
Chapter 13
Remote Blood Pulse Analysis for Face
Presentation Attack Detection

Guillaume Heusch and Sébastien Marcel

Abstract In this chapter, the usage of Remote Photoplethysmography (rPPG) as a
mean for face presentation attack detection is investigated. Remote photoplethys-
mography consists in retrieving the heart-rate of a subject from a video sequence
containing some skin, and recorded at a distance. To get a pulse signal, such meth-
ods take advantage of subtle color variation on skin pixels due to the blood flowing
through vessels. Since the inferred pulse signal gives information on the liveness
of the recorded subject, it can be used for biometric presentation attack detection
(PAD). Inspired by work made for speaker presentation attack detection, we pro-
pose to use long-term spectral statistical features of the pulse signal to discriminate
real accesses from attack attempts. A thorough experimental evaluation, with differ-
ent rPPG and classification algorithms is carried on four publicly available datasets
containing a wide range of face presentation attacks. Obtained results suggest that
the proposed features are effective for this task, and we empirically show that our
approach performs better than state-of-the-art rPPG-based presentation attack detec-
tion algorithms.

13.1 Introduction

As face recognition systems are used for authentication purposes more and more, it
is important to provide a mechanism to ensure that the biometric sample is genuine.
Indeed, several studies showed that existing face recognition algorithms are not
robust to simple spoofing attacks. Even simple display of a printed face photograph
can fool biometric authentication systems. Nowadays, more sophisticated attacks
could be performed by using high-quality silicone masks for instance [1]. Therefore,
a remote authentication mechanism based on the face modality should take such
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threats into account and provide a way to detect presentation attacks. In the last years,
several methods to detect such attacks have been proposed, and are surveyed in both
[2, 3]. Existing approaches can be roughly divided into two categories. The first
category focuses on assessment of the liveliness of the presented biometric sample,
by detecting blinking eyes [4] or exploiting motion information [5] for instance. The
second category is concerned with finding the differences between images captured
from real accesses and images coming from an attack. Representatives examples
in this category include texture analysis [6], the usage of image quality measures
[7] and frequency analysis [8]. However, current face presentation attacks methods
suffers from their inability to generalize to different, or unknown attacks. Usually,
existing approaches performs well on the same dataset they were trained on, but have
difficulties when attack conditions are different [9]. However, a recent trend consists
in deriving robust features that show better generalization abilities: examples can
be found in [10, 11]. In the same spirit, presentation attack detection (PAD) based
on remote blood pulse measurement is worth investigating: it should theoretically
handle different attacks conditions well, since features does not depend on the type
of attacks, but rather on properties of bonafide attempts.

13.1.1 Remote Photoplethysmography

Photoplethysmography (PPG) consists in measuring the variation in volume inside
a tissue, using a light source. Since the heart pumps blood throughout the body, the
volume of the arteria is changing with time. When a tissue is illuminated, the propor-
tion of transmitted and reflected light varies accordingly, and the heart rate could thus
be inferred from these variations. The aim of remote Photoplethysmography (rPPG)
is to measure the same variations, but using ambient light instead of structured light
and widely available sensors such as a simple webcam.

It has been empirically shown by Verkruysse et al. [12] that recorded skin colors
(and especially the green channel) from a camera sensor contain subtle changes
correlated to the variation in blood volumes. In their work, they considered the
sequence of average color values in a manually defined region-of-interest (ROI) on
the subject’s forehead. After having filtered the obtained signals, they graphically
showed that the green color signal main frequency corresponds to the heart rate of
the subject.

Since then, there have been many attempts to infer the heart rate from video
sequences containing skin pixels. Notable examples include the work by Poh et al.
[13], where the authors proposed a technique where the color signals are processed
by means of blind source separation (ICA), in order to isolate the component corre-
sponding to the heart rate. In a similar trend, Lewandowska et al. [14] applied Prin-
cipal Component Analysis (PCA) to the color signals and then manually selected
the principal component that contains the variation due to blood flow. These two
early studies empirically showed that the heart rate could be retrieved from video
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sequences of faces, but also highlight important limitations: the subject should be
motionless, and proper lighting conditions must be ensured during the capture.

According to a recent survey [15], research in remote heart rate measurement has
considerably increased in the last few years, most of which focuses on robustness to
subject motion and illumination conditions. Since a large number of approaches have
been proposed recently, theywill not be discussed here.We refer the interested reader
to [15, 16] for a comprehensive survey of existing algorithms. Current challenges
in rPPG consists mainly of finding methods robust to a wide range of variability.
For instance, de Haan et al. specifically devised a method to cope with subject
motion in a fitness setting [17]. Also, it has been noted in [16] that different skin
color tone affect the retrieved pulse signal. Lin et al. study the effect of different
illumination conditions in [18]. Besides, video compression has also been identified
as a limitations to retrieve reliable pulse signals [19].

13.1.2 rPPG and Face Presentation Attack Detection

Remote photoplethysmography is still an active research area, and that may explain
that it has not beenwidely used in the context of face presentation attack detection yet.
Moreover, and as noted in the previous section, main challenges to be addressed in
this field (i.e. subject motion, illumination conditions and video quality) are usually
present in a face recognition framework.

Despite its aforementioned limitations, rPPG has some potential for face presen-
tation attack detection, as evidenced by previous work [20–22]. In this work, we thus
propose to study pulse-based frequency features, as retrieved by rPPG algorithms, as
a mean to discriminate real biometric accesses from presentation attacks. Indeed, in
a legitimate, bonafide attempt, a consistent pulse signal should be detected, whereas
such a signal should mostly consists of noise in case of a presentation attack. Fur-
thermore, such approaches may have the desirable property to detect a wide range of
attacks, since they do not rely on attack-specific information. They have the potential
to overcome current limitations of classical PAD systems—relying on image quality
or texture—through their better generalization abilities. Moreover, they are conve-
nient, since they do not require user cooperation in assessing its liveness (challenge-
response) nor do they necessitate additional hardware, such as devices studied in
[23].

The typical workflow of a rPPG-based face presentation attack detection system is
depicted in Fig. 13.1. Although several aspects of the whole system are considered in
this work, our main contribution lies in the usage of long-term statistical spectral fea-
tures, inspired by a recent work on speaker presentation attack detection [24]. Since
these features are not specifically tailored to speech signals and are quite generic,
we propose to use them on a pulse signal in the context of face presentation attack
detection. Additionally, different rPPG algorithms as well as different classification
scheme are studied. Extensive experiments are performed on four publicly available
PAD databases following strict evaluation protocols. Besides, all the code needed to
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Fig. 13.1 Overview of a typical rPPG-based PAD system

reproduce presented results is made open-source and freely available to the research
community.1

The rest of the paper is organized as follows: the next section presents prior work
on remote physiological measurements for presentation attack detection. Then, pro-
posed features are described, and considered rPPG algorithms as well as classifica-
tion schemes are outlined. Databases and performances measures are presented in
Sect. 13.4, before describing experiments and discussing obtained results. Finally, a
conclusion is drawn and suggestions for future research are made in the last section.

13.2 Pulse-Based Approaches to Face Presentation Attack
Detection

Remote Photoplethysmography has already been used in applications loosely related
to face anti-spoofing. Gibert et al. [25] proposed a face detection algorithm, which
builds a map of positive pulsatile response over an image sequence to detect the face.
They even state that “Counterfeiting attempts using latex masks or images would be
deceived if this map was taken into account”. More recent work [26, 27] showed that
detecting living skin using rPPG is feasible, at least in lab settings. However, using
rPPG in the context of face PAD is still an emerging research area, as evidenced by
the few number of previous works. At the time of writing, and to the best of our
knowledge, only three studies using rPPG as a mean to detect presentation attack
have been published. These previous relevant works are detailed below.

13.2.1 Liu et al.

Liu et al. [20] developed an algorithm based on local rPPG signals and their correla-
tion. First, local pulse signals are extracted from different areas of the face. Usage of
local signals is motivated for several reasons: first, it helps with robustness to acqui-
sition conditions (illumination and subject’s motion). Second, it can handle the case
of a partially masked face, and finally, the strength of local rPPG signals are different

1Source code and results https://gitlab.idiap.ch/bob/bob.hobpad2.chapter13.

https://gitlab.idiap.ch/bob/bob.hobpad2.chapter13
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depending on the face area, but the strength pattern is the same across individuals.
Local rPPG signals are extracted using the CHROM algorithm [28]. After having
modeling the correlation of local pulse signals, a confidence map is learned and
used for subsequent classification. Classification is done by feeding a Support Vec-
tor Machine (SVM) with local correlation models as features, and with an adapted
RBF kernel using the confidence map as the metric. Their approach is evaluated
on databases containing masks attacks only, namely 3DMAD [29] augmented with
a supplementary dataset comprising six similar masks, plus two additional high-
quality silicone masks. Obtained results on these different datasets, including cross
dataset tests, show a good performance and hence validate the usage of pulse-based
features to reliably detect masks presentation attacks. Unfortunately, the proposed
algorithm is not assessed on traditionally used PAD databases, containing photo and
video replay attacks.

13.2.2 Li et al.

Li et al. [21] suggest a relatively simple method to detect attacks using pulse-based
features. First the pulse signal is retrieved using a simplified version of the algorithm
presented in [30]. Three pulse signals—one for each color channel—are extracted by
first considering the mean color value of pixels in a specific face area tracked along
the sequence. Then, these colors signals are processed with three different temporal
filters to finally get pulse signals, one in each color channel. Simple features are then
extracted from each frequency spectra, and are concatenated before being fed to a
linear SVM classifier. Experiments are again performed on 3DMAD, and also using
the supplementary masks. Reported results show a better performance than [20], but
do not seem to be directly comparable, since different experimental protocols were
applied (training subjects were randomly chosen). An interesting point of this paper
is that authors also report results on the MSU-MFSD database [7], and show that
their method has difficulty to properly discriminate bonafide examples from video
replay attacks.

13.2.3 PPGSecure

Nowara et al. [22] follow the same line of work as in [21], but considers the whole
frequency spectrum derived from the intensity changes in the green color channel
only. As in [20], this approach takes advantage of signals derived from different
face areas, but also incorporates information from background areas (to achieve
robustness to illumination fluctuations along the sequence). The final feature vector
representing a video sequence is formed by concatenating the frequency spectra of
pulse signals coming from five areas, three on the face (both cheeks and forehead)
plus two on the background. Classification is then done either with a SVM or a
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random forest classifier. Experiments are performed on the widely used Replay-
Attack database [6], but unfortunately, associated protocols have not been followed.
Instead, the authors used a leave-one-subject-out cross validation scheme, which
greatly increases the ratio of training to test data.Within this experimental framework,
a perfect performance (i.e., 100%) accuracy is reported for both photographs and
video attacks.

13.2.4 Discussion and Motivation

Although relevant, previous studies discussed here make it hard to objectively assess
the effectiveness of rPPG-based approaches for face presentation attack detection.
Indeed, performance is either reported onnon-publicly available data orwith different
experimental protocols. As a consequence, it is difficult to compare published results
with current state-of-the-art that relies on other means to detect attacks. A notable
exception is [21], where authors reported results on the MSU-MFSD dataset. It
also showed the limitation of such approaches, as compared to traditional face PAD
approaches such as texture analysis.

In thiswork,we hope to help foster research in this area by adopting a reproducible
research approach. All the data and the software to reproduce presented results are
available to the research community, easing further development in this field. More-
over, our proposed approach is assessed on four publicly available datasets, contain-
ing a wide variety of attacks (print and video replays of different quality, and mask
attacks). The software package also comprise our own implementation of two other
similar approaches, [21, 22], to which our proposed approach is compared.

13.3 Proposed Approach

In this contribution, we suggest to use Long-term spectral statistics (LTSS) [24] as
features for face presentation attack detection. This idea was first developed in the
context of speaker PAD, andmanaged to successfully discriminate real speakers from
recordings in a speaker authentication task. The main advantage of such features is
their ability to deal with any kind of signal and not necessarily speech.

Also, and since there exists a wide variety of rPPG algorithms, it seems important
to consider more than one approach since they differ in the way the pulse signal
is computed. This results in features that may be more suited to the task of pre-
sentation attack detection. To illustrate the difference, the retrieved pulse signals
for a bonafide video sequence using the three investigated algorithms are shown in
Fig. 13.2. One can clearly see that the pulse signals are not the same, depending on
the used algorithm.

Furthermore, different classification algorithms are also investigated. In addition
to classical two-class discriminative approaches, the usage of one-class classifiers
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(a) Li CVPR (b) CHROM

(c) SSR

Fig. 13.2 Pulse signals obtained with different rPPG algorithms

considering face presentation attack detection as an outlier detection problem are
considered. Indeed, recent studies [31, 32] using this paradigm for face presentation
attack detection showed promising results. Besides, one-class classifiers have been
successfully applied for PAD on other modalities, such as speech [33] or fingerprint
[34] and showed better generalization abilities. Furthermore, modeling real samples
may be well-suited to pulse-based features, where properties of bonafide attempts
only are considered.

13.3.1 Long-Term Spectral Statistics

In the context of pulse-based face PAD, and on the contrary to other approaches, prior
knowledge on the characteristics of attacks is generally unknown. For instance, LBP-
based systems intrinsically assume that texture of faces coming from presentation
attacks are different that the onepresent inbonafide face images.These differences are
manifold: this could be a lack of texture details on a mask for instance, or undesirable
effects such as Moiré patterns or print artifacts in the case of replay and print attacks.
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In our framework, the nature of the “pulse” signal extracted froman attack is unknown
a priori. Therefore, no prior assumption on the negative class can be made: it is only
assumed that signals differ in their statistical characteristics, irrespective of their
content (i.e. we do not look specifically for periodicity for instance). As suggested
in [24], the means and variances of the energy in different frequency bins provides
such a generic characterization.

Long-term spectral statistics are derived by processing the original signal using
overlapping temporal windows. In eachwindoww, a N -point Discrete Fourier Trans-
form is computed, and yields a vectorXw of dimension k = 0, . . . , N/2− 1 contain-
ing DFT coefficients. The statistics of frequency bins of the spectrum are considered
using its log-magnitude. As in [24], whenever a DFT coefficient |Xw(k)| is lower
than 1, it is clipped to 1 such that the log-magnitude remains positive.

Using the set of DFT coefficient vectors X1, X2, . . . , XW , the first and second
order statistics of frequency components are computed as

μ(k) = 1

W

W∑

i=1

log |Xw(k)| (13.1)

σ 2(k) = 1

W

W∑

i=1

(log |Xw(k)| − μ(k)) (13.2)

for k = 0, . . . , N/2− 1. The mean and variance vectors are then concatenated to
represent the spectral statistics of a given signal. As a result, the rPPG-based feature
for classifying a video sequence consists of a single feature vector. The presentation
attack detection is thus performed on the whole video sequence. In other approaches
(i.e. texture or image quality-based), detection is generally peformed at the frame
level. Long-term spectral statistics feature vectors are then used in conjunction with
a classifier to reach a final decision on whether the given video sequence is a bonafide
example, or an attack.

13.3.2 Investigated rPPG Algorithms

In this section, selected algorithms to retrieve a pulse signal are presented. Two of
them, one proposed by Li et al. [30] and CHROM [28] already served as basis for
face presentation attack detection in [21] and [20] respectively. The third one, Spatial
Subspace Rotation (SSR) [35], has been chosen for both its original analysis (it does
not rely on mean skin color processing but rather considers the whole set of skin
color pixels) and its potential effectiveness, as demonstrated in [16].

Li CVPR

In this work, a simplified version of the rPPG algorithm originally developed in [30]
has been implemented. This simplification has already been used for presentation
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attack detection in [21]. In particular, the correction for illumination and for motion
are ignored. Basically, the pulse signal is obtained by first accumulating the mean
skin color value across the lower region of a face in each frame and then to filter
the color signal to get the pulse signal. In this work, instead of tracking the lower
face region from frame to frame, it is computed at each frame by using a pre-trained
facial landmark detector [36].

CHROM

The CHROM approach [28] is relatively simple but has been shown to perform well.
The algorithm first finds skin-colored pixels in a given frame and computes the mean
skin color. Then, themean skin color value is projected onto a specific color subspace,
which aims to reveal subtle color variations due to blood flow. The final pulse signal
is obtained by first bandpass filtering temporal signals in the proposed chrominance
colorspace, and then by combining these two filtered signals into one. Note that in
our implementation, the skin color filter described in [37] has been used.

SSR

The Spatial Subspace Rotation (SSR) algorithm has been proposed in [35]. It con-
siders the subspace of skin pixels in the RGB space and derives the pulse signal by
analyzing the rotation angle of the skin color subspace in consecutive frames. To
do so, the eigenvectors of the skin pixels correlation matrix are considered. More
precisely, the angle between the principal eigenvector and the hyperplane defined
by the two others is analyzed across a temporal window. As claimed by the authors,
this algorithm is able to directly retrieve a reliable pulse signal, and hence no post-
processing step (i.e., bandpass filtering) is required. Again, skin color pixels are
detected using the filter proposed in [37].

13.3.3 Classification

Previous work in rPPG-based face presentation attack detection all rely on SVM—a
classical discriminative algorithm—to perform classification of pulse-derived fea-
tures. Although successful, we believe that choosing a suitable classifier should not
be overlooked given the unpredictable nature of attacks. Therefore, a comparison of
classification scheme is also performed. Since PAD is inherently a two-class prob-
lem, any binary classifier could potentially be used. The literature contains many
examples and we refer the interested reader to [2, 3] for a comprehensive overview
of existing approaches. In thiswork, three binary classification algorithms are applied
to the proposed features: Support Vector Machine (SVM), Multi-Layer Perceptron
(MLP) and Linear Discriminant Analysis (LDA). This choice of algorithms has been
motivated by the fact that SVM seems to be the defacto standard in face PAD, and
because it is used in all the previous work using pulse-based features. MLP and LDA
have been chosen since they are used in conjunction with the proposed features in
[24].
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Although presentation detection attack is usually viewed as a two-class classifi-
cation problem, it can also be seen as an outlier detection problem. According to
[3], modeling the genuine examples distribution is a promising research direction,
since one cannot anticipate every possible attack type. One-class classification has
already been applied in the context of face presentation detection in [31, 32], where
one-class SVM and Gaussian Mixture Models (GMM) have been used. These two
algorithms are hence also applied to the proposed features here.

13.4 Experiments and Results

13.4.1 Databases

Replay-Attack

The Replay-Attack database was first presented in [6] and contains both bonafide
attempts and presentation attacks for 50 different subjects. For each subject, two
real accesses were recorded under different conditions, referred to as controlled and
adverse. Presentation attacks were generated according to three different scenarios:

1. print: high-resolution photographs printed on A4 paper
2. mobile: photos and videos are displayed on an iPhone
3. highdef: photos and videos are displayed on an iPad

Also, two different conditions have been used to display attacks: either held by hand
by an operator or attached to a fixed support in order to avoidmotion. In total, there are
1200 video sequences, divided into training (360 seq.), development (360 seq.) and
evaluation sets (480 seq.). The average sequence length is around 10 s (real accesses
are longer and last about 15 s, whereas attacks last around 9 s). Although several
protocols have been defined to assess the performance of face PAD algorithms, only
the grandtest is used here, since it contains all the different attacks and hence allows
to test various approaches for a wider range of attacks.

Replay-Mobile

The Replay-Mobile database [38] has been built in the same spirit as of the Replay-
Attack database, but with higher quality devices to forge the different attacks. Indeed,
attacks are here performed using either high-resolution videos presented on a matte
screen or high quality photographs displayed on matte paper. This is done in order
to minimize specular reflections, and hence to be closer to real access attempts. This
dataset contains 1030 video sequences of 40 subjects, again divided into training (312
seq.), development (416 seq.) and evaluation (302 seq.) sets. The average length of
the sequences is 11.8 s, and real accesses and attacks are usually of the same length.
Experimental protocols have also been devised in a similar way than in Replay-
Mobile, and again, we will restrict ourselves to the grandtest protocol, for the same
reasons.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 13.3 Examples of frames extracted fromboth bonafide accesses (first column) and presentation
attacks (column 2–4). The first row shows examples from the Replay-attack database, the second
one from replay-mobile, the third one from MSU-MFSD, and the fourth one from 3DMAD
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MSU-MFSD

The MSU Mobile Face Spoofing Database has been introduced in [7]. It contains
a total of 440 video sequences of 55 subjects, but only a subset comprising 35
subjects has been provided to the research community. Video sequences last around
9 s in average. This database also contains two types of attacks, namely high-quality
photograph and video sequences. The publicly available subset specifies 15 subjects
used for training and 20 subjects to perform evaluation: these specifications have not
been followed here, since no development set is provided. Instead, we build a training
set and a development set with 80 video sequences from 10 subjects each, and an
evaluation set containing 120 sequences coming from the 15 remaining subjects.

3DMAD

The 3DMask Attack Database (3DMAD) [29] is the first publicly available database
for 3D face presentation detection. It consists in 15 videos sequences of 17 subjects,
recorded thanks to a Microsoft Kinect sensor. Note that here, only color sequences
are used. The sequences, which all last exactly 10 s, were collected in three different
sessions: the first two are bonafide accesses and the third one contains the mask
attack for each subject. The recordings have been made in controlled conditions and
with uniform background. As in [29], we divided the database into training (105 seq.
from 7 subjects), development and evaluation sets (75 seq. from 5 subjects in each).
However, the random splitting has not been applied here: the training set simply
contains the first seven clients, the development set is made with subjects 8–12, and
the evaluation set with subjects 13–17. Examples of frames extracted from both real
attempts and attacks for all databases can be found in Fig. 13.3).

13.4.2 Performance Measures

Any face presentation attack detection algorithm encounters two type of errors: either
an attack is misclassified as a real access, or the other way around, i.e., bonafide
attempts are wrongly classified as attacks. As a consequence, performance is usu-
ally assessed using two metrics. The Attack Presentation Classification Error Rate
(APCER) is defined as the expected probability of a successful attack and is defined
as follows:

APCER = # of accepted attacks

# of attacks
(13.3)

Conversely, the Bona Fide Presentation Classification Error Rate (BPCER) is defined
as the expected probability that a bonafide access will be falsely declared as a pre-
sentation attack. The BPCER is computed as:

BPCER = # of rejected real accesses

# of real accesses
(13.4)
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Note that according to the ISO/IEC 30107-3 standard, each attack type should be
taken into account separately. We did not follow this standard here, since our goal is
to assess the robustness for a wide range of attacks. Note also that these PAD specific
measures relate to the more traditionally used False Acceptance Rate (equivalent to
APCER) and False Rejection Rate (equivalent to BPCER).

To provide a single number for the performance, results are typically presented
using the Half Total Error Rate (HTER), which is basically the mean of the APCER
and the BPCER:

HT ER(τ ) = (APCER(τ ) + BPCER(τ ))

2
[%] (13.5)

Note that the Half Total Error Rate depends on a threshold τ . Indeed, reducing the
Attack Presentation Classification Error Rate will increase the Bonafide Presenta-
tion Classification Error Rate and vice-versa. The threshold τ is usually selected to
minimize the Equal-Error Rate (EER, the operating point where APCER = BPCER)
on the development set.

13.4.3 Experimental Results

In this section, the experimental framework and obtained results are presented. Imple-
mentation details are first discussed, before providing experimental results. In partic-
ular, a comparison of the proposed LTSS features is made with the spectral features
proposed by both Li et al. [21] andNowara et al. [22].We then investigate the usage of
different rPPG algorithms and classification schemes. Finally, an analysis of obtained
results is made: it presents identified shortcomings and suggests directions for future
research.

13.4.3.1 Implementation Details

For pulse retrieval, we used open-source implementation of selected rPPG algo-
rithms2 that have been compared for heart-rate retrieval in [39]. All algorithms have
been used with their default parameters. Experiments have been performed on the
four databases presented in Sect. 13.4.1, with their associated protocols. In particu-
lar, classifiers are trained using specified training sets, and various hyperparameters
are optimized to minimize the EER on the development set. Finally, performance
is assessed on the evaluation set. Experimental pipelines have been defined and
performed using the bob toolbox [40, 41] and, as mentioned in Sect. 13.1, are repro-
ducible by downloading the Python package associated with this contribution.

2https://pypi.python.org/pypi/bob.rppg.base.

https://pypi.python.org/pypi/bob.rppg.base
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Table 13.1 Performance of different features based on the frequency spectrum of the pulse signals.
The HTER [%] is reported on the evaluation set of each databases

Replay-Attack Replay-Mobile MSU-MFSD 3DMAD

Nowara et al. [22] 25.5 35.9 31.7 43.0

Li et al. [21] 27.3 30.7 23.3 29.0

Li CVPR + LTSS 13.0 25.7 20.6 19.0

13.4.3.2 Comparison with Existing Approaches

Here we present results for the proposed approach based on LTSS features and
compare themwith our own implementation of both previously published algorithms
also using pulse frequency features [21, 22]. As features used in [21] come frompulse
signals retrieved in three color channels, the only choice for the rPPG algorithm
is Li CVPR [30]. The same approach has been made using the proposed LTSS
features: they are computed from the frequency spectrum in each color channel and
concatenated. Note that in the work of Nowara et al. [22], only the green channel has
been considered.

For classification, a two-class SVM has been used to be consistent with previous
studies. Therefore, the different systems mostly differs in the feature extraction step,
making them easily comparable with each other. Table 13.1 shows the HTER per-
formance of the different feature extraction approaches on the evaluation set of the
different databases.

As can be seen, the proposed LTSS features achieve the best performance on all
considered datasets, and provide a significant improvement over the similar investi-
gated approaches. As compared to [21], where very simple statistics are used, long-
term spectral statistics likely contain more information and are hence more suitable
to reveal differences between pulse signals retrieved from real attempts and attacks.
It also suggests that the temporal window-based analysis of frequency content is
suitable: this is not surprising since pulse signals from real attempts should contain
some periodicity, whereas pulse signals from attacks should not. Note finally that
our implementation of Li’s approach has a better performance on the MSU-MFSD
dataset than the one reported in the original article [21]. Indeed, an EER of 20.0% is
obtained, whereas authors reported an EER of 36.7% in [21].

When compared to features containing magnitude of the whole frequency spec-
trum in local areas [22], our proposed LTSS features performs consistently better,
and by a large margin. This result is interesting for several reasons. First, features
extracted from a single face region seem sufficient to retrieve valuable pulse informa-
tion, as compared to features extracted from different local areas of the face. Second,
embedding additional information (i.e features from the background) does not seem
to help in this case. Finally, computing relevant statistics on the Fourier spectrum
looks more suitable than using the whole spectrum as a feature.
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Table 13.2 Performance when different algorithms are used to retrieve the pulse signal. The HTER
[%] is reported on the evaluation set of each databases

Replay-Attack Replay-Mobile MSU-MFSD 3DMAD

Li CVPR (green) + LTSS 16.1 32.5 35.0 17.0

CHROM + LTSS 20.9 38.1 50.6 29.0

SSR + LTSS 5.9 37.7 43.3 13.0

13.4.3.3 Comparison of Pulse Extraction Algorithms

In this section, we compare the different rPPG algorithms. Indeed, since they yield
different pulse signals (see Fig. 13.2), it is interesting to see which one helps the
most in discriminating bonafide attempts from presentation attacks. Since CHROM
and SSR only retrieve a single pulse signal (and not three, as in [30]) LTSS features
are derived from this single pulse signal only. For a fair comparison, and when using
Li CVPR algorithm [30] for pulse extraction, only the pulse computed in the green
channel is considered, since it has been shown that this color channel contains the
most variation due to blood flow [16]. Table 13.2 reports the performance for different
pulse extraction algorithms.

When comparing rPPG algorithms to retrieve the pulse signal, the SSR algorithm
obtains the best performance on two out of four datasets. Actually, it has the overall
best performance on both the Replay-Attack database with an HTER of 5.9% and on
3DMAD with an HTER of 13.0%. However, results on other databases do not show
performance improvement as compared to the previous experiment, where LTSS
features have been extracted and concatenated in three color channels. This suggests
that in the context of PAD, all color channels carry valuable information.

13.4.3.4 Comparison of Classification Approaches

In this section, the different classifiers are compared. As mentioned in Sect. 13.3.3,
several binary classification algorithms have been considered. The SVM is used with
a classical RBF kernel in both two-class and one class settings. The MLP contains a
single hidden layer and two outputs representing the two classes. Regarding Linear
Discriminant Analysis, PCA is first applied to the features in order to ensure non-
singularity of the within-class covariance matrix. Note also that in the LDA case
features are projected to a single dimension, which is then directly used as a “score”.
Table 13.3 shows the obtained performance for different classification schemes.

It is clear from Table 13.3 that different classifiers obtain very different results
on the same features. Within discriminant approaches, it is hard to define the most
appropriate classifier for this task. They are quite close in terms of averaged perfor-
mance over the four datasets: SVM has an average HTER of 19.8%, whereas MLP
and LDA reach an averageHTERof 21.8% and 22.4% respectively. Also, the optimal
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Table 13.3 Performance of both tow-class and one-class classifiers. The HTER [%] is reported on
the evaluation set of each databases

Replay-Attack Replay-Mobile MSU-MFSD 3DMAD

SVM 13.4 26.0 20.6 19.0

MLP 27.8 27.7 16.1 15.0

LDA 24.6 24.1 23.3 17.0

GMM 21.6 54.1 35.6 44.0

OC-SVM 19.6 44.8 31.7 38.0

Table 13.4 HTER [%] performance on evaluation sets, with a breakdown on photo and video
replay attacks

Photo Video

Replay-Attack 11.3 6.6

Replay-Mobile 19.0 26.5

MSU-MFSD 20.0 15.8

choice for the classifier is dependent on the database: this suggest that fusing different
classifiers may be an interesting direction to investigate.

Table 13.3 also shows the poor performance obtained using the outlier detection
approach. This may be explained by the lack of training data. Actually, modeling the
distribution (GMM), or the support region (one-class SVM) of bonafide examples
may be hard with few examples.

13.4.4 Discussion

In this section, a breakdown is made on the different attack types. This allows to
better understand the behavior of our pulse-based face PAD approach, as well as to
identify shortcomings, where future efforts should be made.

Table 13.4 shows the HTER of the proposed Li CVPR + LTSS system for two
widely-used types of attack: photo and video replays. On the MSU-MFSD database,
our approach performs better when dealing with video attacks, and this contradicts
the result presented in [21]. Indeed, in the case of a photo attack, the image of the
face is the same along the replayed sequence, therefore no pulse signal should be
detected. Note that the same remark applies to the Replay-Attack database. This
could maybe be explained by the motion introduced when the operator is holding
the photograph in front of the camera, which may pollute the retrieved pulse signal.
Also, some of the results reported on the Replay-Attack database in [22] exhibit the
same trend: a better accuracy is sometimes observed on video attacks than on photo
attacks.
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(a) Replay-Attack (b) Replay-Mobile

(c) MSU-MFSD

Fig. 13.4 Score values distribution of both bonafide accesses (green) and presentation attacks (red)
on the evaluation set of the different databases. The dashed-line represents the decision threshold τ

selected a priori on the development set. Note that for visualization purposes, the graph for Replay-
Attack has been truncated. Actually the leftmost bin goes up to 300, meaning that most of the attacks
have a very low score

Finally, the distribution of the scores obtained on the evaluation sets of the three
databases containing both photo and video attacks are shown inFig. 13.4 and provides
two interesting insights:

1. Extracting reliable features from pulse signals is still a challenging problem for
bonafide attempts. This is evidenced by the more uniform distribution of scores
for genuine access (depicted in green in Fig. 13.4). This is especially true for
both Replay-Mobile and MSU-MFSD databases. As a consequence, the BPCER
is usually higher than the APCER.

2. On the other hand, proposed features are able to handle attacks prettywell: the dis-
tribution of attack scores (depicted in red in Fig. 13.4) spreads around a relatively
low value on the left hand side of the histogram.

To further illustrate these observations, Fig. 13.5 shows example images, corre-
sponding pulses and their respective frequency spectra for both bonafide examples
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Fig. 13.5 Examples of images, retrieved pulses and their frequency spectrum for both real accesses
and attacks from the Replay-Mobile database. The first row shows a legitimate access, the last two
rows corresponds to a photo and a video attack respectively

(first row) and different presentation attacks (last two rows) of the Replay-Mobile
database. One cannot clearly see differences in the frequency content between attacks
and the real example.Onewould expect that for a real access, the corresponding rPPG
signal would have a clear peak in the frequency spectrum that corresponds to the heart
rate. In the example depicted in Fig. 13.5, it is actually the opposite: the pulse signal
retrieved from the real access has more energy in high frequency components than
the one in the photo attack. Note that high-frequency components are not present
since the pulse signal is bandpassed; this may discard useful information to identify
attacks, but recall that our goal is more oriented toward characterizing real accesses.

The same analysis has been made with mask attacks in the 3DMAD dataset and
the score distribution is shown in Fig. 13.6. In this case, different observations can be
made. Scores corresponding to bonafide examples are not that uniformly distributed
andmainly lie on the right handside of the histogram,which is desirable. It means that
for this dataset, extracted pulse-based features aremore reliable than in previous case.
This is not surprising, since sequences have been recorded under clean conditions
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Fig. 13.6 Score values distribution of both bonafide accesses (green) and presentation attacks (red)
on the evaluation set of the 3DMAD database. The dashed-line represents the decision threshold τ

selected a priori on the development set

Fig. 13.7 Examples of images, retrieved pulses and their frequency spectrum for both real accesses
and attacks from the 3DMAD database. The first row shows a legitimate access, and the second one
is an attack

and do not contain as much variations as in other databases. Again, this suggest that
illumination is an important factor for reliable pulse extraction.

Also, Fig. 13.7 shows example images, with their retrieved pulses and correspond-
ing spectra for the 3DMAD database. Note here that the difference is easier to spot
than in examples from the Replay-Mobile database (Fig. 13.5) and corresponds to
expectations. In this case, one can clearly see the frequency component corresponding
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to the probable heart-rate of the subject (the leftmost peak of the spectrum) for the
bonafide example. On the contrary, the signal retrieved from the attack is composed
of higher frequencies, meaning that in this case, color variations should mainly be
due to noise.

Although the proposed approach performs well as compared to other rPPG-based
presentation attack detection, it does not reach state-of-the-art performance on these
benchmarking datasets yet. Nevertheless, we believe that rPPG-based presentation
attack detection systems have the potential to become successful, since there exists
room for improvement.

First, and as evidenced in the previous analysis, a reliable pulse signal should
be obtained. Current limitations of rPPG algorithms, and in particular illumination
condition and compression have been identified and much effort is put on coping
with this in current rPPG research. Second, existing approaches—including this
one—consider relatively simple, hand-crafted features and progress can also bemade
here. For instance, Wang et al. successfully used more advanced spectral features in
[27] to detect living skin. Moreover, recent advances in speaker presentation attack
detection using convolutional neural networks (CNN) [42] show the superiority of
suchmodels over hand-crafted features. Finally, other classification approaches are to
be studied yet. In particular, taking advantage of the temporal nature of the data using
algorithms dedicated to time series, such as Hidden Markov Models or Recurrent
Neural Networks, should be worth considering.

13.5 Conclusion

In this work, we studied the usage of remote photoplethysmography for face pre-
sentation attack detection. New features containing long term spectral statistics of
pulse signals were proposed and successfully applied to this task. Experiments per-
formed on four datasets containing a wide variety of attacks show that the proposed
approach outperforms state-of-the-art pulse-based face PAD approaches by a large
margin. Analysis of the results revealed that the greatest challenge for such systems
is their ability to retrieve reliable pulse signals for bonafide attempts. This suggest
that future work should first be directed towards improving rPPG algorithms in con-
ditions suitable for PAD, where video quality is not necessarily sufficient for current
approaches, and where both illumination variations and subject motion are present.
Besides, there is also room for improvement in several other steps of the system.
Automatically deriving pulse-based features, using convolutional neural networks
for instance, and applying classification schemes tailored for time-series are, in our
opinion, research directions worth investigating. Finally, such approaches have the
potential to circumvent current limitations of face PAD systems. Actually, they may
be well-suited to handle unknown attacks, since they only rely on properties exhib-
ited in bonafide accesses, as opposed to approaches based on image quality or texture
analysis.
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