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Abstract. With the explosive growth of high-dimensional data, feature selec-
tion has become a crucial step of machine learning tasks. Though most of the
available works focus on devising selection strategies that are effective in
identifying small subsets of predictive features, recent research has also high-
lighted the importance of investigating the robustness of the selection process
with respect to sample variation. In presence of a high number of features,
indeed, the selection outcome can be very sensitive to any perturbations in the
set of training records, which limits the interpretability of the results and their
subsequent exploitation in real-world applications. This study aims to provide
more insight about this critical issue by analysing the robustness of some
state-of-the-art selection methods, for different levels of data perturbation and
different cardinalities of the selected feature subsets. Furthermore, we explore
the extent to which the adoption of an ensemble selection strategy can make
these algorithms more robust, without compromising their predictive perfor-
mance. The results on five high-dimensional datasets, which are representatives
of different domains, are presented and discussed.

Keywords: Feature selection robustness � Ensemble techniques
High-dimensional data

1 Introduction

In the context of high-dimensional data analysis, feature selection aims at reducing the
number of attributes (features) of the problem at hand, by removing irrelevant and
redundant information as well as noisy factors, and thus facilitating the extraction of
valuable knowledge about the domain of interest. The beneficial impact of feature
selection on the performance of learning algorithms is widely discussed in the literature
[1] and has been experimentally proven in several application areas such as
bio-informatics [2], text categorization [3], intrusion detection [4] or image analysis [5].

There exists currently a large body of feature selection methods, based on distinct
heuristics and search strategies, and several works have investigated their strengths and
weaknesses on both real [6] and artificial data [7]. Most of the existing studies,
however, concentrate on the effectiveness of the available algorithms in selecting small
subsets of predictive features, without taking into account other relevant aspects that
only recently have gained attention, such as the scalability [8], the costs associated to
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the features [9] or the robustness (stability) of the selection process with respect to
changes in the input data [10]. This last issue has been recognized to be especially
important when the high-dimensionality of data is coupled with a comparatively small
number of instances: in this setting, actually, even small perturbations in the set of
training records may lead to strong differences in the selected feature subsets.

Though the literature on feature selection robustness is still limited, an increasing
number of studies recognize that a robust selection outcome is often equally important
as good model performance [11, 12]. Indeed, if the outcome of the selection process is
too sensitive to variations in the set of training instances, the interpretation (and the
subsequent exploitation) of the results can be very difficult, with limited confidence of
domain experts and final users. Moreover, as observed in [13], the robustness of feature
selection may have practical implications for distributed applications where the algo-
rithm should produce stable results across multiple data sources.

Further research, from both a theoretical and empirical point of view, should be
devoted to better characterizing the degree of robustness of state-of-art selection
algorithms in multiple settings, in order to achieve a better understanding of their
applicability/utility in knowledge discovery tasks. On the other hand, the definition of
feature selection protocols which can ensure a better trade-off between robustness and
predictive performance is still an open issue, though a number of studies [11, 14] seem
to suggest that the adoption of an ensemble selection strategy can be useful in this
regard.

To give a contribution to the field, this work presents a case study which aims to
provide more insight about the robustness of six popular selection methods across
high-dimensional classification tasks from different domains. Specifically, for each
method, we evaluate the extent to which the selected feature subsets are sensitive to
some amount of perturbation in the training data, for different levels of perturbation and
for different cardinalities of the selected subsets.

In addition, for each selection algorithm, we implement an “ensemble version”
whose output is built by a bagging procedure similar to that adopted in the context of
multi-classifier systems [15], i.e. (i) different versions of the training set are created
through a re-sampling technique, (ii) the feature selection process is carried out sep-
arately on each of these versions and (iii) the resulting outcomes are combined through
a suitable aggregation function. The studies so far available on the robustness of this
ensemble approach are limited to a single application domain [11, 16], to a single
selection method [14] or to a given number of selected features [17], so it is worth
providing the interested reader with a more comprehensive evaluation which encom-
passes different kinds of data, different selection heuristics (both univariate and mul-
tivariate) and different subset sizes.

The results of our experiments clearly show that, when comparing the overall
performance of the considered selection methods, the differences in robustness can be
significant, while the corresponding differences in accuracy (or other metrics, such as
the AUC) are often null or negligible. In the choice of the best selector for a given task,
hence, the degree of robustness of the selection outcome can be a discriminative
criterion. At the same time, our study shows that the least stable methods can benefit, at
least to some extent, from the adoption of an ensemble selection strategy.
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The rest of this paper is organized as follows. Section 2 summarizes background
concepts and related works. Section 3 describes all the materials and methods relevant
to our study, i.e. the methodology used for the robustness analysis, the ensemble
strategy and the selection algorithms here considered, and the datasets used as
benchmarks. The experimental results are presented and discussed in Sect. 4. Finally,
Sect. 5 gives the concluding remarks.

2 Background and Related Work

As discussed in [10], the robustness (or stability) of a given selection method is a
measure of its sensitivity to changes in the input data: a robust algorithm is capable of
providing (almost) the same outcome when the original set of records is perturbed to
some extent, e.g. by adding or removing a given fraction of instances.

Recent literature has investigated the potential causes of selection instability [18]
and has also focused on suitable methodologies [19] for evaluating the degree of
robustness of feature selection algorithms. This evaluation basically involves two
aspects: (a) a suitable protocol to generate a number of datasets, different to each other,
which overlap to a great (“soft” perturbation) or small (“hard” perturbation) extent with
the original set of records; (b) a proper consistency index to measure the degree of
similarity among the outputs that are produced (in the form of feature weightings,
feature rankings or feature subsets) when a given algorithm is applied to the above
datasets. The higher the similarity, the more robust the selection method.

As regards the data perturbation protocols, simple re-sampling procedures are
adopted in most cases, though some studies have investigated how to effectively
measure and control the variance of the generated sample sets [13]. The influence of the
amount of overlap between these sets is discussed by Wang et al. [20], who propose a
method for generating two datasets of the same size with a specified degree of overlap.

As regards the similarity measure used to compare the selection outcomes, various
approaches have been proposed [10, 21, 22], each expressing a slightly different view
of the problem. For example, the Pearson’s correlation coefficient can be used if the
output is given as a weighting of the features, the Spearman’s rank correlation coef-
ficient if the output is a ranking of the features, the Tanimoto distance or the Kuncheva
index if the output is a feature subset. A good review of stability measures can be found
in [18].

From an experimental point of view, a number of studies have compared the
robustness of different selection methods on high-dimensional datasets [23–25]. This
work extends and complements the available studies by encompassing different
application domains; besides, stability patterns are derived for feature subsets of dif-
ferent cardinalities and for different levels of data perturbation. As a further contri-
bution, we investigate the impact, in terms of selection robustness, of using an
ensemble selection strategy; though presented as a promising approach to achieve more
stable results, indeed, it has been so far evaluated in a limited number of settings,
particularly with biomedical/genomic data [11, 14, 16, 17].
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3 Materials and Methods

In our study we focus on selection techniques that provide, as output, a feature ranking,
i.e. a list (usually referred as ranked list) where the available features appear in
descending order of relevance. In turn, the ranked list can be cut at a proper threshold
point to obtain a subset of highly predictive features. In the context of high-dimensional
problems, indeed, this ranking-based approach is a de facto standard to reduce the
dimensionality of the feature space; then, the filtered space can be either refined
through more sophisticated (and computationally expensive) techniques or directly
used for predictive and knowledge discovery purposes.

The robustness of six popular ranking techniques is here evaluated in a two-fold
setting (simple and ensemble ranking), according to the methodology presented in
Subsect. 3.1; next, Subsect. 3.2 provides some details on the chosen techniques and
describes the datasets used as benchmarks and the specific settings of the experiments.

3.1 Methodology for Robustness Evaluation: Simple vs Ensemble
Ranking

Leveraging on best practices from the literature, we evaluate the robustness of the
selection process in conjunction with the predictive performance of the selected sub-
sets. Both the aspects, indeed, must be taken into account when assessing the suitability
of a given selection approach (actually, stable but not accurate solutions would be not
meaningful; on the other hand, accurate but not stable results could have limited utility
for domain experts and final users).

In more detail, given the input dataset, we repeatedly perform random sampling
(without replacement) to create m different training sets, each containing a fraction f of
the original records. For each training set, a test set is also formed using the remaining
fraction (1 − f) of the instances. The feature selection process is then carried out in a
two-fold way:

– Simple ranking. A given ranking method is applied separately on each training set
to obtain m distinct ranked lists which in turn produce, when cut at a proper
threshold (t), m different feature subsets (here referred as simple subsets).

– Ensemble ranking. An ensemble version of the same ranking method is imple-
mented using a bagging-based approach, i.e. each training set is in turn sampled
(with replacement) to construct b samples of the same size (bootstraps). The
considered ranking method is then applied to each bootstrap, which results in
b distinct ranked lists that are finally combined (through a mean-based aggregation
function [26]) into a single ensemble list. In turn, this list is cut at a proper threshold
(t) to obtain an ensemble subset of highly discriminative features. Overall,
m ensemble subsets are selected, one for each training set.

For both the simple and the ensemble setting, the robustness of the selection
process is measured by performing a similarity analysis on the resulting m subsets.
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Specifically, for each pair of subsets Si and Sj (i, j = 1, 2, …, m), we use a proper
consistency index [21] to quantify their degree of similarity:

simij ¼ Si \ Sj
�
�

�
� � t2=n

� �

= t � t2=n
� � ð1Þ

where t is the size of the subsets (corresponding to the cut-off threshold) and n the
overall number of features. Basically, the similarity simij expresses the degree of
overlapping between the subsets, i.e. the fraction of features which are common to them
(|Si \ Sj|/t), with a correction term reflecting the probability that a feature is included in
both subsets simply by chance. The need for this correction, which increases as the
subset size approaches the total number of features, is experimentally demonstrated for
example in [27]. The resulting similarity values are then averaged over all pair-wise
comparisons, in order to evaluate the overall degree of similarity among the m subsets
and, hence, the robustness of the selection process.

At the same time, in both simple and ensemble settings, a classification model is
built on each training set using the selected feature subset, and the model performance
is measured (through suitable metrics such as accuracy and AUC) on the corresponding
test set. By averaging the accuracy/AUC of the resulting m models, we can obtain an
estimate of the effectiveness of the applied selection approach (simple or ensemble) in
identifying the most discriminative features. This way, the trade-off between robustness
and predictive performance can be evaluated for different values of the cut-off
threshold.

3.2 Ranking Techniques, Datasets and Settings

The above methodology can be applied in conjunction with any ranking method. To
obtain useful insight on the robustness of different selection approaches, as well as on
the extent to which the ensemble implementation affects their outcome, we included in
our study six algorithms that are representatives of quite different heuristics. In par-
ticular, we considered three univariate methods (Symmetrical Uncertainty, Gain Ratio
and OneR), which evaluate each feature independently from the others, and three
multivariate methods (ReliefF, SVM-AW and SVM-RFE) which take into account the
inter-dependencies among the features. More details on these techniques and their
pattern of agreement can be found in [28]. In brief:

• Symmetrical Uncertainty (SU) and Gain Ratio (GR) both leverage the concept of
information gain, that is a measure of the extent to which the class entropy
decreases when the value of a given feature is known. The SU and GR definitions
differ for the way they try to compensate for the information gain’s bias toward
features with more values.

• OneR (OR) ranks the features based on the accuracy of a rule-based classifier that
constructs a simple classification rule for each feature.

• ReliefF (RF) evaluates the features according to their ability to differentiate between
data points that are near to each other in the attribute space.

• SVM_AW exploits a linear Support Vector Machine (SVM) classifier, which has an
embedded capability of assigning a weight to each feature (based on the
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contribution the feature gives to the decision function induced by the classifier); the
absolute value of this weight (AW) is used to rank the features.

• SVM_RFE, in turn, relies on a linear SVM classifier, but adopts a recursive feature
elimination (RFE) strategy that iteratively removes the features with the lowest
weights and repeats the overall weighting process on the remaining features (the
percentage of features removed at each iteration is 50% in our implementation).

Each of the above methods has been applied, in its simple and ensemble version, on
five high-dimensional datasets, chosen to be representatives of different domains. In
particular:

• The Gastrointestinal Lesions dataset [29] contains 1396 features extracted from a
database of colonoscopy videos; there are 76 instances of lesions, distinguished in
‘hyperplasic’, ‘adenoma’ and ‘serrated adenoma’.

• The Voice Rehabilitation dataset [30] contains 310 features resulting from the
application of speech processing algorithms to the voices of 126 Parkinson’s dis-
ease subjects, who followed a rehabilitative program with ‘acceptable’ or ‘unac-
ceptable’ results.

• The DLBCL Tumour dataset [31] contains 77 samples, including ‘follicular lym-
phoma’ and ‘diffuse large b-cell lymphoma’ samples, each described by the
expression level of 7129 genes.

• The Ovarian Cancer dataset [32] contains 15154 features describing proteomic
spectra generated by mass spectrometry; the instances are 253, divided in ‘normal’
and ‘cancerous’.

• The Arcene dataset, in turn, is a binary classification problem where the task is to
distinguish ‘cancerous’ versus ‘normal’ patterns from mass spectrometric data.
Unlike the Ovarian Cancer dataset, it results from the combination of different data
sources; a number of noisy features, having no predictive power, were also added in
order to provide a challenging benchmark for the NIPS 2003 feature selection
challenge [33]. The overall dimensionality is 10000, while the number of instances
is 200.

Note that all the above datasets are characterized by a large number of features and
a comparatively small number of records, which makes it difficult to achieve a good
trade-off between predictive performance and robustness.

According to the methodology described in Subsect. 3.1, different training/test sets
have been built for each dataset; specifically, we set m = 20. As regards the amount of
data perturbation, i.e. the fraction of the original instances randomly included in each
training set, we explored the values f = 0.70, f = 0.80 and f = 0.90. For the number of
bootstraps involved in the construction of the ensemble subsets, we also explored
different values, i.e. b = 20, b = 50 and b = 80. Further, for both the simple and the
ensemble subsets, different values of the cut-off threshold (i.e. different subset sizes)
have been considered, ranging from 0.5% to 7% of the original number of features.
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4 Experimental Study: Results and Discussion

In this section, we summarize the main results of our robustness analysis. First, it is
interesting to consider the effect of varying the amount of perturbation introduced in the
input data, i.e., in our setting, the effect of including in the training sets only a fraction
f of the original records. Limited to the simple ranking, Fig. 1 shows the robustness of
the six selection methods here considered (SU, GR, OR, RF, SVM-AW, SVM-RFE) on
the Gastrointestinal Lesions dataset, for different values of f and different subset sizes.

As we can see, even a small amount of perturbation (f = 0.90) affects the stability of
the selection outcome in a significant way, since the average similarity among the 20
feature subsets (selected from the m = 20 training sets built from the original dataset) is
far lower than the maximum value of 1. As the amount of perturbation increases, the
degree of robustness dramatically falls off, for all the selection methods, though some
of them exhibit a somewhat better behaviour. Similar considerations can be made for
the other datasets here considered (whose detailed results are omitted for the sake of
space), thus confirming that the instability of the selection outcome is a very critical
concern when dealing with high-dimensional problems.

A further point to be discussed is the extent to which the adoption of an ensemble
strategy improves the robustness of the selection process. Figs. 2, 3, 4, 5 and 6 show,
for the five datasets included in our study, the stability of both the simple and the
ensemble subsets, with a data perturbation level of f = 0.80. In particular, for each
selection method, three ensembles have been implemented with different numbers of
bootstraps (b = 20, b = 50, b = 80), but only the results for b = 20 (20b-ensemble) and
b = 50 (50b-ensemble) have been reported here, since a higher value of b does not
further improve the robustness in an appreciable way.

Fig. 1. Gastrointestinal Lesions dataset: robustness of simple ranking, for different levels of
data perturbation (f = 0.90, f = 0.80, f = 0.70)
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Fig. 2. Gastrointestinal Lesions dataset: robustness of simple and ensemble ranking (f = 0.80)

Fig. 3. Voice Rehabilitation dataset: robustness of simple and ensemble ranking (f = 0.80)
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Fig. 4. DLBCL Tumour dataset: robustness of simple and ensemble ranking (f = 0.80)

Fig. 5. Ovarian Cancer dataset: robustness of simple and ensemble ranking (f = 0.80)
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As we can see, the impact of the ensemble approach is different for the different
methods and varies in dependence on the subset size and the specific characteristics of
the data at hand. In particular, among the univariate selection methods, SU turns out to
be intrinsically more robust, with a further (though limited) stability improvement in
the ensemble version. The other univariate approaches, i.e. GR and OR, turn out to be
less robust in their simple form and take greater advantage of the ensemble imple-
mentation. In turn, in the group of the multivariate approaches, the least stable method,
i.e. SVM-RFE, is the one that benefits most from ensemble strategy; this strategy, on
the other hand, is not beneficial for the RF method, except that in the Gastrointestinal
Lesions and in the Voice Rehabilitation datasets, but only for some percentages of
selected features. In all cases, it is not useful to use more than 50 bootstraps in the
ensemble implementation.

The above robustness analysis has been complemented, according to the method-
ology presented in Subsect. 3.1, with a joint analysis of the predictive performance.
Specifically, the selected feature subsets have been used to train a Random Forest
classifier (parameterized with log2(t) + 1 random features and 100 trees), which has
proved to be very effective in several domains [34]. For the sake of space and read-
ability, only the results obtained in the f = 0.80 perturbation setting are here reported;
specifically, Table 1 summarizes the AUC performance (averaged over the m = 20
training/test sets) achieved with both the simple and the 50b-ensemble subsets, limited
to a threshold t = 5% of the original number of features (but the AUC results obtained
with feature subsets of different cardinalities confirm what observed in Table 1).

Fig. 6. Arcene dataset: robustness of simple and ensemble ranking (f = 0.80)
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When comparing the overall performance of the six selection methods, in their
simple form, it is clear that the differences in AUC are much smaller (and often
negligible) than the corresponding differences in robustness. In cases like these, where
the AUC/accuracy is not a discriminative factor, the outcome stability can then be
assumed as a decisive criterion for the choice of the best selector.

A further important observation is that no significant difference exists between the
AUC performance of the simple and the ensemble version of the considered selection
methods. Indeed, irrespective of the application domain, each selection algorithm
achieves almost the same AUC outcome in both the implementations. When looking at
the trade-off between the predictive performance and the robustness of the selection
process, we can then conclude that the adoption of an ensemble strategy can lead to
more stable feature subsets without compromising at all the predictive power of these
subsets.

5 Conclusions

This work emphasized the importance of evaluating the robustness of the selection
process, besides the final predictive performance, when dealing with feature selection
from high-dimensional data. The stability of the selection outcome, indeed, is important
for practical applications and can be a useful (and objective) criterion to guide the
choice of the proper selection method for a given task. Further, the proposed study
contributed to demonstrate that the adoption of an ensemble selection strategy can
produce better results even in those domains where the selection of robust subsets is
intrinsically harder, due to a very low instances-to-features ratio. The beneficial impact
of the ensemble approach is more significant for the selection methods that turn out to
be less stable in their simple form (e.g., the univariate Gain Ratio and the multivariate
SVM-RFE). Actually, the stability gap between the different methods tend to become
much smaller (or sometimes null) when they are used in the ensemble version. This is
noteworthy for practitioners and final users that, in the ensemble setting, could exploit
different, but equally robust, selection methods.

Table 1. AUC analysis (f = 0.80, b = 50, t = 5% of n)

SU GR OR RF SVM-AW SVM-RFE

Gastrointestinal Lesions
dataset

Simple 0.797 0.806 0.790 0.800 0.785 0.773
Ensemble 0.778 0.790 0.795 0.814 0.784 0.781

Voice Rehabilitation dataset Simple 0.870 0.856 0.857 0.912 0.884 0.904
Ensemble 0.880 0.868 0.860 0.908 0.905 0.911

DLBCL Tumour dataset Simple 0.960 0.956 0.955 0.981 0.987 0.982
Ensemble 0.957 0.956 0.960 0.988 0.985 0.982

Ovarian Cancer dataset Simple 1.000 1.000 1.000 1.000 1.000 1.000
Ensemble 1.000 1.000 1.000 1.000 1.000 1.000

Arcene dataset Simple 0.820 0.817 0.858 0.845 0.745 0.831
Ensemble 0.819 0.809 0.859 0.831 0.803 0.814
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