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Abstract. We present a hybrid quality control (QC) for identifying
defects in ground sensors of solar radiation. The method combines a
window function that flags potential defects in radiation time series with
a visual decision support system that eases the detection of false alarms
and the identification of the causes of the defects. The core of the algo-
rithm is the window function that filters out groups of daily records where
the errors of several radiation products, mainly satellite-based models,
are greater than the typical values for that product, region and time of
the year.

The QC method was tested in 748 Spanish ground stations finding
different operational errors such as shading or soiling, and some equip-
ment errors related to the deficiencies of silicon-based photodiode pyra-
nometers. The majority of these errors cannot be detected by traditional
QC methods based on physical or statistical limits, and hence produce
problems in most of the applications that require solar radiation data.
Besides, these results manifest the low-quality of Spanish networks such
as SIAR, Meteocat, Euskalmet and SOS Rioja, which show defects in
more than a 50% of the stations and should be consequently avoided.
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1 Introduction

Solar radiation data is essential in many disciplines such as environmental sci-
ences, energy production [2] and climate analysis [11]. The variable most widely
used is global horizontal irradiance (G), which is the total amount of downwelling
shortwave irradiance reaching the Earth’s surface over a horizontal plane. Ther-
mopile pyranometers and silicon-based photodiodes are the two types of out-
door sensors for measuring G. Thermopiles typically achieve the highest quality
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and they are based on the thermoelectric effect: a blackened surface absorbs the
incoming radiation creating a thermal gradient that is measured with a thermo-
couple. Photodiodes are made by small silicon cells and are thus based on the
photovoltaic effect. They are a low-cost option requiring fewer maintenance and
having faster response times, but they have higher uncertainty than thermopiles
because their responsivity is limited by the spectral response of silicon.

Ground measurements obtained with pyranometers are the most accurate
source of G data [12], but they still contain different types of errors that can
be broadly divided into operational and equipment errors [5,15]. Operational
errors are related to the particular operation conditions in the station, such as the
station location and maintenance procedures. Some examples include shading by
nearby objects, the accumulation of dust over the senor or electrical shutdowns.
On the contrary, equipment errors are related to the intrinsic limitations of the
instruments and inadequate calibration procedures, being typically more severe
in photodiodes than in thermopile pyranometers.

Several quality control (QC) methods have been developed to detect errors
in ground records. The majority of QC methods are simple range tests that
establish the most probable physical or statistical limits for G values to discard
samples out of these ranges [15]. Here, the most widely used method is the BSRN
QC [7]. Alternative methods include interpolation between nearby stations [5],
graphical analysis [8], analysis of the symmetry of irradiance profiles [3] and
coherence tests of the different irradiance components [7]. All these methods are
only able to detect large errors whereas most common defects, such as shading
and soiling, introduce small deviations in G. The detection of these small but
long-lasting errors is not straightforward because filters cannot be too restrictive
due to the wide range of physically possible irradiance values.

We recently presented a new QC algorithm specially tailored for detecting
small errors in ground records [13]. The method flags those samples in which
the deviations between several radiation estimations and the ground records are
out of the typical range for that region and time of the year. We assume that
if the deviations of several independent radiation models are out of the typical
ranges, the most likely cause is an error on the ground record. Even though the
quality of estimations is not as high as that of ground records, the algorithm
exploits the advances on the stability of solar radiation modeling techniques such
as satellite-based products [12] and reanalysis. Besides, filtering out samples in
terms of deviations instead of in terms of G produces a more restrictive filter,
enabling the detection of low-magnitude defects.

The first goal of this study is to validate the QC algorithm with a hetero-
geneous dataset comprised by all Spanish monitoring stations that measure G
(748 stations), including several regional networks where the probability of find-
ing errors is higher. The second objective is to guide potential users by deriving
some statistics about the quality of the monitoring networks available in Spain.
In addition, we include an enhanced visual decision support tool for the analysis
of flagged samples.
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2 Methods

2.1 Radiation Data

Ground records were retrieved from all Spanish stations that measure G from
2005 to 2013 at the highest temporal resolution available at no cost. This results
in a dataset comprised by 748 stations and 9 networks (Fig. 1): six dedicated
meteorological networks (BSRN, AEMET, Meteo Navarra, Meteocat, Euskal-
met, MeteoGalica), two networks for agricultural purposes (SIAR and SIAR
Rioja) and one network for emergency situations (SOS Rioja). The networks
can be also categorized based on their spatial coverage in worldwide networks
(BSRN), national networks (AEMET and SIAR), while the remaining ones are
regional networks. Most meteorological networks included thermopile pyranome-
ters (285 stations) whereas photodiodes are the common sensor of agricultural
networks (386 sensors). Thermopile pyranometers were classified from highest
to lowest quality according to ISO 9060:1990 [4] in (i) Secondary Standard, (ii)
First Class and (iii) Second Class. The description of the sensor was not provided
in 77 stations.

Fig. 1. Location and type of pyranometer installed in the stations used in this study.

The QC algorithm uses daily values of global horizontal irradiance (Gd). All
night values (sun elevation <0◦) were initially set to 0. In stations with 1-min res-
olution, 15-min means were calculated (5 valid values required) and subsequently
averaged to obtain the hourly means (all four 15-min values required). In sta-
tions with time resolutions from 5-min to 30-min, hourly means were directly
obtained by averaging the original data (all original values required). Daily val-
ues were finally obtained by averaging hourly values if at least 20 h values were
available.
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2.2 Description of the Quality Control (QC) Algorithm

Step 1: Calculation of the Confidence Intervals (CIs). The first step of
the QC algorithm is to find the characteristic values for the daily deviations
(δd) between each radiation product p and the ground records. This is done by
calculating the confidence intervals (CIs) for the monthly bias of each product
(temporal averaging) over an spatial region g with uniform irradiance conditions
(spatial averaging). These CIs are defined as the median absolute deviation of
this bias (MADp

m′,g) around the median (̂Bias). They include a tuning param-
eter (n) to adjust the restriction level of the QC procedure (1).

CIp
m′,g = ̂Bias

p

m′,g ± n × MADp
m′,g m′ ∈ (Jan, ..., Dec), g ∈ (g1, ..., gn), p ∈ (p1, ..., pn)

(1)
where m′ are the different months of the year, p the radiation products used and
g the spatial regions defined. The use of median and MAD statistics along with
the spatio-temporal averaging of the bias increase the robustness of the CIs. The
CIs were calculated only with high-quality ground records in order to reduce the
probability of including operational and equipment errors in the CIs. Thus, in
the present study only records from AEMET secondary standard pyranometers
were used because these are the highest quality radiometers and the maintenance
procedures of AEMET are the strictest among all Spanish networks. Besides, we
did not define any sub-regions within Spain and hence the same CIs were used
to filter out all Spanish stations.

Step 2: Flagging Using a Window Function. Once the CIs are calculated,
a window function goes through the time series of each individual stations ana-
lyzing groups of consecutive days at a time and flagging potentially erroneous
samples. The number of consecutive days analyzed by the window function is
defined by the window width (w). The distance between two consecutive win-
dows is controlled by the parameter step, which was set to 5 days along the
experiments. Each analysis of the window function (Fig. 2) starts with the cal-
culation of the number of available samples per product (d valid). Products with
less than 20% samples available within the window are discarded. The percent-
age of samples above the upper limit (d over) or below the lower limit of the
CIs (d under) are subsequently calculated. If at least one of the products covers
the 80% of the window days, the average of d over and d under are computed.
These thresholds were set experimentally to ensure that all products used have
sufficient amount of samples, and that at least one of these products covers most
of the window width. Finally, daily records within the window are flagged if more
than 80% of the samples are either over or under the CIs. If estimations from
all the products present the same type of unusual deviation (above or below the
CIs), we assume that the most likely cause will be a defect in the ground records.

Three independent radiation products were used in this study: two satellite-
based models, SARAH-1 [9] and CLARA-A1 [6], and one reanalysis, ERA-
Interim [1]. The two most important tuning parameters of the QC algorithm
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Fig. 2. Flowchart for one run of the window function.

are w and n. The best configuration was found by varying w within (5, 10, 15,
20, 30, 40, 60, 90, 120) and n from 0.2 to 3.5 in intervals of 0.1. Results were
analyzed in terms of the Precision-Recall curve, which plots the precision (2)
against the recall (3).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP stands for true positives, FP false positives and FN false negatives.
The analysis of the PR curves was performed with the dataset of European
stations described in [13] and it revealed that the best configuration consisted
on running the window function two times. One run was to look for short-lived
defects (n = 2.4, w = 20 days), and the second was to look for permanent low-
magnitude deviations (n = 0.4, w = 90 days).
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Step 3: Visual Decision Support System. Two graphs are generated to
facilitate the analysis of flagged samples. This contrasts with the majority of
available QC methods for solar radiation, which generally just produce numerical
flags and leave to the user the interpretation of those flags. The first plot is the
daily deviation plot (Fig. 3A), which depicts the deviations between estimations
and ground records. The plot includes a visual flag for each run of the QC
algorithm (yellow and orange), shading the periods of daily records flagged. It
includes two additional flags for periods with missing data (grey) and for samples
that do not pass the BSRN QC (red). The use of the BRSN range tests enables
the detection of errors that are masked after aggregating to the daily values, e.g.
time lags. However, these tests can only be used if sub-daily data are available.

Fig. 3. Example of the two images generated for the graphical analysis of the quality
flags. (A) Daily deviation between estimations from radiation products and ground
records. (B) Hourly irradiance values of SARAH-1 and the ground sensor. The images
correspond to the data recorded during 2007 by the Euskalmet station C064 (Zarautz,
Camping). (Color figure online)

The second plot is the hourly irradiance profiles of measured and estimated
data overlapped (Fig. 3B). It is only generated for stations with sub-daily time
resolution data and it requires at least one product with hourly time resolu-
tion, e.g. SARAH-1. Whereas the first plot could be sufficient for detecting false
alarms, the second plot provides valuable information for identifying the causes
of the defects.

Software. The QC algorithm was implemented in R programming language
using the tidyverse [14] collection of packages: dplyr and tidyr for data manip-
ulation, lubridate to work with time series and ggplot2 to create the plots of
the visual decision support system.
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3 Results and Discussion

3.1 Setting up the QC Algorithm

Results obtained with each combination of w and n represent one point in the PR
space (Fig. 4). Two types of PR curves were calculated. The first one (Fig. 4A)
considers that each sample of the PR curve is one daily record of a specific
station. Even though this is the straightforward analysis of the output of the
QC method, it is not the most practical approach. The algorithm rarely finds
the exact number of days with defects because it flags all the daily records within
a window. This is especially evident at the edges of periods with errors and with
low radiation values (winter months or high latitude locations). Moreover, most
of these misadjustments are corrected by visual inspecting the flagged samples,
so this first set of PR curves do not show the real performance of the QC method.
As a consequence, the second set of PR curves was generated considering that
each sample corresponds to one ground station (Fig. 4B). These curves illustrate
whether the QC method is able to detect the presence of a defect in a ground
station, regardless it finds the exact daily records where the error occurs.
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Fig. 4. Precision-Recall (PR) curves obtained for the different combinations of n (tun-
ing parameter of the CIs) and w (window width). (A) One sample corresponds to one
daily record of the station. (B) One sample corresponds to one station. The variable
n goes from 0.2 (up-pointing triangle) to 3.5 (down-pointing triangle) in 0.1 intervals.
The red dot represents the results obtained with the chosen configuration based on two
runs of the window function. (Color figure online)

The PR curves show that using wider CIs by increasing n leads to a greater
recall (more defects detected) but to a smaller precision (more false alarms).
The same pattern is observed for decreasing values of w, reducing the number of
days analyzed by the window function. With both parameters, more restrictive



616 R. Urraca et al.

conditions (small n, small w) lead to larger number of defects identified at the
expense of a larger amount of false alarms. In principle, the best configuration
should be an intermediate solution that balances the number of true positives
and false alarms, somewhat around w = 30 and n = 1.5. Nonetheless, the
selection of the best configuration is also affected by the different characteristics
of the defects present in ground sensors. Short-lived defects, such as electronic
shutdowns or equipment failures, typically last from few hours to few days but
the magnitude of the deviations created is usually large. On the contrary, long-
lived defects introduce small deviations that can even become permanent, such
is the case of shading by surrounding objects. Hence, the type of defects detected
with narrow windows (w < 20 days) are not the same as those found with wide
ones (w > 30 days), so the use of an intermediate solution is not sufficient to
detect all types of defects present in ground sensors.

We found that the best configuration of the QC algorithm was obtained with
two runs of the window function. One run looking for short-lived defects (w =
20 days, n = 2.4), using a wide CIs (high n) in order to reduce the number of false
alarms. And another run looking for almost permanent defects (w = 90 days,
n = 0.4), using a more restrictive CIs (small n) in order to detect low-magnitude
semi-permanent defects. The use of a window function along with the trade off
between w and n enables the detection of defects not found by traditional QC
algorithms. The combination of these two runs leads to a precision and recall of
0.66 and 0.92, respectively, which improves the configurations based on a single
run of the window function (see red dot in Fig. 4B). The parameters for this two-
run configuration were tuned prioritizing the attainment of a high recall. From
the users perspective, it is more useful to find all existing defects rather than
having a low number of false alarms. This is even more clear here because the QC
method incorporates a visual inspection tool that speeds up the identification of
false alarms.

3.2 Quality Analysis of Spanish Monitoring Stations

Samples flagged were visually inspected using the two plots generated by the QC
method (Fig. 3) to detect false alarms and identify the most likely cause of the
deviation observed. Errors were classified into the following categories: shading
by nearby objects (shading), accumulation or dust over the sensor (soiling),
time lags, diurnal periods with irradiance equal to 0 (diurnal G = 0), incorrect
leveling of the sensor (leveling), large errors due to major equipment failures
(large errors) and errors of unknown cause (unknown cause).

The QC algorithm detected errors in 310 out of 748 stations (Fig. 5), whereas
the BSRN QC, which is the most common QC procedure for solar data [10], only
found time lags (49 stations) and some isolated cases of leveling issues and large
errors. The majority of the defects were found in SIAR, which is also the largest
network, with 225 defects (47% of SIAR stations). SIAR is an agricultural net-
work created by the Spanish Ministry for irrigation planning. Most SIAR stations
were installed in agricultural areas such as Ebro and Guadalquivir Valleys or the
Mediterranean Coast. In some cases the exact placement of the sensor was even
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Fig. 5. Number of stations with errors and types of defect detected by the QC method
in the different networks. The numeric values represent the percentage of stations
with defects in each network. No errors were found in BSRN and Meteo Navarra. The
“multiple errors” category represents the stations with more than one type of defect.

influenced by the proximity of other government facilities in order to facilitate
the maintenance of the sensors. By contrast, pyranometers must be installed in
locations with an obstacle-free horizon and far from potential sources of contam-
ination such as industrial areas, airports or busy roads. This inadequate location
selection explains the high amount of shading defects found (36 stations). More-
over, other variables such as temperature and precipitation are more frequently
used for agricultural purposes than incoming solar radiation. This little use of
G data, along with the poor maintenance of the stations, may also explain the
presence of defects such as large errors, time lags or diurnal G = 0 in SIAR.

MeteoGalicia and Euskalmet are similar networks with a substantial amount
of defects as well. They are the regional meteorological agencies of Galicia and
Euskadi, respectively, providing G data with a high time resolution (10 min).
Euskalmet records are obtained with high-quality secondary standard pyranome-
ters, whereas MeteoGalicia uses different types of sensors including a large num-
ber of first class pyranometers (Fig. 1). However, the number of defects found in
both cases is too high for a meteorological network with high quality equipment
(54% for Euskalmet and 47% for MeteoGalicia). The most common defect is
large errors, which could be partly explained by the high time resolution pro-
vided by both networks. Large errors are usually short-lived defects that get
masked when aggregating the data to hourly or daily values. Nonetheless, some
of the defects identified, such as long nocturnal periods with physically impossi-
ble values (Euskalmet), evidence the lack of quality checks in both meteorological
agencies. Shading and soiling are other common defects in both networks that
questions the maintenance routines of these networks as well. As a consequence,
despite the fact that high quality is a priori expected from meteorological agen-
cies, G records from these two networks should generally be avoided.

Ground records from SOS Rioja present the worst quality overall, with the
presence of defects in 79% of the stations (15 out of 19). The most common
defect is diurnal periods with G equal 0, which is some cases extend the whole
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year indicating a null maintenance in either the network or the acquisition sys-
tem. Shading is another frequent defect in SOS Rioja (4 stations), but compared
to other networks the shades are visible around solar noon. This excludes the
possibility of shades being caused by obstacles in the horizon, such as moun-
tains, trees or buildings. SOS Rioja sensors are installed in lattice towers, so
the most likely scenario is that the shades are being caused the own structure.
This evidences an inadequate planning during the installation of the equipment.
In addition, the lack of maintenance and quality checks ruins the quality of the
sensors (first class thermopile pyranometers), proving that the acquisition of
high-quality equipment does not guarantee collecting high-quality records.

The networks with the highest quality are AEMET, SIAR Rioja, Meteo
Navarra, Meteocat and BSRN, with only 4 defects among all these networks.
The good quality of BSRN and AEMET was expected. BSRN is considered
the highest quality radiation network worldwide. It has even one dedicated
researcher at each station revising the sensors and checking the consistency of the
data. AEMET is the Spanish national meteorology agency and it also includes
high quality sensors with elaborated maintenance procedures. Besides, in both
networks the pyranometers are always ventilated reducing the accumulation or
snow, dust and humidity over the dome of the sensors. The use of BSRN and
AEMET data should be therefore preferred in applications that require a small
uncertainty of solar radiation data. We conclude that data from Meteocat, Meteo
Navarra and SIAR Rioja have enough quality for being used for regional studies
in Cataluña, Navarra and La Rioja, respectively.

Fig. 6. Total number of stations in which defects were found but the cause of the error
could not be identified categorized by the type of sensor used.

All errors identified were operational errors related to maintenance routines,
the location of the sensor and QC of the data. However, there are 78 stations in
which the presence of an error was evident but it was not possible to identify the
exact cause of the defect. The classification of these errors by the type of pyra-
nometer of the station (Fig. 6) reveals that the majority of these defects appear
in low-quality sensors: photodiodes (62 sensors) and second class thermopiles
(6 sensors). Besides, the 8 stations without information about the pyranometer
belong to SIAR, where the majority of the sensors are photodiodes as well. The
cause of the error was unknown only for two high quality sensors, one AEMET
secondary standard and one Meteocat first class pyranometers. Both networks
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only provide daily data without cost, which prevents creating the hourly irra-
diance plot (plot B) for the visual analysis of flagged samples. Hence, the most
likely cause here is the existence of an unidentified low-magnitude operational
error. In the case of second class sensors, and specially in photodiodes, the most
likely cause of these deviations is the presence of equipment errors.

Compared to thermopiles, photodiodes are more affected by cosine and tem-
perature errors, an besides, they have a limited spectral response because they
are made by silicon detectors. Silicon has a spectral response within 350–1100
nm that includes only about the 70–75% of total shortwave incoming radia-
tion. Hence, the calibration constant does not account for non-linear variations
of the solar spectrum out of the bandwidths covered by silicon. This occurs
with changes in aerosol or water vapor concentrations and with variations of
sun elevation that modify the main atmospheric scattering process. As a conse-
quence, photodiodes need to be carefully calibrated against thermopile instru-
ments. Independent correction factors for cosine errors, temperature dependence
and spectral response are required to obtain field accuracies within the ranges
specified by the manufacturer. These corrections should be applied individually
for each location taking into consideration the particular conditions of each place
and sensor. Therefore, the use of the same correction factors for all SIAR photo-
diodes, or even the lack of correction factors, may be the cause of the deviations
observed. The maintenance procedures of SIAR network are also questioned after
finding a large number of operational errors in SIAR stations. Therefore, these
small deviations may be also caused by undetected operational errors. It is not
easy to identify which cause leads to the deviations observed in each photodi-
ode. Further work is required to gain a better understanding of the limitations
of photodiodes, analyzing the half-hourly measurements provided by SIAR sta-
tions. Nonetheless, it is clear there are significant differences in terms of quality
between SIAR photodiodes and thermopile sensors. Overall, our QC method was
not only able to detect operational errors but also some equipment errors, which
are the most difficult to detect due to the low-magnitude deviations introduced.

4 Conclusions

A hybrid QC algorithm for solar radiation data, which is based on the anal-
ysis of the deviations between satellite-based models and ground records, was
validated using 748 Spanish ground monitoring stations that measure global
horizontal irradiance. The results reveal that the QC algorithm can detect oper-
ational and equipment errors that are rarely found by conventional QC methods,
such as the BSRN tests. Besides, this study manifests the low-quality of some
of Spanish networks such as SIAR, MeteoGalicia, Euskalmet and SOS Rioja.
These networks present defects in 50% or more of the stations. Most of these
defects are operational errors related to an inadequate placement of the sen-
sor, a lack of maintenance and a lack of quality control of the data, but the
method was also able to identify potential equipment errors in silicon-based
photodiode pyranometers. We conclude that data from these networks should
be generally avoided in applications requiring solar radiation data.
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