.6. However, changing the sign of the
function gives us a completely different picture. Indeed, for ϕ(x) := −|x|, the nor-
mal cone N((0, 0); epi ϕ) is calculated in Example 1.5, and thus ∂ϕ(0) = {−1, 1},
i.e., the subdifferential (1.24) is nonconvex; see Fig. 1.7. Note that in both cases of
ϕ(x) = |x| and ϕ(x) = −|x|, we have ∂∞ϕ(0) = {0}.

(ii) Next consider the continuous while not Lipschitz continuous function
ϕ(x) := x1/3 for which we easily get from the definitions that

N
(
(0, 0); epi ϕ

) = {
(x, 0) ∈ R

2
∣∣ x ≥ 0

}
with ∂ϕ(0) = ∅, ∂∞ϕ(0) = [0,∞),

which illustrates that the subdifferential (1.24) may be empty; see Fig. 1.8.
(iii) If we replace the function in (ii) by ϕ(x) := x1/3 for x < 0 and ϕ(x) := 0

for x ≥ 0, then

−1

−1 1

∂ϕ(0)

epiϕ

N((0, 0); epiϕ)

Fig. 1.6 Subdifferential of ϕ(x) = |x|
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epiϕ

N((0, 0); epiϕ)

−1

−1 1

∂ϕ(0)

Fig. 1.7 Subdifferential of ϕ(x) = −|x|

epiϕ

N((0, 0); epiϕ)

−1

∂∞ϕ(0) = [0, ∞)
∂ϕ(0) = ∅

Fig. 1.8 Subdifferential and singular subdifferential of ϕ(x) = x1/3

epiϕ

N((0, 0); epiϕ)

−1

∂∞ϕ(0) = [0, ∞)

∂ϕ(0) = {0}

Fig. 1.9 Subdifferential and singular subdifferential of ϕ(x) = x1/3 if x < 0 and ϕ(x) = 0 if
x ≥ 0

N
(
(0, 0); epi ϕ

) = {
(x, 0) ∈ R

2
∣∣ x ≥ 0

} ∪ {
(0, y) ∈ R

2
∣∣ y ≤ 0

}

with ∂ϕ(0) = {0} and ∂∞ϕ(0) = [0,∞); see Fig. 1.9. This shows, in particular, that
the basic subdifferential (1.24) of a continuous function may be a singleton, while
the function is nonsmooth around the point in question.

(iv) The last example in this vein illustrates yet another, rather opposite feature
of the subdifferential (1.24): it may not be a singleton for a continuous function
that is differentiable at the reference point (1.12) but not strictly differentiable at
it and hence not of class C1 around this point. Indeed, define ϕ(x) := x2 sin(1/x)
for x 
= 0 and ϕ(0) := 0. This function is obviously differentiable at zero with
ϕ′(0) = 0, while ∂ϕ(0) = [−1, 1].
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It is easy to deduce from Proposition 1.2 that we may have ∂ϕ(x̄) = ∅ only
when ∂∞ϕ(x̄) 
= {0}. Indeed, since (x̄, ϕ(x̄)) is a boundary point of the epi-
graph epiϕ which is locally closed around it, there is a nonzero vector (v,−λ) ∈
N((x̄, ϕ(x̄)); epiϕ). The emptiness of ∂ϕ(x̄) implies that λ = 0, and thus 0 
= v ∈
∂∞ϕ(x̄). Note that the triviality condition ∂∞ϕ(x̄) = {0} is not necessary for the
nonemptiness of the basic subdifferential ∂ϕ(x̄). The latter is always the case for
the indicator function in Proposition 1.19 and may also occur when ϕ is continuous
around x̄ as demonstrated in Example 1.21(iii).

On the other hand, in the examples given above, the triviality condition
∂∞ϕ(x̄) = {0} relates to the local Lipschitz continuity of ϕ around x̄. The
next theorem shows that it is indeed a characterization and describes behavior
of the basic subdifferential of locally Lipschitzian functions. Recall that a mapping
f : Rn → R

m defined near x̄ is locally Lipschitzian around this point with some
modulus � ≥ 0 if there is a neighborhood U of x̄ such that

‖f (x)− f (z)‖ ≤ �‖x − z‖ for all x, z ∈ U. (1.26)

Theorem 1.22 (Subdifferentials of Locally Lipschitzian Functions). Let
ϕ : Rn → R with x̄ ∈ domϕ. Then it is locally Lipschitzian around x̄ with
some modulus � ≥ 0 if and only if ∂∞ϕ(x̄) = {0}. In this case ∂ϕ(x̄) 
= ∅ and, for
a fixed Lipschitz modulus �, we have

‖v‖ ≤ � whenever v ∈ ∂ϕ(x̄). (1.27)

Proof. Suppose that ϕ is Lipschitz continuous on some convex neighborhood U of
x̄ with modulus �, and show that for any λ ≥ 0, we have the implication

(v,−λ) ∈ N((x̄, ϕ(x̄)); epiϕ
) �⇒ ‖v‖ ≤ �λ. (1.28)

By the normal cone definition (1.4) with the usage of the Euclidean norm on R
n×R,

it suffices to verify that

(w,μ) ∈ �((x, α); epi ϕ
) �⇒ ‖w − x‖ ≤ �|μ− α|

for the Euclidean projector �(·; epiϕ). Assuming the contrary gives us

x 
= w and γ := ‖x − w‖ − �(μ− α)
(�2 + 1)‖x − w‖ > 0.

Denoting z := w+ γ (x −w) and ν := μ+ γ �‖x −w‖, we have that z ∈ U by the
convexity of U . The Lipschitz continuity of ϕ ensures that (z, ν) ∈ epiϕ. It is not
hard to check for the Euclidean norm ‖ · ‖ that

‖(x, α)− (z, ν)‖ ≤ �‖x − w‖ + (μ− α)√
�2 + 1

< ‖(x, α)− (w,μ)‖,
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which contradicts the choice of (w,μ) ∈ �((x, α); epi ϕ) and so justifies (1.28).
This yields that ∂∞ϕ(x̄) = {0} for λ = 0 in (1.28) and that ‖v‖ ≤ � for λ > 0.

To complete the proof, it remains to show that the condition ∂∞ϕ(x̄) = {0} im-
plies that ϕ is locally Lipschitzian around x̄. This follows from the coderivative
criterion for the Lipschitz-like property of general multifunctions derived in Theo-
rem 3.3; see also Theorem 4.15 for another proof. �

1.3.3 Subgradients from Coderivatives

It is clear from Definition 1.18 that both basic and singular subdifferentials of
ϕ : Rn → R at x̄ ∈ domϕ can be expressed via the coderivative

∂ϕ(x̄) = D∗Eϕ
(
x̄, ϕ(x̄)

)
(1), ∂∞ϕ(x̄) = D∗Eϕ

(
x̄, ϕ(x̄)

)
(0)

of the epigraphical multifunction Eϕ : Rn →→ R associate with ϕ by

Eϕ(x) := {
α ∈ R

∣∣ α ≥ ϕ(x)
}
. (1.29)

The next theorem important in what follows shows that, for the class of l.s.c.
functions under consideration, we can replace Eϕ in the coderivative representation
of ∂ϕ(x̄) by the function ϕ itself, having also a useful relationship between ∂∞ϕ(x̄)
and D∗ϕ(x̄)(0) when ϕ is continuous around x̄.

Theorem 1.23 (Subdifferentials from Coderivatives of l.s.c. and Continuous
Functions). Let ϕ : Rn → R be finite around x̄. Then we have

∂ϕ(x̄) = D∗ϕ(x̄)(1). (1.30)

If in addition ϕ is continuous around x̄, then

∂∞ϕ(x̄) ⊂ D∗ϕ(x̄)(0). (1.31)

Proof. We split the proof into several steps remembering that ϕ is l.s.c. around x̄,
which is our standing assumption.

Step 1: For any sequence (xk, αk)
epiϕ−→ (x̄, ϕ(x̄)) as k → ∞, there is a subsequence

{xkj } of {xk} such that

(
xkj , ϕ(xkj )

) −→ (
x̄, ϕ(x̄)

)
as j → ∞.

To proceed, assume first that the set S := {xk| ϕ(x̄) ≤ ϕ(xk), k ∈ N} consists of
infinitely many elements. By passing to the limit in

ϕ(x̄) ≤ ϕ(xk) ≤ αk for all xk ∈ S
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and taking into account that αk → ϕ(x̄) as k → ∞, we get lim
xk

S→x̄

ϕ(xk) = ϕ(x̄)

that verifies the claim in this case. In the remaining case where the set S is finite,
we suppose without loss of generality that ϕ(xk) ≤ ϕ(x̄) for all k ∈ N and thus get
lim sup
k→∞

ϕ(xk) ≤ ϕ(x̄), which implies in turn that

lim
k→∞ϕ(xk) = ϕ(x̄)

since ϕ is l.s.c. at x̄. It justifies the claim in this case as well.

Step 2: We have the inclusion D∗ϕ(x̄)(1) ⊂ ∂ϕ(x̄).

This means that the following implication holds:

(v,−1) ∈ N((x̄, ϕ(x̄)); gphϕ
) �⇒ (v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ

)
.

To verify it, pick any (v,−1) ∈ N((x̄, ϕ(x̄)); gphϕ) and find by Theorem 1.6
sequences (vk, λk) → (x̄,−1) and xk → x̄ such that the inclusions (vk, λk) ∈
N̂((xk, ϕ(xk)); gphϕ) hold for all k ∈ N. Suppose without loss of generality that
λk = −1 for all k ∈ N and show now that (vk,−1) ∈ N̂((xk, ϕ(xk)); epiϕ) along
some subsequence of {xk}. In fact, we select this subsequence from Step 1 with no
relabeling.

Arguing by contradiction, assume that the claimed inclusion is violated for some

fixed k and then find a number γ ∈ (0, 1) and a sequence of pairs (zj , αj )
epiϕ−→

(xk, ϕ(xk)) as j → ∞ such that

〈vk, zj − xk〉 + (ϕ(xk)− αj ) > γ ‖(zj , αj )− (xk, ϕ(xk))‖ for all j ∈ N.

Since αj ≥ ϕ(zj ) and ϕ(zj ) → ϕ(xk) as j → ∞, we have

‖(zj − xk, ϕ(zj )− ϕ(xk))‖ ≤ ‖(zj − xk, αj − ϕ(xk))‖ + αj − ϕ(zj ),
which implies in turn the estimate

〈vk, zj − xk〉 + ϕ(xk)− ϕ(zj ) > γ ‖(zj , ϕ(zj ))− (xk, ϕ(xk))‖
for all j ∈ N. This means that (vk,−1) /∈ N̂((xk, ϕ(xk)); gphϕ), which is a con-
tradiction by taking into account the choice of the (sub)sequence {xk} from Step 1.
Thus we have the inclusion D∗ϕ(x̄)(1) ⊂ ∂ϕ(x̄) in (1.30).

Step 3: For any set � ⊂ R
n locally closed around x̄, we have

N(x̄;�) ⊂ N(x̄; bd�) at every x̄ ∈ bd�.

To verify this, take 0 
= v ∈ N(x̄;�) and by Theorem 1.6 find sequences xk
�→ x̄

and vk → v with vk ∈ N̂(xk;�) for all k ∈ N. Since ‖vk‖ > 0 when k is sufficiently
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large, this implies by (1.5) that xk ∈ bd� for such k. The claim now follows from
the observation that

N̂(x̄;�1) ⊂ N̂(x̄;�2) whenever �2 ⊂ �1 and x̄ ∈ �2,

which can be easily checked by definition (1.5).

Step 4: We have the inclusion ∂ϕ(x̄) ⊂ D∗ϕ(x̄)(1).
Since the set epiϕ is closed around (x̄, ϕ(x̄)), it follows from Step 3 that

N
(
(x̄, ϕ(x̄)); epiϕ

) ⊂ N
(
(x̄, ϕ(x̄)); bd(epi ϕ)

)
,

and so it remains to verify the implication

[
(v,−1) ∈ N((x̄, ϕ(x̄)); bd(epi ϕ)

)] �⇒ [
(v,−1) ∈ N((x̄, ϕ(x̄)); gphϕ

)]
.

To proceed, pick (v,−1) ∈ N((x̄, ϕ(x̄)); bd(epiϕ)) and find (vk, λk) →
(v,−1) and (xk, αk)

bd(epiϕ)−→ (x̄, ϕ(x̄)) as k → ∞ such that (vk,−λk) ∈
N̂((xk, ϕ(xk)); bd(epi ϕ)) whenever k ∈ N. Let λk ≡ −1 without loss of gen-
erality and for all (x, α) ∈ [

B1/k(xk)× (αk − 1
k
, αk + 1

k
)
] ∩ bd(epiϕ) get

〈vk, x − xk〉 − (α − αk) ≤ 1

k

(
‖x − xk‖ + |α − αk|

)
(1.32)

when k is large. Similarly to Step 2, select by the lower semicontinuity of ϕ a sub-
sequence of {xk} (no relabeling) such that (xk, ϕ(xk)) → (x̄, ϕ(x̄)) as k → ∞.
Then (1.32) implies that along this subsequence we have

〈vk, x−xk〉−
(
α−ϕ(xk)

)−(ϕ(xk)−αk
) ≤ 1

k

(
‖x−xk‖+|α−ϕ(xk)|+|ϕ(xk)−αk|

)

for all (x, α) ∈ [
B1/k(xk)× (αk − rk, αk + rk)

]∩ bd(epiϕ), where such a sequence
rk ↓ 0 exists due to αk − ϕ(xk) → 0. By (xk, αk) ∈ bd(epiϕ) ⊂ epiϕ due to the
l.s.c. of ϕ, it yields ϕ(xk) ≤ αk and therefore

〈vk, x − xk〉 − (
α − ϕ(xk)

) ≤ 1

k

(
‖x − xk‖ + |α − ϕ(xk)|

)

for all (x, α) ∈ gphϕ close to xk, ϕ(xk). Thus we arrive at

lim sup

(x,α)
gphϕ−→(xk,ϕ(xk))

〈vk, x − xk〉 − (
α − ϕ(xk)

)

‖x − xk‖ + |α − ϕ(xk)| ≤ 1

k
,

which means that (vk,−1) ∈ N̂ 1
k
((xk, ϕ(xk)); gphϕ) for each k. It tells us by pass-

ing to the limit as k → ∞ that (v,−1) ∈ N((x̄, ϕ(x̄)); gphϕ), i.e., v ∈ D∗ϕ(x̄)(1).
This justifies the claim and hence representation (1.30).

Step 5: If ϕ is continuous around x̄, then we have inclusion (1.31).
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Indeed, it follows from the continuity of ϕ around x̄ that gphϕ = bd(epiϕ).
Hence the result of Step 3 ensures the validity of the inclusion

N
(
(x̄, ϕ(x̄)); epiϕ

) ⊂ N
(
(x̄, ϕ(x̄)); gphϕ

)
,

which readily implies (1.31) and completes the proof of the theorem. �
Observe that the inclusion in (1.31) is generally strict. To illustrate it, consider

the following example of a continuous function ϕ : R → R with ϕ(x) := −x1/3,
x ≥ 0, and ϕ(x) := 0, x < 0. From Definition 1.1 we calculate the normal cone to
the epigraph and graph of this function at the origin by

N
(
(0, 0); epi ϕ

) = {
(v, 0) ∈ R

2
∣∣ v ≤ 0

} ∪ {
(0, v) ∈ R

2
∣∣ v ≤ 0

}

and N((0, 0); gph ϕ) = N((0, 0); epi ϕ) ∪ R
2+; see Fig. 1.10. It shows that

∂∞ϕ(0) = (−∞, 0] and D∗ϕ(0)(0) = (−∞,∞) with the strict inclusion (1.31).

epiϕ

N((0, 0); epiϕ) ∂∞ϕ(0) = (−∞, 0]

gphϕ

N((0, 0); gphϕ)
D∗ϕ(0)(0) = IR

Fig. 1.10 Singular subdifferential vs. coderivative of ϕ(x) = 0 if x < 0 and ϕ(x) = −x1/3 if
x ≥ 0

The precise relationship (1.30) between the coderivative (1.15) and the basic sub-
differential (1.24) allows us to deduce subdifferential results from coderivative ones,
which is useful in what follows. Let us derive in this way an implementation of
Proposition 1.12 in the case of functions.

Corollary 1.24 (Subgradients of Smooth Functions). Let ϕ : Rn → R be of class
C1 around x̄. Then we have ∂ϕ(x̄) = {∇ϕ(x̄)}.
Proof. Follows from Theorem 1.23 and Proposition 1.12. �
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Note that the reduction of the subgradient set ∂ϕ(x̄) to a singleton is actually
a characterization of strict differentiability (1.19) for locally Lipschitzian func-
tions (1.26); see Theorem 4.17. The elementary functions considered in Exam-
ple 1.21 demonstrate that both Lipschitz continuity and strict differentiability vs.
merely differentiability are essential in this characterization.

As shown in Example 1.21(i), the basic subgradient set ∂ϕ(x̄) is nonconvex for
simple functions like ϕ(x) = −|x| at x̄ = 0. Similarly to the case of normals (and
much related to it), we can approximate the subdifferentials (1.24) and (1.25) at x̄
by some convex sets of subgradients of ϕ taken at points nearby.

1.3.4 Regular Subgradients and ε-Enlargements

Given a function ϕ : Rn → R and a point x̄ ∈ domϕ, define the collection of regular
subgradients, or the presubdifferential, of ϕ at x̄ by

∂̂ϕ(x̄) :=
{
v ∈ R

n
∣∣∣ lim inf

x→x̄

ϕ(x)− ϕ(x̄)− 〈v, x − x̄〉
‖x − x̄‖ ≥ 0

}
(1.33)

and for each ε > 0, consider its ε-enlargement

∂̂εϕ(x̄) :=
{
v ∈ R

n
∣∣∣ lim inf

x→x̄

ϕ(x)− ϕ(x̄)− 〈v, x − x̄〉
‖x − x̄‖ ≥ −ε

}
(1.34)

with ∂̂0ϕ(x̄) = ∂̂ϕ(x̄). Note that ∂̂ϕ(x̄) = {∇ϕ(x̄)} when ϕ is differentiable (not
necessary strictly) at x̄ but (1.33) may also reduce to a singleton in the nondifferen-
tiable case, which can be observed from the examples above.

For convex functions ϕ : Rn → R (i.e., those whose epigraphs are convex sets) ,
we have the following subgradient descriptions, which show, in particular, that both
subgradient sets (1.25) and (1.33) reduce in this case to the classical subdifferential
of convex analysis.

Proposition 1.25 (Subgradients and ε-Subgradients of Convex Functions). Let
ϕ : Rn → R be convex. Then

∂̂εϕ(x̄) = {
v ∈ R

n
∣∣ 〈v, x − x̄〉 ≤ ϕ(x)− ϕ(x̄)+ ε‖x − x̄‖ for all x ∈ R

n
}

whenever x̄ ∈ domϕ and ε ≥ 0. Furthermore, we have representations

∂ϕ(x̄) = {
v ∈ R

n
∣∣ 〈v, x − x̄〉 ≤ ϕ(x)− ϕ(x̄) for all x ∈ R

n
}
. (1.35)

∂∞ϕ(x̄) = N(x̄; dom ϕ) = {
v ∈ R

n
∣∣ 〈v, x − x̄〉 ≤ 0 for all x ∈ domϕ

}
.

Proof. Note that the inclusion “⊃” for ∂̂εϕ(x̄) is obvious. To verify the opposite
inclusion, pick an arbitrary subgradient v ∈ ∂̂εϕ(x̄) and observe directly from defi-
nition (1.34) for any given η > 0 that the function

ϑ(x) := ϕ(x)− ϕ(x̄)− 〈v, x − x̄〉 + (
ε + η)‖x − x̄‖
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attains a local minimum at x̄. Since ϑ is convex, x̄ is its global minimizer, i.e.,

ϑ(x) = ϕ(x)− ϕ(x̄)− 〈v, x − x̄〉 + (
ε + η)‖x − x̄‖ ≥ ϑ(x̄) = 0

for all x ∈ R
n. Taking into account that η > 0 was chosen arbitrarily, we get the

claimed representation of ∂̂εϕ(x̄) for all ε ≥ 0. Furthermore, it follows from the
epigraph convexity and the normal cone representation (1.9) that

Nepiϕ
(
x̄, ϕ(x̄)

) = {
v, λ)

∣∣ 〈(v, λ), (x, α)− (x̄, ϕ(x̄))〉 ≤ 0 for all (x, α) ∈ epiϕ
}
,

which implies by (1.24), (1.25) the formulas for ∂ϕ(x̄) and ∂∞ϕ(x̄). �
It is easy to verify that the sets (1.33) and (1.34) are convex while may be trivial

for simple nonconvex Lipschitzian functions like ϕ(x) = −|x|, where ∂̂εϕ(0) = ∅
for ε = 0 and small ε > 0. On the other hand, we’ll see below that these sets
considered at points x near x̄ can be used for approximating the subdifferential
∂ϕ(x̄). Similarly to the case of normals, the regular subgradient collection (1.33)
plays a role of the presubdifferential in subdifferential theory, along with their ε-
subgradient enlargements (1.34). We obviously have

∂̂εδ(x̄;�) = N̂ε(x̄;�) whenever x̄ ∈ � and ε ≥ 0

for set indicator functions. The next result reveals deeper relationships between (reg-
ular) ε-normals and ε-subgradients including the underlying case of ε = 0 most
important in what follows. As mentioned above, the norm on R

n × R used in the
proof is ‖(x, α)‖ = ‖x‖ + |α| by (1.18).

Theorem 1.26 (Geometric Descriptions of Regular Subgradients and Their ε-
Enlargements). Let ϕ : Rn → R with x̄ ∈ domϕ. Then

∂̂εϕ(x̄) ⊂ {
v ∈ R

n
∣∣ (v,−1) ∈ N̂ε

(
(x̄, ϕ(x̄)); epiϕ

)}
for all ε ≥ 0.

Conversely, whenever 0 ≤ ε < 1, we have the implication

(v,−1) ∈ N̂ε
(
(x̄, ϕ(x̄)); epiϕ

) �⇒ v ∈ ∂̂ε1ϕ(x̄)

with ε1 := ε(1 + ‖v‖)/(1 − ε). Therefore

∂̂ϕ(x̄) = {
v ∈ R

n
∣∣ (v,−1) ∈ N̂((x̄, ϕ(x̄)); epiϕ

)}
. (1.36)

Proof. Pick any v ∈ ∂̂εϕ(x̄) and show that (v,−1) ∈ N̂ε((x̄, ϕ(x̄)); epiϕ) for each
ε ≥ 0. Indeed, it follows from definition (1.34) that for any γ > 0 there is a neigh-
borhood U of x̄ with

ϕ(x)− ϕ(x̄)− 〈v, x − x̄〉 ≥ −(ε + γ )‖x − x̄‖ whenever x ∈ U.
This readily gives us for any x ∈ U and α ≥ ϕ(x) that

〈v, x − x̄〉 + ϕ(x̄)− α ≤ (ε + γ )‖(x, α)− (x̄, ϕ(x̄))‖,
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which implies by definition (1.6) with ε ≥ 0 for � = epiϕ that v ∈ ∂̂εϕ(x̄).
To verify the converse implication above, fix ε ∈ [0, 1) and assume on the con-

trary that v /∈ ∂̂ε1ϕ(x̄) with ε1 ≥ 0 specified in the statement. Then there are γ > 0
and a sequence xk → x̄ such that

ϕ(xk)− ϕ(x̄)− 〈v, xk − x̄〉 + (ε1 + γ )‖xk − x̄‖ < 0 for all k ∈ N.

Letting αk := ϕ(x̄)+ 〈v, xk − x̄〉 − (ε1 + γ )‖xk − x̄‖, observe that αk → ϕ(x̄) as
k → ∞ and that (xk, αk) ∈ epiϕ for all k ∈ N. It implies with the usage of the sum
norm (1.18) on the product space that

〈v, xk − x̄〉 − (
αk − ϕ(x̄))

‖(xk, αk)− (x̄, ϕ(x̄))‖ = (ε1 + γ )‖xk − x̄‖
‖(xk − x̄, 〈v, xk − x̄〉 − (ε1 + γ )‖xk − x̄‖)‖

≥ ε1 + γ
1 + ‖v‖ + (ε1 + γ ) >

ε1

1 + ‖v‖ + ε1
= ε

for all k ∈ N due to γ > 0 and the choice of ε1. This clearly implies that (v,−1) /∈
N̂ε((x̄, ϕ(x̄)); epiϕ), which justifies the claimed implication. Representation (1.36)
follows by combining the statements above for ε = 0. �

The geometric representation of regular subgradients in (1.36) allows us to de-
duce their properties from those obtained above for regular normals. The next result
establishes in this way a smooth variational description of regular subgradients for
general extended-real-valued functions.

Theorem 1.27 (Smooth Variational Descriptions of Regular Subgradients). Let
ϕ : Rn → R be finite at x̄. Then v ∈ ∂̂ϕ(x̄) if and only if there is a function ψ : U →
R defined on some neighborhood U of x̄ and Fréchet differentiable at x̄ such that
ψ(x̄) = ϕ(x̄), ∇ψ(x̄) = v and that ψ(x)−ϕ(x) achieves a local maximum on U at
x = x̄. If furthermore ϕ is bounded from below on R

n, then we can choose ψ to be
concave and smooth on R

n and such that ψ(x)−ϕ(x) achieves its global maximum
on R

n uniquely at x = x̄.

Proof. The first part of this result follows directly from geometric representa-
tion (1.36) of regular normals in Theorem 1.26 and the smooth variational descrip-
tion of regular normals given in Theorem 1.10. To verify the second part, pick any
v ∈ ∂̂ϕ(x̄) and observe that the function

ρ(t) := sup
{
ϕ(x̄)− ϕ(x)+ 〈v, x − x̄〉∣∣ x ∈ x̄ + tB}, t ≥ 0,

satisfies the assumptions of Step 2 in the proof of Theorem 1.10 by the imposed
boundedness of ϕ from below. Having τ : [0,∞) → [0,∞) constructed therein, we
can easily see that the function

ψ(x) := −τ(‖x − x̄‖)− ‖x − x̄‖2 + ϕ(x̄)+ 〈v, x − x̄〉, x ∈ R
n,

enjoys all the properties claimed in this corollary. �
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1.3.5 Limiting Subdifferential Representations

Next we derive limiting representations of the basic and singular subdifferentials of
ϕ at x̄ ∈ domϕ and present some of their useful consequences.

Theorem 1.28 (Limiting Representations of Basic and Singular Subgradients).
Let ϕ : Rn → R be finite at x̄. Then we have the representations

∂ϕ(x̄) = Lim sup
x
ϕ→x̄

∂̂ϕ(x) = Lim sup
x
ϕ→x̄
ε↓0

∂̂εϕ(x), (1.37)

∂∞ϕ(x̄) = Lim sup
x
ϕ→x̄
λ↓0

λ̂∂ϕ(x) = Lim sup
x
ϕ→x̄

λ, ε↓0

λ̂∂ϕ(x). (1.38)

Proof. We begin by verifying that the subgradient set ∂ϕ(x̄) belongs to the first
limit in (1.37) while observing that the inclusion “⊂” in the second representa-
tion of (1.37) is obvious. Pick any v ∈ ∂ϕ(x̄) and get by definition (1.24) that
(v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ). Then by the first representation of the normal cone in

Theorem 1.6, we find sequences (xk, αk)
epiϕ−→ (x̄, ϕ(x̄)) and (vk,−λk) → (v,−1)

as k → ∞ such that

(vk,−λk) ∈ N̂((xk, αk); epiϕ
)

for all k ∈ N. (1.39)

Suppose without loss of generality that λk = 1 for all k and get αk = ϕ(xk) by
Exercise 1.62. Then we have from (1.36) that vk ∈ ∂̂ϕ(xk), which means by (1.1)

that the vector v belongs to the outer limit Lim sup ∂̂ϕ(x) as x
ϕ→ x̄.

To proceed further with the proof of (1.37), take v from the rightmost set therein

and find some sequences εk ↓ 0, xk
ϕ→ x̄, and vk → v satisfying

vk ∈ ∂̂εkϕ(xk) for all k ∈ N.

For any k we get from the first inclusion in Theorem 1.26 that

(vk,−1) ∈ N̂εk ((xk, ϕ(xk); epiϕ
)
, k ∈ N.

Passing now to the limit as k → ∞ gives us by Theorem 1.6 the inclusion (v,−1) ∈
N((x̄, ϕ(x̄)); epiϕ), which ensures by (1.24) that v ∈ ∂ϕ(x̄) and thus completes the
proof of both representations in (1.37).

To justify the first singular subdifferential representation in (1.38), pick v from
the set on the right-hand side therein and find by definition (1.1) sequences λk ↓ 0,

xk
epiϕ−→ x̄, and vk → v as k → ∞ such that vk ∈ λk∂̂ϕ(xk) for all k ∈ N. This

implies by (1.33) and the conic structure of N̂(·; epiϕ) that we have (1.39) with
αk = ϕ(xk), which ensures by passing to the limit as k → ∞ that v ∈ ∂∞ϕ(x̄) due
to definition (1.25).
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To proceed with verifying the opposite inclusion in (1.38), pick v ∈ ∂∞ϕ(x̄)
and get (v, 0) ∈ N((x̄, ϕ(x̄)); epiϕ). Then Theorem 1.6 generates sequences

(xk, αk)
epiϕ−→ (x̄, ϕ(x̄)) and (vk, λk) → (v, 0) as k → ∞ such that the inclusions

in (1.39) hold. We can put αk = ϕ(xk) in (1.39) and easily see as in Proposition 1.17
that λk ≥ 0 for all k ∈ N. There are two cases to consider: either (a) λk > 0 or (b)
λk = 0 along some subsequence of k → ∞. In case (a) we have vk ∈ λk∂̂ϕ(xk) and
thus conclude that v belongs to the outer limit on the right-hand side of (1.38). Case
(b) reduces to (a) by showing that in this case the sequence {vk} can be slightly ad-
justed so that there are (̃vk, −̃λk) ∈ N̂((xk, ϕ(xk)); epiϕ) with λ̃k ↓ 0 and ṽk → v

as k → ∞. The proof of this adjustment is technically involved and is omitted here;
see [678, Theorem 8.9] and [522, Lemma 2.37] for different detailed arguments.
The second representation in (1.38) is justified similarly to the case of (1.37). �

Note that the second representations in (1.37) and (1.38) justify the stability of
the limiting representation of ∂ϕ(x̄) with respect to the presubdifferential enlarge-
ment. Such a stability is clearly related to that in the normal cone representations of
Theorem 1.6. Let us demonstrate the importance of it in the proof of the following
useful property of singular subgradients.

Proposition 1.29 (Singular Subgradients Under Lipschitzian Additions). Let
ϕ : Rn → R be finite at x̄ ∈ domϕ, and let ψ : Rn → R be locally Lipschitzian
around this point. Then

∂∞(ϕ + ψ)(x̄) = ∂∞ϕ(x̄).

Proof. Given v ∈ ∂∞(ϕ + ψ)(x̄), find by definition (1.25) sequences γk ↓ 0,

(xk, αk)
epi(ϕ+ψ)−→ (x̄, (ϕ + ψ)(x̄)), vk → v, νk → 0, and ηk ↓ 0 such that

〈vk, x − xk〉 + νk(α − αk) ≤ γk(‖x − xk‖ + |α − αk|)
for all (x, α) ∈ epi (ϕ + ψ) with x ∈ xk + ηkB and |α − αk| ≤ ηk as k ∈ N. Take a
Lipschitz constant � > 0 of ψ around x̄ from (1.26) and denote η̃k := ηk/2(� + 1)

and α̃k := αk − ψ(xk). Then (xk, α̃k)
epiϕ−→ (x̄, ϕ(x̄)) and

(x, α + ψ(x)) ∈ epi (ϕ + ψ), |(α + ψ(x))− αk| ≤ ηk

whenever (x, α) ∈ epiϕ, x ∈ xk + η̃kB, and |α − α̃k| ≤ η̃k . Hence

〈vk, x − xk〉 + νk(α− α̃k) ≤ εk(‖x − xk‖ + |α− α̃k|) with εk := γk(1 + �)+ |νk|�
for any (x, α) ∈ epiϕ with x ∈ xk + η̃kB and |α − α̃k| ≤ η̃k . This yields (vk, νk) ∈
N̂εk ((xk, α̃k); epiϕ) for all k ∈ N, and so (v, 0) ∈ N((x̄, ϕ(x̄)); epiϕ) since εk ↓ 0
as k → ∞. Thus we get the inclusion “⊂” in the statement above. Applying it to
the sum ϕ = (ϕ + ψ) + (−ψ) gives us ∂∞ϕ(x̄) ⊂ ∂∞(ψ + ϕ)(x̄), which justifies
the claimed equality and completes the proof. �
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It is easy to observe that the convex set of regular subgradients (1.33) for any
extended-real-valued function ϕ admits the dual representation

∂̂ϕ(x̄) = {
v ∈ R

n
∣∣ 〈v,w〉 ≤ dϕ(x̄;w) for all w ∈ R

n
}

(1.40)

via the contingent derivative of ϕ at x̄ ∈ domϕ in the direction w defined by

dϕ(x̄;w) := inf
{
ν ∈ R

∣∣ (w, ν) ∈ T ((x̄, ϕ(x̄)); epiϕ
)}

(1.41)

geometrically in terms of the contingent cone (1.11) to the epigraph. This is similar
to the duality relationship between the prenormal and contingent cones to closed
sets in Proposition 1.9 It follows directly from the definitions that epi dϕ(x̄; ·) =
Tepiϕ(x̄, ϕ(x̄)) and that dϕ(x̄;w) can be described analytically via the lower limit
of difference quotient

dϕ(x̄;w) = lim inf
z→w
t↓0

ϕ(x̄ + tz)− ϕ(x̄)
t

. (1.42)

Observe that we can equivalently let z = w in (1.42) if ϕ is locally Lipschitzian
around x̄. Note also that our basic subdifferential (1.24), being nonconvex, cannot
be generated in the duality scheme of type (1.40) by any directional derivative. On
the other hand, the approximation results of Theorem 1.28 show that it can be done
in the limiting procedure.

We’ll see in Chapters 2–4 that, in spite of (actually due to) their nonconvexity,
the basic and singular subdifferentials as well as the normal cone and coderivative
associated with them enjoy comprehensive calculus rules and other properties cru-
cial for applications, while their regular counterparts are inadequate in themselves
for a satisfactory theory and applications.

Let us first present some simple albeit important properties that are shared by
basic and regular subgradients.

Proposition 1.30 (Elementary Rules for Basic and Regular Subgradients). Let
ϕ : Rn → R be finite at x̄. The following assertions hold:

(i) (GENERALIZED FERMAT RULE) If x̄ is a local minimizer of ϕ, then

0 ∈ ∂̂ϕ(x̄) and 0 ∈ ∂ϕ(x̄).
These conditions agree and are sufficient for global minima when ϕ is convex.

(ii) (SUM RULES WITH DIFFERENTIABLE ADDITIONS) Let ψ : Rn → R be
differentiable at x̄. Then we have

∂̂(ψ + ϕ)(x̄) = ∇ψ(x̄)+ ∂̂ϕ(x̄).
If furthermore ψ is of class C1 around this point, then

∂(ψ + ϕ)(x̄) = ∇ψ(x̄)+ ∂ϕ(x̄).
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Proof. When x̄ is a local minimizer of ϕ, we get directly from definition (1.33)
that v = 0 is a regular subgradient of ϕ. The second inclusion in (i) follows from
that of ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄), which in turn is a consequence of representation (1.37) in
Theorem 1.28. If ϕ is convex, the sets ∂̂ϕ(x̄) and ∂ϕ(x̄) agree with each other by
Proposition 1.25, and the condition 0 ∈ ∂ϕ(x̄) ensures that x̄ is a global minimizer
of ϕ by the subdifferential representation therein.

The inclusion “⊂” in the rule for ∂̂(ψ + ϕ)(x̄) is verified directly by definition.
The opposite one follows from it by applying to ϕ = (ψ + ϕ) + (−ψ). To obtain
the sum rule for basic subgradients, we pass to the limit from its regular counterpart
at points nearby with the usage of Theorem 1.28. �

The limiting representation (1.37) of basic subgradients via regular ones is conve-
nient for their calculations in multidimensional spaces. The next example illustrates
this for two Lipschitz continuous functions on R

2.

Example 1.31 (Subdifferential Calculations for Lipschitzian Functions).
(i) Consider first the function ϕ : R2 → R defined by

ϕ(x1, x2) := |x1| − |x2| for (x1, x2) ∈ R
2,

which is Lipschitz continuous on R
2 and differentiable at every (x1, x2) ∈ R

2 with
both nonzero components x1, x2. We have

∇ϕ(x1, x2) ∈ {
(1, 1), (1,−1), (−1, 1), (−1,−1)

}

for all such (x1, x2). It is easy to calculate regular subgradients of ϕ at any (x1, x2) ∈
R

2 by definition (1.33):

∂̂ϕ(x1, x2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1,−1) if x1 > 0, x2 > 0,
(−1,−1) if x1 < 0, x2 > 0,
(−1, 1) if x1 < 0, x2 < 0,
(1, 1) if x1 > 0, x2 < 0,{
(v,−1)

∣∣− 1 ≤ v ≤ 1
}

if x1 = 0, x2 > 0,{
(v, 1)

∣∣− 1 ≤ v ≤ 1
}

if x1 = 0, x2 < 0,
∅ if x2 = 0.

Employing Theorem 1.28 gives us the basic subdifferential (see Fig. 1.11)

∂ϕ(0, 0) = {
(v, 1)

∣∣− 1 ≤ v ≤ 1
} ∪ {

(v,−1)
∣∣− 1 ≤ v ≤ 1

}
.

(ii) Consider next the more complicated function:

ϕ(x1, x2) := ∣∣ |x1| + x2
∣∣ for (x1, x2) ∈ R

2,
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−1

1

−1 1

∂ϕ(0, 0)

Fig. 1.11 Basic subdifferential of ϕ(x1, x2) = |x1| − |x2|

which is also Lipschitz continuous on R
2. Based on their definition (1.33), we cal-

culate regular subgradients of ϕ at any x ∈ R
2 by

∂̂ϕ(x1, x2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if x1 > 0, x1 + x2 > 0,
(−1,−1) if x1 > 0, x1 + x2 < 0,
(−1, 1) if x1 < 0, x1 − x2 < 0,
(1,−1) if x1 < 0, x1 − x2 > 0,{
(v, 1)

∣∣− 1 ≤ v ≤ 1
}

if x1 = 0, x2 > 0,{
(v, v)

∣∣− 1 ≤ v ≤ 1
}

if x1 > 0, x1 + x2 = 0,{
(v,−v)∣∣− 1 ≤ v ≤ 1

}
if x1 < 0, x1 − x2 = 0,{

(v1, v2)
∣∣ |v1| ≤ v2 ≤ 1

}
if x1 = 0, x2 = 0,

∅ if x1 = 0, x2 < 0.

By Theorem 1.28 we then calculate (see Fig. 1.12)

∂ϕ(0, 0) = {
(v1, v2)

∣∣ |v1| ≤ v2 ≤ 1
} ∪ {

(v1, v2)
∣∣ v2 = −|v1|,−1 ≤ v1 ≤ 1

}
.

1

−1

1−1

∂ϕ(0, 0)

Fig. 1.12 Basic subdifferential of ϕ(x1, x2) = ∣∣ |x1| + x2
∣∣.
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Now we apply both representations of basic subgradients in (1.37) of Theo-
rem 1.28 to derive the important scalarization formula for expressing the coderiva-
tive (1.15) of a single-valued Lipschitzian mapping f : Rn → R

m via the subdiffer-
ential (1.24) of the scalarization 〈v, f 〉(x) := 〈v, f (x)〉, x ∈ R

n.

Theorem 1.32 (Coderivative Scalarization). Let f : Rn → Rm be continuous
around x̄. Then we have the inclusion

∂〈v, f 〉(x̄) ⊂ D∗f (x̄)(v) for all v ∈ R
m.

If in addition f is locally Lipschitzian around x̄, then

D∗f (x̄)(v) = ∂〈v, f 〉(x̄) for all v ∈ R
m.

Proof. Picking any u ∈ ∂〈v, f 〉(x̄) and using the first representation in (1.37) give
us sequences xk → x̄ and uk → u such that uk ∈ ∂̂〈v, f 〉(xk) for k ∈ N. By
definition (1.33) for each k, there exist a neighborhood Uk of xk and a number
γk > 0 satisfying the inequality

〈v, f 〉(x)− 〈v, f 〉(xk)− 〈uk, x − xk〉 ≥ −γk‖x − xk‖ when x ∈ Uk,
which ensures in turn the relationship

lim sup
x→xk

〈uk, x − xk〉 − 〈v, f (x)− f (xk)〉
‖(x − xk, f (x)− f (xk))‖ ≤ γk.

Hence (uk,−v) ∈ N̂γk ((xk, f (xk)); gph f ) for each k ∈ N, which gives us u ∈
D∗f (x̄)(v) by Theorem 1.6 and the coderivative definition (1.15).

To prove the opposite inclusion, pick u ∈ D∗f (x̄)(v) and by Theorem 1.6 find
xk → x̄, uk → u, and vk → v such that (uk,−vk) ∈ N̂(xk, f (xk)); gph f ) for
k ∈ N. Hence there exist ηk ↓ 0 and γk ↓ 0 with

〈uk, x − xk〉 − 〈vk, f (x)− f (xk)〉 ≤ γk(1 + �)‖x − xk‖ for all x ∈ xk + ηkB,
where � > 0 is a Lipschitz modulus (1.26) for f around x̄. This yields

uk ∈ ∂̂εk 〈v, f 〉(xk) with εk := γk(1 + �)+ �‖vk − v‖ ↓ 0

and gives us by Theorem 1.28 that u ∈ ∂〈v, f 〉(x̄). �

1.3.6 Subgradients of the Distance Function

We conclude this section with calculating the basic subdifferential of the distance
function d�(x) from (1.2) associated with a nonempty (locally closed) set �. This
function is intrinsically nonsmooth while being globally Lipschitzian on R

n with



1.3 First-Order Subgradients of Nonsmooth Functions 37

modulus � = 1. Subdifferential properties of d� at the given point x̄ depend on
the location of x̄: either in-set x̄ ∈ � or out-of-set x̄ /∈ �. The following theorem
presents formulas for calculating regular and basic subgradients at both in-set and
out-of-set points.

Theorem 1.33 (Subdifferentiation of the Distance Function at In-Set and Out-
of-Set Points). For the distance function d�(x), the following hold:

(i) If x̄ ∈ �, then we have that

∂̂d�(x̄) = N̂�(x̄) ∩ B and ∂d�(x̄) = N�(x̄) ∩ B. (1.43)

(ii) If x̄ /∈ �, then we have via the Euclidean projector �� that

∂̂d�(x̄) =

⎧
⎪⎪⎨

⎪⎪⎩

x̄ − w̄
‖x̄ − w̄‖ if ��(x̄) = {w̄},

∅ otherwise;
∂d�(x̄) = x̄ −��(x̄)

d�(x̄)
. (1.44)

Proof. We split the proof into several major steps of their own interest.
Step 1: For any x̄ ∈ �, the first formula in (1.43) holds.

Indeed, picking v ∈ ∂̂d�(x̄) with x̄ ∈ � gives us by (1.33) that

0 ≤ lim inf
x
�→x̄

d�(x)− d�(x̄)− 〈v, x − x̄〉
‖x − x̄‖ = − lim sup

x
�→x̄

〈v, x − x̄〉
‖x − x̄‖ , (1.45)

which shows by (1.6) that v ∈ N̂�(x̄). Furthermore, the Lipschitz continuity of d�
with constant � = 1 immediately implies that

lim sup
x→x̄

〈v, x − x̄〉
‖x − x̄‖ ≤ 1, i.e., ‖v‖ ≤ 1,

and so ∂̂d�(x̄) ⊂ N̂�(x̄)∩B. To justify the opposite inclusion, take any v ∈ N̂�(x̄)∩
B and observe from (1.45) that it remains to consider the underlying “liminf” therein
for x → x̄ with x /∈ �. To proceed, fix x /∈ � with d�(x) > 0 and find u ∈ � such
that

0 < ‖x − u‖ ≤ d�(x)+ ‖x − x̄‖2.

Then for any x sufficiently close to x̄, we have

‖u− x̄‖ ≤ ‖x − u‖ + ‖x − x̄‖ ≤ d�(x)+ ‖x − x̄‖2 ≤ 3‖x − x̄‖. (1.46)

This, with taking the estimates in (1.46) and ‖v‖ ≤ 1 into account, allows us to
derive the following chain of inequalities:



38 1 Constructions of Generalized Differentiation

lim inf
x→x̄
x /∈�

d�(x)− d�(x̄)− 〈v, x − x̄〉
‖x − x̄‖ ≥ lim inf

x→x̄
x /∈�

‖x − u‖ − ‖x − x̄‖2 − 〈v, x − x̄〉
‖x − x̄‖

≥ lim inf
x→x̄
x /∈�

[ (1 − ‖v‖) · ‖x − u‖
‖x − x̄‖ − 〈v, u− x̄〉

‖x − x̄‖
]

≥ − lim sup
x→x̄
x /∈�

〈v, u− x̄〉
‖x − x̄‖ ≥ min

{
0,− lim sup

u
�→x̄

3〈v, u− x̄〉
‖u− x̄‖

}
≥ 0,

Together with the equality in (1.45), it shows that N̂�(x̄) ∩ B ⊂ ∂̂d�(x̄) and thus
ensures the validity of the first formula in (1.43).

Step 2: For any x̄ /∈ � and w̄ ∈ ��(x̄), we have the inclusion

∂̂d�(x̄) ⊂ N̂�(w̄) ∩ B.

To verify it, pick v ∈ ∂̂d�(x̄) and deduce from Theorem 1.22 that ‖v‖ ≤ 1. It
follows from the definitions that for any γ > 0 there is ν > 0 such that

〈v, x − x̄〉 ≤ d�(x)− d�(x̄)+ γ ‖x − x̄‖ = d�(x)− ‖x̄ − w̄‖ + γ ‖x − x̄‖
if ‖x − x̄‖ < ν. Fix w ∈ � with ‖w − w̄‖ < ν and observe by using ‖(w − w̄ +
x̄)− x̄‖ < ν and d�(w − w̄ + x̄) ≤ ‖w − w̄ + x̄ − w‖ = ‖x̄ − w̄‖ that

〈v,w − w̄〉 ≤ d�(w − w̄ + x̄)− ‖x̄ − w̄‖ + γ ‖w − w̄‖ ≤ γ ‖w − w̄‖,
which shows that v ∈ N̂�(w̄) and thus justified the claimed inclusion.

Step 3: For any x̄ ∈ � the second formula in (1.43) holds.
Indeed, take v ∈ ∂d�(x̄) and find by the subdifferential construction some se-

quences xk → x̄, vk → v with vk ∈ ∂̂d�(xk) as k ∈ N. Picking wk ∈ ��(xk)

for large k, we get that wk → x̄ and vk ∈ N̂�(wk) ∩ B by Step 2. It tells us that
v ∈ N�(x̄) ∩ B by passing to the limit as k → ∞. To prove next the opposite in-
clusion, fix any v ∈ N�(x̄) ∩ B and find sequences xk → x̄ and vk → v such that
xk ∈ � and vk ∈ N̂�(xk) for all k ∈ N. Define

wk := vk

max
{‖vk‖, 1

} , k ∈ N,

and observe that wk ∈ B, wk ∈ N̂�(xk), and thus wk ∈ ∂̂d�(xk) by Step 1. Since
the sequence {wk} also converges to v, we get v ∈ ∂d�(x̄) and therefore complete
the proof of assertion (i) of the theorem.

Step 4: For any x̄ /∈ � the contingent derivative of the distance function ϕ(x) =
d�(x) at x̄ in the direction z ∈ R

n admits the representation

dϕ(x̄)(z) = min
{ 〈x̄ − w̄, z〉

‖x̄ − w̄‖
∣∣∣ w̄ ∈ ��(w̄)

}
. (1.47)
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To verify this, we use the equivalent representation

dϕ(x̄; z) = lim inf
t↓0

ϕ(x̄ + tz)− ϕ(x̄)
t

(1.48)

of the contingent derivative (1.41) of a locally Lipschitzian function that easily fol-
lows from the analytic description (1.42). For ϕ(x) = d�(x) and any projection
w̄ ∈ ��(x̄), we deduce from (1.48) and the differentiability of the norm function
ψ(x) := ‖x‖ at x̄ 
= 0 with ∇ψ(x) = x

‖x‖ that

dϕ(x̄; z) ≤ lim inf
t↓0

‖x̄ + tz− w̄‖ − ‖x̄ − w̄‖
t

= 〈x̄ − w̄, z〉
‖x̄ − w̄‖ ,

and thus we get the inequality “≤” in (1.47). To justify the opposite inequality
in (1.47), fix z ∈ R

n, take a sequence of tk ↓ 0 for which the limit in (1.48) is
realized as ϕ(x) = d�(x), and select wk ∈ ��(x̄ + tkz) for large k. Since

d�(x̄ + tkz) = ‖x̄ + tkz− wk‖ ≤ d�(x̄)+ tk‖z‖ → d�(x̄),

we may assume that wk → w̄ as k → ∞ for some w̄ ∈ ��(x̄). By wk ∈ � we
have ‖x̄ − wk‖ ≥ ‖x̄ − w̄‖ and so

d�(x̄ + tkz)− d�(x̄)
tk

≥ ‖x̄ + tkz− wk‖ − ‖x̄ − wk‖
tk

.

This yields the inequality “≥” in (1.47) by 〈ψ(x̄), x − x̄〉 ≤ ψ(x) − ψ(x̄) due the
convexity of the norm function ψ = ‖x‖.

Step 5: For any x̄ /∈ � we have both formulas in (1.44).
It follows from the duality correspondence of Proposition 1.9 between the regular

normal cone and the contingent cone and from the above formula (1.48) for ϕ(x) =
d�(x) that

∂̂d�(x̄) =
{
v ∈ R

n
∣∣∣ 〈v, z〉 ≤ lim inf

t↓0

d�(x̄ + tz)− d�(x̄)
t

for all z ∈ R
n
}
.

Combining this with (1.47) tells us that v ∈ ∂̂d�(x̄) if and only if

〈v, z〉 ≤
〈 x̄ − w̄
‖x̄ − w̄‖ , z

〉
for all z ∈ R

n, w̄ ∈ ��(x̄),

which implies the first formula in (1.44). We can derive the second formula therein
by using the first one, representation (1.37), and the definitions. �

Observe that the formulation and proof of Theorem 1.33 are more involved in the
out-of-set case in comparison with the in-set one. Let us develop another approach
to subdifferentiation of the distance function at out-of-set points x̄ /∈ � involving
the ρ-enlargement of � relative to x̄ defined by

�(ρ) := {
x ∈ R

n
∣∣ d�(x) ≤ ρ

}
with ρ := d�(x̄). (1.49)



40 1 Constructions of Generalized Differentiation

Note that the ρ-enlargement of � is always closed for any ρ ≥ 0, even when � is
not. Furthermore, �(ρ) = �+ ρB if � is closed.

First we present a useful result on calculating regular subgradients of d� at x̄ /∈ �
via regular normals to the ρ-enlargement (1.49) at this point.

Lemma 1.34 (Regular Subgradients of the Distance Function via Regular Nor-
mals to Enlargements). For any x̄ /∈ � ⊂ R

n, we have

∂̂d�(x̄) = N̂
(
x̄;�(ρ)) ∩ {

v ∈ R
n
∣∣ ‖v‖ = 1

}
. (1.50)

Proof. We start by checking the representation

d�(ρ)(x) = d�(x)− ρ for any x /∈ �(ρ) and ρ > 0. (1.51)

To proceed, fix x /∈ �(ρ) and take any u ∈ �(ρ) with d�(u) ≤ ρ. Then for every
γ > 0, there is uγ ∈ � satisfying

‖u− uγ ‖ ≤ d�(u)+ γ ≤ ρ + γ,
which yields in turn the estimates

‖u− x‖ ≥ ‖uγ − x‖ − ‖uγ − u‖ ≥ d�(x)− ‖uγ − u‖ ≥ d�(x)− ρ − γ.
Since the estimate ‖u− x‖ ≥ d�(x)− ρ − γ holds for all u ∈ �(ρ) and all γ > 0,
we obtain the inequality

d�(ρ)(x) ≥ d�(x)− ρ.
To verify the opposite inequality in (1.51), consider the continuous function

ϕ(t) := d�
(
tx + (1 − t)u), t ∈ [0, 1],

for a fixed point u ∈ �. Since ϕ(0) = 0 and ϕ(1) > ρ, there is t0 ∈ (0, 1) with
ϕ(t0) = ρ by the classical intermediate value theorem. Putting z := t0x + (t − t0)u,
we have d�(z) = ρ and ‖x − u‖ = ‖x − z‖ + ‖v − u‖. Hence

‖x − u‖ ≥ ‖x − z‖ + d�(z) = ‖x − z‖ + ρ
by u ∈ � and z ∈ �(ρ), which ensures the validity of (1.51) .

Using this representation of d�(ρ), we justify now representation (1.50) starting
with the inclusion “⊂” therein. Pick any v ∈ ∂̂d�(x̄) and fix γ > 0. Then by the
construction of regular subgradients, there is ν > 0 for which

〈v, x − x̄〉 ≤ d�(x)− d�(x̄)+ γ ‖x − x̄‖ whenever x ∈ x̄ + νB.
It ensures that 〈v, x − x̄〉 ≤ γ ‖x − x̄‖ for all x ∈ (x̄ + νB) ∩ �(ρ) by virtue of
d�(x)− d�(x̄) ≤ 0 as x ∈ �(ρ) with ρ = d�(x̄). This yields v ∈ N̂(x̄;�(ρ)).
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Let us show that ‖v‖ = 1 whenever v ∈ ∂̂d�(x̄). Use again the definition of
regular subgradients of d� at x̄ with γ and ν, put

r := min
{

1, γ,
ν

1 + d�(x̄)
}
,

and choose xr ∈ � so that ‖x̄ − xr‖ ≤ d�(x̄) + r2. For x := x̄ + r(xr − x̄), we
obviously have the estimates

‖x − x̄‖ ≤ r‖x̄ − xr‖ ≤ rd�(x̄)+ r2 ≤ r
(
1 + d�(x̄)

) ≤ ν,

which lead us to the relationships

〈v, x − x̄〉 ≤ ‖x − x̄‖ − ‖x̄ − xr‖ + r2 + γ r‖x̄ − xr‖
= −r‖x̄ − xr‖ + r2 + εr‖x̄ − xr‖.

Taking into account the above choice of x tells us that

〈v, xr − x̄〉 ≤ −‖x̄ − xr‖ + ε(1 + ‖x̄ − xr‖),
which readily ensures the estimates

〈v, x̄ − xr 〉
‖x̄ − xr‖ ≥ 1 − γ

(
1 + 1

‖x̄ − xr‖
)

≥ 1 − γ
(

1 + 1

d�(x̄)

)
,

and thus ‖v‖ ≥ 1. Since ‖v‖ ≤ 1 by the Lipschitz continuity of d� with modulus
� = 1, we conclude that ‖v‖ = 1 and get the inclusion “⊂” in (1.50).

To justify the opposite inclusion in (1.50), fix v ∈ N̂(x̄;�(ρ)) with ‖v‖ = 1 and
then take arbitrary γ > 0 and η ∈ (0, 1). By the first relationship in (1.43), we get
v ∈ ∂̂d�(ρ)(x̄), and hence there is ν1 > 0 such that

〈v, x − x̄〉 ≤ d�(ρ)(x)− d�(ρ)(x̄)+ γ ‖x − x̄‖ whenever x ∈ x̄ + ν1B.

It follows from the representation of d�(ρ) established above that

〈v, x − x̄〉 ≤ d�(x)− d�(x̄)+ γ ‖x − x̄‖ whenever x ∈ (
x̄ + ν1B

) \�(ρ).

On the other hand, the inclusion v ∈ N̂(x̄;�(ρ)) implies the existence of ν2 > 0
ensuring the estimate

〈v, x − x̄〉 ≤ (γ /2)‖x − x̄‖ for all x ∈ (
x̄ + ν2B

) ∩�(ρ).
Since ‖v‖ = 1, we choose u ∈ R

n such that ‖u‖ = 1 and 〈v, u〉 ≥ 1 − η. Fix
ν3 ∈ (0, ν2/2) and x ∈ (x̄ + ν3B) ∩�(ρ) and put σx := d�(x̄)− d�(x) ≥ 0. Then
x + σxu ∈ �(ρ) ∩ (x̄ + νB) due to

d�(x + σxu) ≤ d�(x)+ σx = d�(x̄) = ρ and
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‖x + σxu− x̄‖ ≤ ‖x − x̄‖ + σx ≤ 2‖x − x̄‖ ≤ 2ν3 ≤ ν2,

which implies that 〈v, x + σxu− x̄〉 ≤ γ ‖x − x̄‖ and hence

〈v, x − x̄〉 = 〈v, x + σxu− x̄〉 − 〈v, σxu〉 ≤ γ ‖x − x̄‖ − σx(1 − η)
≤ γ ‖x − x̄‖ + (

d�(x)− d�(x̄)
)
(1 − η).

Since η > 0 was chosen arbitrarily, we have

〈v, x − x̄〉 ≤ γ ‖x − x̄‖ + d�(x)− d�(x̄) whenever x ∈ (x̄ + ν3B) ∩�(ρ),
and therefore the latter holds for all x ∈ x̄+ νB with ν := min{ν1, ν3}. Thus we get
v ∈ ∂̂d�(x̄) and complete the proof of the lemma. �

The obtained result (1.50) justifies an exact counterpart of the first relationship
in (1.43) in the case of regular subgradients of the distance function at out-of set
points and regular normals to the enlargement (1.49). A natural question arises about
the validity of a corresponding counterpart of the second relationship in (1.43) for
basic subgradients and normals. The following simple example in R

2 shows that the
answer is negative for the crucial inclusion

∂d�(x̄) ⊂ N
(
x̄;�(ρ)) ∩ B with ρ = d�(x̄) > 0. (1.52)

Example 1.35 (Basic Subgradients of the Distance Function Are Not Repre-
sented via Basic Normals to Enlargements). Consider the set

� := {
(x1, x2) ∈ R

2
∣∣ x2

1 + x2
2 ≥ 1

}

with x̄ = (0, 0) /∈ �. In this case d�(x̄) = 1, �(ρ) = � + ρB = R
2 with ρ = 1,

and hence N
(
x̄;�(ρ)) = {0}. On the other hand, it is easy to see that

d�(x1, x2) = 1 −
√
x2

1 + x2
2 ,

and so ∂d�(x̄) = SR2 . This shows that inclusion (1.52) fails.

To establish a correct relationship between subgradients of the distance function
at out-of-set points and basic normals to the enlargement (1.49), we need to nar-
row the collection of basic subgradients from ∂d�(x̄) at x̄ /∈ �. It is done below
by observing that the limiting procedure employed for this purpose employs regular
subgradients of the distance function not at all the points xk → x̄ but only at those
where the function values are to the right of d(x̄;�). In this way we arrive at the fol-
lowing right-sided limiting subdifferential of an extended-real-valued function that,
along with its modification, is useful for various applications; see more discussions
in Section 1.5.

Definition 1.36 (Right-Sided Subdifferential). Given ϕ : Rn → R finite at x̄, de-
fine the RIGHT-SIDED LIMITING SUBDIFFERENTIAL of ϕ at x̄ by



1.3 First-Order Subgradients of Nonsmooth Functions 43

∂≥ϕ(x̄) := Lim sup
x
ϕ+→x̄

∂̂ϕ(x), (1.53)

where x
ϕ+→ x̄ means that x → x̄ with ϕ(x) → ϕ(x̄) and ϕ(x) ≥ ϕ(x̄).

It follows directly from the construction in (1.53) that

∂̂ϕ(x̄) ⊂ ∂≥ϕ(x̄) ⊂ ∂ϕ(x̄)

while ∂≥ϕ(x̄), in contrast to ∂ϕ(x̄), may be empty for simple nonsmooth Lips-
chitzian functions as in Example 1.35. Observe the following useful properties. The
obtained result (1.50) justifies an exact counterpart of the first relationship in (1.43)
in the case of regular subgradients of the

Proposition 1.37 (Some Properties of the Right-Sided Subdifferential). Let
ϕ : Rn → R be finite at x̄.

(i) If x̄ is a local minimizer of ϕ, then

∂≥ϕ(x̄) = ∂ϕ(x̄), and so 0 ∈ ∂≥ϕ(x̄).
(ii) We have the stability property with respect to ε-enlargements:

∂≥ϕ(x̄) = Lim sup
x
ϕ+→x̄
ε↓0

∂̂εϕ(x). (1.54)

Proof. Property (i) follows from (1.53) and the definition of local minimizers. To
verify (ii), we proceed as in the proof of (1.37) in Theorem 1.28. �

Now we are ready to establish relationships between the right-sided subgradients
of the distance function and basic normals to enlargements.

Theorem 1.38 (Right-Sided Subgradients of the Distance Function and Basic
Normals at Out-of-Set Points). Given a set ∅ 
= � ⊂ R

n and a point x̄ /∈ �,
denote ρ := d�(x̄) and consider the ρ-enlargement �(ρ) of � defined in (1.49).
Then the following relationships hold:

∂≥d�(x̄) ⊂ [
N
(
x̄;�(ρ)) ∩ B

] \ {0}, (1.55)

N
(
x̄;�(ρ)) =

⋃

λ≥0

λ∂≥d�(x̄). (1.56)

Proof. To verify (1.55), pick any v ∈ ∂≥d�(x̄) and by (1.53) find xk → x̄ with
d�(xk) ≥ d�(x̄) and vk → v satisfying vk ∈ ∂̂d�(xk), k ∈ N. It follows from
Lemma 1.34 that ‖vk‖ = 1 when k sufficiently large, and so ‖v‖ = 1. Denote
for convenience �(x̄) := �(ρ) with ρ = d�(x̄) and consider the following two
cases, which fully cover the situation: (a) There is a subsequence of {xk} such that
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d�(xk) = d�(x̄) along this subsequence. (b) Otherwise. Since d�(xk) > d�(x̄) in
this case, we have that xk /∈ �(x̄) for k ∈ N sufficiently large.

In case (a) we get from Lemma 1.34 that vk ∈ N̂(xk;�(x̄)) along this subse-
quence and then arrive at (1.55) by passing to the limit as k → ∞.

Considering case (b), recall by (1.51) that

d�(x) = d�(x̄)+ d�(x̄)(x) whenever x /∈ �(x̄).
Therefore for every k ∈ N, we have the conditions

vk ∈ ∂̂d�(xk) = ∂̂
[
d�(x̄)+ d�(x̄)

]
(xk) = ∂̂d�(x̄)(xk)

along the sequence under consideration. Denoting εk := ‖xk − x̄‖, deduce from the
proof of Theorem 1.33(i) the existence of {̃xk} ⊂ �(x̄) such that

‖x̃k − xk‖ ≤ d�(x̄)(xk) ≤ εk and vk ∈ N̂(x̃k;�(x̄)
)
, k ∈ N.

which yields v ∈ N(x̄;�(x̄)) by passing to the limit as k → ∞ and thus completes
the verification of inclusion (1.55).

Observe that the inclusion “⊃” in (1.56) follows directly from (1.55). To verify
the opposite inclusion therein, pick v ∈ N

(
x̄;�(x̄)) and suppose that v 
= 0; the

alternative case is trivial. Then there are some sequences xk → x̄ with xk ∈ �(x̄)
and vk → v such that vk ∈ N̂(xk;�(x̄)) for all k ∈ N. Since ‖vk‖ > 0 when k is
sufficiently large, we deduce from Lemma 1.34 that

vk ∈ ‖vk ‖̂∂d�(xk) as k → ∞.

Note that d�(xk) ≤ ρ by the choice of xk ∈ �(x̄), while the strict inequality
d�(xk) < ρ is not possible for large k due to 0 
= vk ∈ N̂(xk;�(x̄)). Selecting
now a convergent subsequence of ‖vk‖ and using Definition 1.36 of the right-sided
subdifferential, we find λ > 0 such that v ∈ λ∂≥d�(x̄), which justifies (1.54) and
completes the proof of the theorem. �

1.4 Exercises for Chapter 1

Exercise 1.39 (Properties of Generalized Normals).
(i) Show that the normal cone N(x̄;�) in definition (1.4) can change if another norm on R

n is
used instead of the Euclidean one, even for convex sets �.

(ii) Show that the collection of regular normal N̂(x̄;�) defined by (1.5) in arbitrary Banach
spaces is invariant with respect to any equivalent norm on this space. Is it true for N̂ε(x̄;�) defined
in (1.6) as ε > 0?

(iii) Verify the decreasing property

N̂ε(x̄;�1) ⊂ N̂ε(x̄;�2) whenever x̄ ∈ �2 ⊂ �1 and ε ≥ 0.

Does this hold for the normal cone N(x̄;�) defined by (1.4) or by using (1.7)?
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Exercise 1.40 (Sequential vs. Topological Weak∗ Outer Limits). Let F : X →→ X∗ be a set-
valued mapping between a Banach space X and its dual X∗. The sequential weak∗ outer limit of
F as x → x̄ is defined by

Lim sup
x→x̄

F (x) := {
x∗ ∈ X∗ ∣∣ ∃ sequences xk → x̄ and x∗

k

w∗→ x∗

with x∗
k ∈ F(xk) for all k ∈ N

}
.

(1.57)

The topological weak∗ outer limit of F as x → x̄ is defined in scheme (1.57) by replacing the
weak∗ convergence of sequence x∗

k → x∗ by that of nets. Both limits reduce to the Painlevé-
Kuratowski outer limit (1.1) if X is finite-dimensional.

(i) Give an example where the topological weak∗ outer limit of some mapping F at x̄ is strictly
larger than the sequential weak∗ outer limit of F at this point.

(ii) Show that the conclusion of (i) holds also in the case where the weak∗ convergence of nets
in the definition of the topological outer limit is replaced by the weak∗ convergence of bounded
nets.

Exercise 1.41 (Asplund Spaces). A Banach space X is called Asplund (or it has the Asplund
property) if every convex continuous function ϕ : U → R on an open convex set U ⊂ X is Fréchet
differentiable on a dense subset of U . Show that

(i) The Asplund property of X is equivalent to the Fréchet differentiability of every convex
continuous function ϕ : X → R at some point of X.

(ii) The spaceX is Asplund if and only if for every separable subspace Z ⊂ X its dual subspace
Z∗ ⊂ X∗ is separable as well.

(iii) If X is Asplund, then unit ball B∗ ⊂ X∗ is weak∗ sequentially compact.
(iv) The product X × Y of two Asplund spaces is Asplund.
Hint: Consult the books [255, 522, 638] and the references therein.

Exercise 1.42 (Representation of ε-Normals). Consider the following statement: Given a (lo-
cally closed) set � ⊂ X with x̄ ∈ � and given any numbers ε ≥ 0 and γ > 0, we have the
inclusion

N̂ε(x̄;�) ⊂
⋃{

N̂(x;�)
∣∣∣ x ∈ � ∩ (x̄ + γB)

}
+ (ε + γ )B∗,

where the sets of ε-normals in X∗ are defined as in (1.6) by using the canonical pairing 〈x∗, x〉
between X and X∗.

(i) Deduce this statement from the proof of Theorem 1.6 for X = R
n.

(ii) Verify this statement in the case whereX is an Asplund space and compare it with the proof
of [522, Theorem 2.34] based on the variational result (fuzzy sum rule from the extremal principle)
formulated below in Exercise 2.26.

Exercise 1.43 (Basic Normals in Banach and Asplund Spaces). Let � ⊂ X be a subset of
a Banach space with x̄ ∈ �. The (basic, limiting) normal cone to � at x̄ is defined by via the
sequential weak∗ outer limit (1.57) by ,

N(x̄;�) := Lim sup
x
�→x̄
ε↓0

N̂ε(x;�) =
{
x∗ ∈ X∗

∣∣∣ ∃ seqs. εk ↓ 0, xk
�→ x̄,

x∗
k

w∗→ x∗ with x∗
k ∈ N̂εk (xk;�)

}
,

(1.58)

(i) Show that the normal cone (1.58) can be equivalently represented as

N(x̄;�) = Lim sup
x
�→x̄

N̂ (x;�) =
{
x∗ ∈ X∗

∣∣∣ ∃ seqs. xk
�→ x̄,

x∗
k

w∗→ x∗ with x∗
k ∈ N̂(xk;�)

} (1.59)
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if X is Asplund. Hint: Use the results from Exercise 1.42(ii) and Exercise 1.41(iii).
(ii) Give an example showing that set (1.58) may be strictly larger than (1.59) for closed sets in

non-Asplund spaces.
(iii) Give examples in both Asplund and non-Asplund settings of Banach spaces showing that

replacing the sequential weak∗ convergence in (1.58) and (1.59) by the weak∗ convergence of
bounded nets results in strictly larger sets.

Exercise 1.44 (Robustness of Generalized Normals in Finite and Infinite Dimensions). Let
∅ 
= � ⊂ X be an arbitrary (closed) subset of a Banach space X.

(i) Does the robustness property of Proposition 1.3 hold for the prenormal cone N̂(·;�) in
finite-dimensional spaces?

(ii) Give an example demonstrating that the robustness property fails in R
n for the convexified

normal cone defined in (1.61), which can be represented as

N(x̄;�) := clcoN(x̄;�), x̄ ∈ � ⊂ R
n. (1.60)

Hint: Verify first the representation in (1.60) and compare it with Exercise 4.36(iii).
(iii) Show that Proposition 1.3 doesn’t generally hold even for cones � in Hilbert spaces X;

compare it with [522, Example 1.7].
(iv) Give sufficient conditions for robustness of N(·;�) in infinite dimensions. Hint: Compare

the latter with [522, Theorem 62].

Exercise 1.45 (Normals to Products of Sets in Banach Spaces). Let �1 ⊂ X1 and �2 ⊂ X2 be
nonempty subsets of Banach spaces.

(i) Does a counterpart of Proposition 1.4 hold for regular normals?
(ii) Establish corresponding relationships for ε-normals to products of sets.
(iii) Show that Proposition 1.4 holds for basic normals defined by (1.58).
(iv) Does a counterpart of the product formula from Proposition 1.4 hold for the convexified

normal cone (1.60)?

Exercise 1.46 (Convexified Normal Cone to Lipschitzian Manifolds). A set � ⊂ R
q is called

a Lipschitzian manifold of dimension d ≤ q around z̄ ∈ � if there is f : Rn → R
m locally

Lipschitzian around x̄ such that z̄ = (x̄, f (x̄)) and the set � is locally homeomorphic around z̄ to
the graph of f . The set� is strictly smooth at z̄ if f can be selected as strictly differentiable (1.19)
at x̄.

(i) Show that, besides graphs of locally Lipschitzian mappings, Lipschitzian manifolds include
graphs maximal monotone operators as in (4.27), subgradient mappings for convex and more
generally prox-regular functions ϕ : Rn → R as in Definition 3.27, etc. Hint: Compare with [676,
678].

(ii) Prove that the convexified normal cone (1.60) to a Lipschitzian manifold � ⊂ R
q around

z̄ of dimension d is not a one-sided cone but a linear subspace of dimension greater than q − d,
which equals to q − d if and only if � is strictly smooth at z̄. Hint: Compare with the proof in
[676] while simplifying it by using dual/normal vs. primal/tangent arguments similarly to those in
[522, Theorem 3.62].

(iii) Derive a Banach space extension of the “subspace property” result from (i) for the Clarke
normal cone defined by the dual correspondence

N(x̄;�) := T (x̄;�)∗ = {
x∗ ∈ X∗∣∣ 〈x∗, x〉 ≤ 0 for all x ∈ T (x̄;�)} (1.61)

via his (always convex) regular tangent cone to � at x̄ ∈ � given by

T (x̄;�) :=
{
w ∈ X

∣∣∣ ∀ seqs. tk ↓ 0, xk
�→ x̄ ∃ zk �→ x̄ with

zk − xk
tk

→ w
}
.

Hint: Proceed as in the proof of [522, Theorem 3.62].
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Exercise 1.47 (Basic Normals in Hilbert Spaces). Let X be a Hilbert space, and let � ⊂ X with
x̄ ∈ �. Establish an appropriate counterpart of representation (1.4) of the basic normal cone defined
in (1.59), where the “Limsup” in (1.4) and (1.59) are taken with respect to the weak topology of
X∗ = X. Hint: Use the projection descriptions from [167, Proposition 1.1.3].

Exercise 1.48 (Normal-Tangent Relationships). Let X be a Banach space, and let � ⊂ X with
x̄ ∈ �. Define the contingent cone T (x̄;�) to � at x̄ as in (1.11) with the outer limit taken in the
norm topology of X. The weak contingent cone TW (x̄;�) is the collections of w ∈ X such that
there are sequences {xk} ⊂ � and {αk} ⊂ R+ with xk → x̄ strongly in X and αk(xk − x̄) → w

weakly in X as k → ∞.
(i) Prove the duality relationship

N̂(x̄;�) ⊂ T ∗
W (x̄;�) := {

x∗ ∈ X∗| 〈x∗, w〉 ≤ 0 for all w ∈ TW (x̄;�)
}
, (1.62)

where the equality holds if X is reflexive. Hint: Compare with [522, Theorem 1.10].
(ii) Give an example where T (x̄;�) 
= TW (x̄;�) in the case of reflexive spaces, and so the

equality in (1.62) fails if TW (x̄;�) is replaced by T (x̄;�).
(iii) Do we have the converse duality N̂∗(x̄;�) = T (x̄;�) in R

n?
(iv) Obtain relationships between T (x̄;�), TW (x̄;�), and T (x̄;�) in finite and infinite dimen-

sions. Hint: See [522, Theorem 1.9] and the references therein.
(v) Show that, along with the duality construction (1.61), the converse duality N

∗
(x̄;�) =

T (x̄;�) holds in arbitrary Banach spaces.

Exercise 1.49 (Normals to Contingent Cones). For any � ⊂ R
n and x̄ ∈ �, we have the fol-

lowing relationships:
(i) N̂(x̄;�) = N̂

(
0; T (x̄;�)).

(ii) N(0; T (x̄;�)) ⊂ N(x̄;�). Hint: Compare with the results and proofs in [678, Proposi-
tion 6.27] and [568, Corollary 6.5]

(iii) Give an example showing that the inclusion in (ii) is strict in R
2.

(iii) Do the relationships in (i) and (ii) hold in infinite dimensions?

Exercise 1.50 (Boundary Points and Convex Separation).
(i) Derive the classical convex separation theorem in R

n from Proposition 1.2.
(ii) Give an example of the failure of Proposition 1.2 in infinite dimensions.
(iii) Derive sufficient conditions for the validity of Proposition 1.2 for closed convex and non-

convex sets in Hilbert spaces.

Exercise 1.51 (Variational Characterization of Regular Normals). Following the proof of The-
orem 1.10, clarify that:

(i) Assertion (i) therein holds in any Banach spaces.
(ii) Assertion (ii) therein holds in Fréchet smooth spaces, i.e., such Banach (actually Asplund)

spaces where there is an equivalent norm (renorming) Fréchet differentiable at every nonzero point.
Is the Fréchet smooth property of Banach spaces necessary for the validity of the smooth varia-
tional description in (ii)?

(iii) It is said that a Banach space X admits an S-smooth bump function of a given class S if
there is b : X → R such that b(·) ∈ S, b(x0) 
= 0 for some x0 ∈ X, and b(x) = 0 whenever x lies
outside a ball in X. Let S stand either for the class of Fréchet smooth and Lipschitz continuous
functions or for the class of C1-smooth and Lipschitz continuous functions on X. Show that the
existence of S-smooth bump functions on X ensures the descriptions of regular normals to any
set � ⊂ X as in assertion (ii) while replacing Fréchet smooth and concave functions therein by
S-smooth functions of the aforementioned classes. Is the existence of S-smooth bump functions
on X necessary for such descriptions?

Hint: Compare this with [257, Theorems 4.1 and 4.2] and [523, Theorem 1.30].
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Exercise 1.52 (Strictly Differentiable Mappings). Let f : X → Y be a mapping between Ba-
nach spaces, and let x̄ ∈ X.

(i) Show that the strict differentiability of f at x̄ yields the local Lipschitz continuity of f
around this point.

(ii) Give an example of a continuous function f : R → R, which is Fréchet differentiable at x̄
as in (1.12) but not strictly differentiable at this point.

(iii) Give an example of a Lipschitz continuous function f : R → R, which is strictly differen-
tiable at x̄ but not of class C1 around this point.

Exercise 1.53 (Adjoints to Surjective Linear Operators). Let A : X → Y be a linear bounded
operator between Banach spaces, and let A∗ : Y ∗ → X∗ be the adjoint operator to A. Assume that
A is surjective (AX = Y ), which reduces to the full rank m ≤ n of A when X = R

n, Y = R
m.

Then for any y∗ ∈ Y ∗, we have

‖A∗y∗‖ ≥ κ‖y∗‖ with κ = inf
{
‖A∗y∗‖

∣∣∣ ‖y∗‖ = 1
}

∈ (0,∞).

In particular, A∗ is injective, i.e., A∗y∗
1 
= A∗y∗

2 if y∗
1 
= y∗

2 .
Hint: Use the classical open mapping theorem; cf. [522, Lemma 1.18].

Exercise 1.54 (Normals to Inverse Images of Sets Under Differentiable Mappings). Let
f : X → Y be a mapping between Banach spaces that is strictly differentiable at x̄ as in (1.19) and
such that the derivative operator ∇f (x̄) : X → Y is surjective, and let� ⊂ Y with ȳ := f (x̄) ∈ �.

(i) Show that N̂(x̄; f−1(�)) = ∇f (x̄)∗N̂(ȳ;�). Is the surjectivity of ∇f (x̄) essential here?
Is it possible to replace the strict differentiability of f at x̄ by its Fréchet differentiability at this
point if dimY < ∞?

(ii) Verify the basic normal formula

N
(
x̄; f−1(�)

) = ∇f (x̄)∗N(ȳ;�).
Is the strict differentiability of f at x̄ essential here in the case of dimY < ∞?

Hint: Compare it with the proofs of [522, Theorems 1.14 and 1.17] and simplify them in the
case of finite-dimensional spaces.

Exercise 1.55 (Normal Regularity of Sets). A subset � ⊂ X of a Banach space is normally
regular at x̄ ∈ � if N(x̄;�) = N̂(x̄;�).

(i) Show that every convex set is normally regular at each of its point.
(ii) Consider that preimage � := f−1(�) of � ⊂ Y under a mapping f : X → Y between

Banach spaces and assume that f is strictly differentiable at x̄ ∈ � with the surjective derivative
∇f (x̄). Verify that � is normally regular at x̄ if and only if � is normally regular at ȳ := f (x̄).
Hint: Use the results of Exercises 1.54 and 1.53.

(iii) Let � ⊂ R
n be a Lipschitzian manifold around x̄ ∈ �. Show that the set � is normally

regular at x̄ if and only if it is strictly smooth at this point. Hint: Employ the results of Exer-
cise 1.46(ii).

Exercise 1.56 (Coderivatives of Mappings Between Banach Spaces). Let F : X →→ Y be a set-
valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gphF .

(i) The normal coderivative D∗
NF(x̄, ȳ) : Y ∗ →→ X∗ of F at (x̄, ȳ) ∈ gphF is defined by

scheme (1.15) by using the normal cone (1.58) to the graph � = gphF at this point, and thus it
admits the weak∗ sequential limiting representation

D∗
NF(x̄, ȳ)(ȳ

∗) = Lim sup

(x,y)
gphF−→(x̄,ȳ)

y∗w∗→ȳ∗, ε↓0

D̂∗
ε F (x, y)(y

∗), ȳ∗ ∈ Y ∗, (1.63)
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via the ε-coderivative mapping (x, y, y∗, ε) �→ D̂∗
ε F (x, y)(y

∗) given by

D̂∗
ε F (x, y)(y

∗) := {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N̂ε

(
(x, y); gphF

)}
, y∗ ∈ Y ∗. (1.64)

Show that ε can be equivalently dropped in (1.63), i.e., D̂∗
ε can be replaced by the precoderiva-

tive/regular coderivative D̂∗ as in finite dimensions (1.17), provided that the spaces X and Y are
Asplund. Hint: Use Exercises 1.41(iv) and 1.43(i).

(ii) The mixed coderivative D∗
MF(x̄, ȳ) : Y ∗ →→ X∗ of F at (x̄, ȳ) ∈ gphF is

D∗
MF(x̄, ȳ)(ȳ

∗) = Lim sup

(x,y)
gphF−→(x̄,ȳ)

y∗ ‖·‖→ȳ∗, ε↓0

D̂∗
ε F (x, y)(y

∗), ȳ∗ ∈ Y ∗, (1.65)

i.e., it is defined by replacing the weak∗ convergence y∗ w∗→ ȳ∗ with the norm convergence ‖y∗ −
ȳ∗‖ → 0 in Y ∗. Show similarly to (i) that ε can be equivalently dropped in (1.65) when both spaces
X and Y are Asplund. Furthermore, give an example showing that the sets in (1.65) may be strictly
smaller than those in (1.63) for each y∗ even for Lipschitz continuous mappings F = f : R → Y

with values in Hilbert spaces. Hint: Compare with [522, Example 1.35].

Exercise 1.57 (Coderivatives of Differentiable Mappings). Let F = f : X → Y be a single-
valued mapping between Banach spaces, and let x̄ ∈ X.

(i) Assume that f is Fréchet differentiable at x̄, i.e., (1.19) holds with z = x̄. Verify the regular
coderivative representation

D̂∗f (x̄)(y∗) = {∇f (x̄)∗y∗} for all y∗ ∈ Y ∗.

(ii) Assume that f is strictly differentiable at x̄ as in (1.19). Show that

D∗
Nf (x̄)(y

∗) = D∗
Mf (x̄)(y

∗) = {∇f (x̄)∗y∗} for all y∗ ∈ Y ∗.

(iii) Is the strict differentiability assumption essential for the coderivative representations in
(ii)? Is it necessary for the validity of these representations?

Hint: To justify (i), proceed as in the proof of Proposition 1.12. The proof of (ii) requires the
careful usage of the strict derivative definition; cf. [522, Theorem 1.38].

Exercise 1.58 (Coderivatives of Convex-Graph and Convex-Valued Multifunctions Between
Banach Spaces). Let F : X →→ Y be a set-valued mapping between Banach spaces, and let (x̄, ȳ) ∈
gphF .

(i) Assume that F is convex-graph and check that for all y∗ ∈ Y ∗, we have

D̂∗F(x̄, ȳ)(y∗) = D∗
MF(x̄, ȳ)(y

∗) = D∗
NF(x̄, ȳ)(y

∗)
=
{
x∗ ∈ X∗

∣∣∣ 〈x∗, x̄〉 − 〈y∗, ȳ〉 = max
(x,y)∈gphF

[〈x∗, x〉 − 〈y∗, y〉]
}
.

(ii) Assume that F is convex-valued around x̄ and inner semicontinuous at x̄; the latter is
defined in (1.20) without any change in Banach spaces. Show that the result of Theorem 1.15
holds for both normal and mixed coderivatives.

Exercise 1.59 (Coderivatives of Indicator Mappings). Given Banach spaces X and Y , consider
a nonempty set � ⊂ X and define the indicator mapping � : X → Y of the set � relative to the
range space Y by

�(x;�) :=
{

0 ∈ Y if x ∈ �,
∅ if x /∈ �.
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Check that for any x̄ ∈ � and y∗ ∈ Y ∗, we have

D̂∗
ε�(x̄;�)(y∗) = N̂ε(x̄;�), ε ≥ 0;

D∗
N�(x̄;�)(y∗) = D∗

M�(x̄;�)(y∗) = N(x̄;�).
Exercise 1.60 (Graphical Regularity of Mappings). Let F : X →→ Y be a set-valued mapping
between Banach spaces, and let (x̄, ȳ) ∈ gphF .

(i) F is N -regular at (x̄, ȳ) if D∗
NF(x̄, ȳ)(y

∗) = D̂∗F(x̄, ȳ)(y∗) for all y∗ ∈ Y ∗. Indicate
classes of mappings that are N -regular and show that this property fails, in particular, for any
f : Rn → R

m, which is locally Lipschitzian around x̄ but not strictly differentiable at this point.
Hint: Use results from previous exercises.

(ii) F is M-regular at (x̄, ȳ) if D∗
MF(x̄, ȳ)(y

∗) = D̂∗F(x̄, ȳ)(y∗) for all y∗ ∈ Y ∗. Construct a
mapping that is M-regular but not N -regular at a given point.

(iii) Let F = f : Rn → R
m be Lipschitz continuous around x̄. Show that f is graphically

regular at x̄ if and only if it is strictly differentiable at this point. Hint: Use the subspace prop-
erty of the convexified normal cone from Exercise 1.46(ii) and compare with the proof of [522,
Theorem 1.46].

(iv) Consider another approach to the result in (iii) and its infinite-dimensional extensions based
on the coderivative scalarization as in [522, Subsection 3.2.4].

Exercise 1.61 (Coderivative Chain Rules with Surjective Derivatives of Inner Mappings). Let
g : X → Y and F : Y →→ Z be mappings between Banach spaces, and let z̄ ∈ (F ◦ g)(x̄). Assume
that g is strictly differentiable at x̄ with the surjective derivative ∇g(x̄). Then the following hold:

D̂∗(F ◦ g)(x̄, z̄) = ∇g(x̄)∗D̂∗F
(
g(x̄), z̄

)
,

D∗(F ◦ g)(x̄, z̄) = ∇g(x̄)∗D∗F
(
g(x̄), z̄

)

for both D∗ = D∗
N,D

∗
M . Moreover, F ◦ g is N -regular (resp. M-regular) at (x̄, z̄) if and only if F

has the corresponding regularity property at (g(x̄), z̄). Hint: Apply the results from Exercises 1.54
and 1.53; see [522, Theorem 1.66] for more details.

Exercise 1.62 (Slanted Regular Normals to Epigraphs). Let X be Banach, and let ϕ : X → R

be l.s.c. around x̄ ∈ domϕ. Show that the inclusion (v,−λ) ∈ N̂(x, α); epiϕ) with λ > 0 implies
that α = ϕ(x̄). Hint: Proceed by the definitions by using arguments similar to those in Step 4 of
Theorem 1.23.

Exercise 1.63 (ε-Subgradients of Locally Lipschitzian Functions). Let X be a Banach space,
ϕ : X → R be locally Lipschitzian around x̄ with modulus � ≥ 0, and ∂̂εϕ(x̄) be the ε-
subdifferential of ϕ at x̄ defined as in (1.34) for any ε ≥ 0.

(i) Show that there is η > 0 such that

‖x∗‖ ≤ �+ ε for all x∗ ∈ ∂̂εϕ(x), x ∈ x̄ + ηB.
(ii) Show that there is η > 0 such that

‖x∗‖ ≤ ε(1 + �) for all (x∗, 0) ∈ N̂ε
(
(x, ϕ(x)); epiϕ

)
, x ∈ x̄ + ηB,

‖x∗‖ ≤ �+ ε(1 + �) for all (x∗,−1) ∈ N̂ε
(
(x, ϕ(x)); epiϕ

)
, x ∈ x̄ + ηB.

Hint: Proceed by the definitions.

Exercise 1.64 (Smooth Variational Descriptions of Regular Subgradients in Infinite Dimen-
sions). Let ϕ : X → R be finite at x̄, and let x∗ ∈ ∂̂ϕ(x̄).

(i) Show that the first assertion of Theorem 1.27 holds in arbitrary Banach space X, while the
second one requires that X admit a Fréchet smooth renorming. Furthermore, in the latter case, we
have the enhanced minimum condition
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ϕ(x)− ψ(x)− ‖x − x̄‖2 ≥ ϕ(x̄)− ψ(x̄) for all x ∈ X. (1.66)

(ii) Derive appropriate analogs of (1.66) in Banach spaces admitting S-smooth bump functions
of the classes listed in Exercise 1.51(iii).

Hint: Proceed similarly to the proof of Theorem 1.27 with taking into account the results of
Exercise 1.51 and compare this with [522, Theorem 1.88].

Exercise 1.65 (Basic Subdifferential in Infinite Dimensions). LetX be Banach. Define the basic
subdifferential of ϕ : X → R at x̄ ∈ domϕ geometrically

∂ϕ(x̄) := {
x∗ ∈ X∗∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ

)}
(1.67)

via the basic/limiting normal cone (1.58) in Banach spaces.
(i) Show that ∂ϕ(x̄) from (1.67) admits the following analytic representation

∂ϕ(x̄) := Lim sup
x
ϕ→x̄
ε↓0

∂̂εϕ(x) (1.68)

via the sequential weak∗ outer limit (1.57) of ε-subgradients at points nearby. Hint: Deduce it from
definition (1.58) and Theorem 1.26, which holds in an arbitrary Banach space without any change
in the proof.

(ii) Let X be Asplund. Show that ∂ϕ(x̄) admits the equivalent representation

∂ϕ(x̄) := Lim sup
x
ϕ→x̄

∂̂ϕ(x). (1.69)

Hint: Employ the result from Exercise 1.43(i).

Exercise 1.66 (Subgradients of the Norm and Negative Norm Functions).
(i) Consider the norm function ϕ(x) := ‖x‖ defined on an arbitrary Banach space X. Based on

the definitions, show that

∂̂ϕ(x̄) = ∂ϕ(x̄) =
⎧
⎨

⎩

B
∗ if x̄ = 0,

{
x∗ ∈ X∗∣∣ ‖x∗‖ = 1, 〈x∗, x̄〉 = ‖x̄‖} if x̄ 
= 0.

(ii) Based on the above definitions, calculate ∂̂ϕ(x̄) and ∂ϕ(x̄) for ϕ(x) := −‖x‖ at x̄ = 0 and
x̄ 
= 0 in (a) finite-dimensional Euclidean and non-Euclidean spaces, (b) Asplund spaces, and (c)
Banach while not Asplund spaces.

Exercise 1.67 (Subgradients of Strictly Differentiable Functions). Let X be Banach, and let
ϕ : X → R be strictly differentiable at x̄.

(i) Show that ∂̂ϕ(x̄) = ∂ϕ(x̄) = {∇ϕ(x̄)}.
(ii) Is the strict differentiability of ϕ at x̄ necessary for the validity of the second equality in (i)

when ϕ : Rn → R is Fréchet differentiable at x̄?

Exercise 1.68 (Singular Subdifferential in Infinite Dimensions). Let X be Banach. Define the
singular subdifferential of ϕ : X → R at x̄ ∈ domϕ by

∂∞ϕ(x̄) := Lim sup
x
ϕ→x̄

λ, ε↓0

λ̂∂εϕ(x) (1.70)

via the sequential weak∗ outer limit (1.57) in Banach spaces.
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(i) Assume that X is Asplund and show that in this case

∂∞ϕ(x̄) := Lim sup
x
ϕ→x̄
λ↓0

λ̂∂ϕ(x), (1.71)

i.e., ε > 0 can be equivalently dismissed in (1.70).
(ii) Verify that in Asplund spaces we have the geometric representation

∂∞ϕ(x̄) := {
x∗ ∈ X∗∣∣ (x∗, 0) ∈ N((x̄, ϕ(x̄)); epiϕ

)}
. (1.72)

Hint: Compare this with [522, Theorem 2.28] and simplify the proof in Hilbert spaces following
the approach developed in [470].

(iii) Does representation (1.72) hold in general Banach spaces with the normal cone defined
in (1.58) and the singular subdifferential defined in (1.70)?

Exercise 1.69 (Basic and Singular Subgradients of Lipschitzian Functions in Banach
Spaces). Let X be a Banach space, and let ϕ : X → R be a locally Lipschitzian function
around x̄ with modulus � ≥ 0.

(i) Prove the subgradient estimate (1.27). Hint: Use (1.68) and Exercise 1.63(i).
(ii) Prove that ∂∞ϕ(x̄) = {0}. Hint: Use (1.70) and Exercise 1.63(i).
(iii) Give an example showing that the condition ∂∞ϕ(x̄) = {0} doesn’t imply the local Lips-

chitz continuity of ϕ in infinite dimensions.

Exercise 1.70 (Scalarization of the Regular and Mixed Coderivatives in Banach Spaces). Let
f : X → Y be a mapping between Banach spaces, which is assumed to be locally Lipschitzian
around x̄.

(i) Show that D̂∗f (x̄)(y∗) = ∂̂〈y∗, f 〉(x̄) for all y∗ ∈ Y ∗.
(ii) Show thatD∗

Mf (x̄)(x̄)(y
∗) = ∂〈y∗, f 〉(x̄) for all y∗ ∈ Y ∗. Hint: Proceed as in the proof of

Theorem 1.32 with using the ε-enlargements in (1.65) and (1.68) as well the norm convergence on
Y ∗ in the construction of D∗

Mf (x̄, ȳ)(y
∗).

(iii) Give an example showing that the scalarization formula in (i) is violated for the normal
coderivative of Lipschitzian mappings with values in Hilbert spaces.

(iv) Does an analog of the scalarization formula hold for the coderivative generated by the
convexified normal cone to graphs of locally Lipschitzian mappings between finite-dimensional
spaces?

Exercise 1.71 (Scalarization of the Normal Coderivative for Strictly Lipschitzian Mappings).
Let X, Y be Banach, and let f : X → Y be locally Lipschitzian around x̄. It is w∗-strictly
Lipschitzian at x̄ if there is a neighborhood V of 0 ∈ X such that for any u ∈ X and

any sequences xk → x̄, tk ↓ 0, and y∗
k

w∗→ 0, we have 〈y∗
k , yk〉 → 0 as k → ∞ with

yk := t−1
k [f (xk + tku)− f (xk)].

(i) Show that any mapping f strictly differentiable at x̄ is w∗-strictly Lipschitzian at this point
and find other conditions ensuring the validity of the w∗-strict Lipschitzian property of f at x̄.

(ii) Show that the w∗-strict Lipschitzian property of f at x̄ implies that for any sequences
εk ↓ 0, xk → x̄, and (y∗

k , x
∗
k ) ∈ gph D̂∗

εk
f (xk), we have the implication

y∗
k

w∗→ 0 �⇒ x∗ w∗→ 0 as k → ∞.

(iii) Assuming that X is Asplund and that f is w∗-strictly Lipschitzian at x̄, justify the scalar-
ization formula for the normal coderivative:

D∗
Nf (x̄)(y

∗) = ∂〈y∗, f 〉(x̄) for all y∗ ∈ Y ∗.

Hint: Use (ii) and compare it with the proof of [522, Theorem 3.28].
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Exercise 1.72 (Subgradients of Compositions with Surjective Derivatives of Inner Map-
pings). Consider the composition ϕ ◦ g of a mapping g : X → Y between Banach spaces and
a function ϕ : Y → R. Assume that g is strictly differentiable at x̄ with the surjective deriva-
tive ∇g(x̄) and that ϕ is finite at ȳ := g(x̄). Verify the following subdifferential chain rules:
∂̂(ϕ ◦ g)(x̄) = ∇g(x̄)∗∂̂ϕ(ȳ),

∂(ϕ ◦ g)(x̄) = ∇g(x̄)∗∂ϕ(ȳ), and ∂∞(ϕ ◦ g)(x̄) = ∇g(x̄)∗∂∞ϕ(ȳ).
Hint: Deduce these equalities from the coderivative calculus in Exercise 1.61 by considering

there the epigraphical multifunction F = Eϕ defined in (1.29).

Exercise 1.73 (Proximal Subgradients and Their Limits in Hilbert Spaces). Let ϕ : X → R,
where X is a Hilbert space. The proximal subdifferential of ϕ at x̄ ∈ domϕ is defined as the
collection of proximal subgradients

∂P ϕ(x̄) := {
x∗ ∈ X∗∣∣ lim inf

x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x − x̄〉
‖x − x̄‖2 > −∞}

.

(i) Show that ∂P ϕ(x̄) ⊂ ∂̂ϕ(x̄) and that the proximal subgradient set ∂P ϕ(x̄)may not be closed
in R

n in contrast to ∂̂ϕ(x̄).
(ii) Give an example showing that the set ∂P ϕ(x̄) may be empty even for smooth functions on

finite-dimensional spaces.

(iii) Show that for any x∗ ∈ ∂̂ϕ(x̄), there are sequences xk
ϕ→ x̄ and x∗

k ∈ ∂P ϕ(xk) such that
‖x∗
k − x∗‖ → 0 as k → ∞. Hint: Compare this with the proof in [472, Theorem 5.5] and simplify

it in the case of X = R
n.

(iv) Based on (iii) and (1.69), derive the limiting subdifferential representation

∂ϕ(x̄) = Lim sup
x
ϕ→x̄

∂P ϕ(x).

Exercise 1.74 (Subdifferential Regularity of Functions). Let X be a Banach space. A function
ϕ : X → R is subdifferentially or epigraphically regular at x̄ ∈ domϕ if its epigraph is normally
regular at (x̄, ϕ(x̄)).

(i) Show that the function ϕ is subdifferentially regular at x̄ if and only if

∂ϕ(x̄) = ∂̂ϕ(x̄) and ∂∞ϕ(x̄) = {
v ∈ X∗∣∣ (v, 0) ∈ N̂((x̄, ϕ(x̄)); epiϕ

)}
, (1.73)

where the first equality in (1.73) is known as the lower regularity of ϕ at x̄.
(ii) Show that for locally Lipschitzian functions ϕ on arbitrary Banach spaces, the subdifferen-

tial regularity and lower regularity of ϕ at x̄ are equivalent, while it is not the case in general even
for X = R.

(iii) It follows from Theorem 1.33 that the distance function d� for � ⊂ R
n is lower regular

at x̄ ∈ � if and only if the set � is normally regular at this point, while d� is lower regular at
x̄ /∈ � if and only if the Euclidean projector �(x̄;�) is a singleton. Do these facts hold in infinite
dimensions?

Exercise 1.75 (Upper and Symmetric Subdifferentials). Given a function ϕ : X → [−∞,∞)

finite at x̄ on a Banach space X, define the upper subdifferential and upper singular subdifferential
of ϕ at x̄ by, respectively,

∂+ϕ(x̄) := −∂(−ϕ)(x̄), ∂∞,+ϕ(x̄) := −∂∞(−ϕ)(x̄). (1.74)

The symmetric subdifferential and the symmetric singular subdifferential of ϕ at x̄ are defined by,
respectively,

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ ∂+ϕ(x̄), ∂∞,0ϕ(x̄) := ∂∞ϕ(x̄) ∪ ∂∞,+ϕ(x̄). (1.75)
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(i) Check the plus-minus symmetry properties of the constructions in (1.75):

∂0(−ϕ)(x̄) = −∂0ϕ(x̄), ∂∞,0(−ϕ)(x̄) = −∂∞,0ϕ(x̄)

(ii) Let ϕ be locally Lipschitzian around x̄ with modulus � ≥ 0. Check that

∂∞,0ϕ(x̄) = {0} and ‖x∗‖ ≤ � for all x∗ ∈ ∂0ϕ(x̄).

Exercise 1.76 (Upper Regular Subgradients and Subdifferential Characterization of Fréchet
Differentiability). Define the collection of upper regular subgradients of ϕ : X → [−∞,∞) finite
at x̄ by ∂̂+ϕ(x̄) := −∂̂(−ϕ)(x̄), i.e.,

∂̂+ϕ(x̄) =
{
x∗ ∈ X∗

∣∣∣ lim sup
x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
. (1.76)

(i) Give examples showing that the sets ∂̂ϕ(x̄) and ∂̂+ϕ(x̄) may be empty simultaneously for a
continuous function ϕ : R → R and that ∂̂ϕ(x̄) may be a singleton when ϕ is not Fréchet differen-
tiable at x̄.

(ii) Show that ϕ is Fréchet differentiable at x̄ if and only if we have simultaneously ∂̂ϕ(x̄) 
= ∅
and ∂̂+ϕ(x̄) 
= ∅ in which case ∂̂+ϕ(x̄) = ∂̂ϕ(x̄) = {∇ϕ(x̄)}.
Exercise 1.77 (Epigraphical Regularity and Symmetric Subgradients for Convex Functions).
Let ϕ : X → R be convex on a Banach space X. Show that ϕ is epigraphically regular at every
x̄ ∈ domϕ, and we have

∂0ϕ(x̄) = ∂ϕ(x̄) = {
x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ϕ(x)− ϕ(x̄) for all x ∈ X}.

Hint: All the claimed properties but the representation for ∂0ϕ(x̄) in Banach spaces are ver-
ified similarly to the proof of Proposition 1.25. To justify the latter representation, it remains to
show that ∂+ϕ(x̄) ⊂ ∂ϕ(x̄) for convex functions. The latter can be proved by applying (1.68) to
−∂(−ϕ)(x̄) and observing that the condition −∂̂ε(−ϕ)(x) 
= ∅ for some x and ε > 0 ensures that
ϕ is bounded from above around x and thus ∂̂ϕ(x) = ∂ϕ(x) 
= ∅ due the convexity of ϕ. Then
apply Exercise 1.76(ii) and compare with [522, Theorem 1.93] for more details.

Exercise 1.78 (Characterizations of Two-Sided Regularity for Continuous Functions). A
function ϕ : X → [−∞,∞) finite at x̄ is upper regular at this point if ∂+ϕ(x̄) = ∂̂+ϕ(x̄), i.e., the
function −ϕ is lower regular at x̄.

(i) Show that the graphically regular of ϕ at x̄ (in both sense of Exercise 1.60 for Y = R)
implies that ϕ is simultaneously lower and upper regular at this point. The converse holds if ϕ
is locally Lipschitzian around x̄. Hint: Use the corresponding Banach space extension of (1.30)
Theorem 1.23 and the result of Exercise 1.75(ii).

(ii) Check that the strict differentiability of ϕ at x̄ ensures both lower and upper regularity of ϕ
at this point. The converse holds if ϕ is locally Lipschitzian around x̄ and dimX < ∞. Hint: To
verify the converse statement, use Exercise 1.60(iii).

Exercise 1.79 (Generalized Directional Derivative and Generalized Gradient). Let X be a
Banach space.

(i) Assume that ϕ : X → R is locally Lipschitzian around x̄. The (Clarke) generalized direc-
tional derivative of ϕ at x̄ in the direction w ∈ X is

ϕ◦(x̄;w) := lim sup
x→x̄
t↓0

ϕ(x + tw)− ϕ(x)
t

(1.77)

and the corresponding generalized gradient of ϕ at x̄ is

∂ϕ(x̄) = {
x∗ ∈ X∗∣∣ 〈x∗, w〉 ≤ ϕ◦(x̄;w) for all w ∈ X}. (1.78)
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Show that the function w �→ ϕ◦(x̄;w) is convex and satisfies the condition ϕ◦(x̄,−w) =
−ϕ◦(x̄;w), which implies the plus-minus symmetry

∂(−ϕ)(x̄) = −∂ϕ(x̄). (1.79)

(ii) Verify that the convexified normal cone (1.61) admits the representation

N(x̄;�) = cl ∗{⋃

λ≥0

λ∂d�(x̄)
}

(1.80)

via the (topological) weak∗ closure of the cone spanned on the generalized gradient (1.78) of the
Lipschitzian distance function, which induces the corresponding subdifferential of a general (l.s.c.)
function ϕ : X → R at x̄ ∈ domϕ by

∂ϕ(x̄) := {
x∗ ∈ X∗∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ

)}
. (1.81)

(iii) Show that for any ϕ : Rn → R finite at x̄, we have the representation

∂ϕ(x̄) = clco
[
∂ϕ(x̄)+ ∂∞ϕ(x̄)

]
, (1.82)

which leads us in the case of locally Lipschitzian functions to the following ones:

∂ϕ(x̄) = co ∂ϕ(x̄) = co ∂+ϕ(x̄) = co ∂0ϕ(x̄). (1.83)

Hint: For (i) and (ii), consult [165]. To verify (iii), deduce (1.82) from (1.60) and then derive all
the conditions in (1.83) from (1.82) by using Theorem 1.22 and the symmetry relationship (1.79)
for locally Lipschitzian functions.

Exercise 1.80 (Generalized Jacobian of Lipschitzian Mappings and Subgradients of Scalar-
izations). Let f : Rn → R

m be locally Lipschitzian around x̄. By the classical Rademacher theo-
rem (see, e.g., [678, Theorem 9.60]), f is differentiable almost everywhere around x̄. The (Clarke)
generalized Jacobian ∂f (x̄) of f at x̄ is a nonempty compact subset of Rn×m defined as the convex
hull of the set

{
lim ∇f (xk)

∣∣ xk → x̄, k → ∞, f is differentiable at xk
}

via the limit of the Jacobian matrix ∇f (xk) for f at xk .
(i) Show that for m = 1, the generalized Jacobian of f at x̄ reduces to the generalized gradient

of f at this point. Hint: Proceed by the definitions with the usage of the classical Fubini theorem;
compare it with [165, Theorem 2.5.1].

(ii) Show that for any m ∈ N, we have the following relationships:

D∗f (x̄)(v) = ∂〈v, f 〉(x̄) = co
{
A∗v

∣∣ A ∈ ∂f (x̄)} whenever v ∈ R
m.

Hint: Use (i), (1.83), and the coderivative scalarization from Theorem 1.32.
(iii) Establish appropriate infinite-dimensional versions of the relationships in (ii) for locally

Lipschitzian mappings defined on Asplund spaces. Hint: Use the scalarization results from Ex-
ercises 1.70 and 1.71 together with Preiss’ extension [647] of the Rademacher theorem to such
mappings.

Exercise 1.81 (More Subgradient Calculations).
(i) Consider all the functions ϕ : R → R from Example 1.21(i–iv) and calculate for them the

subgradient sets ∂̂+ϕ(0), ∂+ϕ(0), ∂0ϕ(0), ∂ϕ(0), ∂∞,+ϕ(0), and ∂∞,0ϕ(0). Draw the correspond-
ing figures.

(ii) Consider the two Lipschitz functions ϕ : R2 → R from Example 1.31, calculate for them
the subgradient sets ∂̂+ϕ(0, 0), ∂+ϕ(0, 0), ∂0ϕ(0, 0), and ∂ϕ(0, 0), and then draw the illustrating
figures.
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(iii) Define the functions ϕ : R2 → R by

ϕ(x1, x2) := |x1|α − |x2|, ϕ(x1, x2) := |x1| − |x2|β, ϕ(x1, x2) := |x1|α − |x2|β

for any α, β ∈ (0, 1). Calculate for these functions the sets ∂̂ϕ(0, 0), ∂̂+ϕ(0, 0), ∂ϕ(0, 0),
∂+ϕ(0, 0) ∂0ϕ(0, 0), and ∂ϕ(0, 0) as well as their singular counterparts ∂∞ϕ(0, 0), ∂∞,+ϕ(0, 0),
∂∞,0ϕ(0, 0) with the corresponding geometric illustrations.

Exercise 1.82 (Duality for Regular Subgradients and Contingent Derivatives in Finite and
Infinite Dimensions).

(i) Given ϕ : Rn → R and x̄ ∈ domϕ, show that

∂̂ϕ(x̄) = {
v ∈ R

n
∣∣ 〈v,w〉 ≤ dϕ(x̄;w) for all w ∈ R

n
}
,

where dϕ(x̄;w) is the contingent derivative from (1.41) and (1.42).
(ii) Does this representation hold in infinite dimensions?

Exercise 1.83 (Relationships Between Directional Derivatives). Let X be a Banach space, and
let ϕ : X → R be finite x̄.

(i) Assuming that the classical directional derivative of the function ϕ at the point x̄ in the
direction w ∈ X given by

ϕ′(x̄;w) := lim
t↓0

ϕ(x̄ + tw)− ϕ(x̄)
t

(1.84)

exists wheneverw ∈ X, show that dϕ(x̄;w) ≤ ϕ′(x̄;w) for the contingent derivative (1.42), where
the inequality may be strict for continuous functions on R.

(ii) Assuming that ϕ is locally Lipschitzian around x̄, show the relationship dϕ(x̄;w) ≤
ϕ◦(x̄;w) between the generalized directional derivatives (1.42) and (1.77) for all w ∈ X, where
the inequality may be strict when X = R.

(iii) Assuming that ϕ is locally Lipschitzian around x̄ and that ϕ′(x̄;w) exists for all w ∈ X,
show that the inequality ϕ′(x̄;w) ≤ ϕ◦(x̄;w) may be strict even for X = R. The case of equality
therein is known as the tangential, directional, or Clarke regularity of ϕ at x̄. Show that it always
holds for convex function and that we have dϕ(x̄) = ϕ◦(x̄) under this regularity.

Hint: See [124, 125] for detailed comparisons between the aforementioned and other regularity
notions in variational analysis.

Exercise 1.84 (Calculus of Right-Sided Subgradients). Clarify which calculus properties are
available for the right-sided subdifferential (1.53).

Exercise 1.85 (Subdifferentiation of the Distance Function in Infinite Dimensions). Let ∅ 
=
� ⊂ X, where X is Banach.

(i) Derive counterparts of Theorem 1.33(i) and Lemma 1.34 for ε-normals and ε-subgradients
at in-set and out-of-set points.

(ii) Prove the corresponding extensions of Theorem 1.33(i) and Theorem 1.38 in arbitrary Ba-
nach spaces X.

Hint: Use Ekeland’s variational principle (see Chapter 2) and compare with the proofs in [522,
Theorems 1.97, 1.99, 1.101].

Exercise 1.86 (Subgradients of the Distance Function via Projection Points).
(i) Show that in any infinite-dimensional Hilbert space X, there is a closed set � such that the

formula for ∂d�(x̄) in Theorem 1.33(ii) is violated. Hint: Construct � as an orthonormal basis of
X and take x̄ = 0 /∈ �.

(ii) Let � ⊂ X be an nonempty subset of a Banach space X, and let x̄ /∈ �. We say that the
best approximation problem is well posed for � at x̄ if either (a) for every sequence of xk → x̄

with ∂̂εk d�(xk) 
= ∅ as εk ↓ 0 there is a sequence of wk ∈ �(xk;�) that contains a convergent
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subsequence or (b) every sequence of xk
�→ x̄ such that ‖xk − x̄‖ → d�(x̄) as k → ∞ contains a

convergent subsequence.
Show that the defined well-posedness property for � at x̄ ensures the validity of

∂d�(x̄) ⊂
⋃

w∈�(x̄;�)

[
N(w;�) ∩ B

∗] (1.85)

(iii) LetX be a reflexive Banach space with an equivalent Kadec norm, i.e., such that the strong
and weak convergences agree on the boundary of the unit sphere. Verify that the best approximation
problem is well posed on � and hence (1.85) holds if either � is weakly closed or � is closed and
∂̂d�(x̄) 
= ∅.

Hint: Compare with the approach and results in [522, Theorem 1.105 and Corollary 1.106] for
the proofs of the corresponding assertions in (ii) and (iii).

Exercise 1.87 (Fermat-Torricelli-Steiner Problems). Given an arbitrary number of closed sub-
sets �i ⊂ R

n as i = 1, . . . , s, consider the generalized Fermat-Torricelli-Steiner problem [536]
defined by

minimize
s∑

i=1

d�i (x) over all x ∈ R
n. (1.86)

The classical Fermat-Torricelli problem corresponds to (1.86) with three singletons�i in R
2, while

the Steiner problem deals with any finite number of points on the plane: see Section 1.5 for more
discussions and references. Using Proposition 1.30(i) and Theorem 1.33(ii) as well as the classi-
cal subdifferential sum rule of convex analysis, find exact the solutions to problem (1.86) in the
following two cases:

(i) The sets �i , i = 1, . . . , s, are disjoint interval [ai , bi ] on the real line with a1 ≤ b1 < a2 ≤
b2 < . . . < as ≤ bs .

(ii) The sets �i are three pairwise disjoint balls on the plane.
Hint: See [537, Chapter 4] for formulations and solutions of various location problems involv-

ing the distance function and its extensions.

1.5 Commentaries to Chapter 1

Section 1.1. The central construction in the developed approach to variational analysis and gen-
eralized differentiation is that of the normal cone to a locally closed set from Definition 1.1. This
construction and the corresponding subdifferential of extended-real valued functions were intro-
duced by the author as a by-product of his method of metric approximations in the beginning of
1975 when he was not even familiar with Clarke’s work on generalized gradients. It was first writ-
ten and published in the author’s paper [502] (initially rejected!), not in [528] as stated in [375];
there is a reference in [528] to [502] while not vice versa. Following this scheme of [502] for
problems of time optimal control with nonsmooth constraints, the initial applications were given
in the early papers by the author and Kruger [439, 503, 528] for various optimal control problems.
The normal cone notion of [502], widely spread in variational analysis under the names of ba-
sic/general, limiting, or Mordukhovich normal cone, has been the key and striking departure from
the conventional scheme of defining a normal cone to a set via duality (1.10) from a tangential
approximation, which corresponds for functions to defining a subdifferential via duality from a
directional derivative. As discussed above, the latter approach unavoidably leads one to convex
sets of normals and subgradients, while our constructions are intrinsically nonconvex. Besides the
inspiration from convex analysis, the underlying idea behind the construction of generalized nor-
mals via duality from tangential approximations relates to the well-accepted approach of deriving
necessary conditions in constrained optimization by selecting convex subcones of certain tangent
cones to sets associated with optimal solutions and then applying a convex separation theorem; see,
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e.g., Dubovitskii and Milyutin [234], Girsanov [296], and Neustadt [606]. A similar idea has been
widely implemented in establishing the so-called marginal price equilibria in nonconvex models
of welfare economics starting with Guesnerie [313]. The approach suggested in [502] is princi-
pally different from all the previous developments and leads us to the robust nonconvex normal
cone (1.4) satisfying, together with the associated subdifferential and coderivative constructions
for functions and multifunctions, comprehensive calculus rules at the points in question, without
any appeal to tangential approximations.

Note that the convex closure of the basic normal cone

N(x̄;�) := clcoN(x̄;�), x̄ ∈ �,
as in (1.60) agrees with the convexified/Clarke normal cone to � at x̄ defined in [163], based on
Clarke’s dissertation [162] under the direction of Rockafellar, by the duality scheme (1.10) via the
(automatically convex) tangent cone introduced therein. The convexity of these tangent and nor-
mal cones provides the possibility to strongly use the machinery of convex analysis and to develop
extensive calculus rules and various applications first for the corresponding generalized gradients
of locally Lipschitzian functions by Clarke [165] and then for certain non-Lipschitzian cases of
sets and functions by Rockafellar [671, 675]. At the same time, it has been realized after a while
that the convexity of the normal cone N(x̄;�) in (1.60) creates serious obstacles in deriving satis-
factory necessary optimality conditions and adequate formalizations of marginal price equilibria in
economic modeling; see Mordukhovich [507] and Khan [412]. Furthermore, it is proved by Rock-
afellar [676] that Clarke’s normal cone to a Lipschitzian manifold of dimension d in R

n (i.e., a set
locally homeomorphic around the point in question to the graph of a locally Lipschitzian mapping)
inevitable has to be a linear subspace with dimension greater than n− d unless the manifold was
“strictly smooth” at this point. As an illustration, see the set� = gph |x| in Example 1.14(i), where
N((0, 0);�) = R

2. It shows that for such graphical sets, the convexification operation in (1.60)
may enlarge the normal cone dramatically to the extent of loosing any useful information about
optimality and/or equilibria. Observe to this end that graphical sets always appear in the coderiva-
tive construction of Definition 1.11 and that, besides graphs of single-valued Lipschitz continuous
mappings, Lipschitzian manifolds (or graphically Lipschitzian mappings) include graphs of set-
valued subgradient mappings for convex and more general prox-regular functions ϕ : Rn → R

as well as maximal monotone operators, which play a crucial role in many aspects of variational
analysis and optimization; see [676] and the books [522, 523, 678] for more details. Note also that
the convexification operation in (1.60) may violate the robustness property of N(x̄;�) as for the
set � = {(x1, x2, x3) ∈ R

3| x3 = |x1x2|} at x̄ = 0 ∈ R
3.

Both limiting representations of the normal cone in (1.7) were given in the papers by Kruger
and Mordukhovich [440, 441] with the original proof (cf. [522, Theorem 1.6]) different from that
presented above. Furthermore, it has been realized in [441, 440] that the prenormal cone N̂(x̄;�)
in (1.5), known as the regular or Fréchet normal cone, occurs to be dual by Proposition 1.9 to
the contingent/tangent cone from Definition 1.8 introduced simultaneously and independently by
Bouligand [123] and Severi [687] (in fact, this notion goes back to the early work by Peano as well
as a number of other notions related to differentiability, tangency, and set limits; see the historical
investigation by Dolecki and Greco [218] with the references therein). Thus the combination of the
first limiting representation of the normal cone in Theorem 1.6 with the result of Proposition 1.9
shows that the normal cone construction employed by Rockafellar and Wets [678] is equivalent to
the original definition of the normal cone (1.4) from [502].

Recall that the original author’s construction of the normal cone and its equivalent descrip-
tion in terms of limits of tangents are finite-dimensional. The Banach space extension of N(x̄;�)
corresponding to the second representation in (1.7) has been suggested in [440, 441] and then
further elaborated in Kruger’s dissertation [426] conducted under the author’s direction and fully
reflected in [428, 430] as well as in the books [507, 522, 523] with carefully written commentaries
therein. This extension defined the normal cone N(x̄;�) via the weak∗ sequential convergence of
ε-normals in the space X∗ dual to a Fréchet smooth space X. Symbolically it is represented in the
sequential outer limit form
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N(x̄;�) := Lim sup
x
�→x̄, ε↓0

N̂ε(x;�)

as in (1.58). Note that, although the exact nature of the weak∗ closure was not explicitly specified
in [440, 441], it was clear from the proofs given therein that the weak∗ limit was taken in the se-
quential sense due to the classical fact of functional analysis on the weak∗ sequential compactness
of bounded sets in duals to Fréchet smooth spaces. Unfortunately, these well-known observations
haven’t been reflected in [375]. Note to this end that all the aforementioned publications by the
author and Kruger (including the mimeographed papers [427, 428, 440] written in Russian) have
been widely distributed from the very beginning among experts on nonsmooth analysis in the
former Soviet Union and partly abroad and have been discussed in the seminar and conference
meetings.

In the final line of developments in this direction, the author and Shao [580] justified the possi-
bility to equivalently drop εk in (1.58), i.e., to get the representation

N(x̄;�) = Lim sup
x
�→x̄

N̂ (x;�)

from (1.59) as the definition of the normal cone in (1.7) via the sequential weak∗ outer limit (1.1)
of regular/Fréchet normals (1.5) for closed sets in Asplund spaces. Since this class is essentially
broader than the Fréchet smooth one considered in the aforementioned work by Kruger and Mor-
dukhovich, the refined construction (1.59) allows us to improve the results obtained therein in the
Fréchet smooth setting. Note that the possibility to pass from (1.58) to (1.59) is a highly nontrivial
fact based, among other devices, on the Borwein-Preiss variational principle [108] and the method
of separable reduction by Fabian [254]; see more discussions and references in [522]. Recall that
Asplund spaces form a remarkable and beautiful subclass of Banach spaces that contains, in par-
ticular, every reflexive space (as Fréchet smooth), every space admitting a Fréchet smooth bump
function, every space with a separable dual, etc.; see also Exercise 1.41. As shown in [522, 580],
the Clarke normal cone (1.61), defined in Banach spaces via the tangential duality [165], reduces
to the convexified normal (1.60) provided that the space X is Asplund and the closure operation
in (1.60) is taken in the weak∗ topology of X∗.

In some infinite-dimensional situations, it is useful to consider a modified limiting normal cone
construction, where the weak∗ convergence in (1.58) is replaced by the norm/strong convergence
in dual spaces. This has been first done in [277] under the name of the “norm-limiting normal
cone” and recently was nicely implemented in [494] under the name of the “strong limiting normal
cone” to study optimization problems with complementarity constraints in Lebesgue spaces.

The variational description of regular normals in Theorem 1.10(i) holds in any Banach space
as observed in [519], while the more delicate one in (ii) requires a Fréchet smooth renorming; see
Fabian and Mordukhovich [257], where the reader can find other versions under some smooth
bump geometric assumptions on the space in question. Another proof of the smooth variational de-
scription in Theorem 1.10 is given by Rockafellar and Wets [678] in finite dimensions but without
the conclusion on convexity of the smooth support function ψ therein.

Section 1.2. The coderivative construction of Definition 1.11 was introduced by the author [504]
motivated by deriving necessary optimality conditions in optimization problems with nonsmooth
equality constraints and describing the adjoint system in the extended Euler-Lagrange conditions
for optimal control of differential inclusions. Theorem 1.15 useful in optimal control can be found
in [504]. As we see, the coderivative plays a role of a generalized adjoint derivative for nons-
mooth and set-valued mappings. Note that, being nonconvex-valued, the coderivative D∗F(x̄, ȳ)
of F : Rn →→ R

m cannot be obtained by duality via any tangentially generated derivative of F at
(x̄, ȳ); in particular, by the contingent/graphical derivative

DF(x̄, ȳ)(u) := {
v ∈ R

m
∣∣ (u, v) ∈ T ((x̄, ȳ); gphF

)}
, u ∈ R

n, (1.87)
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introduced by Aubin [34] motivated by different applications; see also [36]. Previous develop-
ments in this direction based on tangential approximations of graphs can be found in Pshenichnyi
[648, 649] as “locally adjoint mappings” for convex-graph and convex-valued multifunctions.
Serious disadvantages of the graphical derivative (1.87), which it shares with the contingent and
regular normal cones, are nonrobustness and a poor calculus that create obstacles for applications.
This is not the case of the basic coderivative D∗ along with the basic normal cone from Def-
inition 1.1 and its infinite-dimensional extensions. The principal importance of the coderivative
construction in variational analysis is revealed in the subsequent material of this book; see also the
prior monographs [507, 522, 523, 678] and the references therein.

For mappings F : X →→ Y between infinite-dimensional spaces, there are two distinct exten-
sions of our basic coderivative (1.15) from the viewpoint of taking the limit in (1.17), where the
precoderivative D̂∗F (known also as the regular/Fréchet coderivative) is defined in (1.16) via the
prenormal cone N̂ to the graph of F or via the ε-enlargements N̂ε in (1.6) . These enlargements are
needed in the case of general Banach spaces X and Y while it suffices to use N̂ when both spaces
are Asplund. The first extension, called the normal coderivative D∗

NF(x̄, ȳ), is defined by the
same formula (1.15) as in finite dimensions, while the normal cone N(·; gphF) therein is given
by (1.58) or by (1.59) in Asplund spaces, which corresponds to the weak∗ convergence of both se-
quences (x∗

k ,−y∗
k ) from the cone N̂((xk, yk); gphF) ⊂ X∗×Y ∗ or its εk-enlargements; see (1.63).

In the second extension, introduced by the author in [514] as the mixed coderivative D∗
MF(x̄, ȳ),

we take advantages of the product structure ofX∗ ×Y ∗ and use the strong convergence of y∗
k in Y ∗

while still employing the weak∗ convergence of x∗
k in X∗. This gives us (1.65), where we can put

ε = 0 if both spaces X and Y are Asplund. It is obvious that D∗
MF(x̄, ȳ)(y

∗) ⊂ D∗
NF(x̄, ȳ)(y

∗),
that these coderivatives agree when dimY < ∞, and that they reduce to the basic coderivative from
Definition 1.11 when dimX < ∞ as well. In infinite dimensions the coderivatives D∗

N and D∗
M

enjoy similar and rather comprehensive (in Asplund spaces) calculus rules while both being im-
portant in variational analysis and its applications; see, e.g., [522, 523] and the material presented
below.

Finally, we observe here that the extremal property of Theorem 1.15, which holds in terms of the
normal coderivative for convex-valued multifunctions between arbitrary Banach spaces, shows in
particular that the coderivative Euler-Lagrange condition in optimal control of Lipschitzian differ-
ential inclusions obtained first by the author in [504] yields the Weierstrass-Pontryagin maximum
condition in the convex-valued setting; see [507, 522, 523] for further discussions.

Section 1.3. Subdifferential theory of variational analysis has started from convex analysis with the
fundamental developments by Fenchel, Moreau, and Rockafellar on generalized differentiation of
convex functions; see the books [105, 352, 667, 678] for historical comments and references and
also the recent one [537] for simplified proofs of the key results of convex subdifferential calculus
based on a geometric variational approach. In particular, convex analysis offers a monumental idea
of a set-valued extension of the classical gradient to nondifferentiable functions known now as
the subdifferential or the subgradient mapping. Considering extended-real-valued functions, con-
vex analysis strongly unifies analytic and geometric ideas revolving around convexity. Observe
to this end that, although the classical definition of the convex subdifferential (1.35) is analytic,
geometric considerations based on convex separation/supporting hyperplane theorems have been
behind major results of subdifferential theory for convex functions including their subdifferentia-
tion (∂ϕ(x̄) 
= ∅), on the relative interior of the domain, subdifferential calculus rules, etc. It has
also been realized from the early days of convex analysis that subgradients of convex functions
can be obtained geometrically via epigraphical normals as in (1.24). Nonconvex counterparts of
these geometric ideas are underlying in subdifferential theory for general functions developed in
this book following those in [507, 522].

On the other hand, it is well known that every convex function ϕ : X → R on a Banach space
X (and in more general linear topological settings) admits at any x̄ ∈ domϕ and w ∈ X the
(one-sided) directional derivative ϕ′(x̄;w) as in (1.84), which is convex in w and generates the
subdifferential (1.35) by the duality

∂ϕ(x̄) = {
v ∈ X∗∣∣ 〈v,w〉 ≤ ϕ′(x̄;w) for all w ∈ X}. (1.88)
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This duality scheme has become the dominating source of constructing various subdifferentials
for nonconvex functions via appropriately defined generalized directional derivatives known under
different names; see, e.g., (1.42) and the comprehensive comments on such constructions in the
books [522, 678] with the references therein. The most successful attempt in this vein is general-
ized directional derivative ϕ◦(x̄;w) for locally Lipschitzian functions defined by Clarke [163] as
in (1.77). The Lipschitz continuity of ϕ around x̄ and the automatic convexity of (1.77) in direc-
tions are very essential for satisfactory properties of the corresponding generalized gradient ∂ϕ(x̄)
obtained from (1.77) by the duality scheme (1.88) as given in (1.78). To recover the generalized
gradient [163] for l.s.c. functions by scheme (1.88), Rockafellar [669] introduced a significantly
more complicated directional derivative. It reduces to (1.77) for locally Lipschitzian functions ϕ
while loosing some nice properties known for (1.78) in the Lipschitzian case. In particular, ro-
bustness and certain important calculus rules are generally lost for this construction even in finite
dimensions.

It has been really surprising from the beginning that, despite its nonconvexity and no relation to
any directional derivative, these and much better properties hold for the basic/limiting subdifferen-
tial (1.24) from Definition 1.18 that appeared first in Mordukhovich [502] and then employed in a
number of publications (not so many though till 1988) summarized in the book [507]; see also the
commentaries in [522, 678] for major developments and references during that period. ‘ Overall, it
has been achieved by developing variational/extremal principles and techniques which are at the
core of variational analysis; see more on it in the next Chapter 2.

Let us now comment on the main results presented in Section 1.3 and their infinite-dimensional
extensions. The subdifferential description of locally Lipschitzian functions in Theorem 1.22 and
the singular subdifferential construction (1.25) were given in Kruger and Mordukhovich [504] ,
while the singular subdifferential representation (1.38) in an equivalent limiting form via proxi-
mal subgradients was established by Rockafellar [672] together with the singular subdifferential
characterization of local Lipschitz continuity given in Theorem 1.22; see also [678], where the
first representation in (1.38) is taken for the definition of ∂∞ϕ(x̄) as the collection of “horizon
subgradients” of ϕ at x̄, and [522] for infinite-dimensional extensions. Observe that the original
proof of (1.38) in [672] (reproduced in [678, Theorem 8.9]) and those given in various infinite-
dimensional settings [110, 370, 470, 522, 655] are heavily technically involved. Note also that the
singular subdifferential characterization ∂∞ϕ(x̄) = {0} of local Lipschitz continuity for functions
on Asplund spaces obtained in [522, Theorem 3.52] requires the additional “sequential normal
epi-compactness” condition on ϕ at x̄, which is automatic in finite dimensions.

Recall that, in contrast to classical analysis with its plus-minus symmetry for derivatives, con-
vex analysis is “unilateral” (the expression of Moreau [593]). The negation of a convex function
ϕ is not convex anymore (except of the linear case), and the generalized differential properties of
−ϕ are significantly different from those for ϕ. The subdifferential of a concave function ϕ : X →
[−∞,∞) at x̄ with ϕ(x̄) > −∞ is defined by Rockafellar [667] as ∂ϕ(x̄) := −∂(−ϕ)(x̄) also
being called the “superdifferential” of ϕ or—even better—the “upper subdifferential” of ϕ at this
point. The situation is different for Clarke’s generalized gradient of locally Lipschitzian function,
which possesses the classical plus-minus symmetry ∂(−ϕ)(x̄) = −∂ϕ(x̄) and thus doesn’t distin-
guish between convex and concave functions as well as between maxima and minima. It seems to
be rather unnatural for nonsmooth functions and doesn’t follow the line of convex analysis.

In the case of our basic subdifferential from Definition 1.18, we don’t have such a symmetry,
and it makes sense to consider along with the (lower) subdifferential constructions (1.24) and (1.25)
their upper counterparts ∂+ϕ(x̄) and ∂∞,+ϕ(x̄) defined by (1.74), which may be significantly
different from the lower ones as, e.g., for the simplest one-dimensional function ϕ(x) := |x|,
where ∂+ϕ(0) = {−1, 1}. Furthermore, the unions of the lower and upper constructions, defined
as the symmetric basic and singular subdifferentials in (1.75), enjoy the plus-minus symmetry
∂0(−ϕ)(x̄) = −∂0ϕ(x̄) and ∂∞,0(−ϕ)(x̄) = −∂∞,0ϕ(x̄). Note that these symmetric construc-
tions are generally nonconvex, that for convex functions ϕ, the set ∂0ϕ(x̄) reduces to the subdif-
ferential of convex analysis, while for locally Lipschitzian functions, it may be essentially smaller
than ∂ϕ(x̄). In fact, for functions ϕ : Rn → R Lipschitzian around x̄, we have by (1.83) that
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Clarke’s generalized gradient ∂ϕ(x̄) is the convex hull of each of the sets ∂ϕ(x̄), ∂+ϕ(x̄), and
∂0ϕ(x̄).

Let us illustrate these relationships for the functions ϕ : R2 → R from Example 1.31. For
ϕ(x1, x2) = |x1| − |x2| from (i) therein, we have

∂+ϕ(0, 0) = {
(−1, v) ∈ R

2
∣∣− 1 ≤ v ≤ 1

} ∪ {
(1, v) ∈ R

2
∣∣− 1 ≤ v ≤ 1

}
,

which yields that ∂0ϕ(0, 0) is the boundary of the unit square in R
2, while ∂ϕ(0, 0)) is the whole

unit square; see Fig. 1.13. For the function ϕ(x1, x2) = ∣∣ |x1| + x2
∣∣ in Example 1.31(ii), we have

the subdifferential calculations

∂+ϕ(0, 0) = {
(v,−1) ∈ R

2
∣∣− 1 ≤ v ≤ 1

} ∪ {
(1,−1)

} ∪ {
(−1, 1)

}

1

−1

1−1

(a) ∂+ϕ(0, 0)

−1 1

−1

1

(b) ∂0ϕ(0, 0)

−1 1

−1

1

(c) ∂̄ϕ(0, 0)

Fig. 1.13 Different subdifferentials of ϕ(x1, x2) = |x1| − |x2|

and thus ∂0ϕ(0, 0) = ∂ϕ(0, 0) ∪ {(v,−1)| − 1 ≤ v ≤ 1}, where ∂ϕ(0, 0)) is calculated in Ex-
ample 1.31(ii), while ∂ϕ(0, 0) is again the whole unit sphere in R

2. Note that this function is
taken from Warga [736], where his derivate container �0ϕ(0, 0) is also depicted on this figure.
It is proved in [507, Theorem 2.3] (for Lipschitzian functions in [440]) that for any function
ϕ : Rn → R continuous around x̄, we have ∂0ϕ(x̄) ⊂ �0ϕ(x̄); see also [522, Corollary 2.48]
and the references therein for infinite-dimensional extensions including mappings between Banach
spaces (Fig. 1.14).

111

−1 −1 −1

−1 −1 −1 111

(a) ∂+ϕ(0, )b()0 ∂0ϕ(0, Λ)c()0 0ϕ(0, 0)

Fig. 1.14 Different subdifferentials of ϕ(x1, x2) = ∣∣ |x1| + x2
∣∣
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Theorem 1.23 appears here for the first time in the general case of l.s.c. functions, and its proof
holds in any Banach space by taking into account definition (1.58) of the normal cone in this
setting. When ϕ is continuous around x̄, a somewhat different proof was given by the author in
[522, Theorem 1.80].

To discuss next the limiting connections between the basic subdifferential and its presubdif-
ferential/regular counterpart, note that the latter construction appeared first in Bazaraa, Goode, and
Nashed [74] in finite-dimensional spaces under the name of “the set of ≥-gradients.” Then it has
been used in many publications under various names; in particular, as the “Fréchet subdifferential”
by analogy with the classical Fréchet derivative (1.12); see, e.g., [114, 375, 522]. The term “regular
subgradient” for any v ∈ ∂̂ϕ(x̄) was suggested in Rockafellar and Wets [678] motivated probably
by the property of lower regularity ∂ϕ(x̄) = ∂̂ϕ(x̄) holding for certain classes of nice functions
such as smooth, convex, amenable ones, etc. Note that ∂̂ϕ(x̄) is also known as the “subdifferen-
tial in the sense of viscosity solutions” (or the viscosity subdifferential as suggested by Borwein
and Zhu [113, 114]) and has been widely used, starting with the paper by Crandall and Lions
[183], in partial differential equations of the Hamilton-Jacobi type with a great many applications;
see, e.g., [67, 136, 182] and the bibliographies therein. Finally, the “presubdifferential” (similarly
“prenormal” and “precoderivative”) terminology comes from the abstract presubdifferential theory
by Thibault and Zagrodny [710], where the regular/Fréchet-like constructions take a prominent
role.

Along with the set ∂̂ϕ(x̄) of lower subgradients, its upper counterpart ∂̂+ϕ(x̄) := −∂̂(−ϕ)(x̄)
was also introduced in [74] under the name of “the set of ≤ gradients” and then was called in
[183] the superdifferential in the sense of viscosity solutions. It is easy to see that the sets ∂̂ϕ(x̄)
and ∂̂+ϕ(x̄) are nonempty simultaneously if and only if ϕ is Fréchet differentiable at x̄. Thus,
contrary to (1.75), the corresponding “symmetric” set ∂̂0ϕ(x̄) := ∂̂ϕ(x̄) ∪ ∂̂+ϕ(x̄) doesn’t play
any independent role, since it always reduces to either ∂̂ϕ(x̄) or ∂̂+ϕ(x̄).

Considering the ε-subgradient sets (1.34) goes back to Kruger and Mordukhovich [441, 440]
motivated by seeking a convenient description of basic subgradients in Banach spaces corre-
sponding to their second representation in (1.37) of Theorem 1.28. Note that the Fréchet-type
ε-subgradients ∂̂εϕ(x̄) for convex functions are different from the approximate ε-subgradients
∂εϕ(x̄) in the sense of convex analysis; see Proposition 1.25 for the representation of ∂̂εϕ(x̄) in
the convex case while

∂εϕ(x̄) := {
x∗ ∈ X∗∣∣ ϕ(x)− ϕ(x̄) ≤ 〈x∗, x − x̄〉 + ε whenever x ∈ X}

for the approximate ε-subdifferential of convex analysis. The exact formulations and the presented
proof of the relationships with ε-normals in Theorem 1.26 are due to Kruger [427, 430]. The first
representation of basic subgradients in (1.37) in finite dimensions follows directly from properties
of the Euclidean norm exploited in Theorem 1.6 and thus shows that general subgradients in Rock-
afellar and Wets [678] are the same (1.24) as introduced by the author [502]. However, the validity
of this representation (without ε > 0 involved) in an arbitrary Asplund space is a deep variational
fact revealed by the author and Shao [580] based on the previous developments; cf. the normal
cone commentaries above and the book [522] for more details and references. Note that the first
representation in (1.37) for any l.s.c. function ϕ : X → R is actually a characterization of Asplund
spaces as shown by Fabian and Mordukhovich [257]; see also [522].

The smooth variational description of regular subgradients from Theorem 1.27 was established
in [257] in Fréchet smooth spaces, where it was shown that this smooth renorming assumption
is also necessary for the concavity of the smooth support function ψ in Theorem 1.27; see [257]
for other smooth variational descriptions in infinite-dimensional spaces. A weaker version of this
result without the convexity property of ψ in finite dimensions was given in [678, Proposition 8.5]
based on the reduction to the corresponding description of regular normals.

The dual representation (1.40) of regular subgradients via the contingent directional derivative
introduced by Penot [634] in form (1.42) follows directly from the definitions, while this fact
is essentially finite-dimensional; see [522] and the references therein for some analogs of (1.9)
and (1.40) via the weak contingent cone and the weak contingent derivative in reflexive spaces.



64 1 Constructions of Generalized Differentiation

The other line of extensions of the author’s generalized differential constructions to objects in
infinite-dimensional spaces has been developed by Ioffe in the series of publications starting from
1981 under different names (M-subdifferential, analytic and geometric “approximate” subdiffer-
entials, their nuclei, etc.), while all of them reduce to [502] in finite dimensions. He was well
familiar with and fully acknowledged the previous aforementioned developments by the author in
finite dimensions and then with the joint work by the author and Kruger [440, 441] and by Kruger
alone [427, 428] in Fréchet smooth spaces. It is written, e.g., in the first part [364] of Ioffe’s original
work [364, 365] on “approximate subdifferentials” containing the core of his subsequent develop-
ments in this direction: “It all essentially arises from thinking over Mordukhovich’s approximate
approach to necessary conditions for an extremum [502].” This is reflected by the “approximate”
term for such subgradients that doesn’t correspond to the conventional approximate subgradients
used in convex analysis; see, e.g., the book [352].

We are not going to discuss here the essence of the “approximate subdifferentials” and their
comparison with the our basic subdifferential constructions in infinite dimensions while referring
the reader to [522, Subsections 2.6.9 and 3.2.3] and the commentaries therein for a full account.
Note that the best of his constructions, called “nuclei of the geometric subdifferential and the geo-
metric normal cone” [369], satisfy strong calculus rules in general Banach spaces, being however
significantly more complicated and always larger than our basic sequential constructions discussed
above. Observe to this end that the claims made in [369, Proposition 8.2] and [370, Theorem 1]
about the relationships between the “approximate” and our constructions in infinite dimensions
are incorrect; in fact, the opposite inclusions hold strictly even for Lipschitz continuous functions
in C∞-smooth spaces as shown by Borwein and Fitzpatrick [101]; see also [522, Example 3.61].
The mistakes in the proofs of [369, 370] came from the confusion between the sequential and
topological weak∗ closures. Comprehensive relationships between the sequential limiting and “ap-
proximate” subdifferentials of integral functionals in the L1(T ;Rn) (non-Asplund) space have
been recently established by Jourani and Thibault [403].

Let us proceed with commentaries on other topics and results presented in Sections 1.3 and 1.4.
The scalarization formula of Theorem 1.32 was first obtained by Kruger [426, 428] for locally Lip-
schitzian mappings f : X → R

m on Banach spaces; cf. also [368] when X is finite-dimensional.
The extension of this result to the mixed coderivative (1.65) of Lipschitzian mappings between
arbitrary Banach spaces was given by the author and Shao [584]; see also [522, Theorem 1.90].
The normal coderivative counterpart of the scalarization is significantly more involved; see [580]
for mappings f : X → Y from Asplund to general Banach spaces that are strictly Lipschitzian
at x̄; as shown in [709], this notion goes back to the basic version of “compactly Lipschitzian”
behavior introduced and studied by Thibault [704] in connection with subdifferential calculus for
vector mappings . An improved version of the normal coderivative scalarization result was derived
by the author and Wang [590] for the weaker “w∗-strictly Lipschitzian” mappings and was also
presented in [522, Theorem 3.28] with more discussions therein.

The classical distance function d�(x) is intrinsically nondifferentiable while Lipschitz contin-
uous, and its generalized differentiation has played a significant role in nonsmooth analysis from
the very beginning. It has been well recognized the importance of the distance function in imple-
menting variational techniques involving, e.g., penalization in constrained optimization and via the
powerful Ekeland’s variational principle [249, 250]. Theorem 1.33 in finite-dimensional Euclidean
spaces goes back to [507, Proposition 2.7] and [678, Example 8.53] (with a new and complete proof
given here), while its infinite-dimensional versions are significantly more involved; see the book
[522] and the more recent paper [535] for a comprehensive account.

To the best of our knowledge, ε-subgradients of the distance function d� for closed subsets of
Banach spaces were first calculated by Kruger [427] for any ε ≥ 0 at both in-set and out-of-set
points. However, his proof in the out-of-set case via ε-normals to the ρ-enlargement

�(ρ) := {
x ∈ X∣∣ d�(x) ≤ ρ

}
with ρ = d�(x̄)

was incomplete, and then it was further clarified by Bounkhel and Thibault [125]. The in-set case
for ∂̂d�(x̄) in Theorem 1.33(i) was also considered by Ioffe [370], while the result for the basic
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subdifferential ∂d�(x̄) at x̄ ∈ � in general Banach spaces was first derived by Thibault [706] by
using Ekeland’s variational principle.

Observe that the out-of-set point results in Theorem 1.33(ii) are essentially finite-dimensional
and depend on the Euclidean norm on R

n. Their various infinite-dimensional counterparts for reg-
ular and basic subgradients of d� via the corresponding normals to the projection �� as well as
to the enlargement �(ρ) were obtained by the author and Nam [530, 531]. In particular, it was re-
vealed there the failure—even in finite dimensions—of an expected counterpart of the relationship
between ∂d�(x̄) at x̄ /∈ � and the normal cone to the enlargement �(ρ) similar to that in Theo-
rem 1.33(i) for x̄ ∈ �. To get an appropriate version of this result, the right-sided subdifferential
of ϕ : X → R at x̄ ∈ domϕ was introduced in [530] by

∂≥ϕ(x̄) := Lim sup
x
ϕ+→x̄

∂̂ϕ(x), (1.89)

where the symbol x
ϕ+→ x̄ indicated that x → x̄ with ϕ(x) → ϕ(x̄) and ϕ(x) ≥ ϕ(x̄). Then it was

shown therein (see also [522, Theorem 1.101]) that

N
(
x̄;�(ρ)) =

⋃

λ≥0

λ∂≥d�(x̄) with ρ = d�(x̄)

for closed subsets of arbitrary Banach spaces. Some extended and axiomatically defined versions
of the right-sided subdifferential for the distance function ∂d�(x̄) at the out-of-set point x̄ were
introduced by the author and Mou [529] under the names of the sequential and topological outer
regular subdifferentials. These constructions were efficiently used in [529] to derive necessary op-
timality conditions for optimization problems on metric spaces with inclusion constraints given in
arbitrary Banach spaces via approximately convex sets in the sense of Ngai, Luc, and Théra [609].
Yet another enhanced version of the right-sided subdifferential (1.89) with replacing “≥” by the
strict inequality “>” was defined by Ioffe and Outrata [376] in finite-dimensional spaces under the
name of the outer subdifferential similar to [529] while the constructions are essentially different.
This outer subdifferential of [376] and the corresponding notion of outer coderivative were utilized
in [376] and then in [138, 465, 637] for various applications to optimization and related topics.

We refer the reader to the recent paper by Ivanov and Thibault [381] for the impressive usage of
the right-sided subdifferential (1.89) in the study of minimum time functions.

Another interesting research topic is subdifferentiation of nonsmooth integral functionals (gen-
eralized Leibniz rules), which has received a growing interest over the recent years from both
viewpoints of variational theory and applications; see, e.g., [1, 149, 169, 295, 330, 572, 636] and
the references therein. In particular, the papers by Ackooij and Henrion [1] and by Hantoute, Hen-
rion, and Pérez-Aros [330] contain impressive results via basic subgradients and generalized gradi-
ents in the framework of probability functions for parameter-dependent random inequality systems
under the Gaussian distribution. The results by Mordukhovich and Sagara [572] concern nons-
mooth versions of the Leibniz rule, in terms of the aforementioned subdifferential constructions,
for Gelfand integral functionals on general measure spaces as well as on those with saturated mea-
sures, where the rather involved weak∗-closure operation for integral values can be avoided. The
applications of there results are given in [572] to stochastic dynamic programming and economic
modeling. Economically motivated deterministic applications of these subgradients to cooperative
games suggested by Sagara [683] have been recently provided by Adam and Kroupa [4].

The directional limiting subdifferential together with the corresponding normals and coderiva-
tives was introduced and investigated in the joint papers by the author and Ginchev [293, 294] with
involving tangential directions in the limiting process. These constructions were used in [293, 294]
for deriving more selective necessary conditions in constrained optimization. Strong results in this
vein for directional metric regularity and subregularity were established by Gfrerer [281, 282]
with various applications to optimization; see also Thinh and Chuong [711] for further develop-
ments and applications to multiobjective problems. We specially emphasize the recent papers by
Gfrerer and Outrata [287, 289] who obtained, by developing a primal-dual directional variational
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approach, efficient conditions for Lipschitzian stability of solution maps to parametric generalized
equations and applied them to broad spectrum of problems in mathematical programming with
equilibrium constraints, conic programming, etc. Note to this end that the “directional” terminol-
ogy proposed by Penot [637] concerns constructions of the Dini-Hadamard type and their limits,
which are completely different from those discussed above. The reader can find more information
about other subdifferential (in particular, moderate/Michel-Penot and linear/Treiman) as well as
subderivative constructions for extended-real-valued functions, used in variational analysis and not
considered here, in [496, 522, 637, 685, 678, 715, 716] and the references therein.

Yet another topic of recent developments concerns subdifferential properties and recent appli-
cations of the so-called minimum time functions defined by

τF (x;�) := inf
z∈�pF (z− x), x ∈ X, (1.90)

where F ⊂ X is a closed, convex, and bounded with 0 ∈ intF , where

pF (u) := inf{t > 0
∣∣ t−1u ∈ F}

is its Minkowski gauge, and where � ⊂ X is a closed while generally nonconvex target set. When
F is the closed unit ball B of the spaceX, we have pF (u) = ‖u‖, and (1.90) reduces to the distance
function d�. It has been well recognized that the minimum time functions generated by various
sets F and � play an important role in many aspects of variational analysis, optimization, control
theory, partial differential equations, approximation theory, etc.; see, e.g., [66, 136, 171, 176, 334,
380, 381, 534, 535, 601] and the references therein, where some subgradient properties of (1.90)
and their applications can be found. We mention, in particular, the papers [171, 176, 334, 380, 381,
534, 535, 601] for various results in this direction involving the aforementioned subdifferential
constructions. Furthermore, recently some of these subdifferential results have been successfully
applied in [122, 535, 536, 537, 542, 543, 544, 602, 604] and other publications to solving a number
of facility location problems whose original versions go back to Fermat, Torricelli, Sylvester,
Steiner, and Weber. Strong interest has been revived to investigate problems of this type due to
their importance in location science, optimal networks, wireless communications, etc.; see [13,
488, 615, 616, 682] and the references therein.

Recent years have witnessed a rapidly growing interest to algorithmic aspects of optimization
involving basic subgradients and their applications to numerical analysis; see, e.g., [31, 32, 33, 46,
47, 48, 71, 72, 73, 118, 78, 81, 90, 91, 92, 134, 148, 190, 229, 233, 231, 306, 309, 310, 315, 344,
346, 333, 413, 422, 452, 457, 460, 458, 465, 466, 467, 480, 566, 640, 639, 679, 680, 761, 762]
among other publications. In particular, a largely unexplored algorithmic area concerns the usage
of basic subgradients in automatic/algorithmic differentiation [308]; see [68, 307, 309, 410] for
related results and discussions in some special settings highly important in applications. Note that
the papers [68, 410] impressively demonstrate algorithmic advantages of Nesterov’s lexicographi-
cal differentiation [605] for these classes of nonsmooth functions.

Section 1.4. This section collects some additional material related to the basic content of Sec-
tion 1.1–1.3 and infinite-dimensional extensions of the results presented therein. Along with rather
simple exercises that require just the clear understanding of the basic material and performing cal-
culations, the reader can find in Section 1.4 more involved results with the hints to solving the
problems and the references to the corresponding publications. We specially emphasize the un-
solved issues concerning the development of adequate calculus rules for the right-sided subdiffer-
ential (1.53), which are largely open in both finite and infinite dimensions; see Exercise 1.84. The
same can be said about its “>” (outer) counterpart discussed in the commentaries above and the
corresponding outer coderivative from [376]. Resolving these issues would be of great importance
for various applications.



Chapter 2
Fundamental Principles of Variational
Analysis

This chapter is devoted to the exposition and developments of the fundamental prin-
ciples of variational analysis, which play a crucial role in resolving many issues
of variational theory and applications by employing optimization ideas and tech-
niques. In our geometric dual-space approach to variational analysis, the major re-
sult in this direction is the extremal principle for closed sets, which can be treated
as a variational nonconvex counterpart of the powerful convex separation principle
with no presence of convexity. We derive the basic version of the extremal princi-
ple for finitely many sets and then continue with new developments for countable
set systems. Related variational principles for extended-real-valued functions are
also discussed in the main exposition here as well as in the exercise and commen-
tary parts. As a direct consequence of the extremal principle, we establish in this
chapter the normal cone intersection rule, which is the key result of the noncon-
vex generalized differential calculus allowing us to derive via a geometric approach
comprehensive calculus rules for the robust generalized differential constructions

of Chapter 1. Roughly speaking, the extremal principle and related variational ideas
are solely responsible for the validity of comprehensive calculus rules for the non-
convex limiting constructions under consideration that occur to be essentially better
in comparison with their convex counterparts. This partly justifies the name of “vari-
ational analysis” for our discipline.

2.1 Extremal Principle for Finite Systems of Sets

In this section we define and study the notion of local extremality of a given point
relative to a system of finitely many sets.
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2.1.1 The Concept and Examples of Set Extremality

We begin with the definition of the extremal system of finitely many sets. Although
it is not used in the definition, suppose unless otherwise stated that all the sets are

locally closed around the point in question. This is our standing assumption, which
is indeed needed in the proofs of the basic extremal principle and the related results
presented below.

Definition 2.1 (Local Extremality of Finitely Many Sets). Let �1, . . . , �s with
s ≥ 2 be nonempty subsets of Rn, and let x̄ be their common point. We say that x̄ is a
LOCALLY EXTREMAL POINT of the set system {�1, . . . , �s} if there are sequences
{aik} ⊂ R

n for i = 1, . . . , s and a neighborhood U of x̄ such that aik → 0 as
k → ∞ and

s⋂

i=1

(
�i − aik

)
∩ U = ∅ for all large k ∈ N. (2.1)

In this case we say that {�1, . . . , �s, x̄} is an EXTREMAL SYSTEM in R
n.

In the sequel we’ll drop the word “locally” for x̄ in Definition 2.1 if U = R
n

in (2.1). In fact, it is possible to assume without loss of generality that U = R
n in

all the (local) results below concerning locally extremal points.
Geometrically the local extremality of sets at a common point means that they

can be locally “pushed apart” by a small perturbation/translation of at least one of
them. For s = 2, the local extremality of {�1,�2, x̄} can be equivalently described
as follows: there exists a neighborhood U of x̄ such that for any ε > 0, there is
a ∈ εB with (�1 + a) ∩ �2 ∩ U = ∅; see Fig. 2.1(a). Obviously, the condition
�1 ∩ �2 = {x̄} doesn’t necessarily imply that x̄ is a locally extremal point of
{�1,�2}. A simple example is given by the two sets on the plane�1 := {(v, v)| v ∈
R} and �2 := {(v,−v)| v ∈ R}.

x̄
U

Ω2

Ω1 + a

(a) (Ω1 + a) ∩ Ω2 ∩ U = ∅

x̄

Ω + a

(b) x̄ ∈ bd Ω

U

Fig. 2.1 Extremal systems of sets
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It is easy to see that any boundary point x̄ of a closed set � is a locally extremal
point of the pair {�1,�2} with �1 := � and �2 := {x̄}; see Fig. 2.1(b). Further-
more, the geometric notion of local extremality for set systems can be treated as a
direct extension of local optimality of feasible solutions to optimization problems.
Indeed, consider the general problem of constrained optimization with the scalar
objective given by

minimize ϕ(x) subject to x ∈ � ⊂ R
n,

where the constraint set� is closed and the cost/objective function ϕ is l.s.c. around
x̄. It follows directly from the definitions that any locally optimal solution x̄ ∈ � to
this problem generates the locally extremal point (x̄, ϕ(x̄)) of the system of locally
closed sets {�1,�2} in R

n+1 defined by

�1 := epiϕ and �2 = �× {
ϕ(x̄)

}
.

To verify the extremality condition (2.1) in Definition 2.1, take the sequences
a1k := (0, νk) ⊂ R

n × R, a2k := 0 and the neighborhood U = O × R therein,
where νk ↑ 0 and where O is a neighborhood of the local minimizer x̄. In the sub-
sequent sections of this chapter and in other chapters of the book, the reader can
find many examples of extremal systems in optimization-related (including those of
vector and set optimization) and equilibrium problems, variational principles, gen-
eralized differential calculus, economic modeling, etc.

Let us now compare the introduced notion of set extremality with the conven-
tional separation property for finitely many sets, not necessarily convex, which have
a common point. Recall that such sets �i ⊂ R

n as i = 1, . . . , s are said to be sepa-
rated if there exist vectors vi ∈ R

n, not equal to zero simultaneously, and numbers
αi ∈ R for which

〈vi, x〉 ≤ αi whenever x ∈ �i, i = 1, . . . , s, (2.2)

v1 + . . .+ vs = 0, and α1 + . . .+ αs = 0. (2.3)

A crucial issue of this definition is the existence of vectors vi and numbers αi
satisfying (2.2) and (2.3). Although the notion of separation is defined in the general
setting, we are able to justify its applicability only in the convex case in connection
with set extremality. This is done in the next proposition.

Proposition 2.2 (Extremality and Separation). Let �1, . . . , �s for s ≥ 2 be sub-
sets of Rn having at least one common point. The following hold:

(i) If these sets are separated, then the system {�1, . . . , �s, x̄} is extremal with
U = R

n for every common point x̄ of these sets.
(ii) The converse is true if all the sets �i are convex.
(iii) Thus the convex sets �1, . . . , �s are separated in R

n if and only if each of
their common point is extremal.
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Proof. Suppose that �i are separated with vs 
= 0 for definiteness. Pick any a ∈ R
n

with 〈vs, a〉 > 0 and put ak := a/k for all k ∈ N. Let us verify that

�1 ∩ . . . ∩�s−1 ∩ (�s − ak) = ∅, k ∈ N,

which obviously implies the extremality of {�1, . . . , �s, x̄} for every common point
x̄. Assuming the contrary and taking any x from the above intersection, we get by
the separation property that

〈vi, x〉 ≤ αi, i = 1, . . . , s − 1, and 〈vs, x + ak〉 ≤ αs, k ∈ N.

Summing this up gives us α1 + . . . + αs ≥ 1
k
〈vs, a〉 > 0, which is a contradiction

that justifies (i). The converse assertion in (ii) follows from the extremal principle
of Theorem 2.3 and the normal cone expression (1.9) for convex sets. Assertion (iii)
is a direct consequence of (i) and (ii). �

2.1.2 Basic Extremal Principle and Some Consequences

The next result establishes the underlying extremal principle for systems of finitely
many sets in finite-dimensional spaces. It shows, in particular, that the set extremal-
ity, but not relationships (2.2) and (2.3), is a natural variational counterpart of sep-
aration for nonconvex sets, and that the extremal principle is an appropriate varia-
tional counterpart of the separation theorem in nonconvex settings. The proof of the
extremal principle is based on the method of metric approximations, which provides
a constructive approximation of the extremal set system under consideration by fam-
ilies of unconstrained optimization problems with cost functions smooth around the
points of interest.

Theorem 2.3 (Basic Extremal Principle). Let {�1, . . . , �s, x̄} with s ≥ 2 be an
extremal system in R

n. Then there are basic normals

vi ∈ N(x̄;�i), i = 1, . . . , s, (2.4)

to the sets �i at the locally extremal point x̄ such that

v1 + . . .+ vs = 0 and ‖v1‖2 + . . .+ ‖vs‖2 = 1. (2.5)

Proof. Without loss of generality, suppose that U = R
n in the definition of the ex-

tremal point x̄ ∈ �1∩. . .∩�s . Take the sequences {aik} from Definition 2.1, and for
each k = 1, 2, . . ., consider the following problem of unconstrained minimization
overall x ∈ R

n:

minimize dk(x) :=
[ s∑

i=1

dist2(x + aik;�i)
]1/2 + ‖x − x̄‖2. (2.6)
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Since the function dk is continuous and its level sets are bounded, there is an optimal
solution xk to (2.6) by the classical Weierstrass theorem. Due to the extremality of
x̄ in (2.1), we readily have that

αk :=
[ s∑

i=1

dist2(xk + aik;�i)
]1/2

> 0.

Furthermore, the optimality of xk in (2.6) ensures that

dk(xk) = αk + ‖xk − x̄‖2 ≤
[ s∑

i=1

‖aik‖2
]1/2 ↓ 0,

which implies that xk → x̄ and αk ↓ 0 as k → ∞. Now for each i = 1, . . . , s
we pick an arbitrary Euclidean projection wik ∈ �(xk + aik;�i) and consider yet
another unconstrained optimization problem over x ∈ R

n:

minimize ρk(x) :=
[ s∑

i=1

‖x + aik − wik‖2
]1/2 + ‖x − x̄‖2, (2.7)

which obviously has the same optimal solution xk as (2.6). Since αk > 0 and the
Euclidean norm ‖·‖ is smooth on R

n\{0}, the function ρk(x) is continuously differ-
entiable around xk , and so (2.7) is a smooth problem of unconstrained minimization.
Thus the classical Fermat stationary rule yields

∇ρk(xk) =
s∑

i=1

vik + 2(xk − x̄) = 0, (2.8)

where vik = (xk + aik − wik)/αk , i = 1, . . . , s, with

‖v1k‖2 + . . .+ ‖vsk‖2 = 1 for all k ∈ N.

By the compactness of the unit sphere in R
n, we find vectors vi ∈ R

n, i = 1, . . . , s,
satisfying the nontriviality condition in (2.5) and such that vik → vi as k → ∞.
Passing to the limit in (2.8) gives us also the first equation in (2.5). Finally, it follows
directly from the definition of basic normals in (1.4) that each vi satisfies (2.4),
which thus completes the proof of the theorem. �

For the case of two sets �1,�2 in the extremal system, the relationships of the
extremal principle in Theorem 2.3 reduce to

0 
= v ∈ N(x̄;�1) ∩
(−N(x̄;�2)

)
. (2.9)

When both �1 and �2 are convex, we have from (2.9) by the normal cone represen-
tation for convex sets (1.9) that

〈v, x1〉 ≤ 〈v, x2〉 for all x1 ∈ �1 and x2 ∈ �2 with v 
= 0,
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which is the contents of the classical separation theorem for two convex sets. This
allows us to get a full characterization of extremal points of finitely many convex
sets via their relative interiors ri�i , i.e., the interior of each convex set �i in Theo-
rem 2.3 with respect to its affine hull ; see, e.g., [667].

Corollary 2.4 (Relative Interiority Condition for Extremality of Convex Sets).
A system of convex sets {�1, . . . , �s, x̄} with s ≥ 2 is extremal at each of their
common point x̄ if we have the condition

ri�1 ∩ . . . ∩ ri�s = ∅. (2.10)

Proof. The separation result from [667, Theorem 11.3]) tells us that the condition
ri�1 ∩ ri�2 = ∅ is necessary and sufficient for the so-called proper separation of
two convex sets in R

n; hence it yields the usual separation property for two sets. This
allows us to conclude by induction that (2.10) ensures the separation of many convex
sets in the sense discussed above. Since extremality and separation are equivalent
for convex sets by Proposition 2.2, we get (2.10) as a sufficient condition for set
extremality. �

Note that the convexity of�i is essential for the validity of Corollary 2.4. Indeed,
let �1 be the union of the first and third quadrants and �2 be the union of the
second and fourth quadrants of the plane with the common point (0, 0), which is
not extremal, while condition (2.10) holds; see Fig. 2.2.

Fig. 2.2 Extremality and relative interior

When x̄ is a boundary point of the closed (not necessarily convex) set�, applying
Theorem 2.3 to the extremal system

{
�, {x̄}, x̄} gives us that N(x̄;�) 
= 0, i.e., we

recover the result of Proposition 1.2.

Observe that the basic extremal principle of Theorem 2.3 is given in the ex-
act/pointbased form involving only the locally extremal point x̄ in question. The
next consequence of Theorem 2.3 in the finite-dimensional setting considered here
is the following approximate extremal principle, which plays an independent role in
infinite dimensions; see Sections 2.5 and 2.6.
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Corollary 2.5 (Approximate Extremal Principle). Let {�1, . . . , �s, x̄} with s ≥
2 be an extremal system in R

n. Then for any number ε > 0, there are points xi ∈
�i ∩ (x̄ + εB) and approximate normals

vi ∈ N̂(xi;�i)+ εB, i = 1, . . . , s, (2.11)

such that both relationships in (2.5) are satisfied.

Proof. It follows directly from the extremal principle of Theorem 2.3 and the first
limiting representation of basic normals in Theorem 1.6. �

It is easy to see that the result of Corollary 2.5 is in fact equivalent to the basic
extremal principle of Theorem 2.3 in the finite-dimensional setting under consider-
ation since we can get (2.4) by passing to the limit from (2.11) due to (2.5) and the
compactness of the unit sphere in R

n.

2.2 Extremal Principles for Countable Systems of Sets

Next we consider appropriate versions of set extremality and extremal principles
for collections of infinite/countable systems of sets. This issue is significantly more
involved in comparison with finite systems of sets, even in the presence of convex-
ity. The study of extremality of infinite set systems is important for many aspects
of variational analysis and optimization, in particular for problems of semi-infinite
programming considered later in Chapter 8.

2.2.1 Versions of Extremality for Countable Set Systems

In contrast to the constructions and results above concerning finite systems of sets,
the following notions of the conic and tangential/contingent extremality play a cru-
cial role in the study of infinite set systems.

Definition 2.6 (Conic and Contingent Extremal Systems). We say that:
(a) A countable system of cones {�i}i∈N ⊂ R

n is EXTREMAL AT THE ORIGIN, or
simply {�i}i∈N is an EXTREMAL SYSTEM OF CONES, if there is a bounded sequence
{ai}i∈N ⊂ R

n such that
∞⋂

i=1

(
�i − ai

) = ∅. (2.12)

(b) Let {�i}i∈N ⊂ R
n be a countable system of sets with x̄ ∈ ∩∞

i=1�i , and let
T (x̄;�i) be the contingent cone (1.11) to �i at x̄. Then {�i, x̄}i∈N is a CONTIN-
GENT EXTREMAL SYSTEM with the CONTINGENT LOCALLY EXTREMAL POINT x̄

if the conic system {T (x̄;�i)}i∈N is extremal at the origin.
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Note that in this way, we can naturally define other types of tangential extremal
systems by replacing T (x̄;�i) in Definition 2.6(b) with other tangent cones to�i at
x̄, but the main tangential extremal principle presented below in this section essen-
tially uses specific properties of the contingent cone.

Observe also that the extremality notions in Definition 2.6 obviously apply to the
case of systems containing finitely many sets; indeed, in such a case, the other sets
reduce to the whole space R

n. It is easy to check that any finite system of cones
{�1, . . . , �s} is extremal at the origin if and only if x̄ = 0 is a locally extremal
point of {�1, . . . , �s} in the sense of Definition 2.1. However, in general the local
extremality (2.1) and the contingent extremality from Definition 2.6 are independent
notions even in the case of two sets in R

2.

Example 2.7 (Contingent Extremality vs. Local Extremality).
(i) Consider the function ϕ(x) := x sin(1/x) for x 
= 0 with ϕ(0) = 0, and

construct the closed sets in R
2 by

�1 := epiϕ and �2 := (R × R−) \ int�1.

Take x̄ = (0, 0) ∈ �1 ∩�2, and observe that the contingent cones to �1 and �2 at
x̄ are calculated, respectively, by

T (x̄;�1) = epi
(− | · |) and T (x̄;�2) = R × R−.

It is easy to conclude that x̄ is a locally extremal point of {�1,�2} but not a contin-
gent locally extremal point of this set system; see Fig. 2.3.

T ((0, 0); Ω1)

T ((0, 0); Ω2)

Ω1

Ω2

Fig. 2.3 Local extremality but not contingent local extremality

(ii) Define the two closed subsets of R2 by

�1 := {
(x, y) ∈ R

2
∣∣ y ≥ −x2} and �2 := R × R−.

The contingent cones to �1 and �2 at x̄ = (0, 0) are T (x̄;�1) = R × R+ and
T (x̄;�2) = R × R−. It shows that {�1,�2, x̄} is a contingent extremal system but
not an extremal system from Definition 2.1; see Fig. 2.4.
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T ((0, 0); Ω1)

T ((0, 0); Ω2)

Ω1

Ω2

Fig. 2.4 Contingent local extremality but not local extremality

2.2.2 Conic and Contingent Extremal Principles

Our goal now is to derive meaningful extremality conditions for countable conic and
contingent systems from Definition 2.6 via the basic normal cone (1.4) to the sets
involved. Let us first formulate and discuss such conditions and then justify them
under appropriate assumptions.

Definition 2.8 (Extremality Conditions for Countable Systems of Sets). Consid-
ering countable set systems from Definition 2.6, we say that:

(a) The system of cones {�i}i∈N in R
n satisfies the CONIC EXTREMALITY CON-

DITIONS at the origin if there are normals vi ∈ N(0;�i) for i ∈ N with

∞∑

i=1

1

2i
vi = 0 and

∞∑

i=1

1

2i
‖vi‖2 = 1. (2.13)

(b) The system of sets {�i}i∈N in R
n satisfies the CONTINGENT EXTREMALITY

CONDITIONS at x̄ ∈ ∩∞
i=1�i if the systems of their contingent cones {T (x̄;�i}i∈N

satisfies the conic extremality conditions from (a).
(c) The system of sets {�i}i∈N in R

n satisfies the NORMAL EXTREMALITY CON-
DITIONS at x̄ ∈ ∩∞

i=1�i if there are basic normals vi ∈ N(x̄;�i) for i ∈ N

satisfying the relationships in (2.13).

It is easy to see that the introduced contingent and normal extremality conditions
are equivalent if all the sets �i are either cones with x̄ = 0 or convex near x̄.
We will prove below that the contingent extremality conditions always imply the
normal ones. However, the opposite implication doesn’t hold even for systems of
two sets in R

2. Indeed, consider the two sets from Example 2.7(i) for which x̄ =
(0, 0) is a locally extremal point in the sense of Definition 2.1. Thus the normal
extremality conditions, which reduce in this case to (2.4) and (2.5), hold by the
basic extremal principle of Theorem 2.3. On the other hand, we can directly check
by the calculation of Example 2.7(i) that the contingent extremality conditions are
violated for these sets.

The following conic extremal principle (CEP) justifies the validity of the conic
extremality conditions from Definition 2.8(a) for any countable extremal systems
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of nonoverlapping cones. Its proof is based on a countable extension of the method
of metric approximations used in the proof of Theorem 2.3. The countability of the
system requires additional arguments, which take into account the conic structure
of the sets involved.

Theorem 2.9 (Conic Extremal Principle). Let {�i}i∈N be an extremal system of
cones in R

n with the NONOVERLAPPING PROPERTY

∞⋂

i=1

�i = {0}. (2.14)

Then the conic extremality conditions from Definition 2.8(a) hold. Furthermore, for
each i ∈ N, there is xi ∈ �i such that vi ∈ N̂(xi;�i) for the corresponding basic
normal vi ∈ N(0;�i) satisfying (2.13).

Proof. By Definition 2.6(a) of conic extremal systems, find a bounded sequence
{ai}i∈N ⊂ R

n with property (2.12), and consider the problem:

minimize ϕ(x) :=
[ ∞∑

i=1

1

2i
dist 2(x + ai;�i)

] 1
2

over x ∈ R
n. (2.15)

Step 1: Problem (2.15) admits an optimal solution.

Indeed, since the function ϕ in (2.15) is continuous on R
n due the uniform con-

vergence of the series therein, it suffices to show that there is α > 0 for which the
level set {x ∈ R

n| ϕ(x) ≤ infϕ + α} is bounded and then to apply the classi-
cal Weierstrass theorem. Suppose by the contrary that the level sets are unbounded
whenever α > 0 and, for any k ∈ N, find xk ∈ R

n satisfying

‖xk‖ > k and ϕ(xk) ≤ infϕ + 1

k
.

Setting uk := xk/‖xk‖ and taking into account that all �i are cones give us

1

‖xk‖ϕ(xk) =
[ ∞∑

i=1

1

2i
dist 2

(
uk + ai

‖xk‖;�i
)]

1
2

≤ 1

‖xk‖
(

infϕ + 1

k

)
→ 0

as k → ∞. Furthermore, there is M > 0 such that for large k ∈ N, we get

dist
(
uk + ai

‖xk‖;�i
)

≤
∥∥∥uk + ai

‖xk‖
∥∥∥ ≤ M.

Suppose without relabeling that uk → u as k → ∞ for some u ∈ R
n. Passing

now to the limit above and employing the uniform convergence of the series therein
together with the fact that ai/‖xk‖ → 0 uniformly in i ∈ N due the boundedness of
{ai}i∈N, we have
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[ ∞∑

i=1

1

2i
dist 2(u;�i)

] 1
2

= 0.

This implies by the nonoverlapping condition (2.14) that u ∈ ⋂∞
i=1�i = {0}. The

latter is impossible due to ‖u‖ = 1, which contradicts our intermediate assumption
on the unboundedness of the level sets for ϕ and thus justifies the existence of an
optimal solution x̃ to problem (2.15).

Step 2: Reduction to smooth unconstrained optimization.

Observe first that for any closed cone � ⊂ R
n and any w ∈ �, we have

N̂(w,�) ⊂ N(0;�). (2.16)

Indeed, pick any v ∈ N̂(w;�), and get by definition (1.5) that

lim sup
x
�→w

〈v, x − w〉
‖x − w‖ ≤ 0.

Fix x ∈ �, t > 0, and let u := x/t . Then x/t ∈ �, tw ∈ �, and

lim sup
x
�→tw

〈v, x − tw〉
‖x − tw‖ = lim sup

x
�→tw

t〈v, (x/t)− w〉
t‖(x/t)− w‖ = lim sup

u
�→w

〈v, u− w〉
‖u− w‖ ≤ 0,

which gives us v ∈ N̂(tw;�). Letting t → 0 yields v ∈ N(0;�) and so (2.16).
To proceed further, deduce from the cone extremality of {�i}i∈N and the con-

struction of ϕ in (2.15) that ϕ(̃x) > 0. Pick any wi ∈ �(̃x + ai;�i) as i ∈ N, and
get from (2.16) and the proof of Theorem 1.6 that

x̃ + ai − wi ∈ �−1(wi;�i)− wi ⊂ N̂(wi;�i) ⊂ N(0;�i). (2.17)

Moreover, the sequence {ai − wi}i∈N is bounded in R
n due to ‖x + ai − wi‖ =

dist (x + ai;�i) ≤ ‖x + ai‖. Considering now the unconstrained problem

minimize ψ(x) :=
[ ∞∑

i=1

1

2i
‖x + ai − wi‖2

] 1
2

over x ∈ R
n, (2.18)

observe from ψ(x) ≥ ϕ(x) ≥ ϕ(̃x) = ψ(̃x) that its optimal solution is the same x̃
as for (2.15). To verify the smoothness of ψ around x̃, define the function

ϑ(x) :=
∞∑

i=1

1

2i
∥∥x − zi

∥∥2
, x ∈ R

n,
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and show that it is continuously differentiable on R
n with the derivative

∇ϑ(x) =
∞∑

i=1

1

2i−1

(
x − zi

)
, x, zi ∈ R

n,

Indeed, it is easy to see that both series above converge for every x ∈ R
n. Taking

now any u, ξ ∈ R
n with the norm ‖ξ‖ sufficiently small, we have

‖u+ξ‖2−‖u‖2−2〈u, ξ 〉 = ‖u‖2+2〈u, ξ 〉+‖ξ‖2−‖u‖2−2〈u, ξ 〉 = ‖ξ‖2 = o(‖ξ‖).
Thus it follows for any x ∈ R

n and y close to x that

ϑ(y)− ϑ(x)−
〈
∇ϑ(x), y − x

〉

=
∞∑

i=1

1

2i

[
‖y − zi‖2 − ‖x − zi‖2 − 2

〈
x − zi, y − x〉

]

=
∞∑

i=1

1

2i
‖y − x‖2 = o(‖y − x‖).

This justifies that ∇ϑ(x) is the derivative of ϑ at x, which is obviously continuous on
R
n. Then the claim follows from the smoothness of the function

√
t around nonzero

points and the fact that ψ(̃x) 
= 0 due to the cone extremality.

Step 3: Applying the Fermat stationary rule.

The above derivative calculation gives us by the stationary principle that

∇ψ(̃x) =
∞∑

i=1

1

2i
vi = 0 with vi := 1

ψ(̃x)

(
x̃ + ai − wi

)
, i ∈ N.

This implies by (2.17) that vi ∈ N̂(wi;�i) ⊂ N(0;�i) for all i ∈ N. Furthermore,
it follows from the constructions of vi and ψ that

∞∑

i=1

1

2i
‖vi‖2 = 1,

which thus completes the proof of the theorem. �
The following example demonstrates that the setting of Theorem 2.9 is essential

for the validity of the extremality conditions therein.

Example 2.10 (Nonoverlapping Property and Conic Structure of Sets Are Es-
sential for the Validity of CEP).

(i) Let us first show that the conclusion of Theorem 2.9 may fail for countable
extremal systems of convex cones in R

2 if the nonoverlapping property (2.14) is
violated. Define the convex cones �i ⊂ R

2 as i ∈ N by



2.2 Extremal Principles for Countable Systems of Sets 79

�1 := R × R+ and �i :=
{
(x, y) ∈ R

2
∣∣∣ y ≤ x

i

}
for i = 2, 3, . . .

as depicted in Fig. 2.5. Observe that for any number ν > 0, we have

(
�1 + (0, ν)

)⋂( ∞⋂

i=2

�i

)
= ∅,

showing that the system {�i}i∈N is extremal at the origin. On the other hand,

∞⋂

i=1

�i = R × {0},

i.e., the nonoverlapping property (2.14) is violated. Furthermore, we can easily cal-
culate the corresponding normal cones by

N(0;�1)=
{
λ(0,−1)

∣∣ λ ≥ 0
}

and N(0;�i)=
{
λ(−1, i)

∣∣ λ ≥ 0
}
, i=2, 3, . . . .

Taking now any vi ∈ N(0;�i) as i ∈ N, observe the equivalence

[ ∞∑

i=1

1

2i
vi = 0

]
⇐⇒

[λ1

2

(
0,−1

)
+

∞∑

i=2

λi

2i

(
−1, i

)
= 0 with λi ≥ 0 as i ∈ N

]
.

Λ1

N((0, 0); Λ1) Λ2

N((0, 0); Λ2)
∞⋂
i=1

Λi = IR+ × {0}

Fig. 2.5 Failure of CEP without nonoverlapping

This implies that λi = 0 and hence vi = 0 for all i ∈ N. Thus the nontriviality
condition in (2.13) is not satisfied, which shows that the conic extremal principle
fails for the extremal countable system of cones.

(ii) Next we demonstrate that the extremality conditions of Theorem 2.9 are vio-
lated if the sets �i ⊂ R

2 are convex with the nonoverlapping property, while some
of them are not cones. Indeed, consider a countable system of closed and convex
sets in R

2 defined by

�1 := {
(x, y) ∈ R

2
∣∣ y ≥ x2} and �i :=

{
(x, y) ∈ R

2
∣∣∣ y ≤ x

i

}
for i = 2, 3, . . .
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as shown in Fig. 2.6, and observe that only the set �1 is not a cone and that the
nonoverlapping property (2.14) is satisfied. Furthermore, the system {�i}i∈N is ex-
tremal at the origin in the sense that (2.12) holds. However, the arguments sim-
ilar to part (i) of this example show that the extremality conditions (2.13) with
vi ∈ N(0;�i) as i ∈ N fail to fulfill.

N((0, 0); Λ1)

N((0, 0); Λ2)
Λ1

Λ2

∞⋂
i=1

Λi = {(0, 0)}

Fig. 2.6 Failure of CEP without conic structure

Our next result is the following contingent extremal principle for contingent ex-
tremal systems of sets from Definition 2.6(b) justifying the validity of both con-
tingent and normal extremality conditions from Definition 2.8(b,c) for contingent
locally extremal points of such systems.

Theorem 2.11 (Contingent Extremal Principle for Countable Systems of Sets).
Let x̄ ∈ ⋂∞

i=1�i be a contingent locally extremal point of a countable system of
sets {�i}i∈N in R

n. Assume that the contingent cones T (x̄;�i) to the sets �i at x̄
don’t overlap

∞⋂

i=1

{
T (x̄;�i)

}
= {

0
}
.

Then there are vectors vi ∈ R
n for i ∈ N satisfying simultaneously the contingent

extremality conditions from Definition 2.8(b) and the normal extremality conditions
from Definition 2.8(c).

Proof. The existence of vi ∈ N(0;�i) with �i = T (x̄;�i), i ∈ N, satisfying
the extremality conditions (2.13) under the assumed nonoverlapping property of
{T (x̄;�i)}i∈N follows directly from Definition 2.6(b) of contingent locally extremal
points and the conic extremal principle of Theorem 2.9. To derive from this the
claimed normal extremality condition, it suffices to show that for any set � ⊂ R

n

locally closed around x̄ ∈ �, we have the inclusion

N(0;�) ⊂ N(x̄;�) with � := T (x̄;�). (2.19)

To verify this inclusion, pick any v ∈ N(0;�), and by Definition 1.8 of the contin-
gent cone T (x̄;�), find sequences tk ↓ 0 and vk ∈ N(wk; Tk)with Tk := (�−x̄)/tk
such that wk → 0 and vk → v as k → ∞. We have N(wk; Tk) = N(xk;�) for
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xk := x̄+ tkwk → x̄ and conclude therefore by the robustness property from Propo-
sition 1.3 that v ∈ N(x̄;�). This justifies (2.19) and thus completes the proof of the
theorem. �

2.3 Variational Principles for Functions

In this short section, we discuss some results known as variational principles for
lower semicontinuous functions. They play a crucial role in infinite-dimensional
variational analysis, where they are strongly connected with appropriate versions
of the extremal principle for systems of two sets; see [522, Chapter 2]. In finite-
dimensional spaces, variational principles are rather elementary (they are in fact
consequences of the classical Weierstrass existence theorem for l.s.c. functions and
finite-dimensional geometry), while even in this case, they provide useful conclu-
sions convenient for applications.

Following the conventional terminology of variational analysis, by variational
principles, we understand a group of results stating that for any l.s.c. and bounded
from below function ϕ : Rn → R and any given point x0 close enough to its mini-
mum, there is an arbitrarily small perturbation θ(·) such that the resulting function
ϕ + θ achieves its minimum at some point x̄ near x0. In the rest of this section, we
assume unless otherwise stated that ϕ : Rn → R is a proper l.s.c. and bounded from
below extended-real-valued function while postponing infinite-dimensional discus-
sions till Sections 2.5 and 2.6.

2.3.1 General Variational Principle

The following result presents a general variational principle in the finite-
dimensional setting under consideration.

Theorem 2.12 (General Variational Principle in Finite Dimensions). Let
ϕ : Rn → R be under the standing assumptions made, and let θ : Rn → R+
be l.s.c. satisfying the growth condition θ(x) → ∞ as ‖x‖ → ∞. Then for any
ε, λ > 0 and any x0 ∈ R

n with ϕ(x0) ≤ infϕ + ε, there is x̄ ∈ R
n such that

ϕ(x̄) ≤ ϕ(x)+ (
ε/λ

)[
θ(x − x0)− θ(x̄ − x0)

]
for all x ∈ R

n. (2.20)

Furthermore, in the case of θ(0) = 0, we have the estimates

ϕ(x̄) ≤ ϕ(x0) and θ(x̄ − x0) ≤ λ.

If in addition the function θ is subadditive on R
n, i.e., θ(x + z) ≤ θ(x) + θ(z) for

all x, z ∈ R
n, then it follows from (2.20) that

ϕ(x̄) ≤ ϕ(x)+ (
ε/λ

)
θ(x − x̄) for all x ∈ R

n, (2.21)

where the inequality is strict for all x 
= x̄ if x = 0 is the only root of θ(x) = 0.
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Proof. Consider the unconstrained optimization problem:

minimize ϑ(x) := ϕ(x)+ (
ε/λ

)
θ(x − x0) over x ∈ R

n. (2.22)

Since ϕ is bounded from below and θ satisfies the imposed growth condition , the
level sets {x ∈ R

n| ϑ(x) ≤ γ } of ϑ are bounded and thus compact in R
n due to the

lower semicontinuity of the function ϑ in (2.22). Then the classical Weierstrass the-
orem ensures the existence of an optimal solution x̄ to (2.22), which verifies (2.20).
When θ(0) = 0, we directly deduce from (2.20) that ϕ(x̄) ≤ ϕ(x0) by putting
x = x0 therein and that θ(x̄ − x0) ≤ λ. If furthermore θ is subadditive, then (2.20)
yields (2.21) by applying the former to the representation x−x0 = (x−x̄)+(x̄−x0).
The last statement of the theorem obviously follows from (2.21). �

Loosely speaking, the result of Theorem 2.12 tells us that for any ε optimal (or
suboptimal) starting point x0 in the problem of minimizing the function ϕ, there
exists another ε optimal vector x̄ arbitrarily close to x0 by modulus θ such that x̄
is an exact solution for the perturbed optimization problem in (2.20). Specifying
θ in Theorem 2.12 gives us various versions of the variational conditions therein.
In particular, for θ(x) := ‖x‖, we arrive at the following conditions of Ekeland’s
variational principle, which has a great many consequences and applications in both
finite and infinite dimensions; see below.

Corollary 2.13 (Ekeland’s Variational Principle). Let ϕ, x0, and ε be given as in
Theorem 2.12. Then for every λ > 0, there is x̄ ∈ R

n such that ‖x̄ − x0‖ ≤ λ,
ϕ(x̄) ≤ ϕ(x0), and

ϕ(x̄) < ϕ(x)+ (
ε/λ

)‖x − x̄‖ whenever x 
= x̄. (2.23)

Observe that the suboptimal solution x̄ in Corollary 2.13 satisfies the following
almost stationary condition

‖∇ϕ(x̄)‖ ≤ ε/λ (2.24)

provided that ϕ is differentiable at x̄. Indeed, it follows by applying the elementary
sum rule from Proposition 1.30(ii) to the inclusion 0 ∈ ∂̂(ϕ + θ)(x̄) from Propo-
sition 1.30(i) with θ(x) := (ε/λ)‖x − x̄‖ due to the optimality of x̄ for this sum
and the fact that ∂(‖ · −x̄‖)(x̄) = B in convex analysis. We’ll see below that the
flexibility of choosing an auxiliary function θ in Theorem 2.12, not just as the norm
‖ · ‖, allows us to gain more information for applications.

2.3.2 Applications to Suboptimality and Fixed Points

Note that the almost stationary condition (2.24) and its verification based on Corol-
lary 2.13 unavoidably require the differentiability of ϕ via the application of Propo-
sition 1.30(ii). However, we can derive in this way some extended conditions for
suboptimal points of smooth and nonsmooth functions ϕ by an appropriate choice
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of perturbations θ in the general variational principle of Theorem 2.12. The next
theorem contains two independent versions of subdifferential almost stationary
conditions obtained in this way for suboptimal solutions. The first one is expressed
in terms of (lower) regular subgradients from ∂̂ϕ(x̄), while the other condition
is given in a new enhanced form via the entire set of upper regular subgradients
from ∂̂+ϕ(x̄) := −∂̂(−ϕ)(x̄) provided that this set is nonempty. The proof of the
latter result invokes the smooth variational description of regular subgradients from
Theorem 1.27.

Theorem 2.14 (Subdifferential Almost Stationary Conditions for Suboptimal
Solutions). Let ϕ, ε, λ, and x0 be as in Theorem 2.12. Then there exist a suboptimal
solution x̄ ∈ R

n and a regular subgradient v ∈ ∂̂ϕ(x̄) such that ‖x̄ − x0‖ ≤ λ,
ϕ(x̄) ≤ ϕ(x0), and ‖v‖ ≤ ε/λ. If furthermore ∂̂+ϕ(x̄) 
= ∅, then in addition the
latter estimate holds for any v ∈ ∂̂+ϕ(x̄).

Proof. Taking ε, λ, and x0 from Theorem 2.12, we select

θ(x) := 1

4λ

∥∥x
∥∥2
, x ∈ R

n,

and find a vector x̄ ∈ B2λ(x0) with ϕ(x̄) ≤ ϕ(x0), minimizing the function

ϑ(x) := ϕ(x)+ ε

4λ2

∥∥x − x0
∥∥2 over x ∈ R

n.

Applying now both parts of Proposition 1.30 to the sum ϑ(·) shows that

0 ∈ ∂̂ϕ(x̄)+ ε

2λ2

(
x̄ − x0

)
,

which justifies, by taking into account the estimate θ(x̄ − x0) ≤ λ for the selected
function θ(·), the first stationary condition of the theorem.

To verify the second statement of the theorem under the assumption that
∂̂+ϕ(x̄) 
= ∅, we proceed as follows. Employing Corollary 2.13 gives us a vec-
tor x̄ ∈ R

n satisfying (2.23). Pick now any v ∈ −∂̂(−ϕ)(x̄), and apply to it the first
smooth variational description in Theorem 1.27. This allows us to find a function ψ
defined on a neighborhood of x̄ such that ψ is Fréchet differentiable at x̄ and obeys
the conditions

ψ(x̄) = ϕ(x̄), ∇ψ(x̄) = v, and ψ(x) ≥ ϕ(x) for all x ∈ R
n.

Combining it with (2.23) shows that the function φ(x) := ψ(x) + (ε/λ)‖x − x̄‖
attains a local minimum at x̄. Then it follows from Proposition 1.30(i,ii) that

0 ∈ ∂̂φ(x̄) = ∇ψ(x̄)+ ∂̂
( ε
λ

‖ · −x̄‖
)
(x̄) ⊂ v + ε

λ
B,

which verifies that ‖v‖ ≤ ε/λ and completes the proof of the theorem. �
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Observe that for functions ϕ differentiable at x̄, both subdifferential stationary
conditions in Theorem 2.14 reduce to (2.24).

Finally in this section, we show that the general variational principle of Theo-
rem 2.12 implies the following fixed point result for set-valued mapping without
standard continuity and contraction assumptions.

Proposition 2.15 (Fixed Points). Let F : Rn →→ R
n be a set-valued mapping

with nonempty values, and let the functions ϕ, θ satisfy all the conditions of Theo-
rem 2.12. Assume in addition that

for all x ∈ R
n there is y ∈ F(x) with θ(y − x) ≤ ϕ(x)− ϕ(y). (2.25)

Then there are points x̄ ∈ R
n and ȳ ∈ F(x̄) such that θ(ȳ − x̄) = 0, which implies

that F admits a fixed point x̄ ∈ F(x̄) provided that x = 0 is the only root of the
equation θ(x) = 0. Furthermore, the validity of condition (2.25) for all y ∈ F(x)
ensures that F(x̄) = {x̄).
Proof. Taking λ = 2ε, we get from (2.21) of Theorem 2.12 that

θ(y − x̄) ≥ 2
(
ϕ(x̄)− ϕ(y)) for all y ∈ F(x).

This implies by assumption (2.25) with x = x̄ that θ(x̄− ȳ) = 0 for some point ȳ ∈
F(x̄), and hence we arrive at the fixed point statement of the corollary. Moreover,
the fulfillment of (2.25) for any y ∈ F(x) tells us that ȳ = x̄ whenever ȳ ∈ F(x̄)
and thus completes the proof of the corollary. �

2.4 Basic Intersection Rule and Some Consequences

In this section, we first employ the extremal principle for systems of two closed sets
in Theorem 2.3 to establish the fundamental intersection rule for limiting normals
that plays the underlying role in deriving other calculus rules of generalized differ-
entiation and their applications. Some of its direct consequences for normals and
subgradients needed in what follows are also presented here.

2.4.1 Normals to Set Intersections and Additions

The following theorem on representing the normal cone to intersections of two
closed sets is crucial for all the major results of generalized differential calculus
involving the nonconvex robust constructions of Chapter 1.

Theorem 2.16 (Basic Intersection Rule). Let�1,�2 ⊂ R
n be such that x̄ ∈ �1 ∩

�2, and let the NORMAL QUALIFICATION CONDITION

N(x̄;�1) ∩
(−N(x̄;�2)

) = {0} (2.26)
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be satisfied. Then we have the inclusion

N(x̄;�1 ∩�2) ⊂ N(x̄;�1)+N(x̄;�2). (2.27)

Furthermore, (2.27) holds as equality, and the set �1 ∩�2 is normally regular at x̄
provided that both sets �1 and �2 are normally regular at this point.

Proof. To verify (2.27), pick any v ∈ N(x̄;�1 ∩�2), and by the first representation
of Theorem 1.6, find sequences xk → x̄ and vk → v such that

xk ∈ �1 ∩�2 and vk ∈ N̂(xk;�1 ∩�2) for all k ∈ N.

Select an arbitrary sequence of εk ↓ 0 as k → ∞, and for any fixed k ∈ N, define
two closed sets in R

n+1 by

�1 := �1 × R+ and
�2k := {

(x, α)
∣∣ x ∈ �2, 〈vk, x − xk〉 − εk‖x − xk‖ ≥ α

}
.

(2.28)

By the set construction in (2.28) and definition (1.5) of regular normals, we have
that (xk, 0) ∈ �1 ∩�2k and that

�1 ∩ (
�2k − (0, ν)) ∩ (U × R) = ∅ for all ν > 0,

where U is a suitable neighborhood of xk . This means that (xk, 0) is a locally ex-
tremal point of the set system {�1,�2k}. Applying the extremal principle from The-
orem 2.3 to this system at (xk, 0) for each k ∈ N gives us pairs (uk, λk) ∈ R

n × R

with ‖(uk, λk)‖ = 1 satisfying the inclusions

(uk, λk) ∈ N((xk, 0);�1
)

and (−uk,−λk) ∈ N((xk, 0);�2k
)
. (2.29)

By the compactness of the unit sphere in R
n+1, we get without loss of generality

that (uk, λk) → (u, λ) as k → ∞ for some pair (u, λ) ∈ R
n×R with ‖(u, λ)‖ = 1.

The robustness property of basic normals from Proposition 1.3 ensures by the first
inclusion in (2.29) that (u, λ) ∈ N((x̄, 0);�1 × R+), which implies in turn by
Proposition 1.4 that

u ∈ N(x̄;�1) and λ ≤ 0. (2.30)

Furthermore, using the structure of �2k in (2.28) and both representations of basic
normals in (1.7) allows us to conclude that

(−λv − u, λ) ∈ N((x̄, 0);�2 × R+
)
. (2.31)

To show next that λ < 0, suppose on the contrary that λ = 0, which implies
by (2.30) and (2.31) that 0 
= u ∈ N(x̄;�1) ∩ (−N(x̄;�2)). This is impossible
by the assumed qualification condition (2.26). Thus we can take λ = −1 and get
from (2.31) that w := v − u ∈ N(x̄;�2), which verifies that the selected vector v
belongs to the right-hand side of (2.27).
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To prove the last statement of the theorem, observe first that the inclusion

N̂(x̄;�1 ∩�2) ⊃ N̂(x̄;�1)+ N̂(x̄;�2)

is always satisfied. Assuming now that both sets �1 and �2 are normally regular at
x̄ in the sense of (1.55), we get

N(x̄;�1)+N(x̄;�2) = N̂(x̄;�1)+N̂(x̄;�2) ⊂ N̂(x̄;�1∩�2) ⊂ N(x̄;�1∩�2).

which verifies the opposite inclusion in (2.27) and so completes the proof. �
As we’ll see below, the obtained intersection rule is the key result of generalized

differential calculus in variational analysis. Let us now present some of its rather
straightforward consequences. The first one is an extension of the intersection rule
to finitely many sets.

Corollary 2.17 (Normals to Finite Set Intersections). Let �1, . . . , �s with s ≥ 2
be subsets of Rn such that x̄ ∈ ∩si=1�i , and let the system

vi ∈ N(x̄;�i), i = 1, . . . , s, v1 + . . .+ vs = 0

has only the trivial solution v1 = . . . = vs = 0. Then we have the inclusion

N
(
x̄;

s⋂

i=1

�i

)
⊂ N(x̄;�1)+ . . .+N(x̄;�s), (2.32)

which holds as equality if all the sets �i are normally regular at x̄. In this case the
intersection ∩si=1�i is also normally regular at x̄.

Proof. Arguing by induction and having in hands the intersection rule for two sets,
suppose now that this rule holds for s − 1 sets, and then represent the intersection
� = �1 ∩ . . . ∩�s of s > 2 sets as � = �1 ∩�2 with �1 := ∩s−1

i=1�i and �2 :=
�s . It is easy to check that the qualification condition imposed on {�1, . . . , �s}
yields the validity of (2.26) for {�1,�2}. Thus applying Theorem 2.16 to the two-
set intersection�1 ∩�2 and using the induction assumption justify inclusion (2.32).
We also get in this way the regularity and equality statements when all the sets �i
are normally regular at x̄. �

The next consequence of Theorem 2.16 provides a useful sum rule for sets, which
holds without imposing any qualification condition.

Corollary 2.18 (Normals to Sums of Sets). Let �1,�2 ⊂ R
n, and let x̄ ∈ �1 +

�2. Assume that the set-valued mapping S : Rn →→ R
2n defined by

S(x) := {
(x1, x2) ∈ R

2n
∣∣ x1 + x2 = x, x1 ∈ �1, x2 ∈ �2

}
, x ∈ R

n,

is locally bounded around x̄. Then we have the inclusion

N(x̄;�1 +�2) ⊂
⋃

(x1,x2)∈S(x̄)
N(x1;�1) ∩N(x2;�2).
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Proof. Observe first that the closedness of �1 and �2 and the uniform boundedness
of S(x) around x̄ ensure that the set �1 + �2 is locally closed around x̄. Pick any
v ∈ N(x̄;�1+�2), and by Theorem 1.6, find sequences xk → x̄ with xk ∈ �1+�2
and vk → v such that vk ∈ N̂(xk;�1 +�2). Considering the sets �1 := �1 × R

n

and �2 := R
n ×�2, it is not hard to check that

(vk, vk) ∈ N̂((x1k, x2k);�1 ∩�2
)

whenever (x1k, x2k) ∈ S(xk) (2.33)

for all k ∈ N. Taking such a sequence of (x1k, x2k) and employing again the uniform
boundedness of S(x) around x̄ give us some (x̄1, x̄2) ∈ S(x̄) such that (x1k, x2k) →
(x̄1, x̄2) along a subsequence. By passing to the limit in (2.33) as k → ∞, we get
vectors u1, u2 ∈ R

n with

(u1, 0) ∈ N((x̄1, x̄2);�1
)
, (0, u2) ∈ N((x̄1, x̄2);�2

)
, (v, v) = (u1, 0)+ (0, u2),

which implies that u1 ∈ N(x̄1;�1), u2 ∈ N(x̄2;�1), and u1 = u2 = v. This
verifies that v ∈ N(x̄1;�1) ∩N(x̄2;�2) and thus completes the proof. �

2.4.2 Subdifferential Sum Rules

Now we turn to subgradients of extended-real-valued l.s.c. functions and deduce
directly from Theorem 2.16 the following subdifferential sum rules for both basic
and singular subgradients in Definition 1.18. This theorem plays the underlying role
in subdifferential calculus (see Section 4.1) as well as in deriving other results and
various applications presented in the book.

Theorem 2.19 (Subdifferential Sum Rules for Two l.s.c. Functions). Let
ϕ1, ϕ2 : Rn → R be such that x̄ ∈ domϕi for i = 1, 2, and let the (singular)
SUBDIFFERENTIAL QUALIFICATION CONDITION

∂∞ϕ1(x̄) ∩
(− ∂∞ϕ2(x̄)

) = {0} (2.34)

be satisfied. Then we have the sum rule inclusions

∂(ϕ1 + ϕ2)(x̄) ⊂ ∂ϕ1(x̄)+ ∂ϕ2(x̄), (2.35)

∂∞(ϕ1 + ϕ2)(x̄) ⊂ ∂∞ϕ1(x̄)+ ∂∞ϕ2(x̄). (2.36)

If furthermore both functions ϕ1, ϕ2 are lower regular at x̄, then the sum ϕ1 + ϕ2
also has this property and (2.35) holds as equality. The equality holds also in (2.36),
and the function ϕ1 + ϕ2 is epigraphically regular at x̄ if both functions ϕ1, ϕ2 are
epigraphically regular at this point.
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Proof. Let us derive inclusions (2.35) and (2.36) for basic and singular subgradients
simultaneously by reducing both of them to Theorem 2.16. Taking v from either
∂(ϕ1 + ϕ2)(x̄) or ∂∞(ϕ1 + ϕ2)(x̄), we get by Definition 1.18 that

(v,−λ) ∈ N((x̄, (ϕ1 + ϕ2)(x̄)); epi (ϕ1 + ϕ2)
)

with either λ = 1 or λ = 0,

respectively. Denote ᾱi := ϕi(x̄) for i = 1, 2, and consider the sets

�i := {
(x, α1, α2) ∈ R

n × R × R
∣∣ αi ≥ ϕi(x)

}
, i = 1, 2.

It is easy to observe that (v,−λ,−λ) ∈ N((x̄, ᾱ1, ᾱ2);�1 ∩ �2). Applying now
the intersection rule of Theorem 2.16 to this set intersection with taking into ac-
count that the subdifferential qualification condition (2.34) ensures the validity of
the normal one (2.26) for the sets �i constructed above gives us pairs (vi,−λi) ∈
N((x̄, ᾱi); epiϕi) for i = 1, 2 such that

(v,−λ,−λ) = (v1,−λ1, 0)+ (v2, 0,−λ2).

Thus we get v = v1 + v2 with either vi ∈ ∂ϕi(x̄) or vi ∈ ∂∞ϕi(x̄) as i = 1, 2
depending on the choice of λ = 0, 1 in the arguments above. This verifies the sum
rule inclusions in (2.35) and (2.36).

If both ϕ are lower regular at x̄, in the sense of ∂ϕi(x̄) = ∂̂ϕi(x̄) for i = 1, 2 (see
Exercise 1.74), then the equality and regularity statements of the theorem follow
from (2.35), and the inclusion

∂̂(ϕ1 + ϕ2)(x̄) ⊃ ∂̂ϕ1(x̄)+ ∂̂ϕ2(x̄)

the validity of which for arbitrary functions ϕi can be immediately deduced from
definition (1.33). The last statement of the theorem is verified similarly by using the
second representation of Exercise 1.74(ii). �

We conclude this section with the following two direct corollaries of Theo-
rem 2.19. The first one concerns semi-Lipschitzian sum SL(x̄), i.e., sums of two
functions ϕ1 + ϕ2 one of which is l.s.c. around x̄, while the other is locally Lips-
chitzian around this point.

Corollary 2.20 (Semi-Lipschitzian Sum Rule for Basic Subgradients). Let
(ϕ1, ϕ2) ∈ SL(x̄). Then we have the basic subgradient inclusion (2.35).

Proof. Follows from Theorem 2.19 due to ∂∞ϕ(x̄) = {0} for locally Lipschitzian
functions, which ensures the validity of (2.34) by Theorem 1.22. �

Note that for any pair (ϕ1, ϕ2) ∈ SL(x̄), the singular subdifferential inclu-
sion (2.36) always holds as equality. This has been justified by the direct proof of
Proposition 1.29 but can also be deduced from inclusion (2.36) by applying it to the
sum ϕ2 = (ϕ1 + ϕ2) + (−ϕ1) and using the characterization of the local Lipschitz
continuity from Theorem 1.22.
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The next corollary is an extension of Theorem 2.19 to finite sums.

Corollary 2.21 (Subgradients for Sums of Finitely Many l.s.c. Functions). Let
ϕ : Rn → R for i = 1, . . . , s be such that x̄ ∈ ∩si=1domϕi , and let the following
qualification condition be satisfied:

[
vi ∈ ∂∞ϕi(x̄), i = 1, . . . , s

∣∣ v1 + . . .+ vs = 0
] �⇒ v1 = . . . = vs = 0, (2.37)

which is surely the case where all but one of ϕi are locally Lipschitzian around x̄.
Then we have the subdifferential sum rules

∂
(
ϕ1 + . . .+ ϕs

)
(x̄) ⊂ ∂ϕ1(x̄)+ . . .+ ∂ϕs(x̄), (2.38)

∂∞(ϕ1 + . . .+ ϕs
)
(x̄) ⊂ ∂∞ϕ1(x̄)+ . . .+ ∂∞ϕs(x̄), (2.39)

where (2.38) holds as equality if all ϕi are lower regular at x̄. In this case the sum
ϕ1 + . . . + ϕs is lower regular at x̄ as well. The equality also holds in (2.39), and
the sum ϕ1 + . . . + ϕs is epigraphically regular at x̄ if all the functions ϕi are
epigraphically regular at this point.

Proof. From the case of s = 2 in Theorem 2.19, we can justify the general case of
s > 2 by induction, where the qualification condition (2.37) at the current step is
verified by using (2.39) at the previous step of induction. �

In the subsequent parts of the book (see, in particular, Sections 3.2 and 4.1 to-
gether with the exercises and commentary sections), we’ll employ the basic intersec-
tion rule of Theorem 2.16 and its subdifferential consequences from Theorem 2.19
to deriving a number of calculus rules for coderivatives and subgradients of vari-
ous compositions. To deal efficiently with set-valued and single-valued mappings,
we study in the next chapter some fundamental well-posedness properties, which
are of their own interest for numerous aspects of variational analysis and optimiza-
tion while being used therein for developing and verifying a variety of results on
generalized differential calculus.

2.5 Exercises for Chapter 2

Exercise 2.22 (Convex Separation for Finitely Many Sets). Deduce from the extremal principle
of Theorem 2.3 the convex separation theorem for s ≥ 2 sets in R

n under the relative interiority
condition (2.10) in R

n.

Exercise 2.23 (Interiors of Sets in Extremal Systems). Let �1, . . . , �s be subsets of a Ba-
nach space X such that the first s − 1 of them has nonempty interiors. Show that if the system
{�1, . . . , �s, x̄} is locally extremal in the sense of Definition 2.1 considered in Banach spaces,
then we have

int�1 ∩ . . . ∩ int�s−1 ∩�s ∩ U = ∅.
When does the converse assertion hold?
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Exercise 2.24 (Approximate Extremal Principle in Infinite Dimensions).
(i) Prove that the approximate extremal principle from Corollary 2.5 holds in Fréchet smooth

spaces. Hint: Use an appropriate modification of the method of metric approximations, complete-
ness of the space in question, and the Fréchet differentiability of an equivalent norm. Compare
with the proof of [522, Theorem 2.10].

(ii) Check that the approximate extremal principle holds in Asplund spaces, being in fact a
characterization of this class of Banach spaces. Hint: Use the method of separable reduction to
reduce the Asplund space setting to the Fréchet smooth one in accordance with the proof of [522,
Theorem 2.20].

Exercise 2.25 (Density Results). Let � ⊂ X be a proper (and closed) subset of an Asplund
space X. Show that the approximate extremal principle in X yields the validity of the following
statements:

(i) Nonlinear Bishop-Phelps theorem: the set
{
x ∈ bd�

∣∣ N̂(x;�) 
= {0}}

is dense on the boundary bd� for any such �. Hint: Given any x̄ ∈ bd�, apply the approximate
extremal principle from Exercise 2.24(ii) to the extremal system {�, {x̄}, x̄}, and compare it with
[522, Corollary 2.21] for this and other boundary characterizations of Asplund spaces.

(ii) Verify that for convex sets �, the density result from (i) reduces to the classical Bishop-
Phelps theorem on the density of support points on the boundary of � (see, e.g., [638, Theo-
rem 3.18]) while in the case of an Asplund space X.

(iii) Density of regular subgradients: the set

{(x, ϕ(x)) ∈ X × R
∣∣ ∂̂ϕ(x) 
= ∅}

is dense on the graph of ϕ for every l.s.c. function ϕ : X → R. Hint: Derive this from the approxi-
mate extremal principle, and compare with [522, Corollary 2.29].

Exercise 2.26 (Fuzzy Sum Rule from the Extremal Principle). Let ϕ1 : X → R be locally
Lipschitzian around x̄, and let ϕ2 : X → R be l.s.c. around this point. Show that for any ε > 0, the
following “fuzzy” sum rule holds:

∂̂(ϕ1 + ϕ2)(x̄) ⊂
⋃

xi∈U(ϕi ,x̄,ε)

{
∂̂ϕ1(x1)+ ∂̂ϕ2(x2)

}
+ εB∗, (2.40)

where U(ϕ, x̄, ε) := {x ∈ X| ‖x − x̄‖ < ε, |ϕ(x)− ϕ(x̄)| < ε}. Hint: Assuming without loss of
generality that x̄ = 0 is a local minimizer of ϕ1 + ϕ2 and that ϕ1(0) = ϕ2(0) = 0, consider the
system of sets

�1 := epiϕ1, �2 := {
(x, α) ∈ X × R

∣∣ ϕ2(x) ≤ −α}.
which is locally extremal at (0, 0). Apply to it the approximate extremal principle, and compare
with [522, Lemma 2.32].

Exercise 2.27 (Weak Fuzzy Sum Rule). LetX be an Asplund space, and let ϕ1, . . . , ϕs : X → R

be l.s.c. functions onX. Prove that for any x̄ ∈ X, ε > 0, x∗ ∈ ∂̂(ϕ1 + . . .+ϕs)(x̄), and any weak∗
neighborhood V ∗ of 0 ∈ X∗ there are xi ∈ x̄+ εB and x∗

i ∈ ∂̂ϕi (xi) such that |ϕi(xi)−ϕi(x̄)| ≤ ε

for all i = 1, . . . , s and

x∗ ∈
s∑

i=1

x∗
i + V ∗.

Hint: Use the density subdifferential result from Exercise 2.25(ii) and properties of infinite
convolutions; cf. [254, Theorem 2].
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Exercise 2.28 (Sequential Normal Compactness of Sets). Let � be a subset of a Banach space
X, and let x̄ ∈ �. We say that� is sequentially normally compact (SNC) at x̄ if for any sequences
(xk, x

∗
k , εk) ⊂ X ×X∗ × R+ we have

[
xk

�→ x̄, x∗
k

w∗→ 0, εk ↓ 0, x∗
k ∈ N̂εk (xk;�)

] �⇒ ‖x∗
k ‖ → 0 as k → ∞. (2.41)

(i) Show that we can equivalently put εk ≡ 0 in (2.41) if X is Asplund (and � is locally closed
around x̄ in our standing assumption). Hint: Employ Exercise 1.42.

(ii) The affine hull of �, aff�, is the smallest affine set containing �; its closure is denoted by
aff�. The codimension codim(aff�) of aff� is the dimension of the quotient spaceX\(aff�−x),
which is independent of x ∈ aff�. Show that the SNC property of� at x̄ implies that the subspace
aff (�∩U) is of finite codimension for any neighborhood U of x̄. In particular, a singleton in X is
SNC if and only if dimX < ∞. Hint: Use the fundamental Josefson-Nissenzweig theorem telling
us that for any infinite-dimensional Banach space X, there is a sequence of unit vectors x∗

k ∈ X∗
that weak∗ converges to zero; see [207, Chapter 12].

(iii) The relative interior of �, ri�, is the interior of � with respect to aff�. Prove that
for convex sets � with ri� 
= ∅, the SNC property of � at every x̄ ∈ � is equivalent to
codim(aff�) < ∞. Hint: Apply the representation of ε-normals to convex sets from Proposi-
tion 1.7 (which holds in any Banach space) to the given set � at x̄ with respect to the subspace
aff�; see [522, Theorem 1.21].

Exercise 2.29 (Epi-Lipschitzian and Compactly Epi-Lipschitzian Sets). We say that � ⊂ X

is COMPACTLY EPI-LIPSCHITZIAN (CEL) around x̄ ∈ � if there are a compact set C ⊂ X,
neighborhoods U of x̄, O of 0 ∈ X, and γ > 0 such that

� ∩ U + tO ⊂ �+ tC for all t ∈ (0, γ ). (2.42)

The set � is said to be EPI-LIPSCHITZIAN around x̄ if C in (2.42) can be selected as a singleton.
Verify the following statements, where X is an arbitrary Banach space unless otherwise stated:

(i) If the set � is CEL around x̄, then it is SNC at this point. Hint: Compare it with the proof of
[522, Theorem 1.26].

(ii) The SNC property is strictly weaker than the CEL one in every X for which the dual ball
B

∗ is not weak∗ sequentially compact, in particular in the classical spaces l∞ and L∞[0, 1]. Hint:
Find this in [259].

(iii) There is a nonseparable Asplund space X admitting a C∞-smooth renorm and a closed
convex cone � ⊂ X such that � is SNC at the origin but not CEL around x̄ = 0. Hint: Compare it
with [259] and [522, Example 3.6].

(iv) A convex set � is epi-Lipschitzian around any x̄ ∈ � if and only if int� 
= ∅. Hint:
Compare it with the proof of [522, Proposition 1.25].

Exercise 2.30 (SNC Property for Inverse Images of Sets Under Differentiable Mappings Be-
tween Banach Spaces). Let f : X → Y be a between Banach spaces that is strictly differentiable
at x̄ with the surjective derivative ∇f (x̄), and let � be a subset of Y containing ȳ := f (x̄). Show
that the set f−1(�) is SNC at x̄ if and only if � is SNC at ȳ. Hint: Use the classical open map-
ping theorem together with the result of Exercise 1.53, and compare it with the proofs of [522,
Lemma 1.16 and Theorem 1.22].

Exercise 2.31 (Exact Extremal Principle in Infinite Dimensions).
(i) Use the approximate extremal principle to show that the exact/pointbased extremal principle

of Theorem 2.3 holds provided that the dual unit ball B∗ ⊂ X∗ is sequentially weak∗ compact (as
in the case of Asplund spaces; see Exercise 1.41(iii)) and that all but one sets �i , i = 1, . . . , s, are
SNC at their locally extremal point x̄. Hint: Compare it with [522, Theorem 2.22].

(ii) Show that any infinite-dimensional separable Banach space contains an extremal system of
two convex compact sets, which are not SNC and for which the relationships of the exact extremal
principle fail.
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Exercise 2.32 (Nontriviality of Basic Normals and Subgradients from the Extremal Princi-
ple). Derive from the exact extremal principle the following statements in any Banach space X: ,

(i) Let � ⊂ X be proper, closed, and SNC at x̄ ∈ bd�. Then N(x̄;�) 
= {0}.
(ii) Let ϕ : X → R be locally Lipschitzian around x̄. Then ∂ϕ(x̄) 
= ∅.

Exercise 2.33 (Global Set Extremality and Separation). We say that two nonempty subsets
�1, �2 of a locally convex topological vector space X form a (globally) extremal system if for any
neighborhood V of the origin in X there exists a vector a ∈ X such that

a ∈ V and (�1 + a) ∩�2 = ∅. (2.43)

(i) Compare this notion with the local set extremality from Definition 2.1.
(ii) Verify that the sets �1 and �2 form an extremal system in the sense of (2.43) if and only if

0 /∈ int(�1 −�2). Show furthermore that the extremality of�1, �2 implies that (int�1)∩�2 = ∅
while the opposite implication fails.

(iii) Prove that the global extremality of convex sets �1, �2 together with the difference interi-
ority condition int(�1 −�2) 
= ∅ yields the separation property

sup
x∈�1

〈x∗, x〉 ≤ inf
x∈�2

〈x∗, x〉 for some x∗ 
= 0. (2.44)

(iv) Show that the separation property (2.44) always implies the global set extremality (2.43),
without imposing either the convexity of �1, �2 or the difference interiority condition int(�1 −
�2) 
= ∅ as in (iii).

Hint: Use the definitions, and apply the convex separation theorem to the sets �1 := �1 −�2
and �2 := {0} in (iii). Compare it with the proof of [538, Theorem 2.2].

Exercise 2.34 (Approximate and Exact Versions of the Convex Extremal Principle in Banach
Spaces). Let �1 and �2 be closed and convex subsets of a Banach space X, and let x̄ be any
common point of the sets �1, �2.

(i) Show that the extremality of �1, �2 in the sense of (2.43) yields the validity of the ap-
proximate extremal principle relationships: for any ε > 0, there exist xi ∈ Bε(x̄) ∩ �i and
x∗
i ∈ N(xiε;�i)+ εB∗ as i = 1, 2 such that

x∗
1 + x∗

2 = 0 and ‖x∗
1 ‖ = ‖x∗

2 ‖ = 1.

(ii) Assuming that one of the sets �1, �2 is SNC at x̄, prove that the above extremality of
these sets is equivalent to the approximate extremal principle conditions in (ii) as well as to the
separation property (2.44).

(iii) Deduce from (ii) the seminal Bishop-Phelps theorem on the density of the support points
on boundaries of closed and convex subsets of general Banach spaces.

Hint: To verify (i), invoke the Ekeland’s variational principle, and compare this with the proof
of [538, Theorem 2.5].

Exercise 2.35 (Violation of the Conic Extremal Principle in Hilbert Spaces). Let X be an
arbitrary Hilbert space with dimX = ∞. Give an example of half-spaces {�i}i∈N satisfying the
assumptions of Theorem 2.9 for which CEP fails.

Exercise 2.36 (Weak Contingent Extremal Principle in Reflexive Spaces). We say that x̄ ∈
∩si=1�i is a weak contingent locally extremal point of the set systems {�1, . . . , �s} in X if the
system of weak contingent cones {TW (x̄;�i)}, i = 1, . . . , s, is extremal at the origin in the sense
of Definition 2.6(a). Assume that x̄ is such a point and that the space X is reflexive.

(i) Show that the approximate extremal principle holds at x̄.
(ii) Assume in addition that all but one of the sets �i , i = 1, . . . , s, are SNC at x̄, and show

that in this case the exact extremal principle holds at x̄.
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Hint: Verify first that the SNC property of �i at x̄ yields this property for TW (x̄;�i) at the
origin, and then proceed as in the proof of [568, Theorem 7.3].

Exercise 2.37 (Rated Extremal Principle in Finite Dimensions).We say that x̄ ∈ ∩si=1�i is
a (locally) rated extremal point of rank α ∈ [0, 1) for the set system {�1, . . . , �s} in a Banach
space X if there are sequences {aik} ⊂ X, i = 1, . . . , s, and a positive number γ such that
rk := maxi ‖aik‖ → 0 as k → ∞ and

s⋂

i=1

(
�i − aik

) ∩ (
x̄ + γ rαk B

) = ∅ for large k ∈ N.

(i) Give an example of two sets in R
2 for which x̄ = (0, 0) is a rated extremal point with

α = 0.5 while not being locally extremal in the sense of Definition 2.1.
(ii) Show by using the method of metric approximations that any rated extremal point of rank

α ∈ [0, 1) for systems of finitely many (closed) sets in R
n satisfies the relationships of the ba-

sic/exact extremal principle.
(iii) Give an example illustrating the failure of this result for α = 1.
(iv) Show that a rated extremal point x̄ of rank α ∈ [0, 1) satisfies the relationships of the

approximate extremal principle in Asplund spaces and the relationships of the exact extremal prin-
ciple if all but one of the sets �i are SNC at x̄.

(v) Provide an extension of the rated extremal principle for infinitely many sets under an ap-
propriate growth condition of the rate rank.

Hint: Proceed as in the case of α = 0, and compare with [567].

Exercise 2.38 (Ekeland’s Variational Principle in Metric Spaces). Let (X, d) be a metric space.
Show that the conditions of Ekeland’s variational principle formulated in Corollary 2.13 with the

norm ‖ · ‖ replaced by the distance function d(·, ·) hold under the completeness of the space X.
Furthermore, the validity of these conditions characterize the completeness of (X, d).

Hint: Starting with the given point x0 and assuming that ε = λ = 1 without loss of generality,
construct the iterates {xk} by

xk+1 ∈ T (xk) and ϕ(xk+1) < inf
x∈T (xk)

ϕ(x)+ 1

k
, k ∈ N,

where T (x) := {u ∈ X| ϕ(u)+ d(x, u) ≤ ϕ(x)}. Observing that the sets T (xk) are nonempty and
closed with T (xk+1 ⊂ T (xk) and diam T (xk) → 0 as k → ∞, conclude by the completeness of
X that ∩∞

k=1T (xk) = {x̄} for some x̄ ∈ X, which is actually the required point. Compare this with
[522, Theorem 2.26], where the converse statement is also verified.

Exercise 2.39 (Lower Subdifferential Variational Principle). Prove that for every (l.s.c. and)
bounded from below function ϕ : X → R on an Asplund space X, for any ε, λ > 0 and x0 ∈ X
with ϕ(x0) < infX ϕ + ε, there are x̄ ∈ X and

x∗ ∈ ∂̂ϕ(x̄) with ‖x̄ − x0‖ < λ, ϕ(x̄) < inf
X
ϕ + ε, ‖x∗‖ < ε/λ.

Hint: Employ Ekeland’s variational principle and then the approximate extremal principle in
Asplund spaces; compare it with [522, Theorem 2.28].

Exercise 2.40 (Upper Subdifferential Variational Principle). Prove that for every (l.s.c. and)
bounded from below function ϕ : X → R on a Banach space X, for any ε, λ > 0 and x0 ∈ X with
ϕ(x0) < infX ϕ + ε, there exists x̄ ∈ X with ‖x̄ − x0‖ < λ and ϕ(x̄) < infX ϕ + ε such that

‖x∗‖ < ε/λ for all x∗ ∈ ∂̂+ϕ(x̄).
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Hint: Combine the usage of Ekeland’s variational principle with the first part of Theorem 1.27
(smooth variational description) and Proposition 1.30(ii), which both hold in general Banach
spaces; compare it with [522, Theorem 2.30] and the proof of the second part of Theorem 2.14.

Exercise 2.41 (Smooth Variational Principles in Asplund Spaces).
(i) Prove the following smooth variational principle, which is an enhanced version of the

Borwein-Preiss one: Given a (l.s.c. and) bounded from below function ϕ : X → R on a Fréchet
smooth space X, for any ε, λ > 0 and x0 ∈ X with ϕ(x0) < infX ϕ + ε, there is a concave Fréchet
smooth function ψ : X → R such that ‖x̄ − x0‖ < λ, ϕ(x̄) < infX ϕ + ε, ‖∇ψ(x̄)‖ < ε/λ, and

ϕ(x̄) = ψ(x̄), ϕ(x) ≥ ψ(x)+ ‖x − x̄‖2 whenever x ∈ X. (2.45)

The Fréchet smoothness of X is also necessary for the concavity of ψ in (2.45).
Hint: To verify the sufficient part of this statement, use the proofs of Theorem 1.10(ii) and

its subgradient counterpart in Theorem 1.27 holding in any Fréchet smooth space; see Exer-
cise 1.51(ii). To justify the necessity part, apply (2.45) to ϕ(x) := 1/‖x‖, find the corresponding
function ψ , form the convex and Fréchet smooth function p(x) := −ψ(x + v) + 1/‖v‖, and
consider the Minkowski gauge

g(x) := inf
{
λ > 0

∣∣ x ∈ λ�} with � := {
x ∈ X∣∣ p(x) ≤ 1/(2‖v‖)},

which defines the equivalent norm n(x) := g(x)+ g(−x) on X. Since p is of class C1 and convex,
the Fréchet differentiability of g on X \ {0} is equivalent to the Gâteaux one, and thus it remains to
check that ∂g(x) is a singleton at nonzero points as in the proof of the corresponding parts of [522,
Theorem 2.31].

(ii) Derive the S-smooth versions (while without the concavity property of ψ) of (i) for As-
plund spaces admitting S-smooth bump functions of the classes listed in Exercise 1.51(iii). Hint:
Compare this with [522, Theorem 2.31](ii).

Exercise 2.42 (Regular Normals to Set Intersections via the Extremal Principle). Let �1, �2
be (closed) subsets of an Asplund space X, and let x̄ ∈ �1 ∩�2.

(i) Show that for any x∗ ∈ N̂(x̄;�1 ∩�2) and ε > 0, there exist λ ≥ 0, xi ∈ �i ∩ (x̄ + εB),
and x∗

i ∈ N̂(xi;�i)+ εB∗, i = 1, 2, such that

λx∗ = x∗
1 + x∗

2 , max
{
λ, ‖x∗‖} = 1. (2.46)

Hint: Proceed similarly to the proof of Theorem 2.16 with applying the approximate extremal
principle instead of the exact one by using the sum norm (1.18) on X × R. Compare this with
[522, Lemma 3.1].

(ii) Obtain conditions ensuring that λ 
= 0 in (2.46). Hint: Consult with [583] for various results
of this type and their uniform versions.

Exercise 2.43 (Intersection Rules for Basic Normals to Nonconvex Sets in Asplund Spaces).
We say that the sets {�1, �2} in a Banach space X satisfies the limiting qualification condition at
x̄ ∈ �1 ∩�2 if [‖x∗

1k + x∗
2k‖ → 0 as k → ∞] �⇒ x∗

1 = x∗
2 = 0

for any sequences xik
�i→ x̄, x∗

ik

w∗→ x∗
i , and εk ↓ 0 with x∗

ik ∈ N̂εk (xik;�i), i = 1, 2.
(i) Let X be Asplund. Based on (1.59), show that εk can be dropped in the definition above and

that the limiting qualification condition is implied by the normal one (2.26). Give an example of
sets for which the reverse implication fails.

(ii) Prove the validity of the basic intersection rule (2.16) in Asplund spaces provided that the
limiting qualification condition holds and one of the sets �i is SNC at x̄. Hint: Pass to the limit
from the fuzzy intersection rule of Exercise 2.42, and compare with the proof of a more general
result in [522, Theorem 3.4].
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(iii) Give an example showing that the SNC assumption is essential for the validity of the
intersection rule even in the Hilbert space setting.

(iv) Consider the intersection of finitely many subsets of an Asplund space with x̄ ∈ � :=
�1 ∩ . . . ∩�s , and verify the inclusion

N(x̄;�) ⊂ N(x̄;�1)+ . . .+N(x̄;�s) (2.47)

provided that all but one of the sets �i are SNC at x̄ and that the following normal qualification
condition for finitely many sets is satisfied:

[
x∗

1 + . . .+ x∗
s = 0, x∗

i ∈ N(x̄;�i)
] �⇒ x∗

i = 0, i = 1, . . . , s.

Show that � is normally regular at x̄ and (2.47) holds as equality if all �i are normally regular at
x̄. Hint: Proceed by induction with the usage of (2.47) for s = m, m ≥ 2, to verify the validity of
the normal qualification condition for s = m+ 1.

Exercise 2.44 (Normals to Intersections of Convex Sets in Locally Convex Topological Vector
Spaces). Let �1 and �2 be nonempty convex subsets of a LCTV space X, and let x̄ ∈ �1 ∩�2.

(i) Assuming that there is a bounded convex neighborhood V of x̄ such that

0 ∈ int
(
�1 − (�2 ∩ V )), (2.48)

prove the precise normal cone intersection formula

N(x̄;�1 ∩�2) = N(x̄;�1)+N(x̄;�2). (2.49)

Hint: Show that the convex sets

�1 := �1 × [0,∞) and �2 := {
(x, μ) ∈ X × R

∣∣ x ∈ �1 ∩ V, μ ≤ 〈x∗, x − x̄〉}

form an extremal system (2.1), and then proceed by applying the convex extremal principle from
Exercise 2.34; compare it with the proof of [538, Theorem 3.1].

(ii) Establish relationships between (2.48), the condition 0 ∈ int(�1 − �2), and the classical
qualification condition �1 ∩ (int�2) 
= ∅ for the validity of the normal cone formula (2.49) in
general LCTV spaces and also in normed spaces.

(iii) Assuming that X is Banach, that both sets �1, �2 are closed, and that int(�1 −�2) 
= ∅,
prove the equivalence

[
0 ∈ core(�1 −�2)

] ⇐⇒ [
0 ∈ int(�1 −�2)

]
,

where the symbol “core” stands for the algebraic core of a set defined by

core� := {
x ∈ �∣∣ ∀ v ∈ X ∃ γ > 0 such that x + tv ∈ � whenever |t | < γ }.

Hint: Use the equality int� = core� that holds for closed and convex subsets of Banach spaces;
see, e.g., [114, Theorem 4.1.8].

Exercise 2.45 (Preservation of the SNC Property for Set Intersections). Let �1 and �2 be
subsets of an Asplund space X, and let x̄ ∈ �1 ∩�2.

(i) Prove that if both �i are SNC at x̄ and the normal qualification condition (2.26) holds,
then �1 ∩ �2 is also SNC at x̄. Hint: Apply the result from Exercise 2.42 based on the extremal
principle, and compare with the proof of a more general statement in [522, Theorem 3.79].

(ii) Show that the normal qualification condition (2.26) is essential in infinite dimensions. Could
it be replaced by the limiting qualification condition?

(iii) Derive an extension of (i) to the case of finitely many sets.
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Exercise 2.46 (Inner Semicontinuity on the Graph and Inner Semicompactness on the Do-
main). Let F : X →→ Y be a set-valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gphF .

We say that F is inner semicontinuous at the graph point (x̄, ȳ) if for every sequence xk
domF−→ x̄,

there is a sequence yk ∈ F(xk) that converges to ȳ as k → ∞. The mapping F is inner semicom-

pact at the domain point x̄ if for every sequence xk
domF−→ x̄, there is a sequence yk ∈ F(xk) that

contains a convergent subsequence as k → ∞.
(i) Observe that the inner semicontinuity of F at (x̄, ȳ) for every ȳ ∈ F(x̄) reduces to the inner

semicontinuity of F at the domain point x̄ from (1.20).
(ii) Check that if F is a locally compact near x̄ (i.e., the image of a neighborhood U of x̄ under

F is enclosed into a compact set; this corresponds to the local boundedness of F when dimY < ∞
as defined in Subsection 1.2.1), then F is inner semicompact around this point, i.e., for each x ∈ U .

(iii) Give an example showing that, in contrast to the inner semicontinuity above, the inner
semicompactness can’t be equivalently formulated via the convergence of the entire sequence {yk},
k ∈ N and requires passing to a subsequence.

Exercise 2.47 (Normals to Sums of Sets in Infinite Dimensions). Let �1, �2 ⊂ X for an As-
plund space X with x̄ ∈ �1 +�2, and let S : X →→ X2 be defined by

S(x) := {
(x1, x2) ∈ X ×X∣∣ x1 + x2 = x, x1 ∈ �1, x2 ∈ �2

}
. (2.50)

Verify the following sum rules for basic normals:
(i) If the mapping S in (2.50) is inner semicompact at x̄, then

N(x̄;�1 +�2) ⊂
⋃

(x1,x2)∈S(x̄)
N(x1;�1) ∩N(x2;�2).

(ii) If S is inner semicontinuous at (x̄, x̄1, x̄2) for some (x̄1, x̄2) ∈ S(x̄), then

N(x̄;�1 +�2) ⊂ N(x̄1;�1) ∩N(x̄2;�2).

Hint: Reduce it to the intersection rule from Exercise 2.43 for the sets �̃1 := �1 × X and
�̃2 := X ×�2 in the Asplund space X2; compare with [522, Theorem 3.7].

Exercise 2.48 (SNC Property Under Set Additions). Let X be Asplund, and let �1, �2 ⊂ X

with x̄ ∈ �1 + �2. Define a set-valued mapping S : X →→ X2 by (2.50), and prove that the set
�1 +�2 is SNC at x̄ if either

(a) S is inner semicompact at x̄, and for each (x1, x2) ∈ S(x̄), one of the sets �1, �2 is SNC at
x1 and x2, respectively, or

(b) S is inner semicontinuous at (x̄1, x̄2, x̄) with some (x̄1, x̄2) ∈ S(x̄), and one of the sets
�1, �2 is SNC at x̄1 and x̄2, respectively.

Hint: Check the SNC property of the sum �1 +�2 by reducing it to that for the intersection of
�̃1, �̃2 ⊂ X2 as in Exercise 2.47; compare with [522, Theorem 3.73].

Exercise 2.49 (SNEC Property of Extended-Real-Valued Functions). A function ϕ : X → R

on a Banach space X is sequentially normally epicompact (SNEC) at x̄ ∈ domϕ if its epigraphical
set is SNC at (x̄, ϕ(x̄)).

(i) Show that the SNC property of ϕ at x̄ (i.e., of its graph at (x̄, ϕ(x̄)) implies that both ϕ and
−ϕ are SNEC at this point. Does the reverse implication hold?

(ii) Show that the local Lipschitz continuity of ϕ around x̄ implies both SNC and SNEC prop-
erties of ϕ at this point.

Hint: These properties are epigraphical and graphical specifications of the relationships in Ex-
ercise 2.29 for the case of extended-real-valued functions.
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Exercise 2.50 (Subgradient Description of the SNEC Property). Let X be Asplund. Then the
SNEC property of any (l.s.c.) function ϕ : X → R at x̄ ∈ domϕ admits the following subgradient

description: for every sequences x
ϕ→ x̄, λk ↓ 0, and x∗

k ∈ λk∂̂ϕ(xk), we have the implication

x∗
k

w∗→ 0 �⇒ ‖x∗
k ‖ → 0 as k → ∞.

Hint: Use description (1.71) of singular subgradients in Asplund spaces, and compare the proof
with the one given in [522, Corollary 2.39].

Exercise 2.51 (Basic Normals and the SNC Property for Sets Defined by Inequality Con-
straints). Let X be an Asplund space.

(i) Consider the level set � := {x ∈ X| ϕ(x) ≤ 0}, where ϕ : X → R is merely l.s.c. around
x̄ with ϕ(x̄) = 0. Assume that 0 /∈ ∂ϕ(x̄) and that ϕ is SNEC at x̄. Show that � is SNC at the
reference point and that

N(x̄;�) ⊂ [
cone ∂ϕ(x̄)

] ∪ ∂∞ϕ(x̄),
where the equality holds if ϕ is epigraphically regular at x̄. Hint: To verify the SNC property of
� at x̄, apply the result of Exercise 2.45 to the intersection of �1 := epiϕ and �2 := {(x, α) ∈
X × R| α = 0}. In this way the claimed normal cone representations can be deduced from Exer-
cise 2.43(ii) in Asplund spaces and from Theorem 2.16 in finite dimensions.

(ii) Consider the set � := {x ∈ X| ϕi(x) ≤ 0, i = 1, . . . , m}, and denote by

I (x̄) := {
i ∈ {1, . . . , m}∣∣ ϕi(x̄) = 0

}
(2.51)

the set of active constraint indices. Assume that the functions ϕi are locally Lipschitzian around
x̄ for i ∈ I (x̄) and upper semicontinuous for i ∈ {1, . . . , m} \ I (x̄). Show that the constraint
qualification condition

0 /∈ co
[
∂ϕi(x̄)

∣∣ i ∈ I (x̄)]

ensures the simultaneous validity of the SNC property of � at x̄ and the inclusion

N(x̄;�) ⊂
⋃{∑

λi∂ϕi(x̄)

∣∣∣ λi ≥ 0, λiϕi(x̄) = 0, i = 1, . . . , m
}
,

which holds as equality if ϕi are lower regular at x̄ for all i ∈ I (x̄). In this case the set � is
normally regular at x̄. Hint: Use the results from (i) and the intersection rules for the normal cone
and SNC property from Exercises 2.43 and 2.45.

(iii) Obtain extensions of (ii) to the case where ϕi are merely l.s.c. for i ∈ I (x̄).
Exercise 2.52 (Basic Normals and the SNC Property for Sets Defined by Equality Con-
straints). Let X be an Asplund space.

(i) Consider the set � := {x ∈ X| ϕ(x) = 0}, where ϕ : X → R is continuous around x̄ ∈ �.
Show that the condition 0 /∈ ∂ϕ(x̄) ∪ ∂(−ϕ)(x̄) ensures that the set � is SNC at x̄ and that the
inclusion

N(x̄;�) ⊂ [
cone

{
∂ϕ(x̄) ∪ ∂(−ϕ)(x̄)}] ∪ [

∂∞ϕ(x̄) ∪ ∂∞(−ϕ)(x̄)]

holds with the equality and normal regularity of � therein if ϕ is strictly differentiable at x̄. Hint:
Apply the result from Exercise 2.45(i) to the intersection of the sets �1 := gphϕ and �2 :=
{(x, α) ∈ X×R| α = 0} to verify the SNC property of � at x̄ and then Exercise 2.45(ii) to get the
claimed normal cone representations.

(ii) Let � := {x ∈ X| ϕi(x) = 0, i = 1, . . . , m}, where all the functions ϕi are lo-
cally Lipschitzian around x̄. Assume the validity of the constraint qualification condition 0 /∈
co
{
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)| i = 1, . . . , m

}
. Then the set � is SNC at x̄, and we have the inclusion

N(x̄;�) ⊂
{∑

λi
[
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

]∣∣ λi ≥ 0, i = 1, . . . , m
}
,
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which holds as equality with the normal regularity of � if ϕi are strictly differentiable at x̄. Hint:
Combine the result from (i) with those in Exercises 2.43 and 2.45.

(iii) Extend (ii) to the case where ϕi are merely continuous around x̄.

Exercise 2.53 (Basic Normals and the SNC Property of Constraint Systems in Nonlinear
Programming). Let X be an Asplund space. Consider the set

� := {
x ∈ X∣∣ ϕi(x) ≤ 0, i = 1, . . . , m, and ϕi(x) = 0, i = m+ 1, . . . , m+ r}.

(i) Assume that all the functions ϕi are strictly differentiable at x̄, and impose the Mangasarian-
Fromovitz constraint qualification (MFCQ):

(a) ∇ϕm+1(x̄), . . . ,∇ϕm+r (x̄) are linearly independent;
(b) there is u ∈ X satisfying the conditions

〈∇ϕi(x̄), u〉 < 0, i ∈ I (x̄), and 〈∇ϕi(x̄), u〉 = 0, i = m+ 1, . . . , m+ r,
where I (x̄) is defined in (2.51). Show that in this case, the set � is SNC and normally regular at x̄,
and we have the normal cone representation

N(x̄;�) =
{m+r∑

i=1

λi∇ϕi(x̄)
∣∣∣ λi ≥ 0, λiϕi(x̄) = 0 for i = 1, . . . , m,

and λi ∈ R for i = m+ 1, . . . , m+ r
}
.

Hint: Deduce these results from the previous exercises and the fact that ∂ϕ(x̄) = {∇ϕ(x̄)} for
strictly differentiable functions.

(ii) Assume that all the functions ϕi are locally Lipschitzian around x̄. Formulate the corre-
sponding generalized version of MFCQ in this case, and derive extensions of the normal cone
representation and SNC results from (i) to the nondifferentiable case. Hint: Compare these results
with [523, Theorem 3.86].

Exercise 2.54 (Subdifferential and SNEC Sum Rules for Functions Defined on Infinite-
Dimensional Spaces).

(i) Extend the subdifferential sum rules of Theorem 2.19 for (locally l.s.c.) functions
ϕ1, ϕ2 : X → R on an Asplund space X provided that one of them is SNEC at x̄. Hint: Pro-
ceed as in the proof of Theorem 2.19 by the reduction to the normal cone intersection rule from
Exercise 2.43 under the normal qualification condition.

(ii) Show that the sum ϕ1 + ϕ2 is SNEC at x̄ ∈ domϕ1 ∩ domϕ2 if both functions ϕi have this
property and the qualification condition (2.34) holds. Hint: Reduce this to the SNC result for sets
from Exercise 2.45(i).

(iii) Let ϕ1, ϕ2 : X → R be convex functions on a LCTV space X. Using the geometric ap-
proach implemented in the proof of Theorem 2.19, derive the convex subdifferential sum rule from
the intersection rule given in Exercise 2.44(i).

Exercise 2.55 (Minimality of the Basic Subdifferential). Let ∂̂•ϕ : X →→ X∗ be an abstract
presubdifferential on the class of l.s.c. functions ϕ : X → R with ϕ(x̄) < ∞ defined on a Banach
space X and satisfied the following properties:

(a) ∂̂•φ(u) = ∂̂•ϕ(x + u) for φ(u) := ϕ(x + u) and x, u ∈ X.
(b) ∂̂•ϕ(x) is contained in the subdifferential of convex analysis for convex continuous func-

tions represented in the form

ϕ(x) := 〈x∗, x〉 + ε‖x‖ whenever x∗ ∈ X∗, ε > 0. (2.52)

(c) For any η > 0 and any functions ϕi , i = 1, 2, such that ϕ1 is of type (2.52) and the
sum ϕ1 + ϕ2 attains its local minimum at x = 0, there are x1, x2 ∈ ηB satisfying the conditions
|ϕ2(x2)− ϕ2(0)| ≤ η and
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0 ∈ ∂̂•ϕ1(x1)+ ∂̂•ϕ2(x2)+ ηB∗.

Prove that we always have the inclusion

∂ϕ(x̄) ⊂ Lim sup
x
ϕ→x̄

∂̂•ϕ(x)

for the basic subdifferential ∂ϕ(x̄) via the sequential weak∗ limit of ∂̂•ϕ(x).
Hint: Proceed by using the analytic representation (1.68) of the basic subdifferential, and check

that the presubdifferential ∂̂ϕ from (1.33) satisfies all the properties listed in (a)–(c) in the case of
Asplund spaces. Compare it with [580, Theorem 9.7].

2.6 Commentaries to Chapter 2

Section 2.1. The single most important conceptual ingredient of our geometric dual-space approach
to variational analysis is the extremal principle for systems of sets as well as its proof based on

the method of metric approximations (MMA) initiated by the author [502, 504] in the context of
general problems of optimization and control. Recall that the very notion of the (basic) normal
cone (1.4) appears in [502] as a by-product of the method of metric approximations.

The term “extremal principles” for geometric variational principles of the type presented in
Section 2.1 was coined by the author in [511], while the result of Theorem 2.3 has been derived
earlier via the MMA in finite-dimensional spaces in the joint papers with Kruger [440, 441] under
the name of “generalized Euler equation.” It has also been extended therein to Fréchet smooth
spaces in an approximate form by involving ε-normals (1.6) as ε > 0. The Euler equation termi-
nology came from the analogy with the “abstract Euler equation” used by Dubovitskii and Milyutin
[234] to describe the result of conic convex separation in their scheme of obtaining necessary opti-
mality conditions in problems of optimization and control. As proved in [579], the ε-version of the
extremal principle from [440, 441] happened to be equivalent to the “fuzzy sum rule” suggested
later by Ioffe [367].

The approximate extremal principle in the enhanced form of Corollary 2.5, playing a crucial
role in infinite-dimensional spaces, was established by Mordukhovich and Shao [579] as a charac-
terization of Asplund spaces via variational arguments involving Fréchet-like subgradients. Other
proofs of this result are given in [580] by using the characterizations of well-posedness from [578]
(cf. Section 3.1) and in [258, 522] by employing the method of separable reduction; see the cited
publications for more details, discussions, and references. The state of the art of this method and
its relationships with the approximate extremal principle can be found in the recent paper by Cúth
and Fabian [187]. The line of equivalences from [579], with adding more results therein, was ex-
tended by Zhu [786] to Banach spaces with bornological smooth renorms. In parallel Borwein,
Mordukhovich, and Shao [107] established the equivalence of bornological versions of the ap-
proximate extremal principle in Banach spaces with smooth renorms (resp. bump functions) to the
smooth variational principles by Borwein and Preiss [108] (resp. by Deville, Godefroy and Zizler
[205]). Some versions of the extremal principle and related results in terms of abstract normal
cones and subdifferentials in Banach spaces can be found in [468, 515, 522].

The exact/limiting form (2.4)–(2.5) of the extremal principle holds in any Asplund space [580]
provided that all but one set�i are sequentially normally compact (SNC) at x̄ in the sense of (2.41)
introduced by the author and Shao in [582] (preprint of 1994) together with its partial counterpart
(PSNC) for mappings F : X →→ Y as in (3.65). Then these properties were further developed
and applied in [581] and subsequent publications. It turns out that the SNC property holds in
any Banach spaces for sets that are compactly epi-Lipschitzian (CEL) in the sense of Borwein
and Strójwas [109], which extends the epi-Lipschitzian property by Rockafellar [669]; see Exer-
cise 2.29 for the definitions and more references. On the other hand, its PSNC counterpart is valid
for any Lipschitz-like multifunction between Banach spaces as follows from the coderivative crite-
rion for the Lipschitz-like property discussed in [522] and Chapter 3 below. While both SNC and
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CEL properties are automatic in finite dimensions (and PSNC for F : X →→ Y is automatic when
dimX < ∞), well-developed calculus/preservation rules are available in [522, 589], the proofs of
which are based on the extremal principle; see Sections 2.5 and 3.4. Note that topological coun-
terparts of these properties (nets instead of sequences in the weak∗ convergence on dual spaces)
were developed by Penot [635] (preprint of 1995). We refer the reader to [106] for complete char-
acterizations of the CEL property of convex sets, to [371] for comparisons between the SNC and
CEL properties for closed sets in Banach spaces, and to [259] for relationships between the SNC
property and its topological counterpart; see [522, Remark 1.27] for a detailed summary. Further
results and applications in this direction can be found in [731, 732].

A certain modification of global extremality for sets in LCTV spaces, which doesn’t require
the set closedness and nonempty intersection and occurs to be especially useful in the study of
convex sets, has been recently suggested and investigated by the author and Nam [538]. Enhanced
versions of the extremal principle in both approximate and exact forms were obtained in [538] in
LCTV and normed spaces frameworks and then applied to generalized differential and conjugate
calculi of convex sets and functions via a variational geometric approach; see [538, 541] and also
Exercises 2.33 and 2.34 for some results and discussions.

Extended versions of extremal principle in both approximate and exact forms, involving nonlin-
ear deformations of sets and set-valued mappings defined on metric spaces, were introduced and
developed by Mordukhovich, Treiman, and Zhu [586] being particularly motivated by applications
to some problems of multiobjective optimization; see Chapter 9. Another version of the nonconvex
separation theorem for sets was established by Borwein and Jofré [102]. Further developments
and applications in this direction can be found in [50, 114, 265, 433, 523, 685, 773, 774, 777, 787]
along with other publications. We also mention here important results on the so-called nonlinear
separation that were initiated by Gerstewitz (Tammer) [278] who was motivated by developing
new scalarization techniques in vector optimization. Her idea was greatly elaborated and applied
in many subsequent works; see, Eqs., [245, 279, 300, 321, 385, 389, 407, 409] and the references
therein.

Section 2.2. The material of this section is rather fresh and has never appeared in the monographic
literature. It concerns extremality notions and various extensions of the extremal principle to infi-
nite (actually countable) systems of sets in finite-dimensional spaces. Besides being of undoubted
mathematical interest for their own sake, this topic has been motivated by applications to optimiza-
tion problems of semi-infinite programming considered in Chapters 7 and 8 below. Section 2.2
mostly follows the recent papers by Mordukhovich and Phan [568, 569] in the case of finite di-
mensions, while we present infinite-dimensional extensions and the rated version of the extremal
principle from [567] in Section 2.5. The reader is referred to the subsequent papers by Kruger and
López [436, 437] for further developments and applications in this direction based on somewhat
different ideas.

Section 2.3. Ekeland’s variational principle formulated in Corollary 2.13 is one of the first and most
powerful results of modern variational analysis. From the very beginning [248, 249], it has been
proved in complete metric spaces (characterizing in fact their completeness) by a rather compli-
cated device involving transfinite induction and the Zorn lemma. A constructive proof in complete
metric spaces was presented in [250] based on a personal communication with Michael Crandall;
see Exercise 2.38. Observe that, being a metric space results, Ekeland’s principle brought new and
very important information in finite-dimensional spaces as well. Its short proof in R

n was given by
Hiriart-Urruty [349].

The finite-dimensional geometry allows us to obtain a variational result in the general form of
Theorem 2.12 taken from the author’s early book [507]. By the choice of the function θ therein
we can unify, in particular, Ekeland’s principle and various smooth variational principles. This
is useful in several applications as shown, e.g., in Theorem 2.14 and Proposition 2.15 also taken
from [507]. Besides the Borwein-Preiss and Deville-Godefroy-Zizler variational principles and
their enhanced forms, other smooth variational principles were obtained in the author’s joint paper
with Fabian [257]; see Exercise 2.41 for some results in this direction. It is remarkable to see,
e.g., that the Fréchet renorming of Banach spaces is not only sufficient but also necessary for
the smoothness and concavity of perturbations as in Exercise 2.41(i). The reader can find more
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information about various smooth variational principles in appropriate infinite-dimensional spaces
and their relationships with the extremal principles in [522, Chapter 2] and the references therein.

In [522, Subsection 2.3.2] the reader can also find other, less known albeit very useful, types of
variational principles. The first one, the lower subdifferential variational principle, was established
by Mordukhovich and Wang [587] as yet another characterization of Asplund spaces. This result
has the same form as Ekeland’s variational principle while replacing the minimization condition
in (2.23) by the subgradient estimate ‖x∗‖ ≤ ε/λ for some x∗ ∈ ∂̂ϕ(x̄) at the suboptimal point
x̄, which is a nonsmooth extension of the almost stationary condition (2.24); see Exercise 2.39.
The other result, obtained in the author’s joint paper with Nam and Yen [546] and named there
the upper subdifferential variational principle, justifies the validity of the latter estimate for all
x∗ ∈ ∂̂+ϕ(x̄) in an arbitrary Banach space provided that ∂̂+ϕ(x̄) 
= ∅; see Exercise 2.40. This also
reduces to the almost stationary condition (2.24) when ϕ is Fréchet differentiable at x̄.

Section 2.4. The results of this section (except Corollary 2.18 that is taken from [678]) are
based on the author’s paper [505], where the normal and subdifferential qualification condi-
tions (2.26) and (2.34) were first introduced and the underlying intersection and sum rules
(2.27), (2.35) were derived by the method of metric approximations; see [507, 522] for com-

prehensive accounts. Some (directionally) Lipschitzian versions of these results can be found
in Ioffe [365] and Kruger [428, 430]. Another paper by Ioffe [368] dealt, by using a penalty
function method clearly inspired by the MMA (which was acknowledged therein as well as in
[364, 365]), with the case of l.s.c. functions on R

n under essentially more restrictive tangential
qualification conditions formulated in terms of the directional derivative construction by Rock-
afellar [670] and the tangent cone by Clarke. More recent finite-dimensional results in this di-
rection were established by Ioffe and Outrata [376] under certain calmness and metric qualifi-
cation conditions. Various infinite-dimensional versions of the presented results were given in
[114, 369, 375, 398, 399, 518, 522, 533, 580, 588, 610, 637, 685] and the references therein.
Some of these and related results can be found in exercises to Chapters 2–4. Note, in particular, the
validity of the comprehensive extensions of Theorems 2.16, 2.19 and their corollaries to the case
of Asplund spaces under SNC assumptions of type (2.41) as well as its functional counterparts. As
mentioned above such properties are automatic in finite dimensions and also hold in (generalized)
Lipschitzian settings of Banach spaces; see [522] for more details.

The major qualification condition (2.26) was introduced in [505] under the name of the “gen-
eralized nonseparation property” for nonconvex sets in finite dimensions in order to derive the
basic intersection rule in Theorem 2.16 by using the method of metric approximations. Its nega-
tion, which amounts to the relationships of the exact/basic extremal principle, was called in [505]
the “generalized separation property.” Both names reflect the fact that these properties are non-
convex generalizations of the corresponding ones for convex sets; see [507] for more details and
discussions. Condition (2.26) was studied and applied in [522] under the name of the “normal
qualification condition,” which allowed us to derive the intersection rule for basic normals in fi-
nite and infinite dimensions. However, the weaker “limiting qualification condition” was proved
to be sufficient for deriving the intersection rule in Asplund spaces under appropriate SNC/PSNC
assumptions; see [522, Theorem 3.4].

More recently, another line of impressive applications of the qualification condition (2.26) has
been developed in algorithmic aspects of feasibility and optimization for nonconvex problems. A
pioneering work in this direction was done by Lewis, Luke, and Malick [458] who established a
linear rate of local convergence of a nonconvex version of the (von Neumann) alternating projec-
tion algorithm and its averaged projection modification in the problem of finding an intersection
point of two (and finitely many) nonconvex sets in R

n under the qualification condition (2.26)
and its version for finitely many sets presented in Corollary 2.17. Analyzing the connection with
the original development in (2.26) and the exact extremal principle while giving its algorithmic
description, the authors of [458] interpreted the basic qualification condition (2.26) as the “linear
regular intersection” of closed sets and made connections with metric regularity notions considered
below in Chapter 3.
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Further striking developments of the variational analysis approach to algorithmic issues were
made by Bauschke et al. in [71, 72]. The authors of [71, 72] introduce a new notion of the “re-
stricted normal cone” to closed sets in R

n, which is an extension of our basic normal cone (1.4)
while allowing them to essentially weaken the assumptions of [458] to obtain a local linear conver-
gence of the alternating projection algorithm. The other paper [73] develops these ideas to solve
numerically a sparsity optimization problem with affine constraints.

Lewis and Malick [459] were the first to establish an equivalence between the qualification
condition (2.26) and the classical transversality condition in differential geometry for C2-smooth
manifolds by using the coderivative criterion for metric regularity from Theorem 3.3(ii); the lat-
ter actually ensures such an equivalence for general closed sets in finite dimensions. Subsequent
results on a local linear convergence of alternative projections and related algorithms for nons-
mooth and nonconvex problems of feasibility and optimization have been recently developed in
[229, 438, 480, 481, 617] and other publications with certain modifications of the normal qualifi-
cation/transversality condition (2.26) defined under the names of “intrinsic transversality, separable
intersection, subtransversality,” etc. The transversality language was used in the recent book [375]
without mentioning the introduction of (2.26) and the original derivation of the intersection rule
under this qualification condition in [505] as well as omitting the references to the original paper
[459] on transversality in the alternating projection algorithm and to a major contribution in this
direction developed by Noll and Rondepierre [617] (preprint of 2013) concurrently to the paper by
Drusvyatskiy, Ioffe, and Lewis [229].

The subdifferential qualification condition (2.34) was also first introduced in the author’s pa-

per [505] for establishing the basic subdifferential sum rule in Theorem 2.19. This result plays a

crucial role in deriving other rules of subdifferential calculus and is deduced from the basic inter-

section rule of Theorem 2.16. The subdifferential qualification condition parallel to (2.34) while

expressed via singular subgradients generated by the convexified normal cone was independently

introduced by Rockafellar [675] who used it to obtain major calculus rules for Clarke’s subgra-

dients of extended-real-valued l.s.c. functions on finite-dimensional spaces. Conditions of these

types and their indicator function versions as in (2.26) were the first ones to express qualifica-

tion requirements in subdifferential calculus and constraint qualifications in nonsmooth optimiza-

tion in the same (dual) terms as calculus rules and necessary optimality conditions. That was the

reason to label such conditions in Ioffe [369] as well as in [376] and other publications as the

“Mordukhovich-Rockafellar (MR) subdifferential qualification conditions.” This name and any re-

lated discussions on (2.26) and (2.34) with the references to [505, 675] were not presented in [375],

while the known qualification conditions for calculus rules were basically reformulated therein by

using the transversality-related terminology.

Section 2.5. Most of the exercises presented in this section have hints and references to the publi-

cations, where the reader can find more details and sources. We comment only on the minimality

result given in Exercise 2.55, which is taken from [580, Theorem 9.7] and [522, Proposition 2.45].

The origin of it should be traced to [368, Theorem 9] and [505, Theorem 4], where the minimality

property was proved under somewhat different subdifferential requirements in finite dimensions.

Note that the subsequent result by Ioffe [369, Proposition 8.2] doesn’t imply that the nucleus of his

G-subdifferential is smaller than our basic subdifferential ∂ϕ(x̄) as mistakenly claimed therein.

The mistake is due to the fact that the mapping x �→ ∂ϕ(x) may not be of closed-graph in the

norm×weak∗ topology of X × X∗ even for Lipschitzian functions on Asplund spaces. As the

reader can see, the result presented in Exercise 2.55 yields that the basic subdifferential ∂ϕ(x̄) is

the smallest among all natural subdifferential constructions that are sequentially outer/upper semi-

continuous on gphϕ. This includes, in particularly, all the “approximate” subdifferentials.



Chapter 3
Well-Posedness and Coderivative
Calculus

This chapter concerns the study of two important topics in variational analysis that
don’t seem to be related to each other at the first glance. The first topic revolves
around certain well-posedness issues for set-valued mappings/multifunctions, which
constitute a large area of great significance for variational theory and its numerous
applications. The area of well-posedness covers “good” properties of multifunctions
that are desired to get achieved in the framework of variational analysis, optimiza-
tion, equilibria, control, etc. It has been undoubtedly recognized from the viewpoints
of both variational theory and applications that such properties include those known
as Lipschitzian stability, metric regularity, and covering/linear openness, which are
fundamental in fact for the whole field of nonlinear analysis, not only for its varia-
tional aspects. Properties of this type are defined in terms of a given multifunction
and have nothing to do with notions of (generalized) differentiation.

It occurs nevertheless that the aforementioned properties admit complete qualita-
tive and quantitative characterizations via our basic coderivative of multifunctions
calculated exactly at the reference points. Such pointbased (i.e., expressed entirely
at the point in question) coderivative criteria for general closed-graph multifunc-
tions are derived in this chapter. However, applying them efficiently to particular
models of optimization, equilibria, control, etc. requires comprehensive calculus
rules, which open the gate to deal with structural mappings. The required point-
based coderivative calculus is presented below under certain pointbased qualifica-
tion conditions. On the other side of developments, the obtained coderivative char-
acterizations of the well-posedness properties allow us to verify that the imposed
qualification conditions automatically hold for large classes of multifunctions sat-
isfying these properties. Furthermore, involving the coderivative characterizations
and calculus rules brings us to a rather surprising conclusion that the property of
metric regularity fails to fulfill for major classes of variational systems given as so-
lution maps to parametric generalized equations, variational inequalities , etc. Thus
the results presented in this chapter fully justify two-sided relationships between
well-posedness and pointbased coderivative calculus. Many other related results and
well-posedness properties in finite and infinite dimensions are presented and largely
discussed in the exercise and commentary sections.
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3.1 Well-Posedness Properties of Multifunctions

We start by formulating the fundamental well-posedness properties of multifunc-
tions, which will be then characterized in terms of the coderivative (1.15).

3.1.1 Paradigm in Well-Posedness

In this chapter we mainly deal with multifunctions F : Rn →→ R
m between finite-

dimensional spaces with discussing infinite-dimensional issues in the exercise and
commentary sections. While multifunctions under consideration are generally set-
valued, it doesn’t exclude of course a single-valued case where F is denoted by
F = f : Rn → R

m for notational convenience.

Definition 3.1 (Well-Posedness Properties). Let F : Rn →→ R
m, and let (x̄, ȳ) ∈

gphF be the reference point. We say that:
(a) F has the COVERING PROPERTY around (x̄, ȳ) with modulus κ > 0 if there

are neighborhoods U of x̄ and V of ȳ such that

F(x) ∩ V + κrB ⊂ F(x + rB) whenever x + rB ⊂ U as r > 0. (3.1)

The supremum of all the moduli {κ} for which (3.1) holds with some neighborhoods
U and V is called the EXACT COVERING BOUND of F around (x̄, ȳ) and is denoted
by covF(x̄, ȳ).

(b) F is METRICALLY REGULAR around (x̄, ȳ) with modulus μ > 0 if there are
neighborhoods U of x̄ and V of ȳ such that

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)) for all x ∈ U, y ∈ V. (3.2)

The infimum of all the moduli {μ} for which (3.2) holds with some neighborhoods U
and V is called the EXACT REGULARITY BOUND of F around (x̄, ȳ) and is denoted
by regF(x̄, ȳ).

(c) F is LIPSCHITZ-LIKE around (x̄, ȳ) with modulus � ≥ 0 if there are neigh-
borhoods U of x̄ and V of ȳ such that

F(x) ∩ V ⊂ F(u)+ �‖x − u‖B for all x, u ∈ U. (3.3)

The infimum of all the moduli {�} for which (3.3) holds with some neighborhoods
U and V is called the EXACT LIPSCHITZIAN BOUND of F around (x̄, ȳ) and is
denoted by lipF(x̄, ȳ).

All the three properties in Definition 3.1 are stable/robust with respect to small
perturbations of the reference point (x̄, ȳ). They postulate a “good behavior” of F
around (x̄, ȳ) and are highly interconnected; see Theorem 3.2.

The covering property is also known as openness with linear rate or linear open-
ness of F around (x̄, ȳ). For single-valued mappings f it somewhat relates, while
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being essentially different for nonlinear mappings, to a conventional openness prop-
erty of f at x̄ meaning that the f -image of every neighborhood of x̄ contains/covers
a neighborhood of f (x̄) or equivalently

f (x̄) ∈ int f (U) for any neighborhood U of x̄. (3.4)

Property (3.1) postulates more, even for single-valued mappings: it ensures the uni-
formity of covering around x̄ with linear rate quantified by κ . The cubic function
f (x) = x3 on R gives a simple example of a mapping having the openness prop-
erty (3.4) at x̄ = 0 while not that with linear rate; see Fig. 3.1.

f(x) = x3

U � x̄

f(U)

(a) f(x̄) ∈int((f(U)) (b) f(x̄) + κrIB �⊂ f(x̄ + rIB)

f(x̄ + rIB)

f(x̄) + κrIB

Fig. 3.1 Openness (a) but not linear openness (b).

Metric regularity (3.2) provides, for any (x, y) near (x̄, ȳ), a linear estimate of
the distance between x and the set of solutions to the (generalized) equation y ∈
F(u) through the distance between y and F(x), which is much easier to calculate;
see Fig. 3.2. In particular settings it closely relates to the (local) error bound property
that plays a significant role in theoretical and numerical aspects of optimization and
its applications.

For single-valued mappings f the Lipschitz-like property (3.3) goes back to the
classical local Lipschitzian behavior (1.26), while in the compact-valued case with
V = R

m in (3.3), it reduces to the standard (Hausdorff) local Lipschitzian property
of multifunctions. In the general case of V in (3.3), this condition is also known as
the pseudo-Lipschitz or Aubin property, which is a graphical localization of Lips-
chitzian behavior for set-valued mappings.

The following result shows that all the properties from Definition 3.1 are in fact
equivalent with the precise relationships between their exact bounds.

Theorem 3.2 (Equivalence Between Well-Posedness Properties). Let F : Rn →→
R
m with (x̄, ȳ) ∈ gphF . The following are equivalent:
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(x̄, ȳ)

x

y

F (x)

F−1(y)

dist(y; F (x))(x̄, ȳ)

(x, y)
dist(x; F−1(y))

Fig. 3.2 Metric regularity.

(i) F enjoys the covering property around (x̄, ȳ) if and only if it is metrically
regular around this point. In this case we have

covF(x̄, ȳ) = (
regF(x̄, ȳ)

)−1
.

(ii) F is Lipschitz-like around (x̄, ȳ) if and only if the inverse mapping
F−1 : Rm →→ R

n is metrically regular around (ȳ, x̄). In this case we have

lipF(x̄, ȳ) = regF−1(ȳ, x̄).

Proof. Let us give the proof of these equivalences, which holds also with small
changes for appropriate semilocal and modifications of the local notions from Def-
inition 3.1 in both finite and infinite dimensions; see Sections 3.4 and 3.5. We split
the proof into several steps of their own interest.

Step 1: Metric regularity in (3.2) can be equivalently verified only for vectors
(x, y) ∈ U × V satisfying the estimate dist(y;F(x)) ≤ γ for some γ > 0.

To verify this, let us show that for any η, γ > 0 there is ν > 0 such that (3.2)
holds for all x ∈ x̄ + νB and y ∈ ȳ + νB provided that it is valid for x ∈
x̄ + ηB and y ∈ ȳ + ηB with dist(y;F(x)) ≤ γ . Given (μ, η, γ ), denote ν :=
min{η, γμ/(μ+ 1)} and check that (3.2) holds for all x ∈ x̄ + νB and y ∈ ȳ + νB
with dist(y;F(x)) > γ . Observe that dist(x̄;F−1(y)) ≤ μ dist(y;F(x̄)) for such
x, y due to dist(y;F(x̄)) ≤ ‖y − ȳ‖ ≤ ν ≤ γ . This gives us

dist
(
x;F−1(y)

) ≤ dist
(
x̄;F−1(y)

)+ ‖x − x̄‖ ≤ μ dist
(
y;F(x̄))+ ‖x − x̄‖

≤ μ ‖y − ȳ‖ + ‖x − x̄‖ ≤ ν(μ+ 1) ≤ γμ < μ dist
(
y;F(x))

by the choice of ν and thus verifies the statement of Step 1.

Step 2: Metric regularity implies covering with covF(x̄, ȳ) ≥ (regF(x̄, ȳ))−1.

Take η,μ > 0 such that (3.2) holds for x ∈ U := int (x̄ + ηB) and y ∈ V with
some V . Define ν := min{η,μ}, Ũ := int (x̄ + νB) and then pick

v ∈ int
(
F(x) ∩ V + (r/μ)B) with x + rB ⊂ Ũ for some r > 0.
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By these constructions and the assumed estimate (3.2), we conclude that
dist(x;F−1(v)) < r for such (x, v, r), which allows us to choose u ∈ F−1(v)

with u ∈ ı(x + rB) and v ∈ F(u) ⊂ F(ı(x + rB)). This ensures that

int
(
F(x) ∩ V + μ−1rB

) ⊂ F
(
int (x + rB)) whenever x + rB ⊂ Ũ .

Taking now an arbitrary small ε > 0 gives us the inclusions

F(x)∩V +(μ+ε)−1rB ⊂ int
(
F(x)∩V +μ−1rB

) ⊂ F
(
int (x+rB)) ⊂ F(x+rB)

when x + rB ⊂ Ũ . This justifies the covering property with covF(x̄, ȳ) ≥
(regF(x̄, ȳ))−1 while the case of regF(x̄, ȳ) = 0 is trivial.

Step 3: Covering implies metric regularity with covF(x̄, ȳ) ≤ (regF(x̄, ȳ))−1.

Indeed, by the covering property, we find κ, η > 0 such that

F(x) ∩ V + κrB ⊂ F(x + rB) whenever x + rB ⊂ U := int (x̄ + ηB), r > 0

for some neighborhood V of ȳ. Denote ν := η/2, Ũ := int (x̄ + νB), γ := κη/2,
and show that (3.2) holds for all x ∈ Ũ and y ∈ V with dist(y;F(x)) ≤ γ /2. This
is sufficient for metric regularity due to Step 1. To proceed, fix such a pair (x, y)
and consider any number α satisfying dist(y;F(x)) < α < γ . Then

y ∈ F(x) ∩ V + κrB and x + rB ⊂ U with r := α/κ.

The covering property ensures the existence of u ∈ x+ rB with u ∈ F−1(y), which
implies that dist(x;F−1(y)) ≤ ‖x − u‖ ≤ r = α/κ . Passing now to the limit as
α ↓ dist(y;F(x)) gives us the following estimate:

dist
(
x;F−1(y)

) ≤ κ−1dist
(
y;F(x)) for those x ∈ Ũ and y ∈ V

that satisfy dist(y;F(x)) ≤ γ . It justifies the statement of this step with
covF(x̄, ȳ) ≤ (regF(x̄, ȳ))−1 and thus completes the proof of assertion (i).

Step 4: Lipschitz-like property of F implies metric regularity of F−1 with the
estimate regF−1(ȳ, x̄) ≤ lipF(x̄, ȳ).

To verify it, let � := lipF(x̄, ȳ) and for any ε > 0 get

F(x) ∩ V ⊂ F(u)+ (�+ ε)‖x − u‖B whenever x, u ∈ U
with some neighborhoods U of x̄ and V of ȳ. This tells us that

dist
(
y;F(u)) ≤ (�+ ε)‖x − u‖ if y ∈ F(x) ∩ V and x, u ∈ U.

Take r > 0 with x̄ + rB ⊂ U and observe from the above that

dist
(
y;F(u)) ≤ (�+ ε) dist

(
u;F−1(y)

)
(3.5)
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whenever u ∈ x̄ + rB, y ∈ V , and F−1(y) ∩ (x̄ + rB) 
= ∅. It is easy to check that
this ensures the validity of (3.5) for all u ∈ Ũ := x̄ + (r/3)B and y ∈ V satisfying
dist(u;F−1(y)) ≤ γ := r . Taking into account the statement proved in Step 1 and
the arbitrary choice of ε > 0, we conclude that F−1 is metrically regular around
(ȳ, x̄) with regF−1(ȳ, x̄) ≤ lipF(x̄, ȳ).

Step 5: Metric regularity of F−1 implies the Lipschitz-like property of F with the
estimate lipF(x̄, ȳ) ≤ regF−1(ȳ, x̄).

Indeed, denoting μ := regF−1(ȳ, x̄) and picking any ε > 0 give us

dist
(
y;F(u)) ≤ (μ+ ε) dist

(
u;F−1(y)

)
for all u ∈ U and y ∈ V

with some neighborhoods U of x̄ and V of ȳ, which yields in turn that

F(x) ∩ V ⊂ F(u)+ (μ+ 2ε)‖u− x‖B for all x, u ∈ U.
This verifies the claimed assertion and completes the proof of (ii). �

3.1.2 Coderivative Characterizations of Well-Posedness

The established equivalences show that any necessary and/or sufficient condition
and modulus estimates obtained for one of the three well-posedness properties from
Definition 3.1 imply the corresponding assertions for the other ones. The following
principal result provides complete characterizations of these properties for general
closed-graph (of our standing assumption) multifunctions with calculating the exact
bounds of their moduli via the coderivative (1.15) precisely at the point in question.

Theorem 3.3 (Coderivative Criteria for Well-Posedness of Multifunctions). Let
F : Rn →→ R

m with (x̄, ȳ) ∈ gphF . Then we have the following characterizations
of the well-posedness properties:

(i) F enjoys the covering property around (x̄, ȳ) if and only if

kerD∗F(x̄, ȳ) = {0}. (3.6)

In this case the exact covering bound of F around (x̄, ȳ) is calculated by

covF(x̄, ȳ) = inf
{
‖u‖

∣∣∣ u ∈ D∗F(x̄, ȳ)(v), ‖v‖ = 1
}
. (3.7)

(ii) F is metrically regular around (x̄, ȳ) if and only if condition (3.6) holds. In
this case the exact regularity bound of F at (x̄, ȳ) is calculated by

regF(x̄, ȳ) = ‖D∗F(x̄, ȳ)−1‖ = ‖D∗F−1(ȳ, x̄)‖, (3.8)

where the norm of a positively homogeneous mapping is defined in (1.14).
(iii) F is Lipschitz-like around (x̄, ȳ) if and only if

D∗F(x̄, ȳ)(0) = {0}. (3.9)
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In this case the exact Lipschitzian bound of F around (x̄, ȳ) is calculated by

lipF(x̄, ȳ) = ‖D∗F(x̄, ȳ)‖. (3.10)

Proof. We split the proof into three major steps of their own interest.

Step 1: If F is Lipschitz-like around (x̄, ȳ), then

‖D∗F(x̄, ȳ)‖ ≤ lipF(x̄, ȳ) < ∞ (3.11)

and therefore the injectivity condition (3.9) holds.

To proceed, observe first that (3.11) yields the validity of (3.9) by

‖u‖ ≤ ‖D∗F(x̄, ȳ)‖ · ‖v‖ for all u ∈ D∗F(x̄, ȳ)(v), v ∈ R
m.

We verify (3.11) by showing that the Lipschitz-like property of F around (x̄, ȳ)with
modulus � ≥ 0 implies that

‖D∗F(x̄, ȳ)‖ ≤ �. (3.12)

Assuming this property, pick any u ∈ D∗F(x̄, ȳ)(v) and by using the limit-

ing coderivative representation (1.17) find sequences (xk, yk)
gphF−→ (x̄, ȳ) and

(uk, vk) → (u, v) such that (uk,−vk) ∈ N̂((xk, yk); gphF) for all k ∈ N. Fix
any k sufficiently large, and observe that, due to the aforementioned robustness of
the Lipschitz-like property, F is Lipschitz-like around (xk, yk) with the same mod-
ulus �, which we assume to be positive by taking into account that the case of � = 0
is trivial. This means that there exists η > 0 such that

F(x) ∩ (yk + ηB) ⊂ F(z)+ �‖x − z‖B for all x, z ∈ xk + 2ηB.

Employing definition (1.5) of regular normals, for any εk > 0 we can find a positive
number ν ≤ min{η, �η} such that

〈uk, z− xk〉 − 〈vk,w − yk〉 ≤ εk
(‖z− xk‖ + ‖w − yk‖

)
(3.13)

whenever (z, w) ∈ gphF with ‖z − xk‖ ≤ ν and ‖w − yk‖ ≤ ν. Choose z ∈
x + min{ν, ν�−1}B and observe that ‖z − xk‖ ≤ ‖z − x‖ + ‖x − xk‖ ≤ 2η. Using
the above Lipschitz-like relationship with y ∈ F(x) ∩ (yk + ηB) and the chosen
vector z allows us to find w ∈ F(z) satisfying

‖w − y‖ ≤ �‖x − z‖ ≤ �min
{
ν, �−1ν

} = min
{
�ν, ν

} ≤ ν.

If 0 < � < 1, then we have the estimates

‖z− xk‖ ≤ ν and ‖w − yk‖ ≤ �ν,

which imply by (3.13) that ν‖uk‖ ≤ �ν‖vk‖ + εk(ν + �ν) and hence
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‖uk‖ ≤ �‖vk‖ + εk(1 + �).
In the remaining case where � > 1 we have ‖z − xk‖ ≤ ν�−1 and ‖w − yk‖ ≤ ν,
which imply in turn that ν�−1‖uk‖ ≤ ν‖vk‖ + εk(ν + �−1ν) and hence

‖uk‖ ≤ �‖vk‖ + εk(1 + �).
Passing now to the limit as k → ∞ with εk ↓ 0 and taking into account the second
representation of the normal cone in (1.7), we arrive at (3.12) and thus verify the
assertion claimed in this step.

Step 2: The kernel condition (3.6) ensures the covering property of F around (x̄, ȳ)
with the exact bound estimate

covF(x̄, ȳ) ≥ inf
{
‖u‖

∣∣∣ u ∈ D∗F(x̄, ȳ)(v), ‖v‖ = 1
}
> 0. (3.14)

Denote a(F, x̄, ȳ) := inf
{‖u‖ ∣∣ u ∈ D∗F(x̄, ȳ)(v), ‖v‖ = 1

}
in (3.14) and

observe that condition (3.6) yields a(F, ȳ, x̄) > 0. Indeed, assuming the contrary
brings us to a contradiction due to the robustness property of the normal cone. Thus
to prove the statements of this step, it suffices to show that every 0 < κ < a(F, x̄, ȳ)
is a covering modulus of F around (x̄, ȳ). Supposing that it is not true for some fixed
0 < κ < a(F, x̄, ȳ), the negation of (3.1) gives us sequences xk → x̄, yk → ȳ, and
rk ↓ 0 as well as zk ∈ R

m satisfying

yk ∈ F(xk), ‖zk − yk‖ ≤ κrk, zk /∈ F(x) for all x ∈ Brk (xk). (3.15)

Fix k ∈ N and define the set Ek and the function θk : Rn × R
m → R+ by

Ek := (
gphF

) ∩ (
(xk, yk)+ rkB

)
and θk(x, y) := ‖x‖ + rk‖y‖,

where B stands for the closed unit ball of Rn×R
m. Consider now the l.s.c. function

ϕk : Rn × R
m → R with the (extended) nonnegative values

ϕk(x, y) := ‖y − zk‖ + δ((x, y);Ek
)
, (x, y) ∈ R

n × R
m,

and apply to it Theorem 2.12 with εk := κrk , λk := rk − r2
k , the initial point

(xk, yk), and the function θk defined above. Taking into account that ϕk(xk, yk) ≤ εk
by (3.15) and the structures of ϕk and Ek , we find a pair (x̄k, ȳk) ∈ gphF with
‖(x̄k, ȳk)− (xk, yk)‖ ≤ rk such that the function

ψk(x, y) := ‖y − zk‖ + κ

1 − rk
(
‖x − x̄k‖ + rk‖y − ȳk‖

)
+ δ((x, y); gphF

)

attains its unconditional local minimum on R
n × R

m at (x̄k, ȳk). Note that ψk can
be treated as the sum of two functions, one of which is convex and Lipschitz contin-
uous, while the other is l.s.c. around (x̄k, ȳk). Applying now Corollary 2.20 to this
sum and using subdifferentiation of the (convex) norm function at zero and nonzero
points (see Exercise 1.66) together with the condition zk /∈ F(x̄k) by (3.15) give us
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uk and vk satisfying

uk ∈ D∗F(x̄k, ȳk)(vk) with ‖uk‖ ≤ κ

1 − rk and ‖vk‖ → 1 as k → ∞.

Thus we get (u, v) such that (uk, vk) → (u, v) along a subsequence and that

‖u‖ ≤ κ with u ∈ D∗F(x̄, ȳ)(v),

where the latter is due to the robustness property from Proposition 1.3. The obtained
contradiction justifies the assertions of Step 2.

Step 3: Completing the proof of the theorem.

It follows from the results established in Steps 1 and 2 due to the equivalences of
Theorem 3.2 and the relationship

[
D∗F−1F(ȳ, x̄)(0) = {0}] ⇐⇒ [

kerD∗F(x̄, ȳ) = {0}]

between the coderivatives of F and its inverse as well as the one

1
/

‖H−1‖ = inf
{‖y‖ ∣∣ y ∈ H(x), ‖x‖ = 1

}

holding for any positively homogeneous multifunction. �
Before presenting several consequences of Theorem 3.3 in this section (and more

later on), let us draw the reader’s attention to some principal issues concerning the
coderivative criterion for the Lipschitz-like property.

Remark 3.4 (Discussions on the Coderivative Characterization of Lipschitzian
Behavior). Observe the following:

(i) The approach of classical analysis is from continuity to differentiability, where
smooth functions form a subclass of Lipschitz continuous ones. Here we have the
opposite direction for nonsmooth and set-valued mappings: from generalized differ-
entiability to Lipschitz continuity, where the coderivative allows us to fully charac-
terize Lipschitzian behavior of multifunctions.

(ii) Lipschitz continuity in both classical and set-valued frameworks can be
viewed as continuity with linear rate, where the rate of linearity is crucial for char-
acterizing such continuity as well as the equivalent notions of linear openness and
(first-order) metric regularity in Theorem 3.3.

(iii) Replacing in the coderivative criterion (3.9) the basic normal cone to the
graph of F by Clarke’s convexification (1.60) leads us to the condition

[
(u, 0) ∈ N((x̄, ȳ); gphF

)] �⇒ u = 0, (3.16)

which is sufficient for the Lipschitz-like property of F around (x̄, ȳ) but far removed
from the necessity; see [512, 513] for further details. Amazingly it never holds even
in the trivial case where the mapping F = f : Rn → R

n is single-valued and locally
Lipschitzian while nonsmooth around x̄. It follows from Rockafellar’s theorem on
the subspace property of the convexified normal cone; see Exercise 1.46(ii). This
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phenomenon is also valid for Lipschitzian manifolds (or graphically Lipschitzian
set-valued mappings) that are not “strictly smooth” at the reference point; see more
discussions in Section 1.5.

3.1.3 Characterizations in Special Cases

This subsection concerns deriving from the coderivative characterizations of The-
orem 3.3 for general closed-graph multifunctions some useful consequences in re-
markable special cases. We start with characterizing the classical (Hausdorff) lo-
cal Lipschitz continuity of multifunctions meaning that (3.3) holds with V = R

m.
Recall that the (local) uniform boundedness of set-valued mappings is defined in
Subsection 1.2.1.

Corollary 3.5 (Coderivative Criterion for Local Lipschitz Continuity of Set-
Valued Mappings). Let F : Rn →→ R

m be locally bounded around x̄ ∈ domF , for
any ȳ ∈ F(x̄). Then the mapping F is locally Lipschitzian around x̄ if and only if
we have the condition

D∗F(x̄, ȳ)(0) = {0} for all ȳ ∈ F(x̄).
In this case the exact Lipschitzian bound of F around x̄ is calculated by

lipF(x̄) = max
{‖D∗F(x̄, ȳ)‖ ∣∣ ȳ ∈ F(x̄)}.

Proof. Observe that, under the assumptions made, the local Lipschitzian property
of F around x̄ is equivalent to its Lipschitz-like property around (x̄, ȳ) for every
ȳ ∈ F(x̄). This follows from the classical fact that any open covering of a closed and
bounded set in finite dimensions can be reduced to a finite subcovering. It implies
also that

lipF(x̄) = max
{
lipF(x̄, ȳ)

∣∣ ȳ ∈ F(x̄)},
where the maximum is realized due to the upper semicontinuity of lipF(·, ·) on the
graph of F . This allows us to deduce the claimed statements from the corresponding
ones in Theorem 3.3(iii). �

In the next corollary we present characterizations of metric regularity and cover-
ing for set-valued mappings with convex graphs, where the coderivative calculation
allows us to describe the criteria and exact bound formulas entirely in terms of the
range and graph of the given mapping.

Corollary 3.6 (Metric Regularity and Covering of Convex-Graph Multifunc-
tions). Assume that the graph of F : Rn →→ R

m is convex and pick some ȳ ∈ rgeF .
Then the validity of both metric regularity and covering properties of F around
(x̄, ȳ) for any x̄ ∈ F−1(ȳ) is equivalent to ȳ ∈ int(rgeF). In this case the corre-
sponding exact bounds are calculated by
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regF(x̄, ȳ) = max‖u‖≤1

{
‖v‖

∣∣∣ 〈u, x − x̄〉 ≤ 〈v, y − ȳ〉 for all (x, y) ∈ gphF
}
,

covF(x̄, ȳ) = min‖v‖=1

{
‖u‖

∣∣∣ 〈u, x − x̄〉 ≤ 〈v, y − ȳ〉 for all (x, y) ∈ gphF
}
.

Proof. Follows from Theorem 3.3(i,ii) due to the coderivative representation for
convex-graph mappings in Proposition 1.13. �

We conclude this section with consequences of Theorem 3.3 applied to two
classes of single-valued mappings. The first class contains locally Lipschitzian ones
for which the criteria and exact bounds for metric regularity and covering are ex-
pressed via basic subgradients of the corresponding scalarization.

Corollary 3.7 (Metric Regularity and Covering of Single-Valued Locally Lip-
schitzian Mappings). Let f : Rn → R

m be locally Lipschitz around x̄. Then f is
metrically regular and enjoys the covering property around this point if and only if
we have the implication

[
0 ∈ ∂〈v, f 〉(x̄)] �⇒ v = 0.

In this case the exact regularity and covering bounds are calculated by

reg f (x̄) = max
{
‖v‖

∣∣∣ u ∈ ∂〈v, f 〉(x̄), ‖u‖ ≤ 1
}
,

cov f (x̄) = min
{
‖u‖

∣∣∣ u ∈ ∂〈v, f 〉(x̄), ‖v‖ = 1
}
.

Proof. Follows from Theorem 3.3(i,ii) due to the coderivative scalarization of The-
orem 1.32 for locally Lipschitzian mappings and the norm definition (1.14). The
maximum and minimum in the exact bound formulas are realized due to the robust-
ness property of the basic subdifferential. �

The last corollary of Theorem 3.3 presented here provides complete characteri-
zations of metric regularity and covering for smooth mappings.

Corollary 3.8 (Metric Regularity and Covering of Smooth Mappings). Let
f : Rn → R

m with m ≤ n be smooth around x̄. Then it is metrically regular and
enjoys the covering property around this point if and only if its Jacobian matrix
∇f (x̄) has full rank:

rank ∇f (x̄) = m, or equivalently ∇f (x̄)Rn = R
m. (3.17)

In this case the exact regularity and covering bounds are calculated by

reg f (x̄) = ∥∥(∇f (x̄)∗)−1∥∥, cov f (x̄) = min
{‖∇f (x̄)∗v‖ ∣∣ ‖v‖ = 1

}
. (3.18)

If furthermore m = n, then we have
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cov f (x̄) = ‖∇f (x̄)−1‖−1.

Proof. Follows from Theorem 3.3, or from Corollary 3.7, due to the coderivative
representation for smooth mappings by Proposition 1.12. Let us also present another
proof of the sufficiency of the surjectivity condition (3.18) for the covering/metric
regularity property of f around x̄, which works for strictly differentiable mappings
between arbitrary Banach spaces. Put A := ∇f (x̄). The open mapping theorem
implies by the surjectivity of A (see Exercise 1.53) that for any y from the image
space there is x ∈ A−1(y) satisfying

‖x‖ ≤ μ‖y‖ with μ−1 = inf
{
‖A∗v‖

∣∣∣ ‖v‖ = 1
}
. (3.19)

Using the strict differentiability of f at x̄, for every γ ∈ (0, μ−1), we find a neigh-
borhood U of x̄ such that

‖f (x1)− f (x2)− A(x1 − x2)‖ ≤ γ ‖x1 − x2‖ for all x1, x2 ∈ U.
Our aim now is to justify the inclusion

f (̂x)+ (μ−1 − γ )rB ⊂ f (̂x + rB) for x̂ + rB ⊂ U, r > 0 (3.20)

meaning that f enjoys the covering property around x̄ with modulus κ = μ−1 − γ .
Since γ > 0 can be taken arbitrarily small, we get from (3.20) that

cov f (x̄) ≥ μ−1 = inf
{
‖∇f (x̄)∗v‖

∣∣∣ ‖v‖ = 1
}
,

which verifies the covering property of f with the equality in (3.18) by taking into
account that the opposite inequality follows directly from Step 1 in the proof of
Theorem 3.3 and the equivalences of Theorem 3.2 held in any Banach spaces. Note
that we cannot generally claim that the minimum is realized in the exact bound
formula of (3.18) in infinite dimensions.

Thus it remains to verify inclusion (3.20), where we can obviously take x̂ = 0
and f (̂x) = 0 without loss of generality. The latter means that for every y ∈ (μ−1 −
γ )rB the equation y = f (x) has a solution x ∈ rB ⊂ U .

To justify (3.20) via the above claim, fix y ∈ Y with ‖y‖ ≤ (μ−1 − γ )r and
construct the desired solution x as the limit of a sequence {xk}, k = 0, 1, . . .,
recurrently defined in the following way. Starting with x0 := 0, we use (3.19) to
construct xk by the iterative procedure of Newton’s type, which is known as the
Lyusternik-Graves iterative process (see Section 3.5):

Axk = y − f (xk−1)+ Axk−1 with ‖xk − xk−1‖ ≤ μ ‖y − f (xk−1)‖
for all k ∈ N. It follows from the above construction that

‖xk+1 − xk‖ ≤ μ(μγ )k ‖y‖ and
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‖xk‖ ≤
k∑

j=1

‖xj − xj−1‖ ≤ μ ‖y‖
k∑

j=1

(μγ )j−1

≤ μ ‖y‖/(1 − μγ ) = ‖y‖/(μ−1 − γ ) ≤ r

for every k ∈ N. Therefore {xk} is a Cauchy sequence that converges to some x with
‖x‖ ≤ r . Passing to the limit in these iterations as k → ∞, we arrive at y = f (x)

and thus complete the alternative proof of the sufficiency. �

3.2 Coderivative Calculus

This section contains basic calculus rules for the coderivative (1.15) of set-valued
mappings satisfying our standing closed-graph (i.e., continuity in the single-valued
case) assumption. Although the results below are given for mappings between finite-
dimensional spaces, it is more convenient here to use the star-notation (x∗, y∗,
etc.) to signify dual-space variables; see also Sections 3.5 and 3.4 for infinite-
dimensional extensions.

3.2.1 Coderivative Sum Rules

We start with sum rules, which invokes (in one part) the inner semicontinuity notion
for set-valued mappings at graph points defined and discussed in Exercise 2.46.
Observe that a multifunction F is inner semicontinuous at (x̄, ȳ) ∈ gphF if it is
Lipschitz-like around this point.

Given two closed-graph multifunctions F1, F2 : Rn →→ R
m, consider the auxil-

iary mapping S : Rn × R
m →→ R

2m given by

S(x, y) := {
(y1, y2) ∈ R

m × R
m
∣∣ y1 ∈ F1(x), y2 ∈ F2(x), y = y1 + y2

}
, (3.21)

and derive now two related while independent coderivative sum rules.

Theorem 3.9 (General Sum Rules for Coderivatives). Let Fi : Rn →→ R
m for

i = 1, 2, and let (x̄, ȳ) ∈ gph (F1 + F2). The following assertions hold:
(i) Fix (ȳ1, ȳ2) ∈ S(x̄, ȳ) from (3.21), and suppose that this mapping is inner

semicontinuous at (x̄, ȳ, ȳ1, ȳ2) and that the qualification condition

D∗F1(x̄, ȳ1)(0) ∩
(−D∗F2(x̄, ȳ2)(0)

) = {0} (3.22)

is satisfied. Then for all y∗ ∈ R
m, we have the inclusion

D∗(F1 + F2)(x̄, ȳ)(y
∗) ⊂ D∗F1(x̄, ȳ1)(y

∗)+D∗F2(x̄, ȳ2)(y
∗). (3.23)

If one of the mappings Fi , say F1, is single-valued and continuously differentiable
around x̄, then (3.23) becomes the equality
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D∗(F1 + F2)(x̄, ȳ)(y
∗) = ∇F1(x̄)

∗y∗ +D∗F2
(
x̄, ȳ − F1(x̄)

)
(y∗) (3.24)

for all y∗ ∈ R
m without any other assumptions.

(ii) Suppose that the mapping S in (3.21) is locally bounded around (x̄, ȳ) and
that the assumptions in (i) ensuring (3.23) hold for every pair (ȳ1, ȳ2) ∈ S(x̄, ȳ).
Then for all y∗ ∈ R

m, we have the inclusion

D∗(F1 + F2)(x̄, ȳ)(y
∗) ⊂

⋃

(ȳ1,ȳ2)∈S(x̄,ȳ)

[
D∗F1(x̄, ȳ1)(y

∗)+D∗F2(x̄, ȳ2)(y
∗)
]
.

Proof. First we justify inclusion (3.23) in assertion (i). Take any (x∗, y∗) with x∗ ∈
D∗(F1 + F2)(x̄, ȳ)(y

∗) and find by definition (1.15) and the first representation
in (1.7) sequences (xk, yk) ∈ gph (F1+F2) and (x∗

k ,−y∗
k ) ∈ N̂εk (xk, yk); gph (F1+

F2)) such that (xk, yk) → (x̄, ȳ), x∗
k → x∗, and y∗

k → y∗ as k → ∞. Due to the
assumed inner semicontinuity of the mapping S from (3.21) at (x̄, ȳ, ȳ1, ȳ2), we get
a sequence (y1k, y2k) → (ȳ1, ȳ2) with (y1k, y2k) ∈ S(xk, yk) for all k ∈ N. Define
further the sets

�i := {
(x, y1, y2) ∈ R

n × R
m × R

m
∣∣ (x, yi) ∈ gphFi

}
, i = 1, 2,

that are locally closed around (x̄, ȳ1, ȳ2) with (xk, y1k, y2k) ∈ �1 ∩�2. It is easy to
check that (x∗

k ,−y∗
k ,−y∗

k ) ∈ N̂((xk, y1k, y2k);�1 ∩ �2) for all k ∈ N, which tells
us by passing to the limit as k → ∞ that

(x∗,−y∗,−y∗) ∈ N((x̄, ȳ1, ȳ2);�1 ∩�2
)
.

Now we apply Theorem 2.16 to the above set intersection observing that the nor-
mal qualification condition (2.26) for these sets reduces to (3.22). The intersection
rule (2.27) ensures in this setting the existence of

(x∗
1 ,−y∗

1 ) ∈ N((x̄, ȳ1); gphF1
)

and (x∗
2 ,−y∗

2 ) ∈ N((x̄, ȳ2); gphF2
)

such that (x∗,−y∗,−y∗) = (x∗
1 ,−y∗

1 , 0) + (x∗
2 , 0,−y∗

2 ). This readily shows that
x∗ = x∗

1 + x∗
2 with x∗

i ∈ D∗Fi(x̄, ȳi )(y∗), i = 1, 2 and thus justifies (3.23).
To finish the proof of assertion (i), it remains to verify equality (3.24) if F1

is single-valued and smooth around x̄. In this case we have D∗F1(x̄)(y
∗) =

{∇F1(x̄)
∗y∗}. Hence the qualification condition (3.22) holds automatically and the

mapping S in (3.21) is obviously locally bounded around (x̄, ȳ). The inclusion “⊂”
in (3.24) follows directly from (3.22) and Proposition 1.12. Applying it to the sum
F2 = (F1 + F2) + (−F1), we arrive at the opposite inclusion in (3.24) and thus
justify the claimed sum rule equality.

To verify (ii), observe that the local boundedness of S around (x̄, ȳ) implies the
existence of a subsequence of (y1k, y2k) ∈ S(xk, yk), which converges to some
(ȳ1, ȳ2). It follows from the standing closed-graph assumptions imposed on Fi , i =
1, 2, that (ȳ1, ȳ2) ∈ S(x̄, ȳ). Then we proceed as in the proof of assertion (i) and
complete the proof of the theorem. �
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The following result reveals an important consequence of Theorem 3.9, which
tells us that the qualification condition (3.22) holds automatically if one of the map-
pings Fi is Lipschitz-like around the corresponding point. It is due to the coderiva-
tive characterization of this property established in Section 3.1.

Corollary 3.10 (Coderivative Sum Rules for Lipschitz-Like Multifunctions).
Suppose in the framework of Theorem 3.9(i) that one of the mappings Fi is Lipschitz-
like around the corresponding point (x̄, ȳi ), i = 1, 2. Then the sum rule inclusion
(3.23) holds. If in the setting of Theorem 3.9(ii) the Lipschitz-like property is im-
posed on one of Fi around (x̄, ȳi ) for every (ȳ1, ȳ2) ∈ S(x̄, ȳ), then we have the
sum rule inclusion therein.

Proof. The validity of the qualification condition (3.22) under the imposed
Lipschitz-like assumptions follows from Theorem 3.3(iii). �

3.2.2 Coderivative Chain Rules

Our next theorem unifies several coderivative chain rules providing independent
results of the inclusion and equality types in large generality. The composition (F ◦
G) : Rn →→ R

q of two set-valued mappings F : Rm →→ R
q and G : Rn →→ R

m is
naturally defined by

(
F ◦G)(x) :=

⋃

y∈G(x)
F (y) =

{
z ∈ R

q
∣∣∣ ∃ y ∈ G(x) with z ∈ F(y)

}
, x ∈ R

n.

Theorem 3.11 (General Coderivative Chain Rules). Given F : Rm →→ R
q and

G : Rn →→ R
m, let x̄ ∈ (F ◦G)(x̄), and consider the mapping

S(x, z) := G(x) ∩ F−1(z) = {
y ∈ G(x)∣∣ z ∈ F(y)} (3.25)

for all (x, z) ∈ R
n × R

q . The following assertions hold:
(i) Fix ȳ ∈ S(x̄, z̄) in (3.25) and suppose that the mapping S is inner semicontin-

uous at (x̄, z̄, ȳ) and that the qualification condition

D∗F(ȳ, z̄)(0) ∩ kerD∗G(x̄, ȳ) = {0} (3.26)

is satisfied. Then for all z∗ ∈ R
q we have the inclusion

D∗(F ◦G)(x̄, z̄)(z∗) ⊂ D∗G(x̄, ȳ) ◦D∗F(ȳ, z̄)(z∗). (3.27)

(ii) Suppose that the mapping S in (3.25) is locally bounded around (x̄, z̄) and
that the qualification condition (3.26) holds for every ȳ ∈ S(x̄, z̄). Then for all
z∗ ∈ R

q we have the inclusion

D∗(F ◦G)(x̄, z̄)(z∗) ⊂
⋃

ȳ∈S(x̄,z̄)

[
D∗G(x̄, ȳ) ◦D∗F(ȳ, z̄)(z∗)

]
.
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(iii) Let G = g be single-valued and continuously differentiable around x̄ with
ȳ = g(x̄). Then we have the equality

D∗(F ◦ g)(x̄, z̄)(z∗) = ∇g(x̄)∗ ◦D∗F(ȳ, z̄)(z∗), z∗ ∈ R
q, (3.28)

when either the Jacobian matrix ∇g(x̄) has full rank or the qualification condi-
tion (3.26) is satisfied and F is graphically regular at (ȳ, z̄). In the latter case the
composition F ◦ g is graphically regular at (x̄, z̄).

Proof. To verify assertion (i), define � : Rn × R
m →→ R

q by

�(x, y) := F(y)+�((x, y); gphG
)

for (x, y) ∈ R
n × R

m, (3.29)

where �(·; gphG) is the indicator mapping of the set gphG relative to R
q con-

sidered in Exercise 1.59. It follows from the sum rule of Theorem 3.9(ii) and the
result of the aforementioned exercise applied to the mapping � in (3.29) that for
any z∗ ∈ R

q we have the inclusion

D∗�(x̄, ȳ, z̄)(z∗) ⊂ (
0,D∗F(ȳ)(z∗)

)+N((x̄, ȳ); gphG
)

(3.30)

under the validity of the qualification condition (3.26). On the other hand, it can
be deduced from the construction of � in (3.29) and the first representation of the
normal cone in Theorem 1.6 that

D∗(F ◦G)(x̄, z̄)(z∗) ⊂ {
x∗ ∈ R

n
∣∣ (x∗, 0) ∈ D∗�(x̄, ȳ, z̄)(z∗)

}
(3.31)

for all z∗ ∈ R
q under the assumed inner semicontinuity of the mapping S at

(x̄, z̄, ȳ). Combining (3.30) and (3.31) gives us the chain rule inclusion (3.28).
The proof of (ii) is similar to (i). Now we justify assertion (iii), where (3.28)

is the equality version of (3.27) for smooth inner mappings. Let us start with
showing that inclusion (3.31) holds as equality provided that g is locally Lip-
schitzian around x̄ with some modulus � ≥ 0. Indeed, take any (x∗, z∗) with
(x∗, 0) ∈ D∗�(x̄, g(x̄), z̄)(z∗) and by (1.17) find sequences (xk, zk) → (x̄, z̄) and
(x∗
k , y

∗
k , z

∗
k) → (x∗, 0, z∗) such that zk ∈ F(g(xk)) and

lim sup
x→xk, z→zk
z∈F(g(x))

〈(x∗
k , y

∗
k ,−z∗k), (x, g(x), z)− (xk, g(xk), zk)〉
‖(x, g(x), z)− (xk, g(xk), zk)‖ ≤ 0

for all k ∈ N. It implies by the local Lipschitz continuity of g that

lim sup
x→xk, z→zk
z∈F(g(x))

〈x∗
k , x − xk〉 − 〈z∗k, z− zk〉

‖(x, z)− (xk, zk)‖ ≤ (�+ 1)‖y∗
k ‖ ↓ 0,

and thus (0, x∗) ∈ D∗(F ◦ g)(x̄, z̄)(z∗) by (1.15) and the second representation of
basic normals in Theorem 1.6. This verifies the equality in (3.31).

It is straightforward to observe from the definitions that we always have
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D̂∗�(x̄, ȳ, z̄)(z∗) ⊂ (
0, D̂∗F(ȳ)(z∗)

)+ N̂((x̄, ȳ); gphG
)
, z∗ ∈ R

q,

and so (3.30) becomes an equality if both F and G are graphically regular at the
corresponding points. When G = g is single-valued, the graphical regularity for
g holds with D∗g(x̄)(y∗) = {∇g(x̄)∗y∗} if g is of class C1 around x̄. (It actually
reduces to the strict differentiability of g at this point; see [522, Theorem 1.46] and
Exercise 1.60(iii) above.) Combining this with the equality in (3.31) justifies the
equality and regularity statement in (iii) under the graphical regularity assumption
imposed on F .

It remains to verify equality (3.28) when ∇g(ȳ) has full rank; note that the graph-
ical regularity of F ◦ g is not claimed in this case. Let I be the identity operator on
R
q . Then (g, I ) : Rn × R

q → R
m × R

q is of class C1 around (x̄, z̄) with full
rank of ∇(g, I )(x̄, z̄). It is easy to see that (g, I )−1(gphF) = gph(F ◦ g). Thus
the chain rule (3.28) follows from representation of normals to inverse images of
smooth mappings given in Exercise 1.54(ii). �

There are a great many useful consequences of Theorem 3.11. We present some
of them in this and the next sections, while others are formulated as exercises be-
low. Let us start with efficient conditions ensuring the validity of the underlying
qualification condition (3.26), and hence the coderivative chain rules, due to the
well-posedness characterizations of Section 3.1.

Corollary 3.12 (Coderivative Chain Rules for Lipschitz-Like and Metrically
Regular Mappings). Fix z̄ ∈ (F ◦G)(x̄) and ȳ ∈ G(x̄)∩F−1(z̄) and suppose that
the mapping S in (3.25) is inner semicontinuous at (x̄, z̄, ȳ). Then the coderivative
chain rule (3.27) holds if either F is Lipschitz-like around (ȳ, z̄) or G is metrically
regular around (x̄, ȳ). Alternatively, the local boundedness of S around (x̄, z̄) and
the validity of either the Lipschitz-like property of F around (ȳ, z̄) or metric regu-
larity of G around (x̄, ȳ) for every ȳ ∈ S(x̄, z̄) ensure the chain rule inclusion in
Theorem 3.11(ii).

Proof. Follows from Theorem 3.11 due to the coderivative characterizations of the
well-posedness properties in Theorem 3.3. �

The following corollary of Theorem 3.11 allows us to evaluate normals to inverse
images of sets under set-valued mappings. For brevity we consider only the case
corresponding to the local boundedness of S in Theorem 3.11.

Corollary 3.13 (Normals to Inverse Images). Given G : Rn →→ R
m and � ⊂ R

m

with x̄ ∈ G−1(�), suppose that the mapping x �→ G(x) ∩ � is locally bounded
around x̄ and that the qualification condition

N(ȳ;�) ∩ kerD∗G(x̄, ȳ) = {0} for all ȳ ∈ G(x̄) ∩� (3.32)

is satisfied, which is automatic whenG is metrically regular around (x̄, ȳ). Then we
have the inclusion

N
(
x̄;G−1(�)

) ⊂
⋃[

D∗G(x̄, ȳ)(y∗)
∣∣∣ y∗ ∈ N(ȳ;�), ȳ ∈ G(x̄) ∩�

]
,
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which becomes an equality whenG = g is single-valued and continuously differen-
tiable around x̄ and either ∇g(x̄) has full rank or� is normally regular at ȳ. In the
latter case, the set g−1(�) is normally regular at x̄.

Proof. Observe the composite representation of the inverse image

�
(
x;G−1(�)

) = (
F ◦G)(x) with F(y) := �(y;�)

via the indicator mappings of the sets in question relative to any space R
q as de-

fined in (1.59). Then the claimed results follow directly from Theorem 3.11 applied
to this composition. Note that the case where ∇g(x̄) has full rank in this corollary
recovers the calculation formula for normals to inverse images formulated in Exer-
cise 1.54(ii). �

3.2.3 Other Rules of Coderivative Calculus

The next theorem, which is in fact a consequence of Theorems 3.9 and 3.11, ap-
plies to general binary operations on set-valued mappings including addition, sub-
straction, various kinds of multiplication and division , as well as taking maxima,
minima, etc. We formalize this via the following h-compositions

(F1
h� F2)(x) :=

⋃{
h(y1, y2)

∣∣ y1 ∈ F1(x), y2 ∈ F2(x)
}

of two multifunctions F1 : Rn →→ R
m and F2 : Rn →→ R

l , where the single-valued
mapping h : Rm × R

l → R
q represents various binary operations. For brevity we

present only the inclusion formula for coderivatives corresponding to the case of
inner semicontinuity in Theorem 3.11.

Theorem 3.14 (Coderivatives of Compositions with Respect to Binary Oper-
ations). For F1 : Rn →→ R

m and F2 : Rn →→ R
l , consider their h-composition

F1
h� F2 with some h : Rm × R

l → R
q . Pick z̄ ∈ (F1

h� F2)(x̄) and suppose
that the set-valued mapping S : Rn × R

q →→ R
m × R

l defined by

S(x, z) := {
(y1, y2) ∈ R

m × R
l
∣∣ yi ∈ Fi(x), z = h(y1, y2)

}

is inner semicontinuous at the given (x̄, z̄, ȳ) ∈ gph S with ȳ = (ȳ1, ȳ2) and that h
is locally Lipschitzian around ȳ. Then for all z∗ ∈ R

q we have

D∗(F1
h� F2)(x̄, z̄)(z

∗) ⊂
⋃

(y∗
1 ,y

∗
2 )∈D∗h(ȳ)(z∗)

[
D∗F1(x̄, ȳ1)(y

∗
1 )+D∗F2(x̄, ȳ2)(y

∗
2 )
]
.

Proof. Define F : Rn →→ R
m × R

l by F(x) := (F1(x), F2(x)), and get

D∗F(x̄, ȳ)(y∗
1 , y

∗
2 ) ⊂ D∗F1(x̄, ȳ1)(y

∗
1 )+D∗F2(x̄, ȳ2)(y

∗
2 ). (3.33)
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Indeed, this follows by applying Theorem 3.9 to the sum F = F̃1 + F̃2, where
F̃1(x) := (F1(x), 0) and F̃2(x) := (0, F2(x)). Since

(F1
h� F2)(x) = (h ◦ F)(x)

and h is locally Lipschitzian around ȳ, we employ the chain rule of Corollary 3.12
to h ◦ F . Combining it with (3.33) justifies the claimed result. �

We conclude this section by illustrating the application of Theorem 3.14 to cal-
culate the coderivative of inner product

〈F1, F2〉(x) := {〈y1, y2〉
∣∣ yi ∈ Fi(x), i = 1, 2

}

of set-valued mappings F1, F2 : Rn →→ R
m.

Corollary 3.15 (Coderivatives of Inner Products). Given ν̄ ∈ 〈F1, F2〉(x̄) and
ȳi ∈ Fi(x̄) with ᾱ = 〈ȳ1, ȳ2〉, suppose that the mapping

(x, ν) �→ {
(y1, y2) ∈ R

2m
∣∣ yi ∈ Fi(x), ν = 〈y1, y2〉

}

is inner semicontinuous at (x̄, ν̄, ȳ1, ȳ2) and that the qualification condition (3.22)
is satisfied. Then for all λ ∈ R we have

D∗〈F1, F2〉(x̄, ν̄)(λ) ⊂ D∗F1(x̄, ȳ1)(λȳ2)+D∗F2(x̄, ȳ2)(λȳ1).

Proof. Follows from Theorem 3.14 with h(y1, y2) = 〈y1, y2〉. �

3.3 Coderivative Analysis of Variational Systems

Now we consider a broad class of parametric variational systems (PVS)

S(x) := {
y ∈ R

m
∣∣ 0 ∈ f (x, y)+Q(y)}, x ∈ R

n, (3.34)

defined by single-valued mappings f and set-valued mappings Q. Employing and
further developing appropriate results of coderivative calculus allow us to express
the coderivative of S via the corresponding constructions for the initial data f
and Q. Using these calculations, the coderivative criteria for well-posedness, and
the subsequent analysis leads us to a rather surprising (at the first glance) conclu-
sion that the naturally desired well-posedness property of metric regularity fails for
PVS (3.34) in fairly general settings.

3.3.1 Parametric Variational Systems

The parametric formalism of generalized equations (GEs) is given by
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0 ∈ f (x, y)+Q(y) with x ∈ R
n, y ∈ R

m, (3.35)

where f : Rn × R
m → R

q is a single-valued base mapping dependent on both
the decision variable y and the parameter variable x, while Q : Rm →→ R

q is a
parameter-independent set-valued field mapping. This formalism and the GE name
were coined by Robinson [661] for the case whereQ(y) is the normal cone mapping
to a convex set. The GE model (3.35) has been well recognized as a convenient
framework to study a variety of qualitative and quantitative/numerical aspects of
variational analysis, equilibria, etc. not only in finite-dimensional but also in infinite-
dimensional spaces; see Sections 3.4 and 3.5. Note that in the original setting of the
normal cone mapping Q(y) := N(y;�) in (3.35) generated by a convex set �, the
GEs under consideration can be rewritten in the form of parameterized variational
inequalities:

find y ∈ R
m such that 〈f (x, y), v − y〉 ≥ 0 for all v ∈ �, (3.36)

which cover various complementarity problems, KKT (Karush-Kuhn-Tucker) sys-
tems of first-order conditions in constrained optimization, etc.

The set-valued mapping x �→ S(x) of the parameter x defined in (3.34) is known
as the solution map associated with GE (3.34). Important issues in the theory and
applications of parametric GEs revolve around well-posedness properties of their
solution maps. The three fundamental robust properties of this type have been stud-
ied and characterized above via coderivatives in the general framework of set-valued
mappings. Natural questions arise about the validity of these properties in the par-
ticular framework of solution mappings to parametric GEs. Having in hand the ob-
tained coderivative criteria for well-posedness and the developed rules of coderiva-
tive calculus allows us to efficiently resolve these issues for PVS. In fact, a lot has
been done in this direction for the Lipschitz-like property of (3.34), a crucial ingre-
dient of robust Lipschitzian stability of parametric GEs; see, e.g., [522, Chapter 4].
The outcome for Lipschitzian stability of (3.34) is generally positive: it holds un-
der unrestrictive qualification conditions imposed on the initial data of (3.35). In
contrast we show below that this is not the case for the metric regularity and the
equivalent covering/linear openness properties, which fail, in particular, in the case
of subdifferential PVS where Q stands for subdifferential/normal cone mappings
generated by convex and other types of “nice” functions. Observe that the situation
is completely different for the general case of parametric constraint systems (PCS)
given in the form

F(x) := {
y ∈ R

m
∣∣ g(x, y) ∈ �}, x ∈ R

n, (3.37)

where both Lipschitz-like and metric regularity properties hold under unrestrictive
assumptions; see Section 3.5. The main difference between PVS and PCS is the
underlying subdifferential/normal cone structure of the multivalued field part Q(y)
in (3.34), which accumulates variational information on the model (variational in-
equalities, KKT optimality conditions, etc.).
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In the rest of this section, we assume that the base mapping f in (3.35) is contin-
uously differentiable around the reference point (x̄, ȳ) satisfying z̄ := −f (x̄, ȳ) ∈
Q(ȳ) and its partial derivative with respect to the parameter x is surjective at this
point, i.e., the Jacobian matrix ∇xf (x̄, ȳ) is of full rank in finite dimensions; see
Sections 3.4 and 3.5 for some relaxations of this assumptions. Recall also that our
standing hypotheses include the local closed-graph requirement of the field map-
ping Q.

The following result presents an exact calculation of the coderivative of the solu-
tion map (3.34) via the Jacobian of f and the coderivative of Q.

Proposition 3.16 (Coderivative Calculation for General PVS). Under the im-
posed full-rank assumption, the coderivative of (3.34) is calculated by

D∗S(x̄, ȳ)(y∗) =
{
x∗ ∈ R

n
∣∣∣ ∃z∗ ∈ R

q with x∗ = ∇xf (x̄, ȳ)∗z∗,
−y∗ ∈ ∇yf (x̄, ȳ)∗z∗ +D∗Q(ȳ, z̄)(z∗)

} (3.38)

for any y∗ ∈ R
m. In particular, we have the relationship

kerD∗S(x̄, ȳ) = −D∗Q(ȳ, z̄)(0). (3.39)

Proof. It is easy to observe the representation

gph S = {
(x, y) ∈ R

n × R
m
∣∣ g(x, y) ∈ �} = g−1(�)

with g(x, y) := (
y,−f (x, y)) and � := gphQ.

We deduce from the above structure of g that ∇g(x̄, ȳ) is surjective if and only
if ∇xf (x̄, ȳ) is surjective. Applying the normal cone formula from Exercise 1.54(i)
and performing elementary calculations give us representation (3.38). To verify now
the relationship in (3.39), take any y∗ ∈ kerD∗S(x̄, ȳ) and by the kernel definition
and formula (3.38) such z∗ ∈ R

q that

0 = ∇xf (x̄, ȳ)∗z∗ and − y∗ ∈ ∇yf (x̄, ȳ)∗z∗ +D∗Q(ȳ, z̄)(z∗). (3.40)

Since ∇xf (x̄, ȳ) is surjective, the first equality in (3.40) yields z∗ = 0. Hence the
second equality therein reduces to −y∗ ∈ D∗Q(ȳ, z̄)(0), which ensures the inclu-
sion “⊂” in (3.39). The opposite inclusion in (3.39) follows trivially from (3.38)
even without using the surjectivity of ∇xf (x̄, ȳ). �

Now we consider two kinds of structural PVS, where the set-valued part Q
in (3.34) is represented via some compositions of particular mappings that over-
whelmingly arise in theoretical and practical models of optimization, equilibria,
economics, mechanics, etc.; see more comments in Section 3.5. The first class of
structural PVS is described in the form

S(x) = {
y ∈ R

m
∣∣ 0 ∈ f (x, y)+ ∂(ψ ◦ g)(y)}, (3.41)
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where f : Rn × R
m → R

m and g : Rm → R
p are single-valued, where ψ : Rp →

R is extended-real-valued, and where ∂ϕ : Rm →→ R
m is a subgradient mapping

generated by a function ϕ : Rm → R, which is represented as the composition
ϕ(y) = (ψ ◦ g)(y). Borrowing the mechanical terminology, we label (3.41) as
subdifferential PVS with composite potentials.

To calculate the coderivative of (3.41) with subsequent applications to metric
regularity, we invoke coderivative calculus allowing us to deduce from Proposi-
tion 3.16 an efficient representation ofD∗S(x̄, ȳ) entirely in terms of the given data
of (3.41). Furnishing this requires a new second-order subdifferential constructions
introduced as follows.

Definition 3.17 (Second-Order Subdifferential). Let ϕ : Rn → R be finite at x̄,
and let x̄∗ ∈ ∂ϕ(x̄). Then the SECOND-ORDER SUBDIFFERENTIAL of ϕ at x̄ rela-
tive to x̄∗ is defined by

∂2ϕ(x̄, x̄∗)(u) := (
D∗∂ϕ)(x̄, x̄∗)(u), u ∈ R

n, (3.42)

via the coderivative of the first-order subgradient mapping ∂ϕ : Rn →→ R
n, where

we drop indicating x̄∗ = ∇ϕ(x̄) when ∂ϕ(x̄) is a singleton.

It follows from Proposition 1.12 and Corollary 1.24 that the second-order subdif-
ferential mapping (3.17) reduces to the (symmetric) Hessian matrix ∇2ϕ(x̄) linearly
applied to u ∈ R

n if ϕ is C2-smooth around x̄, i.e.,

∂2ϕ(x̄)(u) = {∇2ϕ(x̄)∗u
} = {∇2ϕ(x̄)u

}
, u ∈ R

n. (3.43)

This allows us to treat u �→ ∂2ϕ(x̄, x̄∗)(u) as a (positively homogeneous) general-
ized Hessian mapping for extended-real-valued functions.

The next result provides a precise calculation of the coderivative for the subdif-
ferential PVS of type (3.41).

Proposition 3.18 (Coderivative Calculation for Subdifferential PVS with Com-
posite Potentials). Let (x̄, ȳ) ∈ gph S for (3.41) with q̄ := −f (x̄, ȳ) ∈ ∂(ψ ◦g)(ȳ).
In addition to the full-rank assumption on ∇xf (x̄, ȳ), suppose that g : Rm → R

p is
C2-smooth around ȳ with the full -rank derivative ∇g(ȳ). Let v̄ ∈ R

p be a (unique)
solution to the system

q̄ = ∇g(ȳ)∗v̄ with v̄ ∈ ∂ψ(w̄) and w̄ := g(ȳ). (3.44)

Then the coderivative of S at (x̄, ȳ) is calculated by

D∗S(x̄, ȳ)(y∗) =
{
x∗ ∈ R

n
∣∣∣ ∃ u ∈ R

m with x∗ = ∇xf (x̄, ȳ)∗u,
−y∗ ∈ ∇yf (x̄, ȳ)∗u+ ∇2〈v̄, g〉(ȳ)∗u+ ∇g(ȳ)∗∂2ψ(w̄, v̄)

(∇g(ȳ)u)
} (3.45)

via the second-order subdifferential (3.42) of ψ . Furthermore, we have

kerD∗S(x̄, ȳ) = −∇g(ȳ)∗∂2ψ(w̄, v̄)(0). (3.46)
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Proof. Using Theorem 3.16 with Q = ∂(ψ ◦ g) in the composite subdifferential
model (3.41), we get due to the construction of ∂2ϕ in (3.42) that

D∗S(x̄, ȳ)(y∗) =
{
x∗ ∈ R

n
∣∣∣ ∃ u ∈ R

m with x∗ = ∇xf (x̄, ȳ)∗u,
−y∗ ∈ ∇yf (x̄, ȳ)∗u+ ∂2

(
ψ ◦ g)(ȳ, q̄)(u)

}
.

The second-order subdifferential chain rule from Exercise 3.78(i) applied to the
composition ψ ◦ g gives us under the assumptions made that

∂2(ψ ◦ g)(ȳ, q̄)(u) = ∇2〈v̄, g〉(ȳ)∗u+ ∇g(ȳ)∗∂2ψ(w̄, v̄)
(∇g(ȳ)u). (3.47)

Substituting (3.47) into the above expression for D∗S(x̄, ȳ)(y∗), we arrive
at (3.45). The relationship in (3.46) follows from employing the second-order
chain rule (3.47) in formula (3.39) with Q = ∂(ψ ◦ g). �

Next we consider yet another specification of PVS in (3.34) given by

S(x) := {
y ∈ R

m
∣∣ 0 ∈ f (x, y)+ (

∂ψ ◦ g)(y)}, (3.48)

where the field Q is a composition of the basic subdifferential of ψ : Rp → R and
a mapping g : Rm → R

p and where f : Rn × R
m → R

p. Note that such subdif-
ferential PVS with composite fields are distinct from those in (3.41) with composite
potentials having different ranges of applications. In particular, formalism (3.48)
encompasses perturbed implicit complementarity problems of the type: find y ∈ R

m

satisfying the relationships

f (x, y) ≥ 0, y − g(x, y) ≥ 0,
〈
f (x, y), y − g(x, y)〉 = 0,

where the first two inequalities are understood in the vector sense.

The following proposition contains coderivative evaluations for (3.48) with and
without the full-rank assumptions on the Jacobian matrix ∇g(ȳ).
Proposition 3.19 (Coderivative Evaluations for PVS with Composite Fields).
Consider PVS (3.48) with (x̄, ȳ) ∈ gph S under the full-rank assumption on
∇xf (x̄, ȳ), where g : Rm → R

p is of class C1 around ȳ, while ψ : Rp → R is
finite at w̄ := g(ȳ). The following assertions hold:

(i) If the Jacobian matrix ∇g(ȳ) has full rank, then

D∗S(x̄, ȳ)(y∗) =
{
x∗ ∈ R

n
∣∣∣ ∃ u ∈ R

p with x∗ = ∇xf (x̄, ȳ)∗u,
−y∗ ∈ ∇yf (x̄, ȳ)∗u+ ∇g(ȳ)∗∂2ψ(w̄, q̄)(u)

} (3.49)

for all y∗ ∈ R
m, where q̄ := −f (x̄, ȳ). Moreover, we have the relationship

kerD∗S(x̄, ȳ) = −∇g(ȳ)∗∂2ψ(w̄, q̄)(0). (3.50)
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(ii) Let the mapping ∂ψ : Rp →→ R
p be closed-graph around (w̄, q̄), and let the

full-rank assumption on ∇g(ȳ) be replaced by the qualification condition

∂2ψ(w̄, q̄)(0) ∩ ker ∇g(ȳ)∗ = {
0
}
. (3.51)

Then we have the inclusion “⊂” in both formulas (3.49) and (3.50).

Proof. Applying formula (3.38) of Proposition 3.16 to the composite field Q =
∂ψ ◦ g gives us the representation

D∗S(x̄, ȳ)(y∗) =
{
x∗ ∈ R

n
∣∣∣ ∃ u ∈ R

p with x∗ = ∇xf (x̄, ȳ)∗u,
−y∗ ∈ ∇yf (x̄, ȳ)∗u+D∗(∂ψ ◦ g)(ȳ, q̄)(u)

} (3.52)

for the mapping S from (3.48). To proceed further, we need to use an appropriate
chain rule for evaluating the coderivative of the composition ∂ψ ◦ g. In case (i) it
follows from Theorem 3.11(iii) under the full-rank assumption that

D∗(∂ψ ◦ g)(ȳ, q̄)(u) = ∇g(ȳ)∗∂2ψ(w̄, q̄)(u), u ∈ R
p, (3.53)

where the closed-graph property of the subgradient mapping F = ∂ψ is not needed
in this case; see [522, Theorem 1.66]. Substituting this chain rule into (3.52), we
get (3.49) and similarly derive (3.50) from (3.39).

In case (ii) we apply the coderivative chain rule held as the inclusion “⊂” from
Theorem 3.11(i) withD∗g(ȳ)(y∗) = {∇g(ȳ)∗y∗}, where the closed-graph property
of ∂ψ is required in the proof; cf. [522, Theorem 3.16]. The qualification condi-
tion (3.26) reduces in this case to (3.51), while the chain rule inclusion (3.27) yields
“⊂” in both formulas (3.49) and (3.50). �

3.3.2 Coderivative Conditions for Metric Regularity of PVS

In this subsection, based on the coderivative characterization of metric regularity for
general closed-graph multifunction from Theorem 3.3(ii) and the exact coderivative
calculation for PVS (3.34) given in Proposition 3.16, we establish conditions ensur-
ing metric regularity of general PVS and their important specifications. The latter
requires applying coderivative calculus.

The first theorem concerns general PVS (3.34) and contains, in particular, the
equivalence statement regarding the well-posedness properties of metric regular-
ity for solution maps to GEs (3.35) and Lipschitzian behavior of their fields at the
corresponding points.

Theorem 3.20 (Metric Regularity of General PVS). Under the standing assump-
tions made, we have that the solution map S in (3.34) is metrically regular around
(x̄, ȳ) ∈ gph S if and only if

D∗Q(ȳ, z̄)(0) = {0} with z̄ := −f (x̄, ȳ) ∈ Q(ȳ), (3.54)
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i.e., it is equivalent to the Lipschitz-like property of the field Q around (ȳ, z̄). Fur-
thermore, the exact regularity bound of S around (x̄, ȳ) is calculated by

reg S(x̄, ȳ) = max
{
‖y∗‖ ∣∣ ∃ z∗ ∈ R

q with ‖∇xf (x̄, ȳ)∗z∗‖ ≤ 1,

−y∗ ∈ ∇yf (x̄, ȳ)∗z∗ +D∗Q(ȳ, z̄)(z∗)
}
.

(3.55)

Proof. Since the solution map S(·) is clearly closed-graph around (x̄, ȳ) in the set-
ting of the theorem, characterization (3.54) of its metric regularity around this point
follows from Theorem 3.3(ii) and formula (3.39) in Proposition 3.16. The Lipschitz-
like property of Q around (ȳ, z̄) is the result of Theorem 3.3(iii). The exact bound
representation (3.55) is a consequence of the general formula (3.8) and the coderiva-
tive calculation for PVS in (3.38). The maximum is attained in (3.55) due to the
assumed surjectivity of ∇xf (x̄, ȳ) in the finite-dimensional setting under consider-
ation. �

Now we derive two consequences of Theorem 3.20 for the subdifferential PVS
considered above based on calculating the coderivative of Q as in the proofs of
Propositions 3.18 and 3.19. Note that, besides the coderivative calculation in (3.54),
we need also checking the closed-graph property of the fields in these systems,
which is the standing assumption of Theorem 3.20.

Corollary 3.21 (Metric Regularity of Subdifferential PVS with Composite Po-
tentials). In addition to the assumptions of Proposition 3.18, suppose that the sub-
gradient mapping ∂ψ : Rp →→ R

p is closed-graph around (w̄, v̄) in the notation
therein. Then S in (3.41) is metrically regular around (x̄, ȳ) if and only if ∂ψ is
Lipschitz-like around (w̄, v̄).

Proof. The first-order subdifferential chain rule in Exercise 1.72 clearly implies
that the closed-graph assumption on ∂ψ ensures this property of the mapping Q =
∂(g ◦ψ) and hence of S in (3.41). It follows from Theorem 3.20 and Definition 3.17
of the second-order subdifferential that S from (3.41) is metrically regular around
(x̄, ȳ) if and only if we have

D∗Q(ȳ, q̄)(0) := ∂2(ψ ◦ g)(ȳ, q̄)(0) = {0}. (3.56)

Applying now the second-order subdifferential chain rule (3.47) tells us that (3.56)
is equivalent to the condition

∇g(ȳ)∗∂ψ(w̄, v̄)(0) = {0},
which is equivalent in turn to ∂2ψ(w̄, v̄)(0) = {0} due to the surjectivity of ∇g(ȳ);
see Exercise 1.53. The latter is a characterization of the Lipschitz-like property
of the subgradient mapping ∂ψ around (w̄, v̄) by Theorem 3.3(iii). Note that we
can arrive at the same conclusion by using the kernel formula (3.46) due to Theo-
rem 3.3(ii). �

The next corollary concerns metric regularity of the second type (3.48) of the
subdifferential PVS under consideration.
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Corollary 3.22 (Metric Regularity of Subdifferential PVS with Composite
Fields). In the setting of Proposition 3.19(i), suppose in addition that the subgradi-
ent mapping ∂ψ : Rp →→ R

p is closed-graph around (w̄, q̄). Then the solution map
S from (3.48) is metrically regular around (x̄, ȳ) if and only if ∂ψ is Lipschitz-like
around (w̄, q̄).

Proof. Since both mappings Q = ∂ψ ◦ g and S are obviously closed-graph under
the imposed assumptions, the claimed metric regularity assertion reduces by Theo-
rem 3.20 and the coderivative criteria of Theorem 3.3 to check that

either D∗(∂ψ ◦ g)(ȳ, q̄)(0) = {0} or ker S(x̄, ȳ) = {0}.
Both conditions above are equivalent to

∇g(ȳ)∗∂ψ2(w̄, q̄)(0) = {0}
by using the chain rule equality from Theorem 3.11(iii) in the first case and by
formula (3.50) from Proposition 3.19 in the second one. The latter condition can be
equivalently rewritten as ∂ψ2(w̄, q̄)(0) = {0} by the injectivity of ∇g(ȳ)∗ as in the
proof of Corollary 3.21, and thus we characterize the Lipschitz-like property of the
subgradient mapping ∂ψ around (w̄, q̄). �

Note that the local closedness assumption imposed of the subdifferential graph
gph ∂ψ in Corollaries 3.21 and 3.22 surely holds if ψ is continuous around the
corresponding points. This immediately follows from the robustness of our basic
subdifferential; see graphs Proposition 1.20. On the other hand, the subdifferen-
tial closed-graph property holds also for some remarkable classes of extended-real-
valued functions. In particular, it happens for every (locally) l.s.c. convex function
ψ : Rp → R; this can be deduced directly from Proposition 1.25 by the classical
subdifferential definition of convex analysis. In fact, the closed-graph property is
satisfied for subgradients of a significantly broader class of extended-real-valued
amenable functions defined as follows.

Definition 3.23 (Amenable and Strongly Amenable Functions). A function
ϕ : Rn → R is AMENABLE at x̄ ∈ domϕ if there is a neighborhood U of x̄ on
which ϕ is represented as a composition θ ◦h of a C1-smooth mapping h : U → R

m

and a convex l.s.c. function θ : Rm → R with

∂∞θ(ȳ) ∩ ker ∇h(x̄)∗ = {0} for ȳ := θ(x̄).

The function ϕ is STRONGLY AMENABLE at x̄ if the inner mapping h : U → R
m

above can be selected as C2-smooth on U .

Besides convex and smooth functions, amenability encompasses various com-
positions that naturally appear in numerous settings of variational analysis and con-
strained optimization, in particular, those written in the unconstrainedextended-real-
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valued framework; see Exercise 3.88 for some properties of amenable functions and
Section 3.5 for more discussions.

We’ll employ strongly amenable functions in the next subsection.

3.3.3 Failure of Metric Regularity for Major Classes of PVS

Here we use the coderivative characterizations of metric regularity for PVS obtained
above to reveal that this property fails for major classes of such systems, particularly
those having a subdifferential/normal cone descriptions that is typical in optimiza-
tion and equilibria. This strictly distinguishes metric regularity of PVS from the
well-posedness property of their robust Lipschitzian stability, in contrast to the case
of general PCS (3.37).

An important fact, which eventually rules out the validity of metric regularity for
subdifferential PVS generated by nonsmooth convex functions and the like, is the
following specification of the fundamental Kenderov’s theorem on monotone lower
semicontinuous operators; see [408]. The standard local monotonicity property of
a set-valued operator T : Rn →→ R

n around (x̄, ȳ) ∈ gphF means that there are
neighborhoods U of x̄ and V of ȳ with

〈v1 − v2, u1 − u2〉 ≥ 0 for all (u1, v1), (u2, v2) ∈ gph T ∩ (U × V ).
Proposition 3.24 (Single-Valuedness of Lipschitz-Like Monotone Operators).
Let T : Rn →→ R

n be locally monotone and Lipschitz-like around (x̄, ȳ) ∈ gph T .
Then it is single-valued around (x̄, ȳ).

Proof. Arguing by contradiction, suppose that T is multivalued in any neighborhood
of (x̄, ȳ). Then there exist sequences xk → x̄ and yk, uk ∈ T (xk) with (yk, uk) →
(ȳ, ȳ) such that uk 
= yk for all k ∈ N. Denote ak := ‖uk − yk‖ > 0 and zk :=
(uk − yk)/ak for which we have

〈uk, zk〉 = ak + 〈yk, zk〉, k ∈ N. (3.57)

The assumed Lipschitz-like property of T around (x̄, ȳ) gives us the existence of
positive numbers � and γ such that

T (x) ∩ Bγ (x̄) ⊂ T (u)+ �‖x − u‖B for all x, u ∈ Bγ (ȳ).
Choose now a sequence of νk > 0 satisfying the conditions

νk ↓ 0 with νk < ak/2� as k → ∞. (3.58)

Since xk, xk + νkzk ∈ Bγ (x̄) for large k, the Lipschitz-like property of T yields

‖vk − yk‖ ≤ �νk for some vk ∈ T (xk) ∩ Bγ (ȳ). (3.59)
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Employing the local monotonicity property of T around (x̄, ȳ) tells us that

〈vk − uk, xk + νk − xk〉 ≥ 0,

which implies by (3.57) the inequalities

〈vk, zk〉 ≥ 〈uk, zk〉 ≥ ak + 〈yk, zk〉.
It follows from here the choice of νk in (3.58) and the estimate in (3.59) that

ak + 〈yk, zk〉 ≤ 〈vk, zk〉 ≤ 〈yk, zk〉 + �νk < 〈yk, zk〉 + ak/2,
a contradiction, which verifies the single-valuedness of T around x̄. �

The following result, utilizing this proposition and the equivalence relationship
of Theorem 3.20, reveals the failure of metric regularity for a general class of
PVS (3.34) with monotone fields. Recall again that the lower semicontinuity of
extended-real-valued functions is our standing assumption.

Theorem 3.25 (Failure of Metric Regularity for PVS with Monotone Fields).
In addition to the standing assumption of Theorem 3.20, suppose that the field map-
ping Q is monotone around (ȳ, z̄) and that there is no neighborhood of ȳ on which
Q is entirely single-valued. Then PVS (3.34) is not metrically regular around the
reference point (x̄, ȳ) ∈ gph S.

Proof. It follows from Theorem 3.20 in the general setting under consideration that
the metric regularity of the solution map S in (3.34) around (x̄, ȳ) is equivalent to
the Lipschitz-like property of the field Q around (ȳ, z̄). The imposed local mono-
tonicity ofQ around this point yields the single-valuedness ofQ around ȳ by Propo-
sition 3.24. This contradicts the assumption of the theorem and thus completes its
proof. �

Since the set-valuedness of field mappings is a characteristic feature of gener-
alized equations as a satisfactory model to describe variational systems (otherwise
they reduce just to standard equations, which are not of particular interest in the vari-
ational framework under consideration), the conclusion of Theorem 3.25 reads that
variational systems with monotone fields are not metrically regular under the Jaco-
bian full-rank assumption on base mappings that doesn’t seem to be restrictive in the
GE setting. A major consequence of Theorem 3.25 is the following corollary con-
cerning subdifferential systems with convex potentials, which encompass the classi-
cal cases of variational inequalities and complementarity problems in (3.36).

Recall that a function ϕ : Rn → R finite at x̄ is Gâteaux differentiable at this
point with the Gâteaux derivative dϕ(x̄) if

lim
t→0

ϕ(x̄ + tw)− ϕ(x̄)− t〈dϕ(x̄), w〉
t

= 0
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for any direction w ∈ R
n; similarly in infinite dimensions. It is obvious that the

Fréchet differentiability of ϕ at x̄ implies the Gâteaux one with the same derivative
dϕ(x̄) = ∇ϕ(x̄); see also Exercise 3.90 for other properties.

Corollary 3.26 (Failure of Metric Regularity for Subdifferential PVS with
Convex Potentials). Let Q(y) = ∂ϕ(y) in the setting of Theorem 3.25, where
ϕ : Y → R is a convex function finite at ȳ but not Gâteaux differentiable around
this point. Then S is not metrically regular around (x̄, ȳ).

Proof. Observe first that the assumptions imposed on ϕ ensure that the subgradi-
ent mapping Q(y) = ∂ϕ(y) is closed-graph. Furthermore, the fundamental result
on monotone operators (due to Moreau and Rockafellar) establishes the maximal
monotonicity of the convex subgradient mapping x �→ ∂ϕ(x). Thus the conclusion
of the corollary follows from the well-known fact of convex analysis that the sub-
differential of such a function is a singleton at the reference point if and only if
the function is Gâteaux differentiable at it; see, e.g., [638, 667] and the references
therein on these classical results. �

Note that the classical settings of variational inequalities and complementarity
problems in (3.36) correspond to the highly nonsmooth (extended-real-valued) case
of the convex indicator functions ϕ(y) = δ(y;�) in (3.34). In fact, essentially more
general nonconvex subdifferential structures of parametric variational systems pre-
vent the fulfillment of metric regularity for PVS (3.34) without reducing them to the
case of field monotonicity while by using appropriate calculus rules for coderiva-
tives and second-order subdifferentials.

The next major result provides a significant extension of Corollary 3.26 to non-
convex subdifferential structures of fields with composite potentials (3.41), being
however fully independent of Theorem 3.25 that imposes field monotonicity. We
now deal with the case ofQ(y) = ∂ϕ(y), where the nonconvex potential ϕ admits a
composite representation ϕ = ψ ◦g via a C2-smooth mapping g : Rm → R

p and an
extended-real-valued function ψ : Rp → R belonging to a broad class of functions
well-recognized in variational analysis.

Definition 3.27 (Prox-Regularity and Subdifferential Continuity).
(i) A function ϕ : Rn → R is PROX-REGULAR at x̄ ∈ domϕ FOR SOME v̄ ∈

∂ϕ(x̄) if it is l.s.c. around x̄ and there are γ > 0, η ≥ 0 such that

ϕ(u) ≥ ϕ(x)+ 〈v, u− x〉 − η

2
‖u− x‖2 whenever v ∈ ∂ϕ(x)

with ‖v − v̄‖ ≤ γ, ‖u− x̄‖ ≤ γ, ‖x − x̄‖ ≤ γ, ϕ(x) ≤ ϕ(x̄)+ γ.
If this holds FOR ANY v̄ ∈ ∂ϕ(x̄), ϕ is said to be PROX-REGULAR AT x̄.

(ii) A function ϕ : Rn → R is SUBDIFFERENTIALLY CONTINUOUS at x̄ FOR

SOME v ∈ ∂ϕ(x̄) if ϕ(xk) → ϕ(x̄) whenever xk → x̄, vk → v as k → ∞
with vk ∈ ∂ϕ(xk). When this property holds FOR ANY v̄ ∈ ∂ϕ(x̄), ϕ is said to be
SUBDIFFERENTIALLY CONTINUOUS at x̄.
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For brevity we label as continuously prox-regular any extended-real-valued func-
tion satisfying both properties in Definition 3.27. Such functions are overwhelm-
ingly involved in many areas of variational analysis and optimization, especially
those related for second-order aspects and applications; see more discussions in
Section 3.5. In particular, this class includes every l.s.c. and convex and—more
generally—strongly amenable function as well as functions of class C1,1 around x̄,
i.e., such that there is a neighborhood U of x̄ on which ϕ is smooth and its derivative
is Lipschitz continuous; see Exercise 3.92.

The following lemma of its own interest allows us to establish the failure of
metric regularity for subdifferential PVS with composite potentials given by contin-
uously prox-regular functions.

Lemma 3.28 (Continuously Prox-Regular Functions with Lipschitz-Like Sub-
differentials). Let ϕ : Rn → R be continuously prox-regular at x̄ ∈ int(domϕ) for
some v̄ ∈ ∂ϕ(x̄), and let the subgradient mapping ∂ϕ : Rn →→ R

n be Lipschitz-like
around (x̄, v̄). Then there is a neighborhood U of x̄ such that ϕ is of class C1,1 on
U .

Proof. See the hints and discussions in Exercise 3.93. �
Now we are ready to justify the failure of metric regularity for subdifferential

PVS (3.41) involving continuously prox-regular functions.

Theorem 3.29 (Failure of Metric Regularity for Subdifferential PVS with Con-
tinuously Prox-Regular Potentials). In addition to the assumptions of Corol-
lary 3.21, suppose that ψ is continuously prox-regular at w̄ = g(ȳ) for the sub-
gradient v̄ ∈ ∂ψ(w̄), which is uniquely determined by ∇g(ȳ)∗v̄ = −f (x̄, ȳ). Then
PVS (3.41) is not metrically regular around (x̄, ȳ) provided that ψ is not Gâteaux
differentiable around w̄.

Proof. It follows from Corollary 3.21 that the metric regularity of S from (3.41)
around (x̄, ȳ) is equivalent to the Lipschitz-like property of the subgradient mapping
∂ψ around (w̄, v̄). Further, the imposed continuous prox-regularity ofψ at w̄ allows
us to conclude by Lemma 3.28 that the latter property of ∂ψ implies that ψ ∈
C1,1 around x̄. This yields by Exercise 3.90(ii) the Gâteaux differentiability of ψ
around w̄, which shows that S cannot be metrically regular around (x̄, ȳ) by the last
assumption of the theorem. �

The following result is a clear consequence of Theorem 3.29. However, we
present its direct proof independent of Lemma 3.28.

Corollary 3.30 (Failure of Metric Regularity for Composite Subdifferential
PVS with Strongly Amenable Potentials). In addition to the assumptions of
Proposition 3.18, suppose that ψ is convex and finite at w̄ = g(ȳ) while not
Gâteaux differentiable around this point. Then the parametric variational system
S from (3.34) is not metrically regular around (x̄, ȳ).
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Proof. Observe that according to Definition 3.23, the potential ϕ = ψ ◦g is strongly
amenable at ȳ and that the subgradient mapping ∂ψ : Rp →→ R

p is locally closed-
graph due to the assumptions imposed on ψ ; see Exercise 3.88. Since all the re-
quirements of Corollary 3.21 are met, we conclude that the metric regularity of
S around (x̄, ȳ) is equivalent to the Lipschitz-like property of ∂ψ around (w̄, v̄),
where v̄ ∈ ∂ψ(w̄) is uniquely determined by ∇g(ȳ)∗v̄ = −f (x̄, ȳ). Arguing fi-
nally as in the proof of Corollary 3.26 shows that ∂ψ is not Lipschitz-like (w̄, v̄)
and thus completes the proof. �

Next we obtain conditions ensuring the failure of metric regularity for subdiffer-
ential PVS with composite fields (3.48) involving continuously prox-regular func-
tions in their subdifferential components.

Theorem 3.31 (Failure of Metric Regularity for PVS with Composite Fields
Containing Subdifferentials of Prox-Regular Functions). In addition to the as-
sumptions of Corollary 3.22, suppose that ψ is continuously prox-regular at w̄ =
g(ȳ) for the subgradient q̄ := −f (x̄, ȳ) ∈ ∂ψ(w̄) and that ψ is not Gâteaux dif-
ferentiable around w̄. Then the solution map S from (3.48) fails to be metrically
regular around (x̄, ȳ).

Proof. It follows from Corollary 3.22 that the metric regularity of S around (x̄, ȳ) is
equivalent to the Lipschitz-like property of ψ around (w̄, q̄) under the assumptions
therein. Employing now Lemma 3.28 tells us that ψ must be of class C1,1 around
w̄, which shows that S cannot be metrically regular around (x̄, ȳ) due to the last
assumption of the theorem. �

3.4 Exercises for Chapter 3

Exercise 3.32 (Relations for Openness and Covering Properties).
(i) Show that the function f (x) = xm on R possesses the conventional openness property (3.4)

at x̄ = 0 for any odd number 1 
= m ∈ N, but for m ≥ 3 it doesn’t satisfies the covering
property (3.1), i.e., openness with linear rate.

(ii) Formulate extensions of these properties to set-valued mappings between metric spaces in
terms of the distance functions.

Exercise 3.33 (Lipschitz-Like Property via Distance Functions).
(i) Formulate an equivalent description of the Lipschitz-like property for set-valued mappings

F : X →→ Y between metric spaces via their distance functions.
(ii) Show that F is Lipschitz-like around (x̄, ȳ) ∈ gphF if and only if the function (x, y) �→

dist(y;F(x)) is Lipschitz continuous around this point. Hint: Proceed by the definitions and com-
pare it with [674, Theorem 2.3] and [522, Theorem 1.41].

Exercise 3.34 (Lipschitz Continuity of Locally Compact Multifunctions) Let F : X →→ Y be a
set-valued mapping between Banach spaces.

(i) Let F be compact-valued on a given subset U ⊂ X. Show that the Lipschitz continuity of
F on U with modulus � ≥ 0 (i.e., the validity of (3.3) with V = Y ) is equivalent to the Lipschitz
continuity

haus
(
F(u), F (x)

) ≤ �‖x − u‖ for all x, u ∈ U
of the single-valued mapping x �→ F(x) from U to the collections of the compact subset of Y
equipped with the Pompeiu-Hausdorff metric
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haus(�1, �2) := inf
{
η ≥ 0

∣∣ �1 ⊂ �2 + ηB, �2 ⊂ �1 + ηB}.
(ii) Let F be locally compact around x̄ ∈ domF , i.e., the values F(x) for all x near x are

enclosed into a compact set. Check that F is locally Lipschitzian around x̄ if and only if it is
Lipschitz-like around (x̄, ȳ) for every ȳ ∈ F(x̄). In this case the exact Lipschitzian bound lipF(x̄)
of F around x̄ is calculated by

lipF(x̄) = max
{
lipF(x̄, ȳ)

∣∣ ȳ ∈ F(x̄)} < ∞.

(iii) Do (i) and (ii) hold for mappings between general metric spaces?
Hint: To verify (ii), proceed with selecting of a finite covering of a compact set by a collection

of neighborhoods; compare it with the proof in [522, Theorem 1.42].

Exercise 3.35 (Coderivatives of Lipschitzian Mappings Between Banach Spaces). Let
F : X →→ Y be a mapping between Banach spaces, and let ε ≥ 0.

(i) Assume that F is Lipschitz-like around some (x̄, ȳ) ∈ gphF with modulus � ≥ 0 and show
that there exists a number η > 0 such that

sup
{‖x∗‖ ∣∣ x∗ ∈ D̂∗

ε F (x, y)(y
∗)
} ≤ �‖y∗‖ + ε(1 + �), y∗ ∈ Y ∗, (3.60)

whenever x ∈ x̄ + ηB and y ∈ F(x) ∩ (ȳ + ηB). Furthermore, we have

D∗
MF(x̄, ȳ)(0) = {0} and ‖D∗

MF(x̄, ȳ)‖ ≤ lipF(x̄, ȳ) < ∞. (3.61)

(ii) If F is locally Lipschitzian around some x̄ ∈ domF with modulus � ≥ 0, then there exists a
number η > 0 such that (3.60) holds for all x ∈ x̄+ηB and y ∈ F(x). Furthermore, the conditions
in (3.61) are satisfied for any ȳ ∈ F(x̄).

Hint: To verify (3.60), proceed similarly to Step 1 in the proof of Theorem 3.3 and then pass to
the limit as (x, y) → (x̄, ȳ) and ε ↓ 0 by the mixed coderivative construction (1.65); compare it
with the proofs of [522, Theorems 1.43 and 1.44].

Exercise 3.36 (Semilocal Metric Regularity). Following [510], we say that a set-valued mapping
F : X →→ Y between Banach spaces is semilocally metrically regular around x̄ ∈ domF (resp.
around ȳ ∈ rgeF ) with modulus μ > 0 if estimate (3.2) holds with a neighborhood U of x̄ and
V = Y (resp. with a neighborhood V of ȳ and U = X) subject to the condition dist(y;F(x)) ≤ γ

for some γ > 0. The infimum of such moduli is denoted by regF(x̄) (resp. by regF(ȳ)).
(i) Verify that F is locally Lipschitzian around x̄ ∈ domF if and only if F−1 is semilocally

metrically regular around x̄ ∈ rgeF−1 with lipF(x̄) = regF−1(x̄).
(ii) Assume that F is locally compact around x̄ ∈ domF , and show that F is semilocally

metrically regular around this point if and only if it is (locally) metrically regular around (x̄, ȳ) in
the sense of Definition 3.1(b) for every ȳ ∈ F(x̄).

(iii) Assume that F−1 is locally compact around ȳ ∈ rgeF and show that F is semilocally
metrically regular around this point if and only if it is (locally) metrically regular around (x̄, ȳ) for
every x̄ ∈ F−1(ȳ).

Hint: Proceed similarly to the proof in the local case of Theorem 3.2 with taking into account
the results of Exercise 3.34(ii).

Exercise 3.37 (Equivalences Between Local Well-Posedness Properties in Banach Spaces).
Let F : X →→ Y be a set-valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gphF . Check
that Theorem 3.2 and its proof hold in this setting.

Exercise 3.38 (Semilocal Covering). A set-valued mapping F : X →→ Y between Banach spaces
has the semilocal covering property around x̄ ∈ domF with modulus κ > 0 if there is a neigh-
borhood U of x̄ such that inclusion (3.1) holds with V = Y . The supremum of all such moduli is
denoted by covF(x̄).
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(i) Verify that F has the semilocal covering property around x̄ ∈ domF if and only if it is
semilocally metrically regular around this point. In this case we have the modulus relationship
covF(x̄) = 1/regF(x̄).

(ii) Assume that F is locally compact around x̄, and show that in this case the semilocal cover-
ing property of F around x̄ is equivalent to the (local) covering property of F around (x̄, ȳ) from
Definition 3.1(a) for every ȳ ∈ F(x̄).

Hint: To justify (i), proceed by the definitions and compare it with the proof of [522, Theo-
rem 1.52]. This yields (ii) by taking into account Exercise 3.36(iii).

Exercise 3.39 (Global Well-Posedness Properties and Their Comparisons).
• The global counterpart of the covering property from Definition 3.1(i) is clearly formulated

for mappings between metric spaces as follows. Let F : X →→ Y , let BX(x, r) be the closed ball of
X centered at x with radius r ≥ 0, and let

ϑ(A) := sup{r ≥ 0
∣∣ BX(x, r) ⊂ A

}

for some A ⊂ X. Given � ⊂ X and � ⊂ Y , we say (cf. [505, 507] and [522, Definition 1.51(i)])
that F has the κ-covering property relative to � and � if

BX(x, r) ⊂ � �⇒ [
BY

(
F(x) ∩�, κr) ⊂ F

(
BX(x, r)

)]
. (3.62)

• Another global κ-covering property of the mapping F : X →→ Y relative to the sets �̃ ⊂ X

and �̃ ⊂ Y was introduced in [26] via the following implication:

BX(x, r) ⊂ �̃ �⇒ [
BY

(
F(x), κr

) ∩ �̃ ⊂ F
(
BX(x, r)

)]
. (3.63)

• More recently yet another version of the κ-covering property of F : X →→ Y relative to
�̂ ⊂ X and �̂ ⊂ Y with (x̄, ȳ) ∈ (�̂ × �̂) ∩ gphF has been considered in [375] and labeled
there as sur(F, �̂, �̂, γ, κ, x̄, ȳ). This property means that, given a modulus κ ≥ 0, the following
implication holds:

[
x ∈ BX(x0, γ ), r ∈ [0, γ ]] �⇒ [

BY
(
F(x) ∩ BY (y0, κγ ), κr

) ∩ Û ⊂ F
(
BX(x, r)

)]
.

(i) Prove that sur(F, �̂, �̂, γ, κ, x̄, ȳ) �⇒(3.62) provided that BY (�, κγ ) ⊂ �̂, � ⊂
BY (ȳ, κγ ),� ⊂ �̂∩BX(x̄, γ ), and ϑ(�) ≤ γ . Show also that the converse implication (3.62)�⇒
sur(F, �̂, �̂, γ, κ, x̄, ȳ) holds whenever BX(�̂ ∩ BX(x̄, γ ), γ ) ⊂ �, BX(̂x, 2γ ) ⊂ �̂, and
BY (ȳ, κγ ) ⊂ �.

(ii) Show that (3.62)�⇒(3.63) provided that �̃ ⊂ � and BY
(
�̃, κϑ(�̃)

) ⊂ �. Conversely,
verify that (3.63)�⇒(3.62) if � ⊂ �̃ and BY

(
�, κϑ(�)

) ⊂ �̃.
(iii) Formulate metric regularity and Lipschitzian counterparts of the above properties, and

establish relationships between them.
Hint: To verify (i) and (ii), proceed by the definitions and compare it with the proof given in

[789, Theorem 1].

Exercise 3.40 (Metric Regularity of Differentiable Mappings in Banach Spaces). Let f : X →
Y be a single-valued mapping between Banach spaces.

(i) Assume that f is Fréchet differentiable at x̄, and show that the space ∇f (x̄)X is closed in Y
provided that f is metrically regular at x̄. Hint: Use the iterative procedure as in the proof of [522,
Lemma 1.56].

(ii) Assume that f is strictly differentiable at x̄ and show that the surjectivity of ∇f (x̄) : X →
Y is necessary and sufficient for the metric regularity of f around x̄ with the validity of the ex-
act bound formulas (3.18), where “min” is replaced by “inf” in the second one. Hint: Deduce the
necessity of the surjectivity condition ∇f (x̄)X = Y from ker ∇f (x̄)∗ = {0} due to (i), (3.61),
and Exercises 3.37, 1.57(ii). To justify the sufficiency, proceed as in the alternative proof of Corol-
lary 3.8.
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Exercise 3.41 (Neighborhood Characterizations of Lipschitz-Like Multifunctions in As-
plund Spaces). Let F : X →→ Y be a (locally closed-graph) mapping between Asplund spaces. The
following assertions are equivalent:

(a) F is Lipschitz-like around (x̄, ȳ).
(b) There are positive numbers � and η such that

sup
{
‖x∗‖

∣∣∣ x∗ ∈ D̂∗F(x, y)(y∗)
}

≤ �‖y∗‖

whenever x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ), and y∗ ∈ Y ∗.

Furthermore, the exact Lipschitzian bound of F around (x̄, ȳ) is calculated by

lipF(x̄, ȳ) = inf
η>0

sup
{
‖D̂∗F(x, y)‖

∣∣∣ x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)
}
.

Hint: Consider first the finite-dimensional case and derive this from Theorem 3.3(iii) and the
coderivative representation (1.17). In the Asplund space case, proceed similarly to the proof of
[522, Theorem 4.1] for the covering property.

Exercise 3.42 (Sequential and Partial Sequential Normal Compactness of Mappings). A set-
valued mapping F : X →→ Y between Banach spaces is said to be sequentially normally compact
(SNC) at (x̄, ȳ) ∈ gphF if for any sequence (εk, xk, yk, x∗

k , y
∗
k ) ∈ [0,∞) × (gphF) × X∗ × Y ∗

we have the implication

[
εk ↓ 0, (xk, yk) → (x̄, ȳ), (x∗

k , y
∗
k )

w∗→ (0, 0),

(x∗
k , y

∗
k ) ∈ N̂εk

(
(xk, yk); gphF

)] �⇒ ‖(x∗
k , y

∗
k )‖ → 0 as k → ∞.

(3.64)

The mapping F is partially sequentially normally compact (PSNC) at (x̄, ȳ) for any sequence
(εk, xk, yk, x

∗
k , y

∗
k ) ∈ [0,∞)× (gphF)×X∗ × Y ∗ we have

[
εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗

k

w∗→ 0, ‖y∗
k ‖ → 0,

(x∗
k , y

∗
k ) ∈ N̂εk

(
(xk, yk); gphF

)] �⇒ ‖x∗
k ‖ → 0 as k → ∞.

(3.65)

If F is single-valued at x̄, the indication of ȳ = F(x̄) above is omitted.
(i) Check that the SNC property of the mapping F at (x̄, ȳ) ∈ gphF is equivalent to the SNC

property of its graph at the same point.
(ii) Show that we can equivalently put εk ≡ 0 in (3.65) if X and Y are Asplund.
(iii) Verify that, besides the obvious cases where dimX < ∞ and where F is SNC at (x̄, ȳ), the

PSNC property of F at (x̄, ȳ) holds for any mapping F : X →→ Y which is Lipschitz-like around
(x̄, ȳ). Hint: Use Exercise 3.35(i).

Exercise 3.43 (Coderivative Normality). A mapping F : X →→ Y between Banach spaces is
called coderivatively normal at (x̄, ȳ) ∈ gphF if

‖D∗
MF(x̄, ȳ)‖ = ‖D∗

NF(x̄, ȳ)‖. (3.66)

(i) We obviously have (3.66) if D∗
MF(x̄, ȳ)(y

∗) = D∗
NF(x̄, ȳ)(y

∗) for all y∗ ∈ Y ∗. Does the
converse implication hold when dimY = ∞?

(ii) Give an example showing that (3.66) may fail for a Lipschitzian mapping f : R → H with
values in any separable infinite-dimensional Hilbert space Y .

(iii) Derive sufficient conditions for coderivative normality of set-valued mappings with values
in infinite-dimensional spaces. Hint: Distill this from the results of the previous exercises and
consult also with [522, Proposition 4.9].
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Exercise 3.44 (Pointbased Characterizations of Lipschitz-Like Property in Asplund Spaces).
Let F : X →→ Y be a set-valued mapping between Asplund spaces that is closed-graph around
(x̄, ȳ) ∈ gphF by our standing assumption.

(i) Prove that F is Lipschitz-like around (x̄, ȳ) ∈ gphF if and only if it is simultaneously
PSNC at this point and satisfies the condition D∗

MF(x̄, ȳ)(0) = {0}.
(ii) Verify the exact bound estimates

‖D∗
MF(x̄, ȳ)‖ ≤ lipF(x̄, ȳ) ≤ ‖D∗

NF(x̄, ȳ)‖ (3.67)

in the following cases: (a) arbitrary Banach spacesX and Y for the lower estimate and (b) dimX <
∞ and Y is Asplund for the upper one.

(iii) Is the condition dimX < ∞ essential for the upper estimate in (3.67)?
Hint: Proceed by passing to the limit in the corresponding conditions of Exercise 3.41 and

compare it with the proof of [522, Theorem 4.10].

Exercise 3.45 (Local Lipschitz Continuity of Extended-Real-Valued Functions). Let ϕ : X →
R be a (l.s.c.) function on an Asplund space X, and let x̄ ∈ ı(domϕ). Prove that ϕ is locally
Lipschitzian around x̄ if and only if ∂∞ϕ(x̄) = {0} and ϕ is SNEC at x̄.

Hint: Apply the coderivative criterion for Lipschitz-like property of set-valued mappings from
Exercise 3.44(i) to the epigraphical multifunction x �→ epiϕ.

Exercise 3.46 (Lipschitzian Properties of Convex-Graph Multifunctions). Let F : X →→ Y be a
convex-graph multifunction between Asplund spaces, and let x̄ ∈ domF . The following assertions
are equivalent:

(a) There is ȳ ∈ F(x̄) such that F is Lipschitz-like around (x̄, ȳ).
(b) The range of F−1 is SNC at x̄ and N(x̄; rgeF−1) = {0}.
(c) x̄ is an interior point of the range of F−1.
(d) F is Lipschitz-like at (x̄, ȳ) for every ȳ ∈ F(x̄).

If in addition dimX < ∞, then whenever ȳ ∈ F(x̄) we have the exact bound formula

lipF(x̄, ȳ) = sup
‖y∗‖≤1

{‖x∗‖ ∣∣ 〈x∗, x − x̄〉 ≤ 〈y∗, y − ȳ〉 for all (x, y) ∈ gphF
}
.

Hint: Derive this from Exercise 3.44 by using the particular coderivative form for convex-graph
multifunctions; compare this with the proof of [522, Theorem 4.12].

Exercise 3.47 (Neighborhood Characterizations of Metric Regularity and Covering). Let
F : X →→ Y be a set-valued mapping between Asplund spaces.

(i) Given (x̄, ȳ) ∈ gphF , show that the following assertions are equivalent:

(a) F is metrically regular around (x̄, ȳ).

(b) We have b̂(F, x̄, ȳ) < ∞, where

b̂(F, x̄, ȳ) := inf
η>0

inf
{
μ > 0

∣∣∣ ‖y∗‖ ≤ μ‖x∗‖, x∗ ∈ D̂∗F(x, y)(y∗),

x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)
}
.

Furthermore, the exact regularity bound of F around (x̄, ȳ) is calculated by

regF(x̄, ȳ) = b̂(F, x̄, ȳ)

= inf
η>0

sup
{
‖D̂∗F(x, y)−1‖

∣∣∣ x ∈ Bη(x̄), y ∈ F(x) ∩ Bη(ȳ)
}
.

(ii) Given x̄ ∈ domF , obtain versions of the assertions in (i) for the semilocal metric regularity
of the mapping F around x̄.
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(iii) Derive the corresponding counterparts of the assertions in (i) and (ii) for the (local) cover-
ing and semilocal covering properties of the mapping F .

Hint: Deduce (i) from the results on the Lipschitz-like property in Exercise 3.41 and the equiv-
alence in Exercise 3.37. Proceed similarly (ii) and (iii).

Exercise 3.48 (Pointbased Characterizations of Metric Regularity in Infinite Dimensions).
Given a set-valued mapping F : X →→ Y between Banach spaces, the reversed mixed coderivative
of F at (x̄, ȳ) ∈ gphF is defined by

D̃∗
MF(x̄, ȳ)(y

∗) := {
x∗ ∈ X∗∣∣ y∗ ∈ −D∗

MF
−1(ȳ, x̄)(−x∗)

}
, y∗ ∈ Y ∗, (3.68)

via the mixed coderivative (1.65) of the inverse mapping F−1 : Y →→ X.
(i) Provided that X and Y are Asplund, verify that F is metrically regular (or has the cov-

ering property) around (x̄, ȳ) if and only if F−1 is PSNC at (ȳ, x̄) and the kernel condition
kerD̃∗

MF(x̄, ȳ) = {0} is satisfied.
(ii) Show that the “only if” part of (i) holds in the general Banach space setting.
(iii) Derive estimates and precise coderivative formulas for calculating the exact bounds

regF(x̄, ȳ) and covF(x̄, ȳ).
(iv) Show that for any separable Banach spaceX, there is a convex-valued mapping F : X →→ X

which doesn’t have the covering and metric regularity properties around (0, 0) ∈ gphF while
kerD∗

NF(0, 0) = {0}.
Hint: To get (i)–(iii), apply the results of Exercise 3.44 to the inverse mapping F−1 due to

the equivalence relationships from Exercise 3.37. To verify (iv), construct a mapping F by us-
ing a countable basis in X such that the PSNC property fails for F−1; compare this with [522,
Example 4.19].

Exercise 3.49 (Metric Regularity and Covering Properties for Convex-Graph Multifunc-
tions). Derive characterizations of metric regularity and covering properties of convex-graph mul-
tifunctions F : X →→ Y in the framework of Exercise 3.46. Hint: Combine the results of Exer-
cises 3.37 and 3.46, and compare it with the classical Robinson-Ursescu theorem in Banach spaces;
see Section 3.5.

Exercise 3.50 (Covering Relative to Mappings and Sets). Given mappings F : X →→ Y and
� : X →→ X between Banach spaces, κ > 0, and x̄ ∈ �(x̄) ∩ domF , we say [505] that F has
the covering property around x̄ relative to the mapping � (in particular, relative to the set � when
�(x) ≡ �) with some modulus κ > 0 if there is a neighborhood U of x̄ such that

F(x)+ κrB ⊂ F
(
(x + rB) ∩�(x)) whenever x + rB ⊂ U, r > 0. (3.69)

(i) In the finite-dimensional setting, introduce the relative covering constant

κ(F,�, x̄) := inf
{
‖u1 + u2‖

∣∣∣u1 ∈ D∗F(x̄, ȳ)(v), u2 ∈ N(x̄;�(x̄)), ȳ ∈ F(x̄), ‖v‖ = 1
}

and show that the condition κ(F,�, x̄) > 0 is necessary and sufficient for the validity of the
relative covering property of F with respect to � around x̄ with some modulus κ > 0 provided
that F is locally Lipschitzian around x̄ and that� is normally semicontinuous at x̄ in the following
sense:

[
xk

domF−→ x̄, uk
�(xk)−→ x̄, vk → v, vk ∈ N(uk;�(xk)

)] �⇒ v ∈ N(x̄;�(x̄)).
Hint: Proceed similarly to the proof of Theorem 3.3, and compare it with the corresponding

arguments in [507, Theorem 5.3].
(ii) Show that the mapping � : Rn →→ R

n is normally semicontinuous at x̄ in the following two
cases: (a) �(x) ≡ � around x̄ and (b) �(·) is convex-valued around x̄ and inner semicontinuous
at this point. Any other sufficient conditions?
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(iii) Derive extensions of the results in (i) and (ii) to infinite-dimensional spaces.

Exercise 3.51 (Metric Subregularity and Calmness of Multifunctions). Let F : X →→ Y be a
set-valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gphF . The mapping F is metrically
subregular at (x̄, ȳ) with modulus μ > 0 if estimate (3.2) holds while y = ȳ therein. The cor-
responding semilocal versions of metrical subregularity of F at x̄ ∈ domF and ȳ ∈ rgeF are
defined similarly to the case of semilocal metric regularity in Exercise 3.36. The mapping F is
calm at (x̄, ȳ) with modulus � ≥ 0 if inclusion (3.3) holds while u = x̄. If in the latter case V = Y ,
the mapping F is called upper (or outer) Lipschitzian at x̄ ∈ domF .

(i) Construct examples of mappings between finite-dimensional spaces that are metrically sub-
regular (resp. calm) at some point (x̄, ȳ) while not metrically regular (resp. Lipschitz-like) around
this point.

(ii) Establish two-sided relationships between the metric subregularity (resp. semilocal metric
regularity) and calmness (resp. upper Lipschitzian) properties of F and its inverse at the corre-
sponding points similarly to those given in Theorem 3.2 and Exercise 3.36. Hint: Proceed as in the
proof of Theorem 3.2.

(iii) Formulate an appropriate “subcovering/subopenness” property of multifunctions
F : X →→ Y together with its semilocal version and establish the corresponding relationships
with metric subregularity and calmness/upper Lipschitzian properties of F and F−1 defined above
in this exercise.

Exercise 3.52 (Second-Order Growth Conditions for Metric Regularity and Metric Subreg-
ularity of Subdifferential Mappings).

(i) Let ϕ : X → R be convex and l.s.c. function on a Hilbert space X with x̄ ∈ domϕ and
v̄ ∈ ∂ϕ(x̄). Verify that the subgradient mapping ∂ϕ : X →→ X is metrically regular around (x̄, v̄) if
and only if there exist neighborhoods U of x̄ and V of v̄ along with some γ > 0 such that

(∂ϕ)−1(v) 
= ∅ for all v ∈ V and
ϕ(x) ≥ ϕ(x̄)− 〈v, u− x〉 + γ dist2

(
x; (∂ϕ)−1(v)

)
for all x ∈ U, u ∈ (∂ϕ)−1(v), v ∈ V.

Hint: Use the construction of the subdifferential in convex analysis together with Ekeland’s varia-
tional principle, and compare it with the proof of [20, Theorem 3.6]. Does this proof hold in any
Banach space X?

(ii) Let ϕ : X → R be convex and l.s.c. function on a Banach space X with x̄ ∈ domϕ and
v̄ ∈ ∂ϕ(x̄). Show that ϕ is metrically subregular at (x̄, v̄) if and only if there is a neighborhood
U of x̄ and a constant γ > 0 such that the following second-order/quadratic growth condition is
satisfied:

ϕ(x) ≥ ϕ(x̄)− 〈v̄, x̄ − x〉 + γ dist2
(
x; (∂ϕ)−1(v̄)

)
whenever x ∈ U.

Hint: Proceed similarly to (i) and compare it with the proofs of [20, Theorem 3.3] for Hilbert
spaces and [21, Theorem 2.1] in the general Banach space setting.

(iii) Establish extensions of the results in (i) and (ii) to the basic subdifferential of l.s.c. functions
defined on Asplund spaces, with quantitative interrelations between constants in quadratic growth
and metric regularity/subregurity, provided that x̄ is a local minimizer of ϕ. Hint: Proceed as in the
proofs of [232, Theorem 3.1 and Corollary 3.2] in the case of metric subregularity.

(iv) Clarify interconnections between the above second-order growth conditions for metric sub-
regularity of the subgradient mappings ∂ϕ and those for the upper Lipschitzian property of the
(∂ϕ)−1 discussed in Exercise 3.55(ii–iv).

Exercise 3.53 (Preservation of Calmness and Metric Subregularity Under Intersections). Let
F1 : X1 →→ Y and F2 : X2 →→ Y be set-valued mappings between metric spaces. Define the inter-
section mapping (F1 ∩ F) : (X1 ×X2) →→ Y by

(F1 ∩ F2)(x1, x2) := F1(x1) ∩ F2(x2), x1 ∈ X1, x2 ∈ X2.
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(i) Assume that F1 and F2 are calm at (x̄1, x̄) ∈ gphF1 and (x̄2, x̄) ∈ gphF2, respectively,
that F−1

2 is Lipschitz-like around (x̄, x̄2), and that x2 �→ F1(x̄1) ∩ F2(x2) is calm at (x̄2, x̄). Then
show that the intersection mapping F1 ∩F2 is calm at (x̄1, x̄2, x̄). Hint: Compare with the proof of
[420, Theorem 2.5].

(ii) Obtain relationships between the exact calmness bound of F1 ∩ F2 at (x̄1, x̄2, x̄) and the
exact bounds of the other properties involved in (i).

(iii) Establish counterparts of (i) and (ii) for the metric subregularity of F1 ∩ F2.

Exercise 3.54 (Outer Derivative of Multifunctions). The outer derivative of F : Rn →→ R
m at

x̄ ∈ domF in the direction ū ∈ R
n is defined by

D̂F (x̄)(ū) := Lim sup
t↓0
u→ū

1 −�F(x̄)
(
F(x̄ + tu))
t

, (3.70)

where (1 −��)(�) := {z−w ∈ R
m| z ∈ �, w ∈ ��(z)} with the Euclidean projector��(z) of

z to the (locally closed) set � taken from (1.3).
(i) Show that D̂F (x̄)(ū) reduces to the contingent derivative DF(x̄)(ū) from (1.87) provided

that F(x̄) is a singleton.
(ii) Assume that x̄ is a local minimizer of ϕ : Rn → R and verify that

D̂Eϕ(x̄)(u) = {0} for all u ∈ R
n,

where Eϕ : Rn →→ R is an epigraphical multifunction associated with ϕ.
(iii) Supposing that the set F(x̄) is bounded, show that for any v ∈ D̂F (x̄)(0) there is z ∈ F(x̄)

such that v ∈ N(z;F(x̄)).
Hint: Proceed directly by using the corresponding definitions.

Exercise 3.55 (Upper Lipschitzian Mappings and Inverse Subdifferentials).
(i) Prove that F : Rn →→ R

m is upper Lipschitzian at x̄ ∈ domF if and only if the graph of the
outer coderivative (x, u) �→ D̂F (x)(u) is (locally) closed and we have D̂F (x̄)(0) = {0}. Hint:
Combine the construction in (3.70) with the definition of the upper Lipschitzian property in finite
dimensions; cf. [771, Theorem 3.2].

(ii) Let ϕ : Rn → R be l.s.c. on R
n, and let the inverse (∂ϕ)−1 : Rn →→ R

n to the basic subdif-
ferential mapping be upper Lipschitzian at the origin. Show that for any set � ⊂ (∂ϕ)−1(0) there
are positive constants γ and ν such that

ϕ(x) ≥ infϕ + γ dist2
(
x; (�+ 2νB) ∩ (∂ϕ)−1(0)

)
if x ∈ �+ νB. (3.71)

Hint: Use the finite-dimensional variational principle from Theorem 2.12 with a Lipschitzian sub-
additive function θ : Rn → R+ satisfying ∂θ(0) ⊂ B therein, and then apply the semi-Lipschitzian
subdifferential sum rule from Corollary 2.20. Compare this with the proof of [771, Theorem 4.2].

(iii) Assume that ϕ in (ii) is convex and that (∂ϕ)−1(0) 
= ∅. Verify that the quadratic
growth condition (3.71) is necessary and sufficient for the upper Lipschitzian property of
(∂ϕ)−1 : Rn →→ R

n at the origin, and that (3.71) can be equivalently rewritten in the simpli-
fied form

ϕ(x) ≤ infϕ + γ dist2
(
x; (∂ϕ)−1(0)

)
whenever x ∈ (∂ϕ)−1(0)+ νB.

Hint: Use the subdifferential expression for convex functions; cf. [771, Theorem 4.3].
(iv) Employing the infinite-dimensional versions of the results mentioned in the hint to (ii),

extend this statement to the case of Asplund spaces and then show that characterization (iii) holds
in any Banach space. What about an infinite-dimensional extension of the outer derivative charac-
terization in (i)?
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(v) Clarify the possibility to characterize the calmness and metric subregularity properties
of multifunctions between finite-dimensional and infinite-dimensional spaces via an appropriate
derivative construction of type (3.70) .

Exercise 3.56 (Semimetric Regularity of Multifunctions). Let F : X →→ Y be a mapping be-
tween Banach spaces, � ⊂ X, and x̄ ∈ � ∩ domF . Consider the set

S := {
x ∈ �∣∣ F(x) ∩ F(x̄) 
= ∅}

and say [505] that F is semimetrically regular at x̄ relative to � if

dist(x; S) ≤ μβ
(
F(x̄), F (x)

)
for all x ∈ �, ‖x − x̄‖ ≤ γ (3.72)

for some μ, γ > 0 via the Hausdorff semidistance from �1 to �2 defined by

β(�1,�2) := sup
x∈�1

inf
u∈�2

‖x − u‖.

(i) Compare this notion with metric subregularity and its semilocal version defined in the cor-
responding setting of Exercise 3.51.

(ii) In the finite-dimensional setting, suppose that there are γ, b > 0 such that for any x ∈ �\S
with ‖x − x̄‖ ≤ γ , the mapping F is outer semicontinuous, the function x �→ dist(z;F(x)) is
locally Lipschitzian when z ∈ F(x̄), and the condition

sup
z∈F(x̄)

inf
{ ‖u1 + u2‖

∣∣ u1 ∈ D∗F(x, y)(v), y ∈ �(z;F(x)),
〈v, y − z〉 = ‖y − z‖, ‖v‖ = 1, u2 ∈ N(x;�)} ≥ b

is satisfied. Then the mapping F is semimetrically regular at x̄ relative to the set �, and we have
the modulus estimate μ ≥ b−1 in (3.72).

(iii) Derive an extension of (ii) to the case of Asplund spaces.
Hint: Consider the function ϕz(x) := dist(z;F(x))+ δ(x;�) on (� \S)∩Bγ (x̄), and proceed

similarly to Step 2 in the proof of Theorem 3.3 with the usage of the subdifferential sum rule and
subdifferentiation of the distance function at out-of-set points; compare it with the proof of [507,
Theorem 5.4] in finite dimensions.

Exercise 3.57 (Interconnections Between Semimetric Regularity and Covering of Mappings
Relative to Sets). In the setting of Exercise 3.50 with �(·) ≡ �, suppose that F is locally Lips-
chitzian around x̄. Verify the following assertions (i) and (ii) in the case of X = R

n and Y = R
m:

(i) If κ(F,�, x̄) > 0 for the relative covering constant of F with respect to the set �, then the
mapping F is semimetrically regular at x̄ relative to �.

(ii) If F is not semimetrically regular at x̄ relative to �, then there are elements ȳ ∈ F(x̄),
v ∈ R

m with ‖v‖ = 1, and u ∈ D∗F(x̄, ȳ)(v) such that −u ∈ N(x̄;�).
(iii) Extend the results of (i) and (ii) to infinite-dimensional spaces X and Y .
Hint: Proceed by the definitions with using the results from Exercises 3.50and 3.56 and the

above coderivative properties of Lipschitzian multifunctions under appropriate sequential normal
compactness in infinite dimensions. Compare it with the proof of [507, Corollary 5.4.1] in the case
of finite-dimensional spaces.

Exercise 3.58 (Metric Hemiregularity of Multifunctions). A set-valued mapping F : X →→ Y

between Banach spaces is said to be metrically hemiregular at (x̄, ȳ) ∈ gphF with modulus μ > 0
if there is a neighborhood V ⊂ Y of ȳ such that

dist
(
x̄, F−1(y)

) ≤ μ‖y − ȳ‖ for all y ∈ V. (3.73)

The infimum of {μ} over all the combinations (μ, V ) for which (3.73) holds is called the exact
hemiregularity bound of F at (x̄, ȳ) and is denoted by hemiregF(x̄, ȳ). Furthermore, F is strongly
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metrically hemiregular at (x̄, ȳ) with modulus μ > 0 if there are neighborhoods U ⊂ X of x̄ and
V ⊂ Y of ȳ such that (3.73) holds and that F−1 admits a single-valued localization on U × V

meaning that the mapping y �→ F−1(y) ∩ U is single-valued on V .
(i) Show that a linear bounded operator A : X → Y is metrically hemiregular at every point

x̄ ∈ X if and only if it is surjective. In this case we have the relationships

hemregA = regA = ∥∥(A∗)−1
∥∥,

where hemreg A stands for the common exact hemiregularity bound of A at all the points x̄ ∈ X.
Hint: Proceed by the definitions.

(ii) Prove that F : X →→ Y is strongly hemiregular at (x̄, ȳ) if and only if the inverse mapping
F−1 : Y →→ X admits a calm single-valued localization s(·) around (ȳ, x̄)with the equality between
the corresponding exact bounds

hemregF(x̄, ȳ) = clm s(ȳ).

Hint: Proceed by the definitions and compare with the proof of [23, Proposition 5.8].
(iii) Given an example of a function f : R2 → R, which is metrically hemiregular at the origin

while not being metrically regular around this point.

Exercise 3.59 (Coderivative Sum Rules in Infinite Dimensions). Let Fi : X →→ Y , i = 1, 2, be
set-valued mappings between Banach spaces with (x̄, ȳ) ∈ gph (F1 + F2).

(i) Suppose that the mapping F1 is single-valued and Fréchet differentiable at x̄. Then for all
y∗ ∈ Y ∗ we have the equality

D̂∗(F1 + F2)(x̄, ȳ)(y
∗) = ∇F1(x̄)

∗y∗ + D̂∗F2
(
ȳ − F1(x̄)

)
(y∗).

If furthermore F1 is strictly differentiable at x̄, then equality (3.24) holds for both limiting coderiva-
tives D∗ = D∗

N,D
∗
M . Hint: To justify the inclusions “⊂” in the sum rules above for each case

D̂∗,D∗
N , and D∗

M , proceed similarly to the proof of [522, Theorem 1.38] by using the correspond-
ing definitions. To verify the opposite inclusions therein, apply the established ones “⊂” to the sum
(F1 + F2)+ (−F1).

(ii) Let X and Y be Asplund while F1, F2 be arbitrary (closed-graph) multifunctions. Fix
(ȳ1, ȳ2) ∈ S(x̄, ȳ) from (3.21) and suppose that this mapping is inner semicontinuous at
(x̄, ȳ, ȳ1, ȳ2), that either F1 is PSNC at (x̄, ȳ1) or F2 is PSNC at (x̄, ȳ2) and that the qualifi-
cation condition (3.22) is valid in terms of the mixed coderivative D∗ = D∗

M . Then show that the
sum rule (3.23) holds for both coderivatives D∗ = D∗

N,D
∗
M . Check that all the assumptions above

are satisfied if either F1 or F2 is Lipschitz-like at the corresponding point (x̄, ȳi ), i = 1, 2.
Hint: Proceed similarly to the proof of Theorem 3.9(i) with using the result of Exercise 2.42(i)

and the subsequent limiting procedure under the imposed PSNC conditions. Then use (3.61) and
Exercise 3.42(iii) for Lipschitz-like multifunctions. Compare this with the proof of [522, Theo-
rem 3.8].

(iii) Clarify whether the N -regularity (resp. M-regularity) assumptions on both multifunction
Fi at (x̄, ȳi ) ensures the equality and the corresponding regularity property of F1 + F2 at (x̄, ȳ).

(iv) Derive an infinite-dimensional counterpart of Theorem 3.9(ii).

Exercise 3.60 (Coderivative Intersection Rules). Let F1, F2 : X →→ Y be set-valued mappings
between Asplund spaces, let (x̄, ȳ) ∈ gphF1 ∩ gphF2, and let the graphical normal qualification
condition

N
(
(x̄, ȳ); gphF1

) ∩ [−N((x̄, ȳ); gphF2
)] = {0}

be satisfied. Assume also that one of the mappings Fi , i = 1, 2, is SNC at (x̄, ȳ). Then for all
y∗ ∈ Y ∗, we have the inclusion

D∗
N(F1 ∩ F2)(x̄, ȳ)(y

∗) ⊂
⋃

y∗
1 +y∗

2 =y∗

[
D∗
NF1(x̄, ȳ)(y

∗
1 )+D∗

NF2(x̄, ȳ)(y
∗
2 )
]
,
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which holds as equality when both Fi are N -regular at (x̄, ȳ). Hint: Apply the normal intersection
rule from Theorem 2.16 to the sets �i = gphFi , i = 1, 2, and its infinite-dimensional extension
from Exercise 2.43(iv).

Exercise 3.61 (Chain Rules for Coderivatives in Infinite Dimensions). Let G : X →→ Y and
F : Y →→ Z be (closed-graph) mappings between Asplund spaces, and let z̄ ∈ (F ◦G)(x̄). Consider
the set-valued mapping S : X × Z →→ Y defined as in (3.25) and verify the following chain rule
assertions:

(i) Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ), that either F is PSNC
at (ȳ, z̄) or G−1 is PSNC at (ȳ, x̄), and that

D∗
MF(ȳ, z̄)(0) ∩

(−D∗
MG

−1(ȳ, x̄)(0)
) = {0},

which all hold if either F is Lipschitz-like around (ȳ, z̄) or G is metrically regular around (x̄, ȳ).
Then for both coderivatives D∗ = D∗

N,D
∗
M we have the inclusion

D∗(F ◦G)(x̄, z̄)(z∗) ⊂ D∗
NG(x̄, ȳ) ◦D∗F(ȳ, z̄)(z∗), z∗ ∈ Z∗.

Hint: Apply the corresponding coderivative sum rule of Exercise 3.59(ii) to the mapping� : X×
Y →→ Z from (3.29). The validity of the imposed assumptions for the mentioned classes of F and
G follows from Exercises 3.42(iii), 3.44(i), and 3.37.

(ii) Derive the Asplund space counterparts of Theorem 3.11(ii,iii) with the corresponding
equality and regularity statements, and compare them with the results and proofs of [522, The-
orem 3.13(ii,iii)].

(iii) Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ) and that F is
Lipschitz-like around (ȳ, z̄). Verify that

D∗
M(F ◦G)(x̄, z̄)(0) ⊂ {

x∗ ∈ X∗∣∣ x∗ ∈ D∗
MG(x̄, ȳ)(0)

}
.

Hint: Proceed in the way of proving the mixed coderivative sum rule in Exercise 3.59(ii)
with employing Exercise 2.42(ii) and applying it � from (3.29). Then use the coderivative con-
dition (3.60) for Lipschitz-like mappings before passing to the limit; see the proof of [522, Theo-
rem 3.14] for more details.

Exercise 3.62 (Product Rules for Coderivatives in Finite and Infinite Dimensions). Let
F(x) := F1(x) × F2(x) for all x ∈ X with Fi : X →→ Y , and let ȳ := (ȳ1, ȳ2) with ȳi ∈ Fi(x̄) as
i = 1, 2.

(i) Assume that both spaces X and Y are finite-dimensional and that the qualification condi-
tion (3.22) is satisfied. Show that

D∗F(x̄, ȳ)(y∗) ⊂ D∗F1(x̄, ȳ1)(y
∗
1 )+D∗F2(x̄, ȳ2)(y

∗
2 ) for all y∗ = (y∗

1 , y
∗
2 ) ∈ Y ∗ × Y ∗,

where the equality holds if each Fi is graphically regular at (x̄, ȳi ), i = 1, 2. Hint: Following the
proof of [202, Proposition 3.2], observe that gphF = f−1(�) for

f (x, y) := f1(x, y)× f2(x, y), fi(x, yi), and � := gphF1 × gphF2

and apply the representations of the normals to inverse images from Corollary 3.13.
(ii) Extend the results in (i) to products of finitely many multifunctions.
(iii) Derive counterparts of (i) and (ii) for the case of Asplund spaces X and Y .

Exercise 3.63 (Partial Coderivatives). Consider a mapping F : X × Y →→ Z between Asplund
spaces with (x̄, ȳ, z̄) ∈ gphF . The partial coderivative D∗

xF (x̄, ȳ, z̄) of F with respect to x at
(x̄, ȳ, z̄) is the coderivative of F(·, ȳ) at (x̄, z̄). Impose the assumptions that F is PSNC at (x̄, ȳ, z̄)
and that

(0, y∗) ∈ D∗
MF(x̄, ȳ, z̄)(0) �⇒ y∗ = 0,
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which are automatic when F is Lipschitz-like around (x̄, ȳ, z̄). Then prove that

D∗
xF (x̄, ȳ, z̄)(z

∗) ⊂ proj xD
∗F(x̄, ȳ, z̄)(z∗), z∗ ∈ Z∗,

for both coderivatives D∗ = D∗
N,D

∗
M , where the symbol “projx” signifies the projection of the set

D∗F(x̄, ȳ, z̄)(z∗) ⊂ X∗ × Y ∗ on X∗. Show furthermore that this inclusion holds as equality if F
is N -regular (resp. M-regular) at (x̄, ȳ, z̄), which ensures the corresponding regularity property of
x �→ F(x̄, ȳ) at (x̄, z̄).

Hint: Apply Theorem 3.11(iii) and its Asplund space extensions from Exercise 3.61(ii) to the
composition F(·, ȳ) = F ◦ g with g(x) := (x, ȳ).

Exercise 3.64 (Basic Normals to Inverse Images in Infinite Dimensions). Let x̄ ∈ G−1(�),
where G : X →→ Y is a multifunction between Asplund spaces and where � is a nonempty subset
of Y . Assume that the set-valued mapping x �→ G(x) ∩� is inner semicompact at x̄ and that for
every ȳ ∈ G(x̄) ∩ � the following hold: (a) Either G−1 is PSNC at (ȳ, x̄), or � is SNC at ȳ. (b)
The pair {G,�} satisfies the qualification condition

N(ȳ;�) ∩ ker D̃∗
MG(x̄, ȳ) = {0}.

Prove that under these assumptions we have the inclusion

N(x̄;G−1(�)) ⊂
⋃[

D∗
NG(x̄, ȳ)(y

∗)
∣∣∣ y∗ ∈ N(ȳ;�), ȳ ∈ G(x̄) ∩�

]
,

which holds as equality if G = g is single-valued and strictly differentiable at x̄ and either the
derivative operator ∇g(x̄) : X → Y is surjective or � is normally regular at x̄. Show also that in
the latter case the set g−1(�) is normally regular at x̄.

Hint: Proceed as in the proof of Corollary 3.13 with employing the coderivative chain rule and
regularity assertion from Exercise 3.61(ii).

Exercise 3.65 (Coderivatives of Special Compositions of Mappings Between Asplund
Spaces). Derive infinite-dimensional versions of Theorem 3.14 and Corollary 3.15 proceeding
in the same way as in the proofs therein while using the above coderivative calculus rules in the
Asplund space settings. Hint: Compare this with [522, Theorem 3.18 and Corollary 3.19].

Exercise 3.66 (PSNC and SNC Properties of Mappings Under Summation). Let F1, F2 be
closed-graph set-valued mappings between Asplund spaces X and Y , and let (x̄, ȳ) ∈ gph (F1 +
F2). Assume that the mapping S : X × Y →→ Y 2 defined by (3.21) is inner semicompact at (x̄, ȳ).
Prove the following statements:

(i) If for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) each Fi is PSNC at (x̄, ȳi ), respectively, and if the mixed
qualification condition (3.82) is satisfied, then F1 + F2 is PSNC at (x̄, ȳ).

(ii) If in the setting of (i) each Fi is SNC at (x̄, ȳi ) and if the (normal) qualification condi-
tion (3.22) with D∗ = D∗

N is satisfied, then F1 + F2 is SNC at (x̄, ȳ).
Hint: Proceed according to the definitions by applying the normal intersection rules from Ex-

ercises 2.42 and 2.43 for (i) and (ii), respectively. Compare this with the proofs of [522, Theo-
rems 3.88 and 3.90] based on the extremal principle.

Exercise 3.67 (SNC Properties of Inverse Images of Sets Under Set-Valued Mappings Be-
tween Asplund Spaces). Consider the inverse image G−1(�) of � ⊂ Y under a mapping
G : X →→ Y between Asplund spaces. Which SNC/PSNC requirements do we need to impose
on G and � to ensure the SNC property of G−1(�) at x̄ under an appropriate qualification condi-
tion of type (3.32)? Hint: Apply the result formulated in Exercise 2.42 and compare it with [522,
Theorem 3.84].

Exercise 3.68 (PSNC and SNC Properties of Mappings Under Compositions). Consider the
composition F ◦G of set-valued mappings G : X →→ Y and F : Y →→ Z between Asplund spaces
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with z̄ ∈ (F ◦ G)(x̄), and assume that the mapping S from (3.25) is inner semicompact at (x̄, z̄).
Prove the following statements:

(i) If for all ȳ ∈ S(x̄, z̄) both G and F are PSNC at (x̄, ȳ) and (ȳ, z̄), respectively, and if the
qualification condition

D∗
MF(ȳ, z̄)(0) ∩ kerD∗

NG(x̄, ȳ) = {0}
is satisfied, then the composition F ◦G is PSNC at (x̄, z̄).

(ii) If for all ȳ ∈ S(x̄, z̄) both G and F are SNC at (x̄, ȳ) and (ȳ, z̄), respectively, and if the
(normal) qualification condition (3.26) with D∗ = D∗

N is satisfied, then the composition F ◦G is
SNC at (x̄, z̄).

Hint: Apply intersection rules from Exercises 2.42 and 2.43 to the sets �1 := gphG × Z and
�2 := X × gphF . Compare this with [522, Theorems 3.95 and 3.98].

Exercise 3.69 (PSNC Property for Sets in Products of Two Spaces). Given a set � ⊂ X × Y

in the product of Banach spaces, we say that it is PSNC at (x̄, ȳ) ∈ X × Y with respect to X if for

any sequences εk ↓ 0, (xk, yk)
�→ (x̄, ȳ) and (x∗

k , y
∗
k ) ∈ N̂εk ((xk, yk);�) we have the implication

[‖y∗
k ‖ → 0, x∗

k

w∗→ 0
] �⇒ ‖x∗

k ‖ → 0 as k → ∞.

(i) Show that it is possible to equivalently put εk ≡ 0 if both spaces X, Y are Asplund. Hint:
Use Exercise 1.42.

(ii) Prove in the Asplund space setting that for any (locally closed) sets �1, �2 ⊂ X × Y such
that �1 is SNC at (x̄, ȳ) ⊂ �1 × �2 and �2 is PSNC at (x̄, ȳ) with respect to X, we have the
PSNC property of �1 ∩�2 at (x̄, ȳ) with respect to X if

N(x̄, ȳ);�1) ∩
(−N(x̄, ȳ);�2)

) = {(0, 0)}.
Hint: Simplify the proof of [522, Theorem 3.79] based on the extremal principle.

Exercise 3.70 (Preservation of the Lipschitz-Like Property Under Various Operations). Ob-
tain conditions ensuring the preservation of the Lipschitz-like property with exact bound relation-
ships for set-valued mappings between Asplund spaces under the following operations:

(i) For compositions F ◦G ofG : X →→ Y and F : Y →→ Z. Hint: Use the coderivative criterion
for the Lipschitz-like property and the chain rules for coderivatives together with the corresponding
PSNC calculus; cf. [522, Theorem 4.14].

(ii) For sums of mappings F1, F2 : X →→ Y . Hint: Use the coderivative criterion for the
Lipschitz-like property and the sum rules for the mixed coderivative together with the correspond-
ing PSNC calculus presented above; cf. [522, Theorem 4.16].

Exercise 3.71 (Metric Regularity and Covering Under Compositions).
(i) In the framework of Exercise 3.70(i), obtain conditions ensuring the preservation of the met-

ric regularity and covering properties with exact bound relationships. Hint: Apply Exercise 3.70(i)
to the composition (F ◦G)−1 = G−1 ◦ F−1.

(ii) Could we proceed in the same way with sums F1 + F2?

Exercise 3.72 (Coderivatives of General Parametric Constraint Systems). Consider the class
of PCS in form (3.37), where g : X × Y → Z is a mapping between Banach spaces that is strictly
differentiable at (x̄, ȳ) ∈ gphF with the surjective derivative ∇g(x̄, ȳ). Denoting z̄ := g(x̄, ȳ) ∈
�, show that:

(i) The normal coderivative of F is calculated by

D∗
NF(x̄, ȳ)(y

∗) = {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ ∇g(x̄, ȳ)∗N(z̄;�)}, (3.74)

where the above representation also holds true for the mixed coderivative D∗
MF(x̄, ȳ) if dimZ <

∞ (and obviously if dimY < ∞). Hint: Use the normal cone formula for inverse images from
Exercise 1.54(ii), and compare with [522, Theorem 4.31(i)].
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(ii) Formula (3.74) can be also for calculating the reversed mixed coderivative D̃∗
MF(x̄, ȳ)

provided that, besides the trivial case of dimX < ∞, � is DUALLY NORM-STABLE at z̄ in the
sense that N(z̄;�) = N‖·‖(z̄;�), where

N‖·‖(z̄;�) := {
z∗ ∈ X∗∣∣ ∃ εk ↓ 0, zk

�→ z̄, z∗k
‖·‖→ z∗ with z∗k ∈ N̂εk (zk;�), k → ∞}

.

Note that, besides the obvious case of dimZ < ∞, every set � that is normally regular at z̄ is
dually norm-stable at this point. Hint: Compare with [277, Theorem 3.2].

(iii) Derive counterparts of formula (3.74) for all the three coderivatives under consideration in
the case of Asplund spaces X, Y , and Z, where the surjectivity condition on ∇g(x̄, ȳ) is replaced
by the constraint qualification

N(z̄;�) ∩ ker ∇g(x̄, ȳ)∗ = {0} (3.75)

provided that � is normally regular at z̄ and either it is SNC at z̄ or g−1 is PSNC at (z̄, x̄, ȳ).
Hint: Use representations of basic normals to inverse images from Exercise 3.64 together with
SNC/PSNC preservation rules under composition from Exercise 3.68, and compare this with [522,
Theorem 4.31(ii)] and [277, Theorem 3.2(ii)].

Exercise 3.73 (Coderivatives of Constraint Systems in Nonlinear Programming). Parametric
constraint systems in nonlinear programming are given by

F(x) := {
y ∈ Y ∣∣ ϕi(x, y) ≤ 0, i = 1, . . . , m; ϕi(x, y) = 0, i = m+ 1, . . . , m+ r},

where all the functions ϕi , i = 1, . . . , m+r , are strictly differentiable at the feasible point (x̄, ȳ) ∈
gphF . Denoting by

I (x̄, ȳ) := {
i ∈ {1, . . . , m}∣∣ ϕi(x̄, ȳ) = 0

}

the collection of active constraint indices, verify that all the three coderivatives D∗ =
D∗
N,D

∗
M, D̃

∗
M of F at (x̄, ȳ) admit the representation

D∗F(x̄, ȳ)(y∗) =
{
x∗ ∈ X∗

∣∣∣ (x∗,−y∗) ∈
∑

i∈I (x̄,ȳ)
λi∇ϕi(x̄, ȳ),

λi ≥ 0, i ∈ {1, . . . , m} ∩ I (x̄, ȳ)
}

with y∗ = (λ1, . . . , λm+r ) ∈ R
m+r in each of the following cases:

(i) Both spaces X and Y are Banach, and the linear independence constraint qualification
(LICQ) holds at (x̄, ȳ), i.e., the active constraint gradients ∇ϕi(x̄, ȳ), i ∈ I (x̄, ȳ), are linearly
independent in X∗ × Y ∗.

(ii) Both spaces X and Y are Asplund and the MFCQ condition from Exercise 2.53 while with
respect to (x, y) holds at (x̄, ȳ).

Hint: Deduce this from Exercise 3.72(i,ii), respectively.

Exercise 3.74 (Coderivatives of Constraint Systems in Nondifferentiable Programming). Let
F and I (x̄, ȳ) with (x̄, ȳ) ∈ gphF be defined as in Exercise 3.73, and let the spaces X and Y be
Asplund. Assume that all the functions ϕi , i = 1, . . . , m+r , are locally Lipschitzian around (x̄, ȳ)
and that

[ ∑

i∈I (x̄,ȳ)
λi (x

∗
i , y

∗
i ) = 0

]
�⇒

[
λi = 0, i ∈ I (x̄, ȳ)

]

whenever λi ≥ 0 for i ∈ I (x̄, ȳ), (x∗
i , y

∗
i ) ∈ ∂ϕi(x̄, ȳ) for i ∈ {1, . . . , m}∩I (x̄, ȳ), and (x∗

i , y
∗
i ) ∈

∂ϕi(x̄, ȳ) ∪ ∂(−ϕi)(x̄, ȳ) for i = m+ 1, . . . , m+ r . Then we have
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D∗
NF(x̄, ȳ)(y

∗) ⊂
{
x∗ ∈ X∗

∣∣∣ (x∗,−y∗) ∈
∑

i∈{1,...,m}∩I (x̄,ȳ)
λi∂ϕi(x̄, ȳ)

+
m+r∑

i=m+1

λi

(
∂ϕi(x̄, ȳ) ∪ ∂(−ϕi)(x̄, ȳ)

)
, λi ≥ 0 as i ∈ I (x̄, ȳ)

}
.

Hint: Deduce it from Exercise 3.64, where � ⊂ R
m+r and G : X → R

m+r are clearly defined
by the constraint system under consideration, and use the subdifferential sum rule for Lipschitzian
functions; compare it with [522, Corollary 4.36].

Exercise 3.75 (Coderivatives of Implicit Multifunctions). Consider the implicit multifunction
defined by

F(x) := {
y ∈ Y ∣∣ g(x, y) = 0

}
,

where g : X × Y → Z be a mapping between Banach spaces that is strictly differentiable at
some point (x̄, ȳ) satisfying g(x̄, ȳ) = 0 with the derivative ∇g(x̄, ȳ). Verify the coderivative
representations

D̃∗
MF(x̄, ȳ)(y

∗) = D∗
NF(x̄, ȳ)(y

∗) = {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ ∇g(x̄, ȳ)∗Z∗}.

and show that the same representation holds for D∗
MF(x̄, ȳ) provided that either Y or Z is finite-

dimensional. Hint: Deduce it from Exercise 3.72 with � = {0}.
Exercise 3.76 (Coderivatives of Parametric Variational Systems). Consider the setting of
Proposition 3.16 for PVS (3.34) and justify the following extensions of the results therein in fi-
nite and infinite dimensions:

(i) Formulas (3.38) and (3.39) hold true if the mapping f : Rn → R
m is merely strictly differ-

entiable at (x̄, ȳ) with the full rank of ∇xf (x̄, ȳ).
(ii) Let f : X → Y be a mapping between arbitrary Banach spaces that is strictly differentiable

at (x̄, ȳ) with the surjective derivative ∇xf (x̄, ȳ). Then the reversed mixed coderivative of PVS is
calculated by

D̃∗
MS(x̄, ȳ)(y

∗) =
{
x∗ ∈ X∗

∣∣∣ ∃ z∗ ∈ Z∗ with x∗ = ∇xf (x̄, ȳ)∗z∗,
−y∗ ∈ ∇yf (x̄, ȳ)∗z∗ +D∗

MQ(ȳ, z̄)(z
∗)
}
.

Furthermore, we have the relationship

ker D̃∗
MS(x̄, ȳ) = −D∗

MQ(ȳ, z̄)(0).

Hint: Proceeding as in the proof of Proposition 3.16, both assertions can be deduced from Ex-
ercise 3.72(ii) if either dimX < ∞ or the set � = gphQ is dually norm-stable at (z̄, ȳ). To avoid
these assumptions, conduct a more delicate analysis involving [522, Lemma 1.16] and compare
with [277, Theorem 4.1].

Exercise 3.77 (Second-Order Subdifferentials of Smooth Functions).
(i) Show that representations (3.43) with u ∈ X∗∗ are valid in any Banach space X if ϕ is con-

tinuously differentiable around x̄ and its derivative mapping x �→ ∇ϕ(x) is strictly differentiable
at this point.

(ii) Verify whether the results of (i) hold for the normal (resp. mixed) second-order subdiffer-
ential of ϕ at x̄ relative to x̄∗ ∈ ∂ϕ(x̄) defined, respectively, by

∂2
Nϕ(x̄, x̄

∗)(u) := (
D∗
N∂ϕ

)
(x̄, x̄∗)(u), u ∈ X∗∗, (3.76)

∂2
Mϕ(x̄, x̄

∗)(u) := (
D∗
M∂ϕ

)
(x̄, x̄∗)(u), u ∈ X∗∗. (3.77)
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Exercise 3.78 (Second-Order Subdifferential Chain Rules).
(i) Prove the second-order subdifferential chain rule (3.47) under the assumptions imposed in

Proposition 3.18.
(ii) Justify the validity of the mixed second-order subdifferential counterpart of (3.47) formu-

lated via (3.77) in arbitrary Banach spaces:

∂2
M

(
ψ ◦ g)(ȳ, q̄)(u) = ∇2〈v̄, g〉(ȳ)∗u+ ∇g(ȳ)∗∂2

Mψ(w̄, v̄)
(∇g(ȳ)∗∗u

)
, u ∈ X∗∗,

provided that g is C2-smooth around x̄ with the surjective derivative.
(iii) Under which conditions the second-order chain rule above holds for the normal second-

order subdifferential (3.76)?
Hint: Compare with the proof of [522, Theorem 1.127] with its simplification in the case of

finite-dimensional spaces.

Exercise 3.79 (Reversed Mixed Coderivative of Subdifferential PVS with Composite Poten-
tials). Consider the parametric variational system S : X →→ Y defined in form (3.41) by using the
mappings f : X × Y → Y ∗, g : Y → W , and ϕ : W → R with arbitrary Banach spaces X, Y , and
W . Assume that f is strictly differentiable at (x̄, ȳ) with the surjective partial derivative ∇xf (x̄, ȳ)
and that g is C2-smooth around ȳ with the surjective derivative ∇g(ȳ). Let v̄ ∈ W ∗ be uniquely de-
termined by (3.44) with q̄ := −f (x̄, ȳ) ∈ ∂(ψ ◦ g)(ȳ). Show that the reversed mixed coderivative
of S at (x̄, ȳ) is calculated by

D̃∗
MS(x̄, ȳ)(y

∗) =
{
x∗ ∈ X∗

∣∣∣ ∃ u ∈ Y ∗∗ with x∗ = ∇xf (x̄, ȳ)∗u,
−y∗ ∈ ∇yf (x̄, ȳ)∗u+ ∇2〈v̄, g〉(ȳ)∗u+ ∇g(ȳ)∗∂2

Mψ(w̄, v̄)
(∇g(ȳ)∗∗u

)}
,

and furthermore we have the relationship

ker D̃∗
MS(x̄, ȳ) = −∇g(ȳ)∗∂2

Mψ(w̄, v̄)(0).

Hint: Proceed as in the proof of Proposition 3.18 with the usage of the second-order chain
rule from Exercise 3.78(ii).

Exercise 3.80 (Reversed Mixed Coderivative of Subdifferential PVS with Composite Fields).
Consider the setting of Proposition 3.19 with the mappings g : Y → W , f : X × Y → W ∗, and
ψ : W → R between Banach spaces under the surjectivity assumption on the partial derivative
∇xf (x̄, ȳ).

(i) Assume that ∇g(ȳ) is surjective, and show that we have

D̃∗
MS(x̄, ȳ)(y

∗) =
{
x∗ ∈ X∗

∣∣∣ ∃ u ∈ W ∗∗ with x∗ = ∇xf (x̄, ȳ)∗u,
−y∗ ∈ ∇yf (x̄, ȳ)∗u+ ∇g(ȳ)∗∂2

Mψ(w̄, q̄)(u)
}

for all y∗ ∈ Y ∗ with the additional relationship

ker D̃∗
MS(x̄, ȳ) = −∇g(ȳ)∗∂2

Mϕ(w̄, q̄)(0).

(ii) Let the spaces X, Y and both spaces W and W ∗ be Asplund. Assume that the subgradient
mapping ∂ψ : W →→ W ∗ is graph-closed around (w̄, q̄), that PSNC is valid at this point, and that
the second-order qualification condition is satisfied:

∂2
Mψ(w̄, q̄)(0) ∩ ker ∇g(ȳ)∗ = {

0
}
.

Show that the inclusion “⊂” holds in both formulas presented in (i).
Hint: Combine the results of Exercise 3.76(ii) with the coderivative chain rule in the inclusion

form from [522, Theorem 3.16].
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Exercise 3.81 (Metric Regularity of General PCS). Let (x̄, ȳ) ∈ gphF for the parametric con-
straint system F from (3.37), where g : X × Y → Z is a mapping between Banach spaces that is
strictly differentiable at (x̄, ȳ) with z̄ := g(x̄, ȳ) ∈ �.

(i) Assume that the derivative operator ∇g(x̄, ȳ) is surjective and that either � is dually norm-
stable at z̄ or dimX < ∞. Show that the condition

(0, y∗) ∈ ∇g(x̄, ȳ)∗N(z̄;�) �⇒ y∗ = 0 (3.78)

is necessary for the metric regularity of F around (x̄, ȳ)while being also sufficient for this property
if either Y is Asplund and� is SNC at z̄ or dim Y < ∞. In the latter case we have the exact bound
formula

regF(x̄, ȳ) = sup
{
‖y∗‖

∣∣∣ (x∗,−y∗) ∈ ∇g(x̄, ȳ)∗N(z̄;�), ‖x∗‖ ≤ 1
}
. (3.79)

(ii) Assume that all the spaces X, Y , and Z are Asplund, that the constraint qualification (3.75)
is satisfied, and that � is SNC at z̄. Then condition (3.78) is sufficient for the metric regularity of
F around (x̄, ȳ) while being also necessary for this property if � is normally regular at z̄. If in
addition dimY < ∞, we have (3.79).

Hint: Combine the results of Exercises 3.48 and 3.72.

Exercise 3.82 (Metric Regularity of Constraint Systems in Nonlinear Programming). Show
that in the setting of Exercise 3.73(ii) the implication

[ ∑

i∈I (x̄,ȳ)
λi∇xϕi(x̄, ȳ) = 0

]
�⇒

[ ∑

i∈I (x̄,ȳ)
λi∇yϕi(x̄, ȳ) = 0

]

for λi ≥ 0 if i ∈ {1, . . . , m} ∩ I (x̄, ȳ) and λi ∈ R otherwise is necessary and sufficient for the
metric regularity of F around (x̄, ȳ). Furthermore, the exact bound formula

regF(x̄, ȳ) = max
{ ∥∥∥

∑

i∈I (x̄,ȳ)
λi∇yϕi(x̄, ȳ)

∥∥∥ subject to
∥∥∥

∑

i∈I (x̄,ȳ)
λi∇xϕi(x̄, ȳ)

∥∥∥ ≤ 1
}

holds, where λi satisfy the sign and complementary slackness conditions as above.
Hint: Combine the results presented in Exercises 3.48 and 3.73(ii). Verify that the maximum is

realized in the exact bound formula due to the imposed Mangasarian-Fromovitz constraint qualifi-
cation; cf. the proof of [522, Corollary 4.39].

Exercise 3.83 (Metric Regularity of Implicit Multifunctions). Consider the implicit multifunc-
tion F in the setting of Exercise 3.75, and show that the condition

[∇xg(x̄, ȳ)∗z∗ = 0
] �⇒ [∇yg(x̄, ȳ)∗z∗ = 0

]
whenever z∗ ∈ Z∗

is necessary and sufficient for the metric regularity of F around (x̄, ȳ) provided that X is Asplund
and that either Y is Asplund and dimZ < ∞ or dim Y < ∞. Verify that in the latter case we have
the exact bound formula

regF(x̄, ȳ) = max
{∥∥∇yg(x̄, ȳ)∗z∗

∥∥
∣∣∣
∥∥∇xg(x̄, ȳ)∗z∗

∥∥ ≤ 1, z∗ ∈ Z∗}.

Hint: Combine the results presented in Exercises 3.48 and 3.75.

Exercise 3.84 (Metric Regularity of General PVS in Asplund Spaces). Consider the general
PVS in form (3.34), where f : X × Y →→ Z is a mapping strictly differentiable at (x̄, ȳ) ∈ gph S
with the surjective partial derivative ∇xf (x̄, ȳ) and where Q : Y →→ Z is closed-graph around
(ȳ, z̄) with z̄ := −f (x̄, ȳ). Assume that both spaces X and Y are Asplund while Z is arbitrarily
Banach.
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(i) Show that S is metrically regular around (x̄, ȳ) if and only if Q is PSNC at (ȳ, z̄) and
condition (3.54) holds with D∗ = D∗

M , and therefore the metric regularity of S around (x̄, ȳ) is
equivalent to the Lipschitz-like property of Q around (ȳ, z̄).

(ii) Verify the exact bound formula (3.55), with replacing “max” therein by “sup,” provided that
dimY < ∞ and Q is coderivatively normal at (ȳ, z̄).

(iii) Find sufficient conditions ensuring that the maximum is attained in the exact bound formula
for reg S(x̄, ȳ).

Hint: Use the Asplund space extensions of the coderivative criterion for metric regularity from
Exercise 3.48 and the calculation of the reversed mixed coderivative in Exercise 3.76 together with
the equivalence between the PSNC properties ofQ around (ȳ, z̄) and S−1 around (ȳ, x̄). Compare
it with [277, Theorem 5.6].

Exercise 3.85 (Metric Regularity and Subregularity of PVS in Banach Spaces). Consider the
PVS setting of Exercise 3.84 in the case of arbitrary Banach spaces X and Y under the surjectivity
assumption on ∇xf (x̄, ȳ).

(i) Verify the equivalence between the metric regularity of S around (x̄, ȳ) and the Lipschitz-
like property of Q around (ȳ, z̄).

(ii) Show that the equivalence holds true for the case of metric subregularity of S at (x̄, ȳ) and
the calmness property of Q at (ȳ, z̄).

Hint: To justify both (i) and (ii), use the Lyusternik-Graves iterative process as in the alternative
proof of Corollary 3.8; cf. [22, Theorem 3.3].

Exercise 3.86 (Metric Regularity of PVS with Composite Potentials in Infinite Dimensions).
Based on the characterization of metric regularity of general PVS from Exercise 3.84(i) and the
second-order subdifferential chain rule from Exercise 3.78(ii), derive an infinite-dimensional coun-
terpart of Corollary 3.21.

Hint: Verify by using the second-order subdifferential chain rule from Exercise 3.78(ii) that the
PSNC property ofQ = ∂(ψ ◦g) at (ȳ, q̄) is equivalent to the PSNC property of ∂ψ around (w̄, v̄).

Exercise 3.87 (Metric Regularity of PVS with Composite Fields in Infinite Dimension). Con-
sider the setting of Exercise 3.80(i) under the additional assumptions that the spaces X and Y are
Asplund and that the graph of ∂ψ : W →→ W ∗ is closed around (w̄, q̄). Show that S from (3.48)
is metrically regular around (x̄, ȳ) if and only if the subdifferential mapping ∂ψ is Lipschitz-like
around (w̄, q̄).

Hint: Verify that the PSNC property of ∂ψ ◦ g at (ȳ, w̄) is equivalent to this property of ∂ψ at
(w̄, q̄) under the imposed surjectivity assumption on ∇g(ȳ), and then use the coderivative criterion
from Exercise 3.48(i) together with the expression of kerD̃∗

MS(x̄, ȳ) presented in Exercise 3.80.

Exercise 3.88 (Some Properties of Amenable Functions). Let ϕ : Rn → R, and let x̄ ∈ domϕ.
Show that the following hold:

(i) If ϕ is amenable or strongly amenable at x̄, it maintains the corresponding property around
this point.

(ii) If ϕ is amenable at x̄, it is subdifferentially regular at this point.
(iii) The maximum of finitely many functions ϕi ∈ C1 is amenable at the corresponding point.

Hint: See [678, Section 10F].

Exercise 3.89 (Failure of Metric Regularity for PVS with Monotone Fields in Infinite-
Dimensional Spaces).

(i) Based on the proof of Theorem 3.25 and the conclusions of Exercises 3.84(i) and 3.85(i),
show that the result of Theorem 3.25 holds for PVS in Asplund and Banach spaces, respectively.

(ii) Give an example showing that a nonrobust counterpart of Theorem 3.25 for the metric sub-
regularity of PVS as in Exercise 3.51 doesn’t hold even for one-dimensional monotone mappings
Q : R →→ R.
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Exercise 3.90 (Gâteaux Differentiability). Let ϕ : Rn → R be finite at x̄.
(i) Does the Gâteaux differentiability of ϕ imply its continuity at x̄?
(ii) Show that the Gâteaux differentiability of ϕ at x̄ ∈ int(domϕ) is equivalent to the Fréchet

differentiability at this point provided that ϕ is locally Lipschitzian around x̄. Hint: Compare with
the proof in [537, Proposition 3.2].

(iii) Does the assertion in (ii) holds in infinite dimensions?
(iv) Assuming the convexity of ϕ, show that the Gâteaux differentiability of ϕ at x̄ ∈ int(domϕ)

is equivalent to its Fréchet differentiability at x̄ and holds if and only if the subdifferential ∂ϕ(x̄)
is a singleton. Hint: Compare with [537, Theorem 3.3].

Exercise 3.91 (Metric Regularity and Subregularity of PVS with Convex Subdifferential
Fields in Finite and Infinite Dimensions).

(i) Based on the proof of Corollary 3.26 and the conclusions of Exercises 3.84(i) and 3.85(i),
establish extensions of the obtained result on the failure of metric regularity for subdifferential
PVS with convex potentials without Gâteaux differentiability to the cases of Asplund and Banach
spaces, respectively.

(ii) Give an example showing that the result of Corollary 3.26 doesn’t hold if metric regularity
is replaced by metric subregularity. Hint: Let f (x, y) := x, and let the field Q : R →→ R be given
by

Q(y) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
2−(k+1), 2−k] for y = 2−(k/3),

2−(k+1) for y ∈ (
2(−(k+1)/3), 2−(k/3)),

0 for y = 0,[− 2−k,−2−(k+1)
]

for y = −2−(k/3),
−2−(k+1) for y ∈ (− 2−(k/3),−2(−(k+1)/3)

)

as depicted in Fig. 3.3. Verify that PVS (3.34) is not metrically regular around (0, 0) while it
is strongly q-subregular of any order q ∈ (0, 2] at this point; compare it with [564] and see
Section 3.5 and also Chapter 5 for more discussions.

Fig. 3.3 Metric regularity vs. subregularity

Exercise 3.92 (Classes of Continuously Prox-Regular Functions). Prove that the following
classes of functions ϕ : Rn → R are continuously prox-regular:

(i) If ϕ is l.s.c. and convex, then this holds at any x̄ ∈ domϕ.
(ii) If ϕ is strongly amenable at x̄, then this holds on a neighborhood of x̄.



152 3 Well-Posedness and Coderivative Calculus

(iii) Let ϕ ∈ C1,1 on an open set U , i.e., it is continuously differentiable with the Lipschitz
continuous gradient ∇ϕ on U . Then ϕ is continuously prox-regular on U .

Hint: Compare it with [678, Section 13.F].

Exercise 3.93 (Continuously Prox-Regular Functions with Lipschitz-Like Subdifferentials
in Finite and Infinite Dimensions).

(i) Prove Lemma 3.28 by using the fact that the local single-valuedness of any mapping
F : Rn →→ R

n is equivalent to the simultaneous validity of its maximal hypomonotonicity (see
Chapter 5 below) and Lipschitz-like property around (x̄, ȳ) with some ȳ ∈ F(x̄). Hint: Compare
it with [455].

(ii) Prove a Hilbert space extension of Lemma 3.28 by using properties of the Moreau envelope
of ϕ : X → R defined, given a rate λ > 0, by

ϕλ(x) := inf
u∈X

(
ϕ(u)+ 1

2λ
‖x − u‖2

)
, x ∈ X.

Hint: Compare it with the proof of [45, Theorem 5.3].

Exercise 3.94 (Failure of Metric Regularity for Subdifferential PVS with Composite Prox-
Regular Potentials in Infinite Dimensions). Consider the class of subdifferential PVS with com-
posite potentials (3.41), where f : X × Y → Y ∗ is a mapping between Asplund spaces that is
strictly differentiable at (x̄, ȳ) with −f (x̄, ȳ) ∈ ∂(ψ ◦ g)(ȳ) and with the surjective partial deriva-
tive ∇xf (x̄, ȳ), where g : Y → W is a C2-smooth mapping around ȳ with the surjective derivative
at w̄ := ∇g(ȳ) ∈ domψ , and where ψ : W → R is not Gâteaux differentiable at this point. Then
the metric regularity of (3.41) around (x̄, ȳ) fails in the following cases:

(i)W is Hilbert and ψ is continuously prox-regular at w̄ for the subgradient v̄ ∈ ∂ψ(w̄), which
is uniquely determined by ∇g(ȳ)∗v̄ = −f (x̄, ȳ). Hint: Proceed as in the proof of Theorem 3.29
with the usage of Exercise 3.93(ii).

(ii) W is Banach and ψ is convex and l.s.c. around w̄. Hint: Using the equivalence from Exer-
cise 3.85(i) together with the second-order chain from Exercise 3.78(ii), reduce the metric regular-
ity of S in (3.41) around (x̄, ȳ) to the Lipschitz-like property of the subdifferentiable mapping ∂ψ
around (w̄, v̄), which fails for the function ψ under the imposed assumptions; cf. Exercise 3.91(i).

Exercise 3.95 (Failure of Metric Regularity for Subdifferential PVS with Composite Fields
in Infinite Dimensions). Let S be given by (3.48) with (x̄, ȳ) ∈ gph S, where f : X× Y → W ∗ is
strictly differentiable at (x̄, ȳ) with the surjective partial derivative ∇xf (x̄, ȳ), where g : Y → W

is strictly differentiable ȳ with the surjective derivative g(ȳ), and whereψ : W → R is not Gâteaux
differentiable at w̄ := g(w̄). Assume also thatX and Y are Asplund. Then S which is not metrically
regular around (x̄, ȳ) fails in the following two cases:

(i) W is Hilbert and ψ is continuously prox-regular at w̄ for the subgradient q̄ := −f (x̄, ȳ) ∈
∂ψ(w̄). Hint: Proceed as in the proof of Theorem 3.31 with the usage of assertion (ii) from Exer-
cise 3.93 instead of (i) therein.

(ii)W is Banach and ψ convex and l.s.c. around w̄. Hint: Using the result of Exercise 3.87, re-
duce the metric regularity of S in question to the Lipschitz-like property of the convex subgradient
mapping ∂ψ around (w̄, q̄). Show that the latter fails by combining the results of Exercises 3.89(i)
and 3.91(i).

3.5 Commentaries to Chapter 3

Section 3.1. The well-posedness properties discussed in Section 3.1 are fundamental in many areas
of nonlinear analysis and its applications, particularly in those involving variational issues. In the
commentaries to the author’s book [522], the reader can find detailed discussions on the history of
these notions, the genesis of ideas in their developments, and relationships between them that are
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reflected in Theorem 3.2. Some additional material, alternative terminology, and related properties
can be found in the monographs [227, 375, 420, 678, 685]. The most recent one [375] contains
a systematic study of regularity notions, their various aspects, and many applications in metric,
Banach, and finite-dimensional spaces with a broad involvement of Ekeland’s variational principle.
However, some discussions presented therein are clearly and unfortunately biased, incomplete, and
misleading; see, e.g., the corresponding commentaries to this and two previous chapters.

In what follows we mainly comment on some results in finite-dimensional and Banach
spaces that are related to the contents of this book. The most impressive developments on
well-posedness, which are not discussed in this book, include—from the author’s viewpoint—
the usage of slopes introduced in analysis by De Giorgi, Marino, and Tosques [191] and first
brought to the theory of metric regularity and related topics by Azé, Corvellec, and Lucchetti
[44] (preprint of 1998) and the research on various aspects of directional metric regularity
that were initiated by Arutyunov and his collaborators (see, e.g., [24, 25, 27, 29]) and then
were further developed in numerous publications as in [28, 282, 375, 613] and the references
therein.

All the three equivalent well-posedness properties from Definition 3.1 have numerous applica-
tions in variational analysis and optimization including those presented in this book. As mentioned,
we place this topic in one chapter with coderivative calculus due to the underlying coderivative
criteria for well-posedness established in Theorem 3.3. The given proof of this theorem, which
mainly follows the original proof in [507, Theorem 5.2] (precisely formulated in [505]) for the
case of covering, is based on variational arguments, although there is no optimization involved
in its statement. Note that the proof of the Lipschitzian part of this result given in the book by
Rockafellar and Wets [678, Theorem 9.40] under the name of “Mordukhovich criterion” is much
different from our proof while it is also based on optimization ideas married to finite-dimensional
geometry. In the other direction, the necessity of the obtained coderivative characterization of well-
posedness is crucial for the coderivative calculus developed in Section 3.2, since it allows us to
reveal broad classes of mappings for which, e.g., the major sum and chain rules hold.

The coderivative criterion (3.6) of Theorem 3.3 with the precise formula (3.7) for the exact
covering bound first appeared in the author’s paper [505, Theorem 8] even in a more general
form, although it was announced and discussed much earlier in seminar talks and private commu-
nications. In the beginning, this criterion came as a big surprise, to the degree of not accepting
its correctness. It was probably related to the fact that the author’s result concerned the covering
property around the reference point but not at the point in question (what is now called “metric
subregularity”—see below) as, e.g., in the book [378] and the subsequent papers [363, 366, 368],
where sufficient conditions for the latter property and related nonrobust ones were obtained under
certain assumptions on smooth and nonsmooth operators. Note that the robustness (“around”) re-
quirements for covering and metric regularity properties as in Definition 3.1 were pioneered and
strongly emphasized by A. A. Milyutin; see, e.g., [217] where a sufficient condition for the “cover-
ing in a neighborhood” property was obtained for single-valued Lipschitzian mappings in terms of
Clarke’s generalized gradient with mentioning the nonadequateness of the result obtained in such
terms even in simple finite-dimensional cases of Lipschitzian operators.

Observe to this end that the crucial advantage of the coderivative criteria for well-posedness, in
contrast to other known conditions in this direction formulated in terms of nonrobust constructions
in primal and dual spaces, slopes, etc., is the presence of comprehensive pointbased coderivatives
calculus, which is not available for the latter objects. This robust calculus allows us to deal with
various composite models of optimization, variational analysis, and their applications as demon-
strated, e.g., in [522, 523, 678] among numerous publications including this book.

In [505, 507] we also addressed a more general notion of relative κ-covering for a set-valued
mapping F : Rn →→ R

m with respect to another one G : Rn →→ R
n as x ∈ G(x) around x̄

(in particular, with respect to a set � when G(x) := x + �) formulated as follows: there is a
neighborhood U of x̄ such that inclusion (3.69) holds with some modulus κ > 0. While (3.69)
can be immediately reformulated for set-valued mappings between metric spaces, we obtained
in [505, Theorem 8] and [507, Theorem 5.3] in the case of finite dimensions (with the proof in
vein of Theorem 3.3) its coderivative characterization in the form κ(F,G, x̄) > 0 via the rela-
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tive covering constant κ(F,G, x̄) defined in Exercise 3.50. Furthermore, it has been established
in [505, 507] that κ(F,G, x̄) gives the exact bound of covering moduli κ > 0 in (3.69). Various
modified versions of relative covering of set-valued mappings with respect to sets as well as in-
terconnected notions of relative metric regularity have been recently studied in the literature; see,
e.g., [25, 26, 27, 30, 86, 238, 372, 375, 522, 591, 613, 721, 789] for more details and references.
Detailed comparisons between major notions of local and global covering properties have been
recently done in [789, 790]; see Exercise 3.39 for the global covering and related versions.

As mentioned in Corollary 3.8, for smooth single-valued mappings F = f , the coderivative
condition (3.6) reduces to the surjectivity (full rank in finite dimensions) of the derivative operator
∇f (x̄), which is the classical Lyusternik-Graves regularity condition discovered independently
by Lyusternik [483] and Graves [305] for properties related, respectively, to metric regularity and
covering/openness in the modern terminology. It follows from Theorem 3.3 that this condition is
not only sufficient but also necessary for the properties under consideration. Moreover, we have
the exact bound formulas for the corresponding moduli that had never been an issue in classical
nonlinear analysis. Note that the necessity statement in Theorem 3.3 as well as in the “smooth”
Corollary 3.8 is due (besides of the aforementioned robustness) to a linear rate of the covering
and metric regularity properties that has revealed only in the modern framework of analysis. While
in finite dimensions the necessity in Corollary 3.8 follows directly from Theorem 3.3 and the
coderivative representation for smooth mappings, the Banach space version of this implication
requires nontrivial considerations; see [522, Lemma 1.56 and Theorem 1.57].

Corollary 3.6 is a finite-dimensional version of the fundamental Robinson-Ursescu theorem for
convex-graph mappings/convex processes between Banach spaces; see [658, 659, 726]. Similarly
to the case of smooth mappings, the original contributions addressed to sufficient conditions for
metric regularity and covering without paying attention to their necessity and exact bound for-
mulas; see more comments in [522]. Further extensions of the Lyusternik-Graves and Robinson-
Ursescu theorems can be found, e.g., in [161, 178, 222, 227, 239, 375, 448, 719, 721]. Remarkable
applications of covering and metric regularity properties to fixed and coincidence points were given
in [25, 26, 28, 87, 222, 239, 372, 501] and the references therein.

Let us mention to this end brand new applications of the covering property and machinery
of variational analysis to feedback stabilization of dynamical (continuous-time and discrete-time)
control systems obtained in the author’s joint paper with Gupta, Jafari, and Kipka [316]. A sem-
inal result in this direction is due to Brockett [129] who proved, via degree theoretic topological
techniques, that the openness property (3.4) of a smooth mapping f : Rn × R

m → R
n below is

necessary for local asymptotic stabilization of the nonlinear ODE control system

ẋ = f (x, u), t ≥ 0, (3.80)

by means of continuous stationary feedback laws. As well recognized, the openness property of f
fails to be sufficient for such a stabilization. It is shown in [316], via variational techniques, that
replacing openness by linear openness/covering/metric regularity of f allows us to obtain efficient
conditions on the system data and linear openness moduli supporting the sufficiency in Brockett’s
theorem and providing local exponential stabilization of (3.80) by means of continuous stationary
feedback regulators. In this way new conditions ensuring the necessity of linear openness for both
local exponential and asymptotic stabilization of (3.80) by means of stationary continuous as well
as smooth feedback laws are derived in [316]. Some counterparts of these results are established
in [316] by the developed variational approach for asymptotic feedback stabilization of nonlinear
discrete-time control systems.

The coderivative criterion of the Lipschitz-like property in Theorem 3.3(iii) first appeared in
[508] with the proof essentially different from [505, 507] for covering/metric regularity character-
izations; see also [513]. Note that the obtained coderivative characterization strongly departs from
the previous sufficient conditions for this “pseudo-Lipschitzian” property given by Aubin [35] and
Rockafellar [674] in terms of Clarke’s normal cone to the graph. As discussed in Remark 3.4(iii),
for single-valued and major classes of set-valued mappings the latter conditions hold in fact only
in smooth settings. Comprehensive treatments of the well-posedness properties, their nonlocal ver-
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sions, and their coderivative characterizations in finite dimensions were given in [510]. As demon-
strated in [522, 523, 678], such dual-space characterizations play a fundamental role in many
aspects of variational analysis due to their robustness and full coderivative calculus. We refer to
[227, 375, 420] to different characterizations of well-posedness via generalized derivatives in pri-
mal spaces, which may lack robustness and calculus rules but still can be useful in certain settings.
Some combined primal-dual characterizations of well-posedness were given in [280, 281, 282,
630, 631]. Applications of well-posedness criteria to inverse and implicit (multi)functions can be
found, e.g., in [23, 30, 114, 227, 238, 287, 382, 420, 444, 445, 450, 453, 454, 653, 664, 725, 751].

The most recognized and useful nonrobust Lipschitzian behavior of multifunctions is the up-
per Lipschitzian property of F at x̄ introduced by Robinson [661] in form (3.3) with u = x̄ and
V = R

m. It is often called nowadays the calmness of F at x̄. The same name is associated with its
graphical version at (x̄, ȳ) ∈ gphF , which is written as (3.3) with u = x̄ being equivalent to the
metric subregularity (the term coined by Dontchev and Rockafellar [678]) of the inverse mapping.
The latter property, known also as “regularity at a point,” goes back to Ioffe and Tikhomirov [378]
in the case of single-valued mappings, while its full set-valued version is due to Ye and Ye [746]
called there “pseudo-upper Lipschitz continuity.” The fundamental result by Robinson [663] jus-
tifies the validity of the upper Lipschitzian property for piecewise polyhedral mappings between
finite-dimensional spaces. Crucial contributions to the study and applications of these properties to
broad classes of optimization and equilibrium problems have been made by Henrion, Outrata, and
their collaborators; see, e.g., [287, 335, 337, 338, 340, 341, 622]. In particular, Henrion and Outrata
were the first [337] to obtain efficient coderivative/subdifferential conditions for calmness of mul-
tifunctions in terms of our basic constructions. Observe close relationships of calmness and metric
subregularity properties with error bounds in optimization, which go back to Hoffman [353] for
linear inequality systems; see [42, 256, 363, 375, 434, 466, 467, 607, 612] for more recent develop-
ments. We refer the reader to, e.g., [18, 22, 23, 86, 138, 139, 209, 216, 227, 240, 260, 280, 290, 299,
327, 375, 376, 384, 414, 420, 454, 485, 594, 595, 693, 719, 720, 723, 745, 770, 776, 779, 782]
for numerous results in these directions and applications to variational problems. An interesting
survey of recent results on metric subregularity utilizing normal cones and coderivatives is given
by Zheng [772].

The aforementioned nonrobustness of calmness and metric subregularity doesn’t allow to de-
velop adequate calculus/preservation results for them, their stability with respect to perturbation,
and restricts therefore the scope of their applications. In the joint paper with Gfrerer [285], we in-
troduced a certain uniform metric subregularity property for solution maps to parametric constraint
systems

g(x, p) ∈ C ⊂ R
m with x ∈ R

n and p ∈ P, (3.81)

where the set C is closed and the perturbation parameter p belongs to a topological space P .
Such a stability property has been actually considered by Robinson [660] in the case where C is a
convex cone, and so we labeled this property in [285] as the Robinson stability of (3.81). The paper
[285] contains verifiable first-order and second-order conditions ensuring the Robinson regularity
of (3.81) and its robustness in the classes of perturbations under consideration.

Note further that q-versions of both metric regularity and subregularity properties (as well as
their other well-posedness equivalents) have been also considered in the literature [158, 274, 419,
276, 283, 465, 435, 752, 765, 780], where the main attention and valuable applications were given
for the Hölder case of 0 < q ≤ 1. It is easy to see that there is no sense to consider the case of
q > 1 for metric q-regularity, since only constant mappings satisfy estimate (3.2) with replacing
dist(y, F (x)) by distq(y, F (x)) when q > 1. But it is different for q-subregularity with y = ȳ

therein, where the case of q > 1 is nontrivial and occurs to be important for both variational theory
and applications. The general case of metric q-subregularity and its strong q-subregularity counter-
part whenever q > 0 has been recently studied by the author and Ouyang [564] with characterizing
these properties for subdifferential variational systems. Furthermore, using strong q-subregularity
with q > 1 in [564] allowed us to obtain higher convergent rates in quasi-Newton methods of
solving generalized equations in comparison with the corresponding results by Dontchev [221]
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who extended the celebrated Dennis-Moré theorem [192] for nonlinear equations; see also the re-
cent paper [160] for further extensions and various applications. Note also that similar conclusions
on better convergence rates were deduced in the joint paper with Li [465] for the proximal point
method to find zero s of maximal monotone operators in Hilbert spaces under the Hölder metric
q-subregularity with 0 < q < 1.

It is worth mentioning yet another nonrobust metric hemiregularity property of set-valued map-
pings defined in Exercise 3.58, together with its strong counterpart, following the paper by Aragón
and Mordukhovich [23], where it was studied and applied to deriving enhanced versions of im-
plicit multifunction theorems and stability of generalized equations. Hemiregularity can be viewed
as a symmetric counterpart of subregularity with fixing the domain point x̄ instead of the range
one ȳ. As mentioned in the final version of [23], hemiregularity was independently examined by
Kruger, in his extended study [433] of various well-posedness properties of set-valued mappings,
under the name of “metric semiregularity.” The latter name was earlier used by Pühl and Schi-
rotzek [650] for a completely different regularity property; see also the book [685, Section 10.6].
To avoid confusions, we coined the “hemiregularity” terminology in [23]. The inverse property to
metric hemiregularity was defined (but not investigated) by Klatte and Kummer [420, p. 10] as
“Lipschitz lower semicontinuity,” while the inverse one to strong metric hemiregularity was des-
ignated in [23] as the “calm single-valued localization” discussed in Exercise 3.58(ii). Note the
quite recent study by Uderzo [725] containing, in particular, a new implicit multifunction theorem
under hemiregularity (complemented to the one in [23]) and applications to exact penalization in
constrained optimization.

Next let us comment on infinite-dimensional extensions of the coderivative characterizations
of well-posedness properties in Theorem 3.3. As in [522], in infinite dimensions we distinguish be-
tween two types of characterizations of well-posedness: neighborhood and pointbased (sometimes
called “pointwise” or “point”) ones. The former criteria involve not only the point in question but
a neighborhood of it, while the latter ones have the pointbased form of Theorem 3.3 but under
additional assumptions that automatically hold in finite dimensions.

Neighborhood characterizations of the covering property were initiated by Kruger for map-
pings between Fréchet smooth spaces; see [432]. His results of the dual nature (the first one was
announced in [429] for locally Lipschitzian functions by using ε-subdifferentials of type (1.34) as
ε > 0) were formulated in terms of several neighborhood constants defined via two-parametric
constructions depending on ε and the neighborhood size. The author and Shao [578] essentially
improved such characterizations by using merely the regular/Fréchet coderivative D̂∗F (i.e., with
ε = 0) in Asplund spaces and also established their counterparts for nonlocal well-posedness prop-
erties. Sufficient neighborhood conditions with corresponding modulus estimates in terms of other
subdifferential constructions in the suitable “trustworthy” Banach spaces were derived by Ioffe;
see [375] and the references therein. We also mention primal-space neighborhood developments
by Kummer [444, 445] (presented in his book with Klatte [420]) via the so-called Ekeland’s points.

Comprehensive pointbased extensions of the coderivative characterizations of well-posedness
in Theorem 3.3 were obtained by the author [514] for closed-graph mappings F : X →→ Y be-
tween Asplund spaces (with necessary conditions holding in any Banach spaces) in terms of the
mixed coderivative (1.65) and the PSNC property of F at (x̄, ȳ) ∈ gphF defined in (3.65). For
the case of Lipschitzian behavior the obtained characterizations are presented in Exercise 3.44;
see also [522, Theorem 4.10] for more information. Observe that the exact bound formula (3.10)
is split now into the two inequalities in (3.67), and thus the full infinite-dimensional counterpart
of the coderivative criterion of Theorem 3.3 requires imposing the coderivative normality from
Exercise 3.43 introduced and studied in [522]. We refer the reader to [581, 582] for previous point-
based sufficient conditions of well-posedness for mappings between Asplund spaces in terms of the
normal coderivative D∗

N as well as to [371, 375, 397, 398, 402, 635, 637] for related sufficiency
results based on other coderivatives in suitable Banach spaces and the corresponding counterparts
of the PSNC property discussed in more detail in [522]. Observe also that the papers by Jourani and
Thibault [402] and by Ioffe [371] contained necessary pointbased conditions for well-posedness
expressed in terms of the “approximate coderivative” (cf. Section 1.5) and addressed, in the case of
the Lipschitz-like property, to set-valued mappings F : X →→ Y with a Banach domain spaceX and
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a finite-dimensional image space Y . However, the exact pointbased bound estimates of type (3.67)
were not obtained in the aforementioned publications.

A very interesting recent development has been done by Clason and Valkonen [169] on ap-
plications of the author’s coderivative criterion [510] to the study of stability of saddle points for
a broad class of constrained optimization problems in Hilbert spaces, including inverse problems
with PDE constraints. A main ingredient of their approach was to reduce the infinite-dimensional
setting under consideration to a finite-dimensional one by using pointwise subdifferentiation of in-
tegral functionals and thus avoiding any SNC-type assumptions. In this way they obtained explicit
stability conditions for various infinite-dimensional problems arising, in particular, in parameter
identification, image processing, and PDE-constrained optimization.

We conclude the commentaries to this section by mentioning some applications of the dis-
cussed well-posedness properties of mappings and their generalized derivative characterizations to
numerical aspects of variational analysis and the convergence of algorithms, which can be found
[19, 71, 72, 73, 206, 227, 260, 344, 354, 384, 420, 421, 458, 480, 566, 665, 727] and the ref-
erences therein. Note also the pioneering paper by Dontchev, Lewis, and Rockafellar [224] who
established relationships between well-posedness and ill-posedness properties via calculating the
radius of metric regularity by using the author’s coderivative characterizations and the exact bound
formulas from Theorem 3.3. In this way they justified connections between the radius of metric
regularity and Renegar’s “distance to infeasiblity” [657] arising in complexity theory for linear and
conic programming. We also refer the reader to [227, 375, 522] for more comments and references
on infinite-dimensional extensions.

Section 3.2. The coderivative calculus results presented in this section were first established by
the author [511] for general multifunctions between finite-dimensional spaces based on the ex-
tremal principle. The sum rule of Theorem 3.9 was derived earlier in the author’s paper [509] by
direct applying the method of metric approximations. This sum rule as well as the chain rule of
Theorem 3.11(ii) were then reproduced in [678] by using another device.

The infinite-dimensional setting is more diverse and comprehensively presented in the author’s
book [522] mostly dealing with multifunctions between Asplund spaces and mainly based on the
previous publications [514, 532, 581, 584, 588]. Although the proofs in [522] went in the same
direction as in [511], the techniques were more involved and the spectrum of the results obtained,
and the assumptions imposed were essentially broader while reducing to [511] in finite dimensions.
In [522] we developed parallel calculus rules for both normal and mixed coderivatives with the
qualification conditions expressed in terms of the mixed coderivative having an essential advantage
in comparison with the normal one from this viewpoint; see Exercises 3.59–3.61. In particular, we
have the following sum rule for both coderivatives D∗ = D∗

N,D
∗
M of the set-valued mappings

F1, F2 between Asplund spaces:

D∗(F1 + F2)(x̄, ȳ)(y
∗) ⊂

⋃

(ȳ1,ȳ2)∈S(x̄,ȳ)

[
D∗F1(x̄, ȳ1)(y

∗)+D∗F2(x̄, ȳ2)(y
∗)
]
, y∗ ∈ Y ∗,

at (x̄, ȳ) ∈ gph (F1 + F2) provided that the mapping S from (3.21) is inner semicompact at (x̄, ȳ)
as defined in Exercise 2.46, that

D∗
MF1(x̄, ȳ1)(0)) ∩

(−D∗
MF2(x̄, ȳ2)

) = {0}, (ȳ1, ȳ2) ∈ S(x̄, ȳ), (3.82)

and that for each (ȳ1, ȳ2) ∈ S(x̄, ȳ) either F1 is PSNC at (x̄, ȳ1) or F2 is PSNC at (x̄, ȳ2). It
follows from (the necessity part of) the infinite-dimensional coderivative characterizations of well-
posedness discussed above in Exercise 3.48 and the commentaries to Section 3.1 that both the
mixed qualification condition (3.82) and the PSNC assumptions are satisfied if either one from
F1, F2 is Lipschitz-like around the corresponding points of S(x̄, ȳ). More diverse results of the
inclusion and equality types were developed in [522] for coderivative chain rules and their conse-
quences for set-valued and single-valued mappings between infinite-dimensional spaces.

Some of the discussed coderivative chain and sum rules for mappings between Asplund (or
Fréchet smooth) spaces were then reproduced in the books [114, 637, 685], where the reader
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could also find certain “fuzzy” (neighborhood) versions. A number of calculus rules for (normal)
coderivatives generated by normal cones/subdifferentials of other types were considered, e.g., in
[369, 375, 400, 401, 533, 585] in appropriate Banach spaces. We specially emphasize the results by
Ioffe [369, 371] and Jourani and Thibault [400, 401] who developed extended coderivative calculus
rules for the normal coderivatives generated by various approximate subdifferential constructions
(see Section 1.5) in arbitrary Banach spaces.

Section 3.3. This section is devoted to coderivative analysis and some applications of the paramet-
ric variational systems described as (3.34) in finite dimensions with infinite-dimensional extensions
discussed in Section 3.4. The well-developed coderivative calculus plays a crucial role in this anal-
ysis and applications. The presented results are mostly taken from the book [522, Section 4.4]
(coderivative calculus) and the subsequent papers [277, 524] (applications to metric regularity).

Coderivative calculus opens the gate to effectively evaluate the basic coderivative (1.15)—as
well as its normal and mixed versions in infinite dimensions—of the parametric variation sys-
tems (3.34), which is the solution map to Robinson’s generalized equation (3.35). It allows us to
implement these calculations to the obtained coderivative criteria for the well-posedness proper-
ties from Section 3.1 and their infinite-dimensional extensions, together with evaluating the cor-
responding exact bounds of moduli. In contrast to [522], where the main attention was drawn
to Lipschitzian stability, now we mostly concentrate on metric regularity. The metric regularity
property for (3.34) occurs to be more involved in comparison with its Lipschitz-like counter-
part for PVS and often fails in the most natural PVS settings as shown in Subsection 3.3.3. This
phenomenon was first revealed by the author in [524] and then was investigated in various pub-
lications dealing with different classes of PVS in both finite and infinite dimensions; see, e.g.,
[22, 41, 45, 155, 277, 404, 666, 719]. The proof of Proposition 3.24 follows [223]; cf. also [227,
Theorem 3G.5].

The results of Section 3.3 and the exercises for it concerning the structural PVS with composite
potentials (3.41) and composite fields (3.48) utilize the notion of the second-order subdifferential
(or generalized Hessian) (3.42) introduced by the author in [508] and then developed and applied
in numerous publications. The original motivation came from using the coderivative criterion and
calculus rules to derive verifiable conditions for Lipschitzian stability of parametric variational
systems; see [508, 509, 510, 511, 512, 513, 514]. Then important early contributions were made
by Rockafellar and his collaborators [456, 642] to studying the remarkable notions of tilt and full
stability of local minimizers in finite-dimensional optimization introduced therein; see also the
book by Bonnans and Shapiro [96] concerning tilt perturbations and related quadratic/second-
order growth conditions. Note that second-order growth conditions of this type were used in the
pioneering paper by Zhang and Treiman [771] in connection with the upper Lipschitzian property
of the inverse to the basic subdifferential of l.s.c. functions in finite dimensions while providing a
complete characterization of the latter property for l.s.c. convex functions; see the exact formula-
tions in Exercise 3.55. Similar growth conditions were developed by Aragón and Geoffroy [20, 21]
for characterizations of metric regularity and subregularity properties as well as their strong coun-
terparts for the convex subdifferential in Hilbert and Asplund spaces; see also Mordukhovich and
Nghia [551] as well as Exercises 3.52 and 5.27. Some nonconvex versions for the basic subgradi-
ent mapping with quantitative interrelations between the corresponding constants were obtained in
[551] and the joint author’s paper with Drusvyatskiy and Nghia [232] in the Asplund space setting;
see Sections 5.3 and 5.4. Note that quite recent algorithmic applications of second-order growth
conditions for metric subregularity of subgradient mappings arising in semidefinite programming
have been developed by Cui, Sun, and Toh [186].

In recent years, the area of second-order variational analysis involving (3.42) and associated
second-order constructions has drawn a strong and steadily growing attention with well-developed
calculus and great many applications to various classes of finite- and infinite-dimensional problems
in optimization, stability, equilibrium, control, mechanics, economics, electronic, etc., as well as
to practical models described via first-order gradient/subgradient and normal cone data.

Among the most impressive developments and applications of this “dual-space” direction in
second-order variational analysis, we mention the following (this list is by far incomplete): well-
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developed second-order calculus [517, 522, 539, 557, 558, 570, 625]; calculations of the second-
order subdifferentials for maximum functions as well as for separable piecewise-C2, extended
piecewise linear, and extended piecewise linear-quadratic functions [252, 557, 570, 573, 574];
calculations of the second-order subdifferentials of the indicator function (i.e., coderivatives of
the normal cone) for polyhedral, generalized polyhedral, and polyhedric convex sets in finite and
infinite dimensions [49, 225, 336, 342, 552, 741]; second-order characterizations of convexity
and monotonicity properties of functions and mappings [150, 152, 153, 154, 555]; evaluations
of the second-order constructions for broad classes of nonpolyhedral moving sets appeared in
numerous applications [2, 5, 6, 8, 82, 143, 144, 151, 172, 174, 208, 286, 288, 339, 340, 361,
599, 621, 627, 654, 747]; characterizations of Robinson’s strong regularity for variational systems
[225, 336, 556, 570, 571, 742]; characterizations of tilt stability of local minimizers in various
classes of optimization problems [230, 232, 243, 284, 461, 551, 554, 559, 743, 765, 780, 781];
characterizations of full Lipschitzian and Hölderian stability of local minimizers in nonlinear pro-
gramming, conic programming, and optimal control [456, 552, 556, 563, 573, 571]; characteriza-
tions of full stability for solutions to general and particular classes of parametric variational systems
[555]; characterizations of metric regularity, subregularity, and their strong counterparts for first-
order subdifferentials and their relationships with second-order growth conditions [21, 43, 230,
232, 551, 554, 733, 734, 780]; characterizations of Kojima’s strong stability of variational systems
[552, 556, 576]; sensitivity and stability analysis with respect to robust and nonrobust properties of
solution maps for constrained optimization, variational and quasivariational inequalities, and equi-
librium problems [283, 285, 286, 287, 328, 336, 337, 338, 335, 339, 340, 451, 453, 454, 508, 513,
522, 558, 561, 562, 575, 576, 625, 654, 742]; characterizations of weak sharp minimizers and their
stable higher-order extensions [780, 781]; no-gap second-order necessary and sufficient optimality
conditions for some classes of constrained and vector optimization problems [358, 359]; neces-
sary optimality and stationarity conditions for mathematical programming and control problems
with equilibrium constraints [3, 78, 267, 314, 338, 341, 346, 290, 523, 620, 623, 745, 746, 780];
necessary optimality and stationarity conditions for equilibrium problems with equilibrium con-
straints [340, 342, 560, 622]; stability of discrete approximations and necessary optimality con-
ditions for controlled sweeping processes [5, 127, 143, 144, 172, 173, 174]; stability and opti-
mization of PDE systems [169, 346, 347, 623, 730]; qualitative characteristics of nonconvex gra-
dient flows and nonlinear evolution equations [497, 681]; characterizations of critical multipliers
in variational systems with eliminating slow convergence of primal-dual methods in optimization
[577]; applications to second-order cone programming, semidefinite programming, circular cone
programming, and second-order complementarity [208, 289, 390, 561, 562, 563, 747, 766, 784];
applications to bilevel programs, bilevel optimal control, and hierarchical optimization [51, 79,
80, 198, 199, 200, 202, 341, 767, 768, 769]; applications to viability issues for dynamical systems
[266]; applications to numerical methods of optimization (proximal, trust-region, quasi-Newton
ones, etc.) [21, 231, 451, 465, 539, 564, 652]; applications to various problems in mechanics
[2, 174, 423, 557, 621]; applications to stochastic analysis and optimization [340, 626, 739]; ap-
plications to economic modeling [560, 622]; applications to electronics [6, 8, 127]; applications to
micromagnetics and related topics [423]; applications to electricity spot markets [38, 340, 342];
applications to the crowd motion model of traffic flow [144]; etc. Second-order variational analysis
and its applications are the subjects of the author’s book in progress [527].

The class of prox-regular and subdifferentially continuous functions and their amenable sub-

classes were introduced by Poliquin and Rockafellar [641] in finite dimensions while playing a

crucial role in second-order variational analysis. Besides the publications on second-order analysis

listed above, prox-regular functions and associated sets as well as their favorable subclasses have

been intensively studied and applied in a vast literature that covers both finite-dimensional and

infinite-dimensional settings; see, e.g., [7, 45, 83, 175, 332, 678] and the references therein. Note

that the notion of prox-regularity for closed sets in finite-dimensional spaces is equivalent to the

notion well known in geometric measure theory as sets of positive reach introduced and largely

studied by Federer [263].
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Section 3.4. This section mostly presents some notions and results, which are extensions of the

basic material (including approaches and proof techniques) developed in the main sections of this

chapter in finite-dimensional spaces. The reader can find more discussions and references in the

exercise hints. We particularly draw the reader’s attention to the notions of relative covering and

semimetric regularity of set-valued mappings from Exercises 3.50 and 3.56 introduced and partly

investigated in the early author’s work [505, 507] that require further developments and applica-

tions in both finite-dimensional and infinite-dimensional (Banach, metric) spaces. The properties

of metric and strong metric hemiregularity defined in Exercise 3.58 and discussed in the commen-

taries above are also largely underinvestigated from both viewpoints of efficient certifications and

applications. Yet another topic of profound interest concerns the notion of outer derivative of set-

valued mappings between finite-dimensional spaces (3.70) introduced by Zhang and Treiman [771]

who used it for the pointbased characterization of the upper Lipschitzian property of multifunc-

tions and then applications to inverse subdifferential mappings presented in Exercise 3.55. As men-

tioned above, the upper Lipschitzian property—together with its calmness and metric subregularity

counterparts—has recently drawn much attention in variational theory and numerous applications,

and thus developing these lines of research would be very important in variational analysis. Some

properties of the outer derivative are obtained in [771] (see, in particular, Exercise 3.54), but this

is definitely not sufficient for desired applications, which require more developed calculus rules

for (3.70) and its graphical version at (x̄, ȳ) ∈ gphF needed for the study of calmness and metric

subregularity of set-valued mappings.



Chapter 4
First-Order Subdifferential Calculus

This chapter concerns generalized differential properties of extended-real-valued
functions ϕ : Rn → R that are assumed, unless otherwise stated, to be lower semi-
continuous around references points. Our main purpose here is to develop compre-
hensive calculus rules for the basic subdifferential (1.24) and singular subdiffer-
ential (1.25) of such functions. Recall that general sum rules for them have been
obtained in Section 2.4 as consequences of the intersection rule for basic normals;
these results can be also deduced from the coderivative sum rules of Theorem 3.9.
In this chapter we concentrate on deriving other major results of first-order subdif-
ferential calculus including subdifferentiation of marginal/optimal value functions,
general chain rules with their implementations to subdifferentiation of products,
quotients, minimum, and maximum functions, and various versions of the subdif-
ferential mean value theorem with some applications to variational analysis in non-
smooth settings.

4.1 Subdifferentiation of Marginal Functions

In this section we focus on evaluating basic and singular subgradients for a broad
class of the marginal functions defined by

μ(x) := inf
{
ϕ(x, y)

∣∣ y ∈ G(x)}, (4.1)

where ϕ : Rn × R
m → R is a (l.s.c.) extended-real-valued function and where

G : Rn →→ R
m is a (closed-graph) set-valued constraint mapping that described

parameter-dependent/moving constraint sets. The given marginal function (4.1) can
be interpreted, in particular, as the (optimal) value function in the problem of para-
metric optimization given by

minimize ϕ(x, y) subject to y ∈ G(x)

© Springer International Publishing AG, part of Springer Nature 2018
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with the cost/objective function ϕ and the constraint multifunction G, where y and
x are the decision and parameter variables, respectively. A characteristic feature of
marginal functions of type (4.1) is their intrinsic nondifferentiability regardless the
smoothness of cost functions and the simplicity of moving constraint sets. As we’ll
see below, constructive evaluations of both the basic and singular subdifferentials
under consideration are crucial for resolving major issues of subdifferential calcu-
lus as well as for deriving optimality conditions in various classes of optimization
problems, sensitivity and stability analysis, as well as numerous applications in vari-
ational and nonvariational settings.

To evaluate basic and singular subgradients of the marginal function (4.1), define
the argminimum mapping M : Rn →→ R

m by

M(x) := {
y ∈ G(x)∣∣ ϕ(x, y) = μ(x)

}
(4.2)

and obtain subdifferential results of two kinds depending on either inner semiconti-
nuity or local boundedness assumptions imposed on the mapping M .

Theorem 4.1 (Basic and Singular Subgradients of Marginal Functions). For the
marginal function (4.1) with x̄ ∈ domμ the following hold:

(i) Fix ȳ ∈ M(x̄) from (4.2), and suppose that M is inner semicontinuous at
(x̄, ȳ) and that the qualification condition

∂∞ϕ(x̄, ȳ) ∩ [−N((x̄, ȳ); gphG
)] = {0} (4.3)

is satisfied. Then we have the subdifferential upper estimates

∂μ(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

[
x∗ +D∗G(x̄, ȳ)(y∗)

]
, (4.4)

∂∞μ(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

[
x∗ +D∗G(x̄, ȳ)(y∗)

]
. (4.5)

(ii) Let the argminimum mapping (4.2) be locally bounded around x̄ withM(x̄) 
=
∅, and let condition (4.3) hold for any ȳ ∈ M(x̄). Then

∂μ(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)
ȳ∈M(x̄)

[
x∗ +D∗G(x̄, ȳ)(y∗)

]
,

∂∞μ(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)
ȳ∈M(x̄)

[
x∗ +D∗G(x̄, ȳ)(y∗)

]
.
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Proof. To justify assertion (i), consider the function

ϑ(x, y) := ϕ(x, y)+ δ((x, y); gphG
)
, (x, y) ∈ R

n × R
m,

and verify in its terms the subdifferential upper estimates

∂μ(x̄) ⊂ {
x∗∣∣ (x∗, 0) ∈ ∂ϑ(x̄, ȳ)}, ∂∞μ(x̄) ⊂ {

x∗∣∣ (x∗, 0) ∈ ∂∞ϑ(x̄, ȳ)
}
.

We first prove the upper estimate for ∂μ(x̄). Pick x∗ ∈ ∂μ(x̄) and by (1.37) find

sequences xk
μ→ x̄ and x∗

k → x∗ with x∗
k ∈ ∂̂μ(xk), k ∈ N. Hence for any εk ↓ 0

there exists ηk ↓ 0 such that for each fixed number k ∈ N we have

〈x∗
k , x − xk〉 ≤ μ(x)− μ(xk)+ εk‖x − xk‖ whenever x ∈ xk + ηkB.

This implies by the constructions of μ, ϑ , and M that

〈(x∗
k , 0), (x, y)− (xk, yk)〉 ≤ ϑ(x, y)− ϑ(xk, yk)+ εk(‖x − xk‖ + ‖y − yk‖)

for all yk ∈ M(xk) and (x, y) ∈ (xk, yk)+ ηkB. Thus (x∗
k , 0) ∈ ∂̂εkϑ(xk, yk). Since

M is inner semicontinuous at (x̄, ȳ), we get a sequence of yk ∈ M(xk) converging
to ȳ. Observe that ϑ(xk, yk) → ϑ(x̄, ȳ) due to μ(xk) → μ(x̄), which therefore
ensures that (x∗, 0) ∈ ∂ϑ(x̄, ȳ) by passing to the limit as k → ∞ and so justify the
claimed inclusion for ∂μ(x̄) via ∂ϑ(x̄, ȳ). To deduce from here the subdifferential
estimate (4.4), we apply to the sum in ϑ the basic subdifferential sum rule (2.35) un-
der the qualification condition (2.34), which reduces in this case to the one assumed
in (4.3).

To verify further the inclusion for ∂∞μ(x̄) via ∂∞ϑ(x̄, ȳ), pick a singular sub-

gradient x∗ ∈ ∂∞μ(x̄), take any εk ↓ 0, and by (1.38) find sequences xk
μ→ x̄,

(x∗
k , νk) → (x∗, 0), and ηk ↓ 0 satisfying

〈x∗
k , x − xk〉 + νk(α − αk) ≤ εk(‖x − xk‖ + |α − αk|)

for all (x, α) ∈ epiμ, x ∈ xk + ηkB, and |α − αk| ≤ ηk . The inner semicontinuity

of (4.2) ensures the existence of yk
M(xk)−→ ȳ and αk ↓ ϑ(x̄) such that

(x∗
k , 0, νk) ∈ N̂εk

(
(xk, yk, αk); epiϑ

)
, k ∈ N,

which gives us by passing to the limit as k → ∞ that (x∗, 0) ∈ ∂∞ϑ(x̄). We finish
the proof of (i) by applying the singular subdifferential sum rule (2.36) to the sum in
ϑ under the validity of the qualification condition (4.3). The verification of assertion
(ii) is similar to the above. �

The main assumption of Theorem 4.1 is the qualification condition (4.3),
which in fact holds in the following major settings due to the obtained coderiva-
tive/subdifferential characterizations of well-posedness. For brevity we discuss the
qualification condition (4.3), which in fact holds in the following major settings due
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to the obtained coderivative/subdifferential characterizations this only in case (i) of
Theorem 4.1.

Corollary 4.2 (Marginal Functions with Lipschitzian and Metrically Regular
Data). Given ȳ ∈ M(x̄), suppose that the argminimum mapping (4.2) is inner
semicontinuous at (x̄, ȳ) and that either ϕ is locally Lipschitzian around (x̄, ȳ) or
ϕ = ϕ(y) andG is metrically regular around (x̄, ȳ). Then both inclusions (4.4) and
(4.5) are satisfied.

Proof. If ϕ is locally Lipschitzian around (x̄, ȳ), we have ∂∞ϕ(x̄, ȳ) = {0} by
Theorem 1.22, and thus (4.3) holds. For ϕ = ϕ(y), the qualification condition (4.3)
can be equivalently written as

∂∞ϕ(ȳ) ∩ kerD∗G(x̄, ȳ) = {0}
and hence holds by Theorem 3.3 if G is metrically regular around (x̄, ȳ). �

Another useful consequence of Theorem 4.1 provides efficient conditions for
locally Lipschitz continuity of a general class of marginal functions.

Corollary 4.3 (Local Lipschitz Continuity of Marginal Functions). The follow-
ing assertions hold for the class of marginal functions μ from (4.1):

(i) Assume that the argminimum mapping (4.2) is inner semicontinuous at some
point (x̄, ȳ) ∈ gphM and that the cost function ϕ is locally Lipschitzian around this
point. Then μ is Lipschitz continuous around x̄ provided that it is l.s.c. around x̄
and that G is Lipschitz-like around (x̄, ȳ).

(ii) Assume that M in (4.2) is locally bounded around x̄ ∈ domM and that ϕ is
locally Lipschitzian around (x̄, ȳ) for any ȳ ∈ M(x̄). Then μ is Lipschitz continuous
around x̄ provided that it is l.s.c. around this point and that G is Lipschitz-like
around (x̄; ȳ) whenever ȳ ∈ M(x̄).
Proof. It is sufficient to verify assertion (i), since the proof of (ii) is similar. The
assumed local Lipschitz continuity of ϕ ensures the validity of the qualification
condition (4.3) and reduces (4.5) to

∂∞μ(x̄) ⊂ D∗G(x̄, ȳ)(0).

It follows from Theorem 3.3(iii) that D∗G(x̄, ȳ)(0) = {0} by the Lipschitz-like
property of G around (x̄, ȳ). Thus ∂∞μ(x̄) = {0}, which yields the Lipschitz con-
tinuity of μ around x̄ by Theorem 1.22. �

The next theorem, which can also be treated as a consequence of Theorem 4.1
with some elaborations, concerns subdifferentiation of the infimal convolution de-
fined for two functions ϕ1, ϕ2 : Rn → R by

(
ϕ1 ⊕ ϕ2

)
(x) := inf

{
ϕ1(x1)+ ϕ2(x2)

∣∣ x1 + x2 = x
}
. (4.6)

Let us associate with (4.6) the convolution mapping C : Rn →→ R
2n given by
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C(x) := {
(x1, x2)

∣∣ x1 + x2 = x, ϕ1(x1)+ ϕ2(x2) = (
ϕ1 ⊕ ϕ2

)
(x)

}
. (4.7)

Theorem 4.4 (Subdifferentiation of Infimal Convolutions). Given a point x̄ ∈
domC for the mapping C from (4.7), the following assertions hold:

(i) Fix (x̄1, x̄2) ∈ C(x̄), and assume that the convolution mapping (4.7) is inner
semicontinuous at (x̄, x̄1, x̄2). Then we have the inclusions

∂
(
ϕ1 ⊕ ϕ2

)
(x̄) ⊂ ∂ϕ1(x̄1) ∩ ∂ϕ2(x̄2),

∂∞(ϕ1 ⊕ ϕ2
)
(x̄) ⊂ ∂∞ϕ1(x̄1) ∩ ∂∞ϕ2(x̄2).

(ii) If the convolution mapping (4.7) is locally bounded around x̄, then

∂
(
ϕ1 ⊕ ϕ2

)
(x̄) ⊂

⋃

(x̄1,x̄2)∈C(x̄)
∂ϕ1(x̄1) ∩ ∂ϕ2(x̄2),

∂∞(ϕ1 ⊕ ϕ2
)
(x̄) ⊂

⋃

(x̄1,x̄2)∈C(x̄)
∂∞ϕ1(x̄1) ∩ ∂∞ϕ2(x̄2).

Proof. It is sufficient to justify assertion (i) while noting that the proof of (ii) is sim-
ilar. It follows from definition (4.6) that the infimal convolution admits the marginal
function representation:

(
ϕ1 ⊕ ϕ2

)
(x) = inf

{
ϕ(x, x1, x2)

∣∣ (x1, x2) ∈ G(x)}, x ∈ R
n, (4.8)

where ϕ : Rn × R
n × R

n → R and G : Rn →→ R
n × R

n are given, respectively, by

ϕ(x, x1, x2) := ϕ1(x1)+ ϕ2(x2), G(x) := {
(x1, x2) ∈ R

2n
∣∣ x1 + x2 = x

}
,

and where the argminimum mapping (4.2) reduces to (4.7) in this case. To check
now the qualification condition (4.3), observe that

∂∞ϕ(x̄, x̄1, x̄2) = (
0, ∂∞ϕ1(x̄1), ∂

∞ϕ2(x̄2)
)

and

N
(
(x̄, x̄1, x̄2)); gphG

) = {
(v,−v,−v) ∈ R

3n
∣∣ v ∈ R

n
}
,

and so (4.3) holds in the framework of (4.8). The latter formula yields

D∗G(x̄, x̄1, x̄2)(v1, v2) =
{ {v1} if v1 = v2,

∅ otherwise.

Substituting this into (4.4) and (4.5) with taking into account that

∂ϕ(x̄, x̄1, x̄2) = (0, ∂ϕ1(x̄1), ∂ϕ2(x̄2)
)
,

we arrive at the claimed representations in (i). �
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4.2 Subdifferentiation of Compositions

When the mapping G = g : Rn → R
m is single-valued in (4.1), the marginal func-

tion reduces to the (generalized) composition

(
ϕ ◦ g)(x) := ϕ

(
x, g(x)

)
, x ∈ R

n, (4.9)

and thus we can deduce from Theorem 4.1 extended subdifferential chain rules and
their various consequences. The next theorem gives us also some cases of equalities
and subdifferential regularity of compositions, which seem to be specifically related
to single-valuedness of the constraint mapping in (4.1). Note that the first part of
this theorem holds in the Asplund space setting, while the second part is valid in
any Banach spaces; see Exercise 4.28.

Theorem 4.5 (Basic and Singular Subdifferentials of General Compositions).
Consider composition (4.9) with an extended-real-valued function ϕ : Rn×R

m → R

and a mapping g : Rn → R
m that is locally Lipschitzian around x̄ with ȳ = g(x̄).

The following assertions hold:
(i) The qualification condition (4.3) with G = g ensures the validity of the subd-

ifferential upper estimates

∂
(
ϕ ◦ g)(x̄) ⊂

⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

[
x∗ + ∂〈y∗, g〉(x̄)

]
, (4.10)

∂∞(ϕ ◦ g)(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

[
x∗ + ∂〈y∗, g〉(x̄)

]
(4.11)

with the equality in (4.10) if either the outer function ϕ is of class C1 around (x̄, ȳ)
or it is lower regular at (x̄, ȳ) and the inner mapping g is of class C1 around x̄; in
the latter case, the composition ϕ ◦ g is lower regular at x̄.

(ii) If ϕ is strictly differentiable at (x̄, ȳ), then we always have the equality

∂
(
ϕ ◦ g)(x̄) = ∇xϕ(x̄, ȳ)+ ∂

〈∇yϕ(x̄, ȳ), g
〉
(x̄). (4.12)

Proof. To justify (i), observe that inclusions (4.10) and (4.11) reduce to (4.4)
and (4.5), respectively, for locally Lipschitzian mappings g due to the scalarization
formula of Theorem 1.32. We get furthermore the equalities

∂μ(x̄) = {
x∗∣∣ (x∗, 0) ∈ ∂ϑ(x̄, ȳ)}, ∂∞μ(x̄) = {

x∗∣∣ (x∗, 0) ∈ ∂∞ϑ(x̄, ȳ)
}

via the function ϑ defined in the proof of Theorem 4.1, provided that G = g is
locally Lipschitzian around x̄ without any additional assumptions. This can be ver-
ified similarly to the proof of Theorem 3.11(iii). Then the equality and regularity
statements in (i) follow by applying the corresponding results of Proposition 1.30
and Theorem 2.19 to the sum form of ϑ .
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To prove now assertion (ii), take an arbitrary sequence γj ↓ 0 and get, by the
assumed strict differentiability (1.19) of ϕ at (x̄, ȳ), such ηj ↓ 0 that

∣∣ϕ
(
u, g(u)

)− ϕ(x, g(x))− 〈∇xϕ(x̄, ȳ), u− x〉− 〈∇yϕ(x̄, ȳ), g(u)− g(x)
〉∣∣

≤ γj
(‖u− x‖ + ‖g(u)− g(x)‖) for all x, u ∈ Bηj (x̄), j ∈ N.

Pick further x∗ ∈ ∂(ϕ◦g)(x̄), and find by the first representation in (1.37) sequences
xk → x̄ and x∗

k → x∗ with x∗
k ∈ ∂̂(ϕ ◦ g)(xk), k ∈ N. This allows us to select a

subsequence kj → ∞ as j → ∞ so that ‖xkj − x̄‖ ≤ ηj/2 and

ϕ
(
x, g(x)

)− ϕ(xkj , g(xkj )
)− 〈x∗

kj
, x − xkj 〉 ≥ −εkj ‖x − xkj ‖

whenever εkj ↓ 0 as j → ∞ and x ∈ xkj + (ηj /2)B. Combining the relationships
above gives us the estimate

〈∇yϕ(x̄, ȳ), g(x)− g(xkj )
〉− 〈

x∗
kj

− ∇xϕ(x̄, ȳ), x − xkj
〉

≥ −[εkj + γj (�+ 1)
]‖x − xkj ‖ for x ∈ xkj + (ηj /2)B,

where � is a Lipschitz constant of g around x̄. This yields

x∗
kj

− ∇xϕ(x̄, ȳ) ∈ ∂̂νj
〈∇yϕ(x̄, ȳ), g

〉
(xkj ) with νj := εkj + γj (�+ 1),

which ensures the validity of the inclusion “⊂” in (4.12) by passing to the limit
as j → ∞ and using the second representation in (1.37). To verify the opposite
inclusion in (4.12), it suffices to employ the similar arguments to the above starting
with an arbitrary subgradient x∗ ∈ ∂〈∇yϕ(x̄, ȳ), g〉(x̄). �

Next we derive several remarkable consequences of Theorem 4.5; see also ex-
ercises in Section 2.5 for more results in this direction. Let us start with the chain
rules of the inclusion type for basic and singular subgradients of the standard com-
positions ϕ ◦ g = ϕ(g(x)) in (4.9).

Corollary 4.6 (Chain Rules for Basic and Singular Subgradients). Let
ϕ : Rm → R do not depend on the first variable in (4.9), and let g : Rn → R

m be
locally Lipschitzian around x̄. Impose the qualification condition

∂∞ϕ(ȳ) ∩ ker ∂〈·, g〉(x̄) = {0}.
Then we have the subdifferential chain rules

∂(ϕ ◦ g)(x̄) ⊂
⋃

y∗∈∂ϕ(ȳ)
∂〈y∗, g〉(x̄), ∂∞(ϕ ◦ g)(x̄) ⊂

⋃

y∗∈∂∞ϕ(ȳ)
∂〈y∗, g〉(x̄).

Proof. It follows from the above that the qualification condition (4.3) reduces to the
one imposed here if ϕ = ϕ(y) and G = g is locally Lipschitzian. Then the claimed
chain rules are specifications of (4.10) and (4.11). �
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The next two corollaries of Theorem 4.5 present subdifferential product and quo-
tient rules in inclusion and equality forms.

Corollary 4.7 (Subdifferential Product Rules). Let ϕi : Rn → R, i = 1, 2, be
Lipschitz continuous around x̄. The we have the product rules

∂(ϕ1 · ϕ2)(x̄) = ∂
(
ϕ2(x̄)ϕ1 + ϕ1(x̄)ϕ2

)
(x̄),

∂
(
ϕ1 · ϕ2

)
(x̄) ⊂ ∂

(
ϕ2(x̄)ϕ1

)
(x̄)+ ∂(ϕ1(x̄)ϕ2

)
(x̄),

where the latter holds as equality and the product ϕ1 · ϕ2 is lower regular at x̄ if
both functions ϕ2(x̄)ϕ1 and ϕ1(x̄)ϕ2 are lower regular at this point.

Proof. To verify the first product rule, represent ϕ1 · ϕ2 as composition (4.9) with
ϕ : R2 → R and g : Rn → R

2 defined by

ϕ(y1, y2) := y1 · y2 and g(x) := (
ϕ1(x), ϕ2(x)

)
.

Then Theorem 4.5(ii) gives the claimed equality. Employing therein the subdiffer-
ential sum rule of Corollary 2.20 gives us the second product rule as inclusion,
where the equality and regularity statements follow from the corresponding results
of Theorem 2.19. �
Corollary 4.8 (Subdifferential Quotient Rules). Let ϕi : Rn → R for i = 1, 2 be
Lipschitz continuous around x̄ with ϕ2(x̄) 
= 0. Then we have

∂
(ϕ1

ϕ2

)
(x̄) = ∂

(
ϕ2(x̄)ϕ1 − ϕ1(x̄)ϕ2

)
(x̄)

[ϕ2(x̄)]2 ,

∂
(ϕ1

ϕ2

)
(x̄) ⊂ ∂

(
ϕ2(x̄)ϕ1

)
(x̄)− ∂(ϕ1(x̄)ϕ2

)
(x̄)

[ϕ2(x̄)]2
,

where the latter holds as equality and the quotient ϕ1/ϕ2 is lower regular at x̄ if
both functions ϕ2(x̄)ϕ1 and −ϕ1(x̄)ϕ2 are lower regular at this point.

Proof. Similar to Corollary 4.7 with ϕ(y1, y2) := y1/y2 therein. �

4.3 Subdifferentiation of Minima and Maxima

Next we proceed with evaluating basic and singular subdifferentials of minima and
maxima of finitely many functions defined, respectively, by

(
minϕi

)
(x) := min

{
ϕi(x)

∣∣ i = 1, . . . , s
}
, (4.13)

(
maxϕi

)
(x) := max

{
ϕi(x)

∣∣ i = 1, . . . , s
}
, (4.14)
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where ϕi : X → R with s ≥ 2. Functions of these two classes are intrinsically
nonsmooth (even when all ϕi are linear), while their generalized differentiabil-
ity properties are very different and cannot be reduced to each other by taking
the negative sign; compare, e.g., the simplest functions |x| = max{x,−x} and
−|x| = min{x,−x}, and see Fig. 4.1. This issue has been well realized in convex
analysis, while the difference can’t be recognized by Clarke’s generalized gradi-
ent (1.78) with its plus-minus symmetry, which implies the equality

∂
(

minϕi
)
(x̄) = ∂

(
maxϕi

)
(x̄)

for arbitrary locally Lipschitzian functions ϕi . The usage of our nonconvex unilat-
eral constructions fully recognizes this difference via the following calculus rules
for evaluating subgradients of the minimum and maximum functions.

Let us start with the minimum function and define the set of active indices

Imin(x) := {
i ∈ {1, . . . , s}∣∣ ϕi(x) = (

minϕi
)
(x)

}
, x ∈ R

n.

y = x y = −x

y = max{−x, x}

y = −x y = x

y = min{−x, x}

Fig. 4.1 Maximum and minimum functions.

Proposition 4.9 (Basic and Singular Subdifferentials of Minimum Functions).
Considering (4.13), fix x̄ ∈ ∩si=1domϕi . Then we have

∂
(

minϕi
)
(x̄) ⊂

⋃{
∂ϕi(x̄)

∣∣∣ i ∈ Imin(x̄)
}
, (4.15)

∂∞(minϕi
)
(x̄) ⊂

⋃{
∂∞ϕi(x̄)

∣∣∣ i ∈ Imin(x̄)
}
. (4.16)

Proof. We verify only (4.15), since representation (1.38) of the singular subdifferen-
tial allows us to proceed similarly in the proof of (4.16). Take a sequence of xk ∈ R

n

such that xk → x̄ and ϕi(xk) → (minϕi)(x̄) for i /∈ Imin(x̄). Using the lower semi-
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continuity of ϕi at x̄ (our standing assumption), we get Imin(xk) ⊂ Imin(x̄). It easily
follows from definition (1.33) that

∂̂
(

minϕi
)
(xk) ⊂

⋃{̂
∂ϕi(xk)

∣∣ i ∈ Imin(x̄)
}
, k ∈ N. (4.17)

This yields by passing to the limit in (4.17) due to representation (1.37) of basic
subgradients that (4.15) holds. The proof of (4.16) is similar by using the singular
subdifferential representation (1.38). �

Although our standing assumption is the lower semicontinuity of the functions in
question (unless otherwise stated), in the following theorem on subdifferentiation of
the maximum function (4.14), we impose the upper semicontinuity (u.s.c.) of some
functions under consideration. Denote

Imax(x̄) := {
i ∈ {1, . . . , s}∣∣ ϕi(x̄) = (

maxϕi
)
(x̄)

}
,

�(x̄) :=
{
(λ1, . . . , λs)

∣∣∣ λi ≥ 0,
s∑

i=1

λi = 1, λi
(
ϕi(x̄)−

(
maxϕi

)
(x̄)

)
= 0

}
.

Theorem 4.10 (Subdifferentiation of Maximum Functions). Let ϕi be l.s.c.
around x̄ for i ∈ Imax(x̄) and be u.s.c. at x̄ for i /∈ Imax(x̄). Then:

(i) Under the validity of the qualification condition (2.37) considered only for
i ∈ Imax(x̄), we have the inclusions

∂
(

maxϕi
)
(x̄) ⊂

⋃{ ∑

i∈Imax(x̄)

λi ◦ ∂ϕi(x̄)
∣∣∣ (λ1, . . . , λs) ∈ �(x̄)

}
,

∂∞(maxϕi
)
(x̄) ⊂

∑

i∈Imax(x̄)

∂∞ϕi(x̄),

where λ ◦ ∂ϕ(x̄) is defined as λ∂ϕ(x̄) for λ > 0 and as ∂∞ϕ(x̄) for λ = 0. If fur-
thermore each ϕi for i ∈ Imax(x̄) is epigraphically regular at x̄, then the maximum
function is also epigraphically regular at this point, and both inclusions above hold
as equalities.

(ii) Suppose that each ϕi , i = 1, . . . , s, is Lipschitz continuous around x̄. Then
we have the inclusion

∂
(

maxϕi
)
(x̄) ⊂

⋃{
∂
( ∑

i∈Imax(x̄)

λiϕi

)
(x̄)

∣∣∣ (λ1, . . . , λs) ∈ �(x̄)
}
,

where the equality holds and the maximum functions are lower regular at x̄ if each
ϕi , i ∈ Imax(x̄), is lower regular at this point.

Proof. Denoting ᾱ := (
maxϕi

)
(x̄), observe that (x̄, ᾱ) is an interior point of the

set epiϕi for any i /∈ Imax(x̄) due to the upper semicontinuity assumption. Then
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assertion (i) follows from the intersection rule of Corollary 2.17 applied to the
epigraphs epiϕi , i = 1, . . . , s, at (x̄, ᾱ).

To verify assertion (ii), which provides a better upper estimate of the basic subdif-
ferential for the case of Lipschitzian functions, we represent the maximum function
as the composition ϕ ◦ g with

ϕ(y1, . . . , ys) := max
{
y1, . . . , ys

}
and g(x) := (

ϕ1(x), . . . , ϕs(x)
)
.

Then we apply to this composition the chain rule from Corollary 4.6 (with the equal-
ity and normal regularity statement therein) by taking into account the well-known
formula for subdifferentiation of the convex function ϕ in the composition, which
follows in turn from the equality in (i). �

4.4 Mean Value Theorems and Some Applications

It has been well recognized in mathematics that the classical Lagrange mean value
theorem is one of the central results of real analysis that plays a crucial role in a
variety of applications. This section contains several extended versions of the mean
value theorem in the absence of differentiability. We also present some of their strik-
ing applications to important topics of variational analysis.

4.4.1 Mean Value Theorem via Symmetric Subgradients

Let us begin with deriving a generalized mean value theorem for continuous func-
tions, which we obtain in the Lagrangian form with replacement of the classical
gradient by a proper (actually minimal for such a form) subdifferential construction.
This construction is the symmetric subdifferential

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ [− ∂(−ϕ)(x̄)] (4.18)

some properties of which are discussed in Exercise 1.75. Its singular counterpart
∂∞,0ϕ(x̄) from (1.75) is used to formulate the appropriate qualification condition
needed for the validity of the following extended mean value theorem. For given
a, b ∈ R

n we use the notation

(b − a)⊥ := {
x∗ ∈ R

n
∣∣ 〈x∗, b − a〉 = 0

}
, [a, b] := {

a + t (b − a)∣∣ 0 ≤ t ≤ 1
}

with (a, b), (a, b], and [a, b) defined accordingly.

Theorem 4.11 (Symmetric Subdifferential Mean Value Theorem for Continu-
ous Functions). Let ϕ : Rn → R be continuous on an open set containing [a, b],
and let the qualification condition

∂∞,0ϕ(x) ∩ (b − a)⊥ = {0} for every x ∈ (a, b)
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be satisfied. Then we have the mean value inclusion

ϕ(b)− ϕ(a) ∈ 〈
∂0ϕ(c), b − a〉 for some c ∈ (a, b). (4.19)

Proof. Let us first justify the existence of a real number θ ∈ (0, 1) such that

ϕ(b)− ϕ(a) ∈ ∂0
t ϕ
(
a + θ(b − a)), (4.20)

where on the right hand we have the symmetric subdifferential (1.75) of the function
t → ϕ(a + t (b − a)) at t = θ . To proceed, define φ : [0, 1] → R by

φ(t) := ϕ
(
a + t (b − a))+ t(ϕ(a)− ϕ(b)), 0 ≤ t ≤ 1,

and observe that φ is continuous on [0, 1] with φ(0) = φ(1) = ϕ(a). The classical
Weierstrass theorem tells us that φ attains its minimum and maximum on [0, 1].
Excluding the trivial case where ψ is constant on [0, 1], we get an interior point
θ ∈ (0, 1) at which φ attains either the minimal or maximal value over [0, 1]. Then
it follows from the generalized Fermat rule of Proposition 1.30(i) and its upper
counterpart in the case of maxima that 0 ∈ ∂0φ(θ). Observing that φ is the sum
of two functions one of which is smooth, we apply the elementary sum rule from
Proposition 1.30(ii) and arrive at (4.20).

Represent now the function in (4.20) as the composition

ϕ
(
a + t (b − a)) = (

ϕ ◦ g)(t) with g(t) := a + t (b − a), 0 ≤ t ≤ 1.

Applying finally the subdifferential chain rule of Corollary 4.6 and its upper coun-
terpart to this composition gives us the mean value inclusion (4.19) with c :=
a + θ(b − a) under the imposed qualification condition. �
Corollary 4.12 (Symmetric Subdifferential Mean Value Theorem for Lips-
chitzian Functions). If ϕ be Lipschitz continuous on an open set containing [a, b],
then (4.19) holds. If in addition ϕ is lower regular on the interval (a, b), then we
have the inclusion

ϕ(b)− ϕ(a) ∈ 〈
∂ϕ(c), b − a〉 for some c ∈ (a, b). (4.21)

Proof. It follows from Theorem 1.22 that the qualification condition of Theo-
rem 4.11 is automatic for Lipschitzian functions. It remains to verify (4.21) under
the assumed lower regularity. To this end we get from Theorem 4.5(i) that the lower
regularity of ϕ at c = a + θ(b − a) yields the lower regularity of the function
t → ϕ(a+ t (b− a)) = (ϕ ◦ g)(t) at θ . Thus we get ∂̂(ϕ ◦ g)(θ) = ∂(ϕ ◦ g)(θ) 
= ∅
by Theorem 1.22 due to the Lipschitz continuity of ϕ ◦ g. It easily implies that
∂̂+(ϕ ◦ g)(θ) ⊂ ∂̂(ϕ ◦ g)(θ); see Exercise 1.76(i). In this case it follows from the
proof of (4.20) in Theorem 4.11 that

ϕ(b)− ϕ(a) ∈ ∂̂(ϕ ◦ g)(θ) ⊂ ∂
(
ϕ ◦ g)(θ),

and thus we arrive at (4.21) by using Corollary 4.6. �
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Note that the lower regularity assumption is essential for the validity of the ex-
tended mean value theorem in form (4.21). A simple counterexample is provided by
ϕ(x) := −|x| on [a, b] = [−1, 1] with ∂ϕ(0) = {−1, 1} and ∂0ϕ(0) = [−1, 1].
This shows that (4.19) holds while (4.21) doesn’t.

4.4.2 Approximate Mean Value Theorems

Next we present a mean value theorem of a new type, which has never appeared in
the classical or convex analysis. Results of this type apply to lower semicontinuous
extended-real-valued functions and are known as approximate mean value theorems
(AMVT); see more commentaries in Section 4.6. Such results occur to be very in-
strumental in variational analysis, which is partly demonstrated in the rest of this
section. The formulation of the following version of AMVT involves the regular
subdifferential (1.33).

Theorem 4.13 (Approximate Mean Value Theorem for l.s.c. Functions). Let
ϕ : Rn → R be finite at two given points a 
= b, and let c ∈ [a, b) belong to
the nonempty set of minimizers for the function

ψ(x) := ϕ(x)− ϕ(b)− ϕ(a)
‖b − a‖ ‖x − a‖, x ∈ [a, b].

Then there are sequences xk
ϕ→ c and x∗

k ∈ ∂̂ϕ(xk) satisfying

lim inf
k→∞ 〈x∗

k , b − xk〉 ≥ ϕ(b)− ϕ(a)
‖b − a‖ ‖b − c‖, (4.22)

lim inf
k→∞ 〈x∗

k , b − a〉 ≥ ϕ(b)− ϕ(a). (4.23)

If furthermore c 
= a, then we have the equality

lim
k→∞〈x∗

k , b − a〉 = ϕ(b)− ϕ(a).

Proof. Observe first that the function ψ defined in the theorem is l.s.c., and hence
it attains its minimum over [a, b] at some point c. Since ψ(a) = ψ(b), we can
always take c ∈ [a, b). Suppose without loss of generality that ϕ(a) = ϕ(b), which
gives us ψ(x) = ϕ(x) for all x ∈ [a, b]. The lower semicontinuity of ϕ ensures the
existence of r > 0 such that ϕ is bounded from below on the set � := [a, b] + rB

by some γ ∈ R. Thus the function ϑ(x) := ϕ(x) + δ(x;�) is l.s.c. and bounded
from below on the whole space R

n. For any fixed k ∈ N take rk ∈ (0, r) such
that ϕ(x) ≥ ϕ(c) − k−2 whenever x ∈ [a, b] + rkB and choose tk ≥ k satisfying
γ + tkrk ≥ ϕ(c)− k−2. Thus we have

ϕ(c) = ϑk(c) ≤ inf
x∈Rn ϑk(x)+ k

−2 with ϑk(x) := ϑ(x)+ tkdist
(
x; [a, b]).
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Apply to ϑk(x) the Ekeland’s variational principle from Corollary 2.13 with the
parameters ε = k−2 and λ = k−1. In this way we find xk ∈ R

n with

‖xk − c‖ ≤ k−1, ϑk(xk) ≤ ϑk(c) = ϕ(c), ϑk(xk) ≤ ϑk(x)+ k−1‖x − xk‖
for all x ∈ R

n. The latter means that the function ϑk(x) + k−1‖x − xk‖ attains its
minimum at x = xk . Hence we deduce from the subdifferential Fermat and sum
rules of Proposition 1.30(i) and Corollary 2.20, respectively, that

0 ∈ ∂ϑk(xk)+ k−1
B for all k ∈ N

via the (dual) unit ball B ⊂ R
n due to ∂‖ · ‖(0) = B. Now using the first representa-

tion in (1.37) of Theorem 1.28 for the basic subdifferential, applying again the sum
rule from Corollary 2.20 to the sum in ϑk with taking into account that xk ∈ int�

for large k, we find sequences uk
ϕ→ c, vk → c, u∗

k ∈ ∂̂ϕ(uk), v∗
k ∈ ∂dist(vk; [a, b]),

and e∗k ∈ B such that

‖u∗
k + tkv∗

k + k−1e∗k‖ → 0 as k → ∞, (4.24)

where ‖v∗
k‖ ≤ 1 by Proposition 1.33 and, obviously,

〈v∗
k , b − vk〉 ≤ dist

(
b; [a, b])− dist

(
vk; [a, b]) ≤ 0, k ∈ N.

Our next goal is to construct a point wk ∈ [a, b] for each k ∈ N so that it en-
joys properties similar to vk . We do it by picking an arbitrary projection wk ∈
�(vk; [a, b]) and observing that

〈v∗
k , b − wk〉 = 〈v∗

k , b − vk〉 + 〈v∗
k , vk − wk〉 ≤ dist

(
b; [a, b])− dist

(
vk; [a, b])

+ ‖v∗
k‖ · ‖vk − wk‖ ≤ −dist

(
vk; [a, b])+ dist

(
vk; [a, b]) = 0.

This yields 〈v∗
k , b−a〉 ≤ 0 for large k ∈ N sincewk → c 
= b and (x−b)‖y−b‖ =

(y − b)‖x − b‖ for x, y ∈ [a, b]. It follows now from (4.24) that

lim inf
k→∞ 〈u∗

k, b − uk〉 ≥ 0 and lim inf
k→∞ 〈u∗

k, b − a〉 ≥ 0,

which verify (4.22) and (4.23). If finally c 
= a, then vk 
= a for large k ∈ N, and
hence 〈v∗

k , b − c〉 = 0. This readily implies that 〈u∗
k, b − a〉 → 0 by the above

arguments and thus completes the proof of the theorem. �
Next we show that the crucial mean value inequality (4.23) holds even if ϕ(b) =

∞ and implies a useful estimate of the increment for a given l.s.c. function via its
regular subdifferential. Furthermore, we establish the limiting counterparts of these
relationships for Lipschitzian functions.
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Corollary 4.14 (Mean Value Inequalities). The following assertions hold:
(i) Let ϕ : Rn → R be finite at a ∈ R

n. Then for any b ∈ R
n there exist a point

c ∈ [a, b] and sequences xk
ϕ→ c, x∗

k ∈ ∂̂ϕ(xk) satisfying the mean value inequality
(4.23). Furthermore, for each ε > 0 we have the estimate

|ϕ(b)− ϕ(a)| ≤ ‖b − a‖ sup
{‖x∗‖ ∣∣ x∗ ∈ ∂̂ϕ(c), c ∈ [a, b] + εB}. (4.25)

(ii) If ϕ is Lipschitz continuous on an open set containing [a, b], then

〈x∗, b − a〉 ≥ ϕ(b)− ϕ(a) for some x∗ ∈ ∂ϕ(c) with c ∈ [a, b),

|ϕ(b)− ϕ(a)| ≤ ‖b − a‖ sup
{‖x∗‖ ∣∣ x∗ ∈ ∂ϕ(c), c ∈ [a, b)}.

Proof. To verify the mean value inequality in (i), it remains to consider the case
where ϕ(b) = ∞. In this case it suffices to apply (4.23) for each s ∈ N to the
sequence of the modified functions

φs(x) :=
{
ϕ(x) if x 
= b,

ϕ(a)+ s if x = b.

The increment estimate in (i) immediately follows from (4.23).
To justify (ii), employ Theorem 4.13 to find c ∈ [a, b), xk → c, and x∗

k ∈ ∂̂ϕ(xk)
satisfying (4.23), and observe by definition (1.33) of regular subgradients that the
Lipschitz continuity of ϕ ensures the uniform boundedness of the sequence {x∗

k }.
Thus it contains a convergence subsequence which limit x∗ belongs to the basic
subdifferential ∂ϕ(c) due to (1.37). Then the mean value inequality in (ii) follows
by passing to the limit in (4.23). It readily implies the increment estimate in (ii). �

Note that the mean value inequality in Corollary 4.14(ii) provides a unilateral
version (inequality vs. equality) of the extended mean value theorem for Lips-
chitzian functions from Corollary 4.12 by using only the basic subdifferential in-
stead of its symmetric counterpart (4.18) without lower regularity.

4.4.3 Subdifferential Characterizations from AMVT

Finally in this section, we present several remarkable consequences of the approx-
imate mean value theorem. The first one concerns subdifferential characterizations
of local Lipschitz continuity of lower semicontinuous functions.

Theorem 4.15 (Subdifferential Characterizations of Local Lipschitz Continu-
ity). Given ϕ : Rn → R with x̄ ∈ domϕ, and given a constant � ≥ 0, the following
properties are equivalent:

(a) There exists a positive number γ such that

∂̂ϕ(x) ⊂ �B whenever ‖x − x̄‖ < γ, |ϕ(x)− ϕ(x̄)| < γ.
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(b) There is a neighborhood U of x̄ on which ∂̂ϕ(x) ⊂ �B.
(c) ϕ is Lipschitz continuous around x̄ with modulus �.

Furthermore, the local Lipschitz continuity of ϕ around x̄ with SOME MODULUS

� ≥ 0 is equivalent to the singular subdifferential condition ∂∞ϕ(x̄) = {0}.
Proof. Suppose without loss of generality that x̄ = 0 and ϕ(x̄) = 0, and verify
first the validity of implication (a)⇒(b) with U := η(intB) in (b) for some constant
η > 0. This means that in the setting of (a), there is η > 0 such that |ϕ(x)| < γ

for all ‖x‖ < η. Observe that the lower semicontinuity of ϕ around x̄ = 0 allows
us to find ν > 0 so that ϕ(x) > −γ if ‖x‖ < ν. Denote η := min{ν, γ, γ /�},
where the case of � = 0 is included and thus reduces η to min{ν, γ }, and then show
that ϕ(x) < γ whenever ‖x‖ < min{γ, γ /�}. This would surely justify the claimed
implication.

Suppose on the contrary that there exists b ∈ R
n with ‖b‖ < min{γ, γ /�} and

ϕ(b) ≥ γ . Consider the function

φ(x) := min{ϕ(x), γ } on R
n with φ(0) = 0, φ(b) = γ

satisfying all the assumptions of Theorem 4.13, and apply to it the mean value in-

equality (4.23). This gives us c ∈ [0, b) and xk
φ→ c, x∗

k ∈ ∂̂φ(xk) with

lim inf
k→∞ 〈x∗

k , b〉 ≥ φ(b)− φ(0) = γ, lim inf
k→∞ ‖x∗

k ‖ ≥ γ /‖b‖ > �.

Recall that the point c is a minimizer of the function

ψ(x) := φ(x)− ‖b‖−1‖x‖(φ(b)− φ(0)) on [0, b],

which yields φ(c) ≤ γ ‖b‖−1‖c‖ < γ . Hence φ(xk) < γ along xk
φ→ c telling us

that φ(xk) = ϕ(xk) for large k. We get furthermore that

∂̂φ(xk) ⊂ ∂̂ϕ(xk) by φ(x) ≤ ϕ(x), x ∈ R
n,

and so x∗
k ∈ ∂̂ϕ(xk). Since ‖x∗

k ‖ > �, it contradicts (a) and verifies (a)⇒(b).
Implication (b)⇒(c) follows from the increment estimate in Corollary 4.14(i),

implication (c)⇒(b) is an easy consequence of the definition, while (b)⇒(a) is triv-
ial. It has been proved in Theorem 1.22 that ∂∞ϕ(x̄) = {0} for locally Lipschitzian
functions; so it remains to verify the opposite implication. Due to the equivalence
(a)⇔(c), it suffices to show that (a) holds with some �, γ > 0.

If it doesn’t, find xk
ϕ→ x̄ and x∗

k ∈ ∂̂ϕ(xk) with ‖x∗
k ‖ → ∞. This yields

( x∗
k

‖x∗
k ‖
,− 1

‖x∗
k ‖
)

∈ N̂((xk, ϕ(xk)); epiϕ
)
, k ∈ N.
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Normalizing x̃∗
k := x∗

k /‖x∗
k ‖, select a subsequence of {̃x∗

k } that converges to some
x∗ with ‖x∗‖ = 1 and (x∗, 0) ∈ N((x̄, ϕ(x̄)); epiϕ). This contradicts the imposed
condition ∂∞ϕ(x̄) = {0} and thus completes the proof. �

Theorem 4.15 readily implies a subdifferential extension of the fundamental re-
sult of classical analysis that bridges differentiation and integration, namely, the
only function having zero derivative on an open set is constant.

Corollary 4.16 (Subdifferential Characterization of Constancy for l.s.c. Func-
tions). Consider ϕ : U → R on an open set U ⊂ R

n. Then ϕ is locally constant on
U if and only if we have

x∗ ∈ ∂̂ϕ(x) �⇒ x∗ = 0 for all x ∈ U.
This is equivalent to ϕ being constant on U if U is connected.

Proof. Immediately follows from Theorem 4.15 with � = 0 therein. �
The next remarkable consequence of AMVT is the following subdifferential

characterizations of strictly differentiable functions (1.19). The functions from Ex-
ample 1.21 illustrate that imposing Lipschitz continuity as well as strict differentia-
bility are essential for the validity of the obtained equivalences.

Theorem 4.17 (Subdifferential Characterizations of Strict Differentiability).
Given a (l.s.c.) function ϕ : Rn → R finite at x̄ and given a vector x̄∗ ∈ R

n, the
following properties are equivalent:

(a) ϕ is Lipschitz continuous around x̄, and for every sequences xk → x̄ and
x∗
k ∈ ∂̂ϕ(xk) we have x∗

k → x̄∗ as k → ∞.
(b) ϕ is Lipschitz continuous around x̄ with ∂ϕ(x̄) = {x̄∗}.
(c) ϕ is strictly differentiable at x̄ with ∇ϕ(x̄) = x̄∗.

Proof. Suppose without loss of generality that x̄ = 0, ϕ(0) = 0, and x̄∗ = 0. To
verify (a)⇒(b), pick x∗ ∈ ∂ϕ(0) and find xk → 0 and x∗

k ∈ ∂̂ϕ(xk) with x∗
k → x∗.

It follows from (a) that x∗ = 0, i.e., ∂ϕ(0) = {0} and (b) holds.
To show next that (b)⇒(c), observe that the strict differentiability of ϕ at x̄ ∈ R

n

with x∗ = ∇ϕ(x̄) can be equivalently described as

lim
x→x̄
t↓0

[
sup
u∈C

∣∣∣
ϕ(x + tu)− ϕ(x)

t
− 〈x∗, u〉

∣∣∣
]

= 0 (4.26)

for any bounded and closed set C ⊂ R
n. Arguing by contradiction, suppose that

there is such C for which the limit in (4.26) either doesn’t exist or is not zero. In
both cases select subsequences xk → 0, tk ↓ 0, and uk ∈ C so that

lim
k→∞

ϕ(xk + tkuk)− ϕ(xk)
tk

:= α > 0.
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Then the mean value inequality (4.23) gives us ck ∈ R
n and x∗

k ∈ ∂̂ϕ(ck) with

dist
(
ck; [xk, xk + tkuk]

) ≤ k−1, 〈x∗
k , tkuk〉 ≥ ϕ(xk + tkuk)− ϕ(xk)− tkk−1,

and thus ck → 0. By the compactness ofC, find a subsequence of {uk} converging to
some u ∈ C. Also, the boundedness of the sequence {x∗

k } due to the local Lipschitz
continuity of ϕ allows us to select its subsequence which converges to some x∗ ∈
∂ϕ(0). Passing now to the limit above shows that

‖x∗‖ · ‖u‖ ≥ 〈x∗, u〉 ≥ lim
k→∞

ϕ(xk + tkuk)− ϕ(xk)
tk

= α > 0,

which tells us that x∗ 
= 0 and hence contradicts (b).
To verify finally (c)⇒(a), recall first that the local Lipschitz continuity of ϕ

around x̄ = 0 always follows from the strict differentiability of ϕ at this point;
see Exercise 1.52. It remains to justify the limiting relationship in (a) with x̄∗ = 0.
For any sequences xk → 0 and x∗

k ∈ ∂̂ϕ(xk), we have

lim inf
x→xk

ϕ(x)− ϕ(xk)− 〈x∗
k , x − xk〉

‖x − xk‖ ≥ 0

and hence for every γk ↓ 0, find neighborhoods Uk of xk with

〈x∗
k , x − xk〉 ≤ ϕ(x)− ϕ(xk)+ γk‖x − xk‖ on Uk.

Fix u ∈ B and take t > 0 so small that x := x + k + tu ∈ Uk . Then

〈x∗
k , u〉 ≤ ϕ(xk + tu)− ϕ(xk)

t
+ γk‖u‖.

Replacing u by −u in the above inequality, we arrive at the estimates

∣∣〈x∗
k , u〉

∣∣ ≤
∣∣∣
ϕ(xk + tu)− ϕ(xk)

t

∣∣∣+ γk and

sup
u∈B

{∣∣〈x∗
k , u〉

∣∣} ≤ sup
u∈B

[∣∣∣
ϕ(xk + tu)− ϕ(xk)

t

∣∣∣
]

+ γk,

which imply in turn the limiting relationship

lim
k→∞ ‖x∗

k ‖ ≤ lim
k→∞, t↓0

[
sup
u∈B

∣∣∣
ϕ(xk + tu)− ϕ(xk)

t

∣∣∣
]

+ lim
k→∞ γk.

Thus we get x∗
k → 0 as k → ∞ and complete the proof of theorem. �

Starting from the next theorem and then continuing it in this section and also
in Chapter 5, we proceed with the study of various kinds of monotonicity of func-
tions and operators, which plays a fundamental role in many aspects of variational
analysis and optimization.
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The result below concerns monotonicity of extended-real-valued functions. It
provides, in particular, a subdifferential extension of the classical fact, based on
the Lagrange mean value theorem, that a smooth function whose derivative is non-
positive must itself be nonincreasing.

Theorem 4.18 (Subdifferential Characterization of Monotonicity for l.s.c.
Functions). Let ϕ : U → R be defined on an open subset U ⊂ R

n, and let
K ⊂ R

n be a cone with its polar K∗ = {x∗ ∈ R
n| 〈x∗, x〉 ≤ 0, x ∈ K}. Then the

following properties are equivalent:
(a) The function ϕ is K-nonincreasing, i.e.,

x, u ∈ U, u− x ∈ K �⇒ ϕ(u) ≤ ϕ(x).

(b) For every x ∈ U we have ∂̂ϕ(x) ⊂ K∗.

Proof. To verify (a)⇒(b), take any vectors x ∈ U and x∗ ∈ ∂̂ϕ(x). Given γ > 0,
find by the subgradient definition such η > 0 that x + ηB ⊂ U and

〈x∗, u− x〉 ≤ ϕ(u)− ϕ(x)+ γ ‖u− x‖ for all u ∈ x + ηB.
Fix w ∈ K and plug into this inequality u := x + tw with t > 0 and t‖w‖ ≤ η.
Then the K-monotonicity property in (a) tells us that

〈x∗, w〉 ≤ ϕ(x + tw)− ϕ(x)
t

+ γ ‖w‖ ≤ γ ‖w‖.

Since this holds for any γ > 0, we arrive at 〈x∗, w〉 ≤ 0 and justify therefore the
subdifferential inclusion in (b).

To verify the opposite implication (b)⇒(a), suppose the contrary, and find points
x, u ∈ U satisfying u− x ∈ K and ϕ(u) > ϕ(x). Applying the mean value inequal-
ity from Corollary 4.14(i), we get c ∈ [x, u] and sequences xk → c, x∗

k ∈ ∂̂ϕ(xk)
satisfying the conditions

lim inf
k→∞ 〈x∗

k , u− x〉 ≥ ϕ(u)− ϕ(x) > 0, k ∈ N.

This yields 〈x∗
k , u− x〉 > 0 for large k and contradicts (b). �

The last application of AMVT in the section is to the monotonicity of sub-
gradient mappings generated by l.s.c. functions. Recall that a set-valued mapping
T : Rn →→ R

n is globally monotone on R
n if

〈v1 − v2, u1 − u2〉 ≥ 0 for all (u1, v1), (u2, v2) ∈ gph T . (4.27)

The mapping T is globally maximal monotone on R
n if gph T = gph S for any

monotone operator S : Rn →→ R
n with gph T ⊂ gph S.

It is well known in convex analysis that the subgradient mapping for a l.s.c. con-
vex function ϕ : Rn → R is globally maximal monotone. The next theorem shows
that the global monotonicity (not even maximal) of either the regular subdifferential
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mapping or the basic subdifferential one for a l.s.c. function ϕ yields the convexity
of ϕ.

Theorem 4.19 (Subdifferential Monotonicity and Convexity for l.s.c. Func-
tions). Given ϕ : Rn → R, suppose that either ∂̂ϕ or ∂ϕ is a globally monotone
operator on R

n. Then the function ϕ must be convex on R
n.

Proof. As follows from the limiting representation of ∂ϕ via ∂̂ϕ in Theorem 1.28, it
suffices to prove the claimed result just for ∂̂ϕ, since the global monotonicity of this
mapping implies that for ∂ϕ.

Let us first show that the global monotonicity of the regular subdifferential map-
ping ∂̂ϕ implies its representation

∂̂ϕ(x) = {
v ∈ R

n
∣∣ 〈v, u− x〉 ≤ ϕ(u)− ϕ(x) for all u ∈ R

n
}

(4.28)

in the form of the subdifferential of convex analysis whenever x ∈ domϕ. Since
the inclusion “⊃” in (4.28) is obvious, we proceed with the proof of the opposite
inclusion by using AMVT. Pick x, u ∈ domϕ and v ∈ ∂̂ϕ(x). Applying (4.22) gives
us sequences xk → c ∈ [u, x) and vk ∈ ∂̂ϕ(xk) such that

ϕ(x)− ϕ(u) ≤ ‖x − u‖
‖x − c‖ lim inf

k→∞ 〈vk, x − xk〉.

The global monotonicity of ∂̂ϕ in (4.27) and the equality ‖x − u‖(x − c) = (x −
u)‖x − c‖ ensure the validity of the conditions

ϕ(x)− ϕ(u) ≤ ‖x − u‖
‖x − c‖ lim inf

k→∞ 〈v, x − xk〉 = 〈v, x − u〉,

which justify the inclusion “⊂” in (4.28) and so the claimed representation.
Using (4.28) and employing AMVT again, we show next that ϕ is convex. For any

u, x ∈ domϕ consider its convex combinationw := λu+(1−λ)x with 0 < λ < 1. It
follows from the variational arguments of Theorem 2.14 (see also Exercise 2.25(i))

that the domain of ∂̂ϕ is dense in the graph of ϕ. This gives us a sequence uk
ϕ→ u

with ∂̂ϕ(uk) 
= ∅. Fixing k, we can always suppose that 0 ∈ ∂̂ϕ(uk). Let us verify
that wk ∈ domϕ for wk := λuk + (1 − λ)x. Assuming the contrary, take α > ϕ(x)
and define the function

ψ(z) :=
{
ϕ(z) if z 
= wk,

α if z = wk.

Applying to it the mean value inequalities of Theorem 4.13 gives us c ∈ [x,wk) and
sequences zm → c, vm ∈ ∂̂ψ(zm) as m ∈ N such that

lim inf
m→∞ 〈vm,wk − zm〉 ≥ ‖wk − c‖

‖wk − x‖
(
α − ϕ(x)) > 0,

lim inf
m→∞ 〈vm,wk − x〉 ≥ α − ϕ(x).
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We deduce from the monotonicity of ∂̂ϕ and the choice of 0 ∈ ∂̂ϕ(uk) that

0 ≥ lim inf
m→∞ 〈vm, uk − zm〉 ≥ lim inf

m→∞ 〈vm,wk − zm〉 + lim inf
m→∞ 〈vm, uk − wk〉

= lim inf
m→∞ 〈vm,wk − zm〉 + λ−1(1 − λ) lim inf

m→∞ 〈vm,wk − x〉
≥ λ−1(1 − λ)(α − ϕ(x)).

It contradicts the assumption on α > ϕ(x) and hence shows that wk ∈ domϕ.

To continue verifying the convexity of ϕ, we split the subsequent proof into the
consideration of two cases regarding the role of wk = λuk + (1 − λ)x as local
minimizers of ϕ. Suppose without loss of generality that the assumptions of either
Case 1 or Case 2 are satisfied for all k ∈ N.

Case 1: Let wk be a local minimizer of ϕ. In this case we have 0 ∈ ∂̂ϕ(wk). Then
representation (4.28) gives us ϕ(x) ≥ ϕ(wk) and ϕ(uk) ≥ ϕ(wk), which yields
λϕ(uk)+ (1 − λ)ϕ(x) ≥ ϕ(wk). Letting k → ∞, we arrive at

λϕ(u)+ (1 − λ)ϕ(x) ≥ ϕ(w) = ϕ
(
λu+ (1 − λ)x), (4.29)

which justifies the convexity of ϕ in this case.

Case 2: Let wk be not a local minimizer of ϕ. Select sk so that ‖sk−wk‖ < k−1 and
ϕ(sk) < ϕ(wk). For any fixed k, we apply again Theorem 4.13 to the function ϕ on
the interval [sk, wk]. It gives us ck ∈ [sk, wk) and sequences zm → ck as m → ∞
and vm ∈ ∂̂ϕ(zm) satisfying the conditions

lim inf
m→∞ 〈vm,wk − zm〉 ≥ ‖wk − ck‖

‖wk − sk‖
(
ϕ(wk)− ϕ(sk)

)
> 0,

which imply by representation (4.28) that

ϕ(x)− ϕ(zm) ≥ 〈vm, x − zm〉, ϕ(uk)− ϕ(zm) ≥ 〈vm, uk − zm〉.
This readily yields by passing to the limit as m → ∞ and using the imposed lower
semicontinuity of ϕ that

λϕ(uk)+ (1 − λ)ϕ(x) ≥ lim inf
m→∞

[
ϕ(zm)+ 〈vm,wk − zm〉] ≥ ϕ(ck), k ∈ N.

Letting finally k → ∞ gives us (4.29), which verifies the convexity of ϕ in this case
and thus completes the proof of the theorem. �

4.5 Exercises for Chapter 4

Exercise 4.20 (Subdifferentials of Marginal Functions in Infinite Dimensions). Consider the
class of marginal functions of type (4.1), where the (locally l.s.c.) cost function ϕ : X → R and the
(locally closed-graph) constraint mapping G : X →→ Y act in the Asplund space setting.
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(i) Show that the results of Theorem 4.1(i) hold in this setting with D∗G = D∗
NG if either ϕ is

SNEC at (x̄, ȳ) or G is SNC at this point.
(ii) Clarify whether the normal coderivative of G can be replaced by the mixed one in (i). Are

any changes needed in the Asplund space version of Corollary 4.3?
(iii) Assuming that ϕ = ϕ(y) and G−1 is PSNC at (ȳ, x̄) instead of the SNC property property

of G imposed in (i), verify that the inclusions

∂μ(x̄) ⊂
⋃

y∗∈∂ϕ(ȳ)
D∗
NG(x̄, ȳ)(y

∗), ∂∞μ(x̄) ⊂
⋃

y∗∈∂∞ϕ(ȳ)
D∗
NG(x̄, ȳ)(y

∗)

hold under validity of the mixed qualification condition

∂∞ϕ(ȳ) ∩D∗
MG

−1(ȳ, x̄)(0) = {0}
replacing the normal one (4.3) in assertion (i).

(iv) Derive Asplund space versions of the results in Theorem 4.1(ii).
(v) Show that if ϕ is locally Lipschitzian around (x̄, ȳ) and M is inner semicontinuous at this

point, then we have

∂∞μ(x̄) ⊂ D∗
MG(x̄, ȳ)(0). (4.30)

Obtain a counterpart of this statement when M is merely inner semicompact at x̄.
Hint: To justify (i,iii,iv), proceed similarly to the proof of Theorem 4.1 with employing the

subdifferential sum rules in Asplund spaces. To verify (v), use the singular subdifferential descrip-
tion (1.71) from Exercise 1.68, and then apply the fuzzy sum rule from Exercise 2.26. Compare it
with the proofs of [522, Theorem 3.38].

Exercise 4.21 (Extended Inner Semicontinuity and Inner Semicompactness of Set-Valued
Mappings). Given μ : X → R finite at x̄, we say that a mapping F : X →→ Y between Banach

spaces is μ-inner semicontinuous at (x̄, ȳ) ∈ gph if for every sequence xk
domF−→ x̄ with μ(xk) →

μ(x̄) there is a sequence of yk ∈ F(xk) converging to ȳ. This mapping is μ-inner semicompact

at x̄ if for every sequence xk
μ→ x̄ there is a sequence yk ∈ M(xk) that contains a convergent

subsequence.
(i) Obtain extensions of the results presented in Theorem 4.1 and Exercise 4.20 to the cases

where the argminimum mapping M is assumed to be μ-inner semicontinuous and μ-inner semi-
compact, respectively.

(ii) Construct examples showing that the results from (i) under the extended inner semicontinu-
ity and semicompactness assumptions strictly improve the corresponding ones from Theorem 4.1
and Exercise 4.20.

Exercise 4.22 (Equality Representations for Subgradients of Marginal Functions). LetX and
Y be arbitrary Banach spaces, and let the cost function ϕ in (4.1) be Fréchet differentiable at
(x̄, ȳ) ∈ gphM . Assume that the argminimum mapping (4.2) admits an upper Lipschitzian selector
near (x̄, ȳ), i.e., there is h : domG → Y such that h(x̄) = ȳ and h(x) ∈ M(x) for all x in a
neighborhood of x̄.

(i) Show that in this case we have the equality

∂̂μ(x̄) = ∇xϕ(x̄, ȳ)+ D̂∗G
(
x̄, ȳ

)(∇yϕ(x̄, ȳ)
)
.

(ii) Assume in addition that both X and Y are Asplund, that ϕ is strictly differentiable at (x̄, ȳ),
that M is μ-inner semicontinuous at (x̄, ȳ), and that G is N -regular at this point. Show that in this
case μ is lower regular at x̄ and we have

∂μ(x̄) = ∇xϕ(x̄, ȳ)+D∗
NG

(
x̄, ȳ

)(∇yϕ(x̄, ȳ)
)
.
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Hint: To verify (i), proceed by using the definitions. The inclusion “⊂” in the formula of (ii) is
taken from Exercise 4.20, while the opposite inclusion therein follows from (i) under the imposed
N -regularity assumption on G.

Exercise 4.23 (Regular Subgradients of Optimal Value Functions for Parametric Nonlinear
Programs). Consider the marginal function (4.1) with the constraint mapping G : X →→ Y given
by

G(x) :=
{
y ∈ Y

∣∣∣ ϕi(x, y) ≤ 0 for i = 1, . . . , m,

ϕi(x, y) = 0 for i = m+ 1, . . . , m+ r
}
,

(4.31)

whereμ from (4.1) is known in this case as the (optimal) value function for mathematical programs
with finitely many inequality and equality constraints.

(i) Let X and Y be Banach. Given (x̄, ȳ) ∈ gphM , suppose that all the functions ϕi are Fréchet
differentiable at (x̄, ȳ) and continuous around this point, and then define the following sets of
Lagrange multipliers λ = (λ1, . . . , λm+r ) ∈ R

m+r by

�(x̄, ȳ) :=
{
λ ∈ R

m+r
∣∣∣ ∇yϕ(x̄, ȳ)+

m+r∑

i=1

λi∇yϕi(x̄, ȳ) = 0,

λi ≥ 0, λiϕi(x̄, ȳ) = 0 for i = 1, . . . , m
}
,

(4.32)

�(x̄, ȳ, y∗) :=
{
λ ∈ R

m+r
∣∣∣ y∗ +

m+r∑

i=1

λi∇yϕi(x̄, ȳ) = 0, λi ≥ 0,

λiϕi(x̄, ȳ) = 0 for i = 1, . . . , m
}
, y∗ ∈ Y ∗.

Assuming that ∂̂+ϕ(x̄, ȳ) 
= ∅ for the cost function in (4.1) and the LICQ condition from Exer-
cise 3.73(i) holds for ϕi , i = 1 . . . , m+ r , at (x̄, ȳ), prove the inclusion

∂̂μ(x̄) ⊂
⋂

(x∗,y∗)∈̂∂+ϕ(x̄,ȳ)

⋃

λ∈�(x̄,ȳ,y∗)

[
x∗ +

m+r∑

i=1

λi∇xϕi(x̄, ȳ)
]
. (4.33)

(ii) Assuming in addition to (i) that ϕ is Fréchet differentiable at (x̄, ȳ) and the solution
map (4.2) admits an upper Lipschitzian selector around this point, show that (4.33) holds as the
equality:

∂̂μ(x̄) =
⋃

λ∈�(x̄,ȳ)

[
∇xϕ(x̄, ȳ)+

m+r∑

i=1

λi∇xϕi(x̄, ȳ)
]
.

(iii) Let in the setting of (i) the spaces X and Y be Asplund, and let the functions ϕi , i =
1, . . . , m + r , be strictly differentiable at (x̄, ȳ). Show that in this case we have inclusion (4.33)
under the MFCQ condition from Exercise 2.53 imposed on the constraint functions ϕi of two
variables. Does it hold if ϕi are merely Fréchet differentiable at (x̄, ȳ) and the spaces X and Y are
Asplund?

Hint: To verify (i), first check that

∂̂μ(x̄) ⊂
⋂

(x∗,y∗)∈̂∂+ϕ(x̄,ȳ)

[
x∗ + D̂∗G(x̄, ȳ)(y∗)

]
(4.34)
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in the general framework of (4.1) provided that ∂̂+ϕ(x̄, ȳ) 
= ∅. This can be done by using the
smooth variational description of regular subgradients from Theorem 1.27 and Exercise 1.64(i).
Then employ in the setting of (4.31) the representation of regular normals to inverse images of
graphs under Fréchet differentiable mappings with surjective derivatives; see Exercise 1.54(i). The
equality representation in (ii) follows from Exercise 4.22(i) under the imposed assumptions. As-
sertion (iii) follows from (4.34) and Exercise 3.73(ii). Compare this with [547, Theorem 4 and
Corollary 2].

Exercise 4.24 (Subgradients of Optimal Value Functions for Parametric Nondifferentiable
Programs). Let G : X →→ Y in (4.1) be given by (4.31), let X and Y be Asplund, and let ϕi , i =
1, . . . , m+ r , be locally Lipschitzian around (x̄, ȳ) ∈ gphM . Assume that only (λ1, . . . , λm+r ) =
0 satisfies the relationships

0 ∈
m∑

i=1

λi∂ϕi(x̄, ȳ)+
m+r∑

i=m+1

λi
(
∂ϕi(x̄, ȳ) ∪ ∂(−ϕi)(x̄, ȳ)

)
,

(λ1, . . . , λm+r ) ∈ R
m+r+ , λiϕi(x̄, ȳ) = 0 as i = 1, . . . , m.

(4.35)

(i) Show that if ∂̂+ϕ(x̄, ȳ) 
= ∅, then we have the inclusion

∂̂μ(x̄) ⊂
⋂

(x∗,y∗)∈̂∂+ϕ(x̄,ȳ)

{
u∗ ∈ X∗

∣∣∣ (u∗, 0) ∈ (x∗, y∗)+
m∑

i=1

λi∂ϕi(x̄, ȳ)

+
m+r∑

i=m+1

λi
(
∂ϕi(x̄, ȳ) ∪ ∂(−ϕi)(x̄, ȳ)

)}
,

where the multipliers (λ1, . . . , λm+r ) are taken from (4.35).
(ii) Show that if ϕ is locally Lipschitzian around (x̄, ȳ) and M is μ-inner semicontinuous at

this point, then with (λ1, . . . , λm+r ) from (4.35), we have the inclusions

∂μ(x̄) ⊂
{
u∗ ∈ X∗

∣∣∣ (u∗, 0) ∈ ∂ϕ(x̄, ȳ)+
m∑

i=1

λi∂ϕi(x̄, ȳ)

+
m+r∑

i=m+1

λi
(
∂ϕi(x̄, ȳ) ∪ ∂(−ϕi)(x̄, ȳ)

)}
,

∂∞μ(x̄) ⊂
{
u∗ ∈ X∗

∣∣∣ (u∗, 0) ∈
m∑

i=1

λi∂ϕi(x̄, ȳ)

+
m+r∑

i=m+1

λi
(
∂ϕi(x̄, ȳ) ∪ ∂(−ϕi)(x̄, ȳ)

)}
.

(iii) If ϕ and ϕi , i = 1, . . . , m+ r , are strictly differentiable at (x̄, ȳ) and the MFCQ condition
is satisfied at this point, we have the inclusions

∂μ(x̄) ⊂
⋃

λ∈�(x̄,ȳ)

[
∇xϕ(x̄, ȳ)+

m+r∑

i=1

λi∇xϕi(x̄, ȳ)
]
,

∂∞μ(x̄) ⊂
⋃

λ∈�∞(x̄,ȳ)

[m+r∑

i=1

λi∇xϕi(x̄, ȳ)
]
,
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where �(x̄, ȳ) is taken from (4.32) and where by �∞(x̄, ȳ) is defined by

{
λ ∈ R

m+r
∣∣∣
m+r∑

i=1

λi∇yϕi(x̄, ȳ) = 0, λi ≥ 0, λiϕi(x̄, ȳ) = 0 for i = 1, . . . , m
}
.

Hint: Deduce it from the subdifferential inclusions for marginal functions given in (4.34) and
Exercise 4.20(i), respectively, due to the coderivative for G in (4.31) taken from Exercise 3.74.
Compare this with [547, Theorems 5 and 7].

Exercise 4.25 (Lipschitz Continuity of Marginal Functions in Finite and Infinite Dimen-
sions). Consider the framework of Corollary 4.3, where ϕ : X → R and G : X →→ Y act between
Asplund spaces.

(i) Present verifiable conditions in terms of the given data ϕ and G ensuring that the marginal
function (4.1) is l.s.c. around x̄ ∈ domμ.

(ii) Show that assertion (i) of Corollary 4.3 holds without any change in Asplund spaces, while
assertion (ii) therein also holds with replacing the local boundedness of M around x̄ by the the
local semicompactness property of M at this point.

(iii) Verify that assertions (i) and (ii) of Corollary 4.3 are satisfied under the less restrictive μ-
inner semicontinuity andμ-inner semicompactness assumptions onM at (x̄, ȳ) and x̄, respectively;
see Exercise 4.21 for the definitions.

(iv) Derive sufficient conditions for local Lipschitz continuity of optimal value functions in
problems of mathematical programming with equality and inequality constraints described by Lip-
schitzian and smooth functions. Show, in particular, that μ(x) is locally Lipschitzian around x̄
under the Mangasarian-Fromovitz constraint qualification in the classical nonlinear programming
in finite dimensions.

Hint: To verify (i)–(iii), proceed as in the proof of Corollary 4.3 by using the Asplund space
results from Exercises 3.44, 3.45 and the subdifferential description of the SNEC property in Ex-
ercise 2.50; compare this with the proof of [532, Theorem 5.2]. To get (iv), use the inclusion for
∂∞μ(x̄) obtained in Exercise 4.24 together with the subdifferential characterization of local Lip-
schitz continuity from the last statement of Theorem 4.15 in R

n and Exercise 4.34(ii) in Asplund
spaces.

Exercise 4.26 (Subdifferentials of Infimal Convolutions in Asplund Spaces). Establish exten-
sions of Theorem 4.4 to infimal convolutions (4.6) of functions ϕ1, ϕ2 : X → R defined on Asplund
spaces. Hint: Proceed as in the proof of Theorem 4.4 with applying the corresponding results from
Exercise 4.20.

Exercise 4.27 (Subdifferentiation of Marginal Functions and Infimal Convolutions in Finite-
Dimensional and Infinite-Dimensional Convex Settings).

(i) Consider the class of marginal functions (4.1), where ϕ : Rn → R is convex, and where
G : Rn →→ R

m has the convex graph. Show that for any x̄ ∈ domM we have the equality in (4.4)
whenever ȳ ∈ M(x̄) is such that the qualification condition (4.3) is satisfied (in particular, when
the cost function ϕ is continuous at (x̄, ȳ)) without imposing any additional assumptions.

(ii) Verify that the first inclusion in Theorem 4.4(i) holds as equality for any (x̄1, x̄2) ∈ C(x̄)
without any additional assumptions.

(iii) Establish extensions of assertions (i) and (ii) to arbitrary Banach spaces.
Hint: To justify (i), proceed by the definitions of the convex constructions involved and the

subdifferential sum rule of convex analysis. Derive (ii) as a consequence of (i), and compare this
with the proofs of [537, Theorem 2.61 and Corollary 2.65]. Verify that this approach works in
arbitrary Banach spaces.

Exercise 4.28 (Subgradients of Compositions in Infinite Dimensions).
(i) Show that the results of Theorem 4.5(i) hold in the case of Asplund spaces X and Y under

the additional assumptions that either ϕ is SNEC at (x̄, ȳ) or g is SNC at x̄. Verify furthermore that
the C1 property of ϕ and g in the regularity statements can be replaced by the strict differentiability
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requirement on ϕ and g at the corresponding points. Justify finally yet another case of the equality
in (4.10): g is N -regular at x̄ and dimY < ∞. Hint: Proceed as in the proof of Theorem 4.5(i)
with employing infinite-dimensional extensions of the facts used therein, which are discussed in
the exercises above. Compare this with the proof in [522, Theorem 3.41].

(ii) Verify that the equality in (4.12) of Theorem 4.5(ii) holds for any Banach spaces X and Y
provided that ϕ is strictly differentiable at (x̄, ȳ). Show in addition that ϕ ◦ g is lower regular at x̄
if g isM-regular at this point. Is the latter assumption essential for the lower regularity of ϕ at x̄ in
finite dimensions? Hint: To justify (4.12), proceed as in the proof of Theorem 4.5(ii) and compare
it with [522, Theorem 1.110].

Exercise 4.29 (Subdifferential Product and Quotient Rules in Infinite Dimensions). Show that
the first equalities in the product and quotient rules of Corollaries 4.7 and 4.8 hold in arbitrary
Banach spaces, while the inclusion and regularity statements therein are valid in the Asplund space
setting. Hint: Proceed as in the proofs of Corollaries 4.7 and 4.8 with the usage of the infinite-
dimensional chain and sum rules from Exercises 4.28(ii) and 2.54(i), respectively.

Exercise 4.30 (Partial Subgradients). Let both spaces X and Y be Asplund, and let the function
ϕ : X× Y → R enjoy the SNEC property at (x̄, ȳ) ∈ domϕ and satisfy the qualification condition

[
(0, y∗) ∈ ∂∞ϕ(x̄, ȳ)

] �⇒ y∗ = 0.

(i) Prove that the following hold for partial basic and singular subdifferentials:

∂xϕ(x̄, ȳ) ⊂ {
x∗ ∈ X∗∣∣ ∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂ϕ(x̄, ȳ)}, (4.36)

∂∞
x ϕ(x̄, ȳ) ⊂ {

x∗ ∈ X∗∣∣ ∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂∞ϕ(x̄, ȳ)
}
. (4.37)

(ii) Check that both assumptions imposed above on ϕ are satisfied whenever ϕ is locally Lip-
schitzian around (x̄, ȳ), and then give examples of non-Lipschitzian functions for which (4.36)
and (4.37) hold.

(iii) Show that the inclusions in both (4.36) and (4.37) may be strict, while the equality holds
in (4.36) if ϕ is lower regular at (x̄, ȳ). Verify that the equality holds in (4.37) if ϕ is epigraphically
regular at (x̄, ȳ), and show furthermore that ϕ(·, ȳ) is lower regular (resp. epigraphically regular)
at x̄ provided that ϕ possess the corresponding property at (x̄, ȳ).

Hint: Represent ϕ(x, ȳ) in the composition form (ϕ◦g)(x) with g(x) := (x, ȳ), and then apply
the results of Exercise 4.28(i).

Exercise 4.31 (Regular and Limiting Subgradients of Minimum Functions).
(i) Show that the inclusions in (4.15) and (4.16) hold in arbitrary Banach spaces. Hint: Pro-

ceed as in the proof of Proposition 4.9 by using representation (1.68) of basic subgradients and
definition (1.70) of singular subgradients in Banach spaces.

(ii) Does inclusion (4.16) hold if the geometric representation(1.72) is taken as the definition
of the singular subdifferential in Banach spaces?

(iii) Verify the following equality in terms of regular subgradients

∂̂(minϕi)(x̄) =
⋂

i∈Imin(x̄)

∂̂ϕi (x̄)

for any l.s.c. functions ϕi on Banach spaces. Hint: Compare [329, Proposition 2.5].
(iv) Give examples showing that neither the equalities in (4.15) and (4.16) nor counterparts of

the equality in (iii) hold for basic and singular subgradients of l.s.c. functions defined on finite-
dimensional spaces.
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(v) Obtain precise equalities for calculating regular and basic subdifferentials for minima of two
convex polyhedral functions in finite dimensions. Hint: Compare this with the results and proofs
in [329, Theorems 3.1–3.3].

Exercise 4.32 (Subgradients of Maximum Functions on Asplund Spaces). Derive all the state-
ments of Theorem 4.10 for functions defined on Asplund spaces and compare them with [522,
Theorem 3.46].

Exercise 4.33 (Symmetric Subdifferential Mean Value Theorem in Asplund Spaces). Show
that Theorem 4.11 holds in Asplund spaces provided that both ϕ and −ϕ are SNEC at every x ∈
(a, b). Are any changes needed in the formulation of Corollary 4.12 in the case of functions on
Asplund spaces? Hint: Proceed as in the proofs of the finite-dimensional versions with the usage
of the chain rule from Exercise 4.28(i). Compare this with [522, Theorem 3.47 and Corollary 3.48].

Exercise 4.34 (Approximate Mean Value Theorem and Some of Its Applications in the
Framework of Asplund Spaces).

(i) Show that AMVT and its consequences from Section 4.4, with the exception of the last
assertion of Theorem 4.15, hold without any changes in Asplund spaces.

(ii) Verify that all the assertions of Theorem 4.15 are equivalent to the validity of ∂∞ϕ(x̄) = {0}
together with the SNEC property of ϕ at x̄.

Hint: Proceed similarly to the proofs given in finite dimensions with employing the corre-
sponding calculus results in Asplund spaces from the exercises above; compare with [522, Subsec-
tion 3.2.2].

Exercise 4.35 (Approximate Mean Value Theorem via Basic Subgradients).
(i) Show that AMVT and its consequences in Section 4.4 hold with replacing regular subgradi-

ents by basic subgradients.
(ii) Are the latter results in terms of basic subgradients are equivalent to those given via regular

subgradients in finite dimensions and in Asplund spaces?

Exercise 4.36 (Relationships Between Basic Normals and Subgradients and Their Clarke
Counterparts in Asplund Spaces). Show that the following assertions hold in any Asplund space
X:

(i) Let ϕ : X → R be locally Lipschitzian around x̄. Then

∂ϕ(x̄) = cl ∗co ∂ϕ(x̄),

where generalized gradient ∂ϕ(x̄) of a locally Lipschitz function is defined by (1.78) and where
the basic subdifferential ∂ϕ(x̄) is represented by (1.69) in Asplund spaces.

(ii) Let x̄ ∈ � ⊂ X, where � is locally closed around x̄ ∈ � as in our standing standing
assumption. Then we have

N(x̄;�) = cl ∗coN(x̄;�),
where the Clarke normal cone N(x̄;�) is taken from (1.80).

(iii) Let ϕ : X → R be l.s.c. around x̄ as in our standing assumption. Then

∂ϕ(x̄) = cl ∗co
[
∂ϕ(x̄)+ ∂∞ϕ(x̄)

]
,

where ∂ϕ(x̄) is defined by (1.81) and where ∂∞ϕ(x̄) is taken from (1.71).
Hint: First justify (i) by applying AMVT to the limiting description (1.77) of the generalized di-

rectional derivative ϕ◦(x̄;h) in the generalized gradient constriction (1.78), and then proceed with
(ii) and (iii) by using the definitions therein; compare this with the proof of [522, Theorem 3.57].



188 4 First-Order Subdifferential Calculus

4.6 Commentaries to Chapter 4

Sections 4.1–4.3. Marginal/optimal value functions constitute one of the most fundamental objects
of variational analysis. They have never been seriously investigated in frameworks of classical
analysis due to their intrinsic nonsmoothness, which is always the case unless quite restrictive and
unnatural assumptions are imposed. This was actually what L. C. Young meant by observing in
the 1930s that, roughly speaking, the limitations of many results of the calculus of variations came
from the absence of an adequate nonsmooth analysis; see [753]. It would not be an exaggeration
to say that marginal functions manifest the essence of modern techniques in variational analysis
involving perturbation and approximation procedures with the subsequent passing to the limit.
Subdifferentiation of marginal functions evaluates rates of change under parameter perturbations,
which is crucial for sensitivity analysis while in fact leads us to a much larger scope of applica-
tions as, in particular, shown above. Besides sensitivity issues, subdifferential analysis of marginal
functions has been recognized as an important machinery for the study of viscosity and minimax
solutions of Hamilton-Jacobi equations, deterministic and stochastic dynamic programming, feed-
back control design, differential game theory, deterministic and stochastic optimal control, bilevel
programming, economic growth modeling, etc.; see, e.g., [67, 93, 100, 117, 165, 167, 195, 198,
199, 215, 268, 271, 416, 425, 522, 540, 629, 698, 699, 712, 713, 729, 748] with more discussions
and references therein.

The principal result of Sections 4.1–4.3 is Theorem 4.1 on the subdifferential estimates for
marginal functions (4.1). It was obtained in full generality of finite-dimensional spaces in the au-
thor’s paper [508], while the basic subdifferential estimate (4.4) with ϕ(x, y) = ϕ(y) was estab-
lished by the author earlier [505, 507]. In the unconstrained case of G(x) = R

m in (4.1), both
basic and singular subdifferential estimates were given by Rockafellar [675]; cf. also [672]. The
full Asplund space extension of Theorem 4.1 can be found in the paper by the author and Shao
[580], while some previous results were derived by Thibault [706] in Fréchet smooth spaces; see
also [14, 117, 532, 546, 547] for more recent developments and applications.

When the mapping G in (4.1) is single-valued, the subdifferential formulas of Theorems 4.1
and 4.5 evaluate basic and singular subgradients of generalized compositions. Moreover, the singu-
lar subdifferential estimate (4.5) in the set-valued case ofG allows us to obtain verifiable conditions
ensuring the local Lipschitz continuity of marginal functions due to its singular subdifferential char-
acterization of Theorem 1.22; see more discussions in Section 1.5. The latter direction has been
largely explored, e.g., in [472, 508, 512, 513, 522, 532, 600, 603, 672, 675, 678, 729].

The subdifferential chain rules, where ϕ(x, y) = ϕ(y) in the composition, and related results
presented in Sections 4.1–4.3 under the general assumptions imposed therein are mainly based on
the author’s developments from [505, 507]. Their Lipschitzian counterparts were derived by Kruger
[428, 430] in Fréchet smooth spaces; see also Ioffe [365] for parallel Lipschitzian results concern-
ing certain versions of the “approximate” subdifferentials in Banach spaces. An upper estimate of
∂(ϕ ◦ g)(x̄) for non-Lipschitzian functions was obtained in [368] under a tangential qualification
condition essentially more restrictive in comparison with that in [505]. Asplund space versions
of the subdifferential calculus results given in these sections were established by the author and
Shao in [580] and then further elaborated in [522, 588]. Let us mention more recent results on
calculating the basic subdifferential of the minimum and maximum functions (including equality
therein) obtained in [329, 680] with rather surprising applications in [329] to deriving necessary
and sufficient conditions for DC (difference of convex) optimization problems. We also refer the
reader to [114, 135, 167, 369, 375, 376, 398, 399, 610, 637, 678, 685, 729] for other calculus
results involving limiting and “approximate” subgradients.

Note that putting ϕ(y) = δ(y;�) in the obtained chain rule formulas for either ∂(ϕ ◦ g) or
∂∞(ϕ ◦ g) allows us to evaluate the normal cone to the inverse image N

(
x̄; g−1(�)

)
of the set

� under the mapping g, which in fact was derived in Corollary 3.13 even for set-valued map-
pings G as a consequence of the chain rule for coderivatives. The first results of the inclusion
type for representing the normal cone to direct images G(�) of sets under smooth single-valued
mappings between finite-dimensional spaces were obtained by Rockafellar [675]; see also [678,
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Theorem 6.43]. They were significantly extended, for both single-valued and set-valued mappings
G, in the joint paper by the author with Nam and Wang [545] in Asplund and general Banach
spaces, being also new in finite dimensions. An important role in this derivation (different from
[675, 678]) was played by the notion of restrictive metric regularity introduced and investigated by
the author and Wang [591]. Some of these results in Asplund spaces have been recently reproduced
by Penot [637].

Section 4.4. The first mean value theorem for nonsmooth Lipschitzian functions was obtained by
Lebourg [449] in terms of Clarke’s generalized gradient. The nonconvex subdifferential versions
as in Theorem 4.11 and Corollary 4.12 go back to Kruger and Mordukhovich (see [428, 431,
505, 507]) and are based on the corresponding subdifferential chain rules for Lipschitzian and
non-Lipschitzian functions. The Asplund space version of Theorem 4.11 from [505] was given in
[580]; see also [522, Theorem 3.47]. Note that this result requires two-sided generalized differential
constructions ∂0ϕ and ∂∞,0ϕ in both mean value inclusion (4.19) and the supporting qualification
condition of the theorem. Nevertheless, it provides an essential improvement of Lebourg’s mean
value theorem, since the symmetric subdifferential ∂0ϕ may be much smaller than the generalized
gradient even for simple nonsmooth Lipschitzian functions as those considered in Example 1.31.

Approximate mean value theorems (AMVT) of the type presented in Theorem 4.13 are new
in analysis being significantly different from the conventional Lagrangian framework. The major
difference is that the results of the new type apply to the general class of l.s.c. extended-real-
valued functions providing mean value inequalities instead of equalities or inclusions as in (4.19).
The first result of this type was obtained in variational analysis by Zagrodny [756] in terms of
Clarke’s subgradients of l.s.c. functions defined on Banach spaces. Then Thibault observed [707]
that Zagrodny’s approach led us in fact to appropriate versions of AMVT for a broad class of
subdifferentials (called “presubdifferentials” in [710]) satisfying natural requirements in suitable
Banach spaces. The AMVT version in terms of regular and limiting subgradients can also be found
in Loewen [471, 472] for l.s.c. functions on Fréchet smooth spaces, while the mean value inequal-
ity (4.25) for Lipschitzian functions was obtained earlier by Borwein and Preiss [108] in the same
framework. The full Asplund space version of Theorem 4.13 and Corollary 4.14 was given by
the author and Shao [580] (see also [522]) with the variational proof presented above and being
different in some essential points from those given in [108, 472, 756]. More recently [714] Trang
has shown that the Asplund property of the space in question is also necessary for the validity of
AMVT in the form of [580]. Mean value inequalities of the so-called multidirectional type were
initiated by Clarke and Ledyaev [166] and further developed in [39, 114, 167, 637] and other
publications.

The regular subdifferential characterizations (a) and (b) of local Lipschitz continuity in Theo-
rem 4.15 were given by Loewen [472] in Fréchet smooth spaces and then by the author and Shao
[580] in Asplund spaces. The limiting subdifferential characterization of Theorem 4.15(c) in finite
dimensions was also obtained by another way in Theorem 1.22 of Chapter 1 and was discussed in
Section 1.5. Its Asplund space version (with the additional SNEC property of ϕ in the last assertion
of Theorem 4.15) was given in [522, Theorem 3.52].

The results of Theorems 4.17 and 4.18 are also taken from Loewen [472] (with simplified
proofs), where the conditions of Theorem 4.17 were proved to characterize strict Hadamard dif-
ferentiability of functions defined on Fréchet smooth spaces; the latter notion reduces to the usual
(Fréchet) strict differentiability in finite dimensions. Asplund space versions of both Theorems 4.17
and 4.18 were given in [580]; see [522] for more details. A proximal subdifferential counterpart of
Theorem 4.18 was derived in [168] for l.s.c. functions on Hilbert spaces.

Monotonicity of set-valued mappings has been widely recognized as one of the most important

concepts in variational analysis and its applications. We refer the reader to the monograph by Rock-

afellar and Wets [678, Chapter 12] for a variety of results on monotonicity and detailed comments

on the history and genesis of major ideas; see also [37, 70, 112, 116, 126, 130, 185, 323, 486,

638, 656, 689, 690] for some additional material and further applications. A fundamental result

of convex analysis and monotone operator theory, which goes back to Minty, Moreau, and finally
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Rockafellar (see [678] for more details), is the maximal monotonicity of subdifferential mappings

∂ϕ generated by l.s.c. convex functions ϕ : X → R. Theorem 4.19, which is mainly based on the

paper by Correa, Jofré, and Thibault [181] (see also the references therein for the previous results

in this direction), shows that the convexity of ϕ is in fact necessary for the monotonicity (even

not the maximal one) of ∂ϕ. Its Asplund space version was presented in [522, Theorem 3.56].

Furthermore, Daniilidis and Georgiev [189] established the equivalence between the approximate

convexity of a locally Lipschitzian function on an arbitrary Banach space and the submonotonicity

of its (Clarke) generalized gradient at the point in question.

Section 4.5. As in the case of the previous chapters, the material included in this exercise section

presents some additional results and infinite-dimensional extensions of the basic facts and proofs

given in Sections 4.1–4.3. The reader can find more information in the references included in the

hints to the corresponding exercises and also in the above commentaries on the main theorems.



Chapter 5
Coderivatives of Maximal Monotone
Operators

In this chapter we employ the tools of variational analysis and generalized differen-
tiation developed above to study global and local monotonicity of set-valued oper-
ators. Our main attention is paid to the properties of global maximal monotonicity
and strong local maximal monotonicity, which both have been well recognized as
fundamental notions in many areas of nonlinear analysis, optimization, variational
inequalities, and numerous applications. The main results below provide complete
coderivative characterizations of the monotonicity concepts under consideration
for the general class of set-valued operators. Although we present these charac-
terizations in finite dimensions, they hold with minimal adjustments (if any) in the
framework of Hilbert spaces. Among other things, the mean value inequality from
Corollary 4.14(i) plays a crucial role in the proofs of the obtained coderivative char-
acterizations.

5.1 Coderivative Criteria for Global Monotonicity

We begin with the study of global monotonicity while recalling that the definitions
of (globally) monotone and maximal monotone operators T : Rn →→ R

n have been
already presented in (4.27) of Section 4.4, where we characterized monotonicity of
subdifferential operators.

5.1.1 Maximal Monotonicity via Regular Coderivative

The following hypomonotonicity properties of set-valued operators play a significant
role in the subsequent results of this chapter.
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Definition 5.1 (Hypomonotonicity). Let T : Rn →→ R
n be a set-valued mapping,

and let I : Rn → R
n be the identity operator on R

n. We say that:
(i) T is GLOBALLY HYPOMONOTONE on R

n if there is r > 0 such that the
mapping T + rI is monotone on R

n. This means that the inequality

〈v1 − v2, u1 − u2〉 ≥ −r‖u1 − u2‖2 (5.1)

holds for all pairs (u1, v1), (u2, v2) ∈ gph T .
(ii) T is SEMILOCALLY HYPOMONOTONE around x̄ ∈ dom T if there exist a

neighborhood U of x̄ and r > 0 such that (5.1) holds for all (u1, v1), (u2, v2) ∈
gph T ∩ (U × R

n). We say that T is semilocally hypomonotone ON � ⊂ R
n if it is

semilocally hypomonotone around each x̄ ∈ � ∩ dom T .
(iii) T is LOCALLY HYPOMONOTONE around (x̄, v̄) ∈ gph T if there exist a

neighborhood U × V of (x̄, v̄) and a number r > 0 such that (5.1) holds for all
pairs (u1, v1), (u2, v2) ∈ gph T ∩ (U × V ).

Note that the classes of hypomonotone operators of all the three types defined
above are fairly broad while containing, in particular, locally monotone operators,
Lipschitz continuous single-valued mappings, and also subgradient mappings gen-
erated by continuously prox-regular functions that are especially important in the
framework of second-order variational analysis; see Section 3.5 for more discus-
sions and references.

The following theorem characterizes the global maximal monotonicity of set-
valued operators via their global hypomonotonicity and the positive-semidefiniteness
condition for their regular coderivatives (1.16).

Theorem 5.2 (Regular Coderivative and Global Hypomonotonicity Criterion
for Maximal Monotonicity). Let T : R

n →→ R
n be a set-valued mapping with

closed graph. The following assertions are equivalent:
(i) T is globally maximal monotone on R

n.
(ii) T is globally hypomonotone on R

n and we have

〈z,w〉 ≥ 0 whenever z ∈ D̂∗T (u, v)(w) and (u, v) ∈ gph T . (5.2)

Proof. To verify (i)⇒(ii), it suffices to show that the maximal monotonicity of T
implies the positive-semidefiniteness condition (5.2) by taking into account that the
hypomonotonicity of T in (ii) obviously follows from its monotonicity. We proceed
by recalling the classical Minty theorem (see, e.g., [70, Theorem 21.1]), which tells
us that the maximal monotonicity of T ensures that for any λ > 0 the resolventRλ =
(I + λT )−1 is single-valued and nonexpansive (i.e., globally Lipschitz continuous
on its domain with constant � = 1) and that domRλ = R

n. Picking an arbitrary pair
(w, z) ∈ gph D̂∗T (u, v), we deduce from the sum rule for the regular coderivative
in Exercise 3.59(i) that

−λ−1w ∈ D̂∗Rλ(u+ λv, u)(−z− λ−1w).



5.1 Coderivative Criteria for Global Monotonicity 193

Since Rλ is nonexpansive, it follows from the neighborhood version of the coderiva-
tive criterion for the Lipschitz-like property in Theorem 3.3(iii) (see Exercise 3.41
and [522, Theorem 4.7] in Asplund spaces) that ‖−λ−1w‖ ≤ ‖−z−λ−1w‖, which
clearly implies that

λ−2‖w‖2 ≤ ‖ − z− λ−1w‖2 = ‖z‖2 + 2λ−1〈z,w〉 + λ−2‖w‖2

and yields in turn that 0 ≤ λ‖z‖2 + 2〈z,w〉 for all λ > 0. Letting λ ↓ 0 tells us that
〈z,w〉 ≥ 0 and thus justifies (5.2).

To verify the converse implication (ii)⇒(i), suppose that T is hypomonotone and
that condition (5.2) is satisfied. Then there is some number r > 0 such that T +rI is
monotone. Take any s > r and define F : Rn →→ R

n by gphF := gph (T + sI )−1.
For any (vi, ui) ∈ gphF , i = 1, 2, we have (ui, vi − sui) ∈ gph T and thus deduce
from (5.1) that

〈v1 − su1 − v2 + su2, u1 − u2〉 ≥ −r‖u1 − u2‖2.

The latter implies in turn that the inequalities

‖v1 − v2‖ · ‖u1 − u2‖ ≥ 〈v1 − v2, u1 − u2〉 ≥ (s − r)‖u1 − u2‖2

hold, which allow us to arrive at the estimate

‖u1 − u2‖ ≤ 1

s − r ‖v1 − v2‖ (5.3)

verifying that F is single-valued and Lipschitz continuous on its domain with mod-
ulus (s − r)−1. Fix now any z ∈ R

n and define ϕz : Rn → R by

ϕz(v) :=
{ 〈z, F (v)〉 if v ∈ domF,

∞ otherwise.
(5.4)

Since gph T is closed, it is easy to check that gphF is also closed in R
n ×R

n. Next
we show that ϕz is l.s.c. on R

n. Arguing by contradiction, suppose that there exist
ε > 0 and a sequence vk converging to some v ∈ R

n such that ϕz(vk) < ϕz(v)− ε.
If ϕz(v) = ∞, then v /∈ domF while vk ∈ domF . It follows from (5.3) that
‖F(vk) − F(vj )‖ ≤ (s − r)−1‖vk − vj‖, and so {F(vk)} is a Cauchy sequence
converging to some u ∈ R

n. Hence the sequence (vk, F (vk)) ∈ gphF converges
to (v, u) ∈ gphF due to the closedness of gphF . This gives us F(v) = u and
contradicts the condition v /∈ domF . In the remaining case of ϕz(v) < ∞, we get
from (5.3) and (5.4) the estimates

|ϕz(vk)− ϕz(v)| ≤ ‖z‖ · ‖F(vk)− F(v)‖ ≤ ‖z‖ · 1

s − r ‖vk − v‖ → 0,

which also contradict the assumption ϕz(vk) < ϕz(v) − ε. This justifies the lower
semicontinuity of ϕz on the space R

n for any fixed z ∈ R
n.
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To prove now that T is monotone, pick two pairs (ui, vi) ∈ gph T , and get

(yi, ui) ∈ gphF with yi := vi + sui, i = 1, 2.

Applying the mean value inequality (4.25) to ϕz tells us that

|〈z, u1 − u2〉| = |ϕz(y1)− ϕz(y2)|
≤ ‖y1 − y2‖ sup

{‖w‖ ∣∣ w ∈ ∂̂ϕz(y), y ∈ [y1, y2] + εB} (5.5)

for any fixed ε > 0. Since ∂̂ϕz(y) = ∅ if y /∈ domϕz, it suffices to consider the case
where y ∈ domϕz ∩ ([y1, y2] + εB) = domF ∩ ([y1, y2] + εB) in (5.5). Take any
y from the latter set, and observe that

w ∈ D̂∗F(y)(z) whenever w ∈ ∂̂ϕz(y). (5.6)

Indeed, it follows from the definition of w ∈ ∂̂ϕz(y) that

lim inf
v→y

ϕz(v)− ϕz(y)− 〈w, v − y〉
‖v − y‖ ≥ 0,

which can be equivalently written by the construction of ϕz in (5.4) as

lim inf
v

domF→ y

〈z, F (v)〉 − 〈z, F (y)〉 − 〈w, v − y〉
‖v − y‖ ≥ 0.

The latter readily implies that

lim inf
(v,u)

gphF→ (y,F (y))

〈z, u− F(y)〉 − 〈w, v − y〉
‖v − y‖ + ‖u− F(y)‖ ≥ 0.

Hence we get from the definitions in (1.33), (1.5), and (1.16) that

(w,−z) ∈ N̂((y, F (y)); gphF
) ⇐⇒ w ∈ D̂∗F(y)(z) = D̂∗(T + sI )−1(y)(z),

and therefore −z ∈ D̂∗(T + sI )(F (y), y)(−w). It easily follows from the elemen-
tary sum rule for the regular coderivative in Exercise 3.59(i) that

− z+ sw ∈ D̂∗T
(
F(y), y − sF (y))(−w). (5.7)

Combining this with (5.2) tells us that 〈−z+ sw,−w〉 ≥ 0, which yields

‖z‖ · ‖w‖ ≥ 〈z,w〉 ≥ s‖w‖2 (5.8)

and implies furthermore together with the estimate (5.5) that

|〈z, u1 − u2〉| ≤ s−1‖z‖ · ‖y1 − y2‖.
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Since this inequality holds for all z ∈ R
n, we get

‖u1 − u2‖ ≤ s−1‖y1 − y2‖ = s−1‖v1 + su1 − v2 − su2‖
and then deduce by the Euclidean norm property that

s2‖u1 − u2‖2 ≤ ‖(v1 − v2)+ s(u1 − u2)‖2

= ‖v1 − v2‖2 + 2s〈v1 − v2, u1 − u2〉 + s2‖u1 − u2‖2.

Therefore we arrive at the inequality

0 ≤ 1

2s
‖v1 − v2‖2 + 〈v1 − v2, u1 − u2〉 for any s > r.

Passing there to the limit as s → ∞ shows that

0 ≤ 〈v1 − v2, u1 − u2〉 for all (u1, v1), (u2, v2) ∈ gph T

and thus justifies the monotonicity of the operator T .
It remains to prove that T is maximal monotone. Since T is proper, there exists a

pair (u0, v0) ∈ gph T such that

u0 = (T + sI )−1(y0) with y0 := v0 + su0.

Applying again the mean value inequality (4.25) to the function ϕz defined in (5.4),
we verify that the estimate

|ϕz(y)− ϕz(y0)| ≤ ‖y − y0‖ sup
{‖w‖ ∣∣ w ∈ ∂̂ϕz(x), x ∈ [y, y0] + εB}

is valid for any y ∈ R
n. It follows similarly to the proof of (5.8) that ‖w‖ ≤ s−1‖z‖

for all w ∈ ∂̂ϕz(x) with x ∈ domF ∩ ([y, y0] + εB). This gives us due to the above
mean value inequality that

|ϕz(y)− ϕz(y0)| ≤ s−1‖z‖ · ‖y − y0‖.
Hence ϕz(y) < ∞ and so F(y) 
= ∅ for all y ∈ R

n, which means that dom (T +
sI )−1 = R

n. Employing again the aforementioned Minty theorem and taking into
account the monotonicity of T justified above, we conclude that T is maximal
monotone and thus complete the proof of the theorem. �

5.1.2 Maximal Monotone Operators with Convex Domains

Our next goal is to obtain another version of the coderivative characterization in
Theorem 5.2 with replacing the global hypomonotonicity of T in assertion (ii) by a
semilocal hypomonotonicity. Establishing such a result requires an additional con-
vexity assumption on the domain of T , which is shown below to be essential by
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providing a counterexample. To proceed in this direction, we first present the fol-
lowing lemma, where the semilocal monotonicity of T : Rn →→ R

n is defined as in
Definition 5.1(ii) with r = 0 in (5.1).

Lemma 5.3 (Semilocal Monotonicity of Set-Valued Mappings with Convex Do-
mains). Let T : Rn →→ R

n be semilocally monotone on R
n, and let its domain dom T

be convex. Then T is globally monotone on R
n.

Proof. Pick any (u1, v1), (u2, v2) ∈ gph T , and get [u1, u2] ⊂ dom T by the
assumed convexity of dom T . Since T is semilocally monotone, for each vector
x ∈ [u1, u2] there is a number γx > 0 such that

〈y1 − y2, x1 − x2〉 ≥ 0 if (x1, y1), (x2, y2) ∈ gph T ∩ (
intBγx (x)× R

n
)
. (5.9)

By compactness of [u1, u2], find xi ∈ [u1, u2] with i = 1, . . . , m satisfying

[u1, u2] ⊂
m⋃

i=1

int
(
xi + γxiB

)
.

Thus there exist numbers 0 = t0 < t1 < . . . < tk = 1 such that

[̂uj , ûj+1] ⊂ int
(
xi + γxiB

)
with some i := ij ∈ {

1, . . . , m
}

for each j ∈ {0, . . . , k − 1}, where ûj := u1 + tj (u2 − u1). Since we have ûj ∈
[u1, u2] ⊂ dom T for each j ∈ {0, . . . , k}, there are vectors v̂j ∈ T (̂uj ) satisfying
v̂0 = v1 and v̂k = v2. It follows from (5.9) that

(tj+1 − tj )〈̂vj+1 − v̂j , u2 − u1〉 = 〈̂vj+1 − v̂j , ûj+1 − ûj 〉 ≥ 0,

which implies that 〈̂vj+1 − v̂j , u2 − u1〉 ≥ 0 whenever j ∈ {0, . . . , k − 1}. Hence

〈v2 − v1, u2 − u1〉 =
k−1∑

j=0

〈
v̂j+1 − v̂j , u2 − u1

〉 ≥ 0,

which justifies the global monotonicity of the operator T . �
Now we are ready to obtain a semilocal counterpart of the coderivative charac-

terization in Theorem 5.2 under the convexity assumption on dom T . Example 5.5
below demonstrates that the latter assumption cannot be dropped. Since the proof of
the following theorem is similar in some places to that of Theorem 5.2, we omit the
corresponding details.

Theorem 5.4 (Regular Coderivative and Semilocal Hypomonotonicity Crite-
rion for Maximal Monotonicity). Let T : Rn →→ R

n be a set-valued mapping of
closed graph and convex domain. Then the following are equivalent:

(i) T is globally maximal monotone on R
n.

(ii) T is semilocally hypomonotone on R
n, and the positive-semidefiniteness reg-

ular coderivative condition (5.2) is satisfied.
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Proof. Implication (i)⇒(ii) follows from Theorem 5.2. To verify the converse impli-
cation, suppose that condition (5.2) holds and that T is semilocally hypomonotone.
This allows us to find, for each x̄ ∈ dom T , numbers γ, r > 0 such that (5.1) is
fulfilled whenever (u1, v1), (u2, v2) ∈ gph T ∩ (Bγ (x̄)×R

n). Take now any s > r ,
and define the mapping F : Rn →→ R

n by

gphF := gph (T + sI )−1 ∩ (
R
n × (x̄ + γB)).

Picking arbitrary pairs (vi, ui) ∈ gphF , i = 1, 2, we have (ui, vi − sui) ∈ gph T ∩
(Bγ (x̄)× R

n). It follows from the semilocal hypomonotonicity that

〈v1 − su1 − v2 + su2, u1 − u2〉 ≥ −r‖u1 − u2‖2.

Similarly to (5.5) we deduce from the latter that

‖u1 − u2‖ ≤ 1

s − r ‖v1 − v2‖ for all (v1, u1), (v2, u2) ∈ gphF. (5.10)

This implies that F is single-valued and Lipschitz continuous on domF . For any
fixed vector z ∈ R

n define the function ϕz : Rn → R as in (5.4) and prove similarly
to Theorem 5.2 that ϕz is l.s.c. on R

n.
Pick further arbitrary pairs (u1, v1), (u2, v2) ∈ gph T ∩ (intBγ (x̄) × R

n) and
fix v̄ ∈ T (x̄). Then F(yi) = ui ∈ Bγ (x̄) with yi := vi + sui . Applying the
mean value inequality (4.25) for any ε ∈ (0,√s) gives us estimate (5.5). Similarly
to (5.6) we get ∂̂ϕz(y) ⊂ D̂∗F(y)(z) if y ∈ domF∩([y1, y2]+εB) and then for any
y ∈ domF∩([y1, y2]+εB) find y0 ∈ εB and t ∈ [0, 1] with y = ty1+(1−t)y2+y0.
Since F(v̄ + sx̄) = x̄, it follows from (5.10) that

‖F(y)− x̄‖ = ‖F(ty1 + (1 − t)y2 + y0)− F(v̄ + sx̄)‖
≤ 1

s − r ‖ty1 + (1 − t)y2 + y0 − v̄ − sx̄‖
= 1

s − r ‖t (v1 + su1)+ (1 − t)(v2 + su2)+ y0 − v̄ − sx̄‖
= 1

s − r ‖t (v1 − v̄)+ st (u1 − x̄)+ (1 − t)(v2 − v̄)+ s(1 − t)(u2 − x̄)+ y0‖
≤ 1

s − r
[
t‖v1 − v̄‖+(1 − t)‖v2 − v̄‖+st‖u1 − x̄‖+s(1 − t)‖u2 − x̄‖+‖y0‖

]

≤ 1

s − r
[

max
{‖v1 − v̄‖, ‖v2 − v̄‖}+ ε

]
+ s

s − r max
{‖u1 − x̄‖, ‖u2 − x̄‖}

≤ 1

s − r
[

max
{‖v1 − v̄‖, ‖v2 − v̄‖}+ √

s
]

+ s

s − r max
{‖u1 − x̄‖, ‖u2 − x̄‖}.

Taking now into account that the choice of (u1, v1), (u2, v2), (x̄, v̄) ∈ gph T ∩
(intBγ (x̄) × R

n) was independent of the parameter s > r and that max{‖u1 −
x̄‖, ‖u2 − x̄‖} < γ , we can find a large number M > 0 for which

1

s − r max
{‖v1 − v̄‖, ‖v2 − v̄‖ + √

s
}+ s

s − r max
{‖u1 − x̄‖, ‖u2 − x̄‖} < γ
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whenever s > M . This together with the above estimate of ‖F(y)− x̄‖ ensures the
inclusion F(y) ∈ intBγ (x̄) and thus the equalities

N̂
(
(y, F (y)); gphF

) = N̂
(
(y, F (y)); gph (T + sI )−1 ∩ (Rn × Bγ (x̄)

)

= N̂
(
(y, F (y)); gph (T + sI )−1

)
,

which clearly imply in turn the relationship

D̂∗F(y)(z) = D̂∗(T + sI )−1(y, F (y)
)
(z).

Arguing similarly to (5.7), for anyw ∈ ∂̂ϕz(y) ⊂ D̂∗F(y)(z), we get from the latter
equality that −z + sw ∈ D̂∗T (F (y), y − sF (y))(−w). It follows from (5.2) that
〈−z+ sw,−w〉 ≥ 0, which yields

‖z‖ · ‖w‖ ≥ 〈z,w〉 ≥ s‖w‖2, i.e., ‖z‖ ≥ s‖w‖.
This together with (5.5) tells us that

〈z, u1 − u2〉 ≤ 1

s
‖y1 − y2‖ · ‖z‖.

Since the obtained estimate holds for any z ∈ R
n, we have

‖u1−u2‖2 ≤ 1

s2 ‖y1−y2‖ = 1

s2 ‖v1+su1−v2−su2‖2 = 1

s2 ‖(v1−v2)+s(u1−u2)‖2

and hence arrive at the inequality

0 ≤ 1

s
‖v1 − v2‖2 + 2〈v1 − v2, u1 − u2〉 when s > M.

Passing there to the limit as s → ∞ shows that

0 ≤ 〈v1 − v2, u1 − u2〉 for all (u1, v1), (u2, v2) ∈ gph T ∩ (
intBγ (x̄)× R

n)
)
,

which verifies the semilocal monotonicity of T at any x̄ ∈ dom T . Since the domain
of T is assumed to be convex, Lemma 5.3 tells us that T is globally monotone. Now
we are in a position to apply Theorem 5.2 and conclude therefore that T is a globally
maximal monotone operator on R

n. �
It is well known in monotone operator theory that the maximal monotonicity of

T always yields the convexity of the closure of the domain cl(dom T ); see, e.g., [70,
Corollary 21.12]. This naturally gives a raise to the question whether Theorem 5.4
is true when the condition on the convexity of dom T is replaced by the convexity of
cl(dom T ). The following simple example shows that it is not true, and consequently
that the convexity assumption on dom T in Theorem 5.4 cannot be dropped.
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Example 5.5 (Semilocal Monotonicity Doesn’t Yield the Convexity of the Do-
main). Define the mapping T : R →→ R by

T (x) :=
{−x−1 if x ∈ R\{0},

∅ if x = 0.

Observe that the operator T is semilocally monotone on R, its graph gph T is
closed, its domain dom T = R\{0} is nonconvex, while the closure of the domain
cl(dom T ) = R is convex (Fig. 5.1). Moreover, it is obvious that all the conditions
in (ii) of Theorem 5.4 hold, but T is not globally monotone on R.

5.1.3 Maximal Monotonicity via Limiting Coderivative

The next theorem provides other coderivative characterizations of global maxi-
mal monotonicity, where the regular coderivative condition (5.2) is replaced by the
positive-semidefiniteness imposed on our basic/limiting coderivative (1.15). These
characterizations are clearly equivalent to those presented in Theorems 5.2 and 5.4,
but it is more convenient here to derive them by passing to the limit in (5.2). Note
that the limiting coderivative characterizations have a strong advantage in compar-
ison with (5.2) due to comprehensive calculus rules for (1.15) presented in Sec-
tions 3.2 and 3.4, which are not available for its regular (precoderivative) counter-
part (1.16).

gphT

domT

Fig. 5.1 Semilocal monotonicity but not global monotonicity.

Theorem 5.6 (Limiting Coderivative Characterizations of Global Maximal
Monotonicity). Let T : Rn →→ R

n be a set-valued mapping with closed graph. The
following assertions are equivalent:

(i) T is globally maximal monotone on R
n.

(ii) T is globally hypomonotone on R
n, and for any (u, v) ∈ gph T we have
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〈z,w〉 ≥ 0 whenever z ∈ D∗T (u, v)(w), w ∈ R
n. (5.11)

If in addition the operator domain dom T is convex, then the global hypomonotonic-
ity in assertion (ii) can be equivalently replaced by the semilocal one.

Proof. Implication (ii)⇒(i) is straightforward from Theorem 5.2 due to

D̂∗T (u, v)(w) ⊂ D∗T (u, v)(w) for all (u, v) ∈ gph T and w ∈ R
n.

Thus (5.2) follows from (5.11), and T is maximal monotone by Theorem 5.2.
To justify the converse implication (i)⇒(ii), suppose that (i) holds, and

so (5.2) is valid due to Theorem 5.2. Picking any vectors (u, v) ∈ gph T and
z ∈ D∗T (u, v)(w) and using definition (1.15) of the basic coderivative, we find

sequences (uk, vk)
gph T→ (u, v) with zk → z and wk → w satisfying the inclusion

zk ∈ D̂∗T (uk, vk)(wk) for all k ∈ N. It follows from (5.2) that 〈zk, wk〉 ≥ 0. Letting
k → ∞ implies that 〈z,w〉 ≥ 0, which verifies (5.11).

Assuming now the convexity of the domain dom T and employing Lemma 5.3
allow us to replace the global hypomonotonicity in (ii) by the semilocal hypomono-
tonicity while using Theorem 5.4 instead of Theorem 5.2. �
Remark 5.7 (Preservation of Maximal Monotonicity). Well-developed coderiva-
tive calculus presented in Sections 3.2 and 3.4 opens the gate to derive via (5.11) ver-
ifiable conditions ensuring the preservation of maximal monotonicity under various
operations performed over maximal monotone operators. The results in this direc-
tion involve qualification conditions for the validity of the corresponding coderiva-
tive calculus rules.

The following one-dimensional example shows that the hypomonotonicity condi-
tions in (ii) of Theorems 5.2, 5.4, and 5.6 are essential for the obtained coderivative
characterizations of maximal monotonicity.

Example 5.8 (Hypomonotonicity Conditions Are Essential). Given positive η,
define the set-valued mapping T : R →→ R with full domain by

T (x) := ηx + [0, 1] for all x ∈ R.

It is easy to calculate directly by the definitions that

D∗T (u, v)(w) = D̂∗T (u, v)(w) =

⎧
⎪⎪⎨

⎪⎪⎩

{0} if w = 0, v − ηu ∈ (0, 1),
{ηw} if w ≥ 0, v − ηu = 0,
{ηw} if w ≤ 0, v − ηu = 1,
∅ otherwise.

Thus both coderivative conditions (5.2) and (5.11) are satisfied. However, T is not
globally monotone on R (Fig. 5.2). The reason is that this mapping is not semilocally
(and hence not globally) hypomonotone.
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T (x)
gphT

N((u, ηu + 1); gphT )

N((u, ηu); gphT )

−w

−w
D∗T (u, ηu + 1)(w)

D∗T (u, ηu)(w)

(w ≤ 0)

(w ≥ 0)

D∗T (u, v)(0)
(0 < v − ηu < 1)

Fig. 5.2 Coderivative of T (x) = ηx + [0, 1] with η > 0.

Finally in this section, we derive from the obtained results complete coderivative
characterizations of a stronger version of global monotonicity for set-valued map-
pings. We say that T : Rn →→ R

n is strongly globally maximal monotone on R
n with

modulus κ > 0 if it is globally maximal monotone and the shifted mapping T − κI
is globally monotone on R

n, i.e.,

〈v1 − v2, u1 − u2〉 ≥ κ‖u1 − u2‖2 for all (u1, v1), (u2, v2) ∈ gph T .

Minty’s theorem ensures that T is strongly globally maximal monotone on R
n with

κ > 0 if and only if T − κI is globally maximal monotone on R
n.

Corollary 5.9 (Coderivative Characterizations of Strong Global Maximal
Monotonicity). Let T : Rn →→ R

n be a set-valued mapping with closed graph. The
following are equivalent:

(i) T is strongly globally maximal monotone on R
n with modulus κ > 0.

(ii) T is globally hypomonotone on R
n, and for any (u, v) ∈ gph T we have

〈z,w〉 ≥ κ‖w‖2 whenever z ∈ D̂∗T (u, v)(w), w ∈ R
n.

(iii) T is globally hypomonotone on R
n, and we have

〈z,w〉 ≥ κ‖w‖2 whenever z ∈ D∗T (u, v)(w), w ∈ R
n

for any (u, v) ∈ gph T . If in addition the operator domain dom T is convex, then
the global hypomonotonicity in assertions (ii) and (iii) can be equivalently replaced
by its semilocal counterpart.

Proof. Define S := T − κI , and immediately deduce from the coderivative sum
rules in Exercise 3.59(i,ii) the following equalities

D̂∗T (u, v)(w) = D̂∗S(u, v − κu)(w)+ κw,
D∗T (u, v)(w) = D∗S(u, v − κu)(w)+ κw

holding for all (u, v) ∈ gph T and w ∈ R
n. Thus the validity of (ii) (resp. (iii)) for

T is equivalent to the fulfillment of all the conditions in Theorem 5.2(ii) (resp. in
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Theorem 5.4(ii)) for the operator S; it is obvious for hypomonotonicity. Applying
now Theorem 5.2 and Theorem 5.4, respectively, we get that either assertion (ii) or
(iii) of this corollary is equivalent to the global maximal monotonicity of S. Since
the latter is equivalent to the global strong maximal monotonicity of T with modulus
κ , we complete the proof. �

5.2 Coderivative Criteria for Strong Local Monotonicity

In this section we study strong local monotonicity properties of set-valued opera-
tors and provide their complete coderivative characterizations of their maximality.
Similarly to the global monotonicity investigated in Section 5.1, the techniques de-
veloped here also use a variational approach and generalized differentiation while
being largely different from and more involved in comparison with global maximal
monotonicity. We essentially exploit now the strong local nature of the maximal
monotonicity under consideration.

5.2.1 Strong Local Monotonicity and Related Properties

The following local monotonicity properties of operators are studied below. Recall
that we have already used local monotonicity in Subsection 3.3.3.

Definition 5.10 (Locally Monotone and Strongly Monotone Operators). Let
T : Rn →→ R

n with (x̄, v̄) ∈ gph T . We say that:
(i) T is LOCALLY MONOTONE around (x̄, v̄) if there exists a neighborhoodU×V

of this point such that

〈v1 − v2, u1 − u2〉 ≥ 0 for all (u1, v1), (u2, v2) ∈ gph T ∩ (U × V ).
(ii) T is STRONGLY LOCALLY MONOTONE around (x̄, v̄) with modulus

κ > 0 if there exists a neighborhood U × V of (x̄, v̄) such that for any pair
(u1, v1), (u2, v2) ∈ gph T ∩ (U × V ) we have the estimate

〈v1 − v2, u1 − u2〉 ≥ κ‖u1 − u2‖2. (5.12)

(iii) T is STRONGLY LOCALLY MAXIMAL MONOTONE around (x̄, v̄) with mod-
ulus κ > 0 if there exists a neighborhood U × V of (x̄, v̄) such that (ii) holds and
that gph T ∩ (U × V ) = gph S ∩ (U × V ) for any globally monotone operator
S : Rn →→ R

n satisfying the inclusion gph T ∩ (U × V ) ⊂ gph S.

In what follows we present complete coderivative characterizations of the strong
local maximal monotonicity of set-valued operators while connecting this property,
via coderivatives, with local hypomonotonicity from Definition 5.1(iii). To proceed,
consider first the notions of single-valued localizations of set-valued mappings that
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are important for the study and applications of strong local monotonicity and related
properties.

Definition 5.11 (Single-Valued Localizations). Given F : R
n →→ R

m with
(x̄, ȳ) ∈ gphF , we say that F admits a SINGLE-VALUED LOCALIZATION around
(x̄, ȳ) if there is a neighborhood U × V ⊂ R

n × R
m of (x̄, ȳ) such that the

mapping F̂ : U → V defined via gph F̂ := gphF ∩ (U × V ) is single-valued on
U with dom F̂ = U . Furthermore, F admits a LIPSCHITZIAN SINGLE-VALUED

LOCALIZATION around (x̄, ȳ) if the mapping F̂ is Lipschitz continuous on U .

If the mapping F̂ in Definition 5.11 is generally set-valued, it is said to be just a
localization of F relatively to U × V .

Using the second part of Definition 5.11, we formulate now the following well-
posedness property related to our study in Section 3.1. Theorem 3.2(ii) tells us that
this property can be viewed as a Lipschitzian single-valued localization of metric
regularity for the mapping in question.

Definition 5.12 (Strong Metric Regularity). We say that F : R
n →→ R

m is
STRONGLY METRICALLY REGULAR around (x̄, ȳ) ∈ gphF with modulus � > 0 if
the inverse mapping F−1 admits a single-valued localization around (ȳ, x̄), which
is Lipschitz continuous around ȳ with modulus �.

The next result characterizes the strong local maximal monotonicity of T via
Lipschitzian single-valued localizations of the inverse T −1 that indeed distinguishes
strong local maximal monotonicity from merely strong local monotonicity. In addi-
tion to qualitative characterizations, the theorem below provides some quantitative
relationships between the corresponding moduli.

Theorem 5.13 (Strong Local Maximal Monotonicity via Lipschitzian Localiza-
tion). Given a set-valued operator T : Rn →→ R

n with (x̄, v̄) ∈ gph T and given
κ > 0, the following assertions are equivalent:

(i) T is strongly locally maximal monotone around (x̄, v̄) with modulus κ .
(ii) T is strongly locally monotone around (x̄, v̄) with modulus κ , and its inverse

T −1 admits a Lipschitzian single-valued localization around (v̄, x̄).
(iii) T −1 admits a single-valued localization ϑ relative to some neighborhood

V × U of (v̄, x̄) such that for all v1, v2 ∈ V we have
∥∥(v1 − v2)− 2κ

[
ϑ(v1)− ϑ(v2)

]∥∥ ≤ ‖v1 − v2‖, (5.13)

which implies that ϑ is locally Lipschitzian around (v̄, x̄) with modulus κ−1, and so
T is strongly metrically regular around (x̄, v̄) with the same modulus.

Proof. To verify (i)⇒(ii), take by (i) a neighborhoodU×V of (x̄, v̄) such that (5.12)
holds and we have gph T ∩ (U ×V ) = gph S ∩ (U ×V ) for any globally monotone
operator S : Rn × R

n with gph T ∩ (U × V ) ⊂ gph S. Define

Jκ(u, v) := (u, v − κu) on R
n × R

n, W := Jκ(U × V )
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and deduce from (5.12) that the operator F : Rn →→ R
n constructed by gphF :=

gph (T − κI) ∩W via the identity mapping I is globally monotone on R
n. Indeed,

whenever (ui, vi) ∈ gphF we get

(ui, vi + κui) ∈ gph T ∩ J−1
κ (W) = gph T ∩ (U × V ) for i = 1, 2.

It follows from the strong local monotonicity (5.12) of T that

〈v1 + κu1 − v2 − κu2, u1 − u2〉 ≥ κ‖u1 − u2‖2,

which yields 〈v1 − v2, u1 − u2〉 ≥ 0 and thus verifies the global monotonicity of
F . Consider now the (global) maximal monotone extension R of F (see, e.g., [70,
Theorem 20.21]) for which we have the inclusion

gph (F + κI) ∩ (U × V ) = gph T ∩ (U × V ) ⊂ gph (R + κI).
The local maximal monotonicity of T relative to the neighborhood U × V implies
that gph T ∩ (U × V ) = gph (R + κI) ∩ (U × V ), and therefore

gph T −1 ∩ (V × U) = gph (R + κI)−1 ∩ (V × U). (5.14)

The aforementioned Minty theorem tells us that dom (R+ κI)−1 = R
n and that the

operator (R + κI)−1 is single-valued and Lipschitz continuous on R
n. Combining

this with (5.14) ensures that the set

V1 := (R + κI)(U) ∩ V = [
(R + κI)−1]−1

(U) ∩ V

is a neighborhood of v̄ by noting from (5.14) that (v̄, x̄) ∈ gph (R + κI)−1 ∩ (V ×
U) and using the fact that V1 is the inverse image of the neighborhood U via the
continuous map (R + κI)−1. Furthermore, it follows from (5.14) that T −1(v) =
(R+κI)−1(v) for all v ∈ V1. Thus the localization S : V1 → U defined via gph S :=
gph T −1 ∩ (V1 × U) is single-valued and Lipschitz continuous on V1. This verifies
implication (i)⇒(ii).

To justify (ii)⇒(iii), find by (ii) a neighborhood U ×V of (x̄, v̄) on which (5.12)
holds and such that the localization ϑ of T −1 is single-valued and Lipschitz contin-
uous on V × U . Then it follows from (5.12) that

‖v1 − v2 − 2κ(u1 − u2)‖2 = ‖v1 − v2‖2 − 4κ
[〈v1 − v2, u1 − u2〉 − κ‖u1 − u2‖2

]

≤ ‖v1 − v2‖2 if (v1, u1), (v2, u2) ∈ gph ∩ (V × U),
which yields (5.13) and thus verifies the main statement in (iii). To show further
that (5.13) readily implies that ϑ is locally Lipschitz continuous around (v̄, x̄) with
modulus κ−1 (and hence T is strongly metrically regular around (x̄, v̄) with the
same modulus according to Definition 5.12), take ui := ϑ(vi), i = 1, 2, and deduce
from (5.13) that
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0 ≤ ‖v1 − v2‖2 − ‖v1 − v2 − 2κ(u1 − u2)‖2

= 4κ
[〈v1 − v2, u1 − u2〉 − κ‖u1 − u2‖2

]
.

This implies in turn the estimates

‖v1 − v2‖ · ‖u1 − u2‖ ≥ 〈v1 − v2, u1 − u2〉 ≥ κ‖u1 − u2‖2, (5.15)

which therefore justify the additional claims in (iii).
It remains to verify implication (iii)⇒(i). Having by (iii) the neighborhood V×U

of (v̄, x̄) on which T −1 admits the single-valued localization ϑ and (5.12) holds,
pick any (u1, v1), (u2, v2) ∈ gph T ∩(U×V ) for which we get ui = ϑ(vi), i = 1, 2,
and the strong local monotonicity condition (5.12) is satisfied as proved in (5.15).
Let us finally check the local maximality of T .

To proceed, take any globally monotone operator S : Rn →→ R
n satisfying the

inclusion gph T ∩ (U × V ) ⊂ gph S, and conclude by (5.13) that

〈y − v, ϑ(y)− u〉 ≥ 0 for any y ∈ V, (u, v) ∈ gph S ∩ (U × V ). (5.16)

Fix an arbitrary vector z ∈ R
n, and find ε > 0 such that v + εz ∈ V . Since

ϑ(V ) ⊂ U , we have ϑ(v + εz) ∈ U . This tells us together with (5.16) that

〈
v + εz− v, ϑ(v + εz)− u〉 = ε

〈
z, ϑ(v + εz)− u〉 ≥ 0,

which clearly yields 〈z, ϑ(v+εz)−u〉 ≥ 0. Letting now ε ↓ 0 implies that 〈z, ϑ(v)−
u〉 ≥ 0 due to the continuity of ϑ shown above. Since this holds for any z ∈ R

n, we
get ϑ(v) = u, i.e., (u, v) ∈ gph T ∩ (U × V ). Therefore

gph S ∩ (U × V ) ⊂ gph T ∩ (U × V ),
which verifies the strong local maximal monotonicity of T relative to U × V and
thus completes the proof of the theorem. �

5.2.2 Strong Local Maximal Monotonicity via Coderivatives

The next theorem presents the principal result of this section on characterizing
strongly locally maximal monotone (closed-graph) operators via their local hy-
pomonotonicity coupled with a strengthened positive-definiteness condition ex-
pressed in terms of the precoderivative/regular coderivative (1.16) at neighborhood
points. The result obtained provides also a quantitative relation involving moduli of
strong local maximal monotonicity.

Theorem 5.14 (Neighborhood Coderivative Characterization of Strong Local
Maximal Monotonicity). Given a set-valued mapping T : Rn →→ R

n with (x̄, v̄) ∈
gph T , fix a number κ > 0. The following are equivalent:

(i) T is strongly locally maximal monotone around (x̄, v̄) with modulus κ .
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(ii) T is locally hypomonotone around (x̄, v̄), and there is η > 0 such that

〈z,w〉 ≥ κ‖w‖2 if z ∈ D̂∗T (u, v)(w), (u, v) ∈ gph T ∩ Bη(x̄, v̄). (5.17)

Proof. To justify (i)⇒(ii), note that the local hypomonotonicity is trivial under (i),
and by Theorem 5.13 find a single-valued localization ϑ of T −1 relative to a neigh-
borhood V × U of (v̄, x̄) such that (5.13) holds. As proved above, this yields the
Lipschitz continuity of ϑ on V with modulus κ−1. To proceed with verifying the
coderivative condition (5.17), choose η > 0 satisfying Bη(x̄, v̄) ⊂ U × V and then
pick (u, v) ∈ gph T ∩ Bη(x̄, v̄) and z ∈ D̂∗T (u, v)(w). Given any ε > 0 and
using (1.16), we select η so small that

〈z, x − u〉 − 〈w, y − v〉 ≤ ε
(‖x − u‖ + ‖y − v‖) (5.18)

for all (x, y) ∈ gph T ∩ Bη(u, v). When t > 0 is also small, consider ut := ϑ(vt )

with vt := v + t (z − 2κw) ∈ V , and get from the continuity of ϑ that (ut , vt ) →
(u, v) as t ↓ 0. Suppose without loss of generality that (ut , vt ) ∈ Bη(u, v) for all
t > 0. Replacing (x, y) in (5.18) by (ut , vt ) and using (5.13) give us

ε
(‖ut − u‖ + ‖vt − v‖

) ≥ 〈z, ut − u〉 − 〈w, vt − v〉
= 〈t−1(vt − v)+ 2κw, ut − u〉 − t〈w, z− 2κw〉
≥ κt−1‖ut − u‖2 + 2κ〈w, ut − u〉 − t〈w, z− 2κw〉
≥ κt−1‖ut − u‖2 − 2κ‖w‖ · ‖ut − u‖
+tκ‖w‖2 − t〈w, z− κw〉

≥ −t〈w, z− κw〉 = −t〈z,w〉 + tκ‖w‖2.

Since ϑ is Lipschitz continuous on V with modulus κ−1, we have

ε
(‖ut − u‖ + ‖vt − v‖

) = ε
(‖ϑ(vt )− ϑ(v)‖ + ‖vt − v‖

)

≤ ε
(
κ−1‖vt − v‖ + ‖vt − v‖

)

= ε(κ−1 + 1)‖vt − v‖ = εt (κ−1 + 1)‖z− 2κw‖,
which together with the estimates above yields

〈z,w〉 + ε(κ−1 + 1)‖z− 2κw‖ ≥ κ‖w‖2.

Passing to the limit as ε ↓ 0 gives us 〈z,w〉 ≥ κ‖w‖2 and thus justifies (5.17).

To verify next the converse implication (ii)⇒(i), observe that by Theorem 5.13
we only need to show that the inverse operator T −1 admits a Lipschitz continuous
single-valued localization ϑ around (v̄, x̄) satisfying estimate (5.13). This is done
in the following two claims.

Claim 1. T −1 admits a Lipschitz continuous localization ϑ around (v̄, x̄).

To justify this claim, choose η > 0 so small that the set gph T ∩ Bη(x̄, v̄) is
closed and there is a positive number r for which

〈v1 − v2, x1 − x2〉 ≥ −r‖x1 − x2‖2 (5.19)
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if (x1, v1), (x2, v2) ∈ gph T ∩ Bη(x̄, v̄). Pick any s > r and define

Js(u, v) := (v + su, u) for (u, v) ∈ R
n × R

n.

Denoting further Ws := Js(Bη(x̄, v̄)), observe that intWs = Js(intBη(x̄, v̄))
is a neighborhood of (v̄ + sx̄, x̄). It follows from (5.19) that for any pair
(v1, x1), (v2, x2) ∈ gph (T + sI )−1 ∩ Ws , we have (xi, vi − sxi) ∈ gph T ∩
J−1
s (Ws) = gph T ∩ Bη(x̄, v̄). Thus (5.19) tells us that

〈v1 − sx1 − v2 + sx2, x1 − x2〉 ≥ −r‖x1 − x2‖2,

which clearly implies the estimates

‖v1 − v2‖ · ‖x1 − x2‖ ≥ 〈v1 − v2, x1 − x2〉 ≥ (s − r)‖x1 − x2‖2 (5.20)

showing that the mapping (T + sI )−1 admits a single-valued localization denoted
by f . Taking now any (v, u) ∈ gph f ∩ (intWs) with u = f (v) and any (w, z) ∈
X × X with w ∈ D̂∗f (v)(z), we get that w ∈ D̂∗(T + sI )−1(v, u)(z) and hence
−z ∈ D̂∗(T + sI )(u, v)(−w). It follows from the equality sum rule for the regular
coderivative in Exercise 3.59(i) that −z+sw ∈ D̂∗T (u, v−su)(−w). Since (u, v−
su) = J−1

s (v, u) ∈ J−1
s (intWs) = intBη(x̄, v̄), we deduce from (5.17) that 〈−z +

sw,−w〉 ≥ κ‖w‖2 and thus

‖z‖ · ‖w‖ ≥ 〈z,w〉 ≥ (κ + s)‖w‖2.

To proceed further, for any z ∈ B define the function ϕz : Rn → R by

ϕz(v) :=
{ 〈z, f (v)〉 if v ∈ dom f,

∞ otherwise

and verify similarly to the proof of Theorem 5.2 that it is l.s.c. on R
n. Applying the

mean value inequality (4.25) to ϕz, fix γ ∈ (0, η/3) and pick two pairs (ui, vi) ∈
gph T ∩ Bγ (x̄, v̄), i = 1, 2. By the construction of f , we get (yi, ui) ∈ gph f with
yi := vi + sui . Taking any ε ∈ (0, γ ) and applying the increment estimate (4.25) to
ϕz on [y1, y2] with the chosen ε give us

|ϕz(y1)− ϕz(y2)| ≤ ‖y1 − y2‖ sup
{‖w‖ ∣∣ w ∈ ∂̂〈z, f 〉(y), y ∈ [y1, y2] + εB}.

For any y ∈ dom f ∩ ([y1, y2]+ εB
)
, there are some t ∈ [0, 1] and y0 ∈ εB such

that y = ty1 + (1 − t)y2 + y0. Then it follows that

‖y − v̄ − sx̄‖ = ‖ty1 + (1 − t)y2 + y0 − v̄ − sx̄‖
= ‖t (y1 − v̄ − sx̄)+ (1 − t)(y2 − v̄ − sx̄)+ y0‖
= ‖t (v1 + su1 − v̄ − sx̄)+ (1 − t)(v2 + su2 − v̄ − sx̄)+ y0‖
≤ t

(‖v1 − v̄‖+s‖u1 − x̄‖)+(1 − t)(‖v2 − v̄‖+s‖u2 − x̄‖)+‖y0‖
≤ t (γ + sγ )+ (1 − t)(γ + sγ )+ ε = (1 + s)γ + ε < (2 + s)γ.
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We easily get from the latter estimate and (5.20) that

‖f (y)− x̄‖ = ‖f (y)− f (v̄ + sx̄)‖ ≤ (s − r)−1‖y − v̄ − sx̄‖
≤ (s − r)−1(2 + s)γ. (5.21)

Furthermore, it follows from the above that

‖y − sf (y)− v̄‖ = ∥∥y − v̄ − sx̄ − s(f (y)− x̄)∥∥
≤ (2 + s)γ + s(s − r)−1(2 + s)γ. (5.22)

By choosing γ sufficiently small, we deduce from (5.21) and (5.22) that

J−1
s

(
y, f (y)

) = (
f (y), y − sf (y)) ∈ intBη(x̄, v̄),

which tells us that (y, f (y)) ∈ Js
(
intBη(x̄, v̄)

) = intWs . Moreover, it is easy
to see from the definitions that ∂̂〈z, f 〉(y) ⊂ D̂∗f (y)(z). Taking into account that
(y, f (y)) ∈ gph (T +sI )−1 ∩ intWs and the constructions of f and ϕz, we conclude
that D̂∗f (y)(z) = D̂∗(T + sI )−1(y, f (y))(z), which ensures by the increment
estimate above that

|〈z, f (y1)− f (y2)〉| = |ϕz(y1)− ϕz(y2)| ≤ ‖y1 − y2‖(κ + s)−1‖z‖
for all z ∈ B. Remembering the definitions of yi above implies that

‖u1 − u2‖ = ‖f (y1)− f (y2)‖
≤ (κ + s)−1‖y1 − y2‖ = (κ + s)−1‖v1 + su1 − v2 − su2‖,

which yields in turn the inequality

(κ + s)‖u1 − u2‖ ≤ ‖(v1 − v2)+ s(u1 − u2)‖ ≤ ‖v1 − v2‖ + s‖u1 − u2‖.
Thus we arrive at the estimate

κ‖u1 − u2‖ ≤ ‖v1 − v2‖ if (u1, v1), (u2, v2) ∈ gph T ∩ Bγ (x̄, v̄). (5.23)

It remains to show that T −1 admits a single-valued Lipschitzian localization
around (v̄, x̄). To verify it, observe from (5.17) that

‖z‖ ≥ κ‖w‖ for all z ∈ D̂∗T (u, v)(w), (u, v) ∈ gph T ∩ Bη(x̄, v̄),
which is a neighborhood version of the coderivative characterization of metric reg-
ularity of T around (x̄, v̄) in Theorem 3.3(ii) (see Exercise 3.47 and [522, Theo-
rem 4.5] for more details). This allows us to find positive numbers μ and ν, where
μ can be taken as κ−1, such that

dist
(
x̄; T −1(v)

) ≤ μ dist
(
v; T (x̄)) ≤ μ‖v − v̄‖ for all v ∈ Bν(v̄)
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which ensures that T −1(v) ∩ intBμν(x̄) 
= ∅ for all v ∈ intBν(v̄). Defining finally
the mapping ϑ from intBν(v̄) into intBμν(x̄) by

gphϑ := gph T −1 ∩ (
intBν(v̄)× intBμν(x̄)

)
with domϑ = intBν(v̄),

we get domϑ = intBν(v̄). It follows directly from (5.23) that ϑ is single-valued
and Lipschitz continuous on its domain with modulus κ−1.

Claim 2. The single-valued Lipschitzian localization ϑ of T −1 taken from Claim 1
satisfies the additional condition (5.13).

To verify this claim, for any z ∈ B define ξz(v) := 〈z, v − 2κϑ(v)〉 as v ∈
intBν(v̄). Pick any α, ε > 0 with α + ε < ν and any v1, v2 ∈ Bα(v̄). Similarly to
the proof of the increment estimate for ϕz in Claim 1 with the chosen ε therein, we
deduce from the mean value inequality that

|ξz(v1)− ξz(v2)| ≤ ‖v1 − v2‖ sup
{‖w‖ ∣∣ w ∈ ∂̂ξz(v), v ∈ [v1, v2] + εB}.

Since v ∈ intBν(v̄) for each v ∈ [v1, v2]+εB, it is easy to get from the construction
of ξz and the elementary calculus rules as above that

w ∈ ∂̂ξz(v) ⊂ z− 2κD̂∗ϑ(v)(z) = z− 2κD̂∗T −1(v)(z),

which tells us that (2κ)−1(z− w) ∈ D̂∗T −1(v)(z) or equivalently

−z ∈ D̂∗T
(
ϑ(v), v

)(
(2κ)−1(w − z)).

It thus follows from the coderivative condition (5.17) that

〈−z, (2κ)−1(w − z)〉 ≥ κ‖(2κ)−1(w − z)‖2,

which easily implies in turn that ‖w‖ ≤ ‖z‖. This together with the increment
estimate for ξz established above ensures that

|ξz(v1)−ξz(v2)| = 〈z, v1−2κϑ(v1)−v2+2κϑ(v2)〉 ≤ ‖v1−v2‖·‖z‖ for all z ∈ B.

Remembering the definition of ξz, we derive from the latter that

‖v1 − v2 − 2κ[ϑ(v1)− ϑ(v2)]‖ ≤ ‖v1 − v2‖ whenever v1, v2 ∈ Bα(v̄),
which verifies condition (5.13) and hence justifies Claim 2. The proof of the theorem
is complete by combining Claim 1 and Claim 2. �

Let us present a remarkable consequence of Theorem 5.14 for detecting strong
metric regularity of set-valued mappings.

Corollary 5.15 (Sufficient Conditions for Strong Metric Regularity). The con-
ditions of Theorem 5.14(ii) ensure that the mapping T is strongly metrically regular
around (x̄, v̄) with modulus κ−1.
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Proof. By Theorem 5.13 it follows from assertion (i) of Theorem 5.14, while it
has also been deduced directly from hypomonotonicity and the coderivative condi-
tion (5.17) in the proof of the latter theorem. �

5.2.3 Pointbased Coderivative Characterizations

We conclude this section by deriving a pointbased characterization of strong max-
imal monotonicity for Lipschitz-like mappings via positive-definiteness of the ba-
sic/limiting coderivative (1.15). The next theorem and its corollary below are natural
extensions to set-valued and nonsmooth mappings of the classical characterization
of the strong local monotonicity for a smooth mapping via positive-definiteness of
its Jacobian matrix.

Theorem 5.16 (Pointbased Coderivative Conditions for Strong Local Maximal
Monotonicity). Let T : Rn →→ R

n. The following assertions hold:
(i) The strong local maximal monotonicity of T around (x̄, v̄) ∈ gph T implies

that the coderivative D∗T (x̄, v̄) is em positive-definite, i.e.,

〈z,w〉 > 0 for any z ∈ D∗T (x̄, v̄)(w) with w 
= 0. (5.24)

(ii) If T is single-valued and Lipschitz continuous around x̄, then the positive-
definiteness condition (5.24) is necessary and sufficient for the strong local maximal
monotonicity of T around this point.

Proof. It is easy to see by passing to the limit that (5.17) always implies (5.24),
and thus we get (i) by employing Corollary 5.15. Let us now verify assertion (ii)
assuming that T is single-valued and locally Lipschitzian around x̄. First we check
that T is automatically locally hypomonotone around x̄ in this case. Indeed, take
a Lipschitz constant � > 0 of T around x̄, and define T : Rn → R

n by g(u) :=
T (u)+ �u. Then we have

〈g(u1)− g(u2), u1 − u2〉 = 〈T (u1)− T (u2), u1 − u2〉 + �‖u1 − u2‖2

≥ −‖T (u1)− T (u2)‖ · ‖u1 − u2‖ + �‖u1 − u2‖2 ≥ 0,

which therefore yields the local hypomonotonicity of T around x̄. Invoking The-
orem 5.14, it remains to show that (5.24) ensures the validity of (5.17). Arguing
by contradiction, suppose that (5.24) holds while (5.17) doesn’t. Hence we find a
sequence (uk, wk, zk) satisfying

uk → x̄, zk ∈ D̂∗T (uk)(wk), 〈zk, wk〉 < k−1‖wk‖2 for all k ∈ N.

Letting w̄k := wk/‖wk‖, z̄k := zk/‖wk‖ and using the Lipschitz property of T with
modulus � ≥ 0 yield as in the proof of Theorem 3.3 that

‖z̄k‖ ≤ �‖w̄k‖ = �, k ∈ N.
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Select convergent subsequences of {w̄k} and {z̄k} and then find (w̄, z̄) such that
(w̄k, z̄k) → (w̄, z̄). Passing now to the limit as k → ∞ and using the limiting
coderivative representation (1.17), we get z̄ ∈ D∗T (x̄)(w̄) with ‖w̄‖ = 1. Further-
more, it follows from 〈z̄k, w̄k〉 < k−1 that 〈z̄, w̄〉 ≤ 0, which contradicts (5.24) and
thus completes the proof of the theorem. �
Remark 5.17 (Pointbased Coderivative Criteria for Strong Local Maximal
Monotonicity of Mappings). A natural question arises about the possibility to ex-
tend the pointbased coderivative characterization of Theorem 5.16(ii) to set-valued
mappings. Observe first that the answer is negative if the mapping T in question is
Lipschitz-like around (x̄, v̄), provided that we keep the local hypomonotonicity as-
sumptions coming from Theorem 5.14. As shown by Levy and Poliquin [455], the
simultaneous validity of the Lipschitz-like and local hypomonotonicity properties
of a mapping around the reference point is equivalent to the single-valuedness and
Lipschitz continuity of the mapping around this point.

On the other hand, it is shown by the author and Nghia [555] that the point-
based condition (5.24) completely characterizes, together with the local hypomono-
tonicity of T , the strong local maximal monotonicity of subgradient (highly non-
Lipschitzian) mappings T = ∂ϕ generated by extended-real-valued functions
ϕ : Rn → R that belong to a broad class of continuously prox-regular functions.
As mentioned in Section 3.5, the latter class plays a crucial role in second-order
variational analysis, optimization, and their numerous applications; see the books
[527, 678] and the discussions above.

5.3 Exercises for Chapter 5

Exercise 5.18 (Hypomonotonicity of Single-Valued Mappings).
(i) Let T : X → X be a single-valued mapping on a Hilbert space X. Prove that T is locally

hypomonotone around x̄ provided that it is locally Lipschitzian around this point. Hint: Compare
it with the proof of [455, Theorem 1.2] given in the case of finite-dimensional spaces.

(ii) Does (i) hold if T : X →→ X is a set-valued mapping admitting a Lipschitzian single-valued
localization around (x̄, v̄) ∈ gph T ?

(ii) Is (i) valid for continuous single-valued mappings?

Exercise 5.19 (Hypomonotonicity of Subgradient Mappings). Let f : Rn → R be l.s.c. as in
our standing assumption.

(i) Show that ∂ : Rn →→ R
n is semilocally hypomonotone around x̄ if and only if there is a

positive number ρ such that the function f + ρ‖ · ‖2 is convex on a neighborhood of x̄. Hint:
Deduce it from [678, Theorem 12.17].

(ii) Does the characterization in (i) hold in Hilbert spaces?

Exercise 5.20 (Calculus of Hypomonotonicity). Let X be a Hilbert space, and let T1 : X → X

be continuous around x̄ with v1 := T (x̄). Show that:
(i) If T2 : X →→ X is locally hypomonotone around (x̄, v̄2) ∈ gph T2, then the sum T1 + T2 is

locally hypomonotone around (x̄, v̄1 + v̄2).
(ii) If T2 : X →→ X is semilocally hypomonotone around x̄, then the sum T1 + T2 is semilocally

hypomonotone around this point.
(iii) Formulate and prove a version of this rule for global hypomonotonicity.
Hint: Proceed by the definitions of the corresponding hypomonotonicity notions.
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Exercise 5.21 (Global Maximal Monotonicity for Mappings with Convex Domains). Recon-
struct all the details in the proof of Theorem 5.4.

Exercise 5.22 (Coderivative Characterizations of Global Maximal Monotonicity for Set-
Valued Mappings in Infinite Dimensions). Let T : X →→ X be a (closed-graph) set-valued opera-
tor defined on a Hilbert space X.

(i) Check that Theorem 5.2 and Theorem 5.4 hold true in Hilbert spaces.
(ii) Formulate and prove a Hilbert space version of Theorem 5.6 in terms of the mixed coderiva-

tive of T ; cf. [153]. Give an example that the usage of the normal coderivative in (5.11) doesn’t
provide a necessary condition for global maximal monotonicity in infinite dimensions.

Exercise 5.23 (Coderivative Characterizations of Global Monotonicity for Single-Valued
Continuous Mappings).

(i) Show that hypomonotonicity requirements are not needed in the coderivative characteriza-
tions of Theorems 5.2, 5.4, and 5.6 for single-valued continuous mappings T : Rn → R

n; cf. [154].
Is it true for T : X → X in Hilbert spaces?

(ii) Find general conditions unifying hypomonotonicity of set-valued mappings and continuity
of single-valued ones for the validity of the coderivative characterizations of global monotonicity
in Section 5.1 in finite and infinite dimensions.

(iii) Using the symmetric subdifferential mean value theorem in Asplund spaces discussed in
Exercise 4.33, derive appropriate versions of (i) for single-valued continuous mappings T : X →
X∗ in the case of Asplund spaces X.

Exercise 5.24 (Coderivative Characterizations of Global Strong Maximal Monotonicity in
Hilbert Spaces). Derive Hilbert space extensions of the coderivative characterizations of this prop-
erty presented in Corollary 5.9. Hint: Follow the proof of Corollary 5.9 by using the results taken
from Exercise 5.22.

Exercise 5.25 (Preservation of Global Maximal Monotonicity and Strong Monotonicity Un-
der Sums and Compositions).

(i) Based on the pointwise coderivative characterizations of global maximal monotonicity and
strong monotonicity obtained in Subsection 5.2.3 and their infinite-dimensional versions from the
exercises above, establish verifiable conditions for the preservation of these properties under sums
and compositions by using the pointwise coderivative calculus developed in Chapter 4.

(ii) Compare the results obtained via (i) with known conditions for preserving maximal mono-
tonicity; in particular, with Rockafellar’s theorem [668] about the maximal monotonicity of sums
under certain interiority assumptions.

Exercise 5.26 (Coderivative Characterizations of Local and Semilocal Maximal Monotonic-
ity). Investigate the possibilities for deriving coderivative characterizations of the types given in
Theorems 5.2, 5.4, and 5.6 for the notions of local and semilocal maximal monotonicity intro-
duced similarly to the corresponding notions of hypomonotonicity from Definition 5.1(ii,iii).

Exercise 5.27 (Strong Metric Regularity of the Convex Subdifferential). Let X be a Banach
space, and let ϕ : X → R be a l.s.c. convex function.

(i) Prove that for any (x̄, v̄) ∈ gph ∂ϕ the following assertions are equivalent:
• The subgradient mapping ∂ϕ : X →→ X∗ is strongly metrically regular around (x̄, v̄) with

modulus κ > 0.
• There are neighborhoods U of x̄ and V of v̄ such that the mapping (∂ϕ)−1 admits a single-

valued localization ϑ : V → U around (v̄, x̄) and that for any pair (v, u) ∈ gphϑ = gph (∂ϕ)−1 ∩
(V × U) we have the second-order growth condition

ϕ(x) ≥ ϕ(u)+ 〈v, x − u〉 + 1

2κ
‖x − u‖2 whenever x ∈ U. (5.25)

Hint: Use the maximal monotonicity of the subdifferential mapping ∂ϕ : X →→ X∗ and Fenchel
duality; compare it with the proof of [551, Theorem 3.1].
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(ii) Is strong metric regularity equivalent to metric regularity of ∂ϕ around the same point in
this setting? Hint: Use Kenderov’s theorem [408], and compare this with the characterization of
the metric regularity of ∂ϕ given in Exercise 3.52.

Exercise 5.28 (Metric Regularity and Strong Metric Regularity of the Basic Subdifferential).
Let ϕ : X → R be an arbitrary l.s.c. function on an Asplund space X, and let (x̄, v̄) ∈ gph ∂ϕ for
the basic subgradient mapping (1.69).

(i) Prove that the following statements are equivalent:
• The subdifferential ∂ϕ is metrically regular around (x̄, v̄) with modulus κ > 0, and there

exist a real number r ∈ [0, κ−1) and neighborhoods U of x̄ and V of v̄ such that for any pair
(u, v) ∈ gph ∂ϕ ∩ (U × V ) we have

ϕ(x) ≥ ϕ(u)+ 〈v, x − u〉 − r

2
dist2

(
x; (∂ϕ)−1(v)

)
whenever x ∈ U.

• There exist neighborhoods U of x̄ and V of v̄ such that for any v ∈ V there is a point
u ∈ (∂ϕ)−1(v) ∩ U satisfying (5.25)

• The subdifferential ∂ϕ is metrically regular around (x̄, v̄) with modulus κ > 0, and there are
neighborhoods U of x̄ and V of v̄ such that

ϕ(x) ≥ ϕ(u)+ 〈v, x − u〉 for all x ∈ U and (u, v) ∈ gph ∂ϕ ∩ (U × V ).
• The point x̄ is a local minimizer of the function x �→ ϕ(x) − 〈v, x〉, and the subdifferential

∂ϕ is strongly metrically regular around (x̄, v̄) with modulus κ .
Hint: Proceed as in the proofs of [551, Theorem 3.2] with the usage of Ekeland’s variational

principle, the semi-Lipschitzian sum rule for the basic subdifferential, and the maximal monotonic-
ity of the subdifferential of convex analysis.

(ii) Let X be Hilbert. Then all the statements above are equivalent to:
• ∂f is metrically regular around (x̄, v̄) with modulus κ > 0, and there are some r ∈ [0, κ−1)

and neighborhoods U of x̄, V of v̄ such that

ϕ(x) ≥ ϕ(u)+ 〈v, x − u〉 − r

2
‖x − u‖2 for all x ∈ U, (u, v) ∈ gph ∂ϕ ∩ (U × V ).

Hint: Arguing by contradiction, consider the function ψ(x) := ψ(x) + r
2 ‖x − x̄‖2, and show

that ∂ψ is metrically regular around (x̄, x̄∗) with modulus κ
1−rκ . Then apply (i) and use the paral-

lelogram law in Hilbert spaces; cf. [232, Corollary 3.8].

Exercise 5.29 (Equivalent Regularity Properties for C2-Smooth Functions). Let ϕ : Rn →
R be twice continuously differentiable around its local minimizer x̄. Check that the following
properties are equivalent:

(a) The gradient mapping ∇ϕ : Rn → R
n is metrically regular around (x̄, 0).

(b) The gradient mapping ∇ϕ is strongly metrically regular around (x̄, 0).
(c) The Hessian matrix ∇2ϕ(x̄) is positive-definite.
(d) ker ∇2ϕ(x̄) = {0} for the Hessian kernel ker ∇2ϕ(x̄) := {u| ∇2ϕ(x̄)u = 0}.
Hint: Deduce it from well-known facts of nonlinear analysis.

Exercise 5.30 (Equivalent Second-Order Conditions for Regularity Properties of Prox-
Regular Functions). Let ϕ : Rn → R be both prox-regular and subdifferentially continuous at x̄
for 0 ∈ ∂ϕ(x̄).

(i) Prove that the following conditions are equivalent:
(a) The subgradient mapping ∂ϕ : Rn →→ R

n is metrically regular around (x̄, 0) and the gener-
alized Hessian ∂2ϕ(x̄, 0) is positive-semidefinite in the sense that

〈v, u〉 ≥ 0 whenever v ∈ ∂2ϕ(x̄, 0)(u), u ∈ R
n.
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(b) The subgradient mapping ∂ϕ is strongly metrically regular around (x̄, 0) and x̄ is a local
minimizer of ϕ.

(c) The generalized Hessian ∂2ϕ(x̄, 0) is positive-definite in the sense that

〈v, u〉 > 0 whenever v ∈ ∂2ϕ(x̄, 0)(u), u 
= 0.

(d) ker ∂2ϕ(x̄, 0) = {0} and ∂2ϕ(x̄, 0) is positive-semidefinite.
Hint: Use the coderivative criterion for metric regularity from Theorem 3.3(ii), and proceed as

in the proof of [232, Theorem 4.13].
(ii) Show that in the case where ϕ ∈ C2 around a local minimizer x̄ of ϕ the equivalent condi-

tions in (i) reduce to those in Exercise 5.29.
(iii) Given an example showing that the positive-semidefiniteness of the generalized Hessian

∂2ϕ(x̄, 0) is not necessary for the local optimality of ϕ at x̄ even in the case of fully amenable
functions ϕ : R2 → R.

Exercise 5.31 (Equivalence of Metric Regularity to Strong Metric Regularity of the Basic
Subdifferential). Let ϕ : Rn → R be prox-regular and subdifferentially continuous at x̄ for v̄ = 0,
and let x̄ be a local minimizer of ϕ.

(i) Prove or disprove that the basic subgradient mapping ∂ϕ is metrically regular around (x̄, v̄)
if and only if it is strongly metrically regular around this point. Hint: Compare it with the results
presented in Exercises 5.29 and 5.30, and see the corresponding discussions in Section 5.4.

(ii) Show that the equivalence (i) is certainly false outside the class of prox-regular and subdif-
ferentially continuous functions on R

2.

Exercise 5.32 (Strong Metric Subregularity and Isolated Calmness). A mapping F : X →→ Y

between Banach spaces is STRONGLY METRICALLY SUBREGULAR at (x̄, ȳ) ∈ gphF with a posi-
tive modulus μ if there exist neighborhood U of x̄ and V of ȳ such that we have the estimate

‖x − x̄‖ ≤ μ dist
(
ȳ;F(x) ∩ V ) for all x ∈ U.

The mapping F : X →→ Y enjoys the isolated calmness property at (x̄, ȳ) ∈ gphF with modulus
� ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such that

F(x) ∩ V ⊂ {ȳ} + �‖x − x̄‖B for all x ∈ U.
If also F(x) ∩ V 
= ∅ for all x ∈ U , then F has the robust isolated property at (x̄, ȳ).

(i) Show that the isolated calmness of F at (x̄, ȳ) is equivalent to the strong metric subregu-
larity of the inverse mapping F−1 at (ȳ, x̄). What about relationships between moduli and their
exact bounds? Hint: Proceed similarly the proof of Theorem 3.2, and compare it with [227, Theo-
rem 3I.3].

(ii) Find conditions on F ensuring that the isolated calmness of F at (x̄, ȳ) agrees with its
robust counterpart, and give an example that this fails in general.

(iii) Which property of the inverse mapping F−1 at (ȳ, x̄) is equivalent to the robust isolated
calmness of F at (x̄, ȳ)?

Exercise 5.33 (Graphical Derivative Characterizations of Isolated Calmness of Multifunc-
tions). Let F : Rn →→ R

m, and let (x̄, ȳ) ∈ gphF .
(i) Show that the graphical derivative condition

DF(x̄, ȳ)(0) = {0}
in terms of (1.87) is necessary and sufficient for the isolated calmness of F at (x̄, ȳ). Hint: Proceed
directly by the definitions of isolated calmness and graphical derivative, and compare it with the
proofs of sufficiency in [417] and of necessity in [453].
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(ii) Verify the possibility to deduce the calmness characterization in (i) from that for the upper
Lipschitzian property via the outer derivative (3.70) from [771] presented in Exercise 3.55(i). Hint:
Use the result of Exercise 3.54(i).

(ii) Derive a formula for the exact bound of isolated calmness in (i). Hint: Compare it with the
result and proof in [227, Theorem 4E.1] for the equivalent property of strong metric regularity.

(iii) Do the results in (i) and (ii) hold in infinite dimensions?

Exercise 5.34 (Strong Metric Subregularity and Strong Local Monotonicity of the Convex
Subdifferential). Let ϕ : X → R be a l.s.c. convex function on a Banach space X, and let v̄ ∈
∂ϕ(x̄). Prove that the following are equivalent:

(a) The subdifferential mapping ∂ϕ is strongly metrically subregular at (x̄, v̄).
(b) There exist a neighborhood U of x̄ and a constant γ > 0 such that

ϕ(x) ≥ ϕ(x̄)+ 〈v̄, x − x̄〉 + γ ‖x − x̄‖2 for all x ∈ U.
(c) There exist a neighborhood U of x̄ and a constant γ > 0 such that

〈v̄ − v, x − x̄〉 ≥ γ ‖x − x̄‖2 for all x ∈ U, v ∈ ∂ϕ(x̄).
Hint: Deduce it from Exercise 5.27(i) and the definitions; cf. [21, Theorem 3.6].

Exercise 5.35 (Strong Metric Subregularity of the Basic Subdifferential). Given a l.s.c. func-
tion ϕ : X → R on an Asplund space X and given a pair (x̄, v̄ ∈ gph ∂ϕ, consider the following
two statements:

(a) The subdifferential ∂ϕ is strongly metrically subregular at (x̄, v̄) with modulus κ > 0, and
there are real numbers r ∈ (0, κ−1) and ν > 0 such that

ϕ(x) ≥ ϕ(x̄)+ 〈v̄, x − x̄〉 − r

2
‖x − x̄‖2 for all x ∈ x̄ + νB.

(b) There are real numbers α, η > 0 such that

ϕ(x) ≥ ϕ(x̄)+ 〈v̄, x − x̄〉 + α

2
‖x − x̄‖2 for all x ∈ x̄ + ηB.

(i) Prove that (a)�⇒(b) holds, where α may be chosen arbitrarily in (0, κ−1).
(ii) Verify that the converse implication (b)�⇒(a) also holds if in addition there is some number

β ∈ [0, α) with

ϕ(x̄) ≥ ϕ(x)+ 〈v, x̄ − x〉 − β

2
‖x − x̄‖2 for all (x, v) ∈ gph ∂ϕ ∩ [

(x̄, v̄)+ ηB].

Hint: Deduce both conclusions from the results presented in Exercise 5.28(i) by proceeding
similarly to the proof of [232, Corollary 3.3].

Exercise 5.36 (Strong Local Maximal Monotonicity in Hilbert Spaces). Let T : X →→ X be a
set-valued operator defined on a Hilbert space X.

(i) Analyzing the proofs of Theorem 5.13 and Theorem 5.14, check that these results hold in
infinite dimensions.

(ii) Is it true for Theorem 5.16 in terms of the mixed coderivative D∗
M?

Exercise 5.37 (Coderivative Conditions for Strong Metric Regularity). Construct examples in
finite-dimensional spaces showing that the conditions of Corollary 5.15 and of Theorem 5.16 are
not necessary for strong metric regularity in both set-valued and single-valued cases.

Exercise 5.38 (Limiting Coderivative Characterization of Local Strong Maximal Mono-
tonicity). Let T : Rn →→ R

n be a (closed-graph) set-valued mapping with (x̄, v̄) ∈ gph T . Prove
or disprove the following conjecture: T is locally strongly maximal monotone around (x̄, v̄) if and
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only if T is locally hypomonotone around (x̄, v̄) and the positive-definiteness condition (5.24) is
satisfied; cf. Remark 5.17.

Exercise 5.39 (Coderivative Characterizations of Strong Semilocal Monotonicity). Investi-
gate the possibilities for deriving coderivative characterizations of the types given in Theorems 5.14
and 5.16 for the notion of strong semilocal monotonicity introduced similarly to semilocal hy-
pomonotonicity in Definition 5.1(ii).

5.4 Commentaries to Chapter 5

Section 5.1. As already mentioned in Section 4.6, global monotonicity and especially its max-
imal manifestation have been highly recognized among the most fundamental developments of
nonlinear and variational analysis with great many applications to theoretical and numerical as-
pects of optimization-related and equilibrium problems; see, e.g., the references given above. The
approaches and results presented in this chapter are based on quite recent developments while com-
municating new ideas in the study and applications of monotonicity by using the appropriate tools
of generalized differentiation in variational analysis.

The main results of Section 5.1 (Theorems 5.2, 5.4, and 5.6), as well as their infinite-
dimensional versions formulated in the exercises, are taken from the author’s joint paper with
Chieu, Lee, and Nghia [153], which contains complete coderivative characterizations of global
maximal monotonicity for general set-valued operators in Hilbert spaces. These results present
far-going nonsmooth extensions of the classical criterion for monotonicity of smooth functions in
terms of the positive-semidefiniteness of their derivatives. Note that the mixed coderivative (1.65)
is used in Theorem 5.6 for the limiting characterization (5.11) in infinite dimensions.

Implication (i)⇒(ii) of Theorem 5.6 was first obtained by Poliquin and Rockafellar [642] in
finite dimensions and then was extended in [152, 551] to Hilbert spaces; we follow here the proof
given in [551]. For single-valued continuous mappings in Hilbert spaces, the regular coderivative
characterization (5.2) of global monotonicity was obtained by Chieu and Trang [154], while its
limiting version of Theorem 5.6 was given in [154] in finite-dimensional spaces.

To the best of our knowledge, the concept of hypomonotonicity was introduced by Rockafellar
[673] who utilized its semilocal (in our terminology) version for certain subdifferential operators;
see also [641, 678]. Local hypomonotonicity was employed by Levy and Poliquin [455] in the
study of Lipschitzian stability, by Pennanen [633] in developing the proximal point and related
methods of numerical optimization, and by the author and Nghia [555] in characterizing the strong
local maximal monotonicity property of general operators (see Section 5.2) with applications to
full stability of parametric variational systems. Global hypomonotonicity was implemented, e.g.,
in the book by Burachik and Iusem [130] (see also the references therein) to study enlargements of
monotone operators.

It is important to emphasize that all the three classes of hypomonotone operators considered in
Definition 5.1 are sufficiently broad and contain, in particular, Lipschitzian single-valued mappings
and set-valued subdifferential mappings generated by “nice” functions, which are prox-regular and
subdifferentially continuous (for local hypomonotonicity), lower–C2 on open sets (for the semilocal
version), etc.; see [641, 678] for more details. That is, the hypomonotonicity properties are not
restrictive for numerous applications in variational analysis and optimization.

The notion of global strong monotonicity, which maximality is characterized in Corollary 5.9,
goes back to Zarantonello [759, 760] who used it for justifying the convergence of some numerical
algorithms to solve functional equations.

Section 5.2. The results presented in this section are taken from the paper by Mordukhovich and
Nghia [555], which contains also their applications to second-order (particularly full stability of
subdifferential variational systems) in finite and infinite dimensions. The main emphasis here is
on verifiable characterizations of local strong maximal monotonicity of set-valued mappings given
in Theorem 5.13 and Theorem 5.14 and the pointbased coderivative criterion of Theorem 5.16
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in the case of single-valued Lipschitzian ones, while the condition obtained therein is necessary
for such a monotonicity in the general set-valued setting; see also Remark 5.17. Observe that the
proofs of Theorems 5.13 and 5.14 work in any Hilbert space, but Theorem 5.16 seems to be finite-
dimensional.

It follows from Theorem 5.16 that the positive-definiteness coderivative condition (5.24) is suf-
ficient for the strong metric regularity of T around x̄, i.e., for the existence of a single-valued
Lipschitzian localization of the inverse mapping T −1 around (T (x̄), x̄). This notion is an abstract
version of Robinson’s strong regularity originally introduced [662] for solution maps to general-
ized equations via their linearization; see [227] for more discussions. A necessary and sufficient
condition for the latter property was established by Kummer [443] in terms of Thibault’s strict
derivative [705] of T at x̄; see also [678] for more details on this construction. Recall to this end
that the coderivative condition (5.24) provides a complete characterization of the local strong max-
imal monotonicity of T around x̄, which is a much weaker property than strong metric regularity
around this point.

Observe that there are different motivations and formalizations of local maximal monotonic-
ity (compare, e.g., [112, 455, 633, 641, 642]). This book and the preceding paper [555] adopt
in the setting of strong local monotonicity the one defined by Poliquin and Rockafellar [642, p.
290]. In this way, besides complete coderivative characterizations of strong local maximal mono-
tonicity, we obtain verifiable sufficient conditions for strong metric regularity. Note that for locally
monotone mappings, we have in fact the equivalence between metric regularity and strong metric
regularity around the reference point; see [227, Theorem 3G.5], which is a particular case of the
fundamental result by Kenderov [408] already used in Chapter 3.

Section 5.3. The coderivative approach to global and local maximal monotonicity and the re-
sults presented in this chapter open new perspectives in the study and applications of maximal
monotonicity in both finite and infinite dimensions. Some of the challenging open questions are
formulated as “exercises” in Section 5.3. To this end we mention Exercises 5.25, 5.26, and 5.39
and the related Remarks 5.7 and 5.17.

Second-order growth conditions for strong metric regularity of the convex and basic subdif-
ferentials presented in Exercises 5.27 and 5.28 are mainly taken from Mordukhovich and Nghia
[551], with the quantitative relations therein; see also Aragón and Geoffroy [20, 21] and Drusvy-
atskiy and Lewis [230] for some related results in this direction. Note that the monotonicity issues
play a significant role in the proofs; cf. the papers by Rockafellar and his collaborators [456, 642]
on stability of local minimizers, which have also been behind the motivations and results of [551].

The results of Exercise 5.30 are obtained by Drusvyatskiy, Mordukhovich, and Nghia [232],
where the authors formulated the statement of Exercise 5.31 as a conjecture. Besides the C2-
smooth cases presented in Exercise 5.29, this conjecture is known to be true for broad classes of
continuously prox-regular functions ϕ : Rn → R; in particular, for convex ones due to Kenderov’s
theorem [408] and the maximal monotonicity of the convex subdifferential, for functions of the
type ϕ(x) = ϕ0 + δ�(x) with ϕ0 ∈ C2 and a polyhedral convex set � due to Dontchev and Rock-
afellar [225], and for functions of the latter type with � being a second-order/Lorentz cone due to
Outrata and Ramírez [625], as well as in the setting of Exercise 5.30. However, in the general case
of prox-regular and subdifferentially continuous functions, this conjecture remains a challenging
and very important open question.

The notion of strong metric subregularity and the equivalent notion of isolated calmness for
inverse mappings have been long time studied in the literature under different names (or without
giving a name); see, e.g., [94, 220, 226, 417, 420, 453, 632, 677] for early publications. The afore-
mentioned terminology was suggested by Dontchev and Rockafellar and by now has been widely
used; see [227] along with the recent publications [20, 21, 23, 151, 160, 228, 232, 286, 433, 561,
562, 577, 724].

Although the explicit proof of sufficiency of the graphical derivative condition for isolated
calmness in Exercise 5.33(i) is given by King and Rockafellar [417] and the necessity of this
condition is proved by Levy [453], this criterion is actually goes back to the earlier paper by
Rockafellar [677]. It also can be deduced from Zhang and Treiman [771]; see Exercise 5.33(ii).
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The quadratic growth and strong monotonicity characterizations of strong metric subregularity
of the convex subdifferential from Exercise 5.34 are due to Aragón and and Geoffroy [20, 21],
while the results for the basic subdifferential with the quantitative interplay between constraints
in Exercise 5.35 are taken from Drusvyatskiy, Mordukhovich, and Nghia [232]. It is easy to find
functions ϕ : R → R for which the strong metric subregularity of the basic subdifferential at lo-
cal minimizers cannot be characterized by the quadratic growth of ϕ; see [232]. It is shown lately
by Drusvyatskiy and Ioffe [228] that such a characterization holds for the class of subdifferen-
tially continuous and semialgebraic functions ϕ : Rn → R, which is different from both classes
of C2-smooth and convex functions while being nevertheless important for some applications in
variational analysis and nonsmooth optimization.

Quite recently [209], a robust version of isolated calmness for a set-valued mapping F at

(x̄, ȳ) ∈ gphF with the additional requirement that F(x) ∩ U 
= ∅ for all x ∈ V has been labeled

as the robust isolated calmness. Note that this property was actually employed earlier in particular

settings without naming it; see [94, 226, 420, 632]. If the set-valued mapping F is lower semicon-

tinuous at (x̄, ȳ) in the standard topological sense, then isolated calmness implies its robust coun-

terpart. However, it doesn’t hold in general as shown, e.g., in [562, Example 6.4]. In fact, the usage

of robust isolated calmness in numerical optimization has been recognized in the literature starting

with the 1990s. In particular, the sharpest result for the sequential quadratic programming (SQP)

method for solving NLPs, obtained by Bonnans [94], imposes the strict Mangasarian-Fromovitz

constraint qualification together with the conventional second-order sufficient condition for NLPs.

As later proved by Dontchev and Rockafellar [226, Theorem 2.6], the simultaneous validity of

these conditions characterizes robust isolated calmness of solutions maps of canonically perturbed

KKT systems in NLPs. Recently this result has been extended by Ding, Sun, and Zhang [209]

to some nonpolyhedral problems of constrained optimization under the so-called strict Robinson

constraint qualification . Mordukhovich and Sarabi [577] characterized robust isolated calmness

for generalized KKT systems in problems of composite optimization relating this notion to non-

criticality of Lagrange multipliers associated with local minimizers for such problems. The latter

notion extends the one introduced by Izmailov and Solodov [383] for the classical KKT systems in

NLPs. Furthermore, it is shown in [577] that the Lipschitz-like property of solution maps to gener-

alized KKT systems for composite optimization problems yields their robust isolated calmness at

the corresponding points.



Chapter 6
Nondifferentiable and Bilevel
Optimization

It is not accidental that we unify the exposition of these two areas of optimization
theory in one chapter. It has been widely recognized that problems of nondiffer-
entiable/nonsmooth optimization (i.e., those containing nondifferentiable functions
and/or sets with nonsmooth boundaries in their objectives and/or constraints) natu-
rally and frequently appear in different aspects of variational analysis and numerous
applications while being very challenging from both theoretical and algorithmic
viewpoints. On the other hand, problems of bilevel optimization are intrinsically
nonsmooth, even in the case of fully smooth data at their lower and upper levels. In
fact, they can be reduced to single-level optimization problems, but the price to pay
is the unavoidable presence of nonsmooth functions as a result of such reductions,
regardless of smoothness assumptions imposed on the given data.

The main emphasis of this chapter is obtaining efficient first-order necessary op-
timality conditions for problems of nondifferentiable programming and then apply-
ing them to bilevel programs with smooth and nonsmooth functions at both levels
of optimization. To proceed in these directions, we rely on the constructions and
results of variational analysis and generalized differentiation developed in the pre-
vious chapters of the book.

6.1 Problems of Nondifferentiable Programming

We start with deriving necessary optimality conditions for problems of nonsmooth
minimization with geometric constraints given by closed sets and then extend them
to general problems of nondifferentiable programming with functional constraints
described by finitely many inequalities and equalities.
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6.1.1 Lower and Upper Subdifferential Conditions

Given ϕ : Rn → R and � ⊂ R
n, consider the problem:

minimize ϕ(x) subject to x ∈ �. (6.1)

Our goal here is to obtain necessary conditions for (feasible) local minimizers
x̄ ∈ domϕ ∩ � in (6.1). We derive two different types of necessary optimality
conditions. Conditions of the first type, called the lower subdifferential optimality
conditions, are expressed in terms of the basic subdifferential (1.24) under appro-
priate qualification conditions formulated in terms of the singular subdifferential
(1.25). Conditions of the second type, called the upper subdifferential optimality
conditions, make use of the upper regular subdifferential (1.76) of the cost function
ϕ that is equivalently described as

∂̂+ϕ(x̄) = −∂̂(−ϕ)(x̄), |ϕ(x̄)| < ∞. (6.2)

Note that (6.2) may be empty for broad classes of nonsmooth functions (e.g., for
convex functions nondifferentiable at x̄) while giving more selective necessary con-
ditions for minimization than the lower subdifferential ones in certain “upper regu-
lar” settings; see the results, examples, and discussions below.

As before, we always assume without loss of generality that cost functions are
l.s.c. around the reference points (although it is not needed for upper subdifferential
conditions) and constraint sets are locally closed around them.

The following theorem contains necessary optimality conditions of both types for
problem (6.1). Observe that both of them are derived from the variational/extremal
principles. Indeed, the upper subdifferential conditions are induced by the smooth
variational description of regular subgradients. To establish the lower subdifferential
optimality conditions, we employ the basic subdifferential sum rule, which follows
from the extremal principle. In fact, the extremal principle can be used directly;
see, e.g., the proof of Theorem 6.5 below for problems involving functional and
geometric constraints.

Theorem 6.1 (Optimality Conditions for Problems with a Single Geometric
Constraint). Let x̄ ∈ domϕ ∩ � be a local optimal solution to the minimization
problem (6.1). The following assertions hold:

(i) The entire set of upper regular subgradients satisfies the inclusions

− ∂̂+ϕ(x̄) ⊂ N̂(x̄;�), −∂̂+ϕ(x̄) ⊂ N(x̄;�). (6.3)

(ii) Under the qualification condition

∂∞ϕ(x̄) ∩ (−N(x̄;�)) = {0} (6.4)

, we have the lower subdifferential relationships

∂ϕ(x̄) ∩ (−N(x̄;�)) 
= ∅, i.e., 0 ∈ ∂ϕ(x̄)+N(x̄;�). (6.5)
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Proof. To justify assertion (i), it suffices to verify only the first inclusion in (6.3)
since N̂(x̄;�) ⊂ N(x̄;�) by Theorem 1.6. To proceed with this task, suppose
that ∂̂+ϕ(x̄) 
= ∅ (there is nothing to prove otherwise), and pick any v ∈ ∂̂+ϕ(x̄).
Using (6.2) and applying the first part of Theorem 1.27 (which holds without the
l.s.c. assumption on ϕ), we find a function ψ : Rn → R with ψ(x̄) = ϕ(x̄) and
ψ(x) ≥ ϕ(x) whenever x ∈ R

n such that ψ is (Fréchet) differentiable at x̄ and
∇ψ(x̄) = v. It gives us

ψ(x̄) = ϕ(x̄) ≤ ϕ(x) ≤ ψ(x) for all x ∈ � close to x̄

showing therefore that x̄ is a local minimizer of the constrained problem:

minimize ψ(x) subject to x ∈ �,
where the cost function is differentiable at x̄. This problem can be equivalently
written in the form of unconstrained optimization:

minimize ψ(x)+ δ(x;�), x ∈ R
n.

Employing in the latter setting the generalized Fermat rule from Proposition 1.30(i)
and then the regular subdifferential sum rule from Proposition 1.30(ii) with taking
into account that ∇ψ(x̄) = v, we get

0 ∈ ∂̂(ψ + δ(·;�))(x̄) = ∇ψ(x̄)+ N̂(x̄;�) = v + N̂(x̄;�).

This yields −v ∈ N̂(x̄;�) for any v ∈ ∂̂+ϕ(x̄) and thus verifies (i).
To prove assertion (ii), we apply the generalized Fermat rule to the local optimal

solution x̄ of problem (6.1) written in the unconstrained form:

minimize ϕ(x)+ δ(x;�), x ∈ R
n,

and then deduce from the basic subdifferential sum rule of Theorem 2.19 that

0 ∈ ∂(ϕ + δ(·;�))(x̄) ⊂ ∂ϕ(x̄)+N(x̄;�)
provided the validity of the qualification condition (6.4) due to Proposition 1.19.
This verifies (6.5) and completes the proof of the theorem. �

Let us discuss some particular features of the lower and upper subdifferential
conditions from Theorem 6.1 and relationships between them.

Remark 6.2 (Upper vs. Lower Subdifferential Optimality Conditions).
(i) Note first that in the case where ϕ is (Fréchet) differentiable at x̄, the optimal-

ity conditions in (6.3) reduce to

−∇ϕ(x̄) ∈ N̂(x̄;�), −∇ϕ(x̄) ∈ N(x̄;�),
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while only the second inclusion can be derived from (6.5) provided that ϕ is strictly
differentiable at x̄. On the other hand, the upper subdifferential conditions in (6.3)
are trivial when ∂̂+ϕ(x̄) = ∅, which is the case of, e.g., convex continuous functions
nondifferentiable at x̄. In contrast, the lower subdifferential condition (6.5) is non-
trivial for broad collections of nonsmooth functions including, e.g., every locally
Lipschitzian function ϕ for which ∂ϕ(x̄) 
= ∅ and the qualification condition (6.4)
holds due to ∂∞ϕ(x̄) = {0} by Theorem 1.22.

(ii) Note also that the triviality condition ∂̂+ϕ(x̄) = ∅ itself is an easy checkable
necessary condition for optimality in (6.1) provided that ϕ is nondifferentiable at x̄
and � = R

n. Indeed, in this case, we have the inclusion 0 ∈ ∂̂ϕ(x̄) 
= ∅ by the
generalized Fermat rule and hence ∂̂+ϕ(x̄) = ∅ by the simple observation from
Exercise 1.76(ii).

(iii) Recall that ϕ is upper regular at x̄ if ∂̂+ϕ(x̄) = ∂+ϕ(x̄). Note that, besides
concave functions and differentiable ones, this class includes, e.g., a rather large
class of semiconcave functions important in various applications to optimization
and control; see, e.g., [136, 523]. If ϕ is upper regular at x̄ and locally Lipschitzian
around this point, we have ∂̂+ϕ(x̄) = −∂(−ϕ)(x̄) 
= ∅ by Theorem 1.22, i.e., the
upper subdifferential conditions in (6.3) definitely give us a nontrivial information.
Furthermore, in this case, we also have ∂ϕ(x̄) = ∂̂+ϕ(x̄) for Clarke’s generalized
gradient due to its plus-minus symmetry (1.79). Taking into account that the inclu-
sions in (6.3) are valid for the entire set of upper subgradients, these observations
show that the upper subdifferential optimality conditions may have sizable advan-
tages over the lower subdifferential ones from Theorem 6.1(ii).

(iv) Let us consider in more detail problems of concave minimization, i.e., when
the cost function ϕ is concave in (6.1). This class is of significant interest for various
aspects of optimization theory and applications; in particular, from the viewpoints
of global optimization; see, e.g., [355]. When ϕ is concave and continuous around
x̄, it follows from Exercise 1.77 that

∂ϕ(x̄) ⊂ ∂+ϕ(x̄) = ∂̂+ϕ(x̄) 
= ∅.
Then comparing the second inclusion in (6.3) (which is even weaker than the first in-
clusion therein) with the lower subdifferential condition in (6.5), we see that the nec-
essary condition of Theorem 6.1(i) requires that every element v of the set ∂̂+ϕ(x̄)
must belong to −N(x̄;�), instead of that some element v from the smaller set ∂ϕ(x̄)
belongs to −N(x̄;�) in Theorem 6.1(ii). Let us illustrate it by the following simple
example:

minimize ϕ(x) := −|x| subject to x ∈ � := [−1, 0] ⊂ R.

Obviously x̄ = 0 is not an optimal solution to this problem. However, it cannot be
taken away by the lower subdifferential condition (6.5) due to

∂ϕ(0) = {−1, 1}, N(0;�) = [0,∞), and − 1 ∈ −N(0;�).
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On the other hand, checking the upper subdifferential condition (6.3) gives us

∂̂+ϕ(0) = [−1, 1] and [−1, 1] 
⊂ N(0;�),
which confirms that x̄ = 0 is not optimal in (6.1), and thus (6.3) is a more selective
necessary condition for optimality in the problem under consideration.

Observe further that minimization problems for differences of two convex (DC)
functions can be equivalently reduced to minimizing concave functions subject to
convex constraints. This allows us to deduce necessary conditions for such problems
from the upper subdifferential conditions of Theorem 6.1(i).

Proposition 6.3 (DC Optimization Problems). Consider the problem:

minimize ϕ1(x)− ϕ2(x), x ∈ R
n, (6.6)

where ϕ1, ϕ2 : Rn → R are convex under the convention that ∞ − ∞ := ∞.
Then x̄ is a local minimizer of (6.6) if and only if the pair (x̄, ϕ1(x̄)) gives a local
minimum to the following problem on minimizing a concave function subject to
convex geometric constraints:

minimize ψ(x, α) := α − ϕ2(x) subject to (x, α) ∈ epiϕ1. (6.7)

Moreover, the upper subdifferential condition (6.3) for (6.7) reduces to the (lower)
subdifferential inclusion ∂ϕ2(x̄) ⊂ ∂ϕ1(x̄).

Proof. If x̄ solves (6.6) locally, i.e., there is a neighborhood U of x̄ such that

ϕ1(x̄)− ϕ2(x̄) ≤ ϕ1(x)− ϕ2(x) for all x ∈ U,
then for ᾱ := ϕ1(x̄), we obviously have

ᾱ − ϕ2(x̄) ≤ α − ϕ2(x) whenever (x, α) ∈ (U × R) ∩ epiϕ1,

which means that (x̄, ᾱ) locally solves problem (6.7). Conversely, suppose that there
exist ε > 0 and a neighborhood U of x̄ such that

ϕ1(x̄)− ϕ2(x̄) ≤ α − ϕ2(x) for all α ≥ ϕ1(x), x ∈ U, |α − ϕ1(x̄)| < ε.
Since ϕ1 is convex and finite around x̄ by the above, it is (Lipschitz) continuous
around this point. Thus there is a neighborhood Ũ of x̄ on which

|ϕ1(x)− ϕ1(x̄)| < ε, and so ϕ1(x̄)− ϕ2(x̄) ≤ ϕ1(x)− ϕ2(x), x ∈ Ũ .
This verifies that x̄ is a local solution to (6.6).

It remains to show that the upper subdifferential optimality condition

− ∂̂+ψ
(
x̄, ϕ1(x̄)

) ⊂ N
(
(x̄, ϕ1(x̄)); epiϕ1

)
(6.8)
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for (6.7) reduces to the subdifferential inclusion claimed in the proposition. Indeed,
we get by the direct calculations that

−∂̂+ψ
(
x̄, ϕ1(x̄)

) = ∂̂
(
ϕ2 − α)(x̄, ϕ1(x̄)

) = ∂ϕ2(x̄)× {0} + {0} × {−1}
= ∂ϕ2(x̄)× {−1}.

Hence the upper subdifferential inclusion (6.8) implies that

(v,−1) ∈ N((x̄, ϕ1(x̄)); epiϕ1
)

for all v ∈ ∂ϕ2(x̄),

which is equivalent to v ∈ ∂ϕ1(x̄) for all v ∈ ∂ϕ2(x̄) and thus justifies the claimed
necessary optimality condition ∂ϕ2(x̄) ⊂ ∂ϕ1(x̄) in (6.6). �

The crucial advantage of the second upper subdifferential inclusion in (6.3) in
comparison with the first one and also a strong feature of the lower subdifferential
qualification and optimality conditions are well-developed calculus rules available
for basic normals and subgradients in contrast to their regular counterparts. In partic-
ular, calculus results obtained in Chapter 2 allow us to derive various consequences
of both assertions (i) and (ii) of Theorem 6.1 in cases where � is represented as a
product and a sum of finitely many sets, as an inverse image of another set under a
set-valued mapping, as a system of inequalities and/or equalities, etc. Qualification
conditions that ensure the validity of the obtained representations of N(x̄;�) are
transferred in this way into constraint qualifications under which the corresponding
necessary optimality conditions hold in the qualified/normal/KKT (Karush-Kuhn-
Tucker) form, i.e., with no (=1) multiplier associated with the cost function; see
below.

Next we present both upper and lower subdifferential optimality conditions ob-
tained in this scheme for problems with finitely many geometric constraints.

Proposition 6.4 (Optimality Conditions for Problems with Many Geometric
Constraints). Consider the problem:

minimize ϕ(x) subject to x ∈ �i for i = 1, . . . , s, (6.9)

and suppose that x̄ ∈ domϕ ∩ �1 ∩ . . . ∩ �s is a local minimizer for (6.9). Then
the following upper subdifferential and lower subdifferential necessary optimality
conditions hold at x̄:

(i) Under the validity of the constraint qualification

[
v1 + . . .+ vs = 0, vi ∈ N(x̄;�i)

] �⇒ vi = 0 for all i = 1, . . . , s, (6.10)

we have the upper subdifferential inclusion

−∂̂+ϕ(x̄) ⊂ N(x̄;�1)+ . . .+N(x̄;�s).
(ii) Under the validity of the qualification condition
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[
v +

s∑

i=1

vi = 0 for v ∈ ∂∞ϕ(x̄), vi ∈ N(x̄;�i)
]

�⇒ v = v1 = . . . = vs = 0

stronger than (6.10), we have the lower subdifferential inclusion

0 ∈ ∂ϕ(x̄)+N(x̄;�1)+ . . .+N(x̄;�s).
Proof. Necessary optimality conditions in both assertions (i) and (ii) follow directly
from the corresponding results of Theorem 6.1 and the normal intersection rule for
finitely many sets given in Corollary 2.17. �

6.1.2 Finitely Many Inequality and Equality Constraints

Let us consider here the problem of nondifferentiable programming:
⎧
⎪⎪⎨

⎪⎪⎩

minimize ϕ0(x) subject to
ϕi(x) ≤ 0, i = 1, . . . , m,
ϕi(x) = 0, i = m+ 1, . . . , m+ r,
x ∈ � ⊂ R

n

(6.11)

with finitely many inequality and equality constraints while keeping geometric con-
straints as well. In what follows we derive various necessary optimality conditions
of both lower subdifferential and upper subdifferential types for local solutions to
program (6.11) depending on assumptions imposed on their initial data and proof
techniques. Our first theorem presents general necessary optimality conditions of
the lower subdifferential type expressed via normals and subgradients of each func-
tion and set in (6.11) separately. The proof is based on the direct application of the
extremal principle from Theorem 2.3. Recall that, unless otherwise stated, all the
functions in question are assumed to be lower semicontinuous around the reference
points.

Theorem 6.5 (Lower Subdifferential Conditions via Normals and Subgradi-
ents of Separate Constraints). Let x̄ be a feasible solution to (6.11), that is, a local
minimizer for this problem. The following necessary optimality conditions hold at
x̄:

(i) Assume that the equality constraint functions ϕi are continuous around x̄
for all i = m + 1, . . . , m + r . Then there are elements (vi, λi) ∈ R

n+1 for i =
0, . . . , m + r , not equal to zero simultaneously, and a vector v ∈ R

n such that
λi ≥ 0 for i = 0, . . . , m and

(v0,−λ0) ∈ N((x̄, ϕ0(x̄)); epiϕi
)
, v ∈ N(x̄;�), (6.12)

(vi,−λi) ∈ N((x̄, 0); epi ϕi
)
, i = 1, . . . , m, (6.13)
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(vi,−λi) ∈ N((x̄, 0); gphϕi
)
, i = m+ 1, . . . , m+ r, (6.14)

v +
m+r∑

i=0

vi = 0. (6.15)

If in addition the function ϕi is u.s.c. at x̄ for some i ∈ {1, . . . , m} with ϕi(x̄) < 0,
then λi = 0. If this happens for all i = 1, . . . , m, then we have the complementary
slackness conditions for the inequality constraints

λiϕi(x̄) = 0, i = 1, . . . , m. (6.16)

(ii) Assume that the functions ϕi are Lipschitz continuous around x̄ for all i =
0, . . . , m+ r . Then there are multipliers (λ0, . . . , λm+r ) 
= 0 such that

0 ∈
m∑

i=0

λi∂ϕi(x̄)+
m+r∑

i=m+1

λi

[
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

]
+N(x̄;�), (6.17)

λi ≥ 0, i = 0, . . . , m+ r, and λiϕi(x̄) = 0, i = 1, . . . , m. (6.18)

Proof. To justify (i), assume without loss of generality that ϕ0(x̄) = 0. Then it is
easy to check that (x̄, 0) is a locally extremal point of the following system of locally
closed sets in the product space R

n × R
m+r+1:

�i := {
(x, α0, . . . , αm+r )

∣∣ αi ≥ ϕi(x)
}
, i = 0, . . . , m,

�i := {
(x, α0, . . . , αm+r )

∣∣ αi = ϕi(x)
}
, i = m+ 1, . . . , m+ r,

�m+r+1 := �× {0}.
Applying the extremal principle of Theorem 2.3 immediately gives us the re-
lationships in (6.12)–(6.15). It follows from Proposition 1.17 that λi ≥ 0 for
i = 0, . . . , m. To finish the proof of (i), it remains to show that the complemen-
tary slackness conditions in (6.16) hold for each i ∈ {1, . . . , m} with ϕi(x̄) < 0
provided that ϕi is u.s.c. at x̄. Indeed, we get from this assumption that ϕi(x) < 0
for all x around x̄, and so (x̄, 0) is an interior point of the epigraph of ϕi . Thus
N((x̄, 0); epi ϕi) = {0} and (vi, λi) = (0, 0) for such i.

Assertion (ii) easily follows from (i) due to Theorem 1.22, which shows that the
normal cone to the epigraph of a locally Lipschitzian function ϕi is fully determined
by the (basic) subdifferential of ϕi . In the case of gphϕi for the equality constraints,
we deal with the epigraph of either ϕi or −ϕi scaled by the corresponding nonneg-
ative multiplier λi due to Proposition 1.17. �

The necessary optimality conditions of Theorem 6.5 are given in the non-
qualified/Fritz John form, which doesn’t ensure that λ0 
= 0 for the multiplier asso-
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ciated with the cost function. However, it is not hard to deduce from them (or from
the qualification conditions in the calculus rules employed in the proofs) appropri-
ate constraint qualifications of the generalized Mangasarian-Fromovitz and other
types, which yield λ0 = 1; see, e.g., [523, Chapter 5] with the commentaries and
references therein as well as the exercises in Section 6.4.

Observe that for standard nonlinear programs (6.11) with smooth functions ϕi
and � = R

n, the necessary optimality conditions of Theorem 6.5(ii) agree with the
classical Lagrange multiplier rule. However, it is not the case for problems with
nonsmooth equality constraints. Indeed, in the latter case, the result obtained in
Theorem 6.5(ii) involves nonnegative multipliers λi associated with the the unions
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄) as i = m + 1, . . . , m + r , which are {∇ϕi(x̄),−∇ϕi(x̄)} for
smooth functions. It is not hard to deduce from (6.17) and (6.18) a more conven-
tional form of the generalized Lagrange multiplier rule with no sign condition for
the equality multipliers, but in this way we arrive at a weaker necessary optimality
condition as shown in Example 6.7 below. To proceed, recall the two-sided version
of the basic subdifferential

∂0ϕ(x̄) = ∂ϕ(x) ∪ ∂+ϕ(x̄),

which is the symmetric subdifferential (1.75) already used in the book.

Corollary 6.6 (Equality Constraints via Symmetric Subgradients). Let x̄ be a
local minimizer of (6.11) under the assumptions of Theorem 6.5(ii). Then there exists
a nonzero collection of multipliers (λ0, . . . , λm+r ) ∈ R

m+r+1 satisfying the sign
conditions λi ≥ 0 for i = 0, . . . , m, the complementary slackness condition (6.16),
and the symmetric Lagrangian inclusion

0 ∈
m∑

i=0

λi∂ϕi(x̄)+
m+r∑

i=m+1

λi∂
0ϕi(x̄)+N(x̄;�). (6.19)

Proof. Follows directly from Theorem 6.5(ii) due to the (proper) inclusion

|λ|[∂ϕ(x̄) ∪ ∂(−ϕ)(x̄)] ⊂ λ
[
∂0ϕ(x̄) ∪ (− ∂0ϕ(x̄)

)]
, λ ∈ R,

applied to the functions ϕi , i = m+ 1, . . . , m+ r , in (6.17). �

6.1.3 Examples and Discussions on Optimality Conditions

Now we present several examples illustrating the difference between the obtained
versions of the generalized Lagrange multiplier rule and compare them with other
major versions known in nonsmooth optimization.

Example 6.7 (Nonnegative Sign vs. Symmetric Lagrangian Inclusions). As
shown above, inclusion (6.17) with all the nonnegative multipliers always implies
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the symmetric one (6.19) with λi ∈ R as i = m+ 1, . . . , m+ r . The following two-
dimensional problem with a single equality constraint confirms that the converse
implication doesn’t hold. Consider the problem:

minimize x1 subject to ϕ1(x1, x2) := ϕ(x1, x2)+ x1 = 0, (6.20)

where ϕ is taken from Example 1.31(ii). It follows from the subdifferential calcula-
tion therein that the set ∂ϕ1(0, 0) ∪ ∂(−ϕ1)(0, 0) in (6.17) is

{
(v1, v2) ∈ R

2
∣∣ |v1 − 1| ≤ v2 ≤ 1

} ∪ {
(v1,−|v1 − 1|)∣∣0 ≤ v1 ≤ 2

}

∪{(v1, 1)
∣∣− 2 ≤ v1 ≤ 0

} ∪ {
(−2,−1)

}

as depicted on Fig. 6.1(a). The symmetric subdifferential of ϕ1 is

∂0ϕ1(0, 0) = ∂ϕ(0, 0) ∪ {
(v,−1)

∣∣− 1 ≤ v ≤ 1
}+ (1, 0)

with ∂ϕ(0, 0) calculated in Example 1.31(ii); see Fig. 6.1(b). It is now easy to check
that the nonnegative sign inclusion (6.17) allows us to exclude the feasible solution
x̄ = (0, 0) from the candidates for optimality, while the symmetric one (6.19) is
satisfied at the nonoptimal point x̄.

−2 −1 2

1

−1

1

1

−1
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(a) ∂ϕ1(0, 0) ∪ ∂(−ϕ1)(0, )b()0 ∂0ϕ1(0, 0)

Fig. 6.1 Subdifferentials of ϕ1(x1, x2) = ∣∣|x1| + x2
∣∣+ x1 at (0, 0).

Example 6.8 (Comparison with the Convexified/Clarke Version of the La-
grange Multiplier Rule). Clarke’s version [164, 165] of the Lagrange multiplier
rule for nondifferentiable programming (6.11) with Lipschitzian data is given
in the form of Corollary 6.6 where the nonconvex subdifferentials ∂ϕi(x̄) for
i = 0, . . . , m and ∂0ϕi(x̄) for i = m + 1, . . . , m + r , as well as the normal cone
N(x̄;�), are replaced by their convexified counterparts:

0 ∈
m+r∑

i=0

λi∂ϕi(x̄)+N(x̄;�). (6.21)
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This version is obviously weaker than (6.6) and doesn’t allow us to exclude the
nonoptimal solution x̄ in problem (6.20) of the preceding Example 6.7. Moreover,
Clarke’s version (6.21) fails to recognize nonoptimal solutions even in much less
sophisticated examples from unconstrained nonsmooth optimization and also for
problems with only inequality constraints. One of the reasons for this is that, due
to the plus-minus symmetry of ∂ϕ, condition (6.21) does not distinguish between
minima and maxima and also between inequality constraints of the “≤” and “≥”
types. It makes an easy task to construct examples for which (6.21) is satisfied at
clearly nonoptimal points.

(i) First consider the simplest unconstrained minimization problem:

minimize ϕ(x) := −|x| over all x ∈ R,

where x̄ = 0 is a point of maximum, not minimum. Nevertheless, we have 0 ∈
∂ϕ(0) = [−1, 1] while 0 /∈ ∂ϕ(0) = {−1, 1}.

(ii) The second example in this direction concerns the following two-dimensional
problem with a single nonsmooth inequality constraint:

minimize x1 subject to ϕ(x1, x2) := |x1| − |x2| ≤ 0.

We have here ∂ϕ(0, 0) = {(v1, v2)| − 1 ≤ v1 ≤ 1, v2 = 1, or v2 = −1} by
Example 1.31(i), and hence the point x̄ = (0, 0) is ruled out from optimality by
Corollary 6.6, while the usage of the generalized gradient ∂ϕ(0, 0) = {(v1, v2)| −
1 ≤ v1 ≤ 1,−1 ≤ v2 ≤ 1} doesn’t allow us to do it by (6.21).

Example 6.9 (Comparison with Warga’s Version of the Lagrange Multiplier
Rule). Another extension of the Lagrange multiplier rule to problems of nondif-
ferentiable programming (6.11) with � = R

n and Lipschitzian functions ϕi was
obtained by Warga [736, 737] in terms of his derivate containers �0ϕi(x̄) in the
form of Corollary 6.6 with the Lagrangian inclusion

0 ∈
m+r∑

i=0

λi�
0∂ϕi(x̄). (6.22)

Note that the set�0ϕ(x̄) is generally nonconvex, possesses the classical plus-minus
symmetry, and may be strictly smaller than Clarke’s generalized gradient ∂ϕ(x̄).
As shown in [522, Corollary 2.48], we always have ∂0ϕ(x̄) ⊂ �0ϕ(x̄). Hence the
necessary optimality conditions of Theorem 6.5(ii) and Corollary 6.6 definitely yield
the result of (6.22). Let us illustrate that the improvement is strict in both cases of
equality and inequality constraints.

(i) For the case of only equality constraints in (6.11), the claimed strict inclusion
follows from Example 6.7 with the constraint function ϕ1 defined in (6.20). Indeed,
condition (6.22) is satisfied at the nonoptimal point x̄ = (0, 0), while (6.19) con-
firms its nonoptimality. Recall that the derivative container �0ϕ(x̄) for the function
ϕ in this example is depicted on Fig. 1.13.
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(ii) To demonstrate the advantage of (6.17) for nondifferentiable programs with
inequality constraints, consider the problem

minimize x2 subject to ϕ1(x1, x2) := ϕ(x1, x2)+ x2 ≤ 0,

where ϕ is taken from Example 1.31(ii) and its subdifferential ∂ϕ(0, 0) is calculated
therein. Hence we have

∂ϕ1(0, 0) = {
(v1, v2)

∣∣ |v1| + 1 ≤ v2 ≤ 2
} ∪ {

(v1, v2)
∣∣ 0 ≤ v2 = −|v1| + 1

}

as depicted on Fig. 6.2. This shows that the result of Theorem 6.5(ii) (same in Corol-
lary 6.6) allows us to rule out the nonoptimal point x̄ = (0, 0), while it cannot be
done by using Warga’s condition (6.22).

Next we derive yet another type of lower subdifferential optimality conditions
for problem (6.11) with Lipschitzian data that are expressed in the condensed form
via the basic subdifferential (1.24) of Lagrangian combinations of the initial data.
Consider the standard Lagrangian

L(x, λ0, . . . , λm+r ) := λ0ϕ0(x)+ . . .+ λm+rϕm+r (x)

involving the cost function and all the functional (while not geometric) constraints
and also the extended Lagrangian

L�(x; λ0, . . . , λm+r ) := λ0ϕ0(x)+ . . .+ λm+rϕm+r (x)+ δ(x;�)
involving also the set geometric constraint via its indicator function.

−1 1

2

1 ∂ϕ1(0, 0)

Fig. 6.2 Basic subdifferential of ϕ1(x1, x2) = ∣∣|x1| + x2
∣∣+ x2 at (0, 0).

Theorem 6.10 (Condensed Lower Subdifferential Optimality Conditions). Let
x̄ be a local minimizer of problem (6.11) under the assumptions of Theorem 6.5(ii).
Then there are multipliers λ0, . . . , λm+r , not equal to zero simultaneously, satisfying
(6.16) and the condensed Lagrangian inclusions

0 ∈ ∂xL�(x̄, λ0, . . . , λm+r ) ⊂ ∂xL(x̄, λ0, . . . , λm+r )+N(x̄;�). (6.23)
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Proof. Note that the second inclusion in (6.23) follows from the first one due to the
subdifferential sum rule from Corollary 2.20. To justify the first inclusion therein,
consider the set

E(ϕ0, . . . , ϕm+r , �) :=
{
(x, α0, . . . , αm+r ) ∈ R

n+m+r+1
∣∣∣ x ∈ �,ϕi(x) ≤ αi,

i = 0, . . . , m; ϕi(x) = αi, i = m+ 1, . . . , m+ r
}

and suppose without loss of generality that ϕ0(x̄) = 0. Denoting now by U a
neighborhood of the local minimizer x̄ in (6.11), we claim that the pair (x̄, 0) ∈
R
n × R

m+r+1 is an extremal point of the closed set system

�1 := E(ϕ0, . . . , ϕm+r , �) and �2 := clU × {0}. (6.24)

Indeed, we obviously have (x̄, 0) ∈ �1 ∩�2 and (�1 − (0, νk, 0, . . . , 0))∩�2 = ∅,
k ∈ N, for any sequence of negative numbers νk ↑ 0 by the local optimality of x̄ in
(6.11). Applying to this system the basic extremal principle from Theorem 2.3 gives
us multipliers (λ0, . . . , λm+r ) 
= 0 satisfying the inclusion

(0,−λ0, . . . ,−λm+r ) ∈ N((x̄, 0); E(ϕ0, . . . , ϕm+r , �)
)
, (6.25)

which implies the conditions in (6.16) due to the structure of the set �1 in (6.24).
Furthermore, it follows from the scalarization formula of Theorem 1.32 and its proof
that (6.25) can be equivalently rewritten as the first inclusion in (6.23) under the
assumed local Lipschitz continuity of ϕi . �

If the geometric constraint set � is convex, the second inclusion in (6.23) can be
written in the form of the abstract maximum principle.

Corollary 6.11 (Abstract Maximum Principle in Nondifferentiable Program-
ming). Suppose that the set � is convex in the assumptions of Theorem 6.10. Then
there are multipliers (λ0, . . . , λm+r ) 
= 0 such that

〈v, x̄〉 = max
x∈� 〈v, x〉 for some v ∈ −∂xL(x̄, λ0, . . . , λmr ).

Proof. It follows from Theorem 6.10 by the representation of the normal cone to
convex sets given in Proposition 1.7. �

We conclude this section by deriving upper subdifferential necessary optimal-
ity conditions for (6.11) that are independent of the obtained lower subdifferential
conditions; see more discussions in Remark 6.2.

Theorem 6.12 (Upper Subdifferential Optimality Conditions in Nondifferen-
tiable Programming). Let x̄ be a local minimizer of problem (6.11). Assume
that the functions ϕi are locally Lipschitzian around x̄ for the equality indices
i = m + 1, . . . , m + r . Then for any vi ∈ ∂̂+ϕi(x̄), i = 0, . . . , m, there are multi-
pliers (λ0, . . . , λm+r ) 
= 0 satisfying (6.16) and the inclusion
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−
m∑

i=0

λivi ∈ ∂
( m+r∑

i=m+1

λiϕi

)
(x̄)+N(x̄;�). (6.26)

Proof. Suppose without loss of generality that ∂̂+ϕi(x̄) 
= ∅ for i = 0, . . . , m.
Applying the second part of Theorem 1.27 to −vi ∈ ∂̂(−ϕi)(x̄) (we can always
assume that the functions −ϕi are bounded from below, which is actually not needed
for the localized version of Theorem 1.27 used in what follows) allows us to find
functions ψi : Rn → R for i = 0, . . . , m satisfying

ψi(x̄) = ϕi(x̄) and ψi(x) ≥ ϕi(x) around x̄

and such that each ψi(x) is continuously differentiable around x̄ with the gradient
∇ψi(x̄) = vi . It is easy to check that x̄ is a local solution to the following optimiza-
tion problem of type (6.11) but with the cost and inequality constraint functions
continuously differentiable around x̄:

⎧
⎪⎪⎨

⎪⎪⎩

minimize ψ0(x) subject to
ψi(x) ≤ 0, i = 1, . . . , m,
ϕi(x) = 0, i = m+ 1, . . . , m+ r,
x ∈ � ⊂ R

n.

(6.27)

To arrive finally at (6.26), it remains to apply to the solution x̄ of (6.27) the second
Lagrangian inclusion in (6.23) of Theorem 6.10 and then to use therein the elemen-
tary subdifferential sum rule from Proposition 1.30(ii). �

Employing further in (6.26) the subdifferential sum rule for Lipschitzian func-
tions from Corollary 2.20 and weakening in this way the necessary optimality con-
ditions for the case of equality constraints, we can express them in forms (6.17) and
(6.19) via the corresponding subdifferential constructions for the separate functions
ϕi , i = m+ 1, . . . , m+ r .

6.2 Problems of Bilevel Programming

In this section we begin considering a remarkable class of problems in hierarchical
optimization known as bilevel programming and also as Stackelberg games. Such
problems are highly interesting and challenging in optimization theory and impor-
tant for numerous applications. There is an enormous bibliography on bilevel pro-
gramming and related topics; see commentaries and references in Section 6.5 for
more discussions on major approaches and results.

Our primary goal here is to reduce bilevel programs to those in nondifferentiable
programming considered above and derive in this way several types of necessary
optimality conditions in terms of the initial bilevel data by using the results of Sec-
tion 6.1 together with subdifferentiation of marginal functions and other machinery
of variational analysis.
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6.2.1 Optimistic and Pessimistic Versions

Bilevel programming deals with problems of hierarchical optimization that address
minimizing a given upper-level/leader’s objective function f (x, y) from R

n × R
m

to R subject to the upper-level constraints x ∈ � ⊂ R
n along an optimal solution

y = y(x) to the parametric lower-level/follower’s problem

minimizey ϕ(x, y) subject to y ∈ G(x) (6.28)

with the objective/cost ϕ : Rn × R
m → R and the constraint set-valued mapping

G : Rn →→ R
m. For simplicity we confine ourselves to the case where the lower-

level constraints are given by the parameterized inequality systems

G(x) := {
y ∈ R

m
∣∣ g(x, y) ≤ 0

}
, (6.29)

where g = (g1, . . . , gp) : Rn × R
m → R

p and the vector inequality for g are un-
derstood componentwise. As follows from the proofs below, appropriately modified
similar results can be derived for other types of constraints in (6.28).

Note that the bilevel optimization problem formulated above is not fully deter-
mined when the solution/argminimum map

S(x) := argmin
{
ϕ(x, y)

∣∣ y ∈ G(x)}, x ∈ R
n, (6.30)

for the lower-level problem is set-valued, since in this case we did not specify how to
choose a single-valued decision function y(x). To deal with such a typical situation,
the two major versions, known as optimistic and pessimistic models, have been
designated in bilevel programming. We always suppose that the argminimum sets
S(x) are nonempty around the reference point.

The optimistic version in bilevel programming is formulated as follows:

minimize fopt (x) subject to x ∈ �,
where fopt (x) := inf

{
f (x, y)

∣∣ y ∈ S(x)}, (6.31)

which means that the decision y(x) is chosen in S(x) to benefit the objective fopt .
As usual, a point x̄ ∈ � is called a global (local) optimistic solution to (6.31) if
fopt (x̄) ≤ fopt (x) for all x ∈ � (sufficiently close to x̄). From the economics
viewpoint , this corresponds to a situation where the follower participates in the
profit of the leader, i.e., there exists some cooperation between both players on the
upper and lower levels.

However, it would not always be possible for the leader to convince the follower
to make choices that are favorable for him or her. Hence it is necessary for the upper-
level player to reduce damages resulting from undesirable selections on the lower
level. This brings us to the pessimistic version in bilevel programming formulated
in the following way:
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minimize fpes(x) subject to x ∈ �,
where fpes(x) := sup

{
f (x, y)

∣∣ y ∈ S(x)}. (6.32)

We can see that (6.32) is a special type of minimax problems, which challenges
come from the complicated structure of the moving set S(x) as the solution set to
the lower-level optimization problem.

Our main attention in this chapter is paid to the optimistic version, although we’ll
present some comments on the pessimistic version as well. Further, we’ll discuss in
the exercise and commentary sections of this chapter a multiobjective approach to
problems of bilevel programming that can be applied to both optimistic and pes-
simistic versions by reducing them to constrained multiobjective optimization prob-
lems studied in Chapter 9.

6.2.2 Value Function Approach

There are several approaches to optimistic bilevel programs known in the literature;
see Section 6.5 for more discussions and references. We concentrate here on the
so-called value function approach, which involves the optimal value function of the
lower-level problem (6.28) defined by

μ(x) := inf
{
ϕ(x, y)

∣∣ y ∈ G(x)}, x ∈ R
n, (6.33)

and provides a reformulation of the bilevel problem (6.31) in the form

minimize f (x, y) subject to x ∈ �,
g(x, y) ≤ 0, and ϕ(x, y) ≤ μ(x).

(6.34)

It is easy to see that problem (6.34) is globally equivalent to the original optimistic
bilevel program (6.31). The next proposition reveals relationships between local
solutions to these problems. To give its exact formulation and proof, we introduce
the two-level value function

η(x) := inf
{
f (x, y)

∣∣ g(x, y) ≤ 0, ϕ(x, y) ≤ μ(x)
}
, x ∈ R

n, (6.35)

and then define the corresponding modification of the solution map (6.30) by

S̃(x) := argmin
{
ϕ(x, y)

∣∣ g(x, y) ≤ 0, f (x, y) ≤ η(x)
}
. (6.36)

We obviously have S̃(x) ⊂ S(x) for all x ∈ R
n.

Proposition 6.13 (Local Optimal Solutions to Optimistic Bilevel Programs). Let
S̃(x) be defined in (6.36). The following assertions hold:

(i) If x̄ is a local optimal solution to (6.31), then for any ȳ ∈ S̃(x̄), the pair (x̄, ȳ)
is a local optimal solution to problem (6.34).
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(ii) Conversely, let (x̄, ȳ) be a local optimal solution to (6.34) for some ȳ ∈ S̃(x̄),
and let the mapping S̃ be inner semicontinuous at (x̄, ȳ). Then x̄ is a local optimal
solution to the original optimistic bilevel problem (6.31).

Proof. We verify (i) arguing by contradiction. Suppose that (x̄, ȳ) with some ȳ ∈
S̃(x̄) is not a local optimal solution to (6.34). Then we find a sequence of (xk, yk)
with xk → x̄, yk → ȳ so that xk ∈ �, g(xk, yk) ≤ 0, ϕ(xk, yk) ≤ μ(xk), and
f (xk, yk) < f (x̄, ȳ) = η(x̄) for all k ∈ N. It follows from the construction of
η(·) in (6.35) that η(xk) ≤ f (xk, yk). This shows that fopt (xk) < fopt (x̄), which
contradicts the local optimality of x̄ in (6.31).

To justify (ii), suppose that x̄ is not a local optimal solution to (6.31) while the
assumptions in (ii) are satisfied. Then we find a sequence xk → x̄ with xk ∈ � such
that fopt (xk) < fopt (x̄) for all k. Since S̃ is inner semicontinuous at (x̄, ȳ), there is a
sequence of yk ∈ S̃(xk)with yk → ȳ. This implies by (6.36) that ϕ(xk, yk) = μ(xk),
g(xk, yk) ≤ 0, and f (xk, yk) < f (x̄, ȳ), which contradicts the local optimality of
(x̄, ȳ) in (6.34). �

The obtained results (see also Exercise 6.36) allow us to adequately replace the
original optimistic bilevel problem (6.31) by the problem of constrained optimiza-
tion (6.34) of the type considered in Section 6.1 and derive necessary optimality
conditions for (6.31) from those for (6.34). Observe to this end that problem (6.34)
is written in form (6.11) of nonlinear programming without equality constraints,
where the inequality constraint

ϕ(x, y)− μ(x) ≤ 0 (6.37)

unavoidably involves the nondifferentiable function μ(x) of the marginal type (4.1)
the generalized differential properties of which were studied in Section 4.1. Note
however that the designated constraint (6.37) contains the term −μ(x), different
fromμ(x) in generalized differentiation, and that the constraint mappingG in (6.33)
is given in the particular form (6.29).

It turns out that, even in the case where the upper-level constraint set� reduces to
the whole space Rn or it is described by smooth inequalities, the usual Mangasarian-
Fromovitz and other standard constraint qualifications as well as their natural exten-
sions are violated; see more in Section 6.5.

6.2.3 Partial Calmness and Weak Sharp Minima

To overcome these difficulties, we present a qualification condition of another type
that allows us to incorporate the troublesome constraint (6.37) into a penalized cost
function and deal with it by using appropriate calculus rules of generalized differ-
entiation. Consider a perturbed version of (6.34) with the linear parameterization of
constraint (6.37) defined as follows:

minimize f (x, y) subject to x ∈ �, g(x, y) ≤ 0,
and ϕ(x, y)− μ(x)+ ϑ = 0, ϑ ∈ R.

(6.38)



236 6 Nondifferentiable and Bilevel Optimization

Definition 6.14 (Partial Calmness). The unperturbed problem (6.34) is PAR-
TIALLY CALM at its feasible solution (x̄, ȳ) if there exist a constant κ > 0 and a
neighborhood U of the triple (x̄, ȳ, 0) ∈ R

n × R
m × R such that

f (x, y)− f (x̄, ȳ)+ κ|ϑ | ≥ 0 (6.39)

for all (x, y, ϑ) ∈ U feasible to (6.38).

The next result reveals the role of partial calmness in bilevel programming.

Proposition 6.15 (Penalization via Partial Calmness). Let (x̄, ȳ) be a partially
calm feasible solution to problem (6.34), and let f be continuous at this point. Then
(x̄, ȳ) is a local optimal solution to the penalized problem

minimize f (x, y)+ κ(ϕ(x, y)− μ(x))
subject to x ∈ � and g(x, y) ≤ 0,

(6.40)

where the constant κ is taken from (6.39). Conversely, any local optimal solution
(x̄, ȳ) to (6.40) with some number κ > 0 is partially calm in (6.34).

Proof. By the assumed partial calmness, we get κ and U for which (6.39) holds. It
follows from the continuity of f at (x̄, ȳ) that there are numbers γ > 0 and η > 0
such that V := [(x̄, ȳ)+ ηB] × (−γ, γ ) ⊂ U and that

|f (x, y)− f (x̄, ȳ)| ≤ κγ whenever (x, y)− (x̄, ȳ) ∈ ηB.
This allows us to establish the relationship

f (x, y)− f (x̄, ȳ)+ κ(ϕ(x, y)− μ(x)) ≥ 0 (6.41)

whenever (x, y) ∈ [(x̄, ȳ) + ηB] ∩ gphG with G defined in (6.29) and x ∈ �.
Indeed, for (x, y, μ(x) − ϕ(x, y)) ∈ V , we deduce (6.41) directly from (6.39). If
otherwise (x, y, μ(x)− ϕ(x, y)) /∈ V , it follows that

ϕ(x, y)− μ(x) ≥ γ and so κ
(
ϕ(x, y)− μ(x)) ≥ κγ.

This also implies (6.41) due to f (x, y)− f (x̄, ȳ) ≥ −κγ . To complete the proof of
the first assertion of the proposition, observe that ϕ(x̄, ȳ) − μ(x̄) = 0 since (x̄, ȳ)
is a feasible solution to (6.34). The converse statement follows directly from the
definitions while arguing by contradiction. �

It is easy to see that a verifiable sufficient condition for the desired partial calm-
ness is provided by the following notion of local weak sharp minima, which has
been well recognized in qualitative and numerical aspects of optimization.

Definition 6.16 (Local Weak Sharp Minima). GivenQ ⊂ R
s , we say that P ⊂ Q

is a set of (LOCAL) WEAK SHARP MINIMA for a function φ : Rs → R over Q at
z̄ ∈ P with modulus α > 0 if

φ(z) ≥ φ(z̄)+ α dist(z;P) for all z ∈ Q near z̄. (6.42)
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The next proposition presents the precise formulation and provides a simple
proof of the result needed in what follows with some uniformity in (6.42).

Proposition 6.17 (Partial Calmness from Uniform Weak Sharp Minima). Let
(x̄, ȳ) be a local optimal solution to the bilevel program (6.34) such that we have
the UNIFORM WEAK SHARP MINIMUM condition:

ϕ(x, y)− μ(x) ≥ α dist
(
y; S(x)) with some α > 0 (6.43)

for all (x, y) near (x̄, ȳ) with x ∈ � and y ∈ G(x). Assume that f is locally
Lipschitzian around (x̄, ȳ). Then problem (6.34) is partially calm at (x̄, ȳ).

Proof. Picking any triple (x, y, ϑ) feasible to problem (6.38) and sufficiently close
to (x̄, ȳ, 0), we have x ∈ �, y ∈ G(x), and ϕ(x, y) − μ(x) + ϑ = 0, where |ϑ | is
small enough. Using assumption (6.43) gives us some v ∈ S(x) with

ϕ(x, y)− μ(x) ≥ α

2
‖y − v‖ ≥ 0.

Since (x̄, ȳ) is a local optimal solution to (6.34), we get

f (x, y)− f (x̄, ȳ) ≥ f (x, y)− f (x, v) ≥ −�‖y − v‖
≥ −2�

α

(
ϕ(x, y)− μ(x)

)
= −κ|ϑ |

with κ := 2�/α, where � > 0 is a Lipschitz constant of f around (x̄, ȳ). This
justifies the partial calmness condition (6.39). �

Note that assumption (6.43) corresponds to the local weak sharp minimum con-
dition of Definition 6.16 at z̄ = (x̄, ȳ) with respect to y for any fixed feasible vector
x with the following data:

z := (x, y), φ(z) := ϕ(x, y), P := S(x), and Q := G(x). (6.44)

Observe also that the uniform weak sharpness in (6.43) requires that the constant
α > 0 therein can be selected uniformly in x. Proceeding in this way and deriv-
ing, in particular, sufficient conditions for (6.42) that being applied to (6.43) are
independent of x, would allow us to decrease serious difficulties in dealing with
nonsmooth marginal function (6.33) in the value function approach to optimistic
bilevel programs.

Let us now present an easily verifiable condition of this type for weak sharp min-
imizers in nonlinear programming, which is of its own interest while being useful
bilevel optimization; see below more discussions in this vein.

Proposition 6.18 (Sufficient Conditions for Weak Sharp Minima). Let z̄ be a
local optimal solution to the nonlinear program:

minimize φ(z) subject to ψi(z) ≤ 0 for i = 1, . . . , p, (6.45)
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where the functions φ,ψi : Rs → R as i ∈ I (z̄) := {i| ψi(z̄) = 0} are Fréchet
differentiable at z̄. Suppose that necessary optimality conditions for z̄ hold in the
qualified Karush-Kuhn-Tucker form

∇φ(z̄)+
∑

i∈I (z̄)
λi∇ψi(z̄) = 0 for some λi ≥ 0

and that the following kernel condition

⋂

i∈J
ker ∇ψi(z̄) = {0} with J := {

i
∣∣ λi > 0

}
(6.46)

is satisfied. Then there exists a positive constant α such that

φ(z)− φ(z̄) ≥ α‖z− z̄‖ if ψi(z) ≤ 0 for i = 1, . . . , p (6.47)

whenever z is sufficiently close to z̄. Consequently, φ admits a set of local weak
sharp minima over Q := {z ∈ R

s | ψi(z) ≤ 0, i = 1, . . . , p
}

at z̄.

Proof. To justify (6.47) with some α > 0, suppose on the contrary that there exists
a sequence {zk} ⊂ Q with zk 
= z̄ and zk → z̄ such that

φ(zk)− φ(z̄) ≤ 1

k
‖zk − z̄‖ for all k ∈ N. (6.48)

Let dk := zk−z̄‖zk−z̄‖ and without loss of generality assume that dk → d as k → ∞
with ‖d‖ = 1. It follows from (6.48) by the (Fréchet) differentiability of φ at z̄
that 〈∇φ(z̄), d〉 ≤ 0. On the other hand, the assumed differentiability of the active
constraint functions at z̄ ensures that

〈∇ψi(z̄), d〉 ≤ 0 for all i ∈ I (z̄).
Using the last two inequalities and the imposed KKT condition tells us that

0 ≤ −〈∇φ(z̄), d〉 =
∑

i∈J
λi〈∇ψi(z̄), d〉 ≤ 0,

which yields 〈∇ψi(z̄), d〉 = 0 for all i ∈ J . Thus we have d = 0 by the kernel
condition (6.46), a contradiction that completes the proof. �

Observe that the kernel condition (6.46) is essential for Proposition 6.18 to hold.
Indeed, consider problem (6.45) with φ,ψ : R2 → R defined by

φ(z1, z2) := z2
1 − z2 and ψ(z1, z2) := z2.

Then Q = R × R− and z̄ := (0, 0) is the only solution to this problem. Since

ker ∇ψ(z̄) = R × {0},
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the kernel condition (6.46) is violated. It is easy to see that for any vector z =
(γ, 0) ∈ Q with γ 
= 0, we have the equalities

φ(z)− φ(z̄) = γ 2 and ‖z− z̄‖ = γ,

which immediately imply that the conclusion in (6.47) doesn’t hold, since the num-
ber γ > 0 can be chosen arbitrarily small.

Besides the presented conditions for weak sharp minima and their uniform coun-
terparts, there are other sufficient conditions for these properties with various ap-
plications to partial calmness in bilevel programming and related topics; see more
details in Sections 6.4 and 6.5. In particular, partial calmness is always satisfied for
bilevel programs where lower-level problems are linear with respect to their lower-
level decision variables; see Exercise 6.37(i).

The following examples illustrate some possibilities of verifying partial calmness
in bilevel program via the results established above.

Example 6.19 (Verification of Partial Calmness via Penalization). Let us show
that the penalty function characterization of partial calmness in Proposition 6.15
is a convenient tool to verify the validity or failure of partial calmness in bilevel
programming. Consider first the fully nonlinear, at both lower and upper levels,
bilevel program (6.34) with (x, y) ∈ R

2, � = R, and

f (x, y) := (x − 1)2

2
+ y2

2
, S(x) = argmin

{x2

2
+ y2

2

}
.

It is easy to see that S(x) = {0} for all x ∈ R and that μ(x) = x2/2 for the
lower-level value function in (6.33). Furthermore, the pair (x̄, ȳ) = (1, 0) is the
only solution to the upper-level problem, and so it is an optimal solution to the
bilevel program under consideration. We have ϕ(x, y) − μ(x) = y2/2, and hence
the corresponding unconstrained penalized problem (6.40) is

minimize
(x − 1)2

2
+ y2

2
+ κ y

2

2

with no constraints on (x, y). Observe that for any κ > 0, the latter problem is
smooth and strictly convex and has the unique optimal solution (x̄, ȳ) = (1, 0).
Thus the initial bilevel program is partially calm at this point.

On the other hand, replacing the upper-level cost function f (x, y) by

(x − 1)2

2
+ (y − 1)2

2

and keeping the same lower-level problem gives us the bilevel program (6.34) with
the optimal solution (x̄, ȳ) = (1, 1), which fails to satisfy the partial calmness con-
dition. Indeed, it is easy to see that the corresponding penalized problem (6.40) has
the only optimal solution
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(
1,

1

1 + κ
)


= (1, 1) whenever κ > 0.

Example 6.20 (Verification of Partial Calmness via Uniform Weak Sharp Min-
ima). Consider the constrained optimization problem in R

3:

minimize
x2

1

2
+ x2

2

2
subject to ai ≤ xi ≤ bi, i = 1, 2, 3. (6.49)

It is not hard to check that optimal solutions to this problem constitute the set of
weak sharp minima if either ai > 0 or bi < 0 for i = 1, 2; see Exercise 6.38(ii).
Thus Proposition 6.17 tells us that any bilevel program having (6.49) as its lower-
level problem with the above parameters ai, bi is partially calm at each of its local
optimal solutions.

Note that Example 6.19 shows that partial calmness in bilevel programs may
significantly depend on the structure of upper-level objectives. On the contrary, Ex-
ample 6.20 describes a class of multidimensional bilevel programs where partial
calmness holds independently of the upper level.

6.3 Bilevel Programs with Smooth and Lipschitzian Data

In this section we develop the value function approach to bilevel programming dis-
cussed above to obtain necessary optimality conditions in optimistic bilevel pro-
grams first with smooth and then with Lipschitzian initial data. For simplicity, con-
sider here the bilevel program (6.31) in the value/marginal function form (6.34) with
the upper-level constraint set � given by the inequalities

� := {
x ∈ R

n
∣∣ h(x) ≤ 0

}
with h(x) = (

h1(x), . . . , hq(x)
)
, (6.50)

which are described by the real-valued functions hj . Our major results are derived
under the inner semicontinuity of the argminimum map S in (6.30) at the reference
local optimal solution (x̄, ȳ) by passing to problem (6.34) via Proposition 6.13.
Imposing further the partial calmness of (6.34) at the given local solution (x̄, ȳ)
and using Proposition 6.15, we reduce (6.34) to the single-level programming form
(6.40), which is essentially used in our proofs.

Observe that problem (6.40) with constraints (6.50) is written as

minimize f (x, y)+ κ(ϕ(x, y)− μ(x))
subject to g(x, y) ≤ 0 and h(x) ≤ 0

(6.51)

for some κ > 0. Hence it can be treated as a particular case of the mathematical
program (6.11) with inequality constraints. The most essential specific features of
(6.51) are intrinsic nonsmoothness of the marginal function μ(x) from (6.33), re-
gardless of smoothness of the initial data, and the presence of function (6.33) in the
objective of (6.51) with the negative sign. Nevertheless, the above subdifferential re-
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sults for marginal functions and explicit representations of normals to sets described
by inequality constraints allow us to efficiently proceed in deriving necessary opti-
mality conditions for (6.34).

6.3.1 Optimality Conditions for Smooth Bilevel Programs

Given a feasible solution (x̄, ȳ) to the original optimistic bilevel program (6.34)
with the constraint set � defined in (6.50), denote by

I (x̄, ȳ) := {
i ∈ {1, . . . , p}∣∣ gi(x̄, ȳ) = 0

}
, J (x̄) := {

j ∈ {1, . . . , q}∣∣ hj (x̄) = 0
}

the collections of the corresponding active constraint indices. Considering first prob-
lem (6.34) with smooth initial data and following the traditional terminology in
bilevel programming, we say that (x̄, ȳ) is lower-level regular if for any nonnega-
tive numbers λi the implication

[ ∑

i∈I (x̄,ȳ)
λi∇ygi(x̄, ȳ) = 0

]
�⇒

[
λi = 0 whenever i ∈ I (x̄, ȳ)

]
(6.52)

holds. Similarly, x̄ is upper-level regular if
[
λj ≥ 0,

∑

j∈J (x̄)
λj∇hj (x̄) = 0

]
�⇒

[
λj = 0 whenever j ∈ J (x̄)

]
. (6.53)

Now we are ready to present our first result on necessary optimality conditions
for the original optimistic version of bilevel programming (6.31) with the upper-
level constraint set � given in (6.50).

Theorem 6.21 (Optimality Conditions for Smooth Bilevel Programs, I). Let
(x̄, ȳ) be a local optimal solution to the bilevel program (6.31) with � from (6.50).
Assume that all the functions therein are smooth around (x̄, ȳ) and x̄, respectively,
and that the bilevel program is partially calm at (x̄, ȳ). Suppose further that (x̄, ȳ)
is lower-level regular, that x̄ is upper-level regular, and that the solution map S in
(6.30) is inner semicontinuous at (x̄, ȳ). Then there are numbers κ > 0, λ1, . . . , λp,
β1, . . . , βp, and α1, . . . , αq such that

∇xf (x̄, ȳ)+
p∑

i=1

(βi − κλi)∇xgi(x̄, ȳ)+
q∑

j=1

αj∇hj (x̄) = 0, (6.54)

∇yf (x̄, ȳ)+ κ∇yϕ(x̄, ȳ)+
p∑

i=1

βi∇ygi(x̄, ȳ) = 0, (6.55)
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∇yϕ(x̄, ȳ)+
p∑

i=1

λi∇ygi(x̄, ȳ) = 0 (6.56)

with the following sign and complementary slackness conditions:

λi ≥ 0, λigi(x̄, ȳ) = 0 for all i = 1, . . . , p, (6.57)

βi ≥ 0, βigi(x̄, ȳ) = 0 for all i = 1, . . . , p, (6.58)

αj ≥ 0, αjhj (x̄) = 0 for all j = 1, . . . , q. (6.59)

Proof. Proposition 6.13(i) tells us that (x̄, ȳ) is a local optimal solution to (6.34),
even without the lower semicontinuity of S at (x̄, ȳ). Furthermore, the imposed par-
tial calmness ensures that (x̄, ȳ) is a local minimizer of the penalized problem (6.51)
with some fixed κ > 0. As mentioned above, the latter problem is a particular case
of the nondifferentiable program (6.11) with only the inequality constraints therein.
To apply to it the results of Theorem 6.5(ii), we need to check first that the marginal
function μ(x) from (6.33), where G(x) defined in (6.29) is locally Lipschitzian
around x̄ under the assumed lower-level regularity of (x̄, ȳ) in the bilevel program
under consideration.

Indeed, it is easy to see that the function μ(x) is l.s.c. around x̄. Since ȳ ∈ S(x̄),
the mapping M in (4.2) obviously reduces in this case to S that is assumed to be
inner semicontinuous at (x̄, ȳ), we deduce from formula (4.5) of Theorem 4.1(i) the
following inclusion:

∂∞μ(x̄) ⊂ D∗G(x̄, ȳ)(0) with G(x) = {
y ∈ R

m
∣∣ g(x, y) ≤ 0

}
. (6.60)

The result of Exercise 2.51(ii) on representing the normal cone to the set

gphG = {
(x, y) ∈ R

n × R
m
∣∣ gi(x, y) ≤ 0, i = 1, . . . , p

}

at (x̄, ȳ) tells us that D∗G(x̄, ȳ)(0) = {0} under the imposed lower-level regular-
ity. Thus we have ∂∞μ(x̄) = {0} from (6.60), which ensures that μ(·) is locally
Lipschitzian around x̄ due to Theorem 1.22; see also Exercise 4.25(iv).

Applying now the necessary optimality conditions of Theorem 6.5(ii) to problem
(6.51) at (x̄, ȳ) and then using the subdifferential sum rule from Proposition 1.30(ii)
give us multipliers λ ≥ 0, β1, . . . , βp, and α1, . . . , αq , not all zero, satisfying the
sign and complementary slackness conditions in (6.58) and (6.59) and the general-
ized Lagrangian inclusion

0 ∈ λ∇f (x̄, ȳ)+ κλ∇ϕ(x̄, ȳ)+ (
κλ∂(−μ)(x̄), 0)

+
p∑

i=1

βi∇gi(x̄, ȳ)+
q∑

j=1

αj
(∇hj (x̄), 0

)
.

(6.61)



6.3 Bilevel Programs with Smooth and Lipschitzian Data 243

It follows from the assumed lower-level regularity of (x̄, ȳ) and upper-level regu-
larity of x̄, combined with the sign and complementarity slackness conditions, that
λ 
= 0 and hence λ = 1 without loss of generality. Since

∂(−μ)(x̄) ⊂ ∂(−μ)(x̄) = −∂μ(x̄) = −co ∂μ(x̄)

by (1.83) and (1.79) due to the Lipschitz continuity of μ(x), we can incorporate
into (6.61) with λ = 1 the basic subdifferential estimate (4.4) for the marginal
function with the smooth constraints (6.29) under the imposed inner semicontinuity
assumption on S at (x̄, ȳ). This gives us multipliers λ1, . . . , λp satisfying (6.56) and
(6.57) such that the conditions in (6.55) and

∇xf (x̄, ȳ)+ κ∇xϕ(x̄, ȳ)− κ
[
∇xϕ(x̄, ȳ)+

p∑

i=1

λi∇xgi(x̄, ȳ)
]

+
p∑

i=1

βi∇xgi(x̄, ȳ)+
q∑

j=1

αj∇hj (x̄) = 0

hold. Collecting the like terms in the latter equation, we arrive at the remaining
equality (6.54) and thus complete the proof of the theorem. �

Now we develop a different device of necessary optimality conditions for bilevel
programs, which brings us to results significantly different from Theorem 6.21 in
both assumptions and conclusions. To proceed, let us first present a lemma of its
own interest that is crucial in the device below. It concerns calculus of regular sub-
gradients, which is pretty limited in general (e.g., no sum rule, etc.) while happens
to contain a nice difference rule particularly important in applications to bilevel pro-
grams via the value function approach. Note that the proof of the following lemma
is based on the smooth variational description of regular subgradients taken from
Theorem 1.27. Observe also that the necessary optimality condition in this lemma
has been already deduced in Proposition 6.3 from the upper subdifferential one.

Lemma 6.22 (Difference Rule for Regular Subgradients). Let both functions
ϕ1, ϕ2 : Rn → R be finite at x̄, and let ∂̂ϕ2(x̄) 
= ∅. Then we have

∂̂(ϕ1 − ϕ2)(x̄) ⊂
⋂

v∈̂∂ϕ2(x̄)

[
∂̂ϕ1(x̄)− v

]
⊂ ∂̂ϕ1(x̄)− ∂̂ϕ2(x̄). (6.62)

This implies that any local minimizer x̄ of the difference function ϕ1 − ϕ2 satisfies
the necessary optimality condition

∂̂ϕ2(x̄) ⊂ ∂̂ϕ1(x̄). (6.63)

Proof. To verify the first inclusion in (6.62), fix any u ∈ ∂̂(ϕ1 − ϕ2)(x̄) and v ∈
∂̂ϕ2(x̄). Employing the first assertion of Theorem 1.27, find a real-valued function
s(·) defined on a neighborhood U of x̄ such that it is (Fréchet) differentiable at x̄
satisfying the relationships
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s(x̄) = ϕ2(x̄), ∇s(x̄) = v, and s(x) ≤ ϕ2(x) for all x ∈ U.
This yields due to definition (1.33) of the regular subgradient u ∈ ∂̂(ϕ1 − ϕ2)(x̄)

that for any ε > 0 there exists γ > 0 such that

〈u, x − x̄〉 ≤ ϕ1(x)− ϕ2(x)−
(
ϕ1(x̄)− ϕ2(x̄)

)+ ε‖x − x̄‖
≤ ϕ1(x)− s(x)−

(
ϕ1(x̄)− s(x̄)

)+ ε‖x − x̄‖
whenever ‖x − x̄‖ ≤ γ . The latter ensures by Proposition 1.30(ii) that

u ∈ ∂̂(ϕ1 − s)(x̄) = ∂̂ϕ1(x̄)− ∇s(x̄) = ∂̂ϕ1(x̄)− v,
which justifies the first inclusion in (6.62) and obviously yields the second one.

To verify (6.63), observe that it is trivial if ∂̂ϕ2(x̄) = ∅. Otherwise, pick v ∈
∂̂ϕ2(x̄) and deduce from (6.62) by the generalized Fermat rule that

0 ∈ ∂̂(ϕ1 − ϕ2)(x̄) ⊂ ∂̂ϕ1(x̄)− v,
which shows that v ∈ ∂̂ϕ1(x̄) and thus justifies the set inclusion (6.63). �

For simplicity we consider in the next theorem the optimistic bilevel problem
(6.31) without upper-level constraints.

Theorem 6.23 (Optimality Conditions for Smooth Bilevel Programs, II). Let
(x̄, ȳ) be a local optimal solution to problem (6.31) with� = R

n and with the func-
tions f, g1, . . . , gp, ϕ continuously differentiable around (x̄, ȳ). Assume that this
problem is partially calm at the point (x̄, ȳ), which is lower-level regular for (6.34),
and also that ∂̂μ(x̄) 
= ∅ for lower-level value function (6.33). Then there exist
multipliers νi and βi as i = 1, . . . , p such that βi satisfy the sign and complemen-
tarity slackness conditions in (6.58), that νi satisfy the complementarity slackness
conditions

νigi(x̄, ȳ) = 0 for all i = 1, . . . , p,

and that the following equalities hold:

∇f (x̄, ȳ)+
p∑

i=1

νi∇gi(x̄, ȳ) = 0,

∇yϕ(x̄, ȳ)+
p∑

i=1

βi∇ygi(x̄, ȳ) = 0.

Proof. By Proposition 6.13(i) we get that (x̄, ȳ) is a local optimal solution to the
nondifferentiable program (6.34). It follows from Proposition 6.15 and the infinite
constraint penalization via the indicator function δ(·; gphG) that (x̄, ȳ) a local op-
timal solution to the unconstrained problem:

minimize f (x, y)+ κ(ϕ(x, y)− μ(x))+ δ((x, y); gphG
)
, (6.64)
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where the constant κ > 0 is taken from the definition of partial calmness. Applying
now the necessary optimality condition (6.63) from Lemma 6.22 to the difference
function in (6.64), we get

(
κ∂̂μ(x̄), 0

) ⊂ ∂̂
(
f (·)+ κϕ(·)+ δ(·; gphG)

)
(x̄, ȳ). (6.65)

It is not hard to observe (cf. the proof of Theorem 4.1) that

(̂
∂μ(x̄), 0

) ⊂ ∂̂
(
ϕ(·)+ δ(·; gphG)

)
(x̄, ȳ). (6.66)

Passing to the larger limiting subdifferential on the right-hand sides of (6.65) and
(6.66) and employing the elementary subdifferential sum rule, we have

(
κ∂̂μ(x̄), 0

) ⊂ ∇f (x̄, ȳ)+ κ∇ϕ(x̄, ȳ)+N((x̄, ȳ); gphG
)
,(̂

∂μ(x̄), 0
) ⊂ ∇ϕ(x̄, ȳ)+N((x̄, ȳ); gphG

)
.

Then the description of basic normals from Exercise 2.51 for sets given by inequal-
ity constraints under the imposed lower-level regularity ensures the existence of
multipliers λi and βi satisfying the sign and complementarity slackness conditions
in (6.57) and (6.58) as well as a vector v ∈ ∂̂μ(x̄) with

(v, 0) = ∇ϕ(x̄, ȳ)+
p∑

i=1

λi∇gi(x̄, ȳ) and

κ(v, 0) = ∇f (x̄, ȳ)+ κ∇ϕ(x̄, ȳ)+
p∑

i=1

βi∇gi(x̄, ȳ).

Dividing the latter inclusion by κ > 0 and denoting ν := κ−1 while keeping the
same notation for the modified multipliers βi and collecting the like terms, we arrive
at the equalities claimed in the theorem. �

The following example, consisting of two parts, illustrates the possibility to solve
bilevel programs by using necessary optimality conditions obtained in Theorem 6.21
and Theorem 6.23, respectively.

Example 6.24 (Solving Bilevel Programs via Optimality Conditions).
(i) Applying the conditions of Theorem 6.21. Consider the bilevel program:

minimize f (x, y) := −y subject to y ∈ S(x),
where S : R →→ R is the solution map of the nonlinear lower-level problem:

minimize ϕ(x, y) := −y2 + x4 − 3x2 + 1 subject to
y ∈ G(x) := {

y ∈ R
∣∣ y + x2 − 1 ≤ 0, −y + x2 − 1 ≤ 0

}
.

It is easy to check that the bilevel program in this example admits an optimal solu-
tion with x belonging to the interval [−1, 1]. Furthermore, we have
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S(x) = {− x2 + 1, x2 − 1
}

and μ(x) = −x2 for x ∈ [−1, 1].
This shows that S is inner semicontinuous at any point (x, y) ∈ gph S and the
lower-regularity assumption (6.52) is satisfied everywhere but (−1, 0) and (1, 0);
the upper regularity is automatic due to the absence of inequality constraints on the
upper level. Applying Theorem 6.21, we calculate

∇f (x, y) = (0,−1), ∇ϕ(x, y) = (4x3 − 6x,−2y),
∇g1(x, y) = (2x, 1), ∇g2(x, y) = (2x,−1)

and hence obtain the following relationships:

0 = (β1 − κλ1)2x + (β2 − κλ2)2x, 0 = −1 + κ(−2y)+ β1(1)+ β2(−1),
0 = −2y + λ1(1)+ λ2(−1), 0 = λ1(y + x2 − 1) = λ2(−y + x2 − 1),
0 = β1(y + x2 − 1) = β2(−y + x2 − 1)

with κ > 0 and all the nonnegative multipliers. Solving the above system gives
us the points (x, y) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)} suspicious for optimality.
Comparing the value of the upper-level objective at these points, we arrive at the
pair (x̄, ȳ) = (0, 1) and check finally that the given bilevel program is partially
calm at (0, 1). Thus this pair is the unique optimal solution to the bilevel program
under consideration by Theorem 6.21.

(ii) Applying the conditions of Theorem 6.23. Consider the program:

minimize f (x, y) := −y subject to y ∈ S(x),
where S : R →→ R is the solution map for the lower-level problem:

minimize ϕ(x, y) := −y2 subject to
y ∈ G(x) := {

y ∈ R
∣∣ − x + y4 − 1 ≤ 0, x + y4 − 1 ≤ 0

}
.

It is easy to see that this bilevel program admits an optimal solution. Then we calcu-
late the lower-level solution map by S(x) = {±√

1 − |x|} and the marginal function
by μ(x) = −√

1 − |x| for which ∂̂μ(x) 
= ∅ on R. Applying the necessary opti-
mality conditions of Theorem 6.23 gives us the relationships

−ν1 + ν2 = 0, −1 + 4y3ν1 + 4y3ν2 = 0,

−2y + 4y3β1 + 4y3β2 = 0, ν1(−x + y4 − 1) = ν2(x + y4 − 1) = 0,

β1(−x + y4 − 1) = β1(x + y4 − 1) = 0, β1 ≥ 0, β2 ≥ 0.

Solving this system of equations, we obtain the points (x, y) = (0,±1). Comparing
the upper-level objective selects the point (0, 1). Since the bilevel program under
consideration is partially calm at (0, 1), we conclude that (0, 1) is the unique optimal
solution to this problem.
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6.3.2 Optimality Conditions for Lipschitzian Problems

Analyzing the proofs of Theorem 6.21 and Theorem 6.23, it is not difficult to ob-
serve that these proofs and the results used therein lead us to necessary optimal-
ity conditions for bilevel programs with Lipschitzian data. In the following Lip-
schitzian versions of necessary optimality conditions, we replace the gradients of
the Lipschitzian functions involved by their basic subgradients and reformulate the
upper-level regularity condition (6.53) as satisfied for all the subgradients of hj at
x̄ and the lower-level regularity condition (6.52) as satisfied for all (ui, vi) with
(ui, vi) ∈ ∂gi(x̄, ȳ). In this way we have:

Theorem 6.25 (Optimality Conditions for Lipschitzian Bilevel Programs, I).
Let (x̄, ȳ) be a local optimal solution to the bilevel program (6.31) with � from
(6.50). Suppose that all the functions therein are locally Lipschitzian around
(x̄, ȳ) and x̄, respectively, under the validity of the other assumptions of Theo-
rem 6.21. Then there exist a number ν > 0, multipliers λ1, . . . , λp, β1, . . . , βp,
and α1, . . . , αq as well as a vector u ∈ R

n such that conditions (6.57)–(6.59) are
satisfied together with

(u, 0) ∈ co ∂ϕ(x̄, ȳ)+
p∑

i=1

λico ∂gi(x̄, ȳ) and

(u, 0) ∈ ∂ϕ(x̄, ȳ)+ ν∂f (x̄, ȳ)+
p∑

i=1

βi∂gi(x̄, ȳ)+
q∑

j=1

αj

(
∂hj (x̄), 0

)
.

Theorem 6.26 (Optimality Conditions for Lipschitzian Bilevel Programs, II).
Let (x̄, ȳ) be a local optimal solution to problem (6.31) with � = R

n. Suppose that
all the functions therein are locally Lipschitzian around (x̄, ȳ) under the validity of
the other assumptions of Theorem 6.23. Then there exist a number ν > 0, nonneg-
ative multipliers λi and βi satisfying the complementary slackness condition (6.57)
and (6.58) as i = 1, . . . , p, and a vector u ∈ R

n such that we have the inclusions

(u, 0) ∈ ∂ϕ(x̄, ȳ)+
p∑

i=1

λi∂gi(x̄, ȳ) and

(u, 0) ∈ ∂ϕ(x̄, ȳ)+ ν∂f (x̄, ȳ)+
p∑

i=1

βi∂gi(x̄, ȳ).

The proofs of these results as well as their several extensions are assigned in the
exercises of Section 3.4.

Remark 6.27 (Inner Semicompactness vs. Inner Semicontinuity of Solution
Maps). Observe that the necessary optimality conditions of Theorems 6.23 and 6.26
hold, in contrast to those in Theorems 6.21 and 6.25, without the inner semicontinu-
ity assumption on the solution map S (6.30). While the latter assumption is satisfied
in rather broad settings (e.g., when S is Lipschitz-like around (x̄, ȳ) and also when
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S(x̄) is a singleton but S(x) may not be for x close to x̄), it definitely doesn’t hold
in generality.

A significantly less restrictive assumption in the frameworks of Theorems 6.21
and 6.25 is provided by the inner semicompactness property of S at the domain point
x̄ defined in Exercise 2.46. In finite dimensions this property is rather close to the
local boundedness of S around x̄. The results obtained under the lower semicom-
pactness of S are different from their inner semicontinuity counterparts in that they
require considering all the vectors ȳ from the set S(x̄). The proofs go in the same
direction with replacing the results on the subdifferentiation of marginal functions
from Theorem 4.1(i) by their “union” versions from assertion (ii) therein.

Some consequences and specifications of the necessary optimality conditions for
bilevel programs with fully and partially convex (smooth and nonsmooth) struc-
tures can be derived from Theorems 6.25 and 6.26. However, significantly stronger
results for problems of these type will be obtained as consequences of those given in
Subsection 7.5.4. Hence we omit here formulating the corresponding consequences
of Theorems 6.25 and 6.26 while leaving this as exercises for the reader; see more
hints in Exercise 6.46.

6.4 Exercises for Chapter 6

Exercise 6.28 (Optimization Problems with Geometric Constraints).
(i) Derive necessary optimality conditions of Theorem 6.1(ii) and Proposition 6.4(ii) directly

from the extremal principle.
(ii) Extend the necessary optimality conditions of Theorem 6.1 and Proposition 6.4 to appro-

priate Banach spaces. Which assumption should be added to (6.4) to ensure the validity of The-
orem 6.1(ii) in infinite dimensions? Hint: Compare this with [523, Propositions 5.2 and 5.3 and
Theorem 5.5].

(iii) Construct an example of the optimization problem (6.1) with a Lipschitz continuous ob-
jective function ϕ defined on a Banach space X such that condition (6.5) doesn’t hold at a local
minimizer x̄ of this problem.

Exercise 6.29 (Problems of DC Programming).
(i) Extend the results of Proposition 6.3 to problems with convex geometric constraints of the

type x ∈ �.
(ii) Show that the convexity of the function ϕ1 in Proposition 6.3 can be replaced by the more

general property of quasiconvexity in the sense that

ϕ
(
λx1 + (1 − λ)x2

) ≤ max
{
ϕ(x1), ϕ(x2)

}
for all x1, x2 ∈ R

n, λ ∈ [0, 1].
(iii) Do all the results of Proposition 6.3 and the parts (i) and (ii) of this exercise hold in arbitrary

Banach spaces?

Exercise 6.30 (Necessary Conditions in Nondifferentiable Programming).
(i) Extend necessary optimality conditions of Theorem 6.5 for problems of nondifferentiable

programming of type (6.11) with finitely many geometric constraints.
(ii) Derive appropriate versions of Theorem 6.5 in Asplund spaces. Hint: Proceed as in the

proof of Theorem 6.5 with applying the corresponding results in infinite dimensions taken from
Exercises 2.31 and 1.69; compare with [523, Theorem 5.5].
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Exercise 6.31 (Extended Lagrangian Conditions for Lipschitzian Nondifferentiable Pro-
grams in Asplund Spaces). Consider the nondifferentiable program (6.11) described by locally
Lipschitzian functions on an Asplund space. Show that the necessary optimality conditions of The-
orem 6.10 hold true in this case.

Hint: Proceed by using the exact extremal principle from Exercise 2.31 and the subdifferential
sum from Exercise 2.54 in Asplund spaces; cf. [523, Theorem 5.24].

Exercise 6.32 (Constraint Qualifications in Nondifferentiable Programming).
(i) Based on Theorem 6.5(ii) and the normal cone representations from Exercises 2.51 and 2.52

in the case of locally Lipschitzian functions, derive constraint qualifications ensuring that λ0 = 1
in the optimality conditions of Theorem 6.5.

(ii) Which constraint qualifications correspond to those obtained in (i) in the case of smooth
constraint functions ϕi and � = R

n?
(iii) Derive extensions of the results in (i) to problems in Asplund spaces.

Exercise 6.33 (Necessary Optimality Conditions for Problems with Inclusion/Operator Con-
straints). Given ϕ : Rn → R, f : Rn → R

m, � ⊂ R
n, and � ⊂ R

m, consider the optimization
problem:

minimize ϕ(x) subject to f (x) ∈ �, x ∈ �, (6.67)

where f is strictly differentiable at the reference local minimizer x̄ ∈ f−1(�)∩� and its Jacobian
matrix ∇f (x̄) has full row rank.

(i) Prove that the upper subdifferential optimality condition

−∂̂+ϕ(x̄) ⊂ ∇f (x̄)∗N(f (x̄);�)+N(x̄;�)
holds under the validity of the constraint qualification

∇f (x̄)∗N(f (x̄);�) ∩ (−N(x̄;�)) = {0}.
(ii) Derive lower subdifferential optimality conditions for x̄ in both qualified/KKT and non-

qualified/Fritz John forms.
(iii) Extend the results of (i) and (ii) to appropriate infinite-dimensional spaces and specify the

results for the operator constraints f (x) = 0 ∈ Y with dimY = ∞.
Hint: Employ the corresponding calculus rules in the framework of Proposition 6.4 with�1 :=

f−1(�), �2 := �; compare it with [523, Theorems 5.7,5.8,5.11].

Exercise 6.34 (Optimization Problems with Inverse Image Constraints via the Extremal
Principle). Given ϕ : Rn → R, F : Rn →→ R

m, � ⊂ R
n, and � ⊂ R

m, consider the optimization
problem:

minimize ϕ(x) subject to F−1(�) ∩�. (6.68)

(i) Let x̄ be a local minimizer for problem (6.68). Show that the point (x̄, ϕ(x̄)) is locally
extremal for the system of three sets in R

n × R:

�1 := epiϕ, �2 := F−1(�), �3 := �× R.

(ii) Derive necessary optimality conditions for problem (6.68) by applying the extremal princi-
ple to the set system in (i).

(iii) Extend the result of (ii) to problem (6.68) in Asplund spaces.

Exercise 6.35 (Suboptimality Conditions in Nonlinear and Nondifferentiable Program-
ming). Consider problem (6.11), fix ε > 0, and recall that xε is an ε-optimal (suboptimal) solution
to this problem if it is feasible to (6.11) and satisfies the inequality ϕ0(xε) ≤ infϕ0(x)+ ε, where
the infimum of ϕ0 is taken over all the feasible solutions to problem (6.11).
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(i) Assume that� = R
n and that the functions ϕ0, . . . , ϕm+r are strictly differentiable on the set

of ε-optimal solutions to (6.11) while ϕ1, . . . , ϕm+r satisfy the Mangasarian-Fromovitz constraint
qualifications (see Exercise 2.53) on this set. Then for any ε-optimal solution xε to (6.11) and any
γ > 0, there exist an ε-optimal solution x̄ to this problem and multipliers λ1, . . . , λm+r such that

‖x̄ − xε‖ ≤ γ, λi ≥ 0, λiϕi(x̄) = 0 for i = 1, . . . , m,
∥∥∥∇ϕ0(x̄)+

m+r∑

i=1

λi∇ϕi(x̄)
∥∥∥ ≤ ε

γ
.

(ii) Assume that ϕi , i = 0, . . . , m+ r , are locally Lipschitzian on the set of ε-optimal solutions
to (6.11) and that � is closed therein. Then for any ε-optimal solution xε to (6.11) and any γ > 0,
there exist an ε-optimal solution x̄ to this problem and multipliers λ0, . . . , λm+r such that ‖x̄ −
xε‖ ≤ γ ,

∥∥∥
∑

i∈I (x̄)∪{0}
λix

∗
i + x∗

∥∥∥ ≤ ε

γ
,

∑

i∈I (x̄)∪{0}
λi = 1

with some λi ≥ 0 for i ∈ I (x̄) ∪ {0}, x∗ ∈ N(x̄;�), x∗
0 ∈ ∂ϕ0(x̄),

x∗
i ∈ ∂ϕi(x̄) for i ∈ {

1, . . . , m
} ∩ I (x̄), and

x∗
i ∈ ∂ϕi(x̄) ∪ ∂(−ϕi)(x̄) for i = m+ 1, . . . , m+ r.

(iii) Extend the results in (i) and (ii) to problems (6.11) in Asplund spaces.
Hint: Employ the subdifferential variational principle from Exercise 2.39 and then the subdif-

ferential sum rule from Corollary 2.20; cf. [523, Theorem 5.30].

Exercise 6.36 (Single-Level Reduction of Optimistic Bilevel Programs)
(i) Show that standard constraint qualifications (of the Mangasarian-Fromovitz type, etc.) fail

for the nondifferentiable program (6.34). Hint: Compare it with the results and proofs in [194, 745,
748].

(ii) Show that the inner semicontinuity assumption on the mapping S̃ from (6.36) at (x̄, ȳ) is
essential for the validity of Proposition 6.13(ii).

(iii) Prove that assertion (i) of Proposition 6.13 holds for some ȳ ∈ S(x̄) if the latter set from
(6.30) is assumed to be bounded and the upper-level cost function f (x̄, ·) is assumed to be l.s.c.
on S(x̄). Give examples showing that both of these assumptions are essential for the validity of the
result in question. Does it follow from the presented version of Proposition 6.13(i)?

Exercise 6.37 (Partial Calmness and Uniform Weak Sharp Minima in Bilevel Program-
ming). Consider the class of optimistic bilevel programs in form (6.34).

(i) Let � = R
n, and let gi in (6.34) be linear with respect y with domG = R

n. Prove that
any local optimal solution (x̄, ȳ) to (6.34) is partially calm provided that f is locally Lipschitzian
around this point; compare with the results in [201, 748].

(ii) Construct an example of a bilevel program partially calm at its local optimal solution with-
out the validity of the uniform weak sharp minimum condition (6.43).

(iii) Construct an example of a bilevel program where the partial calmness condition fails at a
local optimal solution.

Exercise 6.38 (Sufficient Conditions for Uniform Weak Sharp Minima).
(i) Under which assumptions on problem (6.34) the pointwise local weak sharp minima as in

(6.42) with data (6.44) yields the uniform one as in (6.43)?
(ii) Show that the set of optimal solutions to problem (6.49) consists of weak sharp minimizers

if either ai > 0 or bi < 0 for i = 1, 2. Hint: Compare it with [133].
(iii) Derive sufficient conditions for uniform sharp minima in the case of quadratic lower-level

problems. Hint: Compare it with [748, 749].
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Exercise 6.39 (Kernel Condition for Weak Sharp Minima)
(i) Is the kernel condition (6.46) equivalent to a full rank property of a matrix?
(ii) Apply the kernel condition (6.46) in the parametric version of (6.45) with data (6.44) to

ensure the uniform weak sharp minima in bilevel programming.
(iii) Extend the result of Proposition 6.18 to Lipschitzian nonlinear programs, and apply it to

bilevel programs with nonsmooth data.

Exercise 6.40 (Inf-Differentiability and Dual Characterizations of Weak Sharp Minimizers).
Considering a function ϕ : Rn → R and a set� ⊂ R

n, we say as in [785] that ϕ is inf-differentiable
at x̄ ∈ domϕ relative to � if

lim inf
x
�→x̄, u→x̄

ϕ(u)− ϕ(x)− dϕ(x; u− x)
‖u− x‖ = 0, (6.69)

where the contingent directional derivative dϕ is taken from (1.42). In particular, if (6.69) holds
with � = R

n and with � = {x̄}, then ϕ is called to be inf-differentiable at x̄ and single inf-
differentiable at x̄, respectively.

(i) Verify that if ϕ is locally Lipschitzian around x̄, then it is single inf-differentiable at this
point. Could the later property hold for non-Lipschitzian functions?

(ii) Show that every convex function is inf-differentiable on any closed and bounded subset of
the interior of its domain.

(iii) Let ϕ be locally Lipschitzian around x̄, subdifferentially regular on the set Lϕ(x̄) := {x ∈
R
n| ϕ(x) = ϕ(x̄)} and inf-differentiable at x̄ relative to Lϕ(x̄). Prove that the existence of η, r > 0

such that the inclusion

N
(
x;Lϕ(x̄)

) ∩ ηB ⊂ ∂ϕ(x)

holds for any x ∈ Lϕ(x̄)∩Br(x̄) is necessary and sufficient for the following specification of local
weak sharp minima in Definition 6.16:

η dist
(
x;Lϕ(x̄)

) ≤ ϕ(x)− ϕ(x̄) whenever x ∈ Br(x̄).
Hint: Compare (i)–(iii) with the corresponding statements and proofs in [785].

(iv) Clarify possible counterparts of (iii) for the study of uniform weak sharp minima in para-
metric optimization and bilevel programs.

Exercise 6.41 (Regular Subgradients of Value Functions in Lower-Level Problems). Let μ(x)
be the optimal value function of the lower-level problem in (6.34).

(i) Give a detailed proof of inclusion (6.65) in general Banach spaces.
(ii) Show that the equalities don’t hold in (6.64) and (6.65) for problems with smooth data in

finite dimensions.

Exercise 6.42 (Comparing Necessary Optimality Conditions for Bilevel Programs with
Smooth Data). Construct examples in which all the assumptions of both Theorem 6.21 and The-
orem 6.23 are satisfied while the necessary optimality conditions obtained in these theorems are
independent.

Exercise 6.43 (Necessary Optimality Conditions in Lipschitzian Bilevel Programming). Con-
sider local optimal solutions to the optimistic model (6.31).

(i) Give a detailed proof of Theorem 6.25. Hint: Compare it with [195, 540].
(ii) Give a detailed proof of Theorem 6.26. Hint: Compare it with [540].
(iii) Extend these theorems to bilevel programs with Lipschitzian (and smooth) data in the

presence of equality constraints.
(iv) Derive versions of these results for bilevel problems in Asplund spaces. Hint: Apply the

calculus rules used in the proofs of Theorems 6.21 and 6.23, their equality constraint versions
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presented in Chapters 2 and 4, and their infinite-dimensional extensions discussed therein in the
commentaries and exercises.

(v) Investigate the possibility to improve the necessary optimality conditions in Theorems 6.21
and 6.25 by using the symmetric subdifferential ∂0μ(x̄) of the value function (6.33) instead of the
convexified one in their proofs.

Exercise 6.44 (Extended Inner Semicontinuity in Bilevel Programming). Obtain finite-
dimensional and Asplund space extensions of Theorems 6.21 and 6.25 with replacing the inner
semicontinuity of the solution map S(x) by its μ-inner semicontinuity defined in Exercise 4.21.
Hint: Proceed similarly the proofs of these theorems and compare it with [540].

Exercise 6.45 (Bilevel Programs with Inner Semicompact Solution Maps for Lower-level
Problems). Considering the solution map S(x) of the lower-level problem in (6.34), verify the
following assertions:

(i) S(x) may not be inner semicontinuous at (x̄, ȳ) as in Theorems 6.21 and 6.25.
(ii) Show that the necessary optimality conditions of Theorems 6.21 and 6.25 may fail without

the inner semicontinuity requirement imposed on S(x) at (x̄, ȳ) under the validity of the other
assumptions therein.

(iii) Derive the corresponding version of Theorems 6.21 and 6.25 with replacing the inner semi-
continuity of S(x) by its inner semicompactness as well as the more general μ-semicompactness
property. Hint: Proceed as discussed in Remark 6.27 in the case of finite-dimensional and Asplund
spaces.

Exercise 6.46 (Convex Bilevel Programs). Consider the bilevel program (6.31) and its partially
calm local optimal solution. Suppose that the lower-level cost and constraint functions are convex
jointly with respect to all their variables.

(i) Prove the convexity of the optimal value function (6.33).
(ii) Assuming that the upper-level cost and constraint functions are also fully convex, derive a

specification of Theorem 6.21 by using the decomposition property

∂ψ(x̄, ȳ) ⊂ ∂xψ(x̄, ȳ)× ∂yψ(x̄, ȳ)
valued for full and partial subdifferentials of convex continuous functions ψ and the symmetric
property ∂(−ϕ)(x̄) ⊂ −∂ϕ(x̄). Hint: Compare this with [195].

(iii) Assuming that all the functions involved in (6.31) are continuously differentiable in addi-
tion to full convexity at the lower level, derive a further specification of Theorem 6.21 by using the
equality formula

∂μ(x̄) =
⋃

(λ1,...,λp)∈�(x̄,ȳ)

{
∇xϕ(x̄, ȳ)+

p∑

i=1

∇xgi(x̄, ȳ)
}

(6.70)

for the subdifferential of the optimal value function, where

�(x̄, ȳ) :=
{
(λ1, . . . , λp) ∈ R

p
∣∣∣ ∇yϕ(x̄, ȳ)+

p∑

i=1

λi∇ygi(x̄, ȳ) = 0,

λi ≥ 0, λigi(x̄, ȳ) = 0, i = 1, . . . , p
}
.

Hint: Deduce (6.70) from the equality representation

∂μ(x̄) =
⋃

(u,v)∈∂ϕ(x̄,ȳ)

{
u+D∗G(x̄, ȳ)(v)

}

for the subdifferential of the marginal function (6.33) with a convex function ϕ and a convex-graph
mappingG given in [537, Theorem 2.61] and the normal cone representations from Exercises 2.51
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and 2.52 with the equalities therein for convex functions due to the equality statement of Theo-
rem 2.26. Compare this with another approach to justify (6.70) with convex differentiable data
originated in [703].

(iv) Derive the corresponding consequences of Theorem 6.23 for convex bilevel programs with
continuous data cost functions and inequality constraints.

Exercise 6.47 (Hölder Subgradients in Bilevel Programming). Given a Banach space X, we
say as in [108] that x∗ ∈ X∗ is a Hölder subgradient of order s ≥ 0 for ϕ : X → R at x̄ ∈ domϕ
if there are constants C ≥ 0 and r > 0 such that

〈x∗, x − x̄〉 ≤ ϕ(x)− ϕ(x̄)+ C‖x − x̄‖1+s for all x ∈ x̄ + rB. (6.71)

The collection of all x∗ satisfying (6.71) is called the s-Hölder subdifferential of ϕ at x̄ and is
denoted by ∂̂H(s)(x̄). The case of s = 0 in (6.71) reduces to the regular/Fréchet subdifferential,
while the case of s = 1 corresponds to the proximal subdifferential ∂pϕ(x̄) defined above. We also
consider the upper s-Hölder subdifferentials of ϕ at x̄ ∈ domϕ defined symmetrically by

∂̂+
H(s)ϕ(x̄) := −∂̂H(s)(−ϕ)(x̄).

Similarly to our basic subdifferential, let us introduce the limiting s-Hölder subdifferential ∂H(s)(x)

of ϕ at x̄ by taking the outer limit of ∂̂H(s)(x) as x
ϕ→ x̄.

(i) Show that the regular subgradient difference rule given in Lemma 6.22 can be extended to
the s-Hölder subdifferentials of any real order s ≥ 0. Hint: Proceed as in the proof of Lemma 6.22
and compare it with [540].

(ii) For each s ≥ 0, determine the classes of Banach spaces, where the limiting s-Hölder subdif-
ferential ∂H(s)(x̄) agrees with our basic limiting construction ∂ϕ(x̄), and where these constructions
may be different.

(iii) Derive counterparts of the necessary optimality conditions from Theorem 6.26 in terms of
the corresponding s-Hölder subdifferentials, and clarify whether they are different, in appropriate
Banach spaces, from those given in the theorem. Hint: For the latter part, apply the tools of analysis
developed in [108].

Exercise 6.48 (Mathematical Programs with Equilibrium Constraints). This class of opti-
mization problems (abbr. MPECs) is written in the form:

minimize f (x, y) subject to y ∈ S(x), x ∈ �, (6.72)

where f : X × Y → R is defined on finite-dimensional or infinite-dimensional spaces and where
S : X →→ Y is given, with q : X × Y → Z and Q : X × Y →→ Z, by

S(x) := {
y ∈ Y ∣∣ 0 ∈ q(x, y)+Q(x, y)}, (6.73)

i.e., x �→ S(x) is the solution map to the parametric variational system in (6.73). The latter is
often labeled as the parameterized generalized equation (GE) if Q(x, y) = N(y;G(x)) for some
G : X →→ Y ; cf. Section 3.3 with a bit different notation.

(i) Derive necessary optimality conditions for abstract MPECs given in form (6.72) under the
most general assumptions on f (x, y) and S(x), and then deduce from them optimality conditions
for (6.73) entirely via the initial data q,Q,G. Provide specifications of the obtained results in the
case of finite-dimensional spaces. Hint: Reduce the models under consideration to those studied
in Section 6.1 and , then apply to the necessary optimality conditions therein the corresponding
results of generalized differential calculus. Compare it with [523, Section 5.2].

(ii) Under which assumptions the solution map S(x) for the lower-level problem (6.30) can be
equivalently written in the MPEC form (6.73)?

(iii) Investigate relationships between global and local solutions to optimistic bilevel programs
and to MPECs in (6.72), (6.73) for the case where the lower-level program in (6.28) is convex.
Hint: Consult [194] for problems with smooth data.
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Exercise 6.49 (Value Function Constraint Qualification). Consider the class of optimistic
bilevel programs defined by (6.72) with � = R

n and the solution map to the lower-level prob-
lem given as

S(x) := argmin
{
ϕ(x, y)

∣∣ y ∈ G} for G := {
y ∈ R

m
∣∣ gi(y) ≤ 0, i = 1, . . . , p

}
,

where ϕ : Rn×R
m → R is convex and continuously differentiable in y together with the functions

gi : Rm → R. Following [341], introduce the parameterized sets

C(ν) := {
(x, y) ∈ R

n × R
m
∣∣ ϕ(x, y)− μ(x) ≤ ν

}
, ν ∈ R,

involving the value function μ(x) from (6.33) for G(x) = G, and say that the value function
constraint qualification (VFCQ) is satisfied at (x̄, ȳ) ∈ gph S if the mapping C : R →→ R

n × R
m is

calm at (0, x̄, ȳ) as defined in Exercise 3.51.
(i) Verify that S(x) can be equivalently written, under the assumptions made, in the MPEC

form (6.73) with q(x, y) = ∇yϕ(x, y) and Q(x, y) = N(y;G). Hint: Use the classical necessary
and sufficient conditions in convex programming.

(ii) Show that if the bilevel program defined in this way has the uniform weak sharp minima
(6.43) around the local solution pair (x̄, ȳ), then VFCQ is satisfied at (x̄, ȳ). Give an example that
the reverse implication fails.

(iii) Verify that the validity of VFCQ at (x̄, ȳ) ensures that the partial calmness property holds
at this point, but not vice versa.

(iv) Assuming that the set G is bounded and that VFCQ is satisfied at (x̄, ȳ), prove that the
perturbation mapping

M(ν) := {
(x, y) ∈ R

n × R
m
∣∣ ν ∈ ∇yϕ(x, y)+N(y;G)

}
, ν ∈ R, (6.74)

is calm at (0, x̄, ȳ) as defined in Exercise 3.51, while the latter property is strictly weaker than
VFCQ in the setting under consideration.

Hint: Consult [341] for the proofs of the results stated in (ii)–(iv).

Exercise 6.50 (Necessary Optimality Conditions for Optimistic Bilevel Programs Without
Imposing Partial Calmness).

(i) Investigate the possibility of deriving necessary optimality conditions for the optimistic
bilevel program (6.31) by applying the corresponding results of the Fritz John type from Section 6.1
to the equivalent nondifferentiable program (6.34).

(ii) With the usage of the necessary optimality conditions for problems in the general form
(6.72) obtained in [523, Subsection 5.2.1] and expressed via the basic coderivative S(x), while
normal and mixed versions of it in Asplund spaces, derive their specifications for bilevel program-
ming by evaluating the coderivatives of the solution map (6.30) to the lower-level problem. Hint:
Consult [198] and the references therein for evaluating the basic coderivative of S(x) in finite
dimensions.

(iii) Following the approach of [341] developed for the optimistic bilevel programs with convex
lower-level problems and the MPEC solution maps described in Exercise 6.49, derive necessary
optimality conditions for nonconvex bilevel programs with replacing the partial calmness as in
Theorem 6.21 by the calmness property of the perturbation mapping (6.74) at (0, x̄, ȳ) in the sense
of Exercise 3.51.

(iv) Compare the results of [341] with those presented in Section 6.3 in the same smooth and
convex setting, and then investigate the possibility of extending the approach of [341] to the more
general frameworks studied above.

Exercise 6.51 (Two-Level Value Function in Bilevel Programming). Consider the cost function
fopt (x) in (6.31) with S(x) taken from (6.30); fopt (x) is labeled as the two-level optimal value
function in bilevel programming [198].

(i) Evaluate the basic and singular subdifferentials of fopt , and then establish verifiable condi-
tions for the local Lipschitz continuity of this function around a local solution to the optimistic
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bilevel program (6.31) by using Corollary 4.3 and the Lipschitz-like property of S(x) via the
coderivative criterion from Theorem 3.3.

(ii) Apply (i) to deriving necessary optimality conditions in the original optimistic model (6.31),
which may not be locally equivalent to model (6.34) studied above; see Proposition 6.13. Compare
it with the results presented in Section 6.3.

(iii) Implement this approach to justifying various types of stationarity in optimistic bilevel
programming as formulated, e.g., in [198].

Hint: Consult [198] for the results, proofs, and additional material.

Exercise 6.52 (Necessary Optimality Conditions in Pessimistic Bilevel Programming). Con-
sider the class of pessimistic bilevel programs (6.32) with the cost function fpes(x) under the same
constraints as in (6.31).

(i) Employing the results of Exercise 6.51(i) on the local Lipschitz continuity Lipschitz continu-
ity of fopt with taking into account that fpes = −fopt , derive necessary optimality and stationarity
conditions for (6.32) from those in Exercise 6.51(ii,iii).

(ii) Derive upper subdifferential conditions for pessimistic bilevel programs from the corre-
sponding results of Section 6.1.

Hint: Consult [199] for more details on both (i) and (ii).

Exercise 6.53 (Multiobjective Approach to Bilevel Programming). Given an upper-level ob-
jective function f : X × Y → R and the solution map S : X →→ Y to the lower-level problem
as described in (6.30) in the cases of finite-dimensional or infinite-dimensional spaces X and Y ,
consider the set-valued mapping F : X →→ R given in the composition form F(x) := f (x, S(x))

for x ∈ X, and rewrite the upper-level problem of bilevel programming as follows:

minimize F(x) subject to x ∈ � (6.75)

with respect to the standard order on R, where the upper-level constraint set � in (6.75) can be
represented as or added by some other types of constraints (functional, operator, complementarity,
equilibrium, etc.).

(i) Applying to (6.75) the coderivative and subdifferential types of necessary optimality
conditions obtained in Section 9.4 for multiobjective optimization together with the coderivat-
ice/subdifferential chain rules for the composition f (x, S(x)) and then evaluating the coderivative
of S, derive necessary optimality conditions for bilevel programs in terms of their initial data.

(ii) Specify the results obtained in this way for optimistic and pessimistic models of bilevel
programming, and compare it with those derived and discussed above.

6.5 Commentaries to Chapter 6

Section 6.1. Deriving necessary optimality conditions for optimization problems with nonsmooth
data has been among early motivations to develop constructions and machinery of modern varia-
tional analysis and generalized differentiation. Nonsmoothness naturally appeared in the original
framework of optimal control problems starting from the mid-1950s; see [645]. A simple albeit
typical problem of this type was formulated as minimizing a cost function ϕ(x(1)) depending on
the right endpoints of trajectories for the ODE control system

dx

dt
= f (x, u), x(0) = x0 ∈ R

n, u(t) ∈ U, t ∈ T := [0, 1] (6.76)

over measurable (or piecewise continuous) control functions u(t) on T with values belonging to
the prescribed closed set U ⊂ R

m. Since the feasible control region U may be arbitrary (a typical
case is when U consists of finitely many points as in systems of automatic control), the formulated
optimal control problem can be treated as an optimization problem with irregular geometric con-
straints regardless of smoothness assumptions on the given functions ϕ and f . Furthermore, this
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problem can be equivalently rewritten in form (6.1) studied above, where � ⊂ R
n is the reachable

set of trajectory endpoints generated by feasible controls in (6.76). Optimal control theory from
the very beginning, while revolving around different proofs and extensions of the Pontryagin max-
imum principle, has been seeking appropriate techniques to deal with this intrinsic nonsmoothness.
It was a major driving force to develop modern forms of variational analysis that invoke generalized
differentiation.

Another remarkable class of intrinsically nonsmooth optimization problems was also discov-
ered in the mid-1950s and named dynamic programming by Bellman [77]. His “Principle of Op-
timality” led him to the so-called Bellman equation for the corresponding optimal value function
while assuming the smoothness of the latter. Since this assumption fails even in simple examples,
the Bellman equation plays just a heuristic role in some practical problems but generally may result
in wrong conclusions; see, e.g., [645]. Comprehensive theories of the Hamilton-Jacobi-Bellman
and related PDE equations with numerous applications have been developed in the frameworks
of viscosity and minimax solutions by using tools of generalized differentiation; see the books
[66, 136, 167, 268, 698] and the references therein.

In fact, intrinsic (often hidden) nonsmoothness already appears at the very fundamental level
of modern optimization for problems with inequality constraints

ϕi(x) ≤ 0, i ∈ I, (6.77)

where the index set I may be finite (while fairly large as, i.e., in linear programming) or infinite as
in semilinear programming studied below in Chapters 7 and 8. It is well recognized that the de-
velopment of efficient machinery for studying and solving optimization problems with inequality
constraints is probably the most monumental contribution of mathematical optimizers to society.
Saying this, we observe that the inequality constraints (6.77) closely relate to nonsmoothness even
in the case of finitely many linear functions ϕi . Geometrically it is manifested by the vertices of
convex polyhedra that are described by (6.77) and play a crucial role in the groundbreaking sim-
plex algorithm to solve linear programs. Analytically nonsmoothness is revealed via the equivalent
replacement of (possibly great many) inequality constraints in (6.77) by the single one

φ(x) := max
{
ϕi(x)

∣∣ i ∈ I} ≤ 0

given by the maximum function φ(x), which is nondifferentiable even in the case of two linear
functions on the real line: φ(x) = max{x,−x} = |x|. As the reader can see in this book, among
other numerous publications, maximum/supremum functions and their generalized differentiation
are highly important for the study and applications of various types of optimization and equilibrium
problems.

To complete these discussions on the role of nonsmoothness in optimization, observe that non-
differentiable functions unavoidably arise while applying perturbation and approximation tech-
niques, which are central in modern variational analysis, to problems with smooth initial data.
Also powerful variational principles (notably the Ekeland one) lead us to considering nonsmooth
optimization problems.

Now we comment on some specific results presented in Section 6.1 and the corresponding ex-
ercises from Section 6.4. Lower subdifferential optimality conditions in terms of basic normals and
subgradients were derived by using the method of metric approximations in the original publica-
tions by the author [502, 503, 504, 507] and those joint with Kruger [439, 440, 528]. Their infinite-
dimensional extensions were given in [441, 426, 430] for problems in Fréchet smooth spaces under
certain Lipschitzian assumptions and in [516, 523] for the case of Asplund spaces under SNC-type
requirements imposed on the sets, mappings, and functions in question. Clarke’s version (6.21)
of the generalized Lagrange multiplier rule was obtained in [164, 165], and Warga’s rule (6.22)
was derived in [736, 737]. Other results in this direction in both Fritz John and KKT forms under
various qualification conditions can be found in, e.g., [16, 84, 273, 326, 328, 366, 523, 678, 685]
and the references therein.
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Applications of necessary optimality conditions presume that optimal solutions exist. This is
not always the case, especially in infinite dimensions. One of the primary motivations for develop-
ing of Ekeland’s variational principle was to obtain the “almost stationarity” condition for “almost
optimal” (suboptimal) solutions formulated in (2.24). More general (lower) necessary suboptimal-
ity conditions for problems of nonlinear and nondifferentiable programming presented in Exer-
cise 6.35 are based on the lower subdifferential variational principle formulated in Exercise 2.39
and are taken from [523, 587], where the reader can find more discussions and references.

Upper subdifferential optimality conditions for minimization problems were initiated by the
author [519] who obtained the results presented in Section 6.1 and their counterparts for other
optimization problems in general Banach spaces; see also [523, Chapter 5]. As discussed in Re-
mark 6.2, upper subdifferential conditions may have serious advantages over lower subdifferential
ones provided that ∂̂+ϕ(x̄) 
= ∅. Various classes of such functions were discussed in [523, Subsec-
tion 5.5.4].

It is interesting to observe as in Proposition 6.3 that for problems of minimizing the DC (dif-
ference of convex) functions ϕ1(x) − ϕ2(x), the upper subdifferential condition (6.3) reduces to
the well-known one ∂ϕ2(x̄) ⊂ ∂ϕ1(x̄) as in [350]. Note that the class of DC functions as well
as its specifications and modifications play an important role in various qualitative and quan-
titative issues of optimization including its global aspects and numerical algorithms; see, e.g.,
[203, 302, 311, 327, 329, 350, 487, 355] among many other publications. Problems of this type
will be also studied in Chapter 7 below in the framework of semi-infinite programming.

Sections 6.2 and 6.3. Bilevel programs constitute a broad class of problems in hierarchical opti-
mization that is very interesting mathematically and important in applications. We refer the reader
to the book by Dempe [193] and more recent publications [177, 194, 195, 196, 197, 198, 199,
200, 201, 202, 341, 469, 540, 750, 763, 769, 764] for various versions in bilevel programming,
different approaches to their study, and numerous applications. A characteristic feature of bilevel
programs, which can be seen in all of their versions, reformulations, and transformations, is in-
trinsic nonsmoothness that creates serious theoretical and algorithmic challenges. Furthermore, it
has been well recognized that standard constraint qualifications in nonlinear and nondifferentiable
programming fail to fulfill in bilevel optimization.

The optimistic version is by far the most investigated one in bilevel programming, while
there are many unsolved theoretical questions therein, not even mentioning numerical algorithms.
Among several approaches to deriving necessary optimality conditions in optimistic bilevel pro-
grams, we present in Sections 6.2–6.3 the value function approach, which was initiated by Outrata
[619] for a particular bilevel optimization model. This approach explicitly manifests nonsmooth-
ness in bilevel programming via the nondifferentiable lower-level value function (6.33).

The value function approach to optimistic bilevel programs was greatly developed by Ye and
Zhu [748], who introduced the partial calmness condition that allowed them to reduce bilevel
programs to nonsmooth single-level ones via penalization. Combining it with Clarke’s generalized
differentiation, they derived in [748] necessary optimality conditions for bilevel programs in terms
of their initial data.

In this book we mainly follow the papers [195, 540] and further develop the value function
approach by employing our basic tools of generalized differentiation to express optimality condi-
tions for nondifferentiable programs from Section 6.1 and then to evaluate basic subgradients of
marginal/optimal value functions via the results of Section 4.1. Such a device allows us to essen-
tially improve necessary optimality conditions for optimistic bilevel programs obtained in [748]
and other publications. Note the importance of the rather surprising difference rule for regular sub-
gradients from Lemma 6.22 established in [546] by using the smooth variational description of
regular subgradients in Theorem 1.27.

The partial calmness assumption from Definition 6.14 plays an essential role in the value
function approach to bilevel programming. Although it is satisfied in many important settings,
it may fail in rather simple nonlinear examples; see the discussions above as well as the results in
[133, 201, 198, 748, 749]. A sufficient (while far from being necessary) condition for the validity
of partial calmness was introduced by Ye and Zhu [748] under the name of “uniformly weak sharp
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minima,” which could be seen as a version of sharp minima by Polyak [643, 644] and weak sharp
minima by Ferris [264]. In contrast to the latter two notions, which have been well investigated and
applied in the literature (see, e.g., [132, 133, 237, 335, 462, 495, 546, 608, 697, 744, 782, 785]),
uniform weak sharp minima have drawn much less attention. We refer the reader to [133, 327, 744,
748, 749] for some efficient conditions ensuring the validity of the uniform weak sharp minimum
estimate (6.43) and also to the discussions right before Proposition 6.18, which seems to be new.

There are several approaches to deriving necessary optimality and stationary conditions that

don’t employ partial calmness; see [51, 198, 199, 200, 201, 341, 750, 763]. We particularly

emphasize remarkable developments by Henrion and Surowiec [341] for the class of optimistic

bilevel programs with C2-smooth data and convex lower-level problems, where the solution

map to the lower-level problem can be equivalently rewritten in the MPEC form (6.73) with

q(x, y) = ∇yϕ(x, y) and Q(x, y) = N(y;G); see Exercise 6.49(i). They replace the partial

calmness assumption by the weaker calmness property of the perturbation mapping (6.74) in

the sense defined in Exercise 3.51. Imposing in addition the constant rank constraint qualifica-

tion in the lower-level problem (see [477, 499] for more details about the latter notion), Henrion

and Surowiec derive necessary optimality conditions (more precisely, M(ordukhovich)-stationarity

conditions) for optimistic bilevel programs, which have serious advantages in comparison with

the corresponding results of [195] in such settings. The reader may find more information about

MPECs and their applications in the fundamental monographs [482, 624] and the subsequent publi-

cations [3, 78, 267, 314, 338, 341, 346, 290, 523, 620, 623, 684, 745, 746, 780] among other works

with numerous references therein. See, in particular, the papers by Outrata [620] and Scheel and

Scholtes [684] for introducing various notions of stationarity for MPECs, which have been simi-

larly developed later in bilevel programming. Note to this end that, although MPECs [482, 624]

and bilevel programs have many things in common, these two classes of optimization problems

are essentially different in general; see the papers by Dempe and Dutta [194] and by Dempe and

Zemkoho [202] for various results and comprehensive discussions.

Section 6.4. This section contains exercises of different levels of difficulties on necessary optimal-

ity conditions in nonsmooth optimization and bilevel programming with hints and references when

needed. At the same time, we present here some challenging and largely open questions concern-

ing various issues of bilevel optimization. They include Exercise 6.38(i), Exercise 6.39(ii,iii), and

Exercise 6.40(iv) on uniform weak sharp minima, Exercise 6.43(v) on the usage of the symmetric

subdifferential of marginal functions for deriving necessary optimality conditions for bilevel pro-

grams, Exercise 6.50 on deriving necessary optimality conditions for optimistic bilevel programs

without the partial calmness assumption by using the approaches described therein, Exercise 6.52

and beyond on deriving necessary optimality and stationarity conditions for pessimistic bilevel pro-

grams that are considerably underinvestigated in the literature, and Exercise 6.53 on developing a

new multiobjective optimization approach to bilevel programs by using the procedure described

therein.



Chapter 7
Semi-infinite Programs with Some
Convexity

This and the next chapters of the book contain mainly some recent applications of
the constructions and results of variational analysis and generalized differentiation
presented above, as well as new developments required for such applications, to a re-
markable class of optimization problems unified under the name of semi-infinite pro-
gramming (SIP). We also use the abbreviations “SIP” for a particular semi-infinite
program and “SIPs” as plural. The SIP terminology comes from the fact that orig-
inally this class of optimization problems concerned minimizing real-valued func-
tions on finite-dimensional spaces subject to infinitely many inequality constraints
usually indexed by a compact set. Over the years, the theory and applications of SIP
have been evolved to include optimization problems with noncompact index sets
and on infinite-dimensional spaces. Sometimes SIPs with infinite-dimensional deci-
sion spaces are labeled as problems of “infinite programming,” while here we prefer
to use the conventional SIP terminology regardless of the decision space dimension.
As seen, the underlying style in the previous chapters was to present major results in
finite-dimensional spaces and then to discuss infinite-dimensional extensions only
in exercise and commentary sections. In contrast, the standing framework of this
and the next chapters is, unless otherwise stated, the general Banach space setting.
The main reasons for it are as follows:

(1) Due to their essence, SIPs always contain an infinite-dimensional part and
require the usage of infinite-dimensional analysis for their investigation.

(2) The major results obtained below are formulated exactly in the same way in
both cases of finite-dimensional and Banach decision spaces.

(3) Many practically meaningful models can be described as SIPs with infinite-
dimensional decision spaces. In particular, this is the case of the water resource
optimization problem, which is formulated and solved in Section 7.2 by using the
necessary optimality conditions obtained therein.
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7.1 Stability of Infinite Linear Inequality Systems

In this section, we study the sets of feasible solutions to SIPs described by the pa-
rameterized infinite systems of linear inequalities

F(p) := {
x ∈ X∣∣ 〈a∗

t , x〉 ≤ bt + pt , t ∈ T }, p = (pt )t∈T , (7.1)

with an arbitrary index set T , where x ∈ X is a decision variable belonging to a
Banach space X and where p = (pt )t∈T ∈ P is a functional parameter taking
values in the prescribed Banach space P of perturbations specified below. The data
of (7.1) are given as follows:

• a∗
t ∈ X∗ are fixed for all t ∈ T . We use the same notation for the given norm

‖ · ‖ on X and the corresponding dual norm on X∗ defined by

‖x∗‖ := sup
{〈x∗, x〉∣∣ ‖x‖ ≤ 1

}
, x∗ ∈ X∗.

• bt ∈ R are fixed for all t ∈ T . We identify the collection {bt | t ∈ T } with the
real-valued function b : T → R.

• pt = p(t) ∈ R for all t ∈ T . These functional parameters p : T → R

are our varying perturbations, which are taken from the Banach parameter space
P := l∞(T ) of all bounded functions on T with the supremum norm ‖p‖∞ :=
sup

{|p(t)| ∣∣ t ∈ T }. When T is compact and p(·) are restricted to be continuous
on T , the parameter space P reduces to C(T ).

It is obvious that the space l∞(T ) is never finite-dimensional when the index set
T is infinite. Moreover, in the infinite-dimensional case, the space l∞(T ) is never
Asplund; see [638, Example 1.21].

The primary goal of this section is to calculate the coderivative of the set-valued
mapping F defined in (7.1) as well as the coderivative norm of F at the reference
point entirely in terms of the initial data of (7.1). Based on this, we derive here a
complete coderivative characterization of the Lipschitz-like property of F in the
form identical to the finite-dimensional setting of Chapter 3. Furthermore, the ob-
tained coderivative calculation is the key of deriving necessary optimality conditions
for SIPs with linear inequality constraints of type (7.1) in Section 7.2 and then in
turn becomes crucial to investigate SIPs described by convex inequalities and the
like in the subsequent Section 7.3.

Recall that the coderivative of any mapping F : X →→ Y between Banach spaces
studied in this and the next chapters is considered in the usual “normal” sense as in
finite dimensions. This means that, given any (x̄, ȳ) ∈ gphF , the coderivative of F
at (x̄, ȳ) is the mapping F : Y ∗ →→ X∗ defined by

D∗F(x̄, ȳ)(y∗) := {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF

)}
(7.2)

for y∗ ∈ Y ∗ via the corresponding normal cone to the graph of F at (x̄, ȳ).
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7.1.1 Lipschitz-Like Property and Strong Slater Condition

Since we are in the general Banach space setting, the symbol w∗-lim signifies here
the weak∗ topological limit in the dual space in question. This corresponds to the
convergence of nets denoted usually by {x∗

ν }ν∈N . In the case of sequences, we re-
place the symbol N by the standard natural series notion N = {1, 2, . . .}. For an
arbitrary index set T , denote by R

T the product space of λ = (λt | t ∈ T ) with
λt ∈ R for all t ∈ T . Finally, let R(T ) be the collection of multipliers λ ∈ R

T such
that λt 
= 0 for finitely many t ∈ T , and let R(T )+ be the positive cone in R

(T ) defined
by

R
(T )
+ := {

λ ∈ R
(T )
∣∣ λt ≥ 0 for all t ∈ T }. (7.3)

Note also that throughout this chapter, the symbol “cone�” stands for the convex
conic hull of the set in question.

Let us now recall a well-recognized qualification condition for SIPs with infi-
nite linear inequality constraints and then show that it provides, along with other
conditions, an equivalent description of the Lipschitz-like property of the constraint
mapping F from (7.1).

Definition 7.1 (Strong Slater Condition). We say that the infinite linear inequality
system (7.1) satisfies the STRONG SLATER CONDITION (SSC) at p = (pt )t∈T if
there exists x̂ ∈ X such that

sup
t∈T

[〈a∗
t , x̂〉 − bt − pt

]
< 0. (7.4)

Furthermore, every point x̂ ∈ X satisfying condition (7.4) is a STRONG SLATER

POINT for system (7.1) at p = (pt )t∈T .

Define further the parametric characteristic sets

C(p) := co
{
(a∗
t , bt + pt )

∣∣ t ∈ T }, p ∈ l∞(T ), (7.5)

and suppose without loss of generality that p̄ = 0 ∈ l∞(T ) is the designated nomi-
nal parameter. First, we verify the following equivalences.

Theorem 7.2 (Equivalent Descriptions of the Lipschitz-Like Property for Infi-
nite Linear Systems). Given p ∈ domF for (7.1) in the Banach decision space X,
the following properties are equivalent:

(i) F is Lipschitz-like around (p, x) for all x ∈ F(p).
(ii) p ∈ int(domF).
(iii) F satisfies the strong Slater condition at p.
(iv) (0, 0) /∈ cl∗C(p) via the characteristic set in (7.5).

Finally, the boundedness of
{
a∗
t | t ∈ T } ensures the equivalence of (i)–(iv) to:

(v) there exists x̂ ∈ X such that (p, x̂) ∈ int(gphF).
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Proof. The equivalence between (i) and (ii) is a consequence of the Robinson-
Ursescu theorem and the equivalence between the Lipschitz-like property of the
convex-graph mapping F and the metric regularity/covering properties of its in-
verse; see Theorem 3.2 and Corollary 3.6 together with the corresponding exercises
and commentaries in Sections 3.4 and 3.5.

To verify implication (iii)⇒(ii), suppose that x̂ is a strong Slater point for system
(7.1) at p and find ϑ > 0 such that

〈a∗
t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T .

Then it is obvious that for any q ∈ l∞(T ) with ‖q‖ < ϑ , we have x̂ ∈ F(p +
q). Therefore p + q ∈ domF , and thus (ii) holds. To justify further the converse
implication (ii)⇒(iii), take p ∈ int(domF), and then get p + q ∈ domF provided
that qt = −ϑ as t ∈ T and that ϑ > 0 is sufficiently small. Thus every x̂ ∈ F(p+q)
is a strong Slater point for the infinite system (7.1) at p.

Next we show that (iii)⇒(iv). Arguing by contradiction, suppose that (0, 0) ∈
cl∗C(p). Then there exists a net {λν}ν∈N ∈ R

(T )
+ satisfying the equality

∑
t∈T λtν =

1 for all ν ∈ N and the limiting condition

(0, 0) = w∗- lim
ν∈N

∑

t∈T
λtν

(
a∗
t , bt + pt

)
. (7.6)

If x̂ is a strong Slater point for system (7.1) at p, we find ϑ > 0 such that

〈a∗
t , x̂〉 − bt − pt ≤ −ϑ for all t ∈ T .

Then condition (7.6) leads us to the contradiction

0 = 〈0, x̂〉 + 0 · (−1) = lim
ν∈N

∑

t∈T
λtν

(〈a∗
t , x̂〉 + (bt + pt ) · (−1)

) ≤ −ϑ,

which thus justifies (iii)⇒(iv). To verify the converse implication (iv)⇒(iii), we
employ the dual description of the consistency in (7.1) given by

p ∈ domF ⇐⇒ (0,−1) /∈ cl∗cone
{
(a∗
t , bt + pt )

∣∣ t ∈ T }, (7.7)

which is discussed in Exercise 7.71 and the commentaries in Section 7.7. Then the
classical strong separation theorem gives us (0, 0) 
= (v, α) ∈ X × R with

〈
a∗
t , v

〉+ α(bt + pt) ≤ 0, t ∈ T , and 〈0, v〉 + (−1)α = −α > 0. (7.8)

Using (iv), we get (0, 0) 
= (z, β) ∈ X × R and γ ∈ R for which

〈a∗
t , z〉 + β(bt + pt ) ≤ γ < 0 whenever t ∈ T . (7.9)

Consider now the combination (u, η) := (z, β) + λ(v, α), and select λ > 0 such
that η < 0. Defining x̂ := −η−1u, we deduce from (7.8) and (7.9) that
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〈a∗
t , x̂〉 − bt − pt = −η−1(〈a∗

t , u〉 + η(bt + pt )
) ≤ −η−1γ < 0.

Hence x̂ is a strong Slater point for system (7.1) at p, i.e., (iii) holds.
It remains to consider condition (v). It is easy to see that (v) always implies (iv)

and so the other conditions of the theorem. Suppose now that the set
{
a∗
t | t ∈ T }

is bounded, and show that (iii) implies (v). Select M ≥ 0 such that
∥∥a∗
t

∥∥ ≤ M for
every t ∈ T , and take x̂ ∈ X satisfying (7.4). Denote

γ := − sup
t∈T

[〈
a∗
t , x̂

〉− bt − pt
]
> 0

and consider any pair
(
p′, u

) ∈ l∞(T )×X such that

‖u‖ ≤ η := γ / (M + 1) > 0 and
∥∥p′∥∥ ≤ η.

It is easy to see that for such (p′, u) and every t ∈ T , we have

〈
a∗
t , x̂ + u〉− bt − pt − p′

t ≤ −γ +M ‖u‖ + ∥∥p′∥∥ ≤ η (M + 1)− γ = 0,

and so
(
p + p′, x̂ + u) ∈ gphF . Thus (p, x̂) ∈ int(gphF), which verifies implica-

tion (iii)⇒(v) and completes the proof of the theorem. �

7.1.2 Coderivatives for Parametric Infinite Linear Systems

In this subsection, we calculate the coderivative D∗F(0, x̄) as in (7.2) of the
parametric infinite system (7.1) at the reference point (0, x̄) and also its norm
‖D∗F(0, x̄)‖ entirely via the initial data of (7.1). Recall that the dual space l∞(T )∗
to the parameter space in (7.1) is isometric to the space ba(T ) of all the bounded
and additive measures μ(·) on subsets of T with the norm

‖μ‖ := sup
A⊂T

μ(A)− inf
B⊂T μ(B).

In what follows a dual element p∗ ∈ l∞(T )∗ is identified with the corresponding
measure μ ∈ ba(T ) satisfying the canonical duality relationship

〈μ,p〉 =
∫

T

pt μ(dt), p = (pt )t∈T .

To proceed further, we need the following extension of the classical Farkas
lemma to the case of infinite linear inequality systems; see Exercise 7.73 and the
corresponding commentaries in Section 7.7.

Proposition 7.3 (Extended Farkas Lemma for Infinite Linear Inequalities). Let
p ∈ domF for the infinite system (7.1), and let (x∗, α) ∈ X∗ × R. The following
assertions are equivalent:

(i) We have 〈x∗, x〉 ≤ α whenever x ∈ F(p), i.e.,
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[〈a∗
t , x〉 ≤ bt + pt for all t ∈ T ] �⇒ [〈x∗, x〉 ≤ α

]
.

(ii) The pair (x∗, α) satisfies the inclusion

(x∗, α) ∈ cl∗cone
[{
(a∗
t , bt + pt)

∣∣ t ∈ T } ∪ {(0, 1)}] with 0 ∈ X∗.

Using Proposition 7.3, we first describe the normal cone to the graph

gphF = {
(p, x) ∈ l∞(T )×X∣∣ 〈a∗

t , x〉 ≤ bt + pt for all t ∈ T }

at the reference point (0, x̄) ∈ gphF . Recall that δt stands for the classical Dirac
function/measure at t ∈ T satisfying

〈δt , p〉 = pt as t ∈ T for p = (pt )t∈T ∈ l∞(T ). (7.10)

Proposition 7.4 (Graphical Normals for Infinite Linear Systems). Let (0, x̄) ∈
gphF for the mapping F from (7.1), and let (p∗, x∗) ∈ l∞(T )∗ × X∗. Then we
have (p∗, x∗) ∈ N((0, x̄); gphF) if and only if

(
p∗, x∗, 〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt , a∗

t , bt )
∣∣ t ∈ T } ∪ {(0, 0, 1)}], (7.11)

where 0 ∈ l∞(T )∗ and 0 ∈ X∗ stand for the first and second entry of the last triple,
respectively. Furthermore, the inclusion (p∗, x∗) ∈ N ((0, x̄) ; gphF) implies that
p∗ ≤ 0 in the space ba (T ), i.e., p∗ (A) ≤ 0 for all A ⊂ T .

Proof. It is easy to see that

gphF = {
(p, x) ∈ l∞(T )×X∣∣ 〈a∗

t , x〉 − 〈δt , p〉 ≤ bt for all t ∈ T },
and therefore we have (p∗, x∗) ∈ N((0, x̄); gphF) if and only if

〈p∗, p〉 + 〈x∗, x〉 ≤ 〈x∗, x̄〉 for every (p, x) ∈ gphF . (7.12)

Employing now the equivalence between (i) and (ii) in Proposition 7.3, we conclude
that (p∗, x∗) ∈ N((0, x̄); gphF) if and only if inclusion (7.11) holds.

To justify the last statement of the proposition, for every set A ⊂ T , consider its
characteristic function χA : T → {0, 1} defined by

χA (t) :=
{

1 if t ∈ A,
0 if t /∈ A.

It is obvious that the inclusion (p, x) ∈ gphF implies that (p + λχA, x) ∈ gphF
for each λ > 0. Replacing now in (7.12) the pair (p, x) by (p + λχA, x), dividing
both sides of the inequality by λ, and then letting λ → ∞ give us

〈
p∗, χA

〉 =
∫

T

χA (t) p
∗ (dt) = p∗ (A) ≤ 0,
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which completes the proof of the proposition. �
The representation of graphical normals obtained in Proposition 7.4 is crucial to

calculate the coderivative ofD∗F(0, x̄) defined via the normal cone to the gphF at
(0, x̄) according to (7.2).

Theorem 7.5 (Coderivative Calculation). Given x̄ ∈ F(0) for the infinite system
(7.1), we have that p∗ ∈ D∗F(0, x̄)(x∗) if and only if

(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

{
(−δt , a∗

t , bt )
∣∣ t ∈ T }. (7.13)

Proof. It follows from the coderivative definition and Proposition 7.4 that p∗ ∈
D∗F(0, x̄)(x∗) if and only if

(
p∗,−x∗,−〈x∗, x̄〉) ∈ cl∗cone

[{
(−δt , a∗

t , bt )
∣∣ t ∈ T } ∪ {(0, 0, 1)}]. (7.14)

To justify the coderivative representation claimed in the theorem, we need to show
that inclusion (7.14) yields in fact the “smaller” one in (7.13). Assuming indeed that
(7.14) holds, we find by (7.14) some nets {λν}ν∈N ⊂ R

(T )
+ and {γν}ν∈N ⊂ R+

satisfying the limiting relationship

(
p∗,−x∗,−〈x∗, x̄〉) = w∗- lim

ν∈N

(∑

t∈T
λtν(−δt , a∗

t , bt )+ γν(0, 0, 1)
)
, (7.15)

where λtν stands for the t-entry of λν = (λtν)t∈T as ν ∈ N . The component struc-
ture of (7.15) tells us that

0 = 〈p∗, 0〉 + 〈−x∗, x̄〉 + (−〈x∗, x̄〉)(−1) = lim
ν∈N

(∑

t∈T
λtν

(〈a∗
t , x̄〉 − bt

)− γν
)
.

Taking into account the definition (7.3) of the positive cone R
(T )
+ and that (0, x̄)

satisfies the infinite inequality system in (7.1), we get limν∈N γν = 0. This justifies
(7.13) and thus completes the proof of the theorem. �

The next consequence of Theorem 7.5 is useful in what follows.

Corollary 7.6 (Limiting Coderivative Description). If p∗ ∈ D∗F(0, x̄)(x∗) in
the setting of Theorem 7.5, then there is a net {λν}ν∈N ⊂ R

(T )
+ with

∑

t∈T
λtν → ∥∥p∗∥∥ = − 〈

p∗, e
〉
,
∑

t∈T
λtνa

∗
t

w∗−→ −x∗, and
∑

t∈T
λtνbt → − 〈

x∗, x̄
〉
.

Proof. Theorem 7.5 gives us a net {λν}ν∈N ⊂ R
(T )
+ such that

∑

t∈T
λtνδt

w∗−→ −p∗,
∑

t∈T
λtνa

∗
t

w∗−→ −x∗, and
∑

t∈T
λtνbt → − 〈

x∗, x̄
〉
.
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This readily implies the relationships
〈
∑

t∈T
λtνδt , e

〉

=
∑

t∈T
λtν → 〈

p∗,−e〉 =: λ ∈ [0,∞) .

Since the dual norm on X∗ is w∗-lower semicontinuous, we have

∥∥p∗∥∥ ≤ lim inf
ν∈N

∥∥∥∥∥

∑

t∈T
λtνδt

∥∥∥∥∥
≤ lim inf

ν∈N
∑

t∈T
λtν = λ.

Furthermore, it follows from the norm definition that
∥∥p∗∥∥ = sup

‖p‖≤1

〈
p∗, p

〉 ≥ 〈
p∗,−e〉 = λ,

which yields ‖p∗‖ = − 〈p∗, e〉 and thus completes the proof. �
Now we proceed with the exact calculation of the coderivative norm

‖D∗F(0, x̄)‖ := sup
{‖p∗‖ ∣∣ p∗ ∈ D∗F(0, x̄)(x∗), ‖x∗‖ ≤ 1

}
(7.16)

entirely via the initial data of the infinite linear inequality system (7.1). A part of
our analysis is the following proposition on properties of the characteristic set (7.5)
at p = 0 in connection with strong Slater points of (7.1).

Proposition 7.7 (Strong Slater Points Relative to the Characteristic Set). Given
x̄ ∈ F(0), consider the set

S := {
x∗ ∈ X∗∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)

}
(7.17)

built upon C(0) from (7.5). The following assertions hold:
(i) Let x̄ be not a strong Slater point of the infinite system (7.1) at p = 0, and let

the coefficient collection {a∗
t | t ∈ T } be bounded in X∗. Then the set S in (7.17) is

nonempty and w∗-compact in X∗.
(ii) Let x̄ be a strong Slater point of (7.1) at p = 0. Then S = ∅ in (7.17).

Proof. To justify (i), assume that x̄ is not a strong Slater point for the infinite system
(7.1) at p = 0. Then there is a sequence {tk}k∈N ⊂ T such that limk(〈a∗

tk
, x̄〉 −

btk ) = 0. The boundedness of {a∗
t | t ∈ T } implies by the classical Alaoglu-Bourbaki

theorem that this set is relatively w∗-compact in X∗, i.e., there is a subnet {a∗
tν
}ν∈N

of the latter sequence that w∗-converges to some element u∗ ∈ cl∗{a∗
t | t ∈ T }. This

yields limν∈N btν = 〈u∗, x̄〉 and

(
u∗, 〈u∗, x̄〉) = w∗- lim

ν∈N
(
a∗
tν
, btν

) ∈ cl∗C(0),

which justifies the nonemptiness of the set S in (7.17).
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To verify the w∗-compactness of S, observe that the boundedness of the set A :=
{a∗
t | t ∈ T } implies this property of cl∗coA; the latter set is actually w∗-compact

due to its automaticw∗-closedness. Note further that the set S in (7.17) is a preimage
of cl∗C(0) under the w∗-continuous mapping x∗ �→ (x∗, 〈x∗, x̄〉), and thus it is w∗-
closed inX∗. Since S is a subset of cl∗coA, it is also bounded and hencew∗-compact
in X∗. We are done with (i).

To proceed with (ii), let x̄ be a strong Slater point of system (7.1) at p = 0, and
let γ := − supt∈T

{〈
a∗
t , x̄

〉− bt
}
. Then we have the inequality

〈
x∗, x̄

〉 ≤ β − γ whenever
(
x∗, β

) ∈ cl ∗C (0) ,

which justifies (ii) and thus completes the proof of the proposition. �
Now we are ready to calculate the coderivative norm ‖D∗F(0, x̄)‖ entirely in

terms of the given data of the infinite system (7.1) in Banach spaces.

Theorem 7.8 (Calculating the Coderivative Norm). Let x̄ ∈ domF for the in-
finite system (7.1), which satisfies the strong Slater condition at p = 0. Then the
following assertions hold under the boundedness of {a∗

t | t ∈ T }:
(i) If x̄ is a strong Slater point for F at p = 0, then ‖D∗F(0, x̄)‖ = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the coderivative norm

(7.16) is positive and is calculated by

‖D∗F(0, x̄)‖ = max
{
‖x∗‖−1

∣∣∣
(
x∗, 〈x∗, x̄〉) ∈ cl∗C(0)

}
. (7.18)

Proof. To verify assertion (i), suppose that x̄ is a strong Slater point for the system
F at p = 0. It follows from the proof of implication (iii)⇒(v) in Theorem 7.2 that
(0, x̄) ∈ int(gphF) and hence N((0, x̄); gphF) = {(0, 0)}. Thus (i) follows from
definitions of the coderivative and its norm.

To prove assertion (ii), take x∗ ∈ X∗ such that (x∗, 〈x∗, x̄〉) ∈ cl ∗C (0); the latter
set is nonempty according to Proposition 7.7. Then there exists a net {λν}ν∈N ⊂
R
(T )
+ with

∑
t∈T λtν = 1 for all ν ∈ N such that

∑

t∈T
λtνa

∗
t

w∗−→ x∗ and
∑

t∈T
λtνbt → 〈

x∗, x̄
〉
.

Form further the net elements p∗
ν ∈ l∞(T )∗ by

p∗
ν := −

∑

t∈T
λtνδt , with

∥∥p∗
ν

∥∥ = 〈
p∗
ν ,−e

〉 = 1, ν ∈ N ,

and find by the Alaoglu-Bourbaki theorem a convergent subnet p∗
ν

w∗−→ p∗ for
some p∗ ∈ l∞(T )∗ with ‖p∗‖ ≤ 1. Employing the same arguments as in the proof
of Corollary 7.6, we conclude that

1 = lim
ν∈N

∑

t∈T
λtν = ∥∥p∗∥∥ = 〈

p∗,−e〉 . (7.19)
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Furthermore, it follows by passing to the limit that

(
p∗, x∗,

〈
x∗, x̄

〉) ∈ cl ∗co
{(−δt , a∗

t , bt
) ∣∣ t ∈ T } ,

which implies by the coderivative calculation of Theorem 7.5 that

p∗ ∈ D∗F(0, x̄)(−x∗). (7.20)

Suppose now that x∗ = 0 in (7.20). Since p∗ 
= 0 by (7.19), we get from (7.20)
that D∗F(0, x̄)(0) 
= {0}. It tells us by Exercise 3.35(i) and the graph convexity
of F that F is not Lipschitz-like around (0, x̄) and therefore it cannot satisfy the
strong Slater condition by implication (iii)⇒(i) in Theorem 7.2. This contradicts
the assumption imposed in the theorem.

Thus x∗ 
= 0 in (7.20), and we derive from the latter relationship that

∥∥x∗∥∥−1
p∗ ∈ D∗F(0, x̄)

(
− ∥∥x∗∥∥−1

x∗) ,

which gives us in turn the estimate

∥∥D∗F(0, x̄)∥∥ ≥
∥∥∥
∥∥x∗∥∥−1

p∗
∥∥∥ = ∥∥x∗∥∥−1

and hence justifies the inequality “≥” in (7.18).
It remains to prove the opposite inequality in (7.18). For the nonempty and w∗-

compact set S in (7.17), we have 0 /∈ S by Theorem 7.2, and the function x∗ �→
‖x∗‖−1 is w∗-upper semicontinuous of on S. Thus the supremum in the right-hand
side of (7.18) is attained and belongs to (0,∞). Then condition (v) in Theorem 7.2
implies that (0, x̂) ∈ int(gphF) for some x̂ ∈ X and so 0 ∈ int(domF). Moreover,
we have that p∗ ∈ D∗F(0, x̄) (−x∗) if and only if (p∗, x∗) ∈ N ((0, x̄) ; gphF),
which is equivalent to

〈
p∗, p

〉+ 〈
x∗, x

〉 ≤ 〈
x∗, x̄

〉
for all (p, x) ∈ gphF . (7.21)

This allows us, by taking into account that 0 ∈ int(domF), to arrive at

p∗ ∈ D∗F(0, x̄) (0) ⇐⇒ 〈
p∗, p

〉 ≤ 0 for all p ∈ domF ⇐⇒ p∗ = 0. (7.22)

Observe furthermore that, since x̄ is not a strong Slater point for F at p = 0, we
have (0, x̄) /∈ int(gphF) and thus conclude by the classical separation theorem that
there is a pair (p∗, x∗) 
= (0, 0) for which condition (7.21) holds. Employing (7.22),
we have x∗ 
= 0 and p∗ ∈ D∗F(0, x̄) (−x∗).

Take now p∗ ∈ D∗F(0, x̄) (−x∗) with ‖x∗‖ ≤ 1, and suppose that x∗ 
= 0; the
arguments above ensure the existence of such an element. By Corollary 7.6, there is
a net {λν}ν∈N ⊂ R

(T )
+ for which

γν :=
∑

t∈T
λtν → ∥∥p∗∥∥= − 〈

p∗, e
〉
, x∗

ν :=
∑

t∈T
λtνa

∗
t

w∗−→ x∗,
∑

t∈T
λtνbt → 〈

x∗, x̄
〉
.
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Taking M ≥ ∥∥a∗
t

∥∥ for every t ∈ T , we get the estimate
∥∥x∗
ν

∥∥ ≤ Mγν whenever ν ∈ N

and also the limiting relationships

0 <
∥∥x∗∥∥ ≤ lim inf

ν∈N
∥∥x∗
ν

∥∥ ≤ M lim inf
ν∈N

γν = M
∥∥p∗∥∥ ,

which ensure that p∗ 
= 0. It follows furthermore that

∥∥p∗∥∥−1 (
x∗,

〈
x∗, x̄

〉) ∈ cl∗C(0).

Remembering finally that 0 < ‖x∗‖ ≤ 1, we arrive at the estimates

∥∥p∗∥∥ ≤
∥∥∥
∥∥p∗∥∥−1

x∗
∥∥∥

−1 ≤ max
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x̄〉) ∈ cl∗C(0)

}
,

which justify the inequality “≤” in (7.18) and thus complete the proof. �

7.1.3 Coderivative Characterization of Lipschitzian Stability

In this subsection, we employ the above coderivative analysis married to appropri-
ate techniques in linear SIPs to establish the coderivative criterion of Lipschitzian
stability (in the sense of the validity of the Lipschitz-like property) for infinite linear
systems (7.1) with precise calculation of the exact Lipschitzian bound lipF(0, x̄).
Surprisingly, the obtained results look exactly like in the finite-dimensional setting
of Theorem 3.3 for general closed-graph multifunctions, while in the case here we
can express both the coderivative criterion and exact Lipschitzian bound entirely in
terms of the given data of (7.1).

First, we present necessary and sufficient condition for the Lipschitz-like prop-
erty of F around the reference point (0, x̄) in the form of (3.9).

Theorem 7.9 (Coderivative Criterion for the Lipschitz-Like Property of Lin-
ear Infinite Systems). Let x̄ ∈ F(0) for the infinite inequality system (7.1). Then F
is Lipschitz-like around (0, x̄) if and only if

D∗F(0, x̄)(0) = {0}. (7.23)

Proof. The “only if” part follows from the proof in Step 1 of Theorem 3.3 valid in
arbitrarily Banach spaces. To justify now the “if” part of the theorem, suppose on the
contrary thatD∗F(0, x̄)(0) = {0}, while the mapping F is not Lipschitz-like around
(0, x̄). Then, by the equivalence between properties (i) and (iv) in Theorem 7.2, we
get the inclusion

(0, 0) ∈ cl∗co
{
(a∗
t , bt ) ∈ X∗ × R

∣∣ t ∈ T }
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meaning that there is a net {λν}ν∈N ∈ R
(T )
+ with

∑
t∈T λtν = 1, ν ∈ N , and

w∗- lim
ν∈N

∑

t∈T
λtν(a

∗
t , bt ) = (0, 0). (7.24)

Since the net {∑t∈T λtν(−δt )}ν∈N is obviously bounded in l∞(T )∗, the Alaoglu-
Bourbaki theorem ensures the existence of its subnet (no relabeling) that w∗-
converges to some element p∗ ∈ l∞(T )∗, i.e.,

p∗ = w∗- lim
ν∈N

∑

t∈T
λtν(−δt ). (7.25)

It follows from (7.25) by the Dirac function definition that

〈p∗,−e〉 = lim
ν∈N

∑

t∈T
λtν = 1, where e = (et )t∈T with et = 1 for all t ∈ T ,

which yields p∗ 
= 0. Furthermore, combining (7.24) and (7.25) tells us that

(p∗, 0, 0) = w∗- lim
ν∈N

∑

t∈T
λtν(−δt , a∗

t , bt ) with p∗ 
= 0,

and therefore, by the explicit coderivative description of Theorem 7.5, we get the
inclusion p∗ ∈ D∗F(0, x̄)(0)\{0}, which contradicts the assumed condition (7.23).
This verifies the sufficiency part of the coderivative criterion (7.23) for the Lipschitz-
like property and thus completes the proof of the theorem. �

Our next goal is to calculate the exact Lipschitzian bound lipF(0, x̄). To proceed,
observe the following limiting representation of lipF(x̄, ȳ) via the distance function
to a set that holds for any mapping F : X →→ Y :

lipF(z̄, ȳ) = lim sup
(z,y)→(z̄,ȳ)

dist
(
y;F(z))

dist
(
z;F−1(y)

) where 0/0 := 0. (7.26)

To begin with, form the closed affine half-space

H(x∗, α) := {
x ∈ X∣∣ 〈x∗, x〉 ≤ α

}
for (x∗, α) ∈ X∗ × R

and derive the distance function representation known as the Ascoli formula.

Proposition 7.10 (Ascoli Formula). We have

dist
(
x;H(x∗, α)

) =
[〈x∗, x〉 − α]+

‖x∗‖ , (7.27)

where [γ ]+ := max{γ, 0} for γ ∈ R and 0/0 := 0.

Proof. In the case of x ∈ H(x∗, α), representation (7.27) is obvious. Consider now
that case of x /∈ H(x∗, α), and define the associated optimization problem
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minimize ‖u− x‖ subject to u ∈ H(x∗, α), (7.28)

where an optimal solution exists; see Exercise 7.75. Let ū ∈ H(x∗, α) be any so-
lution to (7.28). Applying the generalized Fermat rule and then the subdifferential
sum rule b valid due to the continuity of u �→ ‖u− x‖ yields

0 ∈ ∂‖ · −x‖(ū)+N(ū;H(x∗, α)
)

(7.29)

with ū 
= x. Since we have in this case that

∂‖ · −x‖(ū) = {
u∗ ∈ X∗∣∣ ‖u∗‖ = 1, 〈u∗, ū− x〉 = ‖ū− x‖}

and that N(ū;H(x∗, α)) = cone{x∗} if 〈x∗, ū〉 = α with N(ū;H(x∗, α)) = {0}
otherwise, it tells us by (7.29) that

〈x∗, ū〉 = α and ‖x∗‖ · ‖ū− x‖ = 〈x∗, x − ū〉.
This implies in turn the equalities

‖ū− x‖ = 〈x∗, x〉 − 〈x∗, ū〉
‖x∗‖ = 〈x∗, x〉 − α

‖x∗‖ =
[〈x∗, x〉 − α]+

‖x∗‖
and thus justifies the Ascoli formula (7.27). �

The next two propositions, which are certainly of their own interest, establish
extensions of the Ascoli formula first to the case of convex inequalities and then to
infinite systems of linear inequalities instead of the single one as in (7.27). These
results play a significant role in what follows for computing the exact Lipschitzian
bound lipF(0, x̄). In their proofs, we use elements of the classical duality theory of
convex analysis in Banach spaces; see, e.g., [757].

Given a proper (may not be convex) function ϕ : X → R, recall that its (always
convex) Fenchel conjugate ϕ∗ : X∗ → R is defined by

ϕ∗ (x∗) := sup
{ 〈
x∗, x

〉− ϕ (x) ∣∣ x ∈ X}. (7.30)

First, we provide an extension of the Ascoli formula from (single) linear to convex
inequalities by using the Fenchel conjugate (7.30).

Proposition 7.11 (Extended Ascoli Formula for Single Convex Inequalities).
Let g : X → R be a (proper) convex function, and let

Q := {
y ∈ X∣∣ g(y) ≤ 0

}
. (7.31)

Assume the fulfillment of the classical Slater condition: there is x̂ ∈ X with g(̂x) <
0. Then the distance function to the set Q in (7.31) is calculated by

dist(x;Q) = max
(x∗,α)∈epi g∗

[〈x∗, x〉 − α]+
‖x∗‖ . (7.32)
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Proof. Observe that the nonemptiness of Q in (7.31) yields α ≥ 0 whenever
(0, α) ∈ epi g∗ and that the possibility of x∗ = 0 is not an obstacle in (7.32) under
the convention 0/0 := 0. The distance function dist(x;Q) is nothing else but the
optimal value function in the parametric convex optimization problem.

minimize ‖y − x‖ subject to g(y) ≤ 0. (7.33)

Since the Slater condition holds for (7.33) by our assumption, we have the strong
Lagrange duality in (7.33) by, e.g., [757, Theorem 2.9.3], which yields

dist(x;Q) = max
λ≥0

inf
y∈X

{‖y − x‖ + λg(y)}

= max

{
max
λ>0

inf
y∈X

{‖y − x‖ + λg(y)}, inf
y∈X ‖y − x‖

}

= max

{
max
λ>0

inf
y∈X

{ ‖y − x‖ + λg(y)}, 0

}
.

Applying now the classical Fenchel duality theorem to the inner infimum problem
above for a fixed λ > 0, we get

inf
y∈X

{‖y − x‖ + λg(y)} = max
y∗∈X∗

{− ‖ · −x‖∗(−y∗)− (λg)∗(y∗)
}
. (7.34)

Furthermore, it is well known in convex analysis that

‖· − x‖∗ (−y∗) =
{ 〈−y∗, x〉 if ‖y∗‖ ≤ 1,

∞ otherwise.

Substituting it into formula (7.34) leads us to

inf
y∈X

{ ‖y − x‖ + λg (y) } = max‖y∗‖≤1

{ 〈
y∗, x

〉− (λg)∗ (y∗) }

= max
‖y∗‖≤1, (λg)∗(y∗)≤η

{ 〈
y∗, x

〉− η}

= max‖y∗‖≤1, λg∗(y∗/λ)≤η
{ 〈
y∗, x

〉− η}

= max‖y∗‖≤1, (1/λ)(y∗,η)∈epi g∗
{ 〈
y∗, x

〉− η}.

This ensures, by denoting x∗ := (1/λ)y∗ and α := (1/λ)η, that

inf
y∈X

{ ‖y − x‖ + λg(y)} = max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

λ
{ 〈
x∗, x

〉− α}.

Combining the latter with the formulas above, we arrive at
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dist(x;Q) = max
{

max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

λ
{ 〈
x∗, x

〉− α}, 0
}

= max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

{
λ
[ 〈
x∗, x

〉− α]+
}
.

(7.35)

It is easy to observe the following relationships hold for any λ > 0:

max
(0,α)∈epi g∗ λ

{ 〈0, x〉 − α} = max
g∗(0)≤α

λ
( 〈0, x〉 − α) = λ

(− g∗(0)
)

≤ λ inf
x∈X g(x) ≤ λg(̂x) < 0.

Taking this into account, we deduce from (7.35) the equalities

dist(x;Q) = max
(x∗,α)∈epi g∗, ‖x∗‖≤1/λ

{
λ
[ 〈
x∗, x

〉− α]+
}

= max
(x∗,α)∈epi g∗ max‖x∗‖≤1/λ

{
λ
[ 〈
x∗, x

〉− α]+
}

= max
(x∗,α)∈epi g∗

[ 〈x∗, x〉 − α]+
‖x∗‖ ,

which justify (7.32) and thus complete the proof of the proposition. �
The next proposition provides the required extension of the Ascoli formula (7.27)

to the case of the infinite inequality systems (7.1) in Banach spaces.

Proposition 7.12 (Extended Ascoli Formula for Infinite Linear Systems). As-
sume that the infinite linear system (7.1) satisfies the strong Slater condition at
p = (pt )t∈T . Then for any x ∈ X and p ∈ l∞ (T ), we have

dist
(
x;F(p)) = max

(x∗,α)∈cl∗C(p)

[ 〈x∗, x〉 − α]+
‖x∗‖ . (7.36)

If in addition X is reflexive, then (7.36) can be simplified by

dist
(
x;F(p)) = max

(x∗,α)∈C(p)

[ 〈x∗, x〉 − α]+
‖x∗‖ . (7.37)

Proof. Observe that the infinite linear system (7.1) can be represented as

F(p = {
x ∈ X∣∣ g(x) ≤ 0

}
, (7.38)

where the convex function g : X → R is given in the supremum form

g(x) := sup
t∈T

(
ft (x)− pt

)
with ft (x) := 〈a∗

t , x〉 − bt . (7.39)
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The assumed strong Slater condition for F(p) ensures the validity of the classical
Slater condition for g from Proposition 7.11. To employ the result therein in the
framework of (7.38), we need to calculate the Fenchel conjugate to the supremum
function in (7.39). It can be done by (see Exercise 7.77)

⎧
⎨

⎩
epi g∗ = epi

{
supt∈T (ft − pt )

}∗ = cl∗co

(
⋃

t∈T
epi

(
ft − pt

)∗
)

= cl∗C(p)+ R+(0, 1) with 0 ∈ X∗,
(7.40)

where the weak∗ closedness of the set cl∗C(p) + R+(0, 1) is a consequence of
the classical Dieudonné theorem; see, e.g., [757, Theorem 1.1.8]. Thus we get the
distance formula (7.36) from Proposition 7.11 in general Banach spaces.

To justify the simplified distance formula (7.37) in the case of reflexive spaces,
suppose on the contrary that it doesn’t hold. Then there is a scalar β ∈ R such that
we have the strict inequalities

max
(x∗,α)∈cl∗C(p)

[ 〈x∗, x〉 − α]+
‖x∗‖ > β > sup

(x∗,α)∈C(p)

[ 〈x∗, x〉 − α]+
‖x∗‖ . (7.41)

This yields the existence of (x̄∗, ᾱ) ∈ cl∗C(p) with x̄∗ 
= 0 satisfying
[ 〈x̄∗, x〉 − ᾱ]+

‖x̄∗‖ > β.

Taking into account that X is reflexive and that C(p) is convex and then employing
the Mazur weak closure theorem, we can replace the weak∗ closure of C(p) by its
norm closure in X∗. This allows us to find a sequence (x∗

k , αk) ∈ C(p) converging
by norm to (x̄∗, ᾱ) as k → ∞. Hence we get

lim
k→∞

[ 〈
x∗
k , x

〉− αk
]
+∥∥x∗

k

∥∥ =
[ 〈x̄∗, x〉 − ᾱ]+

‖x̄∗‖ > β,

and therefore there exists k0 ∈ N for which

[ 〈
x∗
k0
, x
〉
− αk0

]
+∥∥∥x∗

k0

∥∥∥
> β.

The latter contradicts (7.41) and thus completes the proof. �
The following example shows that the reflexivity of the decision space X is an

essential requirement for the validity of the simplified distance formula (7.37), even
in the framework of (nonreflexive) Asplund spaces.

Example 7.13 (Failure of the Simplified Distance Formula in Nonreflexive As-
plund Spaces). Consider the classical space c0 of real number sequences converging
to zero and endowed with the supremum norm. This space is known to be Asplund
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while not reflexive. Let us show that the simplified distance formula (7.37) fails in
X = c0 (the classical space of sequences converging to zero, with the supremum
norm) for a rather plain linear system of countable inequalities. Of course, we need
to demonstrate that the inequality “≤” is generally violated in (7.37), since the op-
posite inequality holds in any Banach space. Form the infinite (countable) linear
inequality system

F(0) := {
x ∈ c0

∣∣ 〈e∗1 + e∗t , x〉 ≤ −1, t ∈ N
}
, (7.42)

where e∗t ∈ l1 has 1 as its t th-component, while all the remaining components are
zeros. System (7.42) can be rewritten as

x ∈ F(0) ⇐⇒ x(1)+ x(t) ≤ −1 for all t ∈ N.

Observe that for z = 0, we have dist(0;F(0)) = 1, and the distance is realized at,
e.g., u = (−1, 0, 0, . . .). Indeed, passing to the limit in x(1)+x(t) ≤ −1 as t → ∞
and taking into account that x(t) → 0 by the structure of the space of c0, we get
x(1) ≤ −1. Furthermore, it can be checked that

(e∗1,−1) ∈ cl∗C(0), 〈e∗1, x − u〉 ≤ 0 for all x ∈ F(0),
dist

(
z;F(0)) = ‖z− u‖ = 〈e∗1, z− u〉 = 〈e∗1, z〉 − (−1)

‖e∗1‖ .

On the other hand, for the pair (x∗, α) ∈ X∗ × R given by

(x∗, α) :=
(
e∗1 +

∑

t∈N
λte

∗
t ,−1

)
∈ C(0) with λ ∈ R

(N)
+ and

∑

t∈N
λt = 1,

we can directly verify that ‖x∗‖ = 2 and hence
[〈x∗, z〉 − α]+

‖x∗‖ = 1

2
,

which shows that the equality in (7.37) is violated for the countable system (7.42)
in the nonreflexive Asplund space X = c0.

Prior to deriving the main result of this subsection on the precise calculation of
the exact Lipschitzian bound for the infinite system (7.1) at the reference point, we
need the following technical assertion.

Lemma 7.14 (Closed-Graph Property of Characteristic Sets). The set-valued
mapping l∞ (T ) $ p �→ cl∗C(p) ⊂ X∗ × R generated by the characteristic sets
(7.5) is closed-graph in the norm×weak∗ topology of �∞(T ) × (X∗ × R), i.e., for
any nets {pν}ν∈N ⊂ l∞ (T ),

{
x∗
ν

}
ν∈N ⊂ X∗, and {βν}ν∈N ⊂ R, satisfying the

conditions pν → p, x∗
ν

w∗−→ x∗, βν → β, and
(
x∗
ν , βν

) ∈ cl∗C (pν) for every
ν ∈ N , we have the inclusion (x∗, β) ∈ cl∗C (p).
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Proof. Arguing by contradiction, suppose that (x∗, β) 
∈ cl∗C (p). Then the clas-
sical strict separation indexconvex separation theorem allows us to find a nonzero
pair (x, α) ∈ X × R and real numbers γ and γ ′ satisfying

〈
x∗, x

〉+ βα < γ ′ < γ ≤ 〈
a∗
t , x

〉+ (bt + pt ) α for all t ∈ T .
Hence there exists a net index ν0 ∈ N such that

〈
x∗
ν , x

〉+ βνα < γ ′ and ‖α (p − pν)‖ ≤ γ − γ ′ whenever ν % ν0.

This ensures therefore the validity of the estimates

〈
a∗
t , x

〉+ α (bt + ptν) = 〈
a∗
t , x

〉+ α (bt + pt )+ α (ptν − pt )
≥ γ − ‖α (pν − p)‖ ≥ γ ′ for all t ∈ T .

The latter implies that γ ′ ≤ 〈z∗, x〉 + ηα for all (z∗, η) ∈ cl ∗C(pν) whenever
ν % ν0. Thus we arrive at the contradiction

〈
x∗
ν , x

〉+ βνα < γ ′ ≤ 〈
x∗
ν , x

〉+ βνα, ν % ν0,

which completes the proof of the lemma. �
Now we are ready to provide a precise calculation of the exact Lipschitzian bound

of F around (0, x̄) in the general Banach space setting.

Theorem 7.15 (Calculating the Exact Lipschitzian Bound of Infinite Linear
Systems). Let x̄ ∈ F(0) for the linear infinite inequality system (7.1). Suppose
that F satisfies the strong Slater condition at p = 0 and that the coefficient set
{a∗
t | t ∈ T } is bounded in X∗. The following assertions hold:
(i) If x̄ is a strong Slater point for F at p = 0, then lipF(0, x̄) = 0.
(ii) If x̄ is not a strong Slater point for F at p = 0, then the exact of F around

(0, x̄) is calculated by

lipF(0, x̄) = max
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉) ∈ cl∗C(0)
}
> 0 (7.43)

via the w∗-closure of the characteristic set (7.5) at p = 0.

Proof. To verify (i), recall from the proof of Theorem 7.8(i) that the assumptions
made imply that (0, x̄) ∈ int(gphF), which in turn yields lipF(0, x̄) = 0 by the
definition of the exact Lipschitzian bound.

Next we justify the more difficult assertion (ii) of the theorem while assuming
that x̄ is not a strong Slater point for F at p = 0. Observe that by Proposition 7.7,
the set under the maximum operation on the right-hand side in (7.43) is nonempty
andw∗-compact inX∗. Thus the maximum over this set is realized and is finite. The
inequality “≥” in (7.43) follows from the estimate

lipF(0, x̄) ≥ ‖D∗F(0, x̄)‖
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taken from Exercise 3.35(i) and then combined with formula (7.18) for calculating
the coderivative norm of the infinite inequality system (7.1) derived in Theorem 7.8.
Thus it remains to verify the opposite inequality “≤” in (7.43).

To proceed, let M := supt∈T
∥∥a∗
t

∥∥ < ∞, and observe that the inequality “≤”
in (7.43) is obvious when L := lipF (0, x̄) = 0. Suppose now that L > 0, and
consider any pair (p, x) sufficiently close to (0, x̄) in representation (7.26) of the
exact Lipschitzian bound lipF(0, x̄). By L > 0, we can confine ourselves to the
case of (p, x) /∈ gphF . It follows from the structure of F that

0 < dist
(
p;F−1(x)

) = sup
t∈T

[〈a∗
t , x〉 − bt − pt

]
+. (7.44)

Moreover, we have the relationships

〈
a∗
t , x

〉− bt − pt = 〈
a∗
t , x − x̄〉+ 〈

a∗
t , x̄

〉− bt − pt
≤ M ‖x − x̄‖ + ‖p‖ for all t ∈ T ,

which allow us to conclude that

0 < sup
(x∗,β)∈cl∗C(p)

[ 〈
x∗, x

〉− β]+ = sup
(x∗,β)∈cl∗C(p)

{ 〈
x∗, x

〉− β}

≤ M ‖x − x̄‖ + ‖p‖ for all x ∈ X and p ∈ P.
(7.45)

Consider further the set

C+ (p, x) := { (
x∗, β

) ∈ cl∗C (p)
∣∣ 〈x∗, x

〉− β > 0
}
,

which is obviously nonempty, and denote

M(p,x) := sup
{ ∥∥x∗∥∥−1 ∣∣ (x∗, β

) ∈ C+ (p, x)
}
.

In our setting, we get 0 ∈ int(domF) (see Exercise 7.72(i)) and therefore p ∈
domF for all p ∈ l∞(T ) sufficiently close to the origin. In this case, the set
C+(p, x) cannot contain any element of the form (0, β), since the contrary would
yield β < 0 by the definition of C+(p, x), while Proposition 7.3 tells us that β ≥ 0.
Thus we conclude that 0 < ‖x∗‖ ≤ M whenever (x∗, β) ∈ C+ (p, x) and, in
particular, M(p,x) ∈ (0,∞]. It follows furthermore that

sup(x∗,β)∈cl∗C(p)

[ 〈x∗, x〉 − β]+
‖x∗‖

sup(x∗,β)∈cl∗C(p)
[ 〈x∗, x〉 − β]+

=
sup(x∗,β)∈cl∗C(p)

〈x∗, x〉 − β
‖x∗‖

sup(x∗,β)∈cl∗C(p)
{ 〈x∗, x〉 − β} ≤ M(p,x),

where the latter inequality ensures the estimate

L ≤ lim sup
(p,x)→(0,x̄), x /∈F(p) 
=∅

M(p,x) := K.
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Considering next a sequence (pk, xk) → (0, x̄) with xk /∈ F(pk) 
= ∅ and

L ≤ lim
k→∞M(pk,xk) = K,

we select a sequence {αk}∞k=1 ⊂ R such that

lim
k→∞αk = K and 0 < αk < M(pk,xk) as k ∈ N.

Take now
(
x∗
k , βk

) ∈ C+ (pk, xk) with αk <
∥∥x∗
k

∥∥−1 for all k ∈ N. Since the se-
quence

{
x∗
k

}
k∈N ⊂ X∗ is bounded, it contains a subnet

{
x∗
ν

}
ν∈N that w∗-converges

to some x∗ ∈ X∗. Denoting by {pν}, {xν}, {βν}, and {αν} the corresponding subnets
of {pk}, {xk}, {βk}, and {αk}, we get from (7.45) that

0 <
〈
x∗
ν , xν

〉− βν ≤ M ‖xν − x̄‖ + ‖pν‖ .
Hence

〈
x∗
ν , xν

〉 − βν → 0, which implies by the constructions above that βν →
〈x∗, x̄〉. We deduce from Lemma 7.14 that

(
x∗,

〈
x∗, x̄

〉) ∈ cl∗C (0) ,

and then Theorem 7.2 ensures that x∗ 
= 0.
To finalize verifying the inequality “≤” in (7.43), observe that

∥∥x∗∥∥ ≤ lim inf
ν∈N

∥∥x∗
ν

∥∥ ≤ lim
ν∈N

1

αν
= 1

K

due to
∥∥x∗
ν

∥∥ ≤ α−1
ν and limν∈N αν = K , which gives us

L ≤ K ≤ 1

‖x∗‖ ≤ max
{ ∥∥z∗

∥∥−1 ∣∣ (z∗,
〈
z∗, x̄

〉) ∈ cl∗C (0)
}
.

Remembering the notation above, we complete the proof of the theorem. �
Summarizing the obtained results on the calculations of the coderivative norm in

Theorem 7.8 and the exact Lipschitzian bound in Theorem 7.15 allows us to arrive
at the unconditional relationship between these quantities for the infinite linear in-
equality system F with an arbitrary Banach decision space X that is expressed by
the same formula as the one (3.10) derived in Theorem 3.3 for set-valued mappings
between finite-dimensional spaces.

Corollary 7.16 (Relationship Between the Exact Lipschitzian Bound and
Coderivative Norm). Let x̄ ∈ F(0) for the infinite system (7.1) satisfying the
strong Slater condition at p = 0, and let the coefficient set {a∗

t | t ∈ T } be bounded
in X∗. Then we have the equality

lipF(0, x̄) = ‖D∗F(0, x̄)‖. (7.46)
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Proof. If x̄ is a strong Slater point for F at p = 0, then we get equality (7.46) by
comparing assertions (i) in Theorem 7.8 and Theorem 7.15, which yield

lipF(0, x̄) = ‖D∗F(0, x̄)‖ = 0.

If x̄ is not a strong Slater point for F at p = 0, then (7.46) follows from comparing
assertions (ii) in Theorem 7.8 and Theorem 7.15, which give us the same formula
for calculating both ‖D∗F(0, x̄)‖ and lipF(0, x̄). �

7.2 Optimization Under Infinite Linear Constraints

In this section, we derive necessary optimality conditions for SIPs with general non-
smooth cost functions over feasible solution sets governed by infinite linear con-
straint systems of type (7.1). The calculation of the coderivative of the feasible so-
lution map given in Section 7.1 plays a crucial role in deriving necessary optimality
conditions of both upper and lower subdifferential types presented below. The re-
sults obtained are then applied to solving an optimization problem of a practical
interest arising in water resource modeling.

7.2.1 Two-Variable SIPs with Infinite Inequality Constraints

We deal here with the following SIP problem:

minimize ϕ(p, x) subject to x ∈ F(p), (7.47)

where ϕ : P × X → R := (−∞,∞] is an extended-real-valued cost function
(generally nonsmooth and nonconvex) defined on the product of Banach spaces and
where F : P →→ X is a set-valued mapping of feasible solutions

F(p) := {
x ∈ X∣∣ 〈a∗

t , x〉 ≤ bt + 〈c∗t , p〉, t ∈ T } (7.48)

with an arbitrary (possibly infinite) index set T and with some fixed elements
a∗
t ∈ X∗, c∗t ∈ P ∗, and bt ∈ R for all t ∈ T . Note that our considerations in

Section 7.1, conducted mainly from the viewpoints of Lipschitzian stability of para-
metric mappings F(p), concern the case of (7.48) with P = l∞(T ) and c∗t = δt
(Dirac measure), but the coderivative calculation given therein can be easily adapted
to the case of (7.48).

Observe that the optimization in (7.47) is taken with respect to both variables
(p, x), which are interconnected through the infinite inequality system (7.48). This
means in fact that we have two groups of decision variables represented by x and
p. One player specifies p, and the other solves (7.47) in x subject to (7.48) with the
specified p as a parameter. The first one, having the same objective, varies his/her
parameter p to get the best outcome via the so-called optimistic approach. We could
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treat this as a two-level design: optimizing the basic parameter p at the upper level,
while at the lower level, the cost function is optimized with respect to x for the
given p. The reader is referred to, e.g., [442], and the bibliography therein for var-
ious tuning and tolerancing problems of such types arising in engineering design.
Another area where two-variable SIPs governed by (7.47) and (7.48) with Banach
decision spacesX and P naturally appear concerns optimization of water resources.
A practical problem of this type is introduced and studied in Subsection 7.2.4.

We can notice some similarity between the two-variable optimization problem in
(7.47) and (7.48), treated above as a two-level optimistic design, and the optimistic
model of bilevel programming that was considered in Chapter 6 for finitely many
constraints and will be studied in Section 7.5.4 for infinitely many ones. The main
difference between these classes is that (7.48) is a constraint system described by
finitely many or infinitely many inequalities, while the corresponding parameter-
dependent set S(·) at the upper level of bilevel programming is given by a varia-
tional system of optimal solutions to a lower-level problem of parametric optimiza-
tion.

Keeping the same notation as in Section 7.1, we proceed now with deriving two
types of necessary optimality conditions for the SIP given in (7.47) and (7.48).

7.2.2 Upper Subdifferential Optimality Conditions for SIPs

Let us begin with upper subdifferential optimality conditions for problem (7.47) and
(7.48) that utilize the upper regular subdifferential (6.2) of the cost function (7.47)
along with the precise coderivative calculation for the infinite inequality constraint
system in (7.48).

Recall the well-known Farkas-Minkowski property for (7.48) that amounts to
saying that the conic convex hull

cone
{
(−c∗t , a∗

t , bt ) ∈ P ∗ ×X∗ × R
∣∣ t ∈ T } (7.49)

is weak∗ closed in the dual space P ∗ ×X∗ × R.

Now we are ready to formulate and prove upper subdifferential necessary opti-
mality conditions for the SIP in (7.47) and (7.48) in general Banach spaces.

Theorem 7.17 (Upper Subdifferential Conditions for SIPs with Linear In-
equality Constraints). Let (p̄, x̄) ∈ gphF ∩ domϕ be a local minimizer for the
two-variable SIP given by (7.47) and (7.48). Then every upper regular subgradient
(p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) satisfies the asymptotic optimality condition

− (
p∗, x∗, 〈p∗, p̄〉 + 〈x∗, x̄〉) ∈ cl ∗cone

{
(−c∗t , a∗

t , bt )
∣∣ t ∈ T }. (7.50)

If furthermore the Farkas-Minkowski property (7.49) holds for (7.48), then (7.50)
can be equivalently written in the upper subdifferential KKT form: for every
(p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄), there are multipliers λ = (λt )t∈T ∈ R

(T )
+ satisfying
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(p∗, x∗)+
∑

t∈T (p̄,x̄)
λt (−c∗t , a∗

t ) = 0, (7.51)

where R
(T )
+ is defined in (7.3) and where

T (p̄, x̄) := {
t ∈ T ∣∣ 〈a∗

t , x̄〉 − 〈c∗t , p̄〉 = bt
}
. (7.52)

Proof. Pick any (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄), and, employing the first part of Theo-
rem 1.27 which holds in arbitrary Banach spaces (see Exercise 1.64), construct a
function s : P ×X → R such that

s(p̄, x̄) = ϕ(p̄, x̄), ϕ(p, x) ≤ s(p, x) for all (p, x) ∈ P ×X, (7.53)

and s(·) is Fréchet differentiable at (p̄, x̄) with ∇s(p̄, x̄) = (p∗, x∗). Taking into
account that (p̄, x̄) is a local minimizer in (7.47), (7.48) and that

s(p̄, x̄) = ϕ(p̄, x̄) ≤ ϕ(p, x) ≤ s(p, x) for all (p, x) ∈ gphF near (p̄, x̄)

by (7.53), we deduce that (p̄, x̄) is a local minimizer for the auxiliary problem

minimize s(p, x) subject to (p, x) ∈ gphF (7.54)

with the objective s(·) that is Fréchet differentiable at (p̄, x̄). Rewriting (7.54) in the
infinite-penalty unconstrained form

minimize s(p, x)+ δ((p, x); gphF)

via the indicator function of gphF , observe directly from definition (1.33) of the
regular subdifferential at a local minimizer that

(0, 0) ∈ ∂̂[s + δ(·; gphF)](p̄, x̄). (7.55)

Since s(·) is Fréchet differentiable at (p̄, x̄), we easily get from (7.55) that

(0, 0) ∈ ∇s(p̄, x̄)+N((p̄, x̄); gphF),

which implies by ∇s(p̄, x̄) = (p∗, x∗) and the coderivative definition (1.15) that
−p∗ ∈ D∗F(p̄, x̄)(x∗). It follows from the proof of Theorem 7.5 that the latter
coderivative condition can be constructively described in terms of the initial problem
data as follows:

(− p∗,−x∗,−(〈p∗, p̄〉 + 〈x∗, x̄〉)) ∈ cl∗cone
{
(−c∗t , a∗

t , bt )
∣∣ t ∈ T }. (7.56)

Thus (7.56) justifies the asymptotic condition (7.50) for the given upper subgradient
(p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄). If the Farkas-Minkowski property (7.49) is satisfied, then the
operation cl∗ in (7.50) can be omitted, and we arrive at the KKT condition (7.51)
while completing the proof of the theorem. �
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The essence of upper subdifferential conditions in the general framework of min-
imization has been discussed above in Remark 6.2, which equally applies to the SIP
setting of Theorem 7.17. The following consequence of the obtained results is used
in Subsection 7.2.4 when both spaces X and P are Banach.

Corollary 7.18 (Necessary Conditions for SIPs with Fréchet Differentiable
Costs). In the setting of Theorem 7.17, suppose that the cost function ϕ is
Fréchet differentiable at the local optimal solution (p̄, x̄) with the derivative
(p∗, x∗) = ∇ϕ(p̄, x̄). Then (7.50) holds and further reduces to (7.51) if in ad-
dition system (7.48) enjoys the Farkas-Minkowski property.

Proof. It follows directly from Theorem 7.17 since in this case we have
∂̂+ϕ(p̄, x̄) = {∇ϕ(p̄, x̄)} for the regular upper subdifferential of ϕ. �

Observe that in the general settings of Theorem 7.17 and Corollary 7.18, the
necessary optimality condition (7.50) is obtained in the normal form meaning that
we have a nonzero (λ0 = 1)multiplier associated with the cost function without any
constraint qualification. However, this condition is expressed in the asymptotic form
involving the weak∗ closure of the set on the right-hand side of (7.50). This feature
partly relates to considering arbitrary index sets in the SIP constraint (7.48) but may
also be exhibited in problems with compact index sets as shown in Subsection 7.2.4.

The latter phenomenon doesn’t appear under the validity of Farkas-Minkowski
property (7.49), which ensures the more conventional KKT form (7.51). Let us
present another consequence of Theorem 7.17, where the Farkas-Minkowski prop-
erty holds and gives us KKT (7.51).

To proceed, we need the following adaptation of the strong Slater condition
(SSC) from Definition 7.1 to the case of the constraint system (7.48): SSC holds
for (7.48) if there is a pair (p̂, x̂) ∈ P ×X such that

sup
t∈T

[〈a∗
t , x̂〉 − 〈c∗t , p̂〉 − bt

]
< 0. (7.57)

The reader can easily check the validity of the equivalent descriptions of SSC for
(7.48) similar to those given in Theorem 7.2.

Corollary 7.19 (Upper Subdifferential Conditions in KKT Form). Suppose that
T is a compact Hausdorff space, that both X and P are finite-dimensional, that the
mapping t �→ (a∗

t , c
∗
t , bt ) is continuous on T , and that SSC (7.57) holds. Then for

any (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄), there are multipliers λ = (λt )t∈T ∈ R
(T )
+ such that the

KKT condition (7.51) is satisfied.

Proof. To check the fulfillment of the Farkas-Minkowski property under the assump-
tions imposed in the corollary, we observe first that the boundedness and closed-
ness of the set {(c∗t , a∗

t , bt )| t ∈ T } (and hence of its convex hull by the classical
Carathéodory theorem) follow from the continuity of t �→ (c∗t , a∗

t , bt ) and compact-
ness of T . Using this boundedness and the equivalence (ii)⇔(iii) in the counterpart
of Theorem 7.2 for (7.48) gives us the condition
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(0, 0, 0) /∈ co
{
(−c∗t , a∗

t , bt )
∣∣ t ∈ T }. (7.58)

As well known in convex analysis (see, e.g., [667, Corollary 9.6.1]), the valid-
ity of (7.58) in this setting yields the closedness of the convex conic hull of
{−c∗t , a∗

t , b
∗
t )| t ∈ T }, and thus the Farkas-Minkowski property holds. �

7.2.3 Lower Subdifferential Optimality Conditions for SIPs

Now we turn to lower subdifferential optimality conditions for the SIP under con-
sideration, which use the basic subgradients (1.24) of the cost function ϕ in (7.47).
Our standing assumption in this subsection is that both spacesX and P are Asplund.
Recall also that the lower semicontinuity of ϕ, which is the standing assumption in
this book, is essential here, while it is not needed for the upper subdifferential results
of Subsection 7.2.2.

The lower subdifferential conditions for the SIP in (7.47) and (7.48) derived be-
low differ from their upper subdifferential counterparts in assumptions as well as
in conclusions even for the case of finite-dimensional decision spaces. Observe that
the following theorem utilizes both basic (1.24) and singular (1.25) subgradients of
the cost function.

Theorem 7.20 (Lower Subdifferential Conditions for SIPs with Linear In-
equality Constraints). Let (p̄, x̄) ∈ gphF ∩ domϕ be a local minimizer for the
SIP under consideration. Suppose also that:

(a) either ϕ is locally Lipschitzian around (p̄, x̄);
(b) or int(gphF) 
= ∅ (which is true, in particular, when SSC (7.57) holds and

the set {(a∗
t , c

∗
t )| t ∈ T } is bounded in X∗ × P ∗) and the system

(p∗, x∗) ∈ ∂∞ϕ(p̄, x̄),
−(p∗, x∗, 〈(p∗, x∗), (p̄, x̄)〉) ∈ cl ∗cone

{
(−c∗t , a∗

t , bt )
∣∣ t ∈ T } (7.59)

admits only the trivial solution (p∗, x∗) = (0, 0).
Then there is a basic subgradient pair (p∗, x∗) ∈ ∂ϕ(p̄, x̄) satisfying the asymp-

totic optimality condition (7.50). If in addition the Farkas-Minkowski property
(7.49) holds for (7.48), then there are subgradients (p∗, x∗) ∈ ∂ϕ(p̄, x̄) and multi-
pliers λ = (λt )t∈T ∈ R

(T )
+ satisfying the KKT condition

(p∗, x∗)+
∑

t∈T (p̄,x̄)
λt (−c∗t , a∗

t ) = 0 (7.60)

with the active index set T (p̄, x̄) defined in (7.52).

Proof. The SIP in (7.47) and (7.48) can be equivalently written as

minimize ϕ(p, x)+ δ((p, x); gphF). (7.61)
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Applying the generalized Fermat rule to (p̄, x̄) in (7.61) gives us

(0, 0) ∈ ∂[ϕ + δ(·; gphF)](p̄, x̄) (7.62)

in terms of the basic subdifferential of the summation function in (7.62). By using
an Asplund space version of the subdifferential sum rule from Exercise 2.54(i) with
taking into account that the product of two Asplund spaces is Asplund and that
the SNC property holds for solid convex sets by Exercise 2.29(ii), we deduce from
(7.62) the validity of the inclusion

(0, 0) ∈ ∂ϕ(p̄, x̄)+N((p̄, x̄); gphF) (7.63)

provided that either ϕ is locally Lipschitzian around (p̄, x̄) as assumed in (a) or the
interior of gphF is nonempty and the qualification condition

∂∞ϕ(p̄, x̄) ∩ [−N((p̄, x̄); gphF)] = {(0, 0)} (7.64)

is satisfied as assumed in (b). It follows from the proof of Theorem 7.2 that the strong
Slater condition (7.57) and the boundedness of {(a∗

t , c
∗
t )| t ∈ T } surely imply that

the interior of gphF is nonempty. Using now the coderivative description obtained
in Theorem 7.5 while modifying it for the case of F from (7.48) shows that the
qualification condition (7.64) can be equivalently written as the triviality of solutions
to system (7.59) imposed above. In the same way, we reduce (7.63) to the validity of
(7.50) for some (p∗, x∗) ∈ ∂ϕ(p̄, x̄). If furthermore the Farkas-Minkowski property
(7.49) is satisfied for (7.48), then the operation cl∗ in (7.50) can be omitted. Thus
we arrive at the KKT condition (7.60) and complete the proof of the theorem. �

Similarly to Subsection 7.2.2, we can derive from Theorem 7.20 the lower subdif-
ferential counterpart of Corollary 7.19. Observe that the corresponding consequence
of Theorem 7.20 involving an appropriate differentiability of the cost function in
(7.47) holds under more restrictive assumptions in comparison with Corollary 7.18:
besides the Asplund property of X and P , we have to assume the strict differentia-
bility of ϕ at (p̄, x̄).

7.2.4 Applications to Water Resource Optimization

This subsection provides applications of the obtained general results for SIPs to a
water resource optimization problem of a practical interest. We formulate the water
recourse model and reduce it to a two-variable SIP over a compact index set with
Banach decision spaces. The usage of the necessary optimality conditions for such
problems established above allows us to determine optimal decision strategies and
suggest efficient ways of their realizations.



7.2 Optimization Under Infinite Linear Constraints 285

The water resource problem under consideration is inspired by a continuous-
time network flow model formulated in [15]. Consider a system of n reservoirs
R1, . . . , Rn from which a time-varying water demand is required during a fixed
continuous-time period T = [t, t]. Let ci be the capacity of the reservoir Ri , and
let water flow into Ri at rate ri(t) for each i = 1, . . . , n and t ∈ T . Denote by
D(t) the rate of water demand at t , and suppose that all these nonnegative functions
r1, . . . , rn andD are piecewise continuous on the compact interval T and are known
in advance. If there is enough water to fill all the reservoir capacity, then the rest can
be sold to a neighboring dry area provided that the demand is satisfied. Conversely,
if the inflows are short and the reservoirs have free capability for holding additional
water, then some water can be bought from outside to meet the inner demand in the
region; see Fig. 7.1.

r1(·) r2(·) rn−1(·) rn(·)

x1(·)
x2(·) xn−1(·)

xn(·)

D(·)

c1 c2 cn−1 cn

Inflow

Reservoir

Demand

R1 R2 Rn−1 Rn

Fig. 7.1 Reservoirs.

Denote by xi(t) the rate at which water is fed from the reservoir Ri at time t ∈ T .
It is natural to assume in our basic model that xi ∈ C(T ) for all i = 1, . . . , n. The
feeder constraints can be expressed by

0 ≤ xi(t) ≤ ηi, i = 1, . . . , n, (7.65)

with fixed bounds ηi ≥ 0. The selling rate of water from the reservoir Ri at time t is
given by dpi(t), which means that pi(t) is the quantity of water sold until instant t
and depending on t continuously on the time interval T . Without loss of generality,
suppose that pi

(
t
) = 0 for all i = 1, . . . , n. Observe that we are actually buying

water at time t ∈ T if the selling rate dpi(t) is negative. Denoting further by si ≥ 0
the amount of water initially stored in Ri , we describe the storage constraints by

0 ≤
∫ t

t

[
ri(τ )− xi(τ )

]
dτ −

∫ t

t

dpi(τ )+ si

=
∫ t

t

[
ri(τ )− xi(τ )

]
dτ − pi(t)+ si

≤ ci for all t ∈ T and i = 1, . . . , n

(7.66)
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and arrive at the following problem of water resource optimization:
⎧
⎪⎨

⎪⎩

minimize ϕ(p, x) subject to (7.65), (7.66),

and
n∑

i=1

xi(t) ≥ D(t) for all t ∈ T , (7.67)

where the cost function ϕ(p, x) is determined by the cost of water, environmental
requirements in the region, and the technology of reservoir processes in the water
resource problem. It is clear that we should impose the relationship

D(t) ≤
n∑

i=1

ηi, t ∈ T ,

in order to ensure the consistency of the constraints in (7.67).
Let us show that problem (7.67) can be reduced to the SIP form in (7.47), (7.48)

with two groups of variables (p, x) ∈ C(T )n × C(T )n. To proceed, define the fol-
lowing t-parametric families of functions on T :

δt (τ ) :=
{

0 if t ≤ τ < t,

1 otherwise; αt (τ ) :=
{
τ if t ≤ τ < t,

t otherwise.

Both families {δt | t ∈ T } and {αt | t ∈ T } are subsets of the dual space C(T )∗. In
fact, the Riesz representation theorem ensures that each function γ : T → R of
bounded variation on T determines a linear functional on C(T ) by

z �→ 〈γ, z〉 :=
∫ t

t

z(τ ) dγ (τ), z ∈ C(T ),

via the Stieltjes integral. It is easy to check that

∫ t

t

xi(τ ) dτ = 〈αt , xi〉, dαt (τ ) = χ[t,t](τ ) dτ for t ∈ T ,

where χ[t,t] is the standard characteristic function of the interval [t, t]. Moreover,
for each element z ∈ C(T ), we have

〈δt , z〉 = z (t) , t ∈ T ,
and thus δt can be identified in this context with the Dirac measure at t , which
justifies the δ-notation above. Consider further the functions

βi(t) :=
∫ t

t

ri(τ ) dτ for i = 1, . . . , n, t ∈ T ,



7.2 Optimization Under Infinite Linear Constraints 287

and notice that the constraints in (7.66) can be rewritten as
{ 〈δt , pi〉 + 〈αt , xi〉 ≤ βi(t)+ si,

−〈δt , pi〉 − 〈αt , xi〉 ≤ ci − si − βi(t), (7.68)

while the one in (7.67) admits the form

n∑

i=1

〈δt , xi〉 ≥ D(t), t ∈ T . (7.69)

Observing finally that the constraints in (7.65) can be equivalently given by

0 ≤ 〈δt , xi〉 ≤ ηi, i = 1, . . . , n, t ∈ T , (7.70)

we arrive at the following reduction result.

Proposition 7.21 (Water Resource Problem as SIP in Banach Spaces). The
problem of water resource optimization (7.67) is equivalent to the two-variable SIP
of type (7.47) and (7.48) in the space C(T )× C(T ):

minimize ϕ(p, x) subject to (7.68), (7.69), and (7.70) (7.71)

with the data δt , αt , βt , ci , si , ηi , and D defined above.

Now we examine the possibility to apply the obtained necessary optimality con-
ditions for SIPs to the case of the water resource model (7.71). Since the space C(T )
for both variables x and p in our model is not Asplund, we proceed with applying
the upper subdifferential optimality conditions of Theorem 7.17 and consider for
definiteness the case where the cost function ϕ is Fréchet differentiable at the refer-
ence point, i.e., apply the optimality conditions of Corollary 7.18. For simplicity of
notation, suppose in what follows that n = 1 in (7.71), and write (p, x, β, c, s, η)
instead of (p1, x1, β1, c1, s1, η1).

Using the initial data of problem (7.71), define the following convex conic hull
in the dual space C(T )∗ × C(T )∗ × R by

K(T ) := cone

⎧
⎨

⎩

[(
δt , αt , β(t)+ s

)
,
(− δt ,−αt , c − s − β(t)),

(
0,−δt ,−D(t)

)
,
(
0, δt , η

)
over all t ∈ T

]

⎫
⎬

⎭
, (7.72)

which is a specification of (7.49) for the water recourse problem (7.71). Given a
solution pair (p̄, x̄), consider the sets of active indices corresponding to all the in-
equality constraints in (7.71) formed as

⎧
⎪⎪⎨

⎪⎪⎩

T1(p̄, x̄) := {
t ∈ T ∣∣ 〈δt , p̄〉 + 〈αt , x̄〉 = β(t)+ s},

T2(p̄, x̄) := {
t ∈ T ∣∣ − 〈δt , p̄〉 − 〈αt , x〉 = c − s − β(t)},

T3(p̄, x̄) := {
t ∈ T ∣∣ − 〈δt , x〉 = −D(t)},

T4(p̄, x̄) := {
t ∈ T ∣∣ 〈δt , x̄〉 = η

}
.

(7.73)
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The next result provides necessary conditions for local minimizers in the water
recourse optimization problem (7.71).

Proposition 7.22 (Necessary Optimality Conditions for Water Resource Opti-
mization). Let (p̄, x̄) be a local minimizer in problem (7.71). Assume that the cost
function ϕ : C(T )× C(T ) → R is Fréchet differentiable at (p̄, x̄), and consider the
cone K(T ) defined in (7.72). Then we have the inclusion

−(∇pϕ(p̄, x̄),∇xϕ(p̄, x̄), 〈∇pϕ(p̄, x̄), p̄〉 + 〈∇xϕ(p̄, x̄), x̄〉
) ∈ cl ∗K(T ).

If furthermore the cone K(T ) is weak∗ closed, then there exist generalized multipli-
ers λ = (λt )t∈T , μ = (μt )t∈T , γ = (γt )t∈T , and ρ = (ρt )t∈T ∈ R

(T )
+ satisfying the

following KKT relationship:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(∇pϕ(p̄, x̄),∇xϕ(p̄, x̄)
) =

∑

t∈T1(p̄,x̄)

λt (δt , αt )

+
∑

t∈T2(p̄,x̄)

μt (−δt ,−αt )+
∑

t∈T3(p̄,x̄)

γt (0,−δt )+
∑

t∈T4(p̄,x̄)

ρt (0, δt ) ,

(7.74)

where the sets of active indices Ti(p̄, x̄), i = 1, . . . , 4, are defined in (7.73).

Proof. This follows from the necessary optimality conditions in Corollary 7.18 ap-
plied to problem (7.71) taking into account the specification of the characteristic
cone (7.49) for problem (7.71) obtained in (7.72) and then expressed via the active
index sets from (7.73) corresponding to the infinite inequality constraints in (7.68)–
(7.70). �

Observe that the optimality conditions obtained in Proposition 7.22 provide a
valuable insight to our understanding of optimal strategies for the water resource
problem. Indeed, it follows from the structures of constraints in (7.71) and their
active index sets that the time inclusion t ∈ T1(p̄, x̄) means that at this moment t
the reservoir is empty, while the one of t ∈ T2 (p̄, x̄) means that at this time the
quantity of water inside the reservoir given by 〈δt , p〉+ 〈αt , x〉− s−β(t) attains its
maximum level c, i.e., the reservoir is full. Similarly the inclusions t ∈ Ti(p̄, x̄) for
i = 3, 4 signify, respectively, that the water is flowing at its minimum rate or at its
maximum rate to satisfy the demand. The KKT relationship (7.74), valid under the
Farkas-Minkowski condition, reflects therefore that the “dual action” (p∗, x∗) is a
linear combination of these “bang-bang” strategies with the corresponding weights
(λ, μ, γ, ρ). The general asymptotic optimality condition of the proposition indi-
cates from this viewpoint that, in the absence of the Farkas-Minkowski property, the
optimal impulse can be approximated by such combinations.

Finally in this section, we fully characterize the setting of Proposition 7.22 in
which the Farkas-Minkowski property is satisfied for problem (7.71).
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Proposition 7.23 (Farkas-Minkowski Property in Water Resource Optimiza-
tion). Let T̃ be a nonempty subset of the time interval T = [t, t] in (7.71). Then the
cone K(T̃ ) from (7.72) is weak∗ closed in C(T )∗ × C(T )∗ × R if and only if the set
T̃ consists of a finite number of indices.

Proof. The “if” part easily follows from the definitions. Let us justify the “only if”
part arguing by contradiction and taking into account that the space C(T ) is sepa-
rable. Suppose that the set T̃ is infinite and pick for simplicity a strictly monotone
(increasing or decreasing) sequence {tk}k∈N in T̃ , which therefore converges to some
point of T . It is not hard to check that the sequence in C(T )∗ × C(T )∗ ×R given by

{ k∑

j=1

1

j2

(
δtj , αtj , β(tj )+ s

)}

k∈N (7.75)

weak∗ converges to the triple (δ, α, b) defined by

〈(δ, α, b) , (p, x, q)〉 := 〈δ, p〉 + 〈α, x〉 + bq (7.76)

via the componentwise relationships

〈δ, p〉 :=
∞∑

j=1

1

j2p
(
tj
)
, 〈α, x〉 :=

∞∑

j=1

1

j2

∫ tj

t

x (t) dt, b :=
∞∑

j=1

1

j2

(
β(tj )+ s

)
.

Indeed, the weak∗ convergence of the above sequence follows directly from the
boundedness of the set

{(
δtj , αtj , β(tj )+ s

)}
k∈N in C(T )∗ × C(T )∗ × R and the

convergence of the series
∞∑
j=1

1
j2 .

Let us now show that (δ, α, b) /∈ K(T̃ ), and thus the cone K(T̃ ) is not weak∗
closed. To verify it, observe that the inclusion (δ, α, b) ∈ K(T̃ ) yields

δ =
∑

t∈T̃
λt δt for some λ ∈ R

(T̃ )
+ ,

which gives us a function δ ∈ C(T )∗ that is discontinuous only on a finite subset of
T . It is easy to check at the same time that this component δ of the triple above is

the weak∗ limit of the functions
k∑

j=1

1
j2 δtj as k → ∞, and hence it is discontinuous

on the infinite set {tk}k∈N. The obtained contradiction completes the proof of the
proposition. �

One of the remarkable consequences of Proposition 7.23 is that the Farkas-
Minkowski property doesn’t hold for the water resource problem (7.71) on the com-
pact continuous-time interval T = [t, t]. On the other hand, this result justifies yet
another interpretation of the optimality conditions of Proposition 7.22 correspond-
ing to the efficient realization of control strategies for reservoirs. Since in practice
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the measuring and control processes for the water resource model under considera-
tion are implemented only at discrete instants of time, we can consider a discretiza-
tion T̃ of the time interval T and then apply the KKT conditions of Proposition 7.22
on T̃ .

7.3 Infinite Linear Systems Under Block Perturbations

In this section, we consider a class of infinite inequality constraint systems under
block perturbations. Besides being of an undoubted interest in semilinear program-
ming for its own sake, systems of this type eventually cover infinite convex inequal-
ity systems by using Fenchel duality. For brevity, we consider only the issues related
to coderivative analysis of infinite linear block-perturbed and convex systems and
its applications to characterizing Lipschitzian stability, i.e., we aim to develop con-
vex counterparts of the results given in Section 7.1. It is not hard to observe that the
coderivatives results obtained in this way can be equally applied to deriving both up-
per and lower subdifferential optimality conditions for SIPs with infinite constraints
under consideration similarly to those obtained in Section 7.2 for the linear ones.

Our approach is as follows. We first consider infinite linear systems with block
perturbations and extend to this case the results of Section 7.1. Then the results ob-
tained are applied to infinite convex systems by using their linearization via Fenchel
conjugates. As a by-product of our developments, we remove the boundedness as-
sumption previously imposed on the coefficient of linear and convex systems in the
case of reflexive decision spaces.

7.3.1 Description of Infinite Linear Block-Perturbed Systems

Given an arbitrary set T 
= ∅, consider its partition

J := {
Tj | j ∈ J} with Tj 
= ∅ for all j ∈ J

indexed by a fixed set J 
= ∅ so that we have

T =
⋃

j∈J
Tj with Ti ∩ Tj = ∅ if i 
= j,

where the sets Tj , j ∈ J , in the partition are referred to as blocks.
Given further a decision Banach space and coefficients (a∗

t , bt ) ∈ X∗ ×R, t ∈ T ,
consider the block-perturbed system

σJ (p) := { 〈
a∗
t , x

〉 ≤ bt + pj , t ∈ Tj , j ∈ J} (7.77)

with the perturbation parameter p = (
pj
)
j∈J ranging in the Banach space l∞(J ).

The zero function p̄ = 0 is regarded as the nominal parameter, which corresponds
to the nominal system
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σ(0) := { 〈
a∗
t , x

〉 ≤ bt , t ∈ T } (7.78)

independently on the partition J . The two extreme partitions

Jmin := {T } and Jmax := { {t} ∣∣ t ∈ T } (7.79)

are called the minimum partition and the maximum partition, respectively.

Our major attention is focused in what follows on coderivative analysis of the
feasible solution map FJ : l∞(J ) →→ X generated by (7.77) as

FJ (p) := {
x ∈ X∣∣ x is a solution to σJ (p)

}
(7.80)

and its applications to a complete characterization of Lipschitzian stability for (7.80)
via the given data of the nominal system (7.78). Then we proceed with further ap-
plications to infinite convex inequality systems.

7.3.2 Stability of Block-Perturbed Systems via Coderivatives

First, we present the following coderivative calculation for FJ at the reference
point, where δj stands for the Dirac measure at j ∈ J given by

〈
δj , p

〉 := pj for p = (
pj
)
j∈J ∈ l∞ (J ) .

Proposition 7.24 (Coderivative Calculation for Block-Perturbed Linear Sys-
tems). Let x̄ ∈ FJ (0) for the mapping FJ : l∞(J ) →→ X from (7.80). Then we
have p∗ ∈ D∗FJ (0, x̄) (x∗) if and only if

(
p∗,−x∗,− 〈

x∗, x̄
〉) ∈ cl∗cone

{ (−δj , a∗
t , bt

) ∣∣ j ∈ J, t ∈ Tj
}
.

Proof. It can be done by following the lines in the proof of Theorem 7.5 and the
preceding propositions of Subsection 7.1.2. �

Similarly to (7.5), define the characteristic set for (7.77) by

CJ (p) := co
{
(a∗
t , bt + pj )

∣∣ t ∈ Tj , j ∈ J} ⊂ X∗ × R (7.81)

at p ∈ l∞(J ) and consider its specification at p = 0, which actually doesn’t depend
on J but just on the nominal system (7.78):

C (0) = co
{ (
a∗
t , bt

) ∣∣ t ∈ T }.
The strong Slater condition (SSC) for the nominal system σ(0) and the correspond-
ing strong Slater point x̂ are specifications of Definition 7.1 for p = 0.

We have the following equivalent relationships, which extend the equivalencies
in Theorem 7.2 to the case of linear block-perturbed systems with taking into ac-
count some other results and proofs developed in Section 7.1.
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Proposition 7.25 (Characterizations of the Lipschitz-Like Property for Linear
Systems Under Block Perturbations). Given x̄ ∈ FJ (0) for the feasible solution
map (7.80), the following are equivalent:

(i) FJ is Lipschitz-like around (0, x̄).
(ii) D∗FJ (0, x̄)(0) = {0}.
(iii) SSC holds for σ (0).
(iv) 0 ∈ int(domFJ ).
(v) FJ is Lipschitz-like around (0, x) for all x ∈ FJ (0).
(vi) (0, 0) /∈ cl∗ C (0).

Proof. Implication (i)⇒(ii) is verified, due to D∗
MFJ (0, x̄) = D∗

NFJ (0, x̄) by the
graph convexity of FJ (0, x̄), in Step 1 of Theorem 3.3 the proof of which holds
without change in any change in arbitrary Banach space; see Exercise 3.35. The
verification of the converse application (ii)⇒(i) follows the lines in the proof of
Theorem 7.9 with the usage of Proposition 7.24. Since the conditions involved in
(iii) and (vi) don’t depend on partitions, the equivalence between them reduces to
(iii)⇔(iv) for p = 0 in Theorem 7.2. Following the proof of (ii)⇔(iii) in Theo-
rem 7.2 allows us to establish the equivalence between (iii) and (iv) for the max-
imum partition J = Jmax in (7.79), which obviously implies that (iii)⇒(iv) for
an arbitrary partition J . The converse implication (iv)⇒(iii) holds by considering
a constant perturbation p ≡ ε with ε > 0 being sufficiently small to ensure that
p ∈ int(domFJ ) by taking into account that constant perturbations (corresponding
to the minimum partition J = Jmin in (7.79)) are surely a particular case of block
perturbations. The equivalent relationships in (i)⇔(iv) and (iv)⇔(v) follow from the
classical Robinson-Ursescu theorem and the equivalence between the Lipschitz-like
property of a mapping and the metric regularity/covering properties of the inverse;
see Theorem 3.2, Corollary 3.6, and the corresponding commentaries in Section 3.5.
This completes the proof of the proposition. �

Now we proceed with evaluating the exact Lipschitzian bound of the mapping
(7.80) under block perturbations. Prior to establishing the main result in this direc-
tion, we present several propositions of their independent interest.

Proposition 7.26 (Relationships Between Exact Lipschitzian Bounds of Block-
Perturbed Systems). Let x̄ ∈ FJ (0) for the feasible solution map from (7.80).
Then we have in the notation of (7.79) that

lipFmin (0, x̄) ≤ lipFJ (0, x̄) ≤ lipFmax (0, x̄) .

Proof. We rely on the Lipschitzian bound representation given in (7.26). Consider
the nontrivial case where SSC is satisfied at the nominal system σ (0); otherwise
all the exact Lipschitzian bounds above are equal to ∞ according to the equivalence
(i)⇔(iii) in Proposition 7.25. Note that the mappings Fmin, FJ , and Fmax act in the
spaces R, l∞(J ), and l∞(T ), respectively. For each ρ ∈ R, let pρ be the constant
function pρ ≡ ρ on J , and for each p ∈ l∞ (J ), denote by pT the piecewise
constant function on T defined as pj on the block Tj , j ∈ J . Let us further verify
the two inequalities:
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dist
(
ρ;F−1

min (x)
)

≥dist
(
pρ;F−1

J (x)
)
, dist

(
p;F−1

J (x)
)

≥dist
(
pT ;F−1

max (x)
)

valid for any x ∈ X. Indeed, we obviously have that F−1
J (x) = ∅ yields F−1

min (x) =
∅ and similarly for the second inequality above.

Consider now the nontrivial case where both of these sets are nonempty. Thus
we get for some sequence {ρr }r∈N ⊂ F−1

min (x) that

dist
(
ρ;F−1

min (x)
)

= lim
r∈N

|ρ − ρr | = lim
r∈N

∥∥pρ − pρr
∥∥ ≥ dist

(
pρ;F−1

J (x)
)

by taking into account that ρr ∈ F−1
min (x) if and only if pρr ∈ F−1

J (x).
Finally, we appeal to representation (7.26) of the exact Lipschitzian bound com-

bined with the directly verifiable equalities

Fmin (ρ) = FJ
(
pρ
)

and FJ (p) = Fmax (pT ) ,

which thus allow us to complete the proof of the proposition. �
The next proposition establishes relationships between the coderivative norms of

(7.80) corresponding to different partitions.

Proposition 7.27 (Coderivative Norms for Block-Perturbed Systems). Consider
the feasible solution mappings (7.80) corresponding to an arbitrary partition J and
to the minimum one (7.79). Then for any x̄ ∈ FJ (0), we have

∥∥D∗Fmin (0, x̄)
∥∥ ≤ ∥∥D∗FJ (0, x̄)

∥∥ . (7.82)

Proof. Observe that FJ (0) = Fmin (0) since both sets therein reduce to the nom-
inal one; hence x̄ ∈ Fmin (0). According to the coderivative norm definition, pick
arbitrarily x∗ ∈ X∗ with ‖x∗‖ ≤ 1, and consider the nontrivial case where there
exists μ ∈ R\{0} with μ ∈ D∗Fmin (0, x̄) (x∗). The coderivative calculation in
Proposition 7.24 entails the existence of a net {λν}ν∈N with λν = (λtν)t∈T ∈ R

(T )
+

as ν ∈ N satisfying the condition

(
μ,−x∗,− 〈

x∗, x̄
〉 ) = w∗- lim

ν∈N
∑

t∈T
λtν

(−1, a∗
t , bt

)
. (7.83)

Looking at the first coordinates in (7.83) and setting γν := ∑
t∈T λtν , we get −μ =

lim
ν∈N

γν > 0, and hence γν > 0 for ν sufficiently advanced in the directed set N , say

for all ν without loss of generality. This gives us

(
μ−1x∗,

〈
μ−1x∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T
γ−1
ν λtν

(
a∗
t , bt

) ∈ cl ∗C (0) . (7.84)

For each ν ∈ N , consider next ην = (
ηjν

)
j∈J ∈ R

(J )
+ with ηjν := ∑

t∈Tj γ
−1
ν λtν ,

which yields
∑
j∈J ηjν = 1. Since the net {∑j∈J ηjν

(−δj
)}ν∈N is contained in the

ball Bl∞(J )∗ , the Alaoglu-Bourbaki theorem tells us that a certain subnet (indexed
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without relabeling by ν ∈ N ) weak∗ converges to some p∗ ∈ l∞ (J )∗ with ‖p∗‖ ≤
1. Denoting by e ∈ l∞ (J ) the function whose coordinates are identically 1, we get
the equality

〈
p∗,−e〉 = lim

ν∈N
∑

j∈J
ηjν = 1, and so

∥∥p∗∥∥ = 1.

Appealing now to (7.84) shows for the subnet under consideration that
(
p∗, μ−1x∗,

〈
μ−1x∗, x̄

〉)
= w∗- lim

ν∈N
∑

j∈J

∑

t∈Tj
γ−1
ν λtν

(−δj , a∗
t , bt

)
.

Employing then the coderivative description from Proposition 7.24 yields

p∗ ∈ D∗FJ (0, x̄)
(
−μ−1x∗) .

Since −μ > 0, the positive homogeneity of the coderivative implies that

−μp∗ ∈ D∗FJ (0, x̄)
(
x∗) ,

which ensures in turn by the coderivative norm definition that
∥∥D∗FJ (0, x̄)

∥∥ ≥ ∥∥−μp∗∥∥ = −μ = |μ| .
Since the number μ ∈ D∗Fmin (0, x̄) (x∗) was chosen arbitrarily, we arrive at (7.82)
and thus complete the proof of the proposition. �

To proceed further, we make for notational convenience the convention that
sup ∅ := 0, which allows us to get the equality

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

= 0

for a strong Slater point x̄ of σ(0). Indeed, it is easy to check that for such a point
x̄, there is no element u∗ ∈ X∗ satisfying

(
u∗, 〈u∗, x̄〉 ) ∈ cl ∗C (0).

Note that the converse statement doesn’t hold in general. To illustrate it, consider
the system σ (0) := {tx ≤ 1/t as t = 1, 2, . . .} in R. On the one hand, observe
that x̄ = 0 is not a strong Slater point of this system. On the other hand, we have
{u∗ ∈ R| (u∗, 〈u∗, x̄〉) ∈ cl ∗C(0)} = ∅.

Recall also that the failure of SSC for σ(0) tells us by Proposition 7.25 that
(0, 0) ∈ cl ∗C(0), which ensures under the convention 1/0 := ∞ that for any feasi-
ble point x̄ of σ (0), we have the relationship

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

= ∞.

These observations are useful in deriving the following lower estimate of the
coderivative norm for the minimum partition, which is an important step to obtain
the main result of this section.
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Proposition 7.28 (Lower Estimate of the Coderivative Norm for the Minimum
Partition). Consider the mapping Fmin : R →→ X defined by the minimum partition
Jmin in (7.79), and pick any x̄ ∈ Fmin (0). Then we have

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

≤ ∥∥D∗Fmin (0, x̄)
∥∥ . (7.85)

Proof. Let us check first that ‖D∗Fmin (0, x̄)‖ = ∞ provided that SSC for σ (0).
Indeed, in this case, Proposition 7.25 tells us that (0, 0) ∈ cl ∗C (0), which yields in
turn the existence of a net {λν}ν∈N with λν = (λtν)t∈T ∈ R

(T )
+ and

∑
t∈T λtν = 1

as ν ∈ N satisfying the condition

(
0, 0

) = w∗- lim
ν∈N

∑

t∈T
λtν

(
a∗
t , bt

)
.

The latter obviously implies that
(− 1, 0, 0

) = w∗-limν∈N
∑
t∈T λtν

(−1, a∗
t , bt

)
,

i.e., by Proposition 7.24 we get the inclusion

−1 ∈ D∗Fmin (0, x̄) (0) .

Since D∗Fmin (0, x̄) is positively homogeneous, the coderivative norm definition
ensures the validity of the claimed condition ‖D∗Fmin (0, x̄)‖ = ∞.

Next we consider the nontrivial case where SSC holds for σ (0) and the set of
elements u∗ ∈ X∗ with (u∗, 〈u∗, x̄〉) ∈ cl ∗C (0) is nonempty. Take such an element
u∗, and observe that the fulfillment of SSC for σ (0) yields u∗ 
= 0 according to
Proposition 7.25. The choice of u∗ allows us to find a net {λν}ν∈N with λν =
(λtν)t∈T ∈ R

(T )
+ and

∑
t∈T λtν = 1 as ν ∈ N satisfying

(
u∗,

〈
u∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T
λtν

(
a∗
t , bt

)
,

which can be equivalently rewritten in the form

(− 1, u∗,
〈
u∗, x̄

〉 ) = w∗- lim
ν∈N

∑

t∈T
λtν

(−1, a∗
t , bt

)
.

This implies that −1 ∈ D∗Fmin (0, x̄) (−u∗), and hence

− ∥∥u∗∥∥−1 ∈ D∗Fmin (0, x̄)
(
− ∥∥u∗∥∥−1

u∗) ,

which ensures by the definition of the coderivative norm that

∥∥D∗Fmin (0, x̄)
∥∥ ≥ ∥∥u∗∥∥−1

.

Since the element u∗ was chosen arbitrarily from those satisfying the inclusion
(u∗, 〈u∗, x̄〉) ∈ cl ∗C (0), we arrive at the claimed lower estimate (7.85) of the
coderivative norm and thus complete the proof of the proposition. �
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Now we are ready to establish the main result of this subsection.

Theorem 7.29 (Evaluation of Coderivative Norms for Block-Perturbed Sys-
tems). For any x̄ ∈ FJ (0), we have the relationships

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x̄〉 ) ∈ cl ∗C (0)

}
≤ ‖D∗Fmin (0, x̄)‖ ≤ ∥∥D∗FJ (0, x̄)

∥∥

≤ lipFJ (0, x̄) ≤ lipFmax (0, x̄) .

Furthermore, if either the coefficient set {a∗
t | t ∈ T } is bounded in X∗ or the space

X is reflexive, then all the above inequalities hold as equalities.

Proof. Recall as above that the lower estimate

‖D∗FJ (0, x̄)‖ ≤ lipFJ (0, x̄) (7.86)

follows from the proof of Step 1 Theorem 3.3 in arbitrary Banach spaces. Applying
now (in this order) Propositions 7.28 and 7.27, formula (7.86), and Proposition 7.26
verifies the chain of inequalities claimed in the theorem.

To verify the equalities therein under the additional assumptions made, consider
first the case where the coefficient set {a∗

t | t ∈ T } is bounded in X∗. Then using
Theorem 7.15 adapted to the current notation gives us

lipFmax (0, x̄) ≤ sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗C (0)
}

(7.87)

in the nontrivial case where SSC holds for the nominal system σ (0).
It remains to consider the case where the space X is reflexive and to justify the

upper estimate (7.87) provided the validity of SSC for σ(0). Employing in this case
the Mazur weak closure theorem allows us to replace the weak∗ closure cl ∗C (0)
of the convex set C (0) by its norm closure clC (0). Suppose that (7.87) fails, and
choose β > 0 such that

lipFmax (0, x̄) > β > sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉) ∈ clC (0)
}
. (7.88)

Using the distance representation (7.26) of the exact Lipschitzian bound and the
first inequality in (7.88) gives us sequences pr = (ptr )t∈T → 0 and xr → x̄ along
which we have the relationship

dist
(
xr ;Fmax(pr)

)
> β dist

(
pr ;F−1

max(xr )
)

for all r ∈ N, (7.89)

which readily implies that the quantity

dist
(
pr ;F−1

max (xr )
) = supt∈T

[〈
a∗
t , xr

〉− bt − ptr
]
+

= sup
(x∗,α)∈Cmax(pr )

[〈
x∗, xr

〉− α]+
(7.90)
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is finite. It follows from Proposition 7.25 due to the assumed SSC that Fmax (pr) 
=
∅ for r ∈ N sufficiently large, say, for all r ∈ N without loss of generality. Further-
more, under this condition, we have

lim
r→∞ dist

(
xr ;Fmax

(
pr
)) = 0; (7.91)

see Exercise 7.86 for more discussions. Assume without loss of generality the va-
lidity of SSC for the system σmax(pr) and then deduce from the extended Ascoli
formula (7.37) for infinite linear systems in Proposition 7.12, which holds in reflex-
ive spaces, the representation

dist
(
xr ;Fmax (pr)

) = sup
(x∗,α)∈Cmax(pr )

[〈x∗, xr 〉 − α]+
‖x∗‖ , r ∈ N.

This allows us to find
(
x∗
r , αr

) ∈ Cmax (pr) as r ∈ N satisfying

0 < dist
(
xr ,Fmax (pr)

)−
〈
x∗
r , xr

〉− αr∥∥x∗
r

∥∥ <
1

r
. (7.92)

Furthermore, by (7.89) and (7.90), we can choose
(
x∗
r , αr

)
in (7.92) so that

β dist
(
pr ;F−1

max (xr )
)
<

〈
x∗
r , xr

〉− αr∥∥x∗
r

∥∥ ≤ dist
(
pr ;F−1

max (xr )
)

∥∥x∗
r

∥∥ . (7.93)

Since dist(pr ;F−1
max (xr )) > 0 (otherwise both sides of (7.89) would be equal to

zero, which is not possible), it follows from (7.93) that ‖x∗
r ‖ < β−1 for all r ∈ N.

Thus, by the weak∗ sequential compactness of the unit balls in duals to reflexive
spaces, we select a subsequence

{
x∗
rk

}
k∈N that weak∗ converges to some x∗ ∈ X∗

with ‖x∗‖ ≤ β−1. Then (7.91) and (7.92) yield

lim
k∈N

〈
x∗
rk
, xrk

〉− αrk∥∥x∗
rk

∥∥ = 0, and so lim
k∈N

( 〈
x∗
rk
, xrk

〉− αrk
) = 0.

The latter implies by the normal convergence of
{
xrk
}
k∈N to x̄ that

lim
k∈Nαrk = lim

k∈N
〈
x∗
rk
, xrk

〉 = 〈
x∗, x̄

〉
.

Then we deduce from
(
x∗
rk
, αrk

) ∈ Cmax
(
prk

)
the existence of multiplies λrk =

(λtrk )t∈T such that λtrk ≥ 0, only finitely many of them are not zero, and

∑

t∈T
λtrk = 1, and (x∗

rk
, αrk ) =

∑

t∈T
λtrk

(
a∗
t , bt + ptrk

)
, k ∈ N.
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Combining the above equations gives us the relationships

(
x∗,

〈
x∗, x̄

〉 ) = w∗ - lim
k∈N(x

∗
rk
, αrk ) = w∗ - lim

k∈N
∑

t∈T
λtrk

(
a∗
t , bt + ptrk

)

= w∗ - lim
k∈N

∑

t∈T
λtrk

(
a∗
t , bt

) ∈ clC (0) ,

where the last equality comes from limk→∞
∥∥prk

∥∥ = 0. Observe finally that x∗ 
= 0
due to the validity of SSC for σ (0) by Proposition 7.25. Hence

sup
{∥∥u∗∥∥−1 ∣∣ (u∗,

〈
u∗, x̄

〉 ) ∈ clC (0)
}

≥ ∥∥x∗∥∥−1 ≥ β,

which contradicts (7.88) and thus completes the proof of the theorem. �

7.3.3 Applications to Infinite Convex Inequality Systems

Here we consider parameterized convex inequality systems given by

σ(p) := {
ϕj (x) ≤ pj , j ∈ J}, (7.94)

where J is an arbitrary index set and where the functions ϕj : X → R, j ∈ J ,
are l.s.c. (our standing assumption) and convex on the Banach space X. As above,
the functional parameter p belongs to l∞(J ) and the zero function p̄ = 0 is the
nominal parameter. Our goal is to characterize Lipschitzian stability of the convex
system (7.94) around p̄ = 0 by applying the obtained results for block-perturbed
linear systems. We can do it with the help of the Fenchel conjugate (7.30) defined
for each function ϕj by

ϕ∗
j (u

∗) := sup
{ 〈
u∗, x

〉− ϕj (x)
∣∣ x ∈ X} = sup

{ 〈
u∗, x

〉− ϕj (x)
∣∣ x ∈ domϕj

}
.

Indeed, the classical Fenchel duality theorem tells us that relationship

ϕ∗∗
j = ϕj on X with ϕ∗∗

j :=
(
ϕ∗
j

)∗

holds under the assumptions made. Using this, we get for each j ∈ J that the convex
inequality ϕj (x) ≤ pj turns out to be equivalent to the linear system

{〈
u∗, x

〉− ϕ∗
j

(
u∗) ≤ pj , u

∗ ∈ domϕ∗
j

}
(7.95)

in the sense that they have the same solution sets. Denote

T :=
{(
j, u∗) ∈ J ×X∗∣∣ u∗ ∈ domϕ∗

j

}
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and observe that T can be partitioned as

T =
⋃

j∈J
Tj with Tj := {

j
}× domϕ∗

j . (7.96)

In this way the right-hand side perturbations on the nominal convex system σ(0)
correspond to block perturbations of the linearized nominal system σJ (0) with the
partition J := {

Tj | j ∈ J}. It is important to realize to this end that the feasible
solution map F : l∞(J ) →→ X to (7.94) given by

F(p) := {
x ∈ X∣∣ x is a solution to σ(p)

}
(7.97)

and the one for the block-perturbed linearized system FJ with the partition J :={
Tj | j ∈ J} are exactly the same mapping. This allows us to implement the re-

sults of Subsection 7.3.1 to characterizing Lipschitzian stability of infinite convex
systems. It is not hard to check that the convex counterpart of the characteristic set
CJ (p) from (7.81) is

C (p) := co
{(
u∗, ϕ∗

j (u
∗)+ pj

) ∣∣∣ j ∈ J, u∗ ∈ domϕ∗
j

}

= co
(⋃

j∈J gph (ϕj − pj )∗
)

⊂ X∗ × R.
(7.98)

Observe that for the convex system σ (0) under consideration, the corresponding
SSC reads as supt∈T ϕt (̂x) < 0 for some x̂ ∈ X and that x̂ is a strong Slater point
for σ (0) if and only if

sup
(j,u∗)∈T

{ 〈
u∗, x̂

〉− ϕ∗
j

(
u∗) } < 0.

The next result provides calculating the coderivative of the solution map (7.97)
to the original infinite convex system (7.94) in terms of its initial data.

Proposition 7.30 (Calculating Coderivatives for Infinite Convex Systems). Take
x̄ ∈ F (0) for the solution map (7.97) to the convex system (7.94). Then we have
p∗ ∈ D∗F (0, x̄) (x∗) if and only if

(
p∗,−x∗,− 〈

x∗, x̄
〉 ) ∈ cl∗cone

(⋃

j∈J

( {−δj
}× gphϕ∗

j

))
. (7.99)

Proof. It follows directly from its linear counterpart in Proposition 7.24. �
Now we are ready to present the major result of this subsection proving an evalu-

ation of the exact Lipschitzian bound for the feasible solution map (7.97) for infinite
convex inequality systems.

Theorem 7.31 (Evaluation of the Coderivative Norm for Infinite Convex Sys-
tems). For any x̄ ∈ F (0) from (7.97), we have the relationships
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sup
{ ∥∥u∗∥∥−1

∣∣∣
(
u∗,

〈
u∗, x̄

〉 ) ∈ cl ∗co
(⋃

j∈J
gphϕ∗

j

)}
≤ ∥∥D∗F (0, x̄)∥∥ ≤ lipF (0, x̄) .

If furthermore either the set
⋃
j∈J domϕ∗

j is bounded in X∗ or the space X is re-
flexive, then the above inequalities hold as equalities.

Proof. It follows from Theorem 7.29 applied to the linear system (7.95) with block
perturbations by employing the above linearization procedure and the coderivative
calculation given in Proposition 7.30. �

The next example shows that the boundedness assumption, which looks quite
natural in the linear setting, may fail for very simple convex systems.

Example 7.32 (Failure of the Boundedness Assumption for Infinite Convex In-
equality Systems). Consider the following single convex inequality involving one-
dimensional decision and parameter variables:

x2 ≤ p with x, p ∈ R.

The linearized system associated with it reads as follows:

{
ux ≤ u2

4
+ p, u ∈ R

}
,

and thus the boundedness assumption of Theorem 7.31 fails.

7.4 Metric Regularity of Infinite Convex Systems

In this section, we develop another approach to well-posedness of infinite convex
constraint systems concentrating mainly on their metric regularity. The study of
well-posedness in Chapter 3 reveals that, although metric regularity of general mul-
tifunctions is equivalent to the Lipschitz-like property of their inverses, the former
is unnatural (fails as a rule), while the latter holds under unrestrictive qualification
conditions for broad classes of set-valued mappings known as parametric paramet-
ric variational systems (PVS); see Section 3.3. The situation is parametric constraint
systems (PCS) different for parametric constraint systems, where both metric regu-
larity and Lipschitzian properties can be studied in parallel and are satisfied under
similar (symmetric) constraint qualifications; cf. Section 3.3 and [522, Section 4.3].
The infinite constraint systems considered in Sections 7.1 and 7.3 belong to the lat-
ter category, and so their metric regularity and Lipschitzian stability can be studied
and characterized in a parallel way.

In fact, full characterizations of metric regularity for the infinite linear and convex
inequality systems considered in Sections 7.1 and 7.3 can be derived from the equal-
ities for their exact Lipschitzian bounds, which are reciprocal to the exact bounds of
metric regularity. However, the aforementioned calculation of the exact Lipschitzian
bound in Theorem 7.31 (which extends the previous ones for linear systems) is jus-
tified under the imposed boundedness assumption, which is rather restrictive (as
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shown in Example 7.32) while cannot be removed in the given proof unless the
decision space is reflexive.

The new approach to characterizing metric regularity of infinite convex systems
developed below is completely different from the one employed in the previous sec-
tions of this chapter. It first concerns the study of metric regularity of general mul-
tifunctions with closed and convex graphs for which we establish formulas for the
precise calculation of the exact regularity bound in arbitrary Banach spaces with-
out imposing any qualification conditions while with involving ε-coderivatives. Our
approach to these issues is based on reducing metric regularity of such mappings to
the unconstrained minimization of DC (difference of convex) functions. In this way
we obtain regularity criteria for general convex-graph multifunctions and then apply
them to metric regularity of infinite convex systems. It allows us not only to cover
the case of infinite convex inequalities in arbitrary Banach spaces without imposing
the aforementioned boundedness assumption but also to include additional linear
equality and convex geometric constraints into consideration.

7.4.1 DC Optimization Approach to Metric Regularity

Recall in accordance with (3.2) in Definition 3.1, a set-valued mapping F : X →→ Y

between metric spaces is metrically regular around (x̄, ȳ) ∈ gphF with modulus
μ > 0 if there are neighborhoods U of x̄ and V of ȳ such that

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)) for any x ∈ U and y ∈ Y.

The exact regularity bound regF(x̄, ȳ) of F around (x̄, ȳ) is the infimum of all
such moduli μ. It is easy to observe directly from the definition that the metric
regularity (3.2) is amount to saying that (x̄, ȳ) is a local minimizer of the following
unconstrained optimization problem:

minimize μ dist
(
y;F(x))− dist

(
x;F−1(y)

)
(7.100)

over (x, y) ∈ X× Y . Throughout this and the next subsections, we consider, unless
otherwise stated, multifunctions F between arbitrary Banach spaces with closed
and convex graphs. Observe that (7.100) is a DC minimization problem. Problems
of this type are briefly studied in Section 6.1 and in much more details in Section 7.5
while from different prospectives.

To proceed, we need to recall some notions and facts from convex analysis
and DC optimization. Given a convex function ϕ : X → R and ε ≥ 0, the ε-
subdifferential of ϕ at x̄ ∈ domϕ is defined by

∂εϕ(x̄) := {
x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ϕ(x)− ϕ(x̄)+ ε, x ∈ X}, (7.101)

which reduces to the subdifferential of convex analysis for ε = 0; this construction is
also known as the approximate subdifferential of ϕ at x̄ if ε > 0. We put ∂εϕ(x̄) := ∅
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if x̄ /∈ domϕ. Note that (7.101) for ε > 0 is different from the ε-enlargement
∂̂εϕ(x̄) of the regular subdifferential from (1.34) in the case of convex functions
under consideration; see Proposition 1.25. The following ε-subdifferential sum rule
is well known in convex analysis:

∂ε(ϕ1 + ϕ2)(x̄) =
⋃

ε1+ε2=ε
ε1,ε2≥0

[
∂ε1ϕ1(x̄)+ ∂ε2ϕ2(x̄)

]
(7.102)

provided that one of the functions ϕi is continuous at x̄ ∈ domϕ1 ∩ domϕ2; see
Exercise 7.93 for more discussions.

Given a convex set � ⊂ X, we have the collection of (convex) ε-normals

Nε(x̄;�) := ∂εδ(x̄;�) = {
x∗ ∈ X∗∣∣ 〈x∗, x − x̄〉 ≤ ε for all x ∈ �}, ε ≥ 0,

which can be equivalently represented in the form

Nε(x̄;�) = {
x∗ ∈ X∗∣∣ σ�(x∗) ≤ 〈x∗, x̄〉 + ε}, (7.103)

where σ� stands for the support function of � defined by

σ�(x
∗) := sup

{〈x∗, x〉∣∣ x ∈ �}, x∗ ∈ X∗.

Again note that convex ε-normals in (7.103) are different as ε > 0 from regular
ε-normals in N̂ε(x̄;�) defined in (1.6) for general (including convex) sets.

The ε-coderivative of a set-valued mapping F : X →→ Y at (x̄, ȳ) ∈ gphF is
defined by the usual scheme via ε-normals to the graph

D∗
εF (x̄, ȳ)(y

∗) := {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ Nε

(
(x̄, ȳ); gphF

)}
(7.104)

for ε ≥ 0 with D∗
0F(x̄, ȳ) = D∗F(x̄, ȳ). The ε-coderivative norm is given by

‖D∗
εF (x̄, ȳ)‖ := sup

{‖x∗‖ ∣∣ x∗ ∈ D∗
εF (x̄, ȳ)(y

∗), y∗ ∈ BY ∗
}
. (7.105)

If F is metrically regular around (x̄, ȳ), we get from Theorem 3.3(ii), by observing
that this part holds in any Banach space, thatD∗F−1(ȳ, x̄)(0) = {0}, and thus arrive
at the norm representation via the unit sphere SX∗ :

‖D∗F−1(ȳ, x̄)‖ = sup
{‖y∗‖ ∣∣ y∗ ∈ D∗F−1(ȳ, x̄)(x∗), x∗ ∈ SX∗

}
. (7.106)

The following two results from DC programming in Banach spaces involving
ε-subgradients of convex functions (7.101) are important in the proof of the main
theorem in the next subsection.

Lemma 7.33 (Necessary and Sufficient Conditions for Global DC Minimizers).
Let ϕ1, ϕ2 : X → R be convex functions. Then x̄ is a global minimizer of the
unconstrained DC program given by
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minimize ϕ1(x)− ϕ2(x) over x ∈ X (7.107)

if and only if ∂εϕ2(x̄) ⊂ ∂εϕ1(x̄) for all ε ≥ 0.

Note that the necessity of the obtained subdifferential inclusion with ε = 0 for
local minimizers of (7.107) is established in Proposition 6.3 as a consequence of up-
per subdifferential conditions in unconstrained optimization; see more discussions
and references in Exercise 7.94(i,ii). The next result provides a sufficient condition
of this type for local minimizers of (7.107); see Exercise 7.94(iii,iv) for the proof
and discussions.

Lemma 7.34 (Sufficient Conditions for Local DC Minimizers). Let ϕ1, ϕ2 :
X → R be convex functions, and let ϕ2 be continuous at the point x̄ ∈ domϕ1 ∩
[int(domϕ2)]. Then x̄ is a local minimizer of (7.107) if there is ε0 > 0 such that
∂εϕ2(x̄) ⊂ ∂εϕ1(x̄) for all ε ∈ [0, ε0].

7.4.2 Metric Regularity of Convex-Graph Multifunctions

Now we are ready to establish the main result on calculating the exact regularity
bound of closed- and convex-graph multifunctions via their ε-coderivatives at the
reference points. The next theorem presents two limiting formulas for calculating
this bound in general Banach spaces.

Theorem 7.35 (ε-Coderivative Formulas for the Exact Regularity Bound).
Given a point (x̄, ȳ) ∈ gphF , assume that ȳ ∈ int(rgeF). Then we have

regF(x̄, ȳ) = lim
ε↓0

‖D∗
εF

−1(ȳ, x̄)‖, (7.108)

regF(x̄, ȳ) = lim
ε↓0

[
sup

{ 1

‖x∗‖
∣∣∣ x∗ ∈ D∗

εF (x̄, ȳ)(y
∗), y∗ ∈ SY ∗

}]
. (7.109)

Proof. Since ȳ ∈ int (rgeF), it follows from the Robinson-Ursescu theorem in
Banach spaces (see Corollary 3.6 and Exercise 3.49) that F is metrically regular
around (x̄, ȳ), i.e., there are η,μ > 0 such that

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)) for all (x, y) ∈ Bη(x̄, ȳ). (7.110)

Consider now the convex functions ϕ1, ϕ2 on X × Y defined by

ϕ1(x, y) := dist
(
y;F(x)) and ϕ2(x, y) := dist

(
x;F−1(y)

)
(7.111)

and deduce from the covering property of F equivalent to metric regularity that
there is r > 0 such that B2r (ȳ) ⊂ F(x̄+BX). Combining this with the construction
of ϕ2 in (7.111) provides the estimate

ϕ2(x, y) ≤ ‖x − x̄‖ + 1 whenever y ∈ B2r (ȳ),
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which tells us that ϕ2 is upper bounded around (x̄, ȳ), and thus it is locally Lip-
schitzian around this point due to the well-known result of convex analysis; see,
e.g., [757, Corollary 2.2.13]. Implementing our approach to metric regularity, we
conclude that (x̄, ȳ) is a local minimizer of the DC program:

minimize μϕ1(x, y)− ϕ2(x, y) subject to (x, y) ∈ X × Y, (7.112)

and consequently it is a global minimizer of the DC function

(
μϕ1 + δ(·;Bη(x̄, ȳ))

)
(x, y)− ϕ2(x, y) over (x, y) ∈ X × Y. (7.113)

Applying Lemma 7.33 to the DC program (7.113) gives us the inclusion

∂εϕ2(x̄, ȳ) ⊂ ∂ε
(
Kϕ1 + δ(·;Bη(x̄, ȳ))

)
(x̄, ȳ) for all ε ≥ 0.

Since the function δ((·, ·);Bη(x̄, ȳ)) is continuous at (x̄, ȳ), it follows from the ε-
subdifferential sum rule (7.102) that the latter inclusion reduces to

∂εϕ2(x̄, ȳ) ⊂
⋃

ε1+ε2=ε
ε1,ε2≥0

[
∂ε1(Kϕ1)(x̄, ȳ)+ ∂ε2δ

(·;Bη(x̄, ȳ)
)
(x̄, ȳ)

]

=
⋃

ε1+ε2=ε
ε1,ε2≥0

[
∂ε1(Kϕ1)(x̄, ȳ)+ ε2

η
BX∗×Y ∗

] (7.114)

due to the fact that ∂εδ(·;Br(x))(x) = ε
r
BX∗ for all ε ≥ 0 and r > 0.

Let us next calculate the ε-subdifferentials of the functions Kϕ1 and ϕ2 from
(7.111) at (x̄, ȳ) by using their Fenchel conjugates (7.30) and the obvious ε-
subdifferential representation for any convex function ϕ : X → R:

∂εϕ(x̄) = {
x∗ ∈ X∗∣∣ ϕ∗(x∗) ≤ 〈x∗, x̄〉 − ϕ(x̄)+ ε}, ε ≥ 0.

In this way we get that (x∗, y∗) ∈ ∂ε1(μϕ1)(x̄, ȳ) if and only if

(μϕ1)
∗(x∗, y∗) ≤ 〈x∗, x̄〉 + 〈y∗, ȳ〉 + ε1, (7.115)

which ensures in turn by elementary transformations that

(μϕ1)
∗(x∗, y∗) = sup

x,y

(
〈x∗, x〉 + 〈y∗, y〉 − μ dist

(
y;F(x))

)

= sup
x,y

(
〈x∗, x〉 + 〈y∗, y〉 − inf

u

(
μ‖y − u‖ + δ(u;F(x)))

)

= sup
u,x,y

(
〈x∗, x〉+〈y∗, y−u〉+〈y∗, u〉−μ‖y − u‖−δ(u;F(x))

)

= sup
u,x,y

(
〈x∗, x〉 + 〈y∗, u〉 − δ(u;F(x))+ 〈y∗, y〉 − μ‖y‖

)

= σgphF (x
∗, y∗)+ δ(y∗;μBY ∗

)
.

By using (7.103) and (7.115), the latter implies that
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∂ε1(μϕ1)(x̄, ȳ) = Nε1

(
(x̄, ȳ); gphF

) ∩ (
X∗ × μBY ∗

)
. (7.116)

Similarly, by taking into account the form of ϕ2 in (7.111), we arrive at

∂εϕ2(x̄, ȳ) = Nε
(
(x̄, ȳ); gphF

) ∩ (
BX∗ × Y ∗). (7.117)

Thus the inclusion in (7.114) reduces to the following:

Nε
(
(x̄, ȳ); gphF

) ∩ (
B

∗ × Y ∗) ⊂
⋃

ε1+ε2=ε
ε1,ε2≥0

Nε1

(
(x̄, ȳ); gphF

) ∩ (
X∗ × μB∗)

+ε2

η
BX∗×Y ∗ .

(7.118)

To justify the equality in (7.108), let us fix ε > 0 and pick any (x∗, y∗) ∈
BX∗ × Y ∗ satisfying y∗ ∈ D∗

εF
−1(ȳ, x̄)(x∗), which means that (−x∗, y∗) ∈

Nε((x̄, ȳ); gphF). It follows from (7.118) that there exist a number ε1 ∈ [0, ε]
and ε1-normals (u∗, v∗) ∈ Nε1((x̄, ȳ); gphF) satisfying the estimates ‖v∗‖ ≤ μ

and ‖y∗ − v∗‖ ≤ (ε − ε1)η
−1. Hence, we get the inequalities

‖y∗‖ ≤ ‖v∗‖ + (ε − ε1)η
−1 ≤ μ+ εη−1.

Observe from (7.105) that the function ε �→ ‖D∗
εF

−1(ȳ, x̄)‖ is nondecreasing,
which implies therefore the relationships

lim
ε↓0

‖D∗
εF

−1(ȳ, x̄)‖ = inf
ε>0

‖D∗
εF

−1(ȳ, x̄)‖ ≤ inf
ε>0

(
μ+ εη−1

)
.

Letting μ ↓ regF(x̄; ȳ) above gives us the estimate

lim
ε↓0

‖D∗
εF

−1(ȳ, x̄)‖ ≤ regF(x̄, ȳ). (7.119)

It follows from (7.119) that the equality in (7.108) is trivial if regF(x̄, ȳ) = 0.
Considering further the case of regF(x̄, ȳ) > 0, we deduce from the definition of
the exact regularity bound that (x̄, ȳ) is not a local minimizer of the DC problem
(7.112) when 0 < μ < regF(x̄, ȳ). Then Lemma 7.34 allows us to find sequences
εk ↓ 0 and (x∗

k , y
∗
k ) ∈ ∂εkϕ2(x̄, ȳ) such that (x∗

k , y
∗
k ) /∈ ∂εk (μϕ1)(x̄, ȳ) as k ∈ N.

Combining this with (7.116) and (7.117) implies that

‖x∗
k ‖ ≤ 1 and ‖y∗

k ‖ > μ for all k ∈ N. (7.120)

Since B2r (ȳ) ⊂ F(x̄ + BX) as mentioned, (7.117) and (7.120) yield

εk ≥ sup
(x,y)∈gphF

(
〈x∗
k , x − x̄〉 + 〈y∗

k , y − ȳ〉
)

≥ supy∈B2r (ȳ)

(〈y∗
k , y − ȳ〉)− ‖x∗

k ‖ ≥ 2r‖y∗
k ‖ − ‖x∗

k ‖ ≥ 2rμ− ‖x∗
k ‖.

(7.121)



306 7 Semi-infinite Programs with Some Convexity

By εk ↓ 0 as k → ∞, we have ‖x∗
k ‖ ≥ 2rμ − εk ≥ rμ for sufficiently large k.

Suppose without loss of generality that ‖x∗
k ‖ ≥ rμ for all k ∈ N, and define

ỹ∗
k := y∗

k ‖x∗
k ‖−1, x̃∗

k := −x∗
k ‖x∗

k ‖−1, and ε̃k := εk‖x∗
k ‖−1.

Then ‖x̃∗
k ‖ = 1, ε̃k ↓ 0, and ỹ∗

k ∈ D∗̃
εk
F−1(ȳ, x̄)(̃x∗

k ). We get from (7.120) that

sup
{‖y∗‖ ∣∣ y∗ ∈ D∗̃

εk
F−1(ȳ, x̄)(y∗), x∗ ∈ SX∗

} ≥ ‖ỹ∗
k ‖ = ‖y∗

k ‖ · ‖x∗
k ‖−1 > μ.

Letting k → ∞ and μ ↑ regF(x̄, ȳ) tells us that

lim
ε↓0

sup
{‖y∗‖∣∣ y∗ ∈ D∗

εF
−1(ȳ, x̄)(x∗), x∗ ∈ SX∗} ≥ regF(x̄; ȳ),

which yields the equality in (7.108) by using (7.119).
It remains to prove formula (7.109). By the arguments similar to those following

(7.121), we arrive at the relationships

D∗
εF (x̄, ȳ)(y

∗) ∩ rBX∗ = ∅ for all 0 < ε < r and y∗ ∈ SY ∗ . (7.122)

Pick any (x∗, y∗) ∈ X∗ × SY ∗ such that x∗ ∈ D∗
εF (x̄, ȳ)(y

∗) for some 0 < ε < r .
Define further x̂∗ := −x∗‖x∗‖−1, ŷ∗ := −y∗‖x∗‖−1, and ε̂ := ε‖x∗‖−1. This
ensures that x̂∗ ∈ SX∗ , ‖ŷ∗‖ = ‖x∗‖−1, and ŷ∗ ∈ D∗̂

εF
−1(ȳ, x̄)(̂x∗). Observe from

(7.122) that ε̂ ≤ εr−1, and thus we have

‖x∗‖−1 = ‖ŷ∗‖ ≤ ‖D∗̂
εF

−1(ȳ, x̄)‖ ≤ ‖D∗
εr−1F

−1(ȳ, x̄)‖.
This together with (7.108) yields the inequality “≥” in (7.109) by letting ε ↓ 0.

To justify the converse inequality in (7.109), note first that it obviously holds
when regF(x̄, ȳ) = 0. If regF(x̄, ȳ) > 0, we get from the equality in (7.108) and
the norm definition in (7.105) that there exists a sufficiently small number 0 < s <
regF(x̄, ȳ) ensuring the validity of the condition

D∗
εF

−1(ȳ, x̄)(x∗) ∩ sBY ∗ = ∅ for all 0 < ε < s and x∗ ∈ SX∗ .

The arguments similar to those after (7.122) give us the estimate

‖D∗
εF

−1(ȳ, x̄)‖ ≤ sup
{ 1

‖x∗‖
∣∣∣x∗ ∈ D∗

εs−1F(x̄, ȳ)(y
∗), y∗ ∈ SY ∗

}
. (7.123)

Indeed, pick (y∗, x∗) ∈ Y ∗ × SX∗ with y∗ ∈ D∗
εF

−1(ȳ, x̄)(x∗) and get ‖y∗‖ > s.
Then for x̃∗ := x∗‖y∗‖−1 and ỹ∗ := y∗‖y∗‖−1, we have ‖x̃∗‖−1 = ‖y∗‖, ỹ∗ ∈ SY ∗ ,
and x̃∗ ∈ D∗

ε
‖y∗‖
F(x̄, ȳ)(ỹ∗) ⊂ D∗

εs−1F(x̄, ȳ)(ỹ
∗), which yields (7.123). Combining

finally (7.108) with (7.123) justifies the inequality “≤” in (7.109) and thus completes
the proof of the theorem. �

The following consequence of Theorem 7.35 and the classical Brøndsted-
Rockafellar density theorem of convex analysis (see, e.g., [638, Theorem 3.17])
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establish a precise formula for the exact regularity bound of a closed convex multi-
function F between Banach spaces by using the coderivative of F−1 instead of its
ε-counterparts while involving points around the reference one.

Corollary 7.36 (Calculating the Exact Regularity Bound via Coderivatives at
Nearby Points). In the setting of Theorem 7.35, we have

regF(x̄, ȳ) = lim
ε↓0

[
sup

{
‖D∗F−1(y, x)‖ over

(x, y) ∈ gphF ∩ Bε(x̄, ȳ)
}]
.

(7.124)

Proof. To verify the inequality “≥” in (7.124), observe from (7.110) that for any
μ > regF(x̄, ȳ) and any sufficiently small ε > 0, we get

dist
(
x;F−1(y)

) ≤ μ dist
(
y;F(x)) for all (x, y) ∈ Bε(̃x, ỹ)

whenever (̃x, ỹ) ∈ Bε(x̄, ȳ). It follows from (7.108) that

μ ≥ lim
η↓0

‖D∗
ηF

−1(ỹ, x̃)‖ ≥ ‖D∗F−1(ỹ, x̃)‖ for all (̃x, ỹ) ∈ gphF ∩ Bε(x̄, ȳ).

This clearly implies the estimate

μ ≥ lim
ε↓0

[
sup

{
‖D∗F−1(y, x)‖

∣∣∣ (x, y) ∈ gphF ∩ Bε(x̄, ȳ)
}]
.

Letting there μ ↓ regF(x̄, ȳ), we arrive at the inequality “≥” in (7.124).
To prove the converse inequality in (7.124), take an arbitrary ε > 0, and ob-

serve from Theorem 7.35 that regF(x̄, ȳ) ≤ ‖D∗
ε2F

−1(ȳ, x̄)‖. This allows us to

find (x∗, y∗) ∈ X∗ × Y ∗ satisfying the condition y∗ ∈ D∗
ε2F

−1(ȳ, x̄)(x∗), i.e.,
(−x∗, y∗) ∈ Nε2((x̄, ȳ); gphF). We have furthermore that

‖x∗‖ ≤ 1 and ‖y∗‖ + ε ≥ regF(x̄, ȳ). (7.125)

By the Brøndsted-Rockafellar theorem, there are (xε, yε) ∈ gphF ∩ Bε(x̄, ȳ) and
(−x∗

ε , y
∗
ε ) ∈ N((xε, yε); gphF) satisfying ‖x∗

ε −x∗‖ ≤ ε and ‖y∗
ε −y∗‖ ≤ ε. Thus

we get ‖x∗
ε ‖ ≤ ‖x∗‖ + ε ≤ 1 + ε and ‖y∗‖ ≤ ‖y∗

ε ‖ + ε, and thus

‖y∗‖ ≤ (1 + ε)‖D∗F−1(yε, xε)‖ + ε.
Combining this with (7.125) yields the estimate

regF(x̄, ȳ) ≤ (1 + ε) sup
{
‖D∗F−1(y, x)‖

∣∣∣ (x, y) ∈ gphF ∩ Bε(x̄, ȳ)
}

+ 2ε,

which ensures the inequality “≤” in (7.124) while letting ε ↓ 0. �
The next consequence of Theorem 7.35 concerns calculating the exact covering

bound of closed- and convex-graph multifunctions. This is indeed a major result of
this section, which accumulates the previous developments.
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Corollary 7.37 (Calculating the Exact Covering Bound for Convex-Graph
Multifunctions). Given a point (x̄, ȳ) ∈ gphF with ȳ ∈ int(rgeF), the exact
covering bound of F at (x̄, ȳ) is calculated by

covF(x̄, ȳ) = lim
ε↓0

[
inf
x∗∈X∗ inf

y∗∈SY∗

(
‖x∗‖ + σgphF−(x̄,ȳ)(x∗, y∗)

ε

)]
.

Proof. Define � := gphF − (x̄, ȳ). Since the number covF(x̄, ȳ) is the reciprocal
of regF(x̄, ȳ), it suffices to show that

regF(x̄, ȳ) = lim
ε↓0

[
sup
x∗∈X∗

sup
y∗∈SY∗

(
‖x∗‖ + σ�(x

∗, y∗)
ε

)−1] =: α. (7.126)

By (7.109), we find sequences εk ↓ 0 and (x∗
k , y

∗
k ) ∈ X∗ × SY ∗ such that

x∗
k ∈ D∗

εk
F (x̄, ȳ)(y∗

k ), which amounts to σ�(x∗
k ,−y∗

k ) ≤ εk due to (7.103), and
that ‖x∗

k ‖−1 → regF(x̄, ȳ) as k → ∞. Hence

sup
x∗∈X∗

sup
y∗∈SY∗

(
‖x∗‖ + σ�(x

∗, y∗)√
εk

)−1 ≥
(
‖x∗
k ‖ + σ�(x

∗
k ,−y∗

k )√
εk

)−1

≥
(
‖x∗
k ‖ + √

εk

)−1
,

which yields the inequality “≤” in (7.126) by passing to the limit as k → ∞.
Conversely, if the right-hand side of (7.126) is 0, the equality in (7.126) is obvi-

ous. Otherwise, we find sequences ε̃k ↓ 0 and (̃x∗
k , ỹ

∗
k ) ∈ X∗ × SY ∗ with

β <
(
‖x̃∗
k ‖ + σ�(̃x

∗
k , ỹ

∗
k )

ε̃k

)−1 → α as k → ∞ (7.127)

for some β > 0. It follows that σ�(̃x∗
k , ỹ

∗
k ) ≤ ε̃kβ

−1 for all k ∈ N, which gives us
x̃∗
k ∈ D∗̂

εk
F (x̄, ȳ)(−ỹ∗

k ) with ε̂k := ε̃kβ
−1 → 0 by (7.103). Hence, we have

(
‖x̃∗
k ‖ + σ�(̃x

∗
k , ỹ

∗
k )

ε̃k

)−1 ≤ ‖x̃∗
k ‖−1

≤ sup
{
‖x∗‖−1

∣∣∣ x∗ ∈ D∗̂
εk
F (x̄, ȳ)(y∗), y∗ ∈ SY ∗

}
.

(7.128)

Substituting the regularity formula (7.109) into (7.128) and using (7.127), we arrive
at α ≤ regF(x̄, ȳ) and thus complete the proof of the corollary. �

Finally in this subsection, let us introduce an additional condition, which helps
us to remove ε > 0 in the exact bound formula (7.108) and get the precise equality
(7.130) for calculating the exact regularity bound of closed- and convex-graph mul-
tifunctions between arbitrary Banach spaces as in case (3.8) of set-valued mapping
between finite-dimensional spaces. Note that assumption (8.84) holds in the SIP set-
ting of Subsection 7.4.3 and also when dimY < ∞, while X is an arbitrary Banach
space.
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Theorem 7.38 (Calculating the Exact Regularity Bound via the Basic
Coderivative Norm). In the setting of Theorem 3.8, assume in addition that

�(SY ∗) ⊂ SY ∗ , (7.129)

where the set �(SY ∗) is defined sequentially by

�(SY ∗) :=
{
y∗ ∈ Y ∗

∣∣∣ ∃ εk ↓ 0, y∗
k ∈ SY ∗ such that D∗

εk
F (x̄, ȳ)(y∗

k ) 
= ∅
and y∗ is a weak∗ cluster point of y∗

k

}
.

Then the exact regularity bound is calculated by

regF(x̄, ȳ) = ‖D∗F−1(ȳ, x̄)‖. (7.130)

If furthermore regF(x̄, ȳ) > 0, we get the improved formula

regF(x̄, ȳ) = sup
{‖x∗‖−1

∣∣ x∗ ∈ D∗F(x̄, ȳ)(y∗), y∗ ∈ SY ∗
}
. (7.131)

Proof. Note that the equality in (7.130) is trivial when regF(x̄, ȳ) = 0. Otherwise,
it follows from (7.109) that there are sequences εk ↓ 0 and x∗

k ∈ D∗
εk
F (x̄, ȳ)(y∗

k )

such that ‖x∗
k ‖ > 0, ‖y∗

k ‖ = 1, and

regF(x̄, ȳ) = lim
k→∞ ‖x∗

k ‖−1. (7.132)

Since the sequence {x∗
k } is bounded by (7.132), we get from (7.129) and Alaoglu-

Bourbaki theorem that there is a subnet (x∗
α, y

∗
α, εα) of (x∗

k , y
∗
k , εk) weak∗ converg-

ing to some (x̄∗, ȳ∗, 0) ∈ X∗ × SY ∗ × R. Note further that

〈x̄∗, x − x̄〉 − 〈ȳ∗, y − ȳ〉 = lim
α

〈x∗
α, x − x̄〉 − 〈y∗

α, y − ȳ〉 ≤ lim sup
α

εα = 0

for all (x, y) ∈ gphF , which yields x̄∗ ∈ D∗F(x̄, ȳ)(ȳ∗). Moreover, the classical
uniform boundedness principle tells us that ‖x̄∗‖ ≤ lim inf

α
‖x∗
α‖. This together with

(7.132) ensures the validity of the inequalities

regF(x̄, ȳ) ≤ 1

‖x̄∗‖ ≤ sup
{ 1

‖x∗‖
∣∣∣x∗ ∈ D∗F(x̄, ȳ)(y∗), ‖y∗‖ = 1

}
. (7.133)

Combining the latter with (7.109) yields (7.131). Furthermore, observe that x̂∗ :=
x̄∗‖x̄∗‖−1 ∈ SX∗ and ŷ∗ := ȳ∗‖x̄∗‖−1 ∈ D∗F−1(ȳ, x̄)(̂x∗). Hence we get from
(7.133) and (7.106) the relationships

regF(x̄, ȳ) ≤ ‖ŷ∗‖ = ‖x̄∗‖−1 ≤ ‖D∗F−1(ȳ, x̄)‖,
which together with (7.108) yield (7.130) and thus complete the proof. �
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It is obvious that assumption (7.129) automatically holds when Y is finite-
dimensional. More subtle, it also holds under the validity of the condition

cl ∗{y∗ ∈ SY ∗
∣∣ σ�(x∗, y∗) < ∞, x∗ ∈ X∗} ⊂ SY ∗ , (7.134)

with � := gphF − (x̄, ȳ) due to the proper/strict inclusion

�(SY ∗) ⊂ cl ∗
[⋃

ε≥0

{
y∗ ∈ SY ∗

∣∣∣ D∗
εF (x̄, ȳ)(y

∗) 
= ∅
}]

= cl ∗{y∗ ∈ SY ∗
∣∣ σ�(x∗, y∗) < ∞, x∗ ∈ X∗}.

(7.135)

7.4.3 Applications to Infinite Convex Constraint Systems

Here we develop applications of the results obtained in Subsection 7.4.2 to the spe-
cial class of set-valued mappings F : X →→ Y := Z × l∞(T ) given by

F(x) :=
{{
(z, p) ∈ Y ∣∣Ax = z, ft (x) ≤ pt , t ∈ T } if x ∈ C,

∅ otherwise,
(7.136)

which describes, in particular, sets of feasible solutions in parameterized SIPs with
infinitely many inequality as well as equality and geometric constraints.

The data of (7.136) are as follows: A : X → Z is a bounded linear operator
between two Banach spaces; the functions ft : X → R are l.s.c. and convex for
all t from the arbitrary index set T ; and C is a closed and convex subset of X with
nonempty interior. These assumptions clearly imply that F in (7.136) is closed-
and convex-graph multifunction, and so we can implement the results on metric
regularity at (x, (z, p)) ∈ gphF obtained above to the infinite constraint system
(7.136) provided the validity of the underlying condition

(z, p) ∈ int(rgeF). (7.137)

Note that this condition clearly implies that z ∈ int(AX), which ensures that A is an
open mapping, and hence it must be surjective.

Throughout this section, we denote f (x) := supt∈T ft (x) and suppose that the
space Z × l∞(T ) is equipped with the maximum product norm

‖(z, p)‖ = max
{‖z‖, ‖p‖} for all z ∈ Z, p ∈ l∞(T ).

As mentioned above, F is metrically regular around (x, (z, p)) ∈ gphF if and
only if condition (7.137) holds. This motivates us to introduce a qualification condi-
tion via the initial data of (7.136), which ensures the validity of (7.137) and extend
the usual strong SSC typically employed for infinite linear and convex inequality
systems to the more general constraint case of (7.136).
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Definition 7.39 (Bounded Strong Slater Condition). We say that the infinite sys-
tem (7.136) satisfies the BOUNDED STRONG SLATER CONDITION (BOUNDED SSC)
at (z, p) ∈ Z× l∞(T ) if there is x̂ ∈ intC such that the function f is bounded from
above around x̂, that Ax̂ = z, and that

sup
t∈T

[ft (̂x)− pt ] < 0. (7.138)

Note that the Slater-type notion introduced in Definition 7.39 is generally differ-
ent for infinite linear and convex systems from the strong Slater condition studied
and applied in Sections 7.1 and 7.3. In the particular case of C = X, Z = {0},
and ft (x) = 〈a∗

t , x〉 − bt with (a∗
t , bt ) ∈ X∗ × R considered in Section 7.1, our

bounded SSC is clearly weaker than the usual SSC provided that the coefficient
set {a∗

t | t ∈ T } is bounded in X∗, which is the underlying assumption therein.
The following example demonstrates that it may be strictly weaker even in the one-
dimensional case of X = R.

Example 7.40 (Bounded from Above Linear Constraint Functions with Un-
bounded Coefficients). Let X = R, Z = {0}, T = (0, 1), and ft (x) = − 1

t
x + t in

(7.136). Note that

ft (x) = −1

t
x + t = −1

t
x − t + 2t ≤ −2

√
x + 2t for all x > 0, t ∈ T .

Taking x̂ = 4 and x̄ = 1, we observe that ft (̂x) < −2, ft (x̄) ≤ 0, and the supremum
function f is bounded from above around x̂. However, the coefficient set

{− 1
t

∣∣ t ∈
T
}

is obviously unbounded.

The next proposition shows that the bounded SSC introduced is a sufficient con-
dition for the validity of (7.137) while being in fact “almost necessary” for this, up
to the upper boundedness of the supremum function f .

Proposition 7.41 (Bounded Strong Slater Condition and Metric Regularity).
Let (z, p) ∈ rgeF for the infinite system (7.136). Then the bounded SSC for F
at (z, p) implies the validity of (7.137). Conversely, if (7.137) holds, then there is
x̂ ∈ intC such that Ax̂ = z and that (7.138) is satisfied.

Proof. To verify the first part, suppose that the bounded SSC holds for F at (z, p).
Then there are x̂ ∈ ıC and ε > 0 such that the supremum function f is upper
bounded around x̂ with A(̂x) = z and f p(̂x) < −ε, where

f p(·) := sup
t∈T

{
ft (·)− pt

}
for p ∈ l∞(T ).

Note that the function f p(·) is obviously a proper, l.s.c., convex, and upper bounded
around x̂. We know from convex analysis that in this case it is continuous at x̂.
Since A is surjective and x̂ ∈ intC, the classical open mapping theorem allows
us to find 0 < s ≤ ε

2 such that Bs(z) ⊂ A(Br (̂x) ∩ C) for r > 0. Picking any
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(z′, p′) ∈ Bs(z, p), there exists x ∈ Br (̂x) ∩ C with Ax = z′ and so that for each
t ∈ T , we have

f p
′
(x) ≤ f p(x)+ s ≤ f p(x)− f p(̂x)+ s + f p(̂x)

≤ f p(x)− f p(̂x)+ s − ε ≤ f p(x)− f p(̂x)− ε/2 ≤ 0

when r is sufficiently small. This yields (z′, p′) ∈ rgeF , which implies in turn that
the inclusion Bs(z, p) ⊂ rgeF holds.

To justify the necessity part, observe that (z, (pt−ε)t∈T ) ∈ rgeF for some ε > 0
if (z, p) ∈ int(rgeF). Hence there is x̂ ∈ X such that Ax̂ = z and ft (̂x)− pt ≤ −ε
as t ∈ T , which thus completes the proof. �

Now we proceed with calculating the exact regularity bound for the constraint
system (7.136) at (x̄, (z̄, 0)) ∈ gphF based on the results of Subsection 7.4.2. It
follows from Theorem 7.35 that regF(x̄, (z̄, 0)) can be calculated via the norms of
ε-coderivatives. The next result, which is certainly of its own interest, accomplishes
an important step in this direction.

Theorem 7.42 (Explicit Form of ε-Coderivatives for Infinite Convex Systems).
Let F be the infinite constraint system (7.136), and let (x̄, (z̄, 0)) ∈ gphF . Then for
each ε ≥ 0, we have the ε-coderivative representation

D∗
εF

(
x̄, (z̄, 0)

)(
S(Z×l∞(T ))∗

) = {
x∗∣∣(x∗, 〈x∗, x̄〉 + ε) ∈ M}

, (7.139)

where x∗ ∈ X∗ and M is defined, with C0 := C ∩ dom f , by

M :=
⋃

z∗∈BZ∗
cl ∗[(1 − ‖z∗‖) co

(⋃

t∈T
epi f ∗

t

)
+ epi δ∗(·;C0)

]
+ (A∗z∗, 〈z∗, z̄〉).

Proof. To verify the inclusion “⊂” in (7.139), pick (z∗, p∗) ∈ S(Z×l∞(T ))∗ and
x∗ ∈ D∗

εF (x̄, (z̄, 0))(z
∗, p∗). Then we have ‖z∗‖ + ‖p∗‖ = 1 and

〈x∗, x − x̄〉 − 〈z∗, z− z̄〉 − 〈p∗, p〉 ≤ ε for all (x, z, p) ∈ gphF,

which can be equivalently represented by

〈x∗ − A∗z∗, x − x̄〉 − 〈p∗, p〉 ≤ ε

if (x, p) ∈ C0 × l∞(T ), ft (x)− 〈δt , p〉 ≤ 0, t ∈ T , (7.140)

via the Dirac measure δt ∈ (l∞(T ))∗ at t . It follows from the extended Farkas
lemma in Proposition 7.3 that (7.140) reads as

(
p∗, x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉 + ε)

∈ cl∗
[
cone

{⋃

t∈T
{δt } × epi f ∗

t

}
+ {0} × epi δ∗(·;C0)

]
. (7.141)

Hence there exist nets {λν}ν∈N ⊂ R
(T )
+ , {(v∗

ν , sν)}ν∈N ⊂ epi δ∗(·;C0), and
{(u∗

tν , rtν)}ν∈N ⊂ epi f ∗
t for each t ∈ T such that
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(
p∗, x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉+ε)=w∗- lim

ν∈N

[∑

t∈T
λtν(δt , u

∗
tν , rtν)+(0, v∗

ν , sν)
]
.

Observe from the latter equality that p∗ = w∗- lim
ν∈N

∑

t∈T
λtνδt . Thus we have

lim sup
ν∈N

∑

t∈T
λtν ≥ sup

‖p‖≤1
lim
ν∈N

∑

t∈T
λtνpt

= sup‖p‖≤1〈p∗, p〉 = ‖p∗‖ ≥ 〈p∗, e〉 = lim
ν∈N

∑

t∈T
λtν

(7.142)

with e ∈ l∞(T ) satisfying et = 1 for all t ∈ T . This yields

1 − ‖z∗‖ = ‖p∗‖ = lim
ν∈N

∑

t∈T
λtν . (7.143)

If ‖z∗‖ = 1, we get from the above the relationships

〈x∗ − A∗z∗, x − x̄〉 − ε = 〈x∗ − A∗z∗, x〉 − (〈x∗ − A∗z∗, x̄〉 + ε)
= lim
ν∈N

[∑

t∈T
λtν〈u∗

tν , x〉 + 〈v∗
ν , x〉

]
− lim
ν∈N

[∑

t∈T
λtνrtν − sν

]

≤ lim sup
ν∈N

[∑

t∈T
λtν

(〈u∗
tν , x〉 − ft (x)− rtν + f (x))+ 〈v∗

ν , x〉 − sν
]

≤ lim sup
ν∈N

[∑

t∈T
λtν

(
f ∗
t (u

∗
tν
)− rtν + f (x))+ δ∗(·;C0)(v

∗
ν )− sν

]

≤ lim sup
ν∈N

∑

t∈T
λtνf (x) = 0 for any x ∈ C0.

It follows from (7.30) that (x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉 + ε) ∈ epi δ∗(·;C0); so

(x∗, 〈x∗, x̄〉 + ε) ∈ epi δ∗(·;C0)+ (A∗z∗, 〈A∗z∗, x̄〉)
= epi δ∗(·;C0)+ (A∗z∗, 〈z∗, z̄〉) ⊂ M.

If ‖z∗‖ < 1, it doesn’t restrict the generality due to (7.143) to suppose that
∑
t∈T λtν > 0 for all ν ∈ N and to define λ̃tν := λtν∑

t ′∈T λt ′ν
for each t ∈ T

and ν ∈ N . It tells us by the “w∗- lim” expression after formula (7.141) that

(x∗, 〈x∗, x̄〉 + ε) = w∗- lim
ν∈N

[∑

t∈T
λtν(u

∗
tν , rtν)+ (v∗

ν , sν)
]

+ (A∗z∗, 〈z∗, z̄〉)

= (1 − ‖z∗‖)w∗- lim
ν∈N

[∑

t∈T
λ̃tν(u

∗
tν , rtν)+ (v∗

ν , sν)
]

+ (A∗z∗, 〈z∗, z̄〉) ⊂ M.

Thus we get (x∗, 〈x∗, x̄〉 + ε) ∈ M and justify the inclusion “⊂” in (7.139).
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To verify the converse inclusion in (7.139), pick any element x∗ ∈ X∗ satisfying
(x∗, 〈x∗, x̄〉 + ε) ∈ M . Hence we find a unit functional z∗ ∈ BZ∗ as well as nets
{λν}ν∈N ⊂ R

(T )
+ , {(v∗

ν , sν)}ν∈N ⊂ epi δ∗(·;C0), and {(u∗
tν , rtν)}ν∈N ⊂ epi f ∗

t ,
t ∈ T , such that

∑
t∈T λtν = 1 and

(x∗, 〈x∗, x̄〉 + ε) = (1 − ‖z∗‖)w∗- lim
ν∈N

[∑

t∈T
λtν(u

∗
tν , rtν)+ (v∗

ν , sν)
]

+(A∗z∗, 〈z∗, z̄〉).
Defining p∗

ν := (1−‖z∗‖)∑t∈T λtνδt , deduce that ‖p∗
ν‖ = 1−‖z∗‖ while arguing

similarly to the proof of (7.142). It follows from the classical Alaoglu-Bourbaki
theorem that there exists a subnet of p∗

ν (without relabeling), which weak∗ converges
to some p∗ ∈ B(l∞(T ))∗ . By using again the arguments as in the proof of (7.142),
we get ‖p∗‖ = 1 − ‖z∗‖ and then obtain (7.141). Due to the equivalence between
(7.140) and (7.141), this justifies the inclusion “⊃” in (7.139) and thus completes
the proof of the theorem. �

In the coderivative case of Theorem 7.42 (i.e., if ε = 0), we can equivalently
modify the representation in (7.139) and provide its further specification.

Proposition 7.43 (Explicit Forms of the Coderivative for Infinite Convex Sys-
tems). Let (x̄, (z̄, 0)) ∈ gphF for the constraint system (7.136). Then we have the
coderivative representation

D∗F
(
x̄, (z̄, 0)

)(
S(Z×l∞(T ))∗

) = {
x∗ ∈ X∗∣∣ (x∗, 〈x∗, x̄〉) ∈ L} (7.144)

withL :=
⋃

z∗∈BZ∗
cl ∗[(1−‖z∗‖) co

(⋃

t∈T
gph f ∗

t

)
+gph δ∗(·;C0)

]
+(A∗z∗, 〈z∗, z̄〉).

Furthermore, the term gph δ∗(·;C0) above can be dropped if x̄ ∈ intC0.

Proof. To verify the inclusion “⊂” in (7.144), for any x∗ ∈ D∗F(x̄, (z̄, 0))(z∗, p∗)
with ‖z∗‖ + ‖p∗‖ = 1, we deduce from the proof of Theorem 7.42 the validity
of inclusion (7.140) with ε = 0. This allows us to find nets {λν}ν∈N ⊂ R

(T )
+ ,

{ρν}ν∈N ⊂ R+, {(v∗
ν , sν)}ν∈N ⊂ gph δ∗(·;C0), and {(u∗

tν , rtν)}ν∈N ⊂ gph f ∗
t for

each t ∈ T providing the limiting representation

(
p∗, x∗ − A∗z∗, 〈x∗ − A∗z∗, x̄〉) = w∗- lim

ν∈N
∑

t∈T
λtν(δt , u

∗
tν , rtν)

+(0, v∗
ν , sν)+ (0, 0, ρν).

(7.145)

Similarly to the proof of Theorem 7.42, suppose without loss of generality that∑
t∈T λtν = 1 − ‖z∗‖ for all ν ∈ N and then get

rtν = f ∗
t (u

∗
tν) ≥ 〈u∗

tν , x̄〉 − ft (x̄) ≥ 〈u∗
tν , x̄〉 and sν = δ∗(·;C0)(v

∗
ν ) ≥ 〈v∗

ν , x̄〉.
This implies together with (7.145) the relationships
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〈x∗ − A∗z∗, x̄〉= lim
ν∈N

[∑

t∈T
λtνrtν+sν+ρν

]
≥ lim sup

ν∈N

[∑

t∈T
λtν〈u∗

tν , x̄〉+〈v∗
ν , x̄〉

+ρν
]

≥ 〈x∗ − A∗z∗, x̄〉 + lim sup
ν∈N

ρν,

which ensure that lim supν∈N ρν = 0. Then it follows from (7.145) that

(x∗, 〈x∗, x̄〉) = w∗- lim
ν∈N

∑

t∈T
λtν(u

∗
tν , rtν)+ (v∗

ν , sν)+ (A∗z∗, 〈z∗, z̄〉) ∈ L,

and thus we arrive at the inclusion “⊂” in (7.144). The verification of the opposite
inclusion in (7.144) follows the lines in the proof of Theorem 7.42.

Finally, let x̄ ∈ intC0 and pick x∗ ∈ D∗F(x̄, (z̄, 0))(z∗, p∗) with (z∗, p∗) ∈
S(Z×l∞(T ))∗ . Using the notation from the proof of (7.144) above, we have

0 = 〈x∗ − A∗z∗, x̄〉 − 〈x∗ − A∗z∗, x̄〉 = lim
ν∈N

[∑

t∈T
λtν(〈u∗

tν , x̄〉 − rtν)

〈v∗
ν , x̄〉 − stν

]
≤ − lim sup

ν∈N
sup
x∈C0

[〈v∗
ν , x〉 − 〈v∗

ν , x̄〉
] ≤ − lim sup

ν∈N
η‖v∗

ν‖,

where η > 0 is such that Bη(x̄) ⊂ C0. This implies that lim supν∈N ‖v∗
ν‖ = 0, and

so we can remove gph δ∗(·;C0) in the representation of L in (7.144). �
The next major result provides a precise calculation of the exact regularity bound

of the infinite constraint system (7.136) entirely via its initial data.

Theorem 7.44 (Exact Regularity Bound of Infinite Constraint Systems). Given
(x̄, (z̄, 0)) ∈ gphF for the infinite system in (7.136), assume that the bounded
SSC from Definition 7.39 holds at (z̄, 0). Then the exact regularity bound of F at
(x̄, (z̄, 0)) is calculated by

regF(x̄, (z̄, 0)) = lim
ε↓0

[
sup

{‖x∗‖−1
∣∣ (x∗, 〈x∗, x̄〉 + ε) ∈ M}]

, (7.146)

where M is defined in Theorem 7.42. If in addition 0 < dimZ < ∞, then

regF(x̄, (z̄, 0)) = ‖D∗F−1((z̄, 0), x̄)‖
= sup

{
‖x∗‖−1

∣∣∣ (x∗, 〈x∗, x̄〉) ∈ L
}
,

(7.147)

where the set L is defined in Proposition 7.43.

Proof. It follows from Proposition 7.41 that (z̄, 0) ∈ int(rgeF), i.e., the mapping
F is metrically regular around (x̄, (z̄, 0)). Substituting the ε-coderivative expression
from Theorem 7.42 into the exact bound formula (7.109) of Theorem 7.35, we arrive
at the limiting representation (7.146).

Let us now justify the equalities in (7.147) under the finite dimensionality of Z.
By Theorem 7.38 and Proposition 7.43, we need to check that (7.129) holds and
that regF(x̄, (z̄, 0)) > 0. To proceed, take any ε > 0 and (z∗, p∗) ∈ S(Z×l∞(T ))∗
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satisfying DεF(x̄, (z̄, 0))(z∗, p∗) 
= ∅. By the same arguments as in the proofs of
(7.141) and (7.143), we get the inclusion

p∗ ∈ (
1 − ‖z∗‖) cl ∗co

{
δt
∣∣ t ∈ T }.

It shows that the set cl ∗{(z∗, p∗) ∈ S(Z×l∞(T ))∗ | D∗
εF (x̄, (z̄, 0))(z

∗, p∗) 
= ∅} is
contained in the following one:

cl ∗ ⋃

z∗∈BZ∗

[{
z∗
}× (

1 − ‖z∗‖) cl ∗co
{
δt
∣∣ t ∈ T }

]
. (7.148)

Further, we deduce from the proof of (7.143) that cl ∗co {δt | t ∈ T } ⊂ S(l∞(T ))∗ .
Since dimZ < ∞, the latter implies that the set in (7.148) is a subset of S(Z×l∞(T ))∗ ,
which ensures the validity of (7.129).

It remains to verify that regF(x̄, (z̄, 0)) > 0. We can easily see that

D∗F−1((z̄, 0), x̄
)
(x∗) ⊃ {

(z∗, 0) ∈ Z∗ × (l∞(T ))∗∣∣ A∗z∗ = x∗}.

Since the operator A is surjective, we clearly have ‖(A∗)−1‖ > 0. This allows us
to conclude that ‖D∗F−1((z̄, 0), x̄)‖ > 0, which yields regF(x̄, (z̄, 0)) > 0 by
Theorem 7.35 and thus completes the proof. �

It immediately follows from Theorem 7.38 that the exact bound formula

regF
(
x̄, (z̄, 0)

) = ∥∥D∗F−1((z̄, 0), x̄
)∥∥ (7.149)

holds also in the case of dimZ = 0. Recall that the Lipschitzian counterpart of
(7.149) is proved for infinite linear inequality systems in Corollary 7.16 and for
infinite convex inequality systems in Theorem 7.31 (with no equality and geomet-
ric constraints) under the boundedness assumptions therein. As discussed above,
these assumptions are essentially stronger than the bounded SSC imposed in Theo-
rem 7.44; see Example 7.40.

A natural question arising from Theorem 7.44 is whether the exact regularity
bound expression (7.149) holds for infinite-dimensional spaces Z. The following
counterexample is constructed for the case of the classical Asplund space Z = c0,
which has been already used above (i.e., the space of sequences of real numbers
converging to zero and endowed with the supremum norm).

Example 7.45 (Failure of the Exact Bound Formula for Countable Inequal-
ity and Equality Constraints in Asplund Spaces.) Let X = Z = c0 and
T = N. Define a linear operator A : X → Z by Ax := (x2, x3, . . .) for all
x = (x1, x2, . . .) ∈ X. It is easy to see that A is bounded and surjective. We form a
set-valued mapping F : c0 →→ c0 × l∞ of type (7.136) by

F(x) := {
(z, p) ∈ Z × l∞∣∣ Ax = z, x1 + xn + 1 ≤ pn, n ∈ N

}
(7.150)
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for any x ∈ X. Take x̄ := ( − 1
n

)
n∈N, z̄ := Ax̄, and x̂ := (−2,− 1

2 ,− 1
3 , . . .) ∈ X.

Observe that the bounded strong Slater condition of Definition 7.39 is satisfied at x̂
for (7.150) and that x̄ ∈ F−1(z̄, 0). Defining further

xk :=
(

− 1,−1

2
, . . . ,− 1

k − 1
,

1

k
,− 1

k + 1
,− 1

k + 2
, . . .

)
,

zk :=
(

− 1

2
, . . . ,− 1

k − 1
,

2

k
,− 1

k + 1
,− 1

k + 2
, . . .

)

shows that xk → x̄ and zk → z̄ in c0. Moreover, we have the equalities

dist
(
(zk, 0);F(xk)) = max

{
sup
n
(xk1 + xkn + 1)+, sup

n
| xkn+1 − zkn|

}
= 1

k

with α+ = max{0, α} as usual. It is easy to calculate the inverse mapping value
F−1(zk, 0) = {(a, zk1, zk2, . . .) ∈ c0| a ≤ − 2

k
− 1}, which gives us

dist
(
xk;F−1(zk, 0)

) = max
{(
xk1 + 2

k
+ 1

)

+, sup
n

|xkn+1 − zkn|
}

= 2

k
.

It follows from the distance expressions above that regF(x̄, (z̄, 0)) ≥ 2. Thus the
exact bound formula (7.149) fails if we show that

‖x∗‖ ≥ 1 for all x∗ ∈ D∗F
(
x̄, (z̄, 0)

)(
S(Z×l∞)∗

)
. (7.151)

To verify (7.151), employ the explicit coderivative form from Proposition 7.43
that gives some us z∗ ∈ BZ∗ with

(x∗, 〈x∗, x̄〉) ∈ cl ∗[(1 − ‖z∗‖) co
{
(δ1 + δn,−1)

∣∣ n ∈ N
}]+ (

A∗z∗, 〈z∗, z̄〉),

where δn ∈ c∗0 and 〈δn, x〉 = xn for all x ∈ c0 and n ∈ N. Hence there is a net
(λν)ν∈N ⊂ R

(N) such that
∑
n∈N λnν = 1 − ‖z∗‖ for all ν ∈ N and that

(x∗, 〈x∗, x̄〉) = w∗- lim
ν∈N

∑

n∈N
λnν(δ1 + δn,−1)+ (A∗z∗, 〈z∗, z̄〉),

which readily implies the limiting relationships

0 = lim
ν∈N

∑

n∈N
λnν(−〈δ1 + δn, x̄〉 − 1) = lim

ν∈N
∑

n∈N

λnν

n
. (7.152)

Since c∗0 = l1, we write z∗ in the form (z∗1, z∗2, . . .) ∈ l1 and observe that
A∗z∗ = (0, z∗1, z∗2, . . .) ∈ l1. Thus for any ε > 0, there is k ∈ N sufficiently
large and such that

∑∞
n=k+1 |z∗n| ≤ ε, which ensures that ‖A∗z∗ − ẑ∗k‖ ≤ ε with

ẑ∗k := (0, z∗1, . . . , z∗k, 0, 0, . . .) ∈ l1. Define further x̂∗
k by
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x̂∗
k := w∗- lim

ν∈N
∑

n∈N
λnν(δ1 + δn)+ ẑ∗k,

take ek := (1, sign(z∗1), . . . , sign(z∗k), 0, . . .) ∈ c0, and get ‖ek‖ = 1 with

‖x̂∗
k ‖ ≥ 〈̂x∗

k , e
k〉 = lim

ν∈N
∑

n∈N
λnν(e

k
1 + ekn)+

k∑

n=1

z∗nekn+1

≥ lim
ν∈N

∑

n∈N
λnν +

k∑

n=1

|z∗n| − lim sup
ν∈N

k+1∑

n=1

λnν.

(7.153)

It follows from the equations in (7.152) that

0 ≤ lim sup
ν∈N

k+1∑

n=1

λnν ≤ (k + 1) lim sup
ν∈N

∑

n∈N

λnν

n
= 0.

Combining this with (7.153) gives us the estimates

‖x̂∗
k ‖ ≥ 1 − ‖z∗‖ +

k∑

n=1

|z∗n| ≥ 1 − ‖z∗‖ + ‖z∗‖ − ε = 1 − ε.

It is clear furthermore that ‖x∗ − x̂∗
k ‖ = ‖A∗z∗ − ẑ∗k‖ ≤ ε. Thus we arrive at

‖x∗‖ ≥ ‖x̂∗
k ‖ − ‖x∗ − x̂∗

k ‖ ≥ 1 − ε − ε = 1 − 2ε for all ε > 0,

yielding ‖x∗‖ ≥ 1 and (7.151). This confirms the failure of (7.149).

The next example shows that the formula (7.149) for calculating the exact reg-
ularity bound fails when dimZ = ∞ even for constraint systems (7.136) with a
single convex inequality, while both spaces X and Z are Asplund.

Example 7.46 (Failure of the Exact Bound Formula for Single Inequality and
Infinite-Dimensional Equality Constraints). Let X = Z = c0 and T = {1}.
Define the linear operator A : X → Z as in Example 7.45, and consider F :
X →→ Z × R given by

F(x) := {
(z, p) ∈ Z × R

∣∣ Ax = z, f (x) ≤ p
}

for any x ∈ X,
where f (x) := sup{x1 + xn + 1| n ∈ N} with dom f = X. Then we have

dist
(
(zk, 0);F(xk)) = k−1 and dist

(
xk;F−1(zk, 0)

) = 2k−1

in the notation of Example 7.45, and so regF(x̄, (z̄, 0)) ≥ 2. Also

epi f ∗ = cl ∗co
{
(δ1 + δn,−1)

∣∣ n ∈ N
}+ {0} × R+, (7.154)
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which follows from the well-known formula for general supremum functions:

epi f ∗ = cl ∗co
⋃

t∈T

(
epi f ∗

t

)
. (7.155)

Picking now any x∗ ∈ D∗F(x̄, (z̄, 0))(S(Z×R)∗) and using Theorem 7.42 together
with representation (7.155), we arrive at

(x∗, 〈x∗, x̄〉) ∈ cl ∗[(1 − ‖z∗‖) co
{
(δ1 + δn,−1)

∣∣ n ∈ N
}]+ (A∗z∗, 〈z∗, z̄〉).

As in Example 7.45, this gives us ‖x∗‖ ≥ 1, and thus (7.149) fails.

The following result provides efficient conditions, which ensure the validity of
the major regularity formula (7.149) when dimZ = ∞. The given proof is different
from that of (7.147) in Theorem 7.44 with dimZ < ∞. In particular, it doesn’t
rely on condition (7.129) that may not hold. Indeed, even in the simplest setting of
T = ∅, the left-hand side of (7.129) is cl ∗SZ∗ , which is obviously not a subset of
SZ∗ when dimZ = ∞.

Theorem 7.47 (Exact Bound Formula for Finite Inequality and Infinite Equal-
ity Constraints). In the case of arbitrary Banach spacesX andZ in (7.136), assume
that the index set T is finite, that

ft (x) = 〈a∗
t , x〉 − bt for all x ∈ X, t ∈ T with (a∗

t , bt ) ∈ X∗ × R,

and that, given (x̄, (z̄, 0)) ∈ gphF , the constraint mapping F satisfies the standard
Slater condition at (z̄, 0) with x̄ ∈ C. Then formula (7.149) holds.

Proof. Letting T := {1, . . . , k}, observe that dom f = X and so C0 = C in the
notation of Theorem 7.42. Since we obviously have

epi f ∗
n = (a∗

n, bn)+ {0} × R+ and {0} × R+ + epi δ∗(·;C) ⊂ epi δ∗(·;C)
for any z∗ ∈ BZ∗ and n ∈ {1, . . . , k}, it follows that
(
1 − ‖z∗‖)co

{
epi f ∗

t

∣∣ ∈ T }+ epi δ∗(·;C0) = (
1 − ‖z∗‖)co

{
(a∗
n, bn)

∣∣1 ≤ n ≤ k
}

+epi δ∗(·;C).
The latter set is clearly weak∗ closed inX∗×R, and hence the setM in Theorem 7.42
is represented by

M =
⋃

z∗∈BZ∗

{
(1 − ‖z∗‖)co

{
(a∗
n, bn)

∣∣1 ≤ n ≤ k
}+ epi δ∗(·;C)+ (A∗z∗, 〈z∗, z̄〉)

}
.

Invoking now the result in the first part of Theorem 7.44, we find sequences of
x∗
m ∈ X∗, λm ∈ R

k+, (v∗
m, sm) ∈ epi δ∗(·;C), and z∗m ∈ BZ∗ for all m ∈ N such that

∑k
n=1 λ

m
n = 1 − ‖z∗m‖ and
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(
x∗
m, 〈x∗

m, x̄〉 +m−1
)

=
k∑

n=1

λmn (a
∗
n, bn)+ (v∗

m, sm)

+(A∗z∗m, 〈z∗m, z̄〉)
(7.156)

with the upper estimate of the regularity bound

regF
(
x̄, (z̄, 0

)
) ≤ ‖x∗

m‖−1 + o(1) =
∥∥∥

k∑

n=1

λmn a
∗
n + v∗

m + A∗z∗m
∥∥∥

−1 + o(1).

It follows from considering the second components in (7.156) that

1

m
= 〈x∗

m, x̄〉 + 1

m
− 〈x∗

m, x̄〉 =
k∑

n=1

λmn bn + sm −
k∑

n=1

λmn 〈a∗
n, x̄〉 − 〈v∗

m, x̄〉

≥
k∑

n=1

λmn (bn − 〈a∗
n, x̄〉)+ sm − 〈v∗

m, x̄〉 ≥
k∑

n=1

λmn (bn − 〈a∗
n, x̄〉) ≥ 0.

Since ‖λm‖ ≤ 1, we suppose that λm → λ ∈ R
k+ as m → ∞ and thus deduce

from the above that
∑k
n=1 λn(bn − 〈a∗

n, x̄〉) = 0 by passing to the limit as m → ∞.
Defining further the sequences of

εm :=
k∑

n=1

|λmn − λn|, ηm :=
k∑

n=1

λn + ‖z∗m‖, x̂∗
m :=

k∑

n=1

λna
∗
n + A∗z∗m,

note that εm = o(1) and ηm = 1 − o(1). Then Proposition 7.43 tells us that

η−1
m x̂

∗
m ∈ D∗F

(
x̄, (z̄, 0)

)(
S(Z×Rk)∗

)
.

Moreover, the same arguments as in the proof of the second part of Proposition 7.43
show that ‖w∗

m‖ → 0. It follows therefore that

‖x∗
m − x̂∗

m‖ =
∥∥∥

k∑

n=1

(λmn − λn)a∗
n + w∗

m

∥∥∥ ≤ εm sup
1≤n≤k

‖a∗
n‖ + ‖w∗

m‖ = o(1),

which implies together with the above estimates of regF
(
x̄, (z̄, 0)) that

regF
(
x̄, (z̄, 0)

) ≤ (‖x̂∗
m‖ + o(1))−1 + o(1) ≤ (

ηm‖η−1
m x̂

∗
m‖ + o(1))−1 + o(1)

≤ [
(1 − o(1)) inf

{‖x∗‖∣∣ (x∗, 〈x∗, x̄〉) ∈ L}+ o(1)]−1 + o(1).
Letting m → ∞ therein, we arrive at

regF
(
x̄, (z̄, 0)

) ≤ sup
{‖x∗‖−1

∣∣ (x∗, 〈x∗, x̄〉) ∈ L},
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which yields (7.149) and thus completes the proof of the theorem. �

7.5 Value Functions in DC Semi-infinite Optimization

In this section, we continue investigating SIPs in general Banach (and partly in As-
plund) spaces while considering now the minimization of DC objectives subject to
infinite convex inequality constraints with arbitrary index sets. As mentioned ear-
lier, the abbreviation “DC” stands for the difference of convex functions, which have
been recognized as a convenient form for representing various remarkable classes of
problems important in optimization and its applications. Our main attention is paid
here to the study of subdifferential properties of (nonconvex) marginal/value func-
tions in parametric versions of such SIPs. Based on these developments, we present
applications to sensitivity analysis and necessary optimality conditions in DC SIPs
considered in both nonparametric and parametric settings as well as to bilevel semi-
infinite programs with fully convex data in Banach and Asplund spaces.

7.5.1 Optimality Conditions for DC Semi-infinite Programs

Consider first nonparametric SIPs with DC objectives and infinite convex con-
straints and obtain necessary optimality conditions for them (necessary and suffi-
cient for fully convex problems) under weakest qualification conditions. These re-
sults of their own interest are instrumental to derive in what follows subdifferential
formulas for value functions in parametric versions of such SIPs with subsequent
applications to optimality conditions and Lipschitzian stability under perturbations.
In this subsection, we study the problem

{
minimize ϑ(x)− θ(x) subject to
ϑt (x) ≤ 0, t ∈ T , and x ∈ �, (7.157)

where T is an arbitrary index set, where � ⊂ X is a closed and convex subset of
a Banach space X, and where the functions ϑ, θ, ϑt : X → R are l.s.c. and convex.
Being oriented toward minimization, we impose by convention that ∞ − ∞ :=
∞ along with the standard operations involving ∞ and −∞. The set of feasible
solutions to (7.157) is denoted by

� := � ∩ {
x ∈ X∣∣ ϑt (x) ≤ 0 for all t ∈ T }. (7.158)

Using the infinite product notation R
T ,R(T ), and R

(T )
+ from Subsection 7.1.1, define

supp λ := {t ∈ T | λt 
= 0} for any λ ∈ R
(T ), and observe that

λu :=
∑

t∈T
λtut =

∑

t∈supp λ

λtut whenever u ∈ R
T .
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Recall next definition (7.30) of the Fenchel conjugate, and introduce the fol-
lowing dual-space qualification condition, which plays a crucial role in deriving
necessary optimality conditions of the KKT type for (7.157).

Definition 7.48 (Closedness Qualification Condition). We say that the triple
(ϑ, ϑt ,�) in problem (7.157) satisfies the CLOSEDNESS QUALIFICATION CONDI-
TION (CQC) if the set

epiϑ∗ + cone
{⋃

t∈T
epiϑ∗

t

}
+ epi δ∗(·;�)

is weak∗ closed in the product space X∗ × R.

Note that the introduced CQC is not a “constraint qualification” since it involves
not only constraint but also cost functions, namely, the plus part ϑ of the cost in
(7.157). The closest constraint qualification to CQC is the following one, where the
cost term epiϑ∗ in Definition 7.48 is omitted: the set

cone
{⋃

t∈T
epiϑ∗

t

}
+ epi δ∗(·;�) is weak∗ closed (7.159)

in X∗ ×R. This condition known as the convex Farkas-Minkowski constraint qual-
ification (convex FMCQ) reduces to the Farkas-Minkowski property (7.49) for lin-
ear infinite systems of type (7.48). The reader can check that FMCQ (7.159) implies
CQC in the following two cases: either ϑ is continuous at some feasible point x ∈ �
in (7.158), or the convex conic hull cone(domϑ − �) is a closed subspace of X. It
has been well recognized in semi-infinite programming that dual qualification con-
ditions of the CQC and Farkas-Minkowski type for infinite convex systems strictly
improve primal ones of the Slater type; see Exercise 7.98 and the corresponding
commentaries in Section 7.7.

To proceed, we recall some needed results of convex analysis summarized in
the following two lemmas. The first one contains relationship between epigraphical
duality and subdifferential calculus.

Lemma 7.49 (Epigraphical and Subdifferential Sum Rules). Let the functions
ϕ1, ϕ2 : X → R be l.s.c. and convex, and let domϕ1 ∩ domϕ2 
= ∅. Then the
following conditions are equivalent:

(i) The set epiϕ∗
1 + epiϕ∗

2 is weak∗ closed in X∗ × R.
(ii) The conjugate epigraphical rule holds

epi (ϕ1 + ϕ2
)∗ = epiϕ∗

1 + epiϕ∗
2 .

Furthermore, we have the subdifferential sum rule

∂(ϕ1 + ϕ2)(x̄) = ∂ϕ1(x̄)+ ∂ϕ2(x̄)

provided that the aforementioned equivalent conditions are satisfied.
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The next result presents an appropriate extension of the Farkas lemma to the case
of epigraphical convex systems.

Lemma 7.50 (Generalized Farkas Lemma for Epigraphical Systems). Given
α ∈ R, the following conditions are equivalent:

(i) ϑ(x) ≥ α for all x ∈ �;

(ii)
(
0,−α) ∈ cl ∗(epiϑ∗ + cone

[⋃

t∈T
epiϑ∗

t

]
+ epi δ∗(·;�)

)
.

Now we are ready to establish necessary optimality conditions for the DC pro-
gram under consideration in (7.157). Given x̄ ∈ � ∩ dom θ , define the set of active
constraint multipliers by

A(x̄) := {
λ ∈ R

(T )
+
∣∣ λtϑt (x̄) = 0 for all t ∈ supp λ

}
. (7.160)

Theorem 7.51 (Necessary Optimality Conditions for DC Semi-infinite Pro-
grams). Let x̄ ∈ � ∩ domϑ be a local minimizer for problem (7.157) satisfying
the CQC requirement. Then we have the inclusion

∂θ(x̄) ⊂ ∂ϑ(x̄)+
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

λt∂ϑt (x̄)
]

+N(x̄;�). (7.161)

Proof. There are two possible cases regarding x̄ ∈ � ∩ domϑ : either x̄ /∈ dom θ
or x̄ ∈ dom θ . In the first case, we have ∂θ(x̄) = ∅, and hence (7.161) holds auto-
matically. Considering the remaining case of x̄ ∈ dom θ , find by the subdifferential
definition of convex analysis such x∗ ∈ X∗ that

θ(x)− θ(x̄) ≥ 〈x∗, x − x̄〉 for all x ∈ X.
This implies that the reference local minimizer x̄ for (7.157) is also a local mini-
mizer for the following convex SIP:

{
minimize ϑ̃(x) := ϑ(x)− 〈x∗, x − x̄〉 − θ(x̄)
subject to ϑt (x) ≤ 0, t ∈ T , and x ∈ �. (7.162)

Since (7.162) is convex, its local minimizer x̄ is its global solution, i.e.,

ϑ̃(x̄) ≤ ϑ̃(x) for all x ∈ �.
Then Lemma 7.50 tells us that the latter is equivalent to the inclusion

(
0,−ϑ̃(x̄)) ∈ cl ∗(epi ϑ̃∗ + cone

[⋃

t∈T
epiϑ∗

t

]
+ epi δ∗(·;�)

)
.

Observing from the structure of ϑ̃ in (7.162) that epi ϑ̃∗ = (−x∗, θ(x̄)− 〈x∗, x̄〉)+
epiϑ∗, we get therefore the relationship
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(
0,−ϑ̃(x̄)) ∈ (− x∗, θ(x̄)− 〈x∗, x̄〉)

+cl ∗
(

epiϑ∗ + cone
[⋃

t∈T
epiϑ∗

t

]
+ epi δ∗(·;�)

)
. (7.163)

Furthermore, the assumed CQC ensures that (7.163) is equivalent to
(
x∗,−ϑ̃(x̄)− θ(x̄)+ 〈x∗, x̄〉)

∈
(

epiϑ∗ + cone
[⋃

t∈T
epiϑ∗

t

]
+ epi δ∗(·;�)

)
. (7.164)

Now applying the useful representation

epiϕ∗ =
⋃

ε≥0

{(
x∗, 〈x∗, x〉 + ε − ϕ(x))

∣∣∣ x∗ ∈ ∂εϕ(x)
}
, (7.165)

which is valid for all x ∈ domϕ, to the conjugate functions ϑ∗, ϑ∗
t , and δ∗(·;�)

with taking into account the structure of the positive cone R
(T )
+ in (7.3) and noting

that −ϑ̃(x̄)− θ(x̄)+ 〈x∗, x̄〉 = 〈x∗, x̄〉 − ϑ(x̄), we find

ε, εt , γ ≥ 0, u∗ ∈ ∂εϑ(x̄), λ ∈ R
(T )
+ , u∗

t ∈ ∂εt ϑt (x̄), and v∗ ∈ ∂δγ (x̄;�)
satisfying the following two equalities:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x∗ = u∗ +
∑

t∈T
λtu

∗
t + v∗,

〈x∗, x̄〉 − ϑ(x̄) = 〈u∗, x̄〉 + ε − ϑ(x̄)+
∑

t∈T
λt

[
〈u∗
t , x̄〉 + εt − 〈ϑ∗

t , x̄〉
]

+〈v∗, x̄〉 + γ − δ(x̄;�).
Since x̄ ∈ �, the first equality above allows us reducing the second one to

ε +
∑

t∈T
λtεt −

∑

t∈T
λtϑt (x̄)+ γ = 0. (7.166)

The feasibility of x̄ for problem (7.157) and the choice of (ε, λt , γ ) yield

ε ≥ 0, γ ≥ 0, λt ≥ 0, and λtϑt (x̄) ≤ 0 for all t ∈ T ,
and therefore we get from (7.166) that in fact ε = 0, γ = 0, λtϑt (x̄) = 0, and
λtεt = 0 for all t ∈ T . Furthermore, the latter implies that εt = 0 for all t ∈ supp λ.
Hence we obtain the inclusions

u∗ ∈ ∂ϑ(x̄), u∗
t ∈ ∂ϑt (x̄), and v∗ ∈ ∂δ(x̄;�) = N(x̄;�),

which allow us to conclude from the above that

x∗ ∈ ∂ϑ(x̄)+
∑

t∈supp λ

λt∂ϑt (x̄)+N(x̄;�) with λtϑt (x̄) = 0 for t ∈ supp λ.
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This justifies (7.161) and thus completes the proof of the theorem. �
Let us present two useful consequences of Theorem 7.51 concerning subdiffer-

ential/normal cone calculus for infinite convex systems.

Corollary 7.52 (Subdifferential Sum Rule Involving Convex Infinite Con-
straints). Let x̄ ∈ � with θ(x̄) = 0 and ϑ(x̄) < ∞, and let (ϑ, ϑt ,�) satisfy all the
assumptions of Theorem 7.51. Then we have the equality

∂
(
ϑ + δ(·;�))(x̄) = ∂ϑ(x̄)+

⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+N(x̄;�).

Proof. The inclusion “⊃” in the claimed sum rule can be derived directly from the
definitions. To verify the opposite inclusion therein, pick an arbitrary subgradient
x∗ ∈ ∂(ϑ + δ(·;�))(x̄) with x̄ ∈ � ∩ domϑ , and get

ϑ(x)− ϑ(x̄) ≥ 〈x∗, x − x̄〉 whenever x ∈ �,
which means by the construction of � in (7.158) that x̄ is a (global) minimizer for
the following DC program with infinite constraints:

{
minimize ϑ(x)− θ̃ (x) with θ̃ (x) := 〈x∗, x − x̄〉 + ϑ(x̄)
subject to ϑt (x) ≤ 0 for all t ∈ T , and x ∈ �. (7.167)

Applying Theorem 7.51 to problem (7.167) and taking into account the structure of
the linear function θ̃ therein, we get from (7.161) that

∂θ̃(x̄) = {
x∗} ⊂ ∂ϑ(x̄)+

⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+N(x̄;�),

which justifies the claimed inclusion and thus completes the proof. �
The next corollary provides a calculation of the normal cone to the feasible con-

straint set � in terms of its initial data of (7.12) and the set of active constraint
multipliers (7.160).

Corollary 7.53 (Normal Cone Calculation for Convex Infinite Constraints). As-
sume that ϑt and � satisfy the assumptions of Theorem 7.51 with CQC specified as
FMCQ (7.159). Then for any x̄ ∈ �, we have

N(x̄;�) =
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+N(x̄;�).

Proof. Follows from Corollary 7.52 by letting ϑ(x) ≡ 0 therein. �
The final result of this subsection concerns the convex SIP, which is a specifica-

tion of (7.157) with θ ≡ 0. We show that in this case the necessary conditions of
Theorem 7.51 are also sufficient for (global) optimality.
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Theorem 7.54 (Necessary and Sufficient Optimality Conditions for Convex
SIPs). Let x̄ ∈ � be a feasible solution to problem (7.157) with θ ≡ 0 and
ϑ(x̄) < ∞, and let the assumptions of Theorem 7.51 be satisfied. Then x̄ is optimal
to this problem if and only if there is λ ∈ R

(T )
+ such that the following generalized

KKT condition holds:

0 ∈ ∂ϑ(x̄)+
⋃

λ∈A(x̄)

[ ∑

t∈supp λ

∂ϑt (x̄)
]

+N(x̄;�). (7.168)

Proof. The necessary of (7.168) for optimality in this problem follows immediately
from Theorem 7.51 with θ(x) ≡ 0. To justify the sufficiency part, suppose that
(7.168) holds with some λ ∈ A(x̄); the latter implies, in particular, that ∂ϑt (x̄) 
= ∅
whenever t ∈ supp λ. Then we find x∗ ∈ X∗ satisfying the inclusions −x∗ ∈
N(x̄;�) and

x∗ ∈ ∂ϑ(x̄)+
∑

t∈supp λ

∂ϑt (x̄) ⊂ ∂
(
ϑ +

∑

t∈T
λtϑt

)
(x̄).

This tells by the construction of convex subgradients that

ϑ(x)+
∑

t∈T
λtϑt (x) ≥ ϑ(x̄)+

∑

t∈T
λtϑt (x̄)+ 〈x∗, x − x̄〉 ≥ 0 (7.169)

for all x ∈ X. Since λtϑt (x̄) = 0 for all t ∈ T by λ ∈ A(x̄) in (7.160) and since
−x∗ ∈ N(x̄;�), we get from (7.169) and the normal cone structure that

ϑ(x)+
∑

t∈T
λtϑt (x)− ϑ(x̄) ≥ 〈x∗, x − x̄〉 ≥ 0 for all x ∈ �,

which yields by (7.158) and (7.160) the inequality

ϑ(x) ≥ ϑ(x)+
∑

t∈T
λtϑt (x) ≥ ϑ(x̄) whenever x ∈ �

and thus verifies the claimed global optimality of x̄. �

7.5.2 Regular Subgradients of Value Functions for DC SIPs

Let us now consider the parametric version of the DC semi-infinite program (7.157)
formalized, with a bit different notation, as

minimizey ϕ(x, y)− ψ(x, y) subject to y ∈ F(x) ∩G(x), (7.170)

where the moving (parameterized by x) constraint sets are given by

F(x) := {
y ∈ Y ∣∣ (x, y) ∈ �}, (7.171)
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G(x) := {
y ∈ Y ∣∣ ϕt (x, y) ≤ 0, t ∈ T }. (7.172)

In what follows, we assume, unless otherwise stated, that the spaces X and Y are
Banach, that T is an arbitrary index set, that the functions ϕ,ψ, ϕt : X × Y → R

are l.s.c. and convex, and that the set � is closed and convex.
The main object of our study in the rest of this section is the (optimal) value

function in (7.170) defined by

μ(x) := inf
{
ϕ(x, y)− ψ(x, y)∣∣ y ∈ F(x) ∩G(x)}, (7.173)

which is nonconvex unlessψ ≡ 0. The value function (7.173) belongs to the general
class of marginal functions whose subdifferential properties have been studied in
Section 4.1; see also the corresponding commentaries in Section 4.6. However, the
results obtained therein are expressed in terms of the coderivative of the constraint
mapping in (7.170), while the major goal of our study here is to derive subdifferen-
tial results for (7.173) expressed entirely via the initial data of (7.170) with taking
into account the infinite inequality constraint nature of (7.172) and the DC structure
of the cost function in (7.170).

In this subsection, we concentrate on evaluating the regular subdifferential of
(7.173), which is defined in Banach spaces exactly as in finite dimensions (1.33).
The results obtained are of their own interest, while they also can be considered,
together with similar calculations for the ε-enlargements (1.34), as approximating
tools for evaluating the limiting (both basic and singular) subdifferentials of the
value function, which are the most valuable applications to DC semi-infinite opti-
mization and Lipschitzian stability of (7.170). The necessary optimality conditions
for the nonparametric DC version (7.157) obtained in Subsection 7.5.1 play a sig-
nificant role in our subdifferential device. For brevity, we confine ourselves here
to considering only regular subgradients of (7.173) while leaving the ε-case as an
exercise for the reader.

In the next theorem and further results below, we use the notation

M(x) := {
y ∈ F(x) ∩G(x)∣∣ μ(x) = ϕ(x, y)− ψ(x, y)}, (7.174)

� := � ∩ {
(x, y) ∈ X × Y ∣∣ ϕt (x, y) ≤ 0 for all t ∈ T }, (7.175)

�(x̄, ȳ, y∗) :=
{
λ ∈ R

(T )
+
∣∣∣ y∗ ∈ ∂yϕ(x̄, ȳ)+

∑

t∈supp λ

λt∂yϕt (x̄, ȳ)

+Ny
(
(x̄, ȳ);�), λtϕt (x̄, ȳ) = 0 as t ∈ supp λ

}
,

(7.176)

where Ny((x̄, ȳ);�) stands for the subdifferential of the indicator function y �→
δ((x̄, y);�) at ȳ; the notation Nx((x̄, ȳ);�) below is similar.

Theorem 7.55 (Upper Estimate for Regular Subgradients of Value Functions
in DC SIPs). Let domM 
= ∅, and let CQC from Definition 7.48 be satisfied for the



328 7 Semi-infinite Programs with Some Convexity

triple (ϕ, ϕt ,�) in (7.170). Then, given any (x̄, ȳ) ∈ gphM ∩ dom ∂ψ and γ > 0,
we have the inclusion

∂̂μ(x̄) ⊂
⋂

(x∗,y∗)∈∂ψ(x̄,ȳ)

{
∂xϕ(x̄, ȳ)− x∗ +

⋃

λ∈�(x̄,ȳ,y∗)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]}

+Nx
(
(x̄, ȳ);�)+ γB∗.

Proof. Fix (x̄, ȳ) ∈ gphM ∩ dom ∂ψ , u∗ ∈ ∂̂μ(x̄), and (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Pick-
ing an arbitrary positive number γ and using the definition of regular subgradients,
find η > 0 such that

μ(x)− μ(x̄)− 〈u∗, x − x̄〉 + γ ‖x − x̄‖ ≥ 0 if x ∈ x̄ + ηB. (7.177)

Since μ(x̄) = ϕ(x̄, ȳ)−ψ(x̄, ȳ) by ȳ ∈ M(x̄) and since μ(x) ≤ ϕ(x, y)−ψ(x, y)
for all (x, y) ∈ �, we get from (7.177) and (x∗, y∗) ∈ ∂ψ(x̄, ȳ) that

0 ≤ ϕ(x, y)− ϕ(x̄, ȳ)− ψ(x, y)+ ψ(x̄, ȳ)− 〈u∗, x − x̄〉 + γ ‖x − x̄‖
≤ ϕ(x, y)− ϕ(x̄, ȳ)− 〈u∗ + x∗, x − x̄〉 − 〈y∗, y − ȳ〉 + γ ‖x − x̄‖

for (x, y) ∈ � ∩ [(x̄ + ηB)× Y ] with ϕt (x, y) ≤ 0, t ∈ T . Consider the function

ϑ(x, y) := ϕ(x, y)− ϕ(x̄, ȳ)− 〈u∗ + x∗, x − x̄〉 − 〈y∗, y − ȳ〉 + γ ‖x − x̄‖,
which is l.s.c. and convex on X× Y . It follows from (7.177) and the construction of
ϑ that (x̄, ȳ) is a solution to the following nonparametric convex SIP:

{
minimize ϑ(x, y) with respect to both (x, y) subject to
ϕt (x, y) ≤ 0 as t ∈ T , (x, y) ∈ � ∩ [

(x̄ + ηB)× Y ]. (7.178)

The technical Lemma 7.56, which is presented for convenience after the proof of
the theorem, tells us the CQC requirement on (ϕ, ϕt ,�) imposed in this theorem
yields the validity of CQC for (7.178). Applying now the optimality conditions from
Theorem 7.54 to (7.178) gives us λ ∈ R

(T )
+ such that

0 ∈ ∂ϑ(x̄, ȳ)+
∑

t∈supp λ

λt∂ϕt (x̄, ȳ)+N
(
(x̄, ȳ);� ∩ [(x̄ + ηB)× Y ])

with λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ.

Since (x̄, ȳ) ∈ ı[(x̄ + ηB)× Y ], it follows from the classical subdifferential rule of
convex analysis and the construction of ϑ that

∂ϑ(x̄, ȳ) = ∂ϕ(x̄, ȳ)+ (−u∗ − x∗,−y∗)+ (γB∗)× {0}.
Thus we get by (i)⇒(iii) in Lemma 7.49 applied to the indicator functions
δ((x̄, ȳ);�) and δ((x̄, ȳ); (x̄ + ηB)× Y ) that
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N
(
(x̄, ȳ);� ∩ [(x̄ + ηB)× Y ]) = N

(
(x̄, ȳ);�).

Substituting this into the above optimality condition for (7.178) with taking into
account the well-known relationships

∂ϕ(x̄, ȳ) ⊂ ∂xϕ(x̄, ȳ)× ∂yϕ(x̄, ȳ) and ∂ϕt (x̄, ȳ) ⊂ ∂xϕt (x̄, ȳ)× ∂yϕt (x̄, ȳ)
ensures the fulfillment of the two inclusions

u∗ ∈ ∂xϕ(x̄, ȳ)− x∗ +
∑

t∈supp λ

λt∂xϕt (x̄, ȳ)+Nx
(
(x̄, ȳ);�)+ γB∗,

y∗ ∈ ∂yϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂yϕt (x̄, ȳ)+Ny
(
(x̄, ȳ);�)

with λtϕt (x̄, ȳ) = 0, t ∈ supp λ. This verifies by (7.176) the claimed estimate of
∂̂μ(x̄) by the construction in (7.176) and Lemma 7.56 justified below. �
Lemma 7.56 (Relationships Between Parametric and Nonparametric CQC).
The validity of CQC for (ϕ, ϕt ,�) imposed in Theorem 7.55 yields the fulfillment of
this condition for the nonparametric problem (7.178).

Proof. In the notation of Theorem 7.55, take (x̄, ȳ) ∈ gphM∩dom ∂ψ with (x̄, ȳ) ∈
domϕ ∩ �, and define the convex and continuous function

ξ(x, y) := −ϕ(x̄, ȳ)− 〈u∗ + x∗, x − x̄〉 − 〈y∗, y − ȳ〉 + γ ‖x − x̄‖
on X × Y that gives us the representation ϑ = ϕ + ξ . Substituting the latter into
the assumed CQC for (ϕ, ϕt ,�) and using the epigraphical rule from Lemma 7.49
with taking into account that the continuity of δ(·; (x̄ + ηB∗) × Y ) at the interior
point (x̄, ȳ), we conclude that the corresponding set in the CQC property for (7.178)
reduces to

epiϕ∗ + cone
[⋃

t∈T
epiϕ∗

t

]
+ epi δ∗(·;�)+ epi

[
ξ + δ(·; (x̄ + ηB)× Y )]∗.

On the other hand, by Lemma 7.49, the CQC requirement for (ϕ, ϕt ,�) yields

epi
(
ϕ + δ(·;�))∗ = epiϕ∗ + cone

[⋃

t∈T
epiϕ∗

t

]
+ epi δ∗(·;�).

Substituting this equality into the aforementioned CQC set for (ϕ, ϕt ,�), we ex-
press the latter set as follows:

epi
(
ϕ + δ(·;�))∗ + epi

[
ξ + δ(·; (x̄ + ηB)× Y )]∗,

which in turn reduces to the form

epi
[
ϕ + δ(·;�)+ ξ + δ(·; (x̄ + ηB)× Y )]∗
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by using Lemma 7.49 and the continuity of the function ξ + δ
(·; (x̄ + ηB)× Y

)
at

(x̄, ȳ) ∈ dom
(
ϕ + δ(·;�)). The latter set is weak∗ closed in X∗ × Y ∗ × R as the

epigraph of the conjugate function to ϕ + δ(·;�) + ξ + δ(·; (x̄ + ηB) × Y ). Thus
we are done with the proof of this lemma. �

As a consequence of Theorem 7.55, we derive necessary optimality conditions
for the parametric DC program (7.170) that are upper subdifferential conditions
according to the terminology of Section 6.1. Indeed, they involve all the upper sub-
gradients of the concave function −ψ at the reference point, which reduce to sub-
gradients of the convex function ψ in the cost of (7.170).

Corollary 7.57 (Upper Subdifferential Conditions for Parametric DC SIPs).
Given a parameter value x̄ ∈ domM in (7.174), let ȳ be a (global) optimal so-
lution to the parametric DC program

minimize ϕ(x̄, y)− ψ(x̄, y) subject to y ∈ F(x̄) ∩G(x̄) (7.179)

with F and G from (7.171) and (7.172), respectively, under the standing assump-
tions made. Suppose in addition that ∂̂μ(x̄) 
= ∅ for the value function (7.173) under
the CQC property for (ϕ, ϕt ,�). Then for each (x∗, y∗) ∈ ∂ψ(x̄, ȳ) and γ > 0,
there are u∗ ∈ X∗ and λ ∈ R

(T )
+ from (7.3) such that

u∗ + x∗ ∈ ∂xϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂xϕt (x̄, ȳ)+Nx
(
(x̄, ȳ);�)+ γB∗,

y∗ ∈ ∂yϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂yϕt (x̄, ȳ)+Ny
(
(x̄, ȳ);�),

λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ.

Proof. Follows directly from the upper estimate in Theorem 7.55 due to ∂̂μ(x̄) 
= ∅
and the construction of the KKT multiplier set in (7.176). �

The most restrictive and not easily verifiable assumption in Corollary 7.57 is that
of ∂̂μ(x̄) 
= ∅. In the next subsection, we derive improved necessary optimality
conditions for (7.170) while replacing the restrictive requirement on ∂̂μ(x̄) 
= ∅ by
more natural and verifiable assumptions in the case of Asplund spaces. This comes
as a consequence of upper estimates for basic and singular subgradients of the DC
value function (7.173) in more general settings.

7.5.3 Limiting Subgradients of Value Functions for DC SIPs

We begin with the constructive evaluation of the basic subdifferential (1.24) of the
value function (7.173) and obtain two independent results in this direction under
different assumptions and with completely different proofs. Recall from Section 1.5
(see also [522] for more details) that the basic subdifferential of any ϕ : X → R on
a Banach space X at x̄ ∈ domϕ is defined by
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∂ϕ(x̄) := Lim sup
x
ϕ→x̄, ε↓0

∂̂εϕ(x) (7.180)

via the sequential outer limit of the ε-subdifferential mappings ∂̂εϕ : X →→ X∗ of ϕ
at points nearby. If ϕ is l.s.c. around x̄ and the space X is Asplund, then ε > 0 can
be equivalently omitted in (7.180); see [522, Theorem 2.34].

For the first result, we need the following condition on the minus term ψ in
(7.173), which allows us to derive a tight upper estimate of ∂μ(x̄).

Definition 7.58 (Inner Subdifferential Stability). We say that a convex function
ψ : X → R is INNER SUBDIFFERENTIALLY STABLE at x̄ ∈ domψ if

Lim inf
x

domψ−→ x̄

∂ψ(x) 
= ∅, (7.181)

where Lim inf stands for the Painlevé-Kuratowski inner limit (1.20) with the usage
of the weak∗ sequential convergence on X∗.

Note that (7.181) reduces to a singleton in the case of general Banach spaces if ψ
is Gâteaux differentiable on a neighborhood of x̄ and its Gâteaux derivative operator
dψ : X → X∗ is continuous with respect to the weak∗ topology of X∗. The next
proposition relaxes the smoothness assumption around x̄ provided that the closed
unit ball B∗ in X∗ is weak∗ sequentially compact. This latter property holds for
general classes of Banach spaces X, in particular; for those admitting an equivalent
norm Gâteaux differentiable at nonzero points (Gâteaux smooth), for weak Asplund
spaces that includes every Asplund space and every weakly compactly generated
space, every reflexive and every separable space, etc.; see, e.g., [255] for more de-
tails.

Proposition 7.59 (Sufficient Conditions for Inner Subdifferential Stability). Let
X be a Banach space such that the closed unit ball B

∗ is weak∗ sequentially
compact in X∗, and let ψ be convex, continuous, and Gâteaux differentiable at
x̄ ∈ int(domψ). Then ψ is inner subdifferentially stable at x̄.

Proof. Take any sequence xk → x̄ as k → ∞ and suppose that it entirely be-
longs to some neighborhood U ⊂ domψ of x̄. It follows from the continuity of
the convex function ψ at x̄ that it is actually Lipschitz continuous around x̄, and
hence its subdifferential mapping ∂ψ(·) is bounded in X∗ by the Lipschitz constant
of ψ ; see Exercises 1.69(i) and 7.102. This implies by using the weak∗ sequential
compactness of the dual ball B∗ that every subset of the set

V ∗ := {
x∗ ∈ X∗∣∣ ∃ x ∈ U with x∗ ∈ ∂ψ(x)}

contains a subsequence converging in the weak∗ topology of X∗. Then picking any
sequence of subgradients x∗

k ∈ ∂ψ(xk), we suppose without loss of generality that

there is x∗ ∈ X∗ such that x∗
k

w∗→ x∗ as k → ∞. It follows from convex sub-
differential definition (1.35) with ε = 0 that x∗ ∈ ∂ψ(x̄). Since ψ is continu-
ous and Gâteaux differentiable at x̄, we have from standard convex analysis that
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∂ψ(x̄) = {dψ(x̄)}, and therefore x∗
k

w∗→ dψ(x̄) as k → ∞. This clearly verifies the
inner subdifferential stability (7.181) of ψ at x̄. �

It is not hard to give various examples of functions, which are not Gâteaux differ-
entiable at the reference point while being inner subdifferentially stable at it. Such
functions can be constructed by the following scheme. Take a closed and convex
subset � of a Gâteaux smooth space X, a point x̄ ∈ bd�, and a function θ(x)
that is convex, continuous, and Gâteaux differentiable on an open set containing x̄.
Then define ψ : X → R as ψ(x) := θ(x) on � and as ψ(x) := ∅ otherwise. It
follows from Definition 7.58 and Proposition 7.59 that Lim infψ in (7.181) reduces
to {dθ(x̄)}, and thus we have the inner subdifferential stability of ψ at x̄. Observe
that

∂ψ(x̄) = dθ(x̄)+N(x̄;�)
by the subdifferential sum rule from Lemma 7.49 due the assumed continuity of θ .
Taking into account our convention on ∞ − ∞ = ∞, we get a boundary domain
point x̄ ∈ bd(domψ), which is a local minimizer for the DC function ϕ−ψ provided
that domϕ ⊂ domψ .

Now we are ready to establish the aforementioned tight upper estimate of basic
subgradients of the value function (7.173) under the inner subdifferential stability
of ψ in (7.170). This result requires also the inner semicontinuity property (1.20) of
the argminimum mapping M(·) from (7.174).

Theorem 7.60 (Basic Subgradients of DC Value Functions Under Inner Subd-
ifferential Stability). Given (x̄, ȳ) ∈ gphM in (7.170), suppose that M(·) is inner
semicontinuous, that ψ is inner subdifferentially stable, and that CQC holds for
(ϕ, ϕt ,�) at this point. Then for any fixed (x∗, y∗) ∈ Lim inf

(x,y)
domψ−→ (x̄,ȳ)

∂ψ(x, y), we

have the inclusion

∂μ(x̄) ⊂ ∂xϕ(x̄, ȳ)− x∗ +
⋃

λ∈�(x̄,ȳ,y∗)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]

+Nx
(
(x̄, ȳ);�)

with the set of KKT multipliers �(x̄, ȳ, y∗) defined in (7.176).

Proof. Fix the pair (x∗, y∗) from the theorem formulation, and pick an arbitrary

subgradient u∗ ∈ ∂μ(x̄). Then definition (7.180) gives us sequences εk ↓ 0, xk
μ→

x̄, and u∗
k ∈ ∂̂εkμ(xk) with u∗

k

w∗→ u∗ as k → ∞. Fixing k ∈ N and using εk-
subgradient construction (1.34) for u∗

k , we find ηk > 0 such that

〈u∗
k, x − xk〉 ≤ μ(x)− μ(xk)+ 2εk‖x − xk‖ if x ∈ xk + ηkB. (7.182)

The inner semicontinuity of M(·) at (x̄, ȳ) allows us to find a sequence of yk ∈
M(xk) that contains a subsequence converging to ȳ; we suppose that yk → ȳ

for all k → ∞. By the choice of (x∗, y∗), there is a sequence of subgradients

(x∗
k , y

∗
k ) ∈ ∂ψ(xk, yk) with (x∗

k , y
∗
k )

w∗→ (x∗, y∗) as k → ∞. It follows from (7.174)
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and (7.182) that

〈u∗
k, x − xk〉 ≤ ϕ(x, y)− ψ(x, y)− ϕ(xk, yk)+ ψ(xk, yk)

+2εk
(‖x − xk‖ + ‖y − yk‖

) ≤ ϕ(x, y)− ϕ(xk, yk)− 〈x∗
k , x − xk〉 − 〈y∗

k , y − yk〉
+2εk

(‖x − xk‖ + ‖y − yk‖
)

for all (x, y) ∈ � ∩ (
(xk, yk)+ ηkB

)
.

The latter implies in turn that the inequality

〈u∗
k + x∗

k , x − xk〉 + 〈y∗
k , y − yk〉 ≤ ϕ(x, y)− ϕ(xk, yk)

+2εk
(‖x − xk‖ + ‖y − yk‖

)

valid for all such (x, y) can be written as the ε-subdifferentials inclusion

(u∗
k + x∗

k , y
∗
k ) ∈ ∂̂2εk

(
ϕ + δ(·;�))(xk, yk) for all k ∈ N.

Passing now to the limit as k → ∞ and taking into account the weak∗ convergence

(u∗
k + x∗

k , y
∗
k )

w∗→ (u∗ + x∗, y∗), we get from definition (7.180) that

(u∗ + x∗, y∗) ∈ ∂(ϕ + δ(·;�))(x̄, ȳ). (7.183)

Since the function ϕ+δ(·;�) is convex onX×Y , the basic subdifferential in (7.183)
reduces to the one of convex analysis. Thus applying to (7.183) the subdifferential
sum rule for infinite systems from Corollary 7.52, which holds under the imposed
CQC, gives us the inclusion

∂
(
ϕ + δ(·;�))(x̄, ȳ) ⊂ ∂ϕ(x̄, ȳ)+

⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]

+N((x̄, ȳ);�)

with A(x̄, ȳ) = {λ ∈ R
(T )
+ | λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ}. Substituting it into

(7.183) and taking into account the aforementioned relationships between the full
and partial subdifferentials of convex functions, we arrive at

⎧
⎪⎪⎨

⎪⎪⎩

u∗ ∈ ∂xϕ(x̄, ȳ)− x∗ +
∑

t∈supp λ

λt∂xϕt (x̄, ȳ)+Nx
(
(x̄, ȳ);�),

y∗ ∈ ∂yϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂yϕt (x̄, ȳ)+Ny
(
(x̄, ȳ);�)

for some λ ∈ A(x̄, ȳ). This completes the proof of the theorem. �
As discussed above, the inner subdifferential stability of the minus term ψ in

(7.170) required in Theorem 7.60 is a rather restrictive requirement. In the next the-
orem, we replace it by a much more flexible assumption on ψ that holds, in particu-
lar, for any continuous convex functions. The upper estimate for basic subgradients
of (7.173) obtained under the following assumption is less precise in comparison
with Theorem 7.60 while being sufficient for the majority of applications including
those in this book.
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Definition 7.61 (Subdifferential Boundedness). We say that a convex function
ψ : X → R is SUBDIFFERENTIALLY BOUNDED around x̄ ∈ domψ if for any

sequences εk ↓ 0 and xk
domψ−→ x̄ as k → ∞ there is a sequence of x∗

k ∈ ∂εkψ(xk),
k ∈ N, such that the set {x∗

k | k ∈ N} is bounded in X∗.

As mentioned, this property holds for a broad class of convex functions.

Proposition 7.62 (Sufficient Condition for Subdifferential Boundedness of
Convex Functions). Let ψ : X → R be a convex function continuous at
x̄ ∈ int(domψ). Then ψ is subdifferentially bounded around this point.

Proof. As well known in convex analysis (see Exercise 7.102), the continuity of a
convex function ψ at the reference point x̄ ∈ int(domψ) yields that ψ is locally
Lipschitzian around x̄. On the other hand, the local Lipschitz continuity of any (not
only convex) function ensures the uniform boundedness of subgradients around the
point in question; see Exercise 1.69. Furthermore, ∂ψ(x) ⊂ ∂εψ(x) for any ε >

0. Taking now arbitrary sequences εk ↓ 0 and xk
domψ−→ x̄ as k → ∞, we have

x∗
k ∈ ∂εkψ(xk) for any sequence of subgradients x∗

k ∈ ∂ψ(xk). This justifies the
subdifferential boundedness of ψ . �

The following theorem provides a result independent of Theorem 7.60. Its proof
involves the classical Brøndsted-Rockafellar theorem on subdifferential density in
convex analysis, which is a predecessor and convex counterpart of the fundamental
Ekeland’s variational principle.

Theorem 7.63 (Basic Subgradients of Value Functions in DC Programs Under
Subdifferential Boundedness). Suppose that for both spacesX and Y the dual unit
balls are sequentially weak∗ compact, that the argminimum mapping (7.24) is inner
semicontinuous at some point (x̄, ȳ) ∈ gphM , that ψ in (7.173) is subdifferentially
bounded around (x̄, ȳ), and that CQC holds for (ϕ, ϕt ,�). Then we have the upper
estimate

∂μ(x̄) ⊂ ∂xϕ(x̄, ȳ)+
⋃

(x∗,y∗)∈∂ψ(x̄,ȳ)

{
− x∗ +

⋃

λ∈�(x̄,ȳ,y∗)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]}

+Nx
(
(x̄, ȳ);�).

Proof. Pick any u∗ ∈ ∂μ(x̄), and similar to the proof of Theorem 7.60, find se-

quences εk ↓ 0, xk
μ→ x̄, and u∗

k ∈ ∂̂εkμ(xk) satisfying u∗
k

w∗→ u∗ as k → ∞. Then
we get ηk ↓ 0 such that inequality (7.182) holds and, by the assumed inner semi-
continuity of M(·), obtain a sequence of yk ∈ M(xk) converging to ȳ as k → ∞.
Select further νk > 0 with 2

√
νk < ηk and, by taking into account that νk ↓ 0 and

(xk, yk) → (x̄, ȳ) and by employing the subdifferential boundedness of ψ , find a
sequence of (x∗

k , y
∗
k ) ∈ ∂νkψ(xk, yk) such that the set {(x∗

k , y
∗
k ) ∈ X∗ × Y ∗| k ∈ N}

is bounded. It follows from the structure of the ε-subdifferential mapping (7.101)
that (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Similar to the proof of Theorem 7.60, we derive from
(7.182) the inequality
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〈u∗
k + x∗

k , x − xk〉 +〈y∗
k , y − yk〉 − νk ≤ ϕ(x, y)− ϕ(xk, yk)

+2εk
(‖x − xk‖ + ‖y − yk‖

)

held for all (x, y) ∈ � ∩ (
(xk, yk)+ ηkB

)
. This implies that

(u∗
k + x∗

k , y
∗
k ) ∈ ∂νkϑk(xk, yk), k ∈ N, (7.184)

in terms of the ε-subdifferentials (with ε := νk) of the convex l.s.c. functions ϑk(·)
given in the summation form

ϑk(x, y) : = ϕ(x, y)+ δ((x, y);� ∩ [(xk, yk)+ ηkB])
−ϕ(xk, yk)+ 2εk

(‖x − xk‖ + ‖y − yk‖
)
.

(7.185)

Applying now to the elements in (7.184) the Brøndsted-Rockafellar density theo-
rem, we find pairs (̃xk, ỹk) ∈ domϑk and (̃x∗

k , ỹ
∗
k ) ∈ ∂ϑk(̃xk, ỹk) satisfying for all

k ∈ N the following inequalities:

‖x̃k − xk‖ + ‖ỹk − yk‖ ≤ √
νk and

‖x̃∗
k − (u∗

k + x∗
k )‖ + ‖ỹ∗

k − y∗
k ‖ ≤ √

νk.
(7.186)

They imply by the constructions above and the choice of νk that

〈̃x∗
k , x − x̃k〉 + 〈ỹ∗

k , y − ỹk〉 ≤ ϑk(x, y)− ϑk(̃xk, ỹk) ≤ ϕ(x, y)− ϕ(̃xk, ỹk)
+2εk

(‖x − xk‖ + ‖y − yk‖
)− 2εk

(‖x̃k − xk‖ + ‖ỹk − yk‖
)

≤ ϕ(x, y)− ϕ(̃xk, ỹk)+ 2εk
(‖x − x̃k‖ + ‖y − ỹk‖

)

for all (x, y) ∈ � ∩ (
(xk, yk)+ ηkB

)
, which yields in turn the inclusions

(̃x∗
k , ỹ

∗
k ) ∈ ∂̂2εk

(
ϕ + δ(·;�))(̃xk, ỹk), k ∈ N. (7.187)

It easily follows from the convergence (xk, yk) → (x̄, ȳ), (u∗
k + x∗

k , y
∗
k )

w∗→ (u∗ +
x∗, y∗) and from the norm estimates in (7.186) that

(̃xk, ỹk) → (x̄, ȳ) and (̃x∗
k , ỹ

∗
k )

w∗→ (u∗ + x∗, y∗) as k → ∞.

Thus passing to the limit in (7.187) as k → ∞ and using construction (7.180) of the
basic subdifferential, we arrive at inclusion (7.183) as in the proof of Theorem 7.60,
where the basic subdifferential agrees with the subdifferential of convex analysis for
the convex function ϕ + δ(·;�). Proceeding finally as in the proof of Theorem 7.60
by employing the subdifferential sum rule from Corollary 7.52, we complete the
proof of the theorem. �

Our next results concern the singular subdifferential ∂∞μ(x̄) of the DC value
function (7.173). According to (1.38) and Exercise 1.68, the singular subdifferential
of any l.s.c. ϕ : X → R on a Banach space X is defined by
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∂∞ϕ(x̄) := Lim sup
x
ϕ→x̄

λ, ε↓0

λ̂∂εϕ(x) (7.188)

via the sequential outer limit, where ε > 0 can be omitted if X is Asplund.

Theorem 7.64 (Singular Subgradients of Value Functions in DC Programs).
Suppose that the assumptions of Theorem 7.63 are satisfied with replacing CQC for
(ϕ, ϕt ,�) by the corresponding FMCQ (7.159) for (ϕt ,�) in (7.170). Assume in
addition that � ⊂ domϕ for the set of feasible solutions (7.175). Then we have the
upper estimate

∂∞μ(x̄) ⊂
⋃

λ∈�∞(x̄,ȳ)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]

+Nx
(
(x̄, ȳ);�), (7.189)

where the set of singular multipliers is defined by

�∞(x̄, ȳ) :=
{
λ ∈ R

(T )
+
∣∣∣ 0 ∈

∑

t∈supp λ

λt∂yϕt (x̄, ȳ)+Ny
(
(x̄, ȳ);�),

λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ
}
.

Proof. Pick any u∗ ∈ ∂∞μ(x̄), and by (7.188), find sequences

λk ↓ 0, εk ↓ 0, xk
μ→ x̄, u∗

k ∈ ∂̂εkμ(xk) with λku
∗
k

w∗→ u∗ as k → ∞.

Following the proof of Theorem 7.63, select sequences

νk ↓ 0 as k → ∞, yk ∈ M(xk), and (x∗
k , y

∗
k ) ∈ ∂νkψ(xk, yk), k ∈ N,

such that {(x∗
k , y

∗
k )} weak∗ converges inX∗ ×Y ∗ to some (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Fur-

ther, the application of the Brøndsted-Rockafellar theorem to the function ϑk(x, y)
from (7.185) gives us sequences of (̃xk, ỹk) ∈ domϑk and (̃x∗

k , ỹ
∗
k ) ∈ ∂ϑk(̃xk, ỹk)

satisfying the estimates in (7.186) and the subdifferential inclusions (7.187) for all
k ∈ N. Using the convexity of ϕ+ δ(·;�) and the assumption on � ⊂ domϕ allows
us to rewrite (7.187) as

〈̃x∗
k , x − x̃k〉 + 〈ỹ∗

k , y − ỹk〉 ≤ ϕ(x, y)− ϕ(̃xk, ỹk)+ 2εk
(‖x − x̃k‖ + ‖y − ỹk‖

)

for all (x, y) ∈ � and k ∈ N. This implies, by picking any γ > 0 and employing
the lower semicontinuity of ϕ around (x̄, ȳ), that

λk
[〈̃x∗

k , x − x̃k〉 + 〈ỹ∗
k , y − ỹk〉

] ≤ λk
[
ϕ(x, y)− ϕ(̃xk, ỹk)+ 2εk

(‖x − x̃k‖
+‖y − ỹk‖

)] ≤ λk
[
ϕ(x, y)− ϕ(x̄, ȳ)+ γ + 2εk

(‖x − x̃k‖ + ‖y − ỹk‖
)]

for all (x, y) ∈ � and all k ∈ N sufficiently large. Passing now to the limit as k → ∞
and taking into account that the sequence {ỹ∗

k } is bounded in Y ∗, that λk ↓ 0, and

that λkx̃∗
k

w∗→ u∗ by (7.186), we get the relationship
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〈u∗, x − x̄〉 ≤ 0 for all (x, y) ∈ �,
which can be rewritten as (u∗, 0) ∈ N((x̄, ȳ);�). Applying the normal cone calcu-
lus for infinite systems from Corollary 7.53 gives us

(u∗, 0) ∈
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]

+N((x̄, ȳ);�)

with A(x̄, ȳ) = {λ ∈ R
(T )
+ | λtϕt (x̄, ȳ) = 0, t ∈ supp λ}. The latter yields (7.189)

and thus completes the proof of the theorem. �
The next theorem presents applications of the upper estimates for both basic and

singular subdifferentials of the value function (7.173) established in Theorems 7.63
and 7.64 to derive efficient conditions ensuring the local Lipschitz continuity of
(7.173) via the initial data as well as necessary optimality conditions for local op-
timality in the parametric DC semi-infinite program under consideration. The ob-
tained results essentially use the Asplund property of the parameter space X; this is
not required for the decision space Y .

Recall that characterizing the local Lipschitz continuity of any l.s.c. function
ϕ on an Asplund space presented in Exercise 4.34(ii) involves both the triviality
condition ∂∞ϕ(x̄) = {0} for the singular subdifferential and the SNEC property
of ϕ at the reference point in the case of infinite dimensions. While the condition
∂∞μ(x̄) = {0} for the value function (7.173) is straightforward from Theorem 7.64,
it is not the case for SNEC, which is fully independent from the above triviality
condition. Nevertheless, the following lemma of its own interest shows that for the
general class of marginal/value functions, including the one in (7.173), the SNEC
property holds under natural assumptions on the initial problem data.

Lemma 7.65 (SNEC Property of Marginal Functions). Let

μ(x) := inf
{
φ(x, y)

∣∣ y ∈ �(x)}, x ∈ X, (7.190)

where X is Asplund, where the argminimum map

x �→ S(x) := {
y ∈ �(x)∣∣ φ(x, y) = μ(x)

}

is inner semicontinuous at some point (x̄, ȳ) ∈ gph S and where φ is locally Lips-
chitzian around this point. Then (7.190) is SNEC at x̄ provided that it is l.s.c. around
x̄ and that the mapping � therein is Lipschitz-like around (x̄, ȳ).

Proof. To verify the SNEC property of (7.190) at x̄, we use its subdifferential
characterization presented in Exercise 2.50. Based on this, take any sequences

λk ↓ 0, xk
μ→ x̄, and x∗

k ∈ λk∂̂μ(xk) with x∗
k

w∗→ 0, and then show that ‖x∗
k ‖ → 0

along some subsequence. To proceed, employ the inner semicontinuity of S(·) at
(x̄, ȳ) and select a sequence of yk ∈ S(xk) whose subsequence converges (with no
relabeling) to ȳ. Take x̃∗

k ∈ ∂̂μ(xk) such that x∗
k = λkx̃

∗
k . Since x̃∗

k is a regular
subgradient of ϕ at xk , for any η > 0, there is γ > 0 such that
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〈̃x∗
k , x − xk〉 ≤ μ(x)− μ(xk)+ η‖x − xk‖ whenever x ∈ xk + γB.

Considering the extended-real-valued function

ξ(x, y) := φ(x, y)+ δ((x, y); gph�
)

for all (x, y) ∈ X × Y,
we easily conclude from the above that

〈
(̃x∗
k , 0), (x − xk, y − yk)

〉 ≤ ξ(x, y)− ξ(xk, yk)+ η
(‖x − xk‖ + ‖y − yk‖

)

whenever (x, y) ∈ (xk, yk)+ γB, which means that (̃x∗
k , 0) ∈ ∂̂ξ(xk, yk).

Fix now an arbitrary sequence εk ↓ 0 as k → ∞. Since ξ is locally Lipschitzian
around (x̄, ȳ), while X and Y are Asplund, we apply the fuzzy sum rule from Ex-
ercise 2.42 to the summation function ξ at (xk, yk) and thus find, by taking into
account the convergence above, sequences

(x1k, y1k)
φ→ (x̄, ȳ), (x2k, y2k)

gph�−→ (x̄, ȳ) as k → ∞,

(x∗
1k, y

∗
1k) ∈ ∂̂φ(x1k, y1k), and (x∗

2k, y
∗
2k) ∈ N̂((x2k, y2k); gph�

)

such that λk‖(x∗
1k, y

∗
1k)‖ → (0, 0) with the estimates

‖x̃∗
k − x∗

1k − x∗
2k‖ ≤ εk and ‖y∗

1k + y∗
2k‖ ≤ εk as k ∈ N. (7.191)

This implies that λk‖y∗
2k‖ → 0 as k → ∞. Taking now into account that

(
λkx

∗
2k, λky

∗
2k

) ∈ N̂((x2k, y2k); gph�) ⇐⇒ λkx
∗
2k ∈ D̂∗�(x2k, y2k)(−λky∗

2k)

and that � is Lipschitz-like around (x̄, ȳ) with some modulus � > 0, we get from
the coderivative estimate for Lipschitz-like mappings (see implication (a)⇒(b) of
Exercise 3.41, which holds in any Banach space) that

‖λkx∗
2k‖ ≤ �‖λky∗

2k‖ for large k ∈ N.

This clearly yields λk‖x∗
2k‖ → 0. Combining the latter with (7.191) and with x∗

k =
λkx̃

∗
k , we conclude that ‖x∗

k ‖ → 0 as k → ∞ and thus justify the SNEC property
of μ at x̄ claimed in the lemma. �

Now we are ready to establish the aforementioned major theorem.

Theorem 7.66 (Lipschitz Continuity of Value Functions and Optimality Con-
ditions for Parametric DC SIPs). Let the parameter space X be Asplund in the
assumptions of Theorem 7.64 and suppose in addition that

{ ⋃

λ∈�∞(x̄,ȳ)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]

+Nx
(
(x̄, ȳ);�)

}
= {

0
}
. (7.192)

Then the value function μ(·) is locally Lipschitzian around x̄ provided that it is l.s.c.
around this point (which is ensured by the inner semicontinuity of M(·) around
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(x̄, ȳ)) in each of the following two cases: either (a) dimX < ∞ or (b) both ϕ
and ψ are continuous at (x̄, ȳ), and the constraint mapping x �→ F(x) ∩ G(x) is
Lipschitz-like around (x̄, ȳ).

If furthermore CQC holds for (ϕ, ϕt ,�), then we have the following necessary op-
timality conditions for the (global) minimizer ȳ of the DC program (7.179): there
are (x∗, y∗) ∈ ∂ψ(x̄, ȳ), u∗ ∈ X∗, and λ ∈ R

(T )
+ satisfying

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u∗ + x∗ ∈ ∂xϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂xϕt (x̄, ȳ)+Nx
(
(x̄, ȳ);�),

y∗ ∈ ∂yϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂yϕt (x̄, ȳ)+Ny
(
(x̄, ȳ);�),

λtϕt (x̄, ȳ) = 0 for all t ∈ supp λ.

(7.193)

Proof. If (7.192) holds, then ∂∞μ(x̄) = {0} by Theorem 7.64. Further, it is easy to
derive directly from the definitions that the lower semicontinuity of μ(·) around x̄
follows from the inner semicontinuity of M(·) around (x̄, ȳ). Thus the local Lips-
chitz continuity of μ(·) around x̄ is a consequence of Theorem 1.22 in the case (a)
where X is finite-dimensional.

In case (b), recall that the continuity of the convex functions ϕ and ψ at (x̄, ȳ)
implies their Lipschitz continuity around this point, and thus μ(·) is SNEC at x̄ due
to Lemma 7.65. This verifies the first part of the theorem.

To justify the second part on the necessary optimality conditions, observe that any
ȳ ∈ M(x̄) under the consideration in this theorem is a global solution to (7.179).
It follows from the local Lipschitz continuity of μ around x̄ that ∂μ(x̄) 
= ∅; see
Exercise 2.32(ii). Thus using the upper estimate of ∂μ(x̄) in Theorem 7.63 under
the assumed CQC for (ϕ, ϕt ,�), we conclude that the set on the right-hand side
of this estimate is nonempty as well. This yields the claimed necessary optimality
conditions (7.193) by construction (7.176) of the KKT multiplier set�(x̄, ȳ, y∗). �

Note that, in contrast to the necessary optimality conditions of Corollary 7.57,
the results of (7.193) give us lower subdifferential optimality conditions in the en-
hanced form (with γ = 0 instead of γ > 0 in Corollary 7.57) under different
while easily verifiable assumptions. Note also that the results of Sections 7.1 and
7.3 provide characterizations of the Lipschitz-like property of the infinite constraint
inequality system in (7.179) entirely via the functions ϕt for the cases of linear,
block-perturbed, and convex structures.

Convex (ψ ≡ 0) and concave (ϕ ≡ 0) SIPs are particular cases of the DC
programs under consideration, and so the obtained results for general DC SIPs can
be directly applied to these important cases with the corresponding specifications.
Furthermore, the convex case allows us to derive new results, which cannot be de-
duced from those for general DC SIPs obtained above. The next theorem establishes
a precise formula (equality, not inclusion) for calculating the subdifferential of the
convex value function in such SIPs.

Theorem 7.67 (Calculating Subgradients of Value Functions in Convex SIPs).
Consider the value function μ(·) from (7.173) with ψ ≡ 0, and suppose that CQC
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holds for the convex triple (ϕ, ϕt ,�) in general Banach spaces. Then μ(·) is convex,
and its subdifferential at x̄ ∈ domμ is calculated by

∂μ(x̄) =
{
x∗ ∈ X∗

∣∣∣ (x∗, 0) ∈ ∂ϕ(x̄, ȳ)+
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]

+N((x̄, ȳ);�)
}

for any ȳ ∈ M(x̄),

where A(x̄, ȳ) := {
λ ∈ R

(T )
+
∣∣ λtϕt (x̄, ȳ) = 0, t ∈ supp λ

}
.

Proof. The convexity of the value function (7.173) with ψ ≡ 0 and all the convex
data easily follows from its definition and the convexity assumptions. To verify first
the inclusion “⊂” in the claimed formula for ∂μ(x̄), we proceed as in the proof of
Theorem 7.55 by taking γ = 0 and η = ∞.

To justify the opposite inclusion, pick any x∗ from the right-hand side therein and
thus find λ ∈ A(x̄, ȳ), (u∗, v∗) ∈ ∂ϕ(x̄, ȳ), (u∗

t , v
∗
t ) ∈ ∂ϕt (x̄, ȳ), and (̃u∗, ṽ∗) ∈

N((x̄, ȳ);�) satisfying the equality

(x∗, 0) = (u∗, v∗)+
∑

t∈supp λ

λt (u
∗
t , v

∗
t )+ (̃u∗, ṽ∗).

It follows from the construction of A(x̄, ȳ) that for the chosen pairs (u∗, v∗),
(u∗
t , v

∗
t ), and (̃u∗, ṽ∗), we have the relationships

⎧
⎨

⎩

ϕ(x, y)− μ(x̄) = ϕ(x, y)− ϕ(x̄, ȳ) ≥ 〈u∗, x − x̄〉 + 〈v∗, y − ȳ〉,
0 ≥ λtϕt (x, y)− λtϕt (x̄, ȳ) ≥ λt 〈u∗

t , x − x̄〉 + λt 〈v∗
t , y − ȳ〉, t ∈ supp λ,

0 ≥ 〈̃u∗, x − x̄〉 + 〈̃v∗, y − ȳ〉 whenever (x, y) ∈ �,
which imply together with the above equality that

ϕ(x, y)+ δ((x, y);�)− μ(x̄) ≥ 〈x∗, x − x̄〉 for all (x, y) ∈ X × Y.
The latter shows in turn that μ(x) − μ(x̄) ≥ 〈x∗, x − x̄〉 for all x ∈ X and hence
completes the proof of the theorem. �

7.5.4 Bilevel Semi-infinite Programs with Convex Data

In this subsection, we return to optimistic bilevel programs studied in Chapter 6
for the case of finitely many inequality constraints at the lower level described by
smooth as well as by locally Lipschitzian functions on finite-dimensional spaces.
Here we consider fully convex bilevel programs in arbitrary Banach spaces with in-
finite constraints and derive for them necessary optimality conditions, which cannot
be deduced from the results of Chapter 6 even in the case finitely many constraints
in R

n. Developing the value function approach allows us to reduce the bilevel pro-
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grams under consideration to single-level DC SIPs and then apply the results ob-
tained above in Section 7.5.

Consider the optimistic bilevel program
{

minimize f (x, y) subject to
y ∈ M(x) := {

y ∈ G(x)∣∣ ϕ(x, y) = μ(x)
}
,

(7.194)

where M(x) is the set of optimal solutions to the lower-level problem

minimize ϕ(x, y) subject to y ∈ G(x) := {
y ∈ Y ∣∣ ϕt (x, y) ≤ 0, t ∈ T }

with an arbitrary index set T , and where μ(·) is the optimal value function of the
parametric lower-level problem defined by

μ(x) := inf
{
ϕ(x, y)

∣∣ y ∈ G(x)}. (7.195)

The standing assumption of this section is that the bilevel problem (7.194) is fully
convex on the Banach spaces X, Y meaning that all the functions there are l.s.c. and
convex with respect to both variables.

To evaluate subgradients of the value function (7.195) and derive necessary op-
timality conditions for (7.194), we proceed via penalization under partial calmness.
Observe that all the results of Subsection 6.2.3 apply to problem (7.194) with no
change. Based on them, we get that any partially calm feasible solution (x̄, ȳ) to
(7.194) is a local optimal solution to the single-level program:

{
minimize κ−1f (x, y)+ ϕ(x, y)− μ(x)
subject to ϕt (x, y) ≤ 0, t ∈ T , (7.196)

where κ > 0 is the constant of partial calmness, provided that the upper-level ob-
jective f is continuous at (x̄, ȳ). Let us first efficiently evaluate the convex subdif-
ferential of the value function (7.195) in the lower-level program.

Theorem 7.68 (Subgradients of Value Functions in Convex Bilevel Programs).
Let (x̄, ȳ) be a partially calm feasible solution to the fully convex bilevel program
(7.194). Suppose that CQC holds for (ϕ, ϕt ) and that f is continuous at (x̄, ȳ). Then
there is a number κ > 0 such that

∂μ(x̄)× {0} ⊂ κ−1∂f (x̄, ȳ)+ ∂ϕ(x̄, ȳ)+
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂ϕt (x̄, ȳ)
]
,

where the set A(x̄, ȳ) of active constraint multipliers is defined in Theorem 7.67. In
particular, we have the upper estimate

∂μ(x̄) ⊂ κ−1∂xf (x̄, ȳ)+ ∂xϕ(x̄, ȳ)+
⋃

λ∈A(x̄,ȳ)

[ ∑

t∈supp λ

λt∂xϕt (x̄, ȳ)
]
.
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Proof. The second inclusion in the theorem clearly follows from the first one; so we
verify the latter. The assumptions made ensure that (x̄, ȳ) a local minimizer of the
penalized problem (7.196), which is a DC SIP of type (7.157) described by the l.s.c.
convex functions

ϑ(x, y) := κ−1f (x, y)+ ϕ(x, y), θ(x, y) := μ(x), ϑt (x, y) := ϕt (x, y)

with � = X × Y in (7.11). Let us check that the imposed CQC for (ϕ, ϕt ) yields
the validity of CQC for (ϑ, ϑt ). Using the structure of the feasible set

� := {
(x, y) ∈ X × Y ∣∣ ϕt (x, y) ≤ 0 for all t ∈ T }

in (7.196), the well-known conjugate representation from convex analysis

epi (ϕ1 + ϕ2)
∗ = cl ∗(epiϕ∗

1 + epiϕ∗
2 ), (7.197)

which is valid for any l.s.c. convex functions such that dom ϕ1 ∩ domϕ2 
= ∅ with
omitting the weak∗ closure if one of the functions is continuous at some point x̄ ∈
domϕ1 ∩ domϕ2, and then employing the imposed CQC give us

epiϑ∗ + cone
[⋃

t∈T
epiϑ∗

t

]
= epi

(
κ−1f

)∗ + epiϕ∗ + cone
[⋃

t∈T
epiϕ∗

t

]

= epi
(
κ−1f

)∗ + epi
(
ϕ + δ(·;�))∗ = epi

(
ϑ + δ(·;�))∗.

Applying further (7.197) without the closure operation to the above sum function ϑ
with the continuous term f implies that

epiϑ∗ + cone
[⋃

t∈T
epiϑ∗

t

]
= epi

(
κ−1f

)∗ + epiϕ∗ + cone
[⋃

t∈T
epiϕ∗

t

]

= epi
(
κ−1f

)∗ + epi
(
ϕ + δ(·;�))∗ = epi

(
ϑ + δ(·;�))∗

and thus allows us to conclude that the set

epiϑ∗ + cone
[⋃

t∈T
epiϑ∗

t

]
is weak∗ closed in X∗ × Y ∗ × R.

This is exactly the CQC property needed for the application of Theorem 7.51 to
(7.196). Employing the latter result and the subdifferential sum rule

∂ϑ(x̄, ȳ) = ∂
(
κ−1f + ϕ)(x̄, ȳ) = κ−1∂f (x̄, ȳ)+ ∂ϕ(x̄, ȳ),

which holds by the continuity of f , we arrive at the first inclusion claimed in the
theorem and thus complete the whole proof. �

Next we establish the main result of this subsection providing necessary opti-
mality conditions for the fully convex bilevel programs with an arbitrary (finite or
infinite) number of inequality constraints.
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Theorem 7.69 (Necessary Optimality Condition for Fully Convex Bilevel
SIPs). Let (x̄, ȳ) be a partially calm optimal solution to the fully convex bilevel
program (7.194). Suppose that CQC holds for the lower-level program in (7.194),
that the upper-level objective f is continuous at (x̄, ȳ), and that ∂μ(x̄) 
= ∅ for
the convex value function (7.195). Then for each ỹ ∈ M(x̄) from the argminimum
set in (7.194), there exist a number κ > 0 and multipliers λ = (λt ) ∈ R

(T )
+ and

β = (βt ) ∈ R
(T )
+ from the positive cone in (7.3) such that we have the following

relationships:

0 ∈ ∂xf (x̄, ȳ)+ κ
[
∂xϕ(x̄, ȳ)− ∂xϕ(x̄, ỹ)

]+
∑

t∈supp λ

λt∂xϕt (x̄, ȳ)

−κ
∑

t∈suppβ

βt∂xϕt (x̄, ỹ),

0 ∈ ∂yf (x̄, ȳ)+ κ∂yϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂yϕt (x̄, ȳ),

0 ∈ ∂yϕ(x̄, ỹ)+
∑

t∈suppβ

βt∂yϕt (x̄, ỹ),

λtϕt (x̄, ȳ) = βtϕt (x̄, ỹ) = 0 for all t ∈ T .
Proof. Since ∂μ(x̄) 
= ∅, we take x∗ ∈ ∂μ(x̄) and by Theorem 7.68 find κ > 0 and
λ ∈ R

(T )
+ satisfying the inclusion

κ(x∗, 0) ∈ ∂f (x̄, ȳ)+ κ∂ϕ(x̄, ȳ)+
∑

t∈supp λ

λt∂ϕt (x̄, ȳ) (7.198)

with λtϕt (x̄, ȳ) = 0 as t ∈ supp λ. On the other hand, picking ỹ ∈ M(x̄) and
applying to x∗ ∈ ∂μ(x̄) the result of Theorem 7.67 give us β ∈ R

(T )
+ such that

x∗ ∈ ∂xϕ(x̄, ỹ)+
∑

t∈suppβ

∂xϕt (x̄, ỹ), 0 ∈ ∂yϕ(x̄, ỹ)+
∑

t∈suppβ

∂yϕt (x̄, ỹ),

and βtϕt (x̄, ỹ) = 0 for all t ∈ suppβ. Substituting this into (7.198) leads us to the
claimed necessary optimality conditions. �

As an immediate consequence of Theorem 7.69, we get the following necessary
optimality conditions for the bilevel SIP (7.194) involving only the reference opti-
mal solution (x̄, ȳ).

Corollary 7.70 (Specification of Necessary Optimality Conditions for Bilevel
SIPs). Let (x̄, ȳ) be an optimal solution to (7.194) under the assumptions of Theo-
rem 7.69. Then there are κ > 0 and λ, β ∈ R

(T )
+ such that
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0 ∈ ∂xf (x̄, ȳ)+ κ
[
∂xϕ(x̄, ȳ)− ∂xϕ(x̄, ȳ)

]+
∑

t∈T

[(
λt − κβt

)
∂xϕt (x̄, ȳ)

]
,

0 ∈ ∂yf (x̄, ȳ)+ κ∂yϕ(x̄, ȳ)+
∑

t∈T
λt∂yϕt (x̄, ȳ),

0 ∈ ∂yϕ(x̄, ȳ)+
∑

t∈T
βt∂yϕt (x̄, ȳ),

λtϕt (x̄, ȳ) = βtϕt (x̄, ȳ) = 0 for all t ∈ T .
Proof. Follows directly from Theorem 7.69 by putting ỹ = ȳ ∈ M(x̄) in the neces-
sary optimality conditions obtained therein. �

It has been well recognized in convex analysis that the subdifferentiability as-
sumption ∂μ(x̄) 
= ∅ imposed in Theorem 7.69 and Corollary 7.70 is not restrictive.
In particular, it holds in the Banach space setting of (7.195) under certain primal and
dual qualification conditions; see Exercise 7.110.

7.6 Exercises for Chapter 7

Exercise 7.71 (Dual Description of Consistency for Infinite Linear Inequality Systems). Ver-
ify the equivalence in (7.7) by using convex separation. Hint: Compare it with the proof of [210,
Theorem 3.1].

Exercise 7.72 (Interiority Conditions for Infinite Linear Systems). Prove the following state-
ments for infinite inequality systems F in (7.1):

(i) If gphF 
= ∅ and the set {a∗
t | t ∈ T } is bounded, then int(gphF) 
= ∅. Hint: Proceed

similarly to the proof of implication (iii)⇒(v) in Theorem 7.2.
(ii) int(domF) 
= ∅ if gphF 
= ∅ without the boundedness assumption.

Exercise 7.73 (Extended Farkas Lemma). Verify Proposition 7.3. Hint: Compare it with the
proof in [210, Lemma 2.4].

Exercise 7.74 (Distance Function Representation of the Exact Lipschitzian Bound). Verify
formula (7.26). Hint: Employ the equivalent between the Lipschitz-like property of F and the
metric regularity one for F−1 established in Theorem 3.2(ii) with the exact bound relationship
therein, and then proceed by using Definition 3.1(b) of the exact regularity bound for F−1.

Exercise 7.75 (Existence of Best Approximations). Justify the existence of solutions to the opti-
mization problem (7.28). Hint: Use the Alaoglu-Bourbaki theorem and the continuity of the map-
ping x∗ �→ 〈x∗, x〉 in the weak∗ topology of X∗.

Exercise 7.76 (Fenchel Conjugates). Given a proper function ϕ : X → R, verify the convexity
and lower semicontinuity of the Fenchel conjugate (7.30).

Exercise 7.77 (Fenchel Conjugates for Suprema of Linear Functions). Prove the representa-
tions in (7.40). Hint: Compare it with [121] and [297].

Exercise 7.78 (Coderivative Calculation for Infinite Linear Inequality Systems). Calculate the
coderivative for the general linear inequality system given in (7.48). Hint: Proceed as in the proof
of Theorem 7.5.

Exercise 7.79 (Farkas-Minkowski Property for Infinite Linear Inequalities). Give sufficient
conditions for the validity of the Farkas-Minkowski property (7.49) for the infinite linear system
(7.48).
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Exercise 7.80 (Equivalent Descriptions of the Strong Slater Condition for the Infinite Linear
Inequality Systems). Formulate and prove a counterpart of Theorem 7.2 for the infinite linear
constraint systems defined in (7.48).

Exercise 7.81 (Farkas-Minkowski Property from Strong Slater Condition).
(i) Verify that (7.58) implies the Farkas-Minkowski property in finite dimensions provided that

the set co{−c∗t , a∗
t , bt )| t ∈ T } is compact, and clarify whether the latter condition is essential for

this statement.
(ii) Does it hold in infinite-dimensional spaces?
(iii) Does it hold in infinite dimensions if the set on the right-hand side of (7.58) is replaced by

its weak∗ closure?
(iv) Does the strong Slater condition (7.57) for infinite linear systems always imply the Farkas-

Minkowski property in finite-dimensional spaces?

Exercise 7.82 (Nonempty Graphical Interior for Infinite Linear Systems). Let X and P be
arbitrary Banach spaces in (7.48).

(i) Show that SSC (7.57) and the boundedness of the set {(a∗
t , c

∗
t )| t ∈ T } in X∗ × P ∗ imply

that int(gphF) 
= ∅.
(ii) Is either of these conditions necessary to have int(gphF) 
= ∅?
(iii) Is either of these conditions essential to have int(gphF) 
= ∅?

Exercise 7.83 (Lower Subdifferential Optimality Conditions in the KKT Form). Formulate
and prove a lower subdifferential counterpart of Corollary 7.19.

Exercise 7.84 (Coderivatives of Block-Perturbed Infinite Linear Systems). Give a detailed
proof of Proposition 7.24.

Exercise 7.85 (Characterization of SSC for Block-Perturbed Linear Systems). Give a detailed
proof of the equivalence (iii)⇔(iv) in Proposition 7.25. Hint: Consider first the case of the maxi-
mum partition J = Jmax, and compare it with the proof in [298, Theorem 6.1].

Exercise 7.86 (Distance Function for Maximum Partition).
(i) Given a direct proof of assertion (7.91).
(ii) Prove that SSC for σ(0) is equivalent to the inner/lower semicontinuity of Fmax (cf. [211,

Theorem 5.1]), and deduce from it the property in (7.91).

Exercise 7.87 (Characteristic Set for Infinite Convex Inequalities). Obtain the characteristic
set representation for convex inequality systems in (7.98) from that in (7.81) for block-perturbed
linear systems.

Exercise 7.88 (Calculation of the Coderivative Norm for Convex Systems).
(i) Give an example when the equality holds in the setting of Theorem 7.31, while the set⋃
j∈J domϕ∗

j is unbounded.
(ii) Is the reflexivity of X necessary for the equalities in Theorem 7.31?
(iii) Is the reflexivity of X essential for the equalities in Theorem 7.31?

Exercise 7.89 (Coderivative Criterion for Lipschitzian Stability of Convex Systems). Formu-
late and prove a convex counterpart of Proposition 7.25.

Exercise 7.90 (Metric Regularity from Lipschitzian Stability for Infinite Convex Inequality
Systems). Derive a characterization of metric regularity for infinite convex inequality systems from
the equality formula for the exact Lipschitzian bound obtained in Theorem 7.31.

Exercise 7.91 (Optimality Conditions for SIPs with Block-Perturbed Linear Constraints).
Derive upper and lower subdifferential optimality conditions for minimizing extended-real-valued
function subject to the infinite linear block-perturbed inequality constraints (7.77) in Banach and
Asplund spaces, respectively.
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Exercise 7.92 (Necessary Optimality Conditions for SIPs with Convex Inequality Con-
straints). Derive upper and lower subdifferential optimality conditions for minimizing extended-
real-valued function subject to the infinite convex inequality constraints (7.94) in Banach and
Asplund spaces, respectively.

Exercise 7.93 (Sum Rule for ε-Subgradients of Convex Functions). Given convex functions
ϕ1, ϕ2 : X → R one of which is continuous at x̄ ∈ domϕ1 ∩ domϕ2, justify the ε-subdifferential
sum rule (7.102). Hint: Modify known proofs of the classical Moreau-Rockafellar theorem for the
case of ε > 0 in (7.102); compare it, e.g., with the proof given in [757, Theorem 2.8.7].

Exercise 7.94 (Optimality Conditions in DC Programming). Consider the DC program defined
in (7.107).

(i) Give a proof of the characterization of global minimizers in Lemma 7.33, and compare it
with the one in [348].

(ii) Is the subdifferential inclusion formulated in Lemma 7.33 necessary for the local optimality
of x̄ in (7.107)?

(iii) Verify the sufficient condition for local minimizers in Lemma 7.34. Hint: Compare it with
the proof in [235] given under the Lipschitz continuity of ϕ2 around x̄, and check that the latter
assumption is equivalent to the continuity of ϕ2 at x̄.

(vi) Is the condition of Lemma 7.34 necessary for the local optimality in (7.107)?

Exercise 7.95 (Conditions for Calculating the Exact Regularity). Verify the relationships in
(7.135), and show that the inclusion therein is generally strict.

Exercise 7.96 (Fenchel Conjugates for Suprema of Convex Functions).
(i) Given a direct proof of representation (7.154).
(ii) Verify formula (7.155) for the supremum of convex functions f (x) := supt∈T ft (x). Hint:

Deduce this, e.g., from [352, Vol. 2, Theorem 2.4.4].

Exercise 7.97 (Relationships Between CQC and FMCQ for Infinite Convex Systems). Con-
sider the DC optimization problem (7.157), its feasible set � (7.158), and the qualification condi-
tions CQC (7.48) and FMCQ (7.159).

(i) Show that FMCQ⇒CQC if ϑ in (7.157) is continuous at some x ∈ �.
(ii) Show that FMCQ⇒CQC if cone(domϑ −�) is a closed subspace of X.
(iii) Give examples showing that CQC and FMCQ are generally independent.

Exercise 7.98 (Slater Constraint Qualification for Infinite Convex Systems). The convex in-
equality system {ϑt (x) ≤ 0, t ∈ T ⊂ R

m, x ∈ R
n} satisfies the Slater qualification condition

(SCQ) if T is compact, the mapping (t, x) �→ ϑt (x) is continuous on T ×R
n, and there is x0 ∈ R

n

such that ϑt (x0) < 0 for all t ∈ T .
(i) Show that SCQ⇒FMCQ if the set � in (7.158) with � = R

n is bounded.
(ii) Give an example of an infinite convex inequality system with n = 2 and m = 1 for which

the converse implication in (i) is violated.

Exercise 7.99 (Conjugate Epigraphical and Subdifferential Sum Rules).
(i) Give a detailed proof of Lemma 7.49 and compare it with [131].
(ii) Construct an example showing that the subdifferential sum rule doesn’t imply the epigraph-

ical one therein.
(iii) Compare the equivalent epigraphical qualification conditions for the subdifferential sum

rule given in Lemma 7.49 with other qualification conditions for this rule well recognized in convex
and variational analysis in both finite and infinite dimensions; see [667, 757] and also the singular
subdifferential condition (2.34) from Theorem 2.19 and Exercise 2.54(i).

Exercise 7.100 (Epigraphical Farkas Lemma).
(i) Give a detailed proof of Lemma 7.50 and compare it with [212].
(ii) Under which assumptions the weak∗ closure in Lemma 7.50(ii) can be replaced by the norm

closure and when any closure operation can be omitted therein?
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Exercise 7.101 (Epigraphs of Conjugate Functions via ε-Subdifferentials). Give a proof of
representation (7.165) and compare it with [387].

Exercise 7.102 (Local Lipschitz Continuity of Convex Functions). Show that any convex func-
tion, which is continuous at some interior point of its domain, is locally Lipschitzian around this
point.

Exercise 7.103 (Estimates for ε-Subgradients of Value Functions in DC SIPs). Derive a coun-
terpart of Theorem 7.55 for ε-subgradients (1.34) of (7.173).

Exercise 7.104 (Basic Subgradients of DC Value Functions Under Extended Inner Semicon-
tinuity). Using the definition of μ-inner semicontinuity given in Exercise 4.21, perform the fol-
lowing:

(i) Prove extended versions of Theorems 7.60, 7.63, and 7.64 with replacing the inner semicon-
tinuity of the mapping M(·) therein by its μ-inner semicontinuity.

(ii) Construct examples showing the extensions obtained in this way are strictly better than the
original formulations.

Exercise 7.105 (Closed-Graph Property of Subdifferential Mappings for l.s.c. Convex Func-
tions on Banach Spaces).

(i) Let ϕ : X → R is a l.s.c. convex function on a Banach space. Prove that the graph of
x �→ ∂εϕ(x) is closed in X ×X∗ for any ε ≥ 0.

(ii) Show that (x∗, y∗) ∈ ∂ψ(x̄, ȳ) in the proof of Theorem 7.63.

Exercise 7.106 (Relationships Between Subdifferential Upper Estimates for DC Value Func-
tions). Let μ(·) be the DC value function (7.173).

(i) Give an example showing that the upper estimate of ∂μ(x̄) from Theorem 7.60 may be better
than the one in Theorem 7.63.

(ii) Investigate the possibilities to obtain upper estimates for ∂μ(x̄) by passing to the limit
from that for regular subgradients in Theorem 7.55 in the case of Asplund (in particular,
finite-dimensional) spaces and from the corresponding counterpart of Theorem 7.55 for the
ε-enlargements ∂̂εμ(·) in more general Banach space settings.

(iii) Clarify the same issues as in (ii) for the singular subdifferential ∂∞μ(x̄).

Exercise 7.107 (Lipschitz-Like Property of Feasible Solution Maps for Parameterized Ver-
sions of DC SIPs).

(i) Show that the Lipschitz-like property of the feasible solution map x �→ F(x) ∩G(x) in the
framework of Theorem 7.66 is essential for the validity of both stability and optimality conclusions
of this theorem.

(ii) Based on characterizing the Lipschitz-like property of the infinite inequality systems in
(7.172) obtained in Sections 7.1 and 7.3, impose appropriate assumptions on the constraint set �
in (7.171) ensuring the feasible solution map x → F(x) ∩G(x) is Lipschitz-like at the reference
point.

Exercise 7.108 (Upper Subdifferential Estimate for Value Functions in Convex SIPs). Give a
detailed proof of the upper estimate of ∂μ(x̄) in Theorem 7.67.

Exercise 7.109 (Conjugate Epigraphical Representations). Verify representation (7.197), and
show that the weak∗ closure can be omitted therein if one of the functions is continuous at some
common point of the domains dom ϕi , i = 1, 2. Hint: Compare it with the corresponding results
and proofs in [116, 757].

Exercise 7.110 (Subdifferentiation of Value Functions for Convex Programs).
(i) Find appropriate qualification conditions ensuring subdifferentiability of value functions

for convex programs with finitely many constraints in both finite and infinite dimensions. Are
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Slater-type and subdifferential Mangasarian-Fromovitz constraint qualifications sufficient for this
property?

(ii) Find appropriate qualification conditions ensuring subdifferentiability of value functions for
convex SIPs in Banach spaces. Hint: Proceed first with dual constraint qualifications of the FMCQ
and CQC types and then with primal ones of the Slater type; compare this with [210].

Exercise 7.111 (Value Functions and Optimality Conditions for Fully Convex SIPs with
Upper-Level Constraints). Extend the results of Subsection 7.5.4 to bilevel SIPs with convex
constraints at the upper level.

Exercise 7.112 (Comparison Between Lipschitzian and DC Approaches to Convex Bilevel
Programs). Compare the necessary optimality conditions for fully convex bilevel programs con-
taining finitely many inequality constraints that follow from Lipschitzian problems (see Theo-
rems 6.21 and 6.23 and Exercise 6.46) with those obtained in Theorem 7.69 and Corollary 7.70
when the index set T is finite.

7.7 Commentaries to Chapter 7

Sections 7.1–7.3. Semi-infinite programs constitute a remarkable class of optimization problems
that are intrinsically infinite-dimensional even in the case of linear inequality constraints on finite-
dimensional decision variables. Their systematic study has started in the 1960s for SIPs with linear
inequality systems and compact index sets being mainly motivated by applications to approxima-
tion theory, linear optimal control, and practical optimization models; see more information in
[15, 298, 345] and their references. Then the study and applications have been extended to con-
vex and also nonconvex while differentiable inequality systems over compact index sets as, e.g.,
in [96, 137, 394, 395, 396, 418, 442, 696, 783]. Note that the index set compactness was very
essential in the obtained methods and results in these and related studies. More recently, further
developments have been done for linear and convex systems with arbitrary index sets by using
different techniques; see [139, 140, 141, 142, 210, 211, 212, 261, 299, 331, 464], among other
publications. The major issues addressed in the SIP literature concerned well-posedness and ill-
posedness properties, qualitative/topological and quantitative/Lipschitz-type stability analysis of
parameterized feasible and optimal solution sets, necessary and sufficient optimality conditions,
numerical methods, as well as various applications.

The material presented in Sections 7.1–7.3 is based on the author’s joint papers with Cáno-
vas, López, and Parra [140, 141, 142] dealing with robust Lipschitzian stability of parameterized
infinite systems of linear, block-perturbed, and convex inequalities, necessary optimality condi-
tions for minimizing nonsmooth functionals constrained by such systems, and some applications
to water resource optimization. As seen above, methods and results of variational analysis and
generalized differentiation presented in the previous chapters played a crucial role in these devel-
opments.

Section 7.4. This section is based on the author’s joint paper with Nghia [548]. Note that, while the
approach of [140] led us to complete qualitative and quantitative characterizations of the Lipschitz-
like property of solution sets to linear infinite inequalities under adequate assumptions, its exten-
sion [142] to convex infinite inequalities via linear block perturbations and Fenchel duality ended
up with a rather restrictive boundedness condition in the case of nonreflexive spaces; see Theo-
rem 7.31 and Example 7.32. The latter condition was dismissed for a larger setting of perturbed
infinite convex inequality and linear equality systems as a consequence of more general results
on metric regularity of convex-graph multifunctions between arbitrary Banach spaces. The novel
approach of [548] reduced the study of metric regularity for such mappings to the unconstrained
minimization of DC functions and brought us to precise calculation of the exact regularity bounds
of convex-graph multifunctions and infinite constraint systems via ε-coderivative and coderivative
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norms. Lemma 7.33 from global DC optimization was established by Hiriart-Urruty [348], while
its local counterpart in Lemma 7.34 was obtained by Dür [235].

Corollary 7.37, summarizing the previous developments of this section, presents a major result
of [548] allowing us to precisely calculate the exact covering bound of a general convex-graph
multifunction between Banach spaces without additional assumptions. It implies, in particular, the
regularity formula (7.149) for infinite convex constraint systems under the bounded SSC intro-
duced in [548]. Note that another proof of (7.149) is given, in a different form under a certain
uniform boundedness condition on the functions ft , in the parallel study [373] based on the previ-
ous developments in [377] on perfect regularity for convex-graph multifunctions. However, there
is a mistake in the proof of the aforementioned result in [373] due to the incorrect application on
p. 1025 therein of the classical Sion’s minimax theorem [691] whose assumptions fail to fulfill in
the setting under consideration in [373].

Section 7.5. This section is mainly based on the author’s joint paper with Dinh and Nghia [215]
and is devoted to the subdifferentiation of the optimal value functions in DC SIPs with various
applications. Note that the optimal value/marginal function for such problems is generally non-
convex, while evaluating its both basic and singular limiting subdifferentials gives us a crucial
information concerning sensitivity analysis, optimality conditions, and their applications in finite
and infinite dimensions. An important role in our analysis is played by the closedness qualifica-
tion conditions from Definition 7.48, introduced and comprehensively studied by the same team
[214] in the general LCTV space setting. In the latter paper the reader can find more discussions
on the genesis of CQC and its relationships with the Farkas-Minkowski property as well as with
other well-recognized constraint qualifications for finite and infinite convex systems of both pri-
mal and dual types; cf. also [116, 120, 121, 212, 213, 303, 479, 757] and the references therein.
Lemma 7.49, taken from Burachik and Jeyakumar [131], provides probably the weakest condi-
tions for the validity of the convex subdifferential sum rule in Banach spaces. Note that the equiv-
alence between assertions (i) and (ii) in this result follows from the well-known formula (7.197).
Lemma 7.50 established by Dinh et al. [212] is yet another extension of the classical Farkas lemma
to infinite convex constraint systems; see the recent survey [213] on more results and discussions
in this direction. Lemma 7.65 of its own interest is taken from the author’s paper with Nam [532].

The last subsection of Section 7.5 implements the value function approach described in Chap-

ter 6, together with the subdifferential results obtained above in this section, to the case of fully

convex bilevel semi-infinite programs in Banach spaces indexed by arbitrary sets. Observe that in

this way, we are able to significantly improve the results presented in Chapter 6, while specified to

the fully convex setting, even for finitely many inequality constraints in finite-dimensional spaces.

Section 7.6. This section contains various exercises with different levels of difficulties concern-

ing all the basic material presented in Chapter 7. As usual, we provide hints and references for

the most difficult exercises. Similarly to the results of Chapter 6 on bilevel programs with finitely

many constraints, relaxing the partial calmness assumption remains a challenging issue. It seems

also that the pessimistic version of bilevel SIPs is Terra incognita in bilevel optimization.



Chapter 8
Nonconvex Semi-infinite Optimization

In this chapter we continue the study of SIPs in infinite-dimensional spaces while
considering now problems without any convexity assumptions. A major goal is to
develop effective calculus rules to deal with infinite operations (i.e., calculating nor-
mals to infinite set intersections), which are definitely of their own interest besides
just applications to nonconvex SIPs. Developing various strategies in this direction,
we begin with systems described by differentiable functions and then proceed with
Lipschitzian and more general ones.

8.1 Optimization of Infinite Differentiable Systems

The optimization framework of our study is the class of constrained SIPs:
{

minimize ϕ(x) subject to
ϕt (x) ≤ 0 with t ∈ T and h(x) = 0,

(8.1)

where ϕ, ϕt : X → R with an arbitrary index set T , and where h : X → Y is a
mapping between Banach spaces. Consider the infinite system

� := {
x ∈ X∣∣ h(x) = 0, ϕt (x) ≤ 0 as t ∈ T }, (8.2)

which is the set of feasible solutions to (8.1). In this section we mainly focus on
the precise calculations, entirely via the initial data of (8.2), of regular and basic
normal cones to the nonconvex set� given by the infinite intersection under certain
differentiability assumptions on ϕt and h. To achieve this major goal, we introduce
new constraint qualifications and compare them with those studied in Chapter 7
for linear and convex SIPs as well as with conventional ones known for nonconvex
differentiable systems. Then the obtained calculus results easily apply to deriving
various necessary optimality conditions for SIPs (8.1) with nonsmooth objectives
and differentiable constraint functions under the developed constraint qualifications.
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8.1.1 Qualification Conditions for Infinite Systems

Our standing assumptions on the data of (8.2) imposed throughout the whole sec-
tion, unless otherwise stated, are as follows:

(SA) Given x̄ ∈ �, the functions ϕt are Fréchet differentiable at x̄ with the bounded
derivative set {∇ϕt (x̄)| t ∈ T } while h is strictly differentiable at x̄.

In addition to (SA), we may also impose some stronger requirements on the in-
equality constraint functions ϕt that postulate a certain uniformity of their behavior
with respect to the index parameter t ∈ T . We say that the functions {ϕt }t∈T are
uniformly Fréchet differentiable at x̄ if

s(η) := sup
t∈T

sup
x∈Bη(x̄)
x 
=x̄

|ϕt (x)− ϕt (x̄)− 〈∇ϕt (x̄), x − x̄〉|
‖x − x̄‖ → 0 as η ↓ 0. (8.3)

Similarly, the functions {ϕt }t∈T are uniformly strictly differentiable at x̄ if condition
(8.3) above is replaced by the stronger one as η ↓ 0:

r(η) := sup
t∈T

sup
x,x′∈Bη(x̄)
x 
=x′

|ϕt (x)− ϕt (x′)− 〈∇ϕt (x̄), x − x′〉|
‖x − x′‖ → 0. (8.4)

Easily verifiable conditions for the validity of all the assumptions imposed in
(SA), (8.3), and (8.4) on the inequality constraint functions are as follows.

Proposition 8.1 (Uniform Differentiability Assumptions on Compact Index
Sets). Let T be a compact metric space, let ϕt in (8.2) be Fréchet differentiable
around x̄ for each t ∈ T , and let the mapping (x, t) ∈ X × T �→ ∇ϕt (x) ∈ X∗ be
continuous on Bη(x̄) × T for some η > 0. Then the standing assumptions (SA) as
well as (8.3) and (8.4) are satisfied.

Proof. It is easy to see that the standing assumptions (SA) hold since the function
t �→ ‖∇ϕt (x̄)‖ is continuous on the compact space T . Let us now show the validity
of (8.4), which obviously yields (8.3). Arguing by contradiction, suppose that (8.4)
fails and then find ε > 0, sequences {tk} ⊂ T , {ηk} ↓ 0, and {xk}, {x′

k} ⊂ Bηk (x̄)

with xk 
= x′
k such that for all large k ∈ N, we have

|ϕtk (xk)− ϕtk (x′
k)− 〈∇ϕtk (x̄), xk − x′

k〉|
‖xk − x′

k‖
≥ ε − 1

k
. (8.5)

The compactness of T gives us a subsequence of {tk} converging (without relabel-
ing) to some t̄ ∈ T . Applying the classical mean value theorem to (8.5), we find
θk ∈ [xk, x′

k] := co {xk, x′
k} such that

ε

2
<

|〈∇ϕtk (θk), xk − x′
k〉 − 〈∇ϕtk (x̄), xk − x′

k〉|
‖xk − x′

k‖
≤ ‖∇ϕtk (θk)− ∇ϕtk (x̄)‖
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for all large k ∈ N. This contradicts the assumed continuity of the mapping (x, t) ∈
X × T �→ ∇ϕt (x) on Bη(x̄)× T and thus completes the proof. �

The following constraint qualification condition has been well recognized in the
area of nonconvex SIPs with smooth data and compact index sets.

Definition 8.2 (Extended Mangasarian-Fromovitz Constraint Qualification).
System (8.2) satisfies the EXTENDED MANGASARIAN-FROMOVITZ CONSTRAINT

QUALIFICATION (EMFCQ) at x̄ ∈ � if the operator ∇h(x̄) : X → Y is surjective
and there is x̃ ∈ X with ∇h(x̄)̃x = 0 and

〈∇ϕt (x̄), x̃〉 < 0 for all t ∈ T (x̄) := {
t ∈ T ∣∣ ϕt (x̄) = 0

}
. (8.6)

If the index set T is finite, EMFCQ reduces to the classical MFCQ in nonlinear
programming (NLP). Similarly to MFCQ in NLP, the main application of EMFCQ
is supporting the KKT necessary conditions for local minimizers x̄ in SIP (8.1) with
X = R

n and Y = R
m given in the form: there are multipliers λt ∈ R

(T )
+ , t ∈ T , and

μj ∈ R, j = 1, . . . , m, such that

0 = ∇ϕ(x̄)+
∑

t∈T (x̄)
λt∇ϕt (x̄)+

n∑

j=1

μj∇hj (x̄) (8.7)

provided that T is a compact set and that the mapping (x, t) �→ ∇ϕt (x) is con-
tinuous. The following example shows that the KKT condition (8.7) may fail for
nonconvex SIPs with noncompact index sets.

Example 8.3 (Violation of KKT for Nonconvex SIPs with Countable Index Sets
Under EMFCQ). Consider the SIP problem (8.1) with countably many inequality
constraints given by

⎧
⎨

⎩

minimize (x1 + 1)2 + x2 with (x1, x2) ∈ R
2 subject to

x1 + 1 ≤ 0,
1

3k
x3

1 − x2 ≤ 0 for all k ∈ N \ {1}.

WithX := R
2, Y := {0}, ϕ(x1, x2) := (x1 +1)2 +x2, T := N, ϕ1(x1, x2) := x1 +1,

and ϕk(x1, x2) := 1

3k
x3

1 − x2 as k ∈ N \ {1} in (8.1), observe that x̄ := (−1, 0) is a

global minimizer for this problem and that T (x̄) = {1} for the active index set (8.6).
It is easy to check that EMFCQ holds at x̄ while there is no Lagrange multiplier λ ∈
R+ satisfying the KKT condition (8.7) at x̄. Indeed, we have 〈∇ϕ1(x̄), (−1, 0)〉 =
−1 < 0, which shows that the following equation doesn’t admit any solution:

(0, 0) = ∇ϕ(x̄)+ λ∇ϕ1(x̄) = (0, 1)+ (λ, 0).
The next version of MFCQ for infinite systems is more appropriate for the study

of (8.2) and the subsequent applications to general SIPs of type (8.1).
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Definition 8.4 (Perturbed Mangasarian-Fromovitz Constraint Qualification).
Given x̄ ∈ �, we say that system (8.2) satisfies the PERTURBED MANGASARIAN-
FROMOVITZ CONSTRAINT QUALIFICATION (PMFCQ) at x̄ if the derivative oper-
ator ∇h(x̄) : X → Y is surjective and if there is x̃ ∈ X such that ∇h(x̄)̃x = 0 and
that

inf
ε>0

sup
t∈Tε(x̄)

〈∇ϕt (x̄), x̃〉 < 0 with Tε(x̄) := {
t ∈ T ∣∣ ϕt (x̄) ≥ −ε}. (8.8)

In contrast to EMFCQ, the PMFCQ condition involves the ε-active index set
Tε(x̄) and taking the infimum over ε > 0 in (8.8); that is where the name “perturbed”
comes from. Since T (x̄) ⊂ Tε(x̄) for all ε > 0, PMFCQ is stronger than EMFCQ
while being, as we’ll see below, much more appropriate for applications to SIPs
with arbitrary (including compact) index sets.

Let us present some assumptions on the initial data of (8.2) ensuring the equiva-
lence between PMFCQ and EMFCQ.

Proposition 8.5 (PMFCQ from EMFCQ). Let T be a compact metric space, and
let x̄ ∈ � in (8.2). Assume that the function t �→ ϕt (x̄) is u.s.c. on T , that the
derivative operator ∇h(x̄) : X → Y is surjective, and that there is x̃ ∈ X with the
following properties: ∇h(x̄)̃x = 0, the function t �→ 〈∇ϕt (x̄), x̃〉 is u.s.c. on T , and
〈∇ϕt (x̄), x̃〉 < 0 for all t ∈ T (x̄). Then PMFCQ holds at x̄ and is equivalent to
EMFCQ at this point.

Proof. Arguing by contradiction, suppose that PMFCQ fails at x̄. Then it follows
from (8.8) that there exist sequences εk ↓ 0 and {tk} ⊂ T such that

tk ∈ Tεk (x̄) and 〈∇ϕtk (x̄), x̃〉 ≥ −k−1 for all k ∈ N.

Since T is a compact metric space, we find a subsequence of tk (no relabeling) con-
verging to some t̄ ∈ T . Observe that the upper semicontinuity assumptions imposed
in the proposition imply that

ϕt̄ (x̄) ≥ lim sup
k→∞

ϕtk (x̄) = 0 and 〈∇ϕt̄ (x̄), x̃〉 ≥ lim sup
k→∞

〈∇ϕtk (x̄), x̃〉 ≥ 0.

Thus we get t̄ ∈ T (x̄) and 〈∇ϕt̄ (x̄), x̃〉 ≥ 0, a contradiction. �
The following example shows that EMFCQ doesn’t imply PMFCQ even for sim-

ple frameworks of nonconvex SIPs in R
2 with compact index sets.

Example 8.6 (EMFCQ Doesn’t Imply PMFCQ for Infinite Systems with Com-
pact Index Sets). Let X = R

2, T = [0, 1] in (8.2) with h = 0 and

ϕ0(x) := x1 + 1 ≤ 0, ϕt (x) := tx1 − x3
2 ≤ 0 for t ∈ T \ {0}.

It is easy to check that the functions ϕt (x), t ∈ T , satisfy (SA) and (8.4) at x̄ =
(−1, 0). Observe further that T (x̄) = {0}, that Tε(x̄) = [0, ε] as ε ∈ (0, 1), and that
EMFCQ holds at x̄. However, for any d = (d1, d2) ∈ R

2, we have
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inf
ε>0

sup
t∈Tε(x̄)

〈∇ϕt (x̄), d〉 = inf
ε>0

sup
{
d1, sup

{
td1

∣∣ t ∈ (0, ε]}
}

≥ 0,

which shows that PMFCQ fails at x̄. Note that the u.s.c. assumptions with respect
to t in Propositions 8.5 don’t hold in this example.

It has been well recognized in NLP theory (i.e., when T is a finite set in (8.2))
that MFCQ is equivalent to the Slater constraint qualification (SCQ) if the functions
ϕt are smooth and convex while h is linear. The next proposition shows that a similar
equivalence holds for SIPs with replacing MFCQ by PMFCQ and SCQ by the strong
Slater condition (SSC) used in Chapter 7 in the case of infinite inequality constraint
systems. This result alone indicates that PMFCQ, rather than EMFCQ, is the most
natural extension of SSC to nonconvex infinite systems with arbitrary index sets.

Proposition 8.7 (Equivalence Between PMFCQ and SSC for Differentiable
Convex Systems). Assume that in (8.2) all the functions ϕt (x) are convex and uni-
formly Fréchet differentiable at x̄ and that h(x) := Ax is a surjective continuous
linear operator. Then PMFCQ is equivalent to the following STRONG SLATER CON-
DITION (SSC) for (8.2): there is x̂ ∈ X such that Ax̂ = 0 and supt∈T ϕt (̂x) < 0.

Proof. Suppose first that SSC holds at x̄, i.e., there are x̂ ∈ X and δ > 0 such that
Ax̂ = 0 and ϕt (̂x) < −2δ for all t ∈ T . This implies, together with the imposed
assumptions, that for each ε ∈ (0, δ) and t ∈ Tε(x̄) we have

〈∇ϕt (x̄), x̂ − x̄〉 ≤ ϕt (̂x)− ϕt (x̄) ≤ −2δ + ε ≤ −δ.
Define further x̃ := x̂ − x̄ and get Ax̃ = Ax̂ − Ax̄ = 0 with 〈∇ϕt (x̄), x̃〉 ≤ −δ for
all t ∈ Tε(x̄) and ε ∈ (0, δ). This clearly yields PMFCQ.

Conversely, suppose that PMFCQ holds at x̄. Then there are ε, η > 0 and x̃ ∈ X
such that 〈∇ϕt (x̄), x̃〉 ≤ −η for all t ∈ Tε(x̄) and that Ax̃ = 0. It follows from the
imposed uniform Fréchet differentiability (8.3) of ϕt at x̄ with using the function
s(·) defined therein that for each λ > 0 we have

ϕt (x̄ + λx̃) ≤ ϕt (x̄)+ λ〈∇ϕt (x̄), x̃〉 + λ‖x̃‖s(λ‖x̃‖),
which readily implies that ϕt (x̄ + λx̃) ≤ λ

( − η + ‖x̃‖s(λ‖x̃‖)) as t ∈ Tε(x̄). For
t /∈ Tε(x̄) it follows from the above that

ϕt (x̄ + λx̃) ≤ −ε + λ sup
τ∈T

‖∇ϕτ (x̄)‖ · ‖x̃‖ + λ‖x̃‖s(λ‖x̃‖),

which yields the existence of λ0 > 0 so small that supt∈T ϕt (̂x) < 0 with x̂ :=
x̄ + λ0x̃. Furthermore, it is easy to see that Ax̂ = 0. This justifies SSC at x̂ and
hence completes the proof of the proposition. �

Next we introduce yet another qualification condition for the nonlinear constraint
system (8.2) the versions of which have been exploited in Chapter 7 for linear and
convex infinite inequality systems.
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Definition 8.8 (Nonlinear Farkas-Minkowski Constraint Qualification). Given
x̄ ∈ � in (8.2) with h ≡ 0, we say that the NONLINEAR FARKAS-MINKOWSKI

CONSTRAINT QUALIFICATION (NFMCQ) holds at x̄ if the cone

cone
{(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄)

)∣∣ t ∈ T }

is weak∗ closed in the product space X∗ × R.

Let us compare the introduced NFMCQ with the other constrained qualifications
discussed in this section in the case of infinite inequality constraints.

Proposition 8.9 (Sufficient Conditions for NFMCQ). Consider the infinite system
(8.2) with h ≡ 0 therein. Then NFMCQ is satisfied at x̄ ∈ � in each of the following
three settings:

(i) The index T is finite and MFCQ holds at x̄.
(ii) dimX < ∞, the set {(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))| t ∈ T } is compact, and

PMFCQ is fulfilled at x̄.
(iii) The index T is a compact metric space, dimX < ∞, the mappings t ∈ T �→

ϕt (x̄) and t ∈ T �→ ∇ϕt (x̄) are continuous, and EMFCQ holds at x̄.

Proof. Define ϕ̃t (x) := 〈∇ϕt (x̄), x − x̄〉 + ϕt (x̄) for all x ∈ X. To verify (i),
suppose that T is finite and that MFCQ holds at x̄ for the inequality system in (8.2).
It is clear that the functions ϕ̃t also satisfy MFCQ at x̄. Since these functions are
linear, we observe from Proposition 8.7 that there is x̂ ∈ X such that ϕ̃t (̂x) =
〈∇ϕt (x̄), x̂ − x̄〉 + ϕt (x̄) < 0 for all t ∈ T . It is not hard to check that the latter
condition yields the validity of FMCQ at x̄.

Considering next case (ii) with X = R
d , suppose that PMFCQ holds at x̄ and

the set {(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))| t ∈ T } is compact in R
d ×R. Note that the

functions ϕ̃t defined above also satisfy PMFCQ at x̄ and then apply Proposition 8.7
to these functions. This gives us x̂ ∈ R

d satisfying

sup
t∈T

ϕ̃t (̂x) = sup
t∈T

{〈∇ϕt (x̄), x̂ − x̄〉 + ϕt (x̄)
}
< 0. (8.9)

We now claim that (0, 0) 
∈ co {(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))| t ∈ T }. Indeed,
otherwise ensures the existence of λ ∈ R

(T )
+ with

∑
t∈T λt = 1 such that

(0, 0) =
∑

t∈T
λt
(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄)

)
.

Combining the latter with (8.9) tells us that

0 =
∑

t∈T
λt 〈∇ϕt (x̄), x̂〉 −

∑

t∈T
λt
(〈∇ϕt (x̄), x̄〉 − ϕt (x̄)

) ≤ sup
t∈T

ϕ̃t (̂x) < 0,

a contradiction. Based on the claimed condition and the result of Exercise 8.89, we
show that the convex conic hull

cone
{
(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))

∣∣ t ∈ T } is closed in R
d+1,
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which justifies (ii). Finally, (iii) follows from (ii) due to Proposition 8.5. �
We conclude this subsection by showing NFMCQ and PMFCQ are generally

independent for infinite inequality systems even in finite dimensions.

Example 8.10 (Independence of NFMCQ and PMFCQ). It is easy to check that
for the constraint inequality system from Example 8.6, we have NFMCQ satisfied
at x̄ = (−1, 0) since the corresponding conic hull

cone
{
(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))

∣∣ t ∈ T }
= cone

{
(1, 0,−1), (t, 0, 0)

∣∣ t ∈ (0, 1]}

is closed in R
3. On the other hand, Example 8.6 shows that PMFCQ doesn’t hold

for this infinite inequality system at x̄.
To demonstrate that NFMCQ doesn’t generally follow from PMFCQ (and even

from EMFCQ), consider the countable system in R
2 from Example 8.3. When x̄ =

(−1, 0), we get Tε(x̄) = {k ∈ N \ {1}| k ≥ (3ε)−1} ∪ {1} for the perturbed active
index set in (8.8). It shows that PMFCQ and hence EMFCQ hold at x̄. On the other
hand, the convex conic hull

cone
{
(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))

∣∣ t ∈ T }

= cone
[
(1, 0,−1) ∪

{(1

k
,−1,− 2

3k

)∣∣∣ k 
= 1
}]

is not closed in R
3; see Fig. 8.1; i.e., NFMCQ is not satisfied at this point.

y

z

x

1−1

Fig. 8.1 Failure of NFMCQ.

8.1.2 Normal Cones to Nonconvex Infinite Constraint Sets

This subsection is mainly devoted to precise calculating both regular and basic nor-
mal cones to the constraint set � in (8.2), which is given via the infinite intersection
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of nonconvex sets. Based on the constraint qualification conditions discussed in Sub-
section 8.1.1, we derive various calculation formulas for regular and basic normals
to the set � entirely in terms of its initial data of (8.2) in arbitrary Banach spaces.

Let us first present the following useful result from functional analysis.

Lemma 8.11 (Weak∗ Closed Images of Adjoint Operators). Let A : X → Y be
a surjective continuous linear operator. Then the image of its adjoint operatorA∗Y ∗
is a weak∗ closed subspace of X∗.

Proof. Define C := A∗Y ∗ ⊂ X∗ and pick any k ∈ N. We claim that the set
Ak := C ∩ kB∗ is weak∗ closed in X∗. Considering a net {x∗

ν }ν∈N ⊂ Ak weak∗
converging to x∗ ∈ X∗ and taking into account that the dual ball B∗ is weak∗ com-
pact in X∗ give us x∗ ∈ kB∗. The above construction shows that there is a net
{y∗
ν }ν∈N ⊂ Y ∗ satisfying x∗

ν = A∗y∗
ν whenever ν ∈ N . Furthermore, it follows

from the surjectivity of A that

‖x∗
ν‖ = ‖A∗y∗

ν‖ ≥ κ‖y∗
ν‖ for all ν ∈ N,

where κ := inf{‖A∗y∗‖ over ‖y∗‖ = 1} ∈ (0,∞); see Exercise 1.53. Hence
‖y∗
ν‖ ≤ kκ−1 for all ν ∈ N . By passing to a subnet, suppose that y∗

ν weak∗ con-
verges to some element y∗ ∈ Y ∗ for which x∗ = A∗y∗ ∈ Ak . This thus verifies
that the set Ak = C ∩ kBX∗ is weak∗ closed for all k ∈ N. The classical Banach-
Dieudonné-Krein-Šmulian theorem yields therefore that the image set C = A∗Y ∗
is weak∗ closed in X∗. �

Now we are ready to establish the main result of this subsection.

Theorem 8.12 (Regular and Basic Normals to Infinite Systems). Let x̄ ∈ � for
the infinite constraint set (8.2), and let PMFCQ hold at x̄ under the validity of (8.3).
Then the regular normal cone to � at x̄ is calculated by

N̂(x̄;�) =
⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ ∇h(x̄)∗Y ∗. (8.10)

If furthermore the functions ϕt , t ∈ T , satisfy (8.4), then the basic normal cone to
� at x̄ is calculated by the same formula

N(x̄;�) =
⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ ∇h(x̄)∗Y ∗. (8.11)

Proof. To verify first the inclusion “⊃” in (8.10), observe from the definition of
PMFCQ that there are ε̃ > 0, δ > 0, and x̃ ∈ X such that ∇h(x̄)̃x = 0 and

sup
t∈Tε(x̄)

〈∇ϕt (x̄), x̃〉 < −δ for all ε ≤ ε̃. (8.12)

Fix ε ∈ (0, ε̃), pick x∗ from the set on the right-hand side of (8.10), and then find a
net (λν)ν∈N ⊂ R

(T )
+ and a dual element y∗ ∈ Y ∗ satisfying
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x∗ = w∗ − lim
ν∈N

∑

t∈Tε(x̄)
λtν∇ϕt (x̄)+ ∇h(x̄)∗y∗.

Combining this with (8.12) gives us the estimate

〈x∗, x̃〉 = lim
ν∈N

∑

t∈Tε(x̄)
λtν〈∇ϕt (x̄), x̃〉 + 〈∇h(x̄)∗y∗, x̃〉 ≤ −δ lim sup

ν∈N

∑

t∈Tε(x̄)
λtν .

It follows further that for each η > 0 and x ∈ � ∩ Bη(x̄), we have

〈x∗, x − x̄〉 = lim
ν∈N

∑

t∈Tε(x̄)
λtν〈∇ϕt (x̄), x − x̄〉 + 〈∇h(x̄)∗y∗, x − x̄〉

≤ lim sup
ν∈N

∑

t∈Tε(x̄)
λtν

(
ϕt (x)− ϕt (x̄)+ ‖x − x̄‖s(η)

)
+ 〈y∗,∇h(x̄)(x − x̄)〉

≤ lim sup
ν∈N

∑

t∈Tε(x̄)
λtν

(
ε + ‖x − x̄‖s(η)

)
+ ‖y∗‖

(
‖h(x)− h(x̄)‖ + o(‖x − x̄‖)

)

≤
(
ε + ‖x − x̄‖s(η)

)
lim sup
ν∈N

∑

t∈Tε(x̄)
λtν + ‖y∗‖o(‖x − x̄‖).

Taking now the above estimate of 〈x∗, x̃〉 into account yields

〈x∗, x − x̄〉 ≤ −〈x∗, x̃〉
δ

(
ε + ‖x − x̄‖s(η)

)
+ o(‖x − x̄‖)‖y∗‖,

which implies in turn due to ε, η ↓ 0 that

lim sup
x
�→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0,

which means that x∗ ∈ N̂(x̄;�) and thus justifies the inclusion “⊃” in (8.10).
Next we prove the inclusion “⊂” in (8.11) under the assumption that ϕt are uni-

formly strictly differentiable at x̄. This immediately implies the one “⊂” in (8.10)
under the latter assumption, while we note that similar arguments justify the inclu-
sion “⊂” in (8.10) under merely the uniform Fréchet differentiability of ϕt at x̄. To
proceed with proving “⊂” in (8.11), define

Aε := cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ ∇h(x̄)∗Y ∗ for ε > 0.

Arguing by contradiction, pick x∗ ∈ N(x̄;�) \ {0} and suppose that x∗ /∈ Aε for
some ε ∈ (0, ε̃). We first claim that the set Aε is weak∗ closed in X∗ for all ε ≤ ε̃

by showing that cl ∗Bε ⊂ Aε, where

Bε := cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ ∇h(x̄)∗(Y ∗).

To justify it, pick any u∗ ∈ cl ∗Bε and therefore find some nets (λν)ν∈N ⊂ R
(T )
+ and

(y∗
ν )ν∈N ⊂ Y ∗ for which



360 8 Nonconvex Semi-infinite Optimization

u∗
ν =

∑

t∈Tε(x̄)
λtν∇ϕt (x̄)+ ∇h(x̄)∗y∗

ν

w∗→ u∗.

Similarly to the proof of the estimate for 〈x∗, x̃〉 above, we derive the inequality

〈u∗, x̃〉 ≤ −δ lim sup
ν∈N

∑

t∈Tε(x̄)
λtν

and get furthermore the dual norm estimate

‖u∗
ν − ∇h(x̄)∗y∗

ν‖ = ‖
∑

t∈Tε(x̄)
λtν∇ϕt (x̄)‖ ≤ sup

τ∈Tε(x̄)
‖∇ϕτ (x̄)‖

∑

t∈Tε(x̄)
λtν,

which verifies the boundedness of the net {u∗
ν−∇h(x̄)∗y∗

ν }ν∈N inX∗. The Alaoglu-
Bourbaki theorem tells us that there is a subnet of {u∗

ν − ∇h(x̄)∗y∗
ν } (without rela-

beling) weak∗ converging to some v∗ ∈ cl ∗cone
{∇gt (x̄)

∣∣ t ∈ Tε(x̄)
}
. Thus the net

{∇h(x̄)∗y∗
ν } weak∗ converges to u∗ − v∗. By Lemma 8.11 we find y∗ ∈ Y ∗ such

that u∗ − v∗ = ∇h(x̄)∗y∗, which yields that u∗ = v∗ + ∇h(x̄)∗y∗ ∈ Aε and hence
ensures that Aε is weak∗ closed in X∗. Since x∗ /∈ Aε, we deduce from the classical
separation theorem that there are x0 ∈ X and c > 0 satisfying the inequalities

〈x∗, x0〉 ≥ 2c > 0 ≥ 〈∇ϕt (x̄), x0〉 + 〈y∗,∇h(x̄)x0〉 (8.13)

for all t ∈ Tε(x̄) and y∗ ∈ Y ∗; hence ∇h(x̄)x0 = 0. Define further

x̂ := x0 + c

‖x∗‖ · ‖x̃‖ x̃

and observe that ∇h(x̄)̂x = 0. It follows from (8.13) and PMFCQ that

〈x∗, x̂〉 = 〈x∗, x0 + c

‖x∗‖ · ‖x̃‖ x̃〉 ≥ 2c + c

‖x∗‖ · ‖x̃‖〈x∗, x̃〉 ≥ c, (8.14)

〈∇ϕt (x̄), x̂〉 = 〈∇ϕt (x̄), x0〉 + c

‖x∗‖ · ‖x̃‖〈∇ϕt (x̄), x̃〉 ≤ −δ̃ (8.15)

for all t ∈ Tε(x̄) with δ̃ := δc(‖x∗‖ · ‖x̃‖)−1 > 0. Noting that x̂ 
= 0 by (8.15), sup-
pose without loss of generality that ‖x̂‖ = 1. Furthermore, we get from construction
(1.58) of basic normals in Banach spaces that there are sequences εk ↓ 0, ηk ↓ 0,

xk
�→ x̄, and x∗

k

w∗→ x∗ as k → ∞ with

〈x∗
k , x − xk〉 ≤ εk‖x − xk‖ for all x ∈ Bηk (xk) ∩�, k ∈ N. (8.16)

Since the mapping h is strictly differentiable at x̄ with the surjective derivative
∇h(x̄), it follows from the Lyusternik-Graves theorem held in general Banach
spaces (see Corollary 3.8 and the corresponding commentaries in Section 3.5) that
h is metrically regular around x̄, i.e., there are neighborhoods U of x̄ and V of
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0 = h(x̄) and a constant μ > 0 such that

dist
(
x;h−1(y)

) := inf
{‖x − z‖ ∣∣ z ∈ h−1(y)

} ≤ μ‖y − h(x)‖
for all x ∈ U and y ∈ V . Using h(xk) = 0 and ∇h(x̄)̂x = 0, we have

‖h(xk + t x̂)‖ = ‖h(xk + t x̂)− h(xk)− ∇h(x̄)(t x̂)‖ = o(t) for small t > 0.

Using metric regularity, for any small t > 0, we get xt ∈ h−1(0) with ‖xk + t x̂ −
xt‖ = o(t) if xk ∈ U . This allows us to find η̃k < ηk and x̃k := xη̃k ∈ h−1(0)
satisfying η̃k + o(̃ηk) ≤ ηk and ‖xk + η̃kx̂ − x̃k‖ = o(̃ηk). Note that

‖xk − x̃k‖ ≤ η̃k‖x̂‖ + ‖xk + η̃kx̂ − x̃k‖ = η̃k + o(̃ηk) ≤ ηk,

‖xk − x̃k‖ ≥ η̃k‖x̂‖ − ‖xn + η̃kx̂ − x̃k‖ = η̃k − o(̃ηk).
By the classical uniform boundedness principle , there is a constant M such that

M > ‖x∗
k ‖ for all k ∈ N due to x∗

k

w∗→ x∗ as k → ∞. It follows from (8.14) that
〈x∗
k , x̂〉 > 0 for large k ∈ N. Then we have

〈x∗
k , x̃k − xk〉
‖x̃k − xk‖ = 〈x∗

k , x̃k − η̃kx̂ − xk〉
‖x̃k − xk‖ + 〈x∗

k , η̃kx̂〉
‖x̃k − xk‖

≥ −M ‖x̃k − η̃kx̂ − xk‖
‖x̃k − xk‖ + η̃k 〈x∗

k , x̂〉
‖x̃k − xk‖

≥ −M o(̃ηk)

η̃k − o(̃ηk) + η̃k

η̃k + o(̃ηk) 〈x
∗
k , x̂〉.

Passing now to the limit as k → ∞ and using o(̃ηk)/η̃k → 0 yields

lim inf
k→∞

〈x∗
k , x̃k − xk〉
‖x̃k − xk‖ ≥ 〈x∗, x̂〉,

which shows that x̃k /∈ � for large k ∈ N by (8.14) and (8.16).
Define now uk := xk+η̃kx̂−x̃k and get ‖uk‖ = o(̃ηk)with ‖x̃k+uk−xk‖ = η̃k by

the arguments above. It follows from (SA), (8.4), and (8.15) that for each t ∈ Tε(x̄),
we have the relationships

−δ̃ ≥ 〈∇ϕt (x̄), η̃kx̂〉
η̃k

= 〈∇ϕt (x̄), x̃k − xk〉
‖x̃k + uk − xk‖ + 〈∇ϕt (x̄), uk〉

‖x̃k + uk − xk‖
≥ 〈∇ϕt (x̄), x̃k − xk〉

‖x̃k − xk‖
‖x̃k − xk‖

‖x̃k + uk − xk‖ + 〈∇ϕt (x̄), uk〉
‖x̃k + uk − xk‖

≥
(ϕt (̃xk)− ϕt (xk)

‖x̃k − xk‖ − r(̂ηk)
) ‖x̃k − xk‖
‖x̃k + uk − xk‖ − sup

τ∈Tε(x̄)
‖∇ϕτ (x̄)‖o(̃ηk)

η̃k

≥
( ϕt (̃xk)

‖x̃k − xk‖ − r(̂ηk)
) ‖x̃k − xk‖
‖x̃k + uk − xk‖ − sup

τ∈T
‖∇ϕτ (x̄)‖o(̃ηk)

η̃k
,
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where η̂k := max{‖xk − x̄‖ and ‖x̃k − x̄‖} → 0 as k → ∞. Note that

η̃k − o(̃ηk)
η̃k

≤ ‖x̃k − xk‖
‖x̃k + uk − xk‖ ≤ η̃k + o(̃ηk)

η̃k
, and so

‖x̃k − xk‖
‖x̃k + uk − xk‖ → 1

as k → ∞. Furthermore, since r(̂ηk) → 0 and o(̃ηk/)̃ηk → 0, we have ϕt (̃xk) ≤
−(̃δ/2)‖x̃k−xk‖ ≤ 0 for each t ∈ Tε(x̄) when k ∈ N is large. In the remaining case
of t /∈ Tε(x̄), it follows directly that

ϕt (̃xk) ≤ ϕt (x̄)+ 〈∇ϕt (x̄), x̃k − x̄〉 + ‖x̃k − x̄‖r(̂ηk)
≤ −ε + sup

τ∈T
‖∇ϕτ (x̄)‖η̂k + η̂kr (̂ηk).

Hence ϕt (̃xk) ≤ 0, t ∈ T , and h(̃xk) = 0 for large k ∈ N. This means that x̃k ∈
� for such k, which contradicts the conclusion achieved above. Thus we get that
N(x̄;�) ⊂ Aε for all ε ∈ (0, ε̃). To complete the proof of inclusion “⊂” in (8.11),
we only need to verify that

⋂

ε>0

Aε ⊂
⋂

ε>0

[
cl ∗cone

{∇ϕt (x̄)| t ∈ Tε(x̄)
}]+ ∇h(x̄)∗Y ∗. (8.17)

Let us take any u∗ in the left-hand side of (8.17). This means that for any ε > 0
we can find x∗

ε ∈ Cε := cl ∗cone
{∇ϕt (x̄)| t ∈ Tε(x̄)

}
and y∗

ε ∈ Y ∗ such that
u∗ = x∗

ε + ∇h(x̄)∗y∗
ε . Standard arguments similar to those used above show that

the net u∗ − ∇h(x̄)∗y∗
ε = x∗

ε is uniformly bounded. Then the Alaoglu-Bourbaki

theorem gives us a subnet of {ε} labeled as {εν} such that x∗
εν

w∗→ x∗. It follows that
u∗ − x∗ ∈ cl ∗(∇h(x̄)∗Y ∗). Lemma 8.11 tells us that there is y∗ ∈ Y ∗ satisfying
u∗ − x∗ = ∇h(x̄)∗y∗. Note further that εν → 0 and so for any α > 0 we get
w∗ − lim

ν
x∗
εν

∈ cl ∗Cα = Cα . It follows that x∗ ∈
⋂

α>0

Cα . This implies that u∗ =
x∗+∇h(x̄)∗y∗ belongs to the right-hand side of (8.17) and thus completes the proof
of the theorem. �

Let us show next that PMFCQ is essential for the validity of both normal cone
representations in (8.10) and (8.11). Moreover, this condition cannot be replaced by
its weaker EMFCQ version.

Example 8.13 (Violation of the Normal Cone Representations in the Absence
of PMFCQ). Consider the infinite system in R

2 given in Example 8.6. It is shown
there that EMFCQ holds at x̄ = (−1, 0) but PMFCQ fails. We can easily check that
in this case N̂(x̄;�) = N(x̄;�) = R+ × R− while

cl cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
} = cl cone

{
(1, 0) ∪ {(t, 0)∣∣ t ∈ (0, ε)} = R+ × {0}.

i.e., the inclusions “⊂” in (8.10) and (8.11) are violated.
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The next example demonstrates that the perturbed index set Tε(x̄) cannot be re-
placed by its unperturbed counterpart T (x̄) in representations (8.10) and (8.11) for
both regular and basic normal cones.

Example 8.14 (Perturbation of the Active Index Set Is Essential). Let us revisit
the nonlinear infinite system in SIP of Example 8.3:

ϕ1(x) = x1 + 1 ≤ 0, ϕk(x) = 1

3k
x3

1 − x2 ≤ 0 for k ∈ N \ {1},

where x = (x1, x2) ∈ R
2 and T := N. It is easy to see that this inequality system

satisfies our standing assumptions and that the functions ϕt (x) are uniformly strictly
differentiable at x̄ = (−1, 0). Observe further that N̂(x̄;�) = N(x̄;�) = R+×R−.
As shown above, both PMFCQ and EMFCQ hold at x̄. However, T (x̄) = {1} and

N(x̄;�) 
= cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)} = cone
{∇ϕ1(x̄)

} = R+ × {0},
which shows the violation of the unperturbed counterparts of (8.10), (8.11).

Now we derive several corollaries of Theorem 8.12, which are of their own in-
terest. The first one concerns the case where the set {∇ϕt (x̄)| t ∈ T } may not be
bounded in X∗ as in our standing assumptions. It follows that this case can be re-
duced to the basic case of Theorem 8.12 with some modifications.

Corollary 8.15 (Normal Cone Representation for Infinite Systems with Un-
bounded Gradients). Considering (8.2), assume the following:

(a) The functions ϕt , t ∈ T , are Fréchet differentiable at the point x̄ with
‖∇ϕt (x̄)‖ > 0 for all t ∈ T , and the mapping h is strictly differentiable at x̄.

(b) We have that lim
η↓0
r̃(η) = 0, where r̃(η) is defined by

r̃(η) := sup
t∈T

sup
x,x′∈Bη(x̄)
x 
=x′

|ϕt (x)− ϕt (x′)− 〈∇ϕt (x̄), x − x′〉|
‖∇ϕt (x̄)‖ · ‖x − x′‖ for all η > 0.

(c) The operator ∇h(x̄) : X → Y is surjective, and for some ε > 0, there are
x̃ ∈ X and σ > 0 such that ∇h(x̄)̃x = 0 and that

〈∇gt (x̄), x̃ + x〉 ≤ 0 if ‖x‖ ≤ σ, t ∈ T̃ε(x̄) := {t ∈ T | gt (x̄) ≥ −ε‖∇gt (x̄)‖},
which can be treated as an updated version of PMFCQ in the unbounded setting.
Then the basic normal cone to � at x̄ is calculated by formula (8.11).

Proof. Define ϕ̃t (x) := ϕt (x)‖∇ϕt (x̄)‖−1 for all x ∈ X, t ∈ T and observe that the
feasible set � from (8.2) admits the representation

� = {
x ∈ X∣∣ ϕ̃t (x) ≤ 0, h(x) = 0

}
.

Replacing ϕt by ϕ̃t in Theorem 8.12, we have that the functions ϕ̃t and h satisfy
the standing assumptions (SA) as well as condition (8.4) with taking r̃(η) instead
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of r(η). Furthermore, it follows from (c) that for some ε > 0 there are x̃ ∈ X and
σ > 0 satisfying ∇h(x̄)̃x = 0 and such that

〈∇ϕ̃t (x̄), x̃〉 ≤ − sup
x∈Bσ (x̄)

〈∇ϕ̃t (x̄), x〉 = −σ‖∇ϕ̃t (x̄)‖ if t ∈ T̃ε(x̄),

which turns into 〈∇ϕ̃t (x̄), x̃〉 ≤ −σ for all t ∈ T̃ε(x̄) = {t ∈ T | ϕ̃t (x̄) ≥ −ε}.
Hence PMFCQ holds for (ϕ̃t , h) at x̄. It follows from (8.11) for (ϕ̃t , h) that

N(x̄;�) =
⋂

ε>0

cl ∗cone
{∇ϕ̃t (x̄)

∣∣ t ∈ T̃ε(x̄)
}+ ∇h(x̄)∗Y ∗

=
⋂

ε>0

cl ∗cone
{∇ϕt (x̄) ‖∇ϕt (x̄)‖−1

∣∣ t ∈ T̃ε(x̄)
}+ ∇h(x̄)∗Y ∗

=
⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ T̃ε(x̄)
}+ ∇h(x̄)∗Y ∗,

which justifies (8.11) for (ϕt , h) under the assumptions made. �
The next consequence of Theorem 8.12 concerns SIPs in finite dimensions and

justifies simplified representations of the normal cones to infinite constraints without
the closure operations in (8.10) and (8.11) and with the replacement of the ε-active
index set Tε(x̄) by that of T (x̄) from (8.6).

Corollary 8.16 (Normal Cone Representations for Infinite Systems with Com-
pact Index Sets). In the setting of (8.2), suppose that dimY < dimX < ∞, that
T is a compact metric space, that the function t �→ ϕt (x̄) is u.s.c. on T , that the
mapping t �→ ∇ϕt (x̄) is continuous on T , and that PMFCQ holds at x̄. Then letting

Ñ(x̄;�) := cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)}+ ∇h(x̄)∗Y ∗, (8.18)

we have Ñ(x̄;�) = N̂(x̄;�) when the functions ϕt are uniformly Fréchet dif-
ferentiable at x̄ and Ñ(x̄;�) = N(x̄;�) when ϕt are uniformly strictly dif-
ferentiable at x̄. In particular, if we assume in addition that t �→ ϕt (x̄) and
(x, t) �→ ∇ϕt (x) are continuous on T and X × T , respectively, then we also have
(8.18) for Ñ(x̄;�) = N(x̄;�) provided that merely EMFCQ holds at x̄.

Proof. Let X = R
d for some d ∈ N. It follows from Proposition 8.5 that ϕt , t ∈ T ,

and h satisfy the standing assumptions (SA). Since system (8.2) satisfies PMFCQ at
x̄, there are ε̃ > 0, δ > 0, and x̃ ∈ X such that 〈∇ϕt (x̄), x̃〉 < −δ for all t ∈ Tε(x̄)
and ε ∈ (0, ε̃). Observe that the perturbed active index set Tε(x̄) is compact in T
for all ε > 0 due to the u.s.c. assumption imposed on t �→ ϕt (x̄). The continuity of
t �→ ∇ϕt (x̄) ensures that {∇ϕt (x̄)| t ∈ Tε(x̄)} is a compact subset of Rd . We now
claim that 0 /∈ co {∇ϕt (x̄)| t ∈ Tε(x̄)}. Indeed, it follows that

∑

t∈Tε(x̄)
λt 〈∇ϕt (x̄), x̃〉 ≤ −

∑

t∈Tε(x̄)
λt δ = −δ < 0 as λ ∈ R̃

Tε(x̄)+ ,
∑

t∈Tε(x̄)
λt = 1,
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which yields 0 
= ∑
t∈Tε(x̄) λt∇ϕt (x̄), i.e., 0 /∈ co {∇ϕt (x̄)| t ∈ Tε(x̄)}. The result

of Exercise 8.89 tells us that the convex conic hull of the set {∇ϕt (x̄)| t ∈ Tε(x̄)} is
closed in R

d . By Theorem 8.12 it suffices to show that

⋂

ε>0

cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
} = cone

{∇ϕt (x̄)
∣∣ t ∈ T (x̄)},

where the inclusion “⊃” is obvious due to T (x̄) ⊂ Tε(x̄) as ε > 0. To justify
the converse inclusion, pick any x∗ from the set on the left-hand side therein and
by the classical Carathéodory theorem find λk = (λk1, . . . λkd+1) ∈ R

d+1+ and
∇ϕtk1 (x̄), . . . ,∇ϕtkd+1

(x̄) ∈ {∇ϕt (x̄)| t ∈ Tk−1(x̄)} ⊂ R
d satisfying

x∗ =
d+1∑

m=1

λkm∇ϕtkm (x̄)

for all large k ∈ N. This yields in turn the estimate

〈x∗, x̃〉 =
d+1∑

m=1

λkm〈∇ϕtkm (x̄), x̃〉 ≤ −
d+1∑

m=1

λkmδ.

Since the sequence {λk} is bounded in R
d+1 and so is the one in

{λk(∇ϕtk1 (x̄), . . . ,∇ϕtkd+1
(x̄))}, the compactness of the latter set together with that

of T allows us to select sequences {λkm} and {tkm} converging to some λ̄m and
t̄m ∈ T for each 1 ≤ m ≤ d + 1. Note that 0 ≥ ϕtkm (x̄) ≥ −k−1 for large
k ∈ N, which gives us 0 = ϕt̄m(x̄) whenever 1 ≤ m ≤ d + 1. Combining this with
the above representation of x∗ shows that

x∗ =
d+1∑

m=1

λ̄m∇ϕt̄m(x̄) ∈ cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)},

which justifies representation (8.18) for both normal cones under the corresponding
assumptions on ϕt imposed in Theorem 8.12. The EMFCQ part of this corollary
follows from Propositions 8.1 and 8.5. �

The next question addressed in this subsection is about the possibility of ob-
taining normal cone representations of the “unperturbed” type as in Corollary 8.16
while without any finite dimensionality, compactness, and continuity assumptions
made above. The following theorem shows that this can be done when PMFCQ
is accompanied by NFMCQ from Definition 8.8. Note that the latter condition is
imposed only on the inequality constraint part of (8.2).

Theorem 8.17 (Unperturbed Representations of Normal Cones in General Set-
tings). Let the functions ϕt , t ∈ T , be uniformly Fréchet differentiable at x̄, and let
both PMFCQ and NFMCQ hold for (8.2) at x̄. Then we have
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N̂(x̄;�) = cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)}+ ∇h(x̄)∗Y ∗.

If in addition the functions ϕt , t ∈ T , satisfy (8.4) at x̄, then

N(x̄;�) = cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)}+ ∇h(x̄)∗Y ∗.

Proof. First we claim that the set
⋂

ε>0

cl ∗cone {∇ϕt (x̄)| t ∈ Tε(x̄)} belongs to the

collections of x∗ ∈ X∗ satisfying the inclusion

(x∗, 〈x∗, x̄〉) ∈ cl ∗cone
{
(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄))

∣∣ t ∈ T }. (8.19)

It follows from PMFCQ at x̄ that ∇h(x̄) is surjective and there are ε̃, δ > 0 and
x̃ ∈ X such that ∇h(x̄)̃x = 0 and that 〈∇ϕt (x̄), x̃〉 < −δ for all ε ≤ ε̃ and t ∈ Tε(x̄).
To justify the claimed inclusion, pick x∗ ∈ ∩ε>0cl ∗cone {∇ϕt (x̄)| t ∈ Tε(x̄)} and
for ε ∈ (0, ε̃) find a net (λν)ν∈N ⊂ R

(T )
+ with

x∗ = w∗ − lim
ν∈N

∑

t∈Tε(x̄)
λtν∇ϕt (x̄)

from which we deduce the relationships

〈x∗, x̃〉 = lim
ν∈N

∑

t∈Tε(x̄)
λtν〈∇ϕt (x̄), x̃〉 ≤ −δ lim sup

ν∈N

∑

t∈Tε(x̄)
λtν,

〈x∗, x̄〉 = lim
ν∈N

∑

t∈Tε(x̄)
λtν(〈∇ϕt (x̄), x̄〉 − ϕt (x̄)+ ϕt (x̄)).

The obtained conditions imply in turn that

0 ≥ 〈x∗, x̄〉 − lim sup
ν∈N

∑

t∈Tε(x̄)
λtν

(〈∇ϕt (x̄), x̄〉 − ϕt (x̄)
) ≥ ε

δ
〈x∗, x̃〉.

Passing to a subnet and combining it with the representation of x∗ yield

(x∗, 〈x∗, x̄〉) ∈ cl ∗cone
{(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄)

)∣∣ t ∈ T }
+{0} × [εδ−1〈x∗, x̃〉, 0]

for all ε ∈ (0, ε̃), which implies that x∗ belongs to the set in (8.19) by letting ε ↓ 0.
Based on NFMCQ, we claim now that

⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
} = cone

{∇ϕt (x̄)
∣∣ t ∈ T (x̄)}. (8.20)

The inclusion “⊃” in (8.11) is obvious since T (x̄) ⊂ Tε(x̄) for all ε > 0. To justify
the converse inclusion in (8.20), pick any element x∗ belonging to the set on the
left-hand side of (8.20). Then NFMCQ allows us to deduce from (8.19) that there
exists λ ∈ R

(T )
+ such that
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(x∗, 〈x∗, x̄〉) =
∑

t∈T
λt
(∇ϕt (x̄), 〈∇ϕt (x̄), x̄〉 − ϕt (x̄)

)
.

Thus we arrive at the following equalities:

0 =
∑

t∈T
λt 〈∇ϕt (x̄), x̄〉 −

∑

t∈T
λt
(〈∇ϕt (x̄), x̄〉 − ϕt (x̄)

) =
∑

t∈T
λtϕt (x̄).

Since ϕt (x̄) ≤ 0, it implies that λtϕt (x̄) = 0 for all t ∈ T and therefore yields x∗ ∈
cone {∇ϕt (x̄)| t ∈ T (x̄)}, which verifies the inclusion “⊂” in (8.20). To complete
the proof of the theorem, it remains to combine the obtained equality (8.20) with the
results of Theorem 8.12. �

The next example shows that PMFCQ cannot be replaced by EMFCQ in Theo-
rem 8.17 to ensure the “unperturbed” normal cone representations in the presence
of NFMCQ even in finite-dimensional settings.

Example 8.18 (EMFCQ Combined with NFMCQ Doesn’t Ensure the Unper-
turbed Normal Cone Representations). We revisit the infinite constraint system
in Example 8.3. It is shown there that this system satisfied EMFCQ but not PMFCQ
at x̄ = (−1, 0). It is also shown in Example 8.10 that NFMCQ holds at x̄. Observe
however that both representations in Theorem 8.17 are not satisfied for this system.
Indeed, we have

N̂(x̄;�) = N(x̄;�) 
= cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)} = cone {(1, 0)} = R+ × {0}
as depicted in Fig. 8.2.

Ω

x̄

−1

N̂(x̄; Ω) = N(x̄; Ω)

cone{∇ϕt(x̄)|t ∈ T (x̄)}

Fig. 8.2 Normal cones to countable inequality constraints.

The next consequence of Theorem 8.17 concerns infinite convex systems.

Corollary 8.19 (Normal Cone for Infinite Convex Systems). Suppose that all ϕt ,
t ∈ T , are convex and uniformly Fréchet differentiable and that h(x) := Ax is a
surjective continuous linear operator, and that PMFCQ (equivalently SSC) holds at
x̄ ∈ �. Then the normal cone to the convex set � at the point x̄ is calculated by
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N(x̄;�) =
⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ A∗Y ∗.

If in addition NFMCQ holds at x̄, then we have

N(x̄;�) = cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)}+ A∗Y ∗. (8.21)

Proof. It follows from Proposition 8.7 and Theorems 8.12 and 8.17. �
Finally in this subsection, we present specifications of the normal cone represen-

tation for the case of linear infinite systems.

Proposition 8.20 (Normal Cone Representations for Infinite Linear Constraint
Systems). Consider system (8.2) with ϕt (x) = 〈a∗

t , x〉−bt , t ∈ T , and h(x) := Ax.
Suppose that A is a surjective continuous linear operator and that the coefficient set
{a∗
t | t ∈ T } is bounded. If SSC holds at x̄, then we have

N(x̄;�) =
⋂

ε>0

cl ∗cone
{
a∗
t

∣∣ t ∈ Tε(x̄)
}+ A∗Y ∗.

If in addition the convex conic hull of {(a∗
t , bt )| t ∈ T } is weak∗ closed in X∗ × R

and h ≡ 0, then the simplified representation holds:

N(x̄;�) = cone
{
a∗
t

∣∣ t ∈ T (x̄)}+ A∗Y ∗. (8.22)

Proof. Both statements of the proposition follow from the results of Corollary 8.19,
where the boundedness of the coefficient set {a∗

t | t ∈ T } comes from the standing
assumptions (SA) imposed in this section. �

8.1.3 Optimality Conditions for Nonlinear SIPs

Here we derive necessary optimality conditions for SIPs of type (8.1) in infinite-
dimensional spaces by combining the above calculation formulas for the normal
cones to the feasible solution set with subdifferential calculus. It is done by employ-
ing the standard scheme in nonsmooth optimization used in Section 6.1 for non-
differentiable programs. The main point reflecting the nature of infinite constraint
systems is the normal cone calculations given in Subsection 8.1.2 under appropriate
constraint qualifications. For brevity we confine ourselves to deriving lower subdif-
ferential optimality conditions while leaving those of the upper subdifferential type
as exercises for the reader.

Let us begin with the following necessary optimality conditions in arbitrary Ba-
nach spaces under Fréchet differentiability assumptions.

Proposition 8.21 (Necessary Optimality Conditions for Differentiable SIPs in
Banach Spaces). Let x̄ be a local minimizer of SIP (8.1) under the validity of PM-
FCQ at x̄. Suppose further that the inequality constraint functions ϕt , t ∈ T , are
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uniformly Fréchet differentiable at x̄ and the cost function ϕ is Fréchet differentiable
at this point. Then we have the inclusion

0 ∈ ∇ϕ(x̄)+
⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ ∇h(x̄)∗Y ∗. (8.23)

If in addition the NFMCQ holds at x̄, then there are multipliers λ ∈ R
(T )
+ and

y∗ ∈ Y ∗ satisfying the differential KKT condition

0 = ∇ϕ(x̄)+
∑

t∈T (x̄)
λt∇ϕt (x̄)+ ∇h(x̄)∗y∗. (8.24)

Proof. We have that x̄ is a local minimizer of unconstrained problem

minimize f = ϕ(x)+ δ(x;�)
with the infinite penalty on the constraints in (8.2). Applying the generalized Fermat
rule from Proposition 1.30(i), which holds in any Banach space, yields

0 ∈ ∂̂(ϕ + δ(·;�))(x̄).
Since ϕ is Fréchet differentiable at x̄, it follows now from the elementary Banach
space sum rule of Proposition 1.30(ii) that

0 ∈ ∇ϕ(x̄)+ ∂̂δ(x̄;�)(x̄) = ∇ϕ(x̄)+ N̂(x̄;�).
Now using representation (8.10) of Theorem 8.12, we arrive at (8.23). The second
part (8.24) immediately follows from Theorem 8.17. �

The next result concerns SIPs with nonsmooth objectives on Asplund spaces
being more involved in comparison with Proposition 8.21.

Theorem 8.22 (Necessary Optimality Conditions for Nonconvex SIPs in As-
plund Spaces, I). Let x̄ be a local minimizer of (8.1), where the space X is Asplund
while Y is arbitrary Banach. Suppose that the constraint functions ϕt , t ∈ T , are
uniformly strictly differentiable at x̄, that the cost function ϕ is l.s.c. around x̄ and
SNEC at this point, and that the qualification condition

∂∞ϕ(x̄) ∩
[

−
⋂

ε>0

cl∗cone
{∇ϕt (x̄)

∣∣t ∈ Tε(x̄)
}− ∇h(x̄)∗Y ∗] = {0} (8.25)

is fulfilled; the latter two assumptions are automatic when ϕ is locally Lipschitzian
around x̄. If PMFCQ is satisfied at x̄, then

0 ∈ ∂ϕ(x̄)+
⋂

ε>0

cl∗cone
{∇ϕt (x̄)

∣∣t ∈ Tε(x̄)
}+ ∇h(x̄)∗Y ∗. (8.26)
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If in addition we assume that NFMCQ holds at x̄ and replace (8.25) by

∂∞ϕ(x̄) ∩
[

− cone
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)}− ∇h(x̄)∗Y ∗] = {0}, (8.27)

then there exist multipliers λ ∈ R
(T )
+ and y∗ ∈ Y ∗ such that the following subdiffer-

ential KKT condition is satisfied:

0 ∈ ∂ϕ(x̄)+
∑

t∈T (x̄)
λt∇ϕt (x̄)+ ∇h(x̄)∗y∗. (8.28)

Proof. Observe first that the feasible set � is locally closed around x̄. Indeed, it
follows from (8.4) that there are γ > 0 and η > 0 sufficiently small such that for
any sequence {xk} ⊂ � ∩ Bη(x̄) converging to some x0, we have

‖h(x0)‖ ≤ (‖∇h(x̄)‖ + γ )‖xk − x0‖ and

ϕt (x0) ≤ supτ∈T (‖∇ϕτ (x̄)‖ + γ ) ‖xk − x0‖ + ϕt (xk)
for each t ∈ T and k ∈ N. By passing to the limit as k → ∞, the latter yields that
h(x0) = 0 and ϕt (x0) ≤ 0 for all t ∈ T , i.e., x0 ∈ � ∩ Bη(x̄), which justifies the
claimed local closedness of �.

Employing now the generalized Fermat rule to the unconstrained form of (8.1)
at x̄ and using the subdifferential sum rule from Theorem 2.19 valid in any Asplund
space under the SNEC assumption (see Exercise 2.54(i)) yield

0 ∈ ∂(ϕ + δ(·;�))(x̄) ⊂ ∂ϕ(x̄)+ ∂δ(x̄;�) = ∂ϕ(x̄)+N(x̄;�)
provided that ∂∞ϕ(x̄) ∩ (−N(x̄;�)) = {0}. We apply further to both these condi-
tions the basic normal cone representation of Theorem 8.12. It gives us (8.26) under
the fulfillment of (8.25) and PMFCQ at x̄. Employing finally Theorem 8.17 instead
of Theorem 8.12 in the setting above, we arrive at the KKT condition (8.28) under
the assumed NFMCQ at x̄ and the qualification condition (8.27). This completes the
proof of the theorem. �

Note that if ϕ is strictly differentiable at x̄, necessary optimality conditions ob-
tained in Theorem 8.22 and Proposition 8.21 look the same. However, the results of
Proposition 8.21 require merely Fréchet differentiability of the cost and constraint
functions in the general Banach space setting.

Let us present a consequence of Theorem 8.22 in the case where both spaces X
and Y are finite-dimensional and the index set T is compact. This is a conventional
situation in SIP theory, except the fact that now the cost function is far removed to
be smooth.

Corollary 8.23 (Necessary Conditions for Finite-Dimensional SIPs with Com-
pact Index Sets). Let x̄ be a local minimizer of (8.1), where dimY < dimX < ∞,
where T is a compact metric space, and where the mappings (x, t) �→ ϕt (x) and
(x, t) �→ ∇ϕt (x) are continuous while ϕ is l.s.c. around x̄. If the qualification
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requirements in (8.27) and EMFCQ hold at x̄, then there are multipliers λ ∈ R
(T )
+

and y∗ ∈ Y ∗ satisfying the KKT condition (8.28).

Proof. By Proposition 8.9 we have that NFMCQ holds at x̄ under the assumptions
made, which ensure also by Proposition 8.5 that PMFCQ reduces to EMFCQ. Then
the formulated corollary follows from Theorem 8.22. �

An important ingredient in the proof of Theorem 8.22 is applying the subdiffer-
ential sum rule in Asplund spaces given in Exercise 2.54(i) to the sum ϕ + δ(·;�).
It requires that either ϕ is SNEC at x̄ or� is SNC at this point. While the first possi-
bility was used in the proof above, now we are going to explore the second one. The
next proposition of its own interest presents verifiable conditions that ensure the
SNC property of the infinite system (8.2) expressed entirely in terms of its initial
data.

Proposition 8.24 (SNC Property of Infinite Systems). LetX be an Asplund space,
and let dimY < ∞ in the framework of (8.1). Assume that all the functions ϕt ,
t ∈ T , are Fréchet differentiable around some x̄ ∈ � and that the derivative family
{∇ϕt }t∈T is EQUICONTINUOUS around this point in the sense that there exists ε > 0
such that for each x ∈ Bε(x̄) and each γ > 0 there is 0 < ε̃ < ε with the property:

‖∇ϕt (x′)− ∇ϕt (x)‖ ≤ γ whenever x′ ∈ Bε̃(x) ∩� and t ∈ T .
Then the feasible set � in (8.2) is locally closed around x̄ and SNC at this point
provided that the validity of PMFCQ at x̄.

Proof. Consider first the set�1 := {x ∈ X| ϕt (x) ≤ 0, t ∈ T }. By using arguments
similar to the proof of Theorem 8.22, we justify the local closedness of �1 around
x̄. Now let us verify that �1 is SNC at this point. To proceed, pick any sequence
(xk, x

∗
k ) ∈ �1 ×X∗, k ∈ N, satisfying

xk
�1→ x̄, x∗

k ∈ N̂(xk;�1) and x∗
k

w∗→ 0 as k → ∞
and, by using the imposed equicontinuity, observe that the functions ϕt satisfy the
standing assumptions (SA) at xk for all large k ∈ N. Further, the reader can check
via Exercise 8.91 that condition (8.4) holds at xk . Since PMFCQ is satisfied at x̄,
there exist δ > 0, ε > 0, and x̃ ∈ X such that 〈∇ϕt (x̄), x̃〉 ≤ −2δ for all t ∈ T2ε(x̄).
Whenever t ∈ Tε(xk) we have

0 ≥ ϕt (x̄) ≥ ϕt (xk)− 〈∇ϕt (x̄), xk − x̄〉 − ‖xk − x̄‖s(‖xk − x̄‖) ≥ −2ε

for large k ∈ N, where the quantity s(·) is taken from (8.3). Hence we may suppose
without loss of generality that

Tε(xk) ⊂ T2ε(x̄) and sup
t∈Tε(xk)

〈∇ϕt (xk), x̃〉 ≤ −δ for k ∈ N. (8.29)



372 8 Nonconvex Semi-infinite Optimization

Applying now Theorem 8.12 in this setting, we have that whenever k ∈ N there
exists a net {λkν }ν∈N ⊂ R̃

Tε(xk)+ such that

x∗
k = w∗ − lim

ν∈N
∑

t∈Tε(xk)
λtkν∇ϕt (xk).

Combining this with (8.29) gives us the estimate

〈x∗
k , x̃〉 = lim

ν∈N
∑

t∈Tε(xk)
λtkν 〈∇ϕt (xk), x̃〉 ≤ −δ lim inf

ν∈N
∑

t∈Tε(xk)
λtkν .

Furthermore, for each x ∈ X, we get the relationships

‖x∗
k ‖ = sup

x∈B

∣∣∣ lim inf
ν∈N

∑

t∈Tε(xk)
λtkν 〈∇ϕt (xk), x〉

∣∣∣

≤ lim inf
ν∈N

∑

t∈Tε(xk)
λtkν sup

τ∈T
‖∇ϕτ (xk)‖ ≤ −〈x∗

k , x̃〉
δ

sup
τ∈T

‖∇ϕτ (xk)‖.

Since x∗
k

w∗→ 0, it shows that ‖x∗
k ‖ → 0 and thus �1 is SNC at x̄.

Consider next the set �2 := {x ∈ X| h(x) = 0}, which is obviously
closed around x̄. It follows from Exercise 2.30 and finite dimensionality of Y
that �2 is SNC at x̄. Moreover, we get from Exercise 1.54(ii) that N(x̄;�2) =
∇h(x̄)∗Y ∗. Thus for x∗ ∈ N(x̄;�1) ∩ (−N(x̄;�2)) there is y∗ ∈ Y ∗ satisfying
x∗ + ∇h(x̄)∗y∗ = 0. Since x∗ ∈ N(x̄;�1), we find by Theorem 8.12 such a net
{λν}ν∈N ∈ R

(T )
+ that x∗ = w∗ − limν∈N

∑
t∈Tε(x̄) λtν∇ϕt (x̄), which yields

0 = −〈∇h(x̄)∗y∗, x̃〉 = lim
ν∈N

∑

t∈Tε(x̄)
λtν〈∇ϕt (x̄), x̃〉 ≤ −2δ lim inf

ν∈N
∑

t∈Tε(x̄)
λtν .

This in turn ensures the relationships

〈x∗, x〉 = lim inf
ν∈N

∑

t∈Tε(x̄)
λtν〈∇ϕt (x̄), x〉

≤ lim inf
ν∈N

∑

t∈Tε(x̄)
λtν sup

τ∈T
‖∇ϕτ (x̄)‖ · ‖x‖ = 0, x ∈ X.

Hence we have x∗ = 0, and so N(x̄;�1) ∩ (−N(x̄;�2)) = {0}. It finally follows
from Exercise 2.45 that the intersection � = �1 ∩�2 is SNC at x̄. �

Observe that the assumption dim Y < ∞ is essential in Proposition 8.24. To
illustrate this, consider a particular case of (8.1) when T = ∅. It follows from Ex-
ercise 2.30 that the inverse image � = h−1(0) is SNC at x̄ ∈ � if and only if the
set {0} is SNC at 0 ∈ Y . Since N(0; {0}) = Y ∗, the latter holds if and only if the
weak∗ topology in Y ∗ agrees with the norm topology in Y ∗, which is only the case
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if dimY < ∞ by the fundamental Josefson-Nissenzweig theorem from geometric
theory of Banach spaces; see [207, Chapter 12].

The alternative SNC version of Theorem 8.22 is as follows.

Theorem 8.25 (Necessary Optimality Conditions for Nonconvex SIPs in As-
plund Spaces, II). Let x̄ be a local minimizer of (8.1) under the assumptions of
Proposition 8.24, and let the qualification condition (8.25) be satisfied. Then we
have the asymptotic necessary optimality condition (8.26). If in addition NFMCQ
holds at x̄ and (8.25) is replaced by (8.27), then there exist multipliers λ ∈ R

(T )
+ and

y∗ ∈ Y ∗ such that the subdifferential KKT condition (8.28) is satisfied.

Proof. It follows the lines in the proof of Theorem 8.22 with applying Proposi-
tion 8.24 that ensures the SNC and closedness properties of � in the subdifferential
sum rule for ϕ + δ(·;�) used therein. �

The next result provides necessary and sufficient optimality conditions for con-
vex SIPs in general Banach spaces.

Theorem 8.26 (Characterization of Optimal Solutions to Convex SIPs). Let
both spaces X and Y be Banach. Assume that the functions ϕt , t ∈ T , are convex
and uniformly Fréchet differentiable and that h(x) := Ax is a surjective continuous
linear operator. Suppose further that the cost function ϕ is convex and continuous
at some point in �. If PMFCQ (equivalently SSC) holds at x̄, then x̄ is a global
minimizer of problem (8.1) if and only if

0 ∈ ∂ϕ(x̄)+
⋂

ε>0

cl ∗cone
{∇ϕt (x̄)

∣∣ t ∈ Tε(x̄)
}+ A∗Y ∗.

If in addition NFMCQ is also satisfied at x̄, then x̄ is a global minimizer of problem
(8.1) if and only if there exist λ ∈ R

(T )
+ and y∗ ∈ Y ∗ such that

0 ∈ ∂ϕ(x̄)+
∑

t∈T (x̄)
λt∇ϕt (x̄)+ A∗y∗. (8.30)

Proof. The convexity of (8.1) tells us that x̄ is its global minimizer if and only of
0 ∈ ∂(ϕ + δ(·;�))(x̄). Applying the convex subdifferential sum rule to the latter
inclusion valid under the continuity assumption on ϕ, we get

0 ∈ ∂ϕ(x̄)+ ∂δ(x̄;�) = ∂ϕ(x̄)+N(x̄;�)
and then complete the proof by applying the results of Corollary 8.19. �

8.2 Lipschitzian Semi-infinite Programs

The next class of problem of our study consists of fully nonsmooth SIPs with in-
equality constraints given by locally Lipschitzian functions:
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{
minimize ϕ(x) subject to
ϕt (x) ≤ 0 with t ∈ T , x ∈ X, (8.31)

where T is an arbitrary index set. The generalized differential tools of our analysis
revolve around basic subgradients of locally Lipschitzian functions, and we suppose
that the decision spaceX is Asplund unless otherwise stated. The methods developed
in this infinite-dimensional case are not essentially more complicated than in finite
dimensions, and the reader can confine his/her main attention to the latter case for
simplicity.

Our strategy to derive necessary optimality conditions for problem (8.31) is sig-
nificantly different in comparison with the approach in the previous section. We
consider now the above SIP in the equivalent single-constrained form

minimize ϕ(x) subject to ψ(x) := sup
{
ϕt (x)

∣∣ t ∈ T } ≤ 0 (8.32)

given by the intrinsically nonsmooth supremum function ψ : X → R. Problem
(8.32) allows us to apply the standard machinery of nondifferentiable programming
to deriving necessary optimality conditions provided the possibility to evaluate ap-
propriate subgradients of ψ , which of course is of its own significant interest. We
proceed in this direction in what follows.

8.2.1 Some Technical Lemmas

In this subsection we present some technical lemmas, which are important to derive
the main results in the two subsequent parts of this section. Our standing assumption
for the rest of the section is that the constraint functions ϕt : R are uniformly locally
Lipschitzian around a given point x̄ ∈ domψ with some rank K > 0. This means
the existence of a positive number δ such that

|ϕt (x)− ϕt (y)| ≤ K‖x − y‖ for all x, y ∈ Bδ(x̄), t ∈ T . (8.33)

Note that (8.33) yields the local Lipschitz continuity of the supremum function
(8.32) around x̄ with rank K . Define the set of ε-active indices at x̄ by

Tε(x̄) := {
t ∈ T ∣∣ ϕt (x̄) ≥ ψ(x̄)− ε}, ε ≥ 0, (8.34)

with T (x̄) := T0(x̄) and observe that Tε(x̄) 
= ∅ for ε > 0. We also denote

�(T ) :=
{
λ ∈ R̃

T+
∣∣∣
∑
t∈T λt = 1

}
,

�ε(̂x) := {
λ ∈ �(Tε(x̄))

∣∣ ϕt (̂x) = ϕs (̂x) for all t, s ∈ supp λ
}
.

(8.35)

First we obtain certain “fuzzy estimates” for regular subgradients of supremum
functions, which give us some preliminary information important for deriving the
main results in what follows.
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Lemma 8.27 (Fuzzy Estimates of Regular Subgradients for Supremum Func-
tions). Let V ∗ be a weak∗ neighborhood of the origin in X∗. Then the following
assertions hold for the supremum function ψ in (8.32):

(i) For each regular subgradient x∗ ∈ ∂̂ψ(x̄) and each ε > 0, there are elements
x̂ ∈ Bε(x̄) and λ ∈ �ε(̂x) from (8.35) such that

x∗ ∈
∑

t∈Tε(x̄)
λt ∂ϕt (̂x)+ V ∗.

(ii) For each regular subgradient x∗ ∈ ∂̂ψ(x̄) and each ε > 0, there are elements
λ ∈ �(Tε(x̄)) and x̂t ∈ Bε(x̄) for all t ∈ Tε(x̄) such that

x∗ ∈
∑

t∈Tε(x̄)
λt ∂̂ϕt (̂xt )+ V ∗.

Proof. To justify (i), fix arbitrary x∗ ∈ ∂̂ψ(x̄) and then find m ∈ N, γ > 0, and
xk ∈ X as k = 1, . . . , m satisfying the inclusion

γB∗ + span {x1, . . . , xm}⊥ ⊂ 1

2
V ∗. (8.36)

Without loss of generality, we assume that V ∗ is convex and that 2ε ≤ γ and then
define L := span {x1, . . . , xm}. Since x∗ ∈ ∂̂ψ(x̄), there is δ > 0 with

δ <
1

2
, 2(K + 1)δ ≤ ε, and

ε + 2(K + 1)δ

1 − 2δ
≤ γ (8.37)

such that ϕt are uniformly Lipschitzian with rank K in B2δ(x̄) and that

ψ(x)− ψ(x̄)− 〈x∗, x − x̄〉 ≥ −ε‖x − x̄‖ for all x ∈ Bδ(x̄). (8.38)

Consider now the following constrained optimization problem:
{

minimize y − 〈x∗, x − x̄〉 + ε‖x − x̄‖ − ψ(x̄) subject to
ϕt (x)− y ≤ 0, t ∈ T , (x, y) ∈ Bδ(x̄)× R.

(8.39)

It follows from (8.38) that (x̄, ψ(x̄)) is a local minimizer of (8.39). Define the l.s.c.
function g : X × R → R by

g(x, y) := y − 〈x∗, x − x̄〉 + ε‖x − x̄‖ − ψ(x̄)+ δ((x, y);�)

with� := (L∩Bδ(x̄))×[ψ(x̄)−1, ψ(x̄)+1] and then a family of gt : X×R → R

by gt (x, y) := ϕt (x)− y for all t ∈ T . Due to (8.38) we have the inclusion

{
(x, y) ∈ X × R

∣∣g(x, y)+ δ2 ≤ 0
} ⊂

⋃

t∈T

{
(x, y) ∈ intB2δ(x̄)× R

∣∣gt (x, y) > 0
}
.
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The set on the left-hand side of the latter inclusion is closed and bounded and hence
compact in the finite-dimensional space L × R. Furthermore, each set {(x, y) ∈
intB2δ(x̄) × R| gt (x, y) > 0} is open due to the Lipschitz continuity of ϕt on
B2δ(x̄). Thus there exists a finite subset S of T such that

{
(x, y) ∈ X × R

∣∣g(x, y)+ δ2 ≤ 0
} ⊂

⋃

s∈S

{
(x, y) ∈ intB2δ(x̄)× R

∣∣gs(x, y) > 0
}
,

which implies that (x̄, ψ(x̄)) is a δ2-optimal solution to the following optimization
problem with finitely many inequality constraints:

{
minimize g(x, y) subject to
gs(x, y) ≤ 0, s ∈ S, (x, y) ∈ Bδ(x̄)× R.

(8.40)

Note further that ∂gs(x, y) ⊂ X∗ × {−1} for all s ∈ S and that N((x, y);Bδ(x̄) ×
R) ⊂ N(x;Bδ(x̄))× {0} . This ensures the implication
[
0 ∈

∑

s∈S(x,y)
λs∂gs(x, y)+N

(
(x, y);Bδ(x̄)× R

)] �⇒ [
λs = 0, s ∈ S(x, y)]

whenever λs ≥ 0 for s ∈ S(x, y) := {s ∈ S|gs(x, y) = 0} = {s ∈ S|ϕs(x) = y}.
Applying now to problem (8.40) the suboptimality conditions from Exercise 6.35(ii)
held in Asplund spaces (see [522, Theorem 5.30]) gives us (̂x, ŷ) ∈ X×R, (̂x∗, 1) ∈
∂g(̂x, ŷ), (x∗

s ,−1) ∈ ∂gs (̂x, ŷ) as s ∈ S, (u∗, 0) ∈ N((̂x, ŷ);Bδ(x̄) × R)), and
λ ∈ R

S+ such that ‖x̂ − x̄‖ + |̂y − ψ(x̄)| ≤ δ/2 and

∥∥∥(̂x∗, 1)+
∑

s∈S(̂x,̂y)
λs(x

∗
s ,−1)+ (u∗, 0)

∥∥∥ ≤ 2δ. (8.41)

Since x̂ ∈ Bδ
2
(x̄) ⊂ intBδ(x̄), we have u∗ ∈ N(̂x;Bδ(x̄)) = {0}. Moreover, it

follows from the convexity of the function g that

x̂∗ ∈ −x∗ + εB∗ +N(x̂;L ∩ Bδ(x̄)
) ⊂ −x∗ + εB∗ +N(̂x;L)+N(x̂;Bδ(x̄)

)

⊂ −x∗ + εB∗ + L⊥.

Thus estimate (8.41) yields ‖∑s∈S(̂x,̂y) λs − 1‖ ≤ 2δ and

x∗ ∈
∑

s∈S(̂x,̂y)
λsx

∗
s + (ε + 2δ)B∗ + L⊥. (8.42)

By δ < 1/2 we have
∑
s∈S(̂x,̂y) λs > 0. Let us further define

λ′
s := λs

[ ∑

t∈S(̂x,̂y)
λt

]−1
for all s ∈ S(̂x, ŷ),
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which gives us
∑
s∈S(̂x,̂y) λ′

s = 1. Since ‖x∗‖ ≤ K , we derive from (8.36), (8.37),
and (8.42) the following chain of inclusions:

x∗ ∈ 1
∑
s∈S(̂x,̂y) λs

x∗ +
∣∣∣1 − 1

∑
s∈S(̂x,̂y) λs

∣∣∣‖x∗‖B∗

⊂
∑

s∈S(̂x,̂y)
λ′
sx

∗
s + ε + 2δ

∑
s∈S(̂x,̂y) λs

B
∗ + L⊥ +

∣∣∣
∑
s∈S(̂x,̂y) λs − 1

∣∣∣
∑
s∈S(̂x,̂y) λs

KB
∗

⊂
∑

s∈S(̂x,̂y)
λ′
sx

∗
s + ε + 2δ

1 − 2δ
B

∗ + L⊥ + 2δ

1 − 2δ
KB

∗

⊂
∑

s∈S(̂x,̂y)
λ′
sx

∗
s + ε + 2(K + 1)δ

1 − 2δ
B

∗ + L⊥

⊂
∑

s∈S(̂x,̂y)
λ′
sx

∗
s + γB∗ + L⊥ ⊂

∑

s∈S(̂x,̂y)
λ′
sx

∗
s + V ∗.

(8.43)

Now we claim that S(̂x, ŷ) ⊂ Tε(x̄). Indeed, it follows from (8.33) that

ϕs(x̄) ≥ ϕs (̂x)−K‖x̄ − x̂‖ ≥ ŷ −K δ
2

≥ ψ(x̄)− δ

2
−K δ

2
≥ ψ(x̄)− ε

for each s ∈ S(̂x, ŷ), which implies that s ∈ Tε(x̄). It yields S(̂x, ŷ) ⊂ Tε(x̄) and
together with (8.43) verifies assertion (i) of the lemma.

To justify assertion (ii), we get x∗
s ∈ ∂ϕs (̂x) for s ∈ S(̂x, ŷ) from the proof of (i)

and then by the first subdifferential representation in (1.37), which valid in Asplund
spaces, find xs ∈ X and x̂∗

s ∈ ∂̂ϕs(xs) such that ‖xs − x̂‖ ≤ δ and x∗
s ∈ x̂∗

s + V ∗.
This gives us the inclusions

x∗ ∈
∑

s∈S(̂x,̂y)
λ′
sx

∗
s + V ∗ ⊂

∑

s∈S(̂x,̂y)
λ′
s x̂

∗
s +

∑

s∈S(̂x,̂y)
λ′
sV

∗ + V ∗

⊂
∑

s∈S(̂x,̂y)
λ′
s x̂

∗
s + V ∗ + V ∗ ⊂

∑

s∈S(̂x,̂y)
λ′
s x̂

∗
s + 2V ∗.

Since ‖xs − x̄‖ ≤ ‖xs − x̂‖ + ‖x̂ − x̄‖ ≤ 2δ ≤ ε and S(̂x, ŷ) ⊂ Tε(x̄), we arrive at
the claimed inclusion in (ii) and complete the proof of the lemma. �

The next two lemmas don’t directly relate to either SIPs or subgradients of supre-
mum functions while being of their own interest and important for the proofs of the
main results of this section.

Lemma 8.28 (Weak∗ Closed Conic Hulls). Let A ⊂ X∗ be weak∗ compact with
0 /∈ A for a Banach space X. Then the conic hull R+A is weak∗ closed.

Proof. To show that the cone R+A is weak∗ closed in X∗, take any net {x∗
ν }ν∈N ⊂

R+A weak∗ converging to some x∗ ∈ X∗. Hence there exist nets {λν}ν∈N ⊂ R+
and {u∗

ν}ν∈N ⊂ A such that λνu∗
ν = x∗

ν

w∗→ x∗. Define λ := lim supν∈N λν . If
λ = ∞, then we find a subnet {λν} (without relabeling) converging to ∞. Since A
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is weak∗ compact, assume without loss of generality that u∗
ν

w∗→ u∗. Furthermore,
the relationships 〈λνu∗

ν, x〉 → 〈x∗, x〉 and 〈u∗
ν, x〉 → 〈u∗, x〉 for all x ∈ X imply

that 〈u∗
ν, x〉 → 0 for all x ∈ X due to λν → ∞. This gives us 0 ∈ A, which

contradicts the assumption made. Thus λ < ∞. By similar arguments we show that

λν → λ ∈ R+ and u∗
ν

w∗→ u∗ ∈ A. It follows then that x∗ = λu∗ ∈ R+A, which
tells us that R+A is weak∗ closed and thus completes the proof of the lemma. �

The last lemma establishes some relationships for the Painlevé-Kuratowski se-
quential outer limits of increasing set-valued mappings in Asplund spaces.

Lemma 8.29 (Outer Limits of Increasing Mappings). Let X be an Asplund
space, and let F : R+ →→ X∗ be a set-valued mapping. Suppose that there is ε > 0
such that F(ε) is bounded in X∗ and that F is increasing, i.e., F(ε1) ⊂ F(ε2)

whenever 0 ≤ ε1 ≤ ε2. Then the following assertions hold:

(i) cl ∗[Lim sup
ε↓0

F(ε)] =
⋂

ε>0

cl ∗F(ε).

(ii) cl ∗co
[

Lim sup
ε↓0

F(ε)
] = cl ∗[Lim sup

ε↓0
coF(ε)

]
.

(iii) If 0 /∈ cl ∗[Lim sup
ε↓0

F(ε)
]
, then we have

R+cl ∗[Lim sup
ε↓0

F(ε)
] = cl ∗ Lim sup

ε↓0

[
R+F(ε)

]
,

Proof. The inclusion “⊂” in (i) immediately follows from the definitions. To justify
the converse inclusion, pick any x∗ belonging to the set on right-hand side set of
(i) and take an arbitrary convex weak∗ neighborhood V ∗ of the origin in X∗. This
gives us sequences εk ↓ 0 and x∗

k ∈ F(εk) such that x∗ ∈ x∗
k + V ∗

2 . Since F(ε) ⊂
KB

∗ for some ε,K > 0, there is a subsequence of {x∗
k } (without relabeling) weak∗

converging to some u∗ ∈ Lim supε↓0 F(ε). For large k ∈ N, we have x∗
k ∈ u∗ + V ∗

2 ,
which yields

x∗ ∈ u∗ + V ∗

2
+ V ∗

2
= u∗ + V ∗ ⊂ Lim sup

ε↓0
F(ε)+ V ∗

The arbitrary choice of V ∗ allows us to complete the proof of (i).
To proceed with the proof of (ii), observe from (i) that

Lim sup
ε↓0

F(ε) ⊂
⋂

ε>0

cl ∗F(ε) ⊂
⋂

ε>0

cl ∗coF(ε) = cl ∗[Lim sup
ε↓0

coF(ε)
]
,

which ensures the inclusion “⊂” in (ii). To prove the converse inclusion therein, it
suffices to verify that

Lim sup
ε↓0

coF(ε) ⊂ cl ∗co
[

Lim sup
ε↓0

F(ε)
]
.
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Assuming the contrary, find sequences εk ↓ 0 and x∗
k

w∗→ x∗ with x∗
k ∈ coF(εk) such

that x∗ is not in the set on the right-hand side of (ii). The classical convex separation
theorem gives us 0 
= v ∈ X and α, β ∈ R satisfying

〈x∗, v〉 > α > β > 〈u∗, v〉 for all u∗ ∈ Lim sup
ε↓0

F(ε). (8.44)

Since x∗
k

w∗→ x∗, this allows us to suppose without loss of generality that 〈x∗
k , v〉 >

α+β
2 as k ∈ N. By x∗

k ∈ coF(xk) there exist a finite index set Sk , λk ∈ �(Sk) from
(8.35), and x∗

ks
∈ F(εk) as s ∈ Sk such that

x∗
k =

∑

s∈Sk
λks x

∗
ks
, k ∈ N.

Among elements of the set {x∗
ks

| s ∈ Sk} for each k ∈ N, we select x̂∗
k ∈ F(εk) such

that 〈̂x∗
k , v〉 = max{〈x∗

ks
, v〉| s ∈ Sk}. It follows therefore that

〈̂x∗
k , v〉 ≥

∑

s∈Sk
λks 〈x∗

ks
, v〉 = 〈x∗

k , v〉 >
α + β

2
.

Since {̂x∗
k } is bounded in X∗ and X is Asplund, we can assume that {̂x∗

k } weak∗

converges to some u∗ ∈ X∗. This yields u∗ ∈ Lim supε↓0 F(ε) and 〈u∗, v〉 ≥ α+β
2 ,

which contradicts to (8.44) and thus justifies (ii).
It remains to prove (iii) under the extra assumption made. The inclusion “⊂”

therein is obvious. To justify the converse inclusion, we show that

Lim sup
ε↓0

[R+F(ε)] ⊂ R+cl ∗[Lim sup
ε↓0

F(ε)
]
, (8.45)

where the set on the the right-hand side is weak∗ closed by Lemma 8.28. To prove
(8.45), pick any element x∗ 
= 0 from the set on the left-hand side of (8.45) and find

εk ↓ 0, λk ∈ R+, and u∗
k ∈ F(εk) as k ∈ N such that λku∗

k

w∗→ x∗. Following the
proof of Lemma 8.28, suppose without loss of generality that λk → λ ∈ R+ and

u∗
k

w∗→ u∗ ∈ Lim supε↓0 F(ε). It yields λku∗
k

w∗→ λu∗ = x∗, and so x∗ belongs to the
set on the right-hand side of (8.45). This justifies (iii) and completes the proof of the
lemma. �

8.2.2 Basic Subgradients of Supremum Functions

By using the preliminary results of Subsection 8.2.1, we now proceed with deriving
pointbased upper estimates for the basic subdifferential of the supremum function
ψ in (8.32) under various assumptions in Asplund spaces.
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Our first theorem here employs the notion of the weak∗ outer stability of a map-
ping F : Z →→ X∗ at z̄ meaning the validity of the inclusion Lim supz→z̄ F (z) ⊂
cl ∗F(z̄). Note that it relates to the standard notion of weak∗ outer semicontinuity of
F at z̄ (not used below), where the operation cl ∗ is omitted on the right-hand side
of the latter inclusion.

Theorem 8.30 (Pointbased Estimates of Basic Subgradients for Supremum
Functions). Given ϕt in (8.31), define C : R+ →→ X∗ by

C(ε) :=
⋃{ ∑

t∈Tε(x̄)
λt ∂ϕt (x)

∣∣∣ x ∈ Bε(x̄), λ ∈ �ε(x)
}
, ε ≥ 0, (8.46)

where �ε(x) is taken from (8.35) for ε > 0, and where �0(x) := �(T (x)). Then
the following assertions hold:

(i) The basic subdifferential of ψ in (8.32) at x̄ is estimated by

∂ψ(x̄) ⊂
⋂

ε>0

cl ∗C(ε). (8.47)

(ii) The weak∗ outer stability of the mapping (8.46) at zero ensures that

∂ψ(x̄) ⊂ cl ∗[⋃{ ∑

t∈T (x̄)
λt ∂ϕt (x̄)

∣∣∣ λ ∈ �(T (x̄))
}]
. (8.48)

(iii) If in addition X is reflexive and ϕt , t ∈ T (x̄), are lower regular at x̄, then ψ
is also lower regular at x̄ and (8.48) holds as equality.

Proof. To justify (i), pick any x∗ ∈ ∂ψ(x̄) and fix an arbitrary weak∗ neighborhood
V ∗ of the origin in X∗. By definition of x∗ there are sequences xk → x̄ and x∗

k ∈
∂̂ψ(xk) satisfying x∗

k

w∗→ x∗. Select a neighborhoodU∗ of 0 ∈ X∗ with cl ∗U∗ ⊂ V ∗
and find a sequence δk ↓ 0 satisfying δk > ‖xk − x̄‖ for all k ∈ N. It follows from
Lemma 8.27 that there exist x̂k ∈ Bδk (xk) and λk ∈ �(Tδk (xk)) with ϕt (̂xk) =
ϕs (̂xk) for all t, s ∈ supp λk and such that

x∗
k ∈

∑

t∈Tδk (xk)
λkt ∂ϕt (̂xk)+ U∗. (8.49)

Note further that for all k ∈ N sufficiently large, we have

ϕt (x̄) ≥ ϕt (xk)−K‖xk − x̄‖ ≥ ψ(xk)− δk −K‖xk − x̄‖
≥ ψ(x̄)− 2K‖xk − x̄‖ − δk ≥ ψ(x̄)− (2K + 1)δk

whenever t ∈ Tδk (xk). Defining εk := max{2δk, (2K + 1)δk} and using the above
inequalities give us the inclusions x̂k ∈ Bεk (x̄) and Tδk (xk) ⊂ Tεk (x̄). This implies
that λk ∈ �εk (̂xk) and x∗

k ∈ C(εk) + U∗ by (8.49). It follows that there are x̂∗
k ∈

C(εk) and u∗
k ∈ U∗ satisfying x∗

k = x̂∗
k +u∗

k . Observe further that C(εk) is contained
inKB

∗ for all large k ∈ N. The sequence {̂x∗
k } is bounded in X∗ and hence contains
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a weak∗ convergent subsequence by the Asplund property of X. Assuming without

loss of generality that it itself converges to some x∗ ∈ X∗, we get u∗
k

w∗→ x∗ − x̂∗ ∈
cl ∗U∗ and therefore

x∗ = x̂∗ + (x∗ − x̂∗) ∈ [
Lim sup
ε↓0

C(ε)
]+ cl ∗U∗ ⊂ [

Lim sup
ε↓0

C(ε)
]+ V ∗

for any V ∗, which implies that x∗ ∈ cl ∗[Lim supε↓0 C(ε)]. Applying now
Lemma 8.29 yields (8.47) and thus justifies (i). Assertion (ii) follows from (i)
by the assumed weak∗ outer stability of the mapping C(·) in (8.46).

It remains to prove (iii) under the additional assumptions made. Take any x∗ ∈
C(0) and find λ ∈ �(T (x̄)) such that

x∗ ∈
∑

t∈T (x̄)
λt ∂ϕt (x̄) =

∑

t∈T (x̄)
λt ∂̂ϕt (x̄).

We can easily check the inclusions

∑

t∈T (x̄)
λt ∂̂ϕt (x̄) ⊂ ∂̂

( ∑

t∈T (x̄)
λtϕt

)
(x̄) and ∂̂

( ∑

t∈T (x̄)
λtϕt

)
(x̄) ⊂ ∂̂ψ(x̄)

implied by
∑
t∈T (x̄) λtϕt (x̄) = ψ(x̄) and

∑
t∈T (x̄) λtϕt (x) ≤ ψ(x) for all x ∈ X.

Thus C(0) ⊂ ∂̂ψ(x̄) and it follows from (8.48) that

∂̂ψ(x̄) ⊂ ∂ψ(x̄) ⊂ cl ∗C(0) ⊂ cl ∗∂̂ψ(x̄) = ∂̂ψ(x̄),

where the last equality holds due to the reflexivity of the space X. This justifies the
equality in (8.48) and completes the proof of the theorem. �

Let us construct an example in R
2 showing that the set on the right-hand side of

(8.47) is generally nonconvex. In this example the equality holds in (8.47) and the
usage of the perturbed set �ε(x) in (8.46) is essential.

Example 8.31 (Nonconvex Estimate for Basic Subgradients of Supremum
Functions). Let X = R

2 and T = (0, 1) ⊂ R, and let the supremum function
ψ : R2 → R be defined by

ψ(x) := sup
{
tx3

1 − 1

(t + 1)2
|x2| + t3 − 1

∣∣∣ t ∈ T
}
.

Denote ϕt (x) := tx3
1 − 1

(t+1)2
|x2| + t3 − 1, t ∈ T , and let x̄ = (0, 0). It is easy

to check that the functions ϕt are uniformly Lipschitz continuous around x̄, that
T (x̄) = ∅, and that Tε(x̄) = {t ∈ T | t ≥ 3

√
1 − ε} for all ε > 0. Pick any x∗ ∈ C(ε)

and by (8.46) find x ∈ Bε(x̄) and λ ∈ �(Tε(x̄)) such that

x∗ ∈
∑

t∈Tε(x̄)
λt ∂ϕt (x) and ϕt (x) = ϕs(x) for all t, s ∈ supp λ.
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If ϕt (x) = ϕs(x) and t 
= s, we get from the above that

tx3
1 − 1

(t + 1)2
|x2| + t3 − 1 = sx3

1 − 1

(s + 1)2
|x2| + s3 − 1,

which is equivalent to the equation

x3
1 − t + s + 2

(t + 1)2(s + 1)2
|x2| = −t2 + ts − s2.

When ε > 0 is sufficiently small, this equation has no solution since its left-hand
side is close to 0 while the other side is close to −1 for x ∈ Bε(x̄) and t ∈ Tε(x̄). It
follows therefore that C(ε) = ⋃{∂ϕt (x)| t ∈ Tε(x̄), x ∈ Bε(x̄)} for small ε. Note
further that ∂ϕt (x) ⊂ {(3tx2

1 ,
1

(t+1)2
), (3tx2

1 ,− 1
(t+1)2

)}, where the equality holds for
x2 = 0. Applying Lemma 8.29 yields the representation

⋂

ε>0

clC(ε) = cl
[

Lim sup
ε↓0

C(ε)
] =

{(
0,

1

4

)
,
(

0,−1

4

)}
,

resulting in a nonconvex set. We also have ψ(x) = x3
1 − 1

4 |x2| for all x around x̄.
Hence the equality holds in (8.47), and the set ∂ψ(x̄) is nonconvex as well.

Now we introduce a subdifferential property for infinite families of functions,
which can be viewed as a nonsmooth extension of the uniform strict differentiability
exploited in Section 8.1 and, on the other hand, makes them behave similarly to
collections of finitely many Lipschitzian functions.

Definition 8.32 (Equicontinuous Subdifferentiability). We say that the functions
ϕt : X → R, t ∈ T , are EQUICONTINUOUSLY SUBDIFFERENTIABLE at x̄ if for any
weak∗ neighborhood V ∗ of 0 ∈ X∗ there is ε > 0 such that

∂ϕt (x) ⊂ ∂ϕt (x̄)+ V ∗ for all t ∈ Tε(x̄), x ∈ Bε(x̄). (8.50)

The next proposition shows that property (8.50) holds automatically for the afore-
mentioned classes of functions.

Proposition 8.33 (Sufficient Conditions for Equicontinuous Subdifferentiabil-
ity). The functions ϕt (x), t ∈ T , are equicontinuously subdifferentiable at x̄ if one
of the following conditions is satisfied:

(i) either the index set T is finite and the functions ϕt are locally Lipschitzian
around x̄ for all t ∈ T ,

(ii) or the functions ϕt indexed by an arbitrary set T are uniformly strictly differ-
entiable at x̄ in the sense described in (8.4).

Proof. To justify (i), consider finitely many functions ϕt locally Lipschitzian around
x̄; they are obviously uniformly Lipschitzian around x̄ with some rank K . Take
any weak∗ neighborhood V ∗ of 0 ∈ X∗ and suppose that V ∗ is convex. If ϕt are
not equicontinuously subdifferentiable at x̄, then we find by the basic subgradient
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representation some sequences εk ↓ 0, xk ∈ Bεk (x̄), uk ∈ Bεk (xk), tk ∈ Tεk (x̄),
x∗
k ∈ ∂ϕtk (xk), and u∗

k ∈ ∂̂ϕtk (uk) such that x∗
k /∈ ∂ϕtk (x̄)+ V ∗ and x∗

k ∈ u∗
k + V ∗

2 .
Since T is finite, there is a subsequence {tkm} of {tk} whose elements are constant,
say t̂ . Whenm is sufficiently large, the norms ‖u∗

km
‖ are bounded byK . Hence there

is a subsequence (no relabeling) of {u∗
km

} weak∗ converging to u∗ ∈ ∂ϕ̂t (x̄). It yields

x∗
km

∈ u∗
km

+ V ∗

2
⊂ u∗ + V ∗

2
+ V ∗

2
⊂ ∂ϕ̂t (x̄)+ V ∗ = ∂ϕtkm (x̄)+ V ∗

for large m, which leads us to a contradiction and thus justifies (i).
To prove (ii), fix any δ > 0 such that δB∗ ⊂ V ∗, where V ∗ is supposed to be

convex. It follows from (8.4) that each function ϕt is strictly differentiable at x̄.
Thus ∂ϕt (x̄) = {∇ϕt (x̄)} for each t ∈ T . Moreover, (8.4) allows us to find η > 0
such that r(η) < δ

2 . Define ε := η
2 and take any x ∈ Bε(x̄) and x∗

t ∈ ∂ϕt (x) for
some t ∈ Tε(x̄). Then there are xt ∈ Bε(x), x̂∗

t ∈ ∂̂ϕt (xt ), and εt ∈ (0, ε) such that
x∗
t ∈ x̂∗

t + V ∗ and that

ϕt (u)− ϕt (xt ) ≥ 〈̂x∗
t , u− xt 〉 − δ

2
‖u− xt‖ for all u ∈ Bεt (xt ).

Employing (8.4) again, we get the relationship

ϕt (u)− ϕt (xt ) ≤ 〈∇ϕt (x̄), u− xt 〉 + r(η)‖u− xt‖
for all u ∈ Bεt (xt ) ⊂ Bε+εt (x̄) ⊂ Bη(x̄). Combining the above yields

〈̂x∗
t − ∇ϕt (x̄), u− xt 〉 ≤

(
r(η)+ δ

2

)
‖u− xt‖ ≤ δ‖u− xt‖

for all u ∈ Bεt (xt ), which shows in turn that ‖x̂∗
t − ∇ϕt (x̄)‖ ≤ δ. Hence

x∗
t ∈ x̂∗

t + V ∗ ⊂ ∇ϕt (x̄)+ δB∗ + V ∗ ⊂ ∂ϕt (x̄)+ V ∗ + V ∗.

By the convexity of V ∗, we conclude that ∂ϕt (x) ⊂ ∂ϕt (x̄)+ 2V ∗ for all t ∈ Tε(x̄)
and x ∈ Bε(x̄) and thus complete the proof of the proposition. �

The equicontinuous subdifferentiability of ϕt allows us to improve the pointbased
evaluations of basic subgradients obtained in Theorem 8.30.

Corollary 8.34 (Enhanced Estimates of Basic Subgradients for Supremum
Functions Under Equicontinuous Subdifferentiability). Assuming the equicon-
tinuous subdifferentiability of the functions ϕt at x̄ in the setting of Theorem 8.30,
we have the inclusion

∂ψ(x̄) ⊂
⋂

ε>0

cl ∗D(ε), (8.51)

where the mapping D : R+ →→ X∗ is defined by
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D(ε) :=
⋃{ ∑

t∈Tε(x̄)
λt ∂ϕt (x̄)

∣∣∣ λ ∈ �(Tε(x̄))
}

for all ε ≥ 0. (8.52)

If in addition the mapping D in (8.52) is weak∗ outer stable at zero, then

∂ψ(x̄) ⊂ cl ∗[⋃{ ∑

t∈T (x̄)
λt ∂ϕt (x̄)

∣∣∣ λ ∈ �(T (x̄))
}]
. (8.53)

Proof. Let V ∗ be an arbitrary convex weak∗ neighborhood of 0 ∈ X∗. Since ϕt
are equicontinuously subdifferentiable at x̄, there is a number ε̄ > 0 such that in-
clusion (8.50) holds for all positive numbers ε < ε̄. Employing Theorem 8.30 and
Lemma 8.29, we can derive inclusion (8.51) by showing that

Lim sup
ε↓0

C(ε) ⊂ cl ∗ Lim sup
ε↓0

D(ε). (8.54)

To proceed with (8.54), pick any x∗ from the set on the left-hand side of (8.54) and

find sequences εk ↓ 0, xk ∈ Bεk (x̄), λk ∈ �εk (xk), and x∗
k

w∗→ x∗ such that

x∗
k ∈

∑

t∈Tεk (x̄)
λkt ∂ϕt (xk).

Since ϕt are equicontinuously subdifferentiable at x̄, the latter yields

x∗
k ∈

∑

t∈Tεk (x̄)
λkt (∂ϕt (x̄)+ V ∗) ⊂

∑

t∈Tεk (x̄)
λkt ∂ϕt (x̄)+ λkt V ∗ ⊂ D(εk)+ V ∗

for all large k ∈ N, and thus there is u∗
k ∈ D(εk) such that x∗

k ∈ u∗
k+V ∗. The uniform

boundedness of D(εk) allows us to conclude that u∗
k

w∗→ u∗ ∈ Lim supε↓0D(ε)

along a subsequence and then get the inclusions

x∗ ∈ x∗
k + V ∗ ⊂ u∗

k + V ∗ + V ∗ ⊂ u∗ + V ∗ + V ∗ + V ∗ ⊂ Lim sup
ε↓0

D(ε)+ 3V ∗.

This means that x∗ belongs to the right-hand side of (8.54), and so (8.51) holds. The
rest of the proof is similar to Theorem 8.30. �

The next corollary provides a verifiable sufficient condition, which ensures the
weak∗ outer stability of mapping (8.52) at zero and allows us to eliminate the weak∗
closure in the subdifferential upper estimate (8.53).

Corollary 8.35 (Subdifferential Estimate Without Weak∗ Closure). Let ϕt in
(8.32) be equicontinuously subdifferentiable at x̄, and let the set

⋃{∑

t∈T
λt
(
∂ϕt (x̄), ϕt (x̄)

)∣∣∣ λ ∈ �(T )
}

be weak∗ closed in X∗ × R. Then we have the estimate
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∂ψ(x̄) ⊂
⋃{ ∑

t∈T (x̄)
λt ∂ϕt (x̄)

∣∣∣ λ ∈ �(T (x̄))
}
.

Proof. To justify the claimed inclusion, it is sufficient to prove by (8.53) that map-
ping (8.52) is weak∗ outer stable at zero and that the set D(0) is weak∗ closed
under the assumption made. Pick any x∗ ∈ cl ∗[Lim supε↓0D(ε)] and employ
Lemma 8.29. Given ε > 0, this allows us to find a net (λν)ν∈N ⊂ �(Tε(x̄)) and
subgradients x∗

νt
∈ ∂ϕt (x̄) for each ν ∈ N and t ∈ T such that

x∗ = w∗ − lim
ν∈N

∑

t∈Tε(x̄)
λνt x

∗
νt
. (8.55)

Since supp λν ⊂ Tε(x̄), we observe that

ψ(x̄) ≥
∑

t∈Tε(x̄)
λνt ϕt (x̄) ≥

∑

t∈Tε(x̄)
λνt
(
ψ(x̄)− ε) = ψ(x̄)− ε.

The latter implies by (8.55) that

(
x∗, ψ(x̄)

) ∈ cl ∗[⋃{∑

t∈T
λt
(
∂ϕt (x̄), ϕt (x̄)

)∣∣∣ λ ∈ �(T )
}]

+ {0} × [0, ε].

Letting ε ↓ 0 in the above, we obtain the relationships

(
x∗, ψ(x̄)

) ∈ cl ∗[⋃{∑

t∈T
λt
(
∂ϕt (x̄), ϕt (x̄)

)∣∣∣ λ ∈ �(T )
}]

=
⋃{∑

t∈T
λt
(
∂ϕt (x̄), ϕt (x̄)

)∣∣∣ λ ∈ �(T )
}
.

This gives us λ ∈ �(T ) with
(
x∗, ψ(x̄)

) ∈ ∑
t∈T λ

(
∂ϕt (x̄), ϕt (x̄)

)
and obviously

implies that 0 = ∑
t∈T λt

(
ϕt (x̄) − ψ(x̄)

)
. It shows that supp λ ⊂ T (x̄) and that

x∗ ∈ ∑
t∈T (x̄) λt ∂ϕt (x̄) ⊂ D(0), which justify the weak∗ outer stability of mapping

(8.52) at zero. To prove finally that the set D(0) is weak∗ closed in X∗, take any
u∗ ∈ cl ∗D(0) and observe similarly to the above that

(
u∗, ψ(x̄)

) ∈
⋃{∑

t∈T
λt
(
∂ϕt (x̄), φt (x̄)

)∣∣∣ λ ∈ �(T )
}
.

Therefore we get u∗ ∈ D(0), which verifies that the setD(0) is weak∗ closed in X∗
and thus completes the proof of the corollary. �

We conclude this subsection with yet another consequence of Theorem 8.30 that
provides a precise calculation of the basic subdifferential of the supremum function
(8.32) generated by uniformly strictly differentiable functions.

Corollary 8.36 (Calculating Basic Subgradients for Suprema of Uniformly
Strictly Differentiable Functions). Let the functions ϕt in (8.31) be uniformly
strictly differentiable at x̄, and let their gradient set {∇ϕt (x̄)} be bounded in X∗.



386 8 Nonconvex Semi-infinite Optimization

Then the supremum function (8.32) is lower regular at x̄ and its basic subdifferential
∂ψ(x̄) at this point is calculated by

∂ψ(x̄) =
⋂

ε>0

cl ∗co
{
∇ϕt (x̄)

∣∣∣ t ∈ Tε(x̄)
}
. (8.56)

If in addition the set co
{(∇ϕt (x̄), ft (x̄)

)∣∣ t ∈ T } is weak∗ closed, then

∂ψ(x̄) = co
{∇ϕt (x̄)

∣∣ t ∈ T (x̄)}. (8.57)

Proof. The inclusion “⊂” in (8.56) follows from Proposition 8.33 and Corol-
lary 8.35. To justify the converse inclusion, take any δ > 0 and pick x∗ from
the set on the right-hand side of (8.56). Then for each ε > 0, we find a net
(λν)ν∈N ∈ �(Tε(x̄)) ensuring the representation

x∗ = w∗ − lim
ν∈N

∑

t∈Tε(x̄)
λνt∇ϕt (x̄).

It follows from (8.4) that there is η > 0 such that

ϕt (x)− ϕt (x̄) ≥ 〈∇ϕt (x̄), x − x̄〉 − δ‖x − x̄‖ for all x ∈ Bη(x̄), t ∈ T .
Then we get by the above representation of x∗ that

ψ(x)− ψ(x̄)+ ε ≥ lim sup
ν∈N

∑

t∈Tε(x̄)
λνt
(
ϕt (x)− ϕt (x̄)

)

≥ lim sup
ν∈N

∑

t∈Tε(x̄)
λνt
(〈∇ϕt (x̄), x − x̄〉 − δ‖x − x̄‖) ≥ 〈x∗, x − x̄〉 − δ‖x − x̄‖

whenever x ∈ Bη(x̄). Letting now ε ↓ 0 gives us

ψ(x)− ψ(x̄) ≥ 〈x∗, x − x̄〉 − δ‖x − x̄‖ for all x ∈ Bη(x̄),
which means that x∗ ∈ ∂̂ψ(x̄) and thus yields, by taking into account the inclusion
“⊂” in (8.56), the validity of the inclusions

∂ψ(x̄) ⊂
⋂

ε>0

cl ∗co
{
∇ϕt (x̄)

∣∣∣ t ∈ Tε(x̄)
}

⊂ ∂̂ψ(x̄).

Since ∂̂ψ(x̄) ⊂ ∂ψ(x̄), this shows that ψ is lower regular at x̄ and (8.56) holds.
Finally, (8.57) follows from Corollary 8.35 by the lower regularity of ψ . �
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8.2.3 Optimality Conditions for Lipschitzian SIPs

Here we apply the subdifferential evaluations of the supremum functions (8.32) and
subdifferential calculus rules to derive necessary optimality conditions for Lips-
chitzian SIPs of type (8.31). In this way we obtain qualified (nonzero multipliers
associated with the cost function) optimality conditions of both asymptotic (i.e.,
with weak∗ closure) and KKT (without it) forms. Define

� := {
x ∈ X∣∣ ϕt (x) ≤ 0, t ∈ T }

and recall our standing assumption that the functions ϕt are uniformly locally Lips-
chitzian with rank K > 0 around the reference point x̄. For simplicity we suppose
that the cost function ϕ in (8.31) is locally Lipschitzian around x̄ too. In what fol-
lows we also suppose that ψ(x̄) = 0, since the case of ψ(x̄) < 0 is trivial. Then we
have the expressions

Tε(x̄) = {
t ∈ T ∣∣ ϕt (x̄) ≥ −ε} and T (x̄) = {

t ∈ T ∣∣ ϕt (x̄) = 0
}
.

The first theorem provides several versions of necessary optimality conditions of
the KKT type in terms of basic subgradients.

Theorem 8.37 (Qualified Necessary Optimality Conditions via Basic Subgra-
dients). Let x̄ be a local minimizer for (8.31) under the constraint qualification
0 /∈ ⋂

ε>0 cl ∗C(ε) with C(·) defined in (8.46). Then we have

0 ∈ ∂ϕ(x̄)+ R+
⋂

ε>0

clC(ε). (8.58)

If the mapping R+C : R+ →→ X∗ is weak∗ outer stable at zero, then

0 ∈ ∂ϕ(x̄)+ cl ∗{ ∑

t∈T (x̄)
λt ∂ϕt (x̄)

∣∣∣ t ∈ T (x̄)
}
. (8.59)

If furthermore the set R+C(0) is weak∗ closed, then there is a multiplier λ ∈ R
(T )
+

such that we have the KKT form

0 ∈ ∂ϕ(x̄)+
∑

t∈T (x̄)
λt ∂ϕt (x̄). (8.60)

Proof. To justify (8.58) under 0 /∈ ⋂
ε>0 cl ∗C(ε), consider the function

ϑ(x) := max
{
ψ(x)− ψ(x̄), ϕ(x)}, x ∈ X,

defined via (8.32) and observe that x̄ is a local minimizer of ϑ(·) over X. Thus
0 ∈ ∂ϑ(x̄). Applying the maximum rule from Theorem 4.10(ii) and the sum rule
for Lipschitzian functions from Corollary 2.20, which both hold without any change
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in Asplund spaces (see Exercises 4.32 and 2.54(i), respectively), and remembering
that ψ(x̄) = 0, we find μ ∈ [0, 1] such that

0 ∈ ∂(μψ + (1 − μ)ϕ)(x̄) ⊂ μ∂ψ(x̄)+ (1 − μ)∂ϕ(x̄).
Then Theorem 8.30(i) excludes the case of μ = 0 in the above inclusion due to
the imposed constraint qualification, and thus we arrive at (8.58). If the mapping
R+C : R+ →→ X∗ is weak∗ outer stable at zero, then Lemma 8.29 allows us to
deduce from (8.58) that

0 ∈ ∂ψ(x̄)+ cl ∗[Lim sup
ε↓0

R+C(ε)
] ⊂ ∂ψ(x̄)+ cl ∗[R+C(0)],

which justifies (8.59). The KKT condition (8.60) clearly follows from (8.59) pro-
vided that the cone R+C(0) is weak∗ closed. �

When the constraint functions in (8.31) are equicontinuously subdifferentiable at
the reference point, the results of Theorem 8.37 can be simplified by replacing the
set-valued mapping C(·) with that of D(·) defined in (8.52).

Corollary 8.38 (Simplified Necessary Conditions for Equicontinuously Subd-
ifferentiable Functions). Let ϕt be equicontinuously subdifferentiable at the local
minimizer x̄ for (8.31), and let D : R+ →→ X∗ be defined in (8.52). Then the quali-
fication condition 0 /∈

⋂

ε>0

cl ∗D(ε) implies that

0 ∈ ∂ϕ(x̄)+ R+
⋂

ε>0

cl ∗D(ε).

If we assume in addition that the set

Q :=
⋃{∑

t∈T
λt
(
∂ϕt (x̄), ϕt (x̄)

)∣∣∣ λ ∈ R
(T )
+
}

is weak∗ closed in X∗ × R,

then there is a multiplier λ ∈ R
(T )
+ such that the KKT condition (8.60) holds.

Proof. Following the lines in the proof of Corollary 8.35, we get that the mapping
R+C : R+ →→ X∗ is weak∗ outer stable at zero and that R+C(0) is weak∗ closed in
X∗ provided the weak∗ closedness of Q. This together with Theorem 8.37 justifies
the results in this corollary. �

Observe that in the case of linear functions ϕt , the weak∗ closedness ofQ reduces
to the Farkas-Minkowski property (7.49). More generally, for uniformly strictly dif-
ferentiable functions ϕt , the imposed condition on Q is equivalent to NFMCQ in-
troduced in Definition 8.8.

Next we define and employ an extension to the Lipschitzian case of another con-
straint qualification for SIPs developed in Section 8.1 for smooth functions, namely,
PMFCQ from Definition 8.4. The following condition is formulated in terms of the
generalized directional derivative (1.77).



8.2 Lipschitzian Semi-infinite Programs 389

Definition 8.39 (Generalized PMFCQ). We say that SIP (8.31) satisfies the GEN-
ERALIZED PERTURBED MANGASARIAN-FROMOVITZ CONSTRAINT QUALIFICA-
TION (GENERALIZED PMFCQ) at x̄ if there is d ∈ X such that

inf
ε>0

sup
t∈Tε(x̄)

ϕ◦
t (x̄; d) < 0. (8.61)

If ϕt are uniformly strictly differentiable at x̄, then (8.61) reduces to

inf
ε>0

sup
t∈Tε(x̄)

〈∇ϕt (x̄), d〉 < 0 for some d ∈ R,

which is exactly PMFCQ from Definition 8.4 employed in Section 8.1.

The final result of this subsection employs the generalized PMFCQ (8.61) to de-
rive necessary optimality conditions for (8.31) in both asymptotic and KKT forms
expressed via the generalized gradient (1.78) in the case of equicontinuously subd-
ifferentiable constraint functions.

Theorem 8.40 (Necessary Optimality Conditions Under the Generalized PM-
FCQ). Let x̄ be a local minimizer of (8.31), and let ϕt be equicontinuously subdif-
ferentiable at x̄. If the generalized PMFCQ holds at x̄, then

0 ∈ ∂ϕ(x̄)+ R+
⋂

ε>0

cl ∗co
[⋃{

∂ϕt (x̄)

∣∣∣ t ∈ Tε(x̄)
}]
. (8.62)

If furthermore the convex conic hull cone{(∂ϕt (x̄), ϕt (x̄))| t ∈ T } is weak∗ closed
in X∗ × R, then there is a multiplier λ ∈ R

(T )
+ such that

0 ∈ ∂ϕ(x̄)+
∑

t∈T (x̄)
λt ∂ϕt (x̄).

Proof. Show first that (8.61) can be equivalently written in the dual form

0 /∈
⋂

ε>0

cl ∗co
[⋃{

∂ϕt (x̄)

∣∣∣ t ∈ Tε(x̄)
}]
. (8.63)

Indeed, (8.61) gives us numbers ε, δ > 0 such that supt∈Tε(x̄) f
◦(x; d) < −δ. Sup-

posing that condition (8.63) is not satisfied tells us that 0 ∈ cl ∗co
[ ∪ {∂ϕt (x̄)| t ∈

Tε1(x̄)}
]

for some ε1 ∈ (0, ε). Then there are nets (λν)ν∈N ∈ �(Tε1(x̄)) and
x∗
νt

∈ ∂ϕt (x̄) as t ∈ Tε1(x̄) and ν ∈ N for which

0 = w∗ − lim
ν∈N

∑

t∈Tε1 (x̄)
λνt x

∗
t .

This implies by using (1.78) that for the selected direction d in (8.61), we have
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0 = lim
ν∈N

∑

t∈Tε1 (x̄)
λνt 〈x∗

t , d〉 ≤ lim sup
ν∈N

∑

t∈Tε1 (x̄)
λνt ϕ

◦
t (x; d) ≤ −δ < 0,

a contradiction that justifies the validity of (8.61)⇒(8.63). Assuming now that
(8.63) is satisfied, find ε > 0 with 0 /∈ cl ∗co

[ ∪ {∂ϕt (x̄)| t ∈ Tε(x̄)}
]
. Then

the convex separation theorem gives us an element d ∈ X such that

sup
{〈x∗, d〉∣∣ x∗ ∈ ∂ϕt (x̄), t ∈ Tε(x̄)

}
< 0.

Since sup{〈x∗, d〉| x∗ ∈ ∂ϕt (x̄)} = ϕ◦
t (x; d) for any t ∈ Tε(x̄), the last inequality

ensures that (8.61) is satisfied and thus verifies the claimed equivalence.
Since (8.63) holds, it follows from Exercise 8.97 that 0 /∈ ∂ψ(x̄), and so 0 /∈

∂ψ(x̄). Similarly to the proof of Theorem 8.37, we find μ ∈ R+ with

0 ∈ ∂ϕ(x̄)+ μ∂ψ(x̄) ⊂ ∂ϕ(x̄)+ μ∂ψ(x̄).
Then using again the result of Exercise 8.97 verifies (8.62). Furthermore, the weak∗
closedness of the convex conic hull cone {(∂ϕt (x̄), ϕt (x̄))| t ∈ T } allows us re-
ducing (8.62) to the KKT optimality condition stated in the theorem by arguments
similar to those in the proof of Corollary 8.38. �

8.3 Nonsmooth Cone-Constrained Optimization

In this section we explore a different approach in comparison with that in Sec-
tion 8.2 to the study of Lipschitzian SIPs. It involves reducing SIPs to problems
of cone-constrained (or conic) programming in infinite-dimensional spaces, even if
the decision space in finite-dimensional. The latter class of optimization problems
of their strong independent interest is formalized as

{
minimize ϕ(x) subject to
f (x) ∈ −� ⊂ Y, x ∈ � ⊂ X,

(8.64)

where� is closed and convex cone, which is the standing assumption in this section.
We show below that Lipschitzian SIPs considered in Section 8.2, with the additional
presence of the geometric constraint x ∈ �, can be written in form (8.64), where the
cone � is given by either � = C+(T ) or � = l∞+ (T ), i.e., it is a collection of either
positive continuous or essentially bounded functions over a compact or noncompact
index set T , respectively. We have already dealt with these spaces in Chapter 7
while investigating SIPs with linear and convex data by using approaches that are
completely different from those which we are going to employ in what follows.
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8.3.1 Subgradients of Scalarized Supremum Functions

Besides the assumption on � made above and our standing l.s.c. assumption on
ϕ : X → R, we suppose in what follows that X is Asplund, Y is arbitrary Banach,
and the mapping f : X → Y is locally Lipschitzian around the reference point x̄,
i.e., there are constants K, ρ > 0 such that

‖f (x)− f (u)‖ ≤ K‖x − u‖ for all x, u ∈ Bρ(x̄). (8.65)

We now show that the conic constraint f (x) ∈ −� in (8.64) can be rewritten in
the inequality form via a certain scalarized supremum function.

Proposition 8.41 (Conic Constraints via Supremum Functions). We have the
following conic constraint representation:

{
x ∈ X∣∣ f (x) ∈ −�} = {

x ∈ X∣∣ ϑ(x) ≤ 0
}
,

where the scalarized supremum function ϑ : X → R is defined by

ϑ(x) := sup
y∗∈�

〈y∗, f (x)〉 with

� := {
y∗ ∈ Y ∗∣∣ ‖y∗‖ = 1, 〈y∗, y〉 ≥ 0, y ∈ �}.

(8.66)

Proof. We obviously get 〈y∗, f (x)〉 ≤ 0 for all y∗ ∈ � if the inclusion f (x) ∈
−� holds. To verify the converse implication, suppose that it fails and then find by
convex separation such nonzero elements ȳ∗ ∈ Y ∗ \ {0} and γ > 0 that

〈ȳ∗, f (x)〉 > γ > 0 ≥ 〈ȳ∗, y〉 for all y ∈ −�.
This yields ȳ∗‖ȳ∗‖−1 ∈ �, and hence we arrive at the contradiction

0 ≥ 〈
ȳ∗‖ȳ∗‖−1, f (x)

〉
> γ ‖ȳ∗‖−1 > 0,

which thus completes the proof of the proposition. �
Note that the scalarized supremum function ϑ is significantly different from the

supremum function ψ considered in the SIP framework (8.32).

The main goal of this subsection is to evaluate basic subgradients for a more
general class of scalarized supremum functions defined by

ψ(x) := sup
y∗∈�

〈
y∗, f (x)

〉
, (8.67)

where � is an arbitrary nonempty subset of the positive polar cone

�+ := {
y∗ ∈ Y ∗∣∣ 〈y∗, y

〉 ≥ 0 for all y ∈ �}. (8.68)
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Since � ⊂ �+ for the set � in Proposition 8.41, the results obtained below for
(8.67) immediately apply to the function ϑ therein.

Our first result provides a “fuzzy” upper estimate for basic subgradients of the
scalarized supremum function (8.67) at the reference point x̄ via regular subgradi-
ents of the scalarization x �→ 〈y∗, f 〉(x) at some neighboring points.

Theorem 8.42 (Fuzzy Estimate of Basic Subgradients for Scalarized Supre-
mum Functions). Let x̄ ∈ domψ for function (8.67), and let V ∗ be a weak∗ neigh-
borhood of 0 ∈ X∗. Then for any x∗ ∈ ∂ψ(x̄) and any ε > 0, there exist xε ∈ Bε(x̄)
and y∗

ε ∈ co� with |〈y∗
ε , f (xε)〉 − ψ(x̄)| < ε such that

x∗ ∈ ∂̂〈y∗
ε , f 〉(xε)+ V ∗. (8.69)

Proof. Fix arbitrary x∗ ∈ ∂ψ(x̄) and ε > 0. It is easy to check that each function
〈y∗, f (x)〉 is locally Lipschitzian around x̄ with the same constants K and ρ as in
(8.65) for all y∗ ∈ � and so is the scalarized supremum function ψ . Without loss of
generality, assume that V ∗ is convex and that ε ≤ ρ. Then find k ∈ N, εk > 0, and
xj ∈ X for j = 1, . . . , k such that

k⋂

j=1

{
v∗ ∈ X∗

∣∣∣ 〈v∗, xj 〉 < εk
}

⊂ 1

4
V ∗.

Consider further a finite-dimensional subspace L ⊂ X by L := span {x1, . . . , xk}
and observe that L⊥ := {v∗ ∈ X∗| 〈v∗, x〉 = 0, x ∈ L} ⊂ 1

4V
∗. By the choice

of x∗, we find x̂ ∈ domψ ∩ Bε
2
(x̄) and u∗ ∈ X∗ such that |ψ(̂x) − ψ(x̄)| ≤ ε

2 ,

u∗ ∈ ∂̂ψ(̂x) and that x∗ ∈ u∗ + V ∗
4 . Fix δ > 0 satisfying

4δ ≤ ε,
12δ

1 − 2δ
B

∗ ⊂ V ∗, and
16δ

1 − 2δ
‖u∗‖B∗ ⊂ V ∗. (8.70)

Since u∗ ∈ ∂̂ψ(̂x), there is some number η ∈ (0, δ) with

ψ(x)− ψ(̂x)+ δ‖x − x̂‖ ≥ 〈u∗, x − x̂〉 for all x ∈ Bη(̂x) ⊂ Bρ(x̄).

This implies that (̂x, ψ(̂x)) is a local minimizer of the following problem:
{

minimize r + δ‖x − x̂‖ − 〈u∗, x − x̂〉 − ψ(̂x) subject to
〈y∗, f (x)〉 − r ≤ 0 for y∗ ∈ � and (x, r) ∈ Bη(̂x)× R.

Define A := (L ∩ Bη(̂x)) × [ψ(̂x) − 1, ψ(̂x) + 1], �(x, r) := r + δ‖x − x̂‖ −
〈u∗, x − x̂〉 − ψ(̂x), and ϕy∗ : X × R → R by

ϕy∗(x, r) := 〈y∗, f (x)〉 − r for all y∗ ∈ � and (x, r) ∈ X × R.

It readily follows from these constructions that
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{
(x, r) ∈ A∣∣ �(x, r)+ η2 ≤ 0

} ⊂
⋃

y∗∈�

{
(x, r) ∈ A∣∣ ϕy∗(x, r) > 0

}
.

The set on the left-hand side above is clearly compact in the finite-dimensional space
L×R, and each subset {(x, r) ∈ A| ϕy∗(x, r) > 0} is open inA due to the Lipschitz
continuity of ϕy∗ on the set Bρ(x̄)×R, which is larger than A. Thus we find a finite
subset ϒ ⊂ � containing s ∈ N elements so that

{
(x, r) ∈ A∣∣ �(x, r)+ η2 ≤ 0

} ⊂
⋃

y∗∈ϒ

{
(x, r) ∈ A

∣∣∣ ϕy∗(x, r) > 0
}
.

Based on this, we arrive at the relationships

�(x, r)+ η2≥0 =�(x̂, ψ(̂x)) if (x, r)∈Ã := {
(x, r)∈A∣∣ϕy∗(x, r)≤ 0, y∗∈ϒ},

where Ã is a closed subset of Bρ(x̄)×R. Using now Ekeland’s variational principle
gives us (̃x, r̃) ∈ Ã with ‖x̃ − x̂‖ + |̃r − ϕ(̂x)| ≤ η

2 and

�(x, r)+ 2η(‖x − x̃‖ + |r − r̃|) ≥ �(̃x, r̃) whenever (x, r) ∈ Ã.
The latter means that (̃x, r̃) is a local optimal solution to the problem

{
minimize �̃(x, r) := �(x, r)+ 2η

(‖x − x̃‖ + |r − r̃|) subject to
ϕy∗(x, r) ≤ 0 for y∗ ∈ ϒ and (x, r) ∈ A.

It is obvious that the functions �̃(·, ·) and ϕy∗(·, ·) are Lipschitz continuous around
(̃x, r̃) for all y∗ ∈ ϒ . Applying now to this problem with s ∈ N elements in the setϒ
the necessary optimality conditions from Theorem 6.5(ii) that hold in any Asplund
space, we find multipliers λ0, . . . , λs ≥ 0, not equal to zero simultaneously, and
dual elements y∗

1 , . . . , y
∗
s ∈ ϒ(̃x, r̃) := {y∗ ∈ ϒ | ϕy∗ (̃x, r̃) = 0} satisfying the

inclusion

(0, 0) ∈ ∂
(
λ0�̃ +

s∑

m=1

λmϕy∗
m

)
(̃x, r̃)+N((̃x, r̃);A).

Since (̃x, r̃) ∈ int(Bη(̂x)× [ψ(̂x)− 1, ψ(̂x)+ 1]), it follows that

(0, 0)∈∂
(
λ0�̃+

s∑

m=1

λmϕy∗
m

)
(̃x, r̃)+N((̃x, r̃); (L ∩ Bη(̂x))×[ψ(̂x)− 1, ψ(̂x)+1])

= ∂
(
λ0�̃ +

s∑

m=1

λmϕy∗
m

)
(̃x, r̃)+N(̃x;L)× {0}

⊂ ∂
(
λ0�̃ +

s∑

m=1

λmϕy∗
m

)
(̃x, r̃)+ L⊥ × {0}.
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If λ0 = 0 therein, we have the inclusion

(0, 0) ∈ ∂
( s∑

m=1

λm〈y∗
m, f 〉

)
(̃x)×

{
−

s∑

m=1

λm

}
+ L⊥ × {0},

which implies in turn that
∑s
m=1 λm = 0, i.e., λm = 0 for all m = 0, . . . , s. This

contradiction shows that λ0 
= 0. Thus we put λ0 = 1 and then obtain

(u∗, 0) ∈ ∂
( s∑

m=1

λm〈y∗
m, f 〉

)
(̃x)×

{
1 −

s∑

m=1

λm

}

+(δ + 2η)B∗ × 2[−η, η] + L⊥ × {0}.

Define λ̃ := ∑s
m=1 λm, λ̃m := λ̃−1λm, and ũ∗ := λ̃−1u∗. Since |1 − λ̃| ≤ 2η < 2δ

by the last inclusion, we divide its both sides by λ̃ and get

ũ∗ ∈ ∂
( s∑

m=1

λ̃m〈y∗
m, f 〉

)
(̃x)+ δ + 2η

λ̃
B

∗ + L⊥

λ̃
⊂ ∂

( s∑

m=1

〈̃λmy∗
m, f 〉

)
(̃x)

+ 3δ

1 − 2δ
B

∗ + L⊥ ⊂ ∂
( s∑

m=1

〈̃λmy∗
m, f 〉

)
(̃x)+ V ∗

4
+ V ∗

4
⊂ ∂〈y∗

ε , f 〉(̃x)+ V ∗

2

with y∗
ε := ∑s

m=1 λ̃my
∗
m ∈ coϒ ⊂ co� by taking into account (8.70), the above

constructions of L and �̃, and the estimate of L⊥. Thus there is a basic subgradient
v∗ ∈ ∂〈y∗

ε , f 〉(̃x) satisfying ũ∗ ∈ v∗ + V ∗
2 . The basic subdifferential representation

in Asplund spaces from Exercise 1.65(ii) allows us to find elements xε ∈ Bδ(̃x) and
w∗ ∈ ∂̂〈y∗

ε , f 〉(xε) such that |〈y∗
ε , f (xε)〉− 〈y∗

ε , f (̃x)〉| ≤ δ and v∗ ∈ w∗ + V ∗
8 . We

clearly have the inequalities

‖xε − x̄‖ ≤ ‖xε − x̃‖ + ‖x̃ − x̂‖ + ‖x̂ − x̄‖ ≤ δ + δ + ε

2
≤ ε.

Moreover, the following estimates hold:

|〈y∗
ε , f (xε)〉 − ψ(x̄)| ≤ |〈y∗

ε , f (xε)− f (̃x)〉| + |〈y∗
ε , f (̃x)〉 − r̃| + |̃r − ψ(̂x)|

+|ψ(̂x)− ψ(x̄)| ≤ δ +
∣∣∣
s∑

m=1

λ̃m〈y∗
m, f (̃x)〉 − r̃

∣∣∣+ η

2
+ ε

2
= δ + η

2
+ ε

2
≤ ε

by taking into account that 〈y∗
m, f (̃x)〉 = r̃ as m = 1, . . . , s. Note further that

‖u∗ − ũ∗‖ = 1 − λ̃
λ̃

‖u∗‖ ≤ 2η

1 − 2η
‖u∗‖ ≤ 2δ

1 − 2δ
‖u∗‖,
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which implies the chain of inclusions:

x∗ ∈ u∗ + V ∗

4
⊂ ũ∗ + 2δ

1 − 2δ
‖u∗‖B∗ + V ∗

4
⊂ v∗ + V ∗

2
+ V ∗

8
+ V ∗

4

⊂ w∗ + V ∗

8
+ V ∗

2
+ V ∗

8
+ V ∗

4
⊂ ∂̂〈y∗

ε , f 〉(xε)+ V ∗.

This verifies (8.69) and thus completes the proof of the theorem. �
Our next result provides pointbased upper estimates of the basic subdifferential

of the scalarized supremum function (8.67) involving only the reference point x̄.
To proceed, define the partial order ≤� on Y generated by a closed and convex
ordering cone � ⊂ Y as follows:

y1 ≤� y2 if and only if y2 − y1 ∈ � for y1, y2 ∈ Y. (8.71)

The �-epigraph of f : X → Y with respect to the order ≤� is given by

epi�f := {
(x, y) ∈ X × Y ∣∣ f (x) ≤� y

}
.

Recall also that f is �-convex if for any x1, x2 ∈ X and t ∈ [0, 1] we have

f
(
tx1 + (1 − t)x2

) ≤� tf (x1)+ (1 − t)f (x2),

which is equivalent to the fact that the set epi�f is convex in X × Y .

Definition 8.43 (�-Coderivatives). Under the standing assumption on the map-
ping f : X → Y and the cone � ⊂ Y , we define the following:

(i) The REGULAR �-CODERIVATIVE of f at x̄ is

D̂∗
�f (x̄)(y

∗) :=
{
x∗ ∈ X∗

∣∣∣ lim sup

(x,y)
epi�f→ (x̄,f (x̄))

〈x∗, x − x̄〉 − 〈y∗, y − f (x̄)〉
‖x − x̄‖ + ‖y − f (x̄)‖ ≤ 0

}
.

(ii) The (sequential) NORMAL �-CODERIVATIVE of f at x̄ is

D∗
N,�f (x̄)(y

∗) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄, x∗
k ∈ D̂∗

�f (xk)(y
∗
k )

such that (x∗
k , y

∗
k )

w∗→ (x∗, y∗)
}
.

(iii) The TOPOLOGICAL NORMAL �-CODERIVATIVE of f at x̄ is

D̃∗
N,�f (x̄)(y

∗) :=
{
x∗ ∈ X∗

∣∣∣ ∃ nets xα → x̄, x∗
α ∈ D̂∗

�f (xα)(y
∗
α)

such that (x∗
α, y

∗
α)

w∗→ (x∗, y∗)
}
.
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(iv ) The CLUSTER NORMAL �-CODERIVATIVE of f at x̄ is

D̆∗
N,�f (x̄)(y

∗) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄, x∗
k ∈ D̂∗

�f (xk)(y
∗
k ) such that

(x∗, y∗) is a weak∗ cluster point of (x∗
k , y

∗
k )
}
.

Note that the limiting procedures employed in Definition 8.43(ii,iii) are similar
to those used for mappings without any ordering structure (cf. Chapter 1) while we
don’t consider here the “mixed” coderivative counterparts. However, the one sug-
gested in (iv) seems to be new even in the nonordering setting while being important
for our results on cone-constrained problems with general Banach image spaces Y
and their applications to SIPs.

Observe that dom D̂∗
�f (x) ⊂ �+ for any x ∈ X, where �+ stands for the

positive polar cone (8.68) to �. Since �+ is a weak∗ closed subset of Y ∗, it fol-
lows from the inclusion above that the domains domD∗

Nf (x̄), dom D̃∗
N,�f (x̄),

and dom D̆∗
N,�f (x̄) are also subsets of �+. It is easy to check that for mappings

f : X → Y locally Lipschitzian around x̄ we have the scalarization formula

D̂∗
�f (x̄)(y

∗) := ∂̂〈y∗, f 〉(x̄) if and only if y∗ ∈ �+, (8.72)

where 〈y∗, f 〉(x) := 〈y∗, f (x)〉. However, such a scalarization for the limiting
coderivatives D∗

N,�, D̃∗
N,�, and D̆∗

N,� requires stronger Lipschitzian assumptions;
see Exercise 8.103(ii) for mappings with values in spaces without ordering. The fol-
lowing limiting counterparts of scalarization, which can be proved similarly to [522,
Theorem 1.90], are needed below: for all y∗ ∈ �+ we have

D∗
N,�f (x̄)(y

∗) = D̃∗
N,�f (x̄)(y

∗) = D̆∗
N,�f (x̄)(y

∗) = {∇f (x̄)∗y∗} (8.73)

provided that f is strictly differentiable at x̄. Furthermore, it can be derived directly
from the constructions above that

D∗
�f (x̄)(y

∗) = ∂〈y∗, f 〉(x̄), y∗ ∈ �+, (8.74)

for all the �-coderivatives in Definition 8.43 if f is �-convex.

Now we are ready to establish the aforementioned pointbased estimates for the
basic subdifferential ∂ψ(x̄) for the scalarized supremum function (8.67).

Theorem 8.44 (Pointbased Estimates of Basic Subgradients of Scalarized
Supremum Functions via Coderivatives). In the setting of Theorem 8.42, as-
sume that � is bounded in Y ∗. Then the basic subdifferential of ψ at x̄ is upper
estimated by

∂ψ(x̄) ⊂ {
x∗ ∈ D̃∗

N,�f (x̄)(y
∗)
∣∣ y∗ ∈ cl ∗co�, 〈y∗, f (x̄)〉 = ψ(x̄)

}
(8.75)

via the topological �-coderivative of f at x̄. If dimX < ∞, we have

∂ψ(x̄) ⊂ {
x∗ ∈ D̆∗

N,�f (x̄)(y
∗)
∣∣ y∗ ∈ cl ∗co�, 〈y∗, f (x̄)〉 = ψ(x̄)

}
(8.76)
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via the cluster �-coderivative counterpart. If in addition the closed unit ball B∗ is
weak∗ sequentially compact in Y ∗, then the cluster �-coderivative can be replaced
in (8.76) by its sequential counterpart D∗

N,�f (x̄)(y
∗).

Proof. To justify (8.75), we first construct a filter {V ∗
α }α∈A of neighborhoods of

0 ∈ X∗ and a net {εα}α∈A ⊂ R+ such that εα ↓ 0. Let NX∗ be the set of weak∗
neighborhoods of 0 ∈ X∗, and let the A be bijective with NX∗ . Denote this bijective
correspondence by NX∗ = {V ∗

α | α ∈ A} and observe that A is a directed set, where
the direction is given by α % β if and only if V ∗

α is contained in V ∗
β . Fix any v∗ ∈ X∗

with ‖v∗‖ = 1 and define

εα := sup
{
r ∈ [0, ρ)∣∣ rv∗ ∈ V ∗

α

}
for all α ∈ A,

where ρ is taken from (8.65). Note that εα > 0 for all α ∈ A and that εα ↓ 0.
Indeed, for any α ∈ A, there is δ ∈ (0, ρ) sufficiently small to get δB∗ ⊂ V ∗

α . It
is obvious that εα > δ. Furthermore, for any ε > 0, the existence of α0 ∈ A with
εα0 < ε implies that εα < ε for all α % α0 by the definition of A. Hence if the net
{εα} doesn’t converge to 0, there is ε > 0 with εα > ε for all α ∈ A, which yields
εv∗ ∈ V ∗

α as α ∈ A. This contradiction justifies εα ↓ 0.
Now pick an arbitrary basic subgradient x∗ ∈ ∂ψ(x̄). Employing Theorem 8.42

for any α ∈ A allows us to find xα ∈ Bεα (x̄) and y∗
α ∈ co� with

x∗ ∈ ∂̂〈y∗
α, f 〉(xα)+ V ∗

α and |〈y∗
α, f (xα)〉 − ψ(x̄)| ≤ εα.

By the scalarization formula (8.72), we get u∗
α ∈ ∂̂〈y∗

α, f 〉(xα) = D̂∗
�f (xα)(y

∗
α)

and v∗
α ∈ V ∗

α with x∗ = u∗
α + v∗

α . Since the filter {V ∗
α }α∈A weak∗ converges to

zero, the directed net {v∗
α}α∈A weak∗ converges to zero as well. This implies that

u∗
α

w∗→ x∗. Due to the boundedness of co� ⊂ Y ∗, the classical Alaoglu-Bourbaki
theorem allows us to find a subnet of {y∗

α}α∈A (no relabeling) that weak∗ converges
to some y∗ ∈ cl ∗co�. This yields x∗ ∈ D̃∗

N,�f (x̄)(y
∗). Moreover, by εα ↓ 0,

xα → x̄, and y∗
α

w∗→ y∗, we have

0 = lim εα = lim〈y∗
α, f (xα)〉 − ψ(x̄) = 〈y∗, f (x̄)〉 − ψ(x̄),

which thus justifies the validity of (8.75) via the topological coderivative.
When dimX < ∞, we can choose ÑX∗ := { 1

k
B

∗| k ∈ N} instead of NX∗ in
the proof above, then find A = N and a sequence εk ∈ (0, ρ) such that εk ↓ 0.
Following similar arguments gives us estimate (8.76) via the cluster coderiva-
tive D̆∗f (x̄)(y∗). Finally, assuming the weak∗ sequential compactness of the unit
ball B∗ ⊂ Y ∗ ensures that all the limiting elements of D̆∗

N,�f (x̄)(y
∗) belong to

D∗
N,�f (x̄)(y

∗) and thus completes the proof. �
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8.3.2 Pointbased Optimality and Qualification Conditions

It follows from Proposition 8.41 that the original cone-constrained optimization
problem (8.64) can be equivalently represented as

minimize ϕ(x) subject to ϑ(x) ≤ 0, x ∈ �
via the scalarized supremum function ϑ taken from (8.66). We now use this rep-
resentation together with the subdifferential estimates of Theorem 8.44 and gen-
eralized differential calculus of variational analysis to derive pointbased necessary
optimality conditions for (8.64) expressed in terms of the above limiting construc-
tions under appropriate constraint qualifications.

The following theorem presents the main results of this subsection.

Theorem 8.45 (Necessary Optimality Conditions for Cone-Constrained Pro-
grams). Let x̄ be a local optimal solution to problem (8.64) under our standing
assumptions. Suppose also that either the function ϕ is SNEC at x̄ or the set � is
SNC at this point and that the qualification condition

∂∞ϕ(x̄) ∩ (−N(x̄;�)) = {0} (8.77)

is satisfied; both SNEC and (8.77) are automatic when ϕ is locally Lipschitzian
around x̄. Then we have the following assertions:

(a) either there exists y∗ ∈ �+ such that

0 ∈ ∂ϕ(x̄)+ D̃∗
N,�f (x̄)(y

∗)+N(x̄;�) and 〈y∗, f (x̄)〉 = 0, (8.78)

(b) or there exists y∗ ∈ cl ∗co� such that

0 ∈ ∂∞ϕ(x̄)+ D̃∗
N,�f (x̄)(y

∗)+N(x̄;�) and 〈y∗, f (x̄)〉 = 0. (8.79)

If dimX < ∞, the above holds with replacing D̃∗
Nf (x̄) by D̆∗

Nf (x̄). If further-
more B

∗ ⊂ Y ∗ is weak∗ sequentially compact, then the topological coderivative
D̃∗
N,�f (x̄) can be replaced in (8.78) and (8.79) by the sequential one D∗

Nf (x̄).

Proof. Observe first that the validity of both the SNEC property of ϕ at x̄ and the
qualification condition (8.77) for local Lipschitzian cost functions ϕ on Asplund
spaces follows from Exercises 2.49 and 4.34, respectively. Further, it is easy to see
that x̄ is a local optimal solution to the unconstrained problem of minimizing the
maximum function

�(x) := max
{(
ϕ + δ(·;�))(x)− ϕ(x̄), ϑ(x)}, x ∈ X, (8.80)

where ϑ(x) is given in (8.66), and where� is obviously l.s.c. around x̄. If ϑ(x̄) < 0,
then there is a neighborhood U of x̄ such that �(x) − ϑ(x) > 0 for x ∈ U , which
implies that �(x) = (ϕ + δ(·;�))(x) for x ∈ U . Since x̄ is a local optimal solution
to (8.80), we have by the generalized Fermat rule that
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0 ∈ ∂�(x̄) = ∂
(
ϕ + δ(·;�))(x̄).

It follows from the assumptions imposed on ϕ and� and the sum rules for the basic
and singular subdifferentials from Exercise 2.54(i) that

∂
(
ϕ + δ(·;�))(x̄) ⊂ ∂ϕ(x̄)+N(x̄;�)

∂∞(ϕ + δ(·;�))(x̄) ⊂ ∂∞ϕ(x̄)+N(x̄;�). (8.81)

Thus we have 0 ∈ ∂ϕ(x̄) + N(x̄;�), which ensures the validity of the necessary
optimality conditions in (8.78) with y∗ = 0 in this case.

Next we consider the case of ϑ(x̄) = 0. Since the function ϑ is locally Lips-
chitzian around x̄, it follows from Theorem 4.10, which holds in Asplund spaces
with no change in the Lipschitz case under consideration, that

∂∞�(x̄) ⊂ ∂∞(ϑ + δ(·;�))(x̄)+ ∂∞ϕ(x̄) = ∂∞(ϑ + δ(·;�))(x̄),
∂�(x̄) ⊂

⋃{
λ1 ◦ ∂(ϑ + δ(·;�))(x̄)+ λ2∂ϕ(x̄)

∣∣∣ (λ1, λ2) ∈ R
2+, λ1 + λ2 = 1

}
,

where λ ◦ ∂ϑ(x̄) denotes λ∂ϑ(x̄) when λ > 0 and ∂∞ϑ(x̄) when λ = 0. Since 0 ∈
∂�(x̄), we get from (8.81) and the latter inclusions that there exist x∗ ∈ N(x̄;�)
and (λ1, λ2) ∈ R

2+ such that λ1 + λ2 = 1 and that

0 ∈ λ1 ◦ ∂ϑ(x̄)+ λ2∂ϕ(x̄)+ x∗. (8.82)

If λ1 
= 0 in (8.82), then there is u∗ ∈ ∂ϑ(x̄) with −x∗ −λ1u
∗ ∈ λ2∂ϕ(x̄). If λ2 = 0

and thus λ1 = 1 in (8.82), we obtain (8.78) with y∗ = 0 by

0 = u∗ + x∗ ∈ ∂ϕ(x̄)+ D̃∗
N,�f (x̄)(0)+N(x̄;�).

Otherwise Theorem 8.44 with � = � allows us to find y∗ ∈ cl ∗co� satisfying

−x∗ − λ1u
∗

λ2
∈ D̃∗

N,�f (x̄)(y
∗) and 〈y∗, f (x̄)〉 = ϕ(x̄) = 0.

Hence we arrive at the inclusions

0 ∈ u∗ + λ2

λ1
D̃∗
N,�f (x̄)(y

∗)+ x∗

λ1
⊂ ∂ϕ(x̄)+ D̃∗

N,�f (x̄)
(λ2y

∗

λ1

)
+N(x̄;�),

which justify the conditions of (8.78) in this case.
Supposing then that λ1 = 0, we deduce from (8.82) the existence of v∗ ∈

∂∞ϕ(x̄) such that −v∗ − x∗ ∈ ∂ϑ(x̄). Applying Theorem 8.44 again gives us z∗ ∈
cl ∗co� satisfying the conditions −v∗ − x∗ ∈ D̃∗

N,�f (x̄)(z
∗) and 〈z∗, f (x̄)〉 = 0,

which readily yield (8.79). The rest of the theorem, which deals with the particular
structures of the spaces X and Y , follows by the above arguments from the corre-
sponding results of Theorem 8.44. �

Note that the (qualification) condition (b) of Theorem 8.45 holds trivially if 0 ∈
cl ∗co�. Indeed, in this case we always have 0 ∈ D̃∗

N,�f (x̄)(0)∩∂∞ϕ(x̄)∩N(x̄;�).
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The next proposition shows that the origin is never an element of cl ∗co� if, in
particular, the interior of the cone � is nonempty.

Proposition 8.46 (Solid Cone Constraints). The following are equivalent:
(i) 0 /∈ cl ∗co�.
(ii) There are r > 0 and y0 ∈ Y such that 〈y∗, y0〉 > r for all y∗ ∈ �.
(iii) int� 
= ∅.

Proof. Implication (i)⇒(ii) follows directly from the convex separation theorem. To
prove (ii)⇒(iii), we get from (ii) for any y ∈ Br(y0) that

〈y∗, y〉 = 〈y∗, y0〉 + 〈y∗, y − y0〉 ≥ r − ‖y∗‖ · ‖y − y0‖ > r − r = 0

whenever y∗ ∈ �. This implies that y ∈ � and so ensures (iii). Finally, suppose
that (iii) is satisfied and then find y1 ∈ � and s > 0 such that Bs(y1) ⊂ �. For any
y∗ ∈ �, we clearly have

〈y∗, y1〉 = 〈y∗, y1〉 − s‖y∗‖ + s ≥ inf
y∈Bs(y1)

〈y∗, y〉 + s ≥ s > 0,

which yields 〈y∗, y1〉 > s if y∗ ∈ co�, and thus (i) holds. �
Next we present several remarkable consequences of Theorem 8.45. The first one

shows that in the case of solid cone constraints, the necessary optimality conditions
in (8.78) hold under a certain enhanced constraint qualification.

Corollary 8.47 (Optimality Conditions Under Enhanced Qualifications for
Solid Cone Constraints). Suppose in the setting of Theorem 8.44 that int� 
= ∅
and that the qualification condition

(
∂∞ϕ(x̄)+N(x̄;�)) ∩ (− D̃∗

N,�f (x̄)(�0)
) = ∅ (8.83)

holds with �0 := {y∗ ∈ �| 〈y∗, f (x̄)〉 = 0}. Then there is y∗ ∈ �+ so that the
conditions in (8.78) are satisfied. If dimX < ∞, then D̃∗

N,�f (x̄) can be replaced

by D̆∗
N,�f (x̄) in (8.78). Furthermore, D̃∗

N,�f (x̄) can be replaced by D∗
N,�f (x̄) if

in addition the unit ball B∗ ⊂ Y ∗ is weak∗ sequentially compact.

Proof. Following the proof of Theorem 8.44, it is sufficient to show that λ1 
= 0
under the assumptions made. Arguing by contradiction, suppose that λ1 = 0 and
then find x∗ ∈ N(x̄;�), v∗ ∈ ∂∞ϕ(x̄), and z∗ ∈ cl ∗co� such that

−v∗ − x∗ ∈ D̃∗
N,�f (x̄)(z

∗) and 〈z∗, f (x̄)〉 = 0.

It follows from Proposition 8.46 that z∗ 
= 0. Hence we have

∂∞ϕ(x̄)+N(x̄;�) $ v∗

‖z∗‖ + x∗

‖z∗‖ = −−v∗ − x∗

‖z∗‖ ∈ −D̃∗
N,�f (x̄)

( z∗

‖z∗‖
)
,

which contradicts the qualification condition (8.83) due to z∗
‖z∗‖ ∈ �0. �.
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Our last consequence in this subsection concerns the settings of (8.64) where
the cost function ϕ is locally Lipschitzian at x̄ and where the constraint mapping
f is either strictly differentiable at x̄ or �-convex. We can see that in such settings
the qualification condition (8.83) is equivalent to the classical Robinson and Slater
constraint qualifications, respectively.

Corollary 8.48 (Cone-Constrained Problems in Special Settings). Assume in the
framework of Corollary 8.47 that ϕ is locally Lipschitzian around x̄ and the con-
straint set � ⊂ X is convex. The following assertions hold:

(i) If f is strictly differentiable at x̄, then the qualification condition (8.83) is
equivalent to the Robinson constraint qualification:

0 ∈ int
{
f (x̄)+ ∇f (x̄)(�− x̄)+�} (8.84)

and the optimality condition (5.20) reduces to the existence of y∗ ∈ �+ with
〈y∗, f (x̄)〉 = 0 and x∗ ∈ ∂ϕ(x̄) satisfying

〈x∗ + ∇f (x̄)∗y∗, x − x̄〉 ≥ 0 for all x ∈ �. (8.85)

(ii) If f is �-convex, then the qualification condition (8.83) is equivalent to the
Slater constraint qualification:

there is x0 ∈ � with f (x0) ∈ −int� (8.86)

while the optimality condition (8.78) reduces to the existence of y∗ ∈ �+ with
〈y∗, f (x̄)〉 = 0, u∗ ∈ ∂〈y∗, f 〉(x̄), and x∗ ∈ ∂ϕ(x̄) satisfying

〈x∗ + u∗, x − x̄〉 ≥ 0 for all x ∈ �. (8.87)

Proof. Since ∂∞ϕ(x̄) = {0} for locally Lipschitzian functions and due to the con-
vexity of �, the qualification condition (8.83) has the form


 ∃x∗ ∈ −D̃∗
N,�f (x̄)(�0) with 〈x∗, x − x̄〉 ≤ 0 for all x ∈ �.

To justify (i), assume that f is strictly differentiable at x̄ and observe by applying
the supporting hyperplane theorem that (8.84) is equivalent to

N
(
0; f (x̄)+ ∇f (x̄)(�− x̄)+�) = {0}. (8.88)

Suppose that (8.83) holds and show that (8.88) is satisfied. Indeed, if on the contrary
there is y∗ ∈ N(0; f (x̄)+ ∇f (x̄)(�− x̄)+�) with ‖y∗‖ = 1, then

〈y∗, f (x̄)+ ∇f (x̄)(x − x̄)+ z〉 ≤ 0 for all x ∈ � and z ∈ �,
which yields y∗ ∈ −�+ with 〈y∗, f (x̄)〉 ≤ 0. Moreover, 〈y∗, f (x̄)〉 ≥ 0 by y∗ ∈
−�+ and f (x̄) ∈ −�. It follows also that y∗ ∈ −�0 and ∇f (x̄)∗y∗ ∈ N(x̄;�).
By scalarization (8.73) we arrive at a contradiction with (8.83).
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Conversely, suppose that the Robinson constraint qualification (8.84) is satisfied.
If there exists z∗ ∈ �0 with N(x̄;�) ∩ ( − D̃∗

N,�f (x̄)(z
∗)
) 
= ∅, we easily get

from (8.73) that −z∗ ∈ N(0; f (x̄) + ∇f (x̄)(� − x̄) + �
)

while yielding z∗ = 0.
This is a contradiction that justifies the equivalence between (8.83) and (8.84) in
assertion (i). The equivalence between the necessary optimality conditions (8.78)
and (8.85) in this case follows from the structure of the normal cone to convex
sets and the coderivative scalarization (8.73), which therefore complete the proof of
assertion (i).

Next we verify assertion (ii), where the constraint mapping f is �-convex in
(8.64). Suppose first that the Slater condition (8.86) doesn’t hold, i.e., f (�) ∩
(−int �) = ∅. Then it is easy to check that A ∩ (−int �) = ∅, where
A := {f (x) +�| x ∈ �} is a convex set in Y . Applying the separation theorem to
these two sets gives us w∗ ∈ Y ∗ with ‖w∗‖ = 1 such that

〈w∗, f (x)〉 ≥ 〈w∗,−z〉 for all x ∈ �, z ∈ �.
It follows that w∗ ∈ �+ and 〈w∗, f (x)〉 ≥ 0 as x ∈ �. Since f (x̄) ∈ −�, we get
that 〈w∗, f (x̄)〉 = 0 and 〈w∗, f (x)〉 − 〈w∗, f (x̄)〉 ≥ 0 for x ∈ �. This yields

0 ∈ ∂(〈w∗, f 〉 + δ(·;�))(x̄) ⊂ ∂〈w∗, f 〉(x̄)+N(x̄;�).
Thus we arrive at N(x̄;�) ∩ ( − D̃∗

N,�f (x̄)(w
∗)
) 
= ∅ due to the scalarization

formula in (8.74), which shows that condition (8.83) is violated.
Conversely, assume that the Slater condition (8.86) holds and then find x0 ∈ �

with f (x0) ∈ −int �. Supposing that there exists

u∗ ∈ �0 with N(x̄;�) ∩ (− D̃∗
N,�f (x̄)(u

∗)
) 
= ∅,

we get from the coderivative scalarization (8.74) that 0 ∈ ∂〈u∗, f 〉(x̄) + N(x̄;�).
This implies that 0 ≤ 〈u∗, f (x0)〉 − 〈u∗, f (x̄)〉 = 〈u∗, f (x0)〉. Since −f (x0) ∈
int�, it follows from the proof of the implication (iii)⇒(i) in Proposition 8.46
that 〈u∗,−f (x0)〉 > 0, which is a contradiction. Thus we justify the equiva-
lence between the qualification conditions (8.83) and (8.86) in the convex setting
under consideration. Finally, the necessary optimality conditions in (8.78) reduce
to those in (8.87) in this setting due to the convexity of � and the scalarization
formula (8.74). �

8.3.3 Qualified Optimality Conditions Without CQs

In this subsection we present necessary optimality conditions of a new type for
cone-constrained programs (8.64). These results are essentially different from those
obtained in Subsection 8.3.2 in the following major aspects:
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(i) The results below are obtained in a qualified form (i.e., with nonzero multi-
pliers corresponding to cost functions), while they are established without any con-
strained qualification (CQs).

(ii) The obtained results are given in an approximate/fuzzy form, i.e., they involve
neighborhoods of the reference local optimal solution.

Note that some necessary optimality conditions of the fuzzy type have been de-
rived in the literature for nonlinear programs under certain qualification conditions;
see more discussions and references in Section 8.6.

We start with the following simple lemma.

Lemma 8.49 (Fuzzy Estimates of Basic Normals to Inverse Images). Let x̄ ∈
f−1(−�) for f : X → Y under the standing assumptions, and let V ∗ be a weak∗
neighborhood of 0 ∈ X∗. Then for any basic normal x∗ ∈ N(x̄; f−1(−�)) and any
ε > 0 there exist xε ∈ Bε(x̄) and y∗

ε ∈ �+ such that

x∗ ∈ ∂̂〈y∗
ε , f 〉(xε)+ V ∗ with |〈y∗

ε , f (xε)〉| ≤ ε. (8.89)

Proof. It follows from the convex separation theorem that

δ
(
x; f−1(−�)) = sup

y∗∈�+
〈y∗, f (x)〉 for all x ∈ X.

Applying Theorem 8.42 to the case of � := �+ ensures the existence of y∗
ε ∈

co� = �+ and xε ∈ Bε(x̄) satisfying the relationships

|〈y∗
ε , f (xε)〉| = |〈y∗

ε , f (xε)〉 − δ(x̄; f−1(−�))| ≤ ε and x∗ ∈ ∂̂〈y∗
ε , f 〉(xε)+ V ∗,

which verify (8.89) and thus complete the proof of the lemma. �
The main result of this subsection is as follows.

Theorem 8.50 (Fuzzy Optimality Conditions for Cone-Constrained Pro-
grams). Let x̄ be a local optimal solution to problem (8.64). Then for any weak∗
neighborhood V ∗ of 0 ∈ X∗ and any ε > 0, there exist x0, x1, xε ∈ Bε(x̄) and
y∗
ε ∈ �+ such that |ϑ(x0)− ϑ(x̄)| ≤ ε, x1 ∈ �, and

0 ∈ ∂̂ϑ(x0)+ ∂̂〈y∗
ε , f 〉(xε)+ N̂(x1;�)+ V ∗ with |〈y∗

ε , f (xε)〉| ≤ ε. (8.90)

Proof. Suppose without loss of generality that V ∗ is convex inX∗. Since x̄ is a local
solution to (8.64), we have by the generalized Fermat rule that

0 ∈ ∂̂(ϑ + δ(·;�)+ δ(·; f−1(−�)))(x̄).
Using the weak fuzzy sum rule from Exercise 2.27 gives us x0 ∈ Bε(x̄) with
|ϕ(x0)− ϕ(x̄)| ≤ ε, x1 ∈ � ∩ Bε(x̄), and x2 ∈ f−1(−�) ∩ Bε

2
(x̄) such that

0 ∈ ∂̂ϕ(x0)+ N̂(x1;�)+ N̂
(
x2; f−1(−�))+ V ∗

2
.
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Thus there is x∗ ∈ N̂(x2; f−1(−�)) ⊂ N(x2; f−1(−�)) satisfying

0 ∈ x∗ + ∂̂ϕ(x0)+ N̂(x1;�)+ V ∗

2
.

By Proposition 8.49 we find xε ∈ Bε
2
(x2) and y∗

ε ∈ �+ such that

x∗ ∈ ∂̂〈y∗
ε , f 〉(xε)+ V ∗

2
with |〈y∗

ε , f (xε)〉| ≤ ε.

This immediately yields the inclusions

0 ∈ ∂̂ϕ(x0)+ N̂(x1;�)+ V ∗

2
+ ∂̂〈y∗

ε , f 〉(xε)+ V ∗

2⊂ ∂̂ϕ(x0)+ ∂̂〈y∗
ε , f 〉(xε)+ N̂(x1;�)+ V ∗,

which imply in turn the optimality conditions in (8.90) by taking into account the
obvious estimates ‖xε − x̄‖ ≤ ‖xε − x2‖ + ‖x2 − x̄‖ ≤ ε

2 + ε
2 = ε. �

As a consequence of the fuzzy optimality conditions of Theorem 8.50, we derive
the following sequential qualified optimality conditions for a particular setting of
cone-constrained programs (8.64) without constraint qualifications.

Corollary 8.51 (Sequential Optimality Conditions for Cone-Constrained Pro-
grams). Suppose in the framework of Theorem 8.50 that dimX < ∞, � = X, and
the cost function ϕ is Lipschitz continuous around x̄. Then there exist a basic sub-
gradient x∗ ∈ ∂ϕ(x̄) and sequences {xk} ⊂ X, {x∗

k } ⊂ X∗, and {y∗
k } ⊂ �+ with

x∗
k ∈ ∂̂〈y∗

k , f 〉(xk) for all k ∈ N such that

xk → x̄, x∗
k → −x∗, and 〈y∗

k , f (xk)〉 → 0 as k → ∞. (8.91)

Proof. Since dimX < ∞, we can select V ∗ = 1
k
B

∗, ε = 1
k

and then find from
(8.90) vectors uk, xk → x̄ together with dual elements u∗

k ∈ ∂̂ϕ(uk), y∗
k ∈ �+, and

x∗
k ∈ ∂̂〈y∗

k , f 〉(xk) satisfying

− u∗
k ∈ x∗

k + 1

k
B

∗ and |〈y∗
k , f (xk)〉| ≤ 1

k
as k → ∞. (8.92)

It follows from the local Lipschitz continuity of ϕ around x̄ that the sequence {u∗
k}

is bounded, and hence it converges (without relabeling) to some basic subgradient
x∗ ∈ ∂ϕ(x̄). This implies due to the inclusion in (8.92) that x∗

k → −x∗, which
justifies (8.91) and thus completes the proof. �

Yet another remarkable consequence of Theorem 8.50 is its following enhanced
version for the case of nondifferentiable programming.
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Corollary 8.52 (Fuzzy Optimality Conditions in Nondifferentiable Program-
ming). Let x̄ be a local optimal solution to the program:

{
minimize ϕ(x) subject to x ∈ � ⊂ X,

ϕi(x) ≤ 0, i = 1, . . . , m, and ϕi(x) = 0, i = m+ 1, . . . , m+ r,
where in addition to the standing assumptions, we suppose that all the functions
ϕi : X → R are Lipschitz continuous around x̄. Then for any weak∗ neighborhood
V ∗ of 0 ∈ X∗ and any ε > 0, there are vectors x0, x1, . . . , xm+r , x̂ ∈ Bε(x̄) and
multipliers (λ1, . . . , λm+r ) ∈ R

m+ × R
r such that

0 ∈ ∂̂ϕ(x0)+
m∑

i=1

λi ∂̂ϕi(xi)+
m+r∑

i=m+1

∂̂(λiϕi)(xi)+ N̂ (̂x;�)+ V ∗ (8.93)

with x̂ ∈ �,
∣∣∑m+r

i=1 λiϕi(xi)
∣∣ ≤ ε, and |ϕ(x0)− ϕ(x̄)| ≤ ε.

Proof. Employing Theorem 8.50 in the case of Y := R
m+r , f := (ϕ1, . . . , ϕm+r ),

and � := R
m+ × 0r ⊂ Y gives us x0, xε, x̂ ∈ Bε

2
(x̄), and (λ1, . . . , λm+r ) ∈ �+ =

R
m+ × R

r such that |ϑ(x0)− ϑ(x̄)| ≤ ε, x̂ ∈ �, and

0 ∈ ∂̂ϕ(x0)+ ∂̂
(m+r∑

i=1

λiϕi

)
(xε)+ N̂ (̂x;�)+ V ∗

2

with
∣∣∣
m+r∑

i=1

λiϕi(xε)

∣∣∣ ≤ ε

2
.

(8.94)

Thus there is x∗ ∈ ∂̂(∑m+r
i=1 λiϕi

)
(xε) satisfying

0 ∈ x∗ + ∂̂ϑ(x0)+ N̂ (̂x;�)+ V ∗

2
.

Then we apply to x∗ the weak fuzzy sum rule from Exercise 2.27 and find
x∗

1 , . . . , x
∗
m+r together with x1, . . . , xm+r ∈ Bε

2
(xε) such that

x∗
i ∈ ∂̂(λiϕi)(xi), |λiϕi(xi)− λiϕi(xε)| ≤ ε

2(m+ r) for i = 1, . . . , m+ r,

x∗ ∈
m+r∑

i=1

x∗
i + V ∗

2
.

It follows from the above that ‖xi − x̄‖ ≤ ‖xi − xε‖ + ‖xε − x̄‖ ≤ ε
2 + ε

2 = ε for
all i = 1, . . . , m+ r and that the inclusions
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0 ∈ ∂̂ϕ(x0)+ N̂ (̂x;�)+ V ∗

2
+
m+r∑

i=1

∂̂(λiϕi)(xi)+ V ∗

2

∈ ∂̂ϕ(x0)+
m∑

i=1

λi ∂̂ϕi(xi)+
m+r∑

i=m+1

∂̂(λiϕi)(xi)+ N̂ (̂x;�)+ V ∗
(8.95)

hold. Moreover, we get from (8.94) that

∣∣∣
m+r∑

i=1

λiϕi(xi)

∣∣∣ ≤
m+r∑

i=1

∣∣∣λiϕi(xi)− λiϕi(xε)
∣∣∣+

∣∣∣
m+r∑

i=1

λiϕi(xε)

∣∣∣ ≤ ε(m+ r)
2(m+ r) + ε

2
.

This together with (8.95) yields (8.93) and thus completes the proof. �

8.3.4 Well-Posedness of Cone-Constrained Systems

In this subsection we return to investigating well-posedness properties of parametric
systems, which have been studied in Chapter 3 in the general/abstract framework of
finite-dimensional spaces (while most of the results are valid in Asplund spaces
as discussed in Sections 3.4 and 3.5) and also in Chapter 7 for infinite linear and
convex SIP systems in Banach spaces. Here we consider nonconvex and nonsmooth
cone-constrained systems given by

F(x) := f (x)+� = {
y ∈ Y ∣∣ f (x)− y ∈ −�} (8.96)

under the standing assumptions of this section. In contrast to Chapter 7, where
the results revolve around the Lipschitz-like property of the particular systems in
question, we focus in this section on the equivalent (up to considering the inverse
mappings) property of metric regularity for (8.96) the study of which has some dif-
ference from Lipschitzian stability. Observe, in particular, that the image (Banach)
space Y and domain (Asplund) space X in (8.96) have the opposite meaning for
F−1. We also refer the reader to Section 3.3 for some challenges in the study of
metric regularity concerning parametric variational systems in both finite and infi-
nite dimensions. Our approach to metric regularity of (8.96) is based on variational
techniques and using the results developed in the previous subsections above.

In what follows we assume for simplicity that the domain space X is finite-
dimensional while Y is arbitrary Banach. This is sufficient, in particular, for appli-
cations to SIPs considered in Subsection 8.3.5 with Y = C(T ), l∞(T ). The proofs
below can be extended to the case of general Asplund spaces X.

First we derive an upper estimate with the case of equality for the exact regular-
ity bound regF(x̄, 0) of F at (x̄, 0) via the regular coderivative of f at neighbor-
ing points. The obtained estimate and equality clearly imply a sufficient as well
as a necessary and sufficient condition for metric regularity, respectively. Note



8.3 Nonsmooth Cone-Constrained Optimization 407

that D̂∗
�f (x)(y

∗) can be replaced by the regular subdifferential ∂̂〈y∗, f 〉(x) with
y∗ ∈ �+ due to the scalarization formula (8.72).

Theorem 8.53 (Neighborhood Evaluation of the Regularity Bound for Cone-
Constrained Systems). Let x̄ be such that f (x̄) ∈ −� for system (8.96), and let �
be defined in (8.66). Then we have the upper estimate

regF(x̄, 0) ≤ inf
η>0

sup
{ 1

‖x∗‖
∣∣∣ x∗ ∈ D̂∗

�f (x)(y
∗), x ∈ Bη(x̄),

y∗ ∈ �, |〈y∗, f (x̄)〉| < η
}
,

(8.97)

which holds as equality provided that f (x̄) = 0.

Proof. Denote by a(x̄) the right-hand side of (8.97) and consider the nontrivial case
in (8.97) when a(x̄) < ∞. Arguing by contradiction, suppose that regF(x̄, 0) >
a(x̄) and thus x∗ 
= 0 in (8.97). Hence there are sequences (xk, yk) → (x̄, 0) and
ν < αk < ν + 1 for some ν > a(x̄) such that we have

dist
(
xk;F−1(yk)

)
> αkdist

(
yk;F(xk)

)
> 0, k ∈ N. (8.98)

Define ψk(x) := dist(yk;F(x)) and then get εk := ψk(xk) > 0. Since the set
F(x) = f (x) + � is convex for all x ∈ X, we apply the classical Fenchel duality
theorem to obtain the representations

ψk(x) = inf
y∈Y

{
‖y − yk‖ + δ(y;F(x))

}

= max
y∗∈Y ∗

{
− sup
y∈Y

(〈y∗, y〉 − ‖y − yk‖
)− sup

v∈Y
(〈−y∗, v〉 − δ(v; f (x)+�))

}

= max
y∗∈Y ∗

{
− sup
y∈Y

(〈y∗, y + yk〉 − ‖y‖)− sup
v∈�

〈−y∗, f (x)+ v〉
}

= max
y∗∈Y ∗

{
− 〈y∗, yk〉 − δ(y∗;B∗)+ 〈y∗, f (x)〉 − δ(y∗;�+)

}

= max
y∗∈�̃

〈y∗, f (x)− yk〉 for each k ∈ N,

(8.99)

where �̃ := �+ ∩ B
∗ ⊂ Y ∗. Thus the distance function ψk(x) defined above can

be represented as the supremum of Lipschitzian functions as in Theorem 8.42. This
function is Lipschitz continuous on Bρ(x̄) with modulus K , where K and ρ are
taken from (8.65). Suppose without loss of generality that xk ∈ Bρ(x̄) for all k ∈ N

and therefore arrive at the estimates

εk = ψk(xk) ≤ ψk(x̄)+K‖xk − x̄‖ = max
y∗∈�̃

〈y∗, f (x̄)− yk〉 +K‖xk − x̄‖
≤ max
y∗∈�̃

〈y∗,−yk〉 +K‖xk − x̄‖ ≤ ‖yk‖ +K‖xk − x̄‖,
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which ensures that εk ↓ 0 as k → ∞. Since ψk(x) is nonnegative for all x ∈ X, we
have by the definition of εk that

ψk(x)+ εk ≥ ψk(xk) whenever x ∈ Bρ(x̄), k ∈ N.

Applying now Ekeland’s variational principle gives us x̂k ∈ Bρ(x̄) satisfying

‖x̂k − xk‖ ≤ αkεk < (ν + 1)εk, ψk(x)+ α−1
k ‖x − x̂k‖ ≥ ψ(̂xk) (8.100)

on Bρ(x̄). It follows from (8.98) and (8.100) that ‖x̂k − xk‖ < dist(xk;F−1(yk)),
which yields x̂k 
∈ F−1(yk), i.e., yk /∈ F (̂xk). Thus ψk(̂xk) = dist(yk;F (̂xk)) > 0.
Moreover, we deduce from (8.100) that

0 ∈ ∂(ψk + α−1
k ‖ · −x̂k‖

)
(̂xk) ⊂ ∂ψk(̂xk)+ α−1

k B
∗.

Hence there exists x∗
k ∈ α−1

k B
∗ with x∗

k ∈ ∂ψk(̂xk). By the representation of ψk
in (8.99) with the usage of Theorem 8.42 in the setting under consideration (V ∗ =
γkB

∗) for any δk ∈ (0, ψk(̂xk)) sufficiently small we find x̃k ∈ Bγk (̂xk) and y∗
k ∈

co �̃ = �̃ such that

x∗
k ∈ ∂̂〈y∗

k , f 〉(̃xk)+ γkB∗ and |〈y∗
k , f (̃xk)− yk〉 − ψk(̂xk)| < γk. (8.101)

Due to the obvious upper estimates

‖x̄ − x̃k‖ ≤ ‖x̄ − xk‖ + ‖xk − x̂k‖ + ‖x̂k − x̃k‖ ≤ ‖x̄ − xk‖ + (ν + 1)εk + γk
it follows from (8.99) and (8.101) that y∗

k 
= 0 and that

ψk(̂xk) ≤ 〈y∗
k , f (̃xk)− yk〉 + γk = 〈y∗

k , f (̃xk)− f (̂xk)〉 + 〈y∗
k , f (̂xk)− yk〉 + γk

≤ ‖y∗
k ‖ · ‖f (̃xk)− f (̂xk)‖ + ‖y∗

k ‖
〈 y∗

k

‖y∗
k ‖
, f (̂xk)− yk

〉
+ γk

≤ ‖y∗
k ‖K‖x̃k − x̂k‖ + ‖y∗

k ‖ψk(̂xk)+ γk ≤ Kγk + ‖y∗
k ‖ψk(̂xk)+ γk,

which implies in turn the inequalities

1 ≥ ‖y∗
k ‖ ≥ 1 − (K + 1)γk

ψk(̂xk)
. (8.102)

Deduce further from (8.101) the estimates

|〈y∗
k , f (x̄)〉| ≤ ‖y∗

k ‖K‖x̄ − x̃k‖ + γk + ψk(xk)+K‖x̂k − xk‖ + ‖y∗
k ‖ · ‖yk‖

≤ K‖x̄ − x̃k‖ + γk + εk +K(k + 1)εk + ‖yk‖.
This ensures together with (8.102) that

|〈ŷ∗
k , f (x̄)〉| ≤

(
K‖x̄ − x̃k‖ + γk + εk +K(ν + 1)εk + ‖yk‖

)(
1 − (K + 1)γk

ψk(̂xk)

)−1
,
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where ŷ∗
k := ‖y∗

k ‖−1y∗
k ∈ �. Furthermore, it follows from (8.101) and the coderiva-

tive scalarization formula (8.72) that there is u∗
k ∈ ∂̂〈y∗

k , f 〉(̃xk) = D̂∗
�f (̃xk)(y

∗
k )

satisfying ‖x∗
k − u∗

k‖ ≤ γk . Combining this with (8.102) and x∗
k ∈ α−1

k B
∗ yields the

conditions

û∗
k := ‖y∗

k ‖−1u∗
k ∈ D̂∗

�f (̃xk)(ŷ
∗
k ),

‖û∗
k‖ ≤ ‖x∗

k ‖ + γk
‖y∗
k ‖

≤ (α−1
k + γk)

(
1 − (K + 1)γk

ψk(̂xk)

)−1
.

Since αk > ν > a(x̄), we may choose γk so small that the right-hand side
of the last estimate is strictly smaller than ν−1 < a(x̄)−1 and that max{‖x̃k −
x̄‖, |〈ŷ∗

k , f (x̄)〉|} → 0 as k → ∞ due to the above estimates of ‖x̄ − x̃k‖ and
|〈ŷ∗

k , f (x̄)〉|. Hence for small η > 0 we get x̃k ∈ Bη(x̄) and 〈ŷ∗
k , f (x̄)〉 < η with

ŷ∗
k ∈ � and ‖û∗

k‖ < ν−1 < a(x̄)−1 if k is sufficiently large. This contradicts the
definition of a(x̄) and thus justifies the regularity estimate (8.97).

To complete the proof of the theorem, it remains to show that the equality holds
in (8.97) if f (x̄) = 0. It follows from the definition of regF(x̄, 0) that for any ε > 0
there are neighborhoods U of x̄ and V of f (x̄) = 0 with

dist
(
x;F−1(y)

) ≤ (
regF(x̄, 0)+ ε)‖y − f (x)‖ (8.103)

for x ∈ U and y ∈ V . Picking y∗ ∈ � and x∗ ∈ D̂∗
�f (x)(y

∗) for some x with
x ∈ U and f (x) ∈ V allows us to find by Definition 8.43(i) such γ > 0 that

〈x∗, u− x〉 − 〈y∗, f (u)− f (x)〉 ≤ ε(‖u− x‖ + ‖f (u)− f (x)‖) (8.104)

for u ∈ Bγ (x). It follows from (8.103) that for any y ∈ Y close to f (x) there is
u ∈ F−1(y) near x such that

‖x − u‖ ≤ (regF(x̄, 0)+ 2ε)‖y − f (x)‖ with y − f (u) ∈ �.
Combining this with (8.104) gives us the estimates

〈−y∗, y − f (x)〉 ≤ 〈−y∗, f (u)− f (x)〉 ≤ ε(‖u− x‖
+‖f (u)− f (x)‖)− 〈x∗, u− x〉

≤ (
ε(1 +K)+ ‖x∗‖)‖u− x‖

≤ (
ε(1 +K)+ ‖x∗‖)(regF(x̄, 0)+ 2ε

)‖y − f (x)‖
for y near f (x). Thus we get η > 0 with Bη(f (x)) ⊂ V and hence

1 = ‖y∗‖ = sup
y∈Bη(f (x))\f (x)

〈−y∗, y − f (x)〉
‖y − f (x)‖

≤ (
ε(1 +K)+ ‖x∗‖)(regF(x̄, 0)+ 2ε

)
,
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which implies in turn the inequality

‖x∗‖−1 ≤ [(
regF(x̄, 0)+ 2ε

)−1 − ε(1 +K)]−1
.

Letting finally ε ↓ 0 gives us a(x̄) ≤ regF(x̄, 0) and thus justifies the equality in
(8.97) while completing the proof of the theorem. �

Next we consider the pointbased condition

(
ker D̆∗

N,�f (x̄)
) ∩�0 = ∅ with �0 = {

y∗ ∈ �∣∣ 〈y∗, f (x̄)〉 = 0
}

(8.105)

under our standing assumptions while remembering from Corollary 8.48 that
(8.105) is equivalent to the Robinson constraint qualification for smooth mappings
f . Now we show that (8.105) is sufficient for metric regularity of the conic systems
(8.96) around (x̄, 0), provides a verifiable upper estimate of the exact regularity
bound regF(x̄, 0) calculated at x̄, and justifies the equality therein when f is either
�-convex or strictly differentiable at x̄.

Theorem 8.54 (Pointbased Conditions for Metric Regularity of Conic Sys-
tems). Let f (x̄) ∈ −� and int� 
= ∅ be as in Theorem 8.53. Then the constrained
qualification (8.105) is sufficient for the metric regularity of the conic system F from
(8.96) around (x̄, 0) with the exact regularity bound of F at (x̄, 0) estimated from
the above by

regF(x̄, 0) ≤ b(x̄) := sup
{ 1

‖x∗‖
∣∣∣ x∗ ∈ D̆∗

N,�f (x̄)(y
∗),

y∗ ∈ cl ∗�, 〈y∗, f (x̄)〉 = 0
}
,

(8.106)

where x∗ 
= 0 due to (8.105). If furthermore � is weak∗ closed in Y ∗ and if
f is either �-convex or strictly differentiable at x̄, then we have the equality
regF(x̄, 0) = b(x̄) in (8.106), where b(x̄) is calculated by

b(x̄) = sup
{‖y∗‖ ∣∣ (y∗,−x∗) ∈ N((0, x̄); gphF−1), ‖x∗‖ = 1

}
. (8.107)

The latter reduces to the the explicit formulas

b(x̄) = {‖y∗‖∣∣ 〈y∗, y〉 ≤ 〈x∗, x − x̄〉 for all y ∈ F(x), ‖x∗‖ = 1
}

in the case of �-convex mappings f and

b(x̄) = sup
{ 1

‖∇f (x̄)∗y∗‖
∣∣∣ y∗ ∈ � with 〈y∗, f (x̄)〉 = 0

}

when the mapping f is strictly differentiable at x̄.

Proof. First we check that the qualification condition (8.105) guarantees that the
number a(x̄), which is the right-hand side of (8.97), is finite. Indeed, the contrary
means the existence of a sequence (xk, x∗

k , y
∗
k ) ∈ X ×X∗ × Y ∗ with
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xk → x̄, ‖x∗
k ‖ → 0, y∗

k ∈ �, x∗
k ∈ D̂∗

�f (x̄)(y
∗
k ), and 〈y∗

k , f (xk)〉 → 0

as k → ∞. By ‖y∗
k ‖ = 1 for all k ∈ N we find a subnet of {y∗

k } weak∗ con-
verging to some y∗ ∈ cl ∗�. Then it follows from the convergence above and the
cluster coderivative construction from Definition 8.43 that 0 ∈ D̆∗

N,�f (x̄)(y
∗) with

〈y∗, f (x̄)〉 = 0. Proposition 8.46 ensures that y∗ 
= 0 and therefore

y∗

‖y∗‖ ∈ (
ker D̆∗

N,�f (x̄)
) ∩�0.

This contradicts (8.105) and thus justifies that the number a(x̄) is finite. By Theo-
rem 8.53 we have that F is metrically regular around (x̄, 0).

Since a(x̄) is finite, it follows from the regularity bound estimate in (8.97) that
there is a sequence (xk, x∗

k , y
∗
k ) ∈ X ×X∗ × Y ∗ such that

xk → x̄,
1

‖x∗
k ‖

→ a(x̄), y∗
k ∈ �, x∗

k ∈ D̂∗
�f (x̄)(y

∗
k ), and 〈y∗

k , f (xk)〉 → 0.

Again we find a subnet of {(x∗
k , y

∗
k )} weak∗ converging to some (x∗, y∗) ∈ X∗ ×

cl ∗� and conclude that x∗ ∈ D̆∗
N,�f (x̄)(y

∗) and y∗ ∈ cl ∗� with 〈y∗, f (x̄)〉 = 0.

This gives us a(x̄) = ‖x∗‖−1 and thus deduce the claimed upper estimate (8.106)
from that given in (8.97).

To justify the equality in (8.106) with the corresponding representations of b(x̄),
observe that the weak∗ closedness of � ensures the formula

�0 = {
y∗ ∈ cl ∗�

∣∣ 〈y∗, f (x̄)〉 = 0
}
,

where �0 is taken from (8.105). If f is �-convex, we easily get from (8.74) that
x∗ ∈ D̆∗

N,�f (x̄)(y
∗) with y∗ ∈ �0 if and only if (x∗,−y∗) ∈ N((x̄, 0); gphF)

with y∗ ∈ SY ∗ . By (8.106) it gives us the conditions

regF(x̄, 0) ≤ b(x̄) = sup
{ 1

‖x∗‖
∣∣∣ (x∗,−y∗) ∈ N((x̄, 0); gphF

)
, ‖y∗‖ = 1

}
.

On the other hand, we have from Theorem 3.2 held in any Banach space and esti-
mate (3.61) under the assumptions made that

regF(x̄, 0) ≥ sup
{‖y∗‖ ∣∣ (y∗,−x∗) ∈ N((0, x̄); gphF−1), ‖x∗‖ = 1

}
,

which yields the equality in (8.106) with b(x̄) calculated by (8.107). The specifica-
tion of (8.107) in the case of�-convex mappings follows directly from the structure
of the normal cone to convex sets.

It remains to justify the equality case for mappings f strictly differentiable at x̄.
In this case we have from (8.73) that

D̆∗
N,�f (x̄)(y

∗) = {∇f (x̄)∗y∗} = {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N̂((x̄, 0); gphF

)}

= {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N((x̄, 0); gphF

)}
for any y∗ ∈ �0.
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Combining it with (8.106) and the lower estimate of the regularity bound regF(x̄, 0)
above gives us the relationships

regF(x̄, 0) ≤ b(x̄) ≤ sup
{ 1

‖x∗‖
∣∣∣ (x∗,−y∗) ∈ N̂((x̄, 0); gphF

)
, ‖y∗‖ = 1

}

= sup
{ 1

‖x∗‖
∣∣∣ (x∗,−y∗) ∈ N((x̄, 0); gphF

)
, ‖y∗‖ = 1

}

≤ sup
{
‖y∗‖

∣∣∣ (y∗,−x∗) ∈ N̂((0, x̄); gphF−1), ‖x∗‖ = 1
}

≤ regF(x̄, 0),

which imply the equality in (8.106) and formula (8.107) for representing b(x̄) in this
case. The explicit calculation of b(x̄) for strictly differentiable mappings follows
from (8.106) with D̆∗

N,�f (x̄)(y
∗) = {∇f (x̄)∗y∗}. �

Observe that the weak∗ closedness assumption imposed on � ⊂ Y ∗ for ensuring
the equality in Theorem 8.54 seems to be restrictive in infinite dimensions, since �
is a part of the unit sphere SY ∗ , which is never weak∗ closed in infinite-dimensional
Banach spaces by the classical Josefson-Nissenzweig theorem. However, we show
in the next subsection that the weak∗ closed assumption on � is satisfied for the
space Y = l∞(T ) with � = l∞+ (T ) where T is an arbitrary index set, as well as for
the space Y = C(T ) with � = C+(T ) where T is compact. Both spaces naturally
appear in applications to the corresponding models of semi-infinite programming
considered below.

8.3.5 Optimality and Well-Posedness for Nonconvex SIPs

Here we apply the obtained results for conic programs and cone-constrained sys-
tems to derive optimality conditions for nonsmooth SIPs and certifications of metric
regularity for infinite Lipschitzian inequality systems. Let us first consider the fol-
lowing SIP with infinite inequality and geometric constraints:

{
minimize ϕ(x) subject to
f (x, t) ≤ 0, t ∈ T , and x ∈ � ⊂ X,

(8.108)

where dimX < ∞ (for simplicity), ϕ : X → R, f : X × T → R, and T is an
arbitrary index set. In the absence of geometric constraints, SIP (8.108) with Lips-
chitzian data has been studied in Section 8.2 from the viewpoint of deriving optimal-
ity conditions by using another approach. Besides covering geometric constraints,
our approach here applies to SIPs under significantly weaker assumptions and con-
straint qualifications in comparison with Section 8.2 and leads us to generally dif-
ferent optimality conditions. Furthermore, we establish also pointbased sufficient
conditions and complete characterizations of metric regularity of infinite nonconvex
inequality systems.

It is more convenient for us to use in (8.108) the notation for the inequality con-
straint functions different from (8.31), while we require for them the same local
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Lipschitzian property with respect to x around x̄ uniformly in t ∈ T : there are
K, ρ > 0 such that

|f (x, t)− f (u, t)| ≤ K‖x − u‖ for all x, u ∈ Bρ(x̄), t ∈ T . (8.109)

At the same time, contrary to Section 8.2, we assume here that the cost function ϕ
is merely l.s.c. around the reference point x̄ and that � is an arbitrary locally closed
set around x̄. Consider the collection of ε-active indices

Tε(x̄) := {
t ∈ T ∣∣ f (x̄, t) ≥ −ε} as ε ≥ 0 with T (x̄) := T0(x̄).

It follows from the uniform Lipschitz property of f in (8.109) that for any ε > 0
there is δ > 0 sufficiently small such that f (x, t) < 0 whenever x ∈ Bδ(x̄) and
t /∈ Tε(x̄). This observation allows us to restrict the inequality constraints in (8.108)
to the set Tε(x̄) with keeping all the local properties assumed around x̄. Observe
further from (8.108) that the function t �→ f (x, t) is bounded on Tε(x̄) for each x
around x̄. These discussions show that there is no restriction to suppose that f (x, ·)
for x ∈ X are elements of l∞(T ).

Using the function f (x, t) of two variables from (8.108), define the mapping
f : X → l∞(T ) by f (x)(·) := f (x, ·) ∈ l∞(T ) for all x ∈ X. It follows from
(8.109) that this mapping is locally Lipschitzian around x̄ as in (8.65). Further, it is
easy to see that f is l∞+ (T )-convex if and only if all the functions f (·, t) as t ∈ T
are convex with respect to the variable x. Moreover, the strict differentiability of the
mapping f : X → l∞(T ) at x̄ corresponds to the uniform strict differentiability of
x �→ f (x, t) at x̄ for all t ∈ T in the sense of Subsection 8.1.1. When the index set
T is a compact Hausdorff space and the functions p(·) ∈ l∞(T ) are restricted to be
continuous on T , l∞(T ) reduces to the space of continuous functions C(T ) with the
maximum norm.

As discussed in Section 7.1, the Banach spaces l∞(T ) and C(T ) are not Asplund.
Furthermore, it is well known that l∞(T ) is never separable unless T is finite, while
the space C(T ) is separable provided that T is a compact metric space. Similarly to
Section 7.1, we identify the dual space l∞(T )∗ with the space ba(T ) of bounded
and additive measures μ(·) on T satisfying

〈μ,p〉 =
∫

T

p(t)μ(dt) for any μ ∈ ba(T ), p ∈ l∞(T )

with the dual norm on ba(T ) defined as the total variation of μ(·) on T by

‖μ‖ := sup
A⊂T

μ(A)− inf
B⊂T μ(B).

Denoting by ba+(T ) the collection of nonnegative bounded and additive measures
on T , we can easily check that

ba+(T ) =
{
μ ∈ ba(T )

∣∣∣
∫

T

p(t)μ(dt) ≥ 0, p ∈ l∞+ (T )
}
,

where l∞+ (T ) := {p ∈ l∞(T )∣∣ pt ≥ 0, t ∈ T } is the positive cone in l∞(T ).
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When T is a compact topological space, denote by B(T ) the σ -algebra of all the
Borel sets on T . As well known, the topologically dual space to C(T ) is the space
rca(T ) of all the regular finite real-valued Borel measures on T equipped with the
total variation norm ‖μ‖. We define the collection of all the nonnegative regular
Borel measures on T by

rca+(T ) := {
μ ∈ rca(T )∣∣ μ(A) ≥ 0 as A ∈ B(T )},

which can be equivalently described as

rca+(T ) =
{
μ ∈ rca(T )

∣∣∣
∫

T

p(t)μ(dt) ≥ 0 as p ∈ C+(T )
}
,

where C+(T ) is the set of all the nonnegative continuous functions on T . Recall
that a Borel measure μ(·) is supported on A ∈ B(T ) if μ(B) = 0 for all the sets
B ∈ B(T ) with B ∩ A = ∅ and then observe the following statement.

Proposition 8.55 (Supported Measures). Let T be a compact Hausdorff space,
and let p ∈ C+(T ). If the measure μ ∈ rca+(T ) satisfies the relationship∫
T
p(t)μ(dt) = 0, then it is supported on the set {t ∈ T | p(t) = 0}.

Proof. Define A := {t ∈ T | p(t) = 0} and pick any B ∈ B(T ) such that B∩A = ∅.
Since μ(·) is a regular measure, we have

μ(B) = sup
{
μ(C)

∣∣ C ⊂ B, C compact
}
.

To verify that μ(B) = 0, we only need to show that μ(C) = 0 for all the compact
sets C contained in B. To proceed, define δ := max{p(t)| t ∈ C} ≥ 0 and observe
that δ > 0 due to C ∩ A = ∅. It follows that

0 =
∫

T

p(t)μ(dt) =
∫

T \C
p(t)μ(dt)+

∫

C

p(t)μ(dt) ≥
∫

C

p(t)μ(dt) ≥ δμ(C) ≥ 0,

which implies that μ(C) = 0 and thus justifies the claimed result. �
As discussed above, SIP (8.108) can be formulated as a cone-constrained pro-

gram (8.64) with Y = l∞(T ) and � = l∞+ (T ). Applying Theorem 8.45 yields the
following optimality conditions for nonsmooth and nonconvex SIPs.

Theorem 8.56 (Necessary Optimality Conditions for Nonconvex SIPs with Ar-
bitrary Index Sets). Let x̄ be a local optimal solution to SIP (8.108) under the
standing assumptions of this subsection. For the constraint function f (x, t) in
(8.108), define the collections of measures

ba+(T )(f ) :=
{
μ ∈ ba+(T )

∣∣ μ(T ) = 1,
∫

T

f (x̄, t)μ(dt) = 0
}

and suppose that the qualification conditions (8.77) and
(
∂∞ϕ(x̄)+N(x̄;�)

)⋂(
− D̆∗

N,�f (x̄)
(
ba+(T )(f )

)) = ∅ (8.110)
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are satisfied. Then there is a measure μ ∈ ba+(T ) such that

0 ∈ ∂ϕ(x̄)+ D̆∗
N,�f (x̄)(μ)+N(x̄;�) and

∫

T

f (x̄, t)μ(dt) = 0. (8.111)

Proof. To deduce this result from Theorem 8.45, recall the remarkable classical fact
from the geometry of Banach spaces telling us that int l∞+ (T ) 
= ∅. It follows from
the above discussions that in the notation of Corollary 8.47 specified to problem
(8.108), we get int� 
= ∅ and �+ = ba+(T ). Furthermore,

μ(T ) ≥ ‖μ‖ ≥ 〈μ, e〉 =
∫

T

μ(dt) = μ(T ) for all μ ∈ ba+(T ),

where e(·) is the unit function of l∞(T ). This shows that �0 = ba+(T )(f ), and
hence the qualification condition (8.83) of Corollary 8.47 reduces to (8.110) for
SIP (8.108). Then following the arguments of Corollary 8.47 in the setting under
consideration, we arrive at (8.111) and thus complete the proof. �

When T is compact, the underlying space Y = C(T ) is separable, and thus the
unit ball of C∗(T ) = rca(T ) is sequentially weak∗ compact. This allows us to use
the (sequential) normal coderivative D∗

N,�f (x̄) from Definition 8.43 to derive the
corresponding necessary optimality conditions for SIP (8.108).

Corollary 8.57 (Optimality Conditions for Nonconvex SIPs with Compact In-
dex Sets). In the setting of Theorem 8.56, suppose that the index set T is a compact
metric space and that the function t �→ f (x, t) is continuous on T for each x ∈ X.
Assume also that the qualification conditions (8.77) and

(
∂∞ϕ(x̄)+N(x̄;�)

)⋂(
−D∗

N,�f (x̄)
(
rca+(T )(f )

)) = ∅ (8.112)

are satisfied, where the coderivative argument in (8.112) is defined by

rca+(T )(f ) := {
μ ∈ rca+(T )

∣∣ μ(T ) = 1, μ is supported on T (x̄)
}
.

Then there is a measure μ ∈ rca+(T ) supported on T (x̄) such that

0 ∈ ∂ϕ(x̄)+D∗
N,�f (x̄)(μ)+N(x̄;�). (8.113)

Proof. Since the closed unit ball of C∗(T ) is sequentially weak∗ compact, combining
the last part in Corollary 8.47 with Proposition 8.55 ensures the existence of the
claimed measure μ(·) satisfying (8.113). �

Let us present a simple example illustrating the application of the qualification
and optimality conditions from Corollary 8.57 as well as their behavior under the
convexification of the involved generalized differential constructions.

Example 8.58 (Illustration of Qualification and Optimality Conditions for
SIPs Over Compact Index Sets). Consider the following one-dimensional SIP
(with x ∈ R), where the cost function is smooth:
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minimize ϕ(x) := x2 subject to f (x, t) := −|x| − t ≤ 0, t ∈ T := [0, 1].
It is obvious that x̄ = 0 is the only minimizer for this problem with T (x̄) = {0}. We
can directly calculate the regular normal cone in this setting by

N̂
(
(x, f (x)); epi�f

) =
{{
(r,−μ) ∈ R × rca+(T )

∣∣ r = −μ(T )} if x > 0,{
(r,−μ) ∈ R × rca+(T )

∣∣ r = μ(T )
}

if x < 0,

which tells us that D∗
N,�f (x̄)(μ) = {−μ(T ), μ(T )} for all μ ∈ rca+(T ). Thus the

qualification condition (8.112) reads as

∂∞ϕ(x̄) ∩
(

−D∗
N,�f (x̄)

(
rca+(T )(f )

)) = {0} ∩ {−1, 1},

which obviously holds together with the necessary condition (8.113). This allows
us to confirm the optimality of x̄ = 0 by Corollary 8.57. On the other hand, the
corresponding convexified qualification condition

co ∂∞ϑ(x̄) ∩
(

− coD∗
N,�f (x̄)

(
rca+(T )(f )

)) = {0} ∩ [−1, 1] = {0} 
= ∅

fails and prevents using convexification to get rid of this nonoptimal solution.

The last result of this subsection presents applications of the metric regularity
conditions for cone-constrained systems from Theorem 8.54 to the case of infinite
inequality constraints from (8.108) under parameter perturbations.

Theorem 8.59 (Pointbased Characterizations of Metric Regularity for Infinite
Inequality Systems). Suppose that in the setting of Theorem 8.54, we have the
infinite inequality system F : X →→ l∞(T ) given by

F(x) := {
p ∈ l∞(T )∣∣ f (x, t) ≤ p(t), t ∈ T }, x ∈ X,

with an arbitrary index set T . Pick x̄ ∈ kerF so that the qualification condition

(
ker D̆∗

N,�f (x̄)
) ∩ (

ba+(T )(f )
) = ∅

is satisfied. Then F is metrically regular around (x̄, 0) and its exact regularity bound
at (x̄, 0) is estimated from the above by

regF(x̄, 0) ≤ sup
{ 1

‖x∗‖
∣∣∣ x∗ ∈ D̆∗

N,�f (x̄)(μ), μ ∈ ba+(T )(f )
}
. (8.114)

If further for all t ∈ T the functions x �→ f (x, t) are either convex or uniformly
strictly differentiable at x̄, then the equality holds in (8.114) and we have

regF(x̄, 0) = sup
{‖μ‖ ∣∣ (μ,−x∗) ∈ N((0, x̄); gphF−1), ‖x∗‖ = 1

}

with the specifications of this formula, which are similar to Theorem 8.54.
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Proof. Recall that int l∞+ (T ) 
= ∅. By Theorem 8.54 and the discussions above it is
sufficient to check that the set � = {μ ∈ ba+(T )| ‖μ‖ = 1} is weak∗ closed in
ba(T ). To proceed, take any net {μν}ν∈N ⊂ � weak∗ converging to μ and show
that μ ∈ �. Indeed, it follows that

1 = lim
ν∈N

‖μν‖ = lim
ν∈N

μν(T ) = lim
ν∈N

〈μν, e〉 = 〈μ, e〉 = μ(T ) = ‖μ‖,

where e(·) is the unit function in l∞(T ). This verifies the claimed weak∗ closedness
of the set � ⊂ ba(T ) and thus completes the proof of the theorem. �

8.4 Nonconvex SIPs with Countable Constraints

In the concluding section of this and the previous chapters devoted to SIPs, we
develop yet another approach to SIPs based on applying the extremal principles
for countable set systems obtained in Chapter 2. This approach allows us to es-
tablish necessary optimality conditions for SIPs with geometric constraints given
by countably many nonconvex sets and then apply them to infinite inequality con-
straints described by general nonsmooth (may not be Lipschitzian) functions. The
conditions obtained in this way provide new results even for smooth, convex, and
Lipschitzian SIPs in comparison with those established in the previous sections of
Chapters 7 and 8. To proceed, we derive some calculus properties of tangents and
normals to countable nonconvex set intersections, which are of their own values in
variational analysis. Throughout this section we suppose that the decision space X
is finite-dimensional with the Euclidean norm, although a number of the obtained
results can be extended to infinite-dimensional spaces. Recall also that our standing
assumptions are, unless otherwise stated, that all the sets under consideration are lo-
cally closed and all the functions are l.s.c. around the reference points. It is possible
to observe from the given proofs that the latter assumptions are not always needed;
we leave it for the reader to check this as an exercise.

8.4.1 CHIP Properties for Countable Set Intersections

We start with the study of the so-called conical hull intersection property (CHIP)
for countable nonconvex set intersections, which has been intensively investigated
and applied for the case of finite intersections of convex sets; see more discussions
and references in Section 8.6. In what follows we keep the terminology of convex
analysis while replacing the classical tangent cone by its contingent counterpart
(1.11) in the nonconvex setting. Furthermore, we formulate also the strong version
of CHIP for nonconvex intersections expressed via our basic normal cone (1.4).

Definition 8.60 (CHIP for Countable Intersections). Given an arbitrary set sys-
tem {�i}i∈N ⊂ X and x̄ ∈ ⋂∞

i=1�i , it is said that:
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(i) The system {�i}i∈N has the CONICAL HULL INTERSECTION PROPERTY

(CHIP) at the point x̄ if we have

T
(
x̄;

∞⋂

i=1

�i

)
=

∞⋂

i=1

T (x̄;�i). (8.115)

(ii) The system {�i}i∈N has the STRONG CHIP at x̄ if we have

N
(
x̄;

∞⋂

i=1

�i

)
=
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}
, (8.116)

where L is the collection of all the finite subsets of the natural series N.

It can be checked that assuming the convexity of�i in (8.116) allows us to equiv-
alently represent the strong CHIP for {�i}i∈N in the form

N
(
x̄;

∞⋂

i=1

�i

)
= co

∞⋃

i=1

N(x̄;�i). (8.117)

Further, we say that a countable set system {�i}i∈N has the asymptotic strong CHIP
at x̄ ∈ ⋂∞

i=1�i if the latter representation is replaced by

N
(
x̄;

∞⋂

i=1

�i

)
= cl co

∞⋃

i=1

N(x̄;�i). (8.118)

The next result reveals the equivalence between CHIP and the asymptotic strong
CHIP for countable intersections of convex sets.

Theorem 8.61 (Characterization of CHIP for Intersections of Convex Sets). Let
{�i}i∈N ⊂ X be a countable system of convex sets with x̄ ∈ ⋂∞

i=1�i . The following
properties are equivalent: (a) The system {�i}i∈N has CHIP at x̄.

(b) The system {�i}i∈N has the asymptotic strong CHIP at x̄.

In particular, the strong CHIP implies CHIP but not vice versa.

Proof. It is well known in convex analysis that the full duality

T (x̄;�) = N∗(x̄;�) and N(x̄;�) = T ∗(x̄;�), x ∈ �, (8.119)

holds for convex sets. Let us now justify the equality

( ∞⋂

i=1

T (x̄;�i)
)∗ = cl co

∞⋃

i=1

N(x̄;�i). (8.120)
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The inclusion “⊃” in (8.120) follows from the second formula in (8.119) by

N(x̄;�i) = T ∗(x̄;�i) ⊂
( ∞⋂

i=1

T (x̄;�i)
)∗

due to the closedness and convexity of the polar set on the right-hand side of the
latter inclusion. To prove the opposite inclusion, pick x∗ 
∈ cl co

⋃∞
i=1N(x̄;�i)

and find by convex separation such v 
= 0 that

〈x∗, v〉 > 0 and 〈u∗, v〉 ≤ 0 for all u∗ ∈ cl co
∞⋃

i=1

N(x̄;�i). (8.121)

Hence for each i ∈ N we get 〈u∗, v〉 ≤ 0 whenever u∗ ∈ N(x̄;�i), which yields
v ∈ N∗(x̄;�i) and therefore v ∈ T (x̄;�i) by the first formula in (8.119). This
tells us that v ∈ ⋂∞

i=1 T (x̄;�i), and so x∗ 
∈ (⋂∞
i=1 T (x̄;�i)

)∗ by 〈x∗, v〉 > 0 in
(8.121) verifying the equality in (8.120). Since the set ∩∞

i=1T (x̄;�i) is closed and
convex, it agrees with its second dual, which ensures the representation

∞⋂

i=1

T (x̄;�i) =
(

cl co
∞⋃

i=1

N(x̄;�i)
)∗
. (8.122)

Assuming that CHIP in (a) holds and employing (8.119) together with (8.120) for
the set intersection � := ⋂∞

i=1�i yield the equalities

N(x̄;�) = T ∗(x̄;�) =
( ∞⋂

i=1

T (x̄;�i)
)∗ = cl co

∞⋃

i=1

N(x̄;�i),

which justify the validity of the asymptotic strong CHIP in (b). Conversely, having
(b) and using the relationships in (8.119) and (8.122) give us

T (x̄;�) = N∗(x̄;�) =
(

cl co
∞⋃

i=1

N(x̄;�i)
)∗ =

∞⋂

i=1

T (x̄;�i),

which verifies CHIP in (a) and thus establishes the equivalence statement claimed
in the theorem. Since the strong CHIP implies the asymptotic strong CHIP due to
the closedness of N(x̄;�), it also implies CHIP. The converse implication doesn’t
hold even for finitely many sets; see Exercise 8.111(ii). �

As a direct consequence of Theorem 8.61, we obtain an unconditional represen-
tation of the normal cone to solutions of infinite linear systems.

Corollary 8.62 (Normal Cone to Solution Sets for Countable Linear Inequality
Systems). The normal cone at the origin to the solution set

� := {
x ∈ X∣∣ 〈ai, x〉 ≤ 0, i ∈ N

}
,
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of countable linear inequalities is calculated by

N(0;�) = cl co
[ ∞⋃

i=1

{
λai

∣∣ λ ≥ 0}
]
. (8.123)

Proof. It is easy to see that� is represented as a countable intersection of sets having
CHIP. The asymptotic strong CHIP for this system is obviously (8.123). Thus the
result follows immediately from Theorem 8.61. �

Of course, we cannot expect extending the equivalence of Theorem 8.61 to non-
convex sets. Let us now derive some sufficient conditions ensuring CHIP for count-
able intersections of nonconvex sets. The first step in this direction is to employ the
notion of bounded linear regularity for countable systems of nonconvex sets, which
goes beyond its conventional study and applications for convex systems. This notion
is certainly important for its own sake, regardless of its subsequent applications to
CHIP; see Section 8.6.

Definition 8.63 (Bounded Linear Regularity for Countable Systems of Noncon-
vex Sets). Given a set system {�i}i∈N, we say that it is BOUNDEDLY LINEARLY

REGULAR at x̄ ∈ � := ⋂∞
i=1�i if there exist a neighborhood U of x̄ and a number

C > 0 such that

dist (x;�) ≤ C sup
i∈N

{
dist (x;�i)

}
for all x ∈ U. (8.124)

In the next proposition, the notation d�(x):=dist(x;�) is used for convenience.

Proposition 8.64 (Sufficient Conditions for CHIP of Countable Set Systems in
Terms of Bounded Linear Regularity). Let {�i}i∈N ⊂ X be a countable system of
sets with x̄ ∈ � := ⋂∞

i=1�i . Assume that this system is boundedly linearly regular
at x̄ with some C > 0 in (8.124) and that the family of functions {d�i (·)}i∈N is
EQUIDIRECTIONALLY DIFFERENTIABLE at x̄ in the sense that for any h ∈ X the
functions

{
d�i (x̄ + th)

t
, i ∈ N

}

of t > 0 converge as t ↓ 0 to the corresponding directional derivatives d ′
�i
(x̄;h)

uniformly in i ∈ N. Then for all h ∈ X we have the estimate

dist (h;�) ≤ C sup
i∈N

{
dist (h;�i)

}
with � := T (x̄;�) and �i := T (x̄;�i)

as i ∈ N. In particular, the set system {�i}i∈N enjoys CHIP at x̄.

Proof. Recalling definition (1.11) of T (x̄;�), we get (see Exercise 8.114) that

dist (h;�) = lim inf
t↓0

dist
(
h; �− x̄

t

)
= lim inf

t↓0

dist (x̄ + th;�)
t

. (8.125)
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When t is small, the assumed bounded linear regularity yields

dist (x̄ + th;�)
t

≤ C sup
i∈N

dist (x̄ + th;�i)
t

.

Applying further the equidirectional differentiability ensures the convergence

dist (x̄ + th;�i)
t

→ d ′
�i
(x̄;h) = dist (h;�i) uniformly in i as t ↓ 0,

i.e., for any ε > 0 there exists δ > 0 such that whenever t ∈ (0, δ) we have

∣∣∣
dist (x̄ + th;�i)

t
− dist (h;�i)

∣∣∣ ≤ ε for all i ∈ N.

Hence it follows for any t ∈ (0, δ) that

sup
i∈N

dist (x̄ + th;�i)
t

≤ sup
i∈N

{
dist (h;�i)

}+ ε.

Combining all the above, we get the estimates

dist (h;�) ≤ C lim inf
t↓0

sup
i∈N

dist (x̄ + th;�i)
t

≤ C sup
i∈N

{
dist (h;�i)

}+ Cε,

which yield (8.124) by the arbitrary choice of ε and thus verify CHIP. �
The next result simplifies checking bounded linear regularity.

Corollary 8.65 (CHIP via Simplified Bounded Linear Regularity of Noncon-
vex Sets). Without assuming bounded linear regularity in the framework of Propo-
sition 8.64, suppose that there are numbers C > 0, j ∈ N, and a neighborhood U
of x̄ such that

dist (x;�) ≤ C sup
i 
=j

{
dist (x;�i)

}
for all x ∈ �j ∩ U.

Then the set system {�i}i∈N enjoys CHIP at x̄.

Proof. Employing Proposition 8.64, it suffices to show that the system {�i}i∈N is
boundedly linearly regular at x̄. Take r > 0 so small that

dist (x;�) ≤ C sup
i 
=j

{
dist (x;�i)

}
for all x ∈ �j ∩ (x̄ + 3rB).

Since the distance function is nonexpansive (i.e., Lipschitzian with modulus � = 1),
for every y ∈ �j ∩ (x̄ + 3rB) and x ∈ X we have
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0 ≤ C sup
i 
=j

{
dist (y;�i)

}− dist (y;�)

≤ C sup
i 
=j

({
dist (x;�i)

}+ ‖x − y‖
)

− dist (x;�)+ ‖x − y‖
≤ C sup

i 
=j
{
dist (x;�i)

}− dist (x;�)+ (C + 1)‖x − y‖,

which readily ensures the estimate

dist (x;�) ≤ (2C + 1)max
[

sup
i 
=j

{
dist (x;�i)

}
, dist

(
x;�j ∩ (x̄ + 3rB)

)]
.

Thus the bounded linear regularity of {�i}i∈N at x̄ in the form of

dist (x;�) ≤ (2C + 1) sup
i∈N

{
dist (x;�i)

}

would follow now from the relationship

dist
(
x;�j ∩ (x̄ + 3rB)

) = dist (x;�j) for all x ∈ x̄ + rB. (8.126)

To verify (8.126), fix a vector x ∈ x̄ + rB above and pick any y ∈ �j \ (x̄ + 3rB).
This gives us ‖x − y‖ ≥ ‖y − x̄‖ − ‖x̄ − x‖ ≥ 3r − r = 2r and implies that

dist
(
x;�j \ (x̄ + 3rB)

) ≥ 2r while dist
(
x;�j ∩ (x̄ + 3rB)

) ≤ ‖x − x̄‖ ≤ r.

Hence we get the equalities

dist (x;�j) = min
{
dist

(
x;�j \ (x̄ + 3rB)

)
, dist

(
x;�j ∩ (x̄ + 3rB)

)}

= dist
(
x;�j ∩ (x̄ + 3rB)

)
,

which readily justify (8.126) and thus complete the proof of the corollary. �
The next proposition, which holds in fact for arbitrary (not only countable) set

intersections, provides a new kind of sufficient conditions for CHIP. Define the tan-
gential rank of the intersection � := ⋂∞

i=1�i at x̄ ∈ � by

ρ�(x̄) := inf
i∈N

⎧
⎨

⎩
lim sup
x→x̄

x∈�i\{x̄}

dist (x;�)
‖x − x̄‖

⎫
⎬

⎭
,

where we put ρ�(x̄) := 0 if �i = {x̄} for at least one i ∈ N.

Proposition 8.66 (Sufficient Condition for CHIP via Tangential Rank of In-
tersections). Given a countable set system {�i}i∈N ⊂ X with a common point x̄,
suppose that ρ�(x̄) = 0 for the tangential rank of � := ⋂∞

i=1�i at x̄ ∈ �. Then
this system exhibits CHIP at the point x̄.

Proof. Since the result holds trivially if �i = {x̄} for some i ∈ N, suppose that
�i \ {x̄} 
= ∅ for all i ∈ N and observe that T (x̄;�) ⊂ T (x̄;�i) whenever i ∈ N.
Thus we always have the inclusion
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T (x̄;�) ⊂
⋂

i∈N
T (x̄;�i).

To verify the opposite inclusion, pick 0 
= v ∈ ⋂∞
i=1 T (x̄;�i) and deduce from

ρ�(x̄) = 0 by the rank definition that for any fixed k ∈ N there is �k with

lim sup
x→x̄

x∈�k\{x̄}

dist (x;�)
‖x − x̄‖ <

1

k
.

Since v ∈ T (x̄;�k), there exist sequences {xj }j∈N ⊂ �k and tj ↓ 0 satisfying

xj → x̄ and
xj − x̄
tj

→ v as j → ∞,

which in turn yields the limiting estimate

lim sup
j→∞

dist (xj ;�)
‖xj − x̄‖ <

1

k
.

The latter gives us xk ∈ {xj }j∈N with ‖xk − x̄‖ ≤ 1/k and tk ≤ 1/k with

∥∥∥∥
xk − x̄
tk

− v
∥∥∥∥ ≤ 1

k
and

dist (xk;�)
‖xk − x̄‖ <

1

k
.

Then it follows that there exists zk ∈ � satisfying the relationships

‖zk − xk‖ < 1

k
‖xk − x̄‖ ≤ 1

k2 .

Combining the estimates above, we arrive at
∥∥∥∥
zk − x̄
tk

− v
∥∥∥∥ ≤

∥∥∥∥
zk − xk
tk

∥∥∥∥+
∥∥∥∥
xk − x̄
tk

− v
∥∥∥∥ ≤ 1

k

(
‖v‖ + 1

k

)
+ 1

k

for all k ∈ N. Now letting k → ∞ gives us zk
�−→ x̄, tk ↓ 0, and a set∥∥∥∥

zk − x̄
tk

− v
∥∥∥∥ −→ 0. Thus v ∈ T (x̄;�), which completes the proof. �

To conclude our discussions on CHIP, let us establish yet another verifiable con-
dition ensuring the fulfillment of this property for countable intersections. We say
that A ⊂ X is of the invex type if it can be represented as the complement to a union
with respect to t ∈ T of some open convex sets At , i.e.,

A = X \
⋃

t∈T
At . (8.127)

Proposition 8.67 (CHIP for Countable Intersections of Invex-Type Sets). Given
a countable system {�i}i∈N ⊂ R

n, assume that there is a (possibly infinite) index
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subset J ⊂ N such that each �i for i ∈ J is the complement to an open and convex
set in X and that for some x̄ ∈ X we have

x̄ ∈
(⋂

i∈J
bd�i

)
∩ int

⋂

i 
∈J
�i. (8.128)

Then the system {�i}i∈N enjoys CHIP at x̄.

Proof. Let us first show that for A of the invex type (8.127) the inclusion

x̄ + T (x̄;A) ⊂ A whenever x̄ ∈
⋂

t∈T
bdAt ∩ bdA (8.129)

involving the contingent cone T (x̄;A) holds. On the contrary, suppose that there is
v ∈ T (x̄;A) with x̄ + v /∈ A. By (1.11) we find sequences sk ↓ 0 and xk ∈ A such
that xk−x̄

sk
→ v. Since x̄ + v /∈ A, the invexity assumption (8.127) gives us an index

t0 ∈ T for which x̄ + v ∈ At0 . Thus we get

x̄ + xk − x̄
sk

∈ At0 for all k ∈ N sufficiently large.

Then employing the convexity of At0 tells us that

xk = (1 − sk)x̄ + sk
(
x̄ + xk − x̄

sk

)
∈ At0

for the fixed index t0 ∈ T and all large numbers k ∈ N. This contradicts the fact that
of xk ∈ A and thus justifies the claimed inclusion (8.129).

To verify that {�i}i∈N enjoys CHIP at x̄ satisfying (8.128), take any �i with
i ∈ J and consider A ⊂ X with � = X \A. Then x̄ ∈ bdA∩ bd�i by (8.128), and
thus (8.129) ensures that x̄ + T (x̄;�i) ⊂ �i for this index i ∈ J . By the choice of
x̄ in (8.128), we have furthermore that

∞⋂

i=1

T (x̄;�i) =
⋂

i∈J
T (x̄;�i) ⊂

⋂

i∈J
(�i − x̄).

Since the set on the left-hand side above is a cone, it follows that

∞⋂

i=1

T (x̄;�i) ⊂ T
(

0;
⋂

i∈J
(�i − x̄)

)
= T

(
x̄;
⋂

i∈J
�i

)
= T

(
x̄;

∞⋂

i=1

�i

)
.

The opposite inclusion is obvious, and thus we justify CHIP at x̄. �
The following consequence of Proposition 8.67 holds for linear systems.
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Corollary 8.68 (CHIP for Countable Linear Systems). Consider the set system
{�i}i∈N defined by countably many linear inequalities

�i := {
x ∈ X∣∣ 〈ai, x〉 ≤ bi

}
.

Given a point x̄ ∈ � and the active index set J (x̄), suppose that

x̄ ∈ int
{
x ∈ X∣∣ 〈ai, x〉 ≤ bi, i ∈ N \ J (x̄)}.

Then the countable linear system {�i}i∈N enjoys CHIP at x̄.

Proof. It follows directly from Proposition 8.67. �

8.4.2 Generalized Normals to Countable Set Intersections

Now we proceed with another ingredient needed for applications to SIPs with count-
able geometric and nonsmooth inequality constraints. It relates to calculus rules for
generalized normals to countable intersections of nonconvex sets under appropri-
ate dual-space qualification conditions. Needless to say that results of this type are
of their independent interest in variational analysis. Some developments in this di-
rection are given in Sections 7.5 and 8.1 for sets with special convex and smooth
structure. Our approach here is based on the conic extremal principle for countable
systems of sets established in Theorem 2.9. It leads us, in particular, to new results in
comparison with the aforementioned ones even for sets with the convex and smooth
structures investigated therein.

First we formulate and discuss appropriate qualification conditions for countable
systems of sets in terms of basic normals. In what follows the symbol L signifies
the collection of all the finite subsets of the natural series N. Recall also we are in
the finite-dimensional Euclidean setting of X = X∗.

Definition 8.69 (Normal Closedness and Qualification Conditions for Count-
able Set Systems). Let {�i}i∈N ⊂ X be a countable system of nonempty sets, and
let x̄ ∈ ⋂∞

i=1�i . We say that:
(a) The set system {�i}i∈N satisfies the NORMAL CLOSEDNESS CONDITION

(NCC) at x̄ if the combination of basic normals
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}
is closed in X∗. (8.130)

(b) The system {�i}i∈N satisfies the NORMAL QUALIFICATION CONDITION

(NQC) at x̄ if the following implication holds:
[ ∞∑

i=1

x∗
i = 0, x∗

i ∈ N(x̄;�i)
]

�⇒
[
x∗
i = 0 for all i ∈ N

]
. (8.131)
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The normal closedness condition (8.130) is of the Farkas-Minkowski type con-
sidered above for linear, convex, and differentiable infinite systems. The normal
qualification condition (8.131) is an extension to countable systems of the condition
with the same name for two and finitely many sets used in Section 2.4 to derive
representations of basic normals to finite set intersections.

The next proposition presents a simple sufficient condition for the validity of
NQC in the case of countable systems of convex sets.

Proposition 8.70 (NQC for Countable Systems of Convex Sets). Let {�i}i∈N be
a system of convex sets for which there is an index i0 ∈ N with

�i0 ∩
⋂

i 
=i0
int�i 
= ∅. (8.132)

Then NQC (8.131) is satisfied for the system {�i}i∈N at any x̄ ∈ ⋂∞
i=1�i .

Proof. Suppose without loss of generality that i0 = 1 and fix some w ∈ �1 ∩⋂∞
i=2 int�i . Taking any normals x∗

i ∈ N(x̄;�i) as i ∈ N with

∞∑

i=1

x∗
i = 0,

we get by the convexity of �i that 〈x∗
i , w − x̄〉 ≤ 0 for all i ∈ N. It shows that

〈x∗
i , w − x̄〉 = −

∑

j 
=i
〈x∗
j , w − x̄〉 ≥ 0, i ∈ N,

which yields 〈x∗
i , w − x̄〉 = 0 whenever i ∈ N. Picking u ∈ X with ‖u‖ = 1 and

taking into account that w ∈ ∩∞
i=2(int�i) give us

λ〈x∗
i , u〉 = 〈x∗

i , w + λu− x̄〉 ≤ 0, i = 2, 3, . . . ,

if λ > 0 is sufficiently small. Due to the arbitrary choice of the unit vector u, it
follows that x∗

i = 0 for i = 2, 3, . . . and therefore x∗
i = 0 for all i ∈ N. �

Our next goal is to establish a certain “fuzzy” representation of regular normals to
countable intersections of nonconvex cones via basic normals to the cones in ques-
tion. To proceed in this direction, we first observe a simple while useful relationship
between regular and basic normals to arbitrary cones.

Lemma 8.71 (Generalized Normals to Cones). Let� ⊂ X be a cone withw ∈ �.
Then we have the inclusion N̂(w;�) ⊂ N(0;�).
Proof. Pick a regular normal x∗ ∈ N̂(w;�) and get its definition that

lim sup
x
�→w

〈x∗, x − w〉
‖x − w‖ ≤ 0.
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Fix x ∈ �, t > 0 and let u := x/t . Then (x/t) ∈ �, tw ∈ �, and

lim sup
x
�→tw

〈x∗, x − tw〉
‖x − tw‖ = lim sup

x
�→w

t〈x∗, (x/t)− w〉
t‖(x/t)− w‖ = lim sup

u
�→w

〈x∗, u− w〉
‖u− w‖ ≤ 0,

which yields x∗ ∈ N̂(tw;�). Letting t → 0, we arrive at x∗ ∈ N(0;�). �
Now we are ready to obtain the aforementioned fuzzy representation.

Theorem 8.72 (Fuzzy Representation of Regular Normals to Countable Inter-
sections of Cones). Let {�i}i∈N be a countable system of cones in X satisfying
the normal qualification condition (8.131) at x̄ = 0. Then given a regular normal
x∗ ∈ N̂(0;⋂∞

i=1�i
)

and a number ε > 0, there are basic normals x∗
i ∈ N(0;�i)

as i ∈ N such that we have the inclusion

x∗ ∈
∞∑

i=1

1

2i
x∗
i + εB∗. (8.133)

Proof. Fix x∗ ∈ N̂(0;⋂∞
i=1�i

)
, ε > 0 and get by the choice of x∗ that

〈x∗, x〉 − ε‖x‖ < 0 whenever x ∈
∞⋂

i=1

�i \ {0}. (8.134)

Define a countable system of closed cones in X × R by

O1 := {
(x, α)

∣∣ x ∈ �1, α ≤ 〈x∗, x〉 − ε‖x‖},
Oi := �i × R+ for i ≥ 2.

(8.135)

Let us check that all the assumptions needed for the validity of the conic extremal
principle in Theorem 2.9 are satisfied for the system {Oi}i∈N. Picking any (x, α) ∈⋂∞
i=1Oi , we have x ∈ ⋂∞

i=1�i and α ≥ 0 from the construction of �i as i ≥ 2.
This implies in fact that (x, α) = (0, 0). Indeed, supposing x 
= 0 gives us by
(8.134) that

0 ≤ α ≤ 〈x∗, x〉 − ε‖x‖ < 0,

which is a contradiction. On the other hand, we get from (0, α) ∈ O1 by (8.135)
that α ≤ 0 , i.e., α = 0. Thus the nonoverlapping condition

∞⋂

i=1

Oi = {(0, 0)}

holds for {Oi}i∈N. Similarly we check that

(
O1 − (0, γ )

)
∩

∞⋂

i=2

Oi = ∅ for any fixed γ > 0, (8.136)
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which says that {Oi}i∈N is a conic extremal system at the origin. Indeed, violating
of (8.136) means the existence of (x, α) ∈ X × R such that

(x, α) ∈
[
O1 − (0, γ )

]
∩

∞⋂

i=2

Oi,

which yields x ∈ ⋂∞
i=1Oi and α ≥ 0. This tells us by (8.135) that

γ + α ≤ 〈x∗, x〉 − ε‖x‖ ≤ 0,

a contradiction due to the positivity of γ in (8.136). Applying now Theorem 2.9 to
the system {Oi}i∈N gives us the pairs (wi, αi) ∈ Oi and (x∗

i , λi) ∈ N̂((wi, αi);Oi
)

as i ∈ N satisfying the relationships

∞∑

i=1

1

2i
(
x∗
i , λi

) = 0 and
∞∑

i=1

1

2i
∥∥(x∗

i , λi)
∥∥2 = 1. (8.137)

It follows from the constructions of Oi as i ≥ 2 that λi ≤ 0 and x∗
i ∈ N̂(wi;�i);

thus x∗
i ∈ N(0;�i) for i = 2, 3, . . . by Lemma 8.71. Furthermore, we get

lim sup

(x,α)
O1→(w1,α1)

〈x∗
1 , x − w1〉 + λ1(α − α1)

‖x − w1‖ + |α − α1| ≤ 0, (8.138)

which readily implies by the construction of O1 in (8.135) that λ1 ≥ 0 and

α1 ≤ 〈x∗, w1〉 − ε‖w1‖. (8.139)

Let us further examine the two possible cases: λ1 = 0 and λ1 > 0.

Case 1: λ1 = 0. If inequality (8.139) is strict, we have

α1 < 〈x∗, x〉 − ε‖x‖ for all x ∈ U
for some neighborhood U of w1, which yields (x, α1) ∈ O1 for all x ∈ �1 ∩ U .
Plugging (x, α1) into (8.138) gives us

lim sup

x
�1→w1

〈x∗
1 , x − w1〉
‖x − w1‖ ≤ 0,

i.e., x∗
1 ∈ N̂(w1;�1). If (8.139) holds as equality, we get

|α − α1| = ∣∣〈x∗, x − w1〉 + ε(‖w1‖ − ‖x‖)∣∣ ≤ (‖x∗‖ + ε)‖x − w1‖
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by putting α := 〈x∗, x〉 − ε‖x‖. Furthermore, it follows from (8.138) that

lim sup

(x,α)
O1→(w1,α1)

〈x∗
1 , x − w1〉

‖x − w1‖ + |α − α1| ≤ 0,

and hence for any ν > 0 sufficiently small and α chosen above we have

〈x∗
1 , x − w1〉 ≤ ν

(‖x − w1‖ + |α − α1|
) ≤ ν

(
1 + ‖x∗‖ + ε)‖x − w1‖

whenever x ∈ �1 is sufficiently closed to w1. The latter implies that

lim sup

x
�1→w1

〈x∗
1 , x − w1〉
‖x − w1‖ ≤ 0, i.e., x∗

1 ∈ N̂(w1;�1).

Thus in both possible cases in (8.139) we obtain x∗
1 ∈ N̂(w1;�1) and so x∗

1 ∈
N(0;�1) by Lemma 8.71. Summarizing the above relationships yields

x∗
i ∈ N(0;�i) and λi = 0 for all i ∈ N.

Hence it follows from (8.137) that there are x̃∗
i := (1/2i )x∗

i ∈ N(0;�i) as i ∈ N,
not equal to zero simultaneously, satisfying

∞∑

i=1

x̃∗
i = 0.

This contradicts the normal qualification condition (8.131) and thus shows that the
case of λ1 = 0 is actually not possible in (8.139).

Case 2: λ1 > 0. If inequality (8.139) is strict, put x = w1 in (8.138) and deduce
from there that λ1 = 0, a contradiction. Hence it remains to consider the case where
(8.139) holds as equality. To proceed, take (x, α) ∈ O1 satisfying

x ∈ �1 \ {w1} and α = 〈x∗, x〉 − ε‖x‖.
By the equality in (8.139) we have

α−α1 = 〈x∗, x−w1〉 + ε(‖w1‖ − ‖x‖) and thus |α−α1| ≤ (‖x∗‖ + ε)‖x−w1‖.
On the other hand, it follows from (8.138) that for any γ > 0 sufficiently small there
exists a neighborhood V of w1 such that

〈x∗
1 , x − w1〉 + λ1(α − α1) ≤ λ1γ ε

(‖x − w1‖ + |α − α1|
)



430 8 Nonconvex Semi-infinite Optimization

whenever x ∈ �1 ∩ V . Substituting there (x, α) with x ∈ �1 ∩ V gives us

〈x∗
1 , x − w1〉 + λ1(α − α1) = 〈x∗

1 + λ1x
∗, x − w1〉 + λ1ε(‖w1‖ − ‖x‖)

≤ λ1γ ε(‖x − w1‖ + |α − α1|)
≤ λ1γ ε

[‖x − w1‖ + (‖x∗‖ + ε)‖x − w1‖
]

= λ1γ ε
(
1 + ‖x∗‖ + ε)‖x − w1‖.

It follows from the above that for small γ > 0 we have

〈x∗
1 + λ1x

∗, x − w1〉 + λ1ε(‖w1‖ − ‖x‖) ≤ λ1ε‖x − w1‖
and thus arrive at the estimates

〈x∗
1 + λ1x

∗, x − w1〉 ≤ λ1ε‖x − w1‖ + λ1ε(‖x‖ − ‖w1‖) ≤ 2λ1ε‖x − w1‖
for all x ∈ �1 ∩ V . The latter implies by definition (1.6) of ε-normals that

x∗
1 + λ1x

∗ ∈ N̂2λ1ε(w1;�1).

Furthermore, it is easy to observe from the above choice of λ1 and the structure of
O1 in (8.135) that λ1 ≤ 2 + 2ε. Employing now the representation of ε-normals
from Exercise 1.42(i), we find v ∈ �1 ∩ (w1 + 2λ1εB) such that

x∗
1 + λ1x

∗ ∈ N̂(v;�1)+ 2λ1εB
∗ ⊂ N(0;�1)+ 2λ1εB

∗. (8.140)

Since λ1 > 0 and −x∗
1 = 2

∞∑

i=2

1

2i
x∗
i by (8.137), it follows from (8.140) that

x∗ ∈ N(0;�1)+ 2

λ1

∞∑

i=2

1

2i
x∗
i + 2εB∗.

Hence there exists x̃∗
1 ∈ N(0;�1) such that

x∗ ∈
∞∑

i=1

1

2i
x̃∗
i + 2εB∗ with x̃∗

i := 2x∗
i

λ1
∈ N(0;�i) for i = 2, 3, . . . .

This justifies (8.133) and thus completes the proof of the theorem. �
Our next result presents an additional assumption under which we can put ε = 0

in (8.133) and hence get an exact representation of the normal x∗.

Theorem 8.73 (Exact Representation of Regular Normals to Countable Inter-
sections of Cones). Let {�i}i∈N be a countable system of cones in X under the
validity of the normal qualification condition (8.131) at the origin. Then for any
regular normal x∗ ∈ N̂(0;⋂∞

i=1�i
)

satisfying
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〈x∗, x〉 < 0 whenever x ∈
∞⋂

i=1

�i \ {0} (8.141)

there are basic normals x∗
i ∈ N(0;�i), i = 1, 2, . . ., such that

x∗ =
∞∑

i=1

1

2i
x∗
i . (8.142)

Proof. Fix x∗ ∈ N̂(0;⋂∞
i=1�i

)
satisfying condition (8.141) and construct a count-

able system of closed cones in X × R by

O1 := {
(x, α)

∣∣ x ∈ �1, α ≤ 〈x∗, x〉}, Oi := �i × R+ for i ≥ 2. (8.143)

Similarly to the proof of Theorem 8.72 with taking (8.141) into account, we can ver-
ify that all the assumptions of Theorem 2.9 hold. Applying the conic extremal princi-
ple established therein gives us pairs (wi, αi) ∈ Oi and (x∗

i , λi) ∈ N̂((wi, αi);Oi
)

such that the extremality conditions in (8.137) are satisfied. We obviously get λi ≤ 0
and x∗

i ∈ N̂(wi;�i) for i = 1, 2, . . ., which ensures that x∗
i ∈ N(0;�i) as i ≥ 2

by Lemma 8.71. It follows furthermore that for i = 1 the limiting inequality (8.138)
holds. The latter implies by the structure of O1 in (8.143) that

λ1 ≥ 0 and α1 ≤ 〈x∗, w1〉. (8.144)

Similarly to the proof of Theorem 8.72, we consider the two possible cases λ1 =
0 and λ1 > 0 in (8.144) and show that the first case contradicts (8.131). In the
second case, we arrive at representation (8.142) based on the extremality conditions
in (8.137) and the structures of the sets Oi in (8.143). �

The final goal in this subsection is obtaining a constructive upper estimate of the
regular normal cone to countable intersections of arbitrary closed sets via basic nor-
mals to each of these sets. To proceed in this direction, we first consider countable
systems of closed cones in X.

Lemma 8.74 (Upper Estimate of the Regular Normal Cone to Countable Cone
Intersections). Let {�i}i∈N be a countable system of cones in X satisfying the nor-
mal qualification condition (8.131) at the origin. Then

N̂
(

0;
∞⋂

i=1

�i

)
⊂ cl

{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(0;�i), I ∈ L

}
. (8.145)

Proof. To verify (8.145), pick x∗ ∈ N̂(0;�) and for any fixed ε > 0 apply Theo-
rem 8.72. In this way we find x∗

i ∈ N(0;�i), i ∈ N, satisfying (8.133). Since ε > 0
was chosen arbitrarily, it follows that

x∗ ∈ A := cl

{ ∞∑

i=1

1

2i
x∗
i

∣∣∣ x∗
i ∈ N(0;�i)

}

.
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It remains to justify the inclusion

A ⊂ clC with C :=
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(0;�i), I ∈ L

}
.

To proceed, pick z∗ ∈ A and for any fixed ε > 0 find x∗
i ∈ N(0;�i) satisfying

∥∥∥∥∥
z∗ −

∞∑

i=1

1

2i
x∗
i

∥∥∥∥∥
≤ ε

2
. (8.146)

Then choose k ∈ N so large that (8.146) holds with replacing the series
∑∞
i=1 by the

sum
∑k
i=1 therein. The latter sum clearly belongs to C, and hence (z∗ +εB∗)∩C 
=

∅, which yields z∗ ∈ clC and thus justifies (8.145). �
Now we are ready to derive the aforementioned upper estimate of the regular

normal cone to countable intersections of arbitrary closed sets, which is important
for applications to necessary optimality conditions for non-Lipschitzian SIPs in the
next subsection.

Theorem 8.75 (Upper Estimates of the Regular Normal Cone to Countable Set
Intersections). Let {�i}i∈N be a countable system of nonempty sets in X, and let
x̄ ∈ � := ⋂∞

i=1�i . Assume that CHIP in Definition 8.60 and NQC in (8.131) are
satisfied for {�i}i∈N at x̄. Then we have the inclusion

N̂(x̄;�) ⊂ cl
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}
. (8.147)

If in addition NCC (8.130) holds for {�i}i∈N at x̄, then the closure operation can be
omitted on the right-hand side of (8.147).

Proof. Using the definitions of the regular normal and contingent cones and then the
assumed CHIP gives us, respectively, the following two equalities:

N̂(x̄;�) = N̂
(
0; T (x̄;�)) = N̂

(
0;

∞⋂

i=1

T (x̄;�i)
)
.

By passing to basic normals, we have the inclusions (see Exercise 1.49)

N
(
0; T (x̄;�i)

) ⊂ N(x̄;�i) for all i ∈ N.

This shows that the imposed NQC for {�i}i∈N at x̄ ensures it for the cones
{T (x̄;�i)}i∈N at the origin. Applying Lemma 8.74 to the latter system yields

N̂
(

0;
∞⋂

i=1

T (x̄;�i)
)

⊂ cl
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(0; T (x̄;�i)

)
, I ∈ L

}
.
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Combining the above, we arrive at (8.147) and can obviously drop the closure oper-
ation therein under the additional NCC assumption. �

8.4.3 Optimality Conditions Under Countable Constraints

This subsection is devoted to deriving necessary optimality conditions of diverse
types for nonsmooth SIPs with countable constraints. Although such problems nat-
urally arise in various applications (in particular, to control systems on the infinite
horizon and dynamical models of macroeconomics), they are much less investigated
in comparison with SIPs indexed by compact sets, which offer more possibilities to
implement a variety of mathematical techniques. The absence of the index set com-
pactness, as in the case of countable constraints, creates significant mathematical
difficulties, which are comparable for SIPs with countable index sets and those with
arbitrary index sets considered above. In contrast to the previous material that con-
cerns SIPs with smooth, convex, and Lipschitzian data, now we are able to deal with
general geometric and nonsmooth inequality constraints. In this way, mainly based
on the extremal principle for countable set systems, we establish verifiable condi-
tions in broader frameworks that are independent from the previous ones in their
special settings (even for linear system) as illustrated by examples.

Let us start with SIPs involving countable geometric constraints:

minimize ϕ(x) subject to x ∈ �i as i ∈ N, (8.148)

where ϕ : X → R is an extended-real-valued cost function, and where {�i}i∈N
is a countable system of sets. Following the general scheme of deriving necessary
conditions in nonsmooth optimization presented in Section 6.1 and using the cal-
culus rules for countable set intersections developed in the preceding subsection,
we obtain qualified necessary optimality conditions for SIP (8.148) of both upper
subdifferential and lower subdifferential types.

Theorem 8.76 (Upper Subdifferential Conditions for SIPs with Countable Ge-
ometric Constraints). Let x̄ be a local optimal solution to problem (8.148), where
ϕ : X → R is finite at x̄ ∈ �i as i ∈ N. Assume that the system {�i}i∈N enjoys
CHIP from Definition 8.60 at x̄ and satisfies NQC (8.131) at this point. Then we
have the set inclusion

− ∂̂+ϕ(x̄) ⊂ cl
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}
, (8.149)

which reduces to the simplified condition

0 ∈ ∇ϕ(x̄)+ cl
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}
(8.150)
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if ϕ is Fréchet differentiable at x̄. If further NCC (8.130) holds for {�i}i∈N at x̄,
then the closure operations can be dropped in (8.149) and (8.150).

Proof. It follows from Theorem 6.1(i) that

−∂̂+ϕ(x̄) ⊂ N̂
(
x̄;

∞⋂

i=1

�i

)
.

Applying now the upper estimate of N̂
(
x̄;⋂∞

i=1�i
)

from Theorem 8.75 under the
assumed CHIP and NQC, we arrive at (8.149), where the closure operation can be
omitted when NCC holds at x̄. If ϕ is Fréchet differentiable at x̄, it follows that
∂̂+ϕ(x̄) = {∇ϕ(x̄)}, and thus (8.149) reduces to (8.150). �
Theorem 8.77 (Lower Subdifferential Conditions for SIPs with Countable Ge-
ometric Constraints). Let x̄ be a local optimal solution to SIP (8.148), where the
set � := ⋂∞

i=1�i is normally regular at x̄, where the system {�i}i∈N enjoys CHIP
and NQC at x̄, and where

cl
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}⋂(− ∂∞ϕ(x̄)
) = {0}; (8.151)

the latter is satisfied when ϕ is locally Lipschitzian around x̄. Then

0 ∈ ∂ϕ(x̄)+ cl
{∑

i∈I
x∗
i

∣∣∣ x∗
i ∈ N(x̄;�i), I ∈ L

}
. (8.152)

The closure operations can be dropped in (8.151), (8.152) if NCC holds at x̄.

Proof. It follows from Theorem 6.1(ii) that

0 ∈ ∂ϕ(x̄)+N(x̄;�) if ∂∞ϕ(x̄) ∩ (−N(x̄;�)) = {0} (8.153)

for the optimal solution x̄ to (8.148) with the only geometric constraint written as
x ∈ � = ⋂∞

i=1�i . Since � is normally regular at x̄, we can replace N(x̄;�) by
N̂(x̄;�) in (8.153). Applying now Theorem 8.75 to the countable set intersection
� in (8.153), we arrive at all the claimed conclusions. �

Remark 8.78 (Passing to SIPs with Structural Constraints). Since the sets �i
are arbitrary (closed) in Theorems 8.76 and 8.77, we may consider various constraint
settings, where �i are given in some structural forms via, e.g., operator, functional,
and other types of constraints. Proceeding from the general geometric results to their
implementations for particular situations requires appropriate calculus rules for the
generalized differential constructions therein while ensuring the preservation of the
properties and qualification conditions used in Theorems 8.76 and 8.77. No troubles
arise in this direction for the conditions and properties involved in Theorem 8.76 and
8.77 that are expressed in terms of our basic normal cone, which enjoys full calcu-
lus. More challenging and underinvestigated issues relate to the CHIP preservation
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due to limited calculus available for the contingent cone to nonconvex sets. Exer-
cise 8.118 describes a particular constraint setting, where such an implementation
completely goes through.

Next let us consider SIPs with countable inequality constraints given by:

minimize ϕ(x) subject to ϕi(x) ≤ 0, i ∈ N, (8.154)

where the cost function ϕ is the same as above while ϕi are supposed to be merely
l.s.c. around the reference local solution for (8.154) to ensure the local closedness of
the sets �i := epiϕi in Theorems 8.76 and 8.77, which is our standing assumption.
We know that the normal cone to each set epiϕi is fully described by collections
of both basic and singular subgradients of ϕi allowing us therefore to transform the
normal cone conditions of Theorems 8.76 and 8.77 into the basic and singular subd-
ifferential conditions for problem (8.154). Just to simplify the expressions obtained
in this way, we suppose that ϕi are locally Lipschitzian and thus exclude the singular
subgradients of ϕi from the consideration in this case. The corresponding constraint
qualifications of Definition 8.69 reduce now to the following ones.

Definition 8.79 (Subdifferential Closedness and Qualification Conditions for
Countable Inequality Constraints). Consider the constraint sets

�i := {
x ∈ X∣∣ ϕi(x) ≤ 0

}
, i ∈ N, (8.155)

where ϕi are locally Lipschitzian around x̄ ∈ ⋂∞
i=1�i . We say that:

(a) The system {�i}i∈N in (8.155) satisfies the SUBDIFFERENTIAL CLOSEDNESS

CONDITION (SCC) at x̄ if the set
{∑

i∈I
λi∂ϕi(x̄)

∣∣∣ λi ≥ 0, λiϕi(x̄) = 0, I ∈ L
}

is closed in X∗. (8.156)

(b) The system {�i}i∈N in (8.155) satisfies the SUBDIFFERENTIAL QUALIFICA-
TION CONDITION (SQC) at x̄ if the trivial multiplier collection λi = 0 for all i ∈ N

is the only one for which we have the relationships

∞∑

i=1

λix
∗
i = 0, x∗

i ∈ ∂ϕi(x̄), λi ≥ 0, λiϕi(x̄) = 0.

Using the constraint qualifications from Definition 8.79 and subdifferential cal-
culus implies the following consequences of Theorems 8.76 and 8.77.

Corollary 8.80 (Upper and Lower Subdifferential Conditions for SIPs with
Countable Inequality Constraints). Let x̄ be a local optimal solution to (8.154),
where the constraint functions ϕi , i ∈ N, are locally Lipschitzian around x̄. Assume
that the constraint set system {�i}i∈N in (8.155) has CHIP at x̄ and that SQC from
Definition 8.79 is satisfied at this point. Then we have:
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(i) The upper subdifferential optimality condition

− ∂̂+ϕ(x̄) ⊂ cl
{∑

i∈I
λi∂ϕi(x̄)

∣∣∣ λi ≥ 0, λiϕi(x̄) = 0, I ∈ L
}
, (8.157)

where the closure operation can be omitted if SCC (8.156) is satisfied at x̄.
(ii) Let in addition the feasible set in (8.154) be normally regular at x̄ and

cl
{∑

i∈I
λi∂ϕi(x̄)

∣∣∣ λi ≥ 0, λiϕi(x̄) = 0, I ∈ L
}⋂(− ∂∞ϕ(x̄)

) = {0},

which is automatic if ϕ is locally Lipschitzian around x̄. Then

0 ∈ ∂ϕ(x̄)+ cl
{∑

i∈I
λi∂ϕi(x̄)

∣∣∣ λi ≥ 0, λiϕi(x̄) = 0, I ∈ L
}

(8.158)

with removing the closure operations above when SCC holds at x̄.

Proof. It follows from Exercise 2.51(i) that

N(x̄;�) ⊂ R+∂ϑ(x̄) for � := {
x ∈ X∣∣ ϑ(x) ≤ 0

}
(8.159)

provided that ϑ is locally Lipschitzian around x̄ and that 0 /∈ ∂ϑ(x̄), which is en-
sured by the assumed SQC. Now we apply (8.159) to each set �i in (8.155) and
substitute this into NQC (8.131) as well as into the qualification condition (8.151)
and the optimality conditions (8.149) and (8.152) for problem (8.148) with the con-
straint sets (8.155). It follows in this way that SQC and the assumptions in (ii) im-
ply the aforementioned conditions of Theorems 8.76 and 8.77 in the setting (8.154)
under consideration. Furthermore, SCC clearly yields NCC (8.130) for the sets in
(8.155), which completes the proof. �

Now we consider the case of convex constraint functions ϕi in (8.154). Note that
the validity of SQC is ensured in this case by the interior-type condition (8.132)
of Proposition 8.70. The next result establishes necessary optimality conditions for
problems with countable convex inequality constraints, which don’t require either
interiority-type or SQC assumptions while containing the following qualification
condition that implies both CHIP and SCC. Recall that the symbol “cone” stands
here for the convex conic hull of a set.

Definition 8.81 (Local Farkas-Minkowski Property). We say that the countable
system of convex inequalities (8.155) satisfies the LOCAL FARKAS-MINKOWSKI

(LFM) property at x̄ ∈ � := ∩∞
i=1�i if

N(x̄;�) = cone
⋃

i∈J (x̄)
∂ϕi(x̄) =: A(x̄), (8.160)

where J (x̄) := {i ∈ N| ϕi(x̄) = 0} is the the collection of active indices at x̄.
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The LFM terminology is supported by the fact that FMCQ⇒LFM for the Farkas-
Minkowski property (constraint qualification) defined for convex inequality systems
in (7.159); see Exercise 8.120. Having this in hand, we get the following results for
infinite convex inequality systems, where it is assumed for simplicity that the cost
function in (8.154) is locally Lipschitzian.

Proposition 8.82 (Upper and Lower Subdifferential Conditions for SIP with
Convex Inequality Constraints). Let all the general assumptions but SQC of
Corollary 8.80 be fulfilled at the local optimal solution x̄ to (8.154). Suppose in
addition that the cost function ϕ is locally Lipschitzian around x̄, that the constraint
functions ϕi , i ∈ N, are convex, and that the LFM property (8.160) holds at x̄.
Then both SCC and CHIP also hold for this system, and the necessary optimality
conditions (8.157) and (8.158) are satisfied without the closure operation therein.

Proof. Observe that SCC (8.156) is nothing else but the closedness of the set A(x̄),
and hence we get LFM⇒SCC by the closedness of the normal cone N(x̄;�). Fur-
thermore, we always have the inclusions

A(x̄) ⊂ co
⋃

i∈J (x̄)
N(x̄;�i) ⊂ N(x̄;�).

Hence the LFM property combined with the latter inclusions yields the strong CHIP.
By Theorem 8.61 we have CHIP as well due to N(x̄;�i) = {0} whenever i /∈ J (x̄).
Taking all this into account gives us the relationships

−∂̂+ϕ(x̄) ⊂ N(x̄;�) and 0 ∈ ∂ϕ(x̄)+N(x̄;�),
which imply in turn the validity of the inclusions

−∂̂+ϕ(x̄) ⊂ A(x̄) and 0 ∈ ∂ϕ(x̄)+ A(x̄)
and thus complete the proof of the proposition. �

The next specification of Proposition 8.82 for SIPs with linear inequality con-
straints agrees with the corresponding results of Section 7.2 without imposing the
strong Slater condition and the coefficient boundedness.

Corollary 8.83 (Upper and Lower Subdifferential Conditions for SIPs with
Linear Inequality Constraints). Let x̄ = 0 locally solve the SIP:

minimize ϕ(x) subject to 〈ai, x〉 ≤ 0 for all i ∈ N,

where ϕ : X → R is finite at the origin. Then we have the inclusions

−∂̂+ϕ(0) ⊂ cl co
[ ∞⋃

i=1

{
λai

∣∣ λ ≥ 0
}]
.
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0 ∈ ∂ϕ(0)+ cl co
[ ∞⋃

i=1

{
λai

∣∣ λ ≥ 0
}]
,

where the latter one holds provided that

(
cl co

[ ∞⋃

i=1

{
λai

∣∣ λ ≥ 0
}]) ∩ (− ∂∞ϕ(0)

) = {0}.

Furthermore, the LFM property implies that the closure operations can be omitted
in all the conditions above.

Proof. It follows from Proposition 8.82 by the normal cone representation for solu-
tions to linear inequality systems given in Corollary 8.68. �

Finally in this section, we present several examples illustrating the qualification
conditions imposed in Proposition 8.82 and their comparison with the corresponding
results of Chapter 7 for fully convex SIPs.

Example 8.84 (Comparison of Qualification Conditions). All the examples be-
low concern lower subdifferential conditions for fully convex SIPs (8.154), i.e., those
with convex cost and constraint functions.

(i) CHIP (8.115) and SCC (8.156) are independent. Consider a linear constraint
system in (8.155) at x̄ = (0, 0) ∈ R

2 for ϕi(x) = 〈ai, x〉 with ai = (1, i) as i ∈ N,
which clearly enjoys CHIP at the origin. On the other hand, the set

co
∞⋃

i=0

R+∂ϕi(x̄) = co
{
λ(1, i) ∈ R

2
∣∣ λ ≥ 0, i ∈ N

} = R
2+ \ {(0, λ)∣∣ λ > 0

}

is not closed; see Fig. 8.3; and hence SCC doesn’t hold in this setting. If we con-
sider now the quadratic inequality constraint functions ϕi(x) = ix2

1 − x2 with
x = (x1, x2) ∈ R

2 and i ∈ N, then ∂ϕi(x̄) = ∇ϕi(x̄) = (0,−1), and hence
SCC is satisfied at the origin. However, it is easy to check by the direct calculation
that CHIP fails at x̄ for the latter constraint system.

(ii) CHIP and SCC vs. FMCQ and CQC. Besides FMCQ (7.159), in Section 7.5
we study and apply to deriving necessary optimality conditions for fully convex SIPs
yet another property, which is called the closedness qualification condition (CQC)
and is formulated in the case of SIPs (8.154) with convex data inX = R

n as follows:
the set

epiϕ∗ + cone
∞⋃

i=1

epiϕ∗
i
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co
∞⋃
i=0

IR+∂ϕi(x̄)

Fig. 8.3 Failure of SCC.

defined via the conjugate functions is closed in R
n+1; see Definition 7.48. This

property is strictly weaker (better) than FMCQ if, in particular, the cost function ϕ
is continuous at x̄; see Exercise 7.97(i).

The next system reveals more: it presents a fully convex SIP satisfying both CHIP
and SCC but not CQC, and hence not FMCQ. This shows that Proposition 8.82 holds
in this case to produce the KKT optimality condition while the corresponding results
of Subsection 7.5.1 are not applicable.

Consider SIP (8.154) in R
2 with x̄ = (0, 0), ϕ(x) := −x2, and

ϕi(x1, x2) :=
{
ix3

1 − x2 if x1 < 0,
−x2 if x1 ≥ 0,

i ∈ N.

We have ∂ϕi(x̄) = {∇ϕi(x̄)} = (0,−1) for all i ∈ N, and hence SCC holds. It is
easy to check that CHIP also holds at x̄, since

T
(
x̄;

∞⋂

i=1

�i

)
= T (x̄;�i) = R × R+ for �i := {

x ∈ R
2
∣∣ ϕi(x) ≤ 0

}
, i ∈ N.

On the other hand, for (λ1, λ2) ∈ R
2 we calculate

ϕ∗(λ1, λ2)=
{

0 if (λ1, λ2)=(0,−1),
∞ otherwise

and ϕ∗
i (λ1, λ2)=

{
0 if λ1 ≤ 0, λ2= − 1,
∞ otherwise.

This shows that the convex sets

cone
∞⋃

i=0

epiϕ∗
i and epiϕ∗ + cone

∞⋃

i=0

epiϕ∗
i

are not closed in R
3, and hence both FMCQ and CQC are violated.

(iii) SQC doesn’t imply CHIP for countable systems. Comparing the results of
Corollary 8.80 and Proposition 8.82 for convex SIPs, a natural question arises:
whether SQC always yields CHIP in the case of constraint sets �i in (8.155) de-
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fined by C1-smooth convex functions. The following simple example shows that it
is not the case for countably many constraints in R

2. Indeed, we obviously have the
validity of SQC at x̄ = (0, 0) for the family of functions

ϕi(x1, x2) := ix2
1 − x2 with x = (x1, x2) ∈ R

2, i ∈ N,

while it is easy to check by the direct calculation that CHIP fails at the origin for the
countable system of sets �i := {x ∈ R

2| ϕi(x1, x2) ≤ 0}, i ∈ N.

8.5 Exercises for Chapter 8

Exercise 8.85 (Uniform Differentiability and EMFCQ Assumptions Over Noncompact In-
dex Sets). Give examples of infinite systems (8.2) with noncompact index sets in both cases of
finite-dimensional and infinite-dimensional spaces X for which all the assumptions in (SA), (8.3),
and (8.4) as well as the EMFCQ property from Definition 8.2 are satisfied.

Exercise 8.86 (Violation of KKT for SIPs with Compact Index Sets and Discontinuity with
Respect to Index Variables). Give an example of SIP (8.1) in finite dimensions with T = [0, 1]
and a discontinuous mapping (x, t) �→ ∇ϕt (x) for which the KKT condition (8.7) fails.

Exercise 8.87 (Equivalent Form of NFMCQ). Show that NFMCQ from Definition 8.8 is equiv-
alent to the requirement that the convex conic hull of the set {(∇ϕt (x̄), ϕt (x̄))| t ∈ T } is weak∗
closed in X∗ × R.

Exercise 8.88 (NFMCQ from MFCQ for Finite Inequality Systems). Give a detailed proof of
Proposition 8.9(i).

Exercise 8.89 (Closedness of Conic Convex Hulls in Finite Dimensions). Let ∅ 
= S ⊂ R
n be a

compact set such that 0 /∈ co S. Show that cone S is closed in R
n.

Exercise 8.90 (Regular Normal Cone Representation for Infinite Systems with Unbounded
Gradients). Formulate and prove a counterpart of Corollary 8.15 for the regular normal cone to
the constraint set � in (8.2).

Exercise 8.91 (Normal Cone Representation Under Equicontinuity of Gradients). Consider-
ing the infinite inequality system in (8.2), assume that the gradients ∇ϕt of the constraint functions
are equicontinuous at x̄ in the sense of [686]: for each γ > 0 there is η > 0 such that

‖∇ϕt (x)− ∇ϕt (x̄)‖ ≤ γ for all x ∈ Bη(x̄), t ∈ T .
Hint: Show by using the mean value theorem that this assumption together with the Fréchet differ-
entiability of ϕt around x̄ implies condition (b) in Corollary 8.15.

Exercise 8.92 (Normals to Infinite Convex Sets and Farkas-Minkowski Conditions). Consider
the infinite constraint set � from (8.2) with convex functions ϕt and h ≡ 0. As we see, representa-
tion (8.21) of the normal cone to � is the same as that obtained in Corollary 7.53 in this case.

(i) Show that assumptions imposed in Corollaries 7.53 and 8.19 are generally independent even
in the case of dimX < ∞ and the validity of (SA).

(ii) Find relationships between convex FMCQ (7.159) and NFMCQ from Definition 8.8 for
convex infinite systems in both finite and infinite dimensions.

(iii) Modify the proof of Corollary 8.19 by using the arguments in the proof of Corollary 8.15
to avoid the boundedness requirement on {∇ϕt (x̄)| t ∈ T } from the standing assumptions in (SA).
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Exercise 8.93 (Normals to Infinite Linear Inequality Systems). Using the approach devel-
oped in the proof of Theorem 7.5 for infinite linear inequality systems, derive the results of
Corollary 8.20 in the case of h ≡ 0 without the boundedness assumption on the coefficient set
{a∗
t | t ∈ T } ⊂ X∗.

Exercise 8.94 (Upper Subdifferential Necessary Optimality Conditions for SIPs with Differ-
entiable Constraints). Derive a general upper subdifferential counterpart of Proposition 8.21 in
Banach spaces.

Exercise 8.95 (Comparison Between Necessary and Sufficient Optimality Conditions for
Convex SIPs). Observe that the optimality conditions (7.168) for � = 0 and (8.30) for h ≡ 0
agree while they are derived under different assumptions.

(i) Show that these results of Corollary 7.54 and Theorem 8.26 are generally independent. Are
they the same if the space X is finite-dimensional?

(ii) Find a general formulation of necessary and sufficient conditions for convex SIPs that covers
both results obtained in these statements.

Exercise 8.96 (Evaluations of Generalized Gradients for Supremum Functions). Let ∂ψ(x̄)
be Clarke’s generalized gradient (1.78) of the supremum function (8.32) on an Asplund space X.

(i) Using the representation of ∂ψ(x) from Exercise 4.36(i) and the results for ∂ψ(x̄) obtained
in Theorem 8.30 and its corollaries, evaluate ∂ψ(x) in the case of arbitrary index sets T . Hint:
Compare it with [550, Theorem 4.1].

(ii) Establish specifications of (i) in the case of compact sets T in metrizable spaces and com-
pare them with [165, Theorem 2.8.2] and [550, Corollary 4.2].

(iii) Prove the equality representation

∂ψ(x̄) = cl ∗co
[⋃{

∂ϕt (x̄)
∣∣ t ∈ T (x̄)}

]

provided that Tε(x̄) is a compact subset of a metrizable index set T for some ε > 0, that t �→ ϕt (x)

is u.s.c. on Tε(x̄) for each x sufficiently closed to x̄, and that the functions ϕt (·), t ∈ Tε(x̄), are
UNIFORMLY SUBSMOOTH at x̄ ∈ X in the sense that whenever ε̃ > 0 there is δ > 0 for which

ϕt (x)− ϕt (u) ≥ 〈u∗, x − u〉 − ε̃‖x − u‖ if x, u ∈ Bδ(x̄), u∗ ∈ ∂ϕt (u).
Show furthermore that the representation can be replaced by

∂ψ(x̄) = co
[⋃{

∂ϕt (x̄)
∣∣ t ∈ T (x̄)}

]

if dimX < ∞; cf. [778, Theorems 3.1, 3.2] and [550, Corollaries 4.3, 4.4].

Exercise 8.97 (Generalized Gradients for Suprema of Equicontinuously Subdifferentiable
Functions). Let the functions ϕt , t ∈ T , in (8.32) equicontinuously subdifferentiable at x̄, where
T is an arbitrary index set. Then we have the generalized gradient estimate

∂ψ(x̄) ⊂
⋂

ε>0

cl ∗co
[⋃{

∂ϕt (x̄)

∣∣∣ t ∈ Tε(x̄)
}]
.

Hint: Argue as in the proof of Corollary 8.34 and compare with [550, Proposition 4.5].

Exercise 8.98 (Relationships Between Qualification and Optimality Conditions for Lips-
chitzian SIPs). Consider the Lipschitzian SIP (8.31) under the equicontinuous subdifferentiability
of ϕt at a feasible point x̄.

(i) Find relationships between the generalized PMFCQ and the constraint qualification of
Corollary 8.38 in finite and infinite dimensions.

(ii) How do the corresponding statements of Corollary 8.38 and Theorem 8.40 relate to each
other when x̄ is a local minimizer of (8.31)?
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Exercise 8.99 (Supremum Marginal Functions). Consider the class of supremum marginal
functions ϑ : Rn → R defined by

ϑ(x) := sup
y∈G(x)

ϕ(x, y), x ∈ R
n, (8.161)

where the sets G(x) ⊂ R
m are nonempty, uniformly bounded around some point x̄ ∈ R

n, and
admit the representation

G(x) = {
y
∣∣ ϕi(x, y) ≤ 0, i = 1, . . . , r; ϕi(x, y) = 0, i = r + 1, . . . , s

}
(8.162)

via continuous real-valued functions ϕi on R
n × R

m with i = 1, . . . , s and r ≤ s.
(i) Verify that ϑ(x) is upper semicontinuous around x̄.
(ii) Define the argmaximum sets

S(x) := {
y ∈ G(x)∣∣ ϕ(x, y) = ϑ(x)

}
, x ∈ R

n, (8.163)

and show that ϑ(x) is continuous at x̄ if dist(S(x);G(x)) → 0 as x → x̄. It holds, in particular,
when G(x) from (8.162) is inner semicontinuous at x̄.

Hint: Proceed by the definitions and compare it with [466, Propositions 3.1, 3.2].

Exercise 8.100 (Marginal Mangasarian-Fromovitz Constraint Qualification). Given x̄ ∈ R
n,

G(x̄) from (8.162), and � ⊂ G(x̄), assume that ϕi are strictly differentiable at (x̄, y) for all y ∈ �
and i = 1, . . . , s. Then we say that the MARGINAL MANGASARIAN-FROMOVITZ CONSTRAINT

QUALIFICATION (MMFCQ) holds at x̄ relative to � if there is a vector ξ ∈ R
n such that

〈 s∑

i=1

λi∇xϕi(x̄, y), ξ
〉
> 0 for any y ∈ �

whenever Lagrange multipliers (λ1, . . . , λs) 
= 0 ∈ R
s satisfy the conditions

s∑

i=1

λi∇yϕi(x̄, y) = 0 and λi ≥ 0, λiϕi(x̄, y) = 0 as i = 1, . . . , r.

(i) Compare MMFCQ with the extended Mangasarian-Fromovitz constraint qualification intro-
duced in [396] for the so-called generalized semi-infinite programs (GSIPs); cf. also EMFCQ for
standard SIPs formulated in Definition 8.2.

(ii) Show that in the case where � is the argmaximum set (8.163) the introduced MMFCQ at x̄
is robust in the sense that there is δ > 0 such that MMFCQ holds onBδ(x̄) relative to S(x) provided
that the supremum marginal function (8.161) is l.s.c. at x̄ as in the setting of Exercise 8.99(ii).

Exercise 8.101 (Basic Subgradients of Supremum Marginal Functions). Assume that in the
setting of Exercise 8.99 the supremum marginal function ϑ(x) from (8.161) is l.s.c. around x̄ and
MMFCQ holds at x̄ relative to S(x̄). Taking λ := (λ0, λ1, . . . λs) ∈ R

s+1, consider the Lagrangian

L(x, y, λ) :=
s∑

i=0

λiϕi(x, y) with λ0 ≤ 0

due to the maximization in (8.161). Prove that there is ε > 0 such that for any x ∈ Bε(x̄) and
v ∈ ∂ϑ(x)we can find yj ∈ S(x) as j = 1, . . . , n+1 with

∑n+1
j=1 yj = 1 and λ = (λ0, . . . , λs) 
= 0

with λi ≥ 0 as i = 1, . . . , r satisfying the conditions

v =
n+1∑

j=1

∇xL(x, yj , λ), ∇yL(x, y, λ) = 0, λiϕi(x, y) = 0 as i = 1, . . . , r.
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Hint: Proceed as in the proof of [466, Theorem 3.7] by using the necessary optimality conditions
for GSIPs developed in [396, Theorem 1.1].

Exercise 8.102 (Mixed Limiting �-Coderivatives). Let f : X → Y be a mapping between Ba-
nach spaces, where the image space Y is partially ordered by a closed and convex cone � ⊂ Y as
in (8.71).

(i) Define the mixed limiting �-coderivatives of f at x̄ with using the strong convergence on
Y ∗ in the framework of Definition 8.43 and provide examples illustrating the relationships between
them as well as between the corresponding mixed and normal �-coderivative constructions.

(ii) Investigate the possibility to improve the corresponding results of Section 8.3.4 by replacing
the normal �-coderivatives by their mixed counterparts.

Exercise 8.103 (�-Coderivative Scalarization). Let f : X → Y be a locally Lipschitzian map-
ping between Banach spaces, and let � ⊂ Y be a closed and convex ordering cone. Consider the
corresponding �-coderivatives from Definition 8.43 and Exercise 8.102 and do the following:

(i) Prove representation (8.72) in the general ordered Banach space setting.
(ii) Obtain scalarization formulas for the mixed limiting �-coderivatives for ordered mappings

between Banach spaces. Hint: Proceed similarly to the proof of Theorem 1.32, which works in
general Banach spaces; cf. [522, Theorem 1.90].

(iii) Establish scalarization formulas for the limiting normal �-coderivatives under appropriate
strict Lipschitzian assumptions in the case where X is Asplund. Hint: Proceed similarly to [522,
Subsection 3.1.3] where � = {0}.

(iv) Verify the scalarization formulas in (8.73) for strictly differentiable mappings between
Banach spaces. Hint: Proceed similarly to the proof of Theorem 1.32.

(v) Verify formula (7.4) for �-convex mappings f between Banach spaces.

Exercise 8.104 (�-Coderivative Calculus). Let F : X →→ Y be a set-valued mapping between
Banach spaces, where the image space Y is partially ordered by a nonempty set � ⊂ Y (which
may not be cone) as in (8.71).

(i) Define appropriate versions of the normal and mixed �-coderivatives considered above in
the single-valued case and establish relationships between them.

(ii) Develop appropriate calculus rules for such coderivatives of single-valued and set-valued
mappings partly in general Banach and mainly in Asplund space settings. Hint: Proceed similarly
to the coderivatives of mappings without ordering structures by using suitable versions of the ex-
tremal principle and associated results.

(iii) Investigate the possibility of employing �-coderivative calculus to the study of structural
optimization-related problems and constrained systems described by set-valued mappings with�-
ordered image spaces.

Exercise 8.105 (Sequential Optimality Conditions for Conic Programs for �-Convex Con-
straint Mappings). Proceeding as in the proof of Theorem 8.50 show that its conclusions hold if
the local Lipschitz continuity of f is replaced by that of the scalarized function x �→ 〈y∗, f (x)〉
for all y∗ ∈ �+, which is always the case where f : X → Y is a continuous �-convex mapping.
Compare this result with the corresponding one in [388] for reflexive Banach spaces X.

Exercise 8.106 (Covering and Lipschitzian Stability of Cone-Constrained and Infinite Non-
convex Inequality Systems).

(i) Establish counterparts of the results in Theorems 8.53 and 8.54 for the covering and
Lipschitz-like properties of cone-constrained systems.

(ii) Establish counterparts of the results in Theorem 8.59 for the covering and Lipschitz-like
properties of the infinite parametric inequality systems under consideration in Subsection 8.3.5.

Exercise 8.107 (Well-Posedness Properties of Nonconvex Cone-Constrained and Infinite In-
equality Systems in Infinite Dimensions).

(i) Do formulation and proof of Theorem 8.53 need any change when the domain/parameter
space X is Asplund?
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(ii) Extend Theorem 8.54 to conic systems with Asplund domain spaces.
(iii) Establish a counterpart of Theorem 8.54 for the Lipschitz-like property of cone-constrained

systems with Asplund image and Banach domain spaces.
(iv) Apply the results from (ii) and (iii) to derive the corresponding counterparts of Theo-

rem 8.59 for infinite nonconvex inequality systems.

Exercise 8.108 (Comparison with Characterizing Well-Posedness Properties for Linear and
Convex Inequality Systems). Present specifications for the cases of linear and convex infinite
inequality systems of the results on well-posedness properties obtained in Subsection 8.3.5 and the
exercises above and then compare them with those established in Sections 7.1 and 7.3.

Exercise 8.109 (Optimality Conditions for Nonconvex and Nonsmooth SIPs in Infinite Di-
mensions). Extend necessary optimality conditions from Theorem 8.56 and Corollary 8.57 to SIPs
with Asplund decision spaces.

Exercise 8.110 (Comparison Between Necessary Optimality Conditions for Lipschitzian
SIPs). Considering SIPs in finite-dimensional spaces with Lipschitzian cost and uniformly Lips-
chitzian inequality constraint functions in the absence of geometric constraints, clarify relation-
ships between the necessary optimality conditions for them obtained in Subsections 8.2.3 and
8.3.5, respectively.

Exercise 8.111 (CHIP Versions for Convex Sets). Let {�i}i∈N be a countable system of convex
sets with a common point x̄.

(i) Prove that CHIP for this system can be equivalently represented by (8.117).
(ii) Give an example showing that CHIP doesn’t imply the strong CHIP at x̄ even for finitely

many convex sets. Hint: Compare it with [69, 253].
(iii) Does Proposition 8.61 hold for arbitrary (not just countable) intersections?

Exercise 8.112 (Full Duality for Convex Sets). Verify that the full duality properties in (8.119)
are satisfied for convex sets.

Exercise 8.113 (Violation of CHIP for Systems of Convex Sets). Construct examples of convex
systems containing finitely many as well as countably many sets in R

2 for which CHIP is violated.

Exercise 8.114 (Distance to Contingent Directions). Prove the representations in (8.125). Hint:
Compare it with [678, Exercise 4.8] and the guides therein.

Exercise 8.115 (CHIP for Countable Linear Inequality Systems via the Farkas Lemma).
Give an alternative proof of Corollary 8.68 based on the classical Farkas lemma extended to count-
able linear inequalities.

Exercise 8.116 (Comparison Between the Normal Closedness and Farkas-Minkowski Prop-
erties of Countable Systems). Establish relationships between the normal closedness condition
in (8.130) and the versions of the Farkas-Minkowski property for infinite linear, convex, and dif-
ferentiable systems (see Sections 7.2, 7.5, and 8.1) in finite and infinite dimensions. The closure
operation in (8.130) in infinite dimensions is understood in the weak∗ topology of X∗.

Exercise 8.117 (Interior of the Regular Normal Cone for Countable Cone Intersections). In
the setting of Lemma 8.74, derive an upper estimate of the interior of N̂

(
0;⋂∞

i=1�i
)
. Hint: Use

Theorem 8.73.

Exercise 8.118 (Necessary Conditions for SIPs with Countable Operator Constraints). Con-
sider the SIP with countable operator constraints

minimize ϕ(x) subject to x ∈ f−1(�i) as i ∈ N,

where ϕ : X → R, �i ⊂ Y for i ∈ N, and f : X → Y is strictly differentiable at x̄ with the
surjective derivative. Derive upper subdifferential and lower subdifferential optimality conditions
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for this problem in terms of its given data. Hint: Use the representation for the normal cone to
inverse images from Exercise 1.54(ii) and the one for contingent cone from [678, Exercise 6.7]
while extending the latter to the case of strictly differentiable mappings.

Exercise 8.119 (Necessary Conditions for SIPs with Countable l.s.c. Inequality Constraints).
Establish an extension of Corollary 8.80 to SIP (8.154) with l.s.c. constraint functions ϕi . Hint:
Proceed as in the proof of Corollary 8.80 with the usage of the calculus result of Exercise 2.51 for
l.s.c. functions.

Exercise 8.120 (Relationships Between the Farkas-Minkowski and Local Farkas-Minkowski
Properties for Countable Convex Inequalities). Prove that FMCQ⇒LFM and show that the
opposite implication fails.

Exercise 8.121 (Relationships Between SCQ and CHIP for Finite Convex Inequality Sys-
tems). Consider the convex inequality system

�i := {
x ∈ X∣∣ ϕi(x) ≤ 0

}
, i = 1, . . . , m,

where all the functions ϕi : Rn → R are convex.
(i) Verify that SCQ⇒CHIP at x̄ if the functions ϕi are smooth around this point. Does it hold

in infinite dimensions?
(ii) Does a counterpart of (i) hold for nonsmooth convex functions?

8.6 Commentaries to Chapter 8

Section 8.1. This section is based on author’s joint paper with Nghia [549] devoted by variational
analysis of infinite constraint systems described via inequalities and equalities by nonconvex while
differentiable functions. The main emphases in [549] was on obtaining precise normal cone rep-
resentations for such infinite set intersections over arbitrary collections of indices. This was done
under new constraint qualifications and subsequently applied to deriving necessary optimality con-
ditions for SIPs with nonconvex infinite constraints and generally nonsmooth cost functions. Note
that the uniform strict differentiability property of infinite families of functions ϕt from our stand-
ing assumptions was introduced in [549] as a natural extension of the strict differentiability of
finitely many functions at the reference point. It is more general than the equicontinuity of the
gradients ∇ϕt (x) defined by Seidman [686] for SIPs with compact index sets; see [549] for more
discussions.

From the very beginning of semi-infinite programming, conventional SIPs concerned infinite
systems over compact index sets with the continuous dependence of inequality constraint functions
on index variables. The major constraint qualification for nonconvex while differentiable problems
of this kind was introduced by Jongen, Twilt, and Weber [394] as EMFCQ from Definition 8.2.
Since that this condition has been widely used in many publications to study various issues (in-
cluding necessary optimality conditions of the KKT type) for SIPs with compact index sets; see,
e.g., [96, 157, 394, 396, 418, 420, 475, 686, 688]. As shown in Example 8.3, KKT necessary op-
timality conditions fail under the validity of EMFCQ even for simple two-dimensional SIPs with
countably many inequality constraints.

In the case of general differentiable SIPs with arbitrary index sets, we suggested in [549] a more
appropriate SIP counterpart of MFCQ labeled as PMFCQ in Definition 8.4. For convex SIPs this
new constraint qualification is equivalent to the strong Slater condition used in Chapter 7, while
in the general setting of Section 8.1, the introduced PMFCQ is crucial to establish the desired
normal cone representations for the infinite constraint set under consideration. The finest normal
cone representations were obtained in [549] when PMFCQ was combined with the closedness-type
condition NFMCQ from Definition 8.8. Corollary 8.15 for systems with unbounded gradients of
inequality constraint functions was inspired by the corresponding result by Seidman [686]. The
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necessary optimality conditions for SIPs presented in Subsection 8.1.3 were derived in [549] from
the obtained normal cone representations for infinite constraint sets and subdifferential sum rules
of variational analysis.

To conclude the commentaries on the results presented in Section 8.1, we mention the claim
in [374] about the possibility of an easier device of necessary optimality conditions obtained first
in [549] while using instead a preliminary convexification and then applying the corresponding
conditions for convex SIPs. Besides the incorrect usage on [374, p. 428] of Sion’s minimax the-
orem similarly to [373] (see Section 7.7), the approach of [374] to deriving necessary optimality
conditions for SIPs doesn’t seem to be easier overall than our device in [549] via establishing nor-
mal cone calculus of its own interest. Indeed, the reduction in [374] was based on the nontrivial
formula by López and Volle [476] on subdifferentiation of maximum functions together with the
rather involved result given in [374, Lemma 19.29].

Section 8.2. This section is devoted to developing another approach to SIPs with infinitely many
inequality constraints ϕt (x) ≤ 0, t ∈ T , indexed generally by an arbitrary set T . Such constraints
can be equivalently reduced to the single constraint

ψ(x) := sup
{
ϕi(x)

∣∣ t ∈ T } ≤ 0 (8.164)

given by the supremum function ψ(x), which is intrinsically nonsmooth even when all ϕt are
differentiable. In this section we follow the author’s joint paper with Nghia [550] and consider
the case when the functions ϕt are locally Lipschitzian. The study of subdifferential properties of
the supremum functions (8.164) generated by convex (or locally convex; in particular, smooth)
functions ϕt has been an old topic of nonsmooth analysis; see, e.g., [203, 234, 352, 378, 476, 331,
728, 757] and the references therein. The precise subdifferential formula of convex analysis

∂ψ(x̄) = cl ∗co
[⋃{

∂ϕt (x̄)

∣∣∣t ∈ T (x̄)
}]
, T (x̄) := {

t ∈ T ∣∣ϕt (x̄) = ψ(x̄)
}

(8.165)

has been established by Ioffe and Tikhomirov [378, Theorem 4.2.3] provided that T is a Hausdorff
compact, that the mapping t �→ ϕt (x) is upper semicontinuous (u.s.c.) for each x, and that the
functions ϕt are continuous at x̄.

Several counterparts of (8.165) in the inclusion and equality forms were obtained for convex
functions with no assumptions imposed on the topological structure of T and on behavior of ϕt
with respect to t by using the perturbation

Tε(x̄) := {
t ∈ T ∣∣ϕt (x̄) ≥ ψ(x̄)− ε}, ε ≥ 0,

of the active index set first introduced by Valadier [728]. To the best of our knowledge, the most
powerful results in this direction were obtained by Hantoute, López, and Zălinescu [331] and by
López and Volle [476] via the ε-subdifferentials of convex analysis for the functions ϕt at x̄ with no
(semi)continuity requirements on ϕt (·). The functions ϕt (·) were not even assumed to be convex
in [476], but the situation was actually reduced to convexity under the relaxation assumption

ψ∗∗(x) = sup
t∈T

ψ∗∗
t (x)

via the biconjugate functions imposed in both papers [331, 476].
If the functions ϕt are uniformly Lipschitzian around x̄, then the inclusion

∂ψ(x̄) ⊂ cl ∗co
[⋃{

∂
[T ]
ϕt (x̄)

∣∣ t ∈ T (x̄)}
]

(8.166)

for the generalized gradient of the supremum function ψ over the metrizable compact T under the
u.s.c. assumption on t �→ ϕt (x) was derived by Clarke [165, Theorem 2.8.2] by reducing it to the

convex case of (8.165). The extended subdifferential construction ∂
[T ]
ϕt (x̄) in (8.166) was defined

in [165] by
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∂
[T ]
ϕt (x̄) := cl ∗co

{
x∗ ∈ X∗

∣∣∣ there exist tk
Tε(x̄)→ t, xk → x̄, and x∗

k ∈ ∂ϕtk (xk)
such that x∗ is a weak∗ cluster point of x∗

k

}
.

The upper estimate (8.166) has been widely applied to various problems in SIP, control theory,
etc. over compact index/continuous time sets; see, e.g., [165, 778, 783] and the references therein.
The first results to evaluate ∂ψ(x̄) with no topological requirements on T (in fact for arbitrary
index sets) were given in our paper [550]; see, in particular, Exercises 8.96 and 8.97. The notion
of subsmoothness and its modifications used in Exercise 8.96(iii) have been largely studied in the
literature; see [40, 673, 523, 529, 609, 775, 778] among other publications. Generalized gradients
evaluations for maxima of such functions over compact index sets obtained in [550] strengthened
the previous ones established in [778].

The major emphasis in [550] as well as in Section 8.2 is on evaluating the basic subdifferential
∂ψ(x̄) of the supremum functions (8.164), with taking into account its nonconvexity, via subgradi-
ents of ϕt in the case of arbitrary index sets. The proof of the preliminary while important technical
result of Lemma 8.27 on fuzzy upper estimating the regular subdifferential follows the approach
to fuzzy calculus via optimization techniques developed by Borwein and Zhu [113]. The most ef-
ficient estimates of the basic subdifferential of the supremum functions are established for the new
and rather broad class of equicontinuously subdifferentiable functions introduced in [550] as a non-
smooth extension of the uniform strict differentiability for infinite systems taken from [549]. The
results obtained for evaluating the subdifferential constructions ∂ψ(x̄) and ∂ψ(x̄) are applied then
to deriving various forms of necessary optimality conditions for Lipschitzian SIPs under appro-
priate constraint qualifications of the generalized PMFCQ and NFMCQ types as defined in Sub-
section 8.2.3. Note also that other constraint qualifications were employed in [405, 406, 778] for
deriving some optimality conditions for Lipschitzian SIPs in the case of finite-dimensional spaces
X and compact sets T in terms of generalized gradients in [405, 778] and basic subgradients in
[406].

The class of supremum marginal functions (8.161), introduced and studied in the joint author’s
paper with Li, Nghia, and Pham [466], happens to be essentially more complicated from the view-
point of (lower) generalized differentiation than the standard (infimum) marginal functions inves-
tigated in Chapter 4 as well as the supremum functions of the SIP type (8.164) considered above
in Section 8.2. The main challenge, besides the supremum operation, comes from the variable
constraint set G(x) under maximization in (8.161). The basic subdifferential evaluation, obtained
in [466, Theorem 3.7], is presented in Exercise 8.101 under the new marginal MFCQ (MMFCQ).
The proof of this result relies, besides other things, on the necessary optimality conditions for the
so-called generalized SIPs taken from the paper by Jongen, Rückmann and Stein [396]. Deriving
the subdifferential formula for (8.161) was motivated in [466] by a subgradient extension of the
classical Łojasiewicz gradient inequality from semialgebraic geometry [473] and its subsequent
applications to error bounds of parametric polynomial systems, higher-order stability analysis, and
explicit convergence rates of various algorithms. However, the spectrum of other potential appli-
cations of this result is much broader; see commentaries to Section 8.5.

Section 8.3. This section is based on yet another joint paper with Nghia [553] devoted to problems
of conic programming (or cone-constrained optimization) in infinite-dimensional spaces that en-
compass a class of Lipschitzian SIPs with infinitely many inequalities as well as additional geomet-
ric constraints. Problems of this type are important and challenging from the viewpoint of optimiza-
tion theory, while they are motivated by a large variety of practical applications including those in
operations research, engineering and financial management, systems control, best approximation,
portfolio optimization, etc. Among the most remarkable special classes in cone-constrained opti-
mization, there are problems of semidefinite programming, second-order cone programming, and
copositive programming; see [12, 95, 96, 128, 208, 209, 494, 556, 561, 562, 625, 627, 688, 700,
730, 738, 747, 766, 784, 785] and the references therein for more details, discussions, and various
applications.

Note that the vast majority of publications on conic programming concerns the settings where
the underlying convex cone � in (8.64) is finite-dimensional. It is not the case of our applica-
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tions to SIPs in [553], where � are positive cones of the Banach (non-Asplund unless T is a finite
set)) spaces C(T ) and l∞(T ), independently on dimensionality of the decision space X as well
on compactness or noncompactness of the index set T . This is taken into account in the conic
programming theory developed in [553] and reproduced in Section 8.3 with the subsequent appli-
cations to Lipschitzian SIPs (8.108) indexed by an arbitrary set T . In this theory we address the
general Banach space setting for Y in (8.64) and study not only necessary optimality conditions
of different kinds for conic programs and SIPs but also subdifferentiation of the scalarized supre-
mum functions (8.66) and metric regularity of general cone-constrained systems together with the
implementation of the latter for the case of infinite inequality constraints in SIPs.

Note that the fuzzy necessary optimality conditions for cone-constrained problems derived in
the qualified/KKT form while without constraint qualifications. They seem to be new even for
nonlinear programs, since the previous results produced only conditions of the Fritz John type for
smooth and Lipschitzian problems; see, e.g., [111, 523, 587, 611]. As observed by Nghia [614],
the local Lipschitz continuity of the functions ϕi in Corollary 8.52 can be relaxed to their lower
semicontinuity for i = 0, . . . , m and their continuity for i = m+ 1, . . . , m+ r . Note also that the
obtained fuzzy optimality conditions yield the so-called sequential ones known for special classes
of optimization problems as in [388, 708].

To derive the pointbased necessary optimality conditions as well as the pointbased criteria for
metric regularity for cone-constrained systems, we introduce by following [553] several modifi-
cations of the limiting �-coderivatives for mappings with values in ordered Banach spaces by
using different types of convergence in dual spaces. They can also be useful for other applications;
in particular, to multiobjective optimization and economic modeling (cf. Chapters 9 and 10). As
mentioned, the limiting �-coderivative constructions in Definition 8.43 employed above are the
normal type. Their mixed counterparts can be defined similarly; see Exercise 8.102.

Observe that the result of Corollary 8.57 for SIPs with compact index sets significantly im-
proves the previous result for the same model obtained by Zheng and Yang [783] by a completely
different device in a weaker form under a stronger qualification condition. The principal differ-
ence between Corollary 8.57 and the corresponding result of [783] is that the latter employs in
the formulations of qualification and optimality conditions the so-called “Clarke epi-coderivative”
defined in [783], which is always larger (much larger as a rule) than our basic sequential limiting
coderivative used in Corollary 8.57. In particular, the qualification condition from [783] fails in
Example 8.58 while the result of Corollary 8.57 holds true and confirms the optimality of the ref-
erence feasible solution.

Section 8.4. The last section of this chapter is based on the author’s joint papers with Phan
[568, 569] and is mainly devoted to evaluation generalized normals to countable set intersections
and their applications to necessary optimality conditions for SIPs with countably many set and
inequality constraints described by l.s.c. functions. The major machinery of our study relies on
the conic and contingent extremal principles for countable systems of sets [568] presented in Sec-
tion 2.2. Note that countable constraint systems are much less investigated in comparison with
those indexed by compact sets being actually of the same level of difficulties as constraint sys-
tems with arbitrary index collections. However, the methods and results presented in this section
essentially exploit the countable structure of constraints.

First we address by following [569] the CHIP and strong CHIP notions (the terminology is
taken from [156]), which have been mainly investigated for of convex sets; see, e.g., [69, 131, 156,
204, 253, 463]. Observe that the notion of strong CHIP for finitely many convex sets postulates
the conclusion of the classical Moreau-Rockafellar theorem on representing the normal cone to set
intersections [667]. Our major attention in this direction turns to countable intersections of convex
and nonconvex sets in finite dimensions and concerns also the new property of the asymptotic
strong CHIP, which happens to be equivalent to strong CHIP for convex sets while playing an
independent role in nonconvex settings. Corollary 8.62 for linear inequality systems reduces to the
result by Cánovas et al. [140]. The notion of bounded linear regularity used in Proposition 8.64 and
its corollary for CHIP of nonconvex countable set intersections is an extension of the corresponding
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property introduced and investigated by Bauschke, Borwein, and Li [69] for finite intersections of
convex sets; see also [253, 463, 694] among other publications.

The qualification conditions from Definition 8.69 (together with the related ones in Defini-
tion 8.79) and the normal cone formula for countable intersections from Theorem 8.75 first ap-
peared in [569], while the other material of Subsection 8.4.2 is taken from [568]. These results are
crucial for applications to necessary optimality conditions for SIPs with countable set and inequal-
ity constraints presented in Subsection 8.4.3 based on [569]. Note that for the convex inequality
systems in (8.154), both CHIP and SCC (8.156) are implied by the local Farkas-Minkowski prop-
erty from Definition 8.81 that follows [297, 298]. We refer the reader to [262] for a detailed study
of conventional qualification conditions for systems of convex inequalities. Relationships between
the qualification and optimality conditions for countable convex systems presented in Proposi-
tion 8.82 and their previous counterparts established in Chapter 7 are illustrated in various settings
of Example 8.84.

Let us finally mention in our comments here the recent results by Movahedian [596] concerning
SIPs with countable equality constraints described by Lipschitzian functions on Asplund spaces,
where necessary optimality conditions are derived in a pointbased KKT form under a new bound-
ary MFCQ. The major role of the latter constraint qualification is to justify the validity of the
required coderivative calculus rules and the calmness property of the corresponding set-valued
mapping.

Section 8.6. As for the preceding chapters of the book, this section contains various exercises on
the material presented in Chapter 8 of different levels of difficulties. Some of them can be ful-
filled by just following the given basic results and proofs with clarifying the constructions and
facts therein while other ones require a significant additional work by using supplied hints and
references.

There are also some items in Section 8.6, which contain challenging issues. First we mention
further developments and applications of the class of supremum marginal functions defined in
(8.161). Functions of this type appear in many areas of variational analysis, optimization, control,
etc. In particular, they describe Hamiltonians for control systems with control sets depending on
state variables, which appear, e.g., in feedback control with a variety of applications to engineering
design, mechanics, economics, etc. Pointbased subdifferentiation of such functions brings a lot of
information for the further implementation in these and related areas of applications. Besides this,
the lower subdifferentiation of the supremum marginal functions, essentially more challenging
that than of the infimum ones (4.1), provides efficient tools for analysis of both optimistic and
pessimistic models in bilevel programming in vein of the value function approach discussed in
Chapter 6.

Another promising area of further extensions and applications concerns developing compre-
hensive calculus rules for both normal and mixed limiting �-coderivatives for single-valued and
set-valued ordered mappings; see Exercises 8.102–8.104. This has great potential for applications
not only to the topics discussed in Section 8.3 but also to multiobjective optimization problems
considered in Chapters 9 and 10. Furthermore, the efficient calculation of the �-coderivative con-
structions involved in particular classes of the constrained problems under consideration is a chal-
lenging issue for both theoretical and numerical aspects of stability and optimization.



Chapter 9
Variational Analysis in Set Optimization

Here we start studying problems of set optimization and interrelated ones of mul-
tiobjective optimization, where optimal solutions are understood in various Pareto-
type sense with respect to general preference relations. Our study equally applies to
the cases of set-valued and single-valued objectives (problems of the latter type are
usually considered belonging to vector optimization) by reducing both of them to
minimal/efficient points of sets and employing geometric ideas of variational analy-
sis. Note that the areas of set and set-valued optimization are relatively new and their
developments have been strongly motivated by applications. Some applications to
economics, where the objective set-valuedness is crucial, are presented in the final
Chapter 10.

This chapter is devoted to formulations of general problems of set and set-valued
optimization and to their investigation by using powerful techniques of variational
analysis and generalized differentiation. Developing variational principles for set-
valued mappings, we then apply them, together with the tools and calculus of gener-
alized differentiation presented above, to establishing existence theorems for multi-
objective optimal/efficient solutions and deriving necessary optimality conditions in
unconstrained and constrained frameworks. Our approach to these issues is different
from conventional ones in vector and set-valued optimization. It employs geometric
dual-space techniques mainly based on the extremal principle and related develop-
ments without using any scalarization, tangential approximations, and the like. To
emphasize the dual-space ideas and having in mind a variety of applications, we
work in this and the next chapters in infinite-dimensional settings. Unless otherwise
stated, all the spaces are assumed to be Banach.

9.1 Minimizers and Subdifferentials Induced by Cones

We first consider some notions of minimal points of sets with respect to preference
relations induced by convex cones and then use them to define optimal solutions to
problems of multiobjective optimization.
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9.1.1 Minimal Points of Sets

Let � ⊂ Z be a closed and convex cone of a space Z. We associate with this cone a
preference ' on Z defined by

z1 ' z2 ⇐⇒ z2 − z1 ∈ �, (9.1)

where the dependence of ' on � is omitted for simplicity.

We begin with recalling standard notions of Pareto-type minimal/efficient and
weak minimal/weak efficient points of sets in linear topological spaces partially or-
dered by cone-generated preferences of type (9.1).

Definition 9.1 (Pareto Minimal and Weak Minimal Points of Sets). Given � ⊂
Z and preference ' (9.1) generated by the cone �, we say that:

(i) The point z̄ ∈ � is PARETO MINIMAL for � if

(z̄−�) ∩� = {z̄}. (9.2)

(ii) The point z̄ ∈ � is WEAK PARETO MINIMAL for � if

(z̄− int�) ∩� = ∅, int� 
= ∅. (9.3)

Note that the minimality property (9.2) is formally different from the conventional
definition of minimal points of sets given by

(z̄−�) ∩� ⊂ z̄+� (9.4)

while the notions (9.2) and (9.4) are obviously equivalent when the ordering cone
� is pointed, i.e., � ∩ (−�) = {0}. In fact, even in the case of nonpointed cones
�, the conventional construction (9.4) reduces to (9.2) by considering therein the
pointed ordering cone defined by

�̃ := (
� ∩ (Z \ (−�))) ∪ {0}.

Indeed, it is easy to check that the collection of minimal points of � in the sense
of (9.4) with respect to � is the same as the one for � in the sense of (9.2) with
respect to the pointed cone �̃. We prefer to use in what follows the minimal point
definition (9.2) in both pointed and nonpointed cases, since it allows us to reduce
(see below) Pareto minimality and related notions to set extremality in the basic
sense of variational analysis as considered in Chapter 2.

A visible disadvantage of weak minimal points (9.3) is the nonempty interior
requirement on the ordering cone �, which seems to be a serious restriction from
both viewpoints of optimization theory and applications. In particular, various vec-
tor optimization problems can be formalized by using convex ordering cones having
empty interiors in both finite-dimensional and infinite-dimensional frameworks. In
settings of this type, the usage of appropriate relative interior points of the cor-
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responding ordering cones seems to be reasonable provided, of course, that such
points exist.

Recall that the standard relative interior of� ⊂ Z, denoted by ri�, is the interior
of � relative to the closed affine hull of �. It is well known that ri� 
= ∅ for every
nonempty convex set � in finite dimensions. However, it is not the case in many
infinite-dimensional settings. In particular, it is well known that the natural ordering
cones in the standard Lebesgue spaces of sequences lp and functions Lp[0, 1] for
1 ≤ p < ∞ as well as in a number of other classical infinite-dimensional spaces
have empty relative interiors.

To improve this situation, consider the following extensions of the relative inte-
rior notion for sets in infinite dimensions.

Definition 9.2 (Quasi-Relative and Intrinsic Relative Interiors of Convex Sets).
Let � ⊂ Z be a convex set. Then:

(i) The QUASI-RELATIVE INTERIOR of �, denoted by qri�, is the collection of
those z ∈ � for which the closed conic hull cl cone (�− z) of the shifted set �− z
is a linear subspace of Z.

(ii) The INTRINSIC RELATIVE INTERIOR of�, denoted by iri�, is the collection
of those z ∈ � for which the conic hull cone (� − z) of the shifted set � − z is a
linear subspace of Z.

Note that the definition of iri�, in contrast to ri� and qri�, is pure algebraic
without involving any topology. It is obvious that

ri� ⊂ iri� ⊂ qri�, (9.5)

where both inclusions hold as equalities if ri� 
= ∅, in particular, when Z is
finite-dimensional. Some properties associated with these notions are listed in Exer-
cise 9.24; see also the corresponding commentaries in Section 9.6. A truly remark-
able property of quasi-relative interiors is that qri� 
= ∅ for any closed and convex
subsets of separable Banach spaces.

Utilizing the above relative interior notions in the case of the ordering cone �
in (9.1), we now introduce the corresponding notions of relative minimal points of
sets that intermediate positions between Pareto and weak Pareto minimal/efficient
points from Definition 9.1.

Definition 9.3 (Relative Minimal Points of Sets). Let a set � be a nonempty sub-
set of a linear topological space Z partially ordered by the closed and convex cone
{0} 
= � ⊂ Z as in (9.1). We say that:

(i) z̄ ∈ � is (PRIMARY) RELATIVE MINIMAL POINT of � if

(z̄− ri�) ∩� = ∅, ri� 
= ∅.
(ii) z̄ ∈ � is an INTRINSIC RELATIVE MINIMAL POINT of � if

(z̄− iri�) ∩� = ∅, iri� 
= ∅.
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(iii) z̄ ∈ � is a QUASI-RELATIVE MINIMAL POINT of � if

(z̄− qri�) ∩� = ∅, qri� 
= ∅.
It follows from Exercise 9.24(iii) that all the relative minimality notions above

agree if the set � admits a relative minimal point. All these notions clearly reduce
to weak efficiency provided that int� 
= ∅, which is a restrictive assumption. In
general, any quasi-relative minimal point of � is an intrinsic minimal point of this
set (but not vice versa), and the existence of the latter doesn’t imply the existence
of primary relative minimal points of � and hence the existence of weak efficient
points of this set; see Exercise 9.25.

9.1.2 Minimizers and Subdifferentials for Mappings

Consider next a set-valued mapping F : X →→ Z with values in a linear topological
space, which is partially ordered by a closed and convex cone� ⊂ Z. We define the
notions of minimizers for it induced by cone ordering on the image space Z that is
generated by the minimal points of the image set F(X) := ⋃

x∈X F(x) in the senses
of Definitions 9.1 and 9.2.

Definition 9.4 (Global Minimizers of Set-Valued Mappings). Given a set-valued
mapping F : X →→ Z with values ordered by a cone � and given a pair (x̄, z̄) ∈
gphF from the graph of F , we say that:

(i) (x̄, z̄) is a (Pareto) MINIMIZER of the mapping F if

(z̄−�) ∩ F(X) = {z̄}.
(ii) (x̄, z̄) is a WEAK MINIMIZER for F if

(
z̄− int�) ∩ F(X) = ∅ provided that int� 
= ∅.

(iii) (x̄, z̄) is a (PRIMARY) RELATIVE MINIMIZER for F if

(
z̄− ri�

) ∩ F(X) = ∅ provided that ri� 
= ∅.
(iv) (x̄, z̄) is an INTRINSIC RELATIVE MINIMIZER for F if

(
z̄− iri�

) ∩ F(X) = ∅ provided that iri� 
= ∅.
(v) (x̄, z̄) is a QUASI-RELATIVE MINIMIZER for F if

(
z̄− qri�

) ∩ F(X) = ∅ provided that qri� 
= ∅.
Since the mapping F may take empty values for some x ∈ X, we actually have

constraints x ∈ domF for the minimizers in Definition 9.4. On the other hand,
explicit constraints of the type x ∈ � and their specifications can be reduced to
minimizing unconstrained set-valued mappings by imposing F(x) := ∅ for x /∈ �.
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If the mapping F in Definition 9.4 is single-valued F = f : X → Z, there is the
unique choice of z̄ = f (x̄) therein, and so we may speak about the corresponding
minimizers x̄ while having in mind the pair (x̄, f (x̄)) in all the properties (i)–(v)
listed above.

Example 9.5 (Global Pareto and Weak Pareto Minimizers). Consider the fol-
lowing Fig. 9.1 to illustrate the difference between global Pareto and weak Pareto
minimizers. This example concerns minimizing a mapping F : X →→ R

2 defined on
some nonempty subset X ⊂ R

2 with the range space Z = R
2 ordered by the cone

� = R
2+. The red parts in the boundary of the image set F(X) depict the global

Pareto points of F(X), while the yellow parts show the weak Pareto but not Pareto
points of this set.

F (X)
z̄

z̄ − Θ

z̄ − intΘ

z̄

Fig. 9.1 Pareto vs. weak Pareto minimal points for F(X) with � = R
2+.

The corresponding local versions of all the Pareto-type global optimality notions
from Definition 9.4 are formulated similarly to the above by replacing the whole
space image F(X) by that of a neighborhood U ⊂ X for the domain component
x̄ of the local minimizer (x̄, z̄) in question. The next figure, Fig. 9.2, illustrates the
difference between global and local Pareto minimizers in the same setting as in
Example 9.5.

F (X)

F (X ∩ U)

z̄

z̄

z̄ − Θ

z̄ − Θ

Fig. 9.2 Global Pareto vs. local Pareto minimal points for F(X) with � = R
2+.
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To proceed further with the study of variational properties of set-valued mappings
F : X →→ Z with values in partially ordering spaces and optimization problems for
them, we need to introduce some notation and subdifferential notions for mappings
of this type with respect to the ordering cone � ⊂ Z. In addition to the closedness
and convexity requirements on � mentioned above, suppose in what follows that �
is proper, i.e., � 
= ∅ and � 
= Z. Let us associate with F and � the epigraph

epi�F := {
(x, z) ∈ X × Z∣∣ z ∈ F(x)+�}

and the corresponding epigraphical multifunction EF,� : X →→ Z defined by

EF,�(x) := {
z ∈ Z∣∣ z ∈ F(x)+�} with gph EF,� = epi�F.

Using now the coderivatives of the epigraphical multifunction, we define appro-
priate extensions of subdifferentials from extended-real-valued functions to vector-
valued and set-valued mappings with values in partially ordered spaces.

Definition 9.6 (Subdifferentials of Ordered Set-Valued Mappings). Given
F : X →→ Z with Z ordered by �, define the following:

(i) The REGULAR SUBDIFFERENTIAL of F at (x̄, z̄) ∈ epi�F is

∂̂�F (x̄, z̄) := {
x∗ ∈ X∗∣∣ x∗ ∈ D̂∗EF,�(x̄, z̄)(z∗), −z∗ ∈ N(0;�), ‖z∗‖ = 1

}
,

where D̂∗ stands for the regular coderivative/precoderivative (1.16).
(ii) The BASIC SUBDIFFERENTIAL of F at (x̄, z̄) ∈ epi�F is

∂�F(x̄, z̄) := {
x∗ ∈ X∗∣∣ x∗ ∈ D∗EF,�(x̄, z̄)(z∗), −z∗ ∈ N(0;�), ‖z∗‖ = 1

}
,

where D∗ stands for the (normal) coderivative from Definition 1.11; see (7.2).

Observe that the range condition −z∗ ∈ N(0;�) in the constructions of Def-
inition 9.6 is not a restriction; in fact, it automatically follows from each of the
inclusions x∗ ∈ D̂∗EF,�(x̄, z̄)(z∗) and x∗ ∈ D∗EF,�(x̄, z̄)(z∗). This condition is
presented just to reveal the possible value range of z∗. In particular, we have z∗ = 1
for the usual order � = R+ on the real line.

It is important to emphasize that, similarly to the case of extended-real-valued
functions, the basic subdifferential ∂�F(x̄, z̄) of ordered set-valued mappings en-
joys a pointbased full calculus due to the comprehensive calculus rules available for
our basic coderivative D∗; see Exercise 9.27.

9.2 Variational Principles for Ordered Mappings

The main goal of this section is to derive two variational principles for set-valued
mappings with values in partially ordered spaces. The first result is a set-valued
Banach space version of Ekeland’s variational principle for extended-real-valued
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functions formulated in Corollary 2.13 (see Exercise 2.38), while the second one is
a set-valued Asplund space version of the (lower) subdifferential variational princi-
ple for extended-real-valued functions formulated in Theorem 2.38; see also Exer-
cise 2.39. Both results play a significant role in further developments in this chapter.

9.2.1 Limiting Monotonicity for Set-Valued Mappings

Given a mapping F : X →→ Z between Banach spaces and a set � ⊂ Z, denote
by Min� collections of Pareto minimal points (9.2) of � ⊂ Z with respect to the
ordering cone � on Z. This can be equivalently written as

Min� = Min�� := {
z̄ ∈ �∣∣ z̄− z /∈ � whenever z ∈ �, z 
= z̄

}
. (9.6)

Next we recall several notions and conventional terminology from set-valued
analysis and multiobjective optimization regarding the ordering cone � ⊂ Z and
the mapping F : X →→ Z that are broadly used in what follows:

• � has the normality property if the set (B +�) ∩ (B −�) is bounded.
• F is epiclosed if its epigraph is closed in X × Z.
• F is level-closed if its z-level sets

L(z) := {
x ∈ X∣∣ ∃ v ∈ F(x) with v ' z

} = {
x ∈ X| F(x) ∩ (z−�) 
= ∅}

are closed in X for all z ∈ Z.
• F is �-quasibounded (or simply quasibounded) from below if there is a

bounded subset M ⊂ Z with F(X) ⊂ M + �. A set � ⊂ Z is quasibounded
from below if the constant mapping F(x) ≡ � enjoys this property.

• F has the domination property at x̄ if F(x̄) ⊂ MinF(x̄)+�, i.e.,

for every z ∈ F(x̄) , there is v ∈ MinF(x̄) with v ' z. (9.7)

Note that this property is automatic for single-valued mappings F .
Let us discuss some relationships between the above properties. It is easy to see

that every epiclosed mapping is level-closed, but the opposite may not be true in the
case of set-valued mappings as, e.g., for F : R →→ R given by F(x) := 0 if x 
= 0
and F(x) := (−1, 1] if x = 0. Sufficient conditions for the validity of the opposite
implication are presented in Exercise 9.28. Note also that the normality property of
� yields the pointedness property�∩ (−�) = {0}, while the opposite doesn’t hold
even for convex cones in finite dimensions as, e.g., for � := {(z1, z2) ∈ R

2| z1 >

0} ∪ {0}; see Exercise 9.29.

The following property is important for our extension of Ekeland’s variational
principle to ordered set-valued mappings.
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Definition 9.7 (Limiting Monotonicity Condition). Given F : X →→ Z and x̄ ∈
domF , we say that F satisfies the LIMITING MONOTONICITY CONDITION at x̄ if
any sequence of pairs {(xk, zk)} ⊂ gphF with xk → x̄ satisfies

[
zk+1 ' zk, k ∈ N

] �⇒ [∃ z̄ ∈ MinF(x̄) with z̄ ' zk, k ∈ N
]
. (9.8)

Observe that the limiting monotonicity condition (9.8) always implies the domi-
nation property (9.7). Indeed, let z ∈ F(x̄) and take the constant sequences xk ≡ x̄

and zk ≡ z as k ∈ N. This clearly yields that (xk, zk) ∈ gphF , xk → x̄, and
zk+1 ' zk for all k ∈ N. The limiting monotonicity condition (9.8) of F at x̄ en-
sures the existence of v ∈ MinF(x̄) with v ' z = zk , i.e., F has the domination
property at this point.

Further, it is easy to see that every level-closed and single-valued mapping enjoys
the limiting monotonicity condition (9.8). Let us present some properties, which
ensure (9.8) for set-valued mappings. Recall that C ⊂ Z is a base for the cone � if
0 /∈ C and � = R+C.

Proposition 9.8 (Sufficient Conditions for Limiting Monotonicity). Let F :
X →→ Z be level-closed, and let x̄ ∈ domF . Then F satisfies the limiting mono-
tonicity condition at x̄ if it has the domination property at this point and either one
of the following assumptions is fulfilled:

(a) The minimum set MinF(x̄) is compact.
(b) The mapping F is quasibounded from below, the set MinF(x̄) is closed, and

the ordering cone � has a compact base.

Proof. To verify (9.8), take a sequence {(xk, zk)} ⊂ gphF such that xk → x̄ as
k → ∞ and zk+1 ' zk for all k ∈ N and then define the sets

�k := MinF(x̄) ∩ (
zk −�) = {

v ∈ MinF(x̄)
∣∣ v ' zk

}
, (9.9)

which are closed due to the closedness of the ordering cone � and of the minimal
set MinF(x̄). Furthermore, we have �k+1 ⊂ �k due to zk+1 ∈ zk − � as k ∈ N

and the convexity of�. Let us show that�k 
= ∅ for all k ∈ N. Indeed, fixing k ∈ N

and using the monotonicity of {zk} give us the inclusions

xk+n ∈ L(zk) for all n ∈ N,

which imply that x̄ ∈ L(zk) by the level-closedness of F . Thus there is uk ∈ F(x̄)
with uk ' zk . Employing the domination property of F at x̄, find vk ∈ MinF(x̄)
such that vk ' uk ' zk , which therefore justifies the desired nonemptiness �k 
= ∅
as k ∈ N.

Next we prove that any sequence {vk} ⊂ �k contains a subsequence converging
to some z̄ ∈ MinF(x̄) if the assumptions made in either (a) or (b) are fulfilled.
Observing that {vk} ⊂ �1 by the established set decreasing �k+1 ⊂ �k , it remains
to verify the compactness of �1 under (a) and (b). It immediately follows from
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(a) due to the structure of �1 in (9.9). To proceed in case (b), we first recall an
easily checkable fact that the compact-based property of the ordering cone � in
(b) is equivalent to the simultaneous fulfillment of the normality property of this
cone and the compactness property of the set � ∩ B; see Exercise 9.30. By the
quasiboundedness of F from below assumed in (b), there is a bounded set M ⊂ Z

and hence a number m ∈ N such that

MinF(x̄) ⊂ M +� ⊂ mB +�.
It follows directly from the structure of �1 in (9.9) that

�1 ⊂ (
mB +�) ∩ (‖z1‖B −�),

which yields the boundedness of �1 due to the normality property of �. Therefore
we get from (9.9) that the set z1 − �1 ⊂ � is bounded as well. Since � ∩ B is
compact in (b), the boundedness of z1 − �1 implies its compactness and so the
compactness of �1. The latter ensures the existence of z̄ ∈ MinF(x̄) with

z̄ ∈
∞⋂

k=0

�k for all k ∈ N.

This tells us by (9.9) that z̄ ' zk as k ∈ N, which justifies the limiting monotonicity
condition for F at x̄ in case (b) and completes the proof. �

Observe that the closedness assumption on the set MinF(x̄) is essential in Propo-
sition 9.8 as in the case of � = R

2+ and F : R →→ R
2 given by

F(x) :=
⎧
⎨

⎩

(x, x) if x > 0,{
(y,−y)∣∣ y ∈ (0, 1]} if x = 0,
(1,−1) if x < 0

for which MinF(0) is not closed and the limiting monotonicity condition doesn’t
hold at x̄ = 0 although the other assumptions of Proposition 9.8(ii) are satisfied;
see Fig. 9.3(a). It is easy to check that the limiting monotonicity condition (9.8) can
be fulfilled with no closedness requirement imposed on the set MinF(x̄) as for the
mapping F : R →→ R

2 given by

F(x) :=
{(|x|, |x|) if x 
= 0,{
(y,−y)∣∣ y ∈ (−1, 0]} if x = 0

with the ordering cone � = R
2+ and x̄ = 0; see Fig. 9.3(b).
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F (x) (x > 0)

F (x) (x < 0)

F (0)

−1

1

(a) Min F (0) = F (0) which is nonclosed, while the level-closedness

L(z) = ∅

L(z) = (−∞, 0]

L(z) = (−∞, min{z1, z2}]

and quasiboundedness from below are satisfied.

F (x) (x �= 0)

F (0)

−1

1

(b) Min F (0) = F (0)
which is nonclosed.

Fig. 9.3 Closedness of MinF(x̄) and validity of limiting monotonicity

9.2.2 Variational Principle of Ekeland’s Type

To establish the following set-valued version of Ekeland’s variational principle, we
need two more notions of minimizers for ordered mappings.

Definition 9.9 (Approximate Minimizers for Ordered Set-Valued Mappings).
Let F : X →→ Z, where Z is partially ordered by a cone � ⊂ Z. Then:

(i) Given ε > 0 and ξ ∈ � \ {0}, we say that the pair (x̄, z̄) ∈ gphF is an
APPROXIMATE εξ -MINIMIZER for F if

z+ εξ 
' z̄ for all z ∈ F(x) with x 
= x̄.

(ii) Given ε > 0 and ξ ∈ �\{0}, we say that the pair (x̄, z̄) ∈ gphF is a STRICT

APPROXIMATE εξ -MINIMIZER for F if there is a number 0 < ε̃ < ε such that (x̄, z̄)
is an approximate ε̃ξ -minimizer for this mapping.

Here is the aforementioned far-going extension of Ekeland’s variational principle
to ordered set-valued mappings between arbitrary Banach spaces.

Theorem 9.10 (Ekeland-Type Variational Principle for Ordered Set-Valued
Mappings). Let F : X →→ Z be a set-valued mapping between Banach spaces,
where Z is partially ordered by a proper, closed, and convex cone � ⊂ Z with
� \ (−�) 
= ∅, i.e., � is not a linear subspace of Z. Suppose also that F is quasi-
bounded from below, level-closed, and satisfies the limiting monotonicity condition
on domF . Then for any ε > 0, λ > 0, ξ ∈ � \ (−�) and (x0, z0) ∈ gphF , there is
(x̄, z̄) ∈ gphF such that

z̄− z0 + ε

λ
‖x̄ − x0‖ξ ' 0, z̄ ∈ MinF(x̄), and (9.10)

z− z̄+ ε

λ
‖x − x̄‖ξ 
' 0 for all (x, z) ∈ gphF \ (x̄, z̄). (9.11)
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If furthermore (x0, z0) is an approximate εξ -minimizer for F , then x̄ can be chosen
so that in addition to (9.10) and (9.11), we have

‖x̄ − x0‖ ≤ λ. (9.12)

Proof. Note first that it is sufficient to prove the theorem in the case of ε = λ =
1. Indeed, the general case can be reduced to this special setting by applying the
latter to the mapping F̃ (x) := ε−1F(x) on the Banach space X equipped with the
equivalent norm λ−1‖ · ‖.

Having this in mind, introduce a set-valued mapping T : X × Z →→ X by

T (x, z) := {
y ∈ X∣∣ ∃ v ∈ F(y) with v − z+ ‖x − y‖ξ ' 0

}
(9.13)

and observe that T enjoys the following properties:

• The sets T (x, z) are nonempty for all z ∈ F(x) by x ∈ T (x, z).
• The sets T (x, z) are uniformly bounded for all z ∈ F(x) since the mapping F

is quasibounded from below. Indeed, the latter property yields

T (x, z) ⊂ {
y ∈ X∣∣ ‖x − y‖ξ ∈ z−M −�}.

• We have the inclusion

T (y, v) ⊂ T (x, z) if y ∈ T (x, z), v ∈ F(y), v − z+ ‖y − x‖ξ ' 0. (9.14)

To check it, pick u ∈ T (y, v) and by construction of T find w ∈ F(u) satisfying

w − v + ‖u− y‖ξ ' 0.

Summing the latter relationship with the one in (9.14) and employing

(‖x − u‖ − ‖u− y‖ − ‖y − x‖)ξ ' 0

that holds by the triangle inequality and the choice of ξ ∈ �, we get

w − z+ ‖x − u‖ξ = (
w − v + ‖u− y‖ξ)+ (

v − z+ ‖y − x‖ξ)

+(‖x − u‖ − ‖u− y‖ − ‖y − x‖)ξ ' 0,

which therefore implies that u ∈ T (x, z).
Let us now inductively construct a sequence of pairs {(xk, zk)} ⊂ gphF by the

following iterative procedure: starting with (x0, z0) given in the theorem and having
the k-iteration (xk, zk), we select the next one (xk+1, zk+1) by

⎧
⎪⎨

⎪⎩

xk+1 ∈ T (xk, zk),
‖xk+1 − xk‖ ≥ sup

x∈T (xk,zk)
‖x − xk‖ − (k + 1)−1,

zk+1 ∈ F(xk+1), zk+1 − zk + ‖xk+1 − xk‖ξ ' 0,

(9.15)
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where k ∈ {0} ∪ N. It is clear from this construction and aforementioned properties
of T (x, z) that the iterative procedure (9.15) is well defined. Summing up the last
preference relationship in (9.15) from k = 0 to n, we get

tnξ ∈ z0 − zn+1 −� ⊂ z0 −M −� with tn :=
n∑

k=0

‖xk+1 − xk‖. (9.16)

Let us prove by passing to the limit as n → ∞ in (9.16) that

∞∑

k=0

‖xk+1 − xk‖ < ∞. (9.17)

Arguing by contradiction, suppose that (9.17) doesn’t hold, i.e., the increasing se-
quence {tn} in (9.16) tends to ∞ as n → ∞. By the first inclusion in (9.16) and
boundedness of the setM in the quasiboundedness from below property of the map-
ping F , we find a bounded sequence {vn} ⊂ z0 −M satisfying

tnξ − vn ∈ −�, i.e., ξ − vn

tn
∈ −� for all n ∈ N.

Passing to the limit in the latter inclusion and taking into account the closedness of
� and the boundedness of {vn} and that tn → ∞ as n → ∞, we arrive at ξ ∈ −�.
This contradicts the choice of ξ ∈ � \ (−�) and thus justifies (9.17).

Further, it readily follows from (9.14) and (9.15) that for all k ∈ N, we have
diam T (xk+1, zk+1) ≤ diam T (xk, zk) and

diam T (xk, zk) ≤ 2 sup
x∈T (xk,zk)

‖x − xk‖ ≤ 2
(‖xk+1 − xk‖ + (k + 1)−1).

Hence diam T (xk, zk) ↓ 0 as k → ∞ due to (9.17), and hence we conclude by the
completeness of X that the closures of T (xk, zk) shrink to a singleton:

∞⋂

k=0

cl T (xk, zk) = {
x̄
}

with some x̄ ∈ domF. (9.18)

Since x̄ ∈ cl T (x0, z0), there is a sequence {un} ⊂ T (x0, z0) with un → x̄. By the
definition of T in (9.13), there are vn ∈ F(un) such that

vn ' z0 − ‖x0 − un‖ξ ' z0,

, i.e., un ∈ L(z0) for all n ∈ N. Taking into account the closedness of L(z0), we get
from un → x̄ that x̄ ∈ L(z0) and that x̄ ∈ domF in (9.18).

Next we justify the existence of z̄ ∈ MinF(x̄) such that the pair (x̄, z̄) satisfies
the major relationships in (9.10) and (9.11). Observe from the third line in (9.15)
and from (9.18) that for all k ∈ N, we have

xk → x̄ as k → ∞ and zk ∈ F(xk) with zk+1 ' zk.
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This ensures, by the imposed limiting monotonicity condition (9.8) for the mapping
F on its domain, the existence of z̄ ∈ MinF(x̄) such that z̄ ' zk for all k ∈ N. Let
us verify that the pair (x̄, z̄) ∈ gphF satisfies the desired relationships in (9.10) and
(9.11).

In fact, the inclusion in (9.10) immediately follows from the choice of z̄. To
proceed further, fix k ∈ {0}∪N and sum up the preference conditions in (9.15) from
k to (k + n− 1) with that of z̄− zk ' 0. Taking into account the triangle inequality
for the norm function, we get in this way that

z̄− zk + ‖xk − xk+n‖ξ ' 0 for all k ∈ {0} ∪ N and n ∈ N.

The passage to the limit above with xk+n → x̄ as n → ∞ gives us

z̄− zk + ‖xk − x̄‖ξ ' 0 whenever k ∈ {0} ∪ N, (9.19)

which justifies (9.10), in the case of ε = λ = 1 under consideration, for k = 0. To
verify now (9.11), suppose the contrary and find a pair (x, z) satisfying

(x, z) ∈ gphF with (x, z) 
= (x̄, z̄) and z− z̄+ ‖x − x̄‖ξ ' 0. (9.20)

If x = x̄ in (9.20), we get z 
= z̄ and z ' z̄, which contradict the choice of z̄ ∈
MinF(x̄). If x 
= x̄, then we get by summing up the preference conditions in (9.19),
(9.20) and combining the result with the triangle inequality that

z− zk + ‖x − xk‖ξ ' 0, i.e., x ∈ T (xk, zk) ⊂ cl T (xk, zk)

for all k ∈ {0} ∪ N. This means that x from (9.20) belongs to the set intersection in
(9.18). Thus x = x̄ by (9.18), which fully justifies (9.11) as ε = λ = 1 and hence
in the general case as well.

To complete the proof of the theorem, it remains to estimate ‖x̄ − x0‖ when
(x0, z0) is chosen as an approximate εξ -minimizer for F . Arguing by contradiction,
suppose that (9.12) doesn’t hold, i.e., ‖x̄−x0‖ > λ. Since x̄ ∈ T (x0, z0) and 0 ' ξ ,
we have the preference relationships

z̄− z0 + εξ ' z̄− z0 + ε

λ
‖x̄ − x0‖ξ ' 0

which contradict the choice of (x0, z0) as an approximate εξ -minimizer for F and
thus complete the proof of the theorem. �

The following straightforward consequence of Theorem 9.10 concerns single-
valued mappings F = f : X → Z in which case both assumptions and conclusions
of the theorem admit significant simplifications. Similarly to the case of Defini-
tion 9.4 in the case of single-valued mappings, we avoid mentioning the unique im-
age point z̄ = f (x̄) while referring to approximate minimizers from Definition 9.9
in this case.
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Corollary 9.11 (Ekeland-Type Variational Principle for Ordered Single-
Valued Mappings). Let f : X → Z be a single-valued mapping between Banach
spaces, where Z is partially ordered by a proper, closed, and convex cone � ⊂ Z

with � \ (−�) 
= ∅. Assume that f is level-closed and quasibounded from below.
Then given ε > 0, λ > 0, ξ ∈ � \ (−�), and an approximate εξ -minimizer x0 ∈ X
of f , there exists x̄ ∈ X such that

‖x̄ − x0‖ ≤ λ, f (x̄)+ ε

λ
‖x̄ − x0‖ξ ' f (x0),

and x̄ is a global Pareto minimizer of the perturbed mapping

f (x)+ ε

λ
‖x − x̄‖ξ.

Proof. It follows directly from Theorem 9.10 due to the validity of the limiting
monotonicity condition for single-valued mappings and the corresponding expres-
sions for the properties (9.10) and (9.11) in this case. �

9.2.3 Subdifferential Variational Principle for Mappings

The next result is the subdifferential variational principle, which is an extension
to ordered set-valued mappings of the corresponding scalar result formulated in
Exercise 2.39, which is based on [522, Theorem 2.28].

Theorem 9.12 (Subdifferential Variational Principle for Ordered Set-Valued
Mappings). Let F : X →→ Z be a set-valued mapping between Asplund spaces,
which is epiclosed with respect to the ordering cone � ⊂ Z in addition to the
assumptions of Theorem 9.10. Then for any ε > 0, λ > 0, ξ ∈ � \ (−�) with
‖ξ‖ = 1 and for any strict approximate εξ -minimizer (x0, z0) ∈ gphF for the
mapping F , there is (x̄, z̄) ∈ gphF such that ‖x̄ − x0‖ ≤ λ and

∂̂�F (x̄, z̄) ∩ ε

λ
B

∗ 
= ∅. (9.21)

Proof. Note first that we impose the requirement ‖ξ‖ = 1 in the formulation of
the theorem to get a “nicer” subdifferential condition (9.21). As follows from the
arguments below, condition (9.21) can be replaced, with no change in the proof, by
the modified subdifferential condition

∂̂�F (x̄, z̄) ∩ ε

λ
‖ξ‖B∗ 
= ∅

if ξ is selected arbitrarily from � \ (−�).
To verify (9.21), take the pair (x0, z0) ∈ gphF from the formulation of the the-

orem and find a positive number ε̃ < ε such that (x0, z0) is an approximate ε̃ξ -
minimizer to F . Put further
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λ̃ := ε + ε̃
2ε

λ with 0 < λ̃ < λ (9.22)

and apply the results from Theorem 9.10 to the mapping F and its approximate
ε̃ξ -minimizer (x0, z0) with the chosen parameters ε̃ and λ̃. In this way we have
(ū, v̄) ∈ gphF satisfying the relationships

v̄ ∈ MinF(ū), ‖x0 − ū‖ ≤ λ̃, and (9.23)

z− v̄ + ε̃

λ̃
‖x − ū‖ξ 
' 0 for (x, z) ∈ gphF \ (ū, v̄). (9.24)

Consider a single-valued Lipschitz continuous mapping g : X → Z given by

g(x) := v̄ − ε̃

λ̃
‖x − ū‖ξ (9.25)

and define the two closed subsets of the (Asplund) product space X × Z by

�1 := epi�F and �2 := gph g. (9.26)

We claim that (ū, v̄) is a locally extremal point of {�1,�2} in the sense of Def-
inition 2.1. Since the inclusion (ū, v̄) ∈ �1 ∩ �2 is obvious, it remains to check
the existence of a sequence {ak} ⊂ X × Z such that ak → 0 as k → ∞ and
�1 ∩ (�2 + ak) = ∅ for all k ∈ N. To proceed, let us verify that

�1 ∩ (
�2 + (0,−k−1ξ)

) = ∅ for all k ∈ N, (9.27)

i.e., (2.1) holds with ak := (0,−k−1ξ). Supposing the contrary and using (9.26)
give us (x, v) such that

v = g(x)− k−1ξ and (x, v) ∈ epi�F. (9.28)

It follows from (x, v) ∈ epi�F that there are z ∈ F(x) and θ ∈ � with v = z + θ .
Substituting this into the equality in (9.28) and taking into account that −ξ ' 0 and
−θ ' 0, we arrive at

z = v − θ = g(x)− k−1ξ − θ ' g(x),

which allows us to deduce from (9.24) by the structure of g in (9.25) that (x, z) =
(ū, v̄). The latter implies together with (9.27) and v = z+ θ that

z = v̄ = g(ū) = g(x) = v + k−1ξ = z+ θ + k−1ξ,

and so θ + k−1ξ = 0. It yields ξ = −kθ ∈ −� contradicting the choice of ξ ∈
� \ (−�). The obtained contradiction ensures the fulfillment of (9.27) and hence
the extremality of the set system (9.26) at the reference point (ū, v̄).
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Thus we can apply to the system {�1,�2, (ū, v̄)} the approximate extremal prin-
ciple formulated in Corollary 2.5 in finite dimensions, which holds in any Asplund
space not being anymore a consequence of the exact extremal principle; see Exer-
cise 2.24 and [522, Theorem 2.20] for all the details. For convenience we impose
the sum norm ‖(x, z)‖ := ‖x‖ + ‖z‖ on the product space X×Z that generates the
dual norm on X∗ × Z∗ by

‖(x∗, z∗)‖ := max
{‖x∗‖, ‖z∗‖} for (x∗, z∗) ∈ X∗ × Z∗.

In this way the relationships of the approximate extremal principle allow us for any
ν > 0 to find (xi, zi , x∗

i , z
∗
i ) ∈ X × Z ×X∗ × Z∗, i = 1, 2, satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(xi, zi) ∈ �i, ‖xi − ū‖ + ‖zi − v̄‖ ≤ ν, i = 1, 2,

(x∗
i ,−z∗i ) ∈ N̂((xi, zi);�i), i = 1, 2,

1

2
− ν ≤ max

{‖x∗
i ‖, ‖z∗i ‖

} ≤ 1

2
+ ν, i = 1, 2,

max
{‖x∗

1 + x∗
2‖, ‖z∗1 + z∗2‖

} ≤ ν.

(9.29)

By using the structure of �2 in (9.26) and the Lipschitz continuity of g in (9.25)
with constant � = ε̃/̃λ, we derive from (9.29) and the regular coderivative estimate
for Lipschitz-like mappings in Exercise 3.41 that

‖x∗
2‖ ≤ ε̃

λ̃
‖z∗2‖ and hence z∗2 
= 0

by (9.29) with ν > 0 being sufficiently small. Employing the relationships in (9.29)
again allows us to deduce that

‖z∗1‖ 
= 0 and
‖x∗

1‖
‖z∗1‖

<
ε

λ
; (9.30)

see Exercise 9.37. Furthermore, from the second line in (9.29) with i = 1, we find
z̃1 ∈ F(x1) satisfying the inclusions

(x1, z̃1) ∈ gphF, (x∗
1 ,−z∗1) ∈ N̂((x1, z̃1); epi�F

)
, −z∗1 ∈ N̂(0;�). (9.31)

Denoting finally (x̄, z̄) := (x1, z̃1), x∗ := x∗
1/‖z∗1‖, and z∗ := z∗1/‖z∗1‖ and taking

into account the regular subdifferential construction in Definition 9.6(i), we get the
desired subdifferential condition (9.21) from the relations in (9.30) and (9.31). To
complete the proof of the theorem, it remains to observe that the estimate ‖x̄−x0‖ <
λ follows from the second inequality in (9.23), the first line in (9.29) for i = 1, and
the choice of λ̃ in (9.22). �
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9.3 Existence of Relative Pareto-Type Minimizers

This section is devoted to deriving verifiable conditions that ensure the existence
of relative Pareto-type minimizers for general multiobjective problems defined in
Subsection 9.1.2. The obtained results strongly rely on the subdifferential Palais-
Smale conditions we introduce and discuss first.

9.3.1 Subdifferential Palais-Smale Conditions

Recall that the classical Palais-Smale condition for differentiable real-valued func-
tion ϕ : X → R asserts that if a sequence {xk} ⊂ X is such that {ϕ(xk)} is bounded
and ‖∇ϕ(xk)‖ → 0 as k → ∞ for the corresponding derivative sequence, then {xk}
contains a convergent subsequence. In the following definition, we present two ex-
tensions of this condition to ordered nonsmooth and set-valued mappings that make
use of the regular and basic subdifferentials of such mappings defined above.

Definition 9.13 (Subdifferential Palais-Smale Conditions for Ordered Multi-
functions). Let F : X →→ Z be a set-valued mapping between Banach spaces with
an ordered image space Z, and let ∂̂�F (x, z) and ∂�F(x, z) be the regular and
basic subdifferentials of F at some point (x, z) ∈ gphF , respectively, taken from
Definition 9.6. We say that:

(i) The REGULAR SUBDIFFERENTIAL PALAIS-SMALE CONDITION holds for F
provided that any sequence {xk} ⊂ X satisfying

there are zk ∈ F(xk) and x∗
k ∈ ∂̂�F (xk, zk) with ‖x∗

k ‖ → 0 as k → ∞
contains a convergent subsequence if {zk} is quasibounded from below.

(ii) The BASIC SUBDIFFERENTIAL PALAIS-SMALE CONDITION holds for F pro-
vided that any sequence {xk} ⊂ X satisfying

there are zk ∈ F(xk) and x∗
k ∈ ∂�F(xk, zk) with ‖x∗

k ‖ → 0 as k → ∞
contains a convergent subsequence if {zk} is quasibounded from below.

It is clear that both subdifferential conditions in Definition 9.13 reduce to the
classical Palais-Smale condition for smooth functions F = ϕ : X → R since in this
case ∂̂ϕ(xk) = ∂ϕ(xk) = {∇ϕ(xk)}.

Note that in general the first condition in Definition 9.13 is less restrictive than the
second one since we always have ∂̂�F (x, z) ⊂ ∂�F(x, z) for any (x, z) ∈ gphF .
However, the latter condition has serious advantages in applications to structural
problems (in particular, to those with various constraints) due to a broad spectrum
of available calculus rules.

In the subsequent subsections of this section, we obtain existence theorems for
relative minimizers first in unconstrained and then in constrained settings of mul-
tiobjective optimization. Besides using both variational principles from Section 9.2
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and the Palais-Smale subdifferential conditions, we need the following modification
of the limiting monotonicity property.

Definition 9.14 (Strong Limiting Monotonicity Condition). Given a set-valued
mapping F : X →→ Z and a point x̄ ∈ domF , it is said that F satisfies the
STRONG LIMITING MONOTONICITY CONDITION at x̄ if for any sequence of pairs
{(xk, zk)} ⊂ gphF with xk → x̄, we have for all k ∈ N that

[
zk ' vk, vk+1 ' vk

] �⇒ [∃ z̄ ∈ MinF(x̄) with z̄ ' vk
]

(9.32)

and also that z̄ ' v̄ if vk → v̄ as k → ∞ and the ordering cone � is closed.

The strong limiting monotonicity (9.32) obviously implies the limiting mono-
tonicity (9.8) but not vice versa. However, the sufficient conditions for the limiting
monotonicity property given in Proposition 9.8 ensure the strong limiting mono-
tonicity property as well; see Exercise 9.39.

9.3.2 Existence of Solutions to Unconstrained Problems

In this subsection we study the existence of relative minimizers (and consequently
weak minimizers) of set-valued mappings F : X →→ Z between Asplund spaces.
Although such a multiobjective optimization problem is considered in the uncon-
strained format, it implicitly includes the domain constraint x ∈ domF . Existence
issues in some explicitly constrained multiobjective problems are addressed in the
next subsection.

The following theorem is the main result of the whole section. Its proof is based
on the variational principles developed in Section 9.2.

Theorem 9.15 (Existence of Intrinsic Relative Minimizers for Set-Valued Map-
pings). Let F : X →→ Z be a mapping between Asplund spaces that is epiclosed and
quasibounded from below and satisfies the strong limiting monotonicity condition
from Definition 9.14 on domF . Assume furthermore that the regular subdifferen-
tial Palais-Smale condition from Definition 9.13(i) holds and that � \ (−�) 
= ∅,
i.e., � is not a linear subspace of Z. Then F admits an intrinsic relative minimizer
provided that iri� 
= ∅.

Proof. To justify the existence of intrinsic relative minimizers for F , we first apply
the Ekeland-type principle from Theorem 9.10 to generate a minimizing sequence
{(xk, zk)} ⊂ gphF and then prove that the chosen sequence {xk} contains a sub-
sequence converging to an intrinsic relative minimizer for F . The latter arguments
are rather involved based on applying the above version of the subdifferential varia-
tional principle, the approximate extremal principle, and the limiting monotonicity
condition. Details follow.

To begin with, pick an arbitrary pair (x0, z0) ∈ gphF and element ξ ∈ �\ (−�)
with ‖ξ‖ = 1 and then inductively generate a sequence {(xk, zk)} ⊂ gphF by using
the obtained Ekeland-type variational principle for ordered set-valued mappings. To
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proceed, fixing k ∈ N and having the (k − 1)-iteration (xk−1, zk−1), apply The-
orem 9.10 with the parameters ε := k−2 and λ := k−1 to get the next iteration
(xk, zk) ∈ gphF satisfying the relationships

zk ∈ MinF(xk), zk ' zk−1, and (9.33)

z− zk + k−1‖x − xk‖ξ 
' 0 for all (x, z) ∈ gphF \ (xk, zk). (9.34)

Assume for the moment that {xk} contains a subsequence converging to some
point x̄ ∈ domF ; we show that it is the case a bit later. Without loss of generality,
suppose that xk → x̄ as k → ∞ for the whole sequence {xk} and get from (9.33)
and the limiting monotonicity condition (9.8) that

there is z̄ ∈ F(x̄) with z̄ ' zk for all k ∈ N. (9.35)

Let us prove that the pair (x̄, z̄) is an intrinsic relative minimizer for F . Indeed,
taking an arbitrary pair (x, z) ∈ gphF with (x, z) 
= (x̄, z̄) and employing (9.34)
and (9.35), we have by elementary transformations that

z− z̄+ k−1‖x − xk‖ξ ∈ zk − z̄+ Z \ (−�) for all k ∈ N,

which easily implies the inclusion

z− z̄+ k−1‖x − xk‖ξ ∈ �+ Z \ (−�).
The latter gives, by the convexity of the ordering cone �, that

z− z̄+ k−1‖x − xk‖ξ ∈ Z \ (−�), k ∈ N. (9.36)

Our aim is to show, by passing to the limit in (9.36) as k → ∞, that

z− z̄ ∈ Z \ (−iri�) provided that iri� 
= ∅. (9.37)

Arguing by contradiction, suppose that (9.37) doesn’t hold, i.e., z−z̄ =: θ ∈ −iri�.
Employing Definition 9.2(ii) of the intrinsic relative interior, we have that the conic
hull cone(�+ θ) is a linear subspace of Z. This allows us to find a positive number
t̄ ≤ 1 such that

t (−ξ − θ) ∈ �+ θ for all t ∈ [0, t̄], and thus

θ + τξ ∈ −� for all τ = t

1 + t ∈
[
0,

t̄

1 + t̄
]
. (9.38)

Since k−1‖x − xk‖ → 0 as k → ∞, it gives us for large k ∈ N that

k−1‖x − xk‖ ∈ [
0, t̄/(1 + t̄ )].
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Substituting it into (9.38) and observing that θ = z− z̄, we arrive at

z− z̄+ k−1‖x − xk‖ξ ∈ −�,
which contradicts (9.36) and therefore verifies (9.37). Since the pair (x, z) ∈ gphF
was chosen arbitrarily, the conditions in (9.37) yield those in Definition 9.4(iv) and
thus verify the intrinsic relative minimality of (x̄, z̄).

To complete the proof, it remains to justify the claim announced above: the cho-
sen sequence {xk} contains a convergent subsequence. To prove this convergence,
we inductively construct another sequence {̃xk} ⊂ domF such that ‖x̃k − xk‖ →
0 as k → ∞ and that the subdifferential Palais-Smale condition from Defini-
tion 9.13(i) can be applied to this new sequence. To proceed, define for each k ∈ N

a set-valued mapping Fk : X →→ Z by

Fk(x) := F(x)+ gk(x) with gk(x) := k−1‖x − xk‖ξ (9.39)

and deduce from (9.34) that (xk, zk) is a strict approximate k−2ξ -minimizer for Fk .
It is easy to check that Fk is epiclosed and quasibounded from below. We claim
now that Fk enjoys the limiting monotonicity property (9.8) provided that F has the
strong limiting monotonicity property (9.32). Fix ū ∈ domFk = domF and for any
sequence {(un,wn)} ⊂ gphFk satisfying

un → ū as n → ∞ with wn+1 ' wn (9.40)

for all n ∈ N and define a sequence of w̄n ∈ F(un) by

w̄n := wn − k−1tnξ with tn := ‖un − xk‖, n ∈ N.

Passing to subsequences if necessary, we assume without loss of generality that the
sequence {tn} monotonically converges to t̄ := ‖ū − xk‖ as n → ∞. Consider the
following two possible cases:

• If {tn} is decreasing, then {−k−1tnξ} is increasing. Denote vn := wn − k−1 t̄ ξ

and observe that the sequence {vn} is decreasing with

w̄n = wn − k−1tnξ ' vn, n ∈ N.

Applying the strong limiting monotonicity property (9.32) of the mapping F to the
sequences {(un, w̄n)} and {vn}, we find w̄ ∈ MinF(ū) with w̄ ' vn for all n ∈ N.
This clearly implies that

w̄ + k−1 t̄ ξ = w̄ + k−1‖ū− xk‖ξ ∈ MinFk(ū) and w̄ + k−1 t̄ ξ ' wn

as n ∈ N, i.e., Fk enjoys the limiting monotonicity property (9.8) at ū.
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• If {tn} is increasing, the sequence vn = wn − k−1tnξ is decreasing. The strong
limiting monotonicity property of F applied to the sequences {(un, w̄n)} and {vn}
ensures the existence of w̄ ∈ MinF(ū) with w̄ ' vn for all n ∈ N; the latter means
that

w̄ + k−1tnξ ' wn whenever n ∈ N. (9.41)

Let us show that in this case we have

w̄ + k−1 t̄ ξ ' wn with t̄ = ‖ū− xk‖, n ∈ N. (9.42)

Indeed, it follows from (9.41), the assumed increase of the sequence {tn} and the
decrease of the sequence {wn} in (9.40) that

w̄ + k−1tnξ ' w̄ + k−1tn+mξ = wn+m ' wn for all n,m ∈ N,

and thus w̄+ k−1tn+mξ ' wn for every m ∈ N while n is fixed. Passing to the limit
as m → ∞ gives us (9.42) by the closedness of �. Combining it with (9.40) and
(9.42) verifies the claimed limiting monotonicity of Fk at ū.

Next fix k ∈ N and apply the subdifferential variational principle from The-
orem 9.12 to the mapping Fk in (9.39) and its strict approximate εξ -minimizer
(xk, zk) with ε := k−2 and λ := k−1. Taking into account the structure of Fk
and the regular subdifferential construction ∂̂�Fk , we find (̃xk, z̃k, ṽk, x̃∗

k , z̃
∗
k) ∈

X × Z × Z ×X∗ × Z∗ satisfying the relationships:

{
z̃k ∈ F (̃xk), ṽk = gk(̃xk), (xk, z̃k + ṽk) ∈ gphFk, ‖x̃k − xk‖ ≤ 1/k,

(̃x∗
k , −̃z∗k) ∈ N̂((̃xk, z̃k + ṽk); epi�Fk

)
, −̃z∗k ∈ N̂(0;�), ‖̃z∗k‖ = 1

(9.43)

with ‖x̃∗
k ‖ ≤ k−1, k ∈ N. Consider the Asplund space X×Z×Z equipped with the

sum norm on the product (and hence by the corresponding maximum on the dual
product space) and form the two subsets of X × Z × Z by

�1 := {
(x, z, v)

∣∣(x, z) ∈ epi�F
}
, �2 := {

(x, z, v)
∣∣(x, v) ∈ gph gk

}
(9.44)

with gk taken from (9.39). It is easy to see that (̃xk, z̃k, ṽk) ∈ �1 ∩�2 and that both
sets �1 and �2 are locally closed around this point by the epiclosedness of F and
the Lipschitz continuity of gk . Observe also that

(x, z, v) ∈ �1 ∩�2 �⇒ z ∈ F(x)+�, v = gk(x),

and so (x, z+ v) ∈ epi�Fk . We have from the second line of (9.43) that
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lim sup
(x,z,v)→(̃xk ,̃zk ,̃vk)
(x,z,v)∈�1∩�2

〈
(̃x∗
k , −̃z∗k , −̃z∗k), (x, z, v)− (̃xk, z̃k, ṽk)

〉

‖(x, z, v)− (̃xk, z̃k, ṽk)‖

≤ lim sup
(x,z)→(̃xk ,̃zk+ṽk)
(x,z)∈epiFk

〈
(̃x∗
k , −̃z∗k), (x, z)− (̃xk, z̃k + ṽk)

〉

‖(x, z)− (̃xk, z̃k + ṽk)‖ ≤ 0,

which readily implies the inclusion

(̃x∗
k , −̃z∗k , −̃z∗k) ∈ N̂((̃xk, z̃k, ṽk);�1 ∩�2

)
, k ∈ N.

Applying to this inclusion the fuzzy intersection rule from Exercise 2.42 as a con-
sequence of the approximate extremal principle and using the particular structure
of the sets �i in (9.44) give us t ≥ 0, (xik, zik, vik) ∈ �i and (x∗

ik, z
∗
ik, v

∗
ik) ∈

X∗ × Z∗ × Z∗ for i = 1, 2 satisfying the conditions

(x1, z1) ∈ epi�F, v2 = gk(x2), ‖x1 − x̃k‖ ≤ k−1,

(x∗
1 ,−z∗1) ∈ N̂((x1, z1); epi�F

)
,−z∗1 ∈ N(0;�), x∗

2 ∈ D̂∗gk(x2)(z
∗
2),

‖t x̃∗
k − x∗

1 − x∗
2‖ ≤ k−1, ‖t̃ z∗k − z∗1‖ ≤ k−1, ‖t̃ z∗k − z∗2‖ ≤ k−1,

1 − k−1 ≤ max
{
t, ‖(x∗

2 , 0, z
∗
2)‖

} ≤ 1 + k−1,

(9.45)

where we drop the index “k” in the i-sequences above to simplify the notation.
Working with (9.45), we first observe that t must be nonzero therein for all k ∈

N sufficiently large. Arguing by contradiction, suppose that it is not the case, i.e.,
t = 0. Then it follows from the third line of (9.45) that ‖z∗2‖ ≤ k−1. Remembering
the Lipschitz continuity of gk with modulus k−1 and employing the coderivative
estimate for Lipschitzian mappings from Exercise 3.41 used above in the proof of
Theorem 9.12, we get from the second line of (9.45) that

‖x∗
2‖ ≤ k−1‖z∗2‖ (9.46)

and therefore ‖x∗
2‖ ≤ k−2. This contradicts the nontriviality condition on (x∗

2 , 0, z
∗
2)

in the last line of (9.45) and thus justifies that t > 0.

To proceed further, we consider the following two possibilities of realizing the
maximum of the expression

{
t, ‖(x∗

2 , 0, z
∗
2)‖

}
in (9.45):

Case 1. If max{t, ‖(x∗
2 , 0, z

∗
2)‖} = t , then the last line in (9.45) becomes 1 − k−1 ≤

t ≤ 1 + k−1. Substituting the upper and lower bounds of t from the above into the
inequalities in the third line of (9.45) and taking into account the triangle inequality,
estimate (9.46), and that ‖̃z∗k‖ = 1 while ‖x̃∗

k ‖ ≤ k−1 in (9.43), we arrive at the
expressions

1 − 2k−1 ≤ ‖z∗i ‖ ≤ 1 + 2k−1 for i = 1, 2 and hence
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‖x∗
1‖

‖z∗1‖
≤
(
t‖x̃∗

k ‖ + ‖x∗
2‖ + k−1

)

‖z∗1‖
≤
(
(1 + k−1)k−1 + k−1(1 + 2k−1)+ k−1

)

(1 − 2k−1)

= 3k−1 + 3k−2

1 − 2k−1 .

Case 2. Assuming next that

max
{
t, ‖(x∗

2 , 0, z
∗
2)‖

} = ‖(x∗
2 , 0, z

∗
2)‖

and taking into account that ‖(x∗
2 , 0, z

∗
2)‖ = ‖z∗2‖ by (9.46) and the dual norm form

on X∗ × Z∗ × Z∗, we get from the last line of (9.45) that

1 − k−1 ≤ ‖z∗2‖ ≤ 1 + k−1.

Substituting this into ‖t̃ z∗k−z∗2‖ ≤ k−1 from (9.45) and using ‖̃z∗k‖ = 1 from (9.43),
we obtain the lower and upper estimates for t :

t ≥ ‖z∗2‖ − k−1 ≥ 1 − 2k−1 and t ≤ ‖z∗2‖ + k−1 ≤ 1 + 2k−1. (9.47)

Then the third line of (9.45) and the lower estimate of t in (9.47) yield

‖z∗1‖ ≥ t − k−1 ≥ 1 − 3k−1. (9.48)

Let us finally estimate the ratio ‖x∗
1‖/‖z∗1‖ in this case. Employing the inequality

‖t x̃∗
k −x∗

1 −x∗
2‖ ≤ k−1 from the third line of (9.45) together with ‖x̃∗

k ‖ ≤ k−1 from
(9.43) and (9.46), the upper bound for t in (9.47), and the lower bound of ‖z∗1‖ in
(9.48), we get

‖x∗
1‖

‖z∗1‖
≤
(
t‖x̃∗

k ‖ + ‖x∗
2‖ + k−1

)

‖z∗1‖
≤
(
(1 + 2k−1)k−1 + k−1(1 + k−1)+ k−1

)

1 − 3k−1

= 3k−1(1 + k−1)

1 − 3k−1 ,

which ends our considerations in Case 2. Thus in both Case 1 and Case 2, we have
similar (while different) estimates of the ratio ‖x∗

1‖/‖z∗1‖.

Continuing now the proof of the theorem simultaneously for both of the above
cases of realizing the maximum in the last line of (9.45), denote

x̃∗
1 := x∗

1

‖z∗1‖
and z̃∗1 := z∗1

‖z∗1‖
with ‖̃z∗1‖ = 1 (9.49)

and, by the first two lines in (9.45) concerning (x1, z1, x
∗
1 , z

∗
1) and the regular subd-

ifferential construction for F , obtain the inclusions

x̃∗
1 ∈ ∂̂�F (x1, z1) with (x1, z1) ∈ epi�F. (9.50)



474 9 Variational Analysis in Set Optimization

Let us show that we can improve (9.50) by using graph vs. epigraph points, i.e.,
replacing (x1, z1) ∈ epi�F by some (x1, z̃1) ∈ gphF to get

x̃∗
1 ∈ ∂̂�F (x1, z̃1) with (x1, z̃1) ∈ gphF, (9.51)

which is needed for the subsequent applications of the subdifferential Palais-Smale
condition. To verify (9.51), rewrite (9.50) as

(̃x∗
1 , −̃z∗1) ∈ N̂((x1, z1); epi�F

)
with − z̃∗1 ∈ N(0;�), ‖̃z∗1‖ = 1

and for any γ > 0 find from the definition of regular normals such η > 0 that

〈
(̃x∗

1 , −̃z∗1), (x, z)− (x1, z1)
〉 ≤ γ ‖(x, z)− (x1, z1)‖ (9.52)

whenever (x, z) ∈ epi�F with x ∈ x1 + ηB and z ∈ z1 + ηB. Observing that the
second inclusion in (9.50) reads as

z1 = z̃1 + θ for some z̃1 ∈ F(x1) and θ ∈ �
and picking an arbitrary vector (u, v) ∈ epi�F with u ∈ x1 + ηB and v ∈ z̃1 + ηB

with ṽ := v+ θ , we get v− z̃1 = ṽ− z1 and (u, ṽ) ∈ epi�F with u ∈ x1 + ηB and
ṽ ∈ z1 + ηB. It follows then from (9.52) that

〈
(̃x∗

1 , −̃z∗1), (u, v)− (x1, z̃1)
〉 = 〈

(̃x∗
1 , −̃z∗1), (u, ṽ)− (x1, z1)

〉

≤ γ ‖(u, ṽ)− (x1, z1)‖ = γ ‖(u, v)− (x1, z̃1)‖,
which yields (̃x∗

1 , −̃z∗1) ∈ N̂
(
(x1, z̃1); epi�F) with (x1, z̃1) ∈ gphF . Taking into

account that −̃z∗1 ∈ N(0;�) with ‖̃z∗1‖ = 1, we arrive at (9.51) by the regular
subdifferential construction for set-valued mappings.

Now add the index “k” to indicate the sequences (x1k, z̃1k) and (̃x∗
1k, z̃

∗
1k), k ∈ N,

defined in (9.49) and (9.51). Using estimates (9.47) and (9.51) yields

(x1k, z̃1k) ∈ gphF and x̃∗
1k ∈ ∂̂�F (x1k, z̃1k) with ‖x̃∗

1k‖ → 0 (9.53)

as k → ∞. Employing finally the subdifferential Palais-Smale condition of Defi-
nition 9.13(i), deduce from (9.53), the sequence {x1k} contains a convergent subse-
quence. Since it follows from (9.43) and (9.45) that

‖xk − x1k‖ ≤ ‖xk − x̃k‖ + ‖x̃k − x1k‖ ≤ k−1 + k−1 for all k ∈ N,

we conclude that the sequence {xk} constructed in (9.33) and (9.34) also contains a
convergent subsequence and thus completes the proof. �

Next we present efficient consequences of Theorem 9.15 ensuring the existence
of other types of relative minimizers from Definition 9.4 as well as weak minimizers
for ordered set-valued mappings.



9.3 Existence of Relative Pareto-Type Minimizers 475

Corollary 9.16 (Existence of Primary Relative and Quasi-Relative Minimiz-
ers). Suppose in addition to the assumptions of Theorem 9.15 that ri� 
= ∅. Then
there exist a relative minimizer and a quasi-relative minimizer for the ordered set-
valued mapping F : X →→ Z under consideration.

Proof. As mentioned above, all the relative minimizers in Definition 9.3 agree in
this case, and so the claimed existence follows from Theorem 9.15. �
Corollary 9.17 (Existence of Weak Pareto Minimizers). Suppose in addition to
the assumptions of Theorem 9.15 that int� 
= ∅. Then there exists a weak Pareto
minimizer for the mapping F : X →→ Z under consideration.

Proof. Theorem 9.15 guarantees the existence of an intrinsic relative minimizer for
F provided that ∅ 
= int� ⊂ iri�, which is surely a weak Pareto minimizer for the
mapping F in this case. �

Note that outside of the case where ri� 
= ∅ as in Corollary 9.16, we don’t
have conditions ensuring the existence of quasi-relative minimizers for ordered set-
valued mappings, which is a challenging open question.

9.3.3 Existence Theorems Under Explicit Constraints

Let us now investigate the existence issues for multiobjective problems with explicit
geometric constraints given by

minimize F(x) subject to x ∈ � ⊂ X. (9.54)

Defining the restriction of F on � by F�(x) := F(x) if x ∈ � and F(x) := ∅
otherwise, we can rewrite (9.54) in the unconstrained format

minimize F�(x) = F(x)+�(x;�), x ∈ X, (9.55)

via the indicator mapping �(x;�) := 0 if x ∈ � and �(x;�) := ∅ if x /∈ �.
To apply the existence results from Theorem 9.15 and its consequences to the

unconstrained format (9.55) and express the obtained conditions in terms of the ini-
tial data of the constrained problem (9.54), we need to deal effectively with the sum
mapping in (9.55). Since a major ingredient of Theorem 9.15 is the subdifferential
Palais-Smale condition, subdifferential sum rules are required to proceed in this way
for problems with geometric constraints, while further rules of subdifferential cal-
culus are needed to treat other types of constraints describing � in some structural
form (via inequalities, equalities, operator constraints, equilibrium constraints, etc.).
From this viewpoint, the basic version of the Palais-Smale condition from Defini-
tion 9.13(ii) is more convenient and easier to deal with than its regular counterpart
from part (i) of that definition, although the latter one is generally less restrictive.
The reason is that our basic generalized differential constructions (normals, subgra-
dients, coderivatives) satisfy comprehensive pointbased calculus rules in contrast to
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the regular ones. Due to this, it is more standard to elaborate the basic Palais-Smale
condition in constrained multiobjective optimization, and we leave it as exercises to
the reader; see them below with some hints.

Our aim here is to deal with the more challenging regular subdifferential Palais-
Smale condition in Theorem 9.15 by using some specific results of the regular sub-
differential calculus, which allow us to treat effectively problems with geometric
constraints. For definiteness, we confine ourselves to the case of single-valued ob-
jectives f : X → Z in multiobjective problems of type (9.54).

Given a single-valued mapping f : X → Z between Banach spaces with the
ordering cone � of Z, observe directly from Definition 9.6(i) that its regular subd-
ifferential can be represented as

∂̂�f (x̄) =
⋃

−z∗∈N(0;�)
‖z∗‖=1

∂̂�f (x̄)(z
∗) (9.56)

with ∂̂�f (x̄)(z∗) := D̂∗EF,�(x̄, f (x̄))(z∗). It is not hard to check the following
special sum rule for the regular subdifferential:

∂̂�(f +�)(x̄)(z∗) ⊂
⋂

v∈̂∂�(−f )(x̄)(z∗)

[
N̂(x̄;�)− v] (9.57)

provided that ∂̂�(−f )(x̄)(z∗) 
= ∅ and that there is a neighborhood U of x̄ as well
as nonnegative numbers � and γ such that

‖f (u)− f (x̄)‖ ≤ �‖u− x̄‖ + γ ∣∣〈z∗, f (u)− f (x̄)〉∣∣ for all u ∈ U. (9.58)

Note that condition (9.58) automatically holds if either Z = R or the mapping f is
upper Lipschitzian at x̄, i.e., γ = 0 in (9.58) and is surely fulfilled when f is locally
Lipschitzian around this points.

The next theorem ensures the existence of intrinsic relative minimizers for the
constrained problem (9.54) as well as the existence of relative Pareto and weak
Pareto minimizers for (9.54) under additional assumptions.

Theorem 9.18 (Existence of Relative and Weak Pareto Minimizers for Con-
strained Multiobjective Problems). Let f : X → Z and� ⊂ Z satisfy the general
assumptions of Theorem 9.15, and let � ⊂ X be closed. Suppose in addition that
∂̂�(−f )(x)(z∗) 
= ∅, (9.58) holds for any x ∈ � and z∗ ∈ −N(0;�) with ‖z∗‖ = 1
and that every sequence {xk} ⊂ � with

∃ x∗
k ∈

⋂

v∈̂∂�(−f )(xk)(z∗k )

[
N̂(xk;�)− v

]
such that − z∗k ∈ N(0;�), (9.59)

‖z∗k‖ = 1, and ‖x∗
k ‖ → 0 as k → ∞ contains a convergent subsequence. Then

problem (9.54) admits an intrinsic relative minimizer if iri� 
= ∅. Furthermore,
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this problem admits a primary relative Pareto minimizer if ri� 
= ∅ and also a
weak Pareto minimizer if int� 
= ∅.

Proof. Considering the unconstrained format (9.55) of problem (9.54), it is easy to
see that the restriction mapping f� satisfies all the assumptions of Theorem 9.15
except the regular subdifferential Palais-Smale condition, which should be verified.
To do it, take sequences {xk}, {x∗

k } from Definition 9.13 for F = f� and by (9.56)
find {z∗k} such that

x∗
k ∈ ∂̂�

[
f +�(·;�)](xk)(z∗k), −z∗k ∈ N(0;�), ‖z∗k‖ = 1 (9.60)

with ‖x∗
k ‖ → 0. This yields {xk} ⊂ �. Employing further the subdifferential sum

rule (9.57) in (9.60) tells us that

x∗
k ∈

⋂

v∈̂∂�(−f )(xk)(z∗k )

[
N̂(xk;�)− v

]
with ‖x∗

k ‖ → 0 as k → ∞,

where −z∗k ∈ N(0;�) and ‖z∗k‖ = 1, i.e., the triple {xk, x∗
k , z

∗
k} satisfies (9.59).

Thus the sequence {xk} ⊂ � contains a convergent subsequence, which verifies the
claimed Palais-Smale condition for f� and hence ensures the existence of intrinsic
relative minimizers for (9.54) provided that iri� 
= ∅. The existence of primary rela-
tive Pareto minimizers and weak Pareto minimizers for (9.54) provided that ri� 
= ∅
and int� 
= ∅, respectively, is justified similarly to the proofs of Corollaries 9.16
and 9.17. �

The major assumptions of Theorem 9.18 are automatically fulfilled and/or sig-
nificantly simplified if the cost mapping f is Fréchet differentiable on �.

Corollary 9.19 (Existence of Relative and Weak Pareto Minimizers for Con-
strained Problems with Fréchet Differentiable Objectives). Let f : X → Z and
� ⊂ Z satisfy the general assumptions of Theorem 9.15, let � ⊂ X be closed, and
let f be Fréchet differentiable on �. Assume also that every sequence {xk} ⊂ �

such that

∃ x∗
k ∈ ∇f (xk)∗z∗k + N̂(xk;�) with − z∗k ∈ N(0;�), (9.61)

‖z∗k‖ = 1, and ‖x∗
k ‖ → 0 as k → ∞ contains a convergent subsequence. Then

problem (9.54) admits an intrinsic relative minimizer provided that iri� 
= ∅. Fur-
thermore, (9.54) admits a primary relative Pareto minimizer if ri� 
= ∅ as well as
a weak Pareto minimizer if int� 
= ∅.

Proof. It easily follows from the definitions that

∂̂�(−f )(x)(z∗) = {− ∇f (x)∗z∗} 
= ∅ whenever − z∗ ∈ N(0;�).
Furthermore, we can directly check that the Fréchet differentiability of f implies
property (9.58) on �. Thus all the assumptions of Theorem 9.18 are satisfied, and
condition (9.59) reduces to (9.61) in this setting. �
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9.4 Optimality Conditions for Multiobjective Problems

In this section we establish necessary optimality conditions for all the types of lo-
cal minimizers for multiobjective problems defined in Section 9.1 in the Asplund
space setting. These necessary optimality conditions for all the solution types will
be defined in the unified way based on the extremal principle.

9.4.1 Fermat Rules in Set-Valued Optimization

We begin with the unconstrained problem of minimizing F : X →→ Z, where Z is
ordered by the cone � satisfying the standing assumptions listed above but which
may not be pointed. Our conditions below include the SNC/PSNC properties defined
in (2.41) and (3.65), respectively, that automatically hold in finite dimensions. Note
that the SNC property of a convex cone C ⊂ Z at the origin can be equivalently
written as

[
z∗k

w∗→ 0, z∗k ∈ C+, k ∈ N
] �⇒ ‖z∗k‖ → 0 as k → ∞,

where C+ stands for the positive polar cone to C given by

C+ := {
z∗ ∈ Z∗∣∣ 〈z∗, z〉 ≥ 0 for all z ∈ C}.

In what follows we use a remarkable fact that the SNC property of a convex cone
C ⊂ Z with riC 
= ∅ at the origin is equivalent to the finite codimensionality of the
space cl(C − C); see Exercise 2.28(iii). Recall that the symbol D∗ below signifies
the basic/normal coderivative of a set-valued mapping.

Theorem 9.20 (Fermat Rules for Local Solutions to Multiobjective Problems).
Let F : X →→ Z be a set-valued mapping between Asplund spaces such that its
graph is locally closed around the reference point (x̄, z̄) ∈ gphF , while the image
space Z is partially ordered by a closed, convex, and proper cone � ⊂ Z. Then the
(Fermat type) CODERIVATIVE condition

0 ∈ D∗F(x̄, z̄)(z∗) with some − z∗ ∈ N(0;�), ‖z∗‖ = 1 (9.62)

is necessary for optimality of (x̄, z̄) to F in each of the following cases:

• (x̄, z̄) is a local PARETO MINIMIZER/EFFICIENT SOLUTION provided that � \
(−�) 
= ∅ and that either � is SNC at 0 ∈ Z or F−1 is PSNC at (z̄, x̄).

• (x̄, z̄) is a local QUASI-RELATIVE MINIMIZER provided that either � is SNC at
0 ∈ Z or F−1 is PSNC at (z̄, x̄).

• (x̄, z̄) is a local INTRINSIC RELATIVE MINIMIZER provided that either � is SNC
at 0 ∈ Z or F−1 is PSNC at (z̄, x̄).

• (x̄, z̄) is a local PRIMARY RELATIVE MINIMIZER provided that either the closed
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subspace cl(�−�) is finite-codimensional in Z or F−1 is PSNC at (z̄, x̄).

• (x̄, z̄) is a local WEAK PARETO MINIMIZER.

Furthermore, we have the SUBDIFFERENTIAL necessary optimality condition

0 ∈ ∂�F(x̄, z̄) (9.63)

in each of the listed cases of (efficient, quasi-relative, intrinsic relative, primary rel-
ative, weak) local minimizers (x̄, z̄) provided that the epigraph vs. graph of F is
closed around (x̄, z̄) and that the PSNC property of F−1 at (z̄, x̄) in the assump-
tions above is replaced by the PSNC property of the inverse mapping E−1

F,� to the
associated epigraphical multifunction at this point.

Proof. Arguing in the unified way, take any local minimizer (x̄, z̄) ∈ gphF for F
considered in theorem and reduce it to a local extremal point of some system of sets
in the (Asplund) product space X × Z. Namely, define the sets

�1 := gphF, �2 := X × (z̄−�), (9.64)

which are locally closed around (x̄, z̄) due to the closedness assumptions imposed
on F and �. We obviously have (x̄, z̄) ∈ �1 ∩ �2. To verify the local extremality
of (x̄, z̄) for {�1,�2}, let us show that there is a sequence {ck} ⊂ Z with ck → 0 as
k → ∞ such that

�1 ∩ (
�2 + (0, ck)

) ∩ (U × Z) = ∅, k ∈ N, (9.65)

where U is a neighborhood of x̄ from its local minimality property. This gives us
the required extremality relation (2.1) with ak := (0, ck) ∈ X × Z.

We construct an appropriate sequence {ck} ⊂ Z in (9.65) by putting ck := c/k as
k ∈ N, where 0 
= c ∈ Z is selected in the following way for each type of the local
minimizers considered in the theorem. This can be done by using the definitions of
the corresponding minimizers with taking into account the additional assumption
� \ (−�) 
= ∅ imposed in the case of (Pareto) efficient solutions:

• c ∈ −(� \ (−�)) if (x̄, z̄) is a local Pareto minimizer;

• c ∈ −qri� if (x̄, z̄) is a local quasi-relative minimizer;

• c ∈ −iri� if (x̄, z̄) is a local intrinsic relative minimizer;

• c ∈ −ri� if (x̄, z̄) is a local primary relative minimizer;

• c ∈ −int� if (x̄, z̄) is a local weak Pareto minimizer.

Arguing by contradiction, suppose that (9.65) doesn’t hold, i.e.,

there is (x, z) ∈ U × Z with (x, z) ∈ �1 ∩ (
�2 + (0, ck)

)
. (9.66)

Then by the construction of sets (9.64), we find some (x, z) ∈ X × Z such that

x ∈ U, z ∈ F(x), and z ∈ z̄−�+ ck, k ∈ N. (9.67)
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In the case of Pareto minimizers, the latter tells us by the choice of {ck} that

z̄−�+ ck ⊂ z̄−�− (� \ (−�)) ⊂ z̄− (� \ {0}) (9.68)

as k ∈ N. In all the cases of the relative minimizers, as well as for weak efficient
solutions to F , we have by the choice of {ck} that

z̄−�+ ck ⊂ z̄−�− �̃ = z̄− �̃, k ∈ N, (9.69)

where �̃ stands for either qri�, or iri�, or ri�, or int� in the corresponding
cases of local minimizers; see Exercise 9.44 for relative minimizers while observing
that it is obvious for weak minimal ones. Combining the relationships in (9.66)–
(9.69), we get z ∈ (z̄ − �̃) ∩ F(U) for relative and weak minimizers and z ∈
(z̄ − (� \ {0})) ∩ F(U) for local efficient solutions to F . It surely contradicts the
definitions of these minimizers and thus justifies by (9.65) the local extremality of
(x̄, z̄) for {�1,�2} in all the cases considered.

Equip now the spaceX×Z with the usual sum norm ‖(x, z)‖ := ‖x‖+‖z‖. Then
applying the (approximate) extremal principle to the system of closed sets {�1,�2}
in (9.64) from the Asplund space and taking into account the particular structures of
�1,�2 as well as the maximum dual norm on X∗ × Z∗, for any sequence εk ↓ 0,
we find {(xik, zik)} ⊂ X × Z and {(x∗

ik, z
∗
ik)} ⊂ X∗ × Z∗, i = 1, 2, satisfying the

relationships:

(x1k, z1k) ∈ gphF, (x2k, z2k) ∈ X × (z̄−�), ‖(xik, zik)− (x̄, z̄)‖ ≤ εk,

(x∗
1k,−z∗1k) ∈ N̂((x1k, z1k); gphF

)
, 0 = x∗

2k ∈ N̂(x2k;X), z∗2k ∈ N̂(z̄− z2k;�
)
,

⎧
⎨

⎩

max
{‖x∗

1k‖, ‖z∗1k + z∗2k‖
} ≤ εk,

1 − εk ≤ max
{‖x∗

1k‖, ‖z∗1k‖
}+ ‖z∗2k‖ ≤ 1 + εk.

(9.70)

It follows from the second condition in (9.70) that the sequences {(x∗
ik, z

∗
ik)}, i =

1, 2, are bounded in the (dual to Asplund) space X∗ × Z∗, and hence they contain
weak∗ converging subsequences. Using the first condition in (9.70), we get without
loss of generality that

‖x∗
1k‖ → 0, z∗1k

w∗→ z∗, and z∗2k
w∗→ −z∗ as k → ∞, (9.71)

where the weak∗ limit z∗ ∈ Z∗ satisfies the inclusions

(0,−z∗) ∈ N((x̄, z̄); gphF
)

and − z∗ ∈ N(0;�) (9.72)

obtained by passing to the limit in the relationships above (9.70) as k → ∞.
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Next we show that z∗ 
= 0 in (9.72) if either � is SNC at the origin or F−1 is
PSNC at (z̄, x̄) for all the types of the local minimizers under consideration. Assume
by the contrary that z∗ = 0 and deduce then from (9.71) that

z∗1k
w∗→ 0 and z∗2k

w∗→ 0 as k → ∞. (9.73)

If� is SNC at the origin, then the second expression in (9.73) yields ‖z∗2k‖ → 0 and
therefore ‖z∗1k‖ → 0 as k → ∞ by the first relationship in (9.70). Combining the
latter with (9.71), we thus contradict the nontriviality/second expression in (9.70).
Suppose now that F−1 is PSNC at (z̄, x̄). Using the convergence of regular normals
in (9.71), we conclude from the imposed PSNC property that ‖z∗1k‖ → 0 as k → ∞.
This gives us ‖z∗2k‖ → 0 as k → ∞ and also contradicts the second expression in
(9.70). Hence z∗ 
= 0 in (9.72), which yields the coderivative condition (9.62) by
normalization and the coderivative definition. Thus we arrive at the conclusions of
the theorem regarding the coderivative necessary condition (9.62) for the cases of
Pareto minimizers, quasi-relative minimizers, and intrinsic relative minimizers.

The case of primary relative minimizers requires the assumption ri� 
= ∅. The
latter allows us to fully characterize the SNC property of �. Indeed, the aforemen-
tioned result of Exercise 2.28(iii) tells us that this property is equivalent to the im-
posed assumption that the subspace cl(� − �) is finite-codimensional in Z, and
thus we are done in this case. If finally (x̄, z̄) is a weak Pareto minimizer for F ,
then int� 
= ∅. In this case the convex ordering cone � is automatically SNC; see
Exercise 2.29, and thus the coderivative result (9.62) unconditionally holds for weak
Pareto minimizers.

It remains to justify the subdifferential necessary condition (9.63) for all
the local minimizers under consideration. Using the epigraphical multifunction
EF,� : X →→ Z associated with F , define the set-valued optimization problem:

minimize EF,�(x) = F(x)+�, x ∈ X. (9.74)

It is clear that every local optimal solution to (9.74) in each of the aforementioned
senses is a local optimal solution in the corresponding sense to the mapping F .
For our purposes we need to verify the opposite implication. Let us first show that
it holds for all the relative and weak Pareto local minimizers. The latter follows
from the fact that the corresponding localized minimality notions for F from Defi-
nition 9.4 yield

(
z̄− �̃) ∩ (

F(U)+�) = ∅ (9.75)

for (9.74), where �̃ stands, respectively, for each of qri�, iri�, ri�, and int�.
Indeed, the negation of (9.75) tells us that z ∈ (z̄− �̃) ∩ (F (U)+�), and hence

there are u ∈ U, v ∈ F(u), and θ ∈ � such that z = v + θ ∈ z̄− �̃.
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This gives us the relationships

v = z− θ ∈ z̄− θ − �̃ ⊂ z̄−�− �̃ = z̄− �̃
for all the cases of �̃ under consideration, where the latter inclusion is trivial for
�̃ = int� while follows from Exercise 9.44 for the cases of relative minimizers.
Hence we get v ∈ (z̄− �̃)∩F(U), which contradicts the localized minimality rela-
tionships in Definition 9.4 and so verifies the claim. Applying now the coderivative
condition (9.62) to (9.74) and using the basic subdifferential definition, justify the
subdifferential optimality condition (9.63) for weak and all the relative minimizers.

To complete the proof of the theorem, we need to justify the subdifferential con-
dition (9.63) for the case of Pareto/efficient local minimizers under the general as-
sumptions made, which don’t include the pointedness of �. Let us proceed simi-
larly to the proof of the first/coderivative part of the theorem with the replacement
of �1 = gphF by �̃1 := epi�F . It is sufficient to verify the extremality prop-
erty (9.65) with the set �̃1 therein. Arguing by contradiction, suppose that the latter
doesn’t hold, i.e.,

there is (x, z) ∈ U × Z such that (x, z) ∈ �̃1 ∩ (
�2 + (0, ck)

)
. (9.76)

Then by the constructions of the sets �̃1 and �2 and the definition of the vector
epigraphs, we find from (9.76) some (x, z, θ) ∈ X × Z ×� satisfying

x ∈ U, z ∈ F(x)+ θ, and z ∈ z̄−�+ ck, k ∈ N.

This implies, by the convexity property of the ordering cone �, that

x ∈ U, z− θ ∈ F(U), and z− θ ∈ z̄− θ −�+ ck ⊂ z̄−�+ ck as k ∈ N.

Similarly to (9.68) we get from the latter that

z− θ ∈ (
z̄− (� \ {0})) ∩ F(U),

which obviously contradicts the local Pareto minimality and thus verifies that (x̄, z̄)
is a local extremal point of the set system {�̃1,�2}. Using finally the same ar-
guments as in the above proof of the coderivative optimality condition (9.62), we
arrive at the subdifferential optimality condition (9.63) for Pareto minimizers and
thus complete the proof of the theorem. �

The following remark with the example therein reveals a significant difference
between scalar minimization of extended-real-valued functions and multiobjective
optimization of our study.

Remark 9.21 (Failure of Fermat Rule for Multiobjective Problems via Regu-
lar Subgradients). The scalar counterpart of Theorem 9.20 for local minimizers of
ϕ : X → R is 0 ∈ ∂ϕ(x̄), which follows from the more selective regular subdiffer-
ential Fermat rule 0 ∈ ∂̂ϕ(x̄) in general Banach space; see Proposition 1.30(i). It
is interesting to observe that multiobjective counterpart of the latter necessary opti-
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mality condition fails even for simple mappings between finite-dimensional spaces.
To illustrate this, consider a set-valued mapping F : R →→ R

2 defined by

F(x) ≡ � with � := {
z = (z1, z2) ∈ R

2
∣∣ either 2z1 + z2 ≥ 0 or z1 + 2z2 ≥ 0

}
.

We see that (x̄, z̄) = (0, 0) ∈ R × R
2 is a Pareto minimizer for F with

N̂
(
(0, 0);R × (�+ R

2+)
) = N̂

(
(0, 0);R ×�) = N̂(0,R)× N̂(0;�) = ∅.

Thus ∂̂�F (0, 0) = ∅, which demonstrates the failure of the multiobjective version
of the regular subdifferential Fermat rule.

9.4.2 Optimality Conditions in Constrained Settings

In the final subsection of this section (and of the whole chapter), we return to the
multiobjective optimization problem (9.54) with explicit geometric constraints and
derive necessary optimality conditions for all the types of (local) minimizers from
Definition 9.4 applied to the equivalent unconstrained format (9.55) written via
F�(x) = F(x) + �(x;�). The results obtained are expressed in terms of our ba-
sic generalized differentiable constructions and associated SNC/PSNC properties,
which both enjoy full calculi in the framework of Asplund spaces; see [522, Chap-
ter 3] and exercises for Chapter 3 above. Note that in this way we can treat multi-
objective problems with other types of structural constraints (functional, operator,
equilibrium, etc.) while leaving this as exercises for the reader formulated at the end
of this chapter.

Along with the basic/normal coderivative D∗, in what follows we use also the
mixed coderivative construction D∗

M for set-valued mappings, which is defined in
(1.65) and also enjoys the same kind of pointbased full calculus as its normal coun-
terpart; see [522, Chapter 3] and the corresponding commentaries and exercises in
Chapter 3 above. The mixed coderivative is employed below for formulating refined
qualification conditions and their specifications for remarkable classes of mappings
under consideration.

Using the mixed coderivative, we define the singular subdifferential of a mapping
F : X →→ Z with values in a partially ordered space Z by

∂∞
� F(x̄, z̄) := D∗

MEF,�(x̄, z̄)(0) at (x̄, z̄) ∈ epi�F. (9.77)

The next theorem presents necessary optimality conditions for local minimizers
of all the types in Definition 9.4 for constrained problems (9.54).

Theorem 9.22 (Necessary Conditions for Relative Pareto Minimizers of Con-
strained Multiobjective Problems). Let F : X →→ Z be a mapping between As-
plund spaces with the image space Z partially ordered by a closed, convex, and
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proper cone �. Suppose that � ⊂ X is locally closed around the reference local
minimizer (x̄, z̄) for (9.54). The following assertions hold:

(i) Assume that the graph of F is locally closed around (x̄, z̄), that the mixed
qualification condition

D∗
MF(x̄, z̄)(0) ∩

(−N(x̄;�)) = {0} (9.78)

is satisfied and that either F is PSNC at (x̄, z̄) or� is SNC at x̄; both (9.78) and the
PSNC property hold automatically if F is Lipschitz-like around (x̄, z̄). Then there
exists −z∗ ∈ N(0;�) with ‖z∗‖ = 1 such that

0 ∈ D∗F(x̄, z̄)(z∗)+N(x̄;�) (9.79)

in each of the following cases of local minimizers for (9.54);

• (x̄, z̄) is a local PARETO MINIMIZER/EFFICIENT SOLUTION provided that � \
(−�) 
= ∅ and that either � is SNC at 0 ∈ Z or F−1

� is PSNC at (z̄, x̄).

• (x̄, z̄) is a local QUASI-RELATIVE MINIMIZER provided that either � is SNC at
0 ∈ Z or F−1

� is PSNC at (z̄, x̄).

• (x̄, z̄) is a local INTRINSIC RELATIVE MINIMIZER provided that either � is SNC
at 0 ∈ Z or F−1

� is PSNC at (z̄, x̄).

• (x̄, z̄) is a local PRIMARY RELATIVE MINIMIZER provided that either the sub-
space cl(�−�) is finite-codimensional in Z or F−1

� is PSNC at (z̄, x̄).

• (x̄, z̄) is a local WEAK PARETO MINIMIZER.

(ii) Assume that F is epiclosed around (x̄, z̄) and that the singular subdifferential
qualification condition

∂∞
� F(x̄, z̄) ∩

(−N(x̄;�)) = {0} (9.80)

is satisfied. Then we have the subdifferential necessary optimality condition

0 ∈ ∂�F(x̄, z̄)+N(x̄;�) (9.81)

for all the local minimizers considered in assertion (i) provided that the assump-
tions on F in (i) are replaced by the corresponding assumptions imposed on its
epigraphical multifunction EF,�.

Proof. To verify (i), represent (9.54) in the equivalent multiobjective format (9.55)
and apply to the latter Theorem 9.20(i) for all the types of local minimizers. In this
way we find z∗ ∈ −N(0;�) with ‖z∗‖ = 1 such that

0 ∈ D∗F�(x̄, z̄)(z∗) = D∗(F +�(·;�))(x̄, z̄)(z∗). (9.82)

Employing in (9.82) the coderivative sum rule from Exercise 3.59(iii) yields

D∗(F +�(·;�))(x̄, z̄)(z∗) ⊂ D∗F(x̄, z̄)(z∗)+N(x̄;�)
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under (9.78) and the imposed SNC/PSNC requirements. Substituting the latter into
(9.82) and taking into account the corresponding assumptions of Theorem 9.20(i),
we justify (i) for all the local minimizers under consideration. Note that the fulfill-
ment of the qualification condition (9.78) and the PSNC property claimed in this
assertion follows from Theorem 3.3 and the results of [522, Chapter 4] in Asplund
spaces discussed in Sections 3.4 and 3.5.

To verify now assertion (ii), we get from Theorem 9.20(ii) that

0 ∈ ∂�F�(x̄, z̄) and hence 0 ∈ D∗EF�,�(x̄, z̄)(z∗)

with some z∗ ∈ −N(0;�), ‖z∗‖ = 1 for all the types of local minimizers. Applying
the aforementioned coderivative sum rule from Exercise 3.59(iii) to

EF�,�(x) = EF,�(x)+�(x;�), x ∈ X,
and taking into account the definitions of the basic and singular subdifferentials of
F , we get under the assumptions made in (ii) that

0 ∈ D∗(EF,� +�(·;�))(x̄, z̄)(z∗) ⊂ ∂�F(x̄, z̄)+N(x̄;�),
which justifies (9.81) and thus completes the proof of the theorem. �

Finally, we present a consequence of Theorem 9.22, which doesn’t refer to the
mapping F� while using the SNC/PSNC properties of the initial mapping F and its
inverse in the infinite-dimensional setting.

Corollary 9.23 (Necessary Optimality Conditions for Constrained Multiobjec-
tive Problems via PSNC Calculus). Let the qualification condition (9.78) in Theo-
rem 9.22(i) be replaced by

D∗F(x̄, z̄)(0) ∩ (−N(x̄;�)) = {0}, (9.83)

and let the PSNC assumption on F−1
� be replaced by

• either F−1 is PSNC at (z̄, x̄) and � is SNC at x̄,

• or F is SNC at (x̄, z̄).

Then condition (9.79) with some z∗ ∈ −N(0;�) and ‖z∗‖ = 1 is necessary for
optimality in all the cases of local minimizers under consideration.

Proof. To justify this statement, we need to check that the qualification condition
(9.83) and either one of the alternative assumptions made in the corollary imply that
F−1
� is PSNC at (z̄, x̄). To proceed, observe that the PSNC property of F−1

� at (z̄, x̄)
is equivalent to the PSNC property at this point of the set gphF� ⊂ X × Z with
respect to Z; see Exercise 3.69. Since gphF� = gphF ∩ (� × Z), we apply the
intersection rule for the PSNC property from this exercise to the sets �1 := gphF
and �2 := �× Z. This gives us the required result due to the specific structures of
�1 and �2. �
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9.5 Exercises for Chapter 9

Exercise 9.24 (Properties of Quasi-Relative and Intrinsic Relative Interiors). Let ∅ 
= � ⊂ X

be a closed and convex subset of a Banach space X.
(i) Verify that qri� 
= ∅ if the space X is separable and give an example where it fails in

nonseparable spaces. Hint: Compare it with [104].
(ii) Show that iri� = ri� is the conic hull of �− z̄ which is a linear subspace of Z.
(iii) Show that the inclusions in (9.5) hold as equalities if ri� 
= ∅, while otherwise both

inclusions may be strict.
(iv) Establish sufficient conditions ensuring that iri� 
= ∅ in infinite dimensions.

Exercise 9.25 (Relationships Between Relative Minimal Points of Sets). Given a subset � of a
Hilbert spaceZ partially ordered by a closed and convex cone�with ri� = ∅, construct examples
showing that:

(i) z̄ ∈ � is an intrinsic minimal point of the set � but not a quasi-relative minimal point of this
set.

(ii) The set � admits an intrinsic relative minimal point but not a primary relative minimal
point.

(iii) Both sets ri� and iri� are empty.

Exercise 9.26 (Range of Dual Vectors for Subdifferentials of Ordered Set-Valued Mappings).
Show that the range condition −z∗ ∈ N(0;�) in Definition 9.6 follows from each of the inclusions
x∗ ∈ D̂∗EF,�(x̄, z̄)(z∗) and x∗ ∈ D∗EF,�(x̄, z̄)(z∗).

Exercise 9.27 (Subdifferential Calculus for Ordered Set-Valued Mappings). Based on
the coderivative calculus, which is presented in Chapter 3 for multifunctions between finite-
dimensional spaces and in [522, Chapter 3] for multifunctions between Asplund spaces, derive
major calculus rules for the basic subdifferential ∂�F(·) of ordered set-valued mappings in these
settings.

Exercise 9.28 (Relationships Between Level-Closedness and Epiclosedness of Mappings with
Ordered Values). Let F : X →→ Z be a mapping between Banach spaces, where Z is ordered by
a closed and convex cone � with int� 
= ∅. Assuming that the F is compact-valued and level-
closed, show that it is epiclosed.

Hint: Proceed by using the definitions of the properties involved.

Exercise 9.29 (Normality Property). Let ∅ 
= � ⊂ Z be a closed, convex, and pointed cone in a
Banach space Z.

(i) Show that the cone � enjoys the normality property if it has a bounded base; in particular,
when Z is finite-dimensional.

(ii) Give an example when the normality property fails in Hilbert spaces.

Exercise 9.30 (Compact-Based Property of Cones). Verify that the compact-based property of
a cone � ⊂ Z is equivalent to the normality property of this cone and the compactness of the set
� ∩ B. Hint: Compare it and the statements of Exercise 9.29 with the corresponding results in
[300].

Exercise 9.31 (Generalized Order Optimality). Given a mapping f : X → Z between normed
spaces and a set � ⊂ Z containing 0 ∈ Z, we say that a point x̄ ∈ X is locally (f,�)-optimal if
there exist a neighborhood U of x̄ and a sequence {zk} ⊂ Z with ‖zk‖ → 0 as k → ∞ such that

f (x)− f (x̄) /∈ �− zk for all x ∈ U and k ∈ N. (9.84)

(i) Let � be a convex cone in (9.84). Show that the introduced notion of generalized order
optimality covers: (a) Slater optimality where ri� 
= ∅ and there is no x ∈ U with f (x)− f (x̄) ∈
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ri�; (b) weak Pareto optimality where int� 
= ∅ and there is no x ∈ U with f (x)−f (x̄) ∈ int�;
(c) Pareto optimality where there is no x ∈ U such that f (x)− f (x̄) ∈ � and f (x̄)− f (x) /∈ �.

(ii) Let x̄ be a local optimal solution to the minimax problem:

minimize ϕ(x) := max
{〈z∗, f (x)〉∣∣ z∗ ∈ �}, x ∈ X,

where f : X → Z, where � is weak∗ sequentially compact subset of Z∗ such that there is z0 ∈ Z
with 〈z∗, z0〉 > 0 for all z∗ ∈ �, and where ϕ(x̄) = 0 for simplicity. Show that x̄ is locally
(f,�)-optimal in the sense of (9.84) with

� := {
z ∈ Z∣∣ 〈z∗, z〉 ≤ 0 whenever z∗ ∈ �}.

Hint: Take zk := z0/k for all k ∈ N.
(iii) Extend the notion of generalized order optimality (9.84) to set-valued costs and compare it

with the notions of Pareto-type minimizers from Definition 9.4.

Exercise 9.32 (Closed Preference Relations). Given a subset Q ⊂ Z2 for the normed space Z,
we say that z1 is preferred to z2 and write z1 ≺ z2 if (z1, z2) ∈ Q. Suppose thatQ doesn’t contain
the diagonal (z, z) and define the level set

L(z) := {
u ∈ Z∣∣ u ≺ z

}
, z ∈ Z. (9.85)

We say that the preference ≺ is locally satiated around z̄ if z ∈ clL(z) for all z near z̄ and ≺ is
almost transitive on Z if v ≺ z whenever v ∈ clL(u) with u ≺ z. If both these properties are
satisfied, then the preference ≺ is called closed around z̄.

(i) Considering the generalized Pareto preference:

z1 ≺ z2 if and only if z1 − z2 ∈ � and z1 
= z2

generated by a closed cone � ⊂ Z show that this preference is almost transitive if and only if the
cone � is convex and pointed.

(ii) Let ≺ be a preference on R
m, m ≥ 3, defined by the lexicographical order, i.e., u ≺ v if

there is an integer j ∈ {0, . . . , m− 1} such that ui = vi for i = 1, . . . , j and uj+1 < vj+1 for the
corresponding components of the vectors u, v ∈ R

m. Show that this preference is locally satiated
but not almost transitive on R

m.
Hint: Compare it with [523, Subsection 5.3.1].

Exercise 9.33 (Limiting Monotonicity and Its Weak Counterpart). Consider a weak version
of the limiting monotonicity condition from Definition 9.7 with the replacement of the minimum
set MinF(x̄) therein by the collections wMinF(x̄) of the weak Pareto efficient points.

(i) Establish sufficient conditions for weak limiting monotonicity of the type of Proposition 9.8
with the closedness assumption on wMinF(x̄).

(ii) Give an example of a mapping in R
2 with � = R

2+ where the set wMinF(x̄) is closed
and the weak limiting monotonicity property holds, while it is not the case for MinF(x̄) and the
limiting monotonicity condition.

Hint: Compare it with [55, Theorem 3.4 and Remark 3.5].

Exercise 9.34 (Limiting Monotonicity and Domination Property).
(i) Give an example where the limiting monotonicity condition (9.8) holds but the domination

property (9.7) fails.
(ii) Give an example where the weak monotonicity condition from Exercise 9.33 holds but the

weak version of domination (with the replacement of MinF(x̄) in (9.7) by the weak minimum set
wMinF(x̄)) fails.

Exercise 9.35 (Ekeland-Type Variational Principle for Sets in Product Spaces). Let � be a
nonempty set in the product of Banach spaces X × Z, where Z is partially ordered by a proper,
closed, and convex cone � ⊂ Z with � \ (−�) 
= ∅.
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(i) Derive the corresponding version of Ekeland’s variational principle for sets � by specifying
Theorem 9.10 for the associated set-valued mapping F� defined by

F�(x) := {
z ∈ Z∣∣ (x, z) ∈ �} with gphF� = �.

(ii) Establish relationships between the result of (i) and the so-called authentic minimal point
theorem for sets � ⊂ X × Z obtained in [300, Theorem 3.10.7].

Hint: Compare it with [56, Corollary 3.6 and Remark 3.7].

Exercise 9.36 (Ekeland-Type Variational Principle via Weak Minimizers). Establish a version
of Theorem 9.10 for weak minimizers provided that int� 
= ∅ with replacing the set MinF(x̄) by
wMinF(x̄) and the preference relation (9.1) by

z1 ≺ z2 if and only if z2 − z1 ∈ int�.

Hint: Proceed as in the proof of Theorem 9.10 by using the weak limiting monotonicity condition
from Exercise 9.33.

Exercise 9.37 (Estimates in the Subdifferential Variational Principle). Derive the relationships
in (9.30) from the approximate extremal principle (9.29) due to the set structures in (9.26).

Exercise 9.38 (Subdifferential Variational Principle for Weak Approximate Minimizers). Es-
tablish a counterpart of Theorem 9.12 for weak versions of approximate minimizers from Defini-
tion 9.9. Hint: Proceed similarly to the proof of Theorem 9.12 with the usage of the weak Ekeland-
type variational principle from Exercise 9.36 instead of Theorem 9.10.

Exercise 9.39 (Strong Limiting Monotonicity). Let F : X →→ Z with a partially ordered space
Z, and let x̄ ∈ domF .

(i) Show that all the conditions listed in Proposition 9.8 ensure the strong limiting monotonicity
of F at x̄. Hint: Proceed as in the proof of Proposition 9.8.

(ii) Give an example of a mapping that enjoys the limiting monotonicity property (9.8) but not
the strong limiting monotonicity one.

(iii) Formulate a version of strong limiting monotonicity for weak minimizers and establish
sufficient conditions for it.

Exercise 9.40 (Existence of Quasi-Relative and Pareto Minimizers). Consider the setting of
Theorem 9.15.

(i) Identify those parts in the proof of Theorem 9.15 which don’t work in the case of quasi-
relative and Pareto minimizers.

(ii) Find additional assumptions under which the proof procedure of Theorem 9.15 can be
modified to establish the existence of quasi-relative minimizers.

(iii) Find additional assumptions under which the proof procedure of Theorem 9.15 can be
modified to establish the existence of Pareto minimizers.

Exercise 9.41 (Existence of Relative and Weak Pareto Minimizers for Constrained Multiob-
jective Problems via Basic Subdifferential Calculus). Using basic subdifferential calculus for
model (9.55) in the finite-dimensional and Asplund space frameworks (see Chapters 2–4 above
and [522, Chapter 3]), deduce from Theorem 9.15 and its corollaries efficient results ensuring the
existence of relative and weak Pareto minimizers in the following constrained settings:

(i) Problems with only geometric constraints (9.54).
(ii) Problems with inequality and equality constraints described by

� := {
x ∈ X∣∣ ϕi(x) ≤ 0, i = 1, . . . , m; ϕi(x) = 0, i = m+ 1, . . . , m+ r}

via some Lipschitz continuous functions ϕi , i = 1, . . . , m+ r .
(iii) Problems with operator constraints G(x) ∩ S 
= ∅ for G : X →→ Y and S ⊂ Y .
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(iv) Problems with equilibrium constraints described generally as 0 ∈ G(x)+Q(x) via certain
set-valued mappings; cf. [523, Chapter 5]. Hint: Follow the procedure developed in [53] for the
case of weak Pareto minimizers.

Exercise 9.42 (Vector Subdifferential Representations for Lipschitz Continuous Mappings).
Let f : X → Z be a single-valued mapping between Banach spaces that is locally Lipschitzian
around a given point x̄.

(i) Specify representation (9.56) of the regular subdifferential via scalarization.
(ii) Find conditions under which a similar representation holds for the basic vector subdiffer-

ential from Definition 9.6(ii). Hint: Compare with [522, Subsection 3.1.3] concerning the normal
coderivative case.

Exercise 9.43 (Special Sum Rules for Regular Subgradients of Scalar and Vector Functions).
Let f be either an extended-real-valued function or a single-valued mapping between Banach
spaces.

(i) Derive a scalar counterpart of the sum rule (9.57). Hint: Compare with [547].
(ii) Verify the sum rule (9.57) as formulated in the vector case.

Exercise 9.44 (Properties of Relative Minimizers). Prove the equality in (9.69) for all the three
types of relative minimizers. Hint: Compare with [103, Lemma 3.1].

Exercise 9.45 (Necessary Conditions for Relative Pareto Minimizers in Problems with Struc-
tured Constraints). Derive counterparts of Theorem 9.22 and Corollary 9.23 for multiobjective
problems with structured constraints listed in Exercise 9.41. Hint: Use the generalized differential
and SNC/PSNC calculi developed in [522, Chapter 3] and discussed in the previous chapters of the
book.

Exercise 9.46 (Super Minimizers in Multiobjective Optimization). Given F : X →→ Z and� ⊂
X, consider the constrained optimization problem (9.54), where “minimization” is understood with
respect to the generalized Pareto preference relation ' defined in (9.1) via a closed and convex cone
� ⊂ Z. We say that a pair (x̄, z̄) ∈ gphF with x̄ ∈ � is a local super minimizer of problem (9.54)
if there exist a neighborhood U of x̄ and a number M > 0 such that

‖z− z̄‖ ≤ M‖v‖ if x ∈ � ∩ U, z ∈ F(x), v ∈ Z with z− z̄ ' v. (9.86)

(i) Compare this notion with those in Definition 9.4.
(ii) Show that even for X = R, Z = R

2, and � = R
2+, the necessary optimality condition

(9.79) for weak and other types of local minimizers obtained in Corollary 9.23 is not necessary for
local super minimizers in (9.54).

(iii) Using the techniques of variational analysis and generalized differentiation similar to
those employed in Section 9.4, show that under the validity of the same assumptions as in Theo-
rem 9.22(i), a given super minimizer (x̄, z̄) of (9.54) satisfies the following coderivative optimality
conditions: there exists −z∗ ∈ N(0;�) with ‖z∗‖ ≤ M for the constraintM from (9.86) such that

0 ∈ D∗F(x̄, z̄)(z∗ − v∗)+N(x̄;�)
whenever v∗ ∈ B

∗ ⊂ Z∗. Derive a subdifferential counterpart of this condition similarly to Theo-
rem 9.22(ii). Hint: Compare it with [54].

Exercise 9.47 (Extremal Systems of Multifunctions). Let Si : Mi →→ X, i = 1, . . . , m, be set-
valued mappings from metric spaces (Mi, di) into a normed space X. We say that x̄ is a local
extremal point of the system {S1, . . . , Sm} at (s̄1, . . . , s̄m) provided that x̄ ∈ S1(s̄1)∩ . . .∩ Sm(s̄m)
and there exists a neighborhood U of x̄ such that for every ε > 0 there are si ∈ dom Si satisfying
the conditions

d(si , s̄i ) ≤ ε, dist
(
x̄; Si(si )

) ≤ ε, i = 1, . . . , m,
S1(s1) ∩ . . . ∩ Sm(sm) ∩ U = ∅.
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(i) Consider the vector minimization problem:

minimize f (x) subject to x ∈ � ⊂ X (9.87)

with respect to the closed preference ≺, where f : X → Z is a mapping between normed
spaces. Show that (x̄, f (x̄)) is a local extremal point at (f (x̄), 0) for the system of multifunctions
Si : Mi →→ X × Z, i = 1, 2, defined by

S1(s1) := �× clL(s1) with M1 := L(f (x̄)) ∪ {f (x̄)},
S2(s2) = S2 := {

(x, f (x))
∣∣ x ∈ X} with M2 := {0}

via the level set (9.85) associated with the preference ≺.
(ii) Let (x̄, ȳ) ∈ � × � be a saddle point of a payoff function ϕ : X × Y → R over subsets

� ⊂ X and � ⊂ Y of normed spaces, i.e.,

ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y) whenever (x, y) ∈ �×�.
Define a set-valued mapping S1 : [ϕ(x̄, ȳ),∞) × (−∞, ϕ(x̄, ȳ)] →→ � × R × � × R and a set
S2 ⊂ �× R ×�× R by

S1(α, β) := �× [α,∞)×�× (−∞, β], S2 := hypoϕ(·, ȳ)× epiϕ(x̄, ·)
and show that the point

(
x̄, ϕ(x̄, ȳ), ȳ, ϕ(x̄, ȳ)

)
is locally extremal for the system of multifunctions

{S1, S2} at
(
ϕ(x̄, ȳ), ϕ(x̄, ȳ)

)
.

Hint: Proceed by the definitions and compare it with [523, Subsection 5.3.3].

Exercise 9.48 (Extremal Principles for Systems of Multifunctions). Let x̄ ∈ S1(s̄1) ∩ . . . ∩
Sm(s̄m) be a locally extremal point at (s̄1, . . . , s̄m) for closed-valued multifunctions Si : Mi →→ X

from metric spaces (Mi, di) into an Asplund space X.
(i) Prove that for every ε > 0 there are si ∈ dom Si , xi ∈ Si(si ), and x∗

i ∈ X∗, i = 1, . . . , m,
satisfying the relationships of the approximate extremal principle:

d(si , s̄i ) ≤ ε, ‖xi − x̄‖ ≤ ε, x∗
i ∈ N̂(xi; Si(si )

)+ εB∗,
x∗

1 + . . .+ x∗
m = 0, ‖x∗

1 ‖ + . . .+ ‖x∗
m‖ = 1.

Hint: Use Ekeland’s variational principle and the approximate extremal principle for systems of
sets; compare it with the proof of [523, Theorem 5.38].

(ii) Find verifiable conditions ensuring the validity of the exact extremal principle for systems
of multifunctions in terms of limiting normals. Hint: Compare it with [523, Proposition 5.70 and
Theorem 5.72].

(iii) Apply the extremal principles from (i) and (ii) to derive necessary optimality conditions
for vector optimization problems of type (9.87) with respect to closed preferences. Hint: Use the
reduction to the extremal system in Exercise 9.47 and compare it with [523, Theorem 5.73].

Exercise 9.49 (Necessary and Sufficient Conditions for Generalized Order Optimality). Let
f : X → Z be a mapping between Banach spaces, and let � ⊂ X and � ⊂ Z be such sets that
x̄ ∈ � and 0 ∈ �. Consider the generalized epigraph

E(f,�,�) := {(x, z) ∈ X × Z∣∣ f (x)− z ∈ �, x ∈ �}

and suppose that it is locally closed around (x̄, z̄) with z̄ := f (x̄).
(i) Assume that x̄ is a locally (f,�)-optimal point subject to the constraint x ∈ �, that the space

X is Asplund, and that the space Z is finite-dimensional. Prove that there is z∗ ∈ Z∗ satisfying the
conditions

(0,−z∗) ∈ N((x̄, z̄); E(f,�,�)), z∗ 
= 0, (9.88)
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which always imply that z∗ ∈ N(0;�); it also yields 0 ∈ D∗
Nf�(x̄)(z

∗) provided that f is contin-
uous around x̄ relative to � and that � and � are locally closed around x̄ and 0, respectively. If in
addition f is Lipschitz continuous around x̄ relative to �, then show that (9.88) is equivalent to

0 ∈ ∂〈z∗, f�〉(x̄), z∗ ∈ N(0;�) \ {0}, (9.89)

where f� stands for the restriction of f on �.
(ii) Suppose in addition to the assumptions in (i) in the case of the continuity of f relative to

� that either � is SNC at the origin, or f−1
� is PSNC at (z̄, x̄). Then show that there is z∗ ∈ Z∗

satisfying

0 
= z∗ ∈ N(0;�) ∩ kerD∗
Nf�(x̄),

which is equivalent to (9.89) and also to (9.88) provided that f is Lipschitz continuous around x̄
relative to � and that the restriction f� is strongly coderivatively normal at this point in the sense
that D∗

Nf�(x̄, z̄) = D∗
Mf�(x̄, z̄).

Hint: To verify (i), take z̄ = 0 for simplicity and apply the exact extremal principle from
Exercise 2.31 to the closed set system

�1 := E(f,�,�) and �2 := clU × {0} at (x̄, 0) ∈ X × Z, (9.90)

where U is a neighborhood of the local optimality of x̄ in (9.84) relative to �. Justifying (ii)
requires more involved elaborations that include the usage of a product version of the extremal
principle and PSNC preservation rules for set intersections; compare with the proof of [523, The-
orem 5.59].

(iii) Give examples in finite-dimensional spaces showing that necessary optimality conditions
from (i) and (ii) are not sufficient for the generalized order optimality.

(iv) Assume in the general Banach space setting that � is locally convex around x̄, that � is a
convex cone with int� 
= ∅, and that f is locally�-convex on� in the sense that there is a convex
neighborhood U of x̄ such that

f
(
λx + (1 − λ)u) ∈ λf (x)+ (1 − λ)f (u)−� for all x, u ∈ � ∩ U.

Show that in this case the conditions in (9.88) are sufficient for (f,�)-optimality of x̄ subject to
the constraint x ∈ �. What about the sufficiency of the other necessary optimality conditions in (i)
and (ii)? Hint: Compare it with [718, Theorem 4.5].

Exercise 9.50 (Sufficient Optimality Conditions for Global Weak Pareto Maximizers in Mul-
tiobjective Problems). Given a closed and convex cone � ⊂ Z with int� 
= ∅, consider the
following set-valued maximization problem:

�− maximize F(x) subject to x ∈ �, (9.91)

where values of F : X →→ Z are partially ordered by

z1 ≺ z2 if and only if z2 − z1 ∈ int�.

We say that a feasible pair (x̄, z̄) is a global weak Pareto maximizer of (9.91) if there is no z ∈ F(x)
with x ∈ � such that

F(�) ∩ (z̄+ int�) = ∅.
(i) Find appropriate assumptions on the data of (9.91) so that the conditions

0 
∈ ∂�F(ū, v̄)+N(ū;�), ∂�F(ū, v̄)+N(ū;�) ⊂ N(ū;�)
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for all (ū, v̄) ∈ gphF with ū ∈ � and v̄ ∈ z̄ − bd� are sufficient for the global weak Pareto
maximality of (x̄, z̄). Hint: Follow the scheme of [58] with applying the approximate extremal
principle in Asplund spaces.

(ii) Specify and improve the conditions in (i) in the cases of single-valued and real-valued
objectives in (9.91).

(iii) Clarify whether the conditions from (i) are sufficient for (global or local) Pareto maximizers
and investigate the possibility to replace the basic subdifferential ∂�F therein by the regular one.

Exercise 9.51 (Multiobjective Optimization with Equilibrium Constraints). Let F : X ×
Y →→ Z, G : X × Y →→ W , and Q : X × Y →→ W be set-valued mappings between Banach spaces
with some ordering on the space Z. Consider the following parametric multiobjective optimization
problem:

minimize F(x, y) subject to 0 ∈ G(x, y)+Q(x, y), (9.92)

where the “minimization” in (9.92) is understood in the sense of some ordering or equilibrium
relations and where the constraints therein can be treated as generalized equilibrium constraints
with both base G(x, y) and field Q(x, y) mappings being set-valued; cf. (6.73). Problems of this
type arise, e.g., in modeling set-valued variational inequalities: givenG : X×Y →→ Y ∗ and� ⊂ Y ,
find y ∈ � such that

there is y∗ ∈ G(x, y) with 〈y∗, u− y〉 ≥ 0 for all u ∈ �.
Another source of the multivalued constraints in (9.92) is given by the KKT systems

0 ∈ ∂yϕ(x, y)+N
(
y;�(x)), (x, y) ∈ X × Y, (9.93)

arising as necessary (and sufficient in the convex case) optimality conditions for the parametric
lower-level problems of the type:

minimize ϕ(x, y) subject to y ∈ �(x) ⊂ Y,

in bilevel programming, where the base G(x, y) := ∂yϕ(x, y) is set-valued provided that the cost
function ϕ is nondifferentiable with respect to the decision variable y. Note that in the case where
the cost F on the upper level in (9.92) is vector-valued or set-valued, problems of this type describe
multiobjective bilevel programs in contrast to usual ones with scalar costs. Observe also that, since
equilibrium relations in (9.92) may appear in both costs (upper level) and constraints (lower level)
and can be viewed as Pareto-type as well as Nash-type equilibria, models (9.92) are often labeled
as equilibrium problems with equilibrium constraints (EPECs).

(i) Derive necessary optimality conditions for problems (9.92) in Asplund spaces, where the
optimization is considered with respect to Pareto-type notions studied in this chapter. Hint: Use the
extremal principle and compare the results with those obtained in [51] in the case of the generalized
order optimality, which is defined in Exercise 9.31 for problems with single-valued costs.

(ii) Specify the results of (i) for equilibrium constraints given in the variational form (9.93)
and also when G and Q are represented in the composite subdifferential forms as in (3.41) and
(3.48). Hint: Use the second-order subdifferentials and the corresponding calculus rules similarly
to Section 3.3. Compare this with [526], where the analysis is done for the case of generalized
order optimality in (9.92).

(iii) Consider EPEC models involving noncooperative (Cournot-Nash) equilibria on either up-
per or lower level in (9.92) and deduce necessary optimality conditions for them from those ob-
tained in the general scheme of (i). Hint: Compare it with the results of [560] dealing with weak
Pareto optimality on the upper level and Cournot-Nash equilibrium on the lower one with applica-
tions to oligopolistic markets.
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9.6 Commentaries to Chapter 9

Problems of vector optimization, with single-valued vector objectives, have been under consider-
ation in optimization theory and applications for a long time. Original motivations mainly came
from economics, engineering, etc., but then the vector optimization theory has been developed for
its own sake with a variety of approaches and results; see, e.g., the books [147, 244, 300, 301,
385, 389, 474, 478, 507, 523, 629] and the references therein. Largely related while different from
vector optimization problems are vector variational inequalities, various models of equilibria, and
EPECs; see [10, 17, 65, 85, 88, 89, 146, 188, 219, 272, 291, 292, 317, 323, 356, 360, 500, 424,
491, 492, 498, 520, 565, 560, 598, 622, 628, 735, 740, 755] among other publications. Note that,
besides pure theoretical developments in vector optimization and related topics, there are efficient
algorithms to solve such problems numerically; see, e.g., [9, 97, 145, 159, 275, 304, 379, 424, 597],
where the reader can find additional bibliographies.

Problems of set-valued optimization, which objectives are given by set-valued mappings with
ordered values, have come to consideration in optimization theory much later. Among the first
models and results in set-valued optimization, we mentioned those by Oettli [618] and his Ph.D.
students Tagawa [702], by Corley [179], El Abdoini and Thibault [251], and Kuroiwa [446]. After
that, various aspects of set-valued optimization and its applications were studied in a great many
publications; see, e.g., [184, 237, 362, 386, 324, 325, 343, 415, 646, 701, 788] to list just a few in
addition to the sources discussed below and the references therein.

The recent monograph by Khan, Tammer, and Zălinescu [409] provides a comprehensive, sys-
tematic study of set-valued optimization problems from various viewpoints, together with related
topics and some applications. The extensive bibliography of [409] refers the reader to the addi-
tional material. Although other approaches to multiobjective optimizations are also discussed in
[409], the main attention is paid to the primal-space approach (involving tangent cone and deriva-
tive approximations of sets and mappings) and scalarization techniques largely developed by the
authors.

The major emphasis of Chapter 9 and the subsequent Chapter 10 is a dual-space approach of
variational analysis, which is based on extremal principles (not at all related to scalarization) and
utilizes normal cone and coderivative constructions for sets and mappings that may be dual to
none. This approach was developed in the author’s book [523] for problems of (single-objective)
vector optimization; see also the references and commentaries therein. Its extension to set-valued
optimization (with new results for vector optimization problems as well) presented in Chapter 9 is
mainly based on the paper by Bao and Mordukhovich [55]; see in addition the related publications
of these and other researchers cited below.

Section 9.1. Among the major motivations to introduce and study in [55], the notions of relative
Pareto minimizers for general problems of set-valued optimization were addressing multiobjective
problems with nonsolid ordering cones. This takes into account the fact that the nonempty interior
requirement conventionally imposed on ordering cones in multiobjective optimization has been
realized as restrictive for both optimization theory and applications, particularly in infinite dimen-
sions, where it fails (together with the nonempty relative interior condition) in many important set-
tings. Note to this end that the quasi-relative interior of the ordering cone used in Definition 9.4(v)
of quasi-relative minimizers is nonempty for any closed and convex cone in a separable Banach
space; this was proved by Borwein and Lewis [104] and then was employed in infinite-dimensional
analysis and optimization in [106, 242, 103, 116, 117, 119, 120, 188, 303, 492, 493, 758] along
with other publications.

Several attempts to avoid the nonempty interior and relative interior assumptions were under-
taken in, e.g., [236, 242, 317, 430, 506, 507, 523, 586] for some classes of vector optimization prob-
lems in finite and infinite dimensions. The new techniques developed in [55] and in this chapter are
different from those used in the aforementioned publications and address not only necessary opti-
mality conditions in set-valued optimization but also the existence of relative Pareto minimizers.

The subdifferential notions for set-valued (in particular, vector-valued) mappings with ordered
values from Definition 9.6 first appeared in another paper by Bao and Mordukhovich [52]. These
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constructions were introduced in the same geometric pattern as the corresponding subdifferentials
for extended-real-valued functions in Chapter 1 while clearly admitting similar analytic represen-
tations. Due to their definitions via coderivatives, these “vector” subdifferentials inherit properties
and calculus similar to those for scalar functions. Other notions of subdifferentials for vector/set-
valued mappings associated with various types of efficiency in multiobjective optimization can be
found in [317, 409, 447, 692, 701] and the references therein.

Section 9.2. In this section we present two variational principles for ordered set-valued mappings
that play, together with the underlying extremal principle for closed sets, a crucial role in deriving
existence theorems and necessary optimality conditions for relative Pareto minimizers. The first
one is an appropriate version of the seminal Ekeland’s variational principle in the case of multi-
functions with (partially) ordered values. Its formulation and proof extend the previous result from
[52], where the notions of approximate εξ -minimizers and its strict counterpart appeared first. A
significant part in the proof of Theorem 9.10, which has no analogs in the classical Ekeland princi-
ple for extended-real-valued functions and its vector-valued counterparts, is verifying the existence
of z̄ ∈ MinF(x̄) satisfying the conditions in (9.10) and (9.11). The last condition (9.12) of the the-
orem is based on the definition of approximate εξ -minimizers. The limiting monotonicity condition
and its modifications presented above were also introduced in [52] and improved in [55].

Various extensions of Ekeland’s variational principle to vector-valued and set-valued mappings
have been a subject of many publications; see, e.g., [10, 75, 300, 319, 409, 415, 651] and their
bibliographies to mention just a few. Our motivations in [52, 55] came strictly from the main is-
sues of these papers to obtain appropriate existence theorems and necessary optimality conditions
in set-valued optimization. The proofs developed in [52, 55] occurred to be instrumental to derive
variational principles and related results for set-valued mappings on quasimetric spaces [170] with
cone-valued ordering variable structures; see the papers by Bao, Mordukhovich, and Soubeyran
[61, 62, 63] for more details. Such requirements unavoidably arise in applications to several models
in behavioral sciences (psychology, economics, human behavior, etc.) treated from the viewpoint
of Soubeyran’s variational rationality approach [695]. These models were comprehensively stud-
ied in [61, 62, 63] by using variational principles and other techniques of variational analysis.

Note to this end that, although problems of vector optimization with variable preferences ap-
peared in the literature in the 1970s (see Yu [754]), recent years have witnessed a growing interest
to such problems from both viewpoints of optimization theory and application. We refer the reader
to the excellent book by Eichfelder [245] and related papers [246, 247] for a thorough study and
applications of variable structures in vector optimization by using scalarization techniques. The
dual-space variational approach of [60] allowed us to obtain general necessary conditions for non-
dominated solutions to such problems by using the extremal principle; see also [269] for related
developments.

Coming back to the material of Section 9.2, observe that subdifferential variational principle
from Theorem 9.12 extends to set-valued mappings with ordered values of the (lower) subdiffer-
ential variational principle by Mordukhovich and Wang [587] established under the same name
for extended-real-valued functions; see Exercise 2.39. Similarly to the scalar case, the proof of
Theorem 9.12 is based on the application of the extremal principle for set systems together with
the new version of Ekeland’s variational principle for ordered set-valued mappings. The subdif-
ferential variational principle from Theorem 9.12 improves the previous one from [52] established
under essential more restrictive assumptions.

Section 9.3. The main result of this section is Theorem 9.15, which justifies the existence of in-
trinsic relative Pareto minimizers under the validity of the regular subdifferential Palais-Smale
condition from Definition 9.13(i) that is taken from [55]. The previous significantly weaker result
in this direction given in [52] verifies the existence of weak Pareto minimizers under the subdif-
ferential Palais-Smale condition from Definition 9.13(ii) formulated in terms of the larger basic
subdifferential for ordered mappings and other more restrictive assumptions in comparison with
those in Theorem 9.15. The reader can see that the involved proof of Theorem 9.15 employs both
variational principles for ordered set-valued mappings from Section 9.2 together with the underly-
ing extremal principle for closed subsets of Asplund spaces.
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Although the basic subdifferential Palais-Smale condition from Definition 9.13(ii) is gener-
ally more restrictive than its regular counterpart, it has advantages in applications to constrained
set-valued optimization problems due to much better calculus rules available for the basic sub-
differential. Implementations of this approach to the existence of solutions for some classes in
constrained multiobjective optimization (including those with equilibrium constraints) are given in
yet another paper by Bao and Mordukhovich [53]. On the other hand, Theorem 9.18 and its corol-
lary presented above (which are taken from [55]) justify the existence of relative Pareto minimizers
in multiobjective problems with explicit geometric constraints by using a specific sum rule for the
regular subdifferential of ordered vector-valued mappings.

Section 9.4. Following [55], we develop in this section a unified dual-space approach to deriv-
ing necessary optimality conditions for all the types of Pareto, weak Pareto and relative Pareto
minimizers of multiobjective problems given in both unconstrained and constrained formats in the
Asplund space setting. The results obtained in this vein by using the underlying extremal principle
are expressed in the pointbased terms of coderivatives and subdifferentials of ordered set-valued
mappings in exactly the same way for all the Pareto-type minimizers under consideration, with the
only distinctness between them in imposing different SNC/PSNC assumptions at the minimizers
in question. Observe that such assumptions are not needed (hold automatically) for weak Pareto
minimizers in the general setting and for other types of minimizers of multiobjective problems in
finite-dimensional spaces.

We distinguish between necessary optimality conditions for problems of “minimizing” set-
valued mappings F : X →→ Z (i.e., given in the unconstrained format, with the implicit constraint
x ∈ domF ) and problems with explicit constraints of type (9.54) and their specifications. Optimal-
ity conditions for problems of the first type are called Fermat rules and are expressed via the basic
coderivative of F and–under a slightly different PSNC assumption–in terms of the basic subdiffer-
ential of F ; see Theorem 9.20 taken from [55]. The coderivative version (9.62) of this result was
obtained by Zheng and Ng [773] for efficient/Pareto optimal solutions under the “dual compact-
ness” requirement on the pointed ordering cone � that is more restrictive than our SNC property,
while no alternative assumptions on F were made in [773]. We refer the reader to the paper by Ha
[321] for a survey and further results on the coderivative Fermat rules in multiobjective optimiza-
tion with considering also various properly efficient solutions (Benson, Henig, etc.). Observe that,
in contrast to scalar optimization, the Fermat rule version in terms of the regular subdifferential
fails for multiobjective problems; see Remark 9.21.

The necessary conditions for set-valued optimization problems with explicit constraints are
derived from those for implicit one by employing well-developed calculus for our basic construc-
tions. They are known as Lagrange multiplier rules by the analogy with scalar problems. In The-
orem 9.22 taken from [55], we present such conditions for problems with geometric constraints
x ∈ �, but the available calculus rules allow us to proceed with more structural constraints of
functional, operator, equilibrium, and other types; see [51, 52, 53, 54, 59] for some implementa-
tions. As in the case of unconstrained problems, we distinguished in Theorem 9.22 coderivative and
subdifferential necessary conditions for all Pareto-type minimizers under consideration. Note that
the coderivative condition (9.79) is expressed in terms of the normal coderivative D∗F = D∗

NF ,
while the qualification condition (9.78) is formulated via the smaller mixed coderivative. Similarly,
the subdifferential Lagrange multiplier rule (9.81) is formulated via the basic subdifferential of F ,
while the corresponding qualification condition (9.80) uses the smaller singular subdifferential of
the ordered mapping F introduced in [52].

To the best of our knowledge, first results of the Lagrange multiplier rule via coderivatives for
weak Pareto minimizers in constrained set-valued optimization were obtained by El Abdoini and
Thibault [251] under some interiority assumptions. Improved coderivative conditions were later
derived by Zheng and Ng [774] for Pareto efficient solutions under certain “dual compactness”
assumption on the ordering cone �, which yields the SNC property of � in Theorem 9.22. An
interesting approach and coderivative conditions were developed by Ha [318] for strongly effi-
cient solutions of multiobjective problems by using scalarization and subdifferential estimates for
marginal functions discussed above in Chapter 4. Further results in this direction can be found in
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[59, 64, 320] and the references therein for various notions of extended Pareto-type optimality. We
particularly mention impressive developments by Bao and Tammer [64] who combined the scalar-
ization technique from the paper by Gerth (Tammer) and Weidner [279] with the basic tools of
generalized differentiation presented in this book to establish new versions of the Lagrange mul-
tiplier rule for efficient and proper efficient solutions to set-valued optimization problems while
providing in this way valuable applications to models of risk management.

Section 9.5. As in the case of the previous chapters, the exercises presented in this section are of
different levels of difficulties. Some of them can be derived from definitions and well-known re-
sults, while some are essentially more involved and even unsolved; see below. Hints and references
to the original sources are given when needed and available. The following comments to some of
the exercises, in addition to those made in Sections 9.1–9.4, seem to be useful.

The notion of generalized order optimality discussed in Exercise 9.31 goes back to the early
work by Kruger and Mordukhovich [430, 441, 506, 507] while being directly related by the notion
of set extremality without using any scalarization. In [523, Subsections 5.3.1 and 5.3.2] and the
commentaries to them, the reader can find more information on this notion and the results avail-
able by that time, including those formulated in Exercise 9.31 together with necessary conditions
for generalized order optimality in problems of vector optimization. The necessary optimality con-
ditions from Exercise 9.49(i,ii) are due to the author [523, Theorem 5.59], while their sufficiency
and examples mentioned in Exercise 9.49(iii,iv) are due to Tuyen and Yen [718]. We also refer
the reader to [51, 59, 526, 717, 718] for other results in this direction. A proper extension of this
notion to set-valued optimization with establishing existence theorems and optimality conditions
is a challenging issue.

Closed preferences discussed in Exercise 9.32 were introduced by Mordukhovich, Treiman,
and Zhu [586] who defined in that paper the extremality notion for systems of multifunctions from
Exercise 9.47 and derived the versions of the extended extremal principles for such systems formu-
lated in Exercise 9.48; see [523, Subsections 5.3.1 and 5.3.3] for more details. Necessary optimality
conditions for vector optimization problems with respect to closed preferences were given in [523,
Subsection 5.3.4]. The reader can find further results in this direction in [57, 76, 468, 525, 592]
and the references therein. Applications of these notions and results to problems of set-valued
optimization have not been developed yet.

A major open question in the existence theory for relative Pareto optimality concerns finding
appropriate conditions ensuring the existence of quasi-relative Pareto minimizers for multiobjec-
tive problems when ri� = ∅; see Exercise 9.40. We strongly believe that it can be done in the
framework of Theorem 9.15. Note that this theorem also doesn’t contain existence statements for
the usual Pareto/efficient solutions as well as for their properly efficient counterparts.

The notion of super minimizers (or super efficiency) discussed in Exercise 9.46 was introduced
by Borwein and Zhuang [115] for problems of (single-valued) vector optimization and then has
been studied in many publications; see, e.g., [312, 321, 357, 409] and the references therein. The
extension of this notion to problems of set-valued optimization and the necessary optimality con-
ditions from Exercise 9.46 are taken from the author’s joint paper with Bao [54].

Similarly to the case of scalar problems, sufficient conditions for vector/set-valued “minimiza-
tion” are known under some convexity and the like; see, e.g., [251, 409, 718]. The results discussed
in Exercise 9.50, which are taken from Bao and Mordukhovich [58], go in differential direction.
They present sufficient conditions for global weak Pareto solutions to “maximization” problems
without any convexity assumptions. We are not familiar with any other results of this type for
(vector or set-valued) multiobjective problems, but in the scalar case, certain analogs of such re-
sults were obtained by Hiriart-Urruty and Ledyaev [351] and Dutta [241] under some convexity
assumptions. Note that the proof of the main theorem in [58] (sufficient conditions) is based on the
extremal principle, which provides necessary conditions for set extremality. A challenging open
question remains about the possibilities to establish counterparts of the results in [58] for other (not
just global weak) Pareto-type maximizers of multiobjective problems.
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Observe finally that deriving existence theorems and subdifferential optimality conditions for

multiobjective problems with structural costs and/or constraints largely depends on subdifferential

calculus for mappings with ordered values in both finite and infinite dimensions that are still due to

be developed for the basic subdifferential in full generality and for its regular analog in particular

settings.



Chapter 10
Set-Valued Optimization and Economics

The concluding chapter of the book is devoted to applications of advanced con-
structions and techniques of variational analysis to economic modeling. As our ba-
sic framework, we consider the fundamental model of welfare economics, which
has been broadly studied in the economic and mathematical literature including the
author’s book [523, Chapter 8]; see more discussions in Section 10.6. Here we de-
velop a new approach to this model from the viewpoint of set-valued optimization.
However, the mainstream developments in multiobjective optimization in the vein
presented, e.g., in Chapter 9 cannot be directly applied to welfare and related eco-
nomic models. In particular, to obtain the most adequate versions of the so-called
second fundamental theorem of welfare economics (or marginal price equilibria),
we need to derive necessary optimality conditions for new types of minimizers in
set-valued optimization, which are inspired by the corresponding notions of Pareto
optimal allocations adequate for economic modeling. Thus this chapter establishes
deep two-sided relationships between economic modeling and set-valued optimiza-
tion.

10.1 Economic Modeling via Set-Valued Optimization

First we formulate the fundamental model of welfare economics with appropriate
notions of Pareto optimal allocations therein and then reduce this economic model
to a special problem of set-valued optimization with the corresponding notions of
local minimizers.

10.1.1 Models of Welfare Economics

Given a normed commodity space E, consider the economy

E = (C1, . . . , Cn, S1, . . . , Sm,W) (10.1)
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involving m ∈ N firms with their production sets Sj ⊂ E (j = 1, . . . , m), n ∈ N

customers with their consumption sets Ci ⊂ E (i = 1, . . . , n), and the net de-
mand constraint set W representing constraints related to the initial inventory of
commodities in E . Without loss of generality, suppose that all the sets in (10.1) are
locally closed around the reference points.

Denote production strategies by y = (y1, . . . , ym) ∈ S1 × . . . × Sm and con-
sumption plans by z = (z1, . . . , zn) ∈ C1 × . . .× Cn and say that the pair (y, z) is
an admissible state of the economy E . Further, associate with each consumer his/her
preference set Pi(z) that consists of elements in Ci preferred to zi by this consumer
at the consumption plan z. Observe that we cannot assume the local closedness of
the preference sets Pi(z), since it contradicts their meaning as extensions of the
“<” notion to the general setting under consideration. The corresponding prefer-
ence mappings Pi : Z →→ E are set-valued with Z := En. By definition we have
zi 
∈ Pi(z) for every i = 1, . . . , n and naturally suppose that Pi(z) 
= ∅ at least for
some i ∈ {1, . . . , n}. Put for convenience clPi(z) := {zi} if Pi(z) = ∅.

The market/budget constraints in the economy E are given as follows.

Definition 10.1 (Feasible Allocations). An admissible state (y, z) of the economy
E in (10.1) is a FEASIBLE ALLOCATION of E if

w :=
n∑

i=1

zi −
m∑

j=1

yj ∈ W. (10.2)

In the classical case of welfare economics, the setW consists of a single element
W = {ω}, where ω signifies the initial aggregate endowment of scarce resources.
In this case, constraint (10.2) reduces to the “markets clear” condition. Another
conventional setting of (10.2) is W = ω − E+, where E+ is the closed positive
cone of the partially ordered commodity space; this corresponds to the “implicit
free disposal” of commodities. In the general setting of (10.2), we can interpret W
as an uncertainty region reflecting incomplete information on the initial aggregate
endowment value.

Our aim is to study the following notions of Pareto-type optimal allocations of
the economy E and support them by certain price equilibria.

Definition 10.2 (Pareto-Type Optimal Allocations). Let (ȳ, z̄) ∈ Em × En be a
feasible allocation of the economy E . We say that:

(i) The pair (ȳ, z̄) is a LOCAL WEAK PARETO OPTIMAL ALLOCATION of E
if there is a neighborhood O ⊂ Em × En of (ȳ, z̄) such that for every feasible
allocation (y, z) ∈ O, we have zi 
∈ Pi(z̄) for some i ∈ {1, . . . , n}.

(ii) The pair (ȳ, z̄) is a LOCAL PARETO/EFFICIENT OPTIMAL ALLOCATION of
E if there is a neighborhood O of (ȳ, z̄) such that for every feasible allocation
(y, z) ∈ O, we have either zi 
∈ clPi(z̄) for some index i ∈ {1, . . . , n} or zi 
∈ Pi(z̄)
for all indices i ∈ {1, . . . , n}.
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(iii) The pair (ȳ, z̄) is a LOCAL STRICT PARETO OPTIMAL ALLOCATION of E if
there is a neighborhood O of (ȳ, z̄) such that for every feasible allocation (y, z) ∈ O
with z 
= z̄, we have zi 
∈ clPi(z̄) for some i ∈ {1, . . . , n}.

(iv) The pair (ȳ, z̄) is a LOCAL STRONG PARETO OPTIMAL ALLOCATION of E if
there is a neighborhood O of (ȳ, z̄) such that for every feasible allocation (y, z) ∈ O
with (y, z) 
= (ȳ, z̄) we have zi 
∈ clPi(z̄) for some i ∈ {1, . . . , n}.

(v) We replace “local” by “GLOBAL” in (i)–(iv) if O = Em × En.

It is clear from the definitions that (iv)⇒(iii)⇒(ii)⇒(i) but not vice versa; the
same implications hold for the global version in (v). Note that the notions of (both
local and global) weak Pareto and Pareto optimal allocations are conventional in
welfare economics. They correspond to the similar Pareto-type concepts (weakly
efficient and efficient solutions) for standard problems of vector optimization in the
case of preferences given by utility functions. The notions of strong Pareto and strict
Pareto optimal allocations are less conventional while they have also appeared in
models of welfare economics; see more discussions in the text and exercises below
and as well as in Section 10.6.

10.1.2 Constrained Set-Valued Optimization

Consider now a problem of set-valued optimization with geometric constraints:

minimize F(x) subject to x ∈ �, (10.3)

where the cost mapping F : X →→ Z is set-valued between Banach spaces, � is
a subset in X, and “minimization” in (10.3) is understood with respect to some
preference relation on Z. We define this preference via a given preference mapping
L : Z →→ Z as follows:

u ∈ Z is preferred to z if and only if u ∈ L(z). (10.4)

Note that the above preference (10.4) can be equivalently written as the one ≺ for
which L : Z →→ Z is the level-set mapping

L(z) := {
u ∈ Z∣∣ u ≺ z

}
. (10.5)

Next we introduce the notions of fully localized optimal solutions to the set-
valued optimization problem (10.3) with respect to preference (10.4).

Definition 10.3 (Fully Localized Optimal Solutions to Constrained Multiobjec-
tive Problems). Let (x̄, z̄) ∈ gphF with x̄ ∈ �. We say that:

(i) (x̄, z̄) is a FULLY LOCALIZED WEAK MINIMIZER for (10.3) if there exist
neighborhoods U of x̄ and V of z̄ such that there is no element z ∈ F(� ∩U) ∩ V ,
which is preferred to z̄, i.e.,

F(� ∩ U) ∩ L(z̄) ∩ V = ∅. (10.6)
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(ii) (x̄, z̄) is a FULLY LOCALIZED MINIMIZER for (10.3) if there exist neighbor-
hoods U of x̄ and V of z̄ such that there is no element z ∈ F(�∩U)∩V with z 
= z̄

and z ∈ clL(z̄), i.e.,

F(� ∩ U) ∩ clL(z̄) ∩ V = {
z̄
}
. (10.7)

(iii) (x̄, z̄) is a FULLY LOCALIZED STRONG MINIMIZER for (10.3) if there exist
neighborhoods U of x̄ and V of z̄ such that there is no element (x, z) ∈ gphF ∩
(U × V ) with (x, z) 
= (x̄, z̄) satisfying x ∈ � and z ∈ clL(z̄), i.e.,

gphF ∩ (
�× clL(z̄)

) ∩ (U × V ) = {
(x̄, z̄)

}
. (10.8)

It is easy to see that (iii)⇒(ii)⇒(i) in Definition 10.3. If � = X, we speak about
the corresponding fully localized minimizers for the mapping F .

The underlying feature of all the notions in Definition 10.3 is that they reflect
the image localization of minimizers in constructions (10.6)–(10.8). It provides new
information even in the case of single-valued objectives F = f : X → Z and, in
contrast to the optimality notions from Chapter 9, allows us to study local Pareto-
type optimal allocations of welfare economies introduced in Definition 10.2; see
more details below.

10.1.3 Optimal Allocations as Fully Localized Minimizers

Here we associate the model of welfare economics described in Subsection 10.1.1
with a special problem of set-valued optimization involving a level-set preference
relation and geometric constraints, which is constructed upon the initial data of the
economy E . Then we establish the equivalence between the notions of local Pareto-
type optimal allocations for E and fully localized optimal solutions to the constructed
problem of multiobjective optimization.

Given the economy E , consider the following set-valued optimization problem in
form (10.3) with X = Em+1, x = (y,w), and Z := En given by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize F(x) :=
{
z ∈ Z

∣∣∣ w =
n∑

i=1

zi −
m∑

j=1

yj

}

subject to x ∈ � :=
m∏

j=1

Sj ×W ⊂ X,

(10.9)

where “minimization” is understood with respect to the preference/level-set map-
ping L : Z →→ Z defined by

L(z) :=
n∏

i=1

Pi(z), z ∈ Z, (10.10)

via the preference mappings Pi : Z →→ E of the economy E .
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Theorem 10.4 (Equivalence Between Local Pareto-Type Optimal Allocations
in Welfare Economics and Fully Localized Minimizers in Set-Valued Optimiza-
tion). Let (ȳ, z̄) be a feasible allocation of the welfare economy E in (10.1) with the
preference sets Pi(z), and let x̄ := (ȳ, w̄) with w̄ := ∑n

i=1 zi −
∑m
j=1 yj . Then we

have the following equivalence relationships:
(i) (ȳ, z̄) is a local WEAK PARETO optimal allocation of E if and only if (x̄, z̄)

is a fully localized WEAK MINIMIZER for the multiobjective optimization problem
(10.9) with respect to the preference L : Z →→ Z defined in (10.10).

(ii) (ȳ, z̄) is a local STRICT PARETO optimal allocation of E if and only if (x̄, z̄)
is a fully localized MINIMIZER for (10.9) with respect to L : Z →→ Z.

(iii) (ȳ, z̄) is a local STRONG PARETO optimal allocation of E if and only if it is
a fully localized STRONG MINIMIZER for (10.9) with respect to L : Z →→ Z.

Proof. Let us first justify (i). Assuming that (ȳ, z̄) is a local weak Pareto optimal
allocation of E yields by Definition 10.2(i) and by the structure of L(·) the existence
of a neighborhood O = Oy × Oz of (ȳ, z̄) such that

z 
∈ L(z̄) for all feasible allocations (y, z) ∈ O. (10.11)

Choosing V := Oz and U := Oy × Ow, where Ow := {
w = ∑n

i=1 zi −∑m
j=1 yj

∣∣ (y, z) ∈ O} is a neighborhood of w̄, we claim that

F(� ∩ U) ∩ L(z̄) ∩ V = ∅. (10.12)

Indeed, the violation of (10.12) means that there is z ∈ F(�∩U)∩L(z̄)∩V . Taking
into account the constructions of F and � in (10.9), we find y ∈ ∏m

j=1 Sj ∩ Oy
satisfying w =

n∑

i=1

zi −
m∑

j=1

yj ∈ W . This implies that (y, z) ∈ O is a feasible

allocation of E with z ∈ L(z̄). The latter clearly contradicts (10.11) and thus verifies
(10.12), which means that (x̄, z̄) is a fully localized weak minimizer for the set-
valued optimization problem (10.9).

Conversely, let (x̄, z̄) be a fully localized weak minimizer for problem (10.9) with
x̄ = (ȳ, w̄). Definition 10.3(i) gives us neighborhoods U = Oy ×Ow of (ȳ, w̄) and
V of z̄ such that (10.12) holds and that the set

{
w = ∑n

i=1 zi −∑m
j=1 yj

∣∣ (y, z) ∈
Oy × V

}
is contained in Ow. For any feasible allocation (y, z) from the neighbor-

hood O := Oy×V of (ȳ, z̄), we get by Definition 10.1 of feasible allocations and the
above choice of the neighborhoods that (ȳ, w̄) ∈ �∩U , z̄ ∈ F(ȳ, w̄) ⊂ F(�∩U),
and

zi 
∈ Pi(z̄) for some i ∈ {
1, . . . , n

}
. (10.13)

Indeed, the violation of (10.13) reads that zi ∈ Pi(z̄) for all i ∈ {1, . . . , n}, which
implies by (10.10) that z ∈ L(z̄) and thus z ∈ F(� ∩ U) ∩ L(z̄) ∩ V . The latter
surely contradicts (10.12) and hence gives us (10.13) while justifying that (ȳ, z̄) is
a local weak Pareto optimal allocation of E .
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Next we verify assertion (ii) of the theorem. Take a local strict Pareto optimal
allocation of E and find by Definition 10.2(iii) a neighborhood O = Oy × Oz of
(ȳ, z̄) such that

z 
∈ clL(z̄) for all feasible allocations (y, z) ∈ O with z 
= z̄. (10.14)

We claim that (10.7) is satisfied with U = Oy × Ow and V = Oz, where

Ow :=
{
w =

n∑

i=1

zi −
m∑

j=1

yj ∈ E
∣∣∣ (y, z) ∈ O

}
(10.15)

is obviously a neighborhood of w̄. Suppose on the contrary that (10.7) is violated
and get a pair (x, z) with z 
= z̄ that belongs to the set on the left-hand side of (10.7).
Taking into account the structures of F and� in (10.9), we have x = (y,w) ∈ �∩U
and z ∈ F(x) ∩ V such that

(y, z) ∈ O, y ∈
m∏

j=1

Sj × Oy, and w =
n∑

i=1

zi −
m∑

j=1

yj ∈ W (10.16)

with zi ∈ clPi(z̄). Since the consumption sets Ci are closed and since Pi(z̄) ⊂ Ci
as i = 1, . . . , n, we get that (y, z) ∈ O is a feasible allocation of E . This contradicts
(10.14) and thus justifies the claim.

To verify the converse implication in (ii), take an arbitrary fully localized min-
imizer (x̄, z̄) for (10.9) with x̄ = (ȳ, w̄) and find neighborhoods U = Oy × Ow
of (ȳ, w̄) and V of z̄ such that (10.7) holds with the preference set L(z̄) defined in
(10.10). We claim that

zi 
∈ clPi(z̄) for some i ∈ {
1, . . . , n

}
(10.17)

whenever (y, z) ∈ Oy × V is a feasible allocation of E with z 
= z̄. Indeed, the
violation of (10.17) and the structure of L(·) yield z ∈ clL(z̄). Due to

{
w =

n∑

i=1

zi −
m∑

j=1

yj

∣∣∣ (y, z) ∈ Oy × V
}

⊂ Ow

valid for sufficiently small neighborhoods Oy and V , we have z ∈ F(� ∩ U) ∩ V .
This contradicts (10.7) and thus justifies assertion (ii).

Let us finally verify assertion (iii). Take any local strong Pareto optimal allo-
cation (ȳ, z̄) and find by Definition 10.2(iv) a neighborhood O = Oy × Oz of
(ȳ, z̄) such that (10.17) holds for every feasible allocation (y, z) ∈ O of E with
(y, z) 
= (ȳ, z̄). Then similarly to the proof of (ii) we claim that the strong mini-
mality condition (10.8) is satisfied with U = Oy × Ow and V = Oz, where Ow
is a neighborhood of w̄ from (10.15). Indeed, supposing that (10.8) is violated al-
lows us to find some pair (x, z) 
= (x̄, z̄) that belongs to the set on the left-hand
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side of (10.8). Taking into account the structures of F and � in (10.9), we have
x = (y,w) ∈ � ∩ U and z ∈ F(x) ∩ V satisfying (10.16). Since (y, z) 
= (ȳ, z̄),
it contradicts (10.17) and thus verifies the claim while arguing as in the proof of
assertion (ii).

To finish the proof of (iii), it remains to justify the converse implication therein.
Picking an arbitrary fully localized strong minimizer (x̄, z̄) for (10.9) with x̄ =
(ȳ, w̄), find a neighborhood U = Oy × Ow of (ȳ, w̄) and a neighborhood V of
z̄ such that condition (10.8) holds with L(z̄) from (10.10). Our goal is to show
that (ȳ, z̄) is a local strong Pareto optimal allocation of E , i.e., condition (10.17)
is satisfied for any feasible allocation (y, z) 
= (ȳ, z̄) in some neighborhood O of
(ȳ, z̄). Indeed, the violation of the latter means that

zi ∈ clPi(z̄) for all i = 1, . . . , n. (10.18)

Since (y, z) is a feasible allocation of E and since x = (y,w) for w ∈ W from
(10.2), we get (x, z) ∈ gphF with F defined in (10.9). Furthermore, it follows from
(10.18) and the constructions of � in (10.9) and of L(·) in (10.10) that

(y, z) ∈
m∏

j=1

Sj ×W and z ∈
n∏

i=1

clPi(z̄) = clL(z̄).

Combining the latter with x = (y,w) ∈ gphF and taking into account the above
choice of the neighborhoods, we arrive at the relationships

(x̄, z̄) 
= (x, z) ∈ gphF ∩ (
�× clL(z̄)

) ∩ (U × V ),
which clearly contradict (10.8) and thus justify (10.17) for all the feasible alloca-
tions (y, z) 
= (ȳ, z̄) from the neighborhood O of (ȳ, z̄). This verifies (iii) and thus
completes the proof of the theorem. �

Note that Theorem 10.4 doesn’t reveal a local notion of optimal solutions in mul-
tiobjective optimization equivalent to local Pareto optimal allocations in the welfare
economics. Hence the study of the latter economic concept at the local level remains
an open question within the (fully localized) multiobjective optimization approach
developed below. Nevertheless, we are able to accomplish this on the global level
as shown in Section 10.4.

10.2 Optimality Conditions with Full Localization

This section concerns constrained set-valued optimization problems of type (10.3)
with respect to the level-set preference relations (10.4) and studies them for their
own sake. Besides the different types of preferences in comparison with the mul-
tiobjective problems investigated in Chapter 9, the major distinction between op-
timization problems considered here and in the previous chapter is the fully local-
ized nature of minimizers studied below. This is certainly of its independent interest
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while being largely motivated by the subsequent applications to welfare economics
due to the material of Section 10.1.

The main goal of this section is to establish necessary optimality conditions for
all the three types of fully localized minimizers of problem (10.3) introduced in
Definition 10.3. To proceed, we present first some required pieces of variational
analysis and generalized differentiation, which have not been considered previously
in this book.

10.2.1 Exact Extremal Principle in Product Spaces

Dealing with constrained set-valued optimization problems of type (10.3) and hav-
ing in mind their specifications of type (10.9) needed for the subsequent applications
to welfare economics, we face an unavoidable product structure of the cost mapping
F and the constraint set� in (10.3). This requires considering the following product
versions of the basic partial sequential normal compactness (PSNC) property. Since
our applications concern closed sets in products of Asplund spaces, we confine our-
selves just to this setting without mentioning it explicitly in the formulations.

Definition 10.5 (PSNC and Strong PSNC Properties in Product Spaces). Given
a set � ⊂ X in the product space X = ∏n

i=1Xi and given a point x̄ ∈ �, we say
that:

(i) � is PSNC at x̄ ∈ � with respect to {Xi | i ∈ I } as I ⊂ {1, . . . , n} (or
simply with respect to the indices I ) if for any sequences of (xk, x∗

k ) ∈ X×X∗ with
xk = (x1k, . . . , xnk) and x∗

k = (x∗
1k, . . . , x

∗
nk) satisfying

xk
�→ x̄ and x∗

k ∈ N̂(xk;�) for all k ∈ N (10.19)

we have the implication

[
x∗
ik

w∗→ 0, i ∈ I, ‖x∗
ik‖ → 0, i ∈ {1, . . . , n} \ I ] �⇒ ‖x∗

ik‖ → 0, i ∈ I.
(ii) � is STRONG PSNC at x̄ with respect to {Xi | i ∈ I } as I ⊂ {1, . . . , n} if for

any sequences (xk, x∗
k ) satisfying (10.19) we have

[
x∗
ik

w∗→ 0, i ∈ {1, . . . , n}] �⇒ ‖x∗
ik‖ → 0, i ∈ I.

Observe that in the extreme case of I = {1, . . . , n} both PSNC and strong PSNC
properties introduced don’t depend on the product structure and reduce to the SNC
property of � at x̄; see (2.41). Note also that the general product version of PSNC
from Definition 10.5(i) surely agrees with its specifications for mappings (3.65)
as well as for products of two sets in Exercise 3.69. The reader can find various
effective conditions ensuring the validity of such properties and also their calcu-
lus/preservation rules in the corresponding exercise and commentary sections of
this book as well as in [522, 523].
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The main variational instrument to deal with deriving necessary optimality condi-
tions for fully localized solutions to the multiobjective problem (10.3) with a product
structure of constraints is the following product version of the (exact) extremal prin-
ciple formulated at the locally extremal point in question. Since the local closedness
operation is an issue in applications to welfare economics, we don’t take this prop-
erty for granted as before and always formulate it explicitly when needed in the rest
of this chapter.

Lemma 10.6 (Product Extremal Principle). Let x̄ be a local extremal point of
the set system {�1,�2}, where both �1 and �2 are locally closed around x̄ in
the product

∏n
i=1Xi of the Asplund spaces Xi , i = 1, . . . , n. Take two index sets

I, J ⊂ {1, . . . , n} with I ∪ J = {1, . . . , n} and suppose that either one of the PSNC
conditions below is satisfied for �1 and �2:

• The set �1 is PSNC at x̄ with respect to I while the set �2 is strongly PSNC at
x̄ with respect to J .

• The set �1 is strongly PSNC at x̄ with respect to I while the set �2 is PSNC at
x̄ with respect to J .

Then there is a dual element x∗ ∈ X∗ such that

0 
= x∗ ∈ N(x̄;�1) ∩
(−N(x̄;�2)

)
. (10.20)

This lemma extends [523, Lemma 5.58] to the case of finitely many spaces in the
product without the requirement that I ∩ J = ∅ as in [523], while the proof of the
updated version proceeds in the same way; see Exercise 10.27.

10.2.2 Asymptotic Closedness of Sets

Another crucial ingredient in deriving necessary optimality conditions for fully lo-
calized minimizers is the asymptotic closedness property of appropriate sets that
allows us to reduce the notions of fully localized minimizers considered for (10.3)
to locally extremal points of the corresponding systems of sets. Here is this property
in the abstract framework of linear topological spaces.

Definition 10.7 (Asymptotic Closedness Property). A set � ⊂ Z is ASYMPTOTI-
CALLY CLOSED at z̄ ∈ cl� if there exists a neighborhood V of z̄ such that for any
ε > 0 we can find c ∈ εB satisfying

(cl�+ c) ∩ V ⊂ �\{z̄}. (10.21)

This property (which is fully independent of the local closedness of a set) holds
in many fairly general settings and is satisfied under natural assumptions in models
of welfare economics; see Fig. 10.1 and Section 10.3 below.
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Ξ = IR2
+ \ {0} Ξ = {(x, y) ∈ IR2|xy = 0}

(a) asymptotically closed but nonclosed (b) closed but not asymptotically closed

Fig. 10.1 Asymptotic closedness vs. closedness of sets.

Let us list some sufficient conditions ensuring the asymptotic closedness property
for remarkable classes of sets while leaving their verifications as exercises to the
reader; see Section 10.5:

(i) Every proper, convex, and solid subcone � ⊂ Z and its nonconvex comple-
ment Z\� have the asymptotic closeness property at 0 ∈ Z.

(ii) Every closed, convex, and pointed cone � ⊂ Z with � \ (−�) 
= ∅ has the
asymptotic closedness property at 0 ∈ Z.

(iii) The epigraph of an extended-real-valued function ϕ : X → R has the asymp-
totic closedness property at (x̄, ϕ(x̄)) if ϕ is l.s.c. around x̄.

Note that the condition � \ (−�) 
= ∅ in (iii) says that the cone � is not a linear
subspace of Z; this is more general than the standard pointedness requirement � ∩
(−�) = {0}, which means that � doesn’t contain a linear subspace. As mentioned
in Exercise 9.32(i), the generalized Pareto optimality (9.84) induced by a closed and
convex cone � doesn’t correspond to a closed preference relation (defined therein)
unless the ordering cone � is pointed; the latter is not required by the asymptotic
closedness property.

The next result needed in what follows ensures the asymptotic closedness prop-
erty of product sets via this property of their selected components.

Proposition 10.8 (Asymptotic Closedness Property of Product Sets). Let z̄ ∈
cl
∏n
i=1�i ⊂ ∏n

i=1 Zi in the normed space setting, let I ⊂ {1, . . . , n} be a
nonempty index set, and let J := {1, . . . , n}\I . Suppose that the sets �i are asymp-
totically closed at z̄i ∈ cl�i for i ∈ I while the other sets �j are locally closed
around z̄j for j ∈ J . Then the product set � := ∏n

i=1�i enjoys the asymptotic
closedness property at z̄.

Proof. Without loss of generality, assume that I = {1, . . . , m} with some 0 <

m ≤ n. Since for each i ∈ I the set �i is asymptotically closed at z̄i , there is a
neighborhood Ui of z̄i such that, whenever ε > 0, we have

(cl�i + ci) ∩ Ui ⊂ �i\{z̄i} with some ci ∈ εBZi , i ∈ I.
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On the other hand, by the assumed local closedness of�j around z̄j , for each j ∈ J
we find a neighborhood Uj of z̄j such that

cl�j ∩ Uj ⊂ �j , j ∈ J.
It is obvious that the set U := ∏

i∈I Ui × ∏
j∈J Uj is a neighborhood of z̄ in the

product space Z := ∏n
i=1 Zi equipped with the maximum norm. Furthermore, for

any number ε > 0 there is c := (c1, . . . , cm, 0, . . . , 0) ∈ εBZ satisfying

(
cl�+ c) ∩ U =

(∏

i∈I
(cl�i + ci) ∩ Ui

)
×
(∏

j∈J
(cl�j ∩ Uj )

)

⊂
(∏

i∈I

(
�i\{z̄i}

))×
(∏

j∈J
�j

)
⊂
( n∏

i=1

�i

)
\{z̄} = �\{z̄},

where the last inclusion holds due to I 
= ∅. This gives us (10.21) and thus justifies
the asymptotic closedness property of the product � at z̄. �

10.2.3 Necessary Conditions for Localized Minimizers

Now we are ready to derive necessary conditions for all the types of fully localized
minimizers in Definition 10.3 for the multiobjective problem (10.3).

Theorem 10.9 (Necessary Conditions for Fully Localized Minimizers in Con-
strained Set-Valued Optimization). Let F : X →→ Z be a set-valued mapping
between Asplund spaces with the graph gphF locally closed around some point
(x̄, z̄) ∈ gphF , let � ⊂ X be locally closed around x̄, and let L : Z →→ Z be
a preference mapping on Z locally satiated at z̄ in the sense formulated in Exer-
cise 9.32. Impose also EITHER ONE of the following SNC assumptions on the initial
data (F,�,L) in (10.3), (10.4):

(a) gphF is SNC at (x̄, z̄);
(b) � is SNC at x̄ and clL(z̄) is SNC at z̄;
(c) F is PSNC at (x̄, z̄) and clL(z̄) is SNC at z̄;
(d) � is SNC at x̄ and F−1 is PSNC at (z̄, x̄).

Then there is a pair (0, 0) 
= (x∗, z∗) ∈ X∗ ×Z∗ satisfying the necessary optimality
conditions

x∗ ∈ D∗F(x̄, z̄)(z∗) ∩ (−N(x̄;�)) and z∗ ∈ N(z̄; clL(z̄)
)

(10.22)

in each of the following cases:
• (x̄, z̄) is a FULLY LOCALIZED WEAK MINIMIZER for (10.3), (10.4) provided

that the set L(z̄) is asymptotically closed at z̄ ∈ clL(z̄);
• (x̄, z̄) is a FULLY LOCALIZED MINIMIZER for (10.3), (10.4) provided that the

set clL(z̄) is asymptotically closed at z̄;
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• (x̄, z̄) is a FULLY LOCALIZED STRONG MINIMIZER for (10.3), (10.4) provided
that either clL(z̄) or � is asymptotically closed at z̄ or x̄, respectively.

Proof. Arguing in a unifying way, take any fully localized minimizer (x̄, z̄) for
problem (10.3), (10.4) considered in the theorem and reduce it to a local extremal
point of some system of sets in the product space X × Z. Indeed, define the sets
�1,�2 ⊂ X × Z by

�1 := gphF and �2 := �× clL(z̄) (10.23)

and observe that they are locally closed around (x̄, z̄) in the Asplund space X × Z

under the local closedness assumptions made. Let us check that (x̄, z̄) is a locally
extremal point of the set system {�1,�2} in each case of the fully localized mini-
mizers under consideration. Observe first that (x̄, z̄) ∈ �1 ∩�2 due to the imposed
local satiation property of the preference mapping. Let us show next that there is a
sequence {ak} ⊂ X × Z with ak → 0 as k → ∞ with

�1 ∩ (�2 + ak) ∩ O = ∅ for all k ∈ N, (10.24)

where O is a neighborhood of (x̄, z̄) specified later. We choose an appropriate se-
quence {a0k} in (10.24) in the following way for each type of the fully localized
minimizers considered in the theorem:

• Let (x̄, z̄) be a fully localized weak minimizer for problem (10.3), (10.4). Since
L(z̄) is assumed to be asymptotically closed at z̄ in this case, there exist a neighbor-
hood Ṽ of z̄ and a sequence {ck} ⊂ Z with ck → 0 such that

(
clL(z̄)+ ck

) ∩ Ṽ ⊂ L(z̄) \ {z̄} = L(z̄). (10.25)

Put ak := (0, ck) ∈ X × Z for all k ∈ N and O := U × (V ∩ Ṽ ), where U is
a neighborhood of x̄ and V is a neighborhood of z̄ from definition (10.6) of the
localized weak minimality of (x̄, z̄). Then we get from (10.25) and the structures of
�1,�2 in (10.23) that

�1 ∩ (�2 + ak) ∩ O
= gphF ∩ (

�× (clL(z̄)+ ck) ∩ Ṽ
) ∩ (U × V )

⊂ gphF ∩ (
�× (L(z̄) \ {z̄})) ∩ (U × V ) = ∅,

(10.26)

where the last equality is due to (10.6). This justifies the extremality condition
(10.24) in the case of fully localized weak minimizers.

• Let (x̄, z̄) is a fully localized minimizer for problem (10.3), (10.4). In this case
we use the same arguments as for weak minimizers above replacing now the set
L(z̄) in (10.25) and in the last line of (10.26) by its closure clL(z̄). This can be
done, since the set clL(z̄) is assumed to be asymptotically closed at z̄. Thus we get
(10.24) in the case of fully localized minimizers.
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• Let (x̄, z̄) is a fully localized strong minimizer for problem (10.3), (10.4). Ap-
plying Proposition 10.8 to the product set �2 = � × clL(z̄), we get from the
imposed assumptions on the sets � and clL(z̄) in this case that �2 is asymptoti-
cally closed at (x̄, z̄). Hence there are a neighborhood O of (x̄, z̄) (without loss of
generality we suppose that O ⊂ U ×V ) and a sequence {ak} ⊂ X×Z with ak → 0
as k → ∞ such that

(�2 + ak) ∩ O ⊂ �2 \ {(x̄, z̄)}.
The latter readily implies that

�1 ∩ (�2 + ak) ∩ O = �1 ∩ (
(�2 + ak) ∩ O) ∩ O

⊂ �1 ∩ (
�2\{(x̄, z̄)}

) ∩ (U × V )

= gphF ∩ (
(�× clL(z̄))\{(x̄, z̄)}) ∩ (U × V ) = ∅,

where the last equality holds by (10.8). This justifies the extremality condition
(10.24) in the strong minimum case and shows that (x̄, z̄) is a locally extremal point
of the set system {�1,�2} in all the cases under consideration.

Now we can apply the product extremal principle of Lemma 10.6 to the system
{�1,�2} from (10.23) at the local extremal point (x̄, z̄) in the product space X×Z.
Observe that each of the SNC/PSNC conditions (a)–(d) imposed in the theorem
ensures the fulfillment of the PSNC requirements imposed on the sets �1 and �2
in Lemma 10.6. Indeed, denoting X1 := X and X2 := Z therein, we have the
following relationships:

• �1 is strongly PSNC at (x̄, z̄) with respect to I = {1, 2} if (a) holds;
• �2 is strongly PSNC at (x̄, z̄) with respect to J = {1, 2} if (b) holds;
•�1 is PSNC at (x̄, z̄) with respect to I = {1} and�2 is strongly PSNC at (x̄, z̄)

with respect to J = {2} if (c) holds;
•�1 is PSNC at (x̄, z̄) with respect to I = {2} and�2 is strongly PSNC at (x̄, z̄)

with respect to J = {1} if (d) holds.

Thus the optimality conditions in (10.22) follow from (10.20) due to the
coderivative definition and the normal cone product rule from Proposition 1.4.
This justifies the existence of (x∗, z∗) ∈ X∗ × Z∗ with (x∗, z∗) 
= 0 satisfying

(−x∗, z∗) ∈ N((x̄, z̄);�2
) = N(x̄;�)×N(z̄; clL(z̄)

)
,

(x∗,−z∗) ∈ N((x̄, z̄); gphF
)
, i.e., x∗ ∈ D∗F(x̄, z̄)(z∗),

which therefore completes the proof of the theorem. �
As we know from Exercises 3.42 and 3.48 based on [522, Theorems 4.10 and

4.18], the PSNC assumption on F in (c) and on F−1 in (d) imposed in Theorem 10.9
holds automatically if F is Lipschitz-like around (x̄, z̄) and if F−1 is metrically reg-
ular around (z̄, x̄), respectively. Note also that it is not hard to formulate and justify
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modifications of both assumptions and conclusions in Theorem 10.9 in the case
where the spaces X and Z therein are given as products of finitely many Asplund
spaces; see Exercise 10.29.

10.3 Local Extended Second Welfare Theorems

This subsection presents fargoing extensions of the so-called second fundamental
theorem of welfare economics, which ensures the existence of marginal prices sup-
porting local Pareto-type optimal allocations; see Section 10.6 for more discus-
sions, historical comments, and references. Here we establish extended versions
of the second welfare theorem for local strong, strict, and weak Pareto optimal
allocations of the nonconvex economy E from (10.1) by using their reduction to
the appropriate fully localized minimizers of the constrained set-valued optimiza-
tion problem (10.3), (10.4) and the necessary optimality conditions for such mini-
mizers obtained in Theorem 10.9 under the asymptotic closedness property of the
corresponding sets.

10.3.1 Results in General Commodity Spaces

First we establish general versions of the extended second welfare theorem without
ordering structures of commodities in the economy E .

Theorem 10.10 (Extended Second Welfare Theorems for Local Pareto-Type
Optimal Allocations). Let (ȳ, z̄) be a local optimal allocation of economy (10.1)
in the senses listed below with respect to the preference sets Pi(z) under the local
satiation requirement:

z̄i ∈ clPi(z̄) for all i = 1, . . . , n. (10.27)

Assume that the commodity space E is Asplund and that one of the sets

clPi(z̄), i = 1, . . . , n, Sj , j = 1, . . . , m, and W (10.28)

is SNC at z̄i , ȳj , and w̄ = ∑n
i=1 z̄i − ∑m

j=1 ȳj , respectively. Then there exists a
nonzero marginal price p∗ ∈ E∗ satisfying the conditions

⎧
⎪⎨

⎪⎩

−p∗ ∈ N(x̄i; clPi(z̄)
)
, i = 1, . . . , n,

p∗ ∈ N(ȳj ; Sj ), j = 1, . . . , m,

p∗ ∈ N(w̄;W)
(10.29)

in each of the following cases of local optimal allocations of the economy E:
• (ȳ, z̄) is a LOCAL WEAK PARETO OPTIMAL ALLOCATION provided that the

sets Pi(z̄), i = 1, . . . , n are asymptotically closed at z̄i;
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• (ȳ, z̄) is a LOCAL STRICT PARETO OPTIMAL ALLOCATION provided that there
is i ∈ {1, . . . , n} such that the set clPi(z̄) is asymptotically closed at z̄i;

• (ȳ, z̄) is a LOCAL STRONG PARETO OPTIMAL ALLOCATION provided that
ONE of sets in (10.28) is asymptotically closed at the corresponding point.

Proof. Observe first that the satiation property of the preference mapping in Theo-
rem 10.9 reduces, for the preference L(·) defined in (10.10), to the local satiation
requirement (10.27) on Pi(·) imposed in this theorem. Using further the equivalence
relationships of Theorem 10.4 between the local Pareto-type optimal allocations of
the economy E and the fully localized minimizers for the set-valued optimization
problem (10.9) with respect to the preference therein and then specifying Proposi-
tion 10.8 for the asymptotic closedness property of the corresponding product sets
in the welfare economy, the three statements of the theorem reduce to the following
ones:

• (x̄, z̄) is a fully localized weak minimizer for (10.9) with respect to (10.10)
provided that the set L(z̄) is asymptotically closed at z̄;

• (x̄, z̄) is a fully localized Pareto minimizer for (10.9) with respect to (10.10)
provided that the set clL(z̄) is asymptotically closed at z̄;

• (x̄, z̄) is a fully localized strong Pareto minimizer for (10.9) with respect to
(10.10) provided that the set

�× clL(z̄) :=
m∏

j=1

Sj ×W ×
n∏

i=1

clPi(z̄)

is asymptotically closed at (x̄, z̄) = (ȳ, w̄, z̄).

To deduce the statements above from the necessary optimality conditions of The-
orem 10.9 applied to problem (10.9) with preference (10.10), it remains to check the
validity of the corresponding PSNC properties from Exercise 10.29 imposed on the
sets

�1 := gphF and �2 :=
m∏

j=1

Sj ×W ×
n∏

i=1

clPi(z̄) (10.30)

under the SNC assumption on one of the sets in (10.28) made in the theorem. To
proceed, we rename the sets and the reference points as follows:

m+n+1∏

i=1

Xi := X × Z = Em+n+1 with Xi := E for i = 1, . . . , m+ n+ 1,

�i := Si for i = 1, . . . , m,�m+1 := W,�m+1+i := clPi(z̄) for i = 1, . . . , n,

x̄1 := −ȳ1, . . . , x̄m := −ȳm, x̄m+1 := −w̄, x̄m+2 := z̄1, . . . , x̄m+n+1 := z̄n.

Since one of the sets Sj ,W , and clPi(z̄) is SNC at ȳj , w̄, and z̄i , respectively, there
is i0 ∈ {1, . . . , m+ n+ 1} such that �2 from (10.30) is represented as
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�2 =
m+n+1∏

i=1

�i,

and it is strongly PSNC with respect to the index set I := {i0}. Consider the mapping
f : ∏i0−1

i=1 Xi ×
∏m+n+1
i0+1 Xi → Xi0 defined by

f (x1, . . . , xi0−1, xi0+1, . . . , xm+n+1) := −
m+n+1∑

i=1, i 
=i0
xi.

It follows from the structures of f and F in (10.9) that the set �1 in (10.30) is
represented as the collections of (−x1, . . . ,−xm+1, xm+2, . . . , xm+n+1) with

(x1, . . . , xi0−1, xi0+1, . . . , xm+n+1, xi0) ∈ gph f.

Since f is Lipschitzian, it is PSNC at (x̄1, . . . , x̄i0−1, x̄i0+1, . . . , x̄m+n+1, x̄i0), and
hence the set�1 is PSNC at (ȳ, w̄, z̄)with respect to the index set J := {1, . . . , m+
n + 1}\{i0}. Observing that I ∪ J = {1, . . . , m + n + 1} ensures that the PSNC
assumptions of Exercise 10.29 are satisfied for the sets �1 and �2 in (10.30), and
thus we can apply the necessary optimality conditions of Theorem 10.9 to the set-
valued optimization problem (10.9) with respect to preference (10.10). It follows in
this way by taking into account the structures of (10.9), (10.10), and (10.30) that
there are (0, 0) 
= (x∗, z∗) ∈ X∗ × Z∗ and p∗ ∈ E∗ satisfying the relationships

(−x∗, z∗) ∈ N((x̄, z̄);�2
) =

m∏

j=1

N(ȳj ; Sj )×N(w̄;W)×
n∏

i=1

N
(
z̄i; clPi(z̄)

)
,

(x∗,−z∗) ∈ N((x̄, z̄);�1
) =

m∏

j=1

{−p∗} × {−p∗} ×
n∏

i=1

{p∗},

where the latter obviously yields p∗ 
= 0. Thus we arrive at all the price conditions
(10.29) of the theorem and so complete its proof. �

10.3.2 Ordered Commodity Spaces

Now we consider economies with commodity spaces E that are partially ordered by
their closed positive cones

E+ := {
e ∈ E∣∣ 0 ' e

}
(10.31)

via some partial ordering relation '. The dual positive cone is defined by

E∗+ := {
e∗ ∈ E∗∣∣ 〈e, e∗〉 ≥ 0 for all e ∈ E+

}
.

Recall that the ordering cone E+ is generating in E if E+ − E+ = E.
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The next useful result reveals a rather general setting in partially ordered spaces
when the asymptotic closedness property holds.

Proposition 10.11 (Asymptotic Closedness Property in Ordered Banach
Spaces). Let E be an ordered Banach space with the generating closed positive
cone E+, let � be a closed subset of E satisfying the condition

�− E+ ⊂ �, (10.32)

and let z̄ ∈ bd�. Then the set � is asymptotically closed at z̄.

Proof. Since z̄ is a boundary point of �, we find a sequence {zk} ⊂ E with zk → 0
as k → ∞ and z̄ + zk 
∈ � for all k ∈ N. The classical Krein-Šmulian theorem
in ordered spaces with generating positive cones ensures the existence of a constant
M > 0 such that for each e ∈ E there are

u, v ∈ E+ with e = u− v and max
{‖u‖, ‖v‖} ≤ M ‖e‖.

Hence, we get two sequences {uk} ⊂ E and {vk} ⊂ E satisfying

zk = uk − vk, uk → 0, and vk → 0 as k → ∞.

To justify the asymptotic closedness property of � at z̄, it suffices to show that con-
dition (10.32) implies that z̄ 
∈ �−uk for all large k ∈ N. Arguing by contradiction,
fix k ∈ N and suppose that there is some z ∈ � such that z̄ = z − uk . This yields
the relationships

z = z̄+ uk = z̄+ zk + vk ∈ �, i.e., z̄+ zk = z− vk ∈ �− E+ ⊂ �,

which contradict the choice of {zk} and thus completes the proof. �
According to the conventional terminology in microeconomics, we say that the

economy E with the preference sets Pi(z) exhibits:

• the implicit free disposal of commodities if

clW − E+ ⊂ clW ; (10.33)

• the free disposal of production if

cl Sj − E+ ⊂ cl Sj for some j ∈ {1, . . . , m}; (10.34)

• the desirability condition if

clPi(z̄)+ E+ ⊂ clPi(z̄) for some i ∈ {1, . . . , n}. (10.35)

The following consequence of Theorem 10.10 and Proposition 10.11 gives us
effective implementations of marginal price equilibrium conditions for local strict
Pareto and strong Pareto optimal allocations of economies with ordered commodity
spaces while ensuring in addition the price positivity.
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Corollary 10.12 (Extended Second Welfare Theorem for Local Strict Pareto
and Strong Pareto Optimal Allocations with Ordered Commodities). In addition
to the general assumptions of Theorem 10.10, suppose that the commodity space
E is partially ordered by the generating closed positive cone E+. Then there is a
positive price p∗ ∈ E∗+ \{0} satisfying relationships (10.29) in each of the following
cases:

• (ȳ, z̄) is a LOCAL STRICT PARETO OPTIMAL ALLOCATION of the economy E
exhibiting the desirability condition (10.35) with respect to its preferences.

• (ȳ, z̄) is a LOCAL STRONG PARETO OPTIMAL ALLOCATION of E exhibiting
either the implicit free disposal of commodities (10.33), or the free disposal of pro-
duction (10.34), or the desirability condition (10.35).

Proof. Observe first that the price positivity p∗ ∈ E∗+ in ordered commodity spaces
follows directly from assertions (10.29) of the extended second welfare theorem un-
der the fulfillment of either one of the underlying conditions (10.33)–(10.35); see
Exercise 10.36. Employing further Proposition 10.11 and the corresponding state-
ments of Theorem 10.10, we arrive at both conclusions claimed in the corollary by
showing that:

(i) There is a consumer index i ∈ {1, . . . , n} such that the associated component
z̄i of (ȳ, z̄) is a boundary point of the set clPi(z̄) provided that (ȳ, z̄) is a local strict
Pareto optimal allocation of the economy E exhibiting the desirability condition
(10.35).

(ii) Each component z̄i , ȳj of (ȳ, z̄) and their combination w̄ = ∑n
i=1 z̄i −∑m

j=1 ȳj is a boundary point of the corresponding set clPi(z̄), Sj , W provided
that (ȳ, z̄) is a local strong Pareto optimal allocation of E exhibiting at least one of
the free disposal/desirability properties (10.33)–(10.35).

Both assertions (i) and (ii) above can be derived, arguing by contradiction, from
the definitions of local strict Pareto and strong Pareto optimal allocations; see Exer-
cise 10.37 to complete the proof of the corollary. �

10.3.3 Properness for Weak Pareto Optimal Allocations

Let us further establish relationships between the asymptotic closedness introduced
in Definition 10.7 and some properness properties in economic modeling originated
by Mas-Colell and then well recognized and developed in welfare economics. In
this subsection, we consider the economy E as in (10.1) whose commodity space is
a Banach lattice and suppose for simplicity that C1 = . . . = Cn = E+, that m = 1
with S standing for the total production set, and that W = {w̄} (markets clear).
Recall first the most advanced (to the best of our knowledge) properness properties
developed in [270].

Definition 10.13 (Properness Properties). Given the economy E as described
above whose commodity space is a Banach lattice, we say that:
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(A1) E satisfies the PROPERNESS PROPERTY FOR PREFERENCES if there are
positive numbers δ, λ, and θ such that

((
Pi(z̄) ∩ (z̄i + θB)

)+ �
)

∩ E+ ⊂ Pi(z̄)

with � :=
⋃

t∈(0,λ]
t
( 1

(n+ 1)
w̄ + δB

)
, i = 1, . . . , n.

(10.36)

(A2) E satisfies the PROPERNESS PROPERTY FOR PRODUCTION if there are pos-
itive numbers δ, λ, and θ such that

(y − �) ∩ {
z ∈ E∣∣ z+ ≤ y+} ⊂ Y for all y ∈ S ∩ (ȳ + θB),

where the cone � is defined as in (A1).

Note that the cone � in (10.36) depends on δ, λ, and θ while we do not indicate
this dependence in notation for simplicity. When the preferred sets are derived from
a transitive and complete preference on consumption sets, the properness condition
for preferences (A1) is implied by Mas-Collel’s uniform properness property. Fol-
lowing this idea, we say that the preference relation ≺ is proper at z ∈ E+ if there
are positive numbers α and ε, a positive vector w̄ ∈ E+, and a neighborhood of the
origin O such that

u ∈ L and
[
z− αw̄ + u ≺ x �⇒ u ∈ εO].

The preference ≺ is uniformly proper if it is proper at every z ∈ E+, while w̄ and V
can be chosen independent of z. Geometrically, the properness at z means that there
is an open cone � ⊂ E containing positive vectors such that

(−�) ∩ {
u− z ∈ E+

∣∣ u ≺ z
} = ∅.

The next proposition establishes relationships between the properness for prefer-
ence property (A1) and the asymptotic closedness of preference sets in the economic
model under consideration.

Proposition 10.14 (Properness Implies Asymptotic Closedness). The following
assertions hold for the economy E:

(i) The properness property (A1) of Pi(z̄) at z̄i implies the asymptotic closedness
property of Pi(z̄) at this point.

(ii) If property (A1) is satisfied, then the set

P̃i(z̄) := Pi(z̄) ∩ (z̄i + θB)+ �
is asymptotically closed at z̄i .

Proof. Let us first verify (i). Assume that Pi(z̄) is proper at z̄i . To get the asymptotic
closedness of Pi(z̄) at z̄i from (A1), we intend to show that

(
clPi(z̄)+ ck

) ∩ V ⊂ Pi(z̄) for all k sufficiently large, (10.37)
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where the set V ⊂ Z and the sequence {ck} ⊂ Z are defined by

V :=
(
z̄i + θ

2
B

)
and ck := λ

k

( 1

n+ 1
w̄ + δc

)
with c ∈ E+ ∩ B.

To furnish this, fix k ∈ N so large that ck ∈ (θ/2)B. Take further any z ∈ (clPi(z̄)+
ck) ∩ V and find a sequence {zm} ⊂ Pi(z̄) ⊂ E+ satisfying zm → z̃ ∈ clPi(z̄),
zm + ck ∈ V , and z = z̃ + ck . Then zm ∈ −ck + V ⊂ (z̄i + θB). Due to ck ∈ ı�,
there is γ > 0 such that

zm + ck ∈ zm + ck + γB ⊂ (
Pi(z̄) ∩ (z̄i + θB)+ �

)
for all m ∈ N.

Passing now to the limit as m → ∞, we get from (10.36) that

z = z̃+ ck ∈ (
Pi(z̄) ∩ (z̄i + θB)+ �

) ∩ E+ ⊂ Pi(z̄).

Since z ∈ (clPi(z̄) + ck) ∩ V was chosen arbitrarily, the latter yields (10.37),
which justifies the asymptotic closedness of Pi(z̄) in (i) and ensures furthermore
the asymptotic closedness property of P̃i(z̄) asserted in (ii). �

The following example shows that the converse in Proposition 10.14(i) fails even
for economies with finite-dimensional commodity spaces.

Example 10.15 (Asymptotic Closedness Is Strictly Better Than Properness).
Take E = R

3 and define the preference set P(0) at 0 ∈ R
3 by

P(0) := {
(a, b, 0) ∈ R

3
∣∣ a, b ≥ 0

} \ {0}.
Since P(0)∪{0} is a closed and convex cone, the set P(0) clearly has the asymptotic
closedness property at z̄ = 0. It turns out however that

R
3+ ∩ (

P(0) ∩ γB + �) 
⊂ P(0)

for every γ > 0 with � given in (10.36). To see this, take any triple v =
(v1, v2, v3) ∈ � ∩ R

3+ with v3 > 0; the existence of such v is ensured by the
nonempty interior of �. Then for every u = (u1, u2, 0) ∈ P(0) ∩ γB we have
u3 + v3 = v3 > 0 and hence u+ v 
∈ P(0). This shows that P(0) doesn’t have the
properness property at the origin. Observe in more generality that it happens when
spanPi(z̄) ⊂ L, where L 
= E is a subspace of E.

The following proposition shows that the properness assumptions imposed above
allow us to reduce local weak Pareto allocations of the economy E under considera-
tion to those of a modified economy with nonempty interior properties of preference
and production sets.

Proposition 10.16 (Weak Pareto Optimal Allocations Under Properness As-
sumptions). Let (ȳ, z̄) be a local weak Pareto optimal allocation of the economy
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E = (P1, . . . , Pn, S, w̄) under the properness assumptions (A1) and (A2) from Def-
inition 10.13. Then (ȳ, z̄) is a local weak Pareto optimal allocation of the modified
economy Ẽ = (P̃1, . . . , P̃n, S̃, w̄) with

P̃i(z̄) := Pi(z̄) ∩ (z̄i + θB)+ �, i = 1, . . . , n,

S̃ := S ∩ (ȳ + θB)− �.
(10.38)

Proof. Arguing by contradiction, suppose that (ȳ, z̄) is not a local weak Pareto op-
timal allocation of Ẽ and thus find (y, z) satisfying

y ∈ S̃, w̄ =
n∑

i=1

zi − y, and zi ∈ P̃i(z̄) for all i = 1, . . . , n.

The latter relationships clearly ensure the validity of the inclusion

w̄ ∈
n∑

i=1

((
Pi(z̄) ∩ (z̄i + θB)

)+ �
)

−
((
S ∩ (ȳ + θB))− �

)
,

which contradicts the imposed properness assumptions (see Exercise 10.39) and
thus verifies the claimed local weak Pareto optimality of (ȳ, z̄). �

Based on the preceding results of this subsection, we deduce from Theorem 10.29
the following two versions of the extended second welfare theorem for the economy
E for local weak Pareto optimal allocations. The first version, involving the proper-
ness property (A1) and the SNC assumptions as above, is a direct consequence
of Theorem 10.29 and Proposition 10.14(i) in terms of the initial data (Pi, S) of
the economy under consideration. On the other hand, the second version, which
employs the nonempty interior of the convex cone � in (10.36) and the fact that
Pi(z̄) ⊂ P̃i(z̄), allows us to derive from Theorem 10.29 and Propositions 10.14(ii),
10.16 a new version of the second welfare theorem for local weak Pareto optimal
allocations without SNC requirements while for the modified economy Ẽ with data
(10.38).

Theorem 10.17 (Extended Second Welfare Theorem for Local Weak Pareto
Optimal Allocations Under Properness Assumptions). Let (ȳ, z̄) be a local weak
Pareto optimal allocation of the economy E = (Pi, S, w̄) with an ordered Asplund
commodity space E. Then the following assertions hold:

(i) Assume that E satisfies the properness for preferences assumption (A1) and
that one of the sets clPi(z̄), i = 1, . . . , n, and S is SNC at z̄i and ȳ, respectively.
Then there is a marginal price p∗ ∈ E∗ \ {0} such that

− p∗ ∈ N(z̄i; clPi(z̄)
)
, i = 1, . . . , n, and p∗ ∈ N(ȳ; S). (10.39)
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(ii) Assume that both properness properties (A1) and (A2) are satisfied. Then there
is a marginal price p∗ ∈ E∗ \ {0} such that

− p∗ ∈ N(z̄i; cl P̃i(z̄)
)
, i = 1, . . . , n, and p∗ ∈ N(ȳ; S̃) (10.40)

via the modified preference and total production sets taken from (10.38).

Proof. To justify (i), employ Proposition 10.14(i) ensuring under (A1) the asymp-
totic closedness of each preference set Pi(z̄) at z̄i as i = 1, . . . , n imposed in The-
orem 10.29 for weak Pareto optimal allocations. This allows us to get (10.39) with
p∗ 
= 0 under the SNC assumptions made.

To verify (ii), we use Proposition 10.16 telling us that (ȳ, z̄) is a local weak
Pareto optimal allocation for the modified economy Ẽ with data (10.38). It follows
from Proposition 10.14(ii) that each modified preference sets P̃i(z̄) is asymptotically
closed at z̄i , i = 1, . . . , n. For applying now Theorem 10.29 to the weak Pareto
optimal allocation (ȳ, z̄) of the economy Ẽ , it is sufficient to demonstrate that at
least one of the sets cl P̃i(z̄i ), i = 1, . . . , n, and S̃ is SNC at the corresponding point.
Let us show that in fact all of them are SNC at the references points. Taking into
account the structures of the sets (10.38) and the construction of the regular normal
cone in the definition of the SNC property, we consider without loss of generality
the set

P̃ (z̄) := P(z̄) ∩ (z̄+ θB)+ � (10.41)

with the cone � defined in (10.36), and show that this set is SNC at z̄ ∈ cl P̃ (z̄).
Pick a sequence {zk, z∗k} ⊂ Z × Z∗ satisfying

zk → z̄, z∗k
w∗→ 0 as k → ∞ with z∗k ∈ N̂(zk; P̃ (z̄)

)
, k ∈ N.

Employing now the decreasing property of the regular normal cone with respect to
set inclusions from Exercise 1.39(iii) and the convexity of the cone �, deduce from
the above that

z∗k ∈ N(̃zk;�) ⊂ N(0;�), k ∈ N,

with some sequence {̃zk} ⊂ Z, which implies by the nonempty interior of � that
‖z∗k‖ → 0 as k → ∞ due to Exercise 2.29. This justifies the SNC property of
set P̃ (z̄) in (10.41) at z̄ (and of all the sets defined in (10.38) at the corresponding
points) and thus completes the proof of the theorem. �

We refer the reader to Exercise 10.41 for more discussions on relationships be-
tween the two versions of the extended second welfare theorem under the properness
assumptions given in Theorem 10.17.
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10.4 Global Extended Second Welfare Theorems

In this section, we focus on deriving extended versions of the second welfare the-
orem for global Pareto-type optimal allocations of all the four kinds described in
Definition 10.2. Since any global optimal allocation is a local one of the same type,
the results of Section 10.3 obtained for local weak Pareto, strict Pareto, and strong
Pareto optimal allocations surely hold for their global counterparts. Now we show,
by using somewhat different arguments, that the global nature of all the optimal
allocations under consideration in Definition 10.2 (including Pareto ones defined
in (ii,v) therein, which are not studied in the local framework of Section 10.3), al-
lows us to derive versions of the second welfare theorem held under less restrictive
qualification conditions in comparison with those employed above.

10.4.1 Net Demand Qualification Conditions

Here are these net demand qualification conditions in the general welfare economic
setting E of (10.1) defined in a similar while somewhat different way to serve each
type of global optimal allocations from Definition 10.2.

Definition 10.18 (Net Demand Qualification Conditions). Let (ȳ, z̄) be a feasible
allocation of the economy E in (10.1) with the preference sets Pi(z), and let w̄ :=∑n
i=1 z̄i −

∑m
j=1 ȳj ∈ W . Rename the sets Pi(z̄), Sj , and W as:

�i := Pi(z̄), i = 1, . . . , n, �n+j := −Sj , j = 1, . . . , m, �m+n+1 := −W
with x̄i := z̄i , x̄n+j := −ȳn+j , x̄m+n+1 := −w̄. Given ε > 0, consider the set

�ε :=
n+m+1∑

i=1

cl�i ∩ (z̄i + εB) (10.42)

and define the following qualification conditions at the allocation (ȳ, z̄), where the
closure operation is redundant for all the sets �i with i > n due to the standing
assumptions made for the economy E:

(i) The NET DEMAND WEAK QUALIFICATION (NDWQ) CONDITION holds at
(ȳ, z̄) if there are ε > 0 and {ek} ⊂ E with ek → 0 such that

�ε + ek ⊂
n∑

i=1

�i +
n+m+1∑

i=n+1

cl�i for large k ∈ N. (10.43)

(ii) The NET DEMAND QUALIFICATION (NDQ) CONDITION holds at (ȳ, z̄) if
there are ε > 0, {ek} ⊂ E with ek → 0, and i0 ∈ {1, . . . , n} such that
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�ε + ek ⊂ �i0 +
n+m+1∑

i=1, i 
=i0
cl�i for large k ∈ N. (10.44)

(iii) The NET DEMAND STRICT QUALIFICATION (NDSQ) CONDITION holds at
(ȳ, z̄) if there are ε > 0, ek → 0, and i0 ∈ {1, . . . , n} such that

�ε + ek ⊂ cl�i0 \ {x̄i0} +
n+m+1∑

i=1, i 
=i0
cl�i for large k ∈ N. (10.45)

(iv) The NET DEMAND STRONG QUALIFICATION (NDSNQ) CONDITION holds
at (ȳ, z̄) if there are ε > 0, ek → 0, and i0 ∈ {1, . . . , m+ n+ 1} with

�ε + ek ⊂ cl�i0 \ {x̄i0} +
m+n+1∑

i=1, i 
=i0
cl�i for large k. (10.46)

We have the following relationships between net demand qualification conditions
and the asymptotic closedness requirements on the corresponding sets; three of these
requirements were employed in Section 10.3 to derive local versions of the second
welfare theorem for Pareto-type optimal allocations.

Proposition 10.19 (Relationships Between Net Demand Qualification and
Asymptotic Closedness Conditions). Consider the economy E from (10.1) with
the preference sets Pi(z). Given a feasible allocation (ȳ, z̄) of E , assume that the
production sets Sj , j = 1, . . . , m, and the net demand set W are locally closed
around the points in question. Then:

(i) The NDWQ condition (10.43) holds at (ȳ, z̄) if all the preference sets Pi(z̄) as
i = 1, . . . , n are asymptotically closed at z̄i , respectively.

(ii) The NDQ condition (10.44) holds at (ȳ, z̄) if there is i0 ∈ {1, . . . , n} so that
the preference set Pi0(z̄) is asymptotically closed at z̄i0 .

(iii) The NDSQ condition (10.45) holds at (ȳ, z̄) if there is i0 ∈ {1, . . . , n} so that
the set clPi0(z̄) is asymptotically closed at z̄i0 .

(iv) The NDSNQ condition (10.46) holds at (ȳ, z̄) if one of the sets

clPi(z̄), . . . , clPn(z̄), S1, . . . , Sj , W

is asymptotically closed at the corresponding point.

Proof. Assertions (i) and (ii) follow from the proof of [523, Proposition 8.4], while
the other two assertions (iii) and (iv) can be verified similarly. �

It occurs that the converse implications in Proposition 10.19 fail in quite common
finite-dimensional situations.

Example 10.20 (Net Demand Qualification Is Strictly Weaker Than Asymp-
totic Closedness). Consider the markets clear economy E withE = R

2, n = m = 1,
W = {0}, and
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C = R
2+, S = � := {

(a, b) ∈ R
2+
∣∣ ab = 0

}
, P (z) ≡ � \ {(0, 0)}, z̄ = (0, 0).

It is obvious that the set P(0) is not asymptotically closed at 0 ∈ R
2, while the NDQ

condition (10.44) is satisfied at (ȳ, z̄) = (0, 0) ∈ R
4 by

(
k−1, k−1)+�−� ⊂ �\{(0, 0)} −�.

10.4.2 Global Optimality in Welfare Economics

The next major theorem establishes extended versions of the second welfare theo-
rem for all the four types of global Pareto optimal allocations from Definition 10.2.
These extended versions are valid under the corresponding net demand qualification
conditions from Definition 10.18.

Theorem 10.21 (Extended Second Welfare Theorems for Global Pareto-Type
Optimal Allocations). Let (ȳ, z̄) be a global optimal allocation of economy (10.1)
in the senses listed below with respect to the preference sets Pi(z) under the local
satiation requirement (10.27). Assume that the commodity space E is Asplund and
that one of the sets (10.28) is SNC at z̄i , ȳj , and w̄ = ∑n

i=1 z̄i −∑m
j=1 ȳj , respec-

tively. Then there exists a nonzero price p∗ ∈ E∗ satisfying all the relationships
(10.29) of the extended second welfare theorem in each of the following cases of
global optimal allocations of E:

• (ȳ, z̄) is a GLOBAL WEAK PARETO OPTIMAL ALLOCATION provided that the
net demand weak qualification condition (10.43) is satisfied.

• (ȳ, z̄) is a GLOBAL PARETO OPTIMAL/EFFICIENT ALLOCATION provided that
the net demand qualification condition (10.44) is satisfied.

• (ȳ, z̄) is a GLOBAL STRICT PARETO OPTIMAL ALLOCATION provided that the
net demand strict qualification condition (10.45) is satisfied.

• (ȳ, z̄) is a GLOBAL STRONG PARETO OPTIMAL ALLOCATION provided that
the net demand strong qualification condition (10.46) is satisfied.

Proof. Consider two subsets of the Asplund spaces Em+n+1 defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 :=
m∏

j=1

Sj ×
n∏

i=1

clPi(z̄)×W,

�2 :=
{
(y, z,w) ∈ Em+n+1

∣∣∣
n∑

i=1

zi −
m∑

j=1

yj − w = 0
}
,

(10.47)

which are locally closed around the point (ȳ, z̄, w̄), and show that this point is lo-
cally extremal for the system {�1,�2} under the fulfillment of the
NDWQ/NDQ/NDSQ/NDSGQ conditions held for the corresponding weak
Pareto/Pareto/strict Pareto/strong Pareto optimal allocation of the economy E .
Indeed, we always have (ȳ, z̄, w̄) ∈ �1 ∩ �2, and it remains to check that there
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exist a sequence {ak} ⊂ Em+n+1 with ak → 0 as k → ∞ and a neighborhood U of
(ȳ, z̄, w̄) such that

�1 ∩ (�2 − ak) ∩ U = ∅ for all large k ∈ N (10.48)

when the corresponding qualification condition (10.43)–(10.46) is satisfied. Arguing
in a unified way, take {ek} ⊂ E from the selected qualification condition and form
the sequence ak := (0, . . . , 0, ek) ∈ Em+n+1. Denote further

U :=
m∏

j=1

(ȳj + εB)×
n∏

i=1

(z̄i + εB)× (w̄ + εB)

and show that the extremality relationship (10.48) holds under this choice. Suppos-
ing the contrary, find a sequence of triples (yk, zk, wk) ∈ �1 with (yk, zk, wk)+ak ∈
�2 and get by the structure of {�1,�2} in (10.47) and the above choice of {ak} and
U that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yjk ∈ Sj ∩ (ȳj + εB), j = 1, . . . , m,

zik ∈ clPi(z̄) ∩ (z̄i + εB), i = 1, . . . , n,

wk ∈ W ∩ (w̄ + εB), and

0 =
n∑

i=1

zi −
m∑

j=1

yj − wk + ek ∈ �ε + ek

(10.49)

for the set�ε defined in (10.42). We check now that the relationships in (10.49) lead
to a contradiction with the global Pareto-type optimality provided the fulfillment of
the corresponding net demand qualification conditions.

• Assuming that (ȳ, z̄) is a global weak Pareto optimal allocation and that the net
demand weak qualification condition (10.43) is satisfied, we get

0 ∈
n∑

i=1

Pi(z̄)−
m∑

j=1

Sj −W,

i.e., there are zi ∈ Pi(z̄), yj ∈ Sj , and w ∈ W such that

w =
n∑

i=1

zi −
m∑

j=1

yj . (10.50)

This tells us that the allocation (y, z) is feasible for E , while the inclusions zi ∈
Pi(z̄) as i = 1, . . . , n imply that (ȳ, z̄) is not a global weak Pareto optimal allocation
of E by Definition 10.2, a contradiction.

• Assuming that (ȳ, z̄) is a global Pareto optimal allocation and that the net
demand qualification condition (10.44) holds, we get
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0 ∈ Pi0(z̄)+
n∑

i=1 i 
=i0
clPi(z̄)−

m∑

j=1

Sj −W,

i.e., there are zi0 ∈ Pi0(z̄), zi ∈ clPi(z̄) for i = 1, . . . , n, yj ∈ Sj for j = 1, . . . , m,
and w ∈ W satisfying (10.50). These relationships clearly contradict the definition
of the global Pareto optimality of the allocation (ȳ, z̄).

• Assuming that (ȳ, z̄) is a global strict Pareto optimal allocation and that the net
demand strict qualification condition (10.45) holds, we get

0 ∈ clPi0(z̄) \ {z̄i0} +
n∑

i=1, 
=i0
clPi(z̄)−

m∑

j=1

Sj −W,

i.e., there are zi ∈ clPi(z̄) as i = 1, . . . , n with z 
= z̄, yj ∈ Sj as j = 1, . . . , m,
andw ∈ W satisfying (10.50). Thus the allocation (y, z) is feasible for the economy
E with zi ∈ clPi(z̄) for all i = 1, . . . , n. This implies that (ȳ, z̄) is not a global strict
Pareto optimal allocation of E by its definition.

• Assuming finally that (ȳ, z̄) is a global strong Pareto optimal allocation and
that the net demand strong qualification condition (10.46) holds, we get:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either 0 ∈ clPi0(z̄) \ {z̄i0} +
n∑

i=1
i 
=i0

clPi(z̄)−
m∑

j=1

Sj −W,

or 0 ∈
n∑

i=0

clPi(z̄)− Sj0 \ {ȳj0} −
m∑

j=1
j 
=j0

Sj −W,

or 0 ∈
n∑

i=0

clPi(z̄)−
m∑

j=1

Sj −W\{w̄}.

Each of the latter conditions allows us to find zi ∈ clPi(z̄) as i = 1, . . . , n, yj ∈ Sj
as j = 1, . . . , m, and w ∈ W satisfying (10.50) such that (y, z) 
= (ȳ, z̄). Thus
we clearly arrive at a contradiction with the global strong Pareto optimality of the
feasible allocation (ȳ, z̄) of the economy E .

The rest of the proof for all the four kinds of global Pareto-type optimal alloca-
tions are similar to the proofs of Theorem 10.10 with the usage of Theorem 10.9
based on the application of the product extremal principle and SNC calculus to the
set system (10.47). �
Remark 10.22 (Global vs. Local Pareto-Type Optimal Allocations). Let us
demonstrate that the net demand qualification conditions from Definition 10.18 are
appropriate to deal with global, not local Pareto-type optimal allocations. Consider
the economy E with the initial data given by E = R

2, n = m = 1, C = R
2+,

W = {0}, and
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S := {
(a,−a + 2) ∈ R

2
∣∣ a ≤ 0

}

∪{(a, b) ∈ R
2+
∣∣ a2 + (b − 1)2 = 1

} ∪ {
(a,−a)∣∣ a ≥ 0

}
.

The customer uses the preference generated by a nonconvex cone � as follows:

P(z) := z+� \ {0}, where � := {
z = (a, b) ∈ R

2
∣∣ ab = 0

}
.

Since P(z)∪ {z} is a closed set, there is no difference between weak Pareto, Pareto,
and strict Pareto optimal allocations as well as between NDWQ, NDQ, and NDSQ
conditions from Definition 10.18. It is easy to check that (ȳ, z̄) = (0, 0) ∈ R

2 ×R
2

is a local (not global) Pareto optimal allocation of the economy E with the ball
neighborhood O := intB × intB. Furthermore, the net demand qualification con-
dition is satisfied since the set P(0) − S contains the unit ball of R2, and thus the
underlying inclusion

�1 + ek ∈ P(0)− S
holds with ε > 0 sufficiently small (in fact ε ≤ 1) and k ∈ N sufficiently large. For
this example, the inclusion 0 ∈ �1+ek implies that 0 ∈ P(0)−S. The latter gives us
z = (0, 2) ∈ P(0) and y = (0, 2) ∈ S. Observe that there is no contradiction with
local optimality of the reference Pareto optimal allocation (ȳ, z̄) = (0, 0) since the
feasible allocation (y, z) found above doesn’t belong to the aforementioned neigh-
borhood O of (ȳ, z̄).

10.5 Exercises for Chapter 10

Exercise 10.23 (Relationships Between Various Pareto-Type Optimal Allocations). Consider
the four types of local Pareto-type optimal allocations and their global versions listed in Defini-
tion 10.2.

(i) Show that all the implications (iv)⇒(iii)⇒(ii)⇒(i) are strict.
(ii) Assuming that the extended preference sets Pi(z̄) ∪ {z̄} are locally closed around z̄ for all

i = 1, . . . , n, show that the notions of Pareto, weak Pareto, and strict Pareto optimal allocations
are identical.

(iii) Clarify relationships between the aforementioned Pareto optimal allocations and the strong
Pareto one in the setting of (ii).

Exercise 10.24 (Relationships Between Fully Localized Solutions in Set-Valued Optimiza-
tion). Show that both implications (iii)⇒(ii)⇒(i) in Definition 10.3 are strict even for uncon-
strained problems in finite-dimensional spaces.

Exercise 10.25 (Fully Localized Multiobjective Optimization Description of Local Pareto
Optimal Allocations in Welfare Economics). Find an appropriate notion of fully localized op-
timal solutions to the set-valued optimization problem (10.9) that is equivalent to local Pareto
optimal allocations of the economy E . Compare it with a fully localized counterpart of super min-
imizers from Definition 9.46.
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Exercise 10.26 (Existence of Pareto-Type Optimal Solutions in Set-Valued Optimization and
Welfare Economics).

(i) Investigate the possibility of establishing the existence of (global) optimal solutions of the
set-valued optimization problem (10.3) with respect to the preference relation (10.4) by modifying
the constructions of Section 9.3.

(ii) Considering the set-valued optimization framework of the welfare economics in (10.9) and
(10.10), find in this way efficient conditions ensuring the existence of global Pareto-type optimal
allocations of the economy E given in Definition 10.2.

Exercise 10.27 (Exact Extremal Principle in Product Spaces). Give a detailed proof of
Lemma 10.6. Hint: Follow the lines in the proof of [523, Lemma 5.58] by passing to the limit in
the relationships of the approximate extremal principle with the usage of the PSNC and strong
PSNC conditions from Definition 10.5.

Exercise 10.28 (Sufficient Conditions for Asymptotic Closedness of Sets). Justify the suffi-
ciency for the asymptotic closedness property of each item (i)–(iii) listed right after Definition 10.7;
compare this with [59, Section 13.3].

Exercise 10.29 (Necessary Conditions for Fully Localized Minimizers in Product Spaces).
Establish a version of Theorem 10.9 in the case where both spaces X and Z are represented
in the product forms: X = ∏n

i=1Xi and Z = ∏m
j=1 Zj . Hint: Proceed as in the proof of

Theorem 10.9 with the usage of Proposition 10.8 and the observation that the PSNC assump-
tions on the sets �1 and �2 can be replaced by the following: �1 is PSNC at (x̄, z̄) with re-
spect to some I ⊂ {1, . . . , n; 1, . . . , m} and �2 is strongly PSNC at (x̄, z̄) with respect to some
J ⊂ {1, . . . , n; 1, . . . , m}, where I ∪ J = {1, . . . , n; 1 . . . , m}.
Exercise 10.30 (Comparison Between Necessary Conditions for Pareto-Type Local Minimiz-
ers in Multiobjective Optimization).

(i) Check that the necessary optimality conditions obtained in Theorem 10.9 for fully localized
strong minimizers imply those for fully localized minimizers, while the latter conditions yield
those for fully localized weak minimizers.

(ii) Give examples showing that the converse implications in (i) fail in both finite and infinite
dimensions.

(iii) In the case of local Pareto minimizers for problem with single-valued objectives, com-
pare the optimality conditions of Theorem 10.9 with the corresponding results from [523, Theo-
rem 5.73].

Exercise 10.31 (Relationships Between Local Versions of the Second Welfare Theorem for
Pareto-Type Optimal Allocations in General Commodity Spaces). Consider the setting of The-
orem 10.10.

(i) Show that the imposed asymptotic closedness properties are essential for the validity of the
obtained versions of the second welfare theorem.

(ii) Check that the marginal price conditions established for local strong Pareto optimal alloca-
tions imply those for local strict ones, which yield in turn the results for local weak Pareto optimal
allocations of E while the converse implications fail.

(iii) Give an example showing that the obtained conditions for local strict Pareto optimal allo-
cations are not necessary for local Pareto ones.

Exercise 10.32 (Excess Demand Condition). Consider the economy E with the net demand con-
straint set W given by

W = ω + � for some ω ∈ W. (10.51)

In particular, for the case of commodity spaces partially ordered by the closed positive cone E+
representation (10.51) with � := −E+ corresponds to the implicit free disposal of commodities.
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Show that the last condition on the marginal price p∗ in (10.29) yields in case (10.51) the zero
value of excess demand condition

〈
p∗,

n∑

i=1

x̄i −
m∑

j=1

ȳj − ω
〉
= 0.

Exercise 10.33 (Second Welfare Theorem for Economies with Convex Preference and Pro-
duction Sets). In the setting of Theorem 10.10 consider the economy E , where all the preference
Pi(x̄) and production Sj sets are convex.

(i) Show that, under the validity of the corresponding assumptions of the theorem concerning lo-
cal weak, strict, and strong Pareto optimal allocations, there exists a nonzero price p∗ ∈ N(w̄;W)
satisfying the conditions:

x̄i minimize 〈p∗, xi〉 over xi ∈ clPi(x̄), i = 1, . . . , n,
ȳj maximize 〈p∗, yj 〉 over yj ∈ Sj , j = 1, . . . , m.

(ii) Compare the result in (i) for weak Pareto optimal allocations with the classical version of
the second welfare theorem in convex economies under the nonempty interiority assumptions; see,
e.g., [490] and the references therein.

Exercise 10.34 (Approximate Versions of the Second Welfare Theorem). Consider the welfare
economy (10.1) in the Asplund space setting.

(i) Derive approximate versions of assertions (i)–(iii) of Theorem 10.29 via the regular normal
cone (1.5) without any SNC/PCNC assumptions. Hint: Use the approximate extremal principle
similarly to the proof of [523, Theorem 8.5].

(ii) Are the results from (i) equivalent to those in Theorem 10.29 in finite-dimensional com-
modity spaces?

Exercise 10.35 (Decentralized Equilibria in Nonconvex Economies via Nonlinear Prices). Us-
ing the smooth variational descriptions of regular normals to nonconvex sets from Theorem 1.10(ii)
and its infinite-dimensional extensions from Exercise 1.51, give interpretations of the appropriate
second welfare theorems from Exercise 10.34 via approximate decentralized (convex-type) equilib-
ria by using nonlinear (convex-concave) marginal prices. Hint: Compare with [523, Theorem 8.7]
obtained for the cases of global Pareto and weak Pareto optimal allocations.

Exercise 10.36 (Price Positivity). Prove that condition (10.32) in a partially ordered Banach
space E implies that N(z̄;�) ⊂ E∗+ for any z̄ ∈ �. Hint: Employ the Banach space definition of
the basic normal cone (1.58) and the decreasing property of regular normals from Exercise 1.39(iii).

Exercise 10.37 (Boundary Point Descriptions of Local Pareto-Type Optimal Allocations).
Consider the setting of Corollary 10.12.

(i) Give detailed verifications of both items (i) and (ii) in the proof of Corollary 10.12 concern-
ing local strict and strong Pareto optimal allocations.

(ii) Does such a boundary point description (and hence the second welfare result of Corol-
lary 10.12) hold in the local Pareto optimal allocations?

Exercise 10.38 (Asymptotic Closedness of Modified Preferences Sets). Give a detailed proof
of assertion (ii) in Proposition 10.14.

Exercise 10.39 (Admissible Commodities Under Properness). Show that under assumptions
(A1) and (A2) in the setting of Proposition 10.16, we have

w̄ /∈
n∑

i=1

((
Pi(z̄) ∩ (z̄i + θB))+ �

)
−
((
S ∩ (ȳ + θB))− �

)
,
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Hint: Follow the proof of [270, Claim 4.1] based on the decomposition property of vector lattices
that is standard in the literature on properness properties.

Exercise 10.40 (Order Stability of Sets with Respect to Cones). We say that a subset � ⊂ Z

of a Banach space Z partially ordered by a convex cone � ⊂ Z is order stable at z̄ ∈ � if the
following holds:

for all {zk} ⊂ �+� with zk → z̄ there is {̃zk} ⊂ � such that z̃k → z̄.

Assuming that � is order stable at z̄ ∈ �, show that

N(z̄;�+�) ⊂ N(z̄;�). (10.52)

Exercise 10.41 (Relationships Between Versions of the Second Welfare Theorem Under
Properness Properties).

(i) Construct examples showing that assertions (i) and (ii) of Theorem 10.17 are generally
independent in both finite and infinite dimensions.

(ii) Using (10.52), show that (ii)⇒(i) in Theorem 10.17 provided that all the sets clPi(z̄), i =
1, . . . , n, and S are order stable at z̄i and ȳ, respectively.

(iii) Show that the implication in (ii) fails in the commodity space E = R
2 with the ordering

cone � = R
2+ without the imposed order stability assumption.

Exercise 10.42 (Net Demand and Asymptotical Closedness). Consider nonconvex economies
in the setting of Proposition 10.19.

(i) Verify assertions (iii) and (iv) of this proposition.
(ii) Show that the converse implications fail for economies with E = R

2.

Exercise 10.43 (Global Versions of the Second Welfare Theorem from the Extremal Princi-
ple). Give a detailed proof of Theorem 10.21 for all the four kinds of Pareto-type global optimal
allocations by applying the product extremal principle from Lemma 10.6 to the set system (10.47).
Hint: Proceed similarly to the proof of Theorem 10.10 by taking into account the established ex-
tremality of the triple (ȳ, z̄, w̄) for (10.47) in all the cases under consideration.

Exercise 10.44 (Extended Second Welfare Theorem for Local Pareto Optimal Allocations).
Let (ȳ, z̄) be a local Pareto optimal allocation of the economy (10.1) in either finite-dimensional
or Asplund space setting.

(i) Clarify whether the NDQ condition from Definition 10.18(ii) ensures the validity of the
second welfare theorem (10.29) for (ȳ, z̄).

(ii) Clarify whether the following condition ensures the validity of the second welfare theorem
for local Pareto optimal allocation of E: There is a consumer index i0 ∈ {1, . . . , n} such that the
preference set Pi0 (z̄) is asymptotically closed at z̄i0 .

(iii) Find sufficient conditions under which the relationships in (10.29) hold for the local Pareto
optimal allocation (ȳ, z̄) of E , which is not a global one.

10.6 Commentaries to Chapter 10

Competitive models of welfare economics, starting with the classical Walrasian equilibrium model
and the subsequent fundamental developments by Pareto, Lange, Hicks, Samuelson, Arrow and
Debreu, have also been among the strongest motivations for developments of new mathematical
techniques and forms of analysis. We refer the reader to the surveys in Khan [412] and in Chapter 8
of the author’s book [523] with the extended bibliographies therein for detailed discussions of
different approaches, genesis of ideas, results, and applications known at that time.

It has been well realized that methods of modern variational analysis and generalized differ-
entiation provide useful tools for better understanding of such and related microeconomic models
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with discovering new mechanics of decentralized price equilibria in the absence of convexity. In
particular, the usage of our basic/limiting normal cone, initiated by Cornet [180] and Khan [412]
(see also Khan’s preprint of 1987 referred to in [412]) produced the most adequate version of
the second welfare theorem for the marginal price equilibrium in nonconvex finite-dimensional
models. The application of the extremal principle to these issues was suggested in Mordukhovich
[515] providing new versions of such results in both finite and infinite dimensions. This approach
led the author [521] to developing a nonlinear price mechanism supporting a limiting decentral-
ized (maxmin type) equilibrium in fully nonconvex competitive models; see [523] for further de-
tails. More recent results in these and related directions of microeconomics can be found, e.g., in
[56, 57, 76, 98, 99, 265, 266, 270, 322, 392, 393, 409, 722].

Our approach in Chapter 10 employs the aforementioned variational techniques while being
significantly different from all the previous developments. It is based on the paper by Bao and
Mordukhovich [56], which establishes two-sided relationships between models of welfare eco-
nomics and set-valued optimization. This approach generates new notions and results in both of
these areas that are strongly interrelated and in fact are motivated by each other as shown above.

Section 10.1. The basic model of welfare economics formulated in Subsection 10.1.1 is rather con-
ventional now in microeconomic; see, e.g., the books [11, 490]. Note that introducing here the “net
demand constraint set” W as in [484, 515, 523] allows us to unify various market requirements
(markets clear, implicit free disposal of commodities, etc.) and to take into account a possible in-
complete/uncertain information on the initial aggregate endowment of scarce resources. On other
hand, it doesn’t create additional mathematical difficulties in comparison with the treatment of
nonconvex production sets in the model under consideration.

The notions of (local and global) Pareto and weak Pareto optimal allocations in Definition 10.1
are pretty standard in welfare economics , while it is not the case of the strict and strong Pareto
ones therein. To the best of our knowledge, the strong Pareto notion first appeared in Khan [411],
and strict Pareto optimal allocations were defined but not investigated in [523, Remark 8.15]. Both
of these notions are economically meaningful and play a significant role in our study of welfare
economies from the viewpoint of constrained set-valued optimization.

Observe to this end that over the years, Pareto-type optimal allocations in models of welfare
economics and Pareto-type optimal solutions in multiobjective optimization have been studied
separately, without establishing any connections between them. Most probably it is due to the fact
that multiobjective objective optimization dealt mainly with (single-objective) vector problems. As
shown above in Theorem 10.4, there exists an equivalence between the local optimal allocations
under consideration in the welfare economic model and the corresponding set-valued optimiza-
tion problem with the explicit geometric constraint. As one can see, there is no way of making
the equivalent optimization problem (10.9) to be either vector-objective or unconstrained. Further-
more, the “minimization” in (10.3) and thus in (10.9) is defined not in a conventional route via
some ordering cone as in Chapter 9 but via the level-set preference relation (10.4) induced by the
preference mappings (10.10) of the welfare economic model E .

To proceed with the study of economically meaningful notions of local Pareto optimal alloca-
tions in the welfare economy E via multiobjective optimization, we need to introduce new concepts
of local optimal solutions to constrained set-valued optimization problems of type (10.3). This is
done in Definition 10.3 via the notions of fully localized minimizers that take into account the set-
valued nature of the cost mapping in (10.3). The equivalence Theorem 10.4 tells us that local weak
Pareto and strong Pareto optimal allocations of E are in agreement with the corresponding fully
localized notions for set-valued optimization problem (10.9), while fully localized Pareto solutions
to (10.9) reduce to local strict Pareto optimal allocations of E . It is a challenging open question to
find a set-valued optimization counterpart of local Pareto optimal allocations in models of welfare
economics; see Exercise 10.25.

Section 10.2. This section presents necessary optimality conditions for fully localized minimizers
of the constrained set-valued optimization problem (10.3) with the nonstandard preference relation
(10.4) therein. Such conditions are certainly of their own interest for multiobjective optimization,
independently of applications to welfare economics while being strongly motivated by these appli-
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cations. The reader would not be surprised that we derive such conditions by using an appropriate
version of the extremal principle for set systems, which is the underlying tool of our dual-space
variational analysis. Due to the structures in (10.3) and (10.4), the most appropriate information
in this setting is provided by the product extremal principle from Lemma 10.6, which is a small
extension of [523, Lemma 5.58].

To apply the product extremal principle to the set system that naturally arises in the proof of
Theorem 10.9, we need to check the extremality of this system for each kind of fully localized
minimizers described in Definition 10.3. To proceed in this direction, a new (local) asymptotic
closedness property of sets was introduced in [56] being motivated by applications to welfare
economics and then was studied in [59, 64, 409] and other publications. This property has nothing
to do with the standard local closedness of sets while extending and unifying previously known
“asymptotic” properties of this type; see, e.g., [56, 523] and the references therein. Theorem 10.9
taken from [56] tells us the asymptotic closedness property imposed on different sets, which are
associated with the multiobjective optimization problem in (10.3) and (10.4), distinguishes the
three kinds of fully localized minimizers from Definition 10.3. Apart from that, the necessary
optimality conditions of Theorem 10.9 are identical for all the types of fully localized minimizers
under consideration.

Section 10.3. In this section, we present several extended versions of the second welfare theorem
for nonconvex economies in Banach spaces. So much has been done and written on this topic
that there is no need to reproduce it in this book. We refer the reader to [412, 490, 523] and the
large bibliographies therein for detailed discussions and historical remarks. Acknowledging it, the
material of this section based on [56] has something new to add to the previous developments.

To the best of our knowledge, Theorem 10.10 taken from [56] provides the most advanced
versions of the second welfare theorem for local weak Pareto optimal allocations of nonconvex
economies in Asplund spaces together with the new results for local strict and local strong Pareto
optimal allocations in this settings. These results are derived in our approach as direct consequences
of the established necessary optimality conditions for constrained multiobjective problems with
level-set preferences and the equivalence between the aforementioned Pareto-type optimal alloca-
tions in welfare economics and the fully localized solutions in set-valued optimization.

The obtained results easily yield the marginal price positivity p∗ ∈ E∗+ \ {0} when the com-
modity space E is ordered by its positive cone E+ with respect to the given preference (10.31). If
furthermore the positive cone E+ is generating, i.e., E+ = E+ = E, then the underlying asymp-
totic closedness assumption at the optimal allocation in question holds automatically under the
validity of either the free disposal of production, or the implicit free disposal of commodities, or
the desirability condition. All these conditions have been well recognized in microeconomics; see,
e.g., [180, 412, 490]. In this way, we arrive at the enhanced version of the second welfare theorem
for local strong Pareto optimal allocations, which was first established in [521, 523] by a direct
proof, and at the new result for local strict Pareto optimal allocations of the welfare economy E;
see Corollary 10.12.

The last subsection of this section concerns local weak Pareto optimal allocations in connec-
tion with the uniform properness conditions introduced by Mas-Collel [489, 490] and then largely
developed by Florenzano, Gourdel, and Jofré [270] among others. Following [56], we show that
the such properness properties (viz., their most advanced forms taken from [270]) yield the asymp-
totic closedness property of the corresponding sets, while not vice versa. This allows us to derive
improved versions of the second welfare theorem for local weak Pareto optimal allocation of non-
convex economies with ordered Asplund commodity spaces; see Theorem 10.17.

Section 10.4. The final section of this chapter (and of the whole book) deals with refined ver-
sions nonconvex models of second welfare theorem for global Pareto optimal allocations of
all the four types introduced in Definition 10.2. The results obtained are similar to those for lo-
cal Pareto optimal allocations in Theorem 10.10 but with replacing the asymptotic closedness
properties by the corresponding net demand qualification conditions. The major advantage of the
“global” Theorem 10.21 in comparison with its “local” counterpart in Theorem 10.10 is that now
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we cover (global) Pareto optimal allocations from Definition 10.2(ii,v) contrary to the case of
Theorem 10.10; see more discussions in Remark 10.22.

The proof of Theorem 10.21 doesn’t involve any reduction to problems of set-valued opti-
mization while applying directly the product extremal principle and SNC calculus. Both NDWQ
and NDQ from Definition 10.18 appeared in Mordukhovich [515], while the equivalent version of
NDQ was formulated and used by Jofré under the name of “asymptotically included condition”;
see [180, 391, 411, 412, 515, 523] and the references therein for previously known qualification
conditions of this type. The other two conditions, NDSQ and NDSNQ, were defined in [56] for
global strict Pareto and strong Pareto optimal allocations. Refined versions of these conditions
were used in [57] to establish enhanced versions of the second welfare theorem for nonconvex
economies with Asplund commodity spaces.

Note in conclusion that the difference between necessary optimality conditions for local and

global minimizers has been realized in optimization theory but mainly for infinite-dimensional

problems such as the classical calculus of variations and optimal control. Quite recently [194],

Dempe and Dutta revealed a striking dissimilarity between local and global solutions for prob-

lems of bilevel programming finite dimensions. To the best of our knowledge, a clear discrepancy

between local and global solutions microeconomic modeling in the setting of the second welfare

theorem was first illuminated by Bao and Mordukhovich [56].

Section 10.5. The material presented in this section is complementary to the main results of the

chapter. Besides rather simple exercises, there are major unsolved problems formulated in Exer-

cises 10.24, 10.26, and 10.44. A number of exercises (with the hints therein) relate to the results

given in [523, Chapter 8], where the reader can find more details and discussions.
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2.52 Exercise: Basic normals and the SNC property for sets defined by equality constraints
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2.53 Exercise: Basic normals and the SNC property of constraints in nonlinear programming
2.54 Exercise: Subdifferential and SNEC sum rules in infinite dimensions
2.55 Exercise: Minimality of the basic subdifferential

Chapter 3

3.1 Definition: Well-posedness properties
3.2 Theorem: Equivalence between well-posedness properties
3.3 Theorem: Coderivative criteria for well-posedness of multifunctions
3.4 Remark: Discussions on the coderivative characterization of Lipschitzian behavior
3.5 Corollary: Coderivative criterion for local Lipschitz continuity of set-valued mappings
3.6 Corollary: Metric regularity and covering of convex-graph multifunctions
3.7 Corollary: Metric regularity and covering of single-valued locally Lipschitzian

mappings
3.8 Corollary: Metric regularity and covering of smooth mappings
3.9 Theorem: General sum rules for coderivatives
3.10 Corollary: Coderivative sum rules for Lipschitz-like multifunctions
3.11 Theorem: General coderivative chain rules
3.12 Corollary: Coderivative chain rules for Lipschitz-like and metrically regular mappings
3.13 Corollary: Normals to inverse images
3.14 Theorem: Coderivatives of compositions with respect to binary operations
3.15 Corollary: Coderivatives of inner products
3.16 Proposition: Coderivative calculation for general PVS
3.17 Definition: Second-order subdifferential
3.18 Proposition: Coderivative calculation for subdifferential PVS with composite potentials
3.19 Proposition: Coderivative evaluations for PVS with composite fields
3.20 Theorem: Metric regularity of general PVS
3.21 Corollary: Metric regularity of subdifferential PVS with composite potentials
3.22 Corollary: Metric regularity of subdifferential PVS with composite fields
3.23 Definition: Amenable and strongly amenable functions
3.24 Proposition: Single-valuedness of Lipschitz-like monotone operators
3.25 Theorem: Failure of metric regularity for PVS with monotone fields
3.26 Corollary: Failure of metric regularity for subdifferential PVS with convex potentials
3.27 Definition: Prox-regularity and subdifferential continuity
3.28 Lemma: Continuously prox-regular functions with Lipschitz-like subdifferentials
3.29 Theorem: Failure of metric regularity for subdifferential PVS with prox-regular potentials
2.30 Corollary: Failure of metric regularity for subdifferential PVS with amenable potentials
3.31 Theorem: Failure of metric regularity for PVS with composite fields
3.32 Exercise: Relations for openness and covering properties
3.33 Exercise: Lipschitz-like property via distance functions
3.34 Exercise: Lipschitz continuity of locally compact multifunctions
3.35 Exercise: Coderivatives of Lipschitzian mappings between Banach spaces
3.36 Exercise: Semilocal metric regularity
3.37 Exercise: Equivalences between local well-posedness properties in Banach spaces
3.38 Exercise: Semilocal covering
3.39 Exercise: Global well-posedness properties and comparisons
3.40 Exercise: Metric regularity of differentiable mappings in Banach spaces
3.41 Exercise: Neighborhood characterizations of Lipschitz-like multifunctions
3.42 Exercise: Sequential and partial sequential normal compactness of mappings
3.43 Exercise: Coderivative normality
3.44 Exercise: Pointbased characterizations of Lipschitz-like property in Asplund spaces
3.45 Exercise: Local Lipschitz continuity of extended-real-valued functions
3.46 Exercise: Lipschitzian properties of convex-graph multifunctions
3.47 Exercise: Neighborhood characterizations of metric regularity and covering
3.48 Exercise: Pointbased characterizations of metric regularity in infinite dimensions
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3.49 Exercise: Metric regularity and covering properties for convex-graph multifunctions
3.50 Exercise: Covering relative to mappings and sets
3.51 Exercise: Metric subregularity and calmness of multifunctions
3.52 Exercise: Second-order growth conditions for metric subregularity
3.53 Exercise: Preservation of calmness and metric subregularity under intersections
3.54 Exercise: Outer derivative of multifunctions
3.55 Exercise: Upper Lipschitzian mappings and inverse subdifferentials
3.56 Exercise: Semimetric regularity of multifunctions
3.57 Exercise: Interconnections between semimetric regularity and covering relative to sets
3.58 Exercise: Metric hemiregularity of multifunctions
3.59 Exercise: Coderivative sum rules in infinite dimensions
3.60 Exercise: Coderivative intersection rules
3.61 Exercise: Chain rules for coderivatives in infinite dimensions
3.62 Exercise: Product rules for coderivatives in finite and infinite dimensions
3.63 Exercise: Partial coderivatives
3.64 Exercise: Basic normals to inverse images in infinite dimensions
3.65 Exercise: Coderivatives of special compositions of mappings between Asplund spaces
3.66 Exercise: SNC properties of inverse images of sets under mappings
3.67 Exercise: PSNC and SNC properties of mappings under compositions
3.68 Exercise: PSNC property for sets in product of two spaces
3.69 Exercise: Preservation of the Lipschitz-like property under various operations
3.70 Exercise: Metric regularity and covering under compositions
3.71 Exercise: Coderivatives of general parametric constraint systems
3.72 Exercise: Coderivatives of constraint systems in nonlinear programming
3.73 Exercise: Coderivatives of constraint systems in nondifferentiable programming
3.74 Exercise: Coderivatives of implicit multifunctions
3.75 Exercise: Coderivatives of parametric variational systems
3.76 Exercise: Second-order subdifferentials of smooth functions
3.77 Exercise: Second-order subdifferential chain rules
3.78 Exercise: Reversed mixed coderivative of subdifferential PVS with composite potentials
3.79 Exercise: Reversed mixed coderivative of subdifferential PVS with composite fields
3.80 Exercise: Metric regularity of general PCS
3.81 Exercise: Metric regularity of constraint systems in nonlinear programming
3.82 Exercise: Metric regularity of implicit multifunctions
3.83 Exercise: Metric regularity of general PVS in Asplund spaces
3.84 Exercise: Metric regularity and subregularity of PVS in Banach spaces
3.85 Exercise: Metric regularity of PVS with composite potentials in infinite dimensions
3.86 Exercise: Some properties of amenable functions
3.87 Exercise: Failure of metric regularity for PVS with monotone fields
3.88 Exercise: Gâteaux differentiability
3.89 Exercise: Metric regularity and subregularity of PVS with convex subdifferential fields
3.90 Exercise: Classes of continuously prox-regular functions
3.91 Exercise: Continuously prox-regular functions with Lipschitz-like subdifferentials
3.92 Exercise: Metric regularity for subdifferential PVS with prox-regular potentials
3.93 Exercise: Metric regularity for subdifferential PVS with composite fields

Chapter 4

4.1 Theorem: Basic and singular subgradients of marginal functions
4.2 Corollary: Marginal functions with Lipschitzian and metrically regular data
4.3 Corollary: Local Lipschitz continuity of marginal functions
4.4 Theorem: Subdifferentiation of infimal convolutions
4.5 Theorem: Basic and singular subdifferentials of general compositions
4.6 Corollary: Chain rules for basic and singular subgradients
4.7 Corollary: Subdifferential product rules
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4.8 Corollary: Subdifferential quotient rules
4.9 Proposition: Basic and singular subdifferentials of minimum functions
4.10 Theorem: Subdifferentiation of maximum functions
4.11 Theorem: Symmetric subdifferential mean value theorem for continuous functions
4.12 Corollary: Symmetric subdifferential mean value theorem for Lipschitzian functions
4.13 Theorem: Approximate mean value theorem for l.s.c. functions
4.14 Corollary: Mean value inequalities
4.15 Theorem: Subdifferential characterizations of local Lipschitz continuity
4.16 Corollary: Subdifferential characterization of constancy for l.s.c. functions
4.17 Theorem: Subdifferential characterizations of strict differentiability
4.18 Theorem: Subdifferential characterization of monotonicity for l.s.c. functions
4.19 Theorem: Subdifferential monotonicity and convexity for l.s.c. functions
4.20 Exercise: Subdifferentials of marginal functions in infinite dimensions
4.21 Exercise: Extended inner semicontinuity and inner semicompactness
4.22 Exercise: Equality representations for subgradients of marginal functions
4.23 Exercise: Regular subgradients of value functions for parametric nonlinear programs
4.24 Exercise: Regular subgradients of value functions for nondifferentiable programs
4.25 Exercise: Lipschitz continuity of marginal functions in finite and infinite dimensions
4.26 Exercise: Subdifferentials of infimal convolutions in Asplund spaces
4.27 Exercise: Subdifferentiation of marginal functions and convex infimal convolutions
4.28 Exercise: Subgradients of compositions in infinite dimensions
4.29 Exercise: Subdifferential product and quotient rules in infinite dimensions
4.30 Exercise: Partial subgradients
4.31 Exercise: Regular and limiting subgradients of minimum functions
4.32 Exercise: Subgradients of maximum functions on Asplund spaces
4.33 Exercise: Symmetric mean value theorem in Asplund spaces
4.34 Exercise: Approximate mean value theorem and its applications
4.35 Exercise: Approximate mean value theorem via basic subgradients
4.36 Exercise: Relationships between basic subgradients and Clarke counterparts

Chapter 5

5.1 Definition: Hypomonotonicity
5.2 Theorem: Maximal monotonicity via regular coderivative and global hypomonotonicity
5.3 Lemma: Semilocal monotonicity of set-valued mappings with convex domains
5.4 Theorem: Maximal monotonicity via regular coderivative and semilocal hypomonotonicity
5.5 Example: Semilocal monotonicity doesn’t yield the convexity of the domain
5.6 Theorem: Limiting coderivative characterizations of global maximal monotonicity
5.7 Remark: Preservation of maximal monotonicity
5.8 Example: Hypomonotonicity conditions are essential
5.9 Corollary: Coderivative characterizations of strong global maximal monotonicity
5.10 Definition: Locally monotone and strongly monotone operators
5.11 Definition: Single-valued localizations
5.12 Definition: Strong metric regularity
5.13 Theorem: Strong local maximal monotonicity via Lipschitzian localization
5.14 Theorem: Neighborhood coderivative characterization of strong local maximal

monotonicity
5.15 Corollary: Sufficient conditions for strong optimality conditions for metric regularity
5.16 Theorem: Pointbased coderivative conditions for strong local maximal monotonicity
5.17 Remark: Pointbased coderivative criteria for strong local maximal monotonicity
5.18 Exercise: Hypomonotonicity of single-valued mappings
5.19 Exercise: Hypomonotonicity of subgradient mappings
5.20 Exercise: Calculus of hypomonotonicity
5.21 Exercise: Global maximal monotonicity for mappings with convex domains
5.22 Exercise: Coderivative characterizations of global maximal monotonicity
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5.23 Exercise: Coderivative characterizations of global monotonicity for single-valued
mappings

5.24 Exercise: Coderivative characterizations of global strong maximal monotonicity
5.25 Exercise: Preservation of global maximal monotonicity under sums and compositions
5.26 Exercise: Coderivative characterizations of local and semilocal maximal monotonicity
5.27 Exercise: Strong metric regularity of the convex subdifferential
5.28 Exercise: Metric regularity and strong metric regularity of basic subdifferential
5.29 Exercise: Equivalent regularity properties for C2-smooth functions
5.30 Exercise: Equivalent second-order conditions for regularity of prox-regular functions
5.31 Exercise: Equivalence of metric regularity to strong metric regularity of basic

subdifferential
5.32 Exercise: Strong metric subregularity and isolated calmness
5.33 Exercise: Graphical derivative characterizations of isolated calmness
5.34 Exercise: Strong metric subregularity and strong local monotonicity of convex

subdifferential
5.35 Exercise: Strong metric subregularity of basic subdifferential
5.37 Exercise: Strong local maximal monotonicity in Hilbert spaces
5.38 Exercise: Coderivative conditions for strong metric regularity
5.39 Exercise: Limiting coderivative characterization of local strong maximal monotonicity
5.39 Exercise: Coderivative characterizations of strong semilocal monotonicity

Chapter 6

6.1 Theorem: Optimality conditions for problems with a single geometric constraint
6.2 Remark: Upper vs. lower subdifferential optimality conditions
6.3 Proposition: DC optimization problems
6.4 Proposition: Optimality conditions for problems with many geometric constraints
6.5 Theorem: Lower subdifferential conditions via subgradients of separate constraints
6.6 Corollary: Equality constraints via symmetric subgradients
6.7 Example: Nonnegative sign vs. symmetric Lagrangian inclusions
6.8 Example: Comparison with Clarke’s version of the Lagrange multiplier rule
6.9 Example: Comparison with Warga’s version of the Lagrange multiplier rule
6.10 Theorem: Condensed lower subdifferential optimality conditions
6.11 Corollary: Abstract maximum principle in nondifferentiable programming
6.12 Theorem: Upper subdifferential conditions in nondifferentiable programming
6.13 Proposition: Local optimal solutions to optimistic bilevel programs
6.14 Definition: Partial calmness
6.15 Proposition: Penalization via partial calmness
6.16 Definition: Local weak sharp minima
6.17 Proposition: Partial calmness from uniform weak sharp minima
6.18 Proposition: Sufficient conditions for weak sharp minima
6.19 Example: Verification of partial calmness via penalization
6.20 Example: Verification of partial calmness via uniform weak sharp minima
6.21 Theorem: Optimality conditions for smooth bilevel programs, I
6.22 Lemma: Difference rule for regular subgradients
6.23 Theorem: Optimality conditions for smooth bilevel programs, II
6.24 Example: Solving bilevel programs via optimality conditions
6.25 Theorem: Optimality conditions for Lipschitzian bilevel programs, I
6.26 Theorem: Optimality conditions for Lipschitzian bilevel programs, II
6.27 Remark: Inner semicompactness vs. inner semicontinuity of solution maps
6.28 Exercise: Optimization problems with geometric constraints
6.29 Exercise: Problems of DC programming
6.30 Exercise: Necessary conditions in nondifferentiable programming
6.31 Exercise: Extended Lagrangian conditions for nondifferentiable programs
6.32 Exercise: Constraint qualifications in nondifferentiable programming
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6.33 Exercise: Necessary optimality conditions for problems with inclusion constraints
6.34 Exercise: Optimization problems with preimage constraints via the extremal principle
6.35 Exercise: Suboptimality conditions for nonlinear and nondifferentiable programming
6.36 Exercise: Single-level reduction of optimistic bilevel programs
6.37 Exercise: Partial calmness and uniform weak sharp minima in bilevel programming
6.38 Exercise: Sufficient conditions uniform weak sharp minima
6.39 Exercise: Kernel condition for weak sharp minima
6.40 Exercise: Inf-differentiability and dual characterizations of weak sharp minimizers
6.41 Exercise: Regular subgradients of value functions in lower-level problems
6.42 Exercise: Comparing optimality conditions for bilevel programs with smooth data
6.43 Exercise: Necessary optimality conditions in Lipschitzian bilevel programming
6.44 Exercise: Extended inner semicontinuity in bilevel programming
6.45 Exercise: Bilevel programs under inner semicompactness of solution maps
6.46 Exercise: Convex bilevel programs
6.47 Exercise: Hölder subgradients in bilevel programming
6.48 Exercise: Mathematical programs with equilibrium constraints
6.49 Exercise: Value function constraint qualification
6.50 Exercise: Optimality conditions for optimistic programs with no partial calmness
6.51 Exercise: Two-level value function in bilevel programming
6.52 Exercise: Necessary optimality conditions in pessimistic bilevel programming
6.53 Exercise: Multiobjective approach to bilevel programming

Chapter 7

7.1 Definition: Strong Slater condition
7.2 Theorem: Equivalent descriptions of the Lipschitz-like property for infinite linear systems
7.3 Proposition: Extended Farkas lemma for infinite linear inequalities
7.4 Proposition: Graphical normals for infinite linear systems
7.5 Theorem: Coderivative calculation
7.6 Corollary: Limiting coderivative description
7.7 Proposition: Strong Slater points relative to the characteristic set
7.8 Theorem: Calculating the coderivative norm
7.9 Theorem: Coderivative criterion for the Lipschitz-like property of linear infinite systems
7.10 Proposition: Ascoli formula
7.11 Proposition: Extended Ascoli formula for single convex inequalities
7.12 Proposition: Extended Ascoli formula for infinite linear system
7.13 Example: Failure of the simplified distance formula in nonreflexive Asplund spaces
7.14 Lemma: Closed-graph property of characteristic sets
7.15 Theorem: Calculating the exact Lipschitzian bound of infinite linear systems
7.16 Corollary: Relationship between the exact Lipschitzian bound and coderivative norm
7.17 Theorem: Upper subdifferential conditions for SIPs with linear inequality constraints
7.18 Corollary: Necessary conditions for SIPs with Fréchet differentiable costs
7.19 Corollary: Upper subdifferential conditions in KKT form
7.20 Theorem: Lower subdifferential conditions for SIPs with linear inequality constraints
7.21 Proposition: Water resource problem as SIP in Banach spaces
7.22 Proposition: Necessary optimality conditions for water resource optimization
7.23 Proposition: Farkas-Minkowski property in water resource optimization
7.24 Proposition: Coderivative calculation for block-perturbed linear systems
7.25 Proposition: Characterizations of the Lipschitz-like property under block perturbations
7.26 Proposition: Relationships between exact Lipschitzian bounds of block-perturbed systems
7.27 Proposition: Coderivative norms for block-perturbed systems
7.28 Proposition: Lower estimate of the coderivative norm for the minimum partition
7.29 Theorem: Evaluation of coderivative norms for block-perturbed systems
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7.30 Proposition: Calculating coderivatives for infinite convex systems
7.31 Theorem: Evaluation of the coderivative norm for infinite convex systems
7.32 Example: Failure of the boundedness assumption for infinite convex inequality systems
7.33 Lemma: Necessary and sufficient conditions for global DC minimizers
7.34 Lemma: Sufficient conditions for local DC minimizers
7.35 Theorem: ε-Coderivative formulas for the exact regularity bound
7.36 Corollary: Calculating the exact regularity bound via coderivatives at nearby points
7.37 Corollary: Calculating the exact covering bound for convex-graph multifunctions
7.38 Theorem: Calculating the exact regularity bound via the basic coderivative norm
7.39 Definition: Bounded strong Slater condition
7.40 Example: Bounded from above constraint linear functions with unbounded coefficients
7.41 Proposition: Bounded strong Slater condition and metric regularity
7.42 Theorem: Explicit form of ε-coderivatives for infinite convex systems
7.43 Proposition: Explicit forms of the coderivative for infinite convex systems
7.44 Theorem: Exact regularity bound of infinite constraint systems
7.45 Example: Failure of the exact bound formula for countable systems in Asplund spaces
7.46 Example: Failure of the exact bound formula for infinite-dimensional equality constraints
7.47 Theorem: Exact bound formula for finite inequality and infinite equality constraints
7.48 Definition: Closedness qualification condition
7.49 Lemma: Epigraphical and subdifferential sum rules
7.50 Lemma: Generalized Farkas lemma for epigraphical systems
7.51 Theorem: Necessary optimality conditions for DC semi-infinite programs
7.52 Corollary: Subdifferential sum rule involving convex infinite constraints
7.53 Corollary: Normal cone calculation for convex infinite constraints
7.54 Theorem: Necessary and sufficient optimality conditions for convex SIPs
7.55 Theorem: Upper estimate for regular subgradients of value functions in DC SIPs
7.56 Lemma: Relationships between parametric and nonparametric CQC
7.57 Corollary: Upper subdifferential conditions for parametric DC SIPs
7.58 Definition: Inner subdifferential stability
7.59 Proposition: Sufficient conditions for inner subdifferential stability
7.60 Theorem: Basic subgradients of DC value functions under inner subdifferential stability
7.61 Definition: Subdifferential boundedness
7.62 Proposition: Sufficient condition for subdifferential boundedness of convex functions
7.63 Theorem: Basic subgradients of DC value functions under subdifferential boundedness
7.64 Theorem: Singular subgradients of value functions in DC programs
7.65 Lemma: SNEC property of marginal functions
7.66 Theorem: Lipschitz continuity of DC SIP value functions and optimality conditions
7.67 Theorem: Calculating subgradients of value functions in convex SIPs
7.68 Theorem: Subgradients of value functions in convex bilevel programs
7.69 Theorem: Necessary optimality condition for fully convex bilevel SIPs
7.70 Corollary: Specification of necessary optimality conditions for bilevel SIPs
7.71 Exercise: Dual description of consistency for infinite linear inequality systems
7.72 Exercise: Interiority conditions for infinite linear systems
7.73 Exercise: Extended Farkas lemma
7.74 Exercise: Distance function representation of the exact Lipschitzian bound
7.75 Exercise: Existence of best approximations
7.76 Exercise: Fenchel conjugates
7.77 Exercise: Fenchel conjugates for suprema of linear functions
7.78 Exercise: Coderivative calculation for infinite linear inequality systems
7.79 Exercise: Farkas-Minkowski property for infinite linear inequalities
7.80 Exercise: Equivalent descriptions of strong Slater condition for infinite linear systems
7.81 Exercise: Farkas-Minkowski property from strong Slater condition
7.82 Exercise: Nonempty graphical interior for infinite linear systems
7.83 Exercise: Lower subdifferential optimality conditions in KKT form
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7.84 Exercise: Coderivatives of block-perturbed infinite linear systems
7.85 Exercise: Characterization of SSC for block-perturbed linear systems
7.86 Exercise: Distance function for maximal partition
7.87 Exercise: Characteristic set for infinite convex inequalities
7.88 Exercise: Coderivative criterion for Lipschitzian stability of convex systems
7.89 Exercise: Metric regularity from Lipschitzian stability for convex systems
7.90 Exercise: Optimality conditions for SIPs with block-perturbed linear constraints
7.91 Exercise: Necessary optimality conditions for SIPs with convex constraints
7.92 Exercise: Sum rule for ε-subgradients of convex functions
7.93 Exercise: Optimality conditions in DC programming
7.94 Exercise: Optimality conditions in DC programming
7.95 Exercise: Calculating the exact regularity bound of convex-graph multifunctions
7.96 Exercise: Fenchel conjugates for suprema of convex functions
7.97 Exercise: Relationships between CQC and FMCQ for convex systems
7.98 Exercise: Slater constraint qualification for infinite convex systems
7.99 Exercise: Conjugate epigraphical and subdifferential sum rules
7.100 Exercise: Epigraphical Farkas lemma
7.101 Exercise: Epigraphs of conjugate functions via ε-subdifferentials
7.102 Exercise: Local Lipschitz continuity of convex functions
7.103 Exercise: Estimates for ε-subgradients of value functions in DC SIPs
7.104 Exercise: Subgradients of DC value functions under extended inner semicontinuity
7.105 Exercise: Closed-graph property of subdifferential mappings for convex functions
7.106 Exercise: Relationships between subdifferential estimates for DC value functions
7.107 Exercise: Lipschitz-like property for feasible solutions for parametric DC SIPs
7.108 Exercise: Upper subdifferential estimate for value functions in convex SIPs
7.109 Exercise: Conjugate epigraphical representations
7.110 Exercise: Subdifferentiation of value functions for convex programs
7.111 Exercise: Value functions and optimality conditions for convex constrained SIPs
7.112 Exercise: Comparison of Lipschitzian and DC approaches to convex bilevel programs

Chapter 8

8.1 Proposition: Uniform differentiability and EMFCQ assumptions on compact index sets
8.2 Definition: Extended Mangasarian-Fromovitz constraint qualification
8.3 Example: Violation of KKT for SIPs with countable index sets under EMFCQ
8.4 Definition: Perturbed Mangasarian-Fromovitz constraint qualification
8.5 Proposition: PMFCQ from EMFCQ
8.6 Example: EMFCQ doesn’t imply PMFCQ for infinite systems with compact index sets
8.7 Proposition: Equivalence between PMFCQ and SSC for differentiable convex systems
8.8 Definition: Nonlinear Farkas-Minkowski constraint qualification
8.9 Proposition: Sufficient conditions for NFMCQ
8.10 Example: Independence of NFMCQ and PMFCQ
8.11 Lemma: Weak∗ closed images of adjoint operators
8.12 Theorem: Regular and basic normals to infinite systems
8.13 Example: Violation of the normal cone representations in the absence of PMFCQ
8.14 Example: Perturbation of the active index set is essential
8.15 Corollary: Normal cone representation for infinite systems with unbounded gradients
8.16 Corollary: Normal cone representations for infinite systems with compact index sets
8.17 Theorem: Unperturbed representations of normal cones in general settings
8.18 Example: EMFCQ and NFMCQ don’t ensure unperturbed normal cone representations
8.19 Corollary: Normal cone for infinite convex systems
8.20 Proposition: Normal cone representations for infinite linear constraint systems
8.21 Proposition: Necessary optimality conditions for differentiable SIPs in Banach spaces
8.22 Theorem: Necessary optimality conditions for nonconvex SIPs in Asplund spaces, I
8.23 Corollary: Necessary conditions for finite-dimensional SIPs with compact index sets
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8.24 Proposition: SNC property of infinite systems
8.25 Theorem: Necessary optimality conditions for nonconvex SIPs in Asplund spaces, II
8.26 Theorem: Characterization of optimal solutions to convex SIPs
8.27 Lemma: Fuzzy estimates of regular subgradients for supremum functions
8.28 Lemma: Weak∗ closed conic hulls
8.29 Lemma: Outer limits of increasing mappings
8.30 Theorem: Pointbased estimates of basic subgradients for supremum functions
8.31 Example: Nonconvex subdifferential estimates for supremum functions
8.32 Proposition: Equicontinuous subdifferentiability
8.33 Proposition: Sufficient conditions for equicontinuous subdifferentiability
8.34 Corollary: Enhanced estimates of basic subgradients for supremum functions
8.35 Corollary: Subdifferential estimate without weak∗ closure
8.36 Corollary: Calculating basic subgradients for suprema of uniformly differentiable

functions
8.37 Theorem: Qualified necessary optimality conditions via basic subgradients
8.38 Corollary: Simplified necessary conditions for equicontinuously subdifferentiable

functions
8.39 Definition: Generalized PMFCQ
8.40 Theorem: Necessary optimality conditions under the generalized PMFCQ
8.41 Proposition: Conic constraints via supremum functions
8.42 Theorem: Fuzzy estimate of basic subgradients for scalarized supremum functions
8.43 Definition: Θ-coderivatives
8.44 Theorem: Pointbased subgradient estimates for scalarized supremum functions via

coderivatives
8.45 Theorem: Necessary optimality conditions for cone-constrained programs
8.46 Proposition: Solid cone constraints
8.47 Corollary: Optimality conditions under enhanced qualifications for solid cone constraints
8.48 Corollary: Cone-constrained problems in special settings
8.49 Lemma: Fuzzy estimates of basic normals to inverse images
8.50 Theorem: Fuzzy optimality conditions for cone-constrained programs
8.51 Corollary: Sequential optimality conditions for cone-constrained programs
8.52 Corollary: Fuzzy optimality conditions in nondifferentiable programming
8.53 Theorem: Neighborhood evaluation of the regularity bound for cone-constrained systems
8.54 Theorem: Pointbased conditions for metric regularity of conic systems
8.55 Proposition: Supported measures
8.56 Theorem: Necessary optimality conditions for nonconvex SIPs with arbitrary index sets
8.57 Corollary: Optimality conditions for nonconvex SIPs with compact index sets
8.58 Example: Qualification and optimality conditions for SIPs over compact index sets
8.59 Theorem: Pointbased characterizations of metric regularity for infinite inequality systems
8.60 Definition: CHIP for countable intersection
8.61 Theorem: Characterization of CHIP for intersections of convex sets
8.62 Corollary: Normal cone to solution sets for countable linear inequality systems
8.63 Definition: Bounded linear regularity for countable set systems
8.64 Proposition: Sufficient conditions for CHIP in terms of linear regularity
8.65 Corollary: CHIP via simplified linear regularity
8.66 Proposition: Sufficient condition for CHIP via tangential rank of intersection
8.67 Proposition: CHIP for countable intersections of invex-type sets
8.68 Corollary: CHIP for countable linear systems
8.69 Definition: Normal closedness and qualification conditions for countable set systems
8.70 Proposition: NQC for countable systems of convex sets
8.71 Lemma: Generalized normals to cones
8.72 Theorem: Fuzzy representation of regular normals to countable intersections of cones
8.73 Theorem: Exact representation of regular normals to countable intersections of cones
8.74 Lemma: Upper estimate of the regular normal cone to countable cone intersections
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8.75 Theorem: Upper estimates of the regular normal cone to countable set intersections
8.76 Theorem: Upper subdifferential conditions for SIPs with countable geometric constraints
8.77 Theorem: Lower subdifferential conditions for SIPs with countable geometric constraints
8.78 Theorem: Passing to SIPs with structural constraints
8.79 Definition: Subdifferential closedness and qualification conditions for countable constraints
8.80 Corollary: Upper and lower subdifferential conditions for SIPs with countable constraints
8.81 Definition: Local Farkas-Minkowski property
8.82 Proposition: Upper and lower subdifferential conditions for SIP with convex constraints
8.83 Corollary: Upper and lower subdifferential conditions for SIPs with linear constraints
8.84 Example: Comparison of qualification conditions
8.85 Exercise: Uniform differentiability assumptions over noncompact index sets
8.86 Exercise: Violation of KKT for SIPs with compact index sets
8.87 Exercise: Equivalent form of NFMCQ
8.88 Exercise: NFMCQ from MFCQ for finite inequality systems
8.89 Exercise: Closedness of conic convex hulls in finite dimensions
8.90 Exercise: Regular normal representation for infinite systems with unbounded gradients
8.91 Exercise: Normal cone representation under equicontinuity of gradients
8.92 Exercise: Normals to infinite convex sets and Farkas-Minkowski conditions
8.91 Exercise: Normal cone representation under equicontinuity of gradients
8.93 Exercise: Normals to infinite linear inequality systems
8.94 Exercise: Upper subdifferential conditions for SIPs with differentiable constraints
8.95 Exercise: Comparison of necessary and sufficient optimality conditions for convex SIPs
8.96 Exercise: Evaluations of generalized gradients for supremum functions
8.97 Exercise: Generalized gradients for suprema of subdifferentiable functions
8.98 Exercise: Relationships between qualification and optimality conditions for SIPs
8.99 Exercise: Supremum marginal functions
8.100 Exercise: Marginal Mangasarian-Fromovitz constraint qualification
8.101 Exercise: Basic subgradients of supremum marginal functions
8.102 Exercise: Mixed limiting Θ-coderivatives
8.103 Exercise: Θ-coderivative scalarization
8.104 Exercise: Θ-coderivative calculus
8.105 Exercise: Sequential optimality conditions for conic programs with Θ-convex constrains
8.106 Exercise: Covering and Lipschitzian stability of nonconvex cone-constrained systems
8.107 Exercise: Well-posedness properties of cone-constrained systems in infinite dimensions
8.108 Exercise: Comparing characterizations of well-posedness for convex inequality systems
8.109 Exercise: Optimality conditions for nonconvex and nonsmooth SIPs in infinite dimensions
8.110 Exercise: Comparison between necessary optimality conditions for Lipschitzian SIPs
8.111 Exercise: CHIP versions for convex sets
8.112 Exercise: Full duality for convex sets
8.113 Exercise: Violation of CHIP for systems of convex sets
8.114 Exercise: Distance to contingent directions
8.115 Exercise: CHIP for countable linear inequality systems via the Farkas lemma
8.116 Exercise: Comparison between the normal closedness and Farkas-Minkowski properties
8.117 Exercise: Interior of the regular normal cone for countable cone intersections
8.118 Exercise: Necessary conditions for SIPs with countable operator constraints
8.119 Exercise: Necessary conditions for SIPs with countable l.s.c. inequality constraints
8.120 Exercise: Relationships between global and local Farkas-Minkowski properties
8.121 Exercise: Relationships between SQC and CHIP for convex inequality systems

Chapter 9

9.1 Definition: Pareto minimal and weak minimal points of sets
9.2 Definition: Quasi-relative and intrinsic relative interiors of convex sets
9.3 Definition: Relative minimal points of sets
9.4 Definition: Minimizers of set-valued mappings
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9.5 Example: Global Pareto and weak Pareto minimizers
9.6 Definition: Subdifferentials of ordered set-valued mappings
9.7 Definition: Limiting monotonicity condition
9.8 Proposition: Sufficient conditions for limiting monotonicity
9.9 Definition: Approximate minimizers for ordered set-valued mappings
9.10 Theorem: Ekeland-type variational principle for ordered set-valued mappings
9.11 Corollary: Ekeland-type variational principle for ordered single-valued mappings
9.12 Theorem: Subdifferential variational principle for ordered set-valued mappings
9.13 Definition: Subdifferential Palais-Smale conditions for ordered multifunctions
9.14 Definition: Strong limiting monotonicity condition
9.15 Theorem: Existence of intrinsic relative minimizers for set-valued mappings
9.16 Corollary: Existence of primary relative and quasi-relative minimizers
9.17 Corollary: Existence of weak Pareto minimizers for set-valued mappings
9.18 Theorem: Existence of relative and weak Pareto minimizers for constrained problems
9.19 Corollary: Existence of relative and weak minimizers for problems with differentiable costs
9.20 Theorem: Fermat rules for local solutions to multiobjective problems
9.21 Remark: Failure of Fermat rule for multiobjective problems via regular subgradients
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Glossary of Notation and Acronyms

Operations and Symbols

:= and =: equal by definition
≡ identically equal
∗ indication of some dual/adjoint/polar operation
〈·, ·〉 canonical pairing between space X and its topological dual X∗
‖ · ‖ and | · | norm and absolute value (for a real number), respectively
[α]+ max{α, 0} for a real number α
x → x̄ x converges to x̄ strongly (by norm)

x
w∗→ x̄ x converges to x̄ weak∗ (in weak∗ topology of X∗)

w∗-lim weak∗ topological/net limit
lim inf lower limit for real numbers
lim sup upper limit for real numbers
Lim inf inner/lower sequential limit for set-valued mappings
Lim sup outer/upper sequential limit for set-valued mappings
dimX and codimX dimension and codimension of X, respectively
Πi∈IXi Cartesian product of Xi
≺ and ' preference relations: “less” and “less or equal”, respectively
'Θ “less or equal” preference with respect to cone Θ
haus(Ω1,Ω2) Pompeiu-Hausdorff distance between sets
β(Ω1,Ω2) Hausdorff semidistance between sets
ϕ1 ⊕ ϕ2 infimal convolution of two functions
lipF(x̄, ȳ) exact Lipschitzian bound of F around (x̄, ȳ)
clmF exact bound of calmness of F at (x̄, ȳ)
regF(x̄, ȳ) exact metric regularity bound of F around (x̄, ȳ)
hemiregF(x̄, ȳ) exact bound of hemiregularity of F at (x̄, ȳ)
covF(x̄, ȳ) exact covering/linear openness bound of F around (x̄, ȳ)
MinΞ = MinΘΞ collections of Pareto minimal points of Ξ with respect to cone Θ
wMinΞ = wMinΘΞ collections of weak Pareto minimal points of Ξ with respect to Θ
� end of proof

Spaces

R := (−∞,∞) real line
R := [−∞,∞] extended real line
R
n n-dimensional Euclidean space
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596 Glossary of Notation and Acronyms

R
n+ and R

n− nonnegative and nonpositive orthant of Rn, respectively
R
T space of λ = (λt | t ∈ T ) with λt ∈ R, t ∈ T

R
(T ) subspace of RT with λt 
= 0 for finitely many t ∈ T

R
(T )
+ positive (nonnegative) cone in R

(T )

supp λ support {t ∈ T | λt 
= 0} for λ ∈ R
(T )

l∞(T ) bounded functions on T with norm ‖p‖∞ := sup
{|p(t)| ∣∣ t ∈ T }

l∞+ (T ) positive (nonnegative) cone in l∞(T ).
C(T ) continuous functions on compact T with ‖p‖ := max

{|p(t)| ∣∣ t ∈ T }
C+(T ) positive (nonnegative) cone in C(T )
ba(T ) space of bounded and additive measures on T
ba+(T ) collection of nonnegative bounded and additive measures on T
rba(T ) space of regular finite Borel measures on T
rba+(T ) collection of nonnegative regular finite Borel measures on T
C1 class of functions locally continuously differentiable
C2 class of functions locally twice continuously differentiable
C1,1 subclass of C1 with locally Lipschitzian derivatives
c space of real number sequences with supremum norm
c0 subspace of c with sequences converging to zero

Sets

∅ empty set
N set of natural numbers
N notation for nets

x
Ω→ x̄ x converges to x̄ with x ∈ Ω

Br(x) ball centered at x with radius r
B and B

∗ closed unit balls of space and dual space in question
SX and S∗ unit spheres in X and in dual space in question, respectively
intΩ and riΩ interior and relative interior of Ω , respectively
qriΩ and iriΩ quasi-relative and intrinsic relative interiors of convex set Ω , respectively
coreΩ algebraic core of convex set Ω
clΩ and cl∗Ω closure and weak∗ topological closure of Ω , respectively
bdΩ set boundary
coΩ and clcoΩ convex hull and closed convex hull of Ω , respectively
coneΩ conic hull (convex conic hull in Chapters 7,8) of Ω
Ω+ positive polar cone to convex cone Ω
affΩ and aff Ω affine hull and closed affine hull of Ω , respectively
proj xΩ and projXΩ x-projection of sets in product spaces
Π(x;Ω) and ΠΩ(x̄) Euclidean projector of x to Ω
N(x̄;Ω) (basic, limiting) normal cone to Ω at x̄
N̂(x̄;Ω) prenormal cone or regular normal cone to Ω at x̄
N̂ε(x̄;Ω) set of ε-normals to Ω at x̄
N(x̄;Ω) convexified or Clarke normal cone to Ω at x̄
T (x̄;Ω) contingent cone to Ω at x̄
TW (x̄;Ω) weak contingent cone to Ω at x̄
T̂ (x̄;Ω) regular tangent cone to Ω at x̄

Functions

δ(·;Ω) indicator function of Ω
χΩ indicator function of Ω
σ(·;Ω) or σΩ support function of Ω
dist(·;Ω) or dΩ distance function for Ω
δt Dirac function/measure with support at t
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pF Minkowski gauge associate with set F
τF (·;Ω) minimal time function associated with dynamic F and target Ω
domϕ domain of ϕ : X → R

epiϕ, hypoϕ, and gphϕ epigraph, hypergraph, and graph of ϕ, respectively
ϕλ Moreau envelope of ϕ with rate λ > 0
ϕ∗ and ϕ∗∗ Fenchel conjugate and biconjugate of ϕ, respectively

x
ϕ→ x̄ x → x̄ with ϕ(x) → ϕ(x̄)

x
ϕ+→ x̄ x → x̄ with ϕ(x) → ϕ(x̄) and ϕ(x) ≥ ϕ(x̄)

ϕ′(x̄) or ∇ϕ(x̄) (Fréchet) derivative/gradient of ϕ at x̄
∂ϕ(x̄) (basic/limiting) subdifferential of ϕ at x̄
∂+ϕ(x̄) upper subdifferential of ϕ at x̄
∂0ϕ(x̄) symmetric subdifferential of ϕ at x̄
∂≥ϕ(x̄) right-sided subdifferential of ϕ at x̄
∂∞ϕ(x̄) singular subdifferential of ϕ at x̄
∂∞,+ϕ(x̄) upper singular subdifferential of ϕ at x̄
∂∞,0ϕ(x̄) symmetric singular subdifferential of ϕ at x̄
∂̂ϕ(x̄) presubdifferential or regular/Fréchet subdifferential of ϕ at x̄
∂̂εϕ(x̄) ε-subdifferential of ϕ at x̄
∂̂+ϕ(x̄) upper regular subdifferential of ϕ at x̄
∂ϕ(x̄) generalized gradient or convexified/Clarke subdifferential of ϕ at x̄
Λ0ϕ(x̄) Warga derivate container of ϕ at x̄
∂P ϕ(x̄) proximal subdifferential of ϕ at x̄
∂̂H(s)(x̄) s-Hölder subdifferential of ϕ at x̄
∂̂+
H(s)(x̄) upper s-Hölder subdifferential of ϕ at x̄
∂H(s)(x̄) limiting s-Hölder subdifferential of ϕ at x̄
dϕ(x̄) Gâteaux derivative of ϕ at x̄
ϕ′(x̄;w) directional derivative of ϕ at x̄ in direction w
dϕ(x̄;w) contingent derivative of ϕ at x̄ in direction w
ϕ0(x̄;w) generalized directional derivative of ϕ at x̄ in direction w
∇2ϕ(x̄) classical Hessian of ϕ at x̄
∂2ϕ, ∂2

Nϕ, and ∂2
Mϕ second-order subdifferentials (generalized Hessians) of ϕ

Mappings

f : X → Y single-valued mappings from X to Y
F : X →→ Y set-valued mappings from X to Y
domF domain of F
rgeF range of F
gphF graph of F
kerF kernel of F
‖F‖ norm of positive homogeneous mappings
F−1 : Y →→ X inverse mapping to F : X →→ Y

F(Ω) and F−1(Ω) image and inverse image/preimage of Ω under F
F ◦G composition of mappings

F
h◦ G h-composition of mappings

Δ(·;Ω) set indicator mapping
Ωρ set enlargement mapping
epiΘF epigraph of F : X →→ Y with respect to ordering cone Θ ⊂ Y

EF,Θ epigraphical multifunction for F : X →→ Y with respect to cone Θ ⊂ Y

E(f,Θ,Ω) generalized epigraph of f : X → Y with respect to Θ ⊂ Y and Ω ⊂ X

∇f (x̄) Jacobian or derivative of f : X → Y
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DF(x̄, ȳ) graphical/contingent derivative of F at (x̄, ȳ) ∈ gphF
D∗F(x̄, ȳ) (basic) coderivative of F at (x̄, ȳ) ∈ gphF
D∗
NF(x̄, ȳ) normal coderivative of F at (x̄, ȳ) ∈ gphF

D∗
MF(x̄, ȳ) and D̃∗

MF(x̄, ȳ) mixed and reversed mixed coderivative of F at (x̄, ȳ), respec-
tively

D̂∗F(x̄, ȳ) precoderivative or regular coderivative of F at (x̄, ȳ)
D̂∗
ε F (x̄, ȳ) ε-coderivative of F at (x̄, ȳ)

∂̂ΘF regular subdifferential of F : X →→ Y with respect to ordering
cone Θ ⊂ Y

∂ΘF basic subdifferential of F : X →→ Y with respect to cone Θ
∂∞
Θ F singular subdifferential of F : X →→ Y with respect to cone Θ
D̂∗
Θf regular Θ-coderivative of f : X → Y with respect to ordering

cone Θ ⊂ Y

D∗
N,Θf sequential normalΘ-coderivative of f : X → Y with respect to

cone Θ
D̃∗
N,Θf topological normal Θ-coderivative of f : X → Y with respect

to cone Θ
D̆∗
Nf cluster normal Θ-coderivative of f : X → Y with respect to

cone Θ
∂f (x̄) (Clarke) generalized Jacobian of f : Rn → R

m at x̄

Acronyms

AMVT approximate mean value theorem
CEL compactly epi-Lipschitzian (sets)
CEP conic extremal principle
CHIP conic hull intersection property
CRCQ constant rank constraint qualification
CQC closedness qualification condition
CQs constraint qualifications
DC difference of convex (functions, programs)
EMFCQ extended Mangasarian-Fromovitz constraint qualification
EPEC equilibrium programming with equilibrium constraints
FMCQ Farkas-Minkowski constraint qualification
GE generalized equation
GSIP generalized semi-infinite programming
KKT Karush-Kuhn-Tucker (conditions)
LCTV locally convex topological vector (spaces)
LFM local Farkas-Minkowski (property)
LICQ linear independence constraint qualification
l.s.c. lower semicontinuous (functions)
MFCQ Mangasarian-Fromovitz constraint qualification
MMA method of metric approximations
MMFCQ marginal Mangasarian-Fromovitz constraint qualification
MOEC multiobjective optimization with equilibrium constraints
MPEC mathematical programming with equilibrium constraint
NCC normal closedness condition
NDQ net demand qualification (condition)
NDSNQ net demand strong qualification (condition)
NDSQ net demand strict qualification (condition)
NDWC net demand weak qualification (condition)
NFMCQ nonlinear Farkas-Minkowski qualification condition
NLP nonlinear programming
NQC normal qualification condition
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ODE ordinary differential equation
PCS parametric constraint systems
PDE partial differential equation
PMFCQ perturbed Mangasarian-Fromovitz constraint qualification
PSNC partially sequentially normally compact (sets and mappings)
PVS parametric variational systems
SC subdifferential closedness condition
SCQ Slater constraint qualification
SDP semidefinite programming
SIP semi-infinite programming
SL semi-Lipschitzian (sums)
SNC sequentially normally compact
SNEC sequentially normally epicompact (sets)
SQC subdifferential qualification condition
SQP sequential quadratic programming
SSC strong Slater condition
RCQ Robinson constraint qualification
u.s.c. upper semicontinuous (functions)
VFCQ value function constraint qualification



Subject Index

abstract maximum principle in nondifferen-
tiable programming, 231

active constraint indices in NLP, 97, 98, 146
additive measures, 263, 413
adjoint derivatives, 14, 59
adjoint/transposed Jacobian matrix, 14
Alaoglu-Bourbaki theorem, 267, 270, 293,

309, 314, 344, 360, 362
almost stationary conditions, 82, 83, 101, 257
alternating projection algorithm, 101, 102
approximate minimizers for ordered set-valued

mappings, 460, 461, 463, 465, 494
strict, 460, 464, 470, 494
weak, 488

approximation theory, 447, 448
argmaximum mappings, 442
argminimum mappings, 162, 165, 182
Ascoli formula

classical, 270
extended to convex inequalities, 271
extended to infinite linear inequality

systems, 273
Asplund spaces, 45–47, 49, 51, 52, 55, 59–61,

63, 64, 90–99, 101, 102, 136–140,
142–146, 148–150, 152, 156–158,
181–190, 212, 213, 215, 248–251, 254,
256, 283, 316, 331, 336, 337, 346, 369,
371, 373, 374, 381, 387, 391, 398, 403,
406, 441, 443, 449, 464, 466, 468, 471,
478, 484, 486, 488, 490, 492, 494, 495,
506, 507, 509, 512, 519, 523, 528, 529,
531, 532

nonreflexive, 274
nonseparable, 91
separable, 59, 90

asymptotic strong CHIP, 418, 448
for countable convex sets, 418, 448

Aubin property, see Lipschitz-like property
automatic/algorithmic differentiation, 66
averaged projection algorithm, 101

balls, 1
centred at x with radius r , 1
closed unit, 1
dual, 1, 90–92, 98

Banach spaces, 45–54, 56, 59, 60, 62–65,
90–93, 95, 96, 98–101, 133–136,
138–142, 145–148, 150, 182, 183, 185,
186, 188, 189, 212, 214, 215, 248, 253,
257, 259, 260, 269, 276, 278, 279, 284,
298, 301, 303, 327, 348, 349, 351, 368,
373, 377, 391, 398, 406, 413, 441, 443,
444, 448, 451, 456, 460, 467, 486, 487,
489, 490, 492, 501, 515, 528, 529, 531

C∞-smooth, 91
Fréchet smooth, 47, 50, 58, 59, 63, 64, 90,

94, 99, 100, 156, 188, 189, 256
Gâteaux smooth, 331
reflexive, 47, 57, 59, 63, 273, 274, 290, 300,

331, 348, 380, 443
separable, 45, 138, 331, 415, 453, 486, 493
truthworthy, 156
weakly compactly generated, 331
with smooth bumps, 47, 51, 59, 94, 99
with smooth renorms, 99

Banach-Dieudonné-Krein-Šmulian theorem,
358

basic normals in Asplund spaces, 45, 59, 60,
91, 97, 478, 490, 509, 525, 529, 530,
532
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basic normals in Banach spaces, 45, 51, 58,
260, 351, 358, 528

basic normals to equality constraint sets, 97,
249

basic normals to finitely many inequality
constraint sets, 97, 249

basic normals to level sets, 97
basic normals to NLP constraint sets, 98, 242
basic subgradients in Asplund spaces, 51, 63,

64, 102, 283, 331, 369, 376, 377, 383,
391, 394, 398

basic subgradients in Banach spaces, 51, 63,
102, 330, 334

behavioral sciences, 494
Bellman equation, 256
bilevel optimal control, 159
bilevel optimization, see bilevel programs
bilevel programs, 159, 188, 219, 232, 257

constraint qualifications, 235, 257
economic interpretation, 233
intrinsic nonsmoothness, 219, 257
lower-level parametric problems, 233
lower-level regularity, 241–245, 247
multiobjective, 492
multiobjective optimization approach, 255,

258
necessary optimality conditions via

multiobjective optimization, 255
optimal value functions for lower-level

problems, 234, 252, 257
solution maps for lower-level parametric

problems, 233, 253, 254
upper-level problems, 233
upper-level regularity, 241, 243, 247
with nonsmooth lower-level costs, 492

bilevel programs, optimistic, 233, 237, 257,
449, 532

fully convex with SIP lower level, 340
reduction to DC SIPs, 342

in MPEC form, 253, 254, 258
inner semicompact solution maps, 247, 252
inner semicontinuous solution maps, 235,

240, 242, 250, 252
local optimal solutions, 235
modified solution maps, 234
necessary optimality conditions, see

necessary optimality conditions in
bilevel programming

partial calmness, see partial calmness/Ye-
Zhu

reduction to nondifferentiable programming,
235, 236, 240, 250, 254, 257

two-level value function, 234, 254
Lipschitz continuity, 255

value function approach, 234, 237, 257, 349
value function constraint qualification

(VFCQ)/Henrion-Surowiec, 254
with convex lower-level problems, 254, 258,

348
bilevel programs, pessimistic, 233, 255, 349,

449
for SIPs, 349
minimax interpretation, 234
necessary optimality conditions, 255
two-level value function

Lipschitz continuity, 255
upper subdifferential optimality conditions,

255
binary operations, 120, 144
Bishop-Phelps theorem, 90

classical, 90, 92
nonlinear/generalized, 90

Borel measures, 414, 415
boundary Mangasarian-Fromovitz constraint

qualification, 449
boundary points, 3, 47, 90, 516, 528

extremality, 69
nontriviality of basic normals, 92
normal cone characterization, 3, 72

bounded linear regularity, 420, 421, 444, 448
bounded strong Slater condition, 310, 315, 349
Brøndsted-Rockafellar theorem, 307, 334–336
Brockett theorem, 154

calculus of variations, 188, 532
calmness of multifunctions, 139–141, 155,

160, 254, 258, 449
coderivative conditions/Henrion-Outrata,

155
exact bound, 140
for PVS fields, 150
isolated, 214, 217

via graphical derivative, 214, 217
preservation under intersections, 140
robust isolated, 214, 218

calmness qualification condition, 101
Carathéodory theorem, 282
chain rules, 50

for basic subgradients, 53, 167, 172,
186–189, 255

for coderivatives, 50, 117, 119, 121, 126,
128, 143–145, 148, 157, 212, 255

for singular subgradients, 167, 186–188
for symmetric subgradients, 189

closedness qualification condition (CQC) for
SIPs, 322, 328, 329, 332, 334, 341, 342,
346, 348, 349, 438
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coderivative calculations
for constraint systems in NLP, 146, 185
for constraint systems in nondifferentiable

programming, 146, 185
for general PCS, 145
for general PVS, 123, 147
for infinite convex systems, 314
for PVS with composite fields, 125
for subdifferential PVS with composite

potentials, 124
of exact bound for relative covering, 138,

154
of exact covering bound for convex-graph

multifunctions, 308
of exact covering bound for locally

Lipschitzian single-valued mappings,
113

of exact covering bound for multifunctions,
109, 138, 153, 156

of exact covering bound for smooth
mappings, 113

of exact Lipschitzian bound for linear SIPs,
270, 278

of exact Lipschitzian bound for multifunc-
tions, 108, 112, 136, 137, 153, 154,
156

of exact regularity bound for locally
Lipschitzian single-valued mappings,
113

of exact regularity bound for multifunctions,
109, 137, 138, 156, 157

of exact regularity bound for PVS, 127
of exact regularity bound for smooth

mappings, 113
coderivative calculus, 103, 115, 121, 124, 126,

131, 153, 157, 158, 199, 212, 449, 486
coderivative characterizations of global

maximal monotonicity, 191
via limiting coderivatives, 199, 212, 216
via regular coderivative, 192, 196, 212, 216

coderivative characterizations of local maximal
monotonicity, 212

coderivative characterizations of semilocal
maximal monotonicity, 212

coderivative characterizations of strong global
maximal monotonicity

via limiting coderivatives, 201, 212
via regular coderivative, 201, 212

coderivative characterizations of strong local
maximal monotonicity, 191, 202, 216

modulus evaluations, 205, 210
via limiting coderivatives, 210, 215, 217
via regular coderivative, 205, 216

coderivative characterizations of strong
semilocal maximal monotonicity, 216

coderivative conditions for strong metric
regularity, 209, 217

coderivative normality, 136, 156
coderivative qualification conditions

basic, 115, 117, 142–144, 157
for chain rules, 117, 126, 143
for inverse images, 119
for SNC calculus, 145

coderivative/Mordukhovich criterion
for covering/linear openness of locally

Lipschitzian single-valued mappings,
113

for covering/linear openness of multi-
functions, 108, 114, 121, 122, 138,
153

for Lipschitz-like/Aubin property
of convex SIPs, 345

for Lipschitz-like/Aubin property of linear
SIPs, 260, 269

for Lipschitz-like/Aubin property of
multifunctions, 24, 99, 108, 117, 119,
122, 137, 145, 150, 153, 154, 157, 158,
164, 193, 255, 269, 484, 511

for local Lipschitz continuity of multifunc-
tions, 112

for metric regularity of locally Lipschitzian
single-valued mappings, 113

for metric regularity of multifunctions, 102,
108, 114, 119, 121, 122, 126, 128, 138,
150, 153, 157, 158, 163, 208, 511

coderivatives, 1, 13–15, 58, 103, 137, 191, 493
Θ-coderivatives, 395, 443, 448, 449

calculus, 443
cluster normal, 396–398, 410, 414
limiting mixed, 443, 448
regular, 395, 407
scalarization, 396, 397, 408, 443
sequential normal, 395, 397, 398, 415
topological normal, 395, 396, 398
ε-coderivatives, 13, 49, 50, 134
ε-coderivatives of convex-graph mappings,

301–303
basic/limiting/Mordukhovich, 13–17, 20,

24, 25, 33, 36, 48–50, 52, 55, 58–60, 63,
64, 103, 108, 112, 113, 115, 117–123,
126, 131, 134, 137, 138, 141–147, 150,
153–155, 157, 158, 200, 201, 210, 212,
215, 216, 253–255, 448, 478, 509

Clarke epi-coderivative, 448
directional limiting, 65
extremal property, 16, 60
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mixed, 49, 50, 52, 60, 64, 134, 136, 137,
142, 143, 145, 147, 148, 156–158, 182,
212, 215, 216, 254, 483, 495

normal, 48–50, 52, 60, 64, 136, 137,
142–147, 156–158, 182, 212, 254, 260,
456, 478, 491, 495, 509

of h-compositions, 120, 144
of convex-graph mappings, 14, 308, 319
of convex-valued mappings, 16
of differentiable mappings, 14, 49
of epigraphical multifunctions, 456
of implicit multifunctions, 147
of indicator mapping, 50
outer/Ioffe-Outrata, 65, 66
partial, 143
regular/Fréchet, 13–15, 49, 50, 52, 60, 136,

142, 197, 201, 206
reversed mixed, 138, 146, 150

for general subdifferential PVS, 148
for subdifferential PVS with composite

fields, 148
scalarization, 36, 50, 52, 55, 64, 113, 231,

402, 403
codimension, 91

finite, 91, 478, 481
coincidence points, 154
complementarity problems, 122, 130, 131

implicit, 125
second-order, 159

complementary slackness conditions
in bilevel programming, 241–245, 247
in nonlinear/nondifferentiable programming,

149, 226, 230, 243
composite optimization, 218
compositions of set-valued mappings
h-compositions, 120, 144
general, 117
inner products, 121
maxima, 120
minima, 120

cone-constrained optimization problems, see
conic programming

cones, 1
as epigraphs, 20
base, 458

bounded, 486
compact, 486

convex, 391, 395, 406, 443, 447, 451, 460,
464, 468, 478, 484, 486, 487, 491, 529

dual/polar, 390
normal, see normals
ordering, 395, 403, 443, 451, 452, 454, 456,

457, 460, 464, 468, 478, 482, 484, 486,
493, 514, 527, 529

nonsolid, 452–454, 457, 460, 464, 468,
475, 478, 483, 486, 487, 489, 490, 493

normality property, 457
with nonempty interior, 452, 475, 486,

488, 491, 495, 518
with nonempty intrinsic relative interior,

468
with nonempty quasi-relative interior, 454,

493
with nonempty relative interior, 452, 453,

475, 486
pointed, 452, 457, 486, 487, 495, 508
positive, 261, 265, 324, 343, 391, 396, 403,

413, 447, 514, 516, 527, 531
generating, 515, 516, 531

positive polar, 391, 396, 403, 478, 514, 516
proper, 456, 460, 478, 484, 487
solid/with nonempty interior, 400, 415, 508
tangent, see tangent cones

conic extremal systems, 73, 425, 427, 430,
431, 433

conic extremality conditions for countable
cone systems, 75

conic programming, 66, 157, 159, 390, 398,
447

circular cone programming, 159
covering for infinite nonconvex systems,

443
Lipschitzian stability for infinite nonconvex

systems, 443
second-order cone/Lorentz/ice-cream

programs, 159, 217, 447
semidefinite programs (SDPs), 159, 447

conical hull intersection property (CHIP), 417
for convex systems, 418, 444, 445
for countable set systems, 417, 420–424,

432, 433, 435, 444, 448
for finite set systems

convex, 448
for invex-type systems, 423
for linear systems, 425, 444

constant rank constraint qualification (CRCQ),
258

constraint systems in nonlinear programming,
98

contingent derivative for mappings, see
graphical derivative

contingent extremal points, see locally
extremal points of countably many sets

contingent extremal systems, 73, 74
contingent extremality conditions for countable

set systems, 75
control systems, 154, 188, 255, 447, 449

feedback control, 154, 449
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convex analysis, 7, 28, 57, 60, 61, 64
convex FMCQ, see Farkas-Minkowski

constraint qualification (FMCQ), convex
convex separation, 7, 47, 57, 60, 67, 72, 92,

262, 344, 360, 379, 390, 391, 400, 401,
403

for finitely many sets, 71, 89
proper, 72

convolution mapping, 165
cooperative games, 65
covering/linear openness, 103, 104, 133, 138,

154
characterizations via ε-coderivatives, 156
exact bound, 104, 106

calculations for convex-graph multifunc-
tions, 112, 308, 349

for convex-graph multifunctions via
Robinson-Ursescu theorem, 112, 138

for smooth mappings via Lyusternik-Graves
theorem, 113

global, 135, 154
in conic programming, 443
neighborhood characterizations via regular

coderivative, 137, 156
pointbased characterizations via limiting

coderivatives, 138, 156
relative, 135, 138, 141, 160

coderivative characterization, 153
semilocal, 134, 138, 154, 156
under compositions, 145

crowd motion model, 159

DC optimization, 188, 223, 248, 257, 301, 302,
321, 346

for metric regularity, 301, 304, 348
in bilevel programming, 340, 342, 348
necessary and sufficient conditions for

global minimizers/Hiriart-Urruty, 302,
346, 349

necessary optimality conditions, 223, 243,
245, 248, 257

sufficient conditions for local minimiz-
ers/Dür, 303, 346, 349

Dennis-Moré theorem, 156
density, 90

of convex subgradients/Brøndsted-
Rockafellar, 307

of regular normals, 90
of regular subgradients, 90, 180

derivate containers/Warga, 62, 229
Dieudonné theorem, 274
difference interiority condition, 92, 95

difference rules
for Hölder subgradients, 253
for regular subgradients, 243, 245, 257

differentiability, 9
Fréchet, 9, 22, 30, 45, 47–49, 51, 54, 63, 83,

94, 135, 142, 151, 182, 221, 281
Gâteaux, 94, 130, 132, 133, 151, 152, 331
strict, 14, 46, 48–54, 91, 97, 98, 142,

144–146, 182, 184, 186
strict Hadamard, 189

differential inclusions, 59, 60
Dirac measure, 264, 270, 279, 286, 291, 312
directional derivatives, 33, 493

classical, 56, 60, 420
contingent/Dini-Hadamard, 33, 38, 56, 63,

66, 251
generalized/Clarke, 54, 61, 187, 388
Rockafellar, 58, 61, 101
weak contingent, 63

directional/tangential/Clarke regularity, 56
distance function, 2, 36, 37, 39, 40, 42–44, 53,

55–57, 64, 66, 93, 133, 270, 271, 407
distance to infeasibility/Renegar, 157
dual spaces, 45
dual-space approach, 1, 67, 99, 158, 451,

493–495, 531
duality correspondences, 7, 57, 59

Clarke directional derivative-generalized
gradient, 55, 61

Clarke tangent-normal, 58, 59
contingent-prenormal, 8, 33, 39, 58
contingent-presubdifferential, 33, 56, 63
directional derivatives-subgradients, 60
for convex sets, 418, 444
Rockafellar directional derivative-

convexified subgradients, 61
weak contingent-prenormal, 47
weak contingent-presubdifferential, 63

dynamic programming, 188, 256
principle of optimality/Bellman, 256

economic modeling, 65, 69, 159, 188, 448, 499
in macroeconomics, 433
in microeconomics, 499, 529, 530, 532
in welfare economics, see models of welfare

economics
Ekeland points, 156
electricity spot markets, 159
epigraphical multifunctions

for functions, 24, 53, 137, 140
for ordered mappings, 456, 479, 483, 486

epigraphical regularity, see subdifferential
regularity, 170
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epigraphs
for functions, 19, 20, 23, 28, 33, 96, 137,

347, 508
for ordered mappings, 395, 456, 482, 486

equidirectional differentiability of functions,
420

equilibria, 58, 493
approximate decentralized price in

nonconvex models, 528, 530
Arrow-Debreu in convex welfare economics,

528
Cournot-Nash, 492
decentralized price in convex models, 528,

530
marginal price, 58, 499, 512, 515, 527, 530
Nash, 492
Pareto, see Pareto-type solutions in

multiobjective optimization
equilibrium problems, 69, 159, 492, 493
equilibrium programs with equilibrium

constraints (EPECs), 159, 492, 493
necessary optimality conditions, 492

error bounds, 105, 155, 447
Euclidean projector, see projections
Euler equations

abstract, 99
approximate, 73, 99
generalized, 70, 99

Euler-Lagrange conditions, 59, 60
existence of basic subgradients, 92
extended Mangasarian-Fromovitz constraint

qualification (EMFCQ), 353, 362, 367,
440, 442, 445

extended real line, 19
extremal principles, 61, 67, 99, 100, 220, 451,

493
abstract, 99
approximate, 72, 90, 92–95, 99, 144, 145,

249, 466, 472, 480, 488, 490, 492, 494,
528

basic, 70, 73, 75, 84, 85, 91–93, 99, 157,
225, 226, 231, 248, 249, 491, 492,
494–496, 530

basic in product spaces, 507, 511, 525, 527,
529, 531, 532

basic, algorithmic description, 101
conic (CEP), 76, 78, 80, 92, 425, 427, 448
contingent, 80, 432, 448
convex, 92, 95, 100
exact/limiting, see basic
extended for systems of multifunctions

approximate, 100, 490, 496
basic, 100, 490, 496

for countable set systems, 75, 100, 417, 425,
433, 448

for finitely many sets, 70, 72
pointbased/exact, see basic
rated, 93, 100
relations with variational principles for

functions, 101
extremal systems, 68

global, 92, 95, 100
of countably many sets, 73, 75, 428, 431
of finitely many sets, 68, 72, 74, 89, 452,

479
extremal systems of countably many cones,

see conic extremal systems
extremal systems of multifunctions, 489, 496

facility location problems, 66
failure of metric regularity, 121

for general PVS, 158
for PVS with monotone fields, 130, 150
for solution maps to parameterized

complementarity problems, 131
for solution maps to parameterized

variational inequalities, 130
for subdifferential PVS with composite

fields, 133, 152, 158
for subdifferential PVS with composite

potentials, 131, 132
for subdifferential PVS with convex

potentials, 130, 151
for subdifferential PVS with prox-regular

potentials, 132, 152
for subdifferential PVS with strongly

amenable potentials, 132
Farkas lemma

for convex epigraphical systems, 323, 346
for infinite convex systems, 312, 349
for infinite linear inequalities, 263, 344, 444

Farkas-Minkowski constraint qualification
(FMCQ), convex, 322, 336, 346, 348,
438, 440

Farkas-Minkowski property, 280–283, 289,
322, 349, 426

for countable convex inequalities, 437, 444,
445

for infinite linear inequalities, 344, 345, 444
in water resource optimization, 289

feedback stabilization, 154, 188
via linear openness, 154
via openness, 154

Fenchel conjugates, 271, 274, 290, 298, 304,
319, 330, 342, 344, 346, 347

of supremum functions, 319, 344
Fenchel duality, 212, 272, 290, 298, 348, 407
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Fermat rules, 33
classical, 71, 78
generalized, 33, 83, 172, 174, 221, 244, 271,

369, 370, 398, 482
for multiobjective problems, 478, 482

Fermat-Torricelli-Steiner problems, 57
classical, 57, 66
generalized, 57, 66

financial management, 447
fixed points, 84, 154, 494
Fubini theorem, 55
full stability

for parametric variational systems, 216
full stability of local minimizers

Hölderian
second-order characterizations, 159

in PDE systems, 159
Lipschitzian, 158

second-order characterizations, 159
functions, 1

C2-smooth, 124, 213
amenable, 63, 128, 150, 159
approximately convex, 65, 190
biconjugate, 446
bounded from below, 81, 93, 94
bump, 47, 94
characteristic, 286
concave, 9, 30, 61, 63, 94, 100, 222, 330
continuous, 21, 22, 24, 54, 63, 97, 171, 226
continuously prox-regular, see prox-regular

and subdifferentially continuous
convex, 10, 11, 28, 45, 54, 58, 60, 63, 98,

100, 129, 132, 139, 140, 152, 181, 212,
248, 271, 298, 302, 331, 347, 373

convex polyhedral, 187
DC (difference of convex), 188, 223, 257,

302, 304, 321, 327, 348
directionally locally Lipschitzian, 101
domain, 19
equicontinuously subdifferentiable, 382,

384, 388, 441, 447
extended piecewise linear, 159
extended piecewise linear-quadratic, 159
extended-real-valued, 1, 19, 20, 24, 28, 30,

31, 33, 53, 56, 58, 60, 66, 87, 93, 94, 96,
102, 128, 130, 132, 161, 187, 189, 190,
192, 211–215, 217, 220, 347, 369, 508

Fréchet differentiable, 30, 45, 48, 54, 63, 83,
101, 182, 183, 238, 281, 282, 287, 288,
352, 368, 434, 440

uniform, 352, 373, 445
indicator, 19, 131
inf-differentiable, 251

sufficient conditions, 251

level sets, 71, 76, 77, 82, 97
locally Lipschitzian, 20, 21, 23, 32, 34, 48,

50, 52–56, 58, 61, 62, 64, 88, 90, 92,
96–98, 102, 133, 137, 141, 146, 170,
172, 175, 177, 184, 187, 188, 222, 226,
228, 237, 243, 247, 249–251, 256, 284,
347, 374, 382, 391, 401, 404, 435

uniform, 374, 412, 444, 446
locally Lipschitzian via singular subgra-

dients, 23, 61, 137, 172, 175, 188,
337

lower semicontinuous (l.s.c.), 2, 19, 24, 55,
61, 63, 81, 82, 87, 90, 93, 97, 98, 101,
102, 110, 130, 137, 139, 161, 170, 173,
176, 181, 187, 189, 212, 215, 220, 225,
298, 331, 347, 369, 442, 448, 508

lower–C2, 216
monotone, 10, 179
of bounded variation, 286
of class C1,1, 132, 152
proper, 2, 19
prox-regular, 46, 58, 131, 151, 152, 159,

192, 211, 213, 214, 216, 217
quasiconvex, 248
semialgebraic, 218, 447
semiconcave, 222
smooth/C1, 9, 10, 13, 27, 47, 53, 63, 71, 241
strictly differentiable, 51, 97, 98, 147, 177,

183, 184, 186, 250, 440, 442
uniform, 352, 359, 369, 382, 385, 389,

445, 447
strongly amenable, 128, 132, 150, 151
subadditive, 81, 140
subdifferentially continuous, 131, 151, 152,

159, 192, 211, 213, 214, 216–218
subsmooth, 447

uniformly, 441
upper semicontinuous (u.s.c.), 97, 112, 170,

226, 364, 441, 442, 446

Gaussian distribution, 65
Gelfand integral, 65
generalized compositions, 166
generalized equations (GEs)/Robinson, 66,

103, 121, 130, 156, 158, 217, 218
base, 122
field, 122
parameterized, 122, 253
solution maps, 122, 253
well-posedness, 122

generalized Leibniz rules, 65, 157
generalized nonseparation property, see normal

qualification condition
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generalized semi-infinite programs (GSIPs),
442, 447

generalized separation property, see basic
extremal principle

geometric approach, 1, 2, 60, 67, 99, 100, 451
global optimization, 222, 257, 302, 304
gradient and subgradient flows, 159
graphical derivative, 59, 140, 214, 217
graphical regularity of mappings, 50, 118, 119,

143
M-regularity, 50, 142, 144
N -regularity, 50, 142, 144, 182, 186

graphically Lipschitzian mappings
see Lipschitzian manifolds 58

growth conditions, 81, 82, 93
quadratic, see second-order
second-order, 139, 140, 158, 212, 213, 215,

217, 218

Hamilton-Jacobi equations, 63, 188, 256
minimax solutions, 188, 256
viscosity solutions, 63, 188, 256

Hamiltonians, 449
Hausdorff semidistance, 141
Hausdorff spaces, 282

compact, 282, 413, 414, 446
Hessians

classical, 124, 147, 213
generalized, see second-order subdifferen-

tials
hierarchical optimization, 159, 232, 257
higher-order stability analysis, 447
Hilbert spaces, 46, 47, 49, 52, 53, 56, 92,

136, 139, 152, 158, 189, 191, 211–213,
215–217, 486

Hoffman lemma, 155
hypomonotonicity of operators, 191

for single-valued mappings, 192, 211, 212,
216

for subgradient mappings, 192, 211, 216
global, 192, 199, 211, 212, 216
local, 192, 202, 206, 210, 211, 216
preservation under summation, 211
semilocal, 192, 195, 196, 200, 211, 216
semilocal with convex domain, 200

ill-posedness, 157, 348
images of sets under mappings

direct image, 12
inverse image/preimage, 12, 48, 91

implicit multifunctions, 147, 149, 155, 156
inequality constraint systems, 97

as source of nonsmoothness, 256

countable
with l.s.c. functions, 435
with Lipschitzian functions, 435

finite, 97, 225, 228, 230, 231, 233, 236, 238,
243, 245, 249, 251, 254, 256

infinite, 259
block-perturbed inequalities, 290
convex inequalities, 290, 298, 301, 321
linear inequalities, 260, 263, 283, 441
with arbitrary index sets, 260, 263, 298,

321
with compact index sets, 259

infimal convolution, 164
infinite convex systems, 301, 310, 327

Lipschitzian stability, 300, 347
metric regularity, see metric regularity for

infinite convex systems
normal cone calculations, 367

infinite differentiable systems, 351, 445
normal cone calculations

for basic normals, 351, 358, 365
for regular normals, 351, 358, 365

infinite linear systems
normal cone calculations, 368

inner subdifferential stability, 331, 332
intersection rules

for coderivatives, 142
for normals, see normal cone intersection

rules
inverse subdifferentials, 139, 140, 160
Ioffe-Tikhomirov theorem, 446
iterative procedures, 93, 114, 135, 150, 461,

468

Jacobian, classical, 14, 55, 113, 118, 123, 125,
210, 249

full rank, see surjective derivatives
Jacobian, generalized/Clarke, 55

relations with coderivatives, 55
relations with subgradients of scalaruiza-

tions, 55
Josefson-Nissenzweig theorem, 91, 412

Karush-Kuhn-Tucker (KKT) systems, 122
classical, 122, 218
generalized, 159, 218, 492

Kenderov theorem, 129, 213, 217
Krein-Šmulian theorem, 515

López-Volle formula, 446
Lagrange multiplier rules

classical, 227
generalized, 226, 227

for suboptimal solutions, 250
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in condensed form, 230, 232
via basic subgradients, 242, 256
via Clarke’s subgradients, 228, 256
via symmetric subgradients, 227, 256
via Warga’s derivate containers, 229, 256
with all nonnegative multipliers, 227, 228,

256
in multiobjective optimization, 495

Lagrange multipliers, 159, 226
critical, 159, 218
in bilevel programming, 241, 242, 244, 247
in NLPs, 226, 227
in nondifferentiable programming, 225, 227,

242
noncritical, 159, 218

Lagrangians
classical, 227, 230, 442
extended, 230

limiting qualification condition, 94, 95, 101
linear independence constraint qualification

(LICQ), 146, 183
linear operators, 14, 48

adjoint, 14, 48, 358
injective, 48
surjective, 48, 373

linear regular intersection, see normal
qualification condition

Lipschitz-like property, 104–106, 111, 112,
117, 119, 129, 132–134, 136, 137, 140,
142–145, 154, 157, 158, 193, 211, 218,
255, 338, 466, 484, 511

exact bound, 104, 106, 134, 344
for block-perturbed SIPs, 290, 348
for convex SIPs, 300, 347, 348
for convex-graph multifunctions, 137
for linear SIPs, 260, 270, 348
for PVS fields, 126, 150
for subgradient mappings, 132, 150, 152
in conic programming, 443
necessary conditions via ε-coderivatives,

134, 466, 472
neighborhood characterizations via regular

coderivative, 136
pointbased characterizations via limiting

coderivatives, 137, 156
preservation rules, 145
via convexified normals, 111, 154
via mixed coderivative, 134

Lipschitzian cone-constrained systems, 406
Lipschitzian stability, 65, 66, 103, 157, 158,

216, 290, 300, 348
local Farkas-Minkowski (LFM) property

for countable convex inequalities, 436, 445,
449

local minimizers
for scalar problems, 69, 213, 214, 218, 220,

231
as extremal points of sets, 69, 226, 231,

249
full stability, see full stability of local

minimizers
tilt stability, see till stability of local

minimizers
locally convex topological vector (LCTV)

spaces, 92, 95, 98, 100, 349, 454
locally extremal points

for systems of multifunctions, 489
in models of welfare economics, 523, 524,

531
in multiobjective optimization, 452, 465,

479, 489
of countably many sets, 73
of finitely many sets, 68, 70, 72, 85, 452,

465, 479, 510
rated, 93
weak contingent, 92

Lojasiewicz gradient inequality, 447
basic subgradient extension, 447

lower regularity of functions, 53, 54, 63, 87,
89, 97, 166, 168, 170, 172, 186, 380

of distance function, 53
Lyusternik-Graves iterative process, 114, 150
Lyusternik-Graves theorem, see metric

regularity for smooth mappings

Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ)

classical, 98, 146, 183–185, 218, 249, 250,
440

generalized, 98, 184, 227, 249, 348
manifolds, 46

C2-smooth, 102
Lipschitzian, 46, 48, 58, 112
strictly smooth, 46, 48, 58, 112

marginal Mangasarian-Fromovitz constraint
qualification (MMFCQ), 442, 447

marginal/optimal value functions, 161, 181,
188, 254, 256

convex, 252, 272
in DC SIPs, 321, 327, 337
Lipschitz continuity, 164, 185, 188, 242,

247, 337, 338
lower semicontinuity, 185, 242

mathematical programs with equilibrium
constraints (MPECs), 66, 159, 253

M(ordukhovich)-stationarity, 258
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necessary optimality conditions, see
necessary optimality conditions for
MPECs

stationarity conditions, 159, 255, 258
maximum functions, 150, 159, 168, 187, 256,

446
Mazur weak closure theorem, 274, 296, 379
mean value theorems, 161

approximate/Zagrodny, 173, 180, 181, 187,
189

classical/Lagrange, 171, 179, 352, 440
mean value inequalities, 174, 176, 178, 180,

187, 189, 191, 195, 207
multidimensional/Clarke-Ledyaev, 189
via basic subgradients, 172, 187
via generalized gradients/Lebourge, 189
via symmetric subgradients/Kruger-

Mordukhovich, 171, 187, 189,
212

method of metric approximations (MMA), 57,
64, 70, 76, 90, 93, 99, 101, 157, 256

metric hemiregularity, 141, 156, 160
exact bound, 141
for linear operators, 142
strong, 142, 156, 160

metric qualification condition, 101
metric regularity, 65, 101, 103, 104, 106, 126,

143, 158, 301, 512
directional, 65, 153
exact bound, 104, 106, 149, 150, 301
exact bound for convex-graph multifunc-

tions, 346, 349
via ε-coderivatives, 303, 348
via coderivatives, 307, 309, 348

failure, see failure of metric regularity
for convex subgradient mapping, 213
for convex-graph multifunctions via

Robinson-Ursescu theorem, 112, 138,
303

for Fréchet differentiable mappings, 135
for general PCS, 149
for general PVS, 126, 149, 150
for gradient mappings, 213
for implicit multifunctions, 149
for infinite convex systems, 300, 310, 312,

345, 349, 448
exact bound calculations, 315, 319
via bounded strong Slater condition, 311

for infinite Lipschitzian inequality systems,
416

exact bound via cluster Θ-coderivative,
416

for Lipschitzian cone-constrained systems,
406, 448

exact bound via cluster Θ-coderivative,
410

exact bound via regular Θ-coderivative,
406

for NLP constraint systems, 149
for PVS with composite fields, 150
for PVS with composite potentials, 150
for smooth mappings via Lyusternik-Graves

theorem, 113, 360
for subdifferential PVS with composite

fields, 128
for subdifferential PVS with composite

subdifferentials, 127
for subgradient mappings, 139, 213, 214,

217
global, 135
Hölder, 155
neighborhood characterizations via regular

coderivative, 137, 208
perfect, 349
pointbased characterizations via limiting

coderivatives, 138
radius/Dontchev-Lewis-Rockafellar, 157
relative, 135
restrictive, 189
semilocal, 134, 137
strong, 159, 209, 212, 213, 217

coderivative evaluations of moduli, 209,
212

for convex subgradient mapping, 212, 217
for gradient mappings, 213
for subgradient mappings, 214, 217
via single-valued localizations, 212

under compositions, 145
metric regularity at (vs. around) a point, see

metric subregularity
metric semiregularity, 156
metric spaces, 65, 93, 100, 133–135, 139, 441,

489, 490
compact, 415, 441, 446
complete, 93, 100

metric subregularity, 65, 139–141, 153, 155,
158, 160

directional, 65
for convex subgradient mapping, 215
for general PVS, 150
for subdifferential PVS with convex

subdifferentials, 151
for subgradient mappings, 139
Hölder, 155, 156
of higher order, 155
semilocal, 139, 141
strong, 155, 203, 214, 217, 218

for convex subgradient mapping, 215, 218
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for subgradient mappings, 215, 218
of higher order, 155
via coderivatives, 215

uniform, 155
via coderivatives, 155

minimax optimization, 391, 398, 487
minimum functions, 168, 186, 188
minimum time functions, 65, 66
Minkowski gauge, 66, 94
Minty theorem, 192, 195, 204
models of welfare economics, 58, 499, 530

admissible sets, 500
aggregate endowment of scarce resources,

500, 530
as problems of set-valued optimization, 502,

530
asymptotic closedness from desirability

condition, 515, 531
asymptotic closedness from free disposal of

production, 515, 531
asymptotic closedness from implicit free

disposal of commodities, 515, 531
asymptotic closedness from properness,

517, 528, 531
commodity spaces, 499

ordered, 514, 516, 528, 531
consumption sets, 500
desirability condition, 515, 516
excess demand condition, 527
feasible allocations, 500
free disposal of production, 515, 516
implicit free disposal of commodities, 500,

515, 516, 527
incomplete information, 500, 530
markets clear, 500, 516
net demand constraint sets, 500, 527, 530,

531
net demand qualification conditions, 521,

525, 531
from asymptotic closedness, 522, 529
net demand qualification (NDQ), 521, 529,

531
net demand strict qualification (NDSQ),

522, 531
net demand strong qualification (NDSNQ),

522, 531
net demand weak qualification (NDWQ),

521, 531
Pareto-type optimal allocations, see

Pareto-type optimal allocations in
welfare economics

preference sets, 500, 530
prices

approximate decentralized, 528, 530

decentralized, 528, 530
marginal, 499, 512, 515, 519, 527, 530,

531
nonlinear, 528, 530
positive, 515, 516, 519, 528, 531

production sets, 500
properness properties, 516, 531

for preference, 516, 520, 528, 531
for production, 517, 520, 528, 531
total production sets, 516
uniform properness/Mas-Collel, 517, 531

second fundamental theorem of welfare
economics, see second welfare theorems

uncertainty condition, 500
via set-valued optimization, see set-valued

optimization with level-set preferences
and geometric constraints

monotone operators, global, 46, 156, 179, 189,
191, 196, 199, 204, 212, 216

coderivative characterizations, see coderiva-
tive characterizations of global maximal
monotonicity

for convex subgradient mapping, 131, 179,
190, 212

for subgradient mappings, 46, 58, 179, 190,
212

maximal, 46, 58, 156, 179, 190, 191, 195,
196, 198, 199, 212, 213, 216, 217

preservation via coderivatives, 200, 212,
217

strong, 218
monotone operators, global strong

maximal, 201, 216
preservation via coderivatives, 212, 217

monotone operators, local, 129, 191, 202
locally single-valued, 129
maximal, 217
with Lipschitz-like property, 129

monotone operators, local strong, 191, 203
coderivative characterizations, see coderiva-

tive characterizations of strong local
maximal monotonicity

maximal, 202, 203, 215
preservation via coderivatives, 217
via Lipschitzian localizations, 203

maximal for subgradient mappings, 211
monotone operators, semilocal, 196, 198, 212,

216
with convex domain, 196, 200, 212

Moreau envelope, 152
Moreau-Rockafellar theorem, 57, 60, 185, 271,

328, 346, 373, 448
multifunctions, see set-valued mappings
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multiobjective optimization, 65, 69, 100, 448,
449, 451, see set-valued optimization,
493

applications to risk management, 496
in bilevel programming, 255
sufficient optimality conditions via extremal

principles, 496
super minimizers/Borwein-Zhuang, 489,

496
necessary optimality conditions, 489, 496

multiobjective optimization with equilibrium
constraints (MOEC), 492, 495

necessary optimality conditions, 492

necessary optimality conditions
for closed preferences in multiobjective

optimization, 490
for fully localized minimizers in multiobjec-

tive optimization, 509, 527
for generalized order optimality in

multiobjective optimization, 491
for GSIPs, 443, 447
for MPECs, 253, 258
for nonparametric DC SIPs, 321, 323
for parametric DC SIPs, 330, 339

lower subdifferential, 339
upper subdifferential, 330

for SIPs, 279, 342, 347, 349
in asymptotic form, 280, 283, 369, 370,

387
in KKT form, 280, 282, 283, 345, 353,

369, 370, 388, 440, 445, 449
lower subdifferential, 279, 283, 345, 368,

369, 373, 387, 434, 435, 437, 444, 446
upper subdifferential, 279, 280, 433, 435,

437, 441, 444, 446
with block perturbations, 345, 348
with convex inequality systems, 346, 348,

437
with countable geometric constraints, 433,

434, 448, 449
with countable inequality constraints, 435,

437, 445, 448, 449
with countable operator constraints, 434,

444
with Fréchet differentiable costs, 282, 368,

434
with l.s.c. costs, 280, 283, 369, 373
with linear inequality constraints, 348, 438
with Lipschitzian data, 387, 389, 414, 435,

444, 448
with nonconvex differentiable constraints,

368–370, 373, 441

for super minimizers in multiobjective
optimization, 489

in bilevel programming, 219, 232, 258
optimistic with fully convex data, 248,

252, 342, 348, 349
optimistic with Lipschitzian data, 247,

251, 257, 348
optimistic with smooth data, 241, 242,

244, 251, 254, 257
pessimistic, 254, 255, 258
via coderivatives, 254
via multiobjective optimization, 255

in multiobjective optimization, see
Pareto-type solutions in multiobjective
optimization

in nondifferentiable programming, 219, 253,
254, 257, 258, 393

approximate in qualified form, 404, 448
lower subdifferential for minimization,

220, 222, 224, 225, 248, 249, 256
upper subdifferential for inequality

constraints, 231
upper subdifferential for minimization,

220, 222, 224, 225, 248, 249, 257
in nonsmooth conic programming

approximate in qualified form, 403, 404,
448

pointbased in qualified form, 398, 400,
448

sequential in qualified form, 404, 443
nets, 261

directed sets, 397
in weak∗ topology, 397

nonconvex separation, 67, 70, 100
nondifferentiable programming, 98, 159, 219

constraint qualifications, 97, 224, 249, 256,
257

with functional constraints, 225, 249
with geometric constraints, 220, 224, 248,

255
with inclusion/operator constraints, 249
with inverse image constraints, 249

nonlinear deformations, 100, 489
nonlinear Farkas-Minkowski constraint

qualification (NFMCQ), 356, 367, 369,
370, 373, 440, 444, 445, 447

nonlinear programs (NLPs), 98, 159, 218, 227
nonlinear separation/Tammer (Gerstewitz,

Gerth), 100, 493, 496
nonoverlapping property of countable cone

systems, 76, 78, 427, 431
nonsmooth optimization, 99, 219, 255
normal closedness condition (NCC), 425, 432,

434, 444, 449
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normal cone calculations
for countable set systems, 432, 449
for infinite convex systems, 325
for infinite differentiable systems, 440, 445

with equicontinuous constraint gradients,
440

with unbounded gradients, 363, 446
for infinite linear systems, 419, 441

normal cone intersection rules, 67
for basic normals, 67, 84, 88, 94, 95, 97, 98,

101, 116, 144, 145, 161, 225
for convex sets, 95
for infinite convex systems, 325, 367
for infinite nonconvex systems, see normals

to infinite set intersections
for regular normals, 94, 144, 145

to countable set systems, 427, 430, 434,
448

normal cones, see normals
normal extremality conditions for countable

set systems, 75, 80
normal qualification condition, 84, 95, 98, 101,

142, 225
for countable convex sets, 425
for countable set systems, 425, 427, 429,

430, 432, 433, 449
normal regularity, 48, 53, 85, 86, 95, 97, 98,

144, 146, 149, 434, 436
normals, 1, 2, 493
M-normals, see ba-

sic/limiting/Mordukhovich
ε-normals, 4, 29, 44, 45, 51, 58, 60, 63, 91,

145, 430
ε-normals to convex sets, 302
basic/limiting/Mordukhovich, 3–6, 13, 20,

42–44, 57–60, 63, 70, 73, 75, 80, 84, 86,
93, 95, 97–99, 101, 102, 109, 111, 116,
141, 143–146, 153, 187, 221, 224, 225,
242, 245, 249, 253, 256, 351, 358, 403,
417, 426, 431, 432, 478, 490, 491, 509,
512, 519, 525, 528–532

convexified/Clarke, 46, 50, 55, 58, 59, 111,
187

directional limiting, 65
limiting representations, 5, 58, 85
norm/strong limiting, 59
regular/Fréchet, 4, 40, 44, 47, 58–60, 73, 89,

94, 109, 145, 184, 221, 351, 358, 426,
430, 434, 444, 474, 480, 520, 528

restricted/Bauschke et al., 102
to contingent cones, 47
to convex sets, 7, 122, 137, 231, 253, 264,

418
to epigraphs, 20, 225, 435

to graphs, 225
to infinite set intersections

basic normals to nonconvex differentiable
systems, 351, 358, 365, 445

regular normals to nonconvex differen-
tiable systems, 351, 358, 365, 440,
445

to inverse images, 48, 119, 143–145, 188,
249, 403, 445

normed spaces, 95, 100, 486, 487, 489, 490,
508

norms, 1, 5
dual, 260, 266, 360, 413, 466, 473, 480
Euclidean, 1, 5, 13, 23, 63, 64, 71, 78, 195
Kadec, 57
of homogeneous mappings, 12, 108
sum norm, 13, 29, 30, 94, 466, 471, 480

numerical algorithms using basic subgradients,
66, 155, 157, 447

oligopolistic markets, 492
open mapping theorem, 48, 91
openness at linear rate, see covering/linear

openness
openness property, 105, 133, 154
operations research, 447
optimal control, 59, 60, 188, 255, 532

discrete approximations, 159
of MPECs, 159
of ODE systems, 57, 59, 60, 99, 255, 256
of PDE systems, 157, 159
of sweeping process, 159
on infinite horizon, 433

optimality conditions
in non-qualified/Fritz John form, 224, 226,

254, 256
in qualified/normal/KKT form, 224, 226,

238, 249, 256
outer derivative/Zhang-Treiman, 140, 158,

160, 214, 217
of epigraphical multifunctions, 140
relationship with graphical derivative, 140

outer Lipschitzian, see upper Lipschitzian
property/Robinson

Painlevé-Kuratowski inner limit, 16, 331
Painlevé-Kuratowski outer limit, 2–5, 13, 31,

45, 48, 51, 58, 336, 378
Palais-Smale conditions

basic subdifferential for ordered multifunc-
tions, 475, 494

classical, 467
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regular subdifferential for ordered mul-
tifunctions, 467, 468, 470, 474, 476,
494

parametric constraint systems (PCS), 122, 145,
155

parametric optimization, 161, 280
parametric variational systems (PVS), 103,

121, 147, 158, 159
subdifferential, 122, 216
subdifferential with composite fields, 125,

492
subdifferential with composite potentials,

123, 124, 492
Pareto-type optimal allocations in welfare

economics, 499, 500, 526
as boundary points of sets, 528
as locally extremal points of sets, 513, 524,

529, 531
global efficient, 501, 523, 524, 530, 531

existence of global minimizers, 527
global strict, 523, 525
global strong, 501, 523, 525, 529, 530
global vs. local, 525, 529, 532
global weak, 501, 523, 525, 529, 530, 532
local efficient, 500, 526, 530
local strict, 501, 528

as fully localized minimizers in set-valued
optimization, 503, 530

local strong, 501, 528, 530
as fully localized strong minimizers in

set-valued optimization, 503, 530
local weak, 500, 530, 531

as fully localized weak minimizers in
set-valued optimization, 503, 530

under properness, 518
Pareto-type optimal points of sets, 451

intrinsic relative minimal, 453, 486
minimal/efficient, 452
primary relative minimal, 453, 486
quasi-relative minimal, 454, 486
weak minimal/weak efficient, 452, 487

Pareto-type solutions in multiobjective
optimization, 454, 487

approximate minimizers, see approximate
minimizers for ordered set-valued
mappings

differences between global and local
notions, 455

global maximizers, 492
sufficient optimality conditions, 492, 496

global weak maximizers, 491
sufficient optimality conditions, 491, 496

intrinsic relative minimizers, 454, 469
coderivative Fermat rule, 478, 495

existence, 468, 476, 488, 494
necessary optimality conditions in

constrained settings, 483, 489, 495
subdifferential Fermat rule, 478, 495

minimizers, 454, 460, 464
coderivative Fermat rule, 478, 495
existence, 488, 496
necessary optimality conditions in

constrained settings, 483, 489, 495
subdifferential Fermat rule, 478, 495

primary relative minimizers, 454
coderivative Fermat rule, 478, 495
existence, 475, 476, 488, 494
necessary optimality conditions in

constrained settings, 483, 489, 495
subdifferential Fermat rule, 478, 495

properly efficient, 495, 496
quasi-relative minimizers, 454

coderivative Fermat rule, 478, 495
existence, 475, 488, 496
necessary optimality conditions in

constrained settings, 483, 495
subdifferential Fermat rule, 478, 495

relative minimizers, 454, 468, 475, 478,
483, 488, 489, 493, 495

weak minimizers, 454, 488
coderivative Fermat rule, 478, 495
existence, 475, 476, 488, 494
necessary optimality conditions in

constrained settings, 483, 489, 495
subdifferential Fermat rule, 478, 495

partial calmness/Ye-Zhu, 240, 244, 247, 252
from uniform weak sharp minima, 237, 240
in bilevel programming, 236, 239, 254, 257,

258, 341, 349
sufficient conditions, 250, 254, 257
via penalization, 236, 239, 257, 341

partial order, 395, 443, 460, 491
partial sequential normal compactness (PSNC)

for mappings, 99, 136, 138, 142, 143, 146,
148, 150, 156, 157, 182, 478, 481, 484,
489, 495, 509

for sets, 101, 145, 491, 506, 509, 511, 514
for sets, strong, 506, 511, 514
of Lipschitz-like multifunctions, 136

partially ordered spaces, 443, 448, 449, 454,
456, 460, 467, 478, 486, 487, 491, 494,
500, 514, 519, 528, 529

PDE systems, 157, 159, 256
penalty functions, 101, 156
perturbed Mangasarian-Fromovitz constraint

qualification (PMFCQ), 353, 358, 362,
367, 368, 371, 373, 445
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generalized for Lipschitzian SIPs, 389, 441,
447

plus-minus symmetry, 54, 55, 61, 222, 229,
243

pointbased conditions, 103, 153, 156
polynomial systems, 447
Pompeiu-Hausdorff metric, 134
Pontryagin maximum principle, 60, 256
portfolio optimization, 447
precoderivative, see regular/Fréchet

coderivative
precoderivatives, abstract, 63
preduality, 8
preference relations, 451, 457, 458, 460, 463,

465, 469, 488, 491, 492
closed/Mordukhovich-Treiman-Zhu, 487,

490, 496
necessary optimality conditions, 490, 496

generalized Pareto, 487, 489
level sets, 487, 490, 501, 530
lexicographical order, 487
locally satiated, 487, 509, 510, 512, 523
proper, 517
transitive, 487
uniformly proper, 517
variable/with variable structures, 494

prenormal cone, see regular normals
prenormals, abstract, 63
presubdifferential, see regular subgradients
presubdifferentials, abstract, 63, 98
primal-dual algorithms, 159
primal-space approach, 7, 57, 493
product rules

for ε-normals, 46
for basic normals, 3, 511
for basic subgradients, 168, 186
for coderivatives, 121, 143, 144
for regular normals, 46

product spaces with infinite indices, 261
positive cones, 261

projections, 3, 37, 47, 53, 56, 65, 71, 140, 144,
174

proximal point methods, 156, 159, 216
pseudo-Lipschitz property, see Lipschitz-like

property
pseudo-upper Lipschitz continuity, see

calmness of multifunctions
PSNC calculus, see SNC calculus
PSNC preservation rules, see SNC calculus
PSNC property

for PCS, 146
under compositions, 144
under summation, 144

quasi-Newton methods, 155, 159
convergence rate, 155

quasimetric spaces, 494
quasivariational inequalities, 159

Rademacher theorem, 55
Preiss extension, 55

resolvent, 192
Riesz representation, 286
Robinson constraint qualification (RCQ), 218,

401, 402, 410
strict, 218

Robinson stability, 155
Robinson strong regularity, 159, 217
Robinson-Ursescu theorem, see metric regular-

ity for convex-graph multifunctions, 154,
262, 303

robustness, 3
of basic normals, 3, 46, 58, 81, 110
of basic subgradients, 21
of convexified normals, 58
of singular subgradients, 21
of well-posedness properties, 104, 153

saddle points, 157, 490
saturated measures, 65
second welfare theorems, 499

in convex models
Arrow-Debreu, 512, 528, 529
for strict Pareto optimal allocations, 528
for strong Pareto optimal allocations, 528
for weak Pareto optimal allocations, 528
under properness properties, 518, 529

in nonconvex models, 512, 530
approximate, 528
for global Pareto optimal allocations, 529,

531
for global strict Pareto optimal allocations,

523, 529, 531
for global strong Pareto optimal

allocations, 523, 529, 531
for global weak Pareto optimal allocations,

523, 529, 531
for local Pareto optimal allocations, 529
for local strict Pareto optimal allocations,

512, 516, 527, 531
for local strong Pareto optimal allocations,

513, 516, 527, 531
for local weak Pareto optimal allocations,

512, 519, 527, 531
under properness properties, 519, 529
via nonlinear decentralized prices, 528

second-order calculations, 159
second-order calculus rules, 158, 492
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second-order characterizations, 159
of convexity, 159
of metric regularity for subgradient

mappings, 159, 213
of metric subregularity for subgradient

mappings, 159
of monotonicity, 159
of strong metric regularity for subgradient

mappings, 159
of strong metric subregularity for

subgradient mappings, 159
second-order necessary optimality conditions,

159
second-order qualification condition, 148
second-order subdifferentials/generalized

Hessians/Mordukhovich, 124, 158
basic, 124, 127, 147, 213, 492
chain rules, 125, 127, 131, 148, 150, 152
mixed, 147
normal, 147
of indicator function, 159

second-order sufficient optimality conditions,
159, 218

second-order variational analysis, 158, 159,
192, 211, 216

semi-infinite programs (SIPs), 73, 100, 256,
259

applications to water resources, 287, 348
asymptotic necessary optimality

conditions, 288
bang-bang regime under Farkas-

Minkowski condition, 288
characteristic sets for convex inequality

systems, 299, 345
characteristic sets for linear inequality

systems, 261, 275
characterizations of Lipschitz-like property

of feasible solutions
to block-perturbed inequality systems via

coderivatives, 290, 292
to block-perturbed inequality systems via

SSC, 292
to block-perturbed systems with exact

bound calculations, 292
to convex inequality systems via

coderivatives, 299
to linear inequality systems via

coderivatives, 260, 269
to linear inequality systems via SSC, 261
to linear inequality systems with exact

bound calculations, 270, 276
coderivative calculations

for block-perturbed systems, 291, 345
for convex inequality systems, 299

for linear inequality systems, 260, 265,
270, 279–281, 284, 344

coderivative norm calculations
for block-perturbed systems, 293, 294, 296
for convex inequality systems, 299, 345
for linear inequality systems, 260, 267

decision variables, 260
feasible solutions, 260
for convex inequality systems, 298, 310,

348, 436, 437
necessary and sufficient optimality

conditions, 325, 373, 441
for linear inequality systems, 260, 348, 437
for nonconvex differentiable systems, 348,

371, 445
with arbitrary index sets, 348, 351
with compact index sets, 348
with equicontinuous derivatives, 371

metric regularity, see metric regularity for
infinite convex systems

necessary optimality conditions, see
necessary optimality conditions for SIPs

parameters, 260
two-level, optimistic, 279, 284, 340
with arbitrary index sets, 259, 279, 348, 349,

351, 368, 374, 387, 412, 445–448
with compact index sets, 259, 282, 284, 348,

353, 364, 370, 413, 415, 440, 445, 447,
448

with countable equality constraints, 449
with countable geometric constraints, 417,

433
with countable index sets, 417, 425, 433,

435, 436, 439, 444
with countable l.s.c. inequalities, 433, 435,

445
with DC objectives, 321

nonparametric, 321
parametric, 326

with l.s.c. costs, 413
with Lipschitzian data, 373, 387, 390, 412,

441, 446–449
semi-Lipschitzian sums, 88, 140, 213, 338
semialgebraic geometry, 447
semimetric regularity, 141, 160
separable reduction, 90, 99
separation for finitely many sets, 69
sequential normal compactness (SNC)

for convex cones, 478, 481
for functions, 96, 256
for infinite systems in SIPs, 371
for mappings, 101, 136, 137, 182, 185, 256,

489
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for sets, 91–95, 99, 101, 144, 256, 284, 371,
398, 481, 484, 491, 495, 509, 513, 520

sequential normal epi-compactness (SNEC) of
functions, 61, 96, 97, 137, 182, 185–187,
189, 249, 337, 369, 398

for marginal functions, 337
subgradient description, 97, 337, 349
under additions, 98

sequential quadratic programming (SQP), 218
sequential weak∗ compactness, 91, 331, 334,

397, 398, 415, 487
sequential weak∗ limit, 45, 48, 51, 58, 60, 64,

65, 99, 100, 102, 331, 336
set extremality and separation, 69, 72, 92
set-valued mappings, 1, 12, 18, 58–60, 103

locally Lipschitzian/Hausdorff, 60, 105,
111, 112, 133, 134, 141

closed-graph, 2, 102
compact-valued, 105, 133, 134, 486
convex-graph, 12, 14, 49, 112, 137, 262, 301
convex-valued, 12, 49, 60
domain, 12
graph, 12, 13
inner semicompact, 96, 144, 145, 185
inner semicompact, extended, 182, 185, 252,

347
inner semicontinuous, 16, 49, 96, 115, 117,

120, 129, 142, 143, 162, 165, 332, 334
inner semicontinuous, extended, 182, 184,

185, 252, 347
intersection, 139
inverse, 12, 137–140, 203, 217
kernel, 12
level sets, 457
Lipschitz-like, see Lipschitz-like property
locally adjoint, 60
locally bounded, 12, 96, 112, 116, 117, 119,

162, 165
locally compact, 96, 134, 135
lower semicontinuous, see inner semicontin-

uous
normally semicontinuous, 138
ordered, 454, 456, 457, 464, 467, 486,

493–495
domination property, 457, 458, 487
epiclosed, 457, 464, 468, 470, 484, 486
level-closed, 457, 458, 460, 486
limiting monotonicity condition, 458–460,

468, 487, 488, 494
minimum sets, 457, 458
normality property, 458, 459, 486
quasibounded from below, 457, 458, 460,

467, 468, 470

strong limiting monotonicity condition,
468, 470, 488, 494

weak limiting monotonicity condition,
487, 488

outer semicontinuous, 102, 141, 380
positively homogeneous, 12, 111
range, 12
submonotone, 190
uniformly bounded, see locally bounded
weak∗ outer stable, 380, 388

set-valued optimization, 451, 454, see
multiobjective optimization, 493, 496

fully localized minimizers/Bao-
Mordukhovich, 501, 502, 506,
509, 513, 516, 530, 531

in welfare economics, see set-valued
optimization with level-set preferences
and geometric constraints

mixed qualification condition, 483, 485, 495
optimal solutions, see Pareto-type optimal

solutions in multiobjective optimization
with equilibrium constraints, 489
with explicit geometric constraints, 475,

483, 488, 491, 495
with functional constraints, 488
with level-set preferences and geometric

constraints, 499, 501, 530
description of welfare economics, 502
existence of optimal solutions, 527
fully localized minimizers, 502
fully localized strong minimizers, 502
fully localized weak minimizers, 501
necessary conditions for fully localized

minimizers, 509, 527, 531
necessary conditions for fully localized

strong minimizers, 510, 527, 531
necessary conditions for fully localized

weak minimizers, 509, 527, 531
with operator constraints, 488

sets, 2
affine hull, 72, 91, 453
approximately convex, 65
asymptotically closed, 507, 509, 510, 512,

515, 527–529, 531
sufficient conditions, 508, 527
with product structures, 508

boundary, 1
closure, 1
compactly epi-Lipschitzian (CEL), 91, 99

for convex sets, 100
complements, 508
conic hull, 1, 3, 357, 377, 453, 469, 486
convex, 4, 7, 57, 72, 91, 95, 100, 426, 486,

491, 508
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convex conic hull, 2, 261, 283, 287, 322,
356, 357, 365, 368, 389, 390, 436, 440

convex hull, 1, 46, 55, 62, 97, 282
core, 95, 453
dually norm-stable, 146, 147, 149
enlargements, 40, 42, 43, 64, 65
epi-Lipschitzian, 91, 99
generalized polyhedral, 159
interior, 1, 89, 91, 92, 95, 137, 453, 528
intrinsic relative interior, 453, 486
locally closed, 2, 68
of invex type, 423
of positive reach, 159
order stable, 529
polyhedral, 159, 217
polyhedric, 159
quasi-relative interior, 453, 486
relative interior, 60, 72, 91, 453, 486

sharp minima/Polyak, 159, 258
sign conditions for multipliers, 149, 226, 227
simplex method, 256
single-valued localizations, 202

calm, 142, 156
Lipschitzian, 202, 203, 206, 211

single-valued mappings, 18, 23
Θ-convex, 395, 396, 401, 410, 443, 491
w∗-strictly Lipschitzian, 64
C2-smooth, 124
locally Lipschitzian, 23, 36, 46, 52, 55, 58,

64, 113, 121, 156, 167, 192, 211, 216,
391, 396, 406, 443, 489, 491

uniform, 416
compactly Lipschitzian, 64
continuous, 211, 212, 491
Fréchet differentiable, 49, 135, 142, 184,

477
indicator, 49, 118
nonexpansive, 192
smooth/C1, 14, 113, 115, 118
strictly differentiable, 14, 46, 48–50, 52, 53,

91, 114, 135, 144, 145, 147–150, 152,
249, 352, 396, 401, 410, 443, 445

uniform, 413, 416
strictly Lipschitzian, 52, 64, 443
upper Lipschitzian, 476

singular subgradients in Asplund spaces, 52,
61, 63, 182, 336, 398

singular subgradients in Banach spaces, 52, 61,
335

Sion minimax theorem, 349, 446
Slater constraint qualification (SCQ), 271, 274,

319, 348, 355, 401, 402
for infinite convex systems, 346, 445

slopes, 153

smooth variational descriptions, 9
of regular normals, 9, 47, 50, 59, 528
of regular subgradients, 30, 63, 83, 94, 184,

220, 232, 243, 257, 281
SNC calculus, 100, 144–146, 483, 485, 489,

495, 506, 532
SNC preservation rules, see SNC calculus
SNC property

for convex sets, 100
for equality constraint systems, 97
for inequality constraint systems, 97
for inverse images, 144
for level sets, 97
for NLP constraint systems, 98
for set intersections, 95
in nondifferentiable programming, 98
under compositions, 144
under summation, 96, 144

sparsity optimization, 102
Stackelberg games, 232
Stieltjes integral, 286
stochastic dynamic programming, 65, 188
stochastic programming, 159
strict derivative characterization of strong

metric regularity/Kummer, 217
strict derivative of multifuctions/Thibault, 217
strong CHIP

for countable set systems, 418, 437, 444,
448

for finite set systems
convex, 448

strong Lagrange duality, 272
strong Slater condition (SSC), 311

for block-perturbed systems, 292, 345
for infinite convex systems, 299, 355, 373,

445
for infinite linear systems, 261, 273, 276,

279, 282, 284, 291, 345
strong Slater points, 261–263, 266, 267, 276,

279, 299
subderivatives, see directional derivatives
subdifferential boundedness of convex

functions, 334
subdifferential calculus, 102, 161, 188, 224,

253, 368
subdifferential characterizations

of constancy, 177, 187
of function monotonicity, 179, 187, 189
of global monotonicity, 179
of local Lipschitz continuity, 176, 189
of strict (Fréchet) differentiability, 177, 187,

189
of strict Hadamard differentiability, 189

subdifferential closed-graph property, 128, 347
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subdifferential closedness condition (SCC) for
countable inequalities, 435, 436, 438,
449

subdifferential minimality, 98, 102
subdifferential qualification conditions, 346

basic, 87, 88, 98, 101, 102, 163, 170, 188,
221, 225, 284

for Lipschitzian SIPs, 436
basic, 414, 435
convexified, 415

for marginal functions, 162, 165, 182, 185,
188

for mean value theorem, 172
for partial subgradients, 186
for SIPs with countable geometric

constraints, 434
for SIPs with differentiable constraints, 369,

373
Mordukhovich-Rockafellar, 102
tangential, 101, 188

subdifferential quotient rules, 168, 186
subdifferential regularity, 53, 54, 87, 89, 97,

150, 166, 251
subdifferentials of extended-real-valued

functions, see subgradients
subdifferentials of ordered multifunctions/Bao-

Mordukhovich, 493
basic, 456, 467, 479, 486, 492, 495

calculus rules, 456, 467, 475, 486, 488,
489, 495, 497

scalarization, 489
range condition, 456, 486
regular, 456, 464, 466, 471, 473, 483, 486,

494, 495
scalarization, 489
sum rule, 476, 495

singular, 483, 495
subdifferentials of ordered single-valued and

set-valued mappings, 494
subdifferentiation of generalized compositions,

185, 188
basic subgradients, 166
chain rules, 167
singular subgradients, 166

subdifferentiation of infimal convolution, 164,
185

basic subgradients, 164, 185
for convex functions, 185
singular subgradients, 164, 185

subdifferentiation of marginal functions, 161,
188, 232

basic subgradients, 162, 164, 182, 188, 242,
245, 247, 251, 257, 495

convex subgradients, 185, 252

regular subgradients, 245
singular subgradients, 161, 164, 182
symmetric subgradients, 252, 258

subdifferentiation of maximum functions, 187,
387

basic subgradients, 170, 187, 188, 399
convex subgradients, 446
generalized gradients, 446
singular subgradients, 170, 187, 188, 399

subdifferentiation of minimum functions, 186,
188

basic subgradients, 169, 186, 188
regular subgradients, 186
singular subgradients, 169, 186, 188

subdifferentiation of scalarized supremum
functions, 448

basic subgradients, 392, 396
regular subgradients, 392

subdifferentiation of supremum functions, 374,
377, 387

ε-subgradients of convex analysis, 446
basic subgradients, 380, 399, 446, 447
generalized gradients, 441
regular subgradients, 375, 380, 447

subdifferentiation of supremum marginal
functions

basic subgradients, 442, 447, 449
subdifferentiation of value functions

in bilevel convex SIPs, 341
in convex SIPs, 348

exact subgradient calculations, 339, 347
upper subgradients, 347

in DC SIPs, 321, 349
ε-subgradients, 327, 334, 347
basic subgradients, 330, 332, 334, 347,

349
regular subgradients, 327, 347, 349
singular subgradients, 335, 347, 349

subdifferentiation of value functions in
parametric NLPs, 183

basic subgradients, 185, 242
regular subgradients, 183, 251
singular subgradients, 185

subdifferentiation of value functions in para-
metric nondifferentiable programming

basic subgradients, 184, 247
regular subgradients, 184, 247
singular subgradients, 184, 247

subgradients, 1, 60
M-subgradients, see ba-

sic/limiting/Mordukhovich
≥ gradients, see regular subgradients
≤ gradients, see upper regular subgradients
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ε-subgradients, 28, 29, 31, 50, 51, 56, 63,
64, 156, 347

basic/limiting/Mordukhovich, 20–24, 27,
31, 33, 34, 37, 42, 53, 55, 56, 58, 61–66,
98, 101, 102, 113, 125, 139–141, 155,
158, 161, 162, 172, 174, 175, 180, 184,
186–189, 213–215, 218, 220, 224, 225,
230, 232, 243, 245, 247, 250, 251,
254–257, 283, 284, 330, 332, 334, 347,
348, 369, 374, 380, 387, 391, 415, 434,
435, 447, 491, 492

approximate/ε-subgradients for convex
functions, 63, 64, 301, 304, 347

approximate/Ioffe, 64, 102, 156, 158, 188
directional limiting, 65
from coderivatives, 24, 63
generalized gradients/Clarke, 54, 55, 61, 62,

102, 187, 189, 190, 222, 229, 243, 441,
446, 447

extended, 446
Hölder, 253
lexicographical/Nesterov, 66
limiting Hölder, 253
limiting representations, 31, 53, 63
linear/Treiman, 66
moderate/Michel-Penot, 66
of convex functions, 28, 46, 54, 58, 60, 61,

98, 128, 139, 158, 179, 218, 252, 339,
347

of distance function at in-set points, 37, 56,
64

of distance function at out-of-set points, 37,
42, 43, 56, 64, 141

of indicator function, 21, 29
of integral functionals, 64, 65, 157
of locally Lipschitzian functions, 23
of norm function, 82
outer limiting/Ioffe-Outrata, 65, 66
outer regular/Mordukhovich-Mou, 65
partial basic, 186
partial singular, 186
proximal, 53, 61, 189, 253
regular/viscosity/Fréchet, 28, 29, 31, 33, 34,

40, 51–53, 63, 83, 97, 99, 101, 173, 175,
176, 180, 183, 187, 189, 220, 243, 245,
247, 251, 253, 254, 257, 281, 337, 347,
375, 397, 403

right-sided limiting/Mordukhovich-Nam,
42–44, 56, 65, 66

second-order, see second-order subdifferen-
tials

singular, 20–24, 31, 32, 51, 53, 55, 61, 97,
102, 128, 137, 161, 162, 171, 186–188,

220, 224, 247, 284, 335, 337, 347, 348,
369, 398, 414, 434, 435

symmetric basic, 53–55, 61, 63, 171, 187,
227, 252, 256

symmetric singular, 53, 171
upper basic, 53, 55, 61, 62
upper for concave functions, 61
upper Hölder, 253
upper regular, 54, 63, 83, 101, 184, 220,

222, 224, 231, 280, 282, 330, 434
upper singular, 53

suboptimal/ε-optimal solutions, 82, 101, 249,
257, 376

suboptimality conditions, 376
from variational principles for functions, 83,

257
in NLPs and nondifferentiable program-

ming, 249
lower subdifferential, 83, 257
upper subdifferential, 83, 257

subspace property of convexified normals, 46,
50, 58, 111

in infinite dimensions, 46, 50
Rockafellar theorem, 46, 58, 111

sufficient optimality conditions
in scalar optimization, 496
in vector optimization, 496

sum rules, 32
conjugate epigraphical, 322, 342, 346
for basic normals, 86, 88, 96
for basic subdifferential of ordered

mappings, 475, 476, 483
for basic subgradients, 33, 87, 89, 98, 101,

102, 140, 141, 147, 161, 163, 172, 174,
182, 186, 213, 220, 221, 224, 231, 232,
242, 245, 249, 250, 255, 370, 387, 399,
446

for Clarke’s subgradients, 102
for coderivatives, 115, 117, 118, 121, 142,

143, 145, 157, 192, 194, 212, 255, 485
for convex ε-subgradients, 302, 346
for convex subgradients, 57, 98, 185, 271,

322, 328, 332, 349, 373
in infinite systems, 325, 335, 342, 346

for regular subdifferential of ordered
mappings, 476, 489

for regular subgradients, 33, 82, 83, 221,
338, 472, 489

for singular subgradients, 32, 87, 89, 163,
399

fuzzy, 90, 99, 338, 472
weak fuzzy, 90, 405

superdifferentials, see upper subgradients
supergradients, see upper subgradients
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support function, 302
support points, 90
supremum functions, 273, 319, 344, 346, 374,

377, 380, 407, 441, 446
scalarized, 391, 398, 448

supremum marginal functions, 442, 447, 449
continuous, 442
upper semicontinuous (u.s.c.), 442

surjective derivatives, 48, 50, 53, 91, 113, 118,
119, 123, 124, 127, 130, 135, 144, 145,
147, 148, 150, 152, 184

sweeping process/Moreau, 159

tangent cones, 7
contingent/Bouligand-Severi, 7, 8, 39, 47,

58, 60, 73, 75, 80, 92, 418, 444, 445
regular/Clarke, 46, 58, 101
to convex sets, 418
weak contingent, 47, 63, 92

tangential approximations, 8, 13, 46, 57–59,
493

tangential directions, 65
tangential qualification conditions, 101, 188
tangential rank of countable set intersections,

422
tilt perturbations, 158
tilt stability of local minimizers, 158

in PDE systems, 159
second-order characterizations, 158, 159

topological weak∗ limit, 45, 64, 65, 100, 261
transfinite induction, 100
transversality conditions, 102

intrinsic transversality, 102
separable intersection, 102
subtransversality, 102

trust-region methods, 159

uniform boundedness principle, 309, 361
upper Lipschitzian property/Robinson, 139,

140, 155, 160, 215
for inverse subdifferentials, 139, 140, 160
for piecewise polyhedral mappings, 155
via outer derivative, 140, 158

upper Lipschitzian selectors, 182, 183
upper regularity of functions, 54, 220, 222

value function constraint qualification
(VFCQ)/Henrion-Surowiec, 254, 258

value functions, see marginal/optimal value
functions

variational inequalities, 103, 122, 130, 131,
159

parameterized, 122, 130
set-valued, 492

vector, 493
variational principles for functions, 56, 61, 67,

81, 220, 256
S-smooth/Deville-Godefroy-Zizler, 94, 99,

100
Borwein-Preiss, 59, 94, 99, 100
Ekeland, 56, 64, 65, 82, 92–94, 100, 101,

139, 153, 174, 180, 213, 256, 257, 334,
393, 408, 490, 494

enhanced smooth, 100
general in finite dimensions, 81, 83, 84, 100,

110, 140
lower subdifferential/Mordukhovich-Wang,

93, 101, 250, 494
relations with extremal principles, 101
smooth, 94, 99, 100
upper subdifferential, 93, 101

variational principles for mappings, 456
authentic minimal point theorem, 488
Ekeland-type in product spaces, 487
Ekeland-type in quasimetric spaces, 494
Ekeland-type in settings with variable

structure, 494
applications to behavioral sciences, 494

Ekeland-type via Pareto minimizers, 456,
460, 461, 463, 465, 468, 488, 494

Ekeland-type via weak minimizers, 488
subdifferential for weak approximate

minimizers, 488
subdifferential/Bao-Mordukhovich, 457,

464, 468, 471, 488, 494
variational rationality approach

to models in behavioral sciences/Soubeyran,
494

variational systems, see parametric variational
systems (PVS)

vector lattices, 516, 529
vector optimization, 159, 451, see multiobjec-

tive optimization, 493, 496
generalized order optimality/Kruger-

Mordukhovich, 486, 487, 496
minimax problems, 487
necessary optimality conditions, 490, 492,

496
Pareto optimality, 487
Slater optimality, 486
sufficient optimality conditions, 491, 496
weak Pareto optimality, 487

nondominated solutions, 494
necessary conditions, 494

numerical algorithms, 493
scalarization techniques, 100, 493–495

von Neumann algorithm, see alternating
projection algorithm
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Walrasian equilibrium model, 529
water resource modeling, 279, 284
weak Asplund spaces, 331
weak sharp minima/Ferris, 159, 257

for inf-differentiable functions, 251
in bilevel programming, 239, 251, 254
in nonlinear programming, 237
uniform, 236, 240, 250, 254, 258

sufficient conditions, 250, 251, 258
Weierstrass existence theorem, 71, 76, 81, 82,

172

Weierstrass-Pontryagin maximum condition,
60

welfare economics, see models of welfare
economics

well-posed approximations, 57
well-posedness properties, 99, 103, 121, 134,

152, 156–158, 203, 300, 348, 444
equivalence, 105, 134
for Lipschitzian cone-constrained systems,

406, 443

Zorn lemma, 100
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