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Foreword

About 5 years ago, I had the privilege to write the Foreword for the first edition
of the Handbook of Biometric Anti-Spoofing, edited by my good colleagues
Sébastien Marcel, Mark S. Nixon, and Stan Z. Li. I was impressed with their work,
and wrote that Foreword that there were four reasons that made it easy to envy what
they accomplished with their Handbook. I will revisit those reasons below. I now
have the privilege to write the Foreword to the second edition of the Handbook of
Biometric Anti-Spoofing, which I enjoy even more than the first edition. The second
edition is edited by good colleagues Sébastien Marcel, Mark S. Nixon, Julian
Fierrez, and Nicholas Evans. The editorial team has expanded as the scope and
ambition of the Handbook has expanded, and in my assessment, the editors have
achieved an impressive final product.

In the Foreword to the first edition of the Handbook of Biometric Anti-Spoofing,
I wrote that one reason to envy what the editors had accomplished is that they
managed to envision a truly novel (at the time) theme for their Handbook. Theirs
was the first Handbook that I am aware of to be dedicated to biometric
anti-spoofing. As the advertising copy says “the first definitive study of biometric
anti-spoofing”. This distinction does not go away, but anti-spoofing—or “presen-
tation attack detection” in the current lingo—is a fast-moving area of research and
any work in this area can go out-of-date quickly. With the second edition, the
coverage of the field has been brought up to date and also expanded to more
comprehensive coverage of the field. As the scope and ambition of the field as a
whole has grown, so has the scope and ambition of the Handbook.

In the Foreword to the first edition, I wrote that a second reason to envy the
editors’ accomplishment was that they anticipated an important emerging need. If
this was not clear to the entire field 5 years ago, it certainly should be clear now.
Biometric technologies continue to become more widely deployed, in consumer
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products such as the 3D face recognition in Apple’s iPhone X, in business processes
such as Yombu’s fingerprint payment system, and in government applications such
as Somaliland’s use of iris recognition to create their national voter registration list.
With bigger, broader and higher value applications, presentation attacks of more
creative varieties are certain to be attempted. The need for an authoritative, broad
coverage volume detailing the current state of the art in biometric anti-spoofing has
only increased since the first edition, and the second edition fulfills this need.

The third reason that I outlined in the previous Foreword was that the editors had
“timed the wave” well; they were on the early leading edge of the wave of pop-
ularity of research in anti-spoofing. With the second edition, I believe that they are
again on the leading edge of a wave that is still to crest. I can imagine that the CTO
of every business integrating biometric identity verification into one of their pro-
cesses will want to study this Handbook carefully. As well, researchers wanting to
begin activity in this area will find this Handbook a great place to start.

The fourth reason that I outlined previously was that the editors’ efforts had
resulted in a quality product. Now, to these four reasons enumerated in the
Foreword to the first edition, I must add a fifth reason specific to the second
edition—the editors have evolved and updated the material in a big way, and the
result is that they have produced an even better, more comprehensive and more
useful second edition of the Handbook of Biometric Anti-Spoofing.

Whereas the first edition comprised 13 chapters, the second edition has grown to
22 chapters! And the editors have been bold, and not taken the path of least
resistance. They did not automatically keep a chapter corresponding to each chapter
in the first edition, but instead both dropped some topics and added new topics.
Where the first edition had two chapters dealing with fingerprint, two with face, and
one each on iris, gait, speaker, and multimodal biometrics, the second edition has
six (!) chapters dealing with face, five with fingerprint, three with iris, three with
voice, and one each dealing with vein and signature. There is also coverage of the
major presentation attack competitions, and of the major databases available for
research. The second edition being very much up to date and globally aware, there
is even a discussion of presentation attack detection and how it may be handled
under the EU’s new General Data Protection Regulation (GDPR). And with every
chapter, the contributors are authorities on the topic, having recently published
specific state-of-the-art research of their own on the topic. The editorial team has
made quite significant and impressive efforts at recruiting contributors to accom-
plish the expansion and updating of material for the second edition.

The second edition of the Handbook of Biometric Anti-Spoofing by Sébastien
Marcel, Mark S. Nixon, Julian Fierrez, and Nicholas Evans is the new standard in
authoritative and comprehensive coverage of the current state of the art in biometric
presentation attack detection. As biometric technology continues to be adapted in

vi Foreword



new large-scale applications, the wave of research attention to presentation attack
detection will continue to grow. We can only hope that the editors will return in a
few years with a third edition that continues in the tradition that they have set with
the first two.

Notre Dame, IN, USA
July 2018

Prof. Kevin W. Bowyer
Editor-In-Chief

IEEE Transactions on Biometrics,
Behavior and Identity Science

Schubmehl-Prein Family Professor of
Computer Science and Engineering

University of Notre Dame
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Preface

In the 4 years since 2014 when the TABULA RASA1 project ended,2 and the first
edition of this Handbook was published,3 the field of biometric anti-spoofing (term
now standardized as biometric Presentation Attack Detection—PAD) has advanced
significantly with large-scale industrial application. As these applications continue
to grow in scale, the number of research challenges and technology requirements
are also increasing significantly. The importance of the topic and the related
research needs are confirmed by new highly funded research programs like the
IARPA ODIN program initiated in 2016 and ongoing, aimed at advancing PAD
technologies to identify known and unknown biometric presentation attacks.

The field of biometric PAD has matured significantly since the first edition, with
a growing number of research groups working in the topic, various benchmarks and
tools now commonly used and shared among researchers, technology competitions,
and standardization activities. With the aim of updating our first edition published
in 2014, heavily focused then on the research within the TABULA RASA project,
we initiated this second edition in 2017 in an Open Call aiming to represent a more
up-to-date and comprehensive picture of the current state of the art. We received 25
Expressions of Interest for contributions to the book, which after review resulted in
a final set of 22 chapters. We are very grateful both to the authors and to the
reviewers, who are listed separately.

We also thank the support provided by Springer, with special thanks to Simon
Rees, who similar to the first edition has helped significantly towards this second
edition.

As the body of knowledge in biometric PAD is growing in the recent years, the
volume and contents in this second edition have increased significantly with respect
to the first edition. Additionally, this field is attracting the interest of a growing

1Trusted Biometrics under Spoofing Attacks—http://www.tabularasa-euproject.org.
2 A. Hadid, N. Evans, S. Marcel and J. Fierrez, “Biometrics systems under spoofing attack: an
evaluation methodology and lessons learned”, IEEE Signal Processing Magazine, September 2015.
3 S. Marcel, M. S. Nixon and S. Z. Li (Eds.), Handbook of Biometric Anti-Spoofing, Springer,
2014.
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number of people: from researchers to practitioners, from students to advanced
researchers, and from engineers to technology consultants and marketers. In order
to be useful to a wider spectrum of readers, in this second edition, we have included
a number of introductory chapters for the most important biometrics. Those
introductory chapters can be skipped by readers knowledgeable in the basics of
biometric PAD.

With the mindset of helping researchers and practitioners, and speeding up the
progress in this field, we asked authors of experimental chapters to comply with two
requirements related to Reproducible Research:

• experiments are conducted on publicly available datasets;
• system scores generated with proposed PAD methods are openly available.

Additionally, some chapters and more particularly chapters 2, 4, 7, 11, 12, 13, 16,
17, 18, 19 and 20, also include code for generating performance plots and figures,
open source codes for the presented methods, and detailed instructions on how to
reproduce the reported results. All this Reproducible Research material is available
here: https://gitlab.idiap.ch/biometric-resources.

As researchers in the field for many years, we trust you find this text of use as
guidance and as reference in a topic that will continue to inspire and challenge
many researchers.

Martigny, Switzerland Sébastien Marcel
Southampton, England Mark S. Nixon
Madrid, Spain Julian Fierrez
Biot Sophia Antipolis, France Nicholas Evans
July 2018
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Part I
Fingerprint Biometrics



Chapter 1
An Introduction to Fingerprint
Presentation Attack Detection

Javier Galbally, Julian Fierrez and Raffaele Cappelli

Abstract This chapter provides an introduction to Presentation Attack Detection
(PAD), also coined anti-spoofing, in fingerprint biometrics, and summarizes key
developments for that purpose in the last two decades. After a review of selected lit-
erature in the field, we also revisit the potential of quality assessment for presentation
attack detection. We believe that, beyond the interest that the described techniques
may intrinsically have by themselves, the case study presentedmay serve as an exam-
ple of how to develop and validate fingerprint PAD techniques based on common and
publicly available benchmarks and following a systematic and replicable protocol.

1.1 Introduction

“Fingerprints cannot lie, but liars can make fingerprints”. Unfortunately, this para-
phrase of an old quote attributed to Mark Twain1 has been proven right on many
occasions now.

J. Galbally
European Commission, Joint Research Centre, Ispra, Italy
e-mail: javier.galbally@ec.europa.eu

J. Fierrez (B)
Universidad Autonoma de Madrid, Madrid, Spain
e-mail: julian.fierrez@uam.es

R. Cappelli
Università di Bologna, Cesena, Italy
e-mail: raffaele.cappelli@unibo.it

1Figures do not lie, but liars do figure.
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4 J. Galbally et al.

As the deployment of fingerprint systems keeps growing year after year in
such different environments as airports, laptops, or mobile phones, people are also
becoming more familiar to their use in everyday life and, as a result, the security
weaknesses of fingerprint sensors are becoming better known to the general pub-
lic. Nowadays, it is not difficult to find websites or even tutorial videos, which give
detail guidance on how to create fake fingerprints which may be used for spoofing
biometric systems.

As a consequence, the fingerprint stands out as one of the biometric traits which
has arisen the most attention not only from researchers and vendors, but also from
the media and users, regarding its vulnerabilities to Presentation Attacks (PAs) (aka
spoofing). This increasing interest of the biometric community in the security eval-
uation of fingerprint recognition systems against presentation attacks has led to the
creation of numerous and very diverse initiatives in this field: the publication of
many research works disclosing and evaluating different fingerprint presentation
attack approaches [1–4]; the proposal of new Presentation Attack Detection (PAD)
(aka anti-spoofing) methods [5–7]; related book chapters [8, 9]; PhD and MSc The-
ses which propose and analyze different fingerprint PA and PAD techniques [10–13];
several patented fingerprint PAD mechanisms both for touch-based and contactless
systems [14–18]; the publication of SupportingDocuments and Protection Profiles in
the framework of the security evaluation standard Common Criteria for the objective
assessment of fingerprint-based commercial systems [19, 20]; the organization of
competitions focused on vulnerability assessment to fingerprint presentation attacks
[21, 22]; the acquisition of specific datasets for the evaluation of fingerprint protec-
tion methods against direct attacks [23, 24], the creation of groups and laboratories
which have the evaluation of fingerprint security as one of their major tasks [25–27];
or of several European Projects on fingerprint PAD as one of their main research
interests [28, 29].

The aforementioned initiatives and other analogue studies have shown the impor-
tance given by all parties involved in the development of fingerprint-based biometrics
to the improvement of the systems security and the necessity to propose and develop
specific protection methods against PAs in order to bring this rapidly emerging tech-
nology into practical use. Thisway, researchers have focused on the design of specific
countermeasures that enable fingerprint recognition systems to detect fake samples
and reject them, improving this way the robustness of the applications.

In the fingerprint field, besides other PAD approaches such as the use of multi-
biometrics or challenge–response methods, special attention has been paid by
researchers and industry to the so-called liveness detection techniques. These algo-
rithms use different physiological properties to distinguish between real and fake
traits. Liveness assessment methods represent a challenging engineering problem as
they have to satisfy certain demanding requirements [30]: (i) noninvasive, the tech-
nique should in no case be harmful for the individual or require an excessive contact
with the user; (ii) user-friendly, people should not be reluctant to use it; (iii) fast,
results have to be produced in a very reduced interval as the user cannot be asked to
interact with the sensor for a long period of time; (iv) low cost, a wide use cannot
be expected if the cost is excessively high; (v) performance, in addition to having a



1 An Introduction to Fingerprint Presentation Attack Detection 5

good fake detection rate, the protection scheme should not degrade the recognition
performance (i.e., false rejection) of the biometric system.

Liveness detection methods are usually classified into one of two groups: (i)
Hardware-based techniques, which add some specific device to the sensor in order
to detect particular properties of a living trait (e.g., fingerprint sweat, blood pressure,
or odor); (ii) Software-based techniques, in this case, the fake trait is detected once
the sample has been acquired with a standard sensor (i.e., features used to distinguish
between real and fake traits are extracted from the biometric sample, and not from
the trait itself).

The two types of methods present certain advantages and drawbacks over the
other and, in general, a combination of both would be the most desirable protec-
tion approach to increase the security of biometric systems. As a coarse comparison,
hardware-based schemes usually present a higher fake detection rate, while software-
based techniques are in general less expensive (as no extra device is needed), and
less intrusive since their implementation is transparent to the user. Furthermore, as
they operate directly on the acquired sample (and not on the biometric trait itself),
software-based techniques may be embedded in the feature extractor module which
makes them potentially capable of detecting other types of illegal break-in attempts
not necessarily classified as presentation attacks. For instance, software-based meth-
ods can protect the system against the injection of reconstructed or synthetic sam-
ples into the communication channel between the sensor and the feature extractor
[31, 32].

Although, as shown above, a great amount of work has been done in the field
of fingerprint PAD and big advances have been reached over the last decade, the
attackingmethodologies have also evolved and becomemore andmore sophisticated.
This way, while many commercial fingerprint readers claim to have some degree of
PAD embedded, many of them are still vulnerable to presentation attack attempts
using different artificial fingerprint samples. Therefore, there are still big challenges
to be faced in the detection of fingerprint direct attacks.2

This chapter represents an introduction to the problem of fingerprint PAD, includ-
ing an example of experimental methodology [33], and example results extracted
from [34]. More comprehensive and up to date surveys of recent advances can be
found elsewhere [35–37]. After a review of early works in fingerprint PAD, we ana-
lyze and evaluate the potential of quality assessment for liveness detection purposes.
In particular, we consider two different sets of features: (i) one based on fingerprint-
specific quality measures (i.e., quality measures which may only be extracted from
a fingerprint image); (ii) a second set based on general image quality measures (i.e.,
quality measures which may be extracted from any image). Both techniques are
tested on publicly available fingerprint spoofing databases where they have reached
results fully comparable to those obtained on the same datasets and following the
same experimental protocols by top-ranked approaches from the state of the art.

In addition to their very competitive performance, as they are software-based, both
methods present the usual advantages of this type of approaches: fast, as they only

2https://www.iarpa.gov/index.php/research-programs/odin/

https://www.iarpa.gov/index.php/research-programs/odin/
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need one image (i.e., the same sample acquired for verification) to detect whether it
is real or fake; nonintrusive; user-friendly (transparent to the user); cheap and easy
to embed in already functional systems (as no new piece of hardware is required).

The rest of the chapter is structured as follows. A review of relevant early works
in the field of fingerprint PAD is given is Sect. 1.2. A brief description of large and
publicly available fingerprint spoofing databases is presented in Sect. 1.3. A case
study based on the use of quality assessment as PAD tool is introduced in Sect. 1.4
where we give some key concepts about image quality assessment and the rationale
behind its use for biometric protection. The two fingerprint PAD approaches studied
in the chapter based on fingerprint-specific and general quality features are described
respectively in Sects. 1.5 and 1.6. The evaluation of the methods and experimental
results are given in Sect. 1.7. Conclusions are finally drawn in Sect. 1.8.

1.2 Early Works in Fingerprint Presentation Attack
Detection

The history of fingerprint forgery in the forensic field is probably almost as old as that
of fingerprint development and classification itself. In fact, the question of whether
or not fingerprints could be forged was positively answered [38] several years before
it was officially posed in a research publication [39].

Regarding modern automatic fingerprint recognition systems, although other
types of attacks with dead [40] or altered [41] fingers have been reported, almost
all the available vulnerability studies regarding presentations attacks are carried out
either by taking advantage of the residual fingerprint left behind on the sensor sur-
face, or by using some type of gummy fingertip (or even complete prosthetic fingers)
manufactured with different materials (e.g., silicone, gelatin, plastic, clay, dental
molding material, or glycerin). In general, these fake fingerprints may be generated
with the cooperation of the user, from a latent fingerprint or even from a fingerprint
image reconstructed from the original minutiae template [1–3, 23, 42–46].

These very valuable works and other analogue studies have highlighted the neces-
sity to develop efficient protection methods against presentation attacks. One of the
first efforts in fingerprint PAD initiated a research line based on the analysis of the
skin perspiration pattern which is very difficult to be faked in an artificial finger
[5, 47]. These pioneer studies, which considered the periodicity of sweat and the
sweat diffusion pattern, were later extended and improved in two successive works
applying a wavelet-based algorithm and adding intensity-based perspiration features
[48, 49]. These techniques were finally consolidated and strictly validated on a large
database of real, fake, and dead fingerprints acquired under different conditions in
[24]. More recently, a novel region-based liveness detection approach also based on
perspiration parameters and another technique analyzing the valley noise have been
proposed by the same group [50, 51]. Part of these approaches has been implemented
in commercial products [52], and has also been combined with other morphological
features [53, 54] in order to improve the presentation attack detection rates [55].
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A second group of fingerprint liveness detection techniques has appeared as an
application of the different fingerprint distortion models described in the literature
[56–58]. These models have led to the development of a number of liveness detection
techniques based on the flexibility properties of the skin [6, 59–61]. In most of these
works the user is required to move his finger while pressing it against the scanner
surface, thus deliberately exaggerating the skin distortion. When a real finger moves
on a scanner surface, it produces a significant amount of distortion, which can be
observed to be quite different from that produced by fake fingers which are usually
more rigid than skin. Even if highly elastic materials are used, it seems very difficult
to precisely emulate the specific way a real finger is distorted, because the behavior
is related to the way the external skin is anchored to the underlying derma and
influenced by the position and shape of the finger bone.

Other liveness detection approaches for fake fingerprint detection include: the
combination of both perspiration and elasticity-related features in fingerprint image
sequences [62]; fingerprint-specific quality-related features [7, 34]; the combination
of the local ridge frequency with other multiresolution texture parameters [53]; tech-
niques which, following the perspiration-related trend, analyze the skin sweat pores
visible in high definition images [63, 64]; the use of electric properties of the skin
[65]; using several image processing tools for the analysis of the finger tip surface
texture such as wavelets [66], or three very related works using Gabor filters [67],
ridgelets [68] and curvelets [69]; analyzing different characteristics of the Fourier
spectrum of real and fake fingerprint images [70–74].

A critical review of some of these solutions for fingerprint liveness detection was
presented in [75]. In a subsequent work [76], the same authors gave a comparative
analysis of the PAD methods efficiency. In this last work, we can find an estimation
of some of the best performing static (i.e., measured on one image) and dynamic
(i.e., measured on a sequence of images) features for liveness detection, that were
later used together with some fake-finger specific features in [77] with very good
results. Different static features are also combined in [78], significantly improving the
results of the individual parameters. Other comparative results of different fingerprint
PAD techniques are available in the results of the Fingerprint Liveness Detection
Competitions (LivDet series) [21, 22].

In addition, some very interesting hardware-based solutions have been proposed
in the literature applying: multispectral imaging [79, 80], an electrotactile sensor
[81], pulse oxiometry [82], detection of the blood flow [14], odor detection using
a chemical sensor [83], or another trend based on Near Infrared (NIR) illumination
and Optical Coherence Tomography (OCT) [84–89].

More recently, a third type of protection methods which fall out of the traditional
two-type classification software- and hardware-based approaches has been started to
be analyzed in the field of fingerprint PAD. These protection techniques focus on the
study of biometric systems under direct attacks at the score level, in order to propose
and build more robust matchers and fusion strategies that increase the resistance of
the systems against presentation attack attempts [90–94].

Outside the research community, some companies have also proposed different
methods for fingerprint liveness detection such as the ones based on ultrasounds
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[95, 96], light measurements [97], or a patented combination of different unimodal
experts [98]. A comparative study of the PAD capabilities of different commercial
fingerprint sensors appears in [99].

Although the vast majority of the efforts dedicated by the biometric community
in the field of fingerprint presentation attacks and PAD are focused on touch-based
systems, some preliminary works have also been conducted to study the vulnera-
bilities of contactless fingerprint systems against direct attacks and some protection
methods to enhance their security level have been proposed [17, 47, 100].

The approaches mentioned above represent the main historical developments in
fingerprint PAD until ca. 2012–2013. For a survey of more recent and advanced
methods in the last 5 years we refer the reader to [36, 37], and the ODIN program.3

1.3 Fingerprint Spoofing Databases

The availability of public datasets comprising real and fake fingerprint samples and of
associated common evaluation protocols is basic for the development and improve-
ment of fingerprint PAD methods.

However, in spite of the large amount ofworks addressing the challenging problem
of fingerprint protection against direct attacks (as shown in Sect. 1.2), in the great
majority of them, experiments are carried out on proprietary databases which are not
distributed to the research community.

Currently, the two largest fingerprint spoofing databases publicly available for
researchers to test their PAD algorithms are:

• LivDet DBs [21, 22]: These datasets were generated for the different campaigns
of the Fingerprint Liveness Detection Competition series (in 2009, 2011, 2013,
2015, and 2017). Most of the data can be found in the LivDet series website.4

Each dataset is complemented with specific training and testing protocols and
most campaigns contain over 10,000 samples from over 100 fingers generated
with materials such as: silicone, gelatine, latex, wood glue, ecoflex, and playdoh.

• ATVS-Fake Fingerprint DB (ATVS-FFp DB) [34]: This database is available from
the website.5 It contains over 3,000 real and fake fingerprint samples coming from
68 different fingers acquired using a flat optical sensor, a flat capacitive sensor, and
a thermal sweeping sensor. The gummy fingers were generated with and without
the cooperation of the user (i.e., recovered froma latent fingerprint) usingmodeling
silicone.

3https://www.iarpa.gov/index.php/research-programs/odin/
4http://livdet.org/
5http://atvs.ii.uam.es/index.jsp

https://www.iarpa.gov/index.php/research-programs/odin/
http://livdet.org/
http://atvs.ii.uam.es/index.jsp


1 An Introduction to Fingerprint Presentation Attack Detection 9

1.4 A Case Study: Quality Assessment Versus Fingerprint
Spoofing

The problem of presentation attack detection can be seen as a two-class classification
problem where an input biometric sample has to be assigned to one of two classes:
real or fake (Fig. 1.1).

Simple visual inspection of an image of a real fingerprint and a fake sample of
the same trait shows that the two images can be very similar and even the human eye
may find it difficult to make a distinction between them after a short inspection. Yet,
some differences between the real and fake fingerprints may become evident once
the images are translated into a proper feature space.

Therefore, the key point of the process is to find a set of discriminant features
which permits to build an appropriate classifier which gives the probability of the
image “liveness” given the extracted set of features.

In the present chapter, we explore and evaluate the potential of quality assessment
for fingerprint liveness detection. In particular, we consider two different sets of
features: (i) one based on fingerprint-specific quality measures (i.e., quality measures
which may only be extracted from a fingerprint image); (ii) a second set based on
general image quality measures (i.e., quality measures which may be extracted from
any image).

The use of quality assessment for PAD purposes is promoted by the assumption
that: “It is expected that a fake image captured in an attack attempt will have a
different quality than a real sample acquired in the normal operation scenario for
which the sensor was designed.”

Fig. 1.1 General diagram of the fingerprint PAD case study considered in Sect. 1.4. Approach 1 and
Approach 2 are described in Sects. 1.5 and 1.6, respectively. FQMs stands for Fingerprint Quality
Measures, while IQMs stands for Image Quality Measures



10 J. Galbally et al.

Expected quality differences between real and fake samples may include: degree
of sharpness, color and luminance levels, local artifacts, amount of information found
in both types of images (entropy), structural distortions, or natural appearance. For
example, it is not rare that fingerprint images captured from a gummy finger present
local acquisition artifacts such as spots and patches, or that they have a lower defini-
tion of ridges and valleys due to the lack of moisture.

In the current state of the art, the rationale behind the use of quality assessment
features for liveness detection is supported by three factors:

• Imagequality has been successfully used in previousworks for imagemanipulation
detection [101, 102] and steganalysis [103–105] in the forensic field. To a certain
extent, many fingerprint presentation attacks may be regarded as a type of image
manipulation which can be effectively detected, as shown in the present research
work, by the use of different quality features.

• Human observers very often refer to the “different appearance” of real and fake
samples to distinguish between them. The different metrics and methods imple-
mented here for quality assessment intend to estimate in an objective and reliable
way the perceived appearance of fingerprint images.

• Moreover, different quality measures present different sensitivity to image arti-
facts and distortions. For instance, measures like the mean squared error respond
more to additive noise, whereas others such as difference measured in the spectral
domain are more sensitive to blur; while gradient-related features react to distor-
tions concentrated around edges and textures. Therefore, using a wide range of
quality measures exploiting complimentary image quality properties should per-
mit to detect the aforementioned quality differences between real and fake samples
expected to be found in many attack attempts.

All these observations lead us to believe that there is sound proof for the “quality
difference” hypothesis and that qualitymeasures have the potential to achieve success
in biometric protection tasks.

In the next sections, we describe two particular software-based implementations
for fingerprint PAD. Both methods use only one input image (i.e., the same sample
acquired for authentication purposes) to distinguish between real and fake finger-
prints. The difference between the two techniques relies on the sets of quality-based
features used to solve the classification problem: (i) the first PAD method uses a
set of 10 fingerprint-specific quality measures (see Sect. 1.5); (ii) the second uses a
set of 25 general image quality measures (see Sect. 1.6). Later, both techniques are
evaluated on two publicly available databases and their results are compared to other
well-known techniques from the state of the art (see Sect. 1.7).
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1.5 Approach 1: Fingerprint-Specific Quality Assessment
(FQA)

The parameterization proposed in this section comprises ten Fingerprint-specific
Quality Measures (FQMs). A number of approaches for fingerprint image quality
computation have been described in the literature [110]. Fingerprint image qual-
ity can be assessed by measuring one of the following properties: ridge strength
or directionality, ridge continuity, ridge clarity, integrity of the ridge–valley struc-
ture, or estimated verification performance when using the image at hand. A number
of information sources are used to measure these properties: (i) angle information
provided by the direction field, (ii) Gabor filters, which represent another imple-
mentation of the direction angle [111], (iii) pixel intensity of the gray-scale image,
(iv) power spectrum, and (v) neural networks. Fingerprint quality can be assessed
either analyzing the image in a holistic manner, or combining the quality from local
non-overlapped blocks of the image.

In the following, we give some details about the ten fingerprint-specific quality
measures used in this PAD method. The features implemented have been selected
in order to cover the different fingerprint quality assessment approaches mentioned
above so that themaximumdegree of complementarity among themmaybe achieved.
This way, the protection method presents a high generality and may be successfully

Table 1.1 Summary of the 10 Fingerprint-specific Quality Measures (FQMs) implemented in
Sect. 1.5 for fingerprint PAD. All features were either directly taken or adapted from the references
given. For each feature, the fingerprint property measured and the information source used for its
estimation is given. For a more detailed description of each feature, we refer the reader to Sect. 1.5

List of 10 FQMs implemented

# Acronym Name Ref. Property
measured

Source

1 OCL Orientation Certainty
Level

[106] Ridge strength Local angle

2 PSE Power Spectrum
Energy

[107] Ridge strength Power spectrum

3 LOQ Local Orientation
Quality

[108] Ridge continuity Local angle

4 COF Continuity of the
Orientation Field

[106] Ridge continuity Local angle

5 MGL Mean Gray Level [76] Ridge clarity Pixel intensity

6 SGL Standard Deviation
Gray Level

[76] Ridge clarity Pixel intensity

7 LCS1 Local Clarity Score 1 [108] Ridge clarity Pixel intensity

8 LCS2 Local Clarity Score 2 [108] Ridge clarity Pixel intensity

9 SAMP Sinusoid Amplitude [109] Ridge clarity Pixel intensity

10 SVAR Sinusoid Variance [109] Ridge clarity Pixel intensity
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used to detect a wide range of presentation attacks. A classification of the ten features
and of the information source exploited by each of them is given in Table 1.1.

As the features used in this approach evaluate fingerprint-specific properties, prior
to the feature extraction process, it is necessary to segment the actual fingerprint from
the background. For this preprocessing step, the same method proposed in [112] is
used.

1.5.1 Ridge Strength Measures

• Orientation Certainty Level (OCL) [106] measures the energy concentration
along the dominant direction of ridges using the intensity gradient. It is computed
as the ratio between the two eigenvalues of the covariance matrix of the gradient
vector. A relative weight is given to each region of the image based on its distance
from the centroid, since regions near the centroid are supposed to provide more
reliable information [107].AnexampleofOrientationCertaintyLevel computation
for a real and fake fingerprints is shown in Fig. 1.2.

• Power Spectrum Energy (PSE) [107] is computed using ring-shaped bands.
For this purpose, a set of bandpass filters is employed to extract the energy in
each frequency band. High quality images will have the energy concentrated in
few bands while poor ones will have a more diffused distribution. The energy
concentration is measured using the entropy. An example of quality estimation
using the global quality indexPSE is shown inFig. 1.3 for fake and real fingerprints.

Fig. 1.2 Computation of the Orientation Certainty Level (OCL) for fake and real fingerprints. Panel
a are the input fingerprint (left is fake, right is real). Panel b are the block-wise values of the OCL;
blocks with brighter color indicate higher quality in the region
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Fig. 1.3 Computation of the energy concentration in the power spectrum for fake and real finger-
prints. Panel a are the power spectra of the images shown in Fig. 1.2. Panel b shows the energy
distributions in the region of interest

1.5.2 Ridge Continuity Measures

• Local Orientation Quality (LOQ) [108] is computed as the average absolute
difference of direction angle with the surrounding image blocks, providing infor-
mation about how smoothly direction angle changes from block to block. Quality
of the whole image is finally computed by averaging all the Local Orientation
Quality scores of the image. In high quality images, it is expected that ridge direc-
tion changes smoothly across the whole image. An example of Local Orientation
Quality computation is shown in Fig. 1.4 for fake and real fingerprints.

• Continuity of the Orientation Field (COF) [106]. This method relies on the fact
that, in good quality images, ridges and valleys must flow sharply and smoothly
in a locally constant direction. The direction change along rows and columns of
the image is examined. Abrupt direction changes between consecutive blocks are
then accumulated and mapped into a quality score. As we can observe in Fig. 1.4,
ridge direction changes smoothly across the whole image in case of high quality.

1.5.3 Ridge Clarity Measures

• Mean Gray Level (MGL) and Standard Deviation Gray Level (SGL), com-
puted from the segmented foreground only. These two features had already been
considered for liveness detection in [76].

• Local Clarity Score (LCS1 and LCS2) [108]. The sinusoidal-shaped wave that
models ridges and valleys [109] is used to segment ridge and valley regions (see
Fig. 1.5). The clarity is then defined as the overlapping area of the gray level
distributions of segmented ridges and valleys. For ridges/valleys with high clarity,
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Fig. 1.4 Computation of the Local Orientation Quality (LOQ) for fake and real fingerprints. Panel
a are the direction fields of the images shown in Fig. 1.2a. Panel b are the block-wise values of the
average absolute difference of local orientation with the surrounding blocks; blocks with brighter
color indicate higher difference value and thus, lower quality

Fig. 1.5 Modeling of ridges
and valleys as a sinusoid

both distributions should have a very small overlapping area.An example of quality
estimation using the Local Clarity Score is shown in Fig. 1.6 for two fingerprint
blocks coming from fake and real fingerprints. It should be noted that sometimes
the sinusoidal-shaped wave cannot be extracted reliably, specially in bad quality
regions of the image. The quality measure LCS1 discards these regions, therefore
being an optimistic measure of quality. This is compensated with LCS2, which
does not discard these regions, but they are assigned the lowest quality level.
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Fake Q block Real Q block 

Fig. 1.6 Computation of the Local Clarity Score for two blocks coming from real and fake finger-
prints. The fingerprint blocks appear on top, while below we show the gray level distributions of
the segmented ridges and valleys. The degree of overlapping for the real and fake blocks is 0.22
and 0.10, respectively

• Amplitude and Variance of the Sinusoid that models Ridges and Valleys
(SAMP and SVAR) [109]. Based on these parameters, blocks are classified as
good and bad. The quality of the fingerprint is then computed as the percentage
of foreground blocks marked as good.

1.6 Approach 2: General Image Quality Assessment (IQA)

The goal of an objective Image Quality Measure (IQM) is to provide a quantitative
score that describes the degree of fidelity or, conversely, the level of distortion of
a given image. Many different approaches for objective Image Quality Assessment
(IQA) have been described in the literature [113]. From a general perspective, IQ
metrics can be classified according to the availability of an original (distortion-
free) image, with which the distorted image is to be compared. Thus, objective
IQA methods can fall in one of two categories: (i) full reference techniques, which
include themajority of traditional automatic image estimation approaches, andwhere
a complete reference image is assumed to be known (e.g., with a large use in the field
of image compression algorithms) [114]; (ii) no-reference techniques (also referred
as blind), which assess the quality of the test image without any reference to the
original sample, generally using some pretrained statistical model [115].
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Fig. 1.7 Classification of the 25 image quality measures implemented in Sect. 1.6. Acronyms (in
bold) of the different measures are explained in Table 1.2

The parameterization proposed in this section and applied to fingerprint liveness
detection comprises 25 image quality measures (IQMs) both full reference and blind.
In order to generate a system as general as possible in terms of number of attacks
detected, we have given priority to IQMs which evaluate complementary properties
of the image (e.g., sharpness, entropy or structure). In addition, to assure a user-
friendly nonintrusive system, big importance has been given to the complexity and
the feature extraction time of each IQM, so that the overall speed of the final fake
detection algorithm allows it to operate in real-time environments.

Furthermore, as the method operates on the whole image without searching for
any fingerprint-specific properties, it does not require any preprocessing steps (e.g.,
fingerprint segmentation) prior to the computation of the IQ features. This charac-
teristic minimizes its computational load.

The final 25 selected image quality measures are summarized in Table 1.2. Details
about each of these 25 IQMs are given in Sects. 1.6.1 and 1.6.2. For clarity, in Fig. 1.7,
we show a diagram with the general IQM classification followed in these sections.
Acronyms of the different features are highlighted in bold in the text and in Fig. 1.7.

1.6.1 Full Reference IQ Measures

As described previously, Full Reference (FR) IQAmethods rely on the availability of
a clean undistorted reference image to estimate the quality of the test sample. In the
problem of fake detection addressed in this work such a reference image is unknown,
as the detection system only has access to the input sample. In order to circumvent
this limitation, the same strategy already successfully used for image manipulation
detection in [101] and for steganalysis in [103] is implemented here.

The input gray-scale image I (of size N × M) is filtered with a low-pass Gaussian
kernel (σ = 0.5 and size 3 × 3) in order to generate a distorted version Î. Then, the
quality between both images (I and Î) is computed according to the corresponding
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Ĝ

)
=

1
N
M

∑
N i=

1
∑

M j=
1
(|G

i,
j|−

|Ĝ
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full reference IQA metric. This approach assumes that the loss of quality produced
by Gaussian filtering differs between real and fake biometric samples. Assumption
which is confirmed by the experimental results given in Sect. 1.7.

1.6.1.1 FR-IQMs: Error Sensitivity Measures

Traditional perceptual image quality assessment approaches are based on measuring
the errors (i.e., signal differences) between the distorted and the reference images, and
attempt to quantify these errors in a way that simulates human visual error sensitivity
features.

Although their efficiency as signal fidelity measures is somewhat controversial
[116], up to date, these are probably the most widely used methods for IQA as they
conveniently make use of many known psychophysical features of the human visual
system [117], they are easy to calculate and usually have very low computational
complexity.

Several of these metrics have been included in the 25-feature parameterization
applied in the present work. For clarity, these features have been classified here into
five different categories (see Fig. 1.7) according to the image property measured
[118]:

• Pixel Difference Measures [118, 121]. These features compute the distortion
between two images on the basis of their pixelwise differences. Here we include:
MeanSquaredError (MSE), Peak Signal-to-NoiseRatio (PSNR), Signal-to-Noise
Ratio (SNR), Structural Content (SC), Maximum Difference (MD), Average Dif-
ference (AD), Normalized Absolute Error (NAE), R-Averaged Maximum Differ-
ence (RAMD) andLaplacianMeanSquaredError (LMSE). The formal definitions
for each of these features are given in Table 1.2.
In the RAMD entry in Table 1.2, maxr is defined as the r -highest pixel difference
between two images. For the present implementation, R = 10.
In the LMSE entry in Table 1.2, h(Ii, j ) = Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1 − 4Ii, j .

• Correlation-Based Measures [118, 121]. The similarity between two digital
images can also be quantified in terms of the correlation function. A variant of
correlation-based measures can be obtained by considering the statistics of the
angles between the pixel vectors of the original and distorted images. These fea-
tures include (also defined in Table 1.2): Normalized Cross-Correlation (NXC),
Mean Angle Similarity (MAS), and Mean Angle Magnitude Similarity (MAMS).

In the MAMS entry in Table 1.2, αi, j = 2
π
cos−1 〈Ii, j ,Îi, j 〉

||Ii, j ||||Îi, j ||• Edge-BasedMeasures. Edges and other two-dimensional features such as corners
are some of the most informative parts of an image, which play a key role in the
human visual system and in many computer vision algorithms including quality
assessment applications [122].
Since the structural distortion of an image is tightly linked with its edge degra-
dation, here we have considered two edge-related quality measures: Total Edge
Difference (TED) and Total Corner Difference (TCD).
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In order to implement both features, which are computed according to the corre-
sponding expressions given in Table 1.2, we use: (i) the Sobel operator to build
the binary edge maps IE and ÎE; (ii) the Harris corner detector [133] to compute
the number of corners Ncr and N̂cr found in I and Î.

• Spectral Distance Measures. The Fourier transform is another traditional image
processing tool which has been applied to the field of image quality assessment
[118, 123]. In this work, we will consider as IQ spectral-related features: the
Spectral Magnitude Error (SME) and the Spectral Phase Error (SPE), defined in
Table 1.2 (where F and F̂ are the respective Fourier transforms of I and Î).

• Gradient-BasedMeasures. Gradients convey important visual informationwhich
can be of great use for quality assessment.Many of the distortions that can affect an
image are reflected by a change in its gradient. Therefore, using such information,
structural and contrast changes can be effectively captured [124].
Two simple gradient-based features are included in the biometric protection system
studied here: Gradient Magnitude Error (GME) and Gradient Phase Error (GPE),
defined in Table 1.2 (where G and Ĝ are the gradient maps of I and Î defined as
G = Gx + iGy , where Gx and Gy are the gradients in the x and y directions).

1.6.1.2 FR-IQMs: Structural Similarity Measures

Although being very convenient and widely used, the aforementioned image quality
metrics based on error sensitivity present several problems which are evidenced
by their mismatch (in many cases) with subjective human-based quality scoring
systems [116]. In this scenario, a recent new paradigm for image quality assessment
based on structural similarity was proposed following the hypothesis that the human
visual system is highly adapted for extracting structural information from the viewing
field [125]. Therefore, distortions in an image that come from variations in lighting,
such as contrast or brightness changes (nonstructural distortions), should be treated
differently from structural ones.

Among these recent objective perceptualmeasures, the Structural Similarity Index
Measure (SSIM) has the simplest formulation and has gained widespread popularity
in a broad range of practical applications [125, 134]. In view of its very attractive
properties, the SSIM has been included in the 25-feature parameterization.

1.6.1.3 FR-IQMs: Information Theoretic Measures

The quality assessment problemmay also be understood, from an information theory
perspective, as an information fidelity problem (rather than a signal fidelity problem).
The core idea behind these approaches is that an image source communicates to a
receiver through a channel that limits the amount of information that could flow
through it, thereby introducing distortions. The goal is to relate the visual quality of
the test image to the amount of information shared between the test and the reference
signals, or more precisely, the mutual information between them. Under this general
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framework, image quality measures based on information fidelity exploit the (in
some cases unprecise) relationship between statistical image information and visual
quality [127, 128].

In the present work, we consider two of these information theoretic features:
the Visual Information Fidelity (VIF) which measures quality fidelity as the ratio
between the total information ideally extracted by the brain from the distorted image
and that from the reference sample [127]; and the Reduced Reference Entropic Dif-
ference index (RRED), which approaches the problem of QA from the perspective of
measuring distances between the reference image and the projection of the distorted
image onto the space of natural images [128].

1.6.2 No-Reference IQ Measures

Unlike the objective reference IQA methods, in general, the human visual system
does not require of a reference sample to determine the quality level of an image.
Following this same principle, automatic no-reference image quality assessment
(NR-IQA) algorithms try to handle the very complex and challenging problem of
assessing the visual quality of images in the absence of a reference. Presently, NR-
IQA methods generally estimate the quality of the test image according to some
pretrained statistical model. Depending on the images used to train this model and
on the a priori knowledge required, the methods are coarsely divided into one of
three trends [115]:

• Distortion-Specific Approaches. These techniques rely on previously acquired
knowledge about the type of visual quality loss caused by a specific distortion. The
final quality measure is computed according to a model trained on clean images
and on images affected by this particular distortion. Two of these measures have
been included in the biometric protection method studied in the present work.
The JPEG Quality Index (JQI) evaluates the quality in images affected by the
usual block artifacts found in many compression algorithms running at low bit
rates such as the JPEG [129].
The High-Low Frequency Index (HLFI) is formally defined in Table 1.2. It was
inspired by previous work which considered local gradients as a blind metric to
detect blur and noise [130]. Similarly, the HLFI feature is sensitive to the sharpness
of the image by computing the difference between the power in the lower and upper
frequencies of the Fourier Spectrum. In the HLFI entry in Table 1.2, il , ih , jl , jh are
respectively the indices corresponding to the lower and upper frequency thresholds
considered by the method. In the current implementation, il = ih = 0.15N and
jl = jh = 0.15M .

• Training-BasedApproaches. Similarly to the previous class ofNR-IQAmethods,
in this type of techniques amodel is trained using clean and distorted images. Then,
the quality score is computed based on a number of features extracted from the
test image and related to the general model [131]. However, unlike the former
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approaches, these metrics intend to provide a general quality score not related to a
specific distortion. To this end, the statistical model is trained with images affected
by different types of distortions.
This is the case of the Blind Image Quality Index (BIQI) described in [131], which
is part of the 25 feature set used in the present work. The BIQI follows a two-stage
framework inwhich the individualmeasures of different distortion-specific experts
are combined to generate one global quality score.

• Natural Scene Statistic Approaches. These blind IQA techniques use a pri-
ori knowledge taken from natural scene distortion-free images to train the initial
model (i.e., no distorted images are used). The rationale behind this trend relies on
the hypothesis that undistorted images of the natural world present certain regular
properties which fall within a certain subspace of all possible images. If quanti-
fied appropriately, deviations from the regularity of natural statistics can help to
evaluate the perceptual quality of an image [132].
This approach is followed by the Natural Image Quality Evaluator (NIQE) used
in the present work [132]. The NIQE is a completely blind image quality ana-
lyzer based on the construction of a quality aware collection of statistical features
(derived from a corpus of natural undistorted images) related to a multi-variate
Gaussian natural scene statistical model.

1.7 Results

In order to achieve reproducible results, we have used in the experimental validation
two of the largest publicly available databases for fingerprint spoofing (introduced
in Sect. 1.3): (i) the LivDet 2009 DB [21] and (ii) the ATVS-FFp DB [34]. This has
allowed us to compare, in an objective and fair way, the performance of the proposed
system with other existing state-of-the-art liveness detection solutions.

According to their associated protocols, the databases are divided into a: train set,
used to train the quadratic classifier (i.e., based on Quadratic Discriminant Analysis,
QDA); and test set, used to evaluate the performance of the protection method. In
order to generate unbiased results, there is no overlap between both sets (i.e., samples
corresponding to each user are just included in the train or the test set).

The task in all the scenarios and experiments described in the next sections is to
automatically distinguish between real and fake fingerprints. Therefore, in all cases,
results are reported in terms of: the False Genuine Rate (FGR), which accounts for
the number of false samples that were classified as real; and the False Fake Rate
(FFR), which gives the probability of an image coming from a genuine sample being
considered as fake. The Half Total Error Rate (HTER) is computed as HTER =
(FGR + FFR)/2.
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Table 1.3 Results obtained in theATVS-FFpDBby the twobiometric protectionmethodsdescribed
in Sects. 1.5 and 1.6

Results: ATVS-FFp DB

Biometrika Precise Yubee

FFR FGR HTER FFR FGR HTER FFR FGR HTER

IQF-based 4.9 7.6 5.8 1.8 7.0 4.4 2.2 9.7 5.9

IQA-based 9.2 4.0 6.6 6.8 1.5 4.2 7.9 1.9 4.9

1.7.1 Results: ATVS-FFp DB

Both the development and the test set of the ATVS-FFp DB contain half of the
fingerprint images acquired with and without the cooperation of the user, following
a twofold cross validation protocol. In Table 1.3, we show the detection results of
the two systems described in Sects. 1.5 (top row) and 1.6 (bottom row).

The performance of both algorithms is similar, although in the overall, the method
basedongeneral imagequality assessment is slightly better in twoof the three datasets
(Precise and Yubee). In addition, thanks to its simplicity and lack of image prepro-
cessing steps, the IQA-based method is around 30 times faster than the one using
fingerprint-specific quality features (tested on the same Windows-based platform).
This gives the IQA-based scheme the advantage of being usable in practical real-time
applications, without losing any accuracy.

1.7.2 Results: LivDet 2009 DB

The train and test sets selected for the evaluation experiments on this database are the
same as the ones used in the LivDet 2009 competition, so that the results obtained by
the two described methods based on quality assessment may be directly compared to
the participants of the contest. Results are shown in the first two rows of Table 1.4.
For comparison, the best results achieved in LivDet 2009 for each of the individual
datasets are given in the third row.

Rows four to seven show post-competition results over the same dataset and pro-
tocol. In [55], a novel fingerprint liveness detection method combining perspiration
and morphological features was presented and evaluated on the LivDet 2009 DB
following the same protocol (training and test sets) used in the competition. In that
work, comparative results were reported with particular implementations of the tech-
niques proposed in: [66], based on wavelet analysis; [69], based on curvelet analysis;
and [53], based on the combination of local ridge frequencies and multiresolution
texture analysis. In the last four rows of Table 1.4, we also present those results so
that they can be compared with the two quality-basedmethods described in Sects. 1.5
(first row) and 1.6 (second row).
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Table 1.4 Results obtained in the LivDet 2009 DB by: the two biometric protection methods
described inSects. 1.5 and1.6 (IQF-based and IQA-based, top two rows); each of the best approaches
participating in LivDet 2009 [21] (third row); the method proposed in [55] which combines per-
spiration and morphological features (fourth row); the method proposed in [66] based on wavelet
analysis, according to an implementation from [55] (fifth row); themethod proposed in [69] based on
curvelet analysis, according to an implementation from [55] (sixth row); and the method proposed
in [53] based on the combination of local ridge frequencies and multiresolution texture analysis,
according to an implementation from [55] (bottom row)

Results: LivDet 2009 DB

Biometrika CrossMatch Identix

FFR FGR HTER FFR FGR HTER FFR FGR HTER

IQF-based 3.1 71.8 37.4 8.8 20.8 13.2 4.8 5.0 6.7

IQA-based 14.0 11.6 12.8 8.6 12.8 10.7 1.1 1.4 1.2

LivDet 2009 15.6 20.7 18.2 7.4 11.4 9.4 2.7 2.8 2.8

Marasco et al. 12.2 13.0 12.6 17.4 12.9 15.2 8.3 11.0 9.7

Moon et al. 20.8 25.0 23.0 27.4 19.6 23.5 74.7 1.6 38.2

Nikam et al. 14.3 42.3 28.3 19.0 18.4 18.7 23.7 37.0 30.3

Abhyankar et al. 24.2 39.2 31.7 39.7 23.3 31.5 48.4 46.0 47.2

The results given in Table 1.4 show that the method based on general image
quality assessment outperforms all the contestants in LivDet 2009 in two of the
datasets (Biometrika and Identix), while its classification error is just slightly worse
than the best of the participants for the Crossmatch data. Although the results are not
as good for the case of the IQF-based method, its performance is still competitive
compared to that of the best LivDet 2009 participants.

The classification rates of the two quality-based approaches are also clearly lower
than those reported in [55] for the different liveness detection solutions tested.

1.8 Conclusions

The study of the vulnerabilities of biometric systems against presentation attacks has
been a very active field of research in recent years [36, 37, 135]. This interest has led
to big advances in the field of security-enhancing technologies for fingerprint-based
applications. However, in spite of this noticeable improvement, the development of
efficient protection methods against known threats (usually based on some type of
self-manufactured gummy finger) has proven to be a challenging task.

Simple visual inspection of an image of a real fingerprint and its corresponding
fake sample shows that the two images can be very similar and even the human eye
may find it difficult to make a distinction between them after a short inspection.
Yet, some disparities between the real and fake images may become evident once
the images are translated into a proper feature space. These differences come from
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the fact that fingerprints, as 3-D objects, have their own optical qualities (absorption,
reflection, scattering, refraction),which othermaterials (silicone, gelatin, glycerin) or
synthetically produced samples do not possess. Furthermore, fingerprint acquisition
devices are designed to provide good quality samples when they interact, in a normal
operation environment, with a real 3-D trait. If this scenario is changed, or if the
trait presented to the scanner is an unexpected fake artifact, the characteristics of the
captured image may significantly vary.

In this context, it is reasonable to assume that the image quality properties of real
accesses and fraudulent attacks will be different. Following this “quality difference”
hypothesis, in this chapter, after an overview of early works and main research lines
in fingerprint PAD methods, we have explored the potential of quality assessment as
a protection tool against fingerprint direct attacks.

For this purpose, we have considered two different feature sets which we have
combined with simple classifiers to detect real and fake access attempts: (i) a set of
10 fingerprint-specific quality measures which requires of some preprocessing steps
(e.g., fingerprint segmentation); (ii) a set of 25 complementary general image quality
measures which may be computed without any image preprocessing.

The two PAD methods have been evaluated on two large publicly available
databases following their associated protocols. This way, the results are reproducible
and may be fairly compared with other past or future fingerprint PAD solutions.

Several conclusions can be extracted from the evaluation results presented in the
experimental sections of the chapter: (i) The proposed methods, especially the one
based on general image quality assessment, are able to generalize well performing
consistently well for different databases, acquisition conditions, and spoofing sce-
narios. (ii) The error rates achieved by the described protection schemes are in many
cases lower than those reported by other related fingerprint PAD systems which have
been tested in the framework of different independent competitions. (iii) In addition
to its very competitive performance, the IQA-based approach presents some other
very attractive features such as: its simple, fast, nonintrusive, user-friendly and cheap,
all of them very desirable properties in a practical protection system.

All the previous results validate the “different-quality” hypothesis formulated in
Sect. 1.4, and show the great potential of quality assessment as a PAD tool to secure
fingerprint recognition systems.

Overall, the chapter has tried to give an introduction to fingerprint PAD, including
an overview of early works, main research lines, and selected results. For more
recent and advanced developments occurred in the last 5 years we refer the reader
to [36, 37]. In addition, the experimental evaluation carried out in the chapter has
been performed following a clear and standard methodology [33] based on common
protocols, metrics, and benchmarks, which may serve as a good baseline starting
point for the validation of future fingerprint PAD methods.
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Chapter 2
A Study of Hand-Crafted and Naturally
Learned Features for Fingerprint
Presentation Attack Detection

Kiran B. Raja, R. Raghavendra, Sushma Venkatesh, Marta Gomez-Barrero,
Christian Rathgeb and Christoph Busch

Abstract Fingerprint-based biometric systems have shown reliability in terms of
accuracy in both biometric and forensic scenarios. Although fingerprint systems are
easy to use, they are susceptible to presentation attacks that can be carried out by
employing lifted or latent fingerprints. This work presents a systematic study of
the fingerprint presentation attack detection (PAD aka., spoofing detection) using
textural features. To this end, this chapter reports an evaluation of both hand-crafted
features and naturally learned features via deep learning techniques for fingerprint
presentation attack detection. The evaluation is presented on publicly available fake
fingerprint database that consists of both bona fide (i.e., real) and presentation attack
fingerprint samples captured by capacitive, optical and thermal sensors. The results
indicate the need for further approaches that can detect attacks across data from
different sensors.
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2.1 Introduction

Fingerprint-based identification or verification of an individual has been in use in
ubiquitous scenarios of authentication such as civilian border crossing, forensic
analysis, smartphone authentication among a long list of other applications. The
preference for such fingerprint-based systems can mainly be attributed to the long
proven reliability in terms of accuracy and ability to reinforce the authentication
decision by employing multiple fingerprints. While the accuracy and verification
performance speak for themselves, there is a stronger concern for the reliability. The
key factors for such a concern as outlined in the earlier chapters of this book are
the ability to generate artefacts in a simple and cost-effective manner by exploiting
the latent fingerprints or lifted fingerprints. It has to be noted that these problems
are in addition to the existing challenges emerging due to traditional problem of
cuts, abrasions and burns on the fingerprint, which can lead to a degradation of
the pattern. These in turn result in low-quality fingerprint captured/acquired with
on the optical sensors. Recent research has resulted in a number of newer tech-
niques to tackle presentation attacks through the use of advanced sensing techniques
(for instance, optical coherent tomography, full-field optical coherence tomography
and Multispectral Imaging (MSI)), Short Wave Infra-Red (SWIR), Laser Contrast
Speckle Imaging (LSCI) [1–6] to detect artefacts.

Although newer sensing techniques provide reliable artefact detection, it has to
be noted that the cost of sensor production is very high and the technology by itself is
at infancy. However, the challenge is to make the traditional and existing fingerprint
systems reliable by making them attack resistant using their primary output to detect
the attacks (e.g. with software-basedmethods or by challenge–response approaches).
The prominence of the problem is exemplified by the number of works reported
on Fake Fingerprint Database (ATVS-FFp database) [7] and a series of ongoing
fingerprint PresentationAttackDetection (PAD) competitions (such asLiveDet 2009,
LiveDet 2011, LiveDet 2013, LiveDet 2015, LiveDet 2017) [8].

In the process of addressing this challenge, a number of works have been pro-
posed, which rely on minutiae, texture, or quality-based approaches, including the
latest techniques involving deep learning [8–15]. This chapter presents an exhaus-
tive summary of techniques dedicated for presentation attack detection on fingerprint
recognition systems leveraging the texture-based approaches. Further, we present a
comparison using deep learning-based technique against the list of comprehensive
techniques. To benchmark the techniques against a common baseline, we present
our evaluation results on a publicly available Fake Fingerprint database from ATVS
(ATVS-FFp DB) [7] whose details are presented in the later sections of this chapter.
The ATVS-FFp database is a large-scale fingerprint presentation attack database
which is publicly available at the ATVS-Biometric Recognition Group website.1 The
choice of the database was based on three major components: (1) to report the results
on a publicly available database; (2) to study both cooperative and non-cooperative

1https://atvs.ii.uam.es/atvs/databases.jsp.

https://atvs.ii.uam.es/atvs/databases.jsp
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presentation attacks; (3) to evaluate different kinds of sensors that include capacitive,
optical and thermal sensors for both real and artefact presentation.

2.1.1 Related Works

Anumber of recent approaches that have been proposed for presentation attack detec-
tion in fingerprint recognition systems are presented in recent surveys [8, 16]. Gen-
eral categorization of the presentation attack detection can be provided into hardware
or software-based approaches. While the hardware-based methods are discussed in
other chapters of this book, we restrict the scope of this chapter to software-based
techniques/algorithms. These approaches can broadly be classified as approaches
based on dynamic feature and static features [17]. Dynamic features are typically
derived by processing multiple frames of the same fingerprint to analyse the dynamic
characteristics such as perspiration over time or ridge distortion [17]. Static features
are commonly extracted from a single the fingerprint or single image/impression of
fingerprint. Taxonomic classes of the fingerprint features have been reported under:

• Level 1 (Global features)—which consists of dense singular points, the main ori-
entation of ridges that include arch, tented arch, left loop, right loop and whorl;

• Level 2 (Local features)—which consists of dense minutiae details that include
ridge ending, ridge bifurcation, lake, independent ridges, island ridge, spur and
crossover of two ridges;

• Level 3 (Fine details)—which constitutes of concrete details of ridges such as
width, shapes, contours and strength of sweat pores.

The attack detection techniques based on the fingerprint descriptors described
above were further extended by the use of complementary physical properties such
as elasticity of skin from fingerprint, perspiration-based features or a combination
of these [17]. A key factor for the fingerprint systems is the quality of the sample
captured and it was noted that the quality of artefact significantly differed from
quality of bona-fide sample (aka real presentation) [18, 19]. Thus, one of the early
works proposed measuring the quality of fingerprint features including strength of
ridge, directionality, ridge continuity, clarity of ridges and ridge integrity, structure to
differentiate the presentation attack instruments (PAIs) from bona fide samples [10,
18]. Another work identified the use of perspiration pores (sweat pores) to detect the
bona fide (i.e., live) fingerprint as compared to the artefacts which have almost no
sweat pores or sparsely seen pore-like structures [15].

In many practical operational scenarios, fingerprint acquisition results in insuffi-
cient number of Level 1 and Level 2 features. The challenge is addressed in number
of works by employing image-based features, such as analysing orientation field and
minutiae distribution [9, 10]. Subsequent works have explored other image features
such as various texture descriptors [9, 11–15].

Texture is typically characterized by a set of patterns or local variations in image
intensity due to structural changes within the image. The classical texture extraction
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builds upon mathematical calculations on the pixel intensities of the images in a spe-
cificmanner. The texture features can be further classified as local texture features and
global texture featureswhich are both expected to be invariant to monotonic transfor-
mations of grey levels, robust to rotation and translation, illumination invariant. The
texture of the image can be expressed in terms of the description of gradients, ori-
entation, local and global statistical features based on mathematical formulations in
either local or global neighbourhood. The texture features can therefore be extracted
in hand-crafted manner or through the use of filter banks inspired in a natural man-
ner (e.g. Gabor filter banks, Directional Filter banks). Recent works have also pro-
posed texture extraction using bio-inspired approaches ofDeepConvolutionalNeural
Networks (D-CNN). These properties of texture descriptors have resulted in a number
of works that have employed various texture features for both fingerprint recognition
[9, 11, 20] and attack detection til date [10, 15, 21, 22]. Although the texture descrip-
tors can be used for fingerprint recognition and PAD, in this chapter, we restrict the
scope of texture feature descriptors for PAD within fingerprint recognition.

Of the number of earlier works, histograms and wavelets features were used to
determine the liveness of the presented finger in [12–15]. Local Phase Quantization
was explored by representing all spectrum characteristics in a compact histogram fea-
ture by [23]. Weber Local Image Descriptor (WLD) was employed to detect attacks
in [24] which was demonstrated to be well suited to high-contrast patterns such as the
ridges and valleys of fingerprints images. Multi-scale Block Local Ternary Patterns
(MBLTP) (in the family of Local Binary Patterns (LBP)) was explored for finger-
print PAD [25]. The recent works have further explored Binarized Statistical Image
Features (BSIF) [26, 27] which is based on extracting texture features using a set of
naturally learned features. Recent works have further employed features from Deep
Convolutional Neural Networks for fingerprint PAD [28–30].Motivated by these ear-
lier works, in this chapter, we present an evaluation of texture-based approaches that
include both hand-crafted and deeply learned features for fingerprint PAD. Specif-
ically, we evaluate three popular texture- based approaches—Local Binary Pattern
(LBP) [31], Local Phase Quantization (LPQ) [32] and Binarized Statistical Image
Features (BSIF) [27]. Along with the set of aforementioned texture features, we eval-
uate three different deep learning (D-CNN) based features such as VGG16, VGG19
and AlexNet [33, 34]. Further, to give the reader a brief overview of working prin-
ciples of textural features, we provide a brief summary of all the above mentioned
techniques in the next section.

2.2 Hand-Crafted Texture Descriptors

This section of the chapter presents three hand-crafted texture descriptors employed
for evaluation and a brief description of the corresponding working principles.
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2.2.1 Local Binary Pattern

The local binary pattern (LBP) [31] thresholds the intensity values of a pixel around
a specified neighbourhood in an image. The threshold is computed based on the
intensity of central pixel intensity in a chosen window around the selected pixel. The
new binary value of the neighbourhood is computed in a circular symmetric manner
by interpolating the locations and checking against the value of the central pixel. If
a particular value in the neighbourhood is greater than the chosen central value, 1
is assigned and 0 otherwise. The set of values in a particular chosen block encoded
to form the compact pixel value f in the range of 0–255 by using simple binary to
decimal conversion strategy as given by Eq.2.1.

f =
8∑

j=1

Q(i − c) ∗ (2( j)) (2.1)

where Q represents the quantized values (such as central pixel value Q(c) and con-
sidered pixel Q(i) in a neighbourhood).

2.2.2 Local Phase Qunatization

Local Phase Qunatization (LPQ) [32] is obtained by employing Short-Term Fourier
Transform (STFT). In particular, the local time–frequency responses are computed
using the discrete STFT in a local window ω in the neighbourhood of n given by

F(u, x) = I (x, y)ωR(y − x) exp{− j2πUT y} (2.2)

where I is the fingerprint image. The local Fourier coefficients are computed for the
frequency points u1, u2, u3 and u4, which correspond to four points [a, 0]T , [0, a]T ,
[a, a]T , [a,−a]T such that the spectral response H(ui ) > 0 [32]. The spectral infor-
mation present in the form of Fourier coefficients is further separated into real and
imaginary parts of each component in the Fourier response [Re{F}, Im{F}] to form
a final vector R = [Re{F}, Im{F}]. The Fourier response in the final vector is bina-
rized (Qi for i th) bit and assigned a value of 1 for all components with response
greater than 1 and 0 otherwise as given in Eq.2.3.

Qi =
{
1, if Ri > 0

0, otherwise
(2.3)

Finally, these are encoded to form the compact pixel value f in the range of 0–255
by using simple binary to decimal conversion strategy as given by Eq.2.4.
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f =
8∑

j=1

Q j × 2( j−1) (2.4)

2.2.3 Binarized Statistical Image Features

Binarized Statistical Image Features (BSIF) is motivated by the texture extraction
methods such as LBP and LPQ [27]. Instead of the hand-crafted filter configuration,
BSIF automatically learns a fixed set of filters from a set of natural images. TheBSIF-
based technique consists of applying learned textural filters to obtain statistically
meaningful representation of the fingerprint sample,which in turn enables an efficient
information encoding using binary quantization. A set of filters of patch size l × l
are learned using natural images and Independent Component Analysis (ICA) [27]
where the patch size l is defined as:

l = (2 ∗ n + 1)

such that n ranges from {1, 2, . . . , 8}. The set of pre-learned filters from natural
images are used to extract the texture features fromfingerprint images. If a fingerprint
image is represented using I (x, y) and the filter is represented by Hi (x, y) where i
represents the basis of the filter, the linear response of the filter si can be given as
[27]:

si =
∑

x,y

I (x, y)Hi (x, y) (2.5)

where x, y represent the dimensions of image and filter, and i the basis of the filter.
The response is further binarized based on the obtained response value. If the linear
filter response is greater than the threshold, a binarized value of 1 is assigned as given
by [27]:

bi =
{
1, if si > 0

0, otherwise
(2.6)

The obtained responses b are encoded to form the compact pixel value f in the range
of 0–255 by using binary to decimal conversion as provided by Eq.2.7.

f =
8∑

j=1

b j × 2( j−1) (2.7)



2 A Study of Hand-Crafted and Naturally Learned Features … 39

2.3 Naturally Learned Features Using Transfer Learning
Approaches

Along with the set of hand-crafted features, we evaluate the applicability of naturally
learned features using the transfer learning approaches on pre-trainedDeep Convolu-
tional Neural Networks (D-CNN). Specifically, we have employed three popular pre-
trained D-CNNs such as D-CNNs, namely: VGG16, VGG19, and AlexNet, which
are pre-trained on the large-scale ImageNet database [33, 34]. The key motivation
to choose the pre-trained networks is due to the ability to handle a small volume
of data unlike CNN who rely on large-scale data. Another factor resulting in our
choice of transfer learning is their proven good performance for various biometric
applications including PAD [28–30, 35]. Given the image I , we crop the Region of
Interest (ROI) Ic, corresponding to the fingerprint image I , which is further normal-
ized to have 227 × 227 pixels for AlexNet and 224 × 224 pixels for VGG16 and
VGG19, in order to comply with the input layer requirements of each network. Fur-
ther, to perform the fine-tuning of each network, we carried out data augmentation
using random cropping that can preserve the semantics of the fingerprint images.
As the fine-tuning process is intended to control the learning rate, we have boosted
the learning rate of the last layers in all three networks such that they change faster
than the rest of the network and thereby, we do not modify the previous layers in
AlexNet or VGG net while quickly learning the weights of the newer layer. Thus,
for all three networks, we have used the weight learning rate factor equalling 10 and
bias learning rate factor equalling 20.

Given the training set, we tune the pre-trained AlexNet/VGG16 or VGG19 and
extract the features f from the last fully connected layer, which is of dimension
1 × 4096 to train a SoftMax classifier. Considering the non-engineered efforts, these
set of features obtained from the set of three different networks are learned purely
on the basis of natural features within each class of images (bona fide and artefact).

2.4 Experiments and Results

This section presents the details of the database employed for the evaluation and the
corresponding experiments and results.

2.4.1 Database

The ATVS-FFp DB [7] is publicly available at the ATVS-Biometric Recognition
Group website.2 The database comprises bona-fide and artefact fingerprint images

2https://atvs.ii.uam.es/atvs/databases.jsp.

https://atvs.ii.uam.es/atvs/databases.jsp
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coming from the index and middle fingers of both hands of 17 subjects (17 × 4 = 68
different fingers). A sample of the images in the database is presented in Fig. 2.1.
The database contains over 3,000 bona- fide and artefact fingerprint samples captured
from 68 different fingers. Corresponding to each bona-fide finger presentation, two
gummy finger artefacts are created by modelling silicone following a cooperative
and non-cooperative process. Under the cooperative artefact generation scenario, the
subject is asked to place his finger on a mouldable and stable material in order to
obtain the negative of the fingerprint. The actual fingerprint is further obtained by
recovering the negative mould. Whereas, in non-cooperative artefact generation, a
latent fingerprint is used to recover the fingerprint unnoticeably by using a specialized
fingerprint development toolkit and then digitized with a scanner. The scanned image
is then enhanced through image processing and finally printed on a PCB from which
the gummy finger is generated.

Four samples of each fingerprint (bona fide and artefact) were captured in one
acquisition session with three different kinds of sensors which include:

• Flat optical sensor Biometrika (Model FX2000, Resolution—569dpi, Image
size—312 × 372).

• Flat capacitive sensor by Precise Biometrics (Model Precise100SC, 500dpi, Image
size—300 × 300).

• Sweeping thermal sensor by Yubee with Atmels Fingerchip (Resolution—500dpi,
Image size—232 × 412).

2.4.2 Performance Evaluation Protocol

The database presented in the previous section is augmented in this section for the
experimental protocols. As provided in Table2.1, the database is divided into training
and testing subsets for each of the different types of sensor data. In the case of
data captured with cooperation, data from each sensor comprises training samples
corresponding to 128 fingers and testing samples corresponding to 144 bona-fide
fingers. A similar distribution of dataset is followed for artefact subset for all three
sensors: capacitive, optical and thermal sensors. Along the lines of division of dataset
for cooperative artefacts generation, the dataset is subdivided for training and testing
set for all three sensors. The training and testing set consists of samples from 128
fingers in both bona-fide and artefact samples.

2.4.3 Results on Cooperative Data

This section presents the results on the presentation attack detection for the bona-
fide samples and artefacts with cooperation. The results are presented in Table2.2
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Fig. 2.1 Samples of fingerprint from ATVS database

Table 2.1 Statistics of the training and testing samples

Data collection Sensor type Data partition

Bona-fide samples Artefact samples

Training
samples

Testing
samples

Training
samples

Testing
samples

With cooperation Capacitive 128 144 128 144

Optical 128 144 128 144

Thermal 128 144 128 144

Without cooperation Capacitive 128 128 128 128

Optical 128 128 128 128

Thermal 128 128 128 128
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Table 2.2 Quantitative performance of the algorithms on cooperative data

Sensor Algorithms D-EER (%)

Capacitive Hand-crafted features LBP-SVM 2.77

LPQ-SVM 6.25

BSIF-SVM 0.69

Naturally learned features AlexNet 0

VGG16 0

VGG19 0

Optical Hand-crafted features LBP-SVM 29.77

LPQ-SVM 22.04

BSIF-SVM 24.26

Naturally learned features AlexNet 0.69

VGG16 0

VGG19 0.69

Thermal Hand-crafted features LBP-SVM 6.98

LPQ-SVM 12.50

BSIF-SVM 24.26

Naturally learned features AlexNet 0

VGG16 2.77

VGG19 2.08

for each different set of attack detection schemes. The performance for both hand-
crafted and naturally learned filters are listed together. The Detection Error Trade-
off (DET) curves are presented in Figs. 2.2, 2.3 and 2.4 for data captured using
capacitive sensor, optical sensor and thermal sensors. The DET illustrates the trade-
off between the Attack Presentation Classification Error Rate (APCER) and the
Bona-Fide Classification Error Rate (BPCER). A set of the observations can be
deduced from the study on applicability of both features for detecting artefacts as
listed below:

• In the case of fingerprints captured from capacitive sensor, the best performance is
obtainedwith anDetection-Equal Error Rate (D-EER) of 0.69%using the features.
On the other hand, in the case of naturally learned filter, it is reached using deep
learning techniques.

• All three different deep learning-based approaches involvingAlexNet,VGG16 and
VGG19 have achieved an D-EER of 0% in detecting the PAIs, thereby indicating
high efficiency/performance with naturally learned features.

• Unlike the data captured from a capacitive sensor, the data captured using optical
sensor has been observed as challenging and thereby results in higher error rate
in detecting artefacts using hand-crafted features. The highest accuracy of D-
EER=22.04% is obtained for LPQ-SVM technique.
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Fig. 2.2 Capacitive
sensor—with cooperation

Fig. 2.3 Optical
sensor—with cooperation

• Naturally learned features usingdeep learning techniques such asAlexNet,VGG16
and VGG19 have achieved an D-EER of 0.69%, 0% and 0.69%, respectively. The
naturally learned features have drastically reduced the error rates close to 0%.

• For the data captured from the thermal sensor, LBP-SVM outperforms both BSIF-
and LPQ-based attack detection schemes. While the lowest error rate obtained is
close to 7%, naturally learned features from AlexNet results in D-EER=0% and
similar low error rates (<3%) can be observed for VGG net-based features.

• A key observation from the set of results is that the naturally learned features have
resulted in very low error rates as compared to hand-crafted features in detecting
the attacks stemming from cooperative scenarios.

2.4.4 Results on Non-cooperative Data

This section presents the results obtained on the artefact detection for the data col-
lected without cooperation. This set of experiments correspond to realistic scenarios
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Fig. 2.4 Thermal
sensor—with cooperation

of attacks where lifted fingerprints can be used to perform the attacks. The results
pertaining to this set of experiments are listed in Table2.3, and the corresponding
DET curves are presented in Figs. 2.5, 2.6 and 2.7 for data captured using capacitive
sensor, optical sensor and thermal sensor, respectively. An analysis of the obtained
results is presented in the following section:

Table 2.3 Quantitative performance of the algorithms on non-cooperative data

Sensor Algorithms EER (%)

Capacitive Hand-crafted features LBP-SVM 0

LPQ-SVM 28.90

BSIF-SVM 0

Naturally learned features AlexNet 0

VGG16 0

VGG19 0

Optical Hand-crafted features LBP-SVM 32.81

LPQ-SVM 33.20

BSIF-SVM 47.65

Naturally learned features AlexNet 3.12

VGG16 0

VGG19 1.56

Thermal Hand-crafted features LBP-SVM 48.63

LPQ-SVM 39.84

BSIF-SVM 0

Naturally learned features AlexNet 33.39

VGG16 33.39

VGG19 33.39
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Fig. 2.5 Capacitive
sensor—without cooperation

Fig. 2.6 Optical
sensor—without cooperation

Fig. 2.7 Thermal
sensor—without cooperation
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• The data captured from capacitive sensor can be effectively detected using both
hand-crafted features like BSIF-SVMand naturally learned features using all three
different deep learning networks resulting in D-EER=0%.

• It can be noted that the data captured from optical sensor is not optimal to detect
the presentation attacks using the hand-crafted features which results in lowest
error rates of D-EER=32.81%. The high error rates suggest the non-applicability
of the hand-crafted features to detect attacks, while the naturally learned features
using deep learning models result in low error rates. It can be further noted that the
VGG16 obtains an D-EER=0% implying the robustness in detecting the attacks.

• Further, the highest rates of error can be seen in the data captured using thermal
sensor. While the lowest error rate can be observed as D-EER=0% using BSIF-
SVM under hand-crafted features, the lowest error from deep learning models is
D-EER=33.39%. An important observation can be deduced is that the artefact data
from thermal sensor cannot be easily classified using deep learning models unlike
for rest of the artefact data.

2.5 Conclusions

Long-standing use of fingerprint is mainly attributed to ease of capture using the sen-
sors and the robustness in authentication performance.However, the ease of acquiring
the fingerprints by lifting the latent prints presents the threat of presentation attacks.
In this chapter, we have analysed the techniques based on naturally learned features
and hand-crafted features to gauge their ability to detect the presentation attacks.
We have systematically demonstrated the applicability of hand-crafted features to
detect the artefacts captured under the scenarios of cooperative and non-cooperative
scenarios. It was noted that the hand-crafted features work reasonably well for capac-
itive sensor while not optimal for optical and thermal sensors. Despite the challenge
in detecting the PAIs from thermal sensor under non-cooperative attacks, naturally
learned features have proven very efficient in detecting the artefacts and have resulted
in an D-EER=0%. The set of results obtained on different subsets of artefact data
suggests the suitability of naturally learned features. A detailed analysis of naturally
learned features using deep learning-based approaches and large training sets need to
be carried out in future to devise strategies for reliable presentation attack detection.
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Chapter 3
Optical Coherence Tomography
for Fingerprint Presentation Attack
Detection

Yaseen Moolla, Luke Darlow, Ameeth Sharma, Ann Singh
and Johan van der Merwe

Abstract New research in fingerprint biometrics uses optical coherence tomogra-
phy (OCT) technology to acquire fingerprints from where they originate below the
surface of the skin. The penetrative nature of this technology means that rich infor-
mation is available regarding the structure of the skin. This access, in turn, enables
new techniques in detecting spoofing attacks, and therefore also introduces mitiga-
tion steps against current presentation attack methods. These techniques include the
ability to detect fake fingers; fake layers applied above the skin; differentiate between
fakes and surface skin conditions; and liveness detection based on, among others,
the analysis of eccrine glands and capillary blood flow from below the surface of the
skin. Through advances in the OCT hardware and processing techniques, one has
increased capabilities to capture large fingerprint volumes at a reasonable speed at
the relevant necessary resolution to detect current known attempts at spoofing. The
nature of OCT and the data it produces means that a truly high-security fingerprint
acquisition systemmay exist in the future. This work serves to detail current research
in this domain.
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3.1 Introduction

Fingerprints are one of the oldest, most reliable and most widely applied biometrics
used in secure identity authentication systems. The fingerprint of any given finger
is statistically unique enough to be used to recognise an individual. Since the end
of the nineteenth century, law enforcement agencies and forensic departments have
used fingerprints for the identification of criminals. This provided a means by which
criminals using aliases to avoid the law could still be identified. Over time, with
the birth of the digital era, the acquisition and recording of fingerprints has moved
from a paper-based system to electronic systems. Comparisons of fingerprints have
shifted from a manual to an automated process, giving rise to automated fingerprint
identification systems [1]. These systems have since found use in a wider range of
applications, such as national identification databases [2], social security agencies
[2, 3], border control [4], healthcare management [5], home security systems [6],
mobile devices and the banking sector [7].

However, as the technology to identify individuals has advanced, so too have the
efforts of criminals advanced in attempts to outwit these systems. Such deception
by impostors may grant unauthorised access to the property of another individual,
leading to the theft of information, money or even an entire identity. There are many
points at which a criminal can attack an identity authentication system. These include

• circumventing the security measures of the servers on which the information is
stored;

• intersecting the communication between a fingerprint acquisition device and the
server to insert false information, i.e. a man-in-the-middle attack; or

• presenting the stolen identity of another individual at the point of acquisition, i.e.
presentation attack [8].

The moment when a user presents their finger to a system is thus a crucial point at
which the security of a fingerprint system must be ensured. By early detection of an
attempt at unauthorised access, the wealth, possessions and personal information of
a system’s users can be protected. Optical coherence tomography (OCT) technology
provides newmeans bywhich a presentedfingerprintmaybe assessed for authenticity
and liveness. This chapter will briefly describe the forms of presentation attacks,
followed by a discussion in the advances of OCT as a means of detecting these
presentation attacks.

3.2 Background

This section will serve to provide background regarding the history and properties of
OCT, skin physiology and presentation attack detection. These three ideas contex-
tualise this chapter in that the skin physiology has well-defined physical and optical
properties on the surface and below the surface of the skin, OCT has the capability
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of accurately measuring this physiology, and current fingerprint presentation attack
techniques do not perfectly reproduce this physiology. It is this decoupling between
skin physiology and presentation attacks that makes OCT well-suited as a finger-
print acquisition device that is capable of consistent and reliable presentation attack
detection. The following section details the history and properties of OCT.

3.2.1 History and Properties of OCT

OCT is a non-invasive, non-contact, optical imaging technique that is able to yield
volumetric subsurfacemorphology, both 2D and 3D, of scattering samples in situ and
in real time. OCT is often described as the optical analogue to ultrasound. However,
the back scattered light cannot be measured electronically due to the high speed of
light. Therefore, OCT uses the technique of low coherence interferometry and was
first demonstrated by Huang in 1991 [9] and later for a different configuration by
Fercher [10]. Since then it has been applied extensively in biomedical applications
especially ophthalmology [11], oncology [12], dermatology [13] and cardiology
[14] as well as applications in material structure analysis [15], artwork [16] and
biometrics [17].

The principle of OCT is shown in Fig. 3.1. The light is split between a sample
and a reference mirror (reference path). When the difference between the distance
travelled by the light for the sample and the reference paths is within the coherence
length of the light source, then interference will occur at the detector. OCTmeasures
the echo time delay and intensity of backscattered light.

Regarding the use of OCT in presentation attack detection, various approaches
have been taken to acquire the relevant data. However, the representation of the data
afforded by OCT follows a standard structure.

An OCT scan is constructed by measuring the 1D internal structure of a material
at some point, or spot. This produces a depth profile, or intensity graph, of this point.
This is referred to as an A-scan. Multiple consecutive lateral points are obtained
to produce a B-scan, which can be represented as a single image or ‘slice’ of a
volume. Multiple B-scans can then be combined to create a complete volumetric

Fig. 3.1 Diagram depicting
the principle of OCT



52 Y. Moolla et al.

representation of a material. Figure3.2 shows the progression from an A-scan to a
B-scan, to a 3D volume. Figure3.3 shows the general axes labelling standard for
volumetric OCT data. This figure is also an example of a 3D scan of a fingerprint.

The axial width resolution of the light source is referred to as the spot size. The
distance between each lateral spot is referred to as the step size. Thismay bemeasured
inμm/pixel or dots per inch (dpi). Dpi is relevant since it is the standard metric used
for measuring fingerprint resolution.

Fig. 3.2 The progression from anA-scan, to the concatenation to form a B-scan, to the construction
of a 3D volume, to the extraction of a fingerprint [18]

Fig. 3.3 Example OCT volume. Each cross-section slice in the X–Z plane is known as a B-scan.
Each 1D signal in the Z direction is read by the OCT scanner. The various layers of the skin are
labeled. The yellow arrows indicate the location of some eccrine sweat glands, which are also visible
in an OCT scan. ©2016 IEEE. Reprinted with permission from [19]
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The axial depth resolution is dependent on the spectral bandwidth of the light
source, i.e. the broader the bandwidth, the lower the coherence length and the higher
the depth resolution [8, 9], as shown in Eq.3.1.

Δz = 2ln2

π

λ2

Δλ
= 0.44

λ2

Δλ
(3.1)

For a refractive index of n, the axial resolution becomes Δ z
n where Δz is the full-

width-at-half-maximumof the autocorrelation function,Δλ is the spectral bandwidth
of the power spectrum and λ is the centre wavelength of the light source. Transverse
resolution is determined by

Δx = 4λ f

πd
(3.2)

where d is the spot size of the beam on the objective lens and f is the focal length
of the lens. Increasing the transverse resolution decreases the penetration depth. For
OCT systems, an objective with low numerical aperture is used. The penetration
depth is given by

zmax = λ2
0

4nδλ
(3.3)

OCT systems operate primarily either in the near infrared (NIR), i.e. 1250–
1350nm or 800–900nm depending on the application. The NIR wavelengths are
preferable when imaging non-transparent tissue, or similar samples, due to the better
penetration depth. Tissue has low absorption of the beam by proteins, haemoglobin,
water and lipids in this region and hence better penetration. Ophthalmology is per-
formed at 800–850nm due to the transparent nature of the eye. However, this wave-
length limits the penetration depth for other tissues, such as skin.

The most common type of OCT systems are Time Domain (TD) and Fourier
Domain (FD) OCT. In TD OCT, A-scans are acquired by scanning the reference
mirror back and forth to match different depths in the sample to within the coherence
length of the light source. The moving mirror limits the acquisition speed and also
makes the data susceptible to motion artefacts.

FD OCT, first demonstrated in 1995 [10], obtains A-scans with a fixed reference
mirror and measures the spectral response of the interferogram. The interferogram
is encoded in an optical frequency space and undergoes a Fourier transform to yield
the reflectivity profile of the sample. This configuration is divided into Spectral
Domain (SD) OCT, which requires a broadband light source for illumination and
separating the spectral componentswith a spectrometer; andSwept Source (SS)OCT,
which uses a light source which probes the sample with different optical frequencies
sequentially. The power is then measured with a single photon detector.

The main push for OCT systems for fingerprint comparisons would be resolution,
acquisition speed and compactness and cost. At present, the price of OCT systems
remain relatively high due to the specialised optical components and this is a chal-
lenge that will change as productions costs decrease. Acquisition speed is another
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challenging performance parameter and, at present, post-processing of OCT data is
computationally intensive, requiring high bandwidth electronics. In addition, the scan
rate in swept source OCT systems poses another limitation. However, most manu-
facturers are slowly increasing their offered scan rates. Alternatively, in FD systems,
the frame rate, i.e. line speed, of line CCD and CMOS sensors has increased and
such systems will soon become competitive in terms of both cost and performance.
Researchers atMIT have attempted to push forward the performance ofOCT systems
using sub-sampling and Fabry–Perót swept sources, which have received interest in
recent years [20].

3.2.2 Skin Physiology

The human skin consists of several functional and distinct layers. Most notably, the
three layers of the skin are the epidermis, dermis and the hypodermis. The uppermost
layer is the epidermis, and the uppermost and external-facing sub-layer of the epi-
dermis is the stratum corneum. The dermis is the layer below the epidermis and the
hypodermis is below that. The upper sub-layer of the dermis is the papillary dermis.
Thus, the junction between the epidermis and the dermis is known as the papillary
junction. Figure3.3 shows the fingerprint skin layer structure as scanned by an OCT
system.

On areas such as fingertips, palms and the soles of the feet, the papillary junction
forms friction ridge patterns which result in fingerprints, palmprints and footprints,
respectively, on the surfaces of the skin [21]. The stratum corneum and the papillary
junction sub-layers are of particular interest in this domain because they present
high-contrast regions when scanned using OCT. The particular undulations of these
skin layers are the ridges and valleys of the surface and subsurface fingerprints. The
surface fingerprint, which is acquired by conventional fingerprint scanners, is a copy
of the subsurface fingerprint that exists at the papillary junction. The skin cells grow
outwards from the papillary junction and, owing to this relationship, the subsurface
fingerprint is the ‘master’ copy of the surface fingerprint. These two layers can be
seen clearly in Fig. 3.3.

Since OCT is able to measure the internal reflectivity, and thus structure of the
skin, it grants access to this master fingerprint and other subsurface structures. It is
this property that makes OCT a tool of high potential in presentation attack detection.
Section3.2.3 gives a brief outline of presentation attack detection and Sect. 3.3 details
presentation attack detection capabilities using OCT technology.

3.2.3 Presentation Attack Detection

A presentation attack is an attempt by an impostor to assume the identity of another
individual to obtain unauthorised access to a system. In the context of fingerprint
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presentation attacks, this usually takes one of the following forms:

1. Thin layered fakes: Usually constructed from a master impression and can be
made using a variety of materials, such as silicon, these are placed on an attackers
finger as an additional layer to be presented to an acquisition device. The master
impression could be obtained from a mold of an individual’s fingerprint, a latent
fingerprint left on a surface, or even from a photograph [22].

2. Full finger fakes: Constructed from the same materials as thin layered fakes, full
finger fakes are similar to prosthetics and are presented as such.

3. Severed fingers: Dismembered fingers and fingers of deceased individuals do not
lose their fingerprint pattern immediately and can be used to deceive acquisition
devices.

4. Masking: A substance without a fingerprint pattern is used to obscure the finger-
print pattern, rather than imposing a false identity.

5. False claims: Apart from actual presentation attacks, fraudulent behaviour may
include instances where an authorised individual accesses a system and then
denies doing so. They may claim to be the victim of a presentation attack. Such
denials may require evidence for nonrepudiation.

Fingerprint presentation attack detection is thus the act of detecting such attacks
before they succeed. There are many manners in which this may be achieved. From
hardware solutions such as pulse, moisture, heat or conductivity detection to software
solutions that use trained classifiers to detect the differences in images obtained
from fingerprint scanners [23]. These all achieve varying success. OCT technology
has been recently explored for presentation attack detection. Owing to the inherent
capabilities therein, it has the potential to provide a uniquely well-suited solution
in that it can look beyond the presented media and into the internal structure. The
following section details the research undertaken thus far.

3.3 Existing and Ongoing Research

Numerous research groups have approached the used of OCT in presentation attack
detection. This section will discuss in detail the research carried out by each of these
groups in a chronological order.

3.3.1 University of Houston

From 2006 to 2008, the researchers from the Biomedical Optics Laboratory at the
University of Houston introduced the use of OCT for fingerprint presentation attack
detection. Cheng and Larin [24] suggested enhancing existing fingerprint scanning
systems using OCT. They averaged B-scan slices to reduce speckle noise and arrived
at a single 1D curve that represented the distribution of light into the skin. Figure3.4
shows the information they used.
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Fig. 3.4 a B-scans were averaged into b depth profiles, and autocorrelation analysis was then
applied on this. Image reprinted with permission from [24], OSA Publishing

Autocorrelation analysis was then applied to these 1D signals. This technique
is used in signal analysis to detect repeating structures. Thus, highly homogeneous
signals yield high absolute autocorrelation coefficients,while inhomogeneous signals
yield autocorrelation coefficients close to zero. Their assumptionwas that real human
skin exhibits inhomogeneity while fake fingerprints do not. Several materials were
tested, namely, gelatin, silicon, wax and agar. Additionally, layer fakes were created
from eight fingers, and 10–20 impressions of each fake on a different individuals
hand were taken.

The authors used time-domain OCT with a wavelength of 1300± 15nm and a
power output of 375µW. Single B-scans were performed at a depth of 2.2mm in
air and lateral scan length of 2.4mm. The B-scans obtained were 450× 450 pixels.
A single B-scan took 3s to acquire.

The authors assume that the 1D depth signal of a real finger exhibits changes that
are greater than those changes exhibited in materials used to construct fingerprint
fakes. This assumption is both a strength and weakness. A strength of this system
is that it provides a simple yet effective means of analysing presentation attacks
based on the natural physiological layered structure of human skin. Conversely, a
weakness is that human skin may not exhibit this behaviour under all circumstances.
For instance, in the case of skin damage to the fingerprint [17] the epidermis may be
eroded to an extent that autocorrelation analysis begins to fail.

This autocorrelation technique introduced OCT to the domain of presentation
attack detection and showed how a simple signal processing technique could use the
valuable depth information granted by OCT technology to detect fake fingerprints.
In a later work by the same research team [25], the group extended their previous
work from a single lateral B-scan of a finger towards a collection of lateral scans
to create a volumetric representation of the finger. This development allowed visual
analysis of topography of the fake layer and underlying real fingerprint.
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This paper also pointed to the possibility of recording and analysing the real fin-
gerprint pattern that is behind the dummy fingerprint. This information could be used
to determine the true identity of a perpetrator in a presentation attack. However, the
overall area of the finger that was scanned was very small (2.4mm × 10mm) with
anisotropic resolution of 4762 dpi in one direction and 254 dpi in the other direc-
tion. Thus, while this technology was still immature for fingerprint comparisons, the
results showed promise for another method of visual analysis to detect presentation
attacks.

In a further extension of this work [26], the researchers collaborated with the
Optics Group at the Institute for Microstructural Science at the National Research
Council of Canada. Instead of a time domain OCT device, a full field OCT device
was used. This parallelizes the capture of information to increase the speed of the
system and collect data over a wider area and in a shorter time. This allowed for
capturing of volumetric information of the fingerprint without movement artefacts,
thus providing clearer resolution of 3D fingerprints.

Through the use of a full field OCT device, the investigators were able to render a
graphical representation of the fingerprint pattern of a fake fingerprint. This system
provided: information of the upper surface of the layered fake, with a fingerprint
pattern; the internal structure of the layered fake, which differs from the structure
of human tissue; and the bottom surface of the layered fake, which does not hold a
fingerprint pattern, is smooth, and does not exist in a real finger.

3.3.2 Bern University of Applied Sciences

In 2010, Bossen et al. [27] from the Bern University of Applied Sciences used a
frequency domain OCT system to obtain volumetric information from live fingers.
The system was also able to detect differences between fake layers placed on a
finger and the real finger below. This was done by visually analysing the internal
fingerprint from a fixed depth. When an additional layer is present, the internal
fingerprint is obscured. They also discussed the detection of eccrine glands through
visual inspection. Further, the paper reported the first biometric comparison study of
automatically extracted subsurface fingerprint patterns using the index fingers of 51
individuals. These comparisons showed promising reliability in using the subsurface
for fingerprint verification.

The system required ±20 s to capture an area of 14mm × 14mm and a depth of
3mm in air, producing a volume of 512× 512× 512 volumetric pixels. Although the
performance results were promising, the speed of acquisition of this system was too
slow for commercial application. Although OCT systems are capable of contactless
fingerprint acquisition, the above- mentioned study required participants to press
their fingers against a glass slide when scanning.
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3.3.3 University of Delaware

In 2010, Liu and Buma [28] from the Optics and Ultrasonics Research Labora-
tory at the University of Delaware presented a technique for mapping eccrine sweat
glands on the fingertip, using a spectral domain OCT system. The eccrine glands
present a 3D helical structure under the surface skin and are the conduits for perspi-
ration that extrude sweat out through the sweat pores on the surface. Thus, there is a
direct correlation between eccrine glands and sweat pores which have been shown as
effective third-level minutiae detail for biometric comparison, in addition to the con-
ventional comparison of ridge ending and bifurcation second-level minutiae details
[29]. Figure3.5 shows the eccrine glands, the subsurface fingerprint from the pap-
illary junction layer, the mapping between these two, and a fake finger that has no
eccrine glands. The use of third-level minutiae features have the potential to improve
the confidence of fingerprint comparisons.

Fig. 3.5 Eccrine gland mapping example. ©2010 IEEE. Reprinted, with permission from [28]
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The internal fingerprint from the papillary junction was extracted with the eccrine
glands. A number of unique details can be afforded in the following manner:

1. the internal fingerprint pattern in the papillary junction is as unique as a surface
fingerprint, enabling biometric comparisons;

2. the global pattern of the eccrine glands are as unique as the sweat pore pattern
of the surface, enabling further reliability to biometric comparisons;

3. the existence of the helical structures of the eccrine glands in the epidermis and
their optical properties are very nuanced, making it very difficult to reproduce in
a fake finger and

4. the distinguishing optical properties of the papillary junction between the dermis
and epidermis, which is due to the layered structure of skin growth and is also
difficult to reproduce in a fake finger.

The data extracted from real fingerprints was compared to full finger fakes that
were created tomodel the optical scattering properties of a real finger, using amixture
of polydimethylsiloxane and titanium dioxide. However, since the full finger fakes
do no possess the same underlying subsurface structure as a real finger, the fake and
real fingers were easily differentiated. The downsides of the presented system were a
slow scanning time and a small captured area. However, the authors proposed means
of improving on these limitations.

3.3.4 University of Kent

In 2011, Nasiri-Avanaki et al. [30] of the Applied Optics Group of the University of
Kent showedhow en-faceOCTcan be used to detect additional layers placed on top of
the skin. They used a combination of a dynamic focus en-faceOCTsystemand a time-
domain OCT system, and showed how an additional masking layer made of sellotape
was detected while the true fingerprint below it was extracted. They achieved a high
resolution using this type of OCT setup and the sweat pores were well-defined.
Figure3.6 shows the difference between fingers with and without a sellotape mask.
Once more, this work evidenced the strength of OCT to image multilayer objects for
presentation attack detection.

They also discussed another avenue regarding how OCT can be configured to
measure blood flow for liveness detection by measuring differences caused by the
Doppler effect. Analysing themovement of blood below the surface of the skinwould
allow the system to detect if a severed finger or the hand of a deceased individual
is presented. Furthermore, they postulate that a single B-scan OCT image may be
sufficient for liveness detection. The idea of blood flow analysis was actualized by
another group [31] which is discussed in Sect. 3.3.5. They also mentioned that owing
to the clear visibility of the eccrine glands, an OCT system could be configured to
give a measure of stress by analysing the rate of sweat production.
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Fig. 3.6 Two B-scans showing the a absence and b presence of sellotape. The sweat ducts are also
visible as helical structures in a. Images taken from [30]

3.3.5 University of California

In 2013, Liu and Chen [31] of the University of California showed the detection of
subsurface fingerprint patterns, eccrine gland patterns, and micro-circulation blood
flow patterns using a swept source OCT system. While this work did not explicitly
use fake fingerprints to test presentation attack detection, it showed repeatability in
the capability of OCT technology to extract reliable subsurface information from a
real finger, which are not present in fakes.

Intensity amplitude autocorrelation analysis between adjacent B-scans was used
to determine micro-variances that were indicative of blood flow. This technique is
known as inter-frame intensity-based Doppler variance. As discussed in the previous
section, this provides a means of liveness detection in that blood does not flow
in a severed or dead finger. Figure3.7 shows the micro-circulation patterns for a
fingerprint volume. These will not be present in a dead or fake finger.

3.3.6 National University of Ireland

In 2013, through a collaboration between the National University of Ireland and the
University of Houston, Dsouza et al. [32] imaged and mapped the micro-circulation
of the subsurface fingerprint using a technique called correlation mapping OCT
(cmOCT) [33]. This technique applied a correlation mapping algorithm to swept
source OCT scans. The 3D scans were processed in sub-stacks of eight en-face/X-Z
slices: each sub-stack correlation map was generated by passing a 7 × 7 window
across the eight slices andmeasuring the average correlation. Themaximum intensity
projection map was then calculated. The result thereof was vascular patterns that
represented themicro-circulation of the scannedfingerprint.Although their studywas
small and lacks suitable automation, they demonstrated the utility of OCT regarding
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Fig. 3.7 Vascular patterns obtained using Doppler OCT. Image reprinted with permission from
[31], OSA Publishing

liveness detection through the measurement of blood flow. To simulate an attack that
would use a severed or dead finger, they inhibited the blood flow. This resulted in a
micro-circulation pattern sufficiently different from a normal live finger Fig. 3.8.

McNamara et al. [34] went on to develop a first-generation cost-effective multiple
reference OCT system. The ongoing endeavour by this team is to reduce the cost of
OCT through the use of off-the-shelf components and by the envisioned leveraging
of economies of scale. The reduced cost could pave the way to wider usage of OCT
in commercial applications.
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Fig. 3.8 A demonstration of cmOCT. a is a B-scan; b is after applying the cmOCT algorithm; c is
an overlay of a and b; d is the OCT volume used; e shows the eccrine glands; f is the subsurface
fingerprint; g shows the rising capillary loops at a shallower depth than h, which shows the micro-
circulation pattern deeper into the skin [32]

3.3.7 OCT Ingress Project

The Ingress project [35] is a collaboration between 10 European partners towards
developing technology forfingerprint security including subsurfacefingerprint acqui-
sition. This sections will detail some of the research from this project with is relevant
to fingerprint presentation attack detection using OCT.

Meissner et al. [36] demonstrated how OCT is a useful tool for high-security
biometric control systems regarding presentation attacks using layered fakes. Three-
dimensional volume stackswere obtained using a standard swept sourceOCTsystem.
Thedimensions of the scanswere 4.5mm × 4mm × 2mm.Theymanually classified
these into real and fake fingerprints by visual assessment of the OCT volumes.
Eccrine gland detection was performed and used to classify these scans. Figure3.9
demonstrates the scans used in this study.

The study was larger than those before it: 7458 scans of live persons, 330 scans of
bodies, and 2970 scans of fakes. They achieved a success rate of almost 100% when
performing manual detection. The eccrine glands were detected in all live scans but
the number differed between persons. The high success rate was attributed to the ease
of observing the abnormal layer arrangement that is caused by fake additional layers.
Although the technique was not expounded upon, they reported that an ‘automatic
analysis’ of the scans resulted in a misinterpretation of 7% for real fingers and a
failure rate of 26% for additional layer fakes.

Sousedik et al. [37] analysed OCT fingerprint volumes towards creating a strong
presentation attack detection system. Although research continues in this field, they
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Fig. 3.9 a B-scan, b OCT volume, and c maximum intensity projection for presentation attack
detection. Images taken from [36]

stated that it remains relatively simple to fool most state-of-the-art fingerprint sen-
sors using low-cost and widely available materials. Even with pattern recognition to
distinguish the subtle differences in elasticity or perspiration between real and fake
fingerprints, for example, 2D scans acquired by conventional fingerprint sensors are
limited and do not provide a level of attack detection to satisfy a high-security appli-
cation space. Moreover, any single hardware solution, such as moisture detection
can usually be fooled by using new materials or production techniques to produce
the fingerprint fakes.

Once more, the work in Sousedik et al. [37] stated that because of the penetrative
nature of OCT, access is granted to information that can greatly improve presentation
attack detection. From eccrine glands to the ‘master’ subsurface fingerprint, these
structures are exceedingly difficult to reproduce in a fake. These do, however, create
challenges to overcome when producing an automated presentation attack detection
solution using OCT. These challenges include processing large quantities of data
(OCT scans can easily exceed 512MB in size), speckle noise that differs from scanner
to scanner, and high intra-class variability in real fingerprints. An automated system
must be able to account for the above-mentioned in a reasonable time (a few seconds)
and still accurately and reliably detect presentation attacks.

The data used in Meissner et al. [36] and Sousedik et al. [37] remains the most
diverse and comprehensive regarding real fingerprints and fake fingerprint classes.
With 7458 scans of real fingerprints, 2970 fake fingerprint scans (representing a
total of 30 classes considering different combinations of mold material and artefact
material compositions), and 330 cadaver fingerprints, this study is noteworthy.

Further work by Sousedik and Busch [38] involved detailing various presentation
attack tools and methods, and also prevention techniques. They discussed the poten-
tial of OCT for presentation attack detection because it can image the sweat glands
under the skin and also grant access to the internal layers of skin. Additionally, they
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discussed that their work is under the supervision of amember of the German Federal
Office for Information Security. Recent work byBreithaupt et al. [39] detailed the full
fingerprint OCT-based scanner developed by this team, and Sousedik and Busch [40]
detailed some of the challenges related to non-compliant behaviour during capture.

The systemdevelopedbySousedik andBreithaupt in [41] is capable of delivering a
full fingerprint scan of a 2 cm × 2 cm area that clearly shows subsurface details, such
as sweat glands, that could be used for presentation attack detection. The techniques
they used to detect the fingerprint layers, i.e. surface and subsurface fingerprints are
detailed in Sousedik et al. [42]. They utilised a novel edge-detection procedure that
was implemented on a GPU setup where each edge-detection ‘core’ was capable
of processing an entire A-line scan without memory swaps. In this manner, edge-
detection, which is a vital component to 3D to 2D OCT fingerprint processing, could
be carried out in near real-time.

In [41], Sousedik and Breithaupt discussed three different resolution configura-
tions for their system. First, at a resolution of 512 dpi, which is close to the standard
fingerprint resolution of 500 dpi, an area of 2 cm × 2 cm was scanned in 1.63 s. This
was to measure the speed of their system for fingerprint acquisition. Second, sam-
ples of a ‘medium’ resolution of 1408× 1408pixels over an area of 2 cm × 2 cm
were taken to assess this system as a fingerprint acquisition device. This data was
analysed in Sousedik et al. [42] by comparing the extracted OCT fingerprints against
fingerprints from the same individuals which were collected using a conventional 2D
scanner. Equal error rates (EER) of 0.7 and 1.0%were obtained when comparing the
external OCT fingerprint and subsurface OCT fingerprint to 2D surface fingerprints,
respectively.

Finally, a small area of higher resolution was intentionally rescanned immedi-
ately after the medium resolution scan for each sample. These scans were of an area
of 3.58mm × 3.58mm and 512× 512pixels. These were visualised to show the
presence of eccrine glands for presentation attack detection, but not automatically
assessed. The work by this research team in the OCT Ingress project is towards a fin-
gerprint acquisition tool that is impervious to presentation attacks. Figure3.10 shows
the surface and subsurface fingerprints that are extracted from the high-resolution
B-scans.

3.3.8 Council for Scientific and Industrial Research

The team from the Council for Scientific and Industrial Research in South Africa
have also been working on OCT for fingerprint acquisition. They developed two
alternative approaches to automated presentation attack detection. The first of these
analysed the depth profile of an OCT scan in order to determine if the expected real
physiological layer structure is present, which would be different with a fingerprint
fake [43]. This is made possible because of the clear differences OCT technology is
able to measure, as shown in Fig. 3.11.
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Fig. 3.10 Subsurface and surface layers and corresponding fingerprints. Reprinted from [42] with
permission from Springer
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Fig. 3.11 B-scans of several different attack types, demonstrating the obvious qualitative and
quantitative differences between real fingers, fake fingers, and real fingers with artefacts present.
Images taken from [43]

They computed two independent features to determine (1) the presence of an
additional layer fake, and (2) the presence of a thin layer such as sellotape. The
first feature was computed by applying autocorrelation analysis to an averaged depth
profile. The deviation of the gradient at the inflection point of the autocorrelation
analysis was determined to be greater for real fingers when compared to additional
layer fakes. This was because the homogeneous repetitive structure of real fingers
yields high absolute autocorrelation [24].

The second feature they computed was a measure of ‘double’ peaks at the surface
of the skin. By determining the location of the surface skin through scaling resolution
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Fig. 3.12 Presentation attack detection by assessment of the quality of subsurface fingerprints.
Image taken from [17]

zone detection, as per Darlow et al. [44], and then probing for additional 1D spikes
in the depth profiles, they were able to detect additional thin sellotape layers.

The second approach which they developed involved analysis of the extracted
subsurface fingerprint [17]. The assumption made therein was that the subsurface
fingerprint will only be accessible when there is no additional layer occluding the
laser from measuring the skin structure. Although it may be theoretically possi-
ble to construct a fingerprint fake that possesses similar layer characteristics, this
remains to be accomplished in practice, to our knowledge, as it is a difficult undertak-
ing. Figure3.12 outlines the procedure for detecting fingerprint presentation attacks
through quality assessment of the subsurface fingerprint. The orientation certainty
level (OCL) is a simple fingerprint quality assessment technique that measures the
consistency of the ridge frequency in non-overlapping blocks.

As is evident in Fig. 3.12, when an additional layer fake is presented to an OCT
scanner, the optical properties of the media used to create such a fake can obscure
the structure beneath. Thus, the subsurface fingerprint component extracted is mean-
ingless as a fingerprint and results in a very poor quality when assessed. This is also
true for a fake finger. This is a straightforward but effective means of detecting pre-
sentation attacks. Furthermore, even if the substances used to create the fakes allow
for the internal structure to be measured, the actual fingerprint of the perpetrator will
be available and the presentation attack will be rendered useless.

Both approaches by this research team yielded a 100% success rate. However,
the data was limited and this needs to be confirmed in the future. This research also
performed a case study on damaged fingerprints and demonstrated that the internal
fingerprints still persisted even when the surface fingerprints were badly eroded.
This could be used to reduce the false rejection rate in presentation attack detection
systems under these circumstances. Moreover, intentionally damaged fingerprints
may still be successfully scanned using OCT.
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3.4 Other Advantages and Future Work

OCT has the additional functionality of being able to image a fingerprint even when
the surface skin is damaged. Darlow et al. [17] evidenced how OCT could be used
to acquire fingerprints even when the surface skin was damaged. In the context of
presentation attacks, this damage would be intentional and the effects thereof should
be tested in a future work.

Giving the assurance that somebody cannot deny something, or nonrepudiation, is
another subtle yet invaluable advantage afforded through OCT technology. Consider
the circumstance that an individual, having accessed their personal bank accounts
using their fingerprint, claims after the fact that this was actually a fraudulent transac-
tion.With current fingerprint acquisition technology this results in a difficult situation
in that there is a low level of assurance that the presented fingerprint was, in fact,
real. With OCT, however, the high level of detail and assurance afforded makes this
situation less foreseeable.

The greatest existing hurdle to the commercialization of this technology is the
cost of such systems. However, research into reducing the cost of such systems is
also ongoing [34].

Advances in the bioprinting of human skin [45] and other organs [46] may eventu-
ally allow the creation of fake fingers which can mimic fingerprint minutiae patterns,
the structure of eccrine glands and blood flow. However, such an attackwould require
significant advances in artificial organ growth, and has thus not yet been tested to
our knowledge.

3.5 Conclusion

This chapter has served to familiarise the reader with OCT as a technology suited to
fingerprint presentation attack detection. We have summarised the existing research
in the overlapping domains ofOCT for fingerprint acquisition and presentation attack
detection, describing the research undertaken and ongoing by various groups from
around the world.

With numerous approaches, assumptions, and advances demonstrated by these
contributors, OCT as a modality for fingerprint acquisition and presentation attack
detection may be a reality in the near future.
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Chapter 4
Interoperability Among Capture Devices
for Fingerprint Presentation Attacks
Detection

Pierliugi Tuveri, L. Ghiani, Mikel Zurutuza, V. Mura and G. L. Marcialis

Abstract A fingerprint verification system is vulnerable to attacks led through the
fingertip replica of an enrolled user. The countermeasure is a software/hardware
module called fingerprint presentation attacks detector (FPAD) that is able to detect
images coming from a real (live) and a spoof (fake) fingertip. We focused our work
on the so-called software-based solutions that use a classifier trainedwith a collection
of live and fake fingerprint images in order to determine the liveness level of a finger,
that is, the probability that the submitted fingerprint image is not a replica. The
chapter goal is to give an overview of FPAD systems by focusing on the problem
of the interoperability among different capture devices. In other words, the FPAD
performance variation arises when the capture device is substituted by another one,
for example, due to upgrading reasons. After a brief summary of the main and
most effective state-of-the-art approaches to feature extraction, we introduce the
interoperability FPAD problem from the image captured by the fingerprint sensor
to the impact on the related feature space and classifier. In particular, we take into
account the so-called textural descriptors used for FPAD. We review the state of the
art in order to see if and how this problem has been already treated. Finally, a possible
solution is suggested and a set of experiments is done to investigate its effectiveness.
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4.1 Introduction

The personal recognition based on fingerprints has been studied since 1686. Many
strides have been made to the present day. The fingerprint is one of the most widely
used biometrics as it has uniqueness, permanence, andmeasurability among its prop-
erties. Current electronic devices incorporating fingerprint recognition are de facto
standards; in fact, they can be found in laptops or smartphones. Therefore, beyond
having a mature theory to support these systems, we also have the technology that
is ready to build a recognition system.

Is it possible to consider a fully “secure” fingerprint recognition system?
There have been at least two famous cases where a fingerprint recognition system

has been fooled. The first one dates back to 2008when awoman tried to enter another
state using false fingerprints to impersonate some other persons [1]. The second
happened most recently in 2013 in a hospital in Sao Paulo where some workers used
fingers of colleagues to credit the presence of absentees [1].

However, the research in this field started on 1998 when D. Willis and M. Lee
conducted an experiment in which six different biometric fingerprint scanners were
tested against artificial fingers. Four out of those six scanners were encountered to
be potentially prone to spoof attacks [2]. In the following years, many attempted to
replicate this experiment such as Putte et al. [3] in 2001 and Matsumoto et al. [4]
in 2002. Later on in 2002, Schuckers [5] deepened into fingerprint scanners that are
protected by PAD software, which she claimed to be less vulnerable to spoofing via
fake fingers.

After these events, methods proposed to solve the problemwere usually classified
in the hardware or software type. Hardware solutions are more expensive than the
second category as these systems require hardware additions. The software solution
is a special module that measures the liveness of a fingerprint placed on the scanner.
Such techniques take the name of fingerprint liveness detection (FDL) or fingerprint
presentation attack detection (FPAD).

In recent years, to understand the advancement of research by universities and
industries, two research centers (Clarkson and Cagliari University) created an inter-
national competition on FPAD, called LivDet.1 Competition datasets are used as
benchmarks by everyone, and, in the experimental part of this chapter we use in the
LivDet 2011 [6] and LivDet 2015 [7] datasets. The liveness is a property of the fin-
gertip placed in the device surface; thus, it does not depend on the scanner. An ideal
scenario is illustrated in the Fig. 4.1, where we have two sensors and a unique features
extractor and a pretrained classifier. If we were to change the scanner we would like
to keep using the same system, trained with images from a different scanner. This
would reduce the maintenance costs of the entire system since the main problem
is to collect and reproduce the fake fingerprint. In order to collect a dataset, like
those coming from the LivDet competitions, many volunteers are needed, molds and
spoof fingerprints have to be created and this involves spending money. Moreover, a

1http://livdet.org/index.php.

http://livdet.org/index.php
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Fig. 4.1 The figure illustrates the ideal solution where a system does not depend on the scanner.
We can change the scanners in a system without drop the performances

remarkable manual skill is required in order to replicate the fingerprint. If we reduce
this process, we have a cheaper system with respect to the others on the market.

The FPAD systems have so far been built using fingerprint images from a single
scanner; thus, the system is customized on just one type of image. These systems
cannot generalize the problem; in other words, a system trained on a scanner cannot
discriminate images acquired with a different scanner. This lack of interoperability
is the subject of this chapter. Figure 4.2 explains our proposed solution: given an
old sensor with a trained classifier and a new untrained sensor, the feature extracted
from images of the new sensor are moved by the black box from their feature space
to the one of the old sensors. This way we can use the old trained classifier on the
new system.

The next section proposes a small review of the state-of-the-art FPAD algorithms.
Section 4.3 tries to make the reader understand why these systems are not inter-
operable with each other through experimental evidence. In Sect. 4.4, we propose
the model of an interoperable system between scanners. The experimental results
described in Sects. 4.5 and 4.6 conclude the chapter.

4.2 Review of Fingerprint Presentation Attacks Detection
Methods

In real-world scenarios, one can attempt to circumvent a biometric sensor by using a
copy of certain required biometry. The artifact that is used as a counterfeit biometric
is also called “spoof” or “fake”. Presentation attacks detection (PAD) is the method
which distinguishes genuine living biometric from fake ones [8]. An acquired bio-
metric sample may be biased or damaged, but thanks to an enhancing process it can
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Fig. 4.2 The figure illustrates our solution, we use a black box that allows us to change the scanner

bemore accurately classified as “live” or “fake”. Such possibility to gather additional
information and to make one step beyond a standard verification process is in what
PAD is based on. Related to fingerprints, an impostor could use either a dismembered
or an artificial finger as a spoof in order to attack a specific system.

4.2.1 Fingerprint Reproduction Process

Generally speaking, two methods are known in order to fabricate a replica of certain
finger—cooperative and noncooperative method:

• Cooperative method: The finger of the target individual must be placed into certain
ductile material. Several materials are valid for this purpose. The process consists
in creating a mold being a negative impression of a fingerprint with either plastic,
dental impression material, or even silicone gum. Once the negative mold is ready,
it is filled with materials like silicone, gelatine, or PlayDoh.

• Noncooperative method: This is the process to be performed when the subject left
a latent fingerprint on a surface and it needs to be enhanced. It can be done by
using a photograph to digitize the fingerprint so that the negative image is printed
on a transparency sheet. As before, fakes are created by pouring materials like
silicone, gelatine, or PlayDoh over the sheet.

4.2.2 Liveness Detection Methods

A fingerprint recognition system must be able to perform the challenging task of
distinguishing if a presented fingerprint comes from an artificial finger or a live
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person. In this sense, several systems are in continuous development in order to be
able to detect differences between live fingers and spoofs [9, 10].Wewould introduce
the reader to the FPAD through an overview of the SOA in this field. It is not and
cannot be exhaustive, but it will help to understand the domain adaptation which
we talk about in this chapter. We will focus on the software solutions because, as
we will explain later, it is cheaper with respect to the hardware modules. We will
investigate the FPADSOA through theColi’s taxonomy [11].Analyzing the technical
evolution of the algorithms it can be noticed that in the first attempts the feature
vector contained physical measures. Afterward, textural algorithms were introduced
in the field and they outperformed the performance of the first solution category. The
textural algorithms analyze the pixel intensity in the fingerprint grayscale image. The
grayscale images study conducted by these methods captures the liveness fingerprint
characteristics but also information about the source device used for the acquisition.
Hence, the feature space distribution depends on the used scanner. We can claim
through the next sections that the features space is constrained by the class ω (“live”,
“fake”) and by the device θ . We can write that X (ω, θ), where X is the feature space.
If we have two different scanners, we have the same feature space but a different
location of ω based on the θ . In other words, the samples of two scanners lie in
the same hyperspace, but the distributions of “live” and “fake” of one scanner are
different with respect to those of the other scanner. Hence, there is no overlapping
among the “live” and “fake” samples of the two scanners. In order to understand that
we need to introduce the textural algorithms in detail, we try to resume the FPAD
SOA.

Asmentioned before, attempting to propose a taxonomy for the present field, Coli
et al. [11] distinguished two main categories for detection methods: hardware- and
software-based:

• Hardware-based: Detection of liveness traits in the fingerprint can be made by
using temperature, electrocardiograms, blood pressure or other methods. All of
those are additional features that can be incorporated into the system through the
use of hardware components.

• Software-based: Instead of using hardware-based solutions, liveness detection
capabilities can also be added to the system by using algorithms. Since this
approach is totally programming-based, it does not require any additional hard-
ware, consequently being it cheaper. The procedure consists of extracting features
from the fingerprint images acquired by the sensors. Those features are then used
to determine the liveness condition of the target fingerprint. Depending on the
number of images examined, they are known as static or dynamic features. If the
feature extraction process is performed against one single fingerprint impression
or by comparing different impressions of the same fingerprint, they are called
static features. Instead, if the extracted features derive from an analysis of multi-
ple impressions of the same fingerprint, they are called dynamic features. Still, one
more subdivision can be defined within the software-based methods according to
which physical principle they exploit: the elastic distortion, the morphology, and
the perspiration of a fingerprint.
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4.2.3 Software-Based Methods State of the Art

As discussed above, software-based liveness detection approaches do not require
additional hardware. Then, the state of the art of dynamic and static methods will be
analyzed.

4.2.3.1 Dynamic Methods

While the finger makes contact with the surface of the sensor the skin becomes
more humid as a consequence of the increasing amount of sweat. Derakhshani et
al. in [12] examined the difference among the pores of the fingertip surface within
sequential frames. Given that the pores constitute the source of the perspiration
process, the authors approached to analyze how they change during a fixed interval
of few seconds for either live and fake samples.

Some variations were introduced by Parthasaradhi et al. [13] regarding saturated
signals caused by excessive wetness. Two new features were added by them: wet
saturation percentage change and dry saturation percentage change. Additionally,
two dynamic features were proposed by Coli et al. [14]: the L1-distance of its gray-
level histogram and the time variation of the gray-level mean value of the whole
image.

Furthermore, by taking human skin elasticity as basis, some new feature extraction
methodswere introducedby Jia et al. [15].At the instant, thefingertip is on the scanner
surface starts the image capture process. Thereby, a sequence of fingerprint samples
describes how the finger is deformed, thus representing the skin elasticity.

With the aim of performing an elastic deformation-based liveness detection
Antonelli et al. [16] followed a dynamic procedure. The user must rotate the fin-
gertip after placing the finger on the sensor surface. As a result of such required
movement, an elastic tension is caused which correspondingly generates a deforma-
tion. It is assumed that live and artificial fingers have a different level of elasticity
of the skin. Attempting to use measures observed only in live people, Abhyankar e
Schuckers in [17, 18] used the perspiration phenomenon to distinguish live samples
from not live samples. Zhang et al. [19] proposed a method based on fingerprint
deformation analysis. The subject must first place a finger on the scanner surface.
Afterward, some pressure must be applied in four different directions.

4.2.3.2 Static Methods

A novel method for quantifying the perspiration phenomenon in a single image was
developed by Tan e Schuckers in [20]. This process follows two principal steps.
First, the ridge signal representing the gray-level values along the ridge mask is
extracted.After this step, this signal is decomposed intomulti-scales by usingwavelet
transform. Additionally, those authors proposed another liveness detection method
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in other work [21]. The basis of this methods lies on noise analysis along the valleys
in the ridge–valley structure of fingerprint images.

Nikam and Agarwal proposed various methods based on the analysis of a single
image. A novel approach based on the ridgelet transform was proposed by them
in [22]. Another approach which consists of using curvelet transform for liveness
detection is proposed by the two authors [23, 24].

The authors in [25] proposed an integration between local binary pattern (LBP)
and wavelet transform. On the one hand, LBP histograms are used to capture details
of the texture. On the other hand, ridge frequency and orientation information are
determined by wavelet energy features. Other work [26] also consists of using textu-
ral measures based onwavelet energy signatures and gray-level co-occurrencematrix
(GLCM) features.Within this approach, the authors introduced some statistical mea-
sures defined by Haralick [27] with the aim of extracting textural characteristics.

One static feature based on the fast Fourier transform (FFT) of the fingerprint
skeleton converted into a mono-dimensional signal was used by Derakhshani et al.
[12]. Tan and Schuckers merged their previous works [12, 20, 21] into [28] by
defining a measure of the image quality. By observing the finger surface with a
high-resolution camera, Moon et al. [29] realized that the surface of a live finger
is much less coarse in comparison to an artificial finger. Whereas current sensors
present 500 dpi on average, the authors opted to use a 1000 dpi sensor. Based on
elastic deformation features Chen et al. [30] proposed a static method by using
multiple impressions. Other authors analyzed the frequency domain by using a two-
dimensional Fourier transform. Owing to ridgeline discontinuity or the roughness of
the skin fingerprint traits atmicrolevel are sometimes less defined in a fake fingerprint
image. As a result, high-frequency details can be either strongly reduced or removed.
Coli et al. [11] computed the modulus of the Fourier transform which is typically
known as power spectrum for the purpose of measuring such details reduction.

Based on a single fingerprint image, H. Choi et al. [31] proposed another liveness
detection method by using multiple static features. With the aim of minimizing the
energy associated with phase and orientation maps, Abhyankar et al. [32] introduced
a multiresolution texture analysis technique. Cross ridge frequency analysis of fin-
gerprint images was performed bymeans of statistical measures. Twomeasures were
proposed by Tidu et al. [33] in order to discriminate live and artificial: the use of the
number of pores and the mean distance between them.

A novel approach was proposed by Marasco and Sansone [34], relying on static
features derived from visual textures of the image. The measures proposed in this
work are obtained through first-order statistics, intensity-based features, and the use
of signal processing methods. Galbally et al. [35] were able to gather a different
set of features by using various sources of information: angle information obtained
from the direction field, Gabor filters representing a different method of the direction
angle, power spectrum, and pixel intensity of the grayscale image. A novel invariant
descriptor of fingerprint ridge texture called histograms of invariant gradients (HIG)
is proposed by Gottschlich et al. [36]. Scale invariant feature transform (SIFT) and
histograms of oriented gradients (HOG) were invariant feature descriptors on which
the authors were based.
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4.2.3.3 Textural Algorithms in Fingerprint Presentation Attacks
Detection

In this work, we focus our attention on textural algorithms since their performances
in the FPAD field proved to be at the SOA in the last few years. We do not claim
that the lack of interoperability is typical of those algorithms, on the contrary, it is a
more general problem as proved by other works [37, 38] in which the convolutional
neural networks were used.

The LBP operator was originally employed for two-dimensional textures analy-
sis. Its excellent performances were improved by the version invariant with respect
to gray level, orientation, and rotation [39, 40]. Uniform patterns, corresponding
to micro-features in the image, are extracted and the image is characterized by the
histogram of these uniform patterns occurrence that combines structural (identifica-
tion of structures like lines and borders) and statistical (microstructures distribution)
approaches.

In a grayscale image, we define the texture T in the circular neighborhood of each
pixel as

T = t (gc, g0, ..., gP−1) (4.1)

This represents the distribution of the P surrounding pixels. The grayscale value
of the selected pixel is gc and, given the radius R > 0, gp are the pixels in the circular
neighborhood, with p = 0, ..., P − 1. Given the origin as gc position, then the P gp

points are in (−Rsin(2πp/P); Rcos(2πp/P)).
If we subtract the central value from the circular neighborhood values we obtain

T = t (gc, g0 − gc, g1 − gc, ..., gP−1 − gc) (4.2)

Assuming that gp − gc values are independent from gc:

T ≈ t (gc)t (g0 − gc, g1 − gc, ..., gP−1 − gc) (4.3)

The overall luminance of the image, unrelated to the local texture, is described in
(4.3) by t (gc). Hence, much of the information is contained in

T ≈ t (g0 − gc, g1 − gc, ..., gP−1 − gc) (4.4)

By considering the signs of the differences and not their exact values then invari-
ance with respect to the gray-level scaling is achieved

T ≈ t (s(g0 − gc), s(g1 − gc), ..., s(gP−1 − gc)) (4.5)

with
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s(x) =
{
1, x ≥ 0

0, x < 0
(4.6)

By assigning the factor 2p for each sign s(gp − gc) it can be obtained a unique
LBPP,R value. The possible results are 2p different binary patterns:

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p (4.7)

Rotation invariance, namely, to assign a unique identifier to each rotation invariant
local binary pattern, is achieved as

LBPri
P,R = min{ROR(LBPP,R,i ) | i = 0, 1, ..., P − 1} (4.8)

where ROR(x, i) is a function that rotates the neighbor set clockwise thus many
times that a maximal number of the most significant bits, starting from gP−1, is 0. A
measure of uniformity is the number U of spatial transitions (bitwise 0/1 changes)
in the neighborhood pixels sequence. Patterns are defined “uniform” if they have a
U value of two at most and the following operator is used:

LBPriu2
P,R =

{∑P−1
p=0 s(gp − gc) i f U (LBPP,R) ≤ 2

P + 1 otherwise
(4.9)

were

U (LBPP,R) = |s(gP−1 − gc) − s(g0 − gc)| +
P−1∑
p=1

|s(gp − gc) − s(gp−1 − gc)|
(4.10)

The 2p original values obtained with the LBPP,R are P + 2 in the LBPriu2
P,R .

These values, extracted for each pixel of the image, are inserted in a histogram that
is used as a feature vector.

The experiments were performed using the rotation invariant version with three
different (P, R) values combination: (8, 1), (16, 2) and (24, 3). The three obtained
histograms were then united in a single feature vector of 10 + 18 + 26 = 54 values.

After Nikam and Agarwal published their work [25] the capabilities of the LBP
method to capture the different characteristics of live and spoof fingerprints became
evident. These capabilities are due to the fact that many different primitive textures
are detected by the LBP (Fig. 4.3). The final histogram points out the number textures
as spots, line ends, edges, corners, and so on. This ability to filter the image and extract
similar primitives is common to textural algorithms. For this reason, from that point
on, other textural algorithms started being introduced in the FPAD field.
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Fig. 4.3 Different texture primitives detected by the LBP [40]

A rotation invariant extension of the local phase quantization (LPQ) [41] was
proposed by Ghiani et al. [42]. This blur insensitive texture classification technique
relies on working at low-frequency values in the frequency domain. For every pixel
of the image, the local spectra is computed using a short-term Fourier transform
(STFT) in the local neighborhood and four low-frequency components are extracted.
Presumably, the key to the capacity of this method for distinguishing a live finger
from a spoof one is its blur invariance. Despite the fact that the results achieved were
already competitive with the state of the art, they were further improved by using a
feature level merge with the LBP.

Another approach related to the Weber local descriptor (WLD) [43] was used by
Gragnaniello et al. [44]. This method is based on the differential excitation and the
orientation. It relies on the original intensity of certain stimuli such as lighting, more
than only on their change. Best results were achieved by combining LPQ and WLD
methods.

In 2013, Ghiani et al. [45] proposed to use the binarized statistical image features
(BSIF) [46]. It consists of a local image descriptor built through the binarization of
the responses to linear filters. However, as opposed to other binary descriptors, these
filters are learned using natural images by means of independent component analysis
(ICA) method. The local fingerprint texture is then very effectively encoded into a
feature vector by a quantization-based representation.

Jia et al. [47] introduced an innovative fingerprint vitality detection approach
which lies on multi-scale block local ternary patterns (MBLTP). The local ternary
patterns (LTP) are an LBP extension. Instead of the two values, 0 and 1 in Eq. 4.6, a
constant threshold t is used to obtain three possible values:

s(x) =

⎧⎪⎨
⎪⎩

1, x ≥ t

0, |x | < t

−1, x ≤ t

(4.11)

The computation focuses on the average value of pixel blocks rather than on a
single pixel. In order to reflect the differences between a selected threshold and the
pixels, the ternary pattern is established.

In a subsequent work, another fake fingerprint detection method was presented
by Jia et al. [48] which lies on using two different types of multi-scale local binary
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pattern (MSLBP). On the one hand, with the first type, the authors just increased the
radius of the LBP operator. On the other hand, with the second MSLBP type, they
first applied a set of filters to the image, and finally, they applied the LBP operator
in the fixed radius. Many of the fake fingerprint detection methods were overtaken
by both MSLBP types by properly selecting scales.

4.3 The Interoperability Problem in FPAD Systems

In the previous section, we reviewed the state of the art of FPAD. While the first
algorithms used features based on fingerprint physical processes (perspiration, pores
detector), lately the extracted features are usually of textural type. One of the first tex-
tural feature extractors was the LBP that paved the way to new approaches. Basically,
an image is decomposed into a series of fundamental patterns as shown in Fig. 4.3.
The frequencies of these patterns compose our histogram, that is, the feature vector.
The patterns are identified using the principle of locality of a central pixel. In other
words, a pixel is classified in a pattern based on the closest pixels around it. Thus,
a textural algorithm works through a statistic of image pixels. The features extrac-
tion depends on how the scanner codified the fingerprint ridges and valleys in the
image. The image coding depends on the hardware and software differences among
scanners.

Someworks already raised the FPAD interoperability issue, but they did not dwell
into details and the authors did not seem fully aware that it could be a general problem
in this field. As a matter of fact, to our knowledge, the works that attempted to make
a cross-database experiment noticed a drop in the performance with respect to the
use of a unique dataset, without concluding that the problem was related to the lack
of interoperability of the extracted features.

For instance, in [48], the authors conducted experiments by training the classifiers
with images acquired by a fingerprint scanner and testing with images acquired by
another one. They asserted that there are huge differences among the acquired images
from different scanners. In the next paragraph, thanks to this claim we will analyze
the differences between the images of the different sensors in order to understand
this phenomenon.

The interoperability arose even by “skipping” the feature extraction step someway.
Marasco et al. [37] avoided the problem of features extraction by adopting three dif-
ferent convolutional neural networks: CaffeNet [49], GoogLeNet [50], and Siamese
Network [51]. They used pretrained models, it is a common technique of Transfer
Learning. This technique is used when in the new task there are less patterns. These
models are further trained with the FPAD dataset. They performed the cross-dataset
experiment, that expected train with a dataset coming from a scanner and test with
a different dataset coming from another sensor. However, their experiments pointed
out that these networks are less able to adapt to the scanner changes. In the authors’
opinion, the main problem was the limited number of training images.
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CNNswere also used in [38]; in thiswork, they used pretrainedCNNsmodels. The
used CNNs are CNN-VGG [52], CNN-Alexnet [49], and CNN-Random [53], and
the authors took pretrained models using different object recognition dataset. These
models are customized with an additional training step with FPAD datasets. These
models are created for each FPAD dataset and they tested the scanner interoperability
with high error rates. Thus, these solutions were not robust to sensor change. In
order to estimate the CNNs performance, the authors used the LBP algorithm as a
comparison term. In the paper, the authors did not give a scientific explanation of
the phenomenon, but they stopped to observe it. However, the paper is not focused
on interoperability problem among scanners.

Finally, preliminary experiments reported in our previous paper [54] concurred
to include the interoperability problem in the FPAD domain. In that paper, we also
presented a possible solution which is detailed in Sect. 4.4.3.

4.3.1 The Origin of the Interoperability Problem

All methods previously reported works on the pixel intensities, with specific regard
to CNNs (the filters-based layers) and all the textural features.We do not exclude that
this problem may arise with other features (for example, perspiration-based ones),
but, for sake of clarity, we limited this chapter scope to the study on textural-based
features. Further investigations will be conducted to eventually extend the impact of
this phenomenon in a next publication.

Due to the focusing on the processing of each pixel intensity, extracted features
depend from each fingerprint scanner characteristics. Each model differs from others
in terms of both hardware and software. The principal difference in hardware is the
sensor type,which can be optical, solid state or ultrasound [55]. The different physical
phenomena codify in grayscale the valleys and ridges fingerprints. DPI (dot per inch),
scanning area or geometric accuracy are some of the image characteristics that serve
to classify the scanners. Specifically, the DPI is a key point for matcher and liveness
detector; it represents the maximum resolution between two points. Some details
such as pores are usually highlighted by high-resolution scanners, which is very
useful for FPAD. DPI is also extremely important for interdistance measurement of
minutiae regarding the identification/verification task. TheBozorthmatcher is a good
example since it onlyworks at about 500DPI [56]. The portion of captured fingerprint
is defined by the scanning area. For example, due to the small size of their scanners,
smartphones do not acquire the entire fingerprint.With the aim of highlighting ridges
and valleys, many preprocessing steps can be performed and dynamic of gray levels
changes at every step. Contrary to the performance of a presentation attack detector,
which lies on a high-frequency analysis, the fingerprint matcher or comparator lies
on the minutiae position and it is not dependent on these operations.

Figure4.4 displays the differences of geometric distortion between two optical fin-
gerprint scanners. They areGreenBitDactyScan 26 andDigital PersonaU.are.U5160
sensors, respectively, which are employed in the fourth edition of the International
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Fig. 4.4 Example of the
same fingerprint acquired
with both a GreenBit
DactyScan 26 (left) and a
Digital Persona U.are.U
5160 (right) scanner

Competition on Fingerprint Liveness Detection. The Digital Persona scanner gener-
ates a more rounded image than the GreenBit one (both images belong to the same
fingerprint of the same person).

The histogram representing the gray-level values is another particularity. In
Fig. 4.5a, we can observe the mean grayscale histogram for the GreenBit sensor,
which displays both training and test sets for LivDet2015.

With the aim of eliminating the background effect, first the center of each finger-
print image is found and then they are segmented into an ROI of 200× 200 pixel. All
four plots present a quite similar trend. Furthermore, in Fig. 4.5b we can observe on
the right side the average histogram of gray levels for all images. Some differences
can be appreciated among the four fingerprint sensors (Hi Scan, GreenBit, Digital
Persona, Crossmatch) and presumably the feature vectors which were calculated
by using methods such as textural algorithms are different as well. The different
way of representing the ridges and valleys of a fingerprint affects the frequencies of
the histogram. Thus, an image from a scanner is composed of different frequencies
of fundamental patterns with respect to another one (Fig. 4.3). Hence, there is no
interoperability among scanners and this is a huge problem.

This problem is relevant because we did not succeed in building an interoperable
system. The problem phenomenology is due to the different grayscale from different
scanners. The problem is of both economical and technological type. The economical
side is due to the time and money required in order to replicate the fingerprint. As
a matter of fact to collect a spoof dataset we need volunteers that allow us to create
a replica of their fingertips and this process takes time for each finger and each
used material. Furthermore, each created spoof fingertip has to be acquired with the
scanner. All these phases request time and money. Moreover, not all materials are
cheap. Related to the technological side we cannot change the scanner in a built
system. We cannot use a legacy system with a new scanner; thus, it requires to
build a new system. Each different scanner has different characteristics. Moreover,
a software company cannot make economies of scale about FPAD tools. In other
words, a software company cannot sell a unique FPAD software for all scanners.
Hence, it cannot reduce costs, if the tool is custom for the scanner.



84 P. Tuveri et al.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10−5

Gray level

N
or

m
al

iz
ed

 F
re

qu
en

cy

Green Bit Mean Gray Level Histogram

Train Fake
Train Live
Test Fake
Test Live

0 50 100 150 200 250
0

1

2

3

4

5 x 10−6

Gray level

N
or

m
al

iz
ed

 F
re

qu
en

cy

Mean Gray Level Histogram

GreenBit
Hi Scan
Crossmatch
Digital Persona

(a)

(b)

Fig. 4.5 Mean histogram of grayscale GreenBit for all the four subsets (a) and differences between
the mean histogram of the four LivDet 2015 datasets (b)

4.4 Domain Adaptation for the FPAD Interoperability
Problem

4.4.1 Problem Definition

The main idea is to project the feature distribution of the novel sensor into that of the
“old” sensor. This process allows to keep separate “live” and “fake” classes without
need of training a novel classifier, under the assumption of having a small set of novel
samples available. Our solution is therefore temporary until a large set of samples
from the novel device is available. In the rest of the chapter, we will use the source
term when we will refer to the old scanner, that is what we would like to change
in favor of the new sensor. In the same way, the new scanner will be called target.
This nomenclature is used when you want to use source knowledge in the target
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problem. In our case, we want to use the trained model classifier (old) of the source
scanner with the target sensor (new). Let X ∈ �N be a possible feature space, which
in our case was built using the algorithms LBP, LPQ, and BSIF, previously described.
We call XS and XT , respectively, the source and target features space. The source
and target features spaces are derived from different scanners; in other words, the
fingerprint images are collected using different scanners. Let be P(X) as themarginal
probability. We call PS(X) and PT (X) as the marginal probability of the source and
target features space. The marginal probability is the number of occurrences for each
feature. Using the LBP fundamental patterns pictured in Fig. 4.3, the PS(X) has a
different number of occurrences in terms of fundamental patterns with respect to
PT (X).

The Domain Adaptation (DA) is a subfield of the transfer learning theory, where
we may have the same features configurations for the same pattern (also called
sample, or observation), namely, XS and XT , that is, XS = XT , but differentmarginal
probabilities, that is, PS(X) �= PT (X). This may happen when the same feature
extraction steps are applied to an information coming from different acquisition
scanners. In our specific case, the same fingerprint is acquired by two different
capture devices.

InSect. 4.2.2,wewrote X (ω, θ)whereω represents “live” and “fake” classes and θ

is a scanner parameter. The parameter θ may model the different liveness fingerprint
measures among scanners. In other words, XT (ω, θT ) �= XS(ω, θS). For sake of
brevity, XT (ω, θT ) = XT and XS(ω, θS) = XS . In the next section, we will prove
through experiments that the interoperability problem is a DA problem. Moreover,
the black box in Fig. 4.2 in the Sect. 4.1 is our solution and we take advantage of
the DA theory in order to explain it. We would like the marginal probability PT (X)

to be similar to PS(X); thus, we can use the source classifier. This is the focus of
Sect. 4.4.3.

4.4.2 Experimental Evidences (PS(X) �= PT (X))

In this section, we simply show that it is not possible to use the source information
in order to classify the target features space. First of all, the ω parameter falls in the
{“live”, “ f ake”} set. In other words, we have the standard problem of FPAD.

The feature extractor (one of the textural descriptors described in Sect. 4.2.3.3)
is represented by the function fe. This function extracts a feature vector from every
image, that is, fe : I −→ �N , where N is the vector size.

Independent of the fingerprint capture device, the features space is always the
same, as a result of the function fe. Thus, we may have for one device the measure-
ment XS and for another one XT . In principle, XS = XT , but, being PS(XS) �= PT (X)

due to the capture device, this is unrealistic and lead to a completely different spread
of samples coming from different capture devices.

This is shown by experiments in this section. First, we tried to classify the target
features space using a linear SVM [57] trained with source features space. We used
the train set of each datasets to train the classifier and we test with the test set of
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Table 4.1 LivDet 2015—LBP results: The accuracies are obtained training a classifier with the
dataset in the first column and testing on the dataset in the first row. The accuracies in the main
diagonal are obtained training and testing with the same scanner. Outside of the main diagonal, the
accuracies are obtained training with a scanner and testing with a different one

Hi Scan test (%) GreenBit test (%) Digital P. test (%) Crossmatch test (%)

Hi Scan train 85.00 43.52 40.04 51.66

GreenBit train 59.96 89.28 69.36 63.13

Digital P. train 58.12 62.84 87.68 71.54

Crossmatch train 58.24 44.40 55.56 91.76

Table 4.2 LivDet 2015—LPQ results: The accuracies are obtained training a classifier with the
dataset in the first column and testing on the dataset in the first row. The accuracies in the main
diagonal are obtained training and testing with the same scanner. Outside of the main diagonal, the
accuracies are obtained training with a scanner and testing with a different one

Hi Scan test (%) GreenBit test (%) Digital P. test (%) Crossmatch test (%)

Hi Scan train 94.76 75.16 74.16 57.67

GreenBit train 60.00 94.40 86.52 81.11

Digital P. train 50.72 51.88 89.68 74.83

Crossmatch train 54.76 48.20 45.80 94.81

Table 4.3 LivDet 2015—BISF results: The accuracies are obtained training a classifier with the
dataset in the first column and testing on the dataset in the first row. The accuracies in the main
diagonal are obtained training and testing with the same scanner. Outside of the main diagonal, the
accuracies are obtained training with a scanner and testing with a different one

Hi Scan test (%) GreenBit test (%) Digital P. test (%) Crossmatch test (%)

Hi Scan train 91.08 49.32 41.36 59.36

GreenBit train 60.00 93.68 83.60 74.97

Digital P. train 53.72 51.36 91.16 76.32

Crossmatch train 47.88 45.56 51.36 94.95

each datasets. Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 report the liveness detection
accuracy and cross-accuracy among fingerprint capture devices. The value in row 3
and column 2 of Table 4.1, for example, is the liveness detection accuracy calculated
by means of the features extracted from Hi Scan images. Note that those images are
submitted to the classifier trained by using features extracted from GreenBit scanner
images. Therefore, these values imply that the distributions for features space of live
and spoof images are different for all sensors.

Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 report the accuracy of these experiments. We
can notice the good performances in the main diagonal; this is due to train and test
images that came from the same scanner. Outside the main diagonal the accuracy
varies from 32.07 to 86.52%, thus the range is too big in order to find an explanation.

Let acc(i, j) be an element of the accuracy table t , and i, j be the indices that
indicate the position in t. The index t indicates all tables from 4.1, 4.2, 4.3, 4.4, 4.5
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Table 4.4 LivDet 2011—LBP results: The accuracies are obtained training a classifier with the
dataset in the first column and testing on the dataset in the first row. The accuracies in the main
diagonal are obtained training and testing with the same scanner. Outside of the main diagonal, the
accuracies are obtained training with a scanner and testing with a different one

Biometrika test (%) Italdata test (%) Digital P. test (%) Sagem test (%)

Biometrika train 88.85 55.65 64.35 48.92

Italdata train 51.20 81.35 65.65 32.07

Digital P. train 47.65 50.55 89.40 50.59

Sagem train 51.85 48.20 49.90 91.65

Table 4.5 LivDet 2011—LPQ results: The accuracies are obtained training a classifier with the
dataset in the first column and testing on the dataset in the first row. The accuracies in the main
diagonal are obtained training and testing with the same scanner. Outside of the main diagonal the
accuracies are obtained training with a scanner and testing with a different one

Biometrika test (%) Italdata test (%) Digital P. test (%) Sagem test (%)

Biometrika train 85.20 50.00 57.75 54.27

Italdata train 55.90 86.40 59.00 53.44

Digital P. train 55.55 50.00 88.55 54.66

Sagem train 60.15 50.00 54.80 92.78

Table 4.6 LivDet 2011—BISF results: The accuracies are obtained training a classifier with the
dataset in the first column and testing on the dataset in the first row. The accuracies in the main
diagonal are obtained training and testing with the same scanner. Outside of the main diagonal, the
accuracies are obtained training with a scanner and testing with a different one

Biometrika test (%) Italdata test (%) Digital P. test (%) Sagem test (%)

Biometrika train 91.95 50.00 50.00 52.50

Italdata train 70.40 86.15 53.80 59.72

Digital P. train 50.00 49.80 95.85 50.88

Sagem train 53.05 50.00 50.00 93.76

and 4.6. Let ãcccross be the accuracy sample mean of all elements outside of the
main diagonal of the tables. The ãcccross value is about 0.56, it indicates that on
average the results of a system trained with a sensor and tested with another one are
equivalent to a random guess. Thus, it is an experimental evidence that there is no
interoperability among devices. In the same manner, let ãccmd be the sample mean
of all elements in the main diagonal of the tables. The ãccmd value is about 0.90,
since using train and test set coming from the same scanner, we are able to recognize
almost all pattern in the test set.

As a confirmation of PS(X) �= PT (X), we changed the learning task. In other
words, we did not classify the image based on “live” or “fake”, but based on the origin
of the image. Let S and T be two datasets coming from different scanners. The tex-
tural feature vectors extracted from the images are inserted in the two corresponding
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matrices DS and DT (in which each row contains a feature vector). Following the
LivDet [58] protocol, we split both datasets into train set DS,Train and test set
DS,T est such that DS = DS,Train ∪ DS,T est and DT,Train and DT,T est such that DT =
DT,Train ∪ DT,T est . Then, let us determine the set DTrain = DS,Train ∪ DT,Train and
the set DTest = DS,T est ∪ DT,T est . The aim of this experiment is to train a classifier
in order to discriminate images coming from two different scanners. Thus, we repeat
the training process by increasing the number of samples. The classifier used in this
experiment is the one called linear SVM [57]. Through this method, the scanners
classes are separated by a decision hyperplane. Based on the state-of-the-art features
for fingerprint attack detection, results related to LBP [25], LPQ [42] and BSIF [45]
histograms are reported in this experiment.

Figures4.6 and 4.7 plot the mean accuracy rate for all pair combinations of scan-
ners when the number of training pattern is increased. The performance grows up in
consonance with the number of patterns as it was expected. However, even with a
few samples, the accuracy reaches values higher than 85%. Consequently, it suffices
just a few patterns to identify the capture device. This fact proves that the set of
feature vectors obtained from different sensors are almost completely separable as
well as the distributions of those feature vectors. Therefore, we proved that from
two different scanners, we have the same feature space but a different location of ω

based on the θ as stated in Sect. 4.2.2. Hence PS(X) �= PT (X). If S and T are our
source and target datasets, we would like to classify the target feature vectors using
the source information. If we were able to move the target “live” and “fake” features
distribution over the corresponding source “live” and “fake” feature distribution we
could easily use a classifier trained with the source features on the moved target
features.

4.4.3 Proposed Method

In the previous sections, we assert that the features space depends on the class ω

(“live” or “fake”) and the parameter θ . It is the cause of the noninteroperability
between capture devices. Using the DA theory, we assert through the experimental
evidences that XS = XT but PS(X) �= PT (X). We would like to transform the dis-
tribution PT in order to be similar to PS , this is the section focus. We do not use the
PT and PS probabilities, instead the observations of these, that we called DS and
DT . Let DS and DT ∈ �MxN with M ≥ N be the matrices containing the feature
vectors (one for each row) that represents the patterns extracted from images of two
different scanners. Similarly, we can associate the YS and YT binary labels.

We assume the existence of a matrix M that allows to goes from target domain to
source one; hence, we can write

DS = DT ∗ M (4.12)
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Fig. 4.6 LivDet 2011
datasets classification
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Fig. 4.7 LivDet 2015
datasets classification
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Fig. 4.8 Geometric interpretation of our solution, the span DS is represented by a straight line. We
represent two solutions m1 and m2 of the M matrix, with respective errors. The projection of xt,i
on mi is ei , and ei is orthogonal to Dsz. The smallest segment that passes for a point and intersects
a straight line is orthogonal to the latter

Moreover, we hypothesize DT is invertible thus it is full rank. We can rewrite Eq.
4.12:

M = D−1
T DS (4.13)

Given a generic column vector of M that we called mi , and a generic column vector
of DS called xS,i we can rewrite

DTmi = xS,i ⇒ mi = D−1
T xS,i (4.14)

The solution is not unique because we have M ≥ N ; hence, we have more equations
than variables. In order to resolve the equation, we introduce the error, also called
residue.

ei = xS,i − DTmi (4.15)

If ei = 0 we have an exact solution, instead if ei ∼ 0 we have a least square (approx-
imation) solution. Given the gradient of norm ei we can write

∇m‖ei‖2 = DT
T DTmi − DT

T xS,i = 0 (4.16)

Hence, a generic vector of M is mi = (DT
T DT )−1DT

T xS,i . So we can write mi as the
xS,i projection in XT space and we can state that vector ei is orthogonal to XT .

As can be seen from Fig. 4.8 XT z is a straight line from multiplying the matrix
for all possible values of the feature space z. The minimum distance between xS,i

and XT z is ei , that is orthogonal to XT z by definition. We can also say that the error
being small is never null and differs for each M vector. We divide DS(DT ) in two set
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Fig. 4.9 Example of how the algorithm works. We can see how the proposed method changes the
features distribution and how the DT,T est is transformed in PseudoDS,T est . The distribution “live”
and “fake” of DT,T est are roto-translated in order to be comparable to the distributions of DS,Train

trains and test using the LivDet protocol [58], andwe have DT = {DT,train ∪ DT,test }
(DS = {DS,train ∪ DS,test }). By using this method we are able to move every feature
vector of DS toward the feature vectors in DT by taking into account that we must
maintain the distinction between live and spoof fingerprints. Thus, we want the live
features in DS moving to the live features in DT and the same for the spoof features.
In order to understand how the algorithm changes the features space, we can see
Fig. 4.9. We generate two synthetic dataset DT and DS . Each dataset is composed
of two Gaussian distributions, one in order to simulate the “live” samples and one
for “fake” patterns and being both datasets are divided in train and test. We can
notice that the two trains (DT,Train and DS,Train) are almost orthogonal. The two
distributions (“live” and “fake”) have different shapes in the same space but when
the DT,Test is transformed in the PseudoDS,T est its “live” and “fake” distributions
become similar to those of DS . Hence, we have a roto-translation from DT to DS in
order to have an almost complete overlapping of the feature spaces extracted from
the two datasets. As we can see in Fig. 4.9, the patterns locations of DT,T est and
PseudoDS,T est are different. This leads to introducing a new marginal probability
P ′
T that can be estimated using the PseudoDS,T est observations. We can affirm with

this method that we try to obtain PS(X) � P ′
T (X).

Let us imagine a hypothetical scenario where we have a large dataset of images
collected with a source scanner. We already trained a classifier with it and now we
want to move to a newer target scanner, and potentially we will need to capture a
whole new set of images. If the number of images captured with the novel scanner is
limited could we benefit from the source classifier by transferring the observations
in DT to be similar to the observations in DS? Would we need live fingerprints
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only, or spoof samples would be also required? Which is the minimum amount of
observations so that we obtain significant results?

4.5 Experiments

In order to answer the questions at the end of the previous section, we performed
several experiments through the analysis of the LivDet 2011 [6] and LivDet 2015
[7] datasets. Three different textural algorithms have been used in order to extract
the features: LBP [25], LPQ [42] and BSIF [45].

In the first experiment, all possible pair combinations of LivDet 2011 and of
LivDet 2015 datasets are used. Given DS,Train and DT,Train matrices coming from
each couple of datasets DS and DT , the transformation matrix M is calculated. This
permits us to move the target features toward the source ones. Once having both M
and DT,T est matrices, moving the latter toward the source features is quite an easy
task. Thus, we compute PseudoDS,T est :

PseudoDS,T est = DT,Test × M (4.17)

The obtained results are presented in Tables 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12,
in terms of accuracy. In the diagonal, since DS and DT represent the same dataset,
the accuracies values are calculated through the classical procedure and making no
transformations: a classifier is trained using DS,Train and, thanks to it, the feature
vectors in DS,T est are classified. Instead, for non-diagonal values, we first trained
the classifier with DS,Train and then we calculate the PseudoDS,T est by Eq. 4.17, so
that we can finally classify the feature vectors in it.

Let compare each diagonal value with the other values in the same column. As
may be observed, even though almost every accuracy is lower, the values obtained
through the transformation of DT,Test into PseudoDS,T est (same column outside
the diagonal) are similar compared to those calculated by using the original DS,T est

dataset (corresponding diagonal value). Therefore, by using this transformation of

Table 4.7 LivDet 2015—LBP results: The accuracies are obtained by training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using both live and fake samples. Using the least square, the trained classifier has about
same accuracies testing both with the same scanner and with a different scanner

Hi Scan
Pseudo-test (%)

GreenBit
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Crossmatch
Pseudo-test (%)

Hi Scan train 85.00 87.20 88.12 87.79

GreenBit train 85.80 89.28 87.68 89.96

Digital P. train 85.76 91.80 87.68 89.52

Crossmatch train 80.44 90.16 84.52 91.76
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Table 4.8 LivDet 2015—LPQ results: The accuracies are obtained by training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using both live and fake samples. Using the least square, the trained classifier has about
same accuracies testing both with the same scanner and with a different scanner

Hi Scan
Pseudo-test (%)

GreenBit
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Crossmatch
Pseudo-test (%)

Hi Scan train 94.76 90.68 86.52 86.94

GreenBit train 91.76 94.40 89.12 89.52

Digital P. train 89.60 93.92 89.68 89.96

Crossmatch train 86.88 88.96 82.28 94.81

Table 4.9 LivDet 2015—BSIF results: The accuracies are obtained by training a classifier with
the datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using both live and fake samples. Using the least square, the trained classifier has about
same accuracies testing both with the same scanner and with a different scanner

Hi Scan
Pseudo-test (%)

GreenBit
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Crossmatch
Pseudo-test (%)

Hi Scan train 91.08 93.04 88.56 89.01

GreenBit train 86.60 93.68 86.88 88.57

Digital P. train 88.72 93.64 91.16 89.25

Crossmatch train 84.04 91.32 81.96 94.95

Table 4.10 LivDet 2011—LBP results: The accuracies are obtained by training a classifier with
the datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using both live and fake samples. Using the least square, the trained classifier has about
same accuracies testing both with the same scanner and with a different scanner

Biometrika
Pseudo-test (%)

Italdata
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Sagem
Pseudo-test (%)

Biometrika train 88.85 80.10 84.15 86.25

Italdata train 86.50 81.35 85.60 88.80

Digital P. train 86.55 79.65 89.40 85.07

Sagem train 83.90 77.15 89.35 91.65

the feature space from one scanner to another, we reduce the impact of moving
between two fingerprint devices.

4.5.1 Transformation Using Only Live Samples

In the previous experimental environment, both “live” and “fake” feature vectors
are used when calculating the transformation matrix. Unfortunately, acquiring new
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Table 4.11 LivDet 2011—LPQ results: The accuracies are obtained by training a classifier with
the datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using both live and fake samples. Using the least square, the trained classifier has about
same accuracies testing both with the same scanner and with a different scanner

Biometrika
Pseudo-test (%)

Italdata
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Sagem
Pseudo-test (%)

Biometrika train 85.20 77.65 81.50 88.02

Italdata train 86.45 86.40 81.30 90.52

Digital P. train 79.30 71.20 88.50 87.13

Sagem train 83.70 76.70 84.55 92.78

Table 4.12 LivDet 2011—BSIF results: The accuracies are obtained by training a classifier with
the datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using both live and fake samples. Using the least square, the trained classifier has about
same accuracies testing both with the same scanner and with a different scanner

Biometrika
Pseudo-test (%)

Italdata
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Sagem
Pseudo-test (%)

Biometrika train 90.20 77.40 89.85 86.69

Italdata train 87.10 78.70 89.10 84.09

Digital P. train 88.55 74.75 91.15 83.64

Sagem train 88.55 77.80 89.55 89.59

spoofs is usually not as easy and fast as collecting live samples. For this reason, the
subsequent experiments have been attempted by using only live samples in order to
calculate the transformation matrix.

Regrettably, the values obtained in Tables 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18
show much worse results. This occurs due to the fact that we deliberately avoided
using spoof samples; thus, we reduced the available information for the transfor-
mation process. This issue clarifies that it is impossible avoiding this information to
design the domain adaptation function. It also indirectly evidences the ability of textu-
ral algorithms for extracting features from live and fake fingerprints. As an example,
most of the artificial fingerprints were misclassified as live within the experiments.

In order to explain the results, we try to reason using Bayesian theory. Our algo-
rithm estimates the PS(X) (PT (X)) through the observations of DS (DT ). Further-
more, we introduced P ′

T that is the marginal probability estimated using PseudoDS .
And we can write PS(X) � P ′

T (X).
If we expand PS(X) and P ′

T (X) we can write

PS(X) =
∑

ω

PS(X |ω)P(ω) �
∑

ω

P ′
T (X |ω)P(ω) = P ′

T (X) (4.18)
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Table 4.13 LivDet 2015—LBP results: The accuracies are obtained training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using only live samples. The information derived from only live samples are not enough
in order to reach the interoperability among scanners

Hi Scan
Pseudo-test (%)

GreenBit
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Crossmatch
Pseudo-test (%)

Hi Scan train 85.00 55.76 42.20 58.75

GreenBit train 40.96 89.28 40.80 56.11

Digital P. train 44.36 47.56 87.68 54.92

Crossmatch train 40.32 41.32 39.76 91.76

Table 4.14 LivDet 2015—LPQ results: The accuracies are obtained training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using only live samples. The information derived from only live samples are not enough
in order to reach the interoperability among scanners

Hi Scan
Pseudo-test (%)

GreenBit
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Crossmatch
Pseudo-test (%)

Hi Scan train 94.76 45.96 45.56 53.43

GreenBit train 48.08 94.40 54.76 50.54

Digital P. train 51.36 46.44 89.68 52.75

Crossmatch train 39.68 39.04 39.24 94.81

Table 4.15 LivDet 2015—BSIF results: The accuracies are obtained training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using only live samples. The information derived from only live samples are not enough
in order to reach the interoperability among scanners

Hi Scan
Pseudo-test (%)

GreenBit
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Crossmatch
Pseudo-test (%)

Hi Scan train 91.08 42.20 42.56 53.56

GreenBit train 40.20 93.68 47.80 51.70

Digital P. train 42.72 54.72 91.16 59.77

Crossmatch train 39.36 42.12 39.88 94.95

where ω is the class “live” or “fake”. Under the hypothesis that the two P(ω) are
equal, we can rewrite Eq. 4.18:

PS(X) ∝
∑

ω

PS(X |ω) �
∑

ω

P ′
T (X |ω) ∝ P ′

T (X) (4.19)

In this experiment, we try tomatch the two quantities PS(X |“live”) � P ′
T (X |“live”),

but we do not verify PS(X |“ f ake”) � P ′
T (X |“live”or“ f ake”). We do not know

where the target “fake” distribution is with respect to the source one. In other words,
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Table 4.16 LivDet 2011—LBP results: The accuracies are obtained training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using only live samples. The information derived from only live samples are not enough
in order to reach the interoperability among scanners

Biometrika
Pseudo-test (%)

Italdata
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Sagem
Pseudo-test (%)

Biometrika train 88.85 57.75 50.00 49.41

Italdata train 72.30 81.35 50.00 50.88

Digital train 49.95 50.00 89.40 49.17

Sagem train 50.00 50.00 50.00 91.65

Table 4.17 LivDet 2011—LPQ results: The accuracies are obtained training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using only live samples. The information derived from only live samples are not enough
in order to reach the interoperability among scanners

Biometrika
Pseudo-test (%)

Italdata
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Sagem
Pseudo-test (%)

Biometrika train 85.20 52.45 49.75 57.32

Italdata train 56.25 86.40 51.95 52.75

Digital P. train 49.90 49.50 88.50 50.10

Sagem train 50.50 49.90 51.05 92.78

Table 4.18 LivDet 2011—BSIF results: The accuracies are obtained training a classifier with the
datasets in the first column and testing on the datasets in the first row where the Pseudo-tests are
calculated using only live samples. The information derived from only live samples are not enough
in order to reach the interoperability among scanners

Biometrika
Pseudo-test (%)

Italdata
Pseudo-test (%)

Digital P.
Pseudo-test (%)

Sagem
Pseudo-test (%)

Biometrika train 90.20 58.30 50.25 50.25

Italdata train 62.90 78.70 50.75 49.95

Digital P. train 50.85 50.55 91.15 49.51

Sagem train 49.80 49.95 50.45 89.59

using Eq. 4.15 we do not calculate ei for the “fake” observations, thus we do not
move this pattern in the correct hyperplane part.

4.5.2 Number of Feature Vectors

The transformation matrices in the previous subsections were calculated by using
all the feature vectors extracted from the train parts of the LivDet 2011 and 2015
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datasets [58], which were approximately 2000 images (1000 lives and 1000 fakes)
or more. Live and fakes were used in Tables 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 and
just lives in Table 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18. Since we wanted to simulate
a scenario with a limited number of acquisitions, we randomly selected a subset of
feature vectors when replicating the experiments. Those subsets had an equal number
of live and fake samples. Thus, from the DT,Train and DS,Train matrices we extracted
both SubSet DT,Train and SubSet DS,Train subsets and then we calculated the new
M matrix, such that

PseudoSubSet DS,T est = SubSet DT,T est × M (4.20)

Tables 4.19, 4.20, 4.21, 4.22, 4.23 and 4.24 present the experiments where trans-
formation matrices were calculated by using subsets containing, respectively, the 20,
40, 60, and 80% of the feature vectors coming from the original train sets.

Reported results show that the bigger is the train percentage, the higher the correct
classification rate. However, in the majority of the cases, a subsetting of 40% from
the original train set appears to be enough in order to obtain significant results.
Consequently, the performance loss is not very significant, and ours can be considered
a temporary solution until a proper new dataset of live and fakes has been collected.

Worth noting, the projected features vectors are such that (1) the classification
boundary can be held, (2) eventual additional features captured by the novel sensor
are also embedded and this could explain the unexpected performance improvement
when moving from a “low” performance device to a better one. This appears as true
even by a transformation matrix computed on a small set of samples (Tables4.19,
4.20, 4.21, 4.22, 4.23 and 4.24). As written previously, we estimate PS(X) and
PT (X) through their respective observations; thus, the number of patterns influences
the performances. The estimate of marginal probabilities becomes more and more
accurate according to the number of observations.

4.6 Conclusions

In this chapter, we presented an analysis of the interoperability level among different
sensors related to the fingerprint presentation attacks detection scope. The existence
of this problem, previously pointed out in several scientific works, was further con-
firmed.We have proven the existence of this problem as well as we stated that there is
no trivial solution for it. As a matter of fact, the unique characteristics of each sensor
drastically influence the image properties and their corresponding feature space. By
the use of textural algorithms, we have proven that there exists a strong “sensor-
specific” effect within those features, which results on the related images having a
nonoverlapping localization in different regions of the features space itself.

Given this scenario, we proposed a solution based on domain adaptation. Our
proposal consists in the shift of sensor-specific feature distributions based on the least
squared algorithm. It made possible to reach a significant level of interoperability
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amongfingerprint capture devices. Unfortunately, in order to be effective, the training
phase required both live and spoof samples. A transformation based on features
extracted only from live images resulted in a substantial drop in performance. Lastly,
we reduce the number of feature vectors used in order to calculate the transformation
matrix. Experiments proved that, in the majority of the cases, even a 40% of the
original train set appears to be enough to obtain a significant performance.

Further improvements are still needed regarding the performance as well as to
reduce the required number of feature vectors in order to calculate the transformation
matrix. In particular, being able to calculate the domain transformation equation
by only using live samples would be a huge improvement. It would reduce efforts
with respect to the fingerprint acquisition, thus contributing to develop an efficient
algorithm for interoperability among fingerprint liveness detection devices.
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Chapter 5
Review of Fingerprint Presentation
Attack Detection Competitions

David Yambay, Luca Ghiani, Gian Luca Marcialis, Fabio Roli
and Stephanie Schuckers

Abstract A spoof or artifact is a counterfeit biometric that is used in an attempt
to circumvent a biometric sensor. Presentation attacks using an artifact have proven
to still be effective against fingerprint recognition systems. Liveness detection aims
to distinguish between live and fake biometric traits. Liveness detection is based on
the principle that additional information can be garnered above and beyond the data
procured by a standard authentication system, and this additional data can be used to
determine if a biometric measure is authentic. The Fingerprint Liveness Detection
Competition (LivDet) goal is to compare both software-based and hardware-based
fingerprint liveness detectionmethodologies. The competition is open to all academic
and industrial institutions. The number of competitors grows at every LivDet edition
demonstrating a growing interest in the area.

5.1 Introduction

Among biometrics, fingerprints are probably the best known andwidespread because
of the its properties: universality, durability, and individuality. Unfortunately as intro-
duced earlier, fingerprint systems have still been shown to be vulnerable to presenta-
tion attacks. Numerous competitions have been held in the past to address matching
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in biometrics, such as the Fingerprint Verification Competition held in 2000, 2002,
2004, and 2006 [1] and the ICB Competition on Iris Recognition (ICIR2013) [2].
However, these competitions did not consider presentation attacks.

Since 2009, in order to assess the main achievements of the state of the art in
fingerprint liveness detection, University of Cagliari and Clarkson University orga-
nized the first Fingerprint Liveness Detection Competition.

TheFirst International Fingerprint LivenessDetectionCompetition (LivDet) 2009
[3] provided an initial assessment of software systems based on the fingerprint image
only. The second, third, and fourth Liveness Detection Competitions (LivDet 2011
[4], 2013 [5] and 2015 [6]) were created in order to ascertain the progressing state
of the art in liveness detection and also included integrated system testing.

This chapter reviews the previous LivDet competitions and the evolution of the
competitions over the years. The following sectionswill describe themethods used in
testing for each of the LivDet competitions as well as descriptions of the datasets that
have been generated from each competition. Also discussed are the trends across the
different competitions that reflect changes to the art of presentation attacks as well as
advances in the state of the art in presentation attack detection. Further, conclusions
from previous LivDet competitions and the future of LivDet are discussed.

5.2 Background

The Liveness Detection Competition series started in 2009 and created a bench-
mark for measuring liveness detection algorithms, similar to matching performance,
through the use of open competitions and publically released datasets for future test-
ing of presentation attack detection systems. At that time, there had been no other
public competitions held that have examined the concept of liveness detection as
part of a biometric modality in deterring spoof attacks. In order to understand the
motivation of organizing such a competition, we observed that the first trials to face
with this topic were often carried out with home-made datasets that were not publicly
available, the experimental protocols were not unique, and the same reported results
were obtained on very small datasets. We pointed out these issues in [7].

Therefore, the basic goal of LivDet has been, since its birth, to allow researchers
testing their own algorithms and systems on publicly available datasets, obtained
and collected with the most updated techniques to replicate fingerprints enabled by
the experience of Clarkson and Cagliari laboratories, both active on this problem
since 2000 and 2003, respectively. At the same time, using a “competition” instead
of simply releasing datasets could be an assurance of a free-of-charge, third-party
testing using a sequestered test set. (Clarkson and Cagliari have never took part in
LivDet as competitors due to conflict of interest.)

LivDet 2009 provided results which demonstrated the state of the art at that time
[3] for fingerprint systems. LivDet continued in 2011, 2013, and 2015 [4–6] and
contained two parts: evaluation of software-based systems in Part 1: Algorithms,
and evaluation of integrated systems in Part 2: Systems.



5 Review of Fingerprint Presentation Attack Detection Competitions 111

Table 5.1 Number of LivDet
citations on Google Scholar

Citations

LivDet 2009 119

LivDet 2011 84

LivDet 2013 62

LivDet 2015 13

Since 2009, the evaluation of spoof detection for facial systems was performed
in the Competition on Counter Measures to 2-D Facial Spoofing Attacks, first held
in 2011 and then held a second time in 2013. The purpose of this competition is
to address different methods of detection for 2-D facial spoofing [8]. A subset was
released for training and then another subset of the dataset was used for testing
purposes.

During these years, many works cited the publications related to the first three
LivDet competitions, 2009 [3], 2011 [4] and 2013 [5]. A quick Google Scholar
research produced 119 results for 2009, 84 for 2011, 62 for 2013, and 13 for 2015.
These values are shown in Table5.1. In Tables5.2, 5.3, 5.4, and 5.5, a partial list of
these publications is presented.

5.3 Methods and Datasets

Each LivDet competition is composed of two distinct parts: Part 1: Algorithmswhich
feature strictly software-based approaches to presentation attack detection, and Part
2: Systems which feature software or hardware-based approaches in a fully pack-
aged device. The protocols of each are described further in this section along with
descriptions of each dataset created through this competition.

Table 5.2 Publications that cite the LivDet 2009 paper

Authors Algorithm type Performance (average
classification error) (%)

J. Galbally et al. [9] Quality related features 6.6

E. Marasco and C. Sansone [10] Perspiration and
morphology-based static
features

12.5

J. Galbally et al. [11] Image quality assessment 8.2

E. Marasco and C. Sansone [12] Multiple textural features 12.5

L. Ghiani et al. [13] Comparison of algorithms N.A.

D.Gragnaniello et al. [14] Wavelet-Markov local 2.8

R. Nogueira et al. [15] Convolutional networks 3.9

Y. Jiang and L. Xin [16] Co-occurrence matrix 6.8
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Table 5.3 Publications that cite the LivDet 2011 paper

Authors Algorithm type Performance (average
classification error) (%)

L. Ghiani et al. [13] Comparison of algorithms N.A.

X. Jia et al. [17] Multi-scale local binary
pattern

7.5 and 8.9

D. Gragnaniello et al. [18] Local contrast phase
descriptor

5.7

N. Poh et al. [19] Likelihood ratio
computation

N.A.

A.F. Sequeira and J.S. Cardoso [20] Modeling the live samples
distribution

N.A.

L. Ghiani et al. Binarized statistical image
features

7.2

X. Jia et al. [21] Multi-scale local ternary
patterns

9.8

G.L. Marcialis et al. [21] Comparison of algorithms N.A.

R. Nogueira et al. [15] Convolutional networks 6.5

Y. Zhang et al. [22] Wavelet analysis and local
binary pattern

12.5

A. Rattani et al. [23] Textural algorithms N.A.

P. Johnson and S. Schuckers [24] Pore characteristics 12.0

X. Jia et al. [25] One-class SVM N.A.

Y. Jiang and L. Xin [16] Co-occurrence matrix 11.0

Table 5.4 Publications that cite the LivDet 2013 paper

Authors Algorithm type Performance (average
classification error) (%)

C. Gottschlich et al. [26] Histograms of invariant
gradients

6.7

R. Nogueira et al. [15] Convolutional networks 3.6

Y. Zhang et al. [22] Wavelet analysis and local
binary pattern

2.1

P. Johnson and S. Schuckers [24] Pore characteristics N.A.

Table 5.5 Publications that cite the LivDet 2015 paper

Authors Algorithm type Performance (average
classification error) (%)

T. Chugh et al. [27] CNN-Inception v3 +
Minutiae-based local patches

1.4
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5.3.1 Performance Evaluation

The parameters adopted for the performance evaluation are the following:

• FerrLive: Rate of misclassified live fingerprints.
• FerrFake: Rate of misclassified fake fingerprints.
• Average Classification Error (ACE): ACE = ( Ferr Live+Ferr Fake

2 ).
• Equal Error Rate (EER): Rate at which FerrLive and FerrFake are equal.
• Accuracy: Rate of correctly classified live and fake fingerprints at a 0.5 threshold.

Original terminology is presented although the nomenclature for error rates has
been changed in recent competitions to reflect the current standards. FerrLive is
equivalent to the Bona Fide Presentation Classification Error Rate (BPCER). Fer-
rFake is equivalent to the Attack Presentation Classification Error Rate (APCER).
Each of the algorithms returned a value representing a percentage of posterior prob-
ability of the live class (or a degree of “liveness”), given the image normalized in the
range 0–100 (100 is the maximum degree of liveness and 0 means that the image is
fake). The threshold value for determining liveness was set at 50. This threshold is
used to calculate Attack Presentation Classification Error Rate (APCER) and Bona
Fide Presentation Classification Error Rate (BPCER) error estimators. Being able to
see a range of values for a system is beneficial for understanding how the system
is performing against different types of data, however, each competitor will have a
different method of determining whether an image is live or spoof. A standardized
method was created with which all competitors would have to normalize their out-
puts to fit. This 0–100 range and a threshold of 50 are arbitrary values provided to
competitors but they provide a common range for all competitors to normalize their
scores within. The competitors choose how they wish to adjust their system to work
within the confines of the competition.

To select a winner, the average of APCER and BPCER was calculated for each
participant across datasets and the competitor with the lowest average classification
error rate is declared the winner. In terms of the competition, both APCER and
BPCER are considered equal cost for failure to keep a balance between systems used
for convenience and systems used for high security.

5.3.2 Part 1: Algorithm Datasets

Each iteration of Part 1: Algorithms feature its own set of datasets. Each competition
features three to four different sets of fingerprint data. Individual sensors have been
used in different competitions, although new data is created for each individual
competition. Error rates are calculated for each algorithm on each dataset separately
and then the BPCER and APCER for each dataset are averaged to create an overall
BPCER and APCER. This overall is averaged to the average classification error rate
described in the previous section.
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Fig. 5.1 Examples of spoof images of the LivDet 2009 datasets. Crossmatch (top): a Playdoh, b
gelatin, c silicone; Identix (middle): d playdoh, e gelatin, f silicone; Biometrika (top): g playdoh,
h gelatin, i silicone

LivDet 2009 consisted of data from three optical sensors; Crossmatch, Identix, and
Biometrika. The fingerprint images were collected using the consensual approach
from three different spoof material types: gelatin, silicone, and playdoh, and the
numbers of images available can be found in [3]. Figure5.1 shows example images
from the datasets.

The dataset for LivDet 2011 consisted of images from four different optical
devices, Biometrika, Digital Persona, ItalData, and Sagem. The spoof materials were
gelatin, latex, ecoflex, playdoh, silicone, and wood glue. More information can be
found in [4]. Figure5.2 shows the images used in the database.
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Fig. 5.2 Examples of fake fingerprint images of the LivDet 2011 datasets, fromBiometrika a latex,
b gelatin, c silicone; from Digital Persona: d latex, e gelatin, f silicone; from Italdata: g latex h
gelatin i silicone; from Sagem: j latex k gelatin l silicone
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Fig. 5.3 Examples of fake fingerprint images of the LivDet 2013. FromCrossmatch a body double,
b latex, c wood glue, from Biometrika d gelatine, e latex, f wood glue, from Italdata g gelatine, h
latex, i wood glue, from Swipe j body double, k latex, l wood glue

The dataset for LivDet 2013 consisted of images from four different devices;
Biometrika, Crossmatch, ItalData, and Swipe. Spoofs were made from gelatin, body
double, latex, playdoh, ecoflex, modasil, and wood glue. LivDet 2013 featured the
first use of the non-cooperative method for creating spoof images and was used
for Biometrika and ItalData while Crossmatch and Swipe continued to use spoofs
generated from consensual molds. More information can be found in [5]. Figure5.3
gives example images from the databases.

The dataset for LivDet 2015 consists of images from four different optical devices;
Green Bit, Biometrika, Digital Persona, and Crossmatch. The spoof materials were
Ecoflex, gelatin, latex, wood glue, a liquid Ecoflex and RTV (a two-component
silicone rubber) for the Green Bit, the Biometrika and the Digital Persona datasets,
and playdoh, Body Double, Ecoflex, OOMOO (a silicone rubber) and a novel form
of gelatin for Crossmatch dataset. The Crossmatch dataset continued to use strictly
the consensual method for obtaining fingerprint molds. More information can be
found in [6].

5.3.3 Part 2: Systems Submissions

Data is collected on the submitted systems, however, the datasets generated from
the systems submissions are not made public. Unlike in Part 1: Algorithms where
data was pre-generated before the competition and distributed into a training and
a testing set, Part 2: Systems data comes from systematic testing of the submitted
hardware. LivDet 2011 consisted of 500 live attempts from 50 people (totaling 5
images for each of the R1 and R2 fingers) as well as 750 attempts with spoofs of
five materials (playdoh, gelatin, silicone, body double, and latex). For LivDet 2013,
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1000 live attempts were created from 50 subjects as well as 1000 spoof attempts
from 20 subjects from the materials; Playdoh, gelatin, Ecoflex, Modasil, and latex. In
2015, the systemwas tested using the three known spoof recipes that were previously
given to the competitors. Two unknown spoof recipes were also tested to examine the
flexibility of the sensor toward novel spoof methods. The known and unknown spoof
materials were kept the same from the algorithms portion of the competition. The
known recipeswere playdoh,BodyDouble, andEcoflex and the twounknown recipes
used were OOMOO and a novel form of gelatin. 2011 attempts were completed with
1010 live attempts from 51 subjects (2 images each of all 10 fingers) and 1001 spoof
attempts across the five different materials giving approximately 200 images per
spoof type. 500 spoofs were created from each of 5 fingers of 20 subjects for each
of the five spoof materials. Two attempts were performed with each spoof.

The submitted system needs to be able to output a file with the collected image as
well as a liveness score in the range of 0–100 with 100 being the maximum degree
of liveness and 50 being the threshold value to determine if an image is live or spoof.
If the system is not able to process a live subject, it is counted as a failure to enroll
and counted against the performance of the system (as part of FerrLive). However, if
the system is unable to process a spoof finger, it is considered as a fake nonresponse
and counted as a positive in terms of system effectiveness for spoof detection and is
classified as the Attack Presentation Nonresponse Rate (APNRR).

5.3.4 Image Quality

Fingerprint image quality has a powerful effect on the performance of a matcher.
Many commercial fingerprint systems contain algorithms to ensure that only higher
quality images are accepted to thematcher. This rejects low quality imageswhere low
quality images have been shown to degrade the performance of a matcher [28]. The
algorithms and systems submitted for this competition did not use a quality check to
determine what images would proceed to the liveness detection protocols. Through
taking into account the quality of the images before applying liveness detection, a
more realistic level of error can be shown.

Our methodology uses the NIST Fingerprint Image Quality (NFIQ) software
to examine the quality of all fingerprints used for the competition and examine
the effects of removing lower quality fingerprint images on the liveness detection
protocols submitted. NFIQ computes a feature vector from a quality image map
and minutiae quality statistics as an input to a multilayer perceptron neural network
classifier [28]. The quality of the fingerprint is determined from the neural network
output. The quality for each image is assigned on a scale from 1 (highest quality) to
5 (lowest quality).
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5.3.5 Specific Challenges

In the last two editions of the competition, specific challenges were introduced. Two
of the 2013 datasets, unlike all the other cases, contain spoofs that were collected
using latent fingerprints. The 2015 edition had two new components: (1) the testing
set included images from two kinds of spoof materials which were not present in the
training set in order to test the robustness of the algorithms with regard to unknown
attacks, and (2) one of the datasets was collected using a 1000 dpi sensor.

5.3.5.1 LivDet 2013 Consensual Versus Semi-consensual

In the consensual method, the subject pushed his finger into a malleable material
such as silicon gum creating a negative impression of the fingerprint as a mold. The
mold was then filled with a material, such as gelatin. The “semi-consensual method”
consisted of enhancing a latent fingermark pressed on a surface, and digitizing it
through the use of a common scanner.1 Then, through a binarization process and with
an appropriate threshold choice, the binarized image of the fingerprint was obtained.
The thinning stage allowed the line thickness to be reduced to one pixel obtaining
the skeleton of the fingerprint negative. This image was printed on a transparency
sheet in order to have the mold. A gelatin or silicone material was dripped over this
image, and, after solidification, separated and used as a fake fingerprint.

The consensualmethod leads to an almost perfect copy of a live finger,whosemark
on a surface is difficult to recognize as a fake unless through an expert dactyloscopist.
On the other hand, the spoof created by semi- or nonconsensual method is much less
similar. In a latent fingerprint, many details are lost and the skeletonization process
further deteriorates the spoof quality making it easier to distinguish a live from a
fake. However, in a real-world scenario, obtaining a consensual mold of a subject’s
fingers is an arduous task to achieve, however acquiring latent prints could potentially
prove easier. The spoof images in the Biometrika and Italdata 2013 datasets were
created by printing the negative image on a transparency sheet. As we will see in the
next section, the error rates, as would be expected, are lower than those of the other
datasets.

5.3.5.2 LivDet 2015 Hidden Materials and 500 Versus 1000 dpi

As already stated, the testing sets of LivDet 2015 included spoof images of materials
not present in the training sets provided to the competitors. These materials were
liquid Ecoflex and RTV for Green Bit, Biometrika, and Digital Persona datasets, as
well as OOMOO and a novel gelatin for Crossmatch dataset. Our aim was to assess
the reliability of algorithms. As a matter of fact, in a realistic scenario, the material

1Obviously all subjects were fully aware of this process, and gave the full consent to replicate their
fingerprints from their latent marks.
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used to attack a biometric system could be considered unknown as a liveness detector
should be able to deal with any kind of spoof material.

Another peculiarity of the 2015 edition was the presence of the Biometrika
HiScan-PRO, a sensor with a resolution of 1000 dpi instead of ∼500 dpi resolution
for most of the datasets used so far in the competition. It is reasonable to hypothesize
that by doubling the image resolution, the feature extraction phase and final perfor-
mance of the system should benefit. The results that we will show in the next section
do not confirm this hypothesis however.

5.4 Examination of Results

In this section, we analyze the experimental results for the four LivDet editions.
Results show the growth and improvement across the four competitions.

5.4.1 Trends of Competitors and Results for Fingerprint
Part 1: Algorithms

The number of competitors for Fingerprint Part 1: Algorithms have increased during
the last years. LivDet 2009 contained a total of 4 algorithm submissions. LivDet 2011
saw a slight decrease in competitors with only 3 organizations submitting algorithms,
however LivDet 2013 and 2015 gave rise to the largest of the competitions with
11 submitted algorithms in 2013 followed by 12 in LivDet 2015. Submissions for
each LivDet are detailed in Table5.6.

This increase of participants has shown the grown of interest in the topic, which
has been coupled with the general decrease of the error rates.

First of all, the two best algorithms for each competition, in terms of performance,
are detailed in Table5.7 based on the average error rate across the datasets where
“Minimum Average” error rates are the best results and “Second Average” are the
second best results.

There is a stark difference between the results seen from LivDet 2009 to LivDet
2015. LivDet 2009 toLivDet 2011 did not seemuch decrease in error,whereasLivDet
2013 and LivDet 2015 each decreased in error from the previous competition.

The mean values of the ACE (Average Classification Error) over all the partici-
pants calculated for each dataset confirm this trend. Mean and standard deviation are
shown in Table5.8.

The standard deviation values range between 5 and 18% depending on the dataset
and competition editions.MeanACE values confirm the error increase in 2011 due to
the high quality of cast and fake materials. The low values in 2013 for the Biometrika
and Italdata are due, as stated before, to the use of latent fingerprints in the spoof
creation process, creating lower quality spoofs that are easier to detect. In order to
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Table 5.6 Participants for part 1: algorithms

Participants LivDet 2009 Algorithm name

Dermalog Identification Systems GmbH Dermalog

Universidad Autonoma de Madrid ATVS

Anonymous Anonymous

Anonymous2 Anonymous2

Participants LivDet 2011 Algorithm name

Dermalog Identification Systems GmbH Dermalog

University of Naples Federico II Federico

Chinese Academy of Sciences CASIA

Participants LivDet 2013 Algorithm name

Dermalog Identification Systems GmbH Dermalog

Universidad Autonoma de Madrid ATVS

HangZhou JLW Technology Co Ltd HZ-JLW

Federal University of Pernambuco Itautec

Chinese Academy of Sciences CAoS

University of Naples Federico II (algorithm 1) UniNap1

University of Naples Federico II (algorithm 2) UniNap2

University of Naples Federico II (algorithm 3) UniNap3

First Anonymous Participant Anonym1

Second Anonymous Participant Anonym2

Third Anonymous Participant Anonym3

Participants LivDet 2015 Algorithm name

Instituto de Biociencias, Letras e Ciencias
Exatas

COPILHA

Institute for Infocomm Research (I2R) CSI

Institute for Infocomm Research (I2R) CSI_MM

Dermalog Hbirkholz

Universidade Federal de Pernambuco Hectorn

Anonymous Participant Anonym

Hangzhou Jinglianwen Technology Co., Ltd Jinglian

Universidade Federal Rural de Pernambuco UFPE I

Universidade Federal Rural de Pernambuco UFPE II

University of Naples Federico II Unina

New York University Nogueira

Zhejiang University of Technology Titanz
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Table 5.7 Two best error rates for each competition. A positive trend in terms of both FerrLive and
FerrFake parameters can be noticed. In particular, 2011 and 2015 exhibited very difficult tasks due to
the high quality of fingerprint images thus they should be taken into account as a reference of current
liveness detector performance against the “worst scenario”, that is, the high quality reproduction of
a subject’s fingerprint

Minimum Avg
FerrLive (%)

Minimum Avg
FerrFake (%)

Second Avg FerrLive
(%)

Second Avg FerrFake
(%)

2009

13.2 5.4 20.1 9.0

2011

11.8 24.8 24.5 24.8

2013

11.96 1.07 17.64 1.10

2015

5.13 2.79 6.45 4.26

Table 5.8 Mean and standard deviation ACE values for each dataset of the competition

Mean (% ) Std. Dev. (%)

2009

Identix 8.27 4.65

Crossmatch 15.59 5.60

Biometrika 32.59 9.64

2011

Biometrika 31.30 10.25

ItalData 29.50 9.42

Sagem 16.70 5.33

Digital persona 23.47 13.70

2013

Biometrika 7.32 8.80

Italdata 12.25 18.08

Swipe 16.67 15.30

2015

GreenBit 11.47 7.10

Biometrika 15.81 7.12

DigitalPersona 14.89 13.72

Crossmatch 14.65 10.28

confirm that, we compared these values with those obtained for the same sensors in
2011 (see Table5.9). Last two rows of Table5.9 report average classification error
and related standard deviation over above sets. Obviously, further and independent
experiments are needed because participants of 2011 and 2013 were different so
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Table 5.9 Comparison betweenmeanACEvalues for Biometrika and Italdata datasets fromLivDet
2011 and 2013

Consensual (LivDet 2011) (%) Semi-consensual (LivDet 2013) (%)

Biometrika 31.30 7.32

ItalData 29.50 12.25

Mean 30.40 9.78

Standard deviation 1.27 3.49

Table 5.10 Crossmatch 2013
error rates across 1000 tests

Average error rate
(%)

Standard deviation (%)

FerrLive 7.57 2.21

FerrFake 13.4 1.95

Equal error rate 9.92 1.42

that different algorithms are likely also. However, results highlight the performance
virtually achievable over two scenarios: a sort of “worst case”, namely, the one
represented by LivDet 2011, where quality of spoofs is very high, and a sort of
“realistic case” (LivDet 2013), where spoofs are created from latent marks as one
may expect. The fact that even in this case the average error is 10%,while the standard
deviation does not differ with regard to LivDet 2011, should not be underestimated.
The improvement could be likely due to the different ways of creating the fakes.

The abnormally high values for the LivDet 2013 Crossmatch dataset occurred due
to an occurrence in the live data. The Live images were difficult for the algorithms
to recognize. All data was collected in the same time frame and data in training and
testing sets was determined randomly among the data collected. A follow-up test
was conducted using benchmark algorithms at University of Cagliari and Clarkson
University which revealed similar scores on the benchmark algorithms as the sub-
mitted algorithms with initial results had an EER of 41.28%. The data was further
tested with 1000 iterations of train/test dataset generation using a random selection
of images for the live training and test sets (with no common subjects between the
sets which is a requirement for all LivDet competitions). This provided new error
rates shown (see Table5.10 and Figs. 5.4 and 5.5).

Examining these results allows us to draw the conclusion that the original selection
of subjects was an anomaly that caused improper error rates because each other
iteration, even only changing a single subject, dropped FerrLive error rates to 15%
and below. Data is being more closely examined in future LivDet competitions in
order to counteract this problemwith data being processed on a benchmark algorithm
before being given to participants. The solution to this for the LivDet 2013 data going
forward is to rearrange the training and test sets for future studies using this data.
Researchers will need to be clear which split of training/test they used in their study.
For this reason, we removed from the experimental results of those obtained with
the Crossmatch 2013 dataset.
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Fig. 5.4 FerrLive Rates
across 1000 tests for
Crossmatch 2013

Fig. 5.5 FerrFake Rates
across 1000 tests for
Crossmatch 2013

LivDet 2015 error rates confirm a decreasing trendwith respect to attacksmade up
of high quality spoofs, with all the mean values between 11 and 16%. These results
are summarized in Fig. 5.6.

Reported error rates suggest a slow but steady advancement in the art of liveness
and artifact detection. This gives supporting evidence that the technology is evolving
and learning to adapt and overcome the presented challenges.

Comparing the performance of theLivDet 2015datasets (as shown inTable5.8 and
inmore details in [6]), twoother important remarks can bemade: the higher resolution
for Biometrika sensor did not necessarily achieve the best classification performance,
while the small size of the images for the Digital Persona device generally degrades
the accuracy of all algorithms.
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Fig. 5.6 LivDet results over the years: near red colors for 2009, near green for 2011, near magenta
for 2013, and near blue for 2015

Table 5.11 FerrFake values of the best algorithms calculated when Ferr Live = 1% for the Cross-
match dataset

All materials (%) Known materials (%) Unknown materials (%)

Unina 7.42 2.47 14.49

Nogueira 2.66 1.94 3.69

Anonym 18.61 10.75 29.82

Average 9.56 5.05 16.00

Std. dev. 8.19 4.94 13.13

Another important indicator of an algorithm validity is the FerrFake value calcu-
lated when Ferr Live = 1%. This value represents the percentage of spoofs able to
hack into the system when the rate of legitimate users that are rejected is no more
than 1%. As a matter of fact, by varying the threshold value, different FerrFake and
FerrLive values are obtained and, as the threshold grows from 0 to 100, FerrFake
decreases and FerrLive increases. Obviously FerrLive valuemust be kept low tomin-
imize the inconvenience to authorized users but, just as important, the low FerrFake
value limits the number of unauthorized users able to enter into the system.

Results in Tables5.11, 5.12, 5.13, and 5.14 show that even the best performing
algorithm (nogueira) is not yet good enough since when Ferr Live = 1%, the Fer-
rFake values (testing on all materials) range from 2.66 to 19.10%. These are the
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Table 5.12 FerrFake values of the best algorithms calculated when Ferr Live = 1% for the digital
persona dataset

All materials (%) Known materials (%) Unknown materials (%)

Unina 51.30 50.85 52.20

Nogueira 19.10 16.00 25.30

Anonym 80.83 79.25 84.00

Average 50.41 48.70 53.83

Std. dev. 30.87 31.68 29.38

Table 5.13 FerrFake values of the best algorithms calculated when Ferr Live = 1% for the green
bit dataset

All materials (%) Known materials (%) Unknown materials (%)

Unina 41.80 36.10 53.20

Nogueira 17.90 15.15 23.40

Anonym 75.47 75.25 75.90

Average 45.06 42.17 50.83

Std. dev. 28.92 30.51 26.33

Table 5.14 FerrFake values of the best algorithms calculated when Ferr Live = 1% for the
biometrika dataset

All materials (%) Known materials (%) Unknown materials (%)

Unina 11.60 7.50 19.80

Nogueira 15.20 12.60 20.40

Anonym 48.40 44.05 57.10

Average 25.07 21.38 32.43

Std. dev. 20.29 19.79 21.36

percentage of unauthorized users that the system is unable to correctly classify. If
we consider only the unknown materials, the results are even worse, ranging from
3.69 to 25.30%.

On the basis of such results, we can say that there is no specific algorithm, among
the analyzed ones, able to generalize against never-seen-before spoofing attacks. We
observed a performance drop and also found that the amount of the drop is unpre-
dictable as it depends on the material. This should be a matter of future discussions.
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5.4.2 Trends of Competitors and Results for Fingerprint
Part 2: Systems

Fingerprint Part 2: Systems, over the course of three competitions, have not shown
growth in the number of participants. It is not unexpected as the systems’ competition
requires the submission of a fully packaged fingerprint system with presentation
attack detection module built-in. There has also been a general lack of interest in
companies shipping full systems for testing and it appears that there is more comfort
in submitting an algorithm as it only requires the submission of a software package.
Both Livdet 2011 and LivDet 2013 had two submissions while LivDet 2015 had only
one. Information about competitors is shown in Table5.15.

This portion of the LivDet competitions has distinct recognition for the rapid
decrease in error rates. In the span of 2 years, the best results from LivDet 2011
were worse than the worst results of LivDet 2013. This shows that system tests have
displayed a quicker decrease in error rates as well as the one systems submission in
2013 had lower error rates than any submitted algorithms in LivDet.

In 2011, Dermalog performed at a FerrLive of 42.5% and a FerrFake of 0.8%.
GreenBit performed at a FerrLive of 38.8% and a FerrFake of 39.47%. Both systems
had high FerrLive scores and can be seen in Table5.16.

The 2013 edition produced much better results since Dermalog performed at a
FerrLive of 11.8% and a FerrFake of 0.6%. Anonymous1 performed at a FerrLive of
1.4% and a FerrFake of 0.0%. Both systems had low FerrFake rates. Anonymous1
received a perfect score of 0.0% error, successfully determining every spoof finger
presented as a spoof and can be seen in Table5.17.

Anonymous2, in 2015, scored a FerrLive of 14.95% and a FerrFake of 6.29%
at the (given) threshold of 50 Table5.6 showing an improvement over the general
results seen in LivDet 2011, however, the anonymous system did not perform as well
as what was seen in LivDet 2013. There is an 11.09%FerrFake for known recipes and
1% for unknown recipes and seen in Table5.18. This result is opposite to what has
been seen in previous LivDet competitions where known spoof types typically have a
better performance than unknown spoof types. The error rate for spoof materials was

Table 5.15 Participants for part 2: systems

Participants LivDet 2011 Algorithm name

Dermalog identification systems GmbH Dermalog

GreenBit GreenBit

Participants LivDet 2013 Algorithm name

Dermalog identification systems GmbH Dermalog

Anonymous Anonymous1

Participants LivDet 2015 Algorithm name

Anonymous Anonymous2
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Table 5.16 FerrLive and FerrFake for submitted systems in LivDet 2011

Submitted system FerrLive (%) FerrFake (%)

Dermalog 42.5 0.8

Greenbit 39.5 38.8

Submitted system FerrFake known (%) FerrFake unknown (%)

Dermalog 0.4 1.3

Greenbit 19.1 70

Table 5.17 FerrLive and FerrFake for submitted systems in LivDet 2013

Submitted system FerrLive (%) FerrFake (%)

Dermalog 11.8 0.6

Morpho 1.4 0

Submitted System FerrFake known (%) FerrFake unknown (%)

Dermalog 0.3 1

Morpho 0 0

Table 5.18 FerrLive and FerrFake for submitted systems in LivDet 2015

Submitted system FerrLive (%) FerrFake (%)

Anonymous 14.95 6.29

Submitted system FerrFake known (%) FerrFake unknown (%)

Anonymous 11.09 1.00

primarily due to impact on color differences error for the playdoh. Testing across six
different colors of playdoh found that certain colors behaved in different ways. For
yellow andwhite playdoh, the system detected spoofs as fake with high accuracy. For
brown and black playdoh, the system would not collect an image. Therefore, it was
recorded as a fake nonresponse and not an error in detection of spoofs. For pink and
lime green playdoh, the system incorrectly accepted spoofs as live for almost 100%
of images collected. The fact that almost all pink and lime green playdoh imageswere
accepted as live images resulted in a 28% total error rate for playdoh. The system
had a 6.9% Fake Nonresponse Rate primarily due to brown and black playdoh. This
is the first LivDet competition where color of playdoh has been examined in terms
of error rates and provides vital information for future testing of presentation attack
detection systems.

Examining the trends of results over the three competitions has shown that since
2011, there has been a downward trend in error rates for the systems. FerrLive in
2015while higher than 2013, is drastically lower than 2011. FerrFake has had similar
error rates over the years. While the 2015 competition showed a 6.29% FerrFake,
the majority of that error stems from playdoh materials, particularly pink and lime
colors. If you discount the errors seen in playdoh, the FerrFake is below 2% for
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Fig. 5.7 FerrLive for winning systems by year

the 2015 system. The error rates for winning systems over the years are shown in
Figs. 5.7 and 5.8.

5.5 Future of LivDet

LivDet-Fingerprint has continued in 2017. The two parts of the competition are being
held separately. LivDet-Fingerprint 2017 Fingerprint Systems Liveness Detection
Competition is being held with an additional focus toward systems geared for mobile
devices. The competition will include not only spoofs generated from the consensual
methods but also will include nonconsensual methods of spoof mold generation.
This competition also includes a new challenge for competitors in the addition of a
verification mode testing. Submitted systems will need to be submitted not only with
a presentation attack detection module as in previous systems competitions but will
need to have an enrollment feature where subjects will enroll their fingers and both
live and spoof fingers will be tested against in the system in verification mode.
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Fig. 5.8 FerrFake for winning systems by year

5.6 Conclusions

Since its first edition in 2009, the Fingerprint Liveness Detection Competition was
aimed to allow research centers and companies a fair and independent assessment of
their anti-spoofing algorithms and systems.

We have seen over time an increasing interest for this event, and the general
recognition for the enormous amount of data made publicly available. The number
of citations that LivDet competitions have collected is one of the tangible signs of
such interest, with over 100 citations, and further demonstrates the benefits that the
scientific community has received from LivDet events.

The competition results show that liveness detection algorithms and systems
strongly improved their performance: from about 70% classification accuracy
achieved in LivDet 2011 to 90% classification accuracy in LivDet 2015. This result,
obtained under very difficult conditions like the ones of the consensual method-
ology of fingerprints replication, is comparable with that obtained in LivDet 2013
(first two datasets), where the algorithms’ performance was tested under the eas-
ier task of fingerprints replication from latent marks. Moreover, the two challenges
characterizing the last edition, namely, the presence of 1000 dpi capture device and
the evaluation against “unknown” spoofingmaterials, further contributed to show the
great improvement that researchers achieved on these issues: submitted algorithms
performed very well on both 500 and 1000 dpi capture devices, and some of them
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also exhibited a good robustness degree against never-seen-before attacks. Results
reported on fusion also show that the liveness detection could further benefit from the
combination of multiple features and approaches. A specific section on algorithms
and systems fusion might be explicitly added to a future LivDet edition.

It is evident that, despite the remarkable results reported from the LivDet competi-
tions, further improvements in system performance are needed. Current performance
levels formost submissions are not yet accurate enough for embedding a presentation
attack detection algorithm into fingerprint verification system due to the error rate
being still too high for many real applications where security is of paramount impor-
tance. In the authors’ opinion, discovering and explaining benefits and limitations
of the currently used features is still an issue whose solution should be encouraged,
because only the full understanding of the physical process which leads to the fin-
ger’s replica and what features extraction process exactly does will shed light on the
characteristics most useful for classification. This task is daunting and it may require
many years before concrete results can be shown. However, we believe this could be
the next challenge for a future edition of LivDet, the Fingerprint Liveness Detection
Competition.
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Chapter 6
Introduction to Iris Presentation Attack
Detection

Aythami Morales, Julian Fierrez, Javier Galbally
and Marta Gomez-Barrero

Abstract Iris recognition technology has attracted an increasing interest since more
than two decades in which we have witnessed a migration from laboratories to real-
world applications. The deployment of this technology in real applications raises
questions about the main vulnerabilities and security threats related to these sys-
tems. Presentation attacks can be defined as presentation of human characteristics
or artifacts directly to the input of a biometric system trying to interfere with its
normal operation. These attacks include the use of real irises as well as artifacts with
different levels of sophistication. This chapter introduces iris presentation attack
detection methods and its main challenges. First, we summarize the most popular
types of attacks including the main challenges to address. Second, we present a tax-
onomy of presentation attack detection methods to serve as a brief introduction on
this very active research area. Finally, we discuss the integration of these methods
into iris recognition systems according to the most important scenarios of practical
application.

A. Morales (B)
School of Engineering, Universidad Autonoma de Madrid, Madrid, Spain
e-mail: aythami.morales@uam.es

J. Fierrez
Universidad Autonoma de Madrid, Madrid, Spain
e-mail: julian.fierrez@uam.es

J. Galbally
European Commission - DG Joint Research Centre, Ispra, Italy
e-mail: javier.galbally@ec.europa.eu

M. Gomez-Barrero
da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt,
Darmstadt, Germany
e-mail: marta.gomez-barrero@h-da.de

© Springer Nature Switzerland AG 2019
S. Marcel et al. (eds.), Handbook of Biometric Anti-Spoofing,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-319-92627-8_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92627-8_6&domain=pdf
mailto:aythami.morales@uam.es
mailto:julian.fierrez@uam.es
mailto:javier.galbally@ec.europa.eu
mailto:marta.gomez-barrero@h-da.de
https://doi.org/10.1007/978-3-319-92627-8_6


136 A. Morales et al.

6.1 Introduction

The iris is one of the most popular biometric modes inside the biometric person
recognition technologies. Since the earliest Daugman publications proposing the iris
as a biometric characteristic [1] to most recent approaches based on latest machine
learning and computer vision techniques [2–4], iris recognition has evolved improv-
ing performance, ease of use, and security. Such advances have attracted the interest
of researchers and companies boosting the number of products, publications, and
applications. The first iris recognition devices were developed to work as stand-alone
systems [5]. However, today iris recognition technology is included as an authen-
tication service in some of the most important operating systems (e.g., Android,
Microsoft Windows) and devices (e.g., laptop or desktop computers, smartphones).
One-seventh of the world population (1.14 billion people) has been enrolled in the
Aadhaar India national biometric ID program [6] and iris is one on three biomet-
ric modes (in addition to fingerprint and face) employed for authentication in this
program. The main advantages of iris can be summarized as follows:

• The iris is generated during the prenatal gestation and presents highly random pat-
terns. Such patterns are composed of complex and interrelated shapes and colors.
The highly discriminant characteristics of the iris make possible that recogni-
tion algorithms obtain performances comparable to the most accurate biometric
modes [2].

• The genetic prevalence on iris is limited and therefore irises from people with
shared genes are different. Both irises of a person are considered as different
instances, which do not match each other.

• The iris is an internal organ of the eye that is externally visible. The iris can be
acquired at a distance and the advances on acquisition sensors allow to easily
integrate iris recognition into portable devices [7].

The fast deployment of iris recognition technology in real applications has
increased the concerns about its security. The applications of iris biometrics include
a variety of different scenarios and security levels (e.g., banking, smartphone user
authentication, and governmental ID programs). Among all threats associated to
biometric systems, the resilience against attacks emerges as one of the most active
research areas in the recent iris biometrics literature. The security of commercial iris
systems is questioned by users. In 2017, the Chaos Computer Club reported their
successful attack to the Samsung Galaxy S8 iris scanner using a simple photograph
and a contact lens [8]. In the context of biometric systems, presentation attacks are
defined as presentation of human characteristics or artifacts directly to the input of
a biometric system trying to interfere with its normal operation [9]. This definition
includes spoofing attacks, evasion attacks, and the so-called zero-effort attacks. Most
of the literature on iris Presentation Attack Detection (PAD) is focused on spoofing
attacks detection. The term liveness detection is also employed in the literature to
propose systems capable of classifying between bona fide samples and artifacts used
to attack biometric systems. Depending on the motivations of the attacker, we can
distinguish two types of attacks:
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• Impostor: The attacker tries to impersonate the identity of other subjects by using
his own iris (e.g., zero-effort attacks) or an artifactmimicking the iris of the spoofed
identity (e.g., photo, video or synthetic iris). This type of attack requires certain
level of knowledge about the iris of the impersonated user and the characteristics
of the iris sensor in order to increase the success of the attack (see Sect. 6.2).

• Identity concealer: The attacker tries to evade the iris recognition. Examples in this
case include the enrollment of users with fake irises (e.g., synthetically generated)
or modified irises (e.g., textured contact lens). These examples represent a way to
masquerade the real identities.

The first PAD approaches proposed in the literature were just theoretical exercises
based on potential vulnerabilities [10]. In recent years, the number of publications
focused on this topic has increased significantly. Some of the PADmethods discussed
in the recent literature have been inspired by methods proposed for other biometric
modes such as face [11–13]. However, the iris has various particularitieswhich can be
exploited for PAD, such as the dynamic, fast, and involuntary responses of the pupil
and the heterogeneous characteristics of the eyes tissue. The eye reacts according to
the amount and nature of the light received. Another large group of PAD methods
exploits these dynamic responses and involuntary signals produced by the eye.

This chapter presents a description of the most important types of attacks from
zero-effort attacks to the most sophisticated synthetic eyes. We introduce iris Pre-
sentation Attacks Detection methods and its main challenges. The PAD methods are
organized according to the nature of features employed with a taxonomy divided
into three main groups: hardware-based, software-based, and challenge–response
approaches. Please note that the material presented in this chapter tries to be up to
date, but keeping an introductory nature. A more comprehensive survey of iris PAD
can be found in [4].

The rest of the chapter is organized as follows: Sect. 6.2 presents the main vulner-
abilities of iris recognition systems with special attention to different types of pre-
sentation attacks. Section6.3 summarizes the presentation attacks detection methods
while Sect. 6.4 presents the integration with iris recognition systems. Finally, con-
clusions are presented in Sect. 6.5.

6.2 Vulnerabilities in Iris Biometrics

Traditional block diagrams of Iris Recognition Systems (IRS) are similar to block
diagrams of other biometric modes. As any other biometric recognition technology,
iris recognition is vulnerable to attacks. Figure6.1 includes a typical block diagram
of an IRS and its vulnerable points. The vulnerabilities depend on the characteristics
of each module and cover communication protocols, data storage or resilience to
artifact presentations, among others. Several subsystems and not just one will define
the security of an IRS [14]:
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Fig. 6.1 Block diagram of traditional iris recognition systems and main vulnerabilities [14]

• Sensor (V1): CCD/CMOS are themost popular sensors including visible and near-
infrared imaging. The iris pattern is usually captured in form of image or video.
The most important vulnerability is related to the presentation of artifacts (e.g.,
photos, videos, synthetic eyes) that mimic the characteristics of real irises.

• Feature extraction and matcher modules (V2-V3): These software modules are
composed of the algorithms in charge of preprocessing, segmentation, generation
of templates, and comparison. Attacks to these modules include the alteration of
algorithms to carry out not legitimate operations (e.g., modified templates, altered
comparison).

• Database (V5): The database is composed of structured data associated to the
subject information, devices, and iris templates. Any alteration on this information
can affect the final response of the system.The security level of the database storage
differs depending on the applications. The use of encrypted templates is crucial to
ensure the unlinkability between systems and attacks based on weak links [15].

• Communication channel and actuators (V4 and V6): Including internal
(e.g., communication between software modules) and external communications
(e.g., communication with mechanical actuators or cloud services). The most
important vulnerabilities rely on alterations of the information sent and received
by the different modules of the IRS.

In this work, we will focus on presentation attacks on the sensor (V1 vulnera-
bilities). Key properties of these attacks are the high attack success ratio of spoofed
irises (if the system is not properly protected) and the low amount of information
about the system needed to perform the attack. Other vulnerabilities not covered by
this work include attacks to the database (V5), to the software modules (V2-V3), the
communication channels (V4) or actuators at the output (V6). This second group of
vulnerabilities requires access to the system, and countermeasures to these attacks
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are more related to general system security protocols. These attacks are beyond the
scope of this chapter but should not be underestimated.

Regarding the nature of the Presentation Attack Instrument (PAI) employed to
spoof the system, the most popular presentation attacks can be divided into the
following categories:

• Zero-effort attacks,
• photo and video attacks,
• contact lens attacks, and
• synthetic eye attacks.

6.2.1 Zero-Effort Attacks

The attack is performed using the iris from the attacker. The impostor does not use
any artifact or information about the identity under attack. The iris pattern from
the impostor does not match the legitimate pattern and the success of the attack is
exclusively related to the False Match Rate (FMR) of the system [16, 17]. Systems
with high FMR will be more vulnerable to this type of attack. Note that the FMR is
related to the False Non-Match Rate (FNMR) and both are related to the operational
point of the system. An operational setup to obtain a low FMR can produce an
increment of the FNMR and therefore a higher number of false negatives (legitime
users are rejected).

• Information needed to perform the attack: No information needed.
• Generation and acquisition of the PAIs: No need to generate a fake iris. The system
is attacked using real irises of the attacker.

• Expected impact of the attack:Most iris recognition systems present very low false
acceptance rates. The success rate of these attacks can be considered low.

6.2.2 Photo and Video Attacks

The attack is performed displaying a printed photo, digital image or video from the
spoofed iris directly to the sensor of the IRS. Photo attacks are the ones most studied
in the literature [12, 18–22] because of two main aspects.

First, with the advent of digital photography and social image sharing (e.g., Flickr,
Facebook, Picasa Web, and others), headshots of attacked clients from which the iris
can be extracted are becoming increasingly easy to obtain. The face or the voice are
biometric modes more exposed than iris. However, iris patterns can be obtained from
high-resolution face images (e.g., 200dpi resolution).

Second, it is relatively easy to print high-quality iris photographs using commer-
cial cameras (up to 12Megapixels sensors inmost of the nowadays smartphones) and
ink printers (1200dpi in most of the commercial ink printers). Alternatively, most
of the mobile devices (smartphones and tablets) are equipped with high-resolution
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Fig. 6.2 Examples of spoofing artifacts: printed photo (top-left), screen photo (top-right), and
prosthetic eye (down). Adapted from Soper Brothers and Associates [http://www.soperbrothers.
com]

screens capable of reproducing very natural images and videos in the visible spectrum
(see Fig. 6.2).

Video attacks are a sophistication of photo attacks that allows to mimic both the
static patterns and the dynamic information of the eye [23–26].

• Information needed to perform the attack: Image or video of the iris of the subject
to be impersonated.

• Generation and acquisition of the PAIs: It is relatively easy to obtain high-
resolution face photographs from social media and Internet profiles. Other options
include the capture using a concealed/hidden camera. Once a photo is obtained, if
it is of sufficient quality, one can print the iris region and then present it in front
of the iris camera. A screen could also be used for presenting the photograph to
the camera. Another way to obtain the iris would be to steal the raw iris image
acquired by an existing iris recognition system in which the subject being spoofed
was already enrolled.

• Expected impact of the attack: The literature offers a large number of approaches
with good detection rates of printed photo attacks [12, 18–21, 27]. However,
most of these methods exploit the lack of realism/quality of printed images in
comparison with bona fide samples. The superior quality of new screens capable
of reproducing digital images and video attacks with a high quality represents a

http://www.soperbrothers.com
http://www.soperbrothers.com
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difficult challenge for PAD approaches based on visible spectrum imaging but not
for Near-infrared sensors of commercial systems.

6.2.3 Contact Lens Attacks

This type of attack uses contact lenses created to mimic the pattern of other users
(impostor attack) or contact lenses created to masquerade the identity (identity con-
cealer attack). Although the impression of a real iris pattern into contact lenses is
theoretically possible, it implies practical difficulties that mitigate the likelihood of
this attack. The second scenario is particularly worrying because nowadays, more
and more people wear contact lenses (e.g., approximately 125 million people world-
wide wear contact lens). We can differentiate between transparent contact lenses and
textured contact lenses (also known as printed). Textured contact lenses change the
original iris information by the superposition of synthetic patterns (e.g., cosmetic
lens to change the color). Although these contact lenses are mostly intended for cos-
metics, the same technology can be potentially used to print iris patterns from real
users. Once users have been enrolled into the IRS without taking off the textured
contact lenses, the IRS can be fooled. Note that asking to remove the contact lenses
before the recognition is a non-desirable solution as it clearly decreases the user
comfort and usability.

• Information needed to perform the attack: Image of the iris of the client to be
attacked for impostor attacks. No information needed for masquerade attacks.

• Generation and acquisition of the fakes: In comparisonwith photo or video attacks,
the generation of textured contact lenses requires a more sophisticated method
based on optometrist devices and protocols.

• Expected impact of the attack: These types of attacks represent a great challenge
for either automatic PAD systems or visual inspection by humans. It has been
reported by several researchers that it is actually possible to spoof iris recognition
systems with well-made contact lens [23, 26, 28–31].

6.2.4 Synthetic Eye Attacks

This type of attack is the most sophisticated. The attack uses synthetic eyes gen-
erated to mimic the characteristics of real ones. Prosthetic eyes have been used
since the beginning of twentieth century to reduce the esthetic impact related to the
absence of eyes (e.g., blindness, amputations, etc.). Current technologies for pros-
thetic manufacturing allow mimicking the most important attributes of the eye with
very realistic results. The similarity goes beyond the visual appearance including
manufacturing materials with similar physical properties (e.g., elasticity, density).
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Table 6.1 Literature on presentation attack detection methods. Summary of key literature
about iris PAD methods depending on the type of attack

Type of attack References Public databases Detection errors %

Photo and Video [11, 12, 33–40] [20, 21, 24, 27, 35,
41, 42]

0–6

Contact lens [30, 31, 33, 39, 40] [27, 43] 0.2–10

Synthetic [33, 39] none 0.2–0.3

The number of studies including attacks to iris biometric systems using synthetic
eyes is still low [32].

• Information needed to perform the attack: Image of the eye of the client to be
attacked.

• Generation and acquisition of the PAIs: This is probably the most sophisticated
attack method as it involves the generation of both 2D images and 3D structures.
Manually made in the past, 3D-printers and their application to the prosthetic field
have revolutionized the generation of synthetic body parts.

• Expected impact of the attack: Although the number of studies is low, the detection
of prosthetic eyes represents a big challenge. The detection of these attacks by
techniques based on image features is difficult. On the other hand, PAD methods
based on dynamic features can be useful to detect the unnatural dynamics of
synthetic eyes.

Table 6.1 lists key literature on iris PAD including the most popular public
databases available for research purposes.

6.3 Presentation Attack Detection Approaches

These methods are also known in the literature as liveness detection, anti-spoofing,
or artifact detection among others. The term Presentation Attack Detection (PAD)
was adopted in the ISO/IEC 30107-1:2016 [9], and it is now largely accepted by the
research community.

The different PAD methods can be categorized according to several character-
istics. Some authors propose a taxonomy of PAD methods based on the nature of
both methods and attacks: passive or active methods employed to detect static or
dynamic attacks [34]. Passive methods include those capable of extracting features
from samples obtained by traditional iris recognition systems (e.g., image from the
iris sensor). Active methods modify the recognition system in order to obtain fea-
tures for the PAD method (e.g., dynamic illumination, challenge–response). Static
attacks refer to those based on individual samples (e.g., image)while dynamic attacks
include artifacts capable to change with time (e.g., video or lens attacks).

In this chapter, we introduce the most popular PAD methods according to the
nature of the features used to detect the forged iris: hardware-based, software-based,
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Fig. 6.3 Taxonomy of iris presentation attack detection methods

and challenge–response. The challenge-response approach and most of the hardware
methods can be considered active approaches, as they need additional sensors or
collaboration from the subject. On the other hand, most of the software methods
employ passive approaches in which PAD features are directly obtained from the
biometric sample acquired by the iris sensor. Figure 6.3 presents a taxonomy of the
iris PAD methods introduced in this chapter.

6.3.1 Hardware-Based Approaches

Also known as sensor-based approaches in the literature. These methods employ
specific sensors (in addition to the standard iris sensor) to measure biological and
physical characteristics of the eye. These characteristics include optical properties
related with the reflectance (e.g., light absorption of the different eye layers), color or
composition (e.g., melanin or blood vessel structures in the eye), electrical properties
(e.g., electrooculography), or physical properties (e.g., density of the eye tissues).
These methods include:

• Multispectral imaging [44–47]: The eye includes complex anatomical structures
enclosed in three layers. These layers are made of organic tissue with different
spectrographic properties. The idea underlying these methods is to use the spec-
troscopic print of the eye tissues for PAD.Nonliving tissue (e.g., paper, crystal from
the screens or synthetic materials including contact lenses) will present reflectance
characteristics different to those obtained froma real eye. These approaches exploit
illuminations with different wavelengths that vary according to the method pro-
posed and the characteristic involved (e.g., hemoglobin presents an absorption
peak in near-infrared bands).

• 3D imaging [21, 48]: The curvature and 3D nature of the eye have been exploited
by researchers to develop PAD methods. The 3D profile of the iris is captured
in [48] by using two Near-Infrared light sources and a simple 2D sensor. The idea
underlying the method is to detect the shadows on real irises produced by nonuni-
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form illumination provided from two different directions. Light Field Cameras
(LFC) are used in [21] to acquire multiple depth images and detect the lack of
volumetric profiles of photo attacks.

• Electrooculography [49]: The standing potential between the cornea and retina can
be measured and the resulting signal is known as electrooculogram. This potential
can be used as a liveness indicator but the acquisition of these signals is invasive
and includes the placement of at least two electrodes in the eye region.Advances on
nonintrusive new methods to acquire the electrooculogram can boost the interest
on these approaches.

6.3.2 Software-Based Approaches

Software-based PAD methods use features directly extracted from the samples
obtained by the standard iris sensor. These methods exploit pattern recognition tech-
niques in order to detect fake samples. Techniques can be divided into static or
dynamic depending on the nature of the information used. While static approaches
search for patterns obtained from a single sample (e.g., one image), dynamic
approaches exploit time sequences or multiple samples (e.g., a video sequence).

Some authors propose methods to detect the clues or imperfections introduced
by printing devices used during manufacturing of PAIs (e.g., printing process for
photo attacks). These imperfections can be detected by Fourier image decomposition
[18, 19, 36], wavelet analysis [23], or Laplacian transform [24]. All these methods
employ features obtained from the frequency domain in order to detect artificial
patterns in fake PAIs. Other authors have explored iris quality measures for PAD.
The quality of biometric samples has a direct impact on the performance of biometric
systems. The literature includes several approaches to measure the quality of image-
based biometric samples. The application of quality measures as PAD features for
iris biometrics has been studied in [11, 50]. These techniques exploit iris and image
quality in order to detect photo attacks.

Advances in image processing techniques have also allowed to develop new PAD
methods based on the analysis of features obtained at pixel level. These approaches
include features obtained from gray level values [51], edges [30], or color [52].
The idea underlying these methods is that the texture of manufacturing materials
shows different patterns due to the nonliving properties of materials (e.g., density,
viscosity). In this line, the method proposed in [52] analyzes image features obtained
from near-infrared and visible spectrums. Local descriptors have been also used for
iris PAD: local binary patterns [31, 35, 53, 54], binary statistical image features
[13, 53], scale invariant feature transform [26, 53, 55], and local phase quantiza-
tion [53].

Finally, in [12], researchers evaluate the performance of deep learning techniques
for iris photo attack detection with encouraging results. How to use these networks
in more challenging attacks requires a deeper study and novel approaches [12].
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6.3.3 Challenge–Response Approaches

These methods analyze voluntary and involuntary responses of the human eye. The
involuntary responses are part of the processes associated to the neuromotor activities
of the eye while the voluntary behavior is response to specific challenges. Both
voluntary and involuntary responses can be driven by external stimuli produced
by the PAD system (e.g., changes in the intensity of the light, blink instructions,
gaze tracking during dedicated challenges, etc.). The eye reacts to such external
stimuli and these reactions can be used as a proof of life to detect attacks based
on photos or videos. In addition, there are eye reactions inherent to a living body
that can be measured in terms of signals (e.g., permanent oscillation of the eye pupil
called hippus, microsaccades, etc.). These reactions can be considered as involuntary
challenges noncontrolled by the subject. The occurrence of these signals can be also
considered as a proof of life. As a main drawback, these methods increase the level
of collaboration demanded from the subjects.

The pupil reactions in presence of uniform light or lighting events were early
proposed in [28] for PAD applications andmore deeply studied in [34]. Asmentioned
above, the hippus are permanent oscillations of the pupil that are visible even with
uniform illumination. These oscillations range from 0.3 to 0.7Hz and decline with
age. The PAD methods based on hippus have been explored to detect photo attacks
and prosthetic eye attacks [19, 56]. However, the difficulties to perform a reliable
detection reduce the performance of these methods. Based on similar principles
related to eye dynamics, the use of biomechanical models to serve as PAD methods
was evaluated in [57].

The eye is a complex organ that includes different types of surfaces. The reflec-
tion of the light in the lens and cornea produces a well-known effect named Purkinje
reflections. This effect is an involuntary reflection of the eye to external illumination.
At least, four Purkinje reflections are usually visible. The reflections change depend-
ing on the light source and these changes can be used for liveness detection [39, 45].
Simple photo and video attacks can be detected by these PAD methods. However,
their performance against contact lens or synthetic eye attacks is not clear due to the
natural reflections on real pupils (contact lens or photo attacks with pupil holes) or
sophisticated fabrication methods (synthetic eyes).

6.4 Integration with Iris Recognition Systems

PAD approaches should be integrated into iris recognition systems granting a correct
and normal workflow. Software-based PADmethods are usually included asmodules
in the feature extraction algorithms. A potential problem associated to the inclusion
of PAD software is a delay in the recognition time. However, most PAD approaches
based on software methods report a low computational complexity that mitigates this
concern.
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The automatic detection of contact lenses plays an important role in software-
based approaches. The effects of wearing contact lenses can be critical in case of
textured lenses. In [58], authors reported that textured lenses can cause the FNMR
to exceed 90%. The detection of contact lenses represents a first step in IRS, and
specific algorithms have been developed and integrated as a preprocessing mod-
ule [12, 43, 58]. The final goal of these algorithms is to detect and to filter the
images to remove the image patterns generated by contact lenses.

Hardware-based PAD approaches are usually integrated before the iris sensor or
as an independent parallel module (see Fig. 6.4). In addition to the execution time
concerns, hardware-based approaches increase the complexity of the system and
the authentication process. Therefore, the main aspects to be analyzed during the
integration of those approaches come from the necessity of dedicated sensors and its
specific restrictions related to size, time, and cost. These are barriers that difficult the
integration of hardware-based approaches into mobile devices (e.g., smartphones).

The main drawback of challenge–response approaches is the increased level of
collaboration needed from the user. This collaboration usually introduces delays in
the recognition process and some users can perceive it as an unfriendly process.

There are two basic integration schemes:

• Parallel integration: The outputs of the IRS and PAD systems are combined before
the decision module. The combination method depends on the nature of the output
to be combined (e.g., score level or decision level fusion) [3, 59].

• Series integration: The sample is first analyzed by the PAD system. In case of a
legitimate user, the IRS processes the sample. Otherwise, the detection of an attack
will avoid unnecessary recognition and the sample will be directly discarded.

6.5 Conclusions

Iris recognition systems have been improved during the last decade achieving better
performance, more convenient acquisition at a distance, and full integration with
mobile devices. However, the robustness against attacks is still a challenge for the
research community and industrial applications. Researchers have shown the vul-
nerability of iris recognition systems, and there is a consensus about the necessity of
finding new methods to improve the security of iris biometrics. Among the different
types of attacks, presentation attacks represent a key concern because of its simplic-
ity and high attack success rates. The acquisition at a distance achieved by recent
advances on new sensors and the public exposure of the face, and therefore the iris,
make relatively easy to obtain iris patterns and use them for malicious purposes. The
literature on PAD methods is large including a broad variety of methods, databases,
and protocols. In the next years, it will be desirable to unify the research community
into common benchmarks and protocols. Even if the current technology shows high
detection rates for the simplest attacks (e.g., zero-effort and photo attacks), there are
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Fig. 6.4 Integration of Presentation Attack Detection (PAD) with Iris Recognition Systems (IRS)
in parallel (top) and serial (down) schemes

still challenges associated to most sophisticated attacks such as those using textured
contact lenses and synthetic eyes.
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Chapter 7
Application of Dynamic Features
of the Pupil for Iris Presentation Attack
Detection

Adam Czajka and Benedict Becker

Abstract This chapter presents a comprehensive study on the application of
stimulated pupillary light reflex to presentation attack detection (PAD) that can be
used in iris recognition systems. A pupil, when stimulated by visible light in a pre-
defined manner, may offer sophisticated dynamic liveness features that cannot be
acquired from dead eyes or other static objects such as printed contact lenses, paper
printouts, or prosthetic eyes. Modeling of pupil dynamics requires a few seconds
of observation under varying light conditions that can be supplied by a visible light
source in addition to the existing near-infrared illuminants used in iris image acqui-
sition. The central element of the presented approach is an accurate modeling and
classification of pupil dynamics that makes mimicking an actual eye reaction dif-
ficult. This chapter discusses new data-driven models of pupil dynamics based on
recurrent neural networks and compares their PAD performance to solutions based
on the parametric Clynes–Kohn model and various classification techniques. Exper-
iments with 166 distinct eyes of 84 subjects show that the best data-driven solution,
one based on long short-term memory, was able to correctly recognize 99.97% of
attack presentations and 98.62% of normal pupil reactions. In the approach using the
Clynes–Kohn parametric model of pupil dynamics, we were able to perfectly rec-
ognize abnormalities and correctly recognize 99.97% of normal pupil reactions on
the same dataset with the same evaluation protocol as the data-driven approach. This
means that the data-driven solutions favorably compare to the parametric approaches,
which require model identification in exchange for a slightly better performance. We
also show that observation times may be as short as 3 s when using the parametric
model, and as short as 2 s when applying the recurrent neural network without sub-
stantial loss in accuracy. Along with this chapter we also offer: (a) all time series
representing pupil dynamics for 166 distinct eyes used in this study, (b) weights of
the trained recurrent neural network offering the best performance, (c) source codes
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of the reference PAD implementation based on Clynes–Kohn parametric model, and
(d) all PAD scores that allow the reproduction of the plots presented in this chapter.
To our best knowledge, this chapter proposes the first database of pupil measure-
ments dedicated to presentation attack detection and the first evaluation of recurrent
neural network-based modeling of pupil dynamics and PAD.

7.1 Introduction

Presentation attack detection (PAD) is a key aspect of biometric system’s security.
PAD refers to an automated detection of presentations to the biometric sensor that has
the goal to interfere with an intended operation of the biometric system [1]. Presen-
tation attacks may be realized in various ways, and using various presentation attack
instruments (PAI), such as presentation of fake objects or cadavers, non-conformant
presentation, or even coerced use of biometric characteristics. This chapter focuses
on detection of liveness features of an iris, i.e., changes in pupil dilation under vary-
ing light conditions that indicate the authenticity of the eye. This liveness test can
prove useful in both iris and ocular recognition systems.

Iris PAD has a significant representation in scientific literature. Most of the meth-
ods are based on static properties of the eye and iris to detect iris paper printouts and
cosmetic contact lenses. Examples of such methods include the use of image quality
metrics (Galbally et al. [2], Wei et al. [3]) and texture descriptors such as local binary
patterns (Doyle et al. [4], Ojala et al. [5]), local phase quantization (Ojansivu and
Heikkilä [6]), binary Gabor pattern (Zhang et al. [7]), hierarchical visual codebook
(Sun et al. [8]), histogram of oriented gradients (Dalal and Triggs [9]), and binarized
statistical image features (Doyle and Bowyer [10], Raghavendra and Busch [11]).
The recent advent of deep learning, especially convolutional neural networks, has
caused a dynamic increase in solutions based on neural networks [12]. However, the
results of the last LivDet-Iris 2017 competition [13] suggest that these static artifacts
are still challenging when the algorithms are tested on data unknown to developers:
the winning algorithms were able to achieve an average of APCER = 14.71% and
an average of BCPER = 3.36% on a combined dataset (paper printouts and textured
contact lenses collected at five different universities—organizers of LivDet). Also,
the results achieved in an open-set scenario (unknown PAI species) were often worse
by an order of magnitude than those observed in a closed-set scenario (known PAI
species).

The application of dynamic features of the eye is less popular. An interesting
solution proposed by Raja et al. [14] was based on Eulerian VideoMagnification that
detects micro phase deformations of iris region. Also, Komogortsev et al. proposed
an application of eyeball dynamics to detect mechanical eye replicas [15]. Pupil
dynamics are rarely used in biometric presentation attack detection. Most existing
approaches are based on methods proposed by Pacut and Czajka [16–18], which
deploy a parametric Clynes–Kohn model of the pupil reaction. Readers interested in
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the most recent summary of the iris PAD topic are encouraged to look at the survey
by Czajka and Bowyer [19].

To our knowledge, there are no publicly available databases of iris videos acquired
under visible light stimuli. We have thus collected a dataset of pupil reactions mea-
sured for 166 distinct eyes when stimulating the eye with positive (a sudden increase
of lightness) and negative (a sudden decrease of lightness) stimuli. Bona fide samples
are represented by time series presenting pupil reaction to either positive, negative
or both stimuli. Attack samples are represented by time series acquired when the eye
was not stimulated by the light. In many attack samples, one may still observe spon-
taneous pupil oscillation and noise caused by blinking, eye off-axis movements, or
imprecise iris segmentation. These are good complications making the classification
task more challenging. The measurements of pupil size (in a time series) are made
available along with this chapter to interested research groups.

In this chapter, we present and compare two approaches to classify the acquired
time series. The state-of-the-art approach is based on the parametric Clynes–Kohn
model of pupil dynamics and various classifiers such as support vector machines,
logistic regression, bagged trees, and k nearest neighbors. Solutions employing the
parametric model require model identification for each presentation attack detection,
which incorporates minimization procedures that often results in nondeterministic
behavior. However, once trained this approach presents good generalization capabil-
ities. The second approach presented in this chapter is based on data-driven models
realized by four variants of recurrent neural networks, including long short-term
memory. These solutions present slightly worse results than those based on paramet-
ricmodel, but they delivermore deterministic outputs. It is also sometimes convenient
to use an end-to-end classification algorithm; hence, data-driven models may serve
as an interesting PAD alternative to algorithms employing parametric models.

In Sect. 7.2, we provide technical details of the employed dataset. Section7.3
briefly summarizes the application of Clynes–Kohn model of pupil dynamics. In
Sect. 7.4, we explain how the recurrent neural networks were applied to build data-
driven models of pupil reflex. Results are presented in Sect. 7.5, and in Sect. 7.6, we
summarize this approach along with some limitations.

7.2 Database

7.2.1 Acquisition

The acquisition scenario followed the one applied in [18]. All images were captured
in near-infrared light (λ = 850nm) and the recommendations for iris image quality
given in ISO/IEC 19794-6 and ISO/IEC 29794-6 standards were easily met. The
sensor acquired 25 images per second.Volunteers presented their eyes in a shaded box
in which the sensor and four visible light-emitting diodes were placed to guarantee
a stable acquisition environment throughout the experiment. A single acquisition
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Fig. 7.1 Visible light intensity profile in the data collection for a single attempt

attempt lasted 30s: spontaneous pupil movement was recorded during the first 15 s,
then the pupil reaction to apositive light stimulus (dark→light) was recorded during
the next 5 s, and during the last 10 s, a pupil reaction to a negative light stimulus
(light→dark) wasmeasured. Figure7.1 presents a visible light profile applied in each
attempt.

84 subjects presented their left and right eyes, except for two subjects who pre-
sented only a single eye. Thus, the database is comprised of measurements from 166
distinct eyes, with up to 6 attempts per eye. All attempts for a given subject were
organized on the same day, except for four persons (eight eyes) who had their pupil
dynamics measured 12 years before and then repeated (using the same hardware and
software setup). The total number of attempts for all subjects is 435, and in each
attempt, we collected 750 iris images (30 s × 25 frames per second).

7.2.2 Estimation of Pupil Size

All samples were segmented independently using Open Source IRIS [20] which
implements a Viterbi algorithm to find a set of points on the iris boundaries. Least
squares curve fitting was then used to find two circles approximating the inner and
outer iris boundaries. We tried to keep the acquisition setup identical during all
attempts. However, small adjustments to the camera before an attempt may have
introduced different optical magnifications for each participant. Also, iris size may
slightly differ across the population of subjects. Hence, despite a stable distance
between a subject and a camera, we normalized the pupil radius by the iris radius to
get the pupil size ranging from 0.2 to 0.8 in our experiments. Instead of using the iris
radius calculated in each frame, we used its averaged value calculated for all frames
considered in a given experiment. This approach nicely compensates for possible
changes in the absolute iris size and does not introduce additional noise related to
fluctuations in outer boundary detection.

7.2.3 Noise and Missing Data

Figure7.2 presents example iris images acquired immediately after positive light
stimulus (increase of the light intensity at t = 0) along with the segmentation results.
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Fig. 7.2 Example iris images and segmentation results 0s (left), 1s (middle), and 5s (right) after
positive light stimuli. Circular approximations of iris boundaries are shown in green, and irregular
occlusions are shown in red

Fig. 7.3 Closed eyes prevent the segmentation from providing meaningful data (left). Significant
eyelid coverage results in inaccurate segmentation (middle). Occasionally, the segmentation may
also fail for a good-quality sample (right). All these cases introduce a natural noise into pupil
dynamics time series. As in Fig. 7.2, circular approximations of iris boundaries are shown in green,
and irregular occlusions are shown in red

Correct segmentation delivers a valid pupil size for each video frame. However, there
are at least two types of processing errors that introduce a natural noise into the data:

• missing points: the segmentation method may not be able to provide an estimate of
pupil and/or iris position; this happens typically when the eye is closed completely
(Fig. 7.3 left);

• inaccurate segmentation: caused mainly by low quality data, due to factors such as
blinking, off-axis gaze, or significant occlusion (Fig. 7.3 middle), or by occasional
segmentation algorithm errors (Fig. 7.3 right).

These noisy measurements can be observed in each plot presented in Fig. 7.4 as
points departing from the expected pupil size. Hence, we applied a median filtering
within a one-second window to smooth out most of the segmentation errors and get
denoised pupil size (cf. black dots in Fig. 7.4). Denoised pupil size was used in all
parametric model experiments presented in this chapter. For data-driven models, we
simply filled the gaps by taking the previous value of the pupil size as a predictor of
a missing point.
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Fig. 7.4 Original (blue circles) and denoised (black dots) pupil size depending on the stimulus.
Original data points departing from the expected pupil size, including missing points marked as red
dots, correspond to blinks and iris segmentation errors

7.2.4 Division of Data and Recognition Scenarios

To train the classifiers, both bona fide and attack examples were generated for each
time series. Thefirst 15 s and the last 5 s of each time series represent no pupil reaction,
and thus were used to generate attack presentations. The time series starting from
the 15th second and ending at the 25th second represent authentic reactions to light
stimuli, and thus were used to generate bona fide presentations. We consider three
scenarios of pupil stimulation:

• s1: presentation of only positive stimulus; in this case we observe the eye up to 5 s
after the visible light is switched on,

• s2: presentation of only negative stimulus; in this case we observe the eye up to
5 s after the visible light is switched off, and

• s3: presentation of both stimuli sequentially; in this case, we observe the eye for
10 s after the visible light is switched on and sequentially switched off.

Since the pupil reaction is different for each type of stimulus, we evaluate separate
data-driven models. Also, when only one stimulus is used (positive or negative), the
observation can be shorter than 5s. Shorter observations are also investigated in this
chapter.

7.3 Parametric Model of Pupil Dynamics

The parametric model-based method for pupil dynamics recognition follows past
works by Czajka [18] and uses the Clynes and Kohn pupil reaction model [21]. For
completeness, we briefly characterize this approach in this subsection.

The Clynes and Kohn model, illustrated as a two-channel transfer function of a
complex argument s in Fig. 7.5, accounts for asymmetry in pupil reaction y depending
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Fig. 7.5 Pupil dynamics model deployed in this work and derived from an original proposal of
Kohn and Clynes [21]. Graph adapted from [17]

on the polarity of the stimulus x . Positive stimuli (darkness → lightness) engage
two channels of the model, while for negative stimuli (lightness → darkness), the
upper channel is cut by a nonlinear component, and only lower channel is used
to predict the pupil size. That is, for positive stimuli, each reaction is represented
by a point in seven-dimensional space: three time constants (T1, T2 and T3), two lag
elements (τ1 and τ2), and two gains (Kr and Ki ). For negative stimuli, we end up with
three-dimensional feature space corresponding to lower channel parameters: Ki , T3,
and τ2.

One can easily find the model response y(t;φ) in time domain by calculating the
inverse Laplace transform, given a model shown in Fig. 7.5. Assuming that the light
stimuli occur at t = 0, the upper channel response

yupper(t;φ1) =
⎧
⎨

⎩

− Kr

T 2
1
(t − τ1)e

− t−τ1
T1 if T1 = T2

Kr
T2−T1

(
e− t−τ1

T1 − e− t−τ1
T2

)
otherwise,

(7.1)

where
φ1 = [Kr , T1, T2, τ1].

The lower channel response

ylower(t;φ2) = −Ki
(
1 − e− t−τ2

T3
)
, (7.2)

where
φ2 = [Ki , T3, τ2],

and the model output y(t;φ) is simply a sum of both responses

y(t;φ) = yupper(t;φ1) + ylower(t;φ2), (7.3)

where
φ = [φ1, φ2] = [Kr , T1, T2, τ1, Ki , T3, τ2].
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Fig. 7.6 Original (blue circles) and denoised (black dots) pupil size depending on the stimulus
(positive on the left, negative on the right) along with the Clynes–Kohn model output (gray thick
line)
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Fig. 7.7 Same as in Fig. 7.6, except that the results for a long reaction (10s) after both stimuli
(positive, then negative) are illustrated

In case of negative light stimuli, the model output is based on the lower channel
response since yupper(t;φ1) = 0. The vector φ constitutes the liveness features and is
found as a result of the optimization process used to solve the model fitting problem.
Figures 7.6 and 7.7 present model outputs obtained, for example, time series and the
three recognition scenarios listed in Sect. 7.2.4. Figure7.8 illustrates a correct model
behavior in case of no stimuli.
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Fig. 7.8 Same as in Fig. 7.6, except that the pupil actual size and model output are shown when
the eye is not stimulated by the light

7.4 Data-Driven Models of Pupil Dynamics

7.4.1 Variants of Recurrent Neural Networks

Recurrent neural networks (RNN) belong to a family of networks used for processing
sequential data. RNNs can scale to much longer sequences than networks having
no sequence-based specialization, such as convolutional neural networks (CNN).
Regardless of the sequence length, the learned RNN-based model always has the
same input size. These basic properties make the RNN a well-suited candidate to
model the time series that represent pupil dynamics.

Graphs with cycles are used to model and visualize recurrent networks, and the
cycles introduce dynamics by allowing the predictions made at the current time step
to be influenced by past predictions. Parameter sharing in an RNN differs from the
parameter sharing applied in a CNN: instead of having the same convolution kernel
at each time step (CNN), the same transition function (from hidden state h(t−1) to
hidden state h(t)) with the same parameters is applied at every time step t . More
specifically, a conventional RNN maps an input sequence

(
x(0), x(1), . . . , x(T )

)
into

an output sequence
(
o(0), o(1), . . . , o(T )

)
in the following way:

o(t) = c + Vh(t) (7.4)

h(t) = g(b + Wh(t−1) + Ux(t)
︸ ︷︷ ︸

z(t)

), (7.5)

where W, U, and V are weight matrices for hidden-to-hidden (recurrent), input-to-
hidden, and hidden-to-output connections, respectively; b and c denote bias vectors;
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Fig. 7.9 Repeating element
in the recurrent neural
network (basic RNN cell)

and g is an activation function. The repeating element, basic RNN cell, is shown
in Fig. 7.9. Conventional RNN is the first data-driven model of pupil dynamics
evaluated in this chapter.

Learning long dependencies by conventional RNNs is theoretically possible, but
can be difficult in practice due to problems with gradient flow [22]. Among different
variants proposed to date, the long short-term memory (LSTM) [23] was designed
to avoid the long-term dependency problem and allows the error derivatives to flow
unimpeded.TheLSTMrepeating cell is composedof four nonlinear layers interacting
in a uniqueway (in contrast to a conventional RNN,which uses just a single nonlinear
layer in the repeating cell), Fig. 7.10. The LSTM hidden state h(t) in time moment t
can be expressed as

h(t) = γ (t) ◦ g
(
m(t)

)
, (7.6)

where

γ (t) = σ
(
Whγh(t−1) + Uxγ x(t) + Wmγm(t) + bγ
︸ ︷︷ ︸

z(t)
γ

)

Fig. 7.10 Long short-term memory cell (with peepholes)
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is the output gate, ◦ denotes the Hadamard product, and

m(t) = α(t) ◦ m(t−1) + β(t) ◦ g
(
x(t),h(t−1)

)

is the LSTM cell state (the Constant Error Carousel, or CEC). α(t) and β(t) are the
so-called forget gate and input gate, namely:

α(t) = σ
(
Whαh(t−1) + Uxαx(t) + Wmαm(t−1) + bα︸ ︷︷ ︸

z(t)
α

)

β(t) = σ
(
Whβh(t−1) + Uxβx(t) + Wmβm(t−1) + bβ
︸ ︷︷ ︸

z(t)
β

)
,

where σ is a sigmoid activation function. The closer the gate’s output is to 1, the
more information the model will retain and the closer the output is to 0, the more
the model will forget. Additional Wmα , Wmβ and Wmγ matrices (compared to a
conventional RNN) represent “peephole” connections in the gates to the CEC of the
same LSTM. These connections were proposed by Gers and Schmidhuber [24] to
overcome a problem of closed gates that can prevent the CEC from getting useful
information from the past. LSTMs (with and without peepholes) are the next two
data-driven models of pupil dynamics evaluated in this work.

Greff et al. [25] evaluated various types of recurrent networks, including variants
of theLSTM, and found that coupling input and forget gatesmay end upwith a similar
or better performance as a regular LSTM with fewer parameters. The combination
of the forget and input gates of the LSTM was proposed by Cho et al. [26] and
subsequently named the gated recurrent unit (GRU). The GRU merges the cell state
and hidden state, that is

h(t) = α(t) ◦ h(t−1) + (1 − α(t)) ◦ g
(
x(t), γ (t) ◦ h(t−1)), (7.7)

where
α(t) = σ

(
Whαh(t−1) + Uxαx(t) + bα︸ ︷︷ ︸

z(t)
α

)

is the update gate, and

γ (t) = σ
(
Whγh(t−1) + Uxγ x(t) + bγ
︸ ︷︷ ︸

z(t)
γ

)

is the reset gate.GRUuses nopeephole connections andnooutput activation function.
A repeating GRU cell is shown in Fig. 7.11. GRU will be the fourth data-driven
model of pupil dynamics deployed in this work.
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Fig. 7.11 Gated recurrent unit cell

7.4.2 Implementation and Hyperparameters

In all data-driven models, a neural network with two layers was used: a type of
recurrent neural network composed of 24 hidden neurons, and a perceptron layer
composed of two neurons with a softmax output classifying samples as bona fide
or attack classes. For training, a static learning rate of 0.0001 was used, and the
networks were trained using a batch size of 16 for a total of 200,000 iterations,
or almost 87 epochs. In all cases, the optimizer used for training was RMSProp
proposed by Hinton [27], the loss function used was categorical cross entropy and
the network’s weight initializer was “Xavier” initialization [28].

Each network took in time series data of the form 5 × 1s intervals. The period of
one second was chosen so that each time window would have a significant amount of
data. Thus, the network input x(t) is comprised of 25 data points that correspond to
25 iris images acquired per second. Shorter time windows would not provide enough
context for the network and longer time windows would defeat the purpose of using
recurrent networks. The length of training sequences for both bona fide and attack
examples was kept the same.

7.5 Results

The parametric Clynes and Kohn model transforms each time series into a multidi-
mensional point in the model parameter space. A binary classifier makes a decision
whether the presented time series corresponds to an authentic reaction of the pupil,
or to a reaction that is odd or noisy. Several classifiers were tested, namely, linear
and nonlinear support vector machines (SVM), logistic regression, bagged trees,
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and k nearest neighbors (kNN). In turn, the data-driven model based on recurrent
neural network makes the classification all the way from the estimated pupil size to
the decision. In all experiments (both for parametric and data-driven models), the
same leave-one-out cross validation was applied. That is, to make validation subject-
disjoint, all the data corresponding to a single subject was left for validation, while
the remaining data was used to train the classifier. This train-validation split could
thus be repeated 84 times (equal to the number of subjects). The presented results
are averages over all 84 of these validations.

We follow ISO/IEC 30107-1:2016 and use the following PAD-specific error met-
rics:

• Attack Presentation Classification Error Rate (APCER): proportion of attack
presentations incorrectly classified as bona fide (genuine) presentations, and

• Bona Fide Presentation Classification Error Rate (BPCER): proportion of
bona fide (genuine) presentations incorrectly classified as presentation attacks.

Table 7.1 presents the results obtained from both parametric and data-drivenmod-
els and for all three scenarios of eye stimulation (only positive, only negative, and
both stimuli). The best solution in the positive stimuli scenario was based on the
parametric model (Clynes–Kohn + SVM). It recognized 99.77% of the normal
pupil reactions (BPCER= 0.23%) and 99.54% of the noise (APCER= 0.46%). The
data-driven solution based on LSTM with no peephole connections achieved sim-
ilar accuracy recognizing 98.62% of the normal pupil reactions (BPCER = 1.38%)
and 99.77% of the noisy time series (APCER = 0.23%).

The negative stimulus was harder to classify by a data-driven model, as
the best accuracy, obtained with a conventional recurrent neural network, recog-
nized 96.09% of normal pupil reactions (BPCER = 3.91%) and 98.74% of noisy
time series (APCER = 1.26%). In turn, parametric model with bagged trees or
kNN classification was perfect in recognizing spontaneous pupil oscillations
(APCER = 0) and correctly classified 99.77% of bona fide pupil reactions
(BPCER = 0.23%).

Increasing the observation time to 10s and applying both positive and negative
stimuli (Table 7.1, last column) do not result in a more accurate solution. Therefore,
we have investigated the winning solutions applied to positive or negative stimuli for
shorter times, starting from 2s. One should expect to get both APCER and BPCER
below 1% when the parametric model is applied to time series of approximately
3 s, Fig. 7.12. For data-driven models, we do not observe a substantial decrease in
performance even when the eye is observed for approximately 2 s, Fig. 7.13. These
results increase a potential for practical implementations.

7.6 Discussion

In this chapter, we have presented how recurrent neural networks can be applied
to serve as models of pupil dynamics for use in presentation attack detection, and
compared this approachwithmethods based on a parametricmodel. The results show
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Fig. 7.12 The best configurations found for the entire positive and negative stimuli (5 s) analyzed
for shorter horizons with a parametric model. Results for a positive stimulus (left) and a negative
stimulus (right)
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Fig. 7.13 Same as in Fig. 7.12, except that a data-driven model was used. Results for a positive
stimulus (left) and a negative stimulus (right)

that data-driven models can be effective alternatives to parametric ones. To make a
fair evaluation of our findings, we discuss shortly both limitations and advantages of
the proposed iris PAD solution in this concluding section.

Merits. The results of distinguishing the true pupil reaction from a noisy input
representing incorrect pupil reactions (or no reaction) are astonishing. Pupil dynam-
ics as a behavioral presentation attack detection has a potential to detect sophisticated
attacks, including coercion, that would be difficult to detect by methods designed
to detect static artifacts such as iris paper printouts of cosmetic contact lenses. This
chapter shows that pupil size can be effectively modeled and classified by simple
recurrent neural networks, and the recent popularity of various deep learning soft-
ware tools facilitates such implementations. The minimum observation time of 2–3s
required to achieve the best accuracy presented in this study makes this PAD close
to practical implementations since a typical iris acquisition requires a few seconds
even when only a still image is to be taken.
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Limitations. It has been shown in the literature that pupil reaction depends on
many factors such as health conditions, emotional state, drug induction, and fatigue.
It also depends on the level of ambient light. Therefore, the models developed in
this work may not work correctly in adverse scenarios, unless we have knowledge or
data that could be used to adapt our classifiers. Generating attack presentations for
pupil dynamics is difficult; hence, the next necessary step is the reformulation of this
problem into one-class classification. Also, the application of negative or positive
stimuli depends on the implementation environment. That is, itwill be probably easier
to stimulate the eye by increasing level of light than evoke pupil dilation that requires
a sudden decrease in the level of ambient light. An interesting observation is that
BPCER (recognition of authentic eyes) for the data-driven solution is significantly
higher (3–4%) than for the parametric model-based approach (up to 1%). ACPER
(recognition of no/odd reactions) remains similar in both approaches. This may
suggest that more flexible neural network-based classification, when compared to
a model specified by only seven parameters, is more sensitive to subject-specific
fluctuations in pupil size and presents lower generalization capabilities than methods
based on a parametric model.
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Chapter 8
Review of Iris Presentation Attack
Detection Competitions

David Yambay, Adam Czajka, Kevin Bowyer, Mayank Vatsa, Richa Singh,
Afzel Noore, Naman Kohli, Daksha Yadav and Stephanie Schuckers

Abstract Biometric recognition systems have been shown to be susceptible to
presentation attacks, the use of an artificial biometric in place of a live biometric
sample from a genuine user. Presentation Attack Detection (PAD) is suggested as
a solution to this vulnerability. The LivDet-Iris—Iris Liveness Detection Competi-
tion started in 2013 strives to showcase the state-of-the- art in presentation attack
detection by assessing the software-based iris PAD methods (Part 1), as well as
hardware-based iris PAD methods (Part 2) against multiple datasets of spoof and
live fingerprint images. These competitions have been open to all institutions, indus-
trial and academic, and competitors which can enter as either anonymous or using
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the name of their institution. There have been two previous fingerprint competitions
through LivDet; 2013 and 2015. LivDet-Iris 2017 is being conducted during 2017.
LivDet-Iris has maintained a consistent level of competitors for Part 1: Algorithms
throughout the two previous competitions and 2017 competition has begun to garner
further interest.

8.1 Introduction

The iris biometric is becomingly an increasingly popular biometric modality for
access control and commercial products due to its properties such as uniqueness,
stability, and performance. However, these systems have been shown to be vulnerable
to the presentation attacks in the form of patterned contact lenses and printed iris
images. Numerous competitions have been held in the past to address matching in
biometrics such as the FingerprintVerificationCompetition held in 2000, 2002, 2004,
and 2006 [1] and the ICBCompetition on Iris Recognition (ICIR2013) [2]. However,
these competitions did not consider presentation attacks.

Since 2009, in order to assess the main achievements of the state-of- the-art in
fingerprint liveness detection, University of Cagliari and Clarkson University orga-
nized the first Fingerprint Liveness Detection Competition. This expanded to include
the iris biometric in 2013.

The First International Iris Liveness Detection Competition (LivDet) 2013 [3],
provided the first assessment on iris presentation attack detection. LivDet-Iris has
continued in 2015 and 2017. LivDet 2015 [4] and 2017 were created in order to
examine the progressing state-of-the-art in presentation attack detection.

LivDet-Fingerprint has been hosted in 2009 [5], 2011 [6], 2013 [7], and 2015 [8]
and are discussed in the previous chapter.

This chapter reviews the previous LivDet-Iris competitions and the evolution of
the competitions over the years. The following sections will describe the methods
used in testing for each of the LivDet competitions as well as descriptions of the
datasets that have been generated from each competition. Also discussed are the
trends across the different competitions that reflects change to the art of presentation
attacks as well as advances in the state-of-the-art in presentation attack detection.
Further, conclusions from previous LivDet competitions and the future of LivDet is
discussed.

8.2 Background

The Liveness Detection Competition series was started in 2009 and created a bench-
mark for measuring fingerprint presentation attack detection algorithms, similar to
matching performance. At that time, there had been no other public competitions held
that has examined the concept of liveness detection as part of a biometric modality
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in deterring spoof attack and in 2013, the competition was expanded to include the
iris modality.

The goal of LivDet since its conception has been to allow the researcher to test their
own algorithms and systems on publicly available data sets, with results published
to establish baselines for future research and to examine the state-of-the-art as it
develops.

Since the start of LivDet, evaluation of spoof detection for facial systems were
performed in the Competition on Counter Measures to 2D Facial Spoofing Attacks,
first held in 2011 and then, held a second time in 2013. The purpose of this com-
petition is to address different methods of detection for 2D facial spoofing [9]. The
competition dataset consisted of 400 video sequences, 200 of them real attempts, and
200 attack attempts [9]. A subset was released for training and then, another subset
of the dataset was used for testing purposes.

8.3 Methods and Datasets

Each LivDet competition is composed of two distinct parts: Part 1: Algorithmswhich
features strictly software-based approaches to presentation attack detection and Part
2: Systemswhich features software or hardware-based approaches in a fully packaged
device. Although LivDet-Iris has not yet held a systems competition. The protocol
of Part 1: Algorithms are described further in this section along with descriptions
of each dataset created through this competition. There are two main presentation
attack types during the competition: printed iris images and patterned contact lenses.
Printed iris images are used to impersonate another person while patterned contact
lenses are used to obfuscate the attacker’s natural iris pattern.

8.3.1 Part 1: Algorithm Datasets

Each iteration of the competition features at least three different datasets of iris data.
Individual sensors have been used in different competitions, although new data is
created for each individual competition. Due to the fact that LivDet data is made
public and some sensors were used in multiple competitions, competitors were able
to use previous competition data in their algorithm training.

LivDet 2013 consisted of data from three iris sensors: DALSA (Clarkson),
LG4000 (Notre Dame), and IrisGuard AD100 (Warsaw). Presentation attacks were
created for each dataset using printed iris images for IrisGuard, as well as using
patterned contact lenses for DALSA and LG4000. Number of images in each dataset
is shown in Fig. 8.1 and further information can be found in [3] (Table8.1).

Textured contact lenses for theNotreDame dataset came from Johnson& Johnson
[10], CIBAVision [11], and Cooper Vision [12]. Contacts were purchased of varying
colors from each manufacturer and some contacts are “toric” lenses which means
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Table 8.1 Dataset description LivDet 2013

Training Testing

Live Spoof Live Spoof

Notre Dame:LG4000 2000 1000 800 400

Warsaw: IrisGuard AD100 228 203 624 612

Clarkson: DALSA 270 400 246 440

that they are designed to maintain a preferred orientation around the optical axis. The
training and testing sets were split equally into three classes: (1) no contact lenses,
(2) non-textured contact lenses, and (3) textured contact lenses. The sample images
can be seen in Fig. 8.1.

The Warsaw dataset was generated using printouts of iris images using a laser
printer on matte paper and making a hole where the pupil was in order to have a live
eye behind the spoof iris image. Two different printers were used to build Warsaw
subset: (a) HP LaserJet 1320 and (b) Lexmark c534dn. The HP LaserJet was used to
print “low resolution” iris images of approximately 600dpi, whereas the Lexmark
was used to print “high resolution” images of 1200dpi. Only high-resolution images
were present in the training set, whereas both low- and high resolution were used in
the testing set. The sample images can be seen in Fig. 8.2.

The Clarkson dataset was created using patterned contact lenses. The images were
collecting using an NIR video camera, DALSA. The camera is modified to capture
in the NIR spectrum similar to commercial iris cameras. It captures a section of the
face of each subject that includes both eyes. The eyes are then cropped out of the
images to create the subset. A total of 64 eyes were used in the live dataset with
varying illuminations as well as varying levels of blur. The training set contained 5
images per illumination, but the higher blur level was too strong and was removed
giving 3 images per illumination in the testing set. The spoof set contained 6 subjects
wearing 19 patterned contacts each. The samples images can be seen in Fig. 8.3.
A list of patterned contacts used in the Clarkson Dataset is shown in Table8.2.

The dataset for LivDet 2015 consisted of three datasets: DALSA (Clarkson),
LG IrisAccess EOU2200 (Clarkson), and IrisGuard AD100 (Warsaw). Presentation
attacks consisted of printed iris images for all three datasets and patterned contact
lenses for both of Clarkson’s datasets. Number of images in each dataset is shown
in Fig. 8.3 and further information can be found in [4].

The Clarkson dataset used the same spoof attacks for both the two datasets. The
printed images use a variety of configurations including 1200dpi versus 2400dpi
printouts, contrast adjustment versus raw images, pupil hole versus no pupil hole,
and glossy paper versus matte paper. The printouts came from images collected from
both the LG iris camera and from the Dalsa camera. The LG camera is similar to the
DALSA camera, and in that it captures video sequences, however, the LG camera is
designed as an iris camera. The sample images for both LG and DALSA can be seen
in Figs. 8.4 and 8.5, respectively. The patterned contact lenses used by the Clarkson
datasets is shown in Table8.4.
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Fig. 8.1 Sample images of University of Notre Dame subset showing the variety of cosmetic lens
textures that are available from different manufacturers. All images are from the same subject eye

Fig. 8.2 Sample images of Warsaw subset. Images of the authentic eyes are shown in the left col-
umn, and their fake counterparts are shown in the right column. Low- and high-resolution printouts
are presented in the upper and lower rows, respectively
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Fig. 8.3 Sample images from Clarkson dataset. Live images (top) and spoof images (bottom)

Fig. 8.4 Images from LG dataset. Left to right; live, patterned, printed

The Warsaw dataset is created using the same Lexmark 534dn used previously in
LivDet 2013 and only used 1200dpi images. Printouts were completed using both
color printing and black andwhite printing. In addition, pupil holes are added in order
to have a live user presented behind the printouts. This is to counter a camera that
searches for specular reflection of a live cornea. The sample images for the Warsaw
dataset can be seen in Fig. 8.6 (Table8.3).

LivDet 2017 was comprised of four different datasets: LG IrisAccess EOU2200
(Clarkson), IrisGuard AD100 (Warsaw), LG 4000 and AD100 (Notre Dame), and
IriShield MK2120U (IIITD-WVU). Warsaw and Notre Dame had datasets with a
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Table 8.2 Clarkson patterned contact types 2013

Number Contact type Color

1 Freshlook dimensions Pacific blue

2 Freshlook dimensions Sea green

3 Freshlook colorblends Green

4 Freshlook colorblends Blue

5 Freshlook colorblends Brown

6 Freshlook colors Hazel

7 Freshlook colors Green

8 Freshlook colors Blue

9 Phantasee natural Turquoise

10 Phantasee natural Green

11 Phantasee vivid Green

12 Phantasee vivid Blue

13 Phantasee diva Black

14 Phantasee diva Brown

15 ColorVue biggerEyes Cool blue

16 ColorVue biggerEyes Sweet honey

17 ColorVue 3 Tone Green

18 ColorVue elegance Aqua

19 ColorVue elegance Brown

Table 8.3 Dataset description LivDet 2015

Training Testing

Live Patterned Printed Live Patterned Printed

Warsaw 852 N/A 815 2002 N/A 3890

Clarkson LG 400 576 846 378 576 900

Clarkson DALSA 700 873 846 378 558 900

Fig. 8.5 Images from Dalsa dataset. Left to right; live, patterned, printed
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Fig. 8.6 Images from Warsaw dataset. Left to right; live, printed

Table 8.4 Patterned contact types from LG and Dalsa datasets. Unknown (test set only) patterns
in bold

Number Contact type Color

1 Expressions colors Brown

2 Expressions colors Jade

3 Expressions colors Blue

4 Expressions colors Hazel

5 Air optix colors Brown

6 Air optix colors Green

7 Air optix colors Blue

8 Freshlook colorblends Brilliant blue

9 Freshlook colorblends Brown

10 Freshlook colorblends Honey

11 Freshlook colorblends Green

12 Freshlook colorblends Sterling gray

13 Freshlook one-day Green

14 Freshlook one-day Pure hazel

15 Freshlook one-day Gray

16 Freshlook one-day Blue

17 Air optix colors Gray

18 Air optix colors Honey

19 Expressions colors Blue topaz

20 Expressions colors Green

single presentation attack type, printed iris images, and patterned contact lenses,
respectively. Clarkson and IIITD-WVU used both printed iris images and patterned
contacts in their datasets. Number of images in each dataset is shown in Fig. 8.5
(Table8.5).
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Table 8.5 Dataset description LivDet 2017

Training Testing

Live Patterned Printed Live Patterned Printed

Warsaw 1844 N/A 2669 974 N/A 2016

Clarkson 2469 1122 1346 1485 765 908

Notre dame 600 600 N/A 900 1800 N/A

IIITD-WVU 2250 1000 3000 702 701 2806

8.3.2 Specific Challenges

LivDet 2013 and 2015 were organized as similar competitions, however, LivDet
2017 was used as a chance to propose more difficult challenges to participants. Each
dataset contained some form of unknown presentation attack in the testing dataset,
which was not always the case in previous iterations of the competition. Beyond
this, the Clarkson dataset included two additional challenges beyond the unknown
presentation attacks. The first of which is that included in the testing set were three
patterned contact types that only obscure part of the iris. Acuvue Define is designed
to accentuate the wearer’s eyes and only cover a portion of the natural iris pattern.
Beyond this, the printed iris image testing set contained iris images thatwere captured
by an iPhone 5 in the visible spectrum. The red channel was extracted and converted
to grayscale and presented back to the sensor. The Warsaw and IIITD-WVU testing
datasets both had unknown presentation attacks that were captured on a different
camera than the training data, although the resolution was kept consistent with the
training sets. The patterned contacts used by Clarkson can be seen in Table8.6.

The LivDet 2017 competition also included a cross-sensor challenge. In the stan-
dard competition, each algorithm is trained to a specific training set and only data
from that testing set is compared to that version of the competitor’s algorithm. In
the cross-sensor challenge, each competitor had a single algorithm that was tested
against each of the testing datasets to compute a singular error rate.

Due to all of these additional challenges, LivDet 2017 is considered by the com-
petition organizers as vastly more difficult to correctly classify the images.

8.3.3 Performance Evaluation

Each of the algorithms returned a value representing a percentage of posterior prob-
ability of the live class (or a degree of “liveness”) given the image normalized in
the range 0–100 (100 is the maximum degree of liveness, 0 means that the image is
fake). The threshold value for determining liveness was set at 50. This threshold is
used to calculate Attack Presentation Classification Error Rate (APCER) and Bona
Fide Presentation Classification Error Rate (BPCER) error estimators, where
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Table 8.6 Patterned contact types from LG dataset. Unknown (test set only) patterns in bold

Number Contact type Color

1 Acuvue define Natural shimmer

2 Acuvue define Natural shine

3 Acuvue define Natural sparkle

4 Air optix Green

5 Air optix Brilliant blue

6 Air optix Brown

7 Air optix Honey

8 Air optix Hazel

9 Air optix Sterling gray

10 Expressions colors Aqua

11 Expressions colors Hazel

12 Expressions colors Brown

13 Expressions colors Green

14 Expressions colors Jade

15 Freshlook colorblends Amethyst

16 Freshlook colorblends Brown

17 Freshlook colorblends Green

18 Freshlook colorblends Turquoise

19 Freshlook colors Blue

20 Freshlook colors Green

• APCER is the rate of misclassified spoof images (spoof called live) and
• BPCER is the rate of misclassified live images (live called spoof).

Both APCER and BPCER are calculated for each dataset separately, as well
as the average values across all datasets. Being able to see a range of values for a
system is beneficial for understanding how the system is performing against different
types of data, however, each competitor will have a different method of determining
whether an image is live or spoof. A standardized method was created with which
all competitors would have to normalize their outputs to fit. This 0–100 range and
a threshold of 50 are arbitrary values provided to competitors, but they provide a
common range for all competitors to normalize their scores within. The competitors
choose how they wish to adjust their system to work within the confines of the
competition. To select a winner, the average of APCER and BPCER was calculated
for each participant across datasets. The weight of importance between APCER to
BPCER will change based on use case scenario. In particular, low BPCER is more
important for low- security implementations such as unlocking phones, however, low
APCER is more important for high-security implementations. Due to this, APCER
and BPCER are given equal weight in the LivDet competition series.

Error rate curves demonstrating a changing threshold are shown in the individual
competition papers.
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Processing time per image is also considered as long processing times can cause
throughput issues in systems.

This performance evaluation is examined a second time for the cross-sensor chal-
lenge in LivDet 2017 which has results that are separate from the main competition.

In LivDet competitions before 2017, a different terminology was used to deter-
mine error rates. FerrLive is equivalent to the BPCER. FerrFake is equivalent to the
APCER.

8.4 Examination of Results

In this section, we analyze the experimental results for the three LivDet editions. The
results show the growth and improvement across the three competitions. The overall
competition results are shown in this chapter. More in-depth analysis of the results
as well error rate curves can be seen in the individual competition reports for each
LivDet.

8.4.1 Participants

The competition is open to all academic and industrial institutions. Upon registration,
eachparticipantwas required to sign adatabase release agreement detailing the proper
usage of data made available through the competition. Participants were then given a
database access letter with a username and password to access the server to download
the training data.

Participants have the ability to register as either an anonymous submission or as
their organization. After the results are tallied, each competitor is sent their organiza-
tion’s personal results and given the option to be anonymous or as their organization
before publication. Placement in the competition and results of other submissions
are not provided to competitors at that time.

8.4.2 Trends of Competitors and Results for Fingerprint
Part 1: Algorithms

Unlike LivDet-Fingerprint, the number of competitors for LivDet-Iris has remained
relatively constant fromyear to year. LivDet 2013was comprised of three competitors
and these competitors are listed in Table8.7. LivDet 2015 had four total submissions
and these competitors can be seen in Table8.8. In LivDet 2017, the competition
had three participants and their information is shown in Table8.9. Participation in
LivDet-Iris has not fallen over time, however, unfortunately unlike the fingerprint
competitions, it has not seen the same level of entrants.
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Table 8.7 Participants and acronyms for LivDet 2013

Participant name Algorithm name

ATVS—Biometric Recognition Group, Universidad Autonoma de Madrid ATVS

University of Naples Federico II Federico

Faculdade de engenharia de Universidade do Porto Porto

Table 8.8 Participants and acronyms for LivDet 2015

Participant name Algorithm name

Anonymous 0 Anon0

Anonymous 1 Anon1

Anonymous 2 Anon2

Anonymous University of Naples Federico II Federico

Table 8.9 Participants and acronyms for LivDet 2017

Participant name Algorithm name

Anonymous Anon1

Universita’ deli Studi di Napoli UNINA

Chinese Academy of Sciences CASIA

Table 8.10 Best error rate for each competition.

2013

Minimum avg BPCER Minimum avg APCER

28.56% 5.72%

2015

Minimum avg BPCER Minimum avg APCER

7.53% 1.34%

2017

Minimum avg BPCER Minimum avg APCER

3.36% 14.71%

The best algorithm for each competition, in terms of performance, are detailed in
Table8.10. These values represent the best competitor algorithm taking the average
error rates across all testing datasets.Average values are computed by taking themean
of the error rateswith no adjustment for dataset size.The lackof adjustment for dataset
size is due to the fact that each dataset is constructed with entirely different properties
and have different attacks and quality levels. Also since each partner creates their
own dataset, the sizes of each dataset have the potential to be wildly different sizes.
Due to this, adjusting error rates by dataset sizewhen calculating the overall error rate
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Table 8.11 Mean and standard deviation values for each dataset of the competitions

2013

Mean BPCER Std. dev. BPCER Mean APCER Std. dev. APCER

Clarkson 29.68 18.69 26.8 30.57

Warsaw 17.55 10.98 6.75 5.70

2015

Mean BPCER Std. dev. BPCER Mean APCER Std. dev. APCER

Clarkson LG 9.39 5.12 6.12 7.81

Clarkson Dalsa 9.79 4.51 11.99 14.28

Warsaw 1.6 1.47 2.39 4.45

2017

Mean BPCER Std. dev. BPCER Mean APCER Std. dev. APCER

Clarkson 3.10 2.86 21.17 15.19

Warsaw 4.74 4.29 5.91 2.41

Notre Dame 2.61 4.28 35 44.11

IIITD-WVU 6.70 8.38 40.61 25.01

would heavily skew the error rates towards an abnormally large dataset compared to
other datasets, such as Warsaw from LivDet 2015.

LivDet 2013 saw error rates of above 10% for BPCER for all submissions, how-
ever, in both LivDet 2015 and 2017, BPCER dropped below 10% for all competitors,
which is a substantial decrease in error rates and a consistent decrease over the course
of the competitions.

Examining APCER across the three competitions, it can be seen that there has
been a pendulum effect in the error rates. APCER dropped considerably from 5.72
to 1.34% from 2013 to 2015, however, LivDet 2017 saw APCER spike higher. This
is not unexpected as LivDet 2017 included a number of new challenges from a
presentation attack perspective. APCER rates are as expected given the increased
difficulty of the challenge.

For each competition, the mean and standard deviation of the submissions across
each dataset can be calculated. Although LivDet 2013 has three datasets, only one
competitor completed algorithms against all three datasets and thus, mean and stan-
dard deviation cannot be calculated for the Notre Dame dataset for LivDet 2013.
These values are shown in Table8.11. The high standard deviations seen are due to
some datasets where one or more algorithms have low error rates while others have
extraordinarily high error rates. With this, it can be seen that especially with LivDet
2013 and 2017 the situation of highly varied error rates by algorithms for a specific
dataset is prevalent. Notre Dame in 2017 shows this the most with two error rates
hovering around 10% for APCER but one algorithm having an error rate of 85.89%.

The results do suggest that there has been an advancement in the state- of-the-art
for presentation attack detection, however, systems were not fully prepared for the
sudden increase in presentation attack difficulty. However, there is still evidence that
systems are advancing over time.
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8.5 Future of LivDet

LivDet has continued in 2017 with the fingerprint competition taking place in the
fall of 2017. The new challenges posed in the iris competition in 2017 show that
more advancement needs to be made in iris presentation attack detection algorithms.
With the 2017 dataset becoming public, it is hoped that algorithms will be more well
equipped to handle the new challenges in the next LivDet competition.

The cross-sensor challenge especially is an interesting challenge being examined
for future competitions as it shows how an algorithm can be trained to handle data
from multiple different sensors.

8.6 Conclusions

Since the inception of the LivDet-Iris competition, LivDet has been aimed to allow
research centers and industries the ability to have an independent assessment of their
presentation attack detection algorithms. While error rates have improved over time,
it is evident thatmore improvements can bemade in the area of iris presentation attack
detection and the authors look forward to what future researchers can accomplish
with the datasets.All datasets are publicly available and can be requested at livdet.org.
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Part III
Face Biometrics



Chapter 9
Introduction to Face Presentation Attack
Detection

Javier Hernandez-Ortega, Julian Fierrez, Aythami Morales
and Javier Galbally

Abstract The main scope of this chapter is to serve as a brief introduction to face
presentation attack detection. The next pages present the different presentation
attacks that a face recognition system can confront, in which an attacker presents
to the sensor, mainly a camera, an artifact (generally a photograph, a video, or a
mask) to try to impersonate a genuine user. First, we make an introduction of the
current status of face recognition, its level of deployment, and the challenges it faces.
In addition, we present the vulnerabilities and the possible attacks that a biometric
system may be exposed to, showing that way the high importance of presentation
attack detection methods. We review different types of presentation attack methods,
from simpler to more complex ones, and in which cases they could be effective.
Later, we summarize the most popular presentation attack detection methods to deal
with these attacks. Finally, we introduce public datasets used by the research com-
munity for exploring the vulnerabilities of face biometrics and developing effective
countermeasures against known spoofs.

9.1 Introduction

Over the last decades, there have been numerous technological advances that helped
to bring new possibilities to people in the form of new devices and services. Some
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years ago, it would have been almost impossible to imagine having in the market
devices like current smartphones and laptops, at affordable prices that allow a high
percentage of the population to have their own piece of top-level technology at home,
a privilege that historically has been restricted to big companies and research groups.

Thanks to this quick advance in technology, specially in computer science and
electronics, it has been possible to broadly deploy biometric systems for the first
time. Nowadays, they are present in a high number of scenarios like border access
control, surveillance, smartphone authentication, forensics, and online services like
e-learning and e-commerce.

Among all the existing biometric traits, face recognition is currently one of the
most extended. The face has been studied as a mean of recognition since the 60s,
acquiring special relevance in the 90s following the evolution of computer vision
[1]. Some interesting properties of the human faces for biometrics are acquisition at
a distance, nonintrusively, and the good discriminant characteristics of the face to
perform identity recognition.

At present, face is one of the biometric traits with the highest economic and social
impact due to several reasons:

• Face is the secondmost largely deployed biometric atworld level in terms ofmarket
quota right after fingerprints [2]. Each day more and more manufacturers are
including face recognition in their products, likeApplewith its Face ID technology.

• Face is adopted in most identification documents such as the ICAO-compliant
biometric passport [3] or national ID cards [4].

Given their high level of deployment, attacks having a face recognition system as
their target is not restricted anymore to theoretical scenarios, becoming a real threat.
There exist all kinds of applications and sensitive information that can bemenaced by
attackers. Giving to each face recognition application an appropriate level of security,
as it is being done with other biometric traits, like iris or fingerprint, should be a top
priority.

Historically, the main focus of research in face recognition has been given to the
improvement of the performance at the verification and identification tasks, i.e., dis-
tinguishing better between subjects using the available information of their faces. To
achieve that goal, a face recognition system should be able to optimize the differences
between the facial features of each user [5], and also the similarities among samples
of the same user. Within the variability factors that can affect the performance of
face recognition systems there are occlusions, low-resolution, different viewpoints,
lighting, etc. Improving the performance of recognition systems in the presence of
these variability factors is currently an active area in face recognition research.

Contrary to the optimization of their performance, the security vulnerabilities of
face recognition systems have been much less studied in the past, and only over the
recent few years some attention has been given to detecting different types of attacks
[6]. Regarding these security vulnerabilities, Presentation Attack Detection (PAD)
consists on detecting whether a biometric trait comes from a living person or it is a
fake.

The rest of this chapter is organized as follows: Sect. 9.2 overviews the main vul-
nerabilities of face recognition systems, making a description of several presentation
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attack approaches. Section9.3 introduces presentation attack detection techniques.
Section9.4 presents some available public databases for research and evaluation of
face presentation attack detection. Sections9.5 and 9.6 discuss about architectures
and applications of face PAD. Finally, concluding remarks are drawn in Sect. 9.7.

9.2 Vulnerabilities in Face Biometrics

In the present chapter, we concentrate on Presentation Attacks, i.e., attacks against
the sensor of a face recognition system [7] (see point V1 in Fig. 9.1). An overview of
indirect attacks to face systems can be found elsewhere [8]. Indirect attacks (points
V2–V7 in Fig. 9.1) can be prevented by securing certain points of the face recog-
nition system, i.e., the communication channels, the equipment and the infrastruc-
ture involved. The techniques needed for improving those modules are more related
to “classical” cybersecurity than to biometrics, so they will not be covered in this
chapter.

On the other hand, presentation attacks are a purely biometric vulnerability that is
not shared with other IT security solutions and that needs specific countermeasures.
In these attacks, intruders use some type of artifact, typically artificial (e.g., a face
photo, a mask, a synthetic fingerprint or a printed iris image), or try to mimic the
aspect of genuine users (e.g., gait, signature) to fraudulently access the biometric
system.

A high amount of biometric data are exposed, (e.g., photographs and videos at
socialmedia sites) showing the face, eyes, voice, and behavior of people. Presentation
attackers are aware of this reality and take advantage of those sources of information
to try to circumvent face recognition systems [9]. This is one of the well-known

Fig. 9.1 Scheme of a generic biometric system. In this type of system, there exist several modules
and points that can be the target of an attack (V1–V7). Presentation attacks are performed at sensor
level (V1), without the need of having access to the interior of the system. Indirect attacks (V2–V7)
can be performed at the database, the matcher, the communication channels, etc. In this type of
attack the attacker needs access to the interior of the system
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drawbacks of biometrics: “biometric traits are not secrets” [10]. In this context, it is
worth noting that a factor that makes face an interesting trait for person recognition,
i.e., easiness to capture, makes face biometrics also specially vulnerable to attackers,
who may easily find example faces of the identities to attack.

In addition to being fairly easy to obtain a face image of the real users under attack,
face recognition systems are known to respond weakly to presentation attacks, for
example, using one of these three categories of attacks:

1. Using a photograph of the user to be impersonated [11].
2. Using a video of the user to be impersonated [12].
3. Building and using a 3Dmodel of the attacked face, for example, an hyperrealistic

mask [13].

The success probability of an attack may vary considerably depending on the
characteristics of the face recognition system, for example, if it uses visible light
or works in another range of the spectrum [14], if it has one or several sensors,
the resolution, the lighting, and also depending on the characteristics of the artifact:
quality of the texture, the appearance, the resolution of the presentation device, the
type of support used to present the fake, or the background conditions.

Without implementing presentation attack detection measures, most of the state-
of-the-art facial biometric systems are vulnerable to simple attacks that a regular
person would detect easily. This is the case, for example, of trying to impersonate
a subject using a photograph of his face. Therefore, in order to design a secure face
recognition system in a real scenario, for instance for replacing password-based
authentication, Presentation Attack Detection (PAD) techniques should be a top
priority from the initial planning of the system.

Given the discussion above, it could be stated that face recognition systemswithout
PAD techniques are at clear risk, so a question often rises: What technique(s) should
be adopted to secure them? The fact is that counterfeiting this type of threats is not a
straightforward problem, as new specific countermeasures need to be developed and
adopted whenever a new attack appears.

With the scope of encouraging and boosting the research in presentation attack
detection techniques in face biometrics, there are numerous and very diverse initia-
tives in the form of dedicated tracks, sessions, and workshops in biometric-specific
and general signal processing conferences [15, 16]; organization of competitions
[17]; and acquisition of benchmark datasets [13, 18] that have resulted in the pro-
posal of new presentation attack detection methods [7]; standards in the area [19,
20]; and patented PAD mechanisms for face recognition systems [21].

9.2.1 Attacking Methods

Typically, face recognition systems can be spoofed by presenting to the sensor (e.g.,
a camera) a photograph, a video, or a 3D mask of a targeted person (see Fig. 9.2).
There are other possibilities in order to circumvent a face recognition system, such as
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Fig. 9.2 Examples of face presentation attacks: The upper image shows an example of a genuine
user, and below it there are some examples of presentation attacks, depending on the artifact shown
to the sensor: a photo, a video, a 3D mask, and others

using makeup [22] or plastic surgery. However, using photographs and videos are the
most common type of attacks due to the high exposition of face (e.g., social media,
video surveillance), and the low cost of high-resolution digital cameras, printers, or
digital screens.

Regarding the attack types, a general classification can be done taking into account
the nature and the level of complexity of the artifact used to attack: photo-based,
video-based, and mask-based (as can be seen in Fig. 9.2). It must be remarked that
this is only a classification of the most common types of attacks, but there could exist
more complex and newer attacks that may not fall into in any of these categories, or
that may belong to several categories at the same time.

9.2.1.1 Photo Attacks

A photo attack consists in displaying a photograph of the attacked identity to the
sensor of the face recognition system [23] (see example in Fig. 9.2).

Photo attacks are the most critical type of attack because of several factors. For
example, printing color images from the face of the genuine user is really cheap and
easy to do. These are usually called print attacks in the literature [24]. Alternatively,
the photos can be displayed in the high-resolution screen of a device (e.g., a smart-
phone, a tablet, or a laptop). It is also easy to obtain samples of genuine faces thanks
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to the recent growth of social media sites like Facebook, Twitter, Flickr, etc. [9].With
the price reduction that digital cameras have experimented in recent years, it is also
possible to obtain photos of a legitimate user simply by using a hidden camera.

Among the photo attack techniques, there are also more complex ones like photo-
graphic masks. This technique consists in printing a photograph of the subject’s face
and then making holes for the eyes and the mouth [18]. This is a good way to avoid
presentation attack detection techniques based on blinking and mouth movements
detection.

Even if these attacks seem too simple to work in a real scenario, some stud-
ies performed by private security firms indicate that many commercial systems are
vulnerable to them [25]. Due to the easiness of carrying out this type of attack, imple-
menting robust countermeasures that perform well against them should be a must
for any facial recognition system.

9.2.1.2 Video Attacks

Similarly to the case of photo attacks, video acquisition of people intended to be
impersonated is also becoming increasingly easier with the growth of public video
sharing sites and social networks, or even using a hidden camera. Another reason to
use this type of attack is that it increases the probability of success by introducing
liveness appearance to the displayed fake biometric sample [26].

Once a video of the legitimate user is obtained, one attacker could play it in any
device that reproduces video (smartphone, tablet, laptop, etc.) and then present it to
the sensor/camera [27], (see Fig. 9.2). This type of attacks is often referred to in the
literature as replay attacks, a more sophisticated version of photo attacks.

Replay attacks are more difficult to detect, compared to the photo spoofs, as not
only the face texture and shape is emulated but also its dynamics, like eye blinking,
mouth and/or facial movements [12]. Due to their higher sophistication, it is reason-
able to assume that systems that are vulnerable to photo attacks will perform even
worse with respect to video attacks, and also that being robust against photo attacks
does not mean to be equally strong against video attacks [18]. Therefore, specific
countermeasures need to be developed and implemented.

9.2.1.3 Mask Attacks

In this type of attack, the presented artifact is a 3D mask of the user’s face. The
attacker builds a 3D reconstruction of the face and presents it to the sensor/camera.
Mask attacks require more skills to be well executed than the previous attacks, and
also access to extra information in order to construct a realistic mask of the genuine
user [28].

There are different types of masks depending on the complexity of the manufac-
turing process and the amount of data that is required. Some examples, ordered from
simpler to more complex are:
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Fig. 9.3 Example of 3Dmasks. These are the 17 hard-resin facialmasks used to create the 3DMAD
dataset, from [13]

• The simplest method is to print a 2D photograph of the user’s face and then stick it
to a deformable structure. Examples of this type of structures could be a t-shirt or
a plastic bag. Finally, the attacker can put the bag on his face and present it to the
biometric sensor. This attack can mimic some deformable patterns of the human
face, allowing to spoof some low-level 3D face recognition systems.

• Image reconstruction techniques can generate 3D models from two or more pic-
tures of the genuine user’s face, e.g., one frontal photo and a profile photo. Using
these photographs, the attacker could be able to extrapolate a 3D reconstruction
of the real face (see Fig. 9.2). This method is unlikely to spoof top-level 3D face
recognition systems, but it can be an easy and cheap option to spoof a high number
of standard systems.

• Amore sophisticatedmethod consists inmaking directly a 3D capture of a genuine
user’s face [29] (see Fig. 9.3). This method entails a higher level of difficulty than
the previous ones since a 3Dacquisition canbedoneonlywith dedicated equipment
and it is complex to obtain without the cooperation of the end user. However, this
is becoming more feasible and easier with the new generation of affordable 3D
acquisition sensors [30].

When using any of the two last methods, the attacker would be able to build a 3D
mask with the model he has computed. Even though the price of 3D printing devices
is decreasing, 3Dprinterswith sufficient quality and definition are still expensive. See
reference [29] for a recent work evaluating face attackswith 3D-printedmasks. There
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are some companies where such 3D face models may be obtained for a reasonable
price.1

This type of attack may be more likely to succeed due to the high realism of
the spoofs. As the complete structure of the face is imitated, it becomes difficult to
find effective countermeasures. For example, the use of depth information becomes
inefficient against this particular threat.

These attacks are far less common than the previous two categories because of the
difficultiesmentioned above to generate the spoofs. Despite the technical complexity,
mask attacks have started to be systematically studied thanks to the acquisition of
the first specific databases which include masks of different materials and sizes
[13, 28, 29, 31].

9.3 Presentation Attack Detection

Face recognition systems try to differentiate between genuine users, not to determine
if the biometric sample presented to the sensor is real or a fake. A presentation attack
detection method is usually accepted to be any technique that is able to automatically
distinguish between real biometric traits presented to the sensor and synthetically
produced artifacts.

This can be done in four different ways [6]: (i) with available sensors to detect
in the signal any pattern characteristic of live traits, (ii) with dedicated hardware to
detect an evidence of liveness, which is not always possible to deploy, (iii) with a
challenge responsemethodwhere a presentation attack can be detected by requesting
the user to interact with the system in a specific way, or (iv) employing recognition
algorithms intrinsically robust against attacks.

Due to its easiness of deployment, the most common countermeasures are based
on employing the already existing hardware and running software PAD algorithms
over it. A selection of relevant PAD works based on software techniques are shown
in Table9.1. A high number of the software-based PAD techniques are based on
liveness detection without needing any special help of the user. This type of approach
is really interesting as it allows to upgrade the countermeasures in existing systems
without the requirement of new pieces of hardware, and permitting authentication to
be done in real time as it does not need user interaction. These presentation attack
detection techniques aim to detect physiological signs of life (such as eye blinking,
facial expression changes, mouth movements, etc.), or any other differences between
presentation attack artifacts and real biometric traits (e.g., texture and deformation).

There are works in the literature that use special sensors such as 3D scanners to
verify that the captured faces are not 2D (i.e., flat objects) [32], or thermal sensors to
detect the temperature distribution associated with real living faces [33]. However,
these approaches are not popular, even though they tend to achievehigher presentation

1http://real-f.jp, http://www.thatsmyface.com, https://shapify.me, and http://www.sculpteo.com.

http://real-f.jp
http://www.thatsmyface.com
https://shapify.me
http://www.sculpteo.com
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Table 9.1 Selection of relevant works in software-based face PAD

Method Year Type of images Database used Type of features

[34] 2009 Visible and IR photo Private Color (reflectance)

[24] 2011 RGB video PRINT-ATTACK Face background
motion

[12] 2012 RGB video REPLAY-ATTACK Texture based

[35] 2013 RGB photo and video NUAA PI,
PRINT-ATTACK and
CASIA FAS

Texture based

[36] 2013 RGB photo and video PRINT-ATTACK and
REPLAY ATTACK

Texture based

[23] 2013 RGB video PHOTO ATTACK Motion correlation
analysis

[37] 2014 RGB video REPLAY-ATTACK Image quality based

[38] 2015 RGB video Private Color (challenge
reflections)

[39] 2016 RGB video 3DMAD and private rPPG (color based)

[40] 2017 RGB video OULU-NPU Texture based

[41] 2018 RGB and NIR video 3DMAD and private rPPG (color based)

detection rates, because in most systems the required hardware is expensive and not
broadly available.

9.3.1 PAD Methods

The software-based PADmethods can be divided into twomain categories depending
on whether they take into account temporal information or not: static and dynamic
analysis.

9.3.1.1 Static Analysis

This subsection refers to the development of techniques that analyze static features
like the facial texture to discover unnatural characteristics that may be related to
presentation attacks.

The key idea of the texture-based approach is to learn and detect the structure
of facial micro-textures that characterize real faces but not fake ones. Micro-texture
analysis has been effectively used in detecting photo attacks from single face images:
extraction of texture descriptions such as Local Binary Patterns (LBP) [12] or Gray-
Level Co-occurrence Matrices (GLCM) followed by a learning stage to perform
discrimination between textures.

Another group of methods exploits the fact that the printing of an image to create
a spoof usually introduces quality degradation in the sample, making it possible
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to distinguish between a genuine access attempt and an attack, by analyzing their
textures [37].

The major drawback of texture-based presentation attack detection is that high-
resolution images are required in order to extract the fine details from the faces
that are needed for discriminating genuine faces from presentation attacks. These
countermeasures will not work properly with bad illumination conditions that make
the captured images to have bad quality in general.

Most of the time, the differences between genuine faces and artificialmaterials can
be seen in images acquired in the visual spectrum with or without a preprocessing
stage. However, sometimes, a translation to a more proper feature space [42], or
working with images from outside the visible spectrum [43] is needed in order to
distinguish between real faces and spoof attack images.

Additionally to the texture, there are other properties of the human face and skin
that can be exploited to differentiate between real and fake samples. Some of these
properties are absorption, reflection, scattering, and refraction [34].

This type of approaches may be useful to detect photo attacks, video attacks, and
also mask attacks, since all kinds of spoofs may present texture or optical properties
different than real faces.

9.3.1.2 Dynamic Analysis

These techniques have the target of distinguishing presentation attacks from genuine
access attempts based on the analysis ofmotion. The analysismay consist of detecting
any physiological sign of life, for example, pulse, eye blinking, facial expression
changes, or mouth movements. This objective is achieved using knowledge of the
human anatomy and physiology.

As stated in Sect. 9.2, photo attacks are not able to reproduce all signs of life
because of their static nature. However, video attacks and mask attacks can emulate
blinking, mouth movements, etc. Related to these types of presentation attacks, it can
be assumed that the movement of the presented artifacts differs from the movement
of real human faces which are complex nonrigid 3D objects with deformations.

One simple approximation to this type of countermeasures consists in trying tofind
correlations between the movement of the face and the movement of the background
respect to the camera [23, 27]. If the fake face presented contains also a piece of
fake background, the correlation between the movement of both regions should be
high. This could be the case of a replay attack, in which the face is shown on the
screen of some device. This correlation in the movements allows to evaluate the
degree of synchronization within the scene during a defined period of time. If there
is no movement, as in the case of a fixed support attack, or too much movement, as
in a hand-based attack, the input data is likely to come from a presentation attack.
Genuine authentication will usually have uncorrelated movement between the face
and the background, since the user’s head generally moves independently from the
background.
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Some works on dynamic analysis for face liveness detection are [44] or [35],
which exploit the fact that humans blink on average three times per minute and
analyzed videos to develop an eye blink-based presentation attack detection scheme.

Other works like [36] provide more evidence of liveness using Eulerian video
magnification [45] applying it to enhance small changes in face regions, that often
go unnoticed. Some changes that are amplified thanks to this technique are, for
example, small color and motion changes on the face caused by the human blood
flow, byfinding peaks in the frequency region that corresponds to the human heartbeat
rate.

As mentioned above, motion analysis approaches usually require some level of
motion between different head parts or between the head and the background. Some-
times this can be achieved through user cooperation [38]. Therefore, some of these
techniques can only be used in scenarios without time requirements as they may
need time for analyzing a piece of video and/or for recording the user’s response to a
command. Due to the nature of these approaches, some videos and well-performed
mask attacks may deceive the countermeasures.

9.4 Face Presentation Attacks Databases

In this section, we overview some publicly available databases for research in face
PAD. The information contained in these datasets can be used for the development
and evaluation of new face PAD techniques against presentation attacks.

As it has been mentioned in the past sections, with the recent spread of biometric
applications, the threat of presentation attacks has grown, and the biometric commu-
nity is starting to acquire large and complete databases to make recognition systems
more robust to presentation attacks.

International competitions have played a key role to promote the development of
PAD measures. These competitions include the IJCB 2017 Competition on Gener-
alized Face Presentation Attack Detection in Mobile Authentication Scenarios [46],
and the 2011 and 2013 2D Face Anti-Spoofing contests [17, 47].

Despite the increasing interest of the community in studying the vulnerabilities
of face recognition systems, the availability of PAD databases is still scarce. The
acquisition of new datasets is highly difficult because of two main reasons:

• Technical aspects: the acquisition of presentation attack data offers additional chal-
lenges to the usual difficulties encountered in the acquisition of standard biometric
databases [48] in order to correctly capture similar fake data than the present in
real attacks (e.g., generation of multiple types of artifacts).

• Legal aspects: as in the face recognition field in general, data protection legislation
limits the sharing of biometric databases among research groups. These legal
restrictions have forced most laboratories or companies working in the field of
presentation attacks to acquire their own datasets usually small and limited.

In the area of face recognition PAD, we can find the following public databases:
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Fig. 9.4 Samples from the NUAA Photo Imposter Database [11]. Samples from two different
users are shown. Each row corresponds to a different session. In each row, the left pair are from a
live human and the right pair from a photo fake. Images have been taken from [11]

• The NUAA Photo Imposter Database (NUAA PI DB) [11] was one of the first
efforts to generate a large public face PAD dataset. It contains images of real
access attempts and print attacks of 15 users. The images contain frontal faces
with a neutral expression captured using a webcam. Users were also told to avoid
eye blinks. The attacks are performed using printed photographs on photographic
paper. Examples from this database can be seen in Fig. 9.4. The NUAA PI DB is
property of the Nanjing University of Aeronautics and Astronautics, and it can be
obtained at http://parnec.nuaa.edu.cn/xtan/data/nuaaimposterdb.html.

• The YALE-RECAPTURED DB [49] appeared shortly after, adding to the attacks
of the NUAA PI DB also the difficulty of varying illumination conditions as well
as considering LCD spoofs, not only printed photo attacks. The dataset consists of
640 static images of real access attempts and 1920 attack samples, acquired from
10 different users. The YALE-RECAPTURED DB is a compilation of images
from the NUAA PI DB and the Yale Face Database B made by the University of
Campinas.

• The PRINT-ATTACKDB [24] represents another step in the evolution of face PAD
databases, both in terms of the size (50 different users were captured) and of the
types of data acquired (it contains video sequences instead of still images). It only

http://parnec.nuaa.edu.cn/xtan/data/nuaaimposterdb.html
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Fig. 9.5 Examples of real and fake samples from the REPLAY-ATTACKDB [12]. The images
come from videos acquired in two illumination and background scenarios (controlled and adverse).
The first row belongs to the controlled scenario while the second row represents the adverse con-
dition. a Shows real samples, b shows samples of a printed photo attack, c corresponds to a LCD
photo attack, and d to a high-definition photo attack

considers the case of photo attacks. It consists of 200 videos of real accesses and
200 videos of print attack attempts from 50 different users. Videos were recorded
under two different background and illumination conditions. Attacks were carried
outwith hard copies of high-resolution photographs of the 50users, printed onplain
A4 paper. The PRINT-ATTACK DB is property of the Idiap Research Institute,
and it can be obtained at https://www.idiap.ch/dataset/printattack.

– The PHOTO ATTACK database [23] is an extension of the PRINT-ATTACK
database. It also provides photo attacks with the difference that the attack pho-
tographs are presented to the camera using different devices such as
mobile phones and tablets. It can be obtained at https://www.idiap.ch/dataset/
photoattack.

– The REPLAY-ATTACK database [12], is also an extension of the PRINT-
ATTACK database. It contains short videos of both real access and presen-
tation attack attempts of 50 different subjects. The attack attempts present in the
database are video attacks using mobile phones and tablets. The attack attempts
are also distinguished depending on how the attack device is held: hand-based
and fixed support. Examples from this database can be seen in Fig. 9.5. It can
be obtained at https://www.idiap.ch/dataset/replayattack.

• The CASIA FAS DB [18], similarly to the REPLAY-ATTACK database contains
photo attacks with different supports (paper, phones, and tablets) and also replay
video attacks. The main difference with the REPLAY-ATTACK database is that
while in the REPLAY DB only one acquisition sensor was used with different
attacking devices and illumination conditions, the CASIA FAS DB was cap-
tured using sensors of different quality under uniform acquisition conditions. The
CASIA FAS DB is property of the Institute of Automation, Chinese Academy

https://www.idiap.ch/dataset/printattack
https://www.idiap.ch/dataset/photoattack
https://www.idiap.ch/dataset/photoattack
https://www.idiap.ch/dataset/replayattack
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of Sciences (CASIA), and it can be obtained at http://www.cbsr.ia.ac.cn/english/
Databases.asp.

• The 3D MASK-ATTACK DB [13], as its name indicates, contains information
related to mask attacks. As described above, all previous databases contain attacks
performed with 2D artifacts (i.e., photo or video) that are very rarely effective
against systems capturing 3D face data. The attacks in this case were performed
with real-size 3D masks manufactured by ThatsMyFace.com2 for 17 different
subjects. For each access attempt, a video was captured using theMicrosoft Kinect
for Xbox 360, that provides RGB data and also depth information. That allows
to evaluate both 2D and 3D PAD techniques, and also their fusion [29]. Example
masks from this database can be seen in Fig. 9.3. The 3D MASK-ATTACK DB
is property of the Idiap Research Institute, and it can be obtained at https://www.
idiap.ch/dataset/3dmad.

• The OULU-NPU DB [40], is a recent dataset that contains information of PAD
attacks acquired with mobile devices. Nowadays mobile authentication is one of
the most relevant scenarios due to the widespread use of smartphones. However,
in most datasets, the images are acquired in constrained conditions. This type of
data may present motion, blur, and changing illumination conditions, backgrounds
and head poses. The database consists of 5940 videos of 55 subjects recorded
in 3 distinct illumination conditions, with 6 different smartphone models. The
resolution of all videos is 1920 × 1080 including print and video replay attacks.
The OULU-NPU DB is property of the University of Oulu, it has been used in the
IJCB 2017 Competition on Generalized Face Presentation Attack Detection [46],
and it can be obtained at https://sites.google.com/site/oulunpudatabase/.

In Table9.2 we show a comparison of the most relevant features of the above-
mentioned databases.

9.5 Integration with Face Recognition Systems

In order to create a face recognition system resistant to presentation attacks, the
proper PAD techniques have to be selected. After that, the integration of the PAD
countermeasures with the face recognition system can be done at different levels,
namely score level or decision-level fusion [50].

The first possibility consists of using score level fusion as shown in Fig. 9.6. This
is a popular approach due to its simplicity and the good results given in fusion of
multimodal biometric systems [51–53]. In this case, the biometric data enter at the
same time to both the face recognition system and the PAD system, and each one
computes their own scores. Then, the scores from each system are combined into a
new final score that is used to determine if the sample comes from a genuine user or
not. The main advantage of this approach is its speed, as both modules, i.e., the PAD

2http://www.thatsmyface.com/.

http://www.cbsr.ia.ac.cn/english/Databases.asp
http://www.cbsr.ia.ac.cn/english/Databases.asp
https://www.idiap.ch/dataset/3dmad
https://www.idiap.ch/dataset/3dmad
https://sites.google.com/site/oulunpudatabase/
http://www.thatsmyface.com/
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Table 9.2 Features of the main public databases for research in face PAD. Comparison of the most
relevant features of each of the databases described in this chapter

Database Users #
(real/fakes)

Samples #
(real/fakes)

Attack types Support Attack
illumination

NUAA PI [11] 15/15 5,105/7,509 Photo Held Uncont.

YALE-RECAPTURED
[49]

10/10 640/1,920 Photo Held Uncont.

PRINT-ATTACKa [12,
23, 24]

50/50 200/1,000 Photo and
video

Held and
fixed

Cont. and
Uncont.

CASIA FAS [18] 50/50 150/450 Photo and
video

Held Uncont.

3D MASK-ATTACK
[13]

17/17 170/85 Mask Held Cont.

OULU-NPU [40] 55/55 1,980/3,960 Photo and
video

Mobile Uncont.

aContaining also PHOTO-ATTACK DB and REPLAY-ATTACK DB

Fig. 9.6 Scheme of a parallel score level fusion between a PAD and a face recognition system.
In this type of scheme, the input biometric data is sent at the same time to both the face recognition
system and the PAD system, and each one generates an independent score, then the two scores are
fused to take one unique decision

and face recognition modules, perform their operations at the same time. This fact
can be exploited in systems with good parallel computation specifications, such as
those with multicore/multithread processors.

Another common way to combine PAD and face recognition systems is a serial
scheme, as in Fig. 9.7, in which the PAD system makes its decision first, and only if
the samples are determined to come from a living person, then they are processed by
the face recognition system. Thanks to this decision-level fusion, the face recognition
system will search for the identity that corresponds to the biometric sample knowing
previously that the sample does not come from a presentation attack. On the other
hand, in the serial scheme the average time for an access attempt will be longer due
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Fig. 9.7 Scheme of a serial fusion between a PAD and a face recognition system. In this type
of scheme, the PAD system makes its decision first, and only if the samples are determined to come
from a living person, then they are processed by the face recognition system

to the consecutive delays of the PAD and the face recognition modules. However,
this approach avoids the extra work of the face recognition system in the case of a
PAD attack, since the computation will end at an early stage.

9.6 Discussion

Attackers can use a great number of spoofs with no constraints, each one of different
nature. Therefore, it is important to collect new databases with new scenarios in
order to develop more effective PAD methods. Otherwise, it will be difficult to
grant an acceptable level of security of face recognition systems. However, it is
especially challenging to recreate real attacking conditions in a laboratory evaluation.
Under controlled conditions, systems are tested against a restricted number of typical
presentation artifacts. These restrictions make it unfeasible to collect a database with
all the different fake spoofs that may be found in the real world.

Normally, PAD techniques are developed to fight against one concrete type of
attack (e.g., printed photos), retrieved from a specific dataset. The countermeasures
are thus designed to achieve high presentation attack detection against that particular
spoof technique. However, when testing these same techniques against other types of
fake artifacts (e.g., video replay attacks), usually the system is unable to efficiently
detect them. There is one important lesson to be learned from this fact: there is
not a superior PAD technique that outperforms all the others in all conditions; so
knowing which technique to use against each type of attack is a key element. It
would be interesting to use different countermeasures that have proved to be robust
against particular types of artifacts, in order to develop fusion schemes that combine
their results, achieving that way a high performance against a variety of presentation
attacks [6, 51].

On the other hand, as technology progresses constantly, new hardware devices
and software techniques continue to appear. It is important to keep track of this quick
technological progress since some of the advances can be the key to develop novel
and efficient presentation attack techniques. For example, focusing the research on
the biological nature of biometric traits (e.g., thermogram, blood flow, etc.) should
be considered [39], as the standard techniques based on texture and movement seem
to be inefficient against some spoof artifacts.
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9.7 Conclusions

Face recognition systems are increasingly being deployed in a diversity of scenarios
and applications. Due to this widespread use, they have to withstand a high variety
of attacks. Among all these threats, one with high impact is presentation attacks [6].

In this chapter, a review of the strengths and vulnerabilities of face as a biometric
trait has been presented. We have described the main presentation attacks, differen-
tiating between multiple approaches, the corresponding PAD countermeasures, and
the public databases that can be used to evaluate new protection techniques [7]. The
weak points of the existing countermeasures have been discussed, and also some
possible future directions to deal with those weaknesses have been commented.

Due to the nature of face recognition systems, without the correct PAD coun-
termeasures, most of the state-of-the-art systems are vulnerable to attacks. Existing
databases are useful resources to study presentation attacks, but the PAD techniques
developed using them might not be robust in all possible attack scenarios. The com-
bination of countermeasures with fusion schemes [52], and the acquisition of new
challenging databases could be a key asset to counterfeit the new types of attacks
that could appear [29].

To conclude this introductory chapter, it could be said that even though a great
amount of work has been done to fight against face presentation attacks, there are
still big challenges to be faced in this topic, due to the evolving nature of the attacks,
and the critical applications in which these systems are deployed in the real world.
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Chapter 10
Recent Advances in Face Presentation
Attack Detection

Sushil Bhattacharjee, Amir Mohammadi, André Anjos
and Sébastien Marcel

Abstract Theundeniable convenience of face recognition (FR) basedbiometrics has
made it an attractive tool for access control in various application areas, from airports
to remote banking.Widespread adoption of face biometrics, however, depends on the
perception of robustness of such systems. One particular vulnerability of FR systems
comes from presentation attacks (PA), where a subject A attempts to impersonate
another subject B, by presenting, say, a photograph of B to the biometric sensor (i.e.,
the camera). PAs are the most likely forms of attacks on face biometric systems,
as the camera is the only component of the biometric system that is exposed to the
outside world. Presentation attack detection (PAD) methods provide an additional
layer of security to FR systems. The first edition of the Handbook of Biometric
Anti-Spoofing included two chapters on face-PAD. In this chapter we review the
significant advances in face-PAD research since the publication of the first edition of
this book. In addition to new face-PAD methods designed for color images, we also
discuss advances involving other imaging modalities, such as near-infrared (NIR)
and thermal imaging. Research on detecting various kinds of attacks, both planar as
well as involving three-dimensionalmasks, is reviewed. The chapter also summarizes
a number of recently published datasets for face-PAD experiments.
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10.1 Introduction

As pointed out by Ratha et al. [1] and many other researchers, biometrics-based
access-control systems can be attacked in several ways. Most kinds of attacks on a
biometric system require privileged access to the various components of the system.
The biometric sensor in the system is the most susceptible to attacks, as it is the
only exposed component in the system. By design, privileged access is not necessary
to interact with the sensor. Attacks on the biometric sensor are called Presentation
Attacks (PA). The ISO standard1 for biometric Presentation Attack Detection (PAD)
defines a PA as “a presentation to the biometric data capture subsystem with the goal
of interfering with the operation of the biometric system.” An attacker, A, mounts a
PA on a previously enrolled identity,B, using aPresentation Attack Instrument (PAI).
For FR systems, common PAIs are images, videos, or even three-dimensional (3D)
facial masks of the victim B. Such attacks fall into the category of impersonation
attacks. It is important to note that the ISO standard also includes obfuscation as a
kind of PA. An obfuscation attack is said to occur when the attacker attempts to spoof
the biometric sensor in order to avoid being correctly recognized. Classic examples
of obfuscation in face biometrics are the use of clothing or facial makeup, or a mask,
to avoid identification by a FR system.

PAD is an crucial component in any secure biometric system. The first edition
of this handbook included a comprehensive chapter describing the approaches face-
PAD. In this chapter we review advances in face-PAD research since the publication
of the first edition. Specifically, we review significant works in face-PAD published
since the year 2015. Besides discussing the significant face-PAD methods proposed
in the past three years,we also describe recently published datasets useful for research
on this topic.

10.1.1 Standardization Efforts

One of the most significant developments in PAD has been the formal adoption of
ISO standards. Among other things, the standard defines several metrics for reporting
experimental results. The metrics relevant to this chapter are listed below:

• IAPMR the Impostor Attack Presentation Match Rate quantifies the vulnerability
of a biometric system, and is given as the proportion of impostor attack presenta-
tions that are incorrectly accepted by the biometric security system,

• APCER:Attack Presentation Classification Error Rate gives the proportion of PAs
that is accepted by the system in question, and,

• BPCER:BonaFide PresentationClassification Error Rate specifies the proportion
of bona fide presentations that are incorrectly rejected by the system as PA.

1ISO/IEC 30107-1:2016 Part 1.
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Note that the IAPMR is computed in the licit scenario (the scenario where PAs are
not expected, and every presentation is considered bona fide), whereas APCER and
BPCER are computed in the PA scenario. There is a further subtlety to be taken into
account when computing the APCER in a given experiment, namely, that APCER
values should be computed separately for each PAI. In other words, for a FR system,
separate APCER values should be determined for print attacks, video-replay attacks,
3D-mask attacks, and so on. If an experiment includes attacks based on different
PAIs, that is, if a certain test dataset contains PAs involving different kinds of PAIs,
then theAPCER corresponding to the PAI that is themost expensive (in terms of cost,
as well as manufacturing effort) should be specified as the overall APCER achieved
in the experiment. It is often more practical to report the BPCER when the APCER
is no greater than a preset value, for example BPCER@APCER= 10% (sometimes
abbreviated as BPCER10).

10.1.2 Structure of the Chapter

The remainder of the chapter is organized in four sections. In Sect. 10.2 we discuss
some recent studies on the vulnerability of FR systems to PAs. This section highlights
the importance of continuing research and development of face-PAD technology.
Following the discussion on vulnerability, a range of recent research publications
relevant to face-PAD are summarized in Sect. 10.3. To facilitate comparison with
the state of the art, most research publications on face-PAD include results on pub-
licly available datasets. As technology for mounting PAs improves, new datasets are
needed to evaluate the performance of face-PAD algorithms. Section 10.4 presents
a number of recent public datasets for face-PAD experiments. We end the chapter
with concluding remarks in Sect. 10.5.

10.2 Vulnerability of FR Systems to PA

FR systems are explicitly trained to handle session variability, that is, variability due
to changes in scale, orientation, illumination, facial expressions, and to some extent
even makeup, facial grooming, and so on. This capacity to deal with session vari-
ability also opens the door to presentation attacks. In 2016, a wide-ranging European
project (TABULA RASA2) hypothesized that the higher the efficacy of a FR system
in distinguishing between genuine and zero-effort-impostor (ZEI) presentations, the
more vulnerable the system is to PAs. Several studies investigating the vulnerability
to PAs of various FR systems, under different scenarios, have provided quantitative
evidence that most FR schemes are very vulnerable in this respect.

2http://www.tabularasa-euproject.org/.

http://www.tabularasa-euproject.org/
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Hadid [2] analyses the vulnerability of a FR system that uses a parts-based Gaus-
sian mixture model (GMM). His experiments show that when the false rejection rate
(FRR) is constrained to 0.1%, the presence of spoof attacks causes the false accep-
tance rate (FAR) of the trained GMM is 80%. In standardized metric terms, for this
GMM-FR system, the IAPMR @ FAR = 0.1% is 80%.

Ramachandra et al. [3] report on the vulnerability of a FR system relying on
presentations in different spectral ranges. Their study is based on the Sparse Repre-
sentation based Classifier (SRC) [4]. They capture 2D color-print PAIs (color face
images printed on two types of printers: laser, and inkjet) in several wavelength
bands, ranging from visible light (RGB) to near-infrared (NIR) (specifically, at the
following seven wavelengths: 425, 475, 525, 570, 625, 680, and 930nm). Evaluating
the vulnerability in individual bands separately, they show that in almost all cases the
chosen FR system shows very high vulnerability (IAPMR in the range of 95–100%).
Only in one case, namely, laser-printed PAIs captured in the 930nm wavelength,
does the IAPMR drop to acceptable levels (IAPMR = 1.25%). This experimental
result is consistent with the finding that the reflectance of facial skin dips sharply in
a narrow spectral-band around 970nm [5].

Deep-learning based FR systems are now considered the state of the art. In the cur-
rent decade convolutional neural networks (CNN) based FR systems have achieved
near-perfect FR performance [6–8] on highly unconstrained datasets, such as the
well known Labeled Faces in the Wild (LFW) dataset [9]. Mohammadi et al. [10]
have studied the vulnerability of several CNN-FR systems. Their study, based on
several publicly available PAD datasets, shows that CNN-FR systems are in fact
more vulnerable (IAPMR up to 100%) to PAs than older FR methods.

One class of PAs not often considered is the morphed-image attack [11, 12]. Here,
face images of two different subjects, say, A and B, are morphed into a single image.
The morphed image is constructed to resemble both subjects sufficiently closely to
pass a quick visual inspection. Then, if, say, subject A wishes to avoid detection at
an international border, he may alter his passport using such a morphed image to
impersonate B. Ramachandra et al. [13] have shown, using a commercial off-the-
shelf (COTS) FR system, that vulnerability of FR systems to morphed-image attacks
may be as high as 100%.

10.3 Recent Approaches to Face-PAD

It is not straightforward to impose a neat taxonomy on existing face-PAD approaches.
Chingovska et al. [14] group face-PADmethods into three categories: motion based,
texture based, and image quality based. Other works [15] have considered image
quality based face-PAD methods as a subclass of texture-based methods. In the
hierarchical organization of face-PAD methods offered by Ramachandra and Busch
[16] the most general (top level) groups are “hardware-based” and “software-based”.

Here, we do not propose any specific taxonomy of face-PADmethods. To provide
some order to our discussion, however, we have organized our survey of recent
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face-PADmethods in several sections: methods that operate on visible-light imagery,
methods that rely on inputs captured inwavelengths outside the visible-range of light,
and a separate category of methods designed to detect 3D-mask-based attacks. In the
following discussion, the term extended-range (ER) imagery refers to data captured
in wavelengths outside the visible-range of light.

10.3.1 Visible-Light Based Approaches

A majority of studies on face-PAD so far have relied exclusively on visible-light
imagery (commonly called color imagery) as input. The term visible light here refers
to the range of the electromagnetic spectrum – approximately from 380 to 750nm
– that is typically perceptible by the human visual system. One reason for the use
of color imagery is that the proliferation of high-quality and low-cost color cameras
has made digital color imagery widely accessible. Another reason is the need for
face-PAD on mobile devices such as laptops, smartphones, and tablet devices. With
the sharp increase in the use of mobile devices in sensitive applications such as
remote banking and online education, secure identity-verification on such devices
has become a critical issue. Although recently some companies have introduced
products that include NIR cameras, a large majority of mobile devices still come
with only color cameras. It is, therefore, important to continue developing face-PAD
methods that can function with only color imagery as input.

Rudd et al. [17] have demonstrated that a low-cost polarization filter (based on
twisted nematic liquid crystal (TNLC) in this case) can easily detect common kinds
of 2D PAs, such as print attacks and digital-replay attacks. In appropriately polarized
images, bona fide face presentations are clearly visible as faces, whereas 2D attack
presentations are not.

Successful application of histograms of local binary patterns (LBP) coefficients
to the problem of face-PAD [14, 18, 19] has made LBP and its various variants
a mainstay for face-PAD. Initial LBP based methods for face-PAD relied on gray-
level images. Boulkenafet et al. [20, 21] have used LBP features to characterize
color-texture. For a given color image in RGB color-space, they first generate the
YCbCr as well as HSV representations of the image. Uniform LBP histograms are
then computed on the Y, Cb,Cr, H, S, and V components and concatenated together
to generate the final feature-vector representing the input color image. These color-
texture feature-vectors may be classified using support vector machines (SVM).
Boulkenafet et al. have shown that color-texture features outperform gray-level LBP
features in the face-PAD task [20]. In a separate work [21], they have also shown
that this color-texture representation leads to significantly better generalization to
unknown attacks, compared to other hand-crafted face-PAD features. Indeed, in a
recent face-PAD competition [22], the winning entry also combined motion infor-
mation with color-texture information using LBP histograms.

Notwithstanding the success ofLBP-basedmethods, in the past 3 years researchers
have also explored other approaches for face-PAD. Prominent recent works using
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color imagery have focused on a variety of features characterizing local motion, local
texture, and more generally, image quality. Wen et al. [23] propose several features
for image distortion analysis (IDA) to tackle the problem of face-PAD for 2D (print
and video-replay) attacks. Their features characterize the color-diversity, image-
sharpness and the presence of specular regions in the input images. The IDA features
are computed only over the face region (i.e., on the output of the face-detection
step), and are classified using a two-class SVM classifier. The authors present results
on several public datasets, including a new dataset (MSU-MFSD, see Sect. 10.4)
introduced in this paper. In intra-database experiments the IDA features perform
competitively to other face-PADapproaches. Cross-dataset experiments [23] indicate
that these features show better generalization properties than previous approaches,
notably when compared to LBP+SVM (i.e., LBP features classified using a SVM).

The IDA features [23] complement the image quality measures (IQM) proposed
earlier by Galbally et al. [24]. The IQM features are all computed on gray-level
images. The IDA features provide a way of additionally capturing information rele-
vant to face-PAD available in the color domain.

Costa-Pazo et al. [15] have proposed a face-PAD approach using a set of Gabor
features, which characterize the image-texture over the face region. This work rep-
resents the first use of Gabor features for face-PAD. Their experiments show that
the Gabor features perform better than the IQM features [24] in detecting PAs. Tex-
ture information, captured using shearlets, has also been exploited in the method
proposed by Li et al. [25].

Certain face-PA cues are not as consistent as others. For example, the set of IDA
feature-set includes several features characterizing the amount of specularity in a
image. The underlying expectation is that the presence of large specular regions
indicates that the input is a PA. There are, however, many instances of PAs that do
not include significant specularity. Similarly, although the presence ofMoiré patterns
is also a strong indicator of PAs [26, 27], the absence of Moiré patterns does not rule
of a PA.

Tirunagari et al. [28] exploit motion cues to detect face liveness. Specifically,
they detect micro-motions, such as slight head movements, lip movements, and eye-
blinks, to identify bona fide presentations. Unlike the work of Anjos et al. [29] –
where motion information derived from optical flow computation is directly used to
identify PAs – here the video is treated a three-dimensional data, and apply dynamic
mode decomposition (DMD) to this 3D data. The result of the DMD procedure is
an image where regions of high local micro-motion are marked with brighter pixels.
The micro-texture information in the resulting image is characterized using LBP
histograms, which are subsequently classified using a SVM.

In the past few years several specific research directions have attracted atten-
tion in the context of face-PAD. Unsurprisingly, the application of deep-learning
methods for face-PAD has become a popular research track. The idea of personal-
ized face-PAD, where client information is incorporated into the PAD process, has
also been explored. Several works have been published on the subject of detecting
obfuscation attacks. Finally, as the question of detecting previously unseen kinds
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of PAs becomes important, several researchers have posed face-PAD as an anomaly-
detection problem. In the following sections we discuss publications on each of these
topics separately.

10.3.1.1 Deep-Learning Approaches To PAD

Following the success of deep-learning based approaches for face recognition, there
has been a proliferation in CNN-based approaches for face-PAD. One reason why
researchers are looking into the use of deep networks for face-PAD is that as the qual-
ity of PAIs improves, it is becoming increasingdifficult to design explicit hand-crafted
features able to distinguish PAs from bona fide presentation. Face-PAD methods
based on deep networks have explored both kinds of approaches, the use of network
embeddings as well as end-to-end architectures. Here, we highlight a few represen-
tative works, to provide readers with a general idea about current research activities
on this topic.

In one of the first works in this area, Yang et al. [30]3 have proposed a CNN with
the same architecture as ImageNet [31], but with the output layer configured for only
two outputs: bona fide or PA. In this work the authors augment the training data by
using input images at multiple scales and also multiple frames of video. The trained
CNN is used to extract a feature-vector (from the penultimate fully connected layer,
fc7, of the network) for each input test image. The feature-vector is then classified
using a two-class SVM.

More recent works on the use of CNNs for face-PAD have focused on newer CNN
architectures. Lucena et al. have proposed FASNet4 [32], a deep network for face-
anti-spoofing. They start with the VGGNet16 (16-layer VGGNet [33]) and modify
only the top fully connected section of the network by removing one fc-layer, and
changing the sizes of the subsequent two fc-layers to 256units and1unit, respectively.
FASNet shows a small improvement over SpoofNet [34] on the twodatasets, 3DMAD
and REPLAY-ATTACK, used in both works.

Nagpal and Dubey [35] compare the performances of three different CNN archi-
tectures: the Inception-v3 [36] and two versions of ResNet [37], namely ResNet50 (a
50-layer ResNet) and ResNet152 (the 152-layer version). For each architecture, they
have conducted six experiments, by training the networks with different parameter-
settings. Their study is based on the MSU-MSFD dataset (see Sect. 10.4), which is
a relatively small dataset. The authors augment their training data by using flipped
versions of each frame in the training set as well. The best result achieved in this
work is an accuracy of 97.52%, produced by the ResNet152 initialized with weights
taken from the ImageNet, and where only the final densely connected layers have
been re-trained using the MSU-MSFD data. Their experiments also seem to indicate
that using lower learning-rates may lead to better discrimination in face-PAD tasks.

3Open source implementation available on https://github.com/mnikitin/Learn-Convolutional-
Neural-Network-for-Face-Anti-Spoofing.
4Open-source implementation of FASNet is available on https://github.com/OeslleLucena/FASNet.

https://github.com/mnikitin/Learn-Convolutional-Neural-Network-for-Face-Anti-Spoofing
https://github.com/mnikitin/Learn-Convolutional-Neural-Network-for-Face-Anti-Spoofing
https://github.com/OeslleLucena/ FASNet
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Li et al. have used a hybrid CNN [38] to model bona fide and attack presentations
in a parts-based fashion. The face region is divided into rectangular sub-regions, and
a separate two-class CNN (VGG-Face network [6]) is trained for each sub-region.
Given a test image, a feature-vector is constructed by concatenating the output vectors
from the last fully connected layer of each CNN. This feature-vector is then classified
using a SVM.

Nguyen et al. [39] have explored the idea of combining hand-crafted features
with deep-learning-based features. They train a 19-layer VGGNet [33] (with only
two output classes), and take the output of the fc7 layer as a descriptor for the input
test image. The descriptors from the CNN are concatenated with a multi-level LBP
(MLBP) histogram, a set of hand-crafted features, to construct a combined feature-
vector. Principal Component Analysis (PCA) is used as a dimensionality-reduction
step to reduce the combined feature-vector to a much shorter feature-vector (reduced
from 7828-D to between 90-D and 530-D depending on the dataset). Finally, the
reduced feature-vectors are classified using a two-class SVM classifier.

Xu et al. [40] combine a long short-termmemory (LSTM) network with a CNN to
extract features that encode both temporal as well as spatial information. The input
to the LSTM-CNN network is a short video, instead of individual frames. The LSTM
is plugged on top of the CNN, to model the temporal information in the video. The
authors show that this network can outperform straightforward CNNs, as well as
various hand-crafted features.

Liu et al. [41] combine a CNN and a LSTM network for face-PAD. In this
architecture, the CNN is trained on individual video-frames (images) to extract
image-feature-maps as well as depth-maps of the face region. The LSTM network
takes the feature-map produced by the CNN, and is trained to extract a remote
photo-plethysmography (rPPG) signal from the video. They present results on the
OULU-NPU dataset (see Sect. 10.4. A new dataset, named Spoof in the Wild (SiW,
discussed in Sect. 10.4) is also introduced in this paper.

In general, current datasets for face-PAD are too small to train CNNs from scratch.
Most works involving CNNs for face-PAD so far have adapted existing FR CNNs
for face-PAD applications, using transfer-learning.

10.3.1.2 Client-Specific Face-PAD

In real-world applications PAD systems are not expected to function in isolation – a
PAD system is usually deployed in conjunction with a biometric-verification system.
The client-identity information available to the verification systemmay also be incor-
porated into the PAD process to improve the PAD performance. This approach to
PAD has been explored in various other biometric modalities (such as for fingerprint
PAD).

Chingovska and Anjos [42] have proposed client-specific face-PAD methods
using both discriminative as well as generative approaches. In both cases, essen-
tially, a separate classifier is constructed for each enrolled client. In the discriminative
scheme, for each client, they train a two-class SVM in a one-versus-all configuration.



10 Recent Advances in Face Presentation Attack Detection 215

In the generative approach, GMMs are trained for each client using a cohorts-based
approach to compensate for the lack of adequate numbers of PAs for each client.

Although the idea of a client-specific approach to face-PAD sounds attractive, one
severely limiting factor is the cost of constructing a sufficient variety and number of
PAs for every enrolled client. Indeed, the cost may quickly become prohibitive when
PAs based on custom silicone 3D-masks are considered. Yang et al. [43] have also
proposed a face-PAD method that incorporates client-specific information. Again,
they train a separate classifier for each enrolled client. They propose an innovative
solution to the problem of lack of sufficient PA samples to train classifiers for newly
enrolled clients. Their solution is to use domain-adaptation to generate virtual PA
samples to train the client-specific classifiers. The domain-adaptation model learns
the relationship between the bona fide and attack presentations from the training
partition of a dataset. Thereafter, the trained adaptation model is used to generate PA
samples for clients in the test partition.

10.3.1.3 Obfuscation Attacks

An obfuscation attack is said to occur if the attacker actively attempts to alter one’s
appearance to the extent that FR systems may fail to recognize the subject. Obfus-
cation attacks may take the form of the use of extreme facial makeup, the use of
clothing, or simple medical masks, to occlude significant portions of the face, or
even the use of facial masks (mask that resemble faces) made of various materials.

In case of severe occlusion, even localizing the face region in the image (face
detection) is a significant challenge. Ge et al. [44] have proposed a LLE-CNN –
combining CNN-based feature-extraction with locally linear embedding (LLE) –
to detect the face region even in the presence of extensive occlusion. For subjects
wearing makeup, Wang and Fu [45] have proposed a method for reconstructing
makeup-free face images, using local low-rank dictionary learning. Kose et al. [46]
use a combination of LGBP (LBP histograms computed over a set of Gabor-filtered
images) and histogram of gradients (HOG) to classify face images as containing
makeup or not. Agarwal et al. [47] tackle the problem of detecting obfuscation
using 3D flexible masks, that is, detecting whether the subject in the presentation
is wearing a mask, using multispectral imagery. Specifically, they capture images
in visible, NIR and thermal wavelength-ranges of the spectrum. Their experiments,
based on a variety of local texture descriptors, show that thermal imagery is the best
suited for detecting masks reliably. (The use of multispectral data for face-PAD is
discussed in more detail in Sect. 10.3.2.)

The morphed-image attacks mentioned in Sect. 10.2 may be seen as a kind
of obfuscation attack. Ramachandra et al. [13] have demonstrated the superiority
of binarized statistical image features (BSIF) over LBP histograms in detecting
morphed-image attacks.
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10.3.1.4 One-Class Classification for PAD

Most researchers approach PAD as a two-class problem. That is, data is collected
for both bona fide and attack presentations, and, using suitable feature-descriptors,
a two-class classifier is trained to discriminate between bona fide presentations and
attacks. The greatest disadvantage of this general scheme is poor generalization to
unknown attacks. A recent face-PAD competition [48] showed that the performance
of all entries deteriorated in the test-protocol involving unknown attacks, relative
to their respective performances in test-protocols involving known attacks. Most
published face-PAD methods have performed relatively poorly in cross-dataset tests
(see, for example [23, 24]). The reason is that different datasets include attacks of
different kinds (different PAIs, or even just different devices used for performing the
attacks). Consequently, the attacks in a given dataset are very likely to be unknown to
the classifier that has been trained on a different dataset. This issue – generalization
to unknown attacks – has emerged as the most significant challenge in face-PAD.

Indeed, when implementing countermeasures to PAs, the goal is simply to detect
PAs, and not necessarily to identify the class of the PA. The problem of PAD may
therefore be formulated as one of anomaly detection, where only the bona fide class is
modeled using a one-class classifier (OCC). In general OOCs may be grouped under
two categories: generative and non-generative. A GMMmodeling only the bona fide
class is an example of a generative OCC. A one-class SVM, on the other hand, is
a non-generative OCC. Arashloo and Kittler [49] have investigated the use of both
kinds of OCCs for the purpose of face-PAD. They report results using a SVM as
the non-generative classifier, and a SRC [4] as the generative classifier. The authors
compare the performances of two-class GMM and two-class SVM with one-class
GMM and one-class SVM respectively, for face-PAD. In total they have considered
20 different scenarios, that is 20 different combinations of classifiers and features.
From their experiments, performedwith three publicly available datasets, the authors
conclude that the OCC based outlier-detection approach can perform comparably to
a two-class system.More importantly, the OCC results are better than their two-class
counterparts in tests involving unknown PAs (i.e., tests where certain PAs are not
represented in the training dataset).

Nikisins et al. [50] have also studied the use of OCCs for face-PAD. They base
their work on an aggregate dataset composed of three publicly available datasets:
REPLAY-ATTACK, REPLAY-MOBILE, andMSU-MFSD (discussed in Sect. 10.4).
The difference between thiswork and that ofArashloo andKittler [49] is thatNikisins
et al. [50] train their classifiers using the bona fide presentations from all three com-
ponent datasets at once, where as Arashloo and Kittler use bona fide presentations of
only one dataset at a time in a given experiment. Nikisins et al. [50] use a one-class
GMM (a generative OCC) to model the distribution of bona fide presentations in
the aggregated dataset, using a set of image-quality features [23, 24]. Their experi-
ments also show that although two-class classifiers performbetter than their one-class
counterparts for known attacks (i.e., the case where samples of the attack-types have
been included in the training set), their performance deteriorates sharply when pre-
sented with unknown attacks, that is PAIs that were not included in the training set.
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By contrast, the one-class GMM appears to generalize better to unknown classes of
PAs [50].

The advantage of using a one-class system is that only data for bona fide presen-
tations is necessary. Although experimental test datasets usually include a variety of
attack presentations, in real scenarios it is quite difficult to collect sufficient data for
all the various possible kinds of attacks.

10.3.2 Approaches Based on Extended-Range Imagery

Broadly speaking, visible-light based approaches rely on identifying subtle qualita-
tive differences between bona fide and attack presentations. As the quality (color-
fidelity, resolution, and so on) of PA devices improves, distinctions between the two
kinds of presentations are becoming increasing narrower. That is, progress in PAI
quality impacts the performance of existing face-PAD methods. This phenomenon
is concretely illustrated by Costa-Pazo et al. [15]. They apply the same face-PAD
method – SVM classification using a set of image-quality measures – to two datasets.
Their experiment shows that the performance of the chosen face-PADmethod is sig-
nificantly worse on the newer dataset (REPLAY-MOBILE [15]) than on the older
(REPLAY-ATTACK [14]) dataset. The reason is that as technology (cameras, elec-
tronic screens, printers, etc.) improves, the quality of PAs in visible-light is also
approaching that of bona fide presentations, and therefore it is becoming increas-
ingly difficult to separate the two classes.

A new approach to face-PAD involves the use of ER imagery. Both active- as well
as passive-sensing approaches have been considered in recent works. In active ER
imagery, the subject is illuminated under a chosen wavelength band, for example,
withNIR and Short-wave IR (SWIR) illumination, and the biometric sensor (camera)
is equipped with appropriate filters, to be able to capture data only in the chosen
wavelength band. In passive sensing no specific illumination is used, and the camera
is designed to capture radiation in a given wavelength band. One example of passive
sensing is the use of thermal cameras to capture the heat radiated by human subjects.

When using active ER imagery for face-PAD, the general idea is to model the
reflectance properties of human skin at different wavelengths. Steiner et al. [51] have
proposed the design of a multispectral SWIR camera for face-PAD applications. The
camera captures images at four narrow wavelength bands, namely, 935, 1060, 1300,
and 1550nm. The image-sensor is sensitive in the range 900–1700nm. The camera
is equipped with a ring-illuminator consisting of LEDs emitting SWIR in the four
wavelength bands of interest. During image-acquisition the camera cycles through
the illumination in the different bands one by one, and synchronizes the image-
capture to the duration of illumination at a given wavelength. Thus, the camera
captures at multispectral stack of four images at each time interval. This camera
can capture 20 stacks, or frames per second (FPS) – a significant improvement on
a previous design of a SWIR camera proposed by Bourlai [52], which was able to
capture image at an average rate of 8.3 FPS. Using this camera, human skin can be
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reliably distinguished from other materials. Steiner et al. show results demonstrating
the efficacy of face-PAD using data acquired with this camera.

Ramachandra et al. [53] have used seven-band multispectral imagery for face-
PAD, captured using a SpectroCam™multispectral camera. This device captures
presentations in narrow bands centered at the following wavelengths: 425, 475, 525,
570, 625, 680, and 930nm. The authors propose two face-PAD approaches based on:

• image fusion, where the seven images in a given multispectral stack are fused into
a single image, and a PAD algorithm processes the fused image, and

• score fusion, where the individual images in the multispectral stack are classified
separately, and the 7 scores are then fused to generate the final classification score.

Quantitative results [53] show that the score-fusion approach performs significantly
better than the image-fusion approach.

Bhattacharjee and Marcel [54] have also investigated the use of ER imagery for
face-PAD. They demonstrate that a large class of 2D attacks, specifically, video-
replay attacks, can be easily detected using NIR imagery. In live presentations under
NIR illumination the human face is clearly discernible. However, electronic display
monitors appear almost uniformlydarkunderNIR illumination.Therefore, usingNIR
imagery, it is possible to design simple statistical measures to distinguish between
bona fide presentations and attacks. This approach may also be applied to detect
print-based attacks. It may fail, however, if the PAIs are printed using metallic inks.
The authors also demonstrate that NIR imagery is not particularly useful in detecting
3D mask based attacks. They go on to show that thermal or imagery can be used to
easily distinguish bona fide presentations from mask-based attacks. This is because,
in a bona fide presentation, the heat emanating from the subject’s face renders it very
brightly in the thermal image. In contrast, in a mask attack, the mask appears very
dark in the image, because it has a much lower temperature than the subject’s body.

This direction of research is still in its infancy. One reason why research in ER
imagery has not yet been widely explored is the high cost of IR and thermal cameras.
In recent years, however, low-cost options such as the Microsoft , Intel’s RealSense
range of sensors, and inexpensive thermal cameras such as from and have become
widely available. Availability of affordable hardwarewill be a key factor in advancing
research in this direction.

10.3.3 Detection of 3D Mask Attacks

Good quality 3D masks present clear threats in both impersonation as well as obfus-
cation categories. As custom 3D masks become increasingly affordable, research
on PAD for 3D masks is also gaining critical importance. Bhattacharjee et al. [55]
have recently demonstrated empirically, that several state-of-the-art FR CNNs are
significantly vulnerable to attacks based on custom silicone 3D masks (IAPMR is at
least 10 times greater than the false non-match rate (FNMR)).
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Initial researchwas directed towards detecting custom rigidmasks, typicallymade
of sandstone powder and resin, with hand-painted facial features. Publicly available
datasets 3DMAD [56] and HKBU-MARs [57] contain data pertaining to custom
rigid masks. More recent face-PAD research has focused on detecting attacks based
on hyper-realistic flexible custommasks, usually made of silicone. Although custom
silicone masks are still fairly expensive to manufacture, in the coming years the cost
of creating such masks is expected to drop to affordable levels.

Another strand of research involving 3D masks is to detect obfuscation attacks
mounted using readily available, generic latex masks. Agarwal et al. [58] have used
texture cues characterized using a set of features computed over co-occurence matri-
ces (so called Haralick-features) to detect rigid-mask attacks in the 3DMAD dataset
[56]. Liu et al. [57] have published the more recent HKBU-MARs dataset contain-
ing images of 3D-mask based PAs. They have proposed a rPPG based approach to
detecting 3D-mask PAs.

Manjani et al. [59] present an observational study into obfuscation attacks
using 3D-masks. They describe PAD experiments based on the SMAD dataset (see
Sect. 10.4), which consists of public-domain videos collected from the World-wide
Web. Although observational studies such as this may indicate association between
variables (in this case between the true labels of the test videos and the classifier-
score), the influence of other confounding variables here cannot be ruled out. To
demonstrate the efficacy of a method for detecting 3D-mask based PAs, it is impor-
tant to design a controlled experiment to highlight exclusively the causal effect of
3D-masks on the resulting classifier-score.

10.4 New Datasets for Face-PAD Experiments

One significant reason for rapid advances in face-PAD research is the availabil-
ity of publicly shared datasets, which facilitates comparison of the performance of
new PAD algorithms with existing baseline results. As the quality of devices used
to mount attacks improves, the older datasets tend to become less relevant. It is,
therefore, important for the research community to continually collect new datasets,
representing attacks created using state-of-the- art technology.

Table 10.1 lists some recently published face-PA datasets. The MSU-MFSD,
UVAD, REPLAY-MOBILE, MSU-USSA, OULU-NPU, and SiW datasets contain
2D attacks captured under the visible-light illumination. The other datasets include
data representing 3D attacks (HKBU-MARs and SMAD) or 2D attacks captured
under non-standard illumination, such as extended-range (multispectral) imagery
(MS-Face, EMSPAD and MLFP), or light-field imagery (GUC-LiFFAD). Brief
descriptions of these datasets follow:

• MSU-MFSD: The public version of the MSU-MFSD dataset [23] includes real-
access and attack videos for 35 subjects. Real-access videos (∼12s long) have
been captured using two devices: a 13” MacBook Air (using its built-in camera),
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and a Google Nexus 5 (Android 4.4.2) phone. Videos captured using the laptop
camera have a resolution of 640× 480 pixels, and those captured using theAndroid
camera have a resolution of 720× 480 pixels. The dataset also includes PA videos
representing printed photo attacks, and mobile video replay-attacks where video
captured on an iPhone 5s is played back on an iPhone 5s, and high-definition (HD)
(1920 × 1080) video-replays (captured on a Canon 550D SLR, and played back
on an iPad Air).

• GUC-LiFFAD: The GUC Light Field Face Artefact Database (GUC-LiFFAD) has
been created for face-PAD experiments based on light-field imagery. Specifically,
the biometric sensor used in this dataset is a Lytro5 camera, which, for every
presentation, captures several images, each at a different depth-of-focus. Data
corresponding to 80 subjects is included in this dataset. Only print attacks, based on
high-quality photographs (captured using a Canon EOS 550DDSLR camera, at 18
megapixel resolution, and printed on both laser and inkjet printers) are represented
in this dataset.

• UVAD: The Unicamp Visual Attack Database (UVAD) consists of 17,076 bona
fide and attack presentation videos corresponding to 404 identities. All videos have
been recorded at full-HD resolution, but subsequently cropped to a size of 1366 ×
768. The dataset includes bona fide videos collected using six different cameras.
Two videos have been captured for each subject, both using the same camera but
under different ambient conditions. PA videos corresponding a given subject have
also been captured using the same camera as that used for the bona fide videos
of the subject in question. The PAs have been generated using seven different
electronic monitors, and all PA videos have also been cropped to the same shape
as the bona fide videos.

• REPLAY-MOBILE: This dataset contains short (∼10s long) full-HD resolution
(720 × 1280) videos corresponding to 40 identities, recorded using two mobile
devices: an iPadMini 2 tablet and a LG-G4 smartphone. The videos have been col-
lected under six different lighting conditions, involving artificial as well as natural
illumination. Four kinds of PAs are represented in this database have been con-
structed using two PAIs: matte-paper for print attacks, and matte-screen monitor
for digital-replay attacks. For each PAI, two kinds of attacks have been recorded:
one where the user holds the recording device in hand, and the second where the
recording device is stably supported on a tripod.

• MSU-USSA: The Unconstrained Smartphone Spoof Attack dataset from MSU
(MSU-USSA) aggregates bona fide presentations from a variety of Internet-
accessible sources. In total 1000 bona fide presentations of celebrities have been
included in this dataset. Two cameras (front and rear camera of a Google Nexus 5
smartphone) have been used to collect 2D attacks using four different PAIs (laptop,
tablet, smartphone, and printed photographs), resulting in a total of 8000 PAs.

• HKBU-MARs: This dataset is designed to test countermeasures for 3D rigid-mask
based attacks. The second version (V2) of this dataset contains data corresponding
to 12 subjects. Rigid masks created by two different manufacturers have been used

5www.lytro.com.

www.lytro.com
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to construct this dataset. Presentations have been captured using seven different
cameras (including mobile devices), under six different illumination conditions.

• MS-Face: This is the first public dataset to explore the use of NIR imagery for
face-PAD. Specifically, data is collected under two kinds of illumination: visible-
light and 800nm (NIR) wavelengths. The dataset contains data captured from 21
subjects. Bona fide presentations in this dataset have been collected under five
different conditions. Only print attacks have been considered in this dataset. For
PAs under visible-light, high-quality color prints have been used, whereas PAs
under NIR illumination have been created using gray-level images printed at 600
dpi.

• SMAD: the Silicone Mask Attack Database (SMAD) consists of videos collected
from the Internet. The authors [59] have collected 65 videos of celebrities (which
form the bona fide presentations) as well as 65 videos of actors wearing a variety
of flexible masks. Although the authors refer to the masks as silicone masks, some
of the masks in the dataset appear to be constructed from latex, instead of silicone.
Some of the original videos collected for this dataset may be rather long. For the
purposes of experiments, long videos have been trimmed, so that all videos in the
dataset are between 3 and 10s long.

• EMSPAD: the Extended Multispectral Presentation Attack Database (EMSPAD)
contains images captured using a Pixelteq SpectroCam™ camera. This camera
captures multispectral images using a set of filters mounted on a continuously
rotating wheel. The dataset contains seven-band multispectral stacks per time-
instant, that is, for each frame, 7 images have been captured in narrow wavelength
bands centered at the following values: 425, 475, 525, 570, 625, 680, and 930nm.
Bona fide and attack presentations for 50 subjects comprise this dataset. Bona fide
presentations have been collected in two sessions, and in each session, five frames
(i.e., 5 × 7 images) have been collected for each subject. This dataset includes
only one kind of PAI, namely, 2D color-print attacks. To construct the attacks,
high-quality color photographs of each subject have been printed on two kinds of
printers – a color laser printer, and a color inkjet printer – at 600 dpi resolution,
and multispectral images of these printed photographs have been captured using
the SpectroCam camera.

• OULU-NPU: This dataset includes data corresponding to 55 subjects. Front cam-
eras of six different mobile devices have been used to capture the images included
in this dataset. The images have been collected under three separate conditions,
each corresponding to a different combination of illumination and background.
PAs include print attacks created using two printers, as well as video-replay attacks
using two different displays. In total, 4950 bona fide and attack videos comprise
the dataset.

• MLFP: The Multispectral Latex Mask based Video Face Prepresentation Attack
(MLFP) dataset has been prepared for experiments in detecting obfuscation attacks
using flexible latex masks. The dataset consists of 150 bona fide and 1200 attack
videos, corresponding to 10 subjects. In fact the attacks have been performed using
seven latex masks and three paper masks. Data has been collected in both indoor
and outdoor environments.
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• SiW: The Spoof in the Wild dataset consists of 1320 bona fide videos captured
from 165 subjects, and 3300 attack videos. Liu et al. [41] mention that the dataset
encaspulates greater racial diversity than previous datasets. Varying ambient con-
ditions, as well as different facial expressions and head-poses are also represented
in the SiW dataset. Two kinds of print attacks and four kinds of video replay-
attacks have been included in this dataset. Replay-attacks have been created using
four PAIs: two smartphones, a tablet device, and a laptop-monitor screen.

For detailed descriptions of the datasets, such as the experimental protocols as well
as how to access the datasets, the reader is referred to the respective references cited
in Table 10.1.

10.5 Conclusion

As several studies have quantitatively demonstrated, modern face recognition (FR)
methods are highly susceptible to presentation attacks (PA). This vulnerability is a
consequence of the desired ability of FR methods to handle inter-session variability.
In order to have secure face-verification systems, the underlying FR methods need
to be augmented with appropriate presentation attack detection (PAD) methods.
Consequently, face-PAD has become a topic of intense research in recent years. In
this chapter we have attempted to summarize several prominent research directions
in this field.

A large majority of face-PAD methods operate on color imagery. Several new
kinds of features characterizing local motion information, image quality, as well
as texture information have been proposed in the recent scientific literature. Deep-
learning based methods for face-PAD have also been widely explored. Most works
involving deep-learning methods have started with a CNN designed for FR, and
have adapted the network for face-PAD using transfer-learning. The reason for this
approach is that current face-PAD datasets are still too small to train really deep
networks from scratch. Given this constraint on the size of available training data,
perhaps researchers should investigate the use of relatively smaller networks for
face-PAD.

In addition to well studied categories of 2D attacks, namely, print attacks and
video-replay attacks, several research groups are now developing methods to detect
attacks performed using hyper-realistic custom-made masks. Attacks based on both
rigid and flexible masks have been considered. In the past this category of attacks did
not receive much attention as constructing custom-masks was prohibitively expen-
sive. Although, even today the cost of manufacturing high-quality custom masks
remains high, the costs have come down significantly, and we may expect PAs based
on such masks to be highly likely in the near future. The research community would
benefit from a concerted effort to produce large and significantly diverse datasets
based on a variety of custom-made masks.

Extended-range (ER) imagery, that is, imagery in wavelengths outside the visible-
light spectrum, is proving to be a valuable tool in tackling both 2D and 3DPAs. Given
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the availability of low-cost infrared and thermal cameras, this is a promising direction
of research in face-PAD.

Besides impersonation attacks, the recently adopted ISO standard for PAD also
considers obfuscation attacks as PAs. Specifically, there is a need to detect presenta-
tions where makeup or a mask is used to hide one’s identity. This category of PA has
not received the same amount of attention as impersonation attacks. The availabil-
ity of carefully constructed datasets representing obfuscation attacks is key to the
progress of research on this topic.

We note, in general, that most recent papers on face-PAD still report results on
relatively old datasets, such as CASIA and REPLAY-ATTACK – datasets that are
more than 5 years old now. With ever-improving technology for constructing PAs,
older datasets become increasingly irrelevant. In order to have the true snapshot of
the state of the art, besides publishing new datasets at a steady rate, it is also important
that face-PAD researchers report results on recent datasets.

Although most state-of-the-art face-PAD methods seem to perform well in intra-
dataset tests, generalization in cross-dataset scenarios remains a significant challenge.
Cross-dataset generalization is an important goal, because it indicates the ability of
a given PAD method to tackle previously unseen attacks. In this context the use of
one-class classifiers (OCC) have been shown to be a step in the right direction.

There is a growing interest in developing face-PADmethods for scenarios involv-
ing previously unseen attacks. We expect this trend to grow in the coming years.
Another research direction with great potential is the use of ER imagery to tackle
various kinds of PAs. So far, deep-learning based methods for face-PAD have been
shown to be roughly as accurate as state-of-the-art methods relying on hand-crafted
features. As mentioned earlier, current efforts involving deep learning start with well
understood deep networks designed for object recognition or FR. Further research is
required in this area, perhaps involving6 bespoke deep architectures for face-PAD.
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Chapter 11
Recent Progress on Face Presentation
Attack Detection of 3D Mask Attacks

Si-Qi Liu, Pong C. Yuen, Xiaobai Li and Guoying Zhao

Abstract With the advanced 3D reconstruction and printing technologies, creating
a super-real 3D facial mask becomes feasible at an affordable cost. This brings a new
challenge to face presentation attack detection (PAD) against 3D facial mask attack.
As such, there is an urgent need to solve this problem as many face recognition
systems have been deployed in real-world applications. Since this is a relatively new
research problem, few studies has been conducted and reported. In order to attract
more attentions on 3Dmask face PAD, this book chapter summarizes the progress in
the past few years, as well as publicly available datasets. Finally, some open problems
in 3D mask attack are discussed.

11.1 Background and Motivations

Face presentation attack, a widely used face attack approach where a fake face of an
authorized user is present to cheat the face recognition system, is one of the greatest
challenges in practice. With the increasing variety of face recognition applications,
this security concern has been receiving increasing attentions [1, 2]. Face image or
video attacks are the two traditional spoofing methods that can be easily conducted
through prints or screens. The face images or videos can also be easily acquired from
the Internet with the boosting of social networks. In the last decade, a large number

S.-Q. Liu · P. C. Yuen (B)
Department of Computer Science, Hong Kong Baptist University,
Kowloon, Hong Kong
e-mail: pcyuen@comp.hkbu.edu.hk

S.-Q. Liu
e-mail: siqiliu@comp.hkbu.edu.hk

X. Li · G. Zhao
Center for Machine Vision and Signal Analysis, University of Oulu, Oulu, Finland
e-mail: xiaobai.li@oulu.fi

G. Zhao
e-mail: guoying.zhao@oulu.fi

© Springer Nature Switzerland AG 2019
S. Marcel et al. (eds.), Handbook of Biometric Anti-Spoofing,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-319-92627-8_11

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92627-8_11&domain=pdf
mailto:pcyuen@comp.hkbu.edu.hk
mailto:siqiliu@comp.hkbu.edu.hk
mailto:xiaobai.li@oulu.fi
mailto:guoying.zhao@oulu.fi
https://doi.org/10.1007/978-3-319-92627-8_11


230 S.-Q. Liu et al.

(a) ThatsMyface Mask (b) Real-F Mask

Fig. 11.1 High-resolution sample images of Thatsmyface mask and REAL-f mask

of efforts have been devoted to face Presentation Attack Detection (PAD) on photo
and video attacks [2–16] and encouraging results have been obtained.

Recently, with the rapid development of 3D printing and reconstruction technolo-
gies, creating a super-real 3D facial mask at an affordable cost become feasible.
For instance, to make a customized Thatsmyface 3D mask as shown in Fig. 11.1a,
the user is only required to submit a frontal face image with a few attributed key
points. The 3D facial model is reconstructed from it and used to print the 3D mask.
Compared with the 2D image or video attacks, 3D masks own 3D structure close
to human faces while retaining the appearance in terms of skin texture and facial
structure. In this case, the traditional 2D face PAD approaches may not work.

Recent research [17] points out that Thatsmyface1 masks can successfully spoof
many exiting popular face recognition systems. On the 3D Mask Attack Dataset
(3DMAD) which is made of Thatsmyface masks, the Inter Session Variability (ISV)
modeling method [18] achieves around a Spoofing False Acceptance Rate (SFAR) of
around 30%. In addition, the REAL-f mask as shown in Fig. 11.1b using the 3D scan
and “Three-Dimension Photo Form (3DPF)” technique to model the 3D structure
and print the facial texture, can achieve higher appearance quality and 3D modeling
accuracy than the Thatsmyface mask [19]. By observing the detailed textures such
as the hair, wrinkle, or even eyes’ vessels, without the context information, even a
human can hardly identify whether it is a genuine face or not. As such, there is an
urgent need to address the 3D mask face PAD.

1www.thatsmyface.com.

www.thatsmyface.com
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While 3D mask PAD is a new research problem, some work has been developed
and reported which can be mainly categorized as the appearance-based approach,
motion-based approach, and remote Photoplethysmography-based approach. Similar
to the image andvideo attacks, 3Dmasksmay contain somedefects due to the printing
quality. Thereby, using the appearance cues such as the texture and color becomes a
possible solution [17]. The motion-based approaches detect mask attacks by using
the fact that current 3D masks mainly have a hard surface and they cannot retain
the subtle facial movements. Motion cues can hardly perform well against 3D mask
attacks since 3D masks preserve both the geometric and appearance properties of
genuine faces. Moreover, the soft silicone gel mask is able to preserve the subtle
movement of the facial skin, which make the motion-based approaches less reliable.

As such, it is necessary to develop a new intrinsic liveness cue that can be indepen-
dent of the appearance variation and motion patterns of different masks. Recently,
studies turned out that the heartbeat signal on a face can be observed through a nor-
mal RBG camera by analyzing the color variation of the facial skin. If it is applied
to the 3D mask PAD, the periodic heartbeat signal can be detected on a genuine
face but not on a masked face since the mask blocks the light transmission [19].
Due to the uniqueness of this new liveness cues, we categorize is as the remote
Photoplethysmography-based approach. The book chapter is organized as follows.
We have given the background and motivations of this research work. Next, the pub-
licly available 3D mask datasets and evaluation protocols are reviewed in Sect. 11.2.
In Sect. 11.3, we discuss the methods developed in three categories for face PAD,
namely appearance-based, motion-based, and remote photoplethysmography-based.
The performances of the three approaches are evaluated on publicly available datasets
in Sect. 11.4. Finally, open challenges in 3D mask attack are discussed in Sect. 11.5.

11.2 Publicly Available Datasets and Experiments
Evaluation Protocol

11.2.1 Datasets

As far as we know, there are two rigid and two soft 3D mask attack datasets for 3D
maskPAD.The two rigidmask datasets are:3DMaskAttackDataset (3DMAD) [20],
HongKongBaptistUniversity 3DMaskAttackwithRealWorldVariations (HKBU-
MARs) dataset [21]. The two soft mask datasets are: Silicone Mask Attack Dataset
(SMAD) [22] andMulti-spectral Latex Mask based Video Face Presentation Attack
(MLFP) dataset [23].
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Fig. 11.2 The 17 customized Thatsmyface masks used in 3DMAD dataset [17]

11.2.1.1 3DMAD

The 3DMask Attack Dataset (3DMAD) [20] is the first publicly available 3D mask
attack dataset in which the attackers wear the customized 3D facial masks of a valid
user. The CustomWearableMasks used in 3DMAD, are built fromThatsmyface.com
and proved to be good enough to spoof facial recognition system [20]. The dataset
contains a total of 255 videos of 17 subjects, as shown in Fig. 11.2. It is noted that
the eyes and nose holes are uncovered by the masks for a better wearing experience.
The 3DMAD dataset is recorded by Kinect and contain color and depth information
of size 640×480 at 30 frames per second. Each subject has 15 videos with ten live
faces and five masked faces. This dataset is divided into three sessions that include
two real access sessions recorded with a time delay and one attack session captured
by a single operator (attacker). 3DMAD is the first public available 3D mask dataset
which can be downloaded from https://www.idiap.ch/dataset/3dmad.

11.2.1.2 HKBU-MARs

The Hong Kong Baptist University 3D Mask Attack with Real World Variations
(HKBU-MARs) dataset [21] proposes to simulate the real-world application sce-
narios by adding variations in terms of type of mask, camera setting, and light-
ing condition. In particular, the HKBU-MARs dataset contains 12 subjects with
12 masks. To imitate different types of mask attacks in practice, six masks are from
Thatsmyface and the other six are fromREAL-f. Figure11.3 shows themasks used in

https://www.idiap.ch/dataset/3dmad
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Fig. 11.3 Sample mask images from the HKBU-MARs dataset. a–f are ThatsMyFace masks and
g–l are Real-F masks

Fig. 11.4 Different lighting conditions in the HKBU-MARs dataset. a–f represents the low light,
room light, bright light, warm light, side light, and upside light, respectively

HKBU-MARs. Since face recognition systems arewidely deployed in different appli-
cations, such as the mobile application and the immigration, seven different cameras
from the stationary andmobile devices are used to capture around 10s videos. For the
stationary applications, A web camera Logitech C920, an industrial camera and, and
a mirrorless camera (Canon EOS M3) are used to represent different types of face
acquisition systems. For the mobile devices, three smartphones: Nexus 5, iPhone 6,
Samsung S7 and one tablet: Sony Tablet S are used. In addition, the HKBU-MARs
dataset considers six lighting conditions to cover the typical scenes of face recog-
nition applications, which includes the Low light, room light, bright light, warm
light, side light and upside light as shown in Fig. 11.4. In sum, each subject contains
42 (seven cameras * six lightings) genuine and 42 mask sequences and the total
size is 1008 videos. The HKBU-MARs that contains the variations of mask type,
camera setting, and lighting condition can be used to evaluate the generalization
ability of face PAD systems across different application scenarios in practice. More
detailed information can be found at http://rds.comp.hkbu.edu.hk/mars/. A prelim-
inary version of the HKBU-MARs, namely the HKBU-MARs V1 [19] has been
publicly available at http://rds.comp.hkbu.edu.hk/mars/. HKBU-MARsV1 contains
eight masks including six Thatsmyface masks and two REAL-f masks. It is recorded

http://rds.comp.hkbu.edu.hk/mars/
http://rds.comp.hkbu.edu.hk/mars/
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through a Logitech C920 webcam at a resolution of 1280 × 720 under natural light-
ing conditions.

11.2.1.3 SMAD

Different from 3D printed masks, silicon masks with soft surface can retain both the
appearance and facial motions. As shown in the Hollywood movieMission Impossi-
ble, Ethan Hunt wears siliconmasks to impersonate others identities and even human
can hardly recognize them. In this case, face recognition systems are highly vulner-
able as well. The Silicone Mask Attack Database (SMAD) [22] is proposed to help
research in developing 3D mask attack detection methods in such scenarios. The
SMAD contains 130 real and attack videos (65 for each) that obtained from online
resources under unconstrained settings. The genuine videos are auditioning, inter-
viewing, or hosting shows collected from multiple sources so they contain different
application environment in terms of illumination, background and camera settings.
The time interval of videos varies from 3 to 15s. In particular, the silicon masks in
attack videos fit the eyes and mouths holes properly and some masks include hair
or mustache. Note that the silicon masks in SMAD are not the customized masks
with identities in genuine videos due to the very expensive price. The Text file that
contains the videos URLs is available at: http://www.iab-rubric.org/resources.html.

11.2.1.4 MLFP

Since the soft 3D mask can be super real while maintaining the facial movement,
using appearance or motion-based methods in the visible spectrummay not be effec-
tive. TheMulti-spectral Latex Mask based Video Face Presentation Attack (MLFP)
dataset is proposed to help research in designing multi-spectral based face PAD
method [23]. The MLFP contains 1350 videos of 10 subjects with or without seven
latex and three paper masks. Note that the masks in MLFP are also not the cus-
tomized masks with identities in genuine videos. The MLFP is recorded in three
different spectrums: visible, near-infrared, and thermal with the environmental vari-
ations which include indoor and outdoor with fixed and random backgrounds. The
MLFP dataset is not yet publicly available at the writing of the chapter.

11.2.2 Experimental Evaluation Protocol

The performance of a 3D mask face PAD method is mainly evaluated under intra-
dataset, cross-dataset, and intra/cross-variation scenarios to test its discriminability
and generalizability. The intra-dataset testing is conducted in one dataset by separat-
ing the subjects into non-overlapping part as the training, development, and testing

http://www.iab-rubric.org/resources.html
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sets. The cross-dataset, and intra/cross-variation testing are designed to simulate the
scenarios that the training samples are limited and different from the testing samples.

11.2.2.1 Intra-dataset Testing

For intra dataset testing, the classifier is trained on the training set and test with
the testing set. It is noted that the development set is used to tune the parameters
for real application scenarios (e.g., the testing set). Erdogmus et al. propose to use
cross validation to assign different subjects into the training, development and test
sets [20]. This protocol is updated to the leave one out cross validation (LOOCV)
in [17], which selects one testing subject at each iteration and divides the rest subjects
into training and development sets. For instance, the experiments on 3DMAD are
done in 17-folds. In each fold, after selecting 1 subject’s data as the testing set, for
the remaining 16 clients, the first 8 is chosen for training and the remaining for
development. Liu et al. updated the LOOCV by randomly assigning the remaining
subjects for training and development to avoid the effect caused by the order of
subjects in a dataset [19].

11.2.2.2 Cross-Dataset Testing

The cross-dataset protocol uses different datasets for training and testing to simulate
the practical scenarios where the training data are limited and may be different
from the testing samples. To conduct the cross-dataset testing, one can select one
dataset for training and use the other dataset for testing. Due to the limited number
of subjects of 3D mask attack datasets, the result may not be representative. We
may select part of the subjects from one dataset for training and the final result
is summarized by conducting several rounds of cross-dataset testing. For instance,
for the HKBU-MARsV1 and 3DMAD cross testing, Liu et al. randomly selected
five from the former dataset as the training set and used all data of 3DMAD for
testing [19].

11.2.2.3 Intra-variation Testing

For the HKBU-MARs dataset [21] that contains three types of variations: mask type,
camera, and lighting condition, the intra variation testing protocol is designed to
evaluate the robustness of a 3D mask face PAD method when encountering only
one specific variation. Under the selected variation (fixed mask type, camera, and
lighting condition), LOOCV is conducted to obtain the final results. Although the
intra variation testing may not match the practical scenarios, it is useful to evaluate
the robustness of a 3D mask PAD method.
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11.2.2.4 Cross-Variation Testing

The cross-variation testing protocol is designed to evaluate the generalization ability
across different types of variation in practice. In particular, the leave one variation out
cross validation (LOVO) [21] is proposed to evaluate the robustness of one type of
variation, the others are fixed. For one specific type of variation, in each iteration, one
sub-variation is selected as the training set and the rests are regarded as the testing
set. For example, for the LOVO on camera type variations, the data captured by one
type of camera is selected as the training set and data captured by the rest types of
cameras is selected as the testing set. Note that the other types of variation: mask
and lighting condition are fixed. In sum, the LOVO of cameras under different mask
types and lighting conditions involves a total of 2×6 (mask types × lightings) sets
of results [21].

11.3 Methods

11.3.1 Appearance-Based Approach

As the appearance of a face in printed photos or videos is different from the real face,
several texture-based methods have been used for face PAD and achieve encouraging
results [7, 11, 15, 24]. The 3D mask also contains the quality defect that results
in the appearance difference from a genuine face, due to the imperfection precision
problems of 3D printing technology. For example, the skin texture and detailed facial
structures in masks as shown in Fig. 11.1a have perceivable differences compared to
those in real faces.

Erdogmus et al. evaluate the LBP-based methods on 3DMAD dataset and show
their effectiveness [17]. TheMulti-Scale LBP (MS-LBPMS-LBP:Multi-Scale Local
Binary Pattern) [7] achieves the best performance undermost of the testing protocols.
From a normalized face image, MS-LBP extracts LBPu2

16,2, LBPu2
8,2 from the entire

image and LBPu2
8,1 from the 3 × 3 overlapping regions. Therefore, one 243-bin,

one 59-bin, and nine 59-bin histograms which contain both the global and local
information are generated and then concatenated as the final 833-dimensional feature.
It is reported that the MS-LBP achieves 99.4% Area Under Curve (AUC), 5% Equal
ErrorRate (EER) on theMorpho dataset.2 Multi-ScaleLBP [7] concatenates different
LBP settings and achieves promising performance on 3Dmask detection [17].While
the results are promising with the above methods, recent studies indicate that they
cannot generalize well in a cross-dataset scenario [16, 25]. It is reported that the
MS-LBP is less effective (22.6% EER and 86.8% AUC) on HKBU-MARsV1 due to
the super-real mask—REAL-f [19].

2http://www.morpho.com.

http://www.morpho.com
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Since the differences between 3D masks and real faces are mainly from the tex-
tures, analyzing the textures details in the frequency domain can be effective. Agar-
wal et al. propose the RDWT-Haralick [26] which uses redundant discrete wavelet
transform (RDWT) and Haralick descriptors [27] to analyze the input image under
different scales. Specifically, the input image is divided into 3×3 blocks and then the
Haralick descriptors are extracted from the four sub-bands of the RDWT results and
the original image. For video input, the RDWT-Haralick features are extracted from
multiple frames and concatenated as the final feature vector. After feature dimen-
sion reduction using principal component analysis (PCA), the final result is obtained
through Support Vector Machine (SVM) with linear kernel. It is reported that the
RDWT-Haralick feature can achieve 100% accuracy and 0% HTER on 3DMAD
dataset.

Despite the texture-based methods, the perceivable differences between genuine
faces and fraudmasks also exist in their 3Dgeometric appearance. Tang et al. analyze
the 3Dmeshed faces (acquired through a 3D scanner) and highlight the dissimilarities
ofmicro-shape of genuine andmasked faces by the principal curvaturemeasures [28]
based 3D geometric attribute [29]. Specifically, they design a shape-description-
oriented 3D facial feature description scheme which represents the 3D face as a
histogram of principle curvature measures (HOC). It is reported that the HOC can
achieve 92% true acceptance rate (TAR) when FAR is 0.01 on Morpho dataset.

Recently, with the booming of the deep learning, the community adopts deep
networks to extract discriminative appearance features for biometric PAD [30, 31].
Compared to the solutions that rely on domain knowledge, Menotti et al. propose to
learn a suitable CNN architecture through the data [30]. In the meantime, the filter
weights of the network are learned via back-propagation. The two approaches interact
with each other to form the final adapted network, namely the spoofnet. The authors
report 100% accuracy and 0% HETER on the publicly available 3DMAD dataset.
While the performances are significant, the deep learning based features require well
designed large-scale training data. Due to the intrinsic data-driven nature [25], the
over-fitting problem of the deep learning based methods in cross-dataset scenario
remains open.

The hand-crafted features are difficult to be robust across multiple kinds of appli-
cation scenarios. On the other hand, the deep network based features require sig-
nificantly large and representative training dataset. Ishan et al. propose to use deep
dictionary [32] via greedy learning algorithm (DDGL) for PAD [22]. It is reported
that DDGL can achieve impressive performance on both the photo, video, hardmask,
and silicon mask attacks. On the other hand, its generalizability under cross-dataset
scenarios is less promising since the DDGL is also based on the feature learning
framework and the performance, to some extent, still depends on the training data.
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11.3.2 Motion-Based Approach

Since most existing 3D masks are made of hard materials, the facial motion, such as
eye blinks andmouthmovements, and facial expression changesmay not be observed
on a masked face. As such, the motion-based methods on 2D face PAD, such as the
dynamic textures [11] or Histograms of Oriented Optical Flow (HOOF) [33] are
effective in detecting these hard 3D masks.

Talha et al. propose the multifeature Videolet by encoding the appearance texture
with the motion information [34] of both facial and surrounding regions. The texture
feature is based on a configuration of local binary pattern, namely the multi-LBP.
The motion feature is encoded by extracting HOOF from different time slots of the
input video. The multifeature Videolet method not only achieves 0% EER on the
3DMAD dataset but is also effective in detecting the image and video presentation
attacks.

Shao et al. propose to exploit the lower convolutional layer to obtain the dynamic
information from fine-grained textures in feature channels [35]. In particular, given
a preprocessed input video, fine-grained textures in feature channels of a convolu-
tional layer of every frame are first extracted using a pre-trained VGG [36]. Then the
dynamic information of textures in each feature channel (of all frames) are estimated
using optical flow [37]. To exploit the most discriminative dynamic information, a
channel-discriminability constraint is learned through minimizing intra-class vari-
ance and maximizing inter-class variance. The authors report 0.56% and 8.85% EER
on 3DMAD and HKBU-MARsV1 dataset, respectively. To evaluate the generaliz-
ability, the cross-dataset [19] testing is conducted and yields 11.79% and 19.35%
EER for 3DMAD to HKBU-MARsV1, and HKBU-MARsV1 to 3DMAD.

11.3.3 Remote Photoplethysmography-Based Approach

Different from the aforementioned two traditional approaches, a new intrinsic live-
ness cue based on the remote heartbeat detection is proposed recently [19, 38]. The
rationale of the rPPG-based approach, and two state-of-the-artmethods are illustrated
in the following subsections.

11.3.3.1 What is Remote Photoplethysmography (rPPG)?

The remote heartbeat detection is conducted through the remote photoplethysmogra-
phy (rPPG). The photoplethysmography (PPG) is an optically obtained plethysmog-
raphy, which measures the volumetric of an organ, such as the heart. PPG measures
the changes in light absorption of a tissue when heart pumps blood in a cardiac
cycle [39]. Different from PPG that often uses the pulse oximeter attached to the
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(a) Genuine Face (b) Masked Face

Fig. 11.5 Effect of rPPG extraction on a genuine face (a), and a masked face (b) [19]

skin to detect the signal, rPPG capture it remotely through a normal RGB camera
(e.g., web camera or mobile phone camera) under ambient lighting conditions.

11.3.3.2 Why rPPGWorks for 3DMask Presentation Attack Detection?

rPPG can be the intrinsic liveness cue for 3Dmask face PAD. As shown in Fig. 11.5a,
environmental light penetrates skin and illuminates capillary vessel in the subcuta-
neous layer. When the heart pumps blood in each cardiac cycle, the blood oxygen
saturation changes, which results in a periodic color variation, namely the heartbeat
signal. The heartbeat signal then transmits back from the vessels and can be observed
by a normal RGB camera. Such an intrinsic liveness cue can be very effective on
3D mask face PAD. As shown in Fig. 11.5b for a masked face, the light needs to
penetrate the mask and the source heartbeat signal needs to go through the mask
again to be observed. Consequently, the rPPG signal extracted from a masked face is
too weak to reflect the liveness evidence. In summary, rPPG signals can be detected
on genuine faces but not on masked faces, which shows the feasibility of rPPG-based
3D mask face PAD.

11.3.3.3 rPPG-Based 3D Mask Presentation Attack Detection

Liu et al. are the first that exploit rPPG for 3D mask face PAD [19]. First, the input
face is divided into local regions based on the facial landmarks and used to extract
local rPPG signals. Then they model a correlation pattern from it to enhance the
heartbeat signal and weaken the environmental noise. This is because the local rPPG
signals share the same heartbeat frequency and the noise does not. Finally, the local
rPPG correlation feature is fed into an SVM tuned by the learned confidence map.
The experiments shows that this method achieves 16.2% EER and 91.7% AUC on
HKBU-MARsV1 and 95.5% AUC and 9.9% EER on a Combined dataset formed of
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the 3DMAD andHKBU-MARsV1. In addition, since the rPPG signal is independent
of themask’s appearance quality, the local rPPGsolution yields good generalizability.
Under the cross-dataset testing, it achieves 94.9% and 91.2% AUC for 3DMAD to
HKBU-MARsV1 and HKBU-MARsV1 to 3DMAD.

Li et al. develop a generalized rPPG-based face PAD which works for both 3D
mask and traditional image and video attacks [38]. Given the input face video, the
Viola-Jones face detector [40] is used tofind theboundingbox for landmarkdetection.
A customized region of interest is then defined to extract three raw pulse signals
from the RGB channels. Next, they apply temporal filters to remove frequencies
not relevant for pulse analysis. Signals are analyzed in the frequency domain and
the liveness feature, a vector that consists of the maximum power amplitudes and
the signal to noise ratio of the three channels, is extracted from the power density
curves. This method achieves 4.71% EER on 3DMAD and 1.58% EER on two
REAL-f masks [38]. It is also noted that most of the error cases are false negatives.
This is because heart rate is fragile due the factors like darker skin tone and small
facial resolution.

11.4 Experiments

Two experiments are conducted to evaluate the performance of the appearance-based,
motion-based, and rPPG-based methods. In particular, MS-LBP [17], HOOF [34],
RDWT-Haralick [26], convMotion [35], the local rPPG solution (LrPPG) [19], and
the global rPPG solution (GrPPG) [38] are implemented and evaluated under both
intra and cross-dataset testing protocols. For the appearance based methods, only the
first frame of the input video is used. It is also noted that only the HOOF part of
the videoLet [34] method is adopted to compare the motion cue with other methods.
The final results are obtained throughMatlab SVM with RBF kernel for MS-LBP,
HOOF, RDWT-Haralick and LrPPG and linear kernel for GrPPG.

To evaluate the performance,HTER [2, 17],AUC,EERandFalse FakeRate (FFR)
when False Liveness Rate (FLR) equals 0.1 and 0.01 are used as the evaluation
criteria. For the intra-dataset test, HTER is evaluated on the development set and
testing set, which are named as HTER_dev and HTER_test, respectively. A ROC
curve with FFR and FLR is used for qualitative comparisons.

11.4.1 Intra Dataset Evaluation

To evaluate the discriminability of the 3D mask methods, LOOCV experiments
on both 3DMAD and HKBU-MARsV1 datasets are conducted. For the 3DMAD
dataset, we randomly choose eight subjects for training and the remaining eight for
development. For the HKBU-MARsV1 dataset, we randomly choose three subjects
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as training set and the remaining four as the development set. We conduct 20 rounds
of experiments.

Table11.1 shows the promising results of the texture-based method on 3DMAD
dataset while the performance drop on the HKBU-MARsV1 points out the limitation
on the high-quality 3D masks. HOOF achieves similar results on the two datasets
while the precisions are below the average. Note that the rPPG-based methods per-
formbetter on 3DMAD than onHKBU-MARsV1 (Table11.2). Since the rPPG signal
quality depends on the number of pixels of the region of interests, this circum-
stances may due to the facial resolution of videos from 3DMAD (around 80×80)
are smaller than the videos from HKBU-MARsV1 (around 200×200). Specifically,
LrPPG achieves better results due to the robustness of the cross-correlation model
and confidence map. It is also noted that, as shown in Fig. 11.6 the major error
classifications fall on the false reject due to the weakness of rPPG signals on face.
The convMotion that fuses deep learning with motion liveness cue achieves the best
performance among the existing methods.

Table 11.1 Comparison of results under intra dataset protocol on the 3DMAD dataset

HTER_dev (%) HTER_test (%) EER (%) AUC FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [17] 0.15 ± 0.6 1.56 ± 5.5 0.67 100.0 0.00 0.42

HOOF [34] 32.9 ± 6.5 33.8 ± 20.7 34.5 71.9 62.4 85.2

RDWT-
Haralick [26]

7.88 ± 5.4 10.0 ± 16.2 7.43 94.0 2.78 89.1

convMotion [35] 0.10 ± 0.1 0.95 ± 0.6 0.56 100.0 0.00 0.30

GrPPG [38] 8.99 ± 3.1 10.7 ± 11.5 9.41 95.3 8.95 70.7

LrPPG [19] 7.12 ± 4.0 7.60 ± 13.0 8.03 96.2 7.36 14.8

Table 11.2 Comparison of results under intra dataset protocol on the HKBU-MARsV1 dataset

HTER_dev (%) HTER_test (%) EER (%) AUC FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [17] 17.5 ± 10.8 11.9 ± 18.2 21.1 86.8 55.4 93.9

HOOF [34] 25.4 ± 12.8 23.8 ± 23.9 28.9 77.9 75.0 95.6

RDWT-
Haralick [26]

16.3 ± 6.8 10.3 ± 16.3 18.1 87.3 31.3 81.7

convMotion [35] 2.31 ± 1.7 6.36 ±3.5 8.47 98.0 6.72 27.0

GrPPG [38] 14.9 ± 6.5 15.8 ± 13.1 16.8 90.2 31.3 73.5

LrPPG [19] 11.5 ± 3.9 13.0 ± 9.9 13.4 93.6 16.2 55.6
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Fig. 11.6 Average ROC curves of two datasets under intra-dataset protocol

11.4.2 Cross-Dataset Evaluation

To evaluate the generalization ability across different datasets, we design cross-
dataset experiments where the training and test samples are from two different
datasets. In particular, when 3DMAD and HKBU-MARsV1 are used as the training
and testing datasets (3DMAD→HKBU-MARsV1 for short), we randomly select
eight subjects from 3DMAD for training and use the remaining nine subjects from
3DMAD for development. When HKBU-MARsV1 and 3DMAD are used as the
training and testing datasets (HKBU-MARsV1→3DMAD for short), we randomly
select four subjects from HKBU-MARsV1 as the training set and the remaining four
subjects from HKBU-MARsV1 as the development set. We also conduct 20 rounds
of experiments.

As shown in Tables11.3 and 11.4, the rPPG-based methods and convMotion
achieve close results as the intra dataset testing, which shows their encouraging
robustness. Themain reasonbehind the rPPG-basedmethod’s success is that the rPPG
signal for different people under different environment is consistent, so the features of
genuine and fake faces can be well separated. On the other hand, the performance of
MS-LBP and HOOF drop. Specifically, the appearance basedmethods,MS-LBP and
RDWT-Haralick achieve better results for HKBU-MARsV1→3DMAD (Fig. 11.7),
since the HKBU-MARsV1 contains two types of masks while the 3DMAD contains
one (the classifier can generalize better when it is trained with larger data variance).
It is also noted that the RDWT-Haralick feature achieves better performance than
MS-LBP as it analyzes the texture differences from different scales with redundant
discrete wavelet transform [26]. The HOOF fails on the cross-dataset as for differ-
ent dataset, the motion patterns based on optical flow may vary with the different
recording settings.
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Table 11.3 Cross-dataset evaluation results under 3DMAD→HKBU-MARsV1

3DMAD→HKBU-MARsV1

HTER (%) EER (%) AUC (%) FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [17] 43.6 ± 5.9 44.8 57.7 98.8 100.0

HOOF [34] 51.8 ± 12.0 50.6 47.3 84.1 92.1

RDWT-
Haralick [26]

23.5 ± 4.7 39.6 68.3 71.6 98.1

convMotion [35] 10.1 ± 2.1 11.8 96.2 13.8 33.9

GrPPG [38] 29.7 ± 11.9 15.6 90.5 27.4 77.0

LrPPG [19] 10.7 ± 3.7 11.4 96.2 12.3 55.6

Table 11.4 Cross-dataset evaluation results under HKBU-MARsV1→3DMAD

HKBU-MARsV1→3DMAD

HTER (%) EER (%) AUC (%) FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [17] 45.5 ± 2.8 25.8 83.4 41.2 69.0

HOOF [34] 42.4 ± 4.1 44.1 57.6 77.6 93.1

RDWT-
Haralick [26]

13.8 ± 7.5 21.3 86.7 37.1 90.3

convMotion [35] 17.2 ± 1.3 19.4 89.6 27.4 56.0

GrPPG [38] 29.0 ± 11.6 22.7 83.2 57.3 91.9

LrPPG [19] 12.8 ± 3.3 13.2 93.7 16.9 55.9
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Fig. 11.7 Average ROC curves under cross-dataset protocol
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11.5 Discussion and Open Challenges

With the development of 3Dprinting and3D face reconstruction technology, 3Dmask
is proved to be able to spoof a face recognition system. As such, this problem has
drawn an increasing attention with the boosting numbers of related publications. In
this chapter, we revealed the challenges of 3Dmask presentation attack, summarized
the existing datasets and evaluation protocols, and discussed different approaches
that have been proposed. Still, there are issues remain open.

Although the costs of 3D masks are expensive, there are two publicly available
datasets address the 3D mask presentation attack challenges. However, the numbers
of the subjects and customized 3Dmasks are quite limited because of the cost. With-
out sufficient number of data, the evaluation results of toy experiments may not be
convincing enough for real-world applications. Additionally, the variations like the
recording device and conditions are limitedwhich results in the difficulties of evaluat-
ing the generalization capabilities of the methods in practical scenarios. The existing
publicly available datasets using customized masks are mainly recorded through a
stationary camera under single lighting condition. While in practice, the training
data may vary from the testing samples, in terms of the mask types, camera devices,
or lighting conditions. For instance, since the mobile applications are getting more
and more popular, the scenario of a mobile device with camera motion interferences
under unconstrained lighting conditions could be the common situation. Therefore,
more data with real-world settings should be designed and collected.

On the other hand, since the 3D mask face PAD is at the beginning stage, current
researches mainly focus on the detection under fixed conditions with simple testing
protocols, which may not reflect the practical scenarios. The excellent results on
single dataset indicate that more challenging evaluation protocols are needed before
the 3D mask face PAD can be applied at the practical level. Additionally silicone
mask attacks need to be first “collected” and then studied. For the appearance-based
methods, adapting different mask qualities, cameras, and lighting conditions are the
challenges to be addressed. The motion-based methods may not work on the soft
masks that can preserve the facial motion. The rPPG-based methods may not be
robust under lower lighting condition or with motion interferences. In sum, larger
dataset is still the most critical issue for designing more complicated protocols to
evaluate not only the discriminability but also the generalizability.
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Chapter 12
Challenges of Face Presentation Attack
Detection in Real Scenarios

Artur Costa-Pazo, Esteban Vazquez-Fernandez, José Luis Alba-Castro
and Daniel González-Jiménez

Abstract In the current context of digital transformation, the increasing trend in the
use of personal devices for accessing online services has fostered the necessity of
secure cyberphysical solutions. Biometric technologies for mobile devices, and face
recognition specifically, have emerged as a secure and convenient approach. How-
ever, such a mobile scenario also brings some specific threats, and spoofing attack
detection is, without any doubt, one of the most challenging. Although much effort
has been devoted in anti-spoofing techniques over the past few years, there are still
many challenges to be solved when implementing these systems in real use cases.
This chapter analyses some of the gaps between research and real scenario deploy-
ments, including generalisation, usability, and performance. More specifically, we
will focus on how to select and configure an algorithm for real scenario deployments,
paying special attention to use cases involving limited processing capacity devices
(e.g., mobile devices), and we will present a publicly available evaluation framework
for this purpose.
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12.1 Introduction

Accessing to personal data using our smartphones has become a part of normal every-
day life. Using passwords, unlock patterns, as well as biometric recognition systems
is common for a secure access to our social networks, bank apps and so on. Facial
recognition is one of the most widespread biometric features on modern applica-
tions. However, given the multimedia resources available today on the Internet (i.e.
Facebook photos, videos on YouTube), it is easy to obtain audiovisual material from
almost every potential user, allowing the creation of tools to perform presentation
attacks (PAI, Presentation Attack Instrument).

Over the past few years, the interest in methods to detect this type of attacks
in facial recognition systems, the so-called Presentation Attack Detection (PAD)
methods, has increased. This has led to the emergence of numerous research works
[1, 2], anti-spoofing specific databases (composed of genuine access and attack
videos) [3–8], and associated competitions [9, 10] with the aim of evaluating new
PAD algorithms.

There are currently several ways to tackle the problemof PAD from an algorithmic
point of view.We could simplify them in two approaches: collaborative methods and
automatic methods. The first takes advantage of the possibility of interaction with the
user, while the latter relies solely on image and video analysis in a non-interactive
way.

Nowadays, many of the deployed facial recognition systems have chosen col-
laborative anti-spoofing systems in order to preserve their security. This approach
implies challenge-response strategies such as eye blinking, smiling, looking in dif-
ferent directions or flashing the user with colour lights from the device screen. Some
examples of these approaches can be found in.1,2,3 The main reason for biomet-
rics providers to implement these solutions lies in the robustness against automated
attacks. Collaborative anti-spoofing systems cannot be fooled as easily as presenting
an image or video in front of the camera, as they require the attack to mimic certain
actions such as blinking, smiling, or even moving one’s face by following an specific
movement pattern. However, advances in computer graphics and the reduction of
costs to produce high resolution masks are emerging as a potential risk that threatens
even this collaborative countermeasures [11]. This is the case with 3D reconstruc-
tions from 2D images using Deep Learning methods like the ones presented in [12].
Using these methods an attacker could reproduce 3D models of a face following the
corresponding patterns required for registration (a demo is publicly available in4).

Alternatively, automatic face-PADmethods aremore convenient and less intrusive
for the user. These face-PAD methods are better accepted by the final users than the
collaborative ones, since they are more discreet to be used in public, by preventing
possible social barriers (i.e. smiling or deliberately blinking in front of the smartphone

1https://www.iproov.com.
2https://www.zoloz.com/smile.
3https://www.bioid.com/liveness-detection/.
4http://cvl-demos.cs.nott.ac.uk/vrn/.

https://www.iproov.com
https://www.zoloz.com/smile
https://www.bioid.com/liveness-detection/
http://cvl-demos.cs.nott.ac.uk/vrn/
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in public spaces) and thus are being demanded by the industry. In addition, these
methods have also advantages in terms of usability: as the user does not need to
cooperate, they do not require a learning process; likewise they do not need any
kind of synchronization with the user interface for such interaction. In spite of the
advantages, these PAD methods are not as widely used in a real-world scenario due
to the difficulty of transferring the performance obtained in databases into real-world
environment [13]. We will address this problem in the next section.

Despite the research effort, the deployment of this technology in realistic environ-
ments presents many challenges and it is an issue which is still far from being solved.
Examples of this are the facial recognition systems included in some of the latest
smartphone models. Samsung’s latest device, Galaxy S9 line, have been hacked with
a simple photograph shortly after their presentation. Despite incorporating specific
depth and infrared sensors, iPhone X has also suffered from spoofing attacks. After a
week of its release, the first videos of users and companies claiming their capability to
get into the device by tricking the system with masks have already appeared. In view
of these cases, it is important to consider the challenges of deploying anti-spoofing
systems in real-world environments and, therefore, also how we are assessing these
systems and whether we can do better.

The main contributions of this chapter are

• An analysis of the weak points of the current face-PAD evaluation procedures, in
relation to performance and usability constraints in real environments.

• A publicly available evaluation framework is proposed to help researchers on
selecting parameters and tuning algorithms for bringing new face-PAD methods
to applications on real scenarios.

• A discussion on the benefits of the presented framework by showing the perfor-
mance evaluation of two different face-PAD methods.

The chapter is organized as follows. Challenges and related work on face anti-
spoofing is reviewed and analysed in Sect. 12.2. Section12.3 describes the framework
for the proposed evaluation. Section12.4 reports the results obtained. Conclusions
are finally presented in Sect. 12.5.

12.2 Challenges of Deploying Face-PAD in Real Scenarios

In this section we provide a brief comment of some relevant aspects for face anti-
spoofing that need to be analysed and studied: cross-domain performance, database
limitations and usability.

12.2.1 Cross-Domain Performance

As indicated by recent works on cross-dataset evaluations, generalisation is a critical
issue in most systems [13]. Systems that have been trained and evaluated in the same
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dataset obtain very high performance. However when they are evaluated in a different
dataset the error rates increase by an order of magnitude [6].

One of the main problems of current systems lies in the difficulty of cross-domain
generalisation, losing performancewhen the systemdealswith images taken in differ-
ent conditions than the trained ones. In a recent work [1] Patel et al. studied the influ-
ence of the number of training subjects on performance, by using the MSU-USSA
database5 (a 1000-subject dataset). Reported results show that using a larger training
set significantly improves the cross-dataset performance. However, in the same work
an interesting end-to-end experiment was performed using an Android app for rou-
tine smartphone unlock with an integrated face-PAD method previously trained on
MSU-USSA. This experiment showed that performance obtained on datasets do not
reflect the real performance on actual applications. Despite the fact that they achieved
an impressive improvement on intra-dataset performance, it has been demonstrated
that end-to-end tests are needed to forecast performance on deployment scenarios.
The gap between academic datasets and real scenario accesses and attacks seems
clear. The observed drop in performance shows that the type of attacks, use cases
and scenarios in real life differ significantly from those covered by academic datasets.
Unless databases add more representative variety of attacks and genuine accesses,
performance loss in real-world scenarios will continue to be a problem.

12.2.2 Database Limitations

Collecting a dataset for reproducing collaborative face-PAD scenarios is a difficult
task that includes synchronization of the user interface and capture, movement and
reaction annotations, variety of PAIs, etc. Therefore, there are no publicly available
collaborative face-PAD datasets with these characteristics. In this situation, collab-
orative anti-spoofing countermeasure methods cannot be compared in an open and
reproducible framework.

On the other hand, several datasets have been published in recent years trying
to represent the automatic authentication scenario on mobile devices. NUAA [3],
CASIA FASD [4] and REPLAY-ATTACK [5] helped to evaluate first anti-spoofing
countermeasures. Unfortunately, these datasets were captured with cameras that are
no longer representative of mobile scenarios. In 2015, Di We et al. presented the
MSU-MFSD database [6] which was captured with aMacbook Air 13 laptop (simi-
lar to REPLAY-ATTACK database) and also with a Google Nexus 5 Android phone,
a more representative device of the mobile scenario. Then in 2016, the REPLAY-
MOBILE database [7] was captured with a iPad Mini 2 and a LG-G4. This dataset
includes different protocols for tuning the system considering both usability and
security. This database, besides having the two typical types of attack (print and
replay), has five different scenarios available to mimic several actual access con-
ditions, paying special attention to lighting variations. Finally, the OULU-NPU [8]

5http://biometrics.cse.msu.edu/Publications/Databases/MSU_USSA/.

http://biometrics.cse.msu.edu/Publications/Databases/MSU_USSA/
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provides a richer representation of current mobile devices (Samsung Galaxy S6 edge,
HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony XPERIA C5 Ultra Dual
and OPPO N3). Four challenging protocols (Illumination, PAIs, Leave One Camera
Out - LOCO and a combination of the previous ones) are available in this recent
dataset.

As pointed out before, cross-domain performance is an issue in state-of-the-art
face-PAD systems. Current databases have several differences such as the type of
capturing devices, illumination conditions, camera-holding conditions, user inter-
action protocols, etc. As we have introduced in previous section, current face-PAD
methods seem to overfit these datasets, resulting in poor cross-dataset performance.
This leads us to the conclusion that we need larger and more representative of the
real problem datasets.

Moreover, some face-PAD systems depend on an specific use case scenario that
may not be covered in somedatasets. For instance, somemotion-based algorithms use
background modelling to detect dynamic information from sequences, preventing
their use for biometric systems embedded in handheld capturing devices. These
mismatching scenarios cause that not all face-PAD methods can be evaluated in
all datasets. This leads us to the conclusion that a fair benchmarking of face-PAD
systems should be use case dependent.

On top of taking care of cross-domain and use case dependency when measuring
face-PAD systems performance, there are at least three other aspects to improve in
current benchmarking protocols

• The type of attacks available on current datasets are limited and, in some cases,
outdated. For example, adversarial models are improving [19] and it is getting
easier and easier to manufacture sophisticated attacks. The new datasets must
update the type of attacks to cope with evolving picaresque.

• Number of subjects: most of the publicly available face spoofing datasets contain
no more than 55 subjects. An extra effort is needed to increase this figure in order
to capture greater inter-subject variability and increase evaluation fairness. The
number of users performing the attacks is also an important element which is
overlooked in current databases. If the attacks are performed by a single person or
a reduced group of people, the variety and representativeness may suffer.

• Evaluation and protocols have a largemargin for improvement, evenwith current
publicly available data. On the one hand, as we pointed before, the identities of
the available databases are not many, so a union of the databases might improve
the quality of the evaluation. Therefore, an analysis of the compatibilities between
datasets must be addressed to avoid identity collisions and increase diversity of
attacks while maintaining ameaningful protocol for the fused dataset. On the other
hand, there are some key parameters (i.e time of acquisition, frame rate, CPU per-
formance, etc.) that are not taken into account by the current evaluation protocols
focussed only on the binary misclassification performance. The analysis of these
parameters will provide a wider view of real scenario face-PAD performance.
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12.2.3 Usability

A critical factor when selecting and implementing an anti-spoofing system is to
ensure that it meets the security requirements. However, we often need to reach a
trade-off between security and usability. For instance, for a bank, a False Rejection in
a small wire transfer can imply worse consequences than a False Acceptance. Thus,
a trade-off between security and usability is essential to ensure a successful usage
of biometrics systems on real-world applications. On the NIST report Usability &
Biometrics - Ensuring Successful Biometric Systems,6 some guidelines about us-
ability are defined as a core aspect of design to ensure biometric systems and prod-
ucts became easy to learn, effective to use and enjoyable from the users perspective.
Beyond accept/reject decisions, there are some important aspects that biometric sys-
tems have to accomplish, in terms of usability, as (a) effectiveness (effective to use);
(b) efficiency (efficient to use); (c) satisfaction (enjoyable to use); (d) learnability
(easy to learn); and (e) memorability (easy to remember). Adoption of biometric
systems as widespread authenticators is linked to usability improvements, so new
schemes must be effective, allowing an easy capture process to obtain high-quality
samples through an intuitive user interface. Moreover, current systems must improve
its efficiency, in terms of convenience. Otherwise, why would a user start using bio-
metrics instead of a password if it is slower and cumbersome?

In many actual situations an early response is critical for the performance (i.e.
access control,mobile device unlock, payments, etc.).However, current anti-spoofing
evaluation protocols do not take into account time of response, i.e. the time the
PAD method requires for taking a decision. These protocols use entire attempt-to-
access videos, which are generally about 5–10s long, for testing of the algorithms.
Some studies focused on analysing the usability of biometric access control systems
have measured times from 4 to 12s for the whole process of facial verification [14,
15]. However, some of the traditional reference guides regarding usability and user
interaction in web and apps indicate that the response time should be no more than
1s to ensure that the user does not perceive an annoying interruption in the process
[16, 17]. Therefore, we think it is necessary to introduce time constraints in order to
fairly evaluate the performance of anti-spoofing systems. Note we are not speaking
here about computational performance, which an also leads to some delays and must
also be addressed, but to the duration of the user interaction for the system to take a
decision.

Finally, learnability and memorability are very related with user experience,
whereby a good guide of usage (i.e. show user some real examples of correct and
incorrect usages), and appropriate feedback messages are essential for a favourable
performance.

6https://www.nist.gov/sites/default/files/usability_and_biometrics_final2.pdf.

https://www.nist.gov/sites/default/files/usability_and_biometrics_final2.pdf
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12.3 Proposed Framework

As presented in the section above, the challenges of face-PAD have been focused
on generalisation between databases and unseen attacks, as well as the creation of
representative databases which mitigate the constant improvement of the Presenta-
tion Attack Instruments (i.e. mobiles devices, printers, monitors and 3D scanners).
However, the usability and hardware constraints are passed over in the evaluation
process. Taking decisions without considering these constraints does not ensure us
to appropriately tune the systems for the best performance. So, how can we evaluate
and compare our systems for working on actual applications? In this chapter, we
propose an evaluation framework for helping to reduce the existing gap between the
research process and real scenario deployment. This framework presents two novel
evaluation protocols to analyse the performance of face-PAD considering deploy-
ment constraints, as the frame rate and response time. Our proposed framework7 is
publicly available as a Bob [18, 19] package to help researchers to evaluate their
face-PAD algorithms over more realistic conditions. Reproducibility principles were
considered for designing our software, which is easy to use and extend, and allows
the reader to reproduce all the experiments.

Moreover, our software was designed as a python desktop tool to provide
researchers with a common, easy-to-use and fair framework for comparing anti-
spoofing methods. It is not intended to give an absolute measure about correct
parameters for each device, but a framework for comparison between algorithms
and algorithm configuration. For example, some systems require a minimum frame
rate to perform as expected, e.g., some motion-based algorithms which depend on
fast dynamics (as facial micro-expressions). However, the practical implementation
of these algorithms may not be feasible in some use cases or scenarios. The proposed
framework will provide valuable information to decide which algorithm(s) and algo-
rithm settings are appropriate for each specific use case. Finally, parameters can be
tuned on each processor (i.e. ARM, x86, i386) extending our software by fulfilling
the proposed interfaces so as to capture the performance statistic.

In order to analyse the different time parameters and delays that come into play in
a face recognition system, we must take into account the typical flow of use of a real
application. Normally, in real deployment scenarios, face recognition implementa-
tions comprises three stages: login screen, biometric procedure and decision screen.
Ideally, the user should not experience a noticeable delay at any stage. However, high
computational requirements, connection errors (i.e. getting an access token) or dif-
ficulties getting high-quality samples on the capture process can affect the usability
of a biometric system. In the following, we make a breakdown of some parameters
that stand for each step of the biometric procedure. First, we present the adopted
terminology; second, we explain the proposed methodology.

7The evaluation framework may be downloaded using the following URL: https://github.com/
Gradiant/bob.chapter.hobpad2.facepadprotocols.

https://github.com/Gradiant/bob.chapter.hobpad2.facepadprotocols
https://github.com/Gradiant/bob.chapter.hobpad2.facepadprotocols
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12.3.1 Terminology

Henceforth, Tr (Total time of system response) represents the time between the
beginning of the biometric process (i.e. open the camera flow in face-based system)
and the time of binary decision (access granted or not). Figure12.1 shows how Tr
is calculated by the addition of two consecutive time intervals: Ta or total time of
acquisition of the attempt-to-access video, that includes capturing, feature extraction
(sometimes postponed to the next phase) and other concurrent CPU tasks; and Td or
time to take a final decision, that sometimes include feature extraction, algorithmic
decision and other concurrent CPU tasks.

CPUTf p(i) is the CPU time dedicated for processing the frame i of the video
sequence. The total CPU Time of video processing or CPUTvp is defined by the
following formula, as the aggregation of all the time slots of CPU time (orCPUTf p)
dedicated to the frame acquisition and processing:

CPUTvp =
n∑

i=1

CPUTf p(i) (12.1)

where n, or the number of processed frames, is a consequence of the chosen param-
eters Ta (total time of acquisition) and FR (frame rate of the device in frames per
second). Ta helps to evaluate usability and FR helps to evaluate computational
suitability in actual deployments. Ideally, CPUTvp has to be shorter than Ta . How-
ever, biometrics systems have to coexist and operate on multi-task environments and
sometime CPUTvp can be larger. Considering this possibility we defined Tr as:

Tr = max(Ta,CPUTvp) + Td (12.2)

Then, it is quite easy to calculate the use of the processor, during acquisition time,
as:

CPUusage = CPUTvp
Ta

∗ 100(%) (12.3)

This measure will help us to determine if a system can operate on an actual
scenario with specific FR and CPU constraints. Thus, it is very interesting to analyse

Fig. 12.1 Breakdown of biometric procedure in terms of computational demand
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the costs of each module in order to be able to face the deployment stage with more
information.

12.3.2 Methodology

From this analysiswe have designed a novel evaluation framework to bettermodel the
performance of a face-PADmethod on a real application. It includes three evaluation
procedures thatwill help us to research someunstudied parameters and their influence
in the performance of a deployed system.

• Algorithmic Unconstrained Evaluation, or AUE is the given name for the clas-
sical (current de facto) algorithmic evaluation. On this stage, every method is
evaluated following the defined protocols for each database, without any con-
straints about on-device implementation (i.e. Ta or FR). This classical evaluation
is still fundamental in order to provide a fair performance comparison in terms
of error rates, so we propose it to be the starting point for the design, develop-
ment and parameterization process of a face-PAD method. The calculated error
rates and working points on this evaluation are only reliable for an unconstrained
comparison, since the algorithms are taking advantage of unrestricted video dura-
tion and frame rate. These results and parameters are much less useful on a real
implementation, nevertheless they can help on the initial parameterization of the
algorithm.

• Algorithmic Constrained Evaluation, or ACE, provides information about per-
formance and error rates related to actual deployment constraints. More specif-
ically, FR (frame rate) and Ta (total time of acquisition). This stage consists of
evaluating a method cloning each input video but simulating different acquisition
settings, obtaining, this way, valuable information to forecast the face-PAD perfor-
mance. From this evaluationwe can determine the best configuration of a face-PAD
accompanied by a WorkingPoint (normally represented by a Threshold) for a
given FR and Ta . The final aim of this protocol is to analyse the real performance
of the algorithm under different framerate and timing constraints.

• End-to-end Simulation: Once a parameterization laboratory was finished (using
both of previous evaluation stages), it is necessary to evaluate the whole system
(determined by optimum FR, Ta and a WorkingPoint). This protocol simulates
the final behaviour of a face-PAD on an actual deployment using a bunch of videos.
This end-to-end simulation provides interesting information about the actual con-
ditions on Tr (total time of system response), Td (time of decision) and CPUusage

over a selected subset of videos. Although this evaluation is very useful for an
initial decision concerning implementation parameters, we should keep in mind
that it does not replace the end-to-end tests running in an actual production device.
This evaluation takes the best algorithm configuration selected in the previous two
evaluation stages and analyses delays and CPUusage.
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Fig. 12.2 Overview of our proposed evaluation framework

Figure12.2 shows the proposed database evaluation pipeline. Output boxes repre-
sent valuable information for deployment parameterization obtained by each evalua-
tion stage. Our framework allows to answer some crucial questions that arise within
the integration process: How long should the anti-spoofing countermeasure last in
order to get a performance similar as evaluated? How many images should our face-
PAD system compute?, etc. By the selection of an optimum performance related to a
Ta and FR parameters we can determine in a more founded way, the answer to this
questions from ACE stage. Then, on the End-to-end Simulation stage we will get
helpful information regarding face-PAD suitability to work on real scenarios. A fur-
ther explanation of Algorithmic Constrained Evaluation and End-to-end Simulation
can be found below.

12.3.2.1 ACE - Algorithmic Constrained Evaluation

ACE analyses the performance of the face-PAD method using a number of different
configurations. The default parameters are the following, resulting in 20 different
configurations:

list_framerate = [5, 10, 15, 20, 25] (frames per second)
list_time_video_duration = [500, 1000, 1500, 2000] (milliseconds)

As discussed before, settings as frame rate and acquisition time are crucial on the
implementation of a face-PAD, thus performance evaluation needs to consider them.
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(a) AUE (classical) (b) ACE

Fig. 12.3 Differences between classical evaluation AUE (Algorithmic Unconstrained Evaluation)
and proposed ACE (Algorithmic Constrained Evaluation)

The evaluation protocol is configurable so these parameters can be changed to adapt
it to different use cases.

This evaluation procedure is quite similar to AUE (classical). Figure12.3 shows
the workflow of this evaluation, which differs from the classical one in the repetition
of the process over several simulated video versions running in the same CPU.
These videos are generated from the original ones considering a set of FR and
Ta values. Shorter Ta values are implemented by cropping the initial segment of
the video up to the Ta value. FR modifications are implemented by sub-sampling
the original video. The proposed framework calculates the performance values (i.e.
EER, HT ER or standard ISO/IEC 30107-3 metrics as APCER, BPCER and
ACER) for all parameter combinations. To represent this information, we have
designed a 2-D plot where x-axis stand for the evaluated Ta , and y-axis represents
the error rate in percentage. Each configuration of a FR is represented as a curve,
where we can observe the evolution of the performance for increasingly higher Ta .
Figure12.4 shows an example of this representation with synthetic data.
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Fig. 12.4 ACE representation using synthetic data

This way of conducting experiments allows us to carry out two complementary
analysis:

• Parameter selection: in this experiment the protocol trains the algorithms on
Train subset to evaluate them on Dev and T est subsets. This process is repeated
for each version of the dataset (video simulating FR and Ta), thus generating
several models. As a result, performance data is obtained for all configurations.
This information permits to rank the configurations, and select the best “a priori”
option for the intended use case. This experiment includes both training and testing
of the algorithm

• Pre-trained performance test: this method requires a pre-trained algorithm that
will be tested on the test set videos but cloned with different settings. Evaluating
a system this way allows us to see the “a posteriori” behaviour over the differ-
ent ACE parameters. This experiment is focused only on testing the algorithm
under different constraints. Systems with high performance degradation in this
evaluation may have problems operating on a wide range of devices with different
computational capabilities.

Knowledge about how the system works over different configurations leads us
to a better parameterization, and at the same time, gives us valuable clues on face-
PAD-decision process. One telling example is the case of decision-making within
two approaches with a similar performance using the classical evaluation or AUE. If
we only consider performance values for the systems working over the whole video
and without any constraint regarding FR, we will probably make a blind decision.
Imagine that when you are evaluating both approaches over different constrained
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parameters, one system only needs 500ms to reach its best performance value, and
the other needs at least 4000ms. Now, with this information the decision would be
much more founded. In this example, we took some assumptions about time pro-
cessing considering that, for instance, Tvp (time of processing all necessary frames)
is less than Ta . This assumptions will be addressed below, at the end-to-end evalu-
ation subsection. Moreover, if we carefully observe the information given by ACE
experiments, it can provide a vision of the suitability of a system for working on a
wide range of hardware. That means the less FR-dependent is a face-PAD, the more
suitable is to work on any device. For instance, on mobile device scenarios it is very
important to determine the range of devices where the system can ensure a demanded
security and usability performance.

At the end of the day, the decision process is highly related to use cases and their
restrictions (usually given by hardware, software and connectivity). This proposed
algorithmic constrained evaluation protocol provides very useful information for
orienting face-PAD research and deployment.

12.3.2.2 End-to-End Simulation

The end-to-end simulation replicates the final behaviour of a face-PAD and allows
the evaluation of an early prototype with some interesting real-world restrictions.
Our proposal is oriented to its use in the last stages of development, providing the
researcher with a different perspective of its implementations. The proposed end-
to-end simulation forces the researcher to design a real face-PAD implementation
considering some parameters not normally evaluated. In order to use this protocol,
the face-PAD prototype needs to implement a given interface (See UML diagram
on Fig. 12.5.).

The abstract class, FacePad, requires to be initialized with constant values FR,
Ta and WorkingPoint , as well as external requirements as information about pre-
trained models. Ideally, these values have to be selected on previous evaluation

Fig. 12.5 UML diagram of
FacePad abstract class
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stages. Besides, researchers must take some decisions regarding the implementation
that might have a lot of influence on the outcome. For example, if we implement
on FacePad’s process method a computational demanding process, CPUusage will
increase. Otherwise, if computationally expensive operations are implemented on
decision step (get_decisionmethod), probably theCPUusage will be greatly reduced,
but penalizing, that way, the time of response due to the increment of the time of delay
(Td ). This can help to structure the processing chain of the proposed method in order
to be suitable for real-world applications. Thus, prototype implementation is very
useful to findout the bottlenecks on laboratory devices and select themost appropriate
processor in the deployment stage later on. In particular, on mobile devices scenario,
our proposed protocol can help us to better understand the limitations of a face-PAD
using a desktop script. Optimization research would have to be done considering
ARM architectures. For a fair comparison, results in terms of performance must be
reported citing used machine, otherwise results are worthless.

Generally, evaluation software is optimized for parallel running (e.g feature extrac-
tion) in order to make the most of the available computational infrastructure. Both
ACE and AUE were designed and implemented by following this parallelisation
approach. However, in order to properly simulate the timing of a real interaction
process, the end-to-end simulation runs sequentially for each access. Even so, the
proposed framework cannot isolate the evaluation from other processes running on
the testing machine, so we recommend to launch the experiments in a dedicated
machine in order get a more fair evaluation.

12.4 Experimental Results and Discussion

12.4.1 Evaluated Face-PAD

In order to evaluate the performance in realistic conditions, two different approaches
of face-PAD are considered. First, as a baseline, we present the image-quality mea-
sures based face-PAD, IQM fromnowon. Further,we present a face-PAD- introduced
in the IJCB 2017 competition on generalized face presentation attack detection in
mobile authentication scenarios [10], GRADIANT from now on.

IQM Based Face-PAD

IQM is an adaptation of the proposed method by Galbally et al. in [20]. This imple-
mentation was presented as a baseline of the REPLAY-MOBILE [7], and an imple-
mentation is available as a Bob package.8 This method is based on the extraction
of a set of image-quality measures obtaining a 18-length feature vector. For each
frame of video, a feature vector is obtained, computed over the entire frame (in this
case, rescaling to a maximum size of 320 pixels). With every frame of the training
set, a support-vector machine (SVM) with a radial-basis function kernel (RBF) and

8https://gitlab.idiap.ch/bob/bob.ip.qualitymeasure.

https://gitlab.idiap.ch/bob/bob.ip.qualitymeasure


12 Challenges of Face Presentation Attack Detection in Real Scenarios 261

a gamma = 1.5 is used for training the system. A final score per video is obtained
averaging the scores of the n-frames of a sequence.

GRADIANT Based Face-PAD

This algorithm has an hybrid strategy for features extraction fusing colour, texture
and motion information. GRADIANT exploits both HSV and YCbCr colour spaces
by extracting dynamic information over a given video sequence, mapping temporal
variation (for each channel) into a single image.Hence, six images (fromsix channels)
represent motion in a sequence, and for each one, a ROI is cropped based on eye
positions over the sequence and rescaled to 160 × 160. Each ROI is divided into
3 × 3 and 5 × 5 rectangular regions from which uniform LBP histogram features
are extracted and concatenated.

These two methods are quite different, and will help us to present and analyse
how the evaluation framework can contribute in the stage of an anti-spoofing system.
GRADIANT is amotion-based face-PAD so it is expected that changes on the number
of processed frames and differences between them, affect the performance. On the
other side, although the final score of IQM uses the whole video, it can operate by
giving a decision per frame, so it is expected to be more consistent over FR and
Ta variations. In this work we perform face spoof detection experiments using the
OULU-NPU dataset. The larger number of samples, devices and users makes it the
most representative current dataset. The sizes of the test sets in the other datasets (i.e.
REPLAY-ATTACK, REPLAY-MOBILE or MSU-MFSD) are an order of magnitude
lower, so the resolution is not sufficient for the variations to be significant. Never-
theless, the software is prepared for using those publicly datasets as well. Moreover,
the existing protocols on OULU-NPU in the dataset are designed for the evaluation
of algorithms under unseen training conditions. This characteristic is very useful for
generalisation evaluation, however, it greatly reduces the number of samples avail-
able in the testing subsets, and therefore increases the noise in evaluations. We have
extended the dataset by adding a protocol calledGrandtest incrementing, in that way,
the evaluated number of samples on Dev and T est subsets. This protocol combines
all original protocols (Protocol 1, 2, 3 and 4). Future updates of the proposed frame-
work should include the optimal aggregation of datasets to widen representativity of
training samples.

12.4.2 AUE - Algorithmic Unconstrained Evaluation

First of all, we present the result for the evaluated systems using classical bench-
marking. Table12.1 shows values for each system. The values in the table show the
performance of the system using the whole video without frame rate downsampling.

With a classic evaluation, theGRADIANT approach clearly achieves better results
with very low error rates in a recent database. However, with this evaluation, we can-
not determine if systems are or not suitable to work on actual deployment scenarios.
In this stage, as researchers,we are almost blinded regarding some crucial parameters,
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Table 12.1 The performance of the proposed methods under OULU-NPU (Grandtest) dataset

Method Dev Test

EER (%) HTER (%) ACER (%)

IQM 29.72 29.23 30.69

GRADIANT 1.11 0.76 0.97

and normally, we rank face-PADs systems only with error rates information. This
fact leads to the question: Are the classical metrics we are using to evaluate PAD
methods themost appropriate to select and adjust systems in real scenarios? Reported
results on the following evaluation stages shed some light in order to create a more
fairly face-PAD benchmarking.

12.4.3 ACE - Algorithmic Constrained Evaluation

The evaluation carried out in the previous section shows the error rates of the PAD
systems without any constraints. However, as indicated in the Guidelines for best
practices in biometrics research [21], operational systems need to meet application-
specific requirements and constraints in addition to recognition accuracy (or error
rate). In those guidelines, the term operational system is used to denote the utilization
of a biometric system in a actual application. In this second evaluation protocol we
introduce two new operational constraints: time and frame rate. An error rate curve is
shown for each frame rate configuration and each curve shows the variation as a func-
tion of the video duration (Ta) used in the analysis. It is therefore possible to compare
the performance achieved by the different systems with the specific constraints of an
operational environment. Performance curves on this work present error rate curves
in terms of ACER. In order to show the influence of these constraints, we report two
different experiments: parameter selection and pre-trained performance test.

Parameter Selection

Figure12.6 shows the performanceof the twoevaluated systems trainedwith different
configurations. We can see that the behaviour is similar, and as the Ta is higher and
more information can be extracted, the error is reduced. The behaviour for variations
of FR is different.On the one hand, in IQM, for a greater value of FR the performance
improves, while the behaviour in the GRADIANT system does not follow a pattern.
The uniform decrement of ACER when increasing Ta and FR in IQM seems to
follow the principle of vanishing Gaussian noise when averaging a larger number
of frames. On the other hand, the GRADIANT system, that uses learnt dynamics,
also benefits from increasing the total number of frames but it is more sensible to the
motion sampling.

From this experiment, it is possible to obtain the best configuration for our system
determined by the security restrictions, as well as those of the environment.
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(a) IQM face-PAD (b) GRADIANT face-PAD

Fig. 12.6 ACE: the performance under different configurations (FR and Ta) on OULU-NPU
(Grandtest) dataset

(a) IQM face-PAD trained with FR= 25 and
Ta = 2000

(b) GRADIANT face-PAD trained with FR=
10 and Ta = 2000

Fig. 12.7 The performance of a pre-trained face-PAD under different configurations (FR and Ta)
on OULU-NPU dataset (Grandtest protocol)

Pre-trained Performance Test

Once a candidate system is selected to be the optimal one (it depends on the use case),
it is interesting to evaluate it under realistic conditions. ACE allows to evaluate a pre-
trained model. Two face-PAD methods (one for IQM and another for GRADIANT )
have been chosen for being evaluated here. Performance errors have been evaluated
for different configurations in Fig. 12.7.

As we can observe on Fig. 12.7a, the IQA system has no significant performance
variations depending on test configuration given the best trained system. This is the
expected behaviour, as this method does not take full advantage of the temporal
information in the video. With this in mind, a configuration with a low analysis
time (e.g. 500ms) and a low frame rate could be selected for a real environment
without any significant loss in performance. On the other hand, the GRADIANT
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system (Fig. 12.7b) has variations depending on the configuration, where, as the
length of the analysed video sequence increases (from 500 to 2000ms), the error rate
decreases. This behaviour is also expected, as GRADIANT method takes advantage
of the temporal information of the video sequence.

12.4.4 End-to-End Simulation

Finally, we perform the end-to-end simulation on a Intel®Xeon®CPU X5675 @
3.07GHz.9 The performance of the studied systems are reported in Table12.2. As we
can appreciate, IQM implementation exceeds, by far, the 100% ofCPUusage making
impossible the usage of this configuration on a real-time application. Nevertheless,
according to results reported on previous sections, the IQM is not greatly affected
by variation on FR and Ta . Thus, we can select a less computationally demanding
setting, for example FR = 5 with the same Ta = 2000ms, for which we obtain
a CPUusage = 136, 8%. With this new configuration, we would pass from a total
response time (Tr ) of 48301.89 to 2736.49ms, making the systemmuch more usable
because its response would be given in less than 3s. Note that decision time (Td )
is negligible since only a score average is performed in this stage whilst features
extraction is made at video processing time.

In contrast to the IQM, the GRADIANT approach implements features extraction
within the decision stage, once the total time of acquisition (Ta) is ended and all
dynamic information is analysed. In order to use this system while a facial recogni-
tion solution is also running, we need to evaluate the CPUusage. Depending on the
computational cost of the verification module, we must have a compromise solution
between error rates and computational demand. Based in Fig. 12.6b we can select
the system trained with FR = 5 and Ta = 2000ms where the performance is equal
to the proposed on Table12.2. With this configuration, the outcome of CPUusage is
63% and the total time of response is 2110ms making it more suitable to be used on
an actual application.

Moreover, these studied systems have a wide margin of improvement in the
deployment stage. For instance,most of the processing timeofGRADIANT face-PAD
approach is spent on face and landmark detection using dlib library.10 Replacing these
modules with faster solutions would greatly reduce theCPUusage. On the other hand,
the IQM approach has a large margin of optimization by implementing the quality
measures focusing on performance and efficiency.

9https://ark.intel.com/es-es/products/52577/Intel-Xeon-Processor-X5675-12M-Cache-3_06-
GHz-6_40-GTs-Intel-QPI.
10http://dlib.net/.

https://ark.intel.com/es-es/products/52577/Intel-Xeon-Processor-X5675-12M-Cache-3_06-GHz-6_40-GTs-Intel-QPI
https://ark.intel.com/es-es/products/52577/Intel-Xeon-Processor-X5675-12M-Cache-3_06-GHz-6_40-GTs-Intel-QPI
http://dlib.net/
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Table 12.2 The end-to-end results for pre-trained IQM and GRADIANT

Method CPU usage
(%)

Tvp (ms) Tr (ms) Ta (ms) Td (ms) FR (frames
per second)

IQM 2414 48286.89 48301.89 2000 0.15 25

GRADIANT 155 3104.64 3215.05 2000 110.41 10

12.5 Conclusion

In this chapter we have reviewed the current challenges of face presentation attack
detection, focusing on usability issues and restrictions of real scenarios. We have
presented a new evaluation framework, introducing two new protocols, Algorithmic
Constrained Evaluation and the End-to-end Simulation. The first one is focused on
analysing the performance of the face-PAD algorithms under different frame rates
and timing constraints. This allows us to compare and select the best algorithms
and algorithm settings for an specific use case. The second one allows us to take
the best algorithm configuration selected in the previous evaluations and analyse the
performance in terms of usability taking into account potential delays andCPUusage.

We have made this framework publicly available as a Python package inheriting
from bob architecture. Reproducibility principles were considered for designing this
software, which should be easy to use and to extend, and should allow the reader to
reproduce all the experiments. The proposed protocols and framework are aimed to
give us a new perspective of whether or not a face-PAD is suitable to be used in a real
scenario. It will allow us to take better decisions when selecting and configuring the
systems for the real world, where performance and usability constraints are critical.
As an example of this evaluation process, we have analysed two different face-PAD
systems in order to show the possibilities and benefits of the proposed protocols and
framework.

Acknowledgements We thank the colleagues of the Biometrics Team at Gradiant for their assis-
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Chapter 13
Remote Blood Pulse Analysis for Face
Presentation Attack Detection

Guillaume Heusch and Sébastien Marcel

Abstract In this chapter, the usage of Remote Photoplethysmography (rPPG) as a
mean for face presentation attack detection is investigated. Remote photoplethys-
mography consists in retrieving the heart-rate of a subject from a video sequence
containing some skin, and recorded at a distance. To get a pulse signal, such meth-
ods take advantage of subtle color variation on skin pixels due to the blood flowing
through vessels. Since the inferred pulse signal gives information on the liveness
of the recorded subject, it can be used for biometric presentation attack detection
(PAD). Inspired by work made for speaker presentation attack detection, we pro-
pose to use long-term spectral statistical features of the pulse signal to discriminate
real accesses from attack attempts. A thorough experimental evaluation, with differ-
ent rPPG and classification algorithms is carried on four publicly available datasets
containing a wide range of face presentation attacks. Obtained results suggest that
the proposed features are effective for this task, and we empirically show that our
approach performs better than state-of-the-art rPPG-based presentation attack detec-
tion algorithms.

13.1 Introduction

As face recognition systems are used for authentication purposes more and more, it
is important to provide a mechanism to ensure that the biometric sample is genuine.
Indeed, several studies showed that existing face recognition algorithms are not
robust to simple spoofing attacks. Even simple display of a printed face photograph
can fool biometric authentication systems. Nowadays, more sophisticated attacks
could be performed by using high-quality silicone masks for instance [1]. Therefore,
a remote authentication mechanism based on the face modality should take such
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threats into account and provide a way to detect presentation attacks. In the last years,
several methods to detect such attacks have been proposed, and are surveyed in both
[2, 3]. Existing approaches can be roughly divided into two categories. The first
category focuses on assessment of the liveliness of the presented biometric sample,
by detecting blinking eyes [4] or exploiting motion information [5] for instance. The
second category is concerned with finding the differences between images captured
from real accesses and images coming from an attack. Representatives examples
in this category include texture analysis [6], the usage of image quality measures
[7] and frequency analysis [8]. However, current face presentation attacks methods
suffers from their inability to generalize to different, or unknown attacks. Usually,
existing approaches performs well on the same dataset they were trained on, but have
difficulties when attack conditions are different [9]. However, a recent trend consists
in deriving robust features that show better generalization abilities: examples can
be found in [10, 11]. In the same spirit, presentation attack detection (PAD) based
on remote blood pulse measurement is worth investigating: it should theoretically
handle different attacks conditions well, since features does not depend on the type
of attacks, but rather on properties of bonafide attempts.

13.1.1 Remote Photoplethysmography

Photoplethysmography (PPG) consists in measuring the variation in volume inside
a tissue, using a light source. Since the heart pumps blood throughout the body, the
volume of the arteria is changing with time. When a tissue is illuminated, the propor-
tion of transmitted and reflected light varies accordingly, and the heart rate could thus
be inferred from these variations. The aim of remote Photoplethysmography (rPPG)
is to measure the same variations, but using ambient light instead of structured light
and widely available sensors such as a simple webcam.

It has been empirically shown by Verkruysse et al. [12] that recorded skin colors
(and especially the green channel) from a camera sensor contain subtle changes
correlated to the variation in blood volumes. In their work, they considered the
sequence of average color values in a manually defined region-of-interest (ROI) on
the subject’s forehead. After having filtered the obtained signals, they graphically
showed that the green color signal main frequency corresponds to the heart rate of
the subject.

Since then, there have been many attempts to infer the heart rate from video
sequences containing skin pixels. Notable examples include the work by Poh et al.
[13], where the authors proposed a technique where the color signals are processed
by means of blind source separation (ICA), in order to isolate the component corre-
sponding to the heart rate. In a similar trend, Lewandowska et al. [14] applied Prin-
cipal Component Analysis (PCA) to the color signals and then manually selected
the principal component that contains the variation due to blood flow. These two
early studies empirically showed that the heart rate could be retrieved from video
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sequences of faces, but also highlight important limitations: the subject should be
motionless, and proper lighting conditions must be ensured during the capture.

According to a recent survey [15], research in remote heart rate measurement has
considerably increased in the last few years, most of which focuses on robustness to
subject motion and illumination conditions. Since a large number of approaches have
been proposed recently, theywill not be discussed here.We refer the interested reader
to [15, 16] for a comprehensive survey of existing algorithms. Current challenges
in rPPG consists mainly of finding methods robust to a wide range of variability.
For instance, de Haan et al. specifically devised a method to cope with subject
motion in a fitness setting [17]. Also, it has been noted in [16] that different skin
color tone affect the retrieved pulse signal. Lin et al. study the effect of different
illumination conditions in [18]. Besides, video compression has also been identified
as a limitations to retrieve reliable pulse signals [19].

13.1.2 rPPG and Face Presentation Attack Detection

Remote photoplethysmography is still an active research area, and that may explain
that it has not beenwidely used in the context of face presentation attack detection yet.
Moreover, and as noted in the previous section, main challenges to be addressed in
this field (i.e. subject motion, illumination conditions and video quality) are usually
present in a face recognition framework.

Despite its aforementioned limitations, rPPG has some potential for face presen-
tation attack detection, as evidenced by previous work [20–22]. In this work, we thus
propose to study pulse-based frequency features, as retrieved by rPPG algorithms, as
a mean to discriminate real biometric accesses from presentation attacks. Indeed, in
a legitimate, bonafide attempt, a consistent pulse signal should be detected, whereas
such a signal should mostly consists of noise in case of a presentation attack. Fur-
thermore, such approaches may have the desirable property to detect a wide range of
attacks, since they do not rely on attack-specific information. They have the potential
to overcome current limitations of classical PAD systems—relying on image quality
or texture—through their better generalization abilities. Moreover, they are conve-
nient, since they do not require user cooperation in assessing its liveness (challenge-
response) nor do they necessitate additional hardware, such as devices studied in
[23].

The typical workflow of a rPPG-based face presentation attack detection system is
depicted in Fig. 13.1. Although several aspects of the whole system are considered in
this work, our main contribution lies in the usage of long-term statistical spectral fea-
tures, inspired by a recent work on speaker presentation attack detection [24]. Since
these features are not specifically tailored to speech signals and are quite generic,
we propose to use them on a pulse signal in the context of face presentation attack
detection. Additionally, different rPPG algorithms as well as different classification
scheme are studied. Extensive experiments are performed on four publicly available
PAD databases following strict evaluation protocols. Besides, all the code needed to



270 G. Heusch and S. Marcel

Fig. 13.1 Overview of a typical rPPG-based PAD system

reproduce presented results is made open-source and freely available to the research
community.1

The rest of the paper is organized as follows: the next section presents prior work
on remote physiological measurements for presentation attack detection. Then, pro-
posed features are described, and considered rPPG algorithms as well as classifica-
tion schemes are outlined. Databases and performances measures are presented in
Sect. 13.4, before describing experiments and discussing obtained results. Finally, a
conclusion is drawn and suggestions for future research are made in the last section.

13.2 Pulse-Based Approaches to Face Presentation Attack
Detection

Remote Photoplethysmography has already been used in applications loosely related
to face anti-spoofing. Gibert et al. [25] proposed a face detection algorithm, which
builds a map of positive pulsatile response over an image sequence to detect the face.
They even state that “Counterfeiting attempts using latex masks or images would be
deceived if this map was taken into account”. More recent work [26, 27] showed that
detecting living skin using rPPG is feasible, at least in lab settings. However, using
rPPG in the context of face PAD is still an emerging research area, as evidenced by
the few number of previous works. At the time of writing, and to the best of our
knowledge, only three studies using rPPG as a mean to detect presentation attack
have been published. These previous relevant works are detailed below.

13.2.1 Liu et al.

Liu et al. [20] developed an algorithm based on local rPPG signals and their correla-
tion. First, local pulse signals are extracted from different areas of the face. Usage of
local signals is motivated for several reasons: first, it helps with robustness to acqui-
sition conditions (illumination and subject’s motion). Second, it can handle the case
of a partially masked face, and finally, the strength of local rPPG signals are different

1Source code and results https://gitlab.idiap.ch/bob/bob.hobpad2.chapter13.

https://gitlab.idiap.ch/bob/bob.hobpad2.chapter13
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depending on the face area, but the strength pattern is the same across individuals.
Local rPPG signals are extracted using the CHROM algorithm [28]. After having
modeling the correlation of local pulse signals, a confidence map is learned and
used for subsequent classification. Classification is done by feeding a Support Vec-
tor Machine (SVM) with local correlation models as features, and with an adapted
RBF kernel using the confidence map as the metric. Their approach is evaluated
on databases containing masks attacks only, namely 3DMAD [29] augmented with
a supplementary dataset comprising six similar masks, plus two additional high-
quality silicone masks. Obtained results on these different datasets, including cross
dataset tests, show a good performance and hence validate the usage of pulse-based
features to reliably detect masks presentation attacks. Unfortunately, the proposed
algorithm is not assessed on traditionally used PAD databases, containing photo and
video replay attacks.

13.2.2 Li et al.

Li et al. [21] suggest a relatively simple method to detect attacks using pulse-based
features. First the pulse signal is retrieved using a simplified version of the algorithm
presented in [30]. Three pulse signals—one for each color channel—are extracted by
first considering the mean color value of pixels in a specific face area tracked along
the sequence. Then, these colors signals are processed with three different temporal
filters to finally get pulse signals, one in each color channel. Simple features are then
extracted from each frequency spectra, and are concatenated before being fed to a
linear SVM classifier. Experiments are again performed on 3DMAD, and also using
the supplementary masks. Reported results show a better performance than [20], but
do not seem to be directly comparable, since different experimental protocols were
applied (training subjects were randomly chosen). An interesting point of this paper
is that authors also report results on the MSU-MFSD database [7], and show that
their method has difficulty to properly discriminate bonafide examples from video
replay attacks.

13.2.3 PPGSecure

Nowara et al. [22] follow the same line of work as in [21], but considers the whole
frequency spectrum derived from the intensity changes in the green color channel
only. As in [20], this approach takes advantage of signals derived from different
face areas, but also incorporates information from background areas (to achieve
robustness to illumination fluctuations along the sequence). The final feature vector
representing a video sequence is formed by concatenating the frequency spectra of
pulse signals coming from five areas, three on the face (both cheeks and forehead)
plus two on the background. Classification is then done either with a SVM or a
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random forest classifier. Experiments are performed on the widely used Replay-
Attack database [6], but unfortunately, associated protocols have not been followed.
Instead, the authors used a leave-one-subject-out cross validation scheme, which
greatly increases the ratio of training to test data.Within this experimental framework,
a perfect performance (i.e., 100%) accuracy is reported for both photographs and
video attacks.

13.2.4 Discussion and Motivation

Although relevant, previous studies discussed here make it hard to objectively assess
the effectiveness of rPPG-based approaches for face presentation attack detection.
Indeed, performance is either reported onnon-publicly available data orwith different
experimental protocols. As a consequence, it is difficult to compare published results
with current state-of-the-art that relies on other means to detect attacks. A notable
exception is [21], where authors reported results on the MSU-MFSD dataset. It
also showed the limitation of such approaches, as compared to traditional face PAD
approaches such as texture analysis.

In thiswork,we hope to help foster research in this area by adopting a reproducible
research approach. All the data and the software to reproduce presented results are
available to the research community, easing further development in this field. More-
over, our proposed approach is assessed on four publicly available datasets, contain-
ing a wide variety of attacks (print and video replays of different quality, and mask
attacks). The software package also comprise our own implementation of two other
similar approaches, [21, 22], to which our proposed approach is compared.

13.3 Proposed Approach

In this contribution, we suggest to use Long-term spectral statistics (LTSS) [24] as
features for face presentation attack detection. This idea was first developed in the
context of speaker PAD, andmanaged to successfully discriminate real speakers from
recordings in a speaker authentication task. The main advantage of such features is
their ability to deal with any kind of signal and not necessarily speech.

Also, and since there exists a wide variety of rPPG algorithms, it seems important
to consider more than one approach since they differ in the way the pulse signal
is computed. This results in features that may be more suited to the task of pre-
sentation attack detection. To illustrate the difference, the retrieved pulse signals
for a bonafide video sequence using the three investigated algorithms are shown in
Fig. 13.2. One can clearly see that the pulse signals are not the same, depending on
the used algorithm.

Furthermore, different classification algorithms are also investigated. In addition
to classical two-class discriminative approaches, the usage of one-class classifiers
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(a) Li CVPR (b) CHROM

(c) SSR

Fig. 13.2 Pulse signals obtained with different rPPG algorithms

considering face presentation attack detection as an outlier detection problem are
considered. Indeed, recent studies [31, 32] using this paradigm for face presentation
attack detection showed promising results. Besides, one-class classifiers have been
successfully applied for PAD on other modalities, such as speech [33] or fingerprint
[34] and showed better generalization abilities. Furthermore, modeling real samples
may be well-suited to pulse-based features, where properties of bonafide attempts
only are considered.

13.3.1 Long-Term Spectral Statistics

In the context of pulse-based face PAD, and on the contrary to other approaches, prior
knowledge on the characteristics of attacks is generally unknown. For instance, LBP-
based systems intrinsically assume that texture of faces coming from presentation
attacks are different that the onepresent inbonafide face images.These differences are
manifold: this could be a lack of texture details on a mask for instance, or undesirable
effects such as Moiré patterns or print artifacts in the case of replay and print attacks.
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In our framework, the nature of the “pulse” signal extracted froman attack is unknown
a priori. Therefore, no prior assumption on the negative class can be made: it is only
assumed that signals differ in their statistical characteristics, irrespective of their
content (i.e. we do not look specifically for periodicity for instance). As suggested
in [24], the means and variances of the energy in different frequency bins provides
such a generic characterization.

Long-term spectral statistics are derived by processing the original signal using
overlapping temporal windows. In eachwindoww, a N -point Discrete Fourier Trans-
form is computed, and yields a vectorXw of dimension k = 0, . . . , N/2− 1 contain-
ing DFT coefficients. The statistics of frequency bins of the spectrum are considered
using its log-magnitude. As in [24], whenever a DFT coefficient |Xw(k)| is lower
than 1, it is clipped to 1 such that the log-magnitude remains positive.

Using the set of DFT coefficient vectors X1, X2, . . . , XW , the first and second
order statistics of frequency components are computed as

μ(k) = 1

W

W∑

i=1

log |Xw(k)| (13.1)

σ 2(k) = 1

W

W∑

i=1

(log |Xw(k)| − μ(k)) (13.2)

for k = 0, . . . , N/2− 1. The mean and variance vectors are then concatenated to
represent the spectral statistics of a given signal. As a result, the rPPG-based feature
for classifying a video sequence consists of a single feature vector. The presentation
attack detection is thus performed on the whole video sequence. In other approaches
(i.e. texture or image quality-based), detection is generally peformed at the frame
level. Long-term spectral statistics feature vectors are then used in conjunction with
a classifier to reach a final decision on whether the given video sequence is a bonafide
example, or an attack.

13.3.2 Investigated rPPG Algorithms

In this section, selected algorithms to retrieve a pulse signal are presented. Two of
them, one proposed by Li et al. [30] and CHROM [28] already served as basis for
face presentation attack detection in [21] and [20] respectively. The third one, Spatial
Subspace Rotation (SSR) [35], has been chosen for both its original analysis (it does
not rely on mean skin color processing but rather considers the whole set of skin
color pixels) and its potential effectiveness, as demonstrated in [16].

Li CVPR

In this work, a simplified version of the rPPG algorithm originally developed in [30]
has been implemented. This simplification has already been used for presentation
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attack detection in [21]. In particular, the correction for illumination and for motion
are ignored. Basically, the pulse signal is obtained by first accumulating the mean
skin color value across the lower region of a face in each frame and then to filter
the color signal to get the pulse signal. In this work, instead of tracking the lower
face region from frame to frame, it is computed at each frame by using a pre-trained
facial landmark detector [36].

CHROM

The CHROM approach [28] is relatively simple but has been shown to perform well.
The algorithm first finds skin-colored pixels in a given frame and computes the mean
skin color. Then, themean skin color value is projected onto a specific color subspace,
which aims to reveal subtle color variations due to blood flow. The final pulse signal
is obtained by first bandpass filtering temporal signals in the proposed chrominance
colorspace, and then by combining these two filtered signals into one. Note that in
our implementation, the skin color filter described in [37] has been used.

SSR

The Spatial Subspace Rotation (SSR) algorithm has been proposed in [35]. It con-
siders the subspace of skin pixels in the RGB space and derives the pulse signal by
analyzing the rotation angle of the skin color subspace in consecutive frames. To
do so, the eigenvectors of the skin pixels correlation matrix are considered. More
precisely, the angle between the principal eigenvector and the hyperplane defined
by the two others is analyzed across a temporal window. As claimed by the authors,
this algorithm is able to directly retrieve a reliable pulse signal, and hence no post-
processing step (i.e., bandpass filtering) is required. Again, skin color pixels are
detected using the filter proposed in [37].

13.3.3 Classification

Previous work in rPPG-based face presentation attack detection all rely on SVM—a
classical discriminative algorithm—to perform classification of pulse-derived fea-
tures. Although successful, we believe that choosing a suitable classifier should not
be overlooked given the unpredictable nature of attacks. Therefore, a comparison of
classification scheme is also performed. Since PAD is inherently a two-class prob-
lem, any binary classifier could potentially be used. The literature contains many
examples and we refer the interested reader to [2, 3] for a comprehensive overview
of existing approaches. In thiswork, three binary classification algorithms are applied
to the proposed features: Support Vector Machine (SVM), Multi-Layer Perceptron
(MLP) and Linear Discriminant Analysis (LDA). This choice of algorithms has been
motivated by the fact that SVM seems to be the defacto standard in face PAD, and
because it is used in all the previous work using pulse-based features. MLP and LDA
have been chosen since they are used in conjunction with the proposed features in
[24].
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Although presentation detection attack is usually viewed as a two-class classifi-
cation problem, it can also be seen as an outlier detection problem. According to
[3], modeling the genuine examples distribution is a promising research direction,
since one cannot anticipate every possible attack type. One-class classification has
already been applied in the context of face presentation detection in [31, 32], where
one-class SVM and Gaussian Mixture Models (GMM) have been used. These two
algorithms are hence also applied to the proposed features here.

13.4 Experiments and Results

13.4.1 Databases

Replay-Attack

The Replay-Attack database was first presented in [6] and contains both bonafide
attempts and presentation attacks for 50 different subjects. For each subject, two
real accesses were recorded under different conditions, referred to as controlled and
adverse. Presentation attacks were generated according to three different scenarios:

1. print: high-resolution photographs printed on A4 paper
2. mobile: photos and videos are displayed on an iPhone
3. highdef: photos and videos are displayed on an iPad

Also, two different conditions have been used to display attacks: either held by hand
by an operator or attached to a fixed support in order to avoidmotion. In total, there are
1200 video sequences, divided into training (360 seq.), development (360 seq.) and
evaluation sets (480 seq.). The average sequence length is around 10 s (real accesses
are longer and last about 15 s, whereas attacks last around 9 s). Although several
protocols have been defined to assess the performance of face PAD algorithms, only
the grandtest is used here, since it contains all the different attacks and hence allows
to test various approaches for a wider range of attacks.

Replay-Mobile

The Replay-Mobile database [38] has been built in the same spirit as of the Replay-
Attack database, but with higher quality devices to forge the different attacks. Indeed,
attacks are here performed using either high-resolution videos presented on a matte
screen or high quality photographs displayed on matte paper. This is done in order
to minimize specular reflections, and hence to be closer to real access attempts. This
dataset contains 1030 video sequences of 40 subjects, again divided into training (312
seq.), development (416 seq.) and evaluation (302 seq.) sets. The average length of
the sequences is 11.8 s, and real accesses and attacks are usually of the same length.
Experimental protocols have also been devised in a similar way than in Replay-
Mobile, and again, we will restrict ourselves to the grandtest protocol, for the same
reasons.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 13.3 Examples of frames extracted fromboth bonafide accesses (first column) and presentation
attacks (column 2–4). The first row shows examples from the Replay-attack database, the second
one from replay-mobile, the third one from MSU-MFSD, and the fourth one from 3DMAD
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MSU-MFSD

The MSU Mobile Face Spoofing Database has been introduced in [7]. It contains
a total of 440 video sequences of 55 subjects, but only a subset comprising 35
subjects has been provided to the research community. Video sequences last around
9 s in average. This database also contains two types of attacks, namely high-quality
photograph and video sequences. The publicly available subset specifies 15 subjects
used for training and 20 subjects to perform evaluation: these specifications have not
been followed here, since no development set is provided. Instead, we build a training
set and a development set with 80 video sequences from 10 subjects each, and an
evaluation set containing 120 sequences coming from the 15 remaining subjects.

3DMAD

The 3DMask Attack Database (3DMAD) [29] is the first publicly available database
for 3D face presentation detection. It consists in 15 videos sequences of 17 subjects,
recorded thanks to a Microsoft Kinect sensor. Note that here, only color sequences
are used. The sequences, which all last exactly 10 s, were collected in three different
sessions: the first two are bonafide accesses and the third one contains the mask
attack for each subject. The recordings have been made in controlled conditions and
with uniform background. As in [29], we divided the database into training (105 seq.
from 7 subjects), development and evaluation sets (75 seq. from 5 subjects in each).
However, the random splitting has not been applied here: the training set simply
contains the first seven clients, the development set is made with subjects 8–12, and
the evaluation set with subjects 13–17. Examples of frames extracted from both real
attempts and attacks for all databases can be found in Fig. 13.3).

13.4.2 Performance Measures

Any face presentation attack detection algorithm encounters two type of errors: either
an attack is misclassified as a real access, or the other way around, i.e., bonafide
attempts are wrongly classified as attacks. As a consequence, performance is usu-
ally assessed using two metrics. The Attack Presentation Classification Error Rate
(APCER) is defined as the expected probability of a successful attack and is defined
as follows:

APCER = # of accepted attacks

# of attacks
(13.3)

Conversely, the Bona Fide Presentation Classification Error Rate (BPCER) is defined
as the expected probability that a bonafide access will be falsely declared as a pre-
sentation attack. The BPCER is computed as:

BPCER = # of rejected real accesses

# of real accesses
(13.4)
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Note that according to the ISO/IEC 30107-3 standard, each attack type should be
taken into account separately. We did not follow this standard here, since our goal is
to assess the robustness for a wide range of attacks. Note also that these PAD specific
measures relate to the more traditionally used False Acceptance Rate (equivalent to
APCER) and False Rejection Rate (equivalent to BPCER).

To provide a single number for the performance, results are typically presented
using the Half Total Error Rate (HTER), which is basically the mean of the APCER
and the BPCER:

HT ER(τ ) = (APCER(τ ) + BPCER(τ ))

2
[%] (13.5)

Note that the Half Total Error Rate depends on a threshold τ . Indeed, reducing the
Attack Presentation Classification Error Rate will increase the Bonafide Presenta-
tion Classification Error Rate and vice-versa. The threshold τ is usually selected to
minimize the Equal-Error Rate (EER, the operating point where APCER = BPCER)
on the development set.

13.4.3 Experimental Results

In this section, the experimental framework and obtained results are presented. Imple-
mentation details are first discussed, before providing experimental results. In partic-
ular, a comparison of the proposed LTSS features is made with the spectral features
proposed by both Li et al. [21] andNowara et al. [22].We then investigate the usage of
different rPPG algorithms and classification schemes. Finally, an analysis of obtained
results is made: it presents identified shortcomings and suggests directions for future
research.

13.4.3.1 Implementation Details

For pulse retrieval, we used open-source implementation of selected rPPG algo-
rithms2 that have been compared for heart-rate retrieval in [39]. All algorithms have
been used with their default parameters. Experiments have been performed on the
four databases presented in Sect. 13.4.1, with their associated protocols. In particu-
lar, classifiers are trained using specified training sets, and various hyperparameters
are optimized to minimize the EER on the development set. Finally, performance
is assessed on the evaluation set. Experimental pipelines have been defined and
performed using the bob toolbox [40, 41] and, as mentioned in Sect. 13.1, are repro-
ducible by downloading the Python package associated with this contribution.

2https://pypi.python.org/pypi/bob.rppg.base.

https://pypi.python.org/pypi/bob.rppg.base
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Table 13.1 Performance of different features based on the frequency spectrum of the pulse signals.
The HTER [%] is reported on the evaluation set of each databases

Replay-Attack Replay-Mobile MSU-MFSD 3DMAD

Nowara et al. [22] 25.5 35.9 31.7 43.0

Li et al. [21] 27.3 30.7 23.3 29.0

Li CVPR + LTSS 13.0 25.7 20.6 19.0

13.4.3.2 Comparison with Existing Approaches

Here we present results for the proposed approach based on LTSS features and
compare themwith our own implementation of both previously published algorithms
also using pulse frequency features [21, 22]. As features used in [21] come frompulse
signals retrieved in three color channels, the only choice for the rPPG algorithm
is Li CVPR [30]. The same approach has been made using the proposed LTSS
features: they are computed from the frequency spectrum in each color channel and
concatenated. Note that in the work of Nowara et al. [22], only the green channel has
been considered.

For classification, a two-class SVM has been used to be consistent with previous
studies. Therefore, the different systems mostly differs in the feature extraction step,
making them easily comparable with each other. Table 13.1 shows the HTER per-
formance of the different feature extraction approaches on the evaluation set of the
different databases.

As can be seen, the proposed LTSS features achieve the best performance on all
considered datasets, and provide a significant improvement over the similar investi-
gated approaches. As compared to [21], where very simple statistics are used, long-
term spectral statistics likely contain more information and are hence more suitable
to reveal differences between pulse signals retrieved from real attempts and attacks.
It also suggests that the temporal window-based analysis of frequency content is
suitable: this is not surprising since pulse signals from real attempts should contain
some periodicity, whereas pulse signals from attacks should not. Note finally that
our implementation of Li’s approach has a better performance on the MSU-MFSD
dataset than the one reported in the original article [21]. Indeed, an EER of 20.0% is
obtained, whereas authors reported an EER of 36.7% in [21].

When compared to features containing magnitude of the whole frequency spec-
trum in local areas [22], our proposed LTSS features performs consistently better,
and by a large margin. This result is interesting for several reasons. First, features
extracted from a single face region seem sufficient to retrieve valuable pulse informa-
tion, as compared to features extracted from different local areas of the face. Second,
embedding additional information (i.e features from the background) does not seem
to help in this case. Finally, computing relevant statistics on the Fourier spectrum
looks more suitable than using the whole spectrum as a feature.
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Table 13.2 Performance when different algorithms are used to retrieve the pulse signal. The HTER
[%] is reported on the evaluation set of each databases

Replay-Attack Replay-Mobile MSU-MFSD 3DMAD

Li CVPR (green) + LTSS 16.1 32.5 35.0 17.0

CHROM + LTSS 20.9 38.1 50.6 29.0

SSR + LTSS 5.9 37.7 43.3 13.0

13.4.3.3 Comparison of Pulse Extraction Algorithms

In this section, we compare the different rPPG algorithms. Indeed, since they yield
different pulse signals (see Fig. 13.2), it is interesting to see which one helps the
most in discriminating bonafide attempts from presentation attacks. Since CHROM
and SSR only retrieve a single pulse signal (and not three, as in [30]) LTSS features
are derived from this single pulse signal only. For a fair comparison, and when using
Li CVPR algorithm [30] for pulse extraction, only the pulse computed in the green
channel is considered, since it has been shown that this color channel contains the
most variation due to blood flow [16]. Table 13.2 reports the performance for different
pulse extraction algorithms.

When comparing rPPG algorithms to retrieve the pulse signal, the SSR algorithm
obtains the best performance on two out of four datasets. Actually, it has the overall
best performance on both the Replay-Attack database with an HTER of 5.9% and on
3DMAD with an HTER of 13.0%. However, results on other databases do not show
performance improvement as compared to the previous experiment, where LTSS
features have been extracted and concatenated in three color channels. This suggests
that in the context of PAD, all color channels carry valuable information.

13.4.3.4 Comparison of Classification Approaches

In this section, the different classifiers are compared. As mentioned in Sect. 13.3.3,
several binary classification algorithms have been considered. The SVM is used with
a classical RBF kernel in both two-class and one class settings. The MLP contains a
single hidden layer and two outputs representing the two classes. Regarding Linear
Discriminant Analysis, PCA is first applied to the features in order to ensure non-
singularity of the within-class covariance matrix. Note also that in the LDA case
features are projected to a single dimension, which is then directly used as a “score”.
Table 13.3 shows the obtained performance for different classification schemes.

It is clear from Table 13.3 that different classifiers obtain very different results
on the same features. Within discriminant approaches, it is hard to define the most
appropriate classifier for this task. They are quite close in terms of averaged perfor-
mance over the four datasets: SVM has an average HTER of 19.8%, whereas MLP
and LDA reach an averageHTERof 21.8% and 22.4% respectively. Also, the optimal
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Table 13.3 Performance of both tow-class and one-class classifiers. The HTER [%] is reported on
the evaluation set of each databases

Replay-Attack Replay-Mobile MSU-MFSD 3DMAD

SVM 13.4 26.0 20.6 19.0

MLP 27.8 27.7 16.1 15.0

LDA 24.6 24.1 23.3 17.0

GMM 21.6 54.1 35.6 44.0

OC-SVM 19.6 44.8 31.7 38.0

Table 13.4 HTER [%] performance on evaluation sets, with a breakdown on photo and video
replay attacks

Photo Video

Replay-Attack 11.3 6.6

Replay-Mobile 19.0 26.5

MSU-MFSD 20.0 15.8

choice for the classifier is dependent on the database: this suggest that fusing different
classifiers may be an interesting direction to investigate.

Table 13.3 also shows the poor performance obtained using the outlier detection
approach. This may be explained by the lack of training data. Actually, modeling the
distribution (GMM), or the support region (one-class SVM) of bonafide examples
may be hard with few examples.

13.4.4 Discussion

In this section, a breakdown is made on the different attack types. This allows to
better understand the behavior of our pulse-based face PAD approach, as well as to
identify shortcomings, where future efforts should be made.

Table 13.4 shows the HTER of the proposed Li CVPR + LTSS system for two
widely-used types of attack: photo and video replays. On the MSU-MFSD database,
our approach performs better when dealing with video attacks, and this contradicts
the result presented in [21]. Indeed, in the case of a photo attack, the image of the
face is the same along the replayed sequence, therefore no pulse signal should be
detected. Note that the same remark applies to the Replay-Attack database. This
could maybe be explained by the motion introduced when the operator is holding
the photograph in front of the camera, which may pollute the retrieved pulse signal.
Also, some of the results reported on the Replay-Attack database in [22] exhibit the
same trend: a better accuracy is sometimes observed on video attacks than on photo
attacks.
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(a) Replay-Attack (b) Replay-Mobile

(c) MSU-MFSD

Fig. 13.4 Score values distribution of both bonafide accesses (green) and presentation attacks (red)
on the evaluation set of the different databases. The dashed-line represents the decision threshold τ

selected a priori on the development set. Note that for visualization purposes, the graph for Replay-
Attack has been truncated. Actually the leftmost bin goes up to 300, meaning that most of the attacks
have a very low score

Finally, the distribution of the scores obtained on the evaluation sets of the three
databases containing both photo and video attacks are shown inFig. 13.4 and provides
two interesting insights:

1. Extracting reliable features from pulse signals is still a challenging problem for
bonafide attempts. This is evidenced by the more uniform distribution of scores
for genuine access (depicted in green in Fig. 13.4). This is especially true for
both Replay-Mobile and MSU-MFSD databases. As a consequence, the BPCER
is usually higher than the APCER.

2. On the other hand, proposed features are able to handle attacks prettywell: the dis-
tribution of attack scores (depicted in red in Fig. 13.4) spreads around a relatively
low value on the left hand side of the histogram.

To further illustrate these observations, Fig. 13.5 shows example images, corre-
sponding pulses and their respective frequency spectra for both bonafide examples



284 G. Heusch and S. Marcel

Fig. 13.5 Examples of images, retrieved pulses and their frequency spectrum for both real accesses
and attacks from the Replay-Mobile database. The first row shows a legitimate access, the last two
rows corresponds to a photo and a video attack respectively

(first row) and different presentation attacks (last two rows) of the Replay-Mobile
database. One cannot clearly see differences in the frequency content between attacks
and the real example.Onewould expect that for a real access, the corresponding rPPG
signal would have a clear peak in the frequency spectrum that corresponds to the heart
rate. In the example depicted in Fig. 13.5, it is actually the opposite: the pulse signal
retrieved from the real access has more energy in high frequency components than
the one in the photo attack. Note that high-frequency components are not present
since the pulse signal is bandpassed; this may discard useful information to identify
attacks, but recall that our goal is more oriented toward characterizing real accesses.

The same analysis has been made with mask attacks in the 3DMAD dataset and
the score distribution is shown in Fig. 13.6. In this case, different observations can be
made. Scores corresponding to bonafide examples are not that uniformly distributed
andmainly lie on the right handside of the histogram,which is desirable. It means that
for this dataset, extracted pulse-based features aremore reliable than in previous case.
This is not surprising, since sequences have been recorded under clean conditions



13 Remote Blood Pulse Analysis for Face Presentation Attack Detection 285

Fig. 13.6 Score values distribution of both bonafide accesses (green) and presentation attacks (red)
on the evaluation set of the 3DMAD database. The dashed-line represents the decision threshold τ

selected a priori on the development set

Fig. 13.7 Examples of images, retrieved pulses and their frequency spectrum for both real accesses
and attacks from the 3DMAD database. The first row shows a legitimate access, and the second one
is an attack

and do not contain as much variations as in other databases. Again, this suggest that
illumination is an important factor for reliable pulse extraction.

Also, Fig. 13.7 shows example images, with their retrieved pulses and correspond-
ing spectra for the 3DMAD database. Note here that the difference is easier to spot
than in examples from the Replay-Mobile database (Fig. 13.5) and corresponds to
expectations. In this case, one can clearly see the frequency component corresponding
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to the probable heart-rate of the subject (the leftmost peak of the spectrum) for the
bonafide example. On the contrary, the signal retrieved from the attack is composed
of higher frequencies, meaning that in this case, color variations should mainly be
due to noise.

Although the proposed approach performs well as compared to other rPPG-based
presentation attack detection, it does not reach state-of-the-art performance on these
benchmarking datasets yet. Nevertheless, we believe that rPPG-based presentation
attack detection systems have the potential to become successful, since there exists
room for improvement.

First, and as evidenced in the previous analysis, a reliable pulse signal should
be obtained. Current limitations of rPPG algorithms, and in particular illumination
condition and compression have been identified and much effort is put on coping
with this in current rPPG research. Second, existing approaches—including this
one—consider relatively simple, hand-crafted features and progress can also bemade
here. For instance, Wang et al. successfully used more advanced spectral features in
[27] to detect living skin. Moreover, recent advances in speaker presentation attack
detection using convolutional neural networks (CNN) [42] show the superiority of
suchmodels over hand-crafted features. Finally, other classification approaches are to
be studied yet. In particular, taking advantage of the temporal nature of the data using
algorithms dedicated to time series, such as Hidden Markov Models or Recurrent
Neural Networks, should be worth considering.

13.5 Conclusion

In this work, we studied the usage of remote photoplethysmography for face pre-
sentation attack detection. New features containing long term spectral statistics of
pulse signals were proposed and successfully applied to this task. Experiments per-
formed on four datasets containing a wide variety of attacks show that the proposed
approach outperforms state-of-the-art pulse-based face PAD approaches by a large
margin. Analysis of the results revealed that the greatest challenge for such systems
is their ability to retrieve reliable pulse signals for bonafide attempts. This suggest
that future work should first be directed towards improving rPPG algorithms in con-
ditions suitable for PAD, where video quality is not necessarily sufficient for current
approaches, and where both illumination variations and subject motion are present.
Besides, there is also room for improvement in several other steps of the system.
Automatically deriving pulse-based features, using convolutional neural networks
for instance, and applying classification schemes tailored for time-series are, in our
opinion, research directions worth investigating. Finally, such approaches have the
potential to circumvent current limitations of face PAD systems. Actually, they may
be well-suited to handle unknown attacks, since they only rely on properties exhib-
ited in bonafide accesses, as opposed to approaches based on image quality or texture
analysis.
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Chapter 14
Review of Face Presentation Attack
Detection Competitions

Jukka Komulainen, Zinelabidine Boulkenafet and Zahid Akhtar

Abstract Face presentation attack detection has received increasing attention ever
since the vulnerabilities to spoofing have been widely recognized. The state of the
art in software-based face anti-spoofing has been assessed in three international
competitions organized in conjunction with major biometrics conferences in 2011,
2013, and 2017, each introducing new challenges to the research community. In this
chapter, we present the design and results of the three competitions. The particular
focus is on the latest competition, where the aim was to evaluate the generalization
abilities of the proposed algorithms under some real-world variations faced inmobile
scenarios, including previously unseen acquisition conditions, presentation attack
instruments, and sensors. We also discuss the lessons learnt from the competitions
and future challenges in the field in general.

14.1 Introduction

Spoofing (or presentation attacks as defined in the recent ISO/IEC 30107-3 standard
[1]) poses serious security issue to biometric systems in general but face recognition
systems in particular are easy to be deceived using images of the targeted person pub-
lished in theweb or captured from distance.Manyworks (e.g., [2–4]) have concluded
that face biometric systems, even those presenting a high recognition performance,
are vulnerable to attacks launched with different Presentation Attack Instruments
(PAI), such as prints, displays and wearable 3D masks. The vulnerability to pre-
sentation attacks (PA) is one of the main reasons to the lack of public confidence in
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(face) biometrics. Also, face recognition based user verification is being increasingly
deployed even in high-security level applications, such as mobile payment services.
This has created a necessity for robust solutions to counter spoofing.

One possible solution is to include a specific Presentation Attack Detection (PAD)
component into a biometric system.PAD(commonly referred to also as anti-spoofing,
spoof detection or liveness detection) aims at automatically differentiating whether
the presented biometric sample originates froma living legitimate subject or not. PAD
schemes can be broadly categorized into two groups: hardware-based and software-
based methods. Hardware-based methods introduce some custom sensor into the
biometric system that is designed specifically for capturing specific intrinsic differ-
ences between a valid living biometric trait and others. Software-based techniques
exploit either only the same data that is used for the actual biometric purposes or
additional data captured with the standard acquisition device.

Ever since the vulnerabilities of face based biometric systems to PAs have been
widely recognized, face PAD has received significant attention in the research com-
munity and remarkable progress has been made. Still, it is hard to tell what are the
best or most promising practices for face PAD, because extensive objective evalu-
ation and comparison of different approaches is challenging. While it is relatively
cheap for an attacker to exploit a known vulnerability of a face authentication system
(a “golden fake”), such as a realistic 3D mask, manufacturing a huge amount of face
artifacts and then simulating various types of attack scenarios (e.g. use-cases) for
many subjects is extremely time-consuming and expensive. This is true especially in
the case of hardware-based approaches because capturing new sensor-specific data is
always required. Consequently, hardware-based techniques have been usually evalu-
ated just to demonstrate a proof of concept, which makes direct comparison between
different systems impossible.

Software-based countermeasures, on the other hand, can be assessed on common
protocol benchmark datasets or, even better, if any new data is collected, it can be
distributed to the research community. The early works in the field of software-
based face PAD were utilizing mainly small proprietary databases for evaluating the
proposed approaches but nowadays there exist several common public benchmark
datasets, such as [5–10]. The public databases have been indispensable tools for the
researchers for developing and assessing the proposed approaches, which has had
a huge impact on the amount of papers on data-driven countermeasures during the
recent years. However, even if standard benchmarks are used, objective evaluation
between different methods is not straightforward. First, the used benchmark datasets
may vary across different works. Second, not all the datasets have unambiguously
defined evaluation protocols, for example for training and tuning the methods, that
provide the possibility for fair and unbiased comparison between different works.

Competitions play a key role in advancing the research on face PAD. It is impor-
tant to organize collective evaluations regularly in order to assess, or ascertain, the
current state of the art and gain insight on the robustness of different approaches
using a common platform. Also, new more challenging public datasets are often
collected and introduced within such collective efforts to the research community
for future development and benchmarking use. The quality of PAIs keeps improving
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as technology (i.e., printers and displays) gets cheaper and better, which is another
reason why benchmark datasets need to be updated regularly. Open contests are
likely to inspire researchers and engineers beyond the field to participate, and their
outside the box thinking may lead to new ideas on the problem of face PAD and
novel countermeasures.

In the context of software-based face PAD, three international competitions [11–
13] have been organized in conjunction with major biometric conferences in 2011,
2013 and 2017, each introducing new challenges to the research community. The first
competition on countermeasures to 2D face spoofing attacks [12] provided an initial
assessment of face PAD by introducing a precisely defined evaluation protocol and
evaluating the performanceof the proposed facePADsystemsunder print attacks. The
second competition on countermeasures to 2D face spoofing attacks [13] utilized the
same evaluation protocol but assessed the effectiveness of the submitted systems in
detecting a variety of attacks, introducing display attacks (digital photos and video-
replays) in addition to print attacks. While the first two contests considered only
known operating conditions, the latest international competition on face PAD [11]
aimed to compare the generalization capabilities of the proposed algorithms under
some real-world variations faced in mobile scenarios, including unseen acquisition
conditions, PAIs and input sensors.

This chapter introduces the state of the art in face PAD with particular focus on
the three international competitions. The remainder of the chapter is organized as
follows. First, we will give a brief overview on face PAD approaches proposed in the
literature in Sect. 14.2. In Sect. 14.3, we will recapitulate the first two international
competitions on face PAD, while Sect. 14.4 provides more comprehensive analysis
on the latest competition focusing on generalized face PAD in mobile scenarios.
In Sect. 14.5, we will discuss the lessons learnt from the competitions and future
challenges in the field of face PAD in general. Finally, Sect. 14.6 summarizes the
chapter, and presents conclusions drawn from the competitions discussed here.

14.2 Literature Review on Face PAD Methods

There exists no universally accepted taxonomy for the different face PADapproaches.
In this chapter, we categorize the methods into two very broad groups: hardware-
based and software-based methods.

Hardware-based methods are probably the most robust ones for PAD because
the dedicated sensors are able to directly capture or emphasize specific intrinsic
differences between genuine and artificial faces in 3D structure [14, 15] and (multi-
spectral) reflectance [15–18] properties. For instance, planar PAI detection becomes
rather trivial if depth information is available [14], whereas near-infrared (NIR) or
thermal cameras are efficient in display attack detection as most of the displays in
consumer electronics emit only visible light. On the other hand, these kinds of uncon-
ventional sensors are usually expensive and not compact, thus not (yet) available in
personal devices, which prevents their wide deployment.



294 J. Komulainen et al.

It is rather appealing to perform face PAD by further analyzing only the same
data that is used for face recognition or additional data captured with the standard
acquisition device (e.g., challenge-response approach). These kinds of software-
based methods can be broadly divided into active (requiring user collaboration) and
passive approaches. Additional user interaction can be very effectively used for face
PAD because we humans tend to be interactive, whereas a photo or video-replay
attack cannot respond to randomly specified action requirements. Furthermore, it
is very difficult to perform liveness detection or facial 3D structure estimation by
relying only on spontaneous facial motion. Challenge-response based methods aim
at performing face PAD detection based on whether the required action (challenge),
for example facial expression [19, 20], mouth movement [19, 21] or head rotation
(3D structure) [22–24], was observed within a predefined time window (response).
Also, active software-based methods are able to generalize well across different
acquisition conditions and attack scenarios but at the cost of usability due to increased
authentication time and system complexity.

Passive software-based methods are preferable for face PAD because they are
faster and less intrusive than active countermeasures. Due to the increasing number
of public benchmark databases, numerous passive software-based approaches have
been proposed for face PAD. In general, passive methods are based on analyzing
different facial properties, such as frequency content [8, 25], texture [6, 14, 26–29]
and quality [30–32], or motion cues, such as eye blinking [33–36], facial expression
changes [19, 33, 35, 36], mouth movements [19, 33, 35, 36], or even color variation
due to blood circulation (pulse) [13, 37, 38], to discriminate face artifacts from
genuine ones. Passive software-based methods have shown impressive results on
the publicly available datasets but the preliminary cross-database tests, such as [24,
39], revealed that the performance is likely to degrade drastically when operating in
unknown conditions.

Recently, the research focus on software-based face PAD has been graduallymov-
ing towards assessing and improving the generalization capabilities of the proposed
and existing methods in a cross-database setup instead of operating solely on sin-
gle databases. Among hand-crafted feature-based approaches, color texture analysis
[40–43], image distortion analysis [9, 31, 32], combination of texture and image
quality analysis with interpupillary distance (IPD) based reject option [44], dynamic
spectral domain analysis [45] and pulse detection [37] have been applied in the
context of generalized face PAD but with only moderate success.

The initial studies using deep CNNs have resulted in excellent intra-test perfor-
mance but the cross-database results have still been unsatisfactory [44, 46]. This is
probably due to the fact that the current publicly available datasets may not provide
enough data for training well-known deep neural network architectures from scratch
or even for fine-tuning pre-trained networks. As a result, the CNNmodels have been
suffering from overfitting to specific data and learning database-specific information
instead of generalized PAD related representations. In order to improve the gener-
alization of CNNs with limited data, more compact feature representations or novel
methods for cross-domain adaptation are needed. In [47], deep dictionary learning
based formulation was proposed to mitigate the requirement of large amounts of
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training data with very promising intra-test results but the generalization capability
was again unsatisfying. In any case, the potential of application-specific learning
needs to be further explored when more comprehensive face PAD databases are
available.

14.3 First and Second Competitions on Countermeasures
to 2D Face Spoofing Attacks

In this section, we recapitulate the first [12] and second [13] competitions on counter-
measures to 2D face spoofing attacks, which were held in conjunction with Interna-
tional Joint Conference on Biometrics (IJCB) in 2011 and International Conference
on Biometrics (ICB) in 2013, respectively. Both competitions focused on assessing
the stand-alone PADperformance of the proposed algorithms in restricted acquisition
conditions, thus integration with actual face verification stage was not considered.

In 2011, the research on software-based face PAD was still in its infancy mainly
due to lack of public datasets. Since there were no comparative studies on the effec-
tiveness of different PADmethods under the same data and protocols, the goal of the
first competition on countermeasures to 2D facial spoofing attacks [12] was to pro-
vide a common platform to compare software-based face PAD using a standardized
testing protocol. The performance of different algorithms was evaluated under print
attacks using a unique evaluation method. The used PRINT-ATTACK database [48]
defines a precise protocol for fair and unbiased algorithm evaluation as it provides a
fixed development set to calibrate the countermeasures, while the actual test data is
used solely for reporting the final results.

While the first competition [12] provided an initial assessment of face PAD, the
2013 edition of the competition on countermeasures to 2D face spoofing attacks
[13] aimed at consolidating the recent advances and trends in the state of the art
by evaluating the effectiveness of the proposed algorithms in detecting a variety of
attacks. The contest was carried out using the same protocol on the newly collected
video REPLAY-ATTACK database [6], introducing display attacks (digital photos
and video-replays) in addition to print attacks.

Both competitions were open to all academic and industrial institutions. A notice-
able increase in the number of participants between the two competitions can be seen.
Particularly, six different competitors from universities participated in the first con-
test, while eight different teams participated in the second competition. The affiliation
and corresponding algorithm name of the participating teams for the two competi-
tions are summarized in Tables 14.1 and 14.2.

In the following, we summarize the design and main results of the first and second
competitions on countermeasures to 2D face spoofing attacks. The reader can refer
to [12, 13] for more detailed information on the competitions.
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Table 14.1 Names and affiliations of the participating systems in the first competition on counter-
measures to 2D facial spoofing attacks

Algorithm name Affiliations

AMILAB Ambient Intelligence Laboratory, Italy

CASIA Chinese Academy of Sciences, China

IDIAP Idiap Research Institute, Switzerland

SIANI Universidad de Las Palmas de Gran Canaria, Spain

UNICAMP University of Campinas, Brazil

UOULU University of Oulu, Finland

Table 14.2 Names and affiliations of the participating systems in the second competition on coun-
termeasures to 2D face spoofing attacks

Algorithm name Affiliations

CASIA Chinese Academy of Sciences, China

IGD Fraunhofer Institute for Computer Graphics, Germany

MaskDown Idiap Research Institute, Switzerland

University of Oulu, Finland

University of Campinas, Brazil

LNMIIT LNM Institute of Information Technology, India

MUVIS Tampere University of Technology, Finland

PRA Lab University of Cagliari, Italy

ATVS Universidad Autonoma de Madrid, Spain

UNICAMP University of Campinas, Brazil

14.3.1 Datasets

The first face PAD competition [12] utilized PRINT-ATTACK [48] database consist-
ing of 50 different subjects. The real access and attack videos were captured with
a 320 × 240 pixels (QVGA) resolution camera of a MacBook laptop. The database
includes 200 videos of real accesses and 200 videos of print attack attempts. The
PAs were launched by presenting hard copies of high-resolution photographs printed
on A4 papers with a Triumph-Adler DCC 2520 color laser printer. The videos were
recorded under controlled (uniform background) and adverse (non-uniform back-
ground with day-light illumination) conditions.

The second competition on face PAD [13]was conducted using an extension of the
PRINT-ATTACK database, named as REPLAY-ATTACK database [6]. The database
consists of video recordings of real accesses and attack attempts corresponding to 50
clients. The videos were acquired using the built-in camera of aMacBookAir 13 inch
laptop under controlled and adverse conditions. Under the same conditions, high-
resolution pictures and videos were taken for each person using a Canon PowerShot
SX150 IS camera and an iPhone 3GS camera, later to be used for generating the
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Fig. 14.1 Sample images from the PRINT-ATTACK [48] and REPLAY-ATTACK [6] databases.
Top and bottom rows correspond to controlled and adverse conditions, respectively. From left to
right columns: real accesses, print, mobile phone and tablet attacks

attacks. Three different attacks were considered: (i) print attacks (i.e., high resolution
pictures were printed on A4 paper and displayed to the camera); (ii) mobile attacks
(i.e., attacks were performed by displaying pictures and videos on the iPhone 3GS
screen); (iii) high definition attacks (i.e., the pictures and the videoswere displayed on
an iPad screen with 1024 × 768 pixels resolution). Moreover, attacks were launched
with hand-held and fixed support modes for each PAI. Figure 14.1 shows sample
images of real and fake faces from both PRINT-ATTACK and REPLAY-ATTACK
databases.

14.3.2 Performance Evaluation Protocol and Metrics

The databases used in both competition editions are divided into train, development
and test sets with no overlap between them (in terms of subjects or samples). Dur-
ing the system development phase of the first competition, the participants were
given access to the labeled videos of the training and the development sets that were
used to train and calibrate the devised face PAD methods. In the evaluation phase,
the performances of the developed systems were reported on anonymized and unla-
beled test video files. In the course of the second competition, the participants had
access to all subsets because the competition was conducted on the publicly available
REPLAY-ATTACK database. The final test data consisted of anonymized videos of
100 successive frames cut from the original test set videos starting from a random
time.

The first and second competitions considered a face PAD method to be prone to
two types of errors: either a real access attempt is rejected (false rejection) or a PA
is accepted (false acceptance). Both competitions employed Half Total Error Rate
(HTER) as principal performance measure metric, which is the average of False
Rejection Rate (FRR) and False Acceptance Rate (FAR) at a given threshold τ :
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HT ER(τ ) = FAR(τ ) + FRR(τ )

2
(14.1)

For evaluating the proposed approaches, the participants were asked to provide
two files containing a score value for each video in the development and test sets,
respectively. The HTER is measured on the test set using the threshold τ correspond-
ing to the Equal Error Rate (EER) operating point on the development set.

14.3.3 Results and Discussion

The algorithms proposed in the first competition on face PAD and the correspond-
ing performances are summarized in Table 14.3. The participated teams used either
single or multiple types of visual cues among motion, texture and liveness. Almost
every systemmanaged to obtain nearly perfect performance on both development and
test sets of the PRINT-ATTACK database. The methods using facial texture analysis
dominated because the photo attacks in the competition dataset suffered from obvi-
ous print quality defects. Particularly, two teams, IDIAP and UOULU, achieved zero
percent error rates on both development and test sets relying solely on local binary
pattern (LBP) [49] based texture analysis, while CASIA achieved perfect classifica-
tion rates on the test set using combination of texture and motion analysis. Assuming
that the attack videos usually are noisier than those of real videos, the texture anal-
ysis component in CASIA’s system is based on estimating the difference in noise
variance between the real and attack videos using first order Haar wavelet decompo-
sition. Since the print attacks are launched with fixed and hand-held printouts with
incorporated background (see Fig. 14.1), the motion analysis component measures
the amount of non-rigid facial motion and face-background motion correlation.

Table 14.3 Overview and performance (in %) of the algorithms proposed in the first face PAD
competition (F stands for feature-level and S for score-level fusion)

Team Features Fusion Development Test

FAR FRR HTER FAR FRR HTER

AMILAB Texture, motion
and liveness

S 0.00 0.00 0.00 0.00 1.25 0.63

CASIA Texture, motion S 1.67 1.67 1.67 0.00 0.00 0.00

IDIAP Texture – 0.00 0.00 0.00 0.00 0.00 0.00

SIANI Motion – 1.67 1.67 1.67 0.00 21.25 10.63

UNICAMP Texture, motion
and liveness

F 1.67 1.67 1.67 1.25 0.00 0.63

UOULU Texture – 0.00 0.00 0.00 0.00 0.00 0.00
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Table 14.4 Overview and performance (in %) of the algorithms proposed in the second face PAD
competition (F stands for feature-level and S for score-level fusion)

Team Features Fusion Development Test

FAR FRR HTER FAR FRR HTER

CASIA Texture and
motion

F 0.00 0.00 0.00 0.00 0.00 0.00

IGD Liveness – 5.00 8.33 6.67 17.00 1.25 9.13

MaskDown Texture and
motion

S 1.00 0.00 0.50 0.00 5.00 2.50

LNMIIT Texture and
motion

F 0.00 0.00 0.00 0.00 0.00 0.00

MUVIS Texture F 0.00 0.00 0.00 0.00 2.50 1.25

PRA Lab Texture S 0.00 0.00 0.00 0.00 2.50 1.25

ATVS Texture – 1.67 0.00 0.83 2.75 21.25 12.00

Unicamp Texture – 13.00 6.67 9.83 12.50 18.75 15.62

Table 14.4 gives an overviewof the algorithms proposedwithin the second compe-
tition on face PAD and the corresponding performance figures for both development
and test sets. The participating teams developed face PADmethods based on texture,
frequency, image quality, motion and liveness (pulse) features. Again, the use of
texture was popular as seven out of eight teams adopted some sort of texture analysis
in the proposed systems. More importantly, since the attack scenarios in the second
competition were more diverse and challenging, a common approach was combin-
ing several complementary concepts together (i.e., information fusion at feature or
score level). The category of the used features did not influence the choice of fusion
strategy. The best-performing systems were based on feature-level fusion but it is
more likely that the high level of robustness is largely based on the feature design
rather than the used fusion approach.

From Table 14.4, it can be seen that the two PAD techniques proposed by CASIA
andLNMIIT achieved perfect discrimination between the real accesses and the spoof-
ing attacks (i.e., 0.00% error rates on the development and test sets). Both of these
top-performing algorithms employ a hybrid scheme combining the features of both
texture and motion-based methods. Specifically, the used facial texture descriptions
are based on LBP, while motion analysis components again measure the amount of
non-rigid facial motion and face-background motion consistency as the new display
attacks are inherently similar to the “scenic” print attacks of the previous competi-
tion (see Fig. 14.1). The results on the competition dataset suggested that face PAD
methods relying on a single cue are not able to detect all types of attacks, and the gen-
eralizing capability of the hybrid approaches is higher but with high computational
cost. On the other hand, MUVIS and PRA Lab managed to achieve excellent perfor-
mance on the development and test sets using solely texture analysis. However, it is
worth pointing out that both systems compute the texture features over whole video
frame (i.e., including background region), thus the methods are severely overfitting
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to the scene context information that matches across the train, development, and test
data. All in all, the astonishing results also on the REPLAY-ATTACK dataset con-
clude that more challenging configurations are needed before the research on face
PAD can reach the next level.

14.4 Competition on Generalized Face Presentation Attack
Detection in Mobile Scenarios

The vulnerabilities of face based biometric systems to PAs have been widely recog-
nized but still we lack generalized software-based PADmethods performing robustly
in practical (mobile) authentication scenarios. In recent years, many face PADmeth-
ods have been proposed and remarkable results have been reported on the existing
benchmark datasets. For instance, as seen in Sect. 14.3, several methods achieved
perfect error rates in the first [12] and second [13] face PAD competitions. More
recent studies, such as [9, 39, 40, 43, 46], have revealed that the existing methods
are not able to generalize well in more realistic scenarios, thus software-based face
PAD is still an unsolved problem in unconstrained operating conditions.

Focused large scale evaluations on the generalization of face PAD had not been
conducted or organized after the issue was first pointed out by de Freitas Pereira et
al. [39] in 2013. To address this issue, we organized a competition on mobile face
PAD [11] in conjunction with IJCB 2017 to assess the generalization abilities of
state-of-the-art algorithms under some real-world variations, including unseen input
sensors, PAIs, and illumination conditions. In the following, we will introduce the
design and results of this competition in detail.

14.4.1 Participants

The competitionwas open to all academic and industrial institutions. The participants
were required register for the competition and sign the end user license agreement
(EULA) of the used OULU-NPU database [5] before obtaining the data for devel-
oping the PAD algorithms. Over 50 organizations registered for the competition and
13 teams submitted their systems in the end for evaluation. The affiliation and corre-
sponding algorithm name of the participating teams are summarized in Table 14.5.
Compared with the previous competitions, the number of participants increased sig-
nificantly from six and eight in the first and second competitions, respectively. More-
over, in the previous competitions, all the participated teams were from academic
institutes and universities, whereas in this competition, we had registered the partic-
ipation of three companies as well, which highlights the importance of the topic for
both academia and industry.
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Table 14.5 Names and affiliations of the participating systems

Algorithm name Affiliations

Baseline University of Oulu, Finland

MBLPQ University of Ouargla, Algeria

PML University of Biskra, Algeria

University of the Basque Country, Spain

University of Valenciennes, France

Massy_HNU Changsha University of Science and Technology

Hunan University, China

MFT-FAS Indian Institute of Technology Indore, India

GRADIANT Galician Research and Development Center in Advanced
Telecommunications, Spain

Idiap Ecole Polytechnique Federale de Lausanne Idiap Research Institute,
Switzerland

VSS Vologda State University, Russia

SZUCVI Shenzhen University, China

MixedFasNet FUJITSU laboratories LTD, Japan

NWPU Northwestern Polytechnical University, China

HKBU Hong Kong Baptist University, China

Recod University of Campinas, Brazil

CPqD CPqD, Brazil

14.4.2 Dataset

The competition was carried out on the recently published1 OULU-NPU face pre-
sentation attack database [5]. The dataset and evaluation protocols were designed
particularly for evaluating the generalization of face PAD methods in more realistic
mobile authentication scenarios by considering three covariates: unknown environ-
mental conditions (namely illumination and background scene), PAIs and acquisition
devices, separately and at once.

The OULU-NPU database consists of 4950 short video sequences of real access
and attack attempts corresponding to 55 subjects (15 female and 40 male). The real
access attempts were recorded in three different sessions separated by a time interval
of one week. During each session, a different illumination condition and background
scene were considered (see Fig. 14.2):

• Session 1: The recordings were taken in an open-plan officewhere the electric light
was switched on, the windows blinds were open, and the windows were located
behind the subjects.

• Session 2: The recordings were taken in a meeting room where the electric light
was the only source of illumination.

1The dataset was not yet released at the time of the competition.
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Fig. 14.2 Sample images of
a real subject highlighting
the illumination conditions
across the three different
scenarios

(a) Session 1 (b) Session 2 (c) Session 3

• Session 3: The recordings were taken in a small office where the electronic light
was switched on, the windows blinds were open, and the windows were located
in front of the subjects.

During each session, the subjects recorded the videos of themselves using the
front-facing cameras of the mobile devices. In order to simulate realistic mobile
authentication scenarios, the video length was limited to five seconds. Furthermore,
the subjects were asked to use the device naturally while ensuring that the whole
face is visible through the whole video sequence.

Six smartphones with high-quality front-facing cameras in the price range from
e250 to e600 were used for the data collection:

• Samsung Galaxy S6 edge with 5 MP frontal camera (Phone 1).
• HTC Desire EYE with 13 MP frontal camera (Phone 2).
• MEIZU X5 with 5 MP frontal camera (Phone 3).
• ASUS Zenfone Selfie with 13 MP frontal camera (Phone 4).
• Sony XPERIA C5 Ultra Dual with 13 MP frontal camera (Phone 5).
• OPPO N3 with 16 MP rotating camera (Phone 6).

The videos were recorded at Full HD resolution (i.e., 1920 × 1080) using the
same camera software2 installed on each device. Even though the nominal camera
resolution of somemobile devices is the same, such as Phone 2, Phone 4 and Phone 5
(13MP), significant differences can be observed in the quality of the resulting videos
as demonstrated in Fig. 14.3.

During each of the three sessions, a high-resolution photo and a video of each
user was captured using the back camera of the Phone 1 capable of taking 16 MP
still images and Full HD videos. These high resolution photos and videos were then
used to create the PAs. The attack types considered in this database are print and
video-replay attacks:

2http://opencamera.sourceforge.net/.

http://opencamera.sourceforge.net/
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(a) Phone 1 (b) Phone 2 (c) Phone 3 (d) Phone 4 (e) Phone 5 (f) Phone 6

Fig. 14.3 Sample images showing the image quality of the different camera devices

(a) Print 1 (b) Print 2 (c) Display 1 (d) Display 2

Fig. 14.4 Samples of print and display attacks taken with the front camera of Sony XPERIA C5
Ultra Dual

• Print attacks: The high resolution photos were printed on A3 glossy paper using
two different printers: a Canon imagePRESS C6011 (Printer 1) and a Canon
PIXMA iX6550 (Printer 2).

• Video-replay attacks: The high-resolution videos were replayed on two different
display devices: a 19′′ Dell UltraSharp 1905FP display with 1280 × 1024 reso-
lution (Display 1) and an early 2015 Macbook 13′′ laptop with Retina display of
2560 × 1600 resolution (Display 2).

The print and video-replay attacks were then recorded using the front-facing
cameras of the six mobile phones. While capturing the print attacks, the facial prints
were held by the operator and captured with stationary capturing devices in order to
maximize the image quality but still introduce some noticeable motion in the print
attacks. In contrast, when recording the video-replay attacks both of the capturing
devices and PAIs were stationary. Furthermore, we paid special attention that the
background scene of the attacks matched that of the real accesses during each session
and that the attack videos did not include the bezels of the screens or borders of the
prints. Figure 14.4 shows samples of the attacks captured using the Phone 5.
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14.4.3 Performance Evaluation Protocol and Metrics

During the system development phase of 2months, the participantswere given access
to the labeled videos of the training and the development sets that were used to train
and tune the devised face PAD methods. In addition to the provided training set,
the participants were allowed to use external data to train their algorithms. In the
evaluation phase of two weeks, the performances of the developed systems were
reported on anonymized and unlabeled test video files. To assess the generalization
of the developed face PAD methods, four protocols have been used:

Protocol I: This protocol is designed to evaluate the generalization of the facePAD
methods under previously unseen environmental conditions, namely illumination
and background scene. As the database is recorded in three sessions with different
illumination condition and location, the train, development and evaluation sets are
constructed using video recordings taken in different sessions.

Protocol II: This protocol is designed to evaluate the effect of attacks created
with different printers or displays on the performance of the face PAD methods as
they may suffer from new kinds of artifacts. The effect of attack variation is assessed
by introducing previously unseen print and video-replay attacks in the test set.

Protocol III: One of the critical issues in face PAD and image classification in
general is sensor interoperability. To study the effect of the input camera variation, a
Leave One Camera Out (LOCO) protocol is used. In each iteration, the real and the
attack videos recordedwithfive smartphones are used to train and tune the algorithms,
and the generalization of the models is assessed using the videos recorded with the
remaining smartphone.

Protocol IV: In the most challenging protocol, all above three factors are consid-
ered simultaneously and generalization of face PAD methods are evaluated across
previously unseen environmental conditions, attacks, and sensors.

Table 14.6 gives detailed information about the video recordings used in the train,
development and test sets of each test scenario. For every protocol, the participants
were asked to provide separate score files for the development and test sets containing
a single score for each video.

For the performance evaluation, we selected the recently standardized ISO/IEC
30107-3 metrics [1], Attack Presentation Classification Error Rate (APCER) and
Bona Fide Presentation Classification Error Rate (BPCER):

APCERPAI = 1

NPAI

NPAI∑

i=1

(1 − Resi ) (14.2)

BPCER =
∑NBF

i=1 Resi
NBF

(14.3)

where, NPAI , is the number of the attack presentations for the given PAI, NBF is
the total number of the bona fide presentations. Resi takes the value 1 if the ith
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Table 14.6 The detailed information about the video recordings in the train, development and test
sets of each protocol (P stands for print and D for display attack)

Protocol Subset Session Phones Subjects Attacks Real/Attack
videos

Protocol I Train 1, 2 6 1–20 P 1, 2; D 1, 2 240/960

Dev 1, 2 6 21–35 P 1, 2; D 1, 2 180/720

Test 3 6 36–55 P 1, 2; D 1, 2 120/480

Protocol II Train 1, 2, 3 6 1–20 P 1; D 1 360/720

Dev 1, 2, 3 6 21–35 P 1; D 1 270/540

Test 1, 2, 3 6 36–55 P 2; D 2 360/720

Protocol III Train 1, 2, 3 5 1–20 P 1, 2; D 1, 2 300/1200

Dev 1, 2, 3 5 21–35 P 1, 2; D 1, 2 225/900

Test 1, 2, 3 1 36–55 P 1, 2; D 1, 2 60/240

Protocol IV Train 1, 2 5 1–20 P 1; D 1 200/400

Dev 1, 2 5 21–35 P 1; D 1 150/300

Test 3 1 36–55 P 2; D 2 20/40

presentation is classified as an attack presentation and 0 if classified as bona fide
presentation. These two metrics correspond to the False Acceptance Rate (FAR) and
False Rejection Rate (FRR) commonly used in the PAD related literature. However,
APCERPAI is computed separately for each PAI (e.g., print or display) and the overall
PAD performance corresponds to the attack with the highest APCER (i.e., the “worst
case scenario”).

To summarize the overall system performance in a single value, the Average
Classification Error Rate (ACER) is used, which is the average of the APCER and
the BPCER at the decision threshold defined by the Equal Error Rate (EER) on the
development set:

ACER =
max

PAI=1...S
(APCERPAI ) + BPCER

2
(14.4)

where S is the number of the PAIs. In Protocols III and IV, these measures (i.e.,
APCER, BPCER and ACER) are computed separately for each mobile phone, and
the average and standard deviation are taken over the folds to summarize the results.
Since the attack potential of the PAIs may vary across the different folds, the overall
APCER does not necessarily correspond to the highest mean APCERPAI .

14.4.4 Baseline

In addition to the training and development data, the participants were given the
source code3 of the baseline face PAD method that could be freely improved or used

3The source code for baseline can be downloaded along with the OULU-NPU database.
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as it is in the final systems. The color texture based method [40] was as the baseline
because it has shown promising generalization abilities. In this method, the texture
features are extracted from the color images instead of the grayscale representation
that has been more commonly used in face PAD, for example in [14, 27–29]. The
key idea behind color texture based face PAD is that an image of an artificial face
is actually an image of a face which passes through two different camera systems
and a printing system or a display device, thus it can be referred to in fact as a
recaptured image. As a consequence, the observed artificial face image is likely to
suffer from different kinds of quality issues, such as printing defects, video artifacts,
PAI dependent (local) color variations and limited color reproduction (gamut), that
can be captured by analyzing the texture content of both luminance and chrominance
channels.

The steps of the baseline method are the following. First, the face is detected,
cropped and normalized into 64 × 64 pixels. Then, the RGB face image is converted
into HSV and YCbCr color spaces. The local binary pattern (LBP) texture features
[49] are extracted from each channel of the color spaces. The resulting feature vec-
tors are concatenated into an enhanced feature vector which is fed into a Softmax
classifier. The final score for each video is computed by averaging the output scores
of ten random frames.

14.4.5 Results and Discussion

In this competition, typical “liveness detection” was not adopted as none of the
submitted systems is explicitly aiming at detecting physiological signs of life, such
as eye blinking, facial expression changes and mouth movements. Instead, every
proposed face PAD algorithm relies on one or more types of feature representations
extracted from the face and/or the background regions. The used descriptors can
be categorized into three groups (see Table 14.7): hand-crafted, learned and hybrid
(fusion of hand-crafted and learned). The performances of the submitted systems
under the four test protocols are reported in Tables 14.8, 14.9, 14.10 and 14.11.

It appears that the analysis of mere grayscale or even RGB images does not result
in particularly good generalization. In the case of hand-crafted features, every algo-

Table 14.7 Categorization of the proposed systems based on hand-crafted, learned and hybrid
features

Category Teams

Hand-crafted features Baseline, MBLPQ, PML, Massy_HNU,

MFT-FAS, GRADIANT, Idiap

Learned features VSS, SZCVI, MixedFASNet

Hybrid features NWPU, HKBU, Recod, CPqD
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Table 14.8 The performance (%) of the proposedmethods under different illumination and location
conditions (Protocol I)

Methods Dev Test

EER Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT_extra 0.7 7.1 3.8 7.1 5.8 6.5

CPqD 0.6 1.3 2.9 2.9 10.8 6.9

GRADIANT 1.1 0.0 1.3 1.3 12.5 6.9

Recod 2.2 3.3 0.8 3.3 13.3 8.3

MixedFASNet 1.3 0.0 0.0 0.0 17.5 8.8

PML 0.6 7.5 11.3 11.3 9.2 10.2

Baseline 4.4 5.0 1.3 5.0 20.8 12.9

Massy_HNU 1.1 5.4 3.3 5.4 20.8 13.1

HKBU 4.3 9.6 7.1 9.6 18.3 14.0

NWPU 0.0 8.8 7.5 8.8 21.7 15.2

MFT-FAS 2.2 0.4 3.3 3.3 28.3 15.8

MBLPQ 2.2 31.7 44.2 44.2 3.3 23.8

Idiap 5.6 9.6 13.3 13.3 40.0 26.7

VSS 12.2 20.0 12.1 20.0 41.7 30.8

SZUCVI 16.7 11.3 0.0 11.3 65.0 38.1

VSS_extra 24.0 9.6 11.3 11.3 73.3 42.3

rithm is based on the recently proposed color texture analysis [40] in which RGB
images are converted into HSV and/or YCbCr color spaces prior feature extraction.
The only well-generalizing feature learning basedmethod,MixedFASNet, uses HSV
images as input, whereas the networks operating on grayscale or RGB images do
not generalize well. On the other hand, it is worth mentioning that VSS and SZCVI
architectures consist only of five convolutional layers, whereas the MixedFASNet,
consisting of over 30 layers, is much deeper. The best performing hybrid methods,
Recod and CPqD, fuse the scores of their deep learning based method and the pro-
vided baseline in order to increase the generalization capabilities. Since only the
scores of hybrid systems were provided, the robustness of the proposed fine-tuned
CNNmodels operating on RGB images remains unclear. Among the methods solely
based on RGB image analysis, HKBU fusing IDA, LBP and deep features is the only
one that generalizes fairly well across the four protocols.

In general, the submitted systems process each (selected) frame of a video
sequence independently then the final score for a given video is obtained by averaging
the resulting scores of individual frames.None of the deep learning or hybridmethods
exploited temporal variations but in the case of hand-crafted features two different
temporal aggregation approaches were proposed for encoding the dynamic infor-
mation within a video sequence, for example motion. MBLPQ and PML averaged
the feature vectors over the sampled frames, whereas GRADIANT and MFT-FAS
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Table 14.9 The performance (%) of the proposed methods under novel attacks (Protocol II)

Methods Dev Test

EER Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT 0.9 1.7 3.1 3.1 1.9 2.5

GRADIANT_extra 0.7 6.9 1.1 6.9 2.5 4.7

MixedFASNet 1.3 6.4 9.7 9.7 2.5 6.1

SZUCVI 4.4 3.9 3.3 3.9 9.4 6.7

MFT-FAS 2.2 10.0 11.1 11.1 2.8 6.9

PML 0.9 11.4 9.4 11.4 3.9 7.6

CPqD 2.2 9.2 14.7 14.7 3.6 9.2

HKBU 4.6 13.9 12.5 13.9 5.6 9.7

Recod 3.7 13.3 15.8 15.8 4.2 10.0

MBLPQ 1.9 5.6 19.7 19.7 6.1 12.9

Baseline 4.1 15.6 22.5 22.5 6.7 14.6

Massy_HNU 1.3 16.1 26.1 26.1 3.9 15.0

Idiap 8.7 21.7 7.5 21.7 11.1 16.4

NWPU 0.0 12.5 5.8 12.5 26.7 19.6

VSS 14.8 25.3 13.9 25.3 23.9 24.6

VSS_extra 23.3 36.1 33.9 36.1 33.1 34.6

map the temporal variations into a single image prior feature extraction [11]. The
approach by GRADIANT turned out to be particularly successful as the achieved
performance was simply the best and most consistent across all the four protocols.

In this competition, the simple color texture based face descriptions were very
powerful compared to deep learning based methods, of which the impressive results
achieved byGRADIANT are a good example. On the other hand, the current (public)
datasets may not probably provide enough data for training CNNs from scratch
or even fine-tuning the pre-trained models to their full potential. NWPU extracted
LBP features from convolutional layers in order to reduce the number of trainable
parameters, thus avoiding the need for enormous training sets. Unfortunately, the
method did not generalize well on the evaluation set.

Few teams used additional public and/or proprietary datasets for training and
tuning their algorithms. The VSS team augmented the subset of real subjects with
CASIA-WebFace and collected their own attack samples. The usefulness of these
external datasets remains unclear because their grayscale image analysis based face
PAD method did not perform well. Recod used publicly available datasets for fine-
tuning the pre-trained network but the resulting generalization was comparable to
similar method, CPqD, that did not use any extra-data. GRADIANT submitted two
systems with and without external training data. Improved BPCER was obtained in
unseen acquisition conditions but APCER was much better in general when using
only the provided OULU-NPU training data.
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Table 14.10 The performance (%) of the proposed methods under input camera variations
(Protocol III)

Methods Dev Test

EER Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT 0.9 ± 0.4 1.0 ± 1.7 2.6 ± 3.9 2.6 ± 3.9 5.0 ± 5.3 3.8 ± 2.4

GRADIANT_extra 0.7 ± 0.2 1.4 ± 1.9 1.4 ± 2.6 2.4 ± 2.8 5.6 ± 4.3 4.0 ± 1.9

MixedFASNet 1.4 ± 0.5 1.7 ± 3.3 5.3 ± 6.7 5.3 ± 6.7 7.8 ± 5.5 6.5 ± 4.6

CPqD 0.9 ± 0.4 4.4 ± 3.4 5.0 ± 6.1 6.8 ± 5.6 8.1 ± 6.4 7.4 ± 3.3

Recod 2.9 ± 0.7 4.2 ± 3.8 8.6 ± 14.3 10.1 ± 13.9 8.9 ± 9.3 9.5 ± 6.7

MFT-FAS 0.8 ± 0.4 0.8 ± 0.9 10.8 ± 18.1 10.8 ± 18.1 9.4 ± 12.8 10.1 ± 9.9

Baseline 3.9 ± 0.7 9.3 ± 4.3 11.8 ± 10.8 14.2 ± 9.2 8.6 ± 5.9 11.4 ± 4.6

HKBU 3.8 ± 0.3 7.9 ± 5.8 9.9 ± 12.3 12.8 ± 11.0 11.4 ± 9.0 12.1 ± 6.5

SZUCVI 7.0 ± 1.6 10.0 ± 8.3 7.5 ± 9.5 12.1 ± 10.6 16.1 ± 8.0 14.1 ± 4.4

PML 1.1 ± 0.3 8.2 ± 12.5 15.3 ± 22.1 15.7 ± 21.8 15.8 ± 15.4 15.8 ± 15.1

Massy_HNU 1.9 ± 0.6 5.8 ± 5.4 19.0 ± 26.7 19.3 ± 26.5 14.2 ± 13.9 16.7 ± 10.9

MBLPQ 2.3 ± 0.6 5.8 ± 5.8 12.9 ± 4.1 12.9 ± 4.1 21.9 ± 22.4 17.4 ± 10.3

NWPU 0.0 ± 0.0 1.9 ± 0.7 1.9 ± 3.3 3.2 ± 2.6 33.9 ± 10.3 18.5 ± 4.4

Idiap 7.9 ± 1.9 8.3 ± 3.0 9.3 ± 10.0 12.9 ± 8.2 26.9 ± 24.4 19.9 ± 11.8

VSS 14.6 ± 0.8 21.4 ± 7.7 13.8 ± 7.0 21.4 ± 7.7 25.3 ± 9.6 23.3 ± 2.3

VSS_extra 25.9 ± 1.7 25.0 ± 11.4 32.2 ± 27.9 40.3 ± 22.2 35.3 ± 27.4 37.8 ± 6.8

Since unseen attack scenarios will be definitely experienced in operation, the
problem of PAD could be easily ideally solved using one-class classifiers for mod-
eling the variations of the only known class (i.e., bona-fide). Idiap method is based
on the idea of anomaly detection but it lacked generalization mainly because the
individual grayscale image analysis based methods were performing poorly.4 Thus,
one-class modeling would be worth investigating when combined with more robust
feature representations.

Several general observations can be made based on the results of protocols I, II
and III assessing the generalization of the PAD method across unseen conditions
(i.e., acquisition conditions, attack types and sensors, separately):

Protocol I: In general, a significant increase in BPCER can be noticed compared to
APCERwhen the PAD systems are operating in new acquisition conditions. The rea-
son behind this may be in the data collection principles of the OULU-NPU dataset.
Legitimate users have to be verified in various conditions, while attackers aim proba-
bly at high-quality attack presentation in order to increase the chance of successfully
fooling a face biometric system. The bona-fide samples were collected in three ses-
sions with different illumination. In contrast, the bona-fide data corresponding to
each session was used to create face artifacts but the attacks themselves were always

4Idiap submitted also the scores of the individual sub-systems.
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Table 14.11 The performance (%) of the proposed methods under environmental, attack and cam-
era device variations (Protocol IV)

Methods Dev Test

EER Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT 1.1 ± 0.3 0.0 ± 0.0 5.0 ± 4.5 5.0 ± 4.5 15.0 ± 7.1 10.0 ± 5.0

GRADIANT_extra 1.1 ± 0.3 27.5 ± 24.2 5.8 ± 4.9 27.5 ± 24.2 3.3 ± 4.1 15.4 ± 11.8

Massy_HNU 1.0 ± 0.4 20.0 ± 17.6 26.7 ± 37.5 35.8 ± 35.3 8.3 ± 4.1 22.1 ± 17.6

CPqD 2.2 ± 1.7 16.7 ± 16.0 24.2 ± 39.4 32.5 ± 37.5 11.7 ± 12.1 22.1 ± 20.8

Recod 3.7 ± 0.7 20.0 ± 19.5 23.3 ± 40.0 35.0 ± 37.5 10.0 ± 4.5 22.5 ± 18.2

MFT-FAS 1.6 ± 0.7 0.0 ± 0.0 12.5 ± 12.9 12.5 ± 12.9 33.3 ± 23.6 22.9 ± 8.3

MixedFASNet 2.8 ± 1.1 10.0 ± 7.7 4.2 ± 4.9 10.0 ± 7.7 35.8 ± 26.7 22.9 ± 15.2

Baseline 4.7 ± 0.6 19.2 ± 17.4 22.5 ± 38.3 29.2 ± 37.5 23.3 ± 13.3 26.3 ± 16.9

HKBU 5.0 ± 0.7 16.7 ± 24.8 21.7 ± 36.7 33.3 ± 37.9 27.5 ± 20.4 30.4 ± 20.8

VSS 11.8 ± 0.8 21.7 ± 8.2 9.2 ± 5.8 21.7 ± 8.2 44.2 ± 11.1 32.9 ± 5.8

MBLPQ 3.6 ± 0.7 35.0 ± 25.5 45.0 ± 25.9 49.2 ± 27.8 24.2 ± 27.8 36.7 ± 4.7

NWPU 0.0 ± 0.0 30.8 ± 7.4 6.7 ± 11.7 30.8 ± 7.4 44.2 ± 23.3 37.5 ± 9.4

PML 0.8 ± 0.3 59.2 ± 24.2 38.3 ± 41.7 61.7 ± 26.4 13.3 ± 13.7 37.5 ± 14.1

SZUCVI 9.1 ± 1.6 0.0 ± 0.0 0.8 ± 2.0 0.8 ± 2.0 80.8 ± 28.5 40.8 ± 13.5

Idiap 6.8 ± 0.8 26.7 ± 35.2 13.3 ± 8.2 33.3 ± 30.4 54.2 ± 12.0 43.8 ± 20.4

VSS_extra 21.1 ± 2.7 13.3 ± 17.2 15.8 ± 21.3 25.8 ± 20.8 70.0 ± 22.8 47.9 ± 12.1

launched with short standoff and captured in the same laboratory setup. Thus, the
intrinsic properties of the attacks do not vary too much across the different sessions.
Protocol II: In most cases, previously unseen attack leads into dramatic increase in
APCER, which is expected as only one PAI of each print and video-replay attacks
is provided for training and tuning purposes.
Protocol III: It is also interesting to notice that the standard deviation of APCER
across different sensors is much larger in the case of print attacks compared to video-
replay attacks, which suggests that the nature of print attacks seems to vary more
although both attack types can be detected equally well on average.

Based on the results of the protocol IV, it is much harder to make general conclusions
because all the factors are combined and different approaches seem to bemore robust
to different covariates. The last protocol reveals, however, that none of the methods is
able to achieve a reasonable trade-off between usability and security. For instance, in
the case of GRADIANT, either the APCER or BPCER of the two systems is too high
for practical applications. Nevertheless, the overall performance of GRADIANT,
MixedFASNET, CPqD and Recod is very impressive considering the challenging
conditions of the competition and the OULU-NPU dataset.
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14.5 Discussion

All the three competitions on face PAD were very successful in consolidating and
benchmarking the current state of the art. In the following, we provide general obser-
vations and further discussion on the lessons learnt and potential future challenges.

14.5.1 General Observations

It can be noticed that the used datasets and evaluation protocols, and also the recent
advances in the state of the art reflect the face PAD scheme trends seen in the different
contests. The algorithms proposed in the first and second competitions on counter-
measures to 2D face spoofing attacks exploited the evident visual cues thatwehumans
can observe in the videos of the PRINT-ATTACK and REPLAY-ATTACK databases,
including localized facial movements, global motion, face-background motion cor-
relation, print quality defects and other degradations in facial texture quality. While
simple texture analysiswas sufficient for capturing the evident printing artifacts in the
PRINT-ATTACK database, fusion of multiple visual cues was needed for achieving
robust performance under variety of attacks of the REPLAY-ATTACK database. The
perfect error rates of the best-performing PAD schemes in homogeneous develop-
ment and test conditions indicated that more challenging configurations were needed
for future benchmarks.

In the competition on generalized face PAD, typical liveness detection andmotion
analysis were hardly used. In general, the proposed solutions relied on one or more
types of feature representations extracted from the face and/or background regions
using hand-crafted and/or learned descriptors, which is not surprising considering
the recent trends in (face) PAD. Color texture analysis had shown promising gener-
alization capabilities in preliminary studies [40–42]. This explains why most teams
proposed new facial color texture representations or used the provided baseline as a
complementary PADmethod. Although it was nice to see a diverse set of deep learn-
ing based systems and further improved versions of the provided baseline method,
it was bit disappointing that entirely novel generalized face PAD solutions were not
proposed.While the best-performing approaches were able to generalize remarkably
well under the individual unknown conditions, no major breakthrough in generalized
face PAD was achieved as the none of the methods was able to achieve satisfying
performance under the most challenging test protocol, Protocol IV.

14.5.2 Lessons Learnt

The competitions have given valuable lessons on designing databases and test proto-
cols, and competitions in general. In the second competition on countermeasures to
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2D face spoofing attacks, two teams managed to achieve perfect discrimination on
the REPLAY-ATTACK database, and consequently PRINT-ATTACK database, by
computing texture features over the whole video frame. The two background condi-
tions in the REPLAY-ATTACK dataset are the same across the training, development
and test sets and the corresponding scene is incorporated in the attack presentations
(see Fig. 14.1). Thus, also the differences in background scene texture between the
real access and attack videos match between the development and test data, while
only the facial texture is unknown due to previously unseen subjects. It is also worth
mentioning that the original video encoder of the REPLAY-ATTACK dataset was not
used for creating the randomly sampled test videos. The resulting video encoding
artifacts and noise patterns did not match between the development and test phases,
which might explain the increase in FRR for the methods relying largely on static
and dynamic texture analysis.

In the third competition, focusing on generalization in face PAD, the time between
the release of test data and submission of results was two weeks. The labeled test
set of OULU-NPU database was not yet publicly available during the competition.
However, we humans are apt in differentiating attack videos from real ones and the
test subset of the OULU-NPU database contains still only 1800 videos. Therefore,
it was feasible to label the anonymized and unlabeled test data by hand for “data
peeking”, that is calibrating, or even training, the systems on the test data. This kind
of cheating could be prevented by hiding some “anchor” videos from the development
set (with randomized file names) in the evaluation data and releasing the augmented
test set once the development set scores have been submitted (fixed), as done in
the BTAS 2016 Speaker Anti-spoofing Competition [50]. The scores of the anchor
videos could be used for checking whether the scores for the development and test
sets have been generated by the same system.

An even more serious concern with the third competition is that the data pro-
vided for system development contained all variations in attacks, input sensors and
acquisition conditions that the generalization was tested for. While only a specific
subset defined in the test protocols (see Table 14.6) was supposed to be used for
training, no measures were taken to prevent cheating by training and calibrating a
single system on all data (containing also the unknown scenarios) and using it for
reporting the scores for the according development and test sets of the individual
protocols. In this case, only the test subjects would be unknown to the system. Since
only the integrity of the participants was trusted, the overall conclusions should be
handled with care. However, it is worth pointing out that none of the submitted
algorithms managed to achieve satisfying PAD performance on the OULU-NPU
dataset even though cheating was possible. Although promising generalization was
achieved across the different protocols, the best results are far from perfect, unlike
in the previous competitions.

The best solution to prevent “data peeking” or cheating in generalwould be to keep
the test data, including unknown scenarios, inaccessible during algorithm develop-
ment phase and to conduct independent (third-party) evaluations, in which the orga-
nizers run the provided executables or source codes of the submitted systems on the
competition data. The results of the iris liveness detection competitions (LivDet-Iris)
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[51, 52] have shown already that the resulting performances can be far from satisfac-
tory even for the winning methods, thus probably reflecting better the true general-
ization capabilities. It is worth highlighting that any later comparison to this kind of
competition results should be treated with caution because it is impossible to repro-
duce the “blind” evaluation conditions any more and, consequently, to achieve a fair
comparison.

Over 50 organizations registered for the competition on generalized face PAD
but only 13 teams made a final submission. Among the remaining 37 registered,
there were also many companies. In general, the industrial participants should be
encouraged to make an “anonymous” submission, for example if the results might
be unsatisfactory or details of the used algorithm cannot be revealed, as the results can
still provide extremely useful additional information on the performance of the state
of the art. For instance, in the LivDet-Iris 2017 competition [51], the best-performing
algorithm was submitted anonymously.

14.5.3 Future Challenges

The test cases in the OULU-NPU database measuring the generalization across the
different covariates are still very limited. The video sequences have been captured
with six different mobile devices but the attacks consists of only two different print
attacks and display attacks and the acquisition conditions are quite controlled and
restricted to three indoor office locations. Also, the variability in user demograph-
ics could be increased. The results of the third competition suggest that among the
three tested covariates previously unseen acquisition conditions cause the most sig-
nificant degradation in performance due to increase in BPCER, whereas unknown
attacks have huge impact in APCER, especially in the case of print attacks. This
observation is consistent with cross-dataset experiments conducted in other studies
(e.g., [7, 9, 43]). While there is still plenty of room for improvement in the results
obtained on the OULU-NPU dataset, more comprehensive datasets for investigating
face presentation attack detection “in the wild” will be eventually needed.

In general, the evaluation of biometric systems under presentations attacks can be
conducted either at algorithm or system level [53]. In the first case, the robustness
of the PAD modules is evaluated independently of the performance of the rest of the
system, for instance, the face recognition stage. System level evaluation considers
the performance of the biometric system as a whole. The advantage of system-
based evaluations is that it provides better insight into the overall robustness of the
whole system to spoofing attacks, and how a proposed PAD technique affects the
overall system accuracy (in terms of FRR). All three competitions have considered
only stand-alone face PAD. Therefore, a possible future study would be combining
match scores with both PAD and quality measures to improve the resilience of face
verification systems [54, 55]. So far, the competitions have assessed the proposed
PAD algorithms based on single liveness score values that have been assigned to
each video after processing all or some of its frames. It would be also useful to
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measure the complexity, speed and latency of the participating systems, for example
by computing the error rates over time.

Due to the recent advances in technology and vulnerabilities to spoofing, manu-
facturers, such asMicrosoft, Apple, and Samsung, have introduced new sensors (e.g.,
active NIR and depth cameras) for face verification purposes on personal devices.
The dedicated imaging solutions are better capable of capturing the intrinsic dif-
ferences between bona-fide samples and face artifacts than conventional cameras
(hardware-based PAD). Since the new sensors are emerging in consumer devices,
algorithm-based evaluations on sensor-specific data would be valuable addition in
upcoming competitions. Alternatively, system-based evaluations of complete bio-
metric systems with novel sensors and PAD modules could be assessed on the spot,
as conducted already in LivDet-Iris 2013 [52], for instance. Naturally, this kind of
arrangement requires careful competition design and execution, let alone significant
efforts compared to algorithm level evaluation.

14.6 Conclusions

Competitions play a vital role in consolidating the recent trends and assessing the
state of the art in face PAD. This chapter introduced the design and results of the
three international competitions on software-based face PAD. These contests have
been important milestones in advancing the research on face PAD to the next level
as each competition has offered new challenges to the research community and
resulted in novel countermeasures and new insight. The number of participants has
grown in each successive competition, which indicates the increasing interest and
importance of the research problem. The first and second competitions had six and
eight participants from academic institutes, while the latest contest had 13 entries
including three companies.

The first two competitions provided initial assessments of the state of the art
by introducing a precisely defined test protocol and evaluating the performance of
the systems under print and display attacks in homogeneous conditions. The best-
performing teams achieved perfect results in the first two competitions, because the
test data did not introduce conditions (e.g., sensors, illumination, or attacks) not seen
during the algorithm development phase. Despite significant progress in the field,
existing face PADmethods have shown lack of generalization in real-world operating
conditions. Therefore, the latest contest considered a more unconstrained setup than
in previous competitions, and aimed at measuring the generalization capabilities of
the proposed algorithms under some real-world variations faced in mobile scenarios,
including unknown acquisition conditions, PAIs and sensors. While the best results
were promising, no major breakthrough in generalized face PAD was achieved even
though the use of external training data was allowed.

Although none of the systems proposed in the latest competition managed to
achieve satisfying PAD performance on the recent OULU-NPU database, more
comprehensive datasets on presentation attack detection are still needed, especially
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considering the needs of data-hungry deep learning algorithms. So far, the compe-
titions have focused only on stand-alone PAD, thus joint-operation with face veri-
fication would be worth investigating in future. Since new imaging solutions, such
as NIR and depth cameras, are already emerging in consumer devices, it would be
important to include these kinds of sensors in the upcoming benchmark datasets and
competitions.
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Chapter 15
Introduction to Voice Presentation
Attack Detection and Recent Advances

Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Tomi Kinnunen,
Nicholas Evans, Junichi Yamagishi and Kong-Aik Lee

Abstract Over the past few years, significant progress has been made in the field
of presentation attack detection (PAD) for automatic speaker recognition (ASV).
This includes the development of new speech corpora, standard evaluation protocols
and advancements in front-end feature extraction and back-end classifiers. The use
of standard databases and evaluation protocols has enabled for the first time the
meaningful benchmarking of different PAD solutions. This chapter summarises the
progress, with a focus on studies completed in the last 3 years. The article presents
a summary of findings and lessons learned from two ASVspoof challenges, the
first community-led benchmarking efforts. These show that ASV PAD remains an
unsolved problem and that further attention is required to develop generalised PAD
solutions which have potential to detect diverse and previously unseen spoofing
attacks.
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15.1 Introduction

Automatic speaker verification (ASV) technology aims to recognise individuals using
samples of the human voice signal [1, 2]. Most ASV systems operate on estimates
of the spectral characteristics of voice in order to recognise individual speakers.
ASV technology has matured in recent years and now finds application in a growing
variety of real-world authentication scenarios involving both logical and physical
access. In logical access scenarios, ASV technology can be used for remote person
authentication via the Internet or traditional telephony. In many cases, ASV serves
as a convenient and efficient alternative to more conventional password-based solu-
tions, one prevalent example being person authentication for Internet and mobile
banking. Physical access scenarios include the use of ASV to protect personal or
secure/sensitive facilities, such as domestic and office environments. With the grow-
ing, widespread adoption of smartphones and voice-enabled smart devices, such
as intelligent personal assistants all equipped with at least one microphone, ASV
technology stands to become even more ubiquitous in the future.

Despite its appeal, the now-well-recognised vulnerability tomanipulation through
presentation attacks (PAs), also known as spoofing, has dented confidence in ASV
technology. As identified in ISO/IEC 30107-1 standard [3], the possible locations of
presentation attack points in a typical ASV system are illustrated in Fig. 15.1. Two of
the most vulnerable places in an ASV system are marked by 1 and 2, corresponding
to physical access and logical access. This work is related to these two types of
attacks.

Unfortunately, ASV is arguably more prone to PAs than other biometric sys-
tems based on traits or characteristics that are less easily acquired; samples of a
given person’s voice can be collected readily by fraudsters through face-to-face or
telephone conversations and then replayed in order to manipulate an ASV system.
Replay attacks are furthermore only one example of ASV PAs. More advanced voice

Fig. 15.1 Possible attack locations in a typical ASV system. 1: microphone point, 2: transmission
point, 3: override feature extractor, 4: modify probe to features, 5: override classifier, 6: modify
speaker database, 7: modify biometric reference, 8: modify score and 9: override decision
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conversion or speech synthesis algorithms can be used to generate particularly effec-
tive PAs using only modest amounts of voice data collected from a target person.

There are a number of ways to prevent PA problems. The first one is based on
a text-prompted system which uses an utterance verification process [4]. The user
needs to utter a specific text prompted for authentication by the systemwhich requires
a text-verification system. Second, as human can never reproduce an identical speech
signal, some countermeasures use templatematching or audio fingerprinting to verify
whether the speech utterance was presented to the system earlier [5]. Third, some
work looks into statistical acoustic characterisation of authentic speech and speech
created with presentation attack methods or spoofing techniques [6]. Our focus is
on the last category, which is more convenient in a practical scenario for both text-
dependent and text-independent ASV. In this case, given a speech signal, S, PA
detection here, the determination of whether S is a natural or PA speech can be
formulated as a hypothesis test:

• H0: S is natural speech.
• H1: S is created with PA methods.

A likelihood ratio test can be applied to decide between H0 and H1. Suppose that
X = {x1, x2, ..., xN } are the acoustic feature vectors of N speech frames extracted
from S, then the logarithmic likelihood ratio score is given by

Λ(X) = log p(X|λH0) − log p(X|λH1) (15.1)

In (15.1), λH0 and λH1 are the acoustic models to characterise the hypotheses
correspondingly for natural speech and PA speech. The parameters of these models
are estimated using training data for natural and PA speech. A typical PAD system
is shown in Fig. 15.2. A test speech can be accepted as natural or rejected as PA
speech with help of a threshold, θ computed on some development data. If the score
is greater than or equal to the threshold, it is accepted; otherwise, rejected. The
performance of the PA system is assessed by computing the Equal Error Rate (EER)
metric. This is the error rate for a specific value of a threshold where two error rates,
i.e. the probability of a PA speech detected as being natural speech (known as false
acceptance rate or FAR) and the probability of a natural speech beingmisclassified as
a PA speech (known as false rejection rate or FRR), are equal. Sometimes Half Total
Error Rate (HTER) is also computed [7]. This is the average of FAR and FRR which
are computed using a decision threshold obtained with the help of the development
data.

Awareness and acceptance of the vulnerability to PAs have generated a growing
interest in developing solutions to presentation attack detection (PAD), also referred
to as spoofing countermeasures. These are typically dedicated auxiliary systems
which function in tandem to ASV in order to detect and deflect PAs. The research
in this direction has progressed rapidly in the last three years, due partly to the
release of several public speech corpora and the organisation of PAD challenges
for ASV. This article, a continuation of the chapter [8] in the first edition of the
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Fig. 15.2 Block diagram of a typical presentation attack detection system

Handbook for Biometrics [9] presents an up-to-date review of the different forms
of voice presentation attacks, broadly classified in terms of impersonation, replay,
speech synthesis and voice conversion. The primary focus is nonetheless on the
progress in PAD. The chapter reviews the most recent work involving a variety of
different features and classifiers. Most of the work covered in the chapter relates to
that conducted using the two most popular and publicly available databases, which
were used for the twoASVspoof challenges co-organised by the authors. The chapter
concludes with a discussion of research challenges and future directions in PAD
for ASV.

15.2 Basics of ASV Spoofing and Countermeasures

Spoofing or presentation attacks are performed on a biometric system at the sensor
or acquisition level to bias score distributions towards those of genuine clients, thus
provoking increases in the false acceptance rate (FAR). This section reviews four
well-known ASV spoofing techniques and their respective countermeasures: imper-
sonation, replay, speech synthesis and voice conversion. Here, we mostly review the
work in the pre-ASVspoof period, as well as some very recent studies on presentation
attacks.

15.2.1 Impersonation

In speech impersonation or mimicry attacks, an intruder speaker intentionally mod-
ifies his or her speech to sound like the target speaker. Impersonators are likely to
copy lexical, prosodic and idiosyncratic behaviour of their target speakers presenting
a potential point of vulnerability concerning speaker recognition systems.
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15.2.1.1 Spoofing

There are several studies about the consequences of mimicry on ASV. Some studies
concern attention to the voice modifications performed by professional imperson-
ators. It has been reported that impersonators are often particularly able to adapt the
fundamental frequency (F0) and occasionally also the formant frequencies towards
those of the target speakers [10–12]. In studies, the focus has been on analysing the
vulnerability of speaker verification systems in the presence of voice mimicry. The
studies by Lau et al. [13, 14] suggest that if the target of impersonation is known in
advance and his or her voice is “similar” to the impersonator’s voice (in the sense
of automatic speaker recognition score), then the chance of spoofing an automatic
recognizer is increased. In [15], the experiments indicated that professional imper-
sonators are potentially better impostors than amateur or naive ones. Nevertheless,
the voice impersonation was not able to spoof the ASV system. In [10], the authors
attempted to quantify how much a speaker is able to approximate other speakers’
voices by selecting a set of prosodic and voice source features. Their prosodic and
acoustic-based ASV results showed that two professional impersonators imitating
known politicians increased the identification error rates.

More recently, a fundamentally different study was carried out by Panjwani et
al. [16] using crowdsourcing to recruit both amateur and more professional imper-
sonators. The results showed that impersonators succeed in increasing their average
score, but not in exceeding the target speaker score. All of the above studies anal-
ysed the effects of speech impersonation either at the acoustic or speaker recognition
score level, but none proposed any countermeasures against impersonation. In a
recent study [17], the experiments aimed to evaluate the vulnerability of three mod-
ern speaker verification systems against impersonation attacks and to further compare
these results to the performance of non-expert human listeners. It is observed that,
on average, the mimicry attacks lead to increased error rates. The increase in error
rates depends on the impersonator and the ASV system.

The main challenge, however, is that no large speech corpora of impersonated
speech exists for the quantitative study of impersonation effects on the same scale
as for other attacks, such as text-to-speech synthesis and voice conversion, where
generation of simulated spoofing attacks as well as developing appropriate counter-
measures are more convenient.

15.2.1.2 Countermeasures

While the threat of impersonation is not fully understooddue to limited studies involv-
ing small datasets, it is perhaps not surprising that there is no prior work investigating
countermeasures against impersonation. If the threat is proven to be genuine, then
the design of appropriate countermeasures might be challenging. Unlike the spoofing
attacks discussed below, all of which can be assumed to leave traces of the physical
properties of the recording and playback devices, or signal processing artefacts from
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synthesis or conversion systems, impersonators are live human beings who produce
entirely natural speech.

15.2.2 Replay

Replay attacks refer to the use of pre-recorded speech from a target speaker, which is
then replayed through some playback device to feed the system microphone. These
attacks require no specific expertise nor sophisticated equipment, thus they are easy
to implement. Replay is a relatively low-technology attack within the grasp of any
potential attacker even without specialised knowledge in speech processing. Several
works in the earlier literature report significant increases in error rates when using
replayed speech. Even if replay attacks may present a genuine risk to ASV systems,
the use of prompted-phrase has the potential to mitigate the impact.

15.2.2.1 Spoofing

The study on the impact of replay attack on ASV performance was very limited until
recently before the release of AVspoof [18] and ASVspoof 2017 corpus. The earlier
studies were conducted either on simulated or on real replay recording from far-field.

The vulnerability of ASV systems to replay attacks was first investigated in a
text-dependent scenario [19], where the concatenation of recorded digits was tested
against a hidden Markov model (HMM)-based ASV system. Results showed an
increase in the FAR from 1 to 89% for male speakers and from 5 to 100% for female
speakers.

The work in [20] investigated text-independent ASV vulnerabilities through the
replaying of far-field recorded speech in a mobile telephony scenario where signals
were transmitted by analogue and digital telephone channels. Using a baseline ASV
system based on joint factor analysis (JFA), the work showed an increase in the
EER of 1% to almost 70% when impostor accesses were replaced by replayed spoof
attacks.

Aphysical access scenariowas considered in [21].While the baseline performance
of the Gaussian mixture model-universal background model (GMM-UBM) ASV
system was not reported, experiments showed that replay attacks produced a FAR of
93%.

The work in [18] introduced audio-visual spoofing (AVspoof) database for replay
attack detection where the replayed signals are collected and played back using
different low-quality (phones and laptop) and high-quality (laptopwith loudspeakers)
devices. The study reported that FARs for replayed speech was 77.4 and 69.4% for
male and female, respectively, using a total variability system speaker recognition
system. In this study, the EER for bona fide trials was 6.9 and 17.5% for those
conditions. This study also includes presentation attack where speech signals created
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with voice conversion and speech synthesiswere used in playback attack. In that case,
higher FARwas observed, particularlywhen high-quality device is used for playback.

15.2.2.2 Countermeasures

A countermeasure for replay attack detection in the case of text-dependent ASV was
reported in [5]. The approach is based upon the comparison of new access samples
with stored instances of past accesses. New accesses which are deemed too similar to
previous access attempts are identified as replay attacks. A large number of different
experiments, all relating to a telephony scenario, showed that the countermeasures
succeeded in lowering the EER in most of the experiments performed. While some
form of text-dependent or challenge response countermeasure is usually used to pre-
vent replay attacks, text-independent solutions have also been investigated. The same
authors in [20] showed that it is possible to detect replay attacks by measuring the
channel differences caused by far-field recording [22]. While they show spoof detec-
tion error rates of less than 10% it is feasible that today’s state-of-the-art approaches
to channel compensation will render some ASV systems still vulnerable.

Two different replay attack countermeasures are compared in [21]. Both are based
on the detection of differences in channel characteristics expected between licit and
spoofed access attempts. Replay attacks incur channel noise from both the recording
device and the loudspeaker used for replay and thus the detection of channel effects
beyond those introduced by the recording device of the ASV system thus serves as
an indicator of replay. The performance of a baseline GMM-UBM system with an
EER of 40% under spoofing attack falls to 29% with the first countermeasure and a
more respectable EER of 10% with the second countermeasure.

In another study [23], a speech database of 175 subjects have been collected for
different kinds of replay attack. Other than the use of genuine voice samples for
the legitimate speakers in playback, the voice samples recorded over the telephone
channel was also used for unauthorised access. Further, a far-field microphone is
used to collect the voice samples as eavesdropped (covert) recording. The authors
proposed an algorithmmotivated frommusic recognition system used for comparing
recordings on the basis of the similarity of the local configuration of maxima pairs
extracted from spectrograms of verified and reference recordings. The experimental
results show the EER of playback attack detection to be as low as 1.0% on the
collected data.

15.2.3 Speech Synthesis

Speech synthesis, commonly referred to as text-to-speech (TTS), is a technique
for generating intelligible, natural sounding artificial speech for any arbitrary text.
Speech synthesis is used widely in various applications including in-car navigation
systems, e-book readers, voice-over for the visually impaired and communication
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aids for the speech impaired. More recent applications include spoken dialogue sys-
tems, communicative robots, singing speech synthesisers and speech-to-speech trans-
lation systems.

Typical speech synthesis systems have two main components [24]: text analysis
followed by speech waveform generation, which is sometimes referred to as the
front-end and back-end, respectively. In the text analysis component, input text is
converted into a linguistic specification consisting of elements such as phonemes. In
the speech waveform generation component, speech waveforms are generated from
the produced linguistic specification. There are emerging end-to-end frameworks that
generate speech waveforms directly from text inputs without using any additional
modules.

Many approaches have been investigated, but there have been major paradigm
shifts every ten years. In the early 1970s, the speechwaveform generation component
used very low-dimensional acoustic parameters for each phoneme, such as formants,
corresponding to vocal tract resonances with hand-crafted acoustic rules [25]. In
the 1980s, the speech waveform generation component used a small database of
phoneme units called diphones (the second half of one phoneme plus the first half of
the following) and concatenated them according to the given phoneme sequence by
applying signal processing such as linear predictive (LP) analysis, to the units [26]. In
the 1990s, larger speech databases were collected and used to select more appropriate
speech units that matched both phonemes and other linguistic contexts such as lexical
stress and pitch accent in order to generate high-quality natural sounding synthetic
speech with the appropriate prosody. This approach is generally referred to as unit
selection, and is nowadays used in many speech synthesis systems [27–31].

In the late 2000s, severalmachine learning based data-driven approaches emerged.
‘Statistical parametric speech synthesis’ was one of the more popular machine learn-
ing approaches [32–35]. In this approach, several acoustic parameters are modelled
using a time-series stochastic generative model, typically an HMM. HMMs rep-
resent not only the phoneme sequences but also various contexts of the linguistic
specification. Acoustic parameters generated from HMMs and selected according
to the linguistic specification are then used to drive a vocoder, a simplified speech
production model in which speech is represented by vocal tract parameters and
excitation parameters in order to generate a speech waveform. HMM-based speech
synthesisers [36, 37] can also learn speech models from relatively small amounts of
speaker-specific data by adapting background models derived from other speakers
based on the standard model adaptation techniques drawn from speech recognition,
i.e. maximum likelihood linear regression (MLLR) [38, 39].

In the 2010s, deep learning has significantly improved the performance of speech
synthesis and led to a significant breakthrough. First, various types of deep neu-
ral networks are used to improve the prediction accuracy of the acoustic parame-
ters [40, 41]. Investigated architectures include recurrent neural network [42–44],
residual/highway network [45, 46], autoregressive network [47, 48] and genera-
tive adversarial networks (GAN) [49–51]. Furthermore, in the late 2010s, conven-
tional waveform generation modules that typically used signal processing and text
analysis modules that used natural language processing were substituted by neural
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networks. This allows for neural networks capable of directly outputting the desired
speech waveform samples from the desired text inputs. Successful architectures for
direct waveform modelling include dilated convolutional autoregressive neural net-
work, known as ‘Wavenet’ [52] and hierarchical recurrent neural network, called
‘SampleRNN’ [53]. Finally, we have also seen successful architectures that totally
remove the hand-crafted linguistic features obtained through text analysis by relying
in sequence-to-sequence systems. This system is called Tacotron [54]. As expected,
the combination of these advanced models results in a very high-quality end-to-end
TTS synthesis system [55, 56] and recent results reveal that the generated synthetic
speech sounds as natural as human speech [56].

For more details and technical comparisons, please see the results of Blizzard
Challenge, which annually compares the performance of speech synthesis systems
built on the common database over decades [57, 58].

15.2.3.1 Spoofing

There is a considerable volume of research in the literature which has demonstrated
the vulnerability of ASV to synthetic voices generated with a variety of approaches
to speech synthesis. Experiments using formant, diphone, and unit selection based
synthetic speech in addition to the simple cut-and-paste of speech waveforms have
been reported [19, 20, 59].

ASV vulnerabilities to HMM-based synthetic speech were first demonstrated
over a decade ago [60] using an HMM-based, text-prompted ASV system [61] and
an HMM-based synthesiser where acoustic models were adapted to specific human
speakers [62, 63]. The ASV system scored feature vectors against speaker and back-
groundmodels composedof concatenated phonememodels.When testedwith human
speech, the ASV system achieved a FAR of 0% and a false rejection rate (FRR) of
7%. When subjected to spoofing attacks with synthetic speech, the FAR increased
to over 70%, however, this work involved only 20 speakers.

Larger scale experiments using the Wall Street Journal corpus containing in the
order of 300 speakers and 2 different ASV systems (GMM-UBM and SVM using
Gaussian supervectors) was reported in [64]. Using an HMM-based speech synthe-
siser, the FAR was shown to rise to 86 and 81% for the GMM-UBM and SVM sys-
tems, respectively, representing a genuine threat to ASV. Spoofing experiments using
HMM-based synthetic speech against a forensics speaker verification tool BATVOX
was also reported in [65] with similar findings. Therefore, the above speech synthe-
sisers were chosen as one of spoofing methods in the ASVspoof 2015 database.

Spoofing experiments using the above advanced DNNs or using spoofing-specific
strategies such as GAN have not yet been properly investigated. Only a relatively
small-scale spoofing experiment against a speaker recognition systemusingWavenet,
SampleRNN and GAN is reported in [66].



330 M. Sahidullah et al.

15.2.3.2 Countermeasures

Only a small number of attempts to discriminate synthetic speech fromnatural speech
had been investigated before the ASVspoof challenge started. Previous work has
demonstrated the successful detection of synthetic speech based on prior knowledge
of the acoustic differences of specific speech synthesisers such as the dynamic ranges
of spectral parameters at the utterance level [67] and variance of higher order parts
of mel-cepstral coefficients [68].

There are some attempts which focus on acoustic differences between vocoders
and natural speech. Since the human auditory system is known to be relatively insen-
sitive to phase [69], vocoders are typically based on a minimum-phase vocal tract
model. This simplification leads to differences in the phase spectra between human
and synthetic speech, differences which can be utilised for discrimination [64, 70].

Based on the difficulty in reliable prosody modelling in both unit selection and
statistical parametric speech synthesis, other approaches to synthetic speech detec-
tion use F0 statistics [71, 72]. F0 patterns generated for the statistical parametric
speech synthesis approach tend to be oversmoothed and the unit selection approach
frequently exhibits ‘F0 jumps’ at concatenation points of speech units.

After the ASVspoof challenges took place, various types of countermeasures that
work for both speech synthesis and voice conversion have been proposed. Please
read the next section for the details of the recently developed countermeasures.

15.2.4 Voice Conversion

Voice conversion, in short, VC, is a spoofing attack against automatic speaker verifi-
cation using an attacker’s natural voice which is converted towards that of the target.
It aims to convert one speaker’s voice towards that of another and is a sub-domain of
voice transformation [73]. Unlike TTS, which requires text input, voice conversion
operates directly on speech inputs. However, speech waveform generation modules
such as vocoders may be the same as or similar to those for TTS.

A major application of VC is to personalise and create new voices for TTS syn-
thesis systems and spoken dialogue systems. Other applications include speaking
aid devices that generate more intelligible voice sounds to help people with speech
disorders, movie dubbing, language learning, and singing voice conversion. The field
has also attracted increasing interest in the context of ASV vulnerabilities for almost
two decades [74].

Most voice conversion approaches require a parallel corpus where source and
target speakers read out identical utterances and adopt a training phase which typi-
cally requires frame- or phone-aligned audio pairs of the source and target utterances
and estimates transformation functions that convert acoustic parameters of the source
speaker to those of the target speaker. This is called ‘parallel voice conversion’. Frame
alignment is traditionally achieved using dynamic timewarping (DTW) on the source
target training audio files. Phone alignment is traditionally achieved using automatic
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speech recognition (ASR) and phone-level forth alignment. The estimated conversion
function is then applied to any new audio files uttered by the source speaker [75].

A large number of estimation methods for the transformation functions have
been reported starting in the late 1980s. In the late 1980s and 90s, simple tech-
niques employing vector quantisation (VQ) with codebooks [76] or segmental code-
books [77] of paired source-target frame vectors were proposed to represent the
transformation functions. However, these VQ methods introduced frame-to-frame
discontinuity problems.

In the late 1990 and 2000s, joint density Gaussian mixture model (JDGMM)
based transformation methods [78, 79] were proposed and have since then been
actively improved by many researchers [80, 81]. This method still remains popular
even now. Although this method achieves smooth feature transformations using a
locally linear transformation, this method also has several critical problems such as
oversmoothing [82–84] and overfitting [85, 86] which leads to muffled quality of
speech and degraded speaker similarity.

Therefore, in the early 2010, several alternative linear transformation methods
were developed. Examples are partial least square (PLS) regression [85], tensor
representation [87], a trajectory HMM [88], mixture of factor analysers [89], local
linear transformation [82] or noisy channel models [90].

In parallel to the linear-based approaches, there have been studies on nonlin-
ear transformation functions such as support vector regression [91], kernel partial
least square [92] and conditional restricted Boltzmann machines [93], neural net-
works [94, 95], highway network [96] and RNN [97, 98]. Data-driven frequency
warping techniques [99–101] have also been studied.

Recently, deep learning has changed the above standard procedures for voice
conversion and we can see many different solutions now. For instance, variational
auto-encoder or sequence-to-sequence neural networks enable us to buildVCsystems
without using frame level alignment [102, 103]. It has also been shown that a cycle-
consistent adversarial network called ‘CycleGAN’ [104] is one possible solution
for building VC systems without using a parallel corpus. Wavenet can also be used
as a replacement for the purpose of generating speech waveforms from converted
acoustic features [105].

The approaches to voice conversion considered above are usually applied to the
transformation of spectral envelope features, though the conversion of prosodic fea-
tures such as fundamental frequency [106–109] and duration [107, 110] has also
been studied.

For more details and technical comparisons, please see results of Voice Conver-
sion Challenges that compare the performance of VC systems built on a common
database [111, 112].

15.2.4.1 Spoofing

When applied to spoofing, the aim with voice conversion is to synthesise a new
speech signal such that the extracted ASV features are close in some sense to the
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target speaker. Some of the first works relevant to text-independent ASV spoofing
were reported in [113, 114]. The work in [113] showed that baseline EER increased
from 16 to 26% thanks to a voice conversion system which also converted prosodic
aspects not modelled in typical ASV systems. This work targeted the conversion
of spectral-slope parameters and showed that the baseline EER of 10% increased
to over 60% when all impostor test samples were replaced with converted voices.
Moreover, signals subjected to voice conversion did not exhibit any perceivable
artefacts indicative of manipulation.

The work in [115] investigated ASV vulnerabilities to voice conversion based on
JDGMMs [78] which requires a parallel training corpus for both source and target
speakers. Even if the converted speech could be easily detectable by human listeners,
experiments involving five different ASV systems showed their universal suscepti-
bility to spoofing. The FAR of themost robust, JFA system increased from 3% to over
17%. Instead of vocoder-based waveform generation, unit selection approaches can
be applied directly to feature vectors coming from the target speaker to synthesise
converted speech [116]. Since they use target speaker data directly, unit selection
approaches arguably pose a greater risk to ASV than statistical approaches [117]. In
the ASVspoof 2015 challenge, we therefore had chosen these popular VC methods
as spoofing methods.

Other work relevant to voice conversion includes attacks referred to as artificial
signals. It was noted in [118] that certain short intervals of converted speech yield
extremely high scores or likelihoods. Such intervals are not representative of intelli-
gible speech but they are nonetheless effective in overcoming typical ASV systems
which lack any form of speech quality assessment. The work in [118] showed that
artificial signals optimised with a genetic algorithm provoke increases in the EER
from 10% to almost 80% for a GMM-UBM system and from 5% to almost 65% for
a factor analysis (FA) system.

15.2.4.2 Countermeasures

Here, we provide an overview of countermeasure methods developed for the VC
attacks before the ASVspoof challenge began.

Someof thefirstworks to detect converted voice drawson relatedwork in synthetic
speech detection [119]. In [70, 120], cosine phase andmodified group delay function
(MGDF) based countermeasures were proposed. These are effective in detecting
converted speech using vocoders based on minimum phase. In VC, it is, however,
possible to use natural phase information extracted from a source speaker [114]. In
this case, they are unlikely to detect converted voice.

Two approaches to artificial signal detection are reported in [121]. Experimental
work shows that supervector-based SVM classifiers are naturally robust to such
attacks, and that all the spoofing attacks they used could be detected by using an
utterance-level variability feature, which detected the absence of the natural and
dynamic variabilities characteristic of genuine speech. A related approach to detect
converted voice is proposed in [122]. Probabilistic mappings between source and
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target speaker models are shown to typically yield converted speech with less short-
term variability than genuine speech. Therefore, the thresholded, average pair-wise
distance between consecutive feature vectors was used to detect converted voice with
an EER of under 3%.

Due to the fact thatmajority ofVC techniques operate at the short-term frame level,
more sophisticated long-term features such as temporal magnitude and phase mod-
ulation feature can also detect converted speech [123]. Another experiment reported
in [124] showed that local binary pattern analysis of sequences of acoustic vectors
can also be used for successfully detecting frame-wise JDGMM-based converted
voice. However, it is unclear whether these features are effective in detecting recent
VC systems that consider long-term dependency such as recurrent or autoregressive
neural network models.

After the ASVspoof challenges took place, new countermeasures that works for
both speech synthesis and voice conversion were proposed and evaluated. See the
next section for a detailed review of the recently developed countermeasures.

15.3 Summary of the Spoofing Challenges

A number of independent studies confirm the vulnerability of ASV technology to
spoofed voice created using voice conversion, speech synthesis and playback [6].
Early studies on speaker anti-spoofing were mostly conducted on in-house speech
corpora created using a limited number of spoofing attacks. The development of
countermeasures using only a small number of spoofing attacks may not offer the
generalisation ability in the presence of different or unseen attacks. There was a lack
of publicly available corpora and evaluation protocol to help with comparing the
results obtained by different researchers.

The ASVspoof1 initiative aims to overcome this bottleneck by making available
standard speech corpora consisting of a large number of spoofing attacks, evalua-
tion protocols and metrics to support a common evaluation and the benchmarking
of different systems. The speech corpora were initially distributed by organising an
evaluation challenge. In order to make the challenge simple and to maximise partici-
pation, theASVspoof challenges so far involved only the detection of spoofed speech;
in effect, to determine whether a speech sample is genuine or spoofed. A training set
and development set consisting of several spoofing attacks were first shared with the
challenge participants to help them develop and tune their anti-spoofing algorithm.
Next, the evaluation set without any label indicating genuine or spoofed speech was
distributed, and the organisers asked the participants to submit scores within a spe-
cific deadline. Participants were allowed to submit scores of multiple systems. One
of these systems was designated as the primary submission. Spoofing detectors for
all primary submissions were trained using only the training data in the challenge
corpus. Finally, the organisers evaluated the scores for benchmarks and ranking.

1http://www.asvspoof.org/.

http://www.asvspoof.org/
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Table 15.1 Summary of the datasets used in ASVspoof challenges

ASVspoof 2015 [125] ASVspoof 2017 [126]

Theme Detection of artificially
generated speech

Detection of replay speech

Speech format Fs = 16 kHz, 16 bit PCM Fs = 16 kHz, 16 bit PCM

Natural speech Recorded using high-quality
microphone

Recorded using different smart
phones

Spoofed speech Created with seven VC and
three SS methods

Collected ‘in the wild’ by
crowdsourcing using different
microphone and playback
devices from diverse
environments

Spoofing types in
train/dev/eval

5/5/10 3/10/57

No of speakers in
train/dev/eval

25/35/46 10/8/24

No of genuine speech files in
train/dev/eval

3750/3497/9404 1508/760/1298

No of spoofed speech files in
train/dev/eval

12625/49875/184000 1508/950/12008

The evaluation keys were subsequently released to the challenge participants. The
challenge results were discussed with the participants in a special session in INTER-
SPEECH conferences, which also involved sharing knowledge and receiving useful
feedback. To promote further research and technological advancements, the datasets
used in the challenge are made publicly available.

The ASVspoof challenges have been organised twice so far. The first was held
in 2015 and the second in 2017. A summary of the speech corpora used in the two
challenges are shown in Table15.1. In both the challenges, EER metric was used to
evaluate the performance of spoofing detector. The EER is computed by considering
the scores of genuine files as positive scores and those of spoofed files as negative
scores. A lower EER means more accurate spoofing countermeasures. In practice,
the EER is estimated using a specific receiver operating characteristics convex hull
(ROCCH) technique with an open-source implementation2 originating from outside
the ASVspoof consortium. In the following subsections, we briefly discuss the two
challenges. For more interested readers, [125] contains details of the 2015 edition
while [126] discusses the results of the 2017 edition.

2https://sites.google.com/site/bosaristoolkit/.

https://sites.google.com/site/bosaristoolkit/
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15.3.1 ASVspoof 2015

The first ASVspoof challenge involved detection of artificial speech created using a
mixture of voice conversion and speech synthesis techniques [125]. The dataset was
generated with ten different artificial speech generation algorithms. The ASVspoof
2015 was based upon a larger collection spoofing and anti-spoofing (SAS) corpus
(v1.0) [127] that consists of both natural and artificial speech. Natural speech was
recorded from 106 human speakers using a high-quality microphone and without
significant channel or background noise effects. In a speaker disjoint manner, the
full database was divided into three subsets called the training, development, and
evaluation set. Five of the attacks (S1–S5), named as known attacks, were used in
the training and development set. The other five attacks, S6-S10, called unknown
attacks, were used only in the evaluation set, along with the known attacks. Thus,
this provides the possibility of assessing the generalisability of the spoofing detectors.
The detailed evaluation plan is available in [128], describing the speech corpora and
challenge rules.

Ten different spoofing attacks used in the ASVspoof 2015 are listed below:

• S1: a simplified frame selection (FS) based voice conversion algorithm, in which
the converted speech is generated by selecting target speech frames.

• S2: the simplest voice conversion algorithm which adjusts only the first mel-
cepstral coefficient (C1) in order to shift the slope of the source spectrum to the
target.

• S3: a speech synthesis algorithm implemented with the HMM-based speech syn-
thesis system (HTS3) using speaker adaptation techniques and only 20 adaptation
utterances.

• S4: the same algorithm as S3, but using 40 adaptation utterances.
• S5: a voice conversion algorithm implemented with the voice conversion toolkit
and with the Festvox system.3

• S6: a VC algorithm based on joint density Gaussian mixture models (GMMs) and
maximum likelihood parameter generation considering global variance.

• S7: a VC algorithm similar to S6, but using line spectrum pair (LSP) rather than
mel-cepstral coefficients for spectrum representation.

• S8: a tensor-based approach to VC, for which a Japanese dataset was used to
construct the speaker space.

• S9: a VC algorithm which uses kernel-based partial least square (KPLS) to imple-
ment a nonlinear transformation function.

• S10: an SS algorithm implemented with the open-source MARY text-to-tpeech
system (MaryTTS).4

More details of how the SAS corpus was generated can be found in [127].
The organisers also confirmed the vulnerability to spoofing by conducting speaker

verification experiments with this data and demonstrating considerable performance

3http://www.festvox.org/.
4http://mary.dfki.de/.

http://www.festvox.org/
http://mary.dfki.de/
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degradation in the presence of spoofing. With a state-of-the-art probabilistic linear
discriminant analysis (PLDA) based ASV system, it is shown that in presence of
spoofing, the average EER for ASV increases from 2.30 to 36.00% for male and
2.08 to 39.53% for female [125]. Thismotivates the development of the anti-spoofing
algorithm.

For ASVspoof 2015, the challenge evaluation metric was the average EER. It is
computed by calculating EERs for each attack and then taking average. The dataset
was requested by 28 teams from16 countries, 16 teams returned primary submissions
by the deadline. A total of 27 additional submissions were also received. Anonymous
results were subsequently returned to each team, who were then invited to submit
their work to the ASVspoof special session for INTERSPEECH 2015.

Table15.2 shows the performance of the top five systems in the ASVspoof 2015
challenge. The best performing system [129] uses a combination of mel cesptral
and cochlear filter cepstral coefficients plus instantaneous frequency features with
GMM back-end. In most cases, the participants have used fusion of multiple fea-
ture based systems to get better recognition accuracy. Variants of cepstral features
computed from the magnitude and phase of short-term speech are widely used for
the detection of spoofing attacks. As a back-end, GMM was found to outperform

Table 15.2 Performance of top five systems in ASVspoof 2015 challenge (ranked according to the
average % EER for all attacks) with respective features and classifiers

System Avg. EER for System

Identifier Known Unknown All Description

A [129] 0.408 2.013 1.211 Features: mel-frequency cepstral coefficients
(MFCC), Cochlear filter cepstral coefficients plus
instantaneous frequency (CFCCIF). Classifier:
GMM

B [130] 0.008 3.922 1.965 Features: MFCC, MFPC, cosine phase principal
coefficients (CosPhasePCs). Classifier: Support
vector machine (SVM) with i-vectors

C [131] 0.058 4.998 2.528 Feature: DNN-based with filterbank output and their
deltas as input. Classifier: Mahalanobis distance on
s-vectors

D [132] 0.003 5.231 2.617 Features: log magnitude spectrum (LMS), residual
log magnitude spectrum (RLMS), group delay (GD),
modified group delay (MGD), instantaneous
frequency derivative (IF), baseband phase difference
(BPD), and pitch synchronous phase (PSP),
Classifier: Multilayer perceptron (MLP)

E [133] 0.041 5.347 2.694 Features: MFCC, product spectrum MFCC
(PS-MFCC), MGD with and without energy,
weighted linear prediction group delay, cepstral
coefficients (WLP-GDCCs), and MFCC
cosine-normalised phase-based cepstral coefficients
(MFCC-CNPCCs) Classifier: GMM
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more advanced classifiers like i-vectors, possibly due to the use of short segments
of high-quality speech not requiring treatment for channel compensation and back-
ground noise reduction. All the systems submitted in the challenge are reviewed in
more detail [134].

15.3.2 ASVspoof 2017

The ASVspoof 2017 is the second automatic speaker verification anti-spoofing and
countermeasures challenge. Unlike the 2015 edition that used very high-quality
speech material, the 2017 edition aims to assess spoofing attack detection with ‘out
in the wild’ conditions. It focuses exclusively on replay attacks. The corpus origi-
nates from the recent text-dependent RedDots corpus,5 whose purpose was to collect
speech data over mobile devices, in the form of smartphones and tablet computers,
by volunteers from across the globe.

The replayed version of the original RedDots corpus was collected through a
crowdsourcing exercise using various replay configurations consisting of varied
devices, loudspeakers, and recording devices, under a variety of different environ-
ments across four European countries within the EUHorizon 2020-funded OCTAVE
project,6 (see [126]). Instead of covert recording, we made a “short-cut” and took
the digital copy of the target speakers’ voice to create the playback versions. The
collected corpus is divided into three subsets: for training, development and evalu-
ation. Details of each are presented in Table15.1. All three subsets are disjoint in
terms of speakers and data collection sites. The training and development subsets
were collected at three different sites. The evaluation subset was collected at the same
three sites and also included data from two new sites. Data from the same site include
different recordings and replaying devices and from different acoustic environments.
The evaluation subset contains data collected from 161 replay sessions in 62 unique
replay configurations.7 More details regarding replay configurations can be found
in [126, 135].

The primary evaluation metric is ‘pooled’ EER. In contrast to the ASVspoof 2015
challenge, the EER is computed from scores pooled across all the trial segments
rather than condition averaging. A baseline8 system based on common GMM back-
end classifier with constant-Q cepstral coefficient (CQCC) [136, 137] features were
provided to the participants. This configuration is chosen as baseline as it has shown
best recognition performance onASVspoof 2015. The baseline is trained using either
combined training and development data (B01) or training data (B02) alone. The
baseline system does not involve any kind of optimisation or tuning with respect

5https://sites.google.com/site/thereddotsproject/.
6https://www.octave-project.eu/.
7A replay configuration refers to a unique combination of room, replay device and recording
device while a session refers to a set of source files, which share the same replay configuration.
8See Appendix A.2. Software packages.

https://sites.google.com/site/thereddotsproject/
https://www.octave-project.eu/
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Table 15.3 Summary of top 10 primary submissions to ASVspoof 2017. Systems’ IDs are the
same received by participants in the evaluation. The column ‘Training’ refers to the part of data
used for training: train (T) and/or development (D)
ID Features Post-

proc.
Classifiers Fusion #Subs. Training Performances on

eval subset
(EER%)

S01 [138] Log-power
Spectrum, LPCC

MVN CNN, GMM, TV,
RNN

Score 3 T 6.73

S02 [139] CQCC, MFCC,
PLP

WMVN GMM-UBM,
TV-PLDA,
GSV-SVM,
GSV-GBDT,
GSV-RF

Score – T 12.34

S03 MFCC, IMFCC,
RFCC, LFCC,
PLP, CQCC,
SCMC, SSFC

– GMM, FF-ANN Score 18 T+D 14.03

S04 RFCC, MFCC,
IMFCC, LFCC,
SSFC, SCMC

– GMM Score 12 T+D 14.66

S05 [140] Linear filterbank
feature

MN GMM, CT-DNN Score 2 T 15.97

S06 CQCC, IMFCC,
SCMC, Phrase
one-hot encoding

MN GMM Score 4 T+D 17.62

S07 HPCC, CQCC MVN GMM, CNN, SVM Score 2 T+D 18.14

S08 [141] IFCC, CFCCIF,
Prosody

– GMM Score 3 T 18.32

S09 SFFCC No GMM None 1 T 20.57

S10 [142] CQCC – ResNet None 1 T 20.32

to [136]. The dataset was requested by 113 teams, of which 49 returned primary
submissions by the deadline. The results of the challenge were disseminated at a
special session consisting of two slots at INTERSPEECH 2017.

Most of the systems are based on standard spectral features, such as CQCCs,
MFCCs and perceptual linear prediction (PLP). As a back-end, in addition to the
classical GMM to model the replay and non-replay classes, it has also exploited the
power of deep classifiers, such as convolutional neural network (CNN) or recurrent
neural network (RNN). A fusion of multiple features and classifiers is also widely
adopted by the participants. A summary of the top-10 primary systems is provided
in Table15.3. Results in terms of EER of the 49 primary systems and the baseline
B01 and B02 are shown in Fig. 15.3.
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Fig. 15.3 Performance of the two baseline systems (B01 and B02) and the 49 primary systems
(S01–S48 in addition to late submission D01) for the ASVspoof 2017 challenge. Results are in
terms of the replay/non-replay EER (%)

15.4 Advances in Front-End Features

The selection of appropriate features for a given classification problem is an important
task. Even if the classic boundary to think between a feature extractor (front-end) and
a classifier (back-end) as separate components is getting increasingly blurred with
the use of end-to-end deep learning and other similar techniques, research on the
‘early’ components in a pipeline remains important. In the context of anti-spoofing
for ASV, this allows the utilisation of one’s domain knowledge to guide the design
of new discriminative features. For instance, earlier experience suggests that lack
of spectral [70] and temporal [123] detail is characteristic of synthetic or voice-
coded (vocoded) speech, and that low-quality replayed signals tend to experience
loss of spectral details [143]. These initial findings sparked further research into
developing advanced front-end features with improved robustness, generalisation
across datasets, and other desideratum. As a matter of fact, in contrast to classic
ASV (without spoofing attacks) where the most significant advancements have been
in the back-end modelling [2], in ASV anti-spoofing, the features seem to make the
difference. In this section, we take a brief look at a few such methods emerging from
the ASVspoof evaluations. The list is by no means exhaustive and the interested
reader is referred to [134] for further discussion.

15.4.1 Front-Ends for Detection of Voice Conversion and
Speech Synthesis Spoofing

The front-ends described below have been shown to provide good performance on the
ASVspoof 2015 database of spoofing attacks based on voice conversion and speech
synthesis. The first front-end was used in the ASVspoof 2015 challenge, while the
rest were proposed later after the evaluation.
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Cochlear Filter Cepstral Coefficients with Instantaneous Frequency (CFC-
CIF). These features were introduced in [129] and successfully used as part of the
top-ranked system in the ASVspoof 2015 evaluation. They combine cochlear filter
cepstral coefficients (CFCC), proposed in [144], with instantaneous frequency [69].
CFCC is based on wavelet transform-like auditory transform and on some mecha-
nisms of the cochlea of the human ear such as hair cells and nerve spike density.
To compute CFCC with instantaneous frequency (CFCCIF), the output of the nerve
spike density envelope is multiplied by the instantaneous frequency, followed by
the derivative operation and logarithm nonlinearity. Finally, the Discrete Cosine
Transform (DCT) is applied to decorrelate the features and obtain a set of cepstral
coefficients.

Linear Frequency Cepstral Coefficients (LFCC). LFCCs are very similar to the
widely used mel-frequency cepstral coefficients (MFCCs) [145], though the filters
are placed in equal sizes for linear scale. This front-end is widely used in speaker
recognition and has been shown to perform well in spoofing detection [146]. This
technique performs a windowing on the signal, computes the magnitude spectrum
using the short-time Fourier transform (STFT), followed by logarithm nonlinearity
and the application of a filterbank of linearly spaced N triangular filters to obtain a
set of N log-density values. Finally, the DCT is applied to obtain a set of cepstral
coefficients.

Constant-Q Cepstral Coefficients (CQCC). This feature was proposed in [136,
137] for spoofing detection and it is based on theConstant-QTransform (CQT) [147].
The CQT is an alternative time–frequency analysis tool to the STFT that provides
variable time and frequency resolution. It provides greater frequency resolution at
lower frequencies but greater time resolution at higher frequencies. Figure15.4 illus-
trates the CQCC extraction process. The CQT spectrum is obtained, followed by
logarithm nonlinearity and by a linearisation of the CQT geometric scale. Finally,
cepstral coefficients are obtained through the DCT.

As an alternative to CQCC, infinite impulse response constant-Q transform cep-
strum (ICQC) features [148] use the infinite impulse response—constant-Q trans-
form [149], an efficient constant-Q transform based on the IIR filtering of the fast
Fourier transform (FFT) spectrum. It delivers multiresolution time–frequency anal-
ysis in a linear scale spectrum which is ready to be coupled with traditional cepstral
analysis. The IIR-CQT spectrum is followed by the logarithm and decorrelation,
either through the DCT or principal component analysis.

Deep Features for Spoofing Detection. All of the above three features sets are
handcrafted and consist of a fixed sequence of standard digital signal processing

Fig. 15.4 Block diagram of CQCC feature extraction process
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operations. An alternative approach, seeing increased popularity across different
machine learning problems, is to learn the feature extractor from a given data by using
deep learning techniques [150, 151]. In speech-related applications, these features are
widely employed for improving recognition accuracy [152–154]. The work in [155]
uses deep neural network to generate bottleneck features for spoofing detection;
that is, the activations of a hidden layer with a relatively small number of nodes
compared to the size of other layers. The study in [156] investigates various features
based on deep learning techniques. Different feed-forward DNNs are used to obtain
frame level deep features. Input acoustic features consisting of filterbank outputs
with their first derivatives are used to train the network to discriminate between the
natural and spoofed speech classes, and output of hidden layers are taken as deep
features which are then averaged to obtain an utterance-level descriptor. RNNs are
also proposed to estimate utterance-level features from input sequences of acoustic
features. In another recent work [157], the authors have investigated deep features
based on filterbank trained with the natural and artificial speech data. A feed-forward
neural network architecture called here as filter bank neural network (FBNN) is used
here that includes a linear hidden layer, a sigmoid hidden layer and a softmax output
layer. The number of nodes in the output is six; and of them, five are for the number
of spoofed classes in the training set, and the remaining one is for natural speech. The
filter banks are learned using the stochastic gradient descent algorithm. The cepstral
features extracted using these DNN-based features are shown to be better than the
hand-crafted cepstral coefficients.

Scattering Cepstral Coefficients. This feature for spoofing detection was pro-
posed in [158]. It relies upon scattering spectral decomposition [159, 160]. This
transform is a hierarchical spectral decomposition of a signal based on wavelet filter
banks (constant-Q filters), modulus operator, and averaging. Each level of decompo-
sition processes the input signal (either the input signal for the first level of decom-
position, or the output of a previous level of decomposition) through the wavelet
filterbank and takes the absolute value of filter outputs, producing a scalogram. The
scattering coefficients at a certain level are estimated by windowing the scalogram
signals and computing the average value within these windows. A two-level scatter-
ing decomposition has been shown to be effective for spoofing detection [158]. The
final feature vector is computed by taking the DCT of the vector obtained by con-
catenating the logarithms of the scattering coefficients from all levels and retaining
the first a few coefficients. The ‘interesting’ thing about scattering transform is its
stability to small signal deformation and more details of the temporal envelopes than
MFCCs [158, 159].

Fundamental Frequency Variation Features. The prosodic features are not
as successful as cepstral features in detecting artificial speech on ASVspoof 2015,
though some earlier results on PAs indicate that pitch contours are useful for such
tasks [6]. In a recent work [161], the author uses fundamental frequency variation
(FFV) for this. The FFV captures pitch variation at the frame level and provides
complementary information on cepstral features [162]. The combined system gives
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a very promising performance for both known and unknown conditions onASVspoof
evaluation data.

Phase-based Features. The phase-based features are also successfully used in
PAD systems for ASVspoof 2015. For example, relative phase shift (RPS) and mod-
ified group delay (MGD) based features are explored in [163]. The authors in [164]
have investigated relative phase information (RPI) features. Though the performances
on seen attacks are promising with these phase-based features, the performances
noticeably degrade for unseen attacks, particularly for S10.

General Observations Regarding Front-Ends for Artificial Speech Setection.
Beyond the feature extractionmethod used, there are two general findings common to
any front- end [129, 137, 146, 148]. The first refers to the use of dynamic coefficients.
The first and second derivatives of the static coefficients, also known as velocity and
acceleration coefficients, respectively, are found important to achieve good spoofing
detection performance. In some cases, the use of only dynamic features is superior to
the use of static plus dynamic coefficients [146]. This is not entirely surprising, since
voice conversion and speech synthesis techniques may fail to model the dynamic
properties of the speech signals, introducing artefacts that help the discrimination of
spoofed signals. The second finding refers to the use of speech activity detection.
In experiments with ASVspoof 2015 corpus, it appears that the silence regions also
contain useful information for discriminating between natural and synthetic speech.
Thus, retaining non-speech frames turns out to be a better choice for this corpus [146].
This is likely due to the fact that non-speech regions are usually replaced with noise
during the voice conversion or speech synthesis operation. However, this could be a
database-dependent observation, thus detailed investigations are required.

15.4.2 Front-Ends for Replay Attack Detection

The following front-ends have been proposed for the task of replay spoofing detec-
tion, and evaluated in replayed speech databases such as the BTAS 2016 and
ASVspoof 2017. Many standard front-ends, such as MFCC, LFCC and PLP, have
been combined to improve the performance of replay attack detection. Other front-
ends proposed for synthetic and converted speech detection (CFCCIF, CQCC) have
been successfully used for the replay detection task. In general, and in opposition to
the trend for synthetic and converted speech detection, the use of static coefficients
has been shown to be crucial for achieving good performance. This may be explained
by the nature of the replayed speech detection task, where detecting changes in the
channel captured by static coefficients help with the discrimination of natural and
replayed speech. Two additional front-ends are described next.

Inverted Mel-Frequency Cepstral Coefficients (IMFCC). This front-end is
relatively simple and similar to the standard MFCC. The only difference is that the
filterbank follows an inverted mel scale; that is, it provides an increasing frequency
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resolution (narrower filters) when frequency increases, and a decreased frequency
resolution (wider filters) for decreasing frequency, unlike the mel scale [165]. This
front-end was used as part of the top-ranked system of the Biometrics: Theory,
Applications, and Systems (BTAS) 2016 speaker anti-spoofing competition [7].

Features Based on Convolutional Neural Networks. In the recent ASVspoof
2017 challenge, the use of deep learning frameworks for feature learning was proven
to be key in achieving good replay detection performance. In particular, convolutional
neural networks have been successfully used to learn high-level utterance-level fea-
tures which can later be classified with simple classifiers. As part of the top-ranked
system [138] in the ASVspoof 2017 challenge, a light convolutional neural network
architecture [166] is fed with truncated normalised FFT spectrograms (to force fixed
data dimensions). The network consists of a set of convolutional layers, followed
by a fully connected layer. The last layer contains two outputs with softmax activa-
tion corresponding to the two classes. All layers use the max-feature-map activation
function [166], which acts as a feature selector and reduces the number of feature
maps by half on each layer. The network is then trained to discriminate between
the natural and spoofed speech classes. Once the network is trained, it is used to
extract a high-level feature vector which is the output of the fully connected layer.
All the test utterances are processed to obtain high-level representations, which are
later classified with an external classifier.

Other Hand-Crafted Features. Many other features have also been used for
replayed speech detection in the context of the ASVspoof 2017 database. Even if
the performances of single systems using such features are not always high, they are
shown to be complementary when fused at the score level [167], similar to conven-
tional ASV research outside of the spoofing detection. These features includeMFCC,
IMFCC, rectangular filter cepstral coefficients (RFCCs), PLP, CQCC, spectral cen-
troid magnitude coefficients (SCMC), subband spectral flux coefficient (SSFC) and
variable length Teager energy operator energy separation algorithm-instantaneous
frequency cosine coefficients (VESA-IFCC). Though, of course, one usually then
has to further train the fusion system, which makes the system more involved con-
cerning practical applications.

15.5 Advances in Back-End Classifiers

In the natural versus spoof classification problem, two main families of approaches
have been adopted, namely generative and discriminative. Generative approaches
include those of GMM-based classifiers and i-vector representations combined with
support vector machines (SVMs). As for discriminative approaches, deep learning-
based techniques have become more popular. Finally, new deep learning end-to-
end solutions are emerging. Such techniques perform the typical pipeline entirely
through deep learning, from feature representation learning and extraction to the
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final classification. While including such approaches into the traditional classifiers
category may not be the most precise, they are included in this classifiers section for
simplicity.

15.5.1 Generative Approaches

Gaussian Mixture Model (GMM) Classifiers. Considering two classes, namely
natural and spoofed speech, one GMM can be learned for each class using appropri-
ate training data. In the classification stage, an input utterance is processed to obtain
its likelihoods with respect to the natural and spoofed models. The resulting classi-
fication score is the log-likelihood ratio between the two competing hypotheses; in
effect, those of the input utterance belonging to the natural and to the spoofed classes.
A high score supports the former hypothesis, while a low score supports the latter.
Finally, given a test utterance, classification can be performed by thresholding the
obtained score. If the score is above the threshold, the test utterance is classified as
natural, and otherwise, it is classified as spoof.Many proposed anti-spoofing systems
use GMM classifiers [129, 136, 146, 148, 155, 158, 168].

I-vector. The state-of-the-art i-vector paradigm for speaker verification [169] has
been explored for spoofing detection [170, 171]. Typically, an i-vector is extracted
from an entire speech utterance and used as a low-dimensional, high-level feature
which is later classified by means of a binary classifier, commonly cosine distance
measure or support vector machine (SVM). Different amplitude- and phase-based
front-ends [130, 138] can be employed for the estimation of i-vectors. A recent work
shows that data selection for i-vector extractor training (also known as T matrix) is
an important factor for achieving completive recognition accuracy [172].

15.5.2 Discriminative Approaches

DNN Classifiers. Deep learning-based classifiers have been explored for use in the
task of natural and spoofed speech discrimination. In [155, 173], several front-ends
are evaluated with neural network classifier consisting of several hidden layers with
sigmoid nodes and softmax output, which is used to calculate utterance posteriors.
However, the implementation detail of theDNNs—such the number of nodes, the cost
function, the optimization algorithm and the activation functions—is not precisely
mentioned in those work and the lack of this very relevant information makes it
difficult to reproduce the results.

In a recent work [174], a five-layer DNN spoofing detection system is investigated
for ASVspoof 2015 which uses a novel scoring method, termed in the paper as
human log-likelihoods (HLLs). Each of the hidden layers has 2048 nodes with a
sigmoid activation function. The network has six softmax output layers. The DNN
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is implemented using a computational network toolkit9 and trained with stochastic
gradient descent methods with dynamics information of acoustic features, such as
spectrum-based cepstral coefficients (SBCC) and CQCC as input. The cross entropy
function is selected as the cost function and the maximum training epoch is chosen as
120. Themini-batch size is set to 128. The proposedmethod shows considerable PAD
detection performance. The author obtain an EER for S10 of 0.255% and average
EER for all attacks of 0.045- when used with CQCC acoustic features. These are the
best reported performance in ASVspoof 2015 so far.

DNN-Based End-to-End Approaches. End-to-end systems aim to perform all
the stages of a typical spoofing detection pipeline, from feature extraction to classi-
fication, by learning the network parameters involved in the process as a whole. The
advantage of such approaches is that they do not explicitly require prior knowledge of
the spoofing attacks as required for the development of acoustic features. Instead, the
parameters are learned and optimised from the training data. In [175], a convolutional
long short-term memory (LSTM) deep neural network (CLDNN) [176] is used as an
end-to-end solution for spoofing detection. This model receives input in the form of
a sequence of raw speech frames and outputs a likelihood for the whole sequence.
The CLDNN performs time–frequency convolution through CNN to reduce spectral
variance, long-term temporal modelling by using a LSTM, and classification using
a DNN. Therefore, it is entirely an end-to-end solution which does not rely on any
external feature representation. The works in [138, 177] propose other end-to-end
solutions by combining convolutional and recurrent layers, where the first act as a
feature extractor and the second models the long-term dependencies and acts as a
classifier. Unlike the work in [175], the input data is the FFT spectrogram of the
speech utterance and not the raw speech signal. In [178], the authors have investi-
gated CNN-based end-to-end system for PADwhere the raw speech is used to jointly
learn the feature extractor and classifier. Score level combination of this CNN system
with standard long-term spectral statistics based system shows considerable overall
improvement.

15.6 Other PAD Approaches

While most of the studies in voice PAD detection research focus on algorithmic
improvements for discriminating natural and artificial speech signals, some recent
studies have explored utilising additional information collected using special addi-
tional hardware to protect ASV system frompresentation attacks [179–182]. Since an
intruder can easily collect voice samples for the target speakers using covert record-
ing; the idea here is to detect and recognise supplementary information related to
the speech production process. Moreover, by its nature, that supplementary informa-
tion is difficult, if not impossible, to mimic using spoofing methods in the practical

9https://github.com/Microsoft/CNTK.

https://github.com/Microsoft/CNTK
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scenario. These PAD techniques have shown excellent recognition accuracy in the
spoofed condition, at the cost of additional setup in the data acquisition step.

The work presented in [180, 181] utilises the phenomenon of pop noise, which
is a distortion in human breath when it reaches a microphone [183]. During natural
speech production, the interactions between the airflow and the vocal cavities may
result in a sort of plosive burst, commonly know as pop noise, which can be captured
via a microphone. In the context of professional audio and music production, pop
noise is unwanted and is eliminated during the recording or mastering process. In
the context of ASV, however, it can help in the process of PAD. The basic principle
is that a replay sound from a loudspeaker does not involve the turbulent airflow
generating the pop noise as in the natural speech. The authors in [180, 181] have
developed a pop noise detector which eventually distinguishes natural speech from
playback recording as well as synthetic speech generated using VC and SS methods.
In experiments with 17 female speakers, a tandem detection system that combines
both single- and double-channel pop noise detection gives the lowest ASV error rates
in the PA condition.

The authors in [179] have introduced the use of a smartphone-basedmagnetometer
to detect voice presentation attack. The conventional loudspeakers,which are used for
playback during access of theASVsystems, generate sound using acoustic transducer
and generate amagnetic field. The idea, therefore, is to capture the use of loudspeaker
by sensing themagneticfieldwhichwouldbe absent fromhumanvocals. Experiments
were conducted using playback from25 different conventional loudspeakers, ranging
from low-end to high-end and placed in different distances from the smartphone that
contains theASV system.A speech corpus of five speakerswas collected for theASV
experiments executed using an open-source ASV toolkit, SPEAR.10 Experiments
were conducted with other datasets, using a similarly limited number of speakers.
The authors demonstrated that the magnetic field based detection can be reliable
for the detection of playback within 6–8 cm from the smartphone. They further
developed a mechanism to detect the size of the sound source to prevent the use of
small speakers such as earphones.

The authors in [184, 185] utilise certain acoustics concepts to prevent ASV sys-
tems from PAs. They first introduced a method [184] that estimates dynamic sound
source position (articulation position within mouth) of some speech sounds using a
small array usingmicroelectromechanical systems (MEMS) microphones embedded
in mobile devices and compare it with loudspeakers, which have a flat sound source.
In particular, the idea is to capture the dynamics of time-difference-of-arrival (TDOA)
in a sequence of speech sounds to the microphones of the smartphone. Such unique
TDOA changes, which do not exist under replay conditions, are used for detecting
replay attacks. The similarities between the TDOAs of test speech and user templates
are measured using probability function under Gaussian assumption and correlation
measure as well as their combinations. Experiments involving 12 speakers and 3
different types of smartphone demonstrate a low EER and high PAD accuracy. The

10https://www.idiap.ch/software/bob/docs/bob/bob.bio.spear/stable/index.html.

https://www.idiap.ch/software/bob/docs/bob/bob.bio.spear/stable/index.html
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proposed method is seen to remain robust despite the change of smartphones during
the test and the displacements.

In [185], the same research group has used the idea of theDoppler effect to detect
the replay attack. The idea here is to capture the articulatory gestures of the speakers
when they speak a passphrase. The smartphone acts as a Doppler radar and transmits
a high-frequency tone at 20 kHz from the built-in speaker and senses the reflections
using the microphone during authentication process. The movement of the speaker’s
articulators during vocalisation creates a speaker-dependent Doppler frequency shift
at around 20 kHz, which is stored along with the speech signal during the speaker-
enrolment process. During a playback attack, the Doppler frequency shift will be
different due to the lack of articulatory movements. Energy-based frequency features
and frequency-based energy features are computed from a band of 19.8 and 20.2
kHz. These features are used to discriminate between the natural and replayed voice,
and the similarity scores are measured in terms of Pearson correlation coefficient.
Experiments are conducted with a dataset of 21 speakers and using three different
smartphones. The data also includes test speech for replay attack with different
loudspeakers and for impersonation attack with four different impersonators. The
proposed system was demonstrated to be effective in achieving low EER for both
types of attacks. Similar to [184], the proposed method indicated robustness to the
phone placement.

The work in [182] introduces the use of a specific non-acoustic sensor, throat
microphone (TM), or laryngophone, to enhance the performance of the voice PAD
system. An example of such microphones is shown in Fig. 15.5. The TM is used
with a conventional acoustic microphone (AM) in a dual-channel framework for
robust speaker recognition and PAD. Since this type of microphone is attached to
the speaker’s neck, it would be difficult for the attacker to obtain a covert recording

Fig. 15.5 Throat-microphones used in [182]. (Reprinted with permission from IEEEACM Trans-
actions on (T-ASL) Audio, Speech, and Language Processing)
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of the target speaker’s voice. Therefore, one possibility for the intruder is to use the
stolen recording from an AM and to try to record it back using a TM for accessing
the ASV system. A speech corpus of 38 speakers were collected for the ASV exper-
iments. The dual-channel setup yielded considerable ASV for both licit and spoofed
conditions. The performance is further improved when this ASV system is integrated
with the dual-channel based PAD. The authors show zero FAR for replay imposters
by decision fusion of ASV and PAD.

All of the above new PAD methods deviating from the ‘mainstream’ of PAD
research in ASV are reported to be reliable and useful in specific application scenar-
ios for identifying presentation attacks. Themethods are also fundamentally different
and difficult to compare in the same settings. Since the authors focus on the method-
ological aspects, experiments are mostly conducted on a dataset of limited number
of speakers. Extensive experiments with more subjects from diverse environmental
conditions should be performed to assess their suitability for real-world deployment.

15.7 Future Directions of Anti-spoofing Research

The research in ASV anti-spoofing is becoming popular and well recognised in
the speech processing and voice biometric community. The state-of-the-art spoofing
detector gives promising accuracy in the benchmarking of spoofing countermeasures.
Further work is needed to address a number of specific issues regarding its practical
use. A number of potential topics for consideration in furtherwork are nowdiscussed.

• Noise, reverberation and channel effect. Recent studies indicate that spoofing
countermeasures offer little resistance to additive noise [186, 187], reverbera-
tion [188] and channel effect [189] even though their performances on ‘clean’
speech corpus is highly promising. The relative degradation of performance is
actually much worse than the degradation of a typical ASV system under the
similar mismatch condition. One reason could be that, at least until the ASVspoof
2017 evaluation, themethodology developed has been driven in clean, high-quality
speech. In other words, the community might have developed its methods implic-
itly for laboratory testing. The commonly used speech enhancement algorithms
also fail to reduce the mismatch due to environmental differences, though multi-
condition training [187] and more advanced training methods [190] have been
found useful. The study presented in [189] shows considerable degradation of
PAD performance even in matched acoustic conditions. The feature settings used
for the original corpus gives lower accuracy when both training and test data are
digitally processed with the telephone channel effect. These are probably because
the spoofing artefacts themselves act as extrinsic variabilities which degrade the
speech quality in some way. Since the task of spoofing detection is related to
detecting those artefacts, the problem becomes more difficult in the presence of
small external effects due to variation in environment and channel. These suggest
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further investigations need to be carried out for the development of robust spoofing
countermeasures.

• Generalisation of spoofing Countermeasures. The generalisation property of
spoofing countermeasures for detecting new kinds of speech presentation attack
is an important requirement for their application in the wild. Study explores that
countermeasure methods trained with a class of spoofing attacks fail to generalise
this for other classes of spoofing attack [167, 191]. For example, PAD systems
trained with VC- and SS-based spoofed speech give a very poor performance for
playback detection [192]. The results of the first two ASVspoof challenges also
reveal that detecting the converted speech created with an “unknown” method or
the playback voice recording in a new replay session are difficult to detect. These
clearly indicate the overfitting of PAD systems with available training data. There-
fore, further investigation should be conducted to develop attack-independent uni-
versal spoofing detector. Other than the unknown attack issue, generalisation is
also an important concern for cross-corpora evaluation of the PAD system [193].
This specific topic is discussed in chapter 19 of this book.

• Investigations with new spoofing methods. The studies of converted spoof speech
mostly focused on methods based on classical signal processing and machine
learning techniques. Recent advancements in VC and SS research with deep learn-
ing technology show significant improvements in creating high-quality synthetic
speech [52]. The GAN [194] can be used to create (generator) spoofed voices with
relevant feedback from the spoofing countermeasures (discriminator). Some pre-
liminary studies demonstrate that the GAN-based approach can make speaker ver-
ification systems more vulnerable to presentation attacks [66, 195]. More detailed
investigations should be conducted on this direction for the development of coun-
termeasure technology to guard against this type of advanced attack.

• Joint operations of PAD and ASV. The ultimate goal of developing PAD sys-
tem is to protect the recogniser, the ASV system from imposters with spoofed
speech. So far, the majority of the studies focused on the evaluation of standalone
countermeasures. The integration of these two systems is not trivial number of
reasons. First, standard linear output score fusion techniques, being extensively
used to combine homogenous ASV system, are not appropriate since the ASV and
its countermeasures are trained to solve two different tasks. Second, an imperfect
PAD can increase the false alarm rate by rejecting genuine access trials [196].
Third, and more fundamentally, it is not obvious whether improvements in stan-
dalone spoofing countermeasures should improve the overall system as a whole: a
nearly perfect PAD system with close to zero EERmay fail to protect ASV system
in practice if not properly calibrated [197]. In a recent work [198], the authors
propose a modification in a GMM-UBM based ASV system to make it suitable
for both licit and spoofed conditions. The joint evaluation of PAD and ASV, as
well as their combination techniques, certainly deserves further attention. Among
other feedback received from the attendees of the ASVspoof 2017 special session
organised during INTERSPEECH 2017, it was proposed that the authors of this
chapter consider shifting the focus from standalone spoofing to more ASV-centric
solutions in future. We tend to agree. In our recent work [199], we propose a new
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cost function for joint assessment of PAD and ASV system. In another work [200],
we propose a new fusion method for combining scores of countermeasures and
recognisers. This work also explores speech features which can be used both for
PAD and ASV.

15.8 Conclusion

This contribution provides an introduction to the different voice presentation attacks
and their detection methods. It then reviews previous works with a focus on recent
progress in assessing the performance of PAD systems.We have also briefly reviewed
two recent ASVspoof challenges organised for the detection of voice PAs. This study
includes discussion of recently developed features and the classifiers which are pre-
dominantly used in ASVspoof evaluations. We further include an extensive survey
on alternative PAD methods. Apart from the conventional voice-based systems that
use statistical properties of natural and spoofed speech for their discrimination, these
recently developed methods utilise a separate hardware for the acquisition of other
signals such as pop noise, throat signal and extrasensory signals with smartphones
for PAD. The current status of these non-mainstream approaches to PAD detection
are somewhat similar to the status of the nowmore-or-less standard methods for arti-
ficial speech and replay PAD detection some 3–4 years ago: they are innovative and
show promising results, but the pilot experiments have been carried out on relatively
small and/or proprietary datasets, leaving an open question as to how scalable or
generalisable these solutions are in practice. Nonetheless, in the long run and noting
especially the rapid development of speech synthesis technology, it is likely that the
quality of artificial/synthetic speech will eventually be indistinguishable from that of
natural human speech. Such future spoofing attacks therefore could not be detected
using the current mainstream techniques that focus on spectral or temporal details of
the speech signal, but will require novel ideas that benefit from auxiliary information,
rather than just the acoustic waveform.

In the past three years, the progress in voice PAD research has been accelerated
by the development and free availability of speech corpus such as the ASVspoof
series, SAS, BTAS 2016, AVSpoof. The work discussed several open challenges
which show that this problem requires further attention to improving robustness due
to mismatch condition, generalisation to a new type of presentation attacks, and so
on. Results from joint evaluations with integrated ASV system are also an important
requirement for practical applications of PAD research. We think, however, that this
extensive review will be of interest not only to those involved in voice PAD research
but also to voice biometrics researchers in general.
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Appendix A. Action Towards Reproducible Research

A.1. Speech Corpora

1. Spoofing and Anti-Spoofing (SAS) database v1.0: This database presents the
first version of a speaker verification spoofing and anti-spoofing database, named
SAS corpus [201]. The corpus includes nine spoofing techniques, two of which
are speech synthesis, and seven are voice conversion.
Download link: http://dx.doi.org/10.7488/ds/252

2. ASVspoof 2015 database: This database has been used in the first Automatic
Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof
2015). Genuine speech is collected from 106 speakers (45 male, 61 female)
and with no significant channel or background noise effects. Spoofed speech is
generated from the genuine data using a number of different spoofing algorithms.
The full dataset is partitioned into three subsets, the first for training, the second
for development and the third for evaluation.
Download link: http://dx.doi.org/10.7488/ds/298

3. ASVspoof 2017 database: This database has been used in the Second Automatic
SpeakerVerificationSpoofingandCountermeasuersChallenge:ASVspoof 2017.
This database makes an extensive use of the recent text-dependent RedDots cor-
pus, as well as a replayed version of the same data. It contains a large amount of
speech data from 42 speakers collected from 179 replay sessions in 62 unique
replay configurations.
Download link: http://dx.doi.org/10.7488/ds/2313

A.2. Software Packages

1. Feature extraction techniques for anti-spoofing: This package contains theMAT-
LAB implementation of different acoustic feature extraction schemes as evalu-
ated in [146].
Download link: http://cs.joensuu.fi/~sahid/codes/AntiSpoofing_Features.zip

2. Baseline spoofing detection package for ASVspoof 2017 corpus: This package
contains the MATLAB implementations of two spoofing detectors employed as
baseline in the official ASVspoof 2017 evaluation. They are based on constant-Q
cepstral coefficients (CQCC) [137] and Gaussian mixture model classifiers.
Download link: http://audio.eurecom.fr/software/ASVspoof2017_baseline_
countermeasures.zip

http://dx.doi.org/10.7488/ds/252
http://dx.doi.org/10.7488/ds/298
http://dx.doi.org/10.7488/ds/2313
http://cs.joensuu.fi/~sahid/codes/AntiSpoofing_Features.zip
http://audio.eurecom.fr/software/ASVspoof2017_baseline_countermeasures.zip
http://audio.eurecom.fr/software/ASVspoof2017_baseline_countermeasures.zip
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Chapter 16
A Cross-Database Study of Voice
Presentation Attack Detection

Pavel Korshunov and Sébastien Marcel

Abstract Despite an increasing interest in speaker recognition technologies, a sig-
nificant obstacle still hinders their wide deployment—their high vulnerability to
spoofing or presentation attacks. These attacks can be easy to perform. For instance,
if an attacker has access to a speech sample from a target user, he/she can replay it
using a loudspeaker or a smartphone to the recognition system during the authentica-
tion process. The ease of executing presentation attacks and the fact that no technical
knowledge of the biometric system is required to make these attacks especially
threatening in practical application. Therefore, late research focuses on collecting
data databases with such attacks and on development of presentation attack detection
(PAD) systems. In this chapter, we present an overview of the latest databases and the
techniques to detect presentation attacks. We consider several prominent databases
that contain bona fide and attack data, including ASVspoof 2015, ASVspoof 2017,
AVspoof, voicePA, and BioCPqD-PA (the only proprietary database). Using these
databases, we focus on the performance of PAD systems in the cross-database sce-
nario or in the presence of “unknown” (not available during training) attacks, as these
scenarios are closer to practice, when pretrained systems need to detect attacks in
unforeseen conditions. We first present and discuss the performance of PAD sys-
tems based on handcrafted features and traditional Gaussian mixture model (GMM)
classifiers. We then demonstrate whether the score fusion techniques can improve
the performance of PADs. We also present some of the latest results of using neural
networks for presentation attack detection. The experiments show that PAD systems
struggle to generalize across databases and mostly unable to detect unknown attacks,
with systems based on neural networks demonstrating better performance compared
to the systems based on handcrafted features.
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Fig. 16.1 Possible attack places in a typical ASV system

16.1 Introduction

Given the complexity of a practical Automatic Speaker Verification system (ASV),
several different modules of the system are prone to attacks, as it is identified in
ISO/IEC 30107-1 standard [1] and illustrated in Fig. 16.1. Depending on the usage
scenario, two of the most vulnerable places for spoofing attacks in an ASV system
are marked by A1 (aka “physical access” as defined in [2] or presentation attacks)
and A2 (aka “logical access” attacks as defined in [2]) in the figure. In this chapter,
we are considering A1 and A2 attacks, where the system can be attacked by pre-
senting a spoofed signal as input. For the other points of attacks from A3 to A9, the
attacker needs to have privileged access rights and know the operational details of
the biometric system. Prevention or countering such attacks is more related to system
security and is thus out of the scope of this chapter.

There are three prominent methods through which A1 and A2 attacks can be
carried out: (a) by recording and replaying the target speakers’ speech, (b) by syn-
thesizing speech that carries target speaker characteristics, and (c) by applying voice
conversion methods to convert impostor speech into target speaker speech. Among
these three, replay attack is the most viable attack, as the attacker mainly needs a
recording and playback device. In the literature, there is evidence that ASV systems
might be immune to “zero-effort” impostor claims andmimicry attacks [3], however,
they are still vulnerable to such presentation attacks (PAs) [4]. One of the reasons
for such vulnerability is a built-in ability of biometric systems in general, and ASV
systems, in particular, to handle undesirable variabilities. Since spoofed speech can
exhibit the undesirable variabilities that ASV systems are robust to, the attacks can
pass undetected.

Therefore, developing mechanisms for the detection of presentation attacks is
gaining interest in the speech community [5]. At first, researchers were mostly focus-
ing on logical access attacks, largely thanks to the “Automatic Speaker Verification
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Spoofing and Countermeasures Challenge” [2], which provided a large benchmark
corpus ASVspoof 2015,1 containing voice conversion-based and speech synthesis-
based attacks. In the literature, development of PAD systems has largely focused
on investigating handcrafted features, such as short-term speech processing-based
features that can aid in discriminating genuine speech from spoofed signal. Typi-
cal detection methods use features based on audio spectrogram, such as spectral [6,
7] and cepstral-based features with temporal derivatives [8, 9], phase spectrum-
based features [10], the combination of amplitude and phase features [11], recently
proposed constant Q cepstral coefficients (CQCCs) [12], extraction of local binary
patterns in the cepstral domain [13], and audio quality-based features [14]. A survey
byWu et al. [5] provides a comprehensive overview of the attacks based on synthetic
speech and the detection methods tailored to those types of attacks.

Besides determining “good features for detecting presentation attacks”, it is also
important to correctly classify the computed feature vectors as belonging to bona
fide or spoofed data. Choosing a reliable classifier is especially important given a
possibly unpredictable nature of attacks in a practical system, since it is unknown
what kind of attack the perpetrator may use when spoofing the verification system.
Different methods use different classifiers but the most common choices include
logistic regression, support vector machine (SVM), and Gaussian mixture model
(GMM) classifiers. The benchmarking study on logical access attacks [15] finds
GMMs to be more successful compared to two-class SVM (combined with an LBP-
based feature extraction from [13]) in detecting synthetic spoofing attacks. Therefore,
in this book chapter, we focus on GMM-based classifiers as the best representatives
of the “traditional” approaches. Deep learning networks are also showing promising
performance in simultaneous feature selection and classification [16] and therefore
are also addressed in this chapter.

The most common approach to detect presentation attacks is to pretrain the clas-
sifier on the examples of both bona fide and spoofed data. To simulate realistic
environments, the classifier can be trained on a subset of the attacks, termed known
attacks, and tested on a larger set of attacks that include both known and unknown
attacks.

Generalization ability of the PAD systems based on handcrafted features has been
assessed recently with [12] showing the degradation in performance when specific
features optimized using one database are used unchanged on another database. In
[17], cross-database experiments demonstrated the inability of current techniques
to deal with unforeseen conditions. However, it did not include strict presentation
attacks, which can be considered one of the hardest attacks to be detected. The
authors of [18, 19] focused on presentation attacks in cross-database and cross-
attack scenarios, and demonstrated that current state-of-the-art PAD systems do not
generalize well, with especially poor performance on presentation attacks. In this
chapter, wewill discuss the performance of several such systems on unknown attacks
and in cross-database evaluations.

1http://datashare.is.ed.ac.uk/handle/10283/853.

http://datashare.is.ed.ac.uk/handle/10283/853
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To solve the problems of the PAD systems and improve their performance, espe-
cially, in unseen conditions, many turned to score fusion techniques, as a straight-
forward and convenient way to combine the outputs of several PAD systems into
one joint PAD ensemble. However, the studies have shown [19, 20] that although
fusion can improve the performance, even large fusion ensembles, e.g., fusion of
many different systems (we coin them as “mega-fusion” systems, in this chapter),
are not very helpful outside of controlled academic challenges.

Neural nets are also promising for detection of replay or presentation attacks [16,
21]. The latest study byMuckenhirn et al. [22] demonstrated the high accuracy of con-
volutional neural networks (CNNs) compared to systems based on handcrafted fea-
tures for attack detection. However, little is known how CNNs perform on unknown
presentation attacks, and whether they can generalize across different databases with
presentation attacks. The impact of the neural net’s depth on the performance is also
not well understood.

In this chapter, we consider most of the recently proposed types of PAD systems,
including those based on handcrafted features, fusion-based systems, and CNN-
based PAD systems, which learn features from raw speech data (similar to systems
in [22]). The main focus of the chapter is on the performance on unknown attacks or
in cross-database settings. For systems based on handcrafted features, we consider
eight well-performing methods based on GMM classifier that use cepstral-based fea-
tureswith rectangular (RFCC),mel-scale triangular (MFCC) [23], invertedmel-scale
triangular (IMFCC), linear triangular (LFCC) filters [24], spectral flux-based feature
(SSFC) [25], subband centroid frequency (SCFC) [26], and subband centroid magni-
tude (SCMC) [26] features. We also included recently proposed constant Q cepstral
coefficients (CQCCs) [27], whichwere shown good performance onASVspoof 2015
database.2 We also discuss joint PAD systems obtained by fusing several systems
via score fusion approach, using mean, logistic regression, and polynomial logis-
tic regression fusion methods. The correct performance of the fusion is ensured by
using scores pre-calibrated with logistic regression. For CNN-based PAD systems,
we evaluate two network architectures (with one and three CNN layers) of the system
originally proposed in [22], which learn features from raw speech data.

To comparewith previouswork,we useASVspoof 2015 databasewhen evaluating
systems based on handcrafted features and their fusion-based derivatives. We also
evaluate these systems on AVspoof.3 since it is the first database with presentation
attacks [4]. So-called mega-fusion-based systems are evaluated using ASVspoof
2017 database, because they were first introduced and performed well (third and
fourth places) in the latest ASVspoof 2017 grand challenge. CNN-based systems
need a lot of data for training; hence, for these systems, we use two databases with
large number of different presentation attacks. One is voicePA4 database, which
is an extension of the AVspoof but with more attacks, and another is BioCPqD-
PA [28] database (i.e., a biometric database with presentation attacks by CPqD) of

2Precomputed CQCC features were provided by the authors.
3https://www.idiap.ch/dataset/avspoof.
4https://www.idiap.ch/dataset/voicepa.

https://www.idiap.ch/dataset/avspoof
https://www.idiap.ch/dataset/voicepa
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Portuguese speakers andmanyhigh-qualityunknown presentation attacks recorded in
an acoustically isolated room.Note that, although proprietary, BioCPqD-PAdatabase
will be publicly available for machine learning experiments on a web-based BEAT
platform.5 which allows to perform experiments on private databases in secure and
reproducible way.

In summary, this chapter has the following main contributions:

• Overview of the latest comprehensive speech databases with spoofing (presenta-
tion) attacks.

• Overview of the state-of-the-art PAD systems, including systems based on hand-
crafted features, fusion-based systems, and based on neural networks.

• Open-source implementations of the databases and the reviewed PAD systems.6

16.2 Databases

Appropriate databases are necessary for testing different presentation attack detection
approaches. These databases need to contain a set of practically feasible presentation
attacks and also data for speaker verification task, so that a verification system can
be tested for both issues: the accuracy of speaker verification and the resistance to
the attacks.

In this chapter, we present experiments on several prominent publicly available
databases and one proprietary database that are used for evaluation of PADmethods:
ASVspoof 2015, AVspoof 2015, voicePA 2016, BioCPqD-PA 2016, and ASVspoof
2017.7 ASVspoof 2015 was created as part of the 2015 Interspeech anti-spoofing
challenge and contains only synthetically generated and converted speech attacks.
These attacks are assumed to be fed into a verification system directly bypassing
its microphone, and are also coined as logical access attacks [2]. AVspoof contains
both logical access attacks (LAs) and presentation attacks (PAs). For the ease of
comparison with ASVspoof 2015, the set of attacks in AVspoof is split into LA
and PA subsets (see Table 16.1). voicePA is an extension of the AVspoof database
with more added attacks and is, therefore, suitable for training neural nets. A pro-
prietary BioCPqD-PA [28] database of Portuguese speakers and many high-quality
unknown presentation attacks recorded in an acoustically isolated room. Note that,
although proprietary, BioCPqD-PA database will be publicly available for machine
learning experiments on a web-based BEAT platform. ASVspoof 2017, similarly to
ASVspoof 2015, was developed for the Automatic Speaker Verification Spoofing
and Countermeasures Challenge (ASVspoof 2017) [29] and was used for evaluation
of the mega-fusion systems in this chapter.

5https://www.beat-eu.org/platform/.
6Source code: https://gitlab.idiap.ch/bob/bob.hobpad2.chapter16.
7https://datashare.is.ed.ac.uk/handle/10283/3017.

https://www.beat-eu.org/platform/
https://gitlab.idiap.ch/bob/bob.hobpad2.chapter16
https://datashare.is.ed.ac.uk/handle/10283/3017
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16.2.1 ASVspoof 2015 Database

The ASVspoof 20151 database contains genuine and spoofed samples from 45 male
and 61 female speakers. This database contains only speech synthesis and voice
conversion attacks produced via logical access, i.e., they are directly injected in
the system. The attacks in this database were generated with 10 different speech
synthesis and voice conversion algorithms. Only 5 types of attacks are in the training
and development set (S1 to S5), while 10 types are in the evaluation set (S1 to
S10). Since last five attacks appear in the evaluation set only and PAD systems are
not trained on them, they are considered “unknown” attacks (see Table 16.1). This
split of attacks allows to evaluate the systems on known and unknown attacks. The
full description of the database and the evaluation protocol are given in [2]. This
database was used for the ASVspoof 2015 Challenge and is a good basis for system
comparison as several systems have already been tested on it.

16.2.2 AVspoof Database

AVspoof2 database contains bona fide (genuine) speech samples from 44 participants
(31males and 13 females) recorded over the period of 2months in four sessions, each

Table 16.1 Details of AVspoof, ASVspoof 2015, ASVspoof 2017, voicePA, and BioCPqD-PA
databases. For each separate set, the number of utterances is given

Database Type of data Train Dev Eval

AVspoof Bona fide 4,973 4,995 5,576

LA attacks 17,890 17,890 20,060

PA attacks 38,580 38,580 43,320

Total 61,443 61,465 68,956

ASVspoof 2015 Bona fide 3,750 3,497 9,404

Known attacks 12,625 49,875 92,000

Unknown attacks – – 92,000

Total 16,375 53,372 193,404

ASVspoof 2017 Bona fide 1,508 760 1,298

(original release) Attacks 1,508 950 12,008

Total 3,016 1,710 13,306

VoicePA Bona fide 4,973 4,995 5,576

Attacks 115,740 115,740 129,988

Total 120,713 120,735 135,564

BioCPqD-PA Bona fide 6,857 12,455 7,941

Attacks 98,562 179,005 114,111

Total 105,419 191,460 122,052
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Fig. 16.2 AVspoof database recording setup. The images show different devices and locations used
for bona fide data collection and for creating the attacks

scheduled several days apart in different setups and environmental conditions such
as background noises. The recording devices, including microphone AT2020USB+,
Samsung Galaxy S4 phone, and iPhone 3GS, and the environments are shown in
Fig. 16.2. The first session was recorded in the most controlled conditions.

From the recorded genuine data, two major types of attacks were created for
AVspoof database: logical access attacks, similar to those in ASVspoof 2015
database [2], and presentation attacks. Logical access attacks are generated using
(i) a statistical parametric-based speech synthesis algorithm [30] and (ii) a voice
conversion algorithm from Festvox.8

When generating presentation attacks, the assumption is that a verification system
is installed on a laptop (with an internal built-in microphone) and an attacker is
trying to gain access to this system by playing back to it a pre-recorded genuine
data or an automatically generated synthetic data using some playback device. In
AVspoof database, presentation attacks consist of (i) replay attacks when a genuine
data is played back using a laptop with internal speakers, a laptop with external high-
quality speakers, Samsung Galaxy S4 phone, and iPhone 3G; (ii) synthesized speech
replayed with a laptop; and (iii) converted voice attacks replayed with a laptop.

The data in AVspoof database is split into three nonoverlapping subsets, ensuring
that the same speaker does not appear in different sets (see Table 16.1 for details):
training or train (bona fide and spoofed samples from 4 female and 10 male par-
ticipants), development or dev (bona fide and spoofed samples from 4 female and
10 male participants), and evaluation or eval (bona fide and spoofed samples from
5 female and 11 male participants). For more details on AVspoof database, please
refer to [4].

16.2.3 ASVspoof 2017

The ASVspoof 2017 was created for the grand challenge with the main focus on
presentation attacks. To this end, the challenge makes use of the RedDots corpus

8http://festvox.org/.

http://festvox.org/
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Table 16.2 Attack types in voicePA database

Laptop replay Phone replay Synthetic replay

Laptop speakers, Samsung Galaxy S3, Speech synthesis

High-quality speakers iPhone 3GS & 6S Voice conversion

[31] and a replayed version of the same data [32]. While the former serves as gen-
uine samples, the latter is used as spoof samples, collected by replaying a subset of
the original RedDots corpus utterances using different loudspeakers and recording
devices, in different environments, through a crowdsourcing approach.

The database was split into three subsets: train for training, dev for development,
and eval for evaluation. In the challenge, it was also allowed to use both train and dev
subsets to train the final system for score submission. A more detailed description
of the challenge and the database can be found in [29].

16.2.4 VoicePA Database

The voicePA3 database inherits bona fide (genuine) speech samples from AVspoof
database, which is described in Sect. 16.2.2.

The presentation attacks for voicePA were generated with assumption that a ver-
ification system, which is considered to be attacked, is installed either on a laptop
(with an internal built-in microphone), on Samsung Galaxy S3, or iPhone 3GS. The
attacker is trying to gain access to this system by playing back to it a pre-recorded
bona fide data or an automatically generated synthetic data using some playback
device.

The following deviceswere used to playback the attacks (seeTable 16.2): (i) replay
attacks using a laptop with internal speakers and a laptop with external high-quality
speaker; (ii) replay attacks using Samsung Galaxy S3, iPhone 3G, and iPhone 6S
phones; and (iii) replay of synthetic speech generated with text to speech and voice
conversion algorithms. Attacks targeting verification system on the laptop are the
same as the attacks in AVspoof database (see Sect. 16.2.2), while the attacks on
Samsung Galaxy S3 and iPhone 3G phones are newer and are contained only in
voicePA database.

The attacks were also recorded into three different noise environments: a large
conference room, an empty office with window open, and a typical lab with closed
windows. In total, voicePA contains 24 different types of presentation attacks, includ-
ing 16 attacks replayed by iPhone 3GS and Samsung Galaxy S3 in two different
environments (4 by one phone in one environment), and 8 by the laptop in another
environment.

Similarly to AVspoof, all utterances (see Table 16.1) in voicePA database are split
into three nonoverlapping subsets: training or train (bona fide and spoofed samples
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Fig. 16.3 Example of
BioCPqD-PA database
recording setup. All attacks
were recorded in an
acoustically isolated room

from 4 male and 10 female participants), development or dev (bona fide and spoofed
samples from 4 male and 10 female participants), and evaluation or eval (bona fide
and spoofed samples from 5 male and 11 female participants).

16.2.5 BioCPqD-PA Database

BioCPqD-PA [28] is a proprietary database, and it contains video (audio and image)
of 222 participants (124 males and 98 females) speaking different types of content,
including free speech, read text, and read numbers (credit card, telephone, personal
ID, digits sequences, and other numbers set). Recordings used different devices (lap-
tops and smartphones) and were performed in different environments in Portuguese
language.

The subset used in this paper as bona fide samples consists of only the laptop
part and includes all participants. The recordings used four different laptops, took
place at three different environments, including a quiet garden, an office, and a noisy
restaurant, and were performed during five recording sessions.9 In each session, 27
utterances with variable content were recorded.

The presentation attacks were recorded in an acoustically isolated room (see
Fig. 16.3) using 3 different microphones and 8 different loudspeakers, resulting
in 24 configurations (see Table 16.3 for details). The total number of bona fide
recordings is 27, 253, and presentation attacks is 391, 678. This database was split
in three nonoverlapping subsets (see Table 16.1), isolating pairs of microphones
and loudspeakers in each subset (each microphone and loudspeaker pair belongs to
only one subset), thus providing a protocol to evaluate the ability of a PAD system
to generalize to unseen configurations. As shown in Table 16.3, train set contains
44 pairs of microphone and loudspeaker, dev set contains 12 pairs, and eval set 8
pairs. Additionally, the protocol guarantees that train and eval sets do not contain any
repeated microphone–loudspeaker pairs. There is no split among speakers, meaning
that samples from all speakers are present in all subsets. Such split was done on

9Not all subjects recorded five sessions, due to scheduling difficulties.



372 P. Korshunov and S. Marcel

Table 16.3 Microphone/speaker pairs forming attack types in BioCPqD-PA database. (T), (D),
and (E) indicate train, dev, and eval sets

Mic/Speak Genius Megaw. Dell
A225

Edifier Log
S-150

SBS20 Dell XPS Mackie

1. Genius A1-1 (T) A1-2 (T) A1-3 (T) A1-4 (T) A1-5 (D) A1-6 (D) A1-7 (D) A1-8 (D)

2. Dell XPS A2-1 (D) A2-2 (D) A2-3 (D) A2-4 (D) A2-5 (E) A2-6 (E) A2-7 (E) A2-8 (E)

3. Log. USB A3-1 (D) A3-2 (D) A3-3 (D) A3-4 (D) A3-5 (E) A3-6 (E) A3-7 (E) A3-8 (E)

purpose to study the effect of different recording–playback device pairs on PAD
systems.

16.2.6 Evaluation Protocol

In a single-database evaluation, the train set of a given database is used for training
PAD system, the dev set is used for selecting hyperparameters, and eval set is used for
testing. In a cross-database evaluation, typically, the train and dev sets are taken from
one database, while the eval set is taken from another database. In some scenarios,
however, it is also possible that PAD is trained on train set from one database by
both dev and eval sets taken from another database.

For evaluation of PAD systems, the following metrics are recommended [33]:
attack presentation classification error rate (APCER) and bona fide presentation
classification error rate (BPCER). APCER is the number of attacks misclassified as
bona fide samples divided by the total number of attacks, and is defined as follows:

APCER = 1

NAT

NAT∑

i=1

(1 − Resi ), (16.1)

where NAT is the number of attack presentations. Resi takes value 1 if the i th presen-
tation is classified as an attack, and value 0 if classified as bona fide. Thus, APCER
can be considered as an equivalent to FAR for PAD systems, as it represents the ratio
of falsely accepted attack samples in relation to the total number of attacks.

BPCER is the number of incorrectly classified bona fide samples divided by the
total number of bona fide samples:

BPCER = 1

NBF

NBF∑

i=1

Resi , (16.2)

where NBF is the number of bona fide presentations, and Resi is defined similar
to APCER. Hence, BPCER can be considered as an equivalent to FRR for PAD
systems.
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In this chapter’s evaluations, when testing PADs on each database and in cross-
database scenarios, we report EER rates on dev set (when BPCER and APCER are
equal) and separate BPCER and APCER values on eval set using the EER threshold
computed on the dev set.

16.3 Presentation Attack Detection Approaches

Usually, PAD system consists of a feature extractor and a binary classifier (see
Fig. 16.4 for an overview), which is trained to distinguish bona fide data from
attacks. In this section, we present the most commonly used recent approaches for
PAD, discuss feature extraction and classification components, explore performance-
enhancement score fusion techniques, and evaluate CNN-based systems.

16.3.1 Handcrafted Features

Based on the overview of the methods for synthetic speech detection by Sahidullah
et al. [15], we selected eight-system-based handcrafted-based features to present in
this chapter.

These systems rely on GMM-based classifier (two models for bona fide and
attacks, 512Gaussians componentswith diagonal covariances, using 10 expectation–
maximization iterations for each model), since it has demonstrated improved perfor-
mance compared to support vector machine (SVM) on the data fromASVspoof 2015
database [15]. Four cepstral-based features with mel-scale, i.e., mel-frequency cep-
stral coefficients (MFCC) [23], rectangular (RFCC), inverted mel-scale (IMFCC),
and linear (LFCC) filters [24], were selected. These features are computed from a
power spectrum (power of magnitude of 512-sized fast Fourier transform) by apply-
ing one of the above filters of a given size (we use size 20 as per [15]). Spectral
flux-based features, i.e., subband spectral flux coefficients (SSFCs) [25], which are
Euclidean distances between power spectrums (normalized by the maximum value)
of two consecutive frames, subband centroid frequency (SCFC) [26], and subband
centroid magnitude (SCMC) [26] coefficients are considered as well. A discrete
cosine transform (DCT-II) is applied to these above features, except for SCFC, and
first 20 coefficients are taken. Before computing selected features, a given audio sam-
ple is first split into overlapping 20-ms-long speech frames with 10ms overlap. The

Fig. 16.4 Presentation attack detection system
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frames are pre-emphasized with 0.97 coefficient and preprocessed by applying Ham-
ming window. Then, for all features, deltas and double-deltas [34] are computed and
only these derivatives (40 in total) are used by the classifier. Only deltas and delta–
deltas are kept, because [15] reported that static features degraded performance of
PAD systems.

In addition to the above features, we also consider recently proposed CQCC [27],
which are computed using constant Q transform instead of FFT. To be consistent
with the other features and fair in the system comparison, we used also only delta
and delta–deltas (40 features in total) derived from 19 plus C0 coefficients.

A survey byWu et al. [5] provides a comprehensive overview of both the existing
spoofing attacks and the available attack detection approaches. An overview of the
methods for synthetic speech detection by Sahidullah et al. [15] benchmarks several
existing feature extraction methods and classifiers on ASVspoof 2015 database.

16.3.2 Fusion and Large Fusion Ensembles

When stand-alone PAD systems do not work well, researchers turn to fusion tech-
niques as a way to increase the overall accuracy. In this chapter, we focus on a
score-level fusion due to its relative simplicity and evidence that it leads to a better
performance. The score fusion is performed by combining scores from each of the
N systems into a new feature vector of length N that needs to be classified. For
classification, we consider three different algorithms: (i) a logistic regression (LR),
i.e., a linear classifier that is trained using a logistic loss; (ii) a multilayer percep-
tron (MLP); and (iii) a simple mean function (Mean), which is taken on scores of
the fused systems. For LR and MLP fusion, the classifier is pretrained on the score
feature vectors from the training set.

When analyzing, comparing, and especially fusing PAD systems, it is important
to have calibrated scores. Raw scores can be mapped to log-likelihood ratio scores
with logistic regression, and an associated cost of calibration Cllr together with a dis-
crimination lossCmin

llr is then used as application-independent performance measures
of calibrated PAD or ASV systems. Calibration costCllr can be interpreted as a scalar
measure that summarizes the quality of the calibrated scores. A well-calibrated sys-
tem has 0 ≤ Cllr < 1 and produces well-calibrated likelihood ratio. Discrimination
loss Cmin

llr can be viewed as the theoretically best Cllr value of an optimally calibrated
systems. We refer to [35] for a discussion on the score calibration and Cllr and Cmin

llr
metrics.

An extreme example of score fusion is the recent tendency to fuse many differ-
ent systems, with hope that the resulted “mega-fusion” system will generalize better,
especially on “unseen” or “unknown” attacks. In this chapter, we consider two exam-
ples of such systems, which won third and fourth places in the latest ASVspoof 2017
challenge, and we demonstrate how well they generalize on unknown attacks.

Two PAD systems, simply referred to as System-1 and System-2, are essentially
the ensembles of different combinations of features and classifiers. Table 16.4 shows
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Table 16.4 Description of the submitted systems: System-1 and System-2

System-1 System-2

Subsystems GMM with: RFCCall ,
RFCC�s , LFCCall , LFCC�s

GMM with: RFCCall ,
RFCC�s

MFCCall , MFCC�s ,
IMFCCall , MFCC�s , SSFCall

LFCCall , LFCC�s , MFCCall

SSFC�s , SCMCall , SCMC�s MFCC�s , IMFCCall ,
IMFCC�s

MLP with: IMFCCall ,
LFCCall , MFCCall

SSFCall , SSFC�s , SCMCall

PLP-Cepstralall , RFCCall ,
SCMCall

SCMC�s

Fusion Logistic regression Logistic regression

the set of subsystems and the fusion method used for each PAD system. Features
are presented with a subscript “all” or “�s”, where “all” means that all static and
dynamic (delta and delta–delta) features were used, while “�s” indicates that only
the dynamic features were considered. The choice of the set of subsystems was
based on their performances measured on the dev set provided within ASVspoof
2017 challenge.

16.3.3 Convolution Networks

The popularity of neural networks has reached PAD community, and therefore, in
this chapter, we present and evaluate two examples of convolutional neural networks
(CNNs) designed and trained for speech presentation attack detection. First system
is a smaller network (denoted as “CNN-Shallow”), and the second system is a deeper
model (denoted as “CNN-Deep”) with more layers stacked up. The CNNs are imple-
mented using TensorFlow framework.10 The architecture of both CNNs is presented
in Fig. 16.5. The number of neurons is shown at the top of each layer.

These networks are by no means the best possible architectures for PAD, as it
is not our goal to present such. We simply aim to understand whether CNNs, even
such simple ones, would be better alternatives to the systems based on handcrafted
features. Hence, all the parameters of the considered CNNs were chosen empirically
from a small number of experiments, i.e., in a semi-arbitrary fashion.

Unlike the traditional MFCC–GMM model, in a CNN model, the discriminative
features are learned jointly with the classification model. Hence, a raw waveform is
used as an input to the model and the convolutional layers are responsible to build
relevant features.

10https://www.tensorflow.org/.

https://www.tensorflow.org/
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Fig. 16.5 Architecture of the two CNNs designed for speech presentation attack detection. Two
more convolutional layers and more neurons are added in CNN-Deep model

In our CNN networks, the raw input audio is split into 20-ms-long speech frames.
The feature vector consists of each frame plus its 20 left and right neighbors, resulting
in 41 input frames.

In the CNN-Shallow network, the only convolutional layer contains 20 neurons,
eachwith kernel =300 and stride=200, followedby a fully connected layer composed
of 40 neurons. Both layers use hard tangent as an activation function. The output
of convolutional layer is flattened for the fully connected layer input. The last layer
has two neurons corresponding to the two output classes (bona fide and attacks).
LogSoftMax function is applied to the output of the network before a negative log-
likelihood loss function is computed. Gradient descent with constant learning rate
0.0001 is used to optimize the loss.

A deeper CNN (CNN-Deep) is a slightly larger network with three convolutional
layers and we added it to analyze how increasing depth of CNN architecture impacts
the PAD performance. The same raw data input and activation function are used as in
the shallow network. The first convolutional layer has 32 neurons, each with kernel
= 160 and stride = 20, followed by a max pooling layer (kernel = 2 and stride = 1).
A second convolutional layer has 64 neurons (kernel = 32 and stride = 2) and the
same max pooling layer. The third convolutional layer contains 64 neurons (kernel
= 1 and stride = 1) followed by the same max pooling layer. The output of the last
max pooling is flattened and connected to a fully connected layer of 60 neurons.
The last layer is an output layer with 2 neuron classes. Similarly to the shallow
network, LogSoftMax function is applied to the outputs. For all convolutional layers,
hard tangent activation function is used. Gradient descent with exponentially decay
learning rate with base rate of 0.001 and decaying step 10000 is used for optimizing
the negative log-likelihood loss function.
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16.4 Evaluation

Following previous Sect. 16.3, in this section, we first focus on the performance of
PAD systems based on handcrafted features in single and cross-database scenarios,
followed by the score fusion-based techniques. Then, we present the evaluation
details of the mega-fusion systems fromASVspoof 2017 challenge, and we conclude
with comparing the performances of two examples of CNN-based systems.

16.4.1 PADs Based on Handcrafted Features

As discussed in Sect. 16.3.1, we have selected several methods based on handcrafted
features for presentation attacks detection,whichwere recently evaluated by Sahidul-
lah et al. [15] on ASVspoof 2015 database with an addition of CQCC feature-based
method [27].

The selected PAD systems are evaluated on each ASVspoof 2015 and AVspoof
database and in cross-database scenario. To keep results comparable with current
state-of-the-art work [15, 36], we computed average EER (eval set) for single-
database evaluations and APCER with BPCER for cross-database evaluations.
APCER with BPCER is computed for eval set of a given dataset using the EER
threshold obtained from the dev set from another dataset (see Table 16.6).

To avoid bias, prior to the evaluations, the raw scores from each individual
PAD system are pre-calibrated with logistic regression based on Platts sigmoid
method [37] by modeling scores of the training set and applying the model on the
scores from development and evaluation sets. The calibration cost Cllr and the dis-
crimination loss Cmin

llr of the resulted calibrated scores are provided.
In Table 16.5, the results for known and unknown attacks (see Table 16.1) of

eval set of ASVspoof 2015 are presented separately to demonstrate the differences
between these two types of attacks provided in ASVspoof 2015 database. Also,
since the main contribution to the higher EER for unknown attacks is given by a
more challenging attack “S10”, we separately present the EER for this attack in
Table 16.5.

SinceAVspoof contains both logical access (LA for short) and presentation attacks
(PAs), the results for these two types of attacks are also presented separately. Hence,
it allows to compare the performance on ASVspoof 2015 database (it has logical
access attacks only) with AVspoof-LA attacks.

From the results in Table 16.5, we can note that (i) LA set of AVspoof is less chal-
lenging compared to ASVspoof 2015 for almost all methods; (ii) unknown attacks
and, especially, “S10” attack, for which PADs are not trained and are more chal-
lenging; and (iii) presentation attacks are also more challenging compared to LA
attacks.

It can be also noted that PAD systems fused using a simple mean fusion are on
par or sometimes performing even better than systems fused with LR (though, LR
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generally leads to lower Cllr compared to mean). A probable reason for this is the
performed pre-calibration of the scores using logistic regression. Calibration insures
that the scores are well distributed within [0, 1] range, leading to similar EER-based
thresholds among individual PAD systems. Hence, mean, which can be considered
as a special case of LR, leads to “good enough” fusion results.

Table 16.6 presents the cross-database results when a given PAD system is trained
and tuned using training and development sets from one database but is tested using
evaluation set from another database. For instance, results in the second column of
the table are obtained by using training and development sets from ASVspoof 2015
database but evaluation set from AVspoof-LA. Also, we evaluated the effect of using
one type of attacks (e.g., logical access from AVspoof-LA) for training and another
type (e.g., presentation attacks of AVspoof-PA) for testing (the results are in the last
column of the table).

From Table 16.6, we can note that all methods generalize poorly across different
datasets with BPCER reaching 100%, for example, especially, CQCC-based PAD
showing poor performance for all cross-database evaluations. It is also interesting
to note that even similar methods, for instance, RFCC- and LFCC-based, have very
different accuracies in cross-database testing, even though they showed less drastic
difference in single-database evaluations (see Table 16.5).

Based on the results in individual and cross-database evaluations,we have selected
2 PAD systems that performed the most well consistently across all databases and
attacks: 8-fused-PADs fused via mean score fusion and a simple MFCC-GMMPAD,
which is also based on a very commonly used MFCC features. These systems are
highlighted in bold in Tables 16.5 and 16.6.

16.4.2 Mega-Fusion Systems

The evaluation results of two mega-fusion systems (see Table 16.4 for overview)
from ASVspoof 2017 challenge (third and fourth place in the challenge), described
in Sect. 16.3.2, are presented in Table 16.7. The table shows the performance of
“System-1” and “System-2” in terms of EER, both for the dev and the eval sets. The
results obtained for the dev set are based on the systems trained exclusively on the
train set of ASVspoof 2017 database, while to obtain the results for eval set, the
systems were trained on the aggregated train + dev set.

Additionally, the table shows the results of a baseline system provided by the
challenge organizers, which is based on CQCC front-end and two-class GMMs back
end. Best individual system corresponds to a single IMFCC-based subsystem trained
using GMM, which demonstrated the best performance during pre-submission eval-
uations.

The only difference between baseline and best individual system is the features
used, as the classifier is the same. An interesting result is the one obtained with best
individual system. While on the dev set it provides comparable performance to the
fusion-based systems, on the eval set it performs dramatically worse.
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Table 16.7 EER results of two mega-fusion systems of ASVspoof 2017 challenge, the baseline
system, and the best individual model (GMM with IMFCC) trained and evaluated on different sets

Trained on Tested on System-1 System-2 Best
individual

Baseline

Train dev 4.09 4.32 4.86 11.17

Train + dev Eval 14.31 14.93 29.41 24.65

Table 16.8 EER results for the cross-database experiments. In the first case, the systems were
trained on train + dev set of ASVspoof 2017 and tested on BioCPqD-PA. In the second case,
systems were trained on BioCPqD-PA and tested on eval set of ASVspoof 2017

Fusion type ASVspoof (train +
dev) ↓ BioCPqD-PA

BioCPqD-PA ↓
ASVspoof (eval)

System 1 Mean 23.35 31.86

LR 21.35 26.58
MLP 22.34 30.77

System 2 Mean 22.23 27.74

LR 21.28 27.96

MLP 22.41 28.37

Best Indiv. – 37.24 27.77

To asses the ability of the mega-fusion systems to generalize on unknown attacks
and unseen data, we also evaluated them to the completely unrelated BioCPqD-PA
database.

Table 16.8 shows that systems, “System-1” and “System-2”, trained on the
ASVspoof 2017 challenge database (train + dev) and tested on BioCPqD-PA
database led to twice larger EER compared to when the same systems were tested
on the eval set of ASVspoof 2017, as reported in Table 16.7. This finding confirms
the limited generalization power of the systems. The performance degradation in
cross-database experiments is not unprecedented: it has been observed in previous
anti-spoofing evaluations [12, 17, 18].

Three different versions of “System-1” and “System-2”were testedbyusingmean,
LR, and MLP algorithms for score fusion (see different rows in Table 16.8). LR led
to a slightly better performance, especially for System-1 trained on BioCPqD-PA
database and evaluated on ASVspoof 2017 . Comparing the best individual sub-
systems against fused systems, although fusion did not improve results for systems
trained on BioCPqD-PA database, there is a significant improvement when it is
trained on ASVspoof 2017 database. Thus, we can reason that, in practice, when the
scenario is unknown, fusion adds robustness to the system performance.

Observing the non-negligible difference between the two crossing possibilities in
Table 16.8, one can arguably say that training data diversitymatters.WhileASVspoof
2017 database has few speakers (only male) and a limited number of utterances, it
contains presumably more diverse conditions (devices and recording environments)
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than BioCPqD-PA, due to the crowdsourcing data collection. On the other hand,
BioCPqD-PA is larger, both in terms of speakers and number of utterances, but
recording conditions are more restricted.

16.4.3 Convolutional Networks

To evaluate the performance of CNN-based PAD systems, described in Sect. 16.3.3,
we first trained both CNN-Shallow and CNN-Deep networks, presented in the previ-
ous section, on training sets of voicePA and BioCPqD-PA databases. The two trained
models (one for each database) were then used in two different capacities: (i) use pre-
trained models directly as classifiers on development and evaluation sets; and (ii) use
models as feature extractors, by taking the output of the fully connected layer. The
performance of CNN-based systems was compared with an MFCC–GMM systems,
which represents systems based on handcrafted features.

When CNN systems are used as feature extractors, the layers before the last are
used as feature vectors (see Fig. 16.5), resulting in 40 values for CNN-Shallowmodel
and 60 values for CNN-Deep model, and two GMM classifiers are trained (one for
bona fide and one for attacks) in the same fashion as forMFCC-based PAD.Using the
same GMM classifier allows us to understand the effectiveness of self-learned CNN-
based features compared to the handcrafted MFCC features (with CNN-Shallow
model, the number of features is also the same 40 as in MFCC-based PAD).

Table 16.9 demonstrates the evaluation results of four versions of CNN-based
PAD systems and baseline MFCC–GMM-based PAD using two databases voicePA
and BioCPqD-PA. The first column of the table describes the combinations of the
datasets used in each evaluation scenario and other columns contain the evaluation
results (EER for dev set with APCER and BPCER for eval set) for each of the
considered PAD system.

For instance, in the first row of Table 16.9, “voicePA (Train/Dev/Eval)”means that
the training set of voicePA was used to train the model of each evaluated PAD, the
development set of voicePA was used to compute the EER value and the correspond-
ing threshold, and this threshold was used to compute APCER and BPCER values
on evaluation set from the same voicePA database. In the second row of Table 16.9,
“voicePA (Train/Dev)→BioCPqD-PA (Eval)” means that training and computation
for development set were performed in the sameway as for the system in the first row
(hence, EER rate for dev set is the same as in the first row), but the evaluation was
done on the eval set of BioCPqD-PA database instead. This cross-database evaluation
simulates a practical scenario when a PAD system is built and tuned on one type of
data but is deployed, as a black box, in a different setting and environment with dif-
ferent data. The last cross-database scenario is when only a pretrained model is built
using some pre-existing data (a common situation in recognition), for instance, from
voicePA as in row “voicePA (Train) → BioCPqD-PA (Dev/Eval)” of Table 16.9, but
the system is tuned and evaluated on another data, e.g., from BioCPqD-PA.
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(a) VoicePA(T/D/E) (b) VoicePA(T/D) → CPqD(E) (c) VoicePA(T) → CPqD(D/E)

(d) CPqD(T/D/E) (e) CPqD(T/D) → VoicePA(E) (f) CPqD(T) → VoicePA(D/E)

Fig. 16.6 DET curves of calibrated scores of CNN-Deep system in different evaluation scenarios
(see the corresponding rows in Table 16.9)

The results in Table 16.9 demonstrate several important findings. First, it is clear
that CNN-based PADs perform significantly better compared to MFCC-based PAD.
This is especially evident in individual database evaluations, with “CNN-Deep” vari-
ants showingmore than 10 times lower error rates compared toMFCC-based PAD for
voicePA database and a few times lower for BioCPqD-PA database. Then, deeper
CNN models perform generally better compared to shallow variants. Also, using
CNN models as feature extractors coupled with a GMM classifier can be beneficial
and can lead to an increase in accuracy, though the increase is not as significant
compared to the larger computational resources GMM–CNN-based systems require.

To illustrate the performance of CNN-based systems in more detail, we also plot
detection error tradeoff (DET) curves for a “CNN-Deep” system in Fig. 16.6. You
can notice the large gap between the curves for dev and eval sets in Fig. 16.6b, e, when
both training and threshold tuning are performed on one database but evaluation is
done on another.

Althoughnone of the consideredCNN-basedPADsystemsgeneralizeswell across
different databases, it is also important to understand how they perform on different
types of attacks, including unknown attacks, for which the systems were not trained.
This analysis can help us understand which types of presentation attacks are more
challenging. In this scenario, PAD systems are trained, tuned, and evaluated on
the same database; only error rates are computed for specific attacks. Thus, we
computed APCER value separately for each type of attacks in eval sets of voicePA
and BioCPqD-PA database. Note that EER and BPCER values do not change, since
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Table 16.10 Per attack APCER results for eval sets of voicePA and BioCPqD-PA databases

Types of attacks GMM-MFCC CNN-Shallow CNN-Deep

VoicePA, laptop replay 74.19 20.12 8.94

VoicePA, phone replay 51.00 2.73 0.91

VoicePA, synthetic
replay

0.01 1.08 0.06

BioCPqD-PA, A2-5 71.42 3.93 28.91

BioCPqD-PA, A2-6 42.65 1.04 23.22

BioCPqD-PA, A2-7 77.01 0.00 0.31

BioCPqD-PA, A2-8 76.93 60.60 13.68

BioCPqD-PA, A3-5 73.96 1.59 4.41

BioCPqD-PA, A3-6 36.67 0.02 0.10

BioCPqD-PA, A3-7 68.72 43.87 73.67

BioCPqD-PA, A3-8 70.17 0.86 0.63

EER is computed on the whole development set and BPCER only measures the
detection of bona fide utterances.

The results for different types of attacks of the database detailed in Tables 16.2
and 16.3 are shown in Table 16.10. It is important to note that in case of voicePA,
the same attacks are present in all training, development, and evaluation sets (data
is split by speakers), so voicePA does not contain unknown attacks. However, in
BioCPqD-PA, different types of attacks are distributed into train, dev, and eval sets
differently (see Table 16.3), so that all attacks in eval set are basically unknown to
the PAD systems.

The results in Table 16.10 for voicePA database demonstrate that using high-
quality speakers as a replay device (see “voicePA, laptop replay” rowof the table) lead
to significantly more challenging attacks compared to attacks replayed with mobile
phone (see row “voicePA, phone replay”). Also, synthetic speech poses considerably
lesser challenge to PAD systems compared to the replay of natural speech. Also,
note that we did not consider different environments and ASV systems (different
microphones) for each of these types of attacks in voicePA;we only separate different
speakers and natural speech from synthetic.

The attacks in BioCPqD-PA, however, are formed by combining different pairs
of speakers (attack devices) and microphones of ASV systems, while influence of
environment and types of speech were excluded, since acoustically isolate room
was used and attacks were recorded by replaying natural speech only. Results in
Table 16.10 for BioCPqD-PA show the significance of the choice for both speakers,
with which attacks are made, and the microphone of the attacked ASV system. For
instance, the samemicrophone is used in attacks “A3-6” and “A3-7” (see attack details
in Table 16.3) but the difference in speakers can lead to drastically different detection
results, as “A3-6’ is easily detected by all CNN-based PAD systems, while all were
spoofed by “A3-7”. Similarly, the results of the CNN-Shallow and the CNN-Deep
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substantially vary across different pairs of speakers and microphones, e.g., for pairs
“A2-5”, “A2-6”, “A2-8”, and “A3-7”. These differences may be due to different
features learned by each neural network, as themodel learns the features directly from
the audio signal. Therefore, changing the neural network architecture will possibly
affect the features learned and consequently the results.

16.5 Discussion

Based on all presented experiments, it is clear that the question of the generalization
of PAD systems to completely unseen conditions (including different languages)
remains open. Such situation is more likely to happen in practical PAD systems,
where the system is trained on a given database and the attacks come from completely
unknown conditions.

Training a system with good generalization capability might require a larger and
more diverse database. Modern algorithms based on deep learning [38] approaches,
for instance, which have proven to beat standard approaches in different kinds of
tasks, such as speech recognition and computer vision, need massive amounts of
data to provide state-of-the-art performance. In cases when the acquisition of such
an amount of data is unfeasible, data augmentation strategies, such as [39], should
be considered.

Another point that leads to a controversy is the use of so-called mega-fusion
strategies. Although the fusion of many systems, sometimes more than a dozen
(e.g., the submitted System-1 is a fusion of 18 systems), usually leads to a better
performance, its practical use is questionable. Mega-fusion has also been frequently
used for the speaker recognition task, holding the current state-of-the-art results.
However, its computational burdenmakes it unacceptable in practical cases, specially
when system’s response time is crucial.

It is surprising to note that even CNN-based PAD systems do not generalize
well across databases, although, in the scenario when only a model is pretrained on
another database, CNNs are more stable and significantly more accurate compared to
PAD based on handcrafted features. However, if the system is both trained and tuned
(threshold is chosen) on the same database but is evaluated on another database,
CNN-based systems completely fail just as MFCC-based systems.

It is worth pointing out that the cross-database experiments for mega-fusion and
CNN-based systems were designed for an extremely mismatched situation, when
even the language is different between databases. It is expected that a PAD system
should not be sensitive to language mismatch, however, that might not be the case
in practice, as most speech features represent acoustic properties of speech that are
indeed affected by the language spoken. This has been a concern for the speaker
recognition community as well: the effect of language mismatch has been evaluated
in speaker recognition tasks within NIST SRE over the past few years.
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16.6 Conclusions

In this chapter, we provide an overview of the existing presentation attack detec-
tion (PAD) systems for voice biometrics and present evaluation results for selected
eight systems that are based on handcrafted features, fusion-based systems, and
CNN-based systems. We used several comprehensive publicly available databases:
ASVspoof from 2015 and 2017, AVspoof and its extension voicePA, as well as pro-
prietary BioCPqD-PA database. The cross-database evaluation results of the PAD
systems demonstrate that none of the state-of-the-art systems generalizes well across
different databases and data.

Presentation attack detection in voice biometrics is far from being solved, as cur-
rently proposed methods do not generalize well across different data. It means that
no effective method is yet proposed that would make speaker verification system
resistant even to trivial replay attacks, which prevents the wide adoption of ASV
systems in practical applications, especially in security-sensitive areas. Deep learn-
ing methods for PAD are showing some promise and may eventually11 evolve into
systems that can detect even unseen attacks.
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Chapter 17
Voice Presentation Attack Detection
Using Convolutional Neural Networks

Ivan Himawan, Srikanth Madikeri, Petr Motlicek, Milos Cernak,
Sridha Sridharan and Clinton Fookes

Abstract Current state-of-the-art automatic speaker verification (ASV) systems are
prone to spoofing. The security and reliability of ASV systems can be threatened
by different types of spoofing attacks using voice conversion, synthetic speech, or
recorded passphrase. It is therefore essential to develop countermeasure techniques
which can detect such spoofed speech. Inspired by the success of deep learning
approaches in various classification tasks, this work presents an in-depth study of
convolutional neural networks (CNNs) for spoofing detection in automatic speaker
verification (ASV) systems. Specifically, we have compared the use of three dif-
ferent CNNs architectures: AlexNet, CNNs with max-feature-map activation, and
an ensemble of standard CNNs for developing spoofing countermeasures, and dis-
cussed their potential to avoid overfitting due to small amounts of training data that is
usually available in this task. We used popular deep learning toolkits for the system
implementation and have released the implementation code of our methods publicly.
We have evaluated the proposed countermeasure systems for detecting replay attacks
on recently released spoofing corpora ASVspoof 2017, and also provided in-depth
visual analyses of CNNs to aid for future research in this area.
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17.1 Introduction

The ability to authenticate a person’s identity through their speech is now a reality
after recent years of advances in automatic speaker verification technology. With
a growing range of applications in security, commerce, and mobile, ASV systems
are required to be very secure under malicious attacks and expected to thwart unau-
thorized access. In order to reach the level of mass-market adoption, ASV systems
should target low false positive rate (not easily fooled) and, therefore, the technology
needs to be capable of thwarting every possible spoofing attempt.

Attacks to gain illegitimate acceptance from an ASV system can be performed
by tampering with the enrolled person’s voice. The four major threats that present a
real threat to ASV systems are impersonation [1], voice conversion [2, 3], speaker-
adapted speech synthesis [4, 5], and replay attacks. Among these attacks, imperson-
ation is believed to be easiest to detect since it aims to mimic the prosodic or stylistic
cues rather than those aspects related to human speech production [6]. A voice con-
version system (which converts one speaker’s voice to the target user’s speech) and
a text-to-speech (TTS) system (which involves generating synthetic speech) are the
two most sophisticated attacks to date, requiring specific expertise and technology
for implementation. The vulnerability of an ASV system against voice conversion
and TTS has been the subject ofmany studies in the past including the first Automatic
Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof 2015).
These attacks assume that the spoofing signal is injected directly into the verification
system bypassing its microphone, which is referred to as logical access attack [7].
Replay attacks referred to as presentation attack or physical access attack [8], on
the other hand, can be performed with ease since it is uncommon for an attacker to
have access to the system’s internal software. In a typical scenario, a fraudster plays
back a recorded utterance, which can be obtained directly from the real person or
artificially produced speech using TTS or voice conversion systems to a microphone
of the ASV system using high-quality audio equipment [9–11].

In this work, we aim to develop generalized countermeasures for biometric anti-
spoofing research by focusing on developing back-end classifiers using convolutional
neural networks (CNNs) to detect spoofing attacks. Specifically, our focus is on
replay attacks detection using ASVspoof 20171 corpus. An investigation on back-
end classifiers will be beneficial in addition to handcrafted feature studies when
developing countermeasures.

A new trend emerging from the ASVspoof 2017 challenge is the use of an end-to-
end-representation learning framework based on deep learning architectures. Specif-
ically, the success of CNNs in image classification and recognition tasks has inspired
many studies for detecting spoofed speech from genuine speech. For example, light
CNN and the combined CNN with recurrent neural network (RNN) architectures
were shown to yield equal error rate (EER) between 6 and 11% in the evaluation
set of ASVspoof 2017 [12]. Also, other variants of CNNs such as residual network
(ResNet) were also shown to achieve promising results [13, 14]. Interestingly, some

1http://www.asvspoof.org/.

http://www.asvspoof.org/
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of the best performing systems used a spectrogram as an input to CNNs rather than
handcrafted features or other features’ selection approaches.

Although advanced classifiers such as CNNs can deliver good performance on
the classification tasks, it has been shown from the challenge results that model
overfitting has a strong impact on performance of submitted systems when evaluated
on unseen data. This is often caused by a lack of training data rather than ineffective
feature representation when training a deeper network [15–17]. Without the ability
to reproduce and verify the state-of-the-art results, unreliable comparisons can be
made which make it difficult to focus on a fruitful research direction. In this case, it
is not, for instance, clear whether the use of similar or better feature representation
or acoustic modeling would offer the best results for the detection. To this end, we
assume that the well-trained networks—irrespective of whether they are trained on
images or acoustic spectrograms’ input—can be used as a feature extractor, and the
classification is accomplished by means of the support vector machine (SVM).

In this work, we used pretrained AlexNet [18], a convolutional neural network
(CNN) trained on more than 1 million pictures, which can classify images into
one thousand categories. From this perspective, a new benchmarking criterion is
proposed, which can facilitate a systematic assessment of automatic feature learn-
ing and the effectiveness of conventional handcrafted feature methods for detecting
spoofing attacks. Having developed a general indication of baseline performance, we
can then focus on the investigation of back-end classifiers with a reasonable assump-
tion that the learned feature descriptor and classifier can capture patterns in the data,
presumably with no model overfitting. For this consideration, we implemented the
state-of-the-art light CNN with max-feature-map (MFM) activation function that
allows for the reduction of CNN parameters and comparison of such architectures
with an ensemble of CNNs to improve the accuracy of prediction. These twomethods
are assumed to avoid overfitting problem.

In summary, the three main contributions of our study are as follows: (1) satis-
fying the reproducibility aspects that allow other researchers to apply state-of-the-
art methods and efficiently build upon the previous work. Hence, we implemented
the proposed algorithms in this paper using two popular open-source deep learn-
ing frameworks: Tensorflow [19] and PyTorch [20]. We emphasize “reproducibility”
aspects of the proposed technologies evaluated in this paper; (2) investigating CNNs
architectures for spoofing detection and methods to address overfitting the model;
and (3) understanding and visualizing the CNNs to gain an insight of common error
types when distinguishing genuine speech from spoofed speech and how they com-
pare. Evaluation of the proposed techniques is performed on ASVspoof 2017 corpus
and compared to so far best known results.

The rest of paper is organized as follows: Sect. 17.2 discusses related work.
Section17.3 describes the proposed architecture of the deep learning framework
for replay attack detection. Section17.4 reports the experimental setup and results.
Section17.5 discusses the key findings. Finally, Sect. 17.6 concludes the paper.
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17.2 Related Work

Our objective in this paper is to investigate efficiency of currently very popular deep
learning architectures (especially CNNs) for the voice spoofing detection problem.
CNNs, exploited either as a feature extraction technique or as end-to-end models,
have shown large potential in many other tasks, such as image classification or face
recognition. ASV anti-spoofing tasks have been therefore largely motivated by those
architectures, since the input representation to the model can be given in a form of
acoustic spectrogram (2-D representation), similar to image processing tasks [16].

In terms of recent contributions to theASV anti-spoofing task, the proposedworks
can be divided into two problems: (a) finding appropriate feature extraction methods
(front-end), and (b) final classifiers (back-end).

17.2.1 Front-End

The selection of proper features for parameterizing the speech signal has beenwidely
investigated and is motivated by works from automatic speech and speaker recogni-
tion tasks. The standard method for analyzing sound signals is to perform short-time
Fourier transform (STFT), assuming that the signal is locally stationary (i.e., the
statistics of the process are unchanging across the small length of a window). How-
ever, this raw time–frequency representation of a signal is often assumed to contain
redundant information (due to their high dimensionality) and needs to be further pro-
cessed to obtain the best signal representation depending on the applications. Often,
this involves characterizing the spectra by means of a filter bank method, where each
coefficient represents the signal’s overall intensity over the frequency range of inter-
est. For example, Mel-frequency cepstral coefficients (MFCCs) use a nonuniform
set of frequency ranges (or bands) in a mel scale to obtain coefficients that produce
a better discrimination of speech signal. Various representations of audio signals
derived from STFT include measuring the frame-by-frame change in the spectrum
in the case of spectral-flux-based coefficients [21], or capturing centroid frequencies
of subbands in the case of subband spectral centroid-based features [22]. Also, there
are other time–frequency analyses in the literature that do not exploit STFT such as
constant Q transform (CQT) [23] and wavelet transform (WT) [24].

The features for anti-spoofing can be broadly classified into two groups, which are
either magnitude based or phase based. Previous studies have demonstrated that both
the magnitude and phase spectrums, extracted from the Fourier transform, contain
detailed speech information that is useful for spoofing speech detection [25]. Recent
studies by Sahidullah et al. [26], which benchmarked several feature sets for charac-
terizing real and synthetic speech, found that a filter bank used in the computation of
cepstral features could have significant effects on the performance of anti-spoofing
systems. Specifically, linear-frequency cepstral coefficients (LFCCs) where the fil-
ters are spaced in linear scale [27], and inverted Mel-frequency cepstral coefficients
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(IMFCCs) where the filters are linearly spaced on an “inverted-Mel” scale [28], have
been found to perform reasonably well compared to other filter bank features. Other
approaches, which employ magnitude information including log magnitude spec-
trum and residual log magnitude spectrum features [26, 29], have also been shown
to be able to capture important artifacts of the magnitude. The features derived from
the phase spectrum are also popular for synthetic speech detection because spoofed
speech does not retain natural phase information [7, 30]. Phase-based countermea-
sures used for anti-spoofing include group delay (GD) [31] andmodified group delay
(MGD) [31], cosine-phase function [26], and relative phase shift (RPS) [30]. How-
ever, the phase-basedmethods fail to detect spoofed speechwhen a littlemodification
is made to the phase of natural speech, such as the unit selection method, where nat-
ural speech signal is preserved outside the concatenation points when synthesizing
speech [30].

17.2.2 Back-End

The ASV anti-spoofing baseline system has proposed to apply a conventional GMM
classifier. In this case, all the genuine speech segments were used to train a genuine
speaker model and the spoofed recordings were used to train the spoofed model.
Traditional log-likelihood ratio (LLR) per frame is then calculated and summed, and
normalized for the whole test utterance as criterion of assessment.

The current trend in acoustic modeling is to exploit deep learning architectures as
they have shown tremendous capabilities in a variety of machine learning tasks. The
first approaches in ASV anti-spoofing task have focused on fully connected feed-
forward architectures combined with the proposed front-ends [32–35]. For spoofing
detection, a deep neural network (DNN) is typically employed as a classifier to
estimate the posterior probability of a particular class given the input utterance. Dif-
ferent types of handcrafted features have been used with DNN such as RPS and
log-filter-bank features [27], the Teager Energy Operator Critical Band Autocor-
relation Envelope (TEO-CB-Auto-Env) and Perceptual Minimum Variance Distor-
tionless Response (PMVDR) features [36], and dynamic acoustic features [37, 38].
However, the performance gain of DNN systems is marginal compared to GMM
classifiers, and the systems have difficulties when detecting unknown attacks [39].

As an alternative, DNN can be incorporated into spoofing detection as a feature
extractor to extract deep features where the activations of the hidden layers are used
as features to train other classifiers (i.e., GMM and SVM) [32, 34, 39–41]. For
example, [40] investigated deep features extracted from DNN and RNN, and found
that deep features’ combination offers EER of almost 0.0% on attacks S1 to S9 but
fail on the S10 attack (a very efficient spoofing algorithm, based on MARY TTS
system [7]) using the ASVspoof 2015 corpus. Features extracted from deep archi-
tectures including the DNN, CNN, and bidirectional long short-term memory RNN
(BLSTM-RNN) are also shown to perform better than the baseline features for spoof-
ing detection under noisy and reverberant conditions [34]. To enhance the robustness
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of deep features and avoid overfitting, several training strategies can be employed
such as multi-condition training, noise-aware training, and annealed dropout train-
ing [34]. In [39], deep neural network filter bank cepstral coefficient (DNN-FBCC)
features are introducedwhich outperform both handcrafted andDNN-based features.
To produce these features, a non-negative constraint and a band-limitingmaskmatrix
are applied to the weight matrix between the input layer and the first hidden layer
where the learned weight matrix can be considered as a special type of filter bank.
The DNN-FBCC features are then extracted from the activation of the first hidden
layer of a trained DNN.

Addressing the sensitivity of initial DNN parameters is a crucial point to reach
better performance over the GMM baseline. One of the proposed solutions applies
batch normalization and dropout regularization on each hidden layer implemented
in a standard backpropagation algorithm. DNNs are usually trained with a softmax
output layer, allowing to classify input speech into two classes [27].

CNN architectures are similar to the conventional feed-forward neural networks,
but they consist of learnable shared filter weights which exploit local correlation
of the input in two-dimensional space. This allows CNNs to consider its input as
an image and learn the same patterns in different positions of the image, which is
lacking in DNN architectures due to its fixed connections from input to the next
layer. Other approaches have considered ResNet architectures, which allow to train
deeper neural networks, while avoiding gradient vanishing problems [13, 14, 42].
Recent works were motivated by findings on fairly similar tasks focused on image
recognition. In general, ResNets allow deeper networks to be trained, resulting in
models’ outperforming conventional DNN architectures [43].

Some recent studies in anti-spoofing suggest that raw features with CNNs [35,
44] can perform competitively with the feature engineering approaches that are often
trained with GMM as a classifier. Hence, both features and classifiers are learnt
directly from the raw signal in an end-to-end fashion. The comparison of different
CNN architectures reveals that a deeper CNN network attains better performance
than a shallow network. However, CNN-based systems do not generalize well across
different databases [41]. Incorporating longer temporal context information is also
shown to be beneficial for playback spoofing attack where two special implemen-
tations of RNNs, the long short-term memory (LSTM) and the gated recurrent unit
(GRU), outperform DNN model [45].

The fusion of scores from individual systems is one of the mechanisms allowing
the combination of different modeling architectures, usually resulting in significantly
improved performance over individual systems. In the anti-spoofing context, score
fusion allows different architectures or features excelling only in detecting specific
attacks to work collectively to thwart multiple forms of spoofing attacks. In a typical
scenario, first, the scores from multiple systems are normalized to bring them into a
commondomain since the scores from individual systemsmay fall in different ranges.
Finally, the scores can be fused using a simple mean function or via a classifier-
based solution where score fusion is considered as a classification problem (i.e.,
discriminate genuine and spoof scores) [46]. For the latter, a logistic-regression
calibration (for normalizing the scores) and fusion can be employed to give specific
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weights {wk} to each class in the form s f used = w0 + w1s1 + · · · + wK sK , where
s f used denotes the fused score, {sk} are the base classifier scores, and w0 indicates a
bias term [31]. For DNN-based classifiers that use the softmax function at the output
layer, and the number of outputs is the same across the classifiers, the score ranges
will be the same and comparable. Thus, score fusion can be implemented through
a weighted combination of scores. The weights can be optimized using a validation
set.

17.2.3 Summary of Previous Work

One recent successful countermeasure for anti-spoofing is based on the constant Q
cepstral coefficients (CQCCs) [47, 48]. CQCC features are extracted with the CQT
analysis of speech. The CQCC has been shown to perform competitively better than
other features in utterance verification [49] and speaker verification tasks [26]. How-
ever, the performance of CQCC for detecting replay attacks has not been thoroughly
investigated. A good countermeasure approach must generalize to detect spoofed
speech for any given attack, regardless of text content.

Considering different distortions are introduced by attacks that are different in
nature, one effective strategy would be to build specialized countermeasures for
each kind of attack, rather than to find a single generalized countermeasure that
behaves well for different kinds of attacks. In fact, one finding from the ASVspoof
2017 challenge is that the CQCC features with a standard Gaussian mixture model
(GMM) classifier do not perform very well when detecting the replay version of
speech [50–52]. This means that onemay need to focus on finding salient features for
replay attacks. However, one disadvantage is that these features may not be optimal
for the subsequent classification tasks and the use of a sophisticated classifier will
not help to improve the anti-spoofing system performance.

In order to offer some context on the difficulty of comparing results between fea-
ture engineering and back-end modeling approaches, we provided examples from
the experimental analysis from multiple papers which were published after the chal-
lenge. The official CQCC GMM baseline performance obtained an EER of 30.6%
using the training data alone [50]. Moreover, one paper reported that the use of resid-
ual networks (i.e., very deep networks used in the field of computer vision) achieved
an EER of 18.79%with CQCC and even better results are obtained withMFCC input
(with an EER of 16.26%) [13]. Another work, which presents comparison of differ-
ent features, revealed that CQCCs outperform MFCCs (17.43 vs. 26.13%) using a
simple GMM classifier, albeit using more training data from external source [52].
To add to the confusion, another paper showed that the use of CQCC with GMM
outperforms a residual network classifier [14]. While it is not possible to directly
compare all published results as the different training regimes (e.g., number of fil-
ters in MFCCs, number of hidden layers, choice of optimization algorithms) affect
the results significantly, this highlights that effective methods should be investigated
when incorporating different handcrafted features into deep learning architectures
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and avoidmodel overfitting [50]. In this case, the use of CNN as a stand-alone feature
extractor will be beneficial since it does not necessarily depend on a specific feature
representation.

Currently, a large body of studies in the anti-spoofing literature focuses on coun-
termeasure features with the aim of finding the best signal representations for charac-
terizing genuine speech and spoofed speech. Even though some of these features are
successful for discriminating between genuine and spoofed speech, prior information
of spoofing attacks is often taken into account when designing the countermeasures,
which is not realistic in practice. Meanwhile, machine learning techniques do not
necessarily require an understandable representation as their input, since they have
different requirements from what is being perceived by the human eye. A spectro-
gram contains high-dimensional information, such asmessage, speaker, channel, and
environment. Thus, further processingmay discard some important characteristics of
the sound signal which otherwise would have been preserved in the spectrogram. In
many recent classification tasks, the use of spectrogram or time-domain waveforms
with sophisticated classifiers (i.e., CNNs) can produce a competitive performance
compared to systems that utilize an efficient feature representation for their input [44].
Therefore, the same strategy (using a spectrogram) will be adopted for developing
the spoofing detection systems in this paper.

17.3 Convolutional Neural Networks for Voice Spoofing
Detection

This section presents the main contributions of this paper related to analysis and
employment of convolutional neural networks (CNNs) for voice spoofing detection.
Overview of results on ASVspoof 2017 challenge has indicated good performance
of various CNN architectures [12–14]. In fact, the best performing system published
on 2017 ASVspoof data is built around CNNs, exploiting 2D spectrogram derived
from input audio. This work has been partially motivated by success of CNNs on
various image classification tasks.

This section first provides a theoretical background for CNN, and then in detail
describes selected architectures. More specifically, we will first focus on the CNN
architecture based on the use of MFM, applying Max-Out activation. As this paper
strongly targets the reproducibility aspects, we have re-implemented the proposed
MFM architecture using two open-source deep learning platforms (TensorFlow and
PyTorch). MFMCNNwill represent a benchmark to the following experiments. Fur-
ther, this section focuses on application of transfer learning, enabling a deep learning
model trained for image classification to be exploited for detection of spoofing attacks
from voice. Finally, we propose novel CNN-based models requiring much less com-
puting resources than the benchmark systems, offering competitive performance.
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17.3.1 Feature Matrix Construction

A unified time–frequency shape of features is created for the input data since the
duration of each utterance is not the same in ASVspoof 2017 dataset. The first 400
frames are selected (5 s for window size = 16ms, step size = 8ms). Hence, we
concatenate data for the utterance which is less than 400 frames or select the first
400 frames of consecutive data and truncate the rest for utterance which is more
than 400 frames. As a final step of feature matrix construction, mean and variance
normalization are applied on the log power spectrum. We use normalized time–
frequency features as an image representation as input to the CNNs. Two different
input features are investigated by setting different number of filters in the STFT
analysis: (1) the high-resolution features (768 × 400) and the low-resolution features
(128 × 400).

17.3.2 Convolutional Neural Networks Classifier

CNNs have been extensively applied in computer vision tasks where they are capable
of processing large amounts of training data [16, 53, 54]. These networks consist
of convolution layers, which compute convolutional transforms, followed by non-
linearities and pooling operators that can be stacked into multiple layers, making
them deep. The CNNs can be trained in end-to-end fashion and used for classifica-
tion directly, or they can also be used to extract features which are then fed into a
classifier such as an SVM. The main building block of convolutional layers is a set
of learnable filters or kernels. Given an input image, each filter that covers a small
subregion of the visual field (called a receptive field) is convolved (by sliding the
filter) across the entire image, which results in the feature map. This filter is typi-
cally constrained to use the same weights and bias that allow the same features to be
detected but at different positions (which also reduce the number of parameters). The
kth feature map output can be computed for the input patch xi j centered at location
(i, j) (for linear rectifier nonlinearities) as [55]

f ki, j = max(wT
k xi, j , 0), (17.1)

where (i, j) is the pixel index. In a typical configuration, a number of filters are
employed where each of them will produce a separate feature map that collectively
forms a rich representation of the input data.

One important extension of CNNs is the use of Network in Network (NiN) struc-
ture to enhance the ability of CNNs to learn feature representation. In the convolution
layer, the convolved feature is obtained by sliding a filter over the input image and
evaluating the dot product between a filter and the receptive field (equivalent to the fil-
ter size) location. This operation is equivalent of inputting feature vectors (i.e., small
patch of the image) to a linear classifier. NiN replaces the linear filter for convolution
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with a multilayer perceptron (MLP) consisting of multiple fully connected layers
with nonlinear functions. Therefore, a linear classifier has been replaced with tiny
neural networks. The micro-network (i.e., MLP) used in NiN is defined by 1 × 1
convolutions in spatial domain in the CNN architecture. This is often followed by
a pooling process. The resulting CNN is called NiN since the filter itself is a net-
work. As a result of incorporating the micro-networks, the depth and subsequently
the learning capacity of the network are increasing. This structure delivers better
recognition performance compared to the classic CNN and at the same time reduces
the total number of parameters that would have been required to design CNNmodels
at similar depth.

In the next sections, we will describe the three CNN architectures which are
investigated in this study: AlexNet, light CNNwith max-feature-map activation, and
a standard CNN architecture, because of their notable performance for solving image
classification and recognition tasks.

17.3.3 AlexNet

AlexNet was one of the first deep networks to achieve a breakthrough in computer
vision by winning the world-wide ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) competition in 2012. The success of AlexNet rocked the computer
vision community since it was the first time that a deep network was used to solve the
problem of object detection and image classification at a large scale. After the compe-
tition, an enormous interest using deep learning to solve machine learning problems
has catapulted the popularity of the CNN as the algorithmic approach to analyzing
visual imagery. The network has eight layers where the first five are convolutional
which are followed by three fully connected layers. For image recognition, AlexNet
used rectified linear unit (ReLU) as the activation function, instead of Sigmoid which
was the earlier standard for traditional neural networks. In addition, the cross-channel
normalization is applied by creating competitions to the neuron outputs computed
using different kernels [16]. The AlexNet architecture,2 which is employed in this
paper, is shown in Fig. 17.1 Since the pretrained AlexNet model requires the image
size to be the same as the input size of the network, the spectrogram is produced
such that it can be fed into the model (a three-channel input is created by replicating
the spectrogram image three times and then stacked together).

17.3.4 Implementation for Reproducibility

The immense success and popularity of DNN-based modeling architectures have
given rise to many toolkits to simplify training and extension of commonly used

2https://au.mathworks.com/help/nnet/ref/alexnet.html.

https://au.mathworks.com/help/nnet/ref/alexnet.html
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Fig. 17.1 AlexNet architecture [16]2

Table 17.1 Given below is the list of software used to implement various components in our system
for training and testing

Module Software Version

Feature extraction Matlab R2017b

DNN training PyTorch (via Miniconda) 0.2.0

DNN training TensorFlow r.1.4.1

neural network architectures. TensorFlow (fromGoogle), PyTorch (from Facebook),
Microsoft Cognitive Toolkit (CNTK), Keras, etc. are among the commonly used
libraries for DNN modeling. They differ in training speed, interface, features, flexi-
bility, extensibility, andmost critically, implementation of the underlying algorithms.
These differences can lead to different performances with the same system configu-
ration on the same data. We demonstrate this result in this paper with two toolkits:
Tensorflow3 and PyTorch.4 First, the system presented in Table17.1 and Sect. 17.4.2
of [12] is implemented in both libraries and their performances are compared.

This system contains five convolutional layers followed by two fully connected
(FC) layers. Each convolutional layer (except for the first layer) is implemented
through a NiN architecture. Max pooling is applied at the end of each convolutional
layer. ReLU nonlinearity is used for the FC layers. The use of max-feature-map
(MFM) to suppress neurons based on competing activations brings the novelty to
this network’s architecture. Functionally, it is equivalent to a max pooling operation

3https://www.tensorflow.org.
4https://www.pytorch.org.

https://www.tensorflow.org
https://www.pytorch.org
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across filter outputs. The max pooling is done between two adjacent filters. An
element-by-element maximum is applied to obtain one filter output from two input
filter activations. Specifically, given an input tensor x ∈ R

h×w×n , theMFMoperations

perform yki j = max(xki j , x
k+ n

2
i j ), where the channel of the input is n, 1 ≤ i ≤ h, 1 ≤

j ≤ w [56]. Thus, we use 3D max pooling feature when such an implementation is
accessible as is the case with PyTorch. In the TensorFlow implementation, the MFM
function was explicitly implemented. The MFM operation allows CNN to perform
feature selection of features and at the same time reduce its architecture [56]. Adam
algorithm is used for optimization with a learning rate of 0.0001. Dropouts are not
applied on the convolutional layer (it is not immediately clear from [12] if dropout
was applied on convolutional layers). A dropout rate of 0.7 is used on the first hidden
FC layer. Weights are initialized using Xavier initialization. In [12], the CNN is used
as a feature extractor. The features obtained from this CNN are passed through a
Gaussian classifier. In our experiments, we did not observe any improvement when
applying such a classifier. Thus, our implementation does not include such a module.
We consider the output of the CNN directly for classification of genuine and spoof
recordings.

Next, in order to ensure the reproducibility of our systems,we ensure that our exact
training environment is reproducible on an x86_64 Linuxmachine using Anaconda.5

In Table 17.1, we list the software used at each stage in our systems. In PyTorch, all
optimizations related to multithreading are switched off as they may lead to unex-
pected inconsistencies during training. This procedure can lead to slower training
but will ensure reproducibility of system performance.

17.4 Experiments

17.4.1 Datasets

The accuracy of our countermeasure systems for replay attack detection is evaluated
on RedDots Replayed database distributed with the ASVspoof 2017 challenge [50].
The dataset contains ten fixed-phrase sentences and recorded from six recording
environments. A detailed information about the corpus derived from the re-recording
of theRedDots database is available in [50]. Theproposed systems are trainedwith the
training subset only, and the results are reported on the development and evaluation
utterances. The statistics of the ASVspoof 2017 is described in Table17.2.

5https://anaconda.org/anaconda/python.

https://anaconda.org/anaconda/python
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Table 17.2 Number of speakers, genuine, and spoof utterances in the training, development, and
evaluation sets [50]

Subset #Speakers #Utterances

Genuine Spoofed

Training 10 1508 1508

Development 8 760 950

Evaluation 24 1298 12008

17.4.2 Experimental Setup

The input to CNN is a spectrogram of the 16kHz audio signal. The spectrogram
features are extracted from speech frames with frame size 16 ms using a Hamming
window function and of 50% overlap. Features with different frequency resolutions
are produced by carrying out the STFT analysis with the N-point DFT. That is N
set to twice of the specified resolution (i.e., N = 256 for 128 × 400 features). The
speech frame is padded with trailing zeros to length N if the number of samples
is less than N. The resolution of the spectrogram varies for different setups. This
was tuned to obtain the best performance for each setup. For the CNN using MFM,
the resolution was 768 × 400. That is, there are 768 frequency bins for each frame
of speech and the number of frames for every recording is 400 irrespective of the
length of the audio. Audios shorter than 400 frames were data-padded to obtain the
necessary length. Audios longer than 400 frames were truncated to 400 frames. The
resolution for the proposed ensemble CNN system is 128 × 400. Since the first
layer of AlexNet requires input images of size 227 × 227 × 3, we created a custom
spectrogram image with 227 frequency bins (STFT analysis is carried out with 454
DFT bins). The number of audio frames is fixed to 227 frames irrespective of the
length of the audio. A three-channel input is created by replicating the spectrogram
image three times and then stacked together.

The standard CNN consists of three convolutional layers followed by two fully
connected (dense) layers.We use a receptive field of 3 × 3 followed by amax pooling
operation for every convolutional layer, where ReLU is employed as an activation
function. Dropout is applied to every convolutional layer and the subsequent fully
connected layer to address overfitting. The network is trained using RMSProp opti-
mizer [57] and cross-entropy as the cost function. Such simple CNN architecture is
essentially a reduced version of AlexNet, where we employ three convolutional lay-
ers instead of five, and two fully connected layers with a reduced number of neurons
(256 instead of 4096).

In order to do classification using SVM from AlexNet, the feature vectors are
extracted from the activations on the fully connected layer (the second fully connected
layer after convolutional layer). This yields 1 × 4096 feature vectors and then fed to
SVMclassifier. For the transfer learning process, we replaced the last fully connected
layer in the pretrained AlexNet (originally configured for 1000 classes) with a new
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Table 17.3 Differences in the variants of CNNs implemented in this work. Note that AlexNet is a
pretrained network

Parameter/System Light CNN Standard CNN AlexNet

Number of CNN
layers

5 3 5

Training data ASVspoof 2017 ASVspoof 2017 Pictures

Input feature
dimension

128 × 400 or
768 × 400

128 × 400 or
768 × 400

227 × 227 × 3

Number of output
nodes

2 2 1000

Optimization
algorithm

Adam RMSProp Gradient descent

Learning rate 0.0001 0.001 0.01

Back-end classifier None None SVM

Ensemble averaging No Yes No

Implementation toolkit PyTorch, TensorFlow PyTorch, TensorFlow C++/CUDA

layer with two output nodes (genuine vs. spoof). The network is then retrained with
the maximum number of epochs set to 10 and mini-batch size of 32. We usedMatlab
implementation of SVM, fitcsvm, to train the SVM classifier using a linear kernel
function.

In Table17.3, we summarize the difference in the three CNN architectures pre-
sented. Source code is available at https://github.com/idiap/cnn-for-voice-antispoofing.

The performance evaluation metric for replay attack detection is reported in terms
of equal error rate (EER) as suggested in the ASVspoof 2017 evaluation plan. First,
the output score of the proposed architecture is computed from the estimated posterior
probabilities which are transformed into a log-likelihood ratio [27, 58],

LLR = log p(genuine|X) − log(1 − p(genuine|X)), (17.2)

where X is the feature vector and p(genuine|X) is the output posterior with respect
to the genuinemodel. EER corresponds to the threshold θEER at which the false alarm
Pf a(θEER) and the Pmiss(θEER) are equal. The Pf a(θ) and Pmiss(θ) are defined as

Pf a(θ) = #{spoof trials with score > θ}
#{Total spoof trials} ,

Pmiss(θ) = #{human trials with score ≤ θ}
#{Total human trials} .

https://github.com/idiap/cnn-for-voice-antispoofing
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17.5 Results and Discussion

In this section, we present the results of our experiments performed on the dif-
ferent classifiers considered. As mentioned earlier, experiments are conducted on
the ASVspoof 2017 dataset. All systems except AlexNet are trained, validated, and
tested in the benchmark condition with training data, development data, and eval-
uation data, respectively. First, the results on development and evaluation data are
presented. Next, a visual analysis of the CNN activations is presented that help better
analyze the discriminative properties of the spectrogram that aid the classification of
genuine and spoof speech.

17.5.1 Results on Evaluation Sets

Table17.4 presents the results of the study on the evaluation set. First, wewill discuss
the results when training data alone are used to develop the systems. The use of a
pretrained AlexNet network as a stand-alone feature extractor without retraining it,
where the extracted features are fed into an SVM, yielded an EER of 24.27% on
the evaluation set. This result is better than the baseline system, provided by the
ASVspoof 2017 organizer, and shows that developing handcrafted features for anti-
spoofing is not trivial. In fact, the network which never sees a spectrogram during
training is capable of discovering features that are important for classification. If we
consider a CNN as a pattern detector (consisting of a set of learned filters), unknown
inputs which have different characteristics will result in different activations, and at
the same time, the same detector will output similar activations for inputs which are
considered to have similar representations. Hence, a linear classifier such as an SVM
can be employed to perform classification using the CNN’s extracted feature vectors.
Using the transfer learning approach where we replace the output layer with a fully
connected layer with two outputs (i.e., spoof and genuine), we achieve an EER of
20.82% (a relative improvement of 14.2%). For a comparison, using deep features
extracted from the output of the first fully connected layer of a 3CNN+2FC model
(256 neurons) with an SVM classifier, we achieve an EER of 15.11 and 11.21% on
the evaluation and development sets, respectively.

Our implementation of a CNNwithmax-feature-map layers (5CNN+2FC+MFM)
performs better than AlexNet with an EER of 17.60%. However, the performance
gain obtained is lower compared to the baseline LCNNFFT reported in [12]. One
significant reason in the performance gap between the expected and the obtained
result is that the training never reached the reported performance on the development
set. This may happen when the optimizer is stuck in local minima. This problem is
exaggerated when training with TensorFlowwhere the best error rate on the develop-
ment data was only 18.7%. Interestingly, the number of epochs required in the case
of PyTorch and TensorFlow vary significantly. The former required more than 30
epochs for convergence, while the latter required only 4. Training with more epochs
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Table 17.4 EER [%] on the ASVspoof 2017 database

Individual system Toolkit Input size Dev dataset
(with only
train)

Eval dataset
(with only
train)

Eval dataset
(with
train+dev)

Baseline CQCC
GMM [50]

Matlab 90 × 1 10.35 30.60 24.77

Baseline
LCNNFFT [12]

Not
mentioned

864 × 400 4.53 7.37 Unknown

AlexNet (as a feature
extractor), SVM +
transfer learning

Matlab 227 × 227 ×
3

14.23 24.27 23.93

Matlab 227 × 227 ×
3

9.61 20.70 16.43

5CNN + 2FC
+ MFM

PyTorch 768 × 400 9.0 17.60 16.80

TensorFlow 768 × 400 18.70 20.36 18.08

3CNN + 2FC,
ensemble of 5
models

PyTorch 128 × 400 8.42 15.79 15.18

TensorFlow 128 × 400 9.93 12.60 11.10
PyTorch 768 × 400 16.71 20.57 18.90

TensorFlow 768 × 400 16.07 18.16 15.80

3CNN + 2FC
(as a feature
extractor), SVM

Tensorflow 128 × 400 11.21 15.11 12.04

in TensorFlow did not improve results on the evaluation set. This reiterates our initial
argument over the necessity to evaluate a given architecture on multiple toolkits.

The best performance is achieved by performing an ensemble averaging on the
output probabilities provided by several models. In this case, five different models
in standard CNN configurations described in Sect. 17.4.2 are trained with different
weight initializations. The fused systemobtained anEERof 12.60%withTensorFlow
and 15.79% with PyTorch, thereby benefiting from the larger generalization power
compared to the best single-model system on the evaluation data.

The use of pooled data (combined training and development data) improves the
performance of the investigated classifiers. However, the performance gain var-
ied across different systems, where substantial improvements are obtained using a
768 × 400 input resolution. The ensemble of five models (TensorFlow 3CNN+2FC)
achieved the best result with an EER of 11.10%.

The best performance obtained by a single system, for example, yields an EER
of 14.28% on the eval set (a TensorFlow 3CNN+2FC model (128 × 400)). To illus-
trate the impact of averaging multiple predictions from different models trained with
different weight initializations, we calculated the EER for each individual system (a
TensorFlow 3CNN+2FC system), and computed the mean and the standard error of
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Fig. 17.2 Mean EER (%)
with standard error bars on
dev and eval sets using
TensorFlow 3CNN+2FC
models (128 × 400)

Fig. 17.3 Score fusion of n
independently train CNNs on
the eval set using
TensorFlow 3CNN+2FC
models (128 × 400)

the mean (standard deviation divided by the square root of the number of systems).
The average EER including the error bars for both eval and dev sets is illustrated
in Fig. 17.2. As mentioned in Sect. 17.2.2, the score-level fusion technique can be
employed to improve the system performance over an individual system instead of
averaging the EER. Figure17.3 shows themean-based fusion of nmodels on the eval-
uation set. The figure reveals that training several models and fusing the scores result
in improved system performance. However, using a higher resolution input hurts the
performance. Using a higher number of frequency bins for computing spectrogram
is not effective for discriminating genuine and spoof speech without substantially
modifying the time–frequency feature representations. In order to provide further
analysis of the results and the interpretation of the model, the next section presents
visual explanations to identify common error types and proposes possible research
directions for developing robust CNN-based countermeasures.
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17.5.2 Visualization

Despite the potential of convolutional neural networks in classifying spoofed and
genuine speech, it still offers little insight into its operation and the behavior of this
complex model. When the CNN is trained for classification, it gradually transforms
the image input (using sets of convolution and pooling operations) into a high-level
representation of its input. In a typical CNN architecture, the fully connected layer (a
multilayer perceptron with the softmax as the activation function) is placed after the
convolutional layers for classifying the input image into multiple possible outputs
(classes) based on the training labels. Hence, a CNN can be regarded as a feature
extractor, which extracts useful features as it learns the parts that are recognizable
between classes.

To gain insight into what the network has learnt, we visualized the features from
the trained model (using a TensorFlow implementation of 3Conv+2FC architecture)
once the training was complete. Specifically, we extracted 1 × 256 feature vectors at
the output of the first convolutional layer (after ReLU nonlinearity) and embed this
data into a two-dimensional space using t-SNE algorithm [59]. The t-SNE plots are
presented in Fig. 17.4. The high-dimensional features (before t-SNE are applied) are
shown along with their corresponding spectrograms for genuine and spoof classes
in Figs. 17.5 and 17.6, respectively. Similar patterns can be observed from feature
vectors in the same class.

In our case, each point in the scatter plot of Fig. 17.4 (left) represents an evaluation
utterancewhere nearby points represent similar objects in the high-dimensional space
and vice versa. While the nice separation between spoof (light-green) and genuine
(red) can be seen, they are not totally distinguishable. The lack of explicit “cluster cen-
ters” indicates that the problem of spoofing detection is challenging and there is still
room for algorithm improvement to learn more complex nonlinear representations.
To gain an insight of the common error types and for the sake of feature visual-
ization, we set a threshold, θEER , to determine the estimated labels. A comparison

Fig. 17.4 Features extracted from a TensorFlow 3CNN+2FC model (128 × 400), visualized in a
two-dimensional space
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Fig. 17.5 Examples of feature representation in latent space for genuine class and their correspond-
ing spectrograms. Features extracted from a TensorFlow 3CNN+2FC model (128 × 400)

Fig. 17.6 Examples of feature representation in latent space for spoof class and their corresponding
spectrograms. Features extracted from a TensorFlow 3CNN+2FC model (128 × 400)

between Fig. 17.4 (left) and (right) reveals that the spoof speech is likely to be pre-
dicted as genuine. From these low-dimensional visual representations, we can then
select a few samples in order to understand why the CNN is struggling to classify
some spectrogram images.

Several methods have been proposed to identify patterns or visualize the impact
of the particular regions that are linked to a particular CNN’s response [54, 60, 61].
Typically, a heatmap is constructed that allows for visualizing the “salient” regions
(e.g., the impact of contribution of a single pixel to the CNN inference result for
a given input image). In this paper, we adopted a gradient-weighted class activa-
tion mapping (Grad-CAM) to visualize the activation in our trained model [60].
Although this technique was originally developed for the image recognition task, the
same principle can be applied to the spectrogram image. The Grad-CAM6 computed
the gradient of the predicted score for a particular class with respect to feature maps
output of a final convolutional layer in order to highlight the importance of feature
maps for a target class. Figures17.7 and 17.8 show the Grad-CAM visualizations,
which highlight the important regions in the genuine and spoof class, respectively. In
the genuine class, low-frequency components seem to contribute more to classifica-
tion.While in the spoof class, the CNN seems to highlight low-energy speech regions

6https://github.com/insikk/Grad-CAM-tensorflow.

https://github.com/insikk/Grad-CAM-tensorflow
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Fig. 17.7 Original spectrogram for genuine class (E_1000010.wav) (left) and the Grad-CAM visu-
alization (right), using a TensorFlow 3CNN+2FC model (128 × 400). Note that the red regions
correspond to high score for class

during speech activity in addition to a few low-frequency components. In order to
see what mistakes a CNN is making, especially when detecting the spoof class as
genuine, we visualize the misclassified examples for both the spoof and genuine
target using Grad-CAM. As shown in Fig. 17.9, it is apparent that the errors were
made when the low-energy speech regions are considered to be important (which
occurred in the low-frequency range); rather, the CNN should put more emphasis
on high-frequency components to make the correct predictions. However, it is not
possible to exactly pinpoint the reasons for misclassification by looking at the spec-
trogram, for example, removing the silence region has been shown to hurt the system
performance [52]. In this case, we may be able to generalize that information con-
taining high-frequency components are important to reduce the classification errors.
To test this hypothesis, we applied a high-pass filter to retain only high-frequency
components (≥4kHz) on all utterances and trained CNNmodels. The reason behind
this is that the channel artifacts are shown to be evident outside the voice band
(300–3400Hz) [62]. This operation obtained an EER of 22.8% on the evaluation
set. The observation in Fig. 17.7 shows that some low-frequency components are
important for predicting genuine class, hence, applying the proposed modification to
all evaluation files will hurt the performance. Therefore, in the second experiment,
we applied a low-pass filter to retain only low-frequency components (≤4kHz), and
trained CNN models. This low-pass filtering operation obtained an EER of 26.2%
which is worse than performing high-pass filtering. This finding indicates that high-
frequency components are more important than low-frequency regions for replay
attack detection. The combined scores via mean fusion (ensemble of five models,
two low-pass, and three high-pass models) yielded a substantial performance gain
with an EER of 13.3% on the evaluation set. Although slightly worse performance is
achieved compared to models trained using full bandwidth spectrogram (an EER of
12.6% in Table17.4), this finding suggests that one should consider detailed feature
representations not only in high- but also low-frequency regions when developing
the countermeasures.
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Fig. 17.8 Original spectrogram for spoof class (E_1000004.wav) (left) and the Grad-CAM visu-
alization (right), using a TensorFlow 3CNN+2FC model (128 × 400). Note that the red regions
correspond to high score for class

Fig. 17.9 Examples of misclassified spoof utterances with the spectrogram images shown on the
left. The Grad-CAM visualizations using a TensorFlow 3CNN+2FCmodel (128 × 400) are shown
for spoof (middle) and genuine (right) class

17.6 Conclusion

In this study, we investigated the use of CNNs architectures for replay attack detec-
tion. A common evaluation platform such as ASVspoof challenges means that the
results can be compared reliably and allow possible directions of fruitful research.
With a possible interlink between the feature engineering and the back-end classifiers,
the use of pretrained AlexNet as a feature extractor can serve as a reliable baseline
where the choice of the features and the classifier is reasonable. This motivates us to
solely focus on developing robust classifiers rather than following the conventional
feature-based methods, where preferably the features should be learned from the
training data.

In this paper, we proposed a simple architecture of CNNs, which is a reduced
version of AlexNet. Comparison of results from three different CNN architectures
showed that an ensemble of standard CNNs could achieve better results compared
to a sophisticated single-model classifier such as light CNN with MFM activations.
Although our results appear to be worse than the best reported results for ASVspoof
2017, this could not be verified since we are not able to reproduce their results. This
highlights several difficulties when training end-to-end CNN models such as model
generalization, parameter optimization, and the reproducibility of reported research
results. Specifically, we observed that samemodels (i.e., trained using the same input
resolution but only different on the toolkit implementation) which perform well on
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the development set failed to generalize on the evaluation set. This indicates that
CNNs overfit on the training data and urge us to conclude that as more diverse
data becomes available, for example, by combining training and development data,
the performance will improve. Further, without the knowledge of the exact training
regimes and environments, it is difficult to reproduce previous works. Therefore, in
order to ensure reproducibility of our work, we implemented our proposed methods
using open-source deep learning frameworks: TensorFlow and PyTorch, and have
made the source codes publicly available.

Our in-depth investigation through Grad-CAM visualization of the CNN reveals
that emphasis on high-frequency components for spoofing utterances helps reduce
an EER, and could serve as a valuable source of information for developing robust
anti-spoofing systems. For real applications, spoofing detection systems should also
work on noisy and reverberant environments, and to date only a few studies have been
conducted on the development of robust countermeasures when speech is degraded
due to noise, the speech acquisition system, and the channel artifacts. Adaptation
techniques may also be devised to detect playback speech in a new replay session. In
the future, our research will focus on employing advanced classifiers such as RNN
for modeling the temporal dependency of speech and generative adversarial network
(GAN) for generating synthetic spoofed-like data as a data augmentation method to
address the overfitting problems.
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Chapter 18
An Introduction to Vein Presentation
Attacks and Detection

André Anjos, Pedro Tome and Sébastien Marcel

Abstract The domain of presentation attacks (PAs), including vulnerability studies
and detection (PAD), remains very much unexplored by available scientific literature
in biometric vein recognition. Contrary to other modalities that use visual spectral
sensors for capturing biometric samples, vein biometrics is typically implemented
with near-infrared imaging. The use of invisible light spectra challenges the cre-
ation of instruments, but does not render it impossible. In this chapter, we provide
an overview of current landscape for PA manufacturing in possible attack vectors
for vein recognition, describe existing public databases and baseline techniques to
counter such attacks. The reader will also findmaterial to reproduce experiments and
findings for finger vein recognition systems. We provide this material with the hope
that it will be extended to other vein recognition systems and improved in time.

18.1 Introduction

Even if other modalities gain in market acceptance and find more and more appli-
cations year after year, fingerprints probably remain one of the most commonly
accepted biometric modes being present in a variety of applications around the world
including smartphones, physical access and immigration control solutions. In finger-
print recognition, an image is captured from the user finger and matched against
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the stored biometric reference for authentication or identification. Because finger-
prints are external traits belonging to individuals, they make very easy attack vectors.
Latent prints can be lifted from objects we interact day to day. Attack instruments
may be then manufactured without consent following one of the innumerous recipes
currently available on the Internet. This is unfortunately also true for most biometric
modalities relying on traits which can be easily captured from distance such as face,
voice or gait.

Behind fingerprints, buried under the skin, human vein networks can also be used
to verify the identity of a person with high performance and security [1]. Vein recog-
nition is not limited to fingers—uses of the technology also include recognition using
wrist and palm vein networks. The idea of employing the vascular patterns embodied
in human fingers for authentication purposes originally comes fromHitachi Research
Laboratory at the end of the nineties [2], which makes it a fairly new topic in bio-
metrics. While studying the human brain’s blood system using imaging techniques,
researchers discovered that near-infrared (NIR) light is absorbed significantly more
by haemoglobin transporting carbon dioxide (in veins) than by the surrounding tis-
sues. Furthermore, transmitting NIR light around 850nm through the finger was

Near-Infrared 
Light (LED) 

Image Sensor 
(CCD Camera) 
Image Sensor 

Light Transmission Method

Light Reflection Method

Veins

Near-Infrared 

(a)

(b) (c)

Fig. 18.1 Illustration of the most used capturing techniques in vein network imaging: and (i)
reflection-based and (ii) transmission-based, divided on top (b) and side (c) illumination
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found to optimize imaging of vein patterns [3]. The first patent application to fin-
ger vein recognition was soon filed in 2001 and granted by 2004 [4]. Commercial
physical access control devices based on vein recognition were made available in
2002, followed by logical access solutions for automatic teller machines in 2005 [2].
Presently, the technology is widely used in the financial sector in Japan, China and
Poland, where it proved to be accurate. More recently, the technology has been
introduced in hospitals in Turkey for patient authentication.

Figure18.1 shows setups for acquiring vein network imagery—here demonstrated
on the finger region. Systems work in one of two models: reflection or transmission.
In light reflection-based systems, the region from which the vein network is to be
sampled is illuminated by NIR light which is reflected by the object and captured
by a band-selective image sensor. In reflection-based systems, both the illumination
and the capturing lie in the same side of the setup. These settings allow the creation

Fig. 18.2 Examples of commercial vein sensors, first line finger vein sensors, palm vein sensors,
and the last two lines show medial vein sensors
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(g) Spoofing samples (b) Real samples 

(c) Preprocessing 

(e) Contours enhancing

(a) Real acquisition

(d) Printing  
(200gr paper)

(f) Spoofing acquisition

Fig. 18.3 Illustration of the recipe and attack presentation from a real finger vein sample (a)
available from a bona fide dataset (b). The image is first preprocessed (c), and printed (d) on high-
quality white paper with a grammage of 200 g/m2 through a commercially available laser printer.
The contours of the finger are enhanced using a black ink whiteboard marker (e) and the attack
instrument is presented to the sensor (f) and a sample acquired (g)

Fig. 18.4 The generated palm vein PAI (right) and its acquisition (left) using a reflection-based
sensor

of very compact sensors. In light transmission-based systems, the sensor and illu-
mination are on opposed sides of the setup. Light diffuses through the object with
the vein networks to be captured. Transmission systems can be used for capturing
finger veins as the finger is typically thin enough to support this mode of operation.
Variants of transmission-based systems using side illumination exist, but are not
mainstream. Capturing wrist or palm veins in transmission mode is often impractical
and seldomly used. For illustration, Fig. 18.5 (top-left) shows examples of finger vein
images captured in transmission mode, and Fig. 18.6a shows examples of palm vein
imagery capture in reflection mode.
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Fig. 18.5 Samples of the two full and cropped protocols available in the database to study the
presentation attacks detection methods

(a)
Male subject example Female subject example

(b)

(c) (d)

(a) (b)

(c) (d)

Fig. 18.6 Images of bona fide samples (a and c, inside of a dashed green line) from the original
database and their correspond recaptured samples (b and d, inside of a solid red line). First row a
and b shows the RAW images saved by the sensor and second row c and d shows the ROI-1 regions
automatically extracted by the sensor during the acquisition process

The security advantages of vein networks to other biometrics lie in a couple of
factors: (i) vein networks do not leave latent marks nor can be captured without
dedicated equipment, at close distance, and (ii) technologies for extracting vein
network images from a person’s hand or finger require the use of non-visible light
(typically near-infrared)which challenges the creation of efficient attack instruments.
Therefore, vein networks are generally perceived as difficult to forge (Fig. 18.2).
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However, it remains possible to obtain images from a person’s vein patterns, and,
therefore, interest in manufacturing efficient attack instruments for this biometric
modality are bound only by the amount of resources being protected. In this chapter,
we present two major contributions: (i) we demonstrate the vulnerability if current
vein recognition systems to presentation attacks through a simple set of recipes and
methodology, and (ii) based on a recently published dataset with presentation attacks,
how to possibly counter such vectors to create more robust systems. We study finger
vein recognition systems, though most of what we present can be easily generalized
to other related modes for palm and wrist-based vein recognition.

This chapter is organized as follows: Sect. 18.2 introduces the only two publicly
available datasets for vulnerability analysis and creation of countermeasures to pre-
sentation attacks in finger and palmvein recognition.We explain how to create attacks
for NIR-based vein recognition systems with examples. Section18.3 discusses the
current state-of-the-art in presentation attack detection for both finger vein and palm
vein recognition with results from baselines [5, 6] and the first competition on coun-
termeasures to finger vein spoofing attacks [7]. For reproducibility purposes, we
provide scores and analysis routines for this competition and baselines. Section18.4
shows more in-depth reproducible results on the vulnerability analysis and baselines
for presentation attack detection (PAD) in finger vein recognition systems. In this
section, we introduce an extensible package for work in PAD for the vein mode.
Section18.5 concludes this chapter.

18.2 Attack Recipes and Datasets

There are, currently, two public datasets for presentation attack vulnerability anal-
ysis and detection available in literature, both produced and distributed by the
Idiap Research Institute in Switzerland. The VERA Spoofing Finger vein Database1

contains attacks and bona fide samples of finger vein images captured with a
transmission-based system [5]. By itself, this dataset can be used to train and eval-
uate PAD methods for finger vein recognition systems. When combined with the
VERA Finger vein Database,2 it is possible to study the vulnerability of recognition
systems to presentation attacks. The VERA Spoofing Palm vein Database3 contains
attacks and bona fide samples of palm vein images captured with a reflection-based
system [6]. This dataset can be used to develop and evaluate PAD methods for palm
vein recognition systems.When combined with the VERA Palm vein Database,4 one
can study the vulnerability of palm vein recognition systems. Before introducing and
detailing these datasets, we start by defining recipes for producing attacks to both

1https://www.idiap.ch/dataset/fvspoofingattack.
2https://www.idiap.ch/dataset/vera-fingervein.
3https://www.idiap.ch/dataset/vera-spoofingpalmvein.
4https://www.idiap.ch/dataset/vera-palmvein.

https://www.idiap.ch/dataset/fvspoofingattack
https://www.idiap.ch/dataset/vera-fingervein
https://www.idiap.ch/dataset/vera-spoofingpalmvein
https://www.idiap.ch/dataset/vera-palmvein
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finger vein and palm vein recognition systems. Section18.4 demonstrates that current
state-of-the-art recognition systems are vulnerable to such attack instruments.

18.2.1 Attack Recipes

Building attacks for vein recognition systems are possible if one has access to images
of vein networks of the identities to be attacked. Tome and others at [5, 6] suggest
that, if it is the case, then presentation attack instruments may be easily created using
laser/toner prints of objects (human fingers and palms). Starting from the images of
existing datasets, they created a set of effective attacks to vein recognition systems.
The motivation behind using printed images is based on its simplicity and the fact
it does not require prior knowledge about the recognition system. Print attacks have
been proved effective in the context of other biometric modalities such as face [8] or
Iris [9].

The recipe for the generation of printed attacks is typically divided into four steps:

1. Original images from NIR sensors are preprocessed to improve their quality;
2. Preprocessed images are then printed on a piece of paper using a commercially

available laser printer;
3. Contours are enhanced;
4. The printed image is presented to the sensor

In the case of finger veins, Tome and others [5] tested various configurations of
paper and preprocessing to find an ideal combination of that works best:

1. Original images are preprocessed using histogram equalization and a Gaussian
filtering of 10-pixel window. Before printing, proper rescaling (180 × 68 pixels)
is performed so the printed fingers have the same size as the real ones. Further-
more, a background of black pixels is added around the finger to mask the outside
regions of the finger during the acquisition, and finally, the image is flipped-up
to handle the reflection of the internal mirror of the sensor.

2. Images are printed in a high-quality white paper (grammage: 200 g/m2). The
thickness of the paper plays an important role in transmission systems since the
amount of light that will pass through the paper should mimic that of a real finger;

3. The contours of the finger are enhanced using a black ink whiteboard marker;
4. Printed images are presented to the acquisition sensor at 2 cm of distance to the

sensor as shown in Fig. 18.3f.

Palm vein presentation attack instruments (PAI) may be created in a similar man-
ner as realized in [6]: palm vein images are reshaped to match bona fide comparable
sizes and a padding array of black pixels is applied to the bona fide palm vein images
to emulate the black background. Images are printed on a regular grammage white
paper (80 g/m2) with a commercial laser printer. Because palm vein attack instru-
ments are usuallymeant for reflective-light systems, the grammage of the paper is less
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important than on transmission-based systems. Figure18.4 (left) shows an example
of the final printed image while the right part shows an example of the PAI acquisi-
tion process and how an attacker may position the printed palm. Because palm veins
were acquired using a reflection-based sensor, a piece of white paper with grammage
100 g/m2 is applied to cover the NIR illumination from the sensor, in order to reduce
the impact from illumination. This solution was adopted to improve the chances of
successfully attacking even though authors note that without this resource, attacks
are still successful to various recognition baselines.

Complete datasets for vulnerability analysis and presentation attack detection
training and evaluation are discussed next. Images in these datasets were created
using the recipes above.

18.2.2 Finger Vein Datasets

Motivated by the scarce literature in the area, the Idiap Research Institute published
the first finger vein presentation attack database [5] in 2014. The dataset is composed
of 880 image samples stored in PNG format, which are split into three distinct subsets
for training (240), fine-tuning (240), and testing (400) PAD methods to finger vein
recognition. The splits do not mix subjects. Samples that are on the training set come
from a specific set of fingers which are not available in any other set on the database.
The same holds true for the fine-tuning (development) and test (evaluation) sets. The
training set should be used for training PAD statistical models, the development set
to validate and fine-tune such models, and, finally, the test set should only be used to
report the final PAD performance. The goal of this protocol is to evaluate the (binary
classification) performance of countermeasures to presentation attacks.

The dataset contains two different sets of images following the beforementioned
protocol: full printed images and cropped images (see Fig. 18.5). The so-called ‘full’
protocol contains untreated raw samples as perceived by the finger vein sensor. Such
images include finger borders and have a size of 665 by 250 pixels. The ‘cropped’
protocol provides pre-cropped images of the subject fingers and discards the border,
making them harder to discriminate when compared to images in the ‘full’ protocol.
The intent behind this strategy is to be able to evaluate PAD methods with respect
to their generalization capabilities when considering only parts of the images that
would be effectively used to recognize individuals.

This dataset, when combined with the VERA Finger vein Database, can be used
to study the vulnerability of recognition systems to presentation attacks. Such an
approach is of high importance, as it enables one to assess how effective the attacks
are in deceiving a finger vein recognition system and whether PA detection is indeed
necessary. Section18.4 contains reproducible results from the vulnerability analysis
assessment of finger vein systems. In summary, more than 80% of the attacks in this
database successfully bypass baseline algorithms.

As presented in Table18.1, other datasets are mentioned in the literature [10, 11]
but, up to date, none of them was made publicly available by authors.
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18.2.3 Palm Vein Dataset

The only palm vein dataset for the analysis of vulnerability and development of
presentation attack detection methods was published by the Idiap Research Institute
in 2015 [6]. This dataset contains recaptured images from the first 50 subjects of the
public VERA Palm vein Database. There are a total of 1000 recaptured palm images
from both hands of all subjects, matching the original images available on the bona
fide dataset.

The VERA Palm vein Database originally consists of 2,200 images depicting
human palm vein patterns. Palm vein images were recorded from 110 volunteers for
both left and right hands. For each subject, images were obtained in two sessions
of five pictures each per hand. Palm vein images were acquired by the contactless
palm vein prototype sensor comprised of an ImagingSource camera, a Sony ICX618
sensor and an infrared illumination of LEDs using a wavelength of 940nm. The
distance between the user hand and the camera lens is measured by an HC-SR04
ultrasound sensor and a led signal that indicates the user the correct position of the
hand for the acquisition.

The bona fide palm vein samples have a resolution of 480 × 680 pixels and are
stored in PNG format. The database is divided into two subdatasets: RAW and ROI-1
data. The raw folder corresponds to the full palm vein image and roi folder contains
the region of interest (palm vein region) obtained automatically by the sensor during
the acquisition process (see Fig. 18.6).

In order to test for the vulnerability of palm vein recognition systems to attacks
in this dataset, we selected a baseline algorithm from the state-of-the-art in this field
of research. The overall processing is divided into three stages: (i) segmentation and
normalization, (ii) feature extraction and (iii) matching. In the segmentation process,
the hand contour is localized by a binarization from greyscale palm vein images.
Then, the hand landmarks (peaks and valleys) are extracted using the radial distance
function (RDF) between the reference point (generally the starting of the wrist) and
the contour points extracted [12, 13]. The palm region is extracted as a square region
based on the located hand landmarks, and a geometric normalization (scaling and
rotation) on the extracted palm vein region is performed. Finally, the palm veins are
enhanced by using circular Gabor filters (CGF) [14]. Once palm vein of the region
of interest (ROI-2) is extracted and normalized, local binary patterns (LBPs) are
extracted as features [15] and the histogram intersection metric [16] is adopted as a
similarity measure to compute the scores. The final score of the system per user is
computed by the average of the scores of all enrollment samples for that user.

Since there are two different preprocessing configurations (none and CGF) and
two regions of interest analysed (ROI-1 given by the database, andROI-2), this finally
leads to four different systems that can be evaluated for vulnerability. Figure18.7
shows the results of vulnerability analysis for these four baseline variants using the
VERA Palm vein Spoofing Database when combined with its bona fide sibling. In
all cases, a large number of attacks bypass a naively tuned recognition system. In
some configurations, the success rate is over 70%.
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Fig. 18.7 Score distributions of palm vein recognition systems on the database for zero-effort
impostors (red), genuine subjects (blue) and presentation attacks (grey). The solid green curve shows
the incorrect attack presentation match rate (IAPMR) as a function of the recognition threshold.
The dashed green line shows the equal error threshold (EER) for a system tuned naively, for a setup
without presentation attacks

Up to date, palm vein presentation attack detection remains a yet-to-be-explored
research domain, with no literature published. We focus our attention in finger vein
PAD next, which is far more developed presently.

18.3 State of the Art in Finger Vein PAD

Great progress has been made in the field of biometric presentation attack detection
(PAD) in recent years. But due to scarce number of databases, the potential attacks
on finger vein systems focus on printed attacks. To the best of our knowledge, the
first attempt to attack finger vein was conducted by Tsutomu Matsumoto and others,
by using a overhead projector film on which finger vein images were printed as
synthetically produced artefacts that mimic real finger veins. But it was not until
years later, as a consequence of the development of non-commercial acquisition
sensors [17–20], when a presentation attack that could successfully bypass a finger
vein recognition system for a different number of identities was demonstrated [5],
with an imposter attack presentation match rate (IAPMR) as high as 86%.

The current technology of finger vein sensors is based on 2D image acquisition, 3D
finger vein sensors are still developing and they will bring the opportunity to ensure
the robustness of this finger vein technology against presentation attacks. Hence,
based on the 2D sensors, the PAD methods can be divided into two categories, i.e.
texture-based [7, 10, 11, 21], where the texture analysis can be exploited to detect
fake images and liveness-based [22, 23], where the motion in the image is studied
for the same purpose.

Texture-based methods analyse differences in image quality between real and
forged veins, which are primarily reflected in the texture resolution and noise level of
the images. Table18.1 summarizes the main PAD texture-based methods described
in the literature. On the other hand, liveness-based methods determine whether a
finger vein is real by detecting evidence of the liveness or vital signs of the finger,
such as the blood movement across veins. These methods require more advanced
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sensor of image/video acquisition but its benefit can be more accurate and reliable
than texture-based methods.

Following the literature [7] and available databases, it was demonstrated that
texture-based methods perform well in preventing printed attacks because the forged
fake finger vein images contain print artefacts, blurring and other noise originating
from the printing, processing and reacquisition process, thus resulting in slightly
different texture features between real and fake images.

As can be extracted from literature [5], one of the main problems when finger vein
images are forged from a printed sample is the NIR illumination in the reacquisition
process. The NIR light reflects in a different way on a paper than the human finger,
generating acquisition noise artefacts, blurring effects, defocus and other similar
factors. Most of these texture-based methods only exploit noise features or extract
features directly from original images, neglecting other distinctive information as
the blurriness. Therefore, by utilizing both these features, the discriminative power
of texture-based methods can be further improved.

On the other side, liveness-based methods have higher implementation costs and
require more sophisticated acquisition sensors. Some studies have been conducted
in the literature, as an example, Qin et al. [22] explored a vital sign that involves the
oxygen saturation of human blood and the heart rate, while Raghavendra et al. [23]
measured the liveness of particular samples by magnifying the blood flow through
the finger vein. Both of these approaches require capturing, storing and processing
a sequence of infrared images, which requires significant time and less friendly
acquisition processes.

Table18.1 briefly describes an overview of main PAD texture-based methods
available on literature. As it is shown, texture-based methods can be categorized
into two groups: (i) methods implemented without decomposition, these methods
extract features directly from original images, and thus, those implicit discriminative
features in blurriness and noise components are degraded due to mutual interference
between the two components. And (i i) methods implemented with decomposition,
these methods first decompose original images into two components, but only one
component is used for finger vein PAD, while some discriminative features deter-
mined from the other component are neglected.

Some of these methods implemented without decomposition are introduced by
Nguyen et al. in 2013 [10]. They adopted three schemes to detect individual pre-
sentation attacks, (i) the Fourier spectral energy ratio (FSER), which explores the
frequency information extracted from a vein image to construct features. It first trans-
forms a vein image into the frequency domain using the 2-D FFT. Next, it calculates
the ratio of high and low frequencies of image energy to determine whether the finger
vein image is real. (i i) The discrete wavelet transform (DWT), in contrast to FSER,
takes full advantage of both the spatial and frequency information obtained from an
image. First, a one-level wavelet transform is used to divide the finger vein image into
four sub-bands. Then the standard deviation of the pixel values in the HH sub-region
(i.e. the high-frequency components in both the horizontal and vertical directions) is
calculated as the PAD feature, since the printing noise that occurs in forged images
is almost exclusively expressed more at high frequencies than at low frequencies.
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Table 18.1 Summary of existing texture-basedmethods for finger vein presentation attack counter-
measures and databases.HTER refers to half total error rate, EER to equal error rate, d to decidability
or decision-making power and F-ratio, which relates the variances of independent samples

Method Description Database Performance

Full Cropped

Methods implemented without decomposition

FSER [10] Fourier transform – EER=12.652%

HDWT [10] Haar wavelet
transform

330 fingers, – EER=12.706%

DDWT [10] Daubechies wavelet
transform

5820 samples – EER=14.193%

FSER-DWT [10] Combining FSER,
HDWT and DDWT
by using SVM

– EER=1.476%

FSBE [7] The average vertical
energy of the fourier
spectrum

IDIAP FVD HTER=0.00%,
d=11.17

HTER=20.50%,
d=1.82

BSIF [7] Binarized statistical
image features

HTER=4.00%,
d=4.47

HTER=2.75%,
d=3.81

MSS [7] Utilized monogenic
scale space based
global descriptors

HTER=0.00%,
d=8.06

HTER=1.25%,
d=5.54

LPQ-WLD [7] Local phase
quantization and
Weber local
descriptor

HTER=0.00%,
d=8.03

–

RLBP [7] LBP on the residual
image

– HTER=0.00%,
d=5.20

Methods implemented with decomposition

W-DMD [21] Windowed dynamic
mode
decomposition

IDIAP FVD EER=0.08%,
F-ratio=3.15

EER=1.59%,
F-ratio=2.14

SP [11] Steerable pyramids -
SVM

300 fingers,
12000 samples

– HTER of Artefact
123=3.6%3.0%2.4%

Haar DWT (HDWT) and Daubechies DWT (DDWT) are discussed in [1] as pos-
sible methods of achieving better performance. And (i i i) a combination of FSER
and DWT (i.e. FSER-DWT), this scheme combines three of the abovementioned
features, i.e. FSER, HDWT and DDWT, to strengthen the maximum classification
performance by combining them with SVMs.

In 2014, the Idiap Research Institute made publicly available the first finger vein
presentation attack database [5]. Given this resource, many new PAD methods for
finger vein recognition have been proposed [7, 11, 21]. More recently, the first Com-
petition on Counter Measures to Finger Vein Spoofing Attacks was organized in
conjunction with the International Conference on Biometrics (ICB) in 2015 [7]. In
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this competition, five different PAD approaches were proposed, (i) Fourier spectral
bandwidth energy (FSBE), which was used as a baseline PAD system in the compe-
tition. This method first extracts the average vertical energy of the Fourier spectrum,
and then calculates the bandwidth of this average vertical signal using a−3dB cut-off
frequency as the criterion. (i i) Binarized statistical image features (BSIF), which are
used to represent each pixel as a binary code constructed by computing its response
to a filter learned using the statistical properties of natural images. (i i i) Monogenic
scale space (MSS), which extract global descriptors that represent local energy and
orientation at a coarse level to distinguish between real and forged finger veins. (iv)
Local phase quantization and Weber local descriptor (LPQ-WLD), this method first
fuses local phase information generated by LPQ with the differential excitation and
local orientation extracted by WLDs to form input features with simultaneous tem-
poral and spectral cues for subsequent evaluation. And (v) the residual local binary
pattern (RLBP), a residual version of a vein image is first generated using thismethod
and a 3 × 3 integer kernel and then texture features can be extracted using LBP for
PAD of cropped images. It is important to note that none of them could achieve
100% PAD accuracy on both cropped and full versions of the given test sets in the
competition.

Following literature, Tirunagari et al. [21] proposed theWindowedDynamicmode
decomposition, focusing on light reflections, illumination and planar effect differ-
ences between real and forged images. By usingW-DMD to effectively amplify such
local variations, an increasing of the accuracy of PAD was achieved.

Finally, although its effectiveness has been demonstrated only on a private
database, Raghavendra et al. [11] presented steerable pyramids (SP - SVM), amethod
to make full use of the texture information at different levels of a pyramid, based on
combining a SP with support vector machines to detect presentation attacks.

18.4 Reproducible Experimental Results

This section contains reproducible experimental results demonstrating the vulner-
ability of finger vein recognition systems when exposed to the VERA Spoofing
Finger vein Database alongside baselines for presentation attack detection based on
the same dataset. All experiments in this section can be reproduced by downloading
and installing the package bob.hobpad2.veins5

5Source code and results: https://pypi.org/project/bob.hobpad2.veins.

https://pypi.org/project/bob.hobpad2.veins
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Fig. 18.8 Processing pipeline implemented by bob.bio.base and bob.bio.vein. The pipeline is com-
posed of three stages for preprocessing, feature extraction and matching which can be implemented
independently

18.4.1 Vulnerability Analysis

The experiments in this section were carried out using the open-source vein recog-
nition framework called bob.bio.vein.6 This framework is extensible and allows run-
ning complete finger vein recognition experiments, from the preprocessing of raw
images (including segmentation) to the evaluation of biometric scores and perfor-
mance analysis. The bob.bio.vein framework is itself based on another framework
called bob.bio.base7 which implements biometric recognition experiments based on
a fixed pipeline composed of three components as shown in Fig. 18.8. Raw data are
first preprocessed to extract the (finger) region of interest (RoI). In our experiments,
we always used pre-annotated regions of interest. The finger image is then normal-
ized by fitting a straight line between the detected finger edges, whose parameters (a
rotation and a translation) are used to create an affine transformation [24]. Figure18.9
illustrates this process.

Features from the RoI are subsequently extracted for each finger in the dataset
according to one of three methods tested: Repeated Line Tracking [25] (rlt), Max-
imumCurvature [26] (mc) orWide Line Detector [24] (wld). In the final stage of the
pipeline, features from each finger are used to enrol and probe users respecting pre-
cise database protocols. Matching is performed using the correlation-based ‘Miura
Matching’ algorithm introduced in [25].

18.4.1.1 Experimental Protocols

For the experiments, we consider each of the four verification protocols available
with the dataset:

• ‘Nom’ (Normal Operation Mode): It corresponds to the standard verification sce-
nario. For the VERA database, each of the 2 fingers for all 110 subjects is used for
enrolling and probing. Data from the first session are used for enrollment, while
data from the second session are used for probing.Matching happens exhaustively.
In summary, this protocol encompasses 220 unique fingers and 440 unique images
providing a total of 48180 zero-effort impostor protocols and 220 genuine scores.

6https://pypi.org/project/bob.bio.veins.
7https://pypi.org/project/bob.bio.base.

https://pypi.org/project/bob.bio.veins
https://pypi.org/project/bob.bio.base
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Fig. 18.9 Sample images from the database (665 × 250 pixels, a), as well as the finger cropped
masks (b) and the normalized patterns (c) obtained after preprocessing these images

In order to analyse vulnerability of our baselines using this protocol, we also probe
against each attack derived from session 2 data, making up an additional set of
220 presentation attack scores.

• ‘Fifty’: The ‘Fifty’ protocol is meant as a reduced version of the ‘Nom’ protocol,
for quick check purposes. All definitions are the same, except we only use the
first 50 subjects in the dataset (numbered 1 until 59). In this protocol, there are
100 unique fingers available and 200 unique images. There are 9900 zero-effort
impostor scores and 100 genuine scores. Vulnerability analysis is done like for
protocol ‘Nom’whichmakes up an additional set of 100 presentation attack scores.

• ‘B’: This protocol was created to simulate an evaluation scenario similar to that
from the UTFVP database [17]. In this protocol, only 108 unique fingers are used
which makes up a total of 216 unique images. Matching happens exhaustively
between all images in the dataset, including self-probing. With this configuration,
there are 46224 zero-effort impostor scores and 432 genuine scores. For vulnera-
bility analysis, an extra set of 432 presentation attack scores are derived matching
presentation attack instructions generated from the equivalent probe set.

• ‘Full’: Each of the 2 fingers for all 110 subjects is used for enrolling and probing.
Data from both sessions are used for probing and enrolling which makes this
protocol slightly biased as in protocol ‘B’ above. Matching happens exhaustively.
In summary, this protocol encompasses 220 unique fingers and 440 unique images
providing a total of 192720 zero-effort impostor protocols and 880 genuine scores.
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Table 18.2 Impostor attack presentation match rate (IAPMR) and equal error rate (EER, in paren-
thesis) for each of the baselines and verification protocols explored in this section. Values are
approximate and expressed in percentage (%)

Protocol/Baseline Maximum curvature Repeated line tracking Wide line detector

Nom 83 (2) 38 (19) 76 (7)

Fifty 77 (1) 35 (17) 70 (3)

B 86 (1) 32 (17) 75 (3)

Full 89 (1) 34 (11) 80 (4)

In order to analyse vulnerability of our baselines using this protocol, we also probe
against each attack derived from session 2 data, making up an additional set of
880 presentation attack scores.

18.4.1.2 Experimental Results

Table18.2 shows the results in terms of the equal error rate (EER) and the impostor
attack presentation match rate (IAPMR) for the bona fide verification task and the
vulnerability analysis, respectively. Vulnerability is reported on the threshold defined
at the EER. As can be observed, explored baselines are vulnerable to attacks. In the
case of some combinations of baseline techniques with protocols, the vulnerability
at the EER threshold is nearly 90%, indicating 9 of 10 attacks to such a system
would not be detected as such. As observed for other biometric modalities, better
performing recognition (smaller error rates) loosely correlateswith amore vulnerable
system. For example, the system based on Miura’s maximum curvature algorithm
(mc) presents the lowest EER and the highest vulnerabilities.

Figure18.10 shows the IAPMR against our mc pipeline with scores produced
using the ‘Nom’ VERA finger vein database protocol. The decision threshold is
fixed to reach a FNMR=FMR (i.e. EER) using bona fide samples (genuines and
zero-effort impostors), and then the IAPMR of presentation attacks is computed.
While the almost perfect separation of scores for bona fide users and impostors
justifies the good verification performance, the presentation attacks appear optimal.
This is demonstrated by the value of IAPMR aswell as the percentage of presentation
attacks that manage to bypass the system at the chosen threshold (i.e. an IAPMR of
about 83% or higher is observed).

18.4.2 Presentation Attack Detection

The experiments in this section were carried out using the open-source vein presenta-
tion attack detection framework called bob.pad.vein.8 This framework is extensible

8https://pypi.python.org/pypi/bob.pad.vein.

https://pypi.python.org/pypi/bob.pad.vein
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Fig. 18.10 Score distributions and IAPMR curve for a finger vein recognition system based on
Miura’s maximum curvature algorithm

and allows running complete finger vein presentation attack detection experiments,
from the preprocessing of raw images (including segmentation) to the evaluation
of scores and performance analysis. The algorithm described was used as baseline
during the first competition on countermeasures to finger vein presentation attacks
organized during the International Conference in Biometrics, 2015.

The baseline PAD system is a texture-based algorithm that exploits subtle changes
in the finger vein images due to printed effects using the frequency domain. To rec-
ognize the static texture, the Fourier transform (FT) is extracted from the raw image
after applying a histogram equalization. Once the FT is calculated and normalized
on logarithmic scale, a window of 20 pixels centred vertically on the centre of the
image is applied to extract the average vertical energy of the FT. Then, the bandwidth
of this average vertical signal (Bwv) at a cut-off frequency of −3dB is calculated.
The final score to discriminate between real-accesses and presentation attacks is this
bandwidth normalized by the height of the image (h), i.e. s = Bwv/h, resulting in a
score normalized in the range [0 − 1].

This method exploits the idea of the bandwidth of vertical energy signal on real
finger vein images, which is weakly manifested on presentation attacks. The main
reason of it is that the recaptured finger vein samples display a smooth texture with
changes mainly vertical, changes translated as a horizontal energy in the Fourier
domain. On the other hand, real finger vein images have better focus and sharpness
on both horizontal and vertical directions, displaying both directions of energy in
their Fourier transform. It is interesting to note that this approach does not need any
kind of training or classifier to work.
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Fig. 18.11 Score distributions of the finger vein algorithm. The first two plots on the top show the
performance of the PAD algorithm on the ‘full’ protocol (see also Fig. 18.5) while the histograms
on the bottom show the performance on the ‘cropped’ protocol

Figure18.11 shows the performance of the proposed PAD algorithm on the
Spoofing-Attack Finger vein Database. The results are displayed in the form of
histograms showing the class separation in this binary classification task. For the
‘full’ protocol, separation is clear between the two classes (presentation attacks and
bona fide) with a half total error rate of 0% both on the development set and test
set. For the cropped protocol, the performance degrades to about ∼23% EER with
a matching ∼21% HTER on the test set. These results indicate that the baseline
algorithm is likely using information from outside the finger vein region to detect
the presence of attacks.

18.5 Conclusions

Human vein networks can be used to verify the identity of a person with high per-
formance. Vein recognition is surrounded by an apparent sense of security as vein
networks, unlike fingerprints, do not leave latent marks or are readily available on
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social networks. Yet, vein recognition systems are very vulnerable to presentation
attacks. Instrumentsmade out of simple toner prints of vein networks can successfully
bypass naively tuned recognition systems.

Unfortunately, the number of available resources for the analysis of vulnerabilities
or studying presentation attack detection remains limited to date. There are only two
datasets available publicly and a handful of presentation attack detection algorithms
were published. With this book chapter, associated software and scores for analysis,
we hope to consolidate and seed further research in this area.

Acknowledgements The authors would like to thank the Swiss Centre for Biometrics Research
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research leading to some of results published in this book chapter.

References

1. Jain AK, Flynn P, Ross AA (eds) (2008) Handbook of biometrics. Springer, Berlin. https://doi.
org/10.1007/978-0-387-71041-9

2. Finger vein authentication: white paper. Technical report, Hitachi, Ltd (2006)
3. Kono M, Ueki H, Umemura SI (2002) Near-infrared finger vein patterns for personal identifi-

cation. Appl Opt 41(35):7429–7436. https://doi.org/10.1364/AO.41.007429
4. Kono M, Umemura S, Miyatake T, Harada K, Ito Y, Ueki H (2004) Personal identification

system. US Patent 6,813,010. https://www.google.com/patents/US6813010
5. Tome P, Vanoni M,Marcel S (2014) On the vulnerability of finger vein recognition to spoofing.

In: IEEE international conference of the biometrics special interest group (BIOSIG), vol 230
6. Tome P, Marcel S (2015) On the vulnerability of palm vein recognition to spoof-

ing attacks. In: The 8th IAPR international conference on biometrics (ICB), pp 319–
325. https://doi.org/10.1109/ICB.2015.7139056. http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?reload=true&arnumber=7139056

7. TomeP, RaghavendraR, BuschC, Tirunagari S, PohN, Shekar BH,GragnanielloD, SansoneC,
Verdoliva L, Marcel S (2015) The 1st competition on counter measures to finger vein spoofing
attacks. In: 2015 international conference on biometrics (ICB), pp 513–518. https://doi.org/
10.1109/ICB.2015.7139067

8. Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face
anti-spoofing. In: Proceedings of the 11th international conference of the biometrics special
interest group

9. Ruiz-Albacete V, Tome-Gonzalez P, Alonso-Fernandez F, Galbally J, Fierrez J, Ortega-Garcia
J (2008) Direct attacks using fake images in iris verification. In: Proceedings of the COST 2101
workshop on biometrics and identity management, BIOID. LNCS, vol 5372. Springer, Berlin,
pp 181–190

10. Nguyen DT, Park YH, Shin KY, Kwon SY, Lee HC, Park KR (2013) Fake finger-vein image
detection based on Fourier and wavelet transforms. Digit Signal Process 23(5):1401–1413.
https://doi.org/10.1016/j.dsp.2013.04.001

11. RaghavendraR,BuschC (2015)Presentation attack detection algorithms for finger vein biomet-
rics: a comprehensive study. In: 2015 11th international conference on signal-image technology
internet-based systems (SITIS), pp 628–632. https://doi.org/10.1109/SITIS.2015.74

12. Zhou Y, Kumar A (2011) Human identification using palm-vein images. IEEE Trans Inf Foren-
sics Secur 6(4):1259–1274

13. Kang W, Wu Q (2014) Contactless palm vein recognition using a mutual foreground-based
local binary pattern. IEEE Trans Inf Forensics Secur 9(11):1974–1985

https://doi.org/10.1007/978-0-387-71041-9
https://doi.org/10.1007/978-0-387-71041-9
https://doi.org/10.1364/AO.41.007429
https://www.google.com/patents/US6813010
https://doi.org/10.1109/ICB.2015.7139056
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7139056
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7139056
https://doi.org/10.1109/ICB.2015.7139067
https://doi.org/10.1109/ICB.2015.7139067
https://doi.org/10.1016/j.dsp.2013.04.001
https://doi.org/10.1109/SITIS.2015.74


438 A. Anjos et al.

14. Zhang J, Yang J (2009) Finger-vein image enhancement based on combination of gray-level
grouping and circular Gabor filter. In: International conference on information engineering and
computer science (ICIECS), pp 1–4

15. Mirmohamadsadeghi L, Drygajlo A (2014) Palm vein recognition with local texture patterns.
IET Biom 1–9

16. Swain M, Ballard D (1991) Color indexing. Int J Comput Vis 7(1):11–32
17. Ton B (2012) Vascular pattern of the finger: biometric of the future? Sensor design, data

collection and performance verification. Master’s thesis, University of Twente
18. TonB,Veldhuis R (2013)A high quality finger vascular pattern dataset collected using a custom

designed capturing device. In: IEEE international conference on biometrics (ICB), pp 1–5
19. Xi X, Yang G, Yin Y, Meng X (2013) Finger vein recognition with personalized feature selec-

tion. Sensors 13(9):11243–11259
20. RaghavendraR,RajaKB,Surbiryala J,BuschC (2014)A low-costmultimodal biometric sensor

to capture finger vein and fingerprint. In: IEEE international joint conference on biometrics,
pp 1–7. https://doi.org/10.1109/BTAS.2014.6996225

21. Tirunagari S, PohN, BoberM,WindridgeD (2015)WindowedDMDas amicrotexture descrip-
tor for finger vein counter-spoofing in biometrics. In: 2015 IEEE international workshop
on information forensics and security (WIFS), pp 1–6. https://doi.org/10.1109/WIFS.2015.
7368599

22. Qin B, Pan J-F, Cao G-Z, Du G-G (2009) The anti-spoofing study of vein identification system.
In: 2009 international conference on computational intelligence and security, vol 2, pp 357–360.
https://doi.org/10.1109/CIS.2009.144

23. Raghavendra R, Avinash M, Marcel S, Busch C (2015) Finger vein liveness detection using
motion magnification. In: 2015 IEEE 7th international conference on biometrics theory, appli-
cations and systems (BTAS), pp 1–7. https://doi.org/10.1109/BTAS.2015.7358762

24. Huang B, Dai Y, Li R, Tang D, Li W (2010) Finger-vein authentication based on wide line
detector and pattern normalization. In: International conference on pattern recognition (ICPR),
pp 1269–1272

25. Miura N, Nagasaka A, Miyatake T (2004) Feature extraction of finger-vein patterns based on
repeated line tracking and its application to personal identification. Mach Vis Appl 15(4):194–
203

26. Miura N, Nagasaka A, Miyatake T (2007) Extraction of finger-vein patterns using maximum
curvature points in image profiles. IEICE Trans Inf Syst E90-D(8):1185–1194

https://doi.org/10.1109/BTAS.2014.6996225
https://doi.org/10.1109/WIFS.2015.7368599
https://doi.org/10.1109/WIFS.2015.7368599
https://doi.org/10.1109/CIS.2009.144
https://doi.org/10.1109/BTAS.2015.7358762


Chapter 19
Presentation Attacks in Signature
Biometrics: Types and Introduction
to Attack Detection

Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez
and Javier Ortega-Garcia

Abstract Authentication applications based on the use of biometric methods have
received a lot of interest during the last years due to the breathtaking results obtained
using personal traits such as face or fingerprint. However, it is important not to forget
that these biometric systemshave towithstand different types of possible attacks. This
work carries out an analysis of different PresentationAttack (PA) scenarios for on-line
handwritten signature verification. Themain contributions of the presentwork are: (1)
short overview of representative methods for Presentation Attack Detection (PAD)
in signature biometrics; (2) to describe the different levels of PAs existing in on-line
signature verification regarding the amount of information available to the attacker,
as well as the training, effort and ability to perform the forgeries; and (3) to report
an evaluation of the system performance in signature biometrics under different PAs
and writing tools considering freely available signature databases. Results obtained
for both BiosecurID and e-BioSign databases show the high impact on the system
performance regarding not only the level of information that the attacker has but also
the training and effort performing the signature. Thiswork is in linewith recent efforts
in the Common Criteria standardization community towards security evaluation of
biometric systems, where attacks are rated depending on, among other factors, time
spent, effort and expertise of the attacker, as well as the information available and
used from the target being attacked.
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19.1 Introduction

Applications based on biometric user authentication have experienced a high deploy-
ment in many relevant sectors such as security, e-government, healthcare, education,
banking or insurance in the last years [1]. This growth has been possible thanks to
two main factors: (1) the technological evolution and the improvement of sensors
quality [2], which have cut the prices of general purpose devices (smartphones and
tablets) and therefore, the high acceptance of the society towards the use of them; and
(2) the evolution of biometric recognition technologies in general [3–5]. However, it
is important to keep in mind that these biometric-based authentication systems have
to withstand different types of possible attacks [6].

In this work, we focus on different Presentation Attack (PA) scenarios for on-
line handwritten signature biometric authentication systems. These systems have
received a significant amount of attention in the last years thanks to improved signa-
ture acquisition scenarios (including device interoperability [7]) and writing inputs
(e.g. finger [8]).

In general, two different types of impostors can be found in the context of signature
verification: (1) random (zero-effort or accidental) impostors, the case in which no
information about the user being attacked is known and impostors present their own
signature claiming to be another user of the system, and (2) skilled impostors, the
case in which impostors have some level of information about the user being attacked
(e.g. image of the signature) and try to forge their signature claiming to be that user
in the system.

Galbally et al. have recently discussed in [9] different approaches to report accu-
racy results in handwritten signature verification applying the lessons learned in the
evaluation of vulnerabilities to Presentation Attacks (PAs). They considered skilled
impostors as a particular case of biometric PAs that is performed against a behav-
ioral biometric characteristic (referred to in some cases as mimicry). It is important
to highlight the key differences between physical PAs and mimicry, while traditional
PAs involve the use of some physical artefacts such as fake masks and gummy fin-
gers (and therefore, can be detected in some cases at the sensor level), in the case
of mimicry the interaction with the sensor is exactly the same followed in a nor-
mal access attempt. Galbally et al. in [9] modified the traditional nomenclature of
impostor scenarios in signature verification (i.e. skilled and random) following the
standard in the field of biometric Presentation Attack Detection (PAD). This way, the
classical random impostor scenario was referred to as Bona Fide (BF) scenario, while
the skilled impostor scenario was referred to as PA scenario. This new nomenclature
is used in this chapter as well.

If those PAs are expected, one can include specific modules for PAD, which in the
signature recognition literature are usually referred to as forgery detection modules.
A survey of such PAD methods is out of the scope of the chapter. Here in Sect. 19.2,
we only provide a short overview of some selected representative works in that area.

A different approach aimed at improving the security against attacks in signa-
ture biometrics different from including a PAD module is template protection [10].
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Traditional on-line signature verification systems use very sensitive biometric data
such as the X and Y spatial coordinates for the matching, storing this information as
the user templates without any kind of protection. A compromised template, in this
case, would easily provide an attacker with the X and Y coordinates along the time
axis,making possible to generate very high-quality forgeries of the original signature.
In [11], an approach for signature template generation was proposed not considering
information related to X, Y coordinates and their derivatives on the biometric system,
providing, therefore, a muchmore robust system against attacks, as this critical infor-
mation would not be stored anywhere. Moreover, the results achieved had error rates
in the same range as more traditional systems that store very sensitive information.

The main contributions of the present work are: (1) short overview of represen-
tative methods for PAD in signature biometrics; (2) to describe the different levels
of PAs existing in on-line signature verification regarding the amount of information
available to the attacker, as well as the training, effort and ability to perform the
forgeries; and (3) to report an evaluation of the system performance in signature bio-
metrics under different PAs and writing tools considering freely available signature
databases.

The remainder of the chapter is organized as follows. The introduction is com-
pleted with a short overview of PAD in signature biometrics (Sect. 19.2). After that,
the main technical content of the chapter begins in Sect. 19.3, with a review of the
most relevant possible attacks, pointing out which type of impostors are included
in various well-known public signature databases. Section19.4 describes the on-line
signature databases considered in the experimental work. Section19.5 describes the
experimental protocol and the results achieved. Finally, Sect. 19.6 draws the final
conclusions and points out some lines for future work.

19.2 PAD in Signature Biometrics

Presentation Attack Detection (PAD) in signature biometrics can be traced back to
earlyworks byRosenfeld et al. in the late 70s [12]. In that work, authors dealt with the
detection of freehand forgeries (i.e. forgeries written in the forger’s own handwriting
without knowledge of the appearance of the genuine signature) on bank checks for
off-line signature verification. The detection process made use of features derived
from Eden’s model [13], which characterizes handwriting strokes in terms of a set of
kinematic parameters that canbeused to discriminate forged fromgenuine signatures.
Those features were based on dimension ratios and slant angles, measured for the
signature as a whole and for specific letters on it. Finally, unknown signatures were
classified as genuine or forgery on the basis of their distance from the set of genuine
signatures. A more exhaustive analysis was later carried out in [14], performing
skilled forgery detection by examining the writer-dependent information embedded
at the substroke level and trying to capture unballistic motion and tremor information
in each stroke segment, rather than as global statistics.
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In [15], authors proposed an off-line signature verification and forgery detection
system based on fuzzy modelling. The verification of genuine signatures and detec-
tion of forgeries was achieved via angle features extracted using a grid method. The
derived features were fuzzified by an exponential membership function, which was
modified to include two structural parameters regarding variations of the handwriting
styles and other factors affecting the scripting of a signature. Experiments showed
the capability of the system in detecting even the slightest changes in signatures.

Brault et al. presented in [16] an original attempt to estimate, quantitatively and
a priori from the coordinates sampled during its execution, the difficulty that could
be experienced by a typical imitator in reproducing both visually and dynamically
that signature. To achieve this goal, they first derived a functional model of what
a typical imitator must do to copy dynamically any signature. A specific difficulty
coefficient was then numerically estimated for a given signature. Experimentation
geared specifically to signature imitation demonstrated the effectiveness of themodel.
The ranking of the tested signatures given by the difficulty coefficient was compared
to three different sources: the opinions of the imitators themselves, the ones of an
expert document examiner, and the ranking given by a specific pattern recognition
algorithm. They provided an example application as well. This work supposed one
of the first attempts of PAD for on-line handwritten signature verification using
a special pen attached to a digitizer (Summagraphic Inc. model MM1201). The
sampling frequency was 110Hz, and the spatial resolution was 0.025 inch.

More studies of PAD methods at feature level for on-line signature verification
were carried out in [17, 18]. In [17], authors proposed a new scheme in which a
module focused on the detection of skilled forgeries (i.e. PA impostors) was added
to the original verification system. That new module (i.e. Skilled Forgeries Detector)
was based on four parameters of the SigmaLogNormalwriting generationmodel [19]
and a linear classifier. That new binary classification module was supposed to work
sequentially before a standard signature recognition system [20]. Good results were
achieved using that approach for both skilled (i.e. PA) and random (i.e. BF) scenarios.
In [18], Reillo et al. proposed PADmethods based on the use of some global features
such as the total number of strokes and the signing time of the signatures. They
acquired a new database based on 11 levels of PAs regarding the level of knowledge
and the tools available to the forger. The results achieved in that work using the
proposed PAD reduced the EER from a percentage close to 20.0% to below 3.0%.

19.3 Presentation Attacks in Signature Biometrics

This section aims to describe the different levels of skilled forgeries (i.e. PA impos-
tors) that exist in the literature regarding the amount of information provided to the
attacker, as well as the training, effort and ability to perform the forgeries. In addi-
tion, we consider the case of random forgeries (i.e. zero-effort impostors) although
it belongs to the BF scenario and not to the PA scenario in order to review the whole
range of possible impostors in handwritten signature verification.
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Previous studies have applied the concept of Biometric Menagerie in order to
categorize each type of user of the biometric system as an animal. This concept was
initially formalized by Doddington et al. in [21], classifying speakers regarding how
easy or difficult the speaker can be recognized (i.e. sheep and goats, respectively),
how easily they can be forged (i.e. lambs) and finally, how good they are forging
others (i.e. wolves). Yager and Dunstone have more recently extended the Biometric
Menagerie in [22] by adding four more categories of users (i.e. worms, chameleons,
phantoms and doves). Their proposed approach was investigated using a broad range
of biometric modalities, including 2D and 3D faces, fingerprints, iris, speech and
keystroke dynamics. In [23], Houmani and Garcia-Salicetti applied the concept of
Biometric Menagerie for the different types of users found in the on-line signature
verification task proposing the combination of their personal and relative entropy
measures as a way to quantify how difficult it is a signature to be forged. Their
proposed approach achieved promising classification results on the MCYT database
[24], where the attacker had access to a visual static image of the signature to forge.

In [25], authors showed through a series of experiments that: (1) some users are
significantly better forgers than others (these users would be classified as wolves in
the previous user categorization); (2) forgers can be trained in a relatively straight-
forward way to become a greater threat; (3) certain users are easy targets for forgers
(sheep following the previous user categorization); and (4)most humans are relatively
poor judges of handwriting authenticity, and hence, their unaided instincts cannot
be trusted. Additionally, in that work, authors proposed a new metric for impostor
classification: naive, trained and generative. They considered naive impostors as
random impostors (i.e. zero-effort impostors) in which no information about the user
to forge is available whereas they defined trained and generative impostors as skilled
forgeries (i.e. PA impostors) when only the image or the dynamics of the signature
to forge is available, respectively.

In [26], authors proposed a software tool implemented on two different computer
platforms in order to generate forgeries with different quality levels (i.e. PA impos-
tors). Three different levels of PAs were considered: (1) blind forgeries, the case in
which the attacker writes on a blank surface having access just to textual knowledge
(i.e. precise spelling of the user’s name to forge); (2) low-force forgeries, where the
attacker gets a blueprint of the signature projected on the writing surface (dynamic
information is not provided), which they may trace; and (3) brute-force forgeries,
in which an animated pointer is projected onto the writing pad showing the whole
realization of the signature to forge. The attacker may observe the sequence and
follow the pointer. Authors carried out an experiment based on the use of 82 forgery
samples performed by four different users in order to detect how the False Accep-
tance Rate (FAR) is affected regarding the level of PA. They considered a signature
verification system based on average quadratic deviation. Results obtained for four
different threshold values confirmed a strong protection against attacks.
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Amore exhaustive analysis of the different types of forgeries possible in signature
recognition was carried out in [27]. In that work, authors considered random or zero-
effort impostors plus four different levels of PA impostors regarding the amount of
information provided to the attacker and the tools used for the impostors in order to
forge the signature:

• Random or zero-effort forgeries, in which no information of the user to forge is
available and the impostor uses its own signature (accidentally or not) claiming to
be another user of the system.

• Blind forgeries, in which the attacker has access to a descriptive or textual knowl-
edge of the original signatures (e.g. the name of the person).

• Static forgeries (low-force in [26]), where the attacker has access to a visual static
image of the signature to forge. There are two ways to generate the forgeries.
The first one, the attacker can train to imitate the signature with or without time
restrictions and blueprint, and then forge it without the use of the blueprint, leading
to static trained forgeries. In the second one, the attacker uses a blueprint to first
copy the signature of the user to forge and then put it on the screen of the device
while forging, leading to static blueprint forgeries, more difficult to detect as
they have the same appearance as the original ones.

• Dynamic forgeries (brute-force in [26]), where the attacker has access to both
the image and also the whole realization process (i.e. dynamics) of the signature
to forge. The dynamics can be obtained in the presence of the original writer or
through the use of a video recording. In a similar way as the previous category,
we can distinguish first dynamic trained forgeries in which the attacker can use
dedicated tools to analyze and train to forge the genuine signature, and second,
dynamic blueprint forgerieswhich are generated by projecting on the acquisition
area a real-time pointer that the forger needs to follow.

• Regained forgeries, the case where the attacker has access only to the static
image of the signature to forge and makes use of a dedicated software to regain its
dynamics [28], which are later analyzed and used to create dynamic forgeries.

Figure19.1 depicts examples of one genuine signature and three different types of
forgeries (i.e. random, static blueprint and dynamic trained) performed for the same
user. The image shows both the static and dynamic information with the X and Y
coordinates and pressure.

Besides the forgery classification carried out in [27], Alonso-Fernandez et al.
studied the impact of an incremental level of quality in the PAs against signature
verification systems. Both off-line and on-line systems were considered using the
BiosecurID database which contains both off-line and on-line signatures. For the off-
line system, they considered a system based on global image analysis and aminimum
distance classifier [29] whereas a system based on Hidden Markov Models (HMM)
[30] was considered for the on-line approach. Their experiments concluded that the
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Fig. 19.1 Examples of one genuine signature and three different types of forgeries performed for
the same user

performance of the off-line system is only degradedwith the highest level of forgeries
quality. On the contrary, the on-line system exhibits a progressive degradation with
the forgeries quality, suggesting that the dynamic information of signatures is the
one more affected by the considered increased forgeries quality.

Finally, Fig. 19.2 summarizes all different types of forgeries for both BF and PA
scenarios regarding the amount of information available to the attacker, as well as
the training, effort and ability to perform the attack. In addition, the most commonly
used on-line signature databases are included in each PA group. It is important to
highlight the lack of public on-line signature databases for the case of blind forgeries,
as far as we know.
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Fig. 19.2 Diagram of different types of forgeries for both BF and PA scenarios regarding the
amount of information available to the attacker, as well as the training, effort and ability to perform
the attack. The commonly used on-line signature databases are included in each PA group

19.4 On-Line Signature Databases

The following two databases are considered in the experiments reported here:

19.4.1 e-BioSign

For the e-BioSign database [8], we consider a subset of the freely available database1

comprised of signatures acquired using a Samsung ATIV 7 general purpose device
(a.k.a. W4 device). The W4 device has a 11.6-inch LED display with a resolution of
1920×1080 pixels and 1024 pressure levels. Data was collected using a pen stylus
and also the finger in order to study the performance of signature verification in
a mobile scenario. The available information when using the pen stylus is X and
Y pen coordinates and pressure. In addition, pen-up trajectories are also available.
However, for the case of using the finger as the writing tool, pressure information
and pen-ups trajectories are not recorded. Regarding the acquisition protocol, the
device was placed on a desktop and subjects were able to rotate the device in order
to feel comfortable with the writing position.

Data were collected in two sessions for 65 subjects with a time gap between
sessions of at least three weeks. For each user and writing tool, there are a total
of eight genuine signatures and six skilled forgeries (i.e. PA impostors). Regarding
skilled forgeries for the case of using the stylus as the writing tool, users were
allowed during the first session to visualize a recording of the dynamic realization
of the signature to forge as many times as they wanted whereas only the image of
the signature to forge was available during the second session. Regarding skilled
forgeries for the case of using the finger as the writing tool, in both sessions users

1https://atvs.ii.uam.es/atvs/eBioSign-DS1.html.

https://atvs.ii.uam.es/atvs/eBioSign-DS1.html
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had access to the dynamic realization of the signatures to forge as many times as
they wanted.

19.4.2 BiosecurID

For the BiosecurID database [31], we consider a subset [32] comprised of a total
of 132 users.2 Signatures were acquired using a Wacom Intuos 3 pen tablet with a
resolution of 5080 dpi and 1024 pressure levels. The database comprises 16 genuine
signatures and 12 skilled forgeries (i.e. PA impostors) per user, captured in four
separate acquisition sessions. Each sessionwas captured leaving a two-month interval
between them, in a controlled and supervised office-like scenario. Signatures were
acquired using a pen stylus. The available information within each signature is X and
Y pen coordinates and pressure. In addition, pen-up trajectories are available.

The following PAs are considered in the database in order to analyze how the
system performance differs regarding the amount of information provided to the
attacker: (i) the attacker only sees the image of the signature once and tries to imitate
it right away (session 1); (ii) the attacker sees the image of the signature and trains
for a minute before making the forgery (session 2); (iii) the attacker is able to see the
dynamics of the signing process three times, trains for a minute and then makes the
forgery (session 3); and (iv) the dynamics of the signature are shown as many times
as the attacker requests, being able to train for a minute and then sign (session 4).

19.5 Experimental Work

19.5.1 Signature Verification System

An on-line signature verification system based on time functions (a.k.a. local sys-
tems) is considered in the experimental work [33]. For each signature acquired using
the stylus or the finger, only signals related to X and Y pen coordinates and their first-
and second-order derivatives are used in order to provide reproducible results. Infor-
mation related to pen angular orientation (azimuth and altitude angles) and pressure
have been always discarded in order to consider the same set of time functions that
we would be able to use in general purpose devices such as tablets and smartphones
using the finger as the writing tool.

Our local system is based on DTW, which computes the similarity between the
time functions from the input and training signatures. The configuration of the DTW
algorithm described in [34].

2https://atvs.ii.uam.es/atvs/biosecurid_sonof_db.html.

https://atvs.ii.uam.es/atvs/biosecurid_sonof_db.html
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19.5.2 Experimental Protocol

The experimental protocol has been designed to allow the study of both BF and
PA scenarios on the system performance. Three different levels of impostors are
analyzed: (1) random forgeries, (2) static forgeries (both trained and blueprint) and
(3) dynamic forgeries. Additionally, for the e-BioSign subset, the case of using the
finger as the writing tool is considered. All available users (i.e. 65 and 132 for e-
BioSign and BiosecurID subsets, respectively) are used for the evaluation as no
development of the on-line signature verification system is carried out.

For both databases, the four genuine signatures of the first session are used as
reference signatures, whereas the remaining genuine signatures (i.e. 4 and 12 for
the e-BioSign and BiosecurID databases, respectively) are used for testing. Skilled
forgeries scores (i.e. PAmated scores) are obtained by comparing the reference signa-
tures against the skilled forgeries (i.e. PA impostors) related to each level of attacker,
whereas random forgeries scores (i.e. BF non-mated scores) are obtained by com-
paring the reference signatures with one genuine signature of each of the remaining
users (i.e. 64 and 131 for the e-BioSign and BiosecurID databases, respectively).
The final score is obtained after performing the average score of the four one-to-one
comparisons.

19.5.3 Experimental Results

Tables19.1 and 19.2 show the system performance obtained for each different type
of impostor and database. Additionally, Fig. 19.3 shows the system performance in
terms of DET curves for each impostor scenario and database.

First, we analyze the results achieved for the case of using the stylus as the writing
tool. In this case, a system performance improvement can be observed for both
BiosecurID (Table19.1) and e-BioSign (Table19.2) databases when the amount of
information that the attacker has is reduced. For example, a 7.5% EER is obtained in
Table19.1when the attacker has access to the dynamics and also the static information

Table 19.1 BiosecurID: system performance results (EER in %)

Random forgeries Static forgeries Dynamic forgeries

Stylus 1.1 5.4 7.5

Table 19.2 e-BioSign: system performance results (EER in %)

Random forgeries Static forgeries Dynamic forgeries

Stylus 1.0 11.4 12.3

Finger 0.4 8.9* 18.3
∗Generated on new data captured after e-BioSign
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Fig. 19.3 System performance results obtained for each different type of impostor and database

of the signature to forge whereas this value is reduced to 5.4% EER when only the
static information is provided to the forger.

We can also observe the impact of varying training and effort to perform the forg-
eries by comparing Tables19.1 and 19.2. In general, higher errors are observed for
the e-BioSign database for both types of skilled forgeries (i.e. dynamic and static)
compared to the BiosecurID database. This is due to the fact that for dynamic forg-
eries, the attackers of the e-BioSign database had access to the dynamic realization
of the signatures to forge as many times as they wanted and were also allowed to
train without restrictions of time, whereas for the BiosecurID database the attackers
had time restrictions, resulting in lower quality forgeries. For the case of static forg-
eries, the attackers of the e-BioSign database used a blueprint with the image of the
signature to forge, placing it on the screen of the device while forging whereas for
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the BiosecurID database, the attackers just saw the image of the signatures to forge
and trained before making the forgery without the help of any blueprint.

Finally, very similar good results are achieved in Tables19.1 and 19.2 for random
forgeries (i.e. zero-effort impostors) as the attackers have no information of the user
to forge and present to the system their own signature.

Analyzing the case of using the finger as the writing tool, a high degradation
of the system performance can be observed in Table19.2 for the dynamic forgeries
compared to the case of using the stylus as the writing tool. A recommendation for
the usage of signature recognition onmobile devices would be for the users to protect
themselves from other people that could be watching while signing, as this is more
feasible to do in a mobile scenario compared to an office scenario. This way skilled
forgers (i.e. PA impostors) might have access to the global shape of the signature
but not to the dynamic information and results would be much better. For analyzing
this scenario, we captured additional data after e-BioSign achieving a 8.9% EER
(marked with * in Table19.2, as the dataset in this case is not the same of the rest
of the table), much better results compared to the 18.3% EER obtained for dynamic
forgeries. For the case of random forgeries (i.e. zero-effort impostors), better results
are obtained when the finger is considered as the writing tool compared to the stylus
proving the feasibility of this scenario for random forgeries. Finally, it is important
to remind that we are using a simple and reproducible verification system based only
on X, Y coordinates and their derivatives. For a complete analysis of using the finger
as the writing tool please refer to [8].

Finally, we would like to remark that the results obtained in this work should
be interpreted in general terms as comparing different scenarios of attack. Specific
results on operational setups can vary depending on the specific matching algorithm
considered. An example of this can be seen in [35], where two different verification
systems (i.e. Recurrent Neural Networks (RNNs) and DTW) were evaluated on
the BiosecurID database for different types of attacks. The signature verification
system based on RNNs obtained much better results than DTW for skilled forgeries,
but DTW outperformed RNNs for random forgeries concluding that fusion of both
systems could be a good strategy. Similar conclusions can be observed in previous
studies [36, 37].

19.6 Conclusions

Thiswork carries out an analysis of PresentationAttack (PA) scenarios [6] for on-line
handwritten signature verification [33]. Unlike traditional PAs, which use physical
artefacts (e.g. fake masks and gummy fingers), the most typical PAs in signature
verification represent an attacker interacting with the sensor exactly in the same way
followed in a normal access attempt, i.e. the presentation attack is a handwritten
signature, in this case imitating to some extent the attacked identity. In such typical
PA scenario, the level of knowledge that the attacker has and uses about the signature
being attacked results crucial for the success rate of the attack.
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The main contributions of the present work are: (1) short overview of represen-
tative methods for PAD in signature biometrics; (2) to describe the different levels
of PAs existing in on-line signature verification regarding the amount of informa-
tion available to the attacker, as well as the training, effort and ability to perform
the forgeries and (3) to report an evaluation of the system performance in signa-
ture biometrics under different PAs and writing tools considering available signature
databases.

Results obtained for both BiosecurID [31] and e-BioSign [8] databases show the
high impact on the system performance regarding not only the level of information
that the attacker has but also the training and effort performing the signature [27].
For the case of using the finger as the writing tool, a recommendation for the usage of
signature recognition on mobile devices would be for the users to protect themselves
from other people that could be watching while signing, as this is more feasible to
do in a mobile scenario [38] compared to an office scenario. This way skilled forgers
(i.e. PA impostors) might have access to the global shape of the signature but not to
the dynamic information and results would be much better. This work is in line with
recent efforts in the Common Criteria standardization community towards security
evaluation of biometric systems, where attacks are rated depending on, among other
factors: time spent, effort, and expertise of the attacker; as well as the information
available and used from the target being attacked [39].
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Chapter 20
Evaluation Methodologies for Biometric
Presentation Attack Detection

Ivana Chingovska, Amir Mohammadi, André Anjos and Sébastien Marcel

Abstract Presentation attack detection (PAD, also known as anti-spoofing) systems,
regardless of the technique, biometric mode or degree of independence of external
equipment, are most commonly treated as binary classification systems. The two
classes that they differentiate are bona-fide and presentation attack samples. From
this perspective, their evaluation is equivalent to the established evaluation standards
for the binary classification systems. However, PAD systems are designed to operate
in conjunction with recognition systems and as such can affect their performance.
From the point of view of a recognition system, the presentation attacks are a separate
class that need to be detected and rejected. As the problem of presentation attack
detection grows to this pseudo-ternary status, the evaluation methodologies for the
recognition systems need to be revised and updated. Consequentially, the database
requirements for presentation attack databases become more specific. The focus of
this chapter is the task of biometric verification and its scope is three-fold: first, it gives
the definition of the presentation attack detection problem from the two perspectives.
Second, it states the database requirements for a fair and unbiased evaluation. Finally,
it gives an overview of the existing evaluation techniques for presentation attacks
detection systems and verification systems under presentation attacks.
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Fig. 20.1 Evaluation of a (unknown) verification systemwith regards to its capacity to discriminate
genuine samples (positives) from zero-effort impostor samples (negatives). Data from each of the
classes are fed into the verification system (treated as a black box) and the scores are collected.
Collected scores are fed into an evaluation framework which can compute error rates and draw
performance figures

20.1 Introduction

Biometric person recognition systems are widely adopted nowadays. These systems
compare presentations of biometric traits to verify or identify a person. In the typi-
cal verification scenario, a biometric system matches a biometric presentation of a
claimed identity against a prestored reference model of the same identity. The verifi-
cation problemcan be seen as a binary classification problemwhere presentations that
are being matched against the same reference identity are considered positive sam-
ples (genuine samples) and the presentations that are being matched against another
identity are considered negative samples (zero-effort impostor samples). Evaluation
of verification systems as a binary classification problem is done using common
metrics (error rates) and plots that are designed for binary classification problems.
Figure20.1 outlines such an evaluation framework.

Moreover, biometric systems are vulnerable to presentation attacks (PA, also
known as spoofing). A printed photo of a person presented to a face recognition
system with the goal of interfering with the operation of the system is an exam-
ple of presentation attacks [1]. Presentation attack detection (PAD, also known as
anti-spoofing) systems discriminate between bona-fide1 (positives) and presentation
attacks (negatives). The problem of PAs and PAD can be seen from different perspec-
tives. As implied directly by the definition of the task of PAD systems, the problem
is most often designed as a binary classification problem as outlined in Fig. 20.2.

On the other hand, presentation attacks are directed toward deceiving recognition
systems,2 regardless of whether there is a PAD algorithm to prevent them to do so, or
not. From that perspective, the problem of PAs and PAD is not limited only to binary

1Bona-fide are also called real or live samples. Both genuine and zero-effort impostor samples are
bona-fide samples. While zero-effort impostors are negative samples in a verification system, they
are considered positive samples in a standalone PAD system (since they are not PAs).
2In this chapter, since we focus on the biometric recognition task, we will only consider PAs aiming
to impersonate an identity and not to conceal (hide) an identity.
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Fig. 20.2 Evaluation of a (unknown) PAD system with regards to its capacity to discriminate
bona-fide samples (positives) from presentation attacks (negatives)

Fig. 20.3 Evaluation of a (unknown) verification systemwith regards to its capacity to discriminate
genuine accesses from zero-effort impostors and presentation attacks

classification systems, as the isolated PAD systems are. It is of equal importance to
transfer the problem understanding to the domain of biometric recognition systems
(in particular, in this chapter, biometric verification systems).

Biometric verification under presentation attacks can be cast into a pseudo-ternary
classification problem. While as binary classifiers, verification systems comply to
typical evaluation methods, in this new perspective their concept and evaluation
need to be changed accordingly. Figure 20.3 depicts these new settings. Instead of
inputting a single set of negative examples, this new evaluation method requires two
sub-classes of negative samples: samples coming from zero-effort impostors and the
ones coming from presentation attacks.

This concept shift may influence the biometric verification systems at several
levels. First of all, presentation attacks represent another class of input samples for
the verification systems, which may cause changes in their internal algorithms to
gain greater spoofing resilience. Two most prominent attempts for such changes are
multimodal fusion [2–6] and fusion of a verification system with a PAD system [7–
10]. Second, the problem restatement needs to modify the evaluation methods for
verification systems. Finally, it may play a key role in the process of their parame-
terization.
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While the first aspect of Presentation Attack (PA) and PAD problem under the
umbrella of a verification system is out of the scope of this chapter,wewill thoroughly
inspect all themodifications that the evaluationmethods need to undergo to accustom
to the new setting. The main reason is that once the danger of presentation attacks
is acknowledged, the verification performance of the biometric systems is not the
only measurement of their quality. Important property to assess is their robustness to
presentation attacks. Only in that case, one can say that the overall performance of the
system is being estimated. In this context, by verification system, we could consider
any type of system that can produce verification scores given a biometric sample
as an input. No assumption on the mechanism the system employs for protection
against presentation attacks, if any, is needed. The systemmay be solely any baseline
biometric verification algorithm which disregards the hazard of presentation attacks,
or a multimodal system or a fusion with a PAD algorithm. In any case, the system
can be regarded as a black box, and the full evaluation can be done based on the
verification scores it outputs for the input samples.

Mutual comparison of verification systems is the secondmatter of their evaluation
with regards to presentation attacks. For example, it is of great importance to observe
the performance change of a verification system before and after an integration with
a PAD system. Blending in PAD into an existing verification system can increase its
robustness to presentation attacks, but at the same time, it can affect its verification
performance. The evaluation methodology which is going to be deployed should be
able to assess the trade-off between these two effects.

Issues regarding the aspect of parameterization and tuning of the verification
systems when presentation attacks have a non-negligible prior will be also touched
upon in this chapter.

With the previous observations in mind, stating the problem of PAs from the
perspective of a PAD system, as well as from the perspective of a verification system
is the primary objective of this chapter (Sect. 20.2). Thorough reviewof the evaluation
strategies for isolated presentation attack detection systems, aswell as for verification
systems commonly used in the literature will follow in Sect. 20.4. As a prerequisite,
the concepts we are going to evaluate entail certain database structure that will be
covered in Sect. 20.3.

20.2 Problem Statement

When treating PAD as a binary classification problem, designers are interested in
determining the capacity of a given system to discriminate between bona-fide (pos-
itives) and presentation attacks (negatives).3 These systems, which do not have any
capacity to perform biometric verification, are only exposed to elements of these

3In this chapter, we shall treat examples in a (discriminative) binary classification system onewishes
to keep as positive class or simply as positives, and, examples that should be discarded as negative
class or negatives.
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two classes. Figure20.2 represents these settings in a block diagram. In order to
evaluate a given system, one feeds data from each of the two classes involved on the
assessment. Scores collected from the evaluated system are fed into an evaluation
framework which can compute error rates or draw performance figures. This work-
flow, typical for evaluation of binary classification systems, is widely deployed by
PAD developers as well [7, 11–16]. The database design and the evaluation of PAD
systems comprise to the standards of general binary classification systems and will
be revisited in Sects. 20.3.1 and 20.4.2, respectively.

A less considered perspective is how biometric verification systems treat presen-
tation attacks. The classical approach puts biometric verification systems into the set
of binary classifiers. Normally, such systems are designed to decide between two cat-
egories of verification attempts: bona-fide genuine users (positives) and the so-called
bona-fide zero-effort impostors (negatives) [17]. Presentation attacks represent a new
type of samples that can be presented at the input of this system. Considering that
both presentation attacks and zero-effort impostors need to be rejected, it is still pos-
sible to regard the problem as a binary classification task where the genuine users
are the positives, while the union of presentation attacks and zero-effort impostors
are the negatives. Nevertheless, tuning of different properties of the verification sys-
tem to make it more robust to presentation attacks may require a clearly separated
class of presentation attacks. Furthermore, the correct ratio of presentation attacks
and impostors in the negative class union is, at most times, unknown at design time.
Applications in highly surveilled environments may consider that the probability of a
presentation attack is small, while applications in unsurveilled spaces may consider
it very high. Presentation attacks, therefore, should be considered as a third separate
category of samples that the verification systems need to handle.

This viewpoint casts biometric verification into a pseudo-ternary classification
problem as depicted in Fig. 20.3. Researchers generally simplify the pseudo-ternary
classification problem so that it suits the binary nature of the verification systems.
A common approach is to reduce it to two binary classification problems, each of
which is responsible for one of the two classes of negatives. According to this, the
verification system can be operating in two scenarios or operation modes: (1) when
it receives genuine accesses as positives and only zero-effort impostors as negatives,
and (2) when it receives only genuine accesses as positives and presentation attacks
as negatives. Sometimes the first scenario is called a normal operationmode [18–20].
As it is going to be discussed in Sect. 20.4.3, it is beneficial to simplification that the
positives (genuine accesses) that are evaluated completely match in both scenarios.

The workflow of the verification system confronted with presentation attacks,
from the input to the evaluation stage, is represented in Fig. 20.3. The score histogram
displays three distinctive groups of data: the positive class and the two negative ones.
If the mixing factor between the negative classes is known at design time, system
evaluation can be carried using known binary classification analysis tools. Since that
is usually not the case, the evaluation tools for the verification systems need to be
adapted to the new settings.

The new concept for verification systems explained above requires a database
design and evaluation methodologies adapted to the enhanced negative class,
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regardless of the system’s robustness to presentation attacks and how it is achieved.
An overview of the research efforts in this domain will be given in Sects. 20.3.2 and
20.4.3, respectively.

20.3 Database Requirements

The use of databases and associated evaluation protocols allow for objective and com-
parative performance evaluation of different systems. As discussed on Sect. 20.2, the
vulnerability (aka spoofability) of a system can be evaluated on isolated presentation
attack detection systems, but also on fully functional verification systems. The simple
evaluation of PAD requires only that database and evaluation protocols consider two
data types: bona-fide and presentation attack samples. The evaluation of verification
systems, merged with PAD or not, requires the traceability of identities contained in
each presented sample, so that tabs are kept for probe-to-model matching and non-
matching scenarios. The particular requirements for each of the two cases are given
in Sects. 20.3.1 and 20.3.2. Databases for each of these two settings exist in the lit-
erature. An exhaustive listing of databases that allow for the evaluation of resilience
against presentation attacks in isolated PADor biometric verification systems is given
by the end of this section, in Sect. 20.3.3.

20.3.1 Databases for Evaluation of Presentation Attack
Detection Systems

The primary task of a database for evaluation of presentation attack detection systems
is to provide samples of presentation attacks along with samples of bona-fide. The
identity information of clients in each sample needs not to be present and can be
discarded in case it is. The two sets of samples, which will represent the negative
and the positive class for the binary classification problem, are just by themselves
sufficient to train and evaluate a PAD system. It is a common practice that a database
for binary classification provides a usage protocol which breaks the available data
into three datasets [21]:

• Training set Dtrain , used to train a PAD model;
• Development set Ddev, also known as the validation set, used to optimize the
decisions in terms of model parameters estimation or model selection;

• Test set Dtest , also known as the evaluation set, on which the performance is finally
measured.

In the case of presentation attack databases, it is recommended that the three
datasets do not contain overlapping client data to avoid bias related to client spe-
cific traits and to improve generalization [22]. A database with this setup completely
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satisfies the requirements of a two-class classification problem, as the isolated pre-
sentation attack detection is.

The process of generating presentation attacks requires bona-fide samples that
will serve as a basis to create the fake copies of the biometric trait. These may or
may not be the same samples as the bona-fide samples of the database. In any case,
if they are provided alongside the database, it can be enhanced with new types of
presentation attacks in future.

20.3.2 Databases for Vulnerability Analysis of Verification
Systems

If a database is to serve for evaluation of a verification system, it needs to possess
similar properties of a biometric database. Training and testing through biometric
databases require (preferably) disjoint sets of data used for enrollment and verifica-
tion of different identities. In practice, many databases also present a separation of
the data in three sets as described above. Data from the training set can be used to cre-
ate background models. The development data should contain enrollment (gallery)
samples to create the user-specific models, as well as probe samples to match against
the models. Similar specifications apply for the test set. Thematching of the develop-
ment probe samples against the user models should be employed to tune algorithms’
parameters. Evaluation is carried out bymatching probe samples of the test set against
models created using the enrollment samples. The identity of the model being tested
and the gallery samples are annotated to each of the scores produced so that the
problem can be analyzed as a binary classification one: if model identity and probe
identity match, the score belongs to the positive class (genuine client), otherwise, the
score belongs to the negative class (zero-effort impostors). Usually, all identities in
the three datasets are kept disjoint for the same reasons indicated in Sect. 20.3.1. Fol-
lowing this reasoning, a first requirement for a presentation attack database aspiring
to be equally adapted to the needs of PAD and verification systems, is provision of
separate enrollment samples, besides the bona-fide and presentation attack samples.

The pseudo-ternary problem of presentation attacks as explained in Sect. 20.2
imposes scenario for matching bona-fide genuine accesses, bona-fide zero-effort
impostors, and presentation attacks against the models. In order to conform to this
second requirement, the simplification of the pseudo-ternary problem introduced in
Sect. 20.2 is of great help. In the case of the first scenario, or the normal operation
mode, matching entries equivalent to the entries for genuine users and zero-effort
impostors for a classical biometric verification database are needed. In the case of the
second scenario, the provided entries should match the presentation attack samples
to a corresponding model or enrollment sample.

To unify the terminology, we formalize the two scenarios of operation of the
verification system as below:
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Table 20.1 Creating licit and spoof scenarios out of the samples in a PA database. + stands for
positives,− for negatives. L is for licit and S for spoof scenario. Note that the positives are the same
for both L and S scenarios. Bona-fide enrollment samples will also be needed for each identity

Probe Model for A B

A Bona-fide L+, S+ L−
Presentation attack S− no match done

B Bona-fide L− L+, S+
Presentation attack no match done S−

• Licit scenario: A scenario consisting of genuine users (positives) and zero-effort
impostors (negatives). The positives of this scenario are created by matching the
genuine access samples of each client to the model or enrollment samples of the
same client. The negatives can be created by matching the genuine access samples
of each client to the model or enrollment samples of other clients. This scenario is
suitable to evaluate a verification system in a normal operation mode. Evidently,
no presentation attacks are present in this scenario;

• Spoof scenario:A scenario consisting of genuine users (positives) and presentation
attacks (negatives). The positives of this scenario are created by matching genuine
access samples of each client to the models or enrollment samples of the same
client. The negatives are created bymatching the presentation attacks of each client
to the model or enrollment samples of the same client. No zero-effort impostors
are involved in this scenario.

The licit scenario is necessary for evaluation of the verification performance of
the system. The spoof scenario is necessary for evaluation of the system’s robustness
to PAs. If we follow a convention to match all the genuine access samples to the
model or enrollment samples of the same client in both scenarios, we will end up
having the same set of positives for the two scenarios. This agreement, as will be
shown in Sect. 20.4.3, plays an important role in some approaches for evaluation of
the verification systems.

To better illustrate how to create the scenarios out of the samples present in any
presentation attack database, let us assume a simple hypothetical presentation attack
database containing one bona-fide and one presentation attack of two clients with
identities A andB. Let us assume that the database also contains bona-fide enrollment
samples for A and B allowing computation of models for them. The matching of the
samples with the models in order to create the positives and the negatives of the two
scenarios is given in Table 20.1. To exemplify an entry in the table, L+ in the first
row means that entries that match genuine accesses of client A to the model of client
A belong to the subset of positives of the licit scenario. The same applies for L+
in the third row, this time for client B. Similarly, S− in the second row means that
entries that match presentation attacks of client A to the model of client A belong to
the subset of negatives in the spoof scenario.
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Instead of creating a presentation attack database and then creating the licit and
spoof scenario from its samples, an alternative way to start with is to use an existing
biometric database which already has enrollment samples as well as data for the licit
scenario. All that is needed is creating the desirable presentation attacks out of the
existing samples. One should note, however, that the complete system used for the
acquisition of samples, including the sensor, should be kept constant through all the
recordings as differentiation may introduce biases. For example, consider a situation
in which a speaker verification system is evaluated with data collected with a low-
noisemicrophone, but in which attack samples are collected using noisier equipment.
Even if attacks do pass the verification threshold, it is possible that potential PAD
may rely on the additional noise produced by the newmicrophone to identify attacks.
If that is the case, then such a study may be producing a less effective PAD system.

20.3.3 Overview of Available Databases for Presentation
Attack Detection

Table20.2 contains an overview of the existing PAD databases that are publicly
available. The columns, that refer to properties discussed throughout this section,
refer to the following:

• Database: the database name;
• Trait: the biometric trait on the database;
• # Subsets: the number of subsets in the database referring to existing separate set
for training, developing and testing systems;

• Overlap: if there is client overlap between the different database subsets (training,
development and testing);

• Vulnerability: if the database can be used to evaluate the vulnerability of a veri-
fication system to presentation attacks (i.e. contains enrollment samples);

• Existing DB: if the database is a spin-off of an existing biometric database not
originally created for PAD evaluation;

• Sensor: If the sensors used to acquire the presentation attack samples are the same
as those used for the bona-fide samples.

20.4 Evaluation Techniques

Several important concepts about evaluation of binary classification systems have
been established and followed by the biometric community. Primarily, they are used
to evaluate verification systems, which have a binary nature. They are also applicable
to the problem of PAD as a binary classification problem.
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Table 20.2 Catalogof evaluation features available on a fewpresentation attack databases available.
For detailed column description, please see Sect. 20.3.3. This table is not an exhaustive list of
presentation attack databases

Database Trait #
Subsets

Overlap Vulnerability Existing
DB

Sensor

ATVS-FFpa [20] Fingerprint 2 No No No Yes

LivDet 2009 [23] Fingerprint 2 ? No No Yes

LivDet 2011 [16] Fingerprint 2 ? No No Yes

LivDet 2013b [24] Fingerprint 2 ? No No Yes

CASIA FASc [25] Face 2 No No No Yes

MSU MFSDd [26] Face 2 No No No Yes

NUAA PIe [14] Face 2 No No No Yes

OULU-NPUf [27] Face 2 No No No Yes

Replay Attackg [28] Face 3 No Yes No Yes

Replay Mobileh [29] Face 3 No Yes No Yes

UVADi [30] Face 2 No No No Yes

Yale Recapturedj [31] Face 1 Yes No Yes No

VERA Finger veink

[32–34]
Finger vein 2 No Yes No Yes

VERA Palm veinl [35] Palmvein 3 No Yes Yes Yes

ASVSpoof 2017m [36] Voice 2 No Yes Yes No

AVSpoofn [37] Voice 3 No Yes No Yes

VoicePAo [38] Voice 3 No Yes Yes Yes
ahttp://atvs.ii.uam.es/atvs/ffp_db.html
bhttp://livdet.org/
chttp://www.cbsr.ia.ac.cn/english/Databases.asp
dhttp://www.cse.msu.edu/rgroups/biometrics/Publications/Databases/MSUMobileFaceSpoofing/
ehttp://parnec.nuaa.edu.cn/xtan/data/nuaaimposterdb.html
fhttps://sites.google.com/site/oulunpudatabase/
ghttp://www.idiap.ch/dataset/replayattack
hhttp://www.idiap.ch/dataset/replaymobile
ihttp://ieeexplore.ieee.org/abstract/document/7017526/
jhttp://ieeexplore.ieee.org/abstract/document/6116484/
khttps://www.idiap.ch/dataset/vera-fingervein
lhttps://www.idiap.ch/dataset/vera-palmvein
mhttp://dx.doi.org/10.7488/ds/2313
nhttps://www.idiap.ch/dataset/avspoof
ohttps://www.idiap.ch/dataset/voicepa

In Sect. 20.4.1, we revisit the basic notation and statistics for evaluation of any
binary classification system.After that recapitulation,we give an overview of how the
error rates andmethodologies are adaptedparticularly for PADsystems inSect. 20.4.2
and verification systems under presentation attacks in Sect. 20.4.3.

http://atvs.ii.uam.es/atvs/ffp_db.html
http://livdet.org/
http://www.cbsr.ia.ac.cn/english/Databases.asp
http://www.cse.msu.edu/rgroups/biometrics/Publications/Databases/MSUMobileFaceSpoofing/
http://parnec.nuaa.edu.cn/xtan/data/nuaaimposterdb.html
https://sites.google.com/site/oulunpudatabase/
http://www.idiap.ch/dataset/replayattack
http://www.idiap.ch/dataset/replaymobile
http://ieeexplore.ieee.org/abstract/document/7017526/
http://ieeexplore.ieee.org/abstract/document/6116484/
https://www.idiap.ch/dataset/vera-fingervein
https://www.idiap.ch/dataset/vera-palmvein
http://dx.doi.org/10.7488/ds/2313
https://www.idiap.ch/dataset/avspoof
https://www.idiap.ch/dataset/voicepa
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20.4.1 Evaluation of Binary Classification Systems

The metrics for evaluation of binary classification systems are associated to the
types of errors and how to measure them, as well as to the threshold and evaluation
criterion [39]. A binary classification system is subject to two types of errors: False
Positive (FP) and False Negative (FN). Typically, the error rates that are reported are
False Positive Rate (FPR), which corresponds to the ratio between FP and the total
number of negative samples and False Negative Rate (FNR), which corresponds to
the ratio between FN and the total number of positive samples.

Alternatively,many algorithms for binary classification report different error rates,
but still equivalent to FPR and FNR. For example, True Positive Rate (TPR) refers
to the ratio of correctly classified positives and can be computed as 1 − FNR. True
Negative Rate (TNR) gives the ratio of correctly detected negatives, and can be
computed as 1 − FPR.

To compute the error rates, the system needs to compute a decision threshold τ

whichwill serve as a boundary between the output scores of the genuine accesses and
presentation attacks. By changing this threshold one can balance between FPR and
FNR: increasing FPR reduces FNR and vice-versa. However, it is often desired that
an optimal threshold τ ∗ is chosen according to some criterion. Two well-established
criteria are MinimumWeighted Error Rate (WER) and Equal Error Rate (EER) [39].
In the first case, the threshold τ ∗

WER is chosen so that it minimizes the weighted total
error rate as in Eq. 20.1 where β ∈ [0, 1] is a predefined parameter which balances
between the importance (cost) of FPR and FNR. Very often, they have the same
cost of β = 0.5, leading to Minimum Half Total Error Rate (HTER) criteria. In the
second case, the threshold τ ∗

EER ensures that the difference between FPR and FNR is
as small as possible (Eq. 20.2). The optimal threshold, also referred to as operating
point should be determined using the data in the development set, denoted in the
equations below as Ddev.

τ ∗
WER = arg argmin

τ

β · FPR(τ,Ddev) + (1 − β) · FNR(τ,Ddev) (20.1)

τ ∗
EER = arg argmin

τ

|FPR(τ,Ddev) − FNR(τ,Ddev)| (20.2)

Regarding the evaluation criteria, once the threshold τ ∗ is determined, the systems
usually report the WER (Eq. 20.3) or its special case for β = 0.5, HTER (Eq. 20.4).
Since in a real-world scenario the final system will be used for data which have not
been seen before, the performance measure should be reported on the test set Dtest .

WER(τ,Dtest ) = β · FPR(τ,Dtest ) + (1 − β) · FNR(τ,Dtest ) (20.3)

HTER(τ,Dtest ) = FPR(τ,Dtest ) + FNR(τ,Dtest )

2
[%] (20.4)
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(a) Score distributions (b) DET curve (c) EPC curve

Fig. 20.4 Evaluation plots for a hypothetical binary classification system

Graphical Analysis

Important tools in evaluation of classification systems are the different graphical
representations of the classification results. For example, one can get an intuition
about how good the discriminating power of a binary classification system is by
plotting its output score distributions for the positive and the negative class, as in
Fig. 20.4a. Better separability between the two classes means better results in terms
of error rates.

To summarize the performance of a system and to present the trade-off between
FPR and FNR depending on the threshold, the performance of the binary classifica-
tion systems are often visualized using Receiver Operating Characteristic (ROC) and
Detection-Error Tradeoff (DET) [40] curves. They plot the FPR versus the FNR (or
some of the equivalent error rates) for different values of the threshold. Sometimes,
when one number is needed to represent the performance of the system in order to
compare several systems, AreaUnder ROC curve (AUC) values are reported. Usually
it is computed for ROC curves plotting FPR and TPR and in this case, the higher the
AUC the better the system. Figure20.4b illustrates the DET curve for a hypothetical
binary classification system.

Unfortunately, curves like ROC and DET can only display a-posteriori perfor-
mance. When reading values directly from the plotted curves, one implicitly chooses
a threshold on a dataset and the error rates are reported on the same dataset. Although
ROCandDETgive a clear idea about the performance of a single system, as explained
in [41], comparing two systems with these curves can lead to biased conclusions. To
solve this issue, [41] proposes the so-called Expected Performance Curve (EPC). It
fills in for two main disadvantages of the DET and ROC curves: 1. it plots the error
rate on an independent test set based on a threshold selected a-priori on a develop-
ment set; and 2. it accounts for the varying relative cost β ∈ [0; 1] of FPR and FNR
when calculating the threshold.

Hence, in the EPC framework, an optimal threshold τ ∗ is computed using Eq.20.1
for different values of β, which is the variable parameter plotted on the abscissa.
Performance for the calculated values of τ ∗ is then computed on the test set. WER,
HTER or any other measure of importance can be plotted on the ordinate axis. The
EPC curve is illustrated in Fig. 20.4c for a hypothetical classification system.
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20.4.2 Evaluation of Presentation Attack Detection Systems

In the domain of PAD, bona-fide samples are the positive samples and presentation
attacks are negative. Moreover, False Positive Rate (FPR) was renamed by the ISO
standards [1] to Attack Presentation Classification Error Rate (APCER), and False
Negative Rate (FNR) was renamed to Bona-Fide Presentation Classification Error
Rate (BPCER). Before the ISO standardization, since the positives and the negatives
are associated with the action of acceptance and rejection by the PAD system, False
Accept Rate (FAR) and False Reject Rate (FRR) were used commonly in place of
APCER and BPCER, respectively. Some publications utilize other synonyms which
are listed in Table20.3.

For a more general framework, where the system is specialized to detect any kind
of suspicious or subversive presentation of samples, be it a presentation attack, altered
sample or artifact, [44] has assembled a different set of notations for error measure-
ments. Such a system reports False Suspicious Presentation Detection (FSPD) in
the place of FNR and False Non-Suspicious Presentation Detection (FNSPD) in the
place of FPR. To summarize the error rates into one value, some authors use accu-
racy [13, 31, 45], which is the ratio of the overall errors that the system made and
the total number of samples. Finally, to graphically represent the performance of the
PAD systems, score distribution plots [46], ROC, DET, and EPC curves are often
used.

20.4.3 Evaluation of Verification Systems Under
Presentation Attacks

The classical approach regards a biometric verification system as a binary classi-
fication system. In the scope of biometric verification systems, False Match Rate

Table 20.3 Typically used error rates in PAD and their synonyms

Error rate Acronym Synonyms

False positive rate FPR Attack presentation classification error rate (APCER),
False accept rate (FAR), False spoof accept rate [9],
False living rate (FLR) [15]

False negative rate FNR Bona-fide presentation classification error rate
(BPCER), False reject rate (FRR), False alarm rate [11],
False live rejection rate [9], False fake rate (FFR) [15]

True positive rate TPR True accept rate

True negative rate TNR True reject rate, detection rate [11, 12, 42] , detection
accuracy [43]

Half total error rate HTER Average classification error (ACE) [15]
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Table 20.4 Typically used error rates in biometric verification and their synonyms

Scenario Error rate Synonyms

Licit Positive rate False match rate (FMR), False accept rate (FAR) [9, 49],
Pfa [7]

Spoof False positive rate Impostor attack presentation match rate (IAPMR), False
accept rate (FAR) [18], Spoof false acceptance rate [3, 6],
Liveness false acceptance rate [48], Success rate [19, 20],
Attack success rate [49]

Both False negative rate False nonmatch rate (FNMR), False reject rate (FRR) [9, 49],
Pmiss [7]

Both True positive rate True positive rate, True accept rate, Genuine acceptance
rate [44, 50]

Union False positive rate Global false acceptance rate (GFAR) [9], System false
acceptance rate (SFAR) [48]

False negative rate Global false rejection rate (GFRR)

(FMR) and False Nonmatch Rate (FNMR) are the most commonly used terms for
the error rates FPR and FNR. FMR stands for the ratio of incorrectly accepted zero-
effort impostors and FNMR for the ratio of incorrectly rejected genuine users. These
and the equivalent error rates are often substituted with other synonyms which are
different by different authors. The most common of them are listed in Table 20.4.
Although not always equivalent [17], sometimes FMR and FNMR are substituted
with FAR and FRR, respectively [47].

The simplification of ternary classification into twobinary classification problems,
as explained in Sect. 20.2, is the key step that set the standards for the evaluation of
verification systems. Systems are usually evaluated separately in the two modes
of operation associated with the two scenarios stated in Sect. 20.3.2. This section
focuses on the error rates and plots typical for this evaluation.

While verification performance metrics are well established and widely used,
metrics for PA evaluation is not as well defined and adopted. Some authors do not
make a clear distinction between a presentation attack and a zero-effort impostor
and refer to both types of samples as impostors. The nature of the sample can be
concluded by the scenario in which it is being used: licit or spoof.

The importance of a clear distinction between the terminology for error rate
reporting on misclassified zero-effort impostors and presentation attacks was out-
lined in [48]. Besides Liveness False Acceptance Rate (LFAR) as a ratio of pre-
sentation attacks that are incorrectly accepted by the system, [48] defines error rates
connected to the total number of accepted negatives, regardless of whether they come
from zero-effort impostors or presentation attacks. For example, the union of FAR
in licit scenario and LFAR in spoof scenario is called System False Acceptance Rate
(SFAR). However, since the introduction of [1], LFAR (also sometimes called Spoof
False Accept Rate (SFAR)) was renamed to Impostor Attack Presentation Match
Rate (IAPMR). A detailed overview of all the metrics utilized by various authors is
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given in Table 20.4. The table contains two metrics of error rates for negatives: for
the licit and spoof scenario. It also reports the overall error rates that occur when
both scenarios are considered as a union.

The adopted terminology in the remainder of this text is as follows:

• FNMR—ratio of incorrectly rejected genuine users (both licit and spoof scenario)
• FMR—ratio of incorrectly accepted zero-effort impostors (in the licit scenario)
• IAPMR—ratio of incorrectly accepted presentation attacks [3] (in the spoof sce-
nario)

• GFAR—ratio of incorrectly accepted zero-effort impostors and presentation
attacks.

Researchers generally follow threemainmethodologies for determining the effect
of presentation attacks over the verification systems and obtaining the error rates. The
differences between the three evaluationmethodologies are in thewayof computation
of the decision threshold.

Evaluation Methodology 1

Two decision threshold calculations are performed separately for the two scenarios,
resulting in two separate values of the error rate (HTER or EER) [3, 18, 51–53].
FNMR, FMR, and IAPMRare reported depending on the decision threshold obtained
for the scenario they are derived from. One weak point of this type of evaluation is
that it neglects that there is only one verification system at disposal and it should have
only one operating point corresponding to one decision threshold. Furthermore, the
decision threshold and the reported error rates of the spoof scenario are irrelevant in
a real-world scenario. The problem arises because the spoof scenario assumes that
all the possible misuses of the system come from spoofing attacks. It is not likely
that any system needs to be tuned to operate in such a scenario. Therefore, the error
rates depending on the threshold obtained under the spoof scenario are not a relevant
estimate of the system’s performance under presentation attacks. Furthermore, the
error rates for the licit and spoof scenarios cannot be compared because they rely on
different thresholds.

Evaluation Methodology 2

This methodology is adopted for more realistic performance evaluation. It takes
advantage of the assumption that the licit and spoof scenarios share the same positive
samples: a requirement mentioned to be beneficial in Sect. 20.3.2. In this case, the
systemwill obtain the same FNMR for the both scenarios regardless of the threshold.
Once the threshold of the system is chosen, FMR and IAPMR can be reported and
compared.The threshold canbe chosenusingvarious criteria, but almost always using
the licit scenario. Most of the publications report error rates for the two scenarios
using a threshold chosen to achieve a particular desired value of FRR [2, 4–8, 19,
20, 49, 50, 54].

The issue that the evaluation methodology 2 oversees is that a system whose
decision threshold is optimized for one type of negatives (for example, the zero-
effort impostors), can not be evaluated in a fair manner for another type of negatives
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(the presentation attacks). If the system is expected to be exposed to two types of
negatives in the test or deployment stage, it is fair that the two types of negatives
play a role in the decision of the threshold in the development stage.

Evaluation Methodology 3

This methodology, introduced as Expected Performance and Spoofability (EPS)
framework in [55], aims at filling in the gaps of the evaluation methodology 2 and
establishes a criteria for determining a decision threshold which considers the two
types of negatives and also the cost of rejecting positives. Two parameters are defined:
ω ∈ [0, 1], which denotes the relative cost of presentation attacks with respect to
zero-effort impostors; and β ∈ [0, 1], which denotes the relative cost of the negative
classes (zero-effort impostors and presentation attacks) with respect to the positive
class. FARω is introduced which is a weighted error rate for the two negative classes
(zero-effort impostors and presentation attacks). It is calculated as in Eq. 20.5.

FARω = ω · IAPMR + (1 − ω) · FMR (20.5)

The optimal classification threshold τ ∗
ω,β depends on both parameters. It is chosen

to minimize the weighted difference between FARω and FNMR on the development
set, as in Eq.20.6.

τ ∗
ω,β = arg argmin

τ

|β · FARω(τ,Ddev) − (1 − β) · FNMR(τ,Ddev)| (20.6)

Once an optimal threshold τ ∗
ω,β is calculated for certain values of ω and β, dif-

ferent error rates can be computed on the test set. Probably the most important is
WERω,β , which can be accounted as a measurement summarizing both the verifi-
cation performance and the vulnerability of the system to presentation attacks and
which is calculated as in Eq.20.7.

WERω,β(τ ∗
ω,β,Dtest ) = β · FARω(τ ∗

ω,β,Dtest )

+ (1 − β) · FNMR(τ ∗
ω,β,Dtest )

(20.7)

A special case of WERω,β , obtained by assigning equal cost β = 0.5 to FARw

and FNMR can be defined as HTERω and computed as in Eq. 20.8. In such a case,
the criteria for optimal decision threshold is analogous to the EER criteria given in
Sect. 20.4.2.

HTERω(τ ∗
ω,Dtest ) = FARω(τ ∗

ω,Dtest ) + FNMR(τ ∗
ω,Dtest )

2
(20.8)

The parameter ω could be interpreted as relative cost of the error rate related
to presentation attacks. Alternatively, it could be connected to the expected relative
number of presentation attacks among all the negative samples presented to the
system. In other words, it could be understood as the prior probability of the system
being exposed to presentation attacks when it is deployed. If it is expected that
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there is no danger of presentation attacks for some particular setup, it can be set to
0. In this case, WERω,β corresponds to WER in the traditional evaluation scheme
for biometric verification systems. When it is expected that some portion of the
illegitimate accesses to the system will be presentation attacks, ω will reflect their
prior and ensure they are not neglected in the process of determining the decision
threshold.

As in the computation ofWER inSect. 20.4.2, the parameterβ could be interpreted
as the relative cost of the error rate related to the negative class consisting of both
zero-effort impostors and presentation attacks. This parameter can be controlled
according to the needs or to the deployment scenario of the system. For example, if
we want to reduce the wrong acceptance of samples to the minimum, while allowing
increased number of rejected genuine users, we need to penalize FARω by setting β

as close as possible to 1.

Graphical Analysis

Following the typical convention for binary classification system, biometric verifi-
cation systems use score distributions, ROC or DET curves to graphically present
their performance. The plots for a traditional biometric verification system regard
the genuine users as a positive and the zero-effort impostors as a negative class. The
details about these types of plots are given in Sect. 20.4.2.

When using graphical representation of the results, the researchers usually follow
the evaluation methodology 2. This means that all the tuning of the algorithms, in
particular in computation of the decision thresholds, is performed using the licit
scenario, while the plots may represent the results for one of the scenarios or for the
both of them.

When only the licit scenario is of interest, the score distribution plot contains the
distributions only for the genuine users and the zero-effort impostors. If evaluation
with regards to the vulnerability to presentation attacks is desired, the score distribu-
tion plot gets an additional distribution corresponding to the scores that the system
outputs for the presentation attack samples in the spoof scenario. As a result, the
score distribution plot presents three score distributions, which illustratively for a
hypothetical verification system, are given in Fig. 20.5a.

An information about the dependence of IAPMR on the chosen threshold can be
obtained directly from the score distribution plot. An example is shown in Fig. 20.5b,
where the full red line represents how IAPMRvarieswith shifting the threshold,while
the vertical dashed red line represents the threshold at a chosen operating point.

Typically, ROC and DET curves visualize the trade-off between FMR and FNMR
for a biometric systemwith no danger of presentation attacks anticipated. The closest
analogy to the ROC and DET curves when evaluating a system exposed to presen-
tation attacks, can be found using the evaluation methodology 2. First, the curve
using the licit scenario is plotted. Then, it can be overlaid with a curve for the spoof
scenario. For the licit scenario, the horizontal axis represents FMR, while for the
spoof scenario it represents IAPMR. However, meaningful comparison of the two
curves is possible only if the number of genuine access samples in both licit and
spoof scenario is the same. In such a case, a certain selected threshold will result in
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the same value of FNMR for the both scenarios. By drawing a horizontal line at the
point of the obtained FNMR, one can examine the points where it cuts the curves
for the licit and spoof scenario, and can compare FMR and IAPMR for the given
system. Illustration of this analysis is given in Fig. 20.5c.

The drawback of the DET curve coming from its a-posteriori evaluation feature
explained in [41] and obstructing fair comparison of two systems, is not a concern
here. The plot does not compare different systems, but the same system with a single
operating point under different set of negative samples.

As an alternative figure delivering similar information as DET, [2, 50] suggest to
plot FMR Versus IAPMR. Thresholds are fixed in order to obtain all the possible
values of FMR for the licit scenario and IAPMR is evaluated on the spoof scenario
and plotted on the ordinate axis. By plotting the curves for different verification
systems, the plot enables to compare which of them is less prone to spoofing given a
particular verification performance. However, this comparison suffers from the same
drawback as the DET: a-posteriori evaluation. As such, its fairness is limited. This
plot is illustrated in Fig. 20.5d.

The logic for plotting the EPC curve is similar if onewants to follow the evaluation
methodology 2. One has to vary the cost parameter β which balances between FMR
and FNMR of the licit scenario and choose the threshold accordingly. Using the
selected threshold, one can plot WER on the licit scenario. Afterwards, to see the
method’s vulnerability to presentation attacks depending on β, the WER curve can
be overlaid with the IAPMR curve using the spoof scenario, as shown in Fig. 20.5e
for a hypothetical system.

A graphical evaluation for the evaluation methodology 3 cannot be easily derived
from the existing ROC or DET curves. The EPS framework computes error rates
for a range of decision thresholds obtained by varying the parameters ω and β. The
visualization of the error rates parameterized over two parameters will result in a
3D surface, which may not be convenient for evaluation and analysis, especially
when one needs to compare two or more systems. Instead, plotting the Expected
Performance and Spoofability Curve (EPSC) is suggested, showing WERω,β with
respect to one of the parameters, while the other parameter is fixed to a predefined
value. For example, we can fix the parameter β = β0 and draw a 2D curve which
plotsWERω,β on the ordinate with respect to the varying parameterω on the abscissa.
Having in mind that the relative cost given to FARω and FNMR depends mostly on
the security preferences for the system, it is not difficult to imagine that particular
values for β can be selected by an expert. Similarly, if the cost of IAPMR and FMR
or the prior of presentation attacks with regards to the zero-effort impostors can be
precisely estimated for a particular application, one can set ω = ω0 and draw a 2D
curve plotting WERω,β on the ordinate, with respect to the varying parameter β on
the abscissa. Unlike for EPC, in the decision threshold calculation for EPSC both the
licit and spoof scenario take place, because both FMR and IAPMR contribute with
a certain weight.

The convenience of EPSC for evaluation of verification systems under presen-
tation attacks is covered by several properties. Firstly, since it follows the evalua-
tion methodology 3, it provides that both types of negatives participate in threshold
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(a) Score distributions (b) Score distributions with IAPMR line

(c) DET curve (d) FMR vs. IAPMR curve

(e) EPC curve (f) EPSC curve

Fig. 20.5 Performance and spoofing vulnerability evaluation plots for hypothetical verification
system

decision process. Second, it presents a-priori results: the thresholds are calculated on
the development set, while the error rates are reported on the test set. This ensures
unbiased comparison between algorithms. Furthermore, this comparison is enabled
for a range of values for the cost parameters ω and β.

Besides WEEω,β , other error rates of interest may be plotted on the EPSC plot,
like IAPMR or FARω.
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20.5 Conclusions

Presentation attack detection systems in biometrics can rarely be imagined working
as standalone. Their task is to perform an additional check on the decision of a
biometric verification systems in order to detect a fraudulent user who possesses a
copy of a biometric trait of a genuine user. Unless they have perfect detection rate,
they inevitably affect the performance of the verification system they protect.

Traditionally, the presentation attack detection systems have been evaluated as
binary classification systems, and in reason: by nature they need to distinguish
between two classes - bona-fide and presentation attack samples. However, the above
observation throws a light on the critical issue of establishing a methodology for
evaluation of verification systems with regards to presentation attacks. This equally
applies for verification systems with or without any mechanism for handling presen-
tation attacks.

This task requires reformulation of the problem of biometric verification. They, as
well, are, by definition, binary classification systems distinguishing between genuine
accesses and zero-effort impostors.With the presentation attacks in play, the problem
scales to pseudo-ternary classification problem, with two types of negatives: zero-
effort impostors and presentation attacks.

As a result of the above observations, this chapter covers the problem of pre-
sentation attacks evaluation from two perspectives: evaluation of presentation attack
detection systems alone and evaluation of verification systems with respect to pre-
sentation attacks. The evaluation in the first case means straightforward application
of well-established evaluation methodologies for binary classification systems, in
error rates (FAR, FRR, HTER, etc.), decisions on operating point (Minimum WER,
EER, etc.) and graphical representation of results (ROC, DET, and EPC curves). The
second perspective requires a simplification of the pseudo-ternary problem, in, for
example, two binary classification problems. This, on the other hand, imposes certain
database requirements, and presentation attacks databases which do not satisfy them
can not be used for evaluation of biometric verification systems under presentation
attacks. Depending on the steps undertaken to simplify the pseudo-ternary problem,
the evaluation paradigm for the system differs. In particular, in this chapter, we dis-
cussed three evaluation methodologies, together with the error rates and the plots
associated with them.4

As the interest for presentation attack detection in almost all biometric modes is
growing both in research, but even more in industrial environment, a common fair
criteria for evaluation of presentation attack detection systems and of verification
systems under presentation attacks is becoming of essential importance. For the time
being, there is a lot of inconsistency in the error rates conventions, as well as the
evaluation strategies used in different publications.

4The software to reproduce the plots of this chapter is available in https://gitlab.idiap.ch/bob/bob.
hobpad2.chapter20.

https://gitlab.idiap.ch/bob/bob.hobpad2.chapter20
https://gitlab.idiap.ch/bob/bob.hobpad2.chapter20
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Chapter 21
A Legal Perspective on the Relevance
of Biometric Presentation Attack
Detection (PAD) for Payment Services
Under PSDII and the GDPR

Els J. Kindt

Abstract Payment applications turn in mass to biometric solutions to authenticate
the rightful users of payment services offered electronically. This is due to the new
regulatory landscape which puts considerable emphasis on the need of enhanced
security for all payment services offered via internet or via other at-distance channels
to guarantee the safe authentication and to reduce fraud to the maximum extent
possible. The Payment Services Directive (EU) 2015/2366 (PSDII) which applies as
of 13 January 2018 in the Member States introduced the concept of strong customer
authentication and refers to ‘something the user is’ as authentication element. This
chapter analyses this requirement of strong customer authentication for payment
services offered electronically and the role of automatedbiometric presentation attack
detection (PAD) as a security measure. PADmeasures aid biometric (authentication)
technology to recognize persons presenting biometric characteristics as friends or
foes. We find that while PSDII remains vague about any obligation to use PAD as a
specific security feature for biometric characteristics’s use for authentication, PAD
re-enters the scene through the backdoor of the General Data Protection Regulation
(EU) 2016/679.

21.1 Introduction

1. Over the last years, (mobile) electronic online payments have considerably
increased. Because such payments on a distance pose specific security risk, there
is a growing urgency to implement appropriate security measures to secure such
payment systems and to combat fraud. One of the risks is more specifically that
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unauthorized persons request the execution of a payment transaction, typically
using funds to their benefice but which are not their own.

2. Innovative systems thus come our way, attaching much importance on who we
are and using our biometric characteristics, in addition towhatwe know andwhat
we have. Some of these solutions are more original and newer than others. They
range from smiling at the camera of your mobile phone, over using wearables
deploying EKG readings tied to credit cards to swallowing eatable passwords
which come in pill form dissolving in your stomach emitting a unique chemical
signal that unlocks your account. All these solutions envisage to authenticate
and to verify the identity of the user or the validity of the use of a specific
payment instrument, and aim to enable authorized secure online payments. Bio-
metric data use hereby will rapidly become mainstream. Mastercard, for exam-
ple, announced the use of biometric data as ‘the new normal’ for safer online
shopping.1

However, applications using biometric technology are prone to so-called ‘spoof-
ing’. Spoofing is a general fraudulent practice whereby one person presents falsi-
fied information, usually belonging to someone else, for gaining an illegitimate
advantage.2 In the context of payment services, the ‘attacker’ would attempt
to authenticate as someone else. If the payment service uses a biometric solu-
tion, the attacker may attempt to spoof the system, for example, by presenting
biometric characteristics of the rightful user.

3. PAD tools are security systems which aid biometric (authentication) technology
to detect whether, when persons present biometric characteristics, such as a face
or finger, there are indications that such characteristics are for example an artefact
(e.g. a facial image on paper), have been altered (e.g. transplanted fingerprints) or
were forced (e.g. by detecting voice emotion). This can be detected at themoment
the characteristics are submitted to a sensor3 but also at the level of a system.
Such ‘attacks’, also known as biometric presentation attacks or ‘spoofing’, is
now widely recognized and remains a weak point in biometric authentication
applications.4 It has restricted the take up of biometric authentication solutions

1See S. Clark, ‘Mastercard to add biometric security to online transactions in Europe’, 23. 1. 2018,
available at https://www.nfcworld.com/technology/eu-payment-services-directive-ii-psd2/.
2Several kinds of information may hereby be falsified, such as a phone number someone is calling
from, a URL for setting up a fraudulent website, but also an email address to mislead about the
sender, etc.
3A sensor is also known as ‘data capture subsystems’. The reason of such submission to a sensor
is to be authenticated, e.g. at the border or for an electronic payment.
4About Presentation Attack, see also Ch. Busch e.a., What is a Presentation Attack ? And
how do we detect it ?, 16. 1. 2018, Tel Aviv, also available at http://www.christoph-busch.de/
about-talks-slides.html About standards for analyzing the effectiveness of direct attacks, coun-
termeasures and more robust biometrics, see also the results of Tabula Rasa, a 7th frame-
work research project funded by the EU Commission, at http://www.tabularasa-euproject.org
and the results of the 7th Framework funded Biometrics Evaluation and Testing (BEAT) project
in particular J. Galbally, J. Fierrez, A. Merle, L. Merrien and B. Leidner, D4.6, Description
of Metrics for the Evaluation of Vulnerabilities to Indirect Attacks, BEAT, 27. 2. 2013, avail-
able at https://www.beat-eu.org/project/deliverables-public/d4.6-description-of-metrics-for-the-
evaluation-of-vulnerabilities-to-indirect-attacks/view.

https://www.nfcworld.com/technology/eu-payment-services-directive-ii-psd2/
http://www.christoph-busch.de/about-talks-slides.html
http://www.christoph-busch.de/about-talks-slides.html
http://www.tabularasa-euproject.org
https://www.beat-eu.org/project/deliverables-public/d4.6-description-of-metrics-for-the-evaluation-of-vulnerabilities-to-indirect-attacks/view
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in applications which are not supervised or where biometric characteristics are
collected over untrusted networks. Presentation Attack Detection (PAD) tools
may therefore be a solution. At the same time, such PAD techniques vary in
being effective, whereby trade-offs with respect to efficiency and security are
made. Methods for assessing the performance of such tools have been discussed
in international fora and standardization organization, including ISO, in order to
lead to a general improvement of PAD tools.

4. In this chapter, we provide a first legal analysis as to the relevance and the
need of security measures which detect presentation attacks to biometric data.
Overall, technologywill play an increasingly important role in finance, including
in particular for personal data processing but also for biometric authentication.
We focus on the specific domain of electronic (mobile) payments and the role
of PAD for providing strong authentication. We hereby discuss PSDII and the
GDPR (see below).5

21.2 PSDII and Presentation Attack Detection (PAD) for
Electronic Payment Services

5. Over the last 15 years, the European legislator has issued common rules for
payment services and payment service providers. These rules were needed to
foster the common market for ecommerce and to increase competition. Those
rules covered the rights and obligations of payment services providers and users
while also aiming at harmonization of consumer protection legislation. It pro-
vided for a coherent legal framework for payment services in theEuropeanUnion
and in Iceland, Norway and Liechtenstein (European Economic Area). We take
a closer look at this framework and whether it also imposes obligations when
using biometric data for payment services.

21.2.1 Introduction into PSDII

6. The first Payment Services Directive 2007/64/EC was adopted in 2007, and
is now modernized and replaced by a revised Directive on Payment Services
(EU) 2015/2366 (‘PSDII’) which Member States shall implement in national
law and apply by 13 January 2018.6 This legislation is important because access
to the payment market and services is opened up to third parties, other than the

5Our analysis does not include the eIDAS Regulation to the extent relevant.
6Directive (EU) 2015/2366 of the European Parliament and of the Council of 25 November 2015
on payment services in the internal market, amending Directives 2002/65/EC, 2009/110/EC and
2013/36/EU and Regulation (EU) No 1093/2010, and repealing Directive 2007/64/EC,O.J., 23. 12.
2015, L 337/35 (‘PSDII’).
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traditional banking institutions. PSDII hence applies to various kinds of pay-
ment institutions including not only credit institutions and electronic money
institutions, but also third party payment service providers, which are hereby
regulated.7 Such third party payment service provider can be any company or
business engaged in payment services, as listed and described in Annex 1 to
PSDII, such as companies being engaged with the execution of payment trans-
actions but also companies merely providing payment initiation services and
account information services.8 It means that a very broad range of businesses
are covered by PSDII, and not only bank and credit institutions.9 The security
measures required under PSDII will be outlined in a Delegated Regulation. Such
security measures are likely going to be applied as of mid 2019 (see below).

21.2.2 Strong Customer Authentication

7. PSDII deploys the notion of ‘strong customer authentication’ for requiring the
security of payment transactions. Such authentication is needed to ensure the
security of payments which are offered electronically and on a distance, for
ensuring the protection of the users. The idea is to build and develop a sound
environment for e-commerce where technologies are adopted to guarantee the
safe authentication of the user and to reduce, to the maximum extent possible,
the risk of fraud.10

8. ‘Strong customer authentication’ refers to the process of authentication and the
longstanding theory that authentication can be ensured by using on, two or three
factors: something someone knows, something one has, and something an indi-
vidual is. ‘Strong customer authentication’ is defined in PSDII as ‘authentication
based on the use of two or more elements categorized as knowledge (something
only the user knows), possession (something only the user possesses) and inher-
ence (something the user is) that are independent, in that the breach of one does
not compromise the reliability of the others, and is designed in such a way as to
protect the confidentiality of the authentication data’.11

7About PSDII, see e.g. Ch. Riefa, ‘Directive 2009/110/EC on the taking up, pursuit and prudential
supervision of the business of electronic money institutions and Directive 2015/2366/EU on the
control of electronic payments in the EU’, in A. Lodder and A. Murray (eds.), EU Regulation of
e-Commerce, Cheltenham, E. Elgar, 2017, 146–176.
8These companies are not necessarily engaged in payment operations. They could, e.g. merely
combine and present information of different banking accounts to customers.
9For example, account information services (AIS), allowing customers and businesses to have a
global view on their financial situation, for instance, by enabling consumers to consolidate the
different payment accounts they may have with one or more banks in one (mobile) apps. These
were before PSDII not specifically regulated.
10See recital 95 PSDII.
11Art. 4 (30) PSDII. See also the definition of ‘authentication’ in PSDII: ‘authentication’ means a
procedure which allows the payment service provider to verify the identity of a payment service
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‘Inherence’ or ‘something the user is’ hence refers to the use of biometric char-
acteristics for authenticating the user of the payment service. While PSDII men-
tions explicitly nor imposes the use of biometric data, it refers indirectly to the
use of such data in the definition of strong customer authentication as a means
to produce strong customer authentication.12 At the same time, and from the
definition it is clear that it is sufficient to use (at least) two elements (out of
the three) for strong customer authentication. Biometric data use is hence only
an option to obtain strong customer authentication. In these standards, security
features for ‘devices and software that read elements categorized as inherence
(…)’ are discussed, in particular, to mitigate the risks ‘that those elements are
uncovered, disclosed to and used by unauthorized parties’ (see below).

9. The methods and how strong customer authentication can be obtained, and
whether for example a provider should include tools for biometric data use
presentation attack detection, however, is not specified in PSDII as such. More
detailed technical standards however are the subject of a delegated regulation,
discussed below.
The use of strong customer authentication will also play a critical role in the
liability of parties involved. This will be further analyzed below.

10. There are exemptions to the need for strong customer authentication. Payments
made through the use of an anonymous payment instrument for example are
not subject to the obligation of strong customer authentication. However, if the
anonymity of such instruments is lifted on contractual or legislative grounds, such
payments become subject to the security requirements that follow from PSDII.
Other exemptions exist for low-risk payments, such as low value contactless
payments.

21.2.3 Delegation of Technical Standards on Security
Aspects to the European Banking Authority

11. Further guidelines and technical standards on the security aspects, and in partic-
ular with regard to strong customer authentication, needed to be adopted. PSDII
empowered the Commission to adopt delegated and implementing acts to spec-
ify how authorities and market participants shall comply with the obligations
laid down in PSDII. The European legislator has subsequently delegated this to
the European Banking Authority (EBA).

12. Of importance is that the technical standards have to be technology and business-
model neutral. They should also not hamper innovation. Those regulatory tech-
nical standards should be compatible with the different technological solu-

user or the validity of the use of a specific payment instrument, including the use of the user’s
personalized security credentials;’ (Art. 4(29) PSDII).
12The possibility to use biometric data is more prominent in the Regulatory Technical Standards
(see below).
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tions available. When developing the Regulatory Technical Standards (RTS)
on authentication and communication, PSDII also explains and requires that the
privacy dimension should be systematically assessed and taken into account, in
order to identify the risks associated with each of the technical options avail-
able and the remedies that could be put in place to minimize threats to data
protection.13 This is in our view also of interest if biometric solutions would be
envisaged.

13. The EBA has then conducted in 2016 an open public consultation on the draft
regulatory technical standards, analyzed the potential related costs and benefits
and requested the opinion of the Banking Stakeholder Group established in
accordance with Article 37 of Regulation (EU) No 1093/2010. The Banking
StakeholderGrouppublished its final report in February 2017with draft technical
standards on inter alia strong customer authentication.14 In this report, it made
various recommendations for the technical standards, including with regard to
the use of elements ‘categorized as inherence’. We mention these also below.

21.2.4 Delegated Regulation on Reference Technical
Standards

14. The EU Commission has published the Delegated Regulation on Regulatory
Technical Standards for inter alia strong customer authentication and com-
mon and secure open standards on 27 November 2017 (‘Regulation on RTS’
or ‘RTS’).15 The RTS came into force on 14 March 2018 and the requirements
and standards will apply as from 14March 2019 and as from 14 September 2019.
In this regulation on RTS, it is stated that in order to ensure the application of
strong customer authentication, it is also necessary to require adequate security
features for the elements of strong customer authentication.

15. The aim is to mitigate the risk that those elements are ‘uncovered, disclosed to
and used by unauthorized parties’.16 For ‘elements categorized as inherence’
and which, as stated, refer also to biometric information, Article 8 contains

13Recital 94 PSDII. About the need to respect data protection, see also e.g. Recital 89 and Recital
93 PSDII. See also below.
14European Banking Authority, Final Report. Draft Regulatory Technical Standards on Strong
Customer Authentication and common and secure communication under Article 98 of Directive
2015/2366 (PSD2),EBA/RTS/2017/02, 23. 2. 2017, 153 p., available at https://www.eba.europa.eu/
documents/10180/1761863/Final+draft+RTS+on+SCA+and+CSC+under+PSD2+%20%28EBA-
RTS-2017-02%29.pdf (‘EBA, Final Report 2017’).
15EU Commission, Commission Delegated Regulation (EU) 2018/389 of 27 November 2017 sup-
plementing Directive 2015/2366 of the European Parliament and of the Council with regard to
regulatory technical standards for strong customer authentication and common and secure open
standards of communication, C(2017)7782final, OJ L 69, 13. 3. 2018, 23–43, available at (‘Dele-
gated Regulation RTS’).
16Delegated Regulation RTS, Recital 6.

https://www.eba.europa.eu/documents/10180/1761863/Final+draft+RTS+on+SCA+and+CSC+under+PSD2+%20%28EBA-RTS-2017-02%29.pdf
https://www.eba.europa.eu/documents/10180/1761863/Final+draft+RTS+on+SCA+and+CSC+under+PSD2+%20%28EBA-RTS-2017-02%29.pdf
https://www.eba.europa.eu/documents/10180/1761863/Final+draft+RTS+on+SCA+and+CSC+under+PSD2+%20%28EBA-RTS-2017-02%29.pdf
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requirements of devices and software which are linked to such elements. It states
the following:

‘1. Payment service providers shall adopt measures to mitigate the risk that the authentica-
tion elements categorized as inherence and read by access devices and software provided
to the payer are uncovered by unauthorized parties. At a minimum, the payment service
providers shall ensure that those access devices and software have a very low probability of
an unauthorized party being authenticated as the payer.

2. The use by the payer of those elements shall be subject to measures ensuring that those
devices and the software guarantee resistance against unauthorized use of the elements
through access to the devices and the software’. (emphasis added)

16. The text took several amendments which were suggested to the proposals of the
standards into account (see below). Because of the amendments, the text is how-
ever difficult to read and to understand. What is meant by ‘uncovered’ ? This
term seems to have not the same meaning as ‘disclosed’ ? In addition, while
adopting these amendments, the original text and purposes have quite drasti-
cally changed. The original text stated that ‘…shall be characterized by security
features including, but not limited to, (..) ensuring resistance against the risk
of sensitive information related to the elements being disclosed to unauthorized
parties’.17 The text adopted presently requires security features in our view for
any disclosure related to the elements and any use by an unauthorized party, and
not only for sensitive information. As a minimum, and as a broader goal, it is
more specifically required that providers ensure that those access devices and
software have a very low probability of an unauthorized party being authenti-
cated as the payer. This could refer to low false acceptance rates (FAR),18 but it
could also include the need for measures against spoofing.

17. During the public consultation, respondents asked the EBA to clarify the quality
of biometric data, such as by reference to maximum/minimum false positive
rates, mechanisms and procedures to capture biometric features, accepted bio-
metric features (fingerprint, retina patter, facial recognition, etc.) and security
measures used to store biometric data. The EBA, however, disagreed to add
detail on the quality as a legal requirement. An important reason was the fear to
undermine the objectives of technology neutrality and future proofing.19

18. Some respondents also asked the stakeholders group of the EBA to consider to
define other features for biometric data, such as testing the strength of biomet-
ric data’s use in authentication,20 the fact that biometric characteristics could
deteriorate over time, false positive and false negative parameters which could

17EBA, Final Report 2017, p. 61.
18About FAR and other technical aspects of biometric systems, see E. Kindt, Privacy and Data
Protection Issues of Biometric Applications. A Comparative Legal Analysis, Dordrecht, Springer,
2013, 19–63 (“Kindt, Biometric Applications 2013”).
19EBA, Final Report 2017, p. 61.
20It was suggested that this could be done by reference to the National Institute of Standards and
Technology (NIST)draft focusedonmeasuringStrengthofFunction forAuthenticators –Biometrics
(SOFA-B). See NIST, Strength of Function for Authenticators – Biometrics (SOFA-B): Discussion
Draft Open For Comments, available at https://pages.nist.gov/SOFA/.

https://pages.nist.gov/SOFA/
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be adjusted (or attacked) to allow for impersonation, and mechanisms to re-
calibrate biometric data (recapture fingerprint / face print, etc.). Others argued
that behavioural biometrics should be accepted while one respondent, however,
was of the view that using behavioural data as a standalone inherence element
should be clearly excluded as an early technology which has to be monitored
and tested in detail in combination with a specific threat model.21 Important for
this chapter is that it was also suggested to consider ‘protection against pre-
sentation attacks’. The EBA, however, considered these specifications were too
detailed and feared that these could undermine future innovation, and the need to
be technology- and business-model neutral. The EBA suggested, however, that
payment service providers may want to take such elements into consideration at
the time of implementation.22

19. In general, it is fair to say that it is important to clarify and stress the general
objective and more specifically, in this case, that limiting the misuse for the
payment service purposes, in particular authentication by a perpetrator is aimed
at. Too many technical requirements could hamper new business approaches.
Overall, however, the technical guidance is quite below what can be useful and
which can be enforced against the payment service provider.
A relevant question here is whether this leaves the payment service user with
the burden to prove that enough nor appropriate security measures were in place
to prevent fraudulent authentication and the misuse of funds, but also of the
biometric data. Member States have to stipulate in national law that if a pay-
ment service user denies having authorized an executed payment transaction, the
payment service provider shall prove that the payment transaction was authenti-
cated, accurately recorded, entered in the accounts and not affected by a techni-
cal breakdown or some other deficiency of the service provided by the payment
service provider.23 If there is no specific obligation to protect biometric authen-
tication by PAD, and no PAD installed at all, one may have difficulty to argue
that non-installation of PAD by the provider is ‘a technical breakdown’.Whether
courts could consider it is some ‘other deficiency’ is to be awaited. While PSDII
does also regulate liability for unauthorized or incorrectly executed payment
transactions (see below), PSDII does not seem to regulate liability for losses in
case of misuse of biometric data. The security, data protection by design and the
liability rules under the GDPR, including the right of data subjects to lodge a
complaint and to compensation, could therefore be helpful for the data subject
here (see below). It also remains unsure what shall be understood by a ‘very
low probability’. The original text seemed to put the threshold less high and was

21Some respondents were also inviting to distinguishing between behavioural data in general and
behavioural biometrics (such as typing recognition), arguing that the latter can very well be used.
EBA, Final Report 2017, p. 61.
22Ibid. p. 63.
23Art. 72.1 PSDII. See further also Art. 72.2 PSDII.
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less strict.24 The preceding chapters in this book are therefore of particular rel-
evance, setting the ways and methods to detect presentation attacks for various
characteristics and how to test and compare PAD tools and rates.

20. The second paragraph of Article 8 of the Regulation on RTS with the require-
ments for hard- and software used for authentication is further quite broad. This
could imply the need for access codes for accessing the biometric data, for
example, but includes in our opinion also measures to resist perpetrators, such
as during a spoofing attack, for example, by liveness detection but also by other
PAD tools andways. This will have to be further specified. The second paragraph
of Article 8 could also be interpreted as requiring resistance against unauthorized
access and use of biometric data as such. In this case, it would not be limited to
security for authentication for purposes of the payment service, but could be far
broader. But it is less clear whether it would include for example also the need
for protection against access and the use for identity theft purposes.25

21. Finally, it is also required that each of the authentication factors are independent,
so that the breach of one does not compromise the reliability of the others, in
particular, when any of these elements are used through a multi-purpose device,
namely, a device such as a tablet or a mobile phone which can be used both for
giving the instruction to make the payment and in the authentication process.26

22. By way of summary, Article 8 Delegated Regulation RTS is quite general and
does not contain more specific requirements for biometric data. Recital 6 Del-
egated Regulation RTS on the other hand provides some examples on how to
avoid and to mitigate the risk that biometric data are ‘uncovered, disclosed to
and used by unauthorized third parties’. Recital 6 of the Delegated Regulation
RTS reads as follows:

‘In order to ensure the application of strong customer authentication, it is also necessary to
require adequate security features for the elements of strong customer authentication, (…)
for the devices and software that read elements categorized as “inherence” (something the
user is) such as algorithm specifications, biometric sensor and template protection features,
in particular to mitigate the risk that those elements are uncovered, disclosed to and used by
unauthorized parties. (…)’.

In order to ensure the application of strong customer authentication, Recital 6
hence refers to adequate security features for biometric data such as algorithm
specifications, biometric sensor and template protection features.27 The word-
ing is however somewhat confusing: does it refer to ‘protection features’ for
‘biometric sensors’ and ‘templates’ or to ‘features’ of ‘biometric sensors’ and

24The original text only required ‘a sufficiently low likelihood of an unauthorized party being
authenticated as the payer’. EBA, Final Report 2017, p. 61.
25Biometric data, already embedded in the EU ePassports of citizens who travel, will become
increasingly object of desire and theft by those wanting to obtain identity documents or to engage
in secure transactions but being deprived or already suspected.
26Delegated Regulation RTS, Recital 6.
27These exampleswere removed from the initial text of the draft articles of theDelegatedRegulation
RTS and mentioned in the Recitals.
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‘template protection’? And it is also not clear whether algorithm specifications
would refer to PAD algorithms or mechanisms, while this is not excluded.28

23. Interpreting Recital 6 Delegated Regulation RTS in the way ‘template protec-
tion’ would be required, would in our view be favourable. However, it is not sure
if this was intended. Template protection has a specific meaning in biometric
data processing. It is an advanced form of protection of biometric data, which—
rather than using ‘raw’ data (samples) or templates—the data is transformed in
such way in that the data are revocable, unlinkeable and to some extent irre-
versible.29 The EDPS and the Article 29 Working Party support the use of the
biometric encryption technology, the latter stating in its Opinion 3/2012 in 2012
on new developments in biometric technologies that it ‘(…) has become suffi-
ciently mature for broader public policy consideration, prototype development,
and consideration of applications’.30 Technology has in the meantime further
developed.

21.2.5 Exceptions to the Need for Strong Customer
Authentication and Other Provisions

24. There are a number of exceptions for RTS, including in case of low value pay-
ments below 30 euro and spending limits of 150 euro. If, for example, fingerprint
is used for authorizing such payments below the threshold, the RTS, including
Article 8 RTS, will not apply.

25. The fraud levels need to be reported to the competent authorities and also directly
to EBA enabling it to conduct a review of the reference fraud rates within 18
months after the RTS enter into force.

Furthermore, the RTS specify the requirements for standards for secure commu-
nication between the institutions.

21.3 PAD: Re-Entry Through the ‘Backdoor’ of the
General Data Protection Regulation ?

26. While PAD may not be explicitly mentioned and required for strong customer
authentication solutions, one could question whether PAD should not be imple-
mented under the provisions of the General Data Protection Regulation (EU)

28See below with regard to existing standard ISO/IEC 30107-1 and other parts adopted in 2016.
29This is also referred to sometimes as biometric information protection. See also ISO standard
ISO/IEC 24745:2011 on biometric information protection.
30About template protection, see e.g. Kindt, Biometric Applications 2013, pp. 855–859.
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2016/679, adopted in 2016 and applicable as of 25 May 2018 directly in all
EU Member States (‘General Data Protection Regulation’ or ‘GDPR’).31 The
GDPR applies to the ‘processing’ of ‘personal data’, as defined, and hence will
also apply if customer data are collected and used by payment services providers
in (mobile) biometric payment solutions. In this view, we briefly discuss applica-
ble privacy and data protection requirements hereunder. First, we mention how
PSDII refers to data protection. We subsequently look at the GDPR.32 We ana-
lyze in a succinct way to what extent the provisions of the GDPR may require
PAD.

21.3.1 PSDII and Privacy and Data Protection in General

27. The legislator of PSDII realized that while being concerned for the security of
electronic payments and the development of a competitive environment for e-
commerce, more data of the payer will be needed, including for risk-assessments
of unusual behaviour. For that reason, and as mentioned, PSDII pays specific
attention to the need to implement and to respect data protection legislation and
requires that the privacy dimension should be systematically assessed and taken
into account, in order to identify the risks associated with each of the technical
options available and the remedies that could be put in place to minimize threats
to data protection.33 This points directly to the need of a data protection impact
assessment of personal data in specific cases as we will explain below, and
in particular if biometric data would be used, for example, for authentication
purposes.

28. PSDII also emphasizes the need to respect fundamental rights, including the
right to privacy such as when competent authorities supervise the compliance
of payment institutions. This should also be without prejudice to the control
of national data protection authorities and in accordance with the Charter of
Fundamental Rights of the European Union.34

31Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),
OJ L 119, 4. 05. 2016, pp. 1–88, available at http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?
uri=OJ:L:2016:119:FULL&from=NL (‘Regulation (EU) 2016/679’ or ‘GDPR’).
32Note that the GDPR also contains a new regime and a new definition (see Article 4 (14) GDPR) of
biometric data. See also E. Kindt, ’Having Yes, Using No? About the new legal regime for biometric
data’, in Computer Law and Security Report, 523–538, 2018, available at http://authors.elsevier.
com/sd/article/%20S0267364917303667.
33Recital 94 PSDII. See also recital 14 Delegated Regulation RTS.
34Recital 46 PSDII.

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL&from=NL
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL&from=NL
http://authors.elsevier.com/sd/article/%20S0267364917303667
http://authors.elsevier.com/sd/article/%20S0267364917303667
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21.3.2 PSDII Requires Explicit Consent

29. Article 94.2 states that payment service providers shall only access, process
and retain personal data which is necessary for the provision of their payment
services, if the payment service users provide explicit consent. This article is
general and somewhat confusing. The article on data protection is in our opinion
too brief to avoid a good comprehension of its meaning. It seems at first sight
also contradictory to the GDPR (see below). Under the GDPR, the necessity to
process personal data under a contract to which the data subject is a party (or
in order to take steps at the request of the data subject prior to entering into
a contract) is a sufficient legal ground,35 without the need for explicit consent
in addition. The PSDII mentions both legal grounds as a double requirement?
In addition, one could read that even with explicit consent, only the necessary
personal data can be processed.36 Furthermore, ‘explicit consent’ is more strict
than consent, and is in the GDPR reserved and required for, for example, the
processing of ‘sensitive data’ which includes the processing of biometric data for
uniquely identifying, profiling and transfer to third countries. Would the same
definition and principles in relation to consent and the GDPR apply?37 This
may well be possible as the GDPR is a lex generalis. We nevertheless plead for
clarification.

30. Based onArticle 94.2 PSDII, however, we understand that for access to biometric
data for authentication purposes for a payment service, the explicit consent is
required.

21.3.3 PAD and the GDPR

21.3.3.1 The General Data Protection Regulation and the Risk-Based
Approach

31. The new General Data Protection Regulation has received much attention since
its principles and obligations apply to almost all processing of personal data (safe
specific restrictions38) for all sectors and, in case of non-compliance, allows for
high administrative fines. While building further on the previous principles and

35See Art. 6.1(b) GDPR.
36See also Art. 66.3 (f) and (g) PSDII stating that payment initiation services ‘shall not request
from the payment service user any data other than those necessary to provide the payment initiation
service’ and ‘not use, access or store any data for purposes other than for the provision of the
payment initiation service as explicitly requested by the payer’.
37See also Article 29 Working Party, Guidelines on Consent under Regulation 2016/679
(WP259rev0.1) July, 2018.
38See Art. 23 GDPR. The GDPR has a wide (material and territorial) scope, as detailed in the arts.
2–3GDPR. It hence also applies as a general legislation for data processing activities to the payment
services sector.
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obligations of data protection, it is important to retain that the GDPR stresses a
specific approach in order to guarantee compliance with data protection require-
ments. In the first place, and which is also very relevant for this chapter, the
new Regulation includes a so-called ‘risk-based approach’. This implies that
compliance with data protection legislation is not just a ‘box-ticking exercise’,
but should really be about ensuring that personal data is sufficiently protected.
It is not an entirely new concept. It means that data protection obligations for
processing which is considered risky for the individuals concerned are to be
complied with more rigour and are strengthened.39 The risk-based approach is
reflected not only in the obligation of security (Article 32) and the legal regime
applicable to the processing of special categories of data (Article 9), which were
already present in the previous legislation, but also in the obligation to carry out
an impact assessment (Article 35) and other implementationmeasures such as the
data protection by design principle (Article 25). The risk-based approach aligns
with different levels of ‘accountability obligations’ depending on the risk posed
by the processing in question, in particular, regarding data processing which,
taking into account the nature, scope, context, purposes of the processing poses
risks for data subjects. It should in any case not be seen as an alternative to
well-established data protection rights and principles, but rather as a ‘scalable
and proportionate approach’ to compliance.40

32. There is a general agreement that the use of biometric characteristics in appli-
cations poses specific risks for individuals for various reasons. Identity theft is
just one but important example, which is as a risk also mentioned in recital 75
of the GPDR.41 This implies, also in view of the explained risk-based approach,
that specific scrutiny for the use of such data, also for payment services, will be
required under the GDPR.

33. Furthermore, the GDPR in addition now also stresses as a general principle that
controllers shall not only be responsible for compliance with the data protection
obligations, but shall also be able to demonstrate compliance. This is referred
to as the ‘accountability’ principle of controllers.42 Payment services providers
are—if controller—hence also bound by this principle. It requires that payment

39Control by authorities is likely to be more strict for such processing as compared to processing
with relatively ‘low risk’.
40See also the Article 29 Data Protection Working Party, Statement on the role of a risk-
based approach in data protection legal frameworks, WP218, 30. 5. 2014, 4 p. available
at http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
files/2014/wp218_en.pdf. This document contains more clarifications on the not to be misunder-
stood risk-based approach.
41Some data protection authorities have mentioned the risk of identity theft and misuse of biometric
data before. The Belgian Privacy commission, for example, mentioned the increased risk of iden-
tity theft in case biometrics are more commonly used as an authentication tool. CBPL, Opinion
N17/2008 biometric data, 45–51. See also other studies, e.g. Teletrust, White Paper zum Daten-
schutz, 2008, 18–19. For an overview of the many risks, see Kindt, Biometric Applications 2013,
275–395.
42Art. 5.2 GDPR and art. 24.1 GDPR. The general principle is repeated in Article 24 as a specific
obligation.

http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp218_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp218_en.pdf
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services providers as controllers, as well as their processors, shall implement
appropriate technical and organizational measures. They shall hereby take the
very nature of biometric data and the wide scope (for example, if applied to all
payment service users) of the processing into account, as well as the risks of
varying likelihood and severity for the rights and freedoms of natural persons.
Furthermore, those measures shall be reviewed and updated where necessary.43

34. The GDPR hence requires when reviewing processing activities, to take into
account the nature and risks. Operations with high risks hence require more pro-
tection measures. Mobile payment services deploying unique biometric charac-
teristics which cannot be revoked for authentication should hence in our view
be assessed, as we explain below.

21.3.3.2 The Use of Biometric Data for Strong Customer
Authentication will Need a Data Protection Impact Assessment

35. One of the new obligations of the GDPR is the requirement for controllers to in
addition conduct a data protection impact assessment (DPIA) whenever ‘taking
into account the nature, scope, context and purposes of the processing’, such
processing is ‘likely to result in a high risk to the rights and freedoms of nat-
ural persons’. This applies the more if ‘new technologies’ are used.44 Further
guidelines for such DPIA have been provided by the Article 29Working Party.45

Biometric technology for authentication purposes, for example for payment ser-
vices, is very likely to be considered such new technology.46

43Art. 24.1 GDPR. This is further reflected in several more specific obligations, stressing the burden
of proof on the controllers and to keep records and evidence that they adhered to their obligations
(for example, that an (explicit) consent was obtained). It is also reflected in the new obligation for
controllers to make an impact assessment for processing operations ‘if likely to result in high risks’.
44Art. 35.1 GDPR.
45See Article 29 Data Protection Working Party,Guidelines on Data Protection Impact Assessment
(DPIA) and determining whether processing is “likely to result in a high risk” for the purposes
of Regulation 2016/679, adopted on 4. 4. 2017 and last revised and adopted on 4. 10. 2017, WP
248rev.01, 21 p. (‘WP 29 Guidelines on DPIA (WP248rev.01)’). The Article 29 Working Party
will as of May 2018 be reformed in the European Data Protection Board (‘EDPB’). Some national
DPAs, such as in the United Kingdom and in France, have also provided more information and
guidance on a DPIA in general, and in some case also specific for biometric data. See, e.g. France,
CNIL, Déliberation no 2016-187 of 30 June 2016 relating to the ‘unique authorization’ for access
control to places, devices and computer applications in the workplace based on templates stored in
a database (AU-053), 15 p., available at https://www.cnil.fr/sites/default/files/atoms/files/au-053.
pdf , and Grille D’Analyse, 11 p., available at https://www.cnil.fr/fr/%20biometrie-un-nouveau-
cadre-pour-le-controle-dacces-biometrique-sur-les-lieux-de-travail.
46This interpretation is in our view also suggested in the fore-mentioned Guidelines on DPIA. See
WP 29 Guidelines on DPIA (WP248rev.01), pp. 9–10. The example where a DPIA is required is
given therein: ‘8. Innovative use or applying technological or organizational solutions, like com-
bining the use of fingerprint and face recognition for improved physical access control, etc.’ (p.
9).

https://www.cnil.fr/sites/default/files/atoms/files/au-053.pdf
https://www.cnil.fr/sites/default/files/atoms/files/au-053.pdf
https://www.cnil.fr/fr/%20biometrie-un-nouveau-cadre-pour-le-controle-dacces-biometrique-sur-les-lieux-de-travail
https://www.cnil.fr/fr/%20biometrie-un-nouveau-cadre-pour-le-controle-dacces-biometrique-sur-les-lieux-de-travail
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36. Moreover, a DPIA is in three specific cases always required, inter alia when
special categories of data are processed on a large scale.47 If biometric data are
used for uniquely identifying, such processing is considered the processing of a
special category of personal data, and consequently, such processing, upon the
condition that it is on a large scale, and has a legal basis which permits such
processing, would have to be submitted to an assessment exercise, named DPIA
(formerly also known as a PIA).

37. As mentioned, conducting a DPIA is in accordance with the risk-based approach
and global rationale of the GDPR that the controller is responsible and shall
demonstrate compliance with the legislation as required by the new principle
of being accountable for the processing (see above). The DPIA is herein an
important tool. Such assessment shall consist of (a) a systematic description of
the envisaged processing operations, in particular, the capture and use of the
biometric data, the purposes of the processing, including, where applicable, the
legitimate interest pursued by the controller; (b) an assessment of the necessity
and proportionality of the processing operations in relation to the purposes; (c)
an assessment of the risks to the rights and freedoms of data subjects; and (d) the
measures envisaged to address the risks, including safeguards, security measures
and mechanisms to ensure the protection of personal data and to demonstrate
compliance with the GDPR taking into account the rights and legitimate inter-
ests of data subjects and other persons concerned.48 As imposter attacks and
identity theft belong to the risks, these shall be mentioned and appropriate mea-
sures, including but not limited to PAD for example, but also template protection
mechanisms, should be considered and described.

38. Making an impact assessment under data protection legislation is a new obliga-
tion under the GDPR and creates lots of concern and questions. For example,
as of when would a biometric use for uniquely identifying be on a large scale?
To assess the scale, large-scale processing operations would aim at processing
‘a considerable amount of personal data at regional, national or supranational
level’ and which ‘could affect a large number of data subjects’.49 This would be
the case when a payment service provider would offer and implement to a large
clientele biometric authentication.

39. The controller is responsible for the carrying out of the DPIA to evaluate, in par-
ticular, ‘the origin, nature, particularity and severity’ of the risk. The outcome of
the assessment shall then be taken into account for determining the appropriate
measures to be taken to mitigate the risks in order to demonstrate that the pro-
cessing of the personal data complies with the Regulation. The GDPR hereby

47This is the second (explicit) scenario requiring a DPIA which expressly refers to the processing
(a) on a large scale (b) of special categories of data of Article 9(1) or of Article 10. See Art. 35.3(b)
GDPR.
48Art. 35.7 GDPR and recitals 84 and 90 GDPR. For addressing various risks, see also, e.g. Kindt,
E., ‘Best Practices for privacy and data protection for the processing of biometric data’ in P. Campisi
(ed.), Security and Privacy in Biometrics, 2013, Springer, pp. 339–367. For more guidelines on how
to conduct such DPIA, see WP 29 Guidelines on DPIA (WP248rev.01).
49See Recital 91 GDPR.
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takes up defined components of more general risk management processes, e.g.
as known in ISO 31000 reviews. The international standard ISO/IEC 29134 will
also provide formore guidelines on themethodology for suchDPIA.50 TheDPIA
shall always be done before the start of the processing. Where appropriate, the
views of the data subjects shall also be sought.51 Such DPIA for biometric data
processing is an iterative process and each of the stages to be revisited multiple
times before the DPIA can be completed. A DPIA is hence an important exer-
cise which will require the necessary time, skills and insights in the biometric
application, as well as the organizational and technical measures, but also a com-
prehension of the legal requirements. The controller is further free to publish the
DPIA or not.

40. In case the DPIA indicates that the processing would result in a high risk in the
absence of or which the controller cannot mitigate by appropriate measures‘
in terms of available technology and costs of implementation’, the controller
will have to conduct a prior consultation with the supervisory authority.52 Such
prior consultation and authorization would only be required when residual risks
remain high53 and the data controller cannot find sufficient measures to cope
with them. An example of an unacceptable high residual risk given by the Art.
29WP iswhere ‘the data subjectsmay encounter significant, or even irreversible,
consequences, which they may not overcome, and/or when it seems obvious that
the risk will occur.’ In this context, the theft of biometric identity could be such
risk. For available technology to cope with particular risks, one could think of
for example the use of so-called ‘protected biometric information’ or ‘protected
templates’.54

21.3.3.3 Organizational and Technical Measures Required to Ensure
Security Appropriate as Compared with the Risks

41. At the core of any personal data processing operation is the need and the obli-
gation to ensure the security of the processing. Article 32 GDPR is explicit and
requires on one hand that one shall take into account the ‘state of the art’ and
‘the costs of implementation’ of such security measures, but also the ‘nature,

50See ISO/IEC 29134, Information technology—Security techniques —Privacy impact
assessment—Guidelines, International Organization for Standardization (ISO).
51These views could be sought through a variety of means. See WP 29 Guidelines on DPIA
(WP248rev.01), p. 13.
52Recital 84 GDPR. See Art. 36 GDPR.
53WP 29 Guidelines on DPIA (WP248rev.01), p. 18.
54See also EDPS, Opinion 1. 02. 2011 on a research project funded by the European Union
under the 7th Framework Programme (FP 7) for Research and Technology Development (Tur-
bine: TrUsted Revocable Biometric IdeNtitiEs), p. 3, available at http://www.edps.europa.eu/
EDPSWEB/%20webdav/site/mySite/shared/Documents/Consultation/Opinions/%202011/11-
02-01_FP7_EN.pdf; Kindt, Biometric Applications 2013, pp. 792–805. Recital 6 TRS (see above)
may even require such protection.

http://www.edps.europa.eu/EDPSWEB/%20webdav/site/mySite/shared/Documents/Consultation/Opinions/%202011/11-02-01_FP7_EN.pdf
http://www.edps.europa.eu/EDPSWEB/%20webdav/site/mySite/shared/Documents/Consultation/Opinions/%202011/11-02-01_FP7_EN.pdf
http://www.edps.europa.eu/EDPSWEB/%20webdav/site/mySite/shared/Documents/Consultation/Opinions/%202011/11-02-01_FP7_EN.pdf
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scope, context and purposes of processing’ and ‘the risk of varying likelihood
and severity for the rights and freedoms’. The aim is to ensure a level of appro-
priate protection taking into account the risk. We briefly mentioned that using
biometric characteristics for authentication purposes remains subject to many
risks, including the risk of (biometric) identity theft. It is hence required to pro-
tect against such risks. PAD in our view would be part of the required security
measures. Standards for security evaluations of biometric systems have been or
are developed on international level and are part of the ‘state of the art’. Bio-
metric sensor features should hence include biometric-based attack detection
of impostors attempting to subvert the intended operation of the system. The
ISO/IEC 30107 standard part 1 presents the framework and describes the meth-
ods for detecting presentation attacks as well as obstacles, while part 2 defines
the data formats and part 3 principles and methods for performance assessment
of presentation attack detection algorithms or mechanisms. Although the ISO
standards are not binding standards, they play an important role in adherence
and compliance to the state of the art.
While PSDII hencemay not be specific to the relevance, importance and require-
ment of PAD, theGDPR—because of the risk-based approach, the specific nature
of biometric data and various specific obligations—would require in our view
that PAD is—in accordance with the state of the art and costs—introduced and
applied.

42. Furthermore, Article 32 GDPR explicitly mentions the use of pseudonymisation
of the data (see also below), as well as processes for regular testing.55 The latter
points the more to the requirement to detect, evaluate and to test presentation
attacks and to implement appropriate countermeasures.

43. Using PAD for payment services further to the GDPR is only but in line with the
legislative goals and aims of PSDII.Various commentators have pointed to PSDII
as an important factor in a wider and more general user acceptance of biometric
data processing in electronic identity authentication and payment schemes.56

PSDII requires that payment services offered by providers electronically shall
be carried out in a secure manner, adopting technologies able to guarantee the
safe authentication of the user and to reduce, to the maximum extent possible,
the risk of fraud. The goals of PSDII and the RTS include explicitly ensuring
appropriate levels of security based on effective and risk-based requirements but
also ensuring the safety of the funds and personal data.57 While PAD may not

55Art. 32.1(a) and (d) GDPR.
56See e.g. P. Counter, ‘Unisys Says Biometrics Will Go Mainstream in 2018’ in MobileID-
World, 22. 1. 2018, available at https://mobileidworld.com/unisys-says-biometrics-mainstream-
2018-901224/.
57Art. 98.2 PSDII.

https://mobileidworld.com/unisys-says-biometrics-mainstream-2018-901224/
https://mobileidworld.com/unisys-says-biometrics-mainstream-2018-901224/
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be explicitly mentioned, it may be considered again upon review of the RTS.58

In any case, we argue that in the meantime, the GDPR should play its role.
44. Payment providers from their side need to ensure in any case that the ‘person-

alized security credentials’ are not accessible to parties other than the payment
service user that is entitled to use the payment instrument. They shall also make
sure that there are appropriate means available at all times to enable the payment
service user tomake a notificationwithout undue delay on becoming aware of the
loss, theft, misappropriation or unauthorized use of the payment instrument.59

Personalized security credentials is defined as personalized features provided by
the payment service provider to a user for the purposes of authentication. One
could argue that biometric data could fall hereunder and hence—since many
biometric characteristics could easily be captured in public places, that such
information should specifically be protected, and PAD detected.

21.3.3.4 Data Minimization and Data Protection by Design and by
Default

45. The GDPR imposes furthermore several other often detailed obligations, such
as data minimization, including the use of pseudonyms, and the obligation to
embed data protection into the design of data processing and to guarantee data
protection by default. PSDII explicitly refers to this obligation. Recital 89 states
that data protection by design and data protection by default should be embedded
in all data processing systems developed and used within the framework of this
Directive.

46. Following these obligations, PAD seems necessary in strong authentication solu-
tions relying on biometric characteristics. The latter can easily be captured in
ways unknown to the owner, and allowing for spoofing. Moreover, this could
also imply in our opinion that not only PAD is needed as a security obligation,
but also for example, template protection, as mentioned above. Such template
protection allows to create multiple biometric identities for one and the same
data subject, which can be regarded as pseudonyms,60 reducing the possibility
to link the biometric data to the data subject outside a particular domain or appli-
cation but offering at the same time the advantage of enhanced claim or identity
verification by using biometric characteristics.61

58See Art. 98.5 PSDII which requires the EBA to review and update the RTS on a regular basis.
59Art. 70 PSDII.
60See also the general comments in theOpinion 4/2007 of theArticle 29WorkingParty on pseudony-
mous and anonymous data, which are also relevant for the processing of biometric data.
61See also Kindt, Biometric Applications 2013, 792–806.
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21.4 Liability

21.4.1 Liability Under PSDII

47. The use of strong customer authentication, including the enabling of PAD, is
also relevant from a liability perspective.
PSDII contains several provisions with regard to the liability for unauthorized
or incorrectly executed payment transactions. In general, the payer’s payment
service provider is liable for unauthorized transactions. The payer’s payment
service provider shall refund the payer the amount of the unauthorized payment
transaction immediately, and in any event no later than by the end of the fol-
lowing business day, after notification in the case of an unauthorized payment
transaction. This does not apply, however, if the payment service provider has
reasonable grounds for suspecting fraud. This requires also that the grounds be
communicated by the latter to the relevant national authority in writing.62 Other
financial damages may be obtain under the national law which is applicable to
the payment contract.

48. Member States may however opt for payers to bear the losses relating to any
unauthorized payment transactions, up to a maximum of EUR 50,63 resulting
from the use of a lost or stolen payment instrument or from the misappropriation
of a payment instrument. This is however only the case if the provider did use
strong customer authentication. If the provider did not require and use strong
customer authentication, for example because the amounts are low, the payer
cannot be held to pay this amount and will not bear any financial losses (unless
in case of fraud).64

This liability regime could be an incentive for providers as well to use two or
more factor authentication, which could include biometric authentication, as
well as appropriate PAD.

21.4.2 High Administrative Sanctions Possible Under the
GDPR and Right to Compensation

49. Another incentive to prevent unauthorized persons accessing payment services
exists under the GDPR. Unauthorized access could for example be due to an
incomplete or ineffective DPIA or inappropriate security measures, notwith-
standing the obligation to provide such (see above).

62Art. 73 PSDII.
63This has been reduced as compared to Directive 2007/64/EC.
64Art. 74.2 PSDII.
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In this case, the competent supervising authoritymay impose administrative fines
up to 10 000 000, or in the case of an undertaking, up to 2%of the totalworldwide
annual turnover of the preceding financial year, whichever is higher65 or double,
up to 20 000 000 euro or 4 % in case of non-compliance inter alia with the
general principles or non observance of the orders of supervisory authorities.66

The idea is however that any fines will be imposed from case to case, after
assessments, and shall be ‘effective, proportional and dissuasive’. The authorities
shall further only impose fines which adequately respond to the ‘nature, gravity
and consequences of the breach’, the results and measures taken.67

50. At the same time, data subjects who have suffered material or non-material
damages, e.g. because of the use of biometric data in identity theft, and this
is due to a breach of the GDPR, are entitled to receive compensation for the
damages suffered.68 Providers responsible for the processing of the data, could
then only be exempted from liability if they prove that they are ‘not in any way
responsible for the event giving rise to the damage.’69 It then remains to be
seen whether payment services providers could validly invoke that PAD was not
required.

21.5 Conclusions

51. We explained the need for adequate security features for online payments, includ-
ing strong customer authentication. The so-called ‘authentication elements’ cat-
egorized as ‘inherence’ in the PSDII refer indirectly to the use of biometric
characteristics. The regulation relating to PSDII, however, remains rather vague
about any obligation to use existing and specific security features for such inher-
ence elements, including features such as relating to the need for PAD.

52. The use of biometric characteristics in such authentication procedure, however,
also qualifies as the use of biometric data as defined in the General Data Protec-
tion Regulation (EU) 2016/679. This Regulation imposes inter alia appropriate
security measures, data protection impact assessments and data protection by
design when new technologies are used, such as biometric technologies.

65Art. 83.4 GDPR.
66Arts. 83.5–83.6 GDPR.
67See art. 83 GDPR and also Rec. 150. Supervisory authorities must assess all the facts of the case
in a manner that is consistent and objectively justified. About how such sanctions shall be applied,
see also Article 29 Data Protection Working Party, Guidelines on the application and setting of
administrative fines for the purposes of the Regulation 2016/679, WP253, 3. 10. 2017, 17 p.
68See art. 82 GDPR.
69Art. 82.3 GDPR.
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We argued that because of the obligation to implement security measures required
for ‘inherence’ (something the user is) such security obligation will bring along
with it the need to review and implement privacy and personal data protections for
biometric data used as well. This is positive. This ‘security paradigm’ may hence
prove to be helpful this time to promote privacy. Nevertheless, it remains an indirect
way to address the need for privacy and personal data protection for biometric data
in such online payment environment. At the same time, it remains as welcome as
any other way to point to the need for privacy and personal data protection for such
very particular data. PAD, while not being explicitly required in PSDII, therefore re-
enters through the backdoor of the GDPR, requiring security measures and a DPIA.
Spoofing vulnerabilities as well as PAD shall hence from a legal point be adequately
described and assessed in a DPIA under the GDPR.
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Chapter 22
Standards for Biometric Presentation
Attack Detection

Christoph Busch

Abstract This chapter reports about the relevant international standardization activ-
ities in the field of biometrics and specifically describes standards on presentation
attack detection that have established a framework including a harmonized taxon-
omy for terms in the field of liveness detection and spoofing attack detection, an
interchange format for data records and moreover a testing methodology for presen-
tation attack detection. The scope and of the presentation attack detection multipart
standard ISO/IEC 30107 is presented. Moreover, standards regarding criteria and
methodology for security evaluation of biometric systems are discussed.

22.1 Introduction

Biometric systems are characterized by two essential properties. On the one hand,
functional components or subsystems are usually dislocated. While the enrolment
may take place as part of an employment procedure with the personal department or
as part of an ePassport application in the municipality administration, the biometric
verification takes place likely at a different location, when the data subject (e.g., the
staff member) is approaching a certain enterprise-gate (or any other physical border
gate) or when the citizen is traveling with his new passport. On the other hand, while
the biometric enrolment is likely to be a supervised capture process and often linked
with training on sensor interaction and guided by an operator, on the contrary, such
supervision does not exist for the verification process. Further, the verification is
often conducted based on a probe sample that was generated in a unsupervised cap-
ture process. In consequence of the verification not only usability of the sensor and
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ease of human–machine interaction is essential but also a measure of confidence that
the probe sample was indeed collected from the subject that was initially enrolled and
not from an biometric artefact that was presented by an attacker with the intention to
pretend the presence of the enrollee. Such attacks are now becoming more relevant
also for mobile biometric use cases and application like biometric banking trans-
actions. Thus, industry stakeholders such as the FIDO-alliance as well as financial
institutions, which are about to implement the security requirements of the European
payment service directive (PSD2), are continuously concerned about unsupervised
biometric authentication and robustness of biometric sensors.

In most cases, the comparison of a probe biometric sample with the stored bio-
metric reference will be dislocated from the place of enrolment. Some applications
store the reference in a centralized or decentralized database. More prominent are
token-based concepts like the ICAO ePassports [1] since they allow the subject to
keep control of his/her personal biometric data as the traveling individuals decide
themselves, whether and when they provide the token to the controlling instance.
The same holds for many smartphone-based biometric authentication procedures,
where the reference is stored in secure memory.

The recognition task is likely to fail, if the biometric reference is not readable
according to a standardized format. Any open system concept does, therefore, require
the use of an open standard in order to allow that for the recognition task a component
from a different supplier can be used. The prime purpose of a biometric reference is to
represent a biometric characteristic. This representation must, on the one hand, allow
a good biometric performance but at the same time, the encoding format must fully
support the interoperability requirements. Thus, encoding of a biometric sample (i.e.,
fingerprint imageor face image) according to the ISO/IECBiometric data interchange
format [2] became a prominent format structure for many applications.

For all data interchange formats, it is essential to store along with the representa-
tion of the biometric characteristic essential information (metadata) on the capture
process and the generation of the sample. Metadata that is stored along with the
biometric data includes information such as size and resolution of the image but also
relevant data that impacted the data capturing process: Examples are the Capture
Device Type ID that identifies uniquely the device, which was used for the acqui-
sition of the biometric sample and also the certification block data that reports the
certification authority, which had tested the capture device and the corresponding
certification scheme that was used for this purpose. These data fields are contained
in standardized interchange records [2–4].

An essential information that was furthermore considered helpful for the verifi-
cation capture process is a measure to describe the reliability of the capture device
against presentation attacks (a.k.a spoofing attacks). This becomes more pressing
once the capture device and the decision subsystems are dislocated. Thus, ISO/IEC
has developed in recent years a multipart standard that is covering this issue and
will be introduced in this chapter. The chapter will outline the strategy behind this
standardization process, cover the framework architecture and taxonomy that was
established and will discuss the constraints that had to be considered in the respective
standardization projects.
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22.2 International Standards Developed in ISO/IEC JTC

International standardization in the field of information technology is driven by a
Joint Technical Committee (JTC 1) formed by the International Organization for
Standardization (ISO), and the International Electrotechnical Commission (IEC).
An important part of the JTC1 is the Sub-Committee 37 (SC37) that was estab-
lished in 2002. First standards developed in SC37 became available in 2005 and
have found wide deployment in the meantime. More than 900 million implemen-
tations, according to SC37, standards are estimated to be in the field at the time
of this writing. Essential topics that are covered by SC37 include the definition of
a HarmonizedBiometricV ocabulary (ISO/IEC 2382-37) that removes contra-
dictions in the biometric terminology [5, 6], a harmonized definition of a General
Biometric System (ISO/IEC SC37 SD11) that describes the distributed subsystems,
which are contained in deployed systems [7], a common programming interface
BioAP I (ISO/IEC 19784-1) that supports ease of integration of sensors and SDKs
[8] and also the definition of data interchange formats. SC37 has over its first 15
years of work concentrated on the development of the ISO/IEC 19794 family, which
includes currently the following 14 parts:

• Part 1: Framework
• Part 2: Finger minutiae data
• Part 3: Finger pattern spectral data
• Part 4: Finger image data
• Part 5: Face image data
• Part 6: Iris image data
• Part 7: Signature/Sign time series data
• Part 8: Finger pattern skeletal data
• Part 9: Vascular image data
• Part 10: Hand geometry silhouette data
• Part 11: Signature/Sign processed dynamic data
• Part 12: - void -
• Part 13: Voice data
• Part 14: DNA data
• Part 15: Palm crease image data

The framework part includes relevant information that is common to all subse-
quent modality specific parts such as an introduction of the layered set of SC37
standards and an illustration of a general biometric system with a description of
its functional subsystems namely the capture device, signal processing subsystem,
data storage subsystem, comparison subsystem, and decision subsystem [2]. Fur-
thermore, this framework part illustrates the functions of a biometric system such
as enrolment, verification, and identification and explains the application context of
biometric data interchange formats. Part 2–Part 15 then detail the specification and
provide modality related data interchange formats for both image interchange and
template interchange on feature level. The 19794-family gained relevance, as the
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International Civic Aviation Organization (ICAO) adopted image-based represen-
tations for finger, face, and iris in order to store biometric references in electronic
passports. Thus, the corresponding ICAO standard 9303 [1] includes a normative
reference to ISO/IEC 19794. ICAO estimated in June 2015 that there were over 700
million Electronic Passports issued by 112 member states of ICAO.

22.3 The Development of Presentation Attack Detection
Standard ISO/IEC 30107

For more than a decade, along with the enthusiasm for biometric technologies the
insight into potential risks in biometrics systemswas developed and is documented in
the literature [9–11].Within the context of this chapter, the risks of subversive attacks
on the biometric capture device became a major concern in unsupervised applica-
tions. Over the years, academic and industry research developed countermeasures
in order to detect biometric presentation attacks that constitute a subversive activity.
For a survey on attacks and countermeasures regarding face-, iris- and fingerprint
recognition the reader is directed to [12–14].

From a general perspective, a presentation attack can be conducted from an out-
sider that interacts with a biometric capture device but could as well be undertaken
from an experienced insider. However, the need to develop a harmonized perspective
for presentation attacks that are conducted by biometric capture subjects became
obvious. Thus, the motivation to develop a standard that is related to liveness detec-
tion and spoofing was supported from stakeholders of all three communities that
are active in SC37, namely, from industry (essentially representatives from vendors
working fingerprint-, vein-, face-, and iris-modality), from academia and research
projects (e.g., European projects on liveness detection) as well as from governmental
agencies (e.g., responsible for testing laboratories). The latter took the lead and have
started the development. Since then experts from the biometric community as well as
from the security community have intensively contributed to the multipart standard
that is entitled “ISO/IEC Information Technology - Biometric presentation attack
detection” [15–17]. The intention of this standard is to provide a harmonized defi-
nition of terms and a taxonomy of attack techniques, data formats that can transport
measured robustness against said attacks and a testing methodology that can evaluate
PAD mechanisms.

The objectives of a standardization project are best understood by analyzing the
scope clause. For the Presentation Attack Detection (PAD) standard the scope indi-
cates that it aims at establishing beyond the taxonomy, terms and definitions a spec-
ification and characterization of presentation attack detection methods. A second
objective is to develop a common data format devoted to presentation attack assess-
ments and a third objective is to standardize principles and methods for perfor-
mance assessment of PAD-algorithms. This field of standardization work becomes
sharpened, when topics that are outside of the scope are defined: Outside of this
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standardization project are definitions of specific PAD detection methods as well as
detailed information about countermeasures that both are commonly valuable IPR
of the industrial stakeholders. In addition, a vulnerability assessment of PAD is out
of scope at this point in time.

22.4 Taxonomy for Presentation Attack Detection

Literature and science, specifically in a multidisciplinary community (as in biomet-
rics), tends to struggle with a clear and noncontradicting use and understanding of
its terms. Thus, ISO/IEC has undertaken significant efforts to develop a Harmonized
Biometric Vocabulary (HBV) [6] that contains terms and definitions useful also in
the context of discussions about presentation attacks. Without going into detail of
the terminology definition process it is important to note that biometric concepts are
always discussed in context (e.g., of one or multiple biometric subsystems) before a
term and its de f ini tion for said concept can be developed. Thus, terms are defined
in groups and overlap of groups (“concept clusters”) and the interdependencies of
its group members necessarily lead to revision of previously found definitions. The
result of this work is published as ISO/IEC 2382-37:2017 [5] and is also available
online [6]. It is of interest to consider here definitions in the HBV, as they are relevant
for the taxonomy and terminology defined in ISO/IEC 30107 [15–17]. The following
list contains definitions of interest:

• biometric characteristic: biological and behavioral characteristic of an individual
from which distinguishing, repeatable biometric features can be extracted for the
purpose of biometric recognition (37.01.02)

• biometric feature: numbers or labels extracted from biometric samples and used
for comparison (37.03.11)

• biometric capture subject: individual who is the subject of a biometric capture
process (37.07.03)

• biometric capture process: collecting or attempting to collect a signal(s) from
a biometric characteristic, or a representation(s) of a biometric characteristic(s,)
and converting the signal(s) to a captured biometric sample set (37.05.02)

• impostor: subversive biometric capture subject who attempts to being matched to
someone else’s biometric reference (37.07.13)

• identity concealer: subversive biometric capture subject who attempts to avoid
being matched to their own biometric reference (37.07.12)

• subversive biometric capture subject: biometric capture subject who attempts
to subvert the correct and intended policy of the biometric capture subsystem
(37.07.17)

• subversive user: user of a biometric system who attempts to subvert the correct
and intended system policy (37.07.18)

• uncooperative biometric capture subject: biometric capture subjectmotivated to
not achieve a successful completion of the biometric acquisition process (37.07.19)
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• uncooperative presentation: presentation by a uncooperative biometric capture
subject (37.06.19)

In order to formulate a common understanding of attacks on biometric systems,
the list of above terms was expanded with the following concepts that provided in
ISO/IEC 30107-1 Biometric presentation attack detection—Part1: Framework [15]
and in ISO/IEC 30107-3 Biometric presentation attack detection—Part3: Testing and
reporting [16]:

• presentation attack/attack presentation: presentation to the biometric data cap-
ture subsystem with the goal of interfering with the operation of the biometric
system

• bona fide presentation: interaction of the biometric capture subject and the bio-
metric data capture subsystem in the fashion intended by the policy of the biometric
system

• presentation attack instrument (PAI): biometric characteristic or object used in
a presentation attack

• PAI species: class of presentation attack instruments created using a common
production method and based on different biometric characteristics

• artefact: artificial object or representation presenting a copy of biometric charac-
teristics or synthetic biometric patterns

• presentation attack detection (PAD): automated determination of a presentation
attack

Note that the use of the above terms are recommended and similar terms such as
f ake should be deprecated despite their intense previous use in the literature. In the
development of ISO/IEC 30107 a framework was defined to understand presentation
attack characteristics and also detection methods. Figure22.1 illustrates the potential

Fig. 22.1 Examples for points of attacks (following [15])
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Fig. 22.2 Categories of attack instrument used in presentation attacks (following [15])

targets in a generic biometric system [7] that could be attacked. In this chapter, and
moreover, in this book, we concentrate only on attack presentations that occur at the
capture device.

The framework defined in [15] considers two types of attacks. On the one hand
side, theActive ImpostorPresentationAttack is considered,which attempts to subvert
the correct and intended policy of the biometric capture subsystem and in which the
attacker aims to be recognized as a specific data subject known to the system (e.g.,
an impersonation attack). On the other hand, the framework considers an Identity
Concealer Presentation Attack as attempt of the attacker to avoid being matched to
its own biometric reference in the system.

An attacker, be it an active impostor or an identity concealer, will use an object
for his attack that is interacting with the capture device. Moreover, the potential
of his attack will depend on his knowledge, the window of opportunity and other
factors that we will discuss in Sect. 22.6. However, for the object that is employed
the standard widens the scope from gummy fingers and considers various categories
of objects that could be used in a presentation attack. Figure22.2 illustrates that
aside from artificial objects (i.e., arte f acts) natural material could be used. When
the expected biometric characteristic from an enrollee is absent and replaced by an
attack presentation characteristic (i.e., the attack presentation object) this could be
a human tissue from a deceased person (i.e., a cadaver part) or it could be an altered
fingerprint [18], which is targeting on distortion or mutilation of a fingerprint—
likely from an Identity Concealer. Moreover, an attacker might present his genuine
characteristic but identification is avoided with nonconformant behavior with respect
to the data capture regulations, e.g., by extreme facial expression or by placing the
tip or the side of the finger on a sensor. But attack objects can also include other
natural material such as onions or potatoes.

Detailed information about countermeasures (i.e., presentation attack detection
techniques) to defend the biometric system against presentation attacks are out of
scope of the standard in order to avoid conflicts of interests for industrial stakeholders.
However, the standard does discuss a general classification in terms of detection on
the level of a biometric subsystem (e.g., artefact detection, liveness detection, alter-
ation detection, nonconformance detection) and through detection of noncompliant
interaction in violation with system security policies (e.g., geographic or temporal
exception)
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Table 22.1 Selected data fields included in a PAD record according to ISO/IEC 30107-2

Field name Valid values Notes

PAD decision 0,1 Optional

PAD score 0–100 Mandatory

Level of supervision 1–5

22.5 Data Formats

One of the objectives of the ISO/IEC 30107 multipart standard is to transport infor-
mation about the presentation attack detection results from the capture device to
subsequent signal processing or decision subsystems. The container to transmit such
information is the open data interchange format (DIF) according to the ISO/IEC
19794 series [2]. This subsection outlines the conceptual data fields that are defined
for a PAD record in ISO/IEC 30107-2 [16]. A selection of fields is illustrated in
Table22.1. It indicates that the result of the PAD functionality should be encoded
as a scalar value in the range of 0 to 100 in analogy to the encoding of the sample
quality assessment that is potentially also conducted by the capture device and stored
as a quality score according to ISO/IEC 29794-1 [19].

The PAD decision is encoded with abstract values NO_ATTACK or ATTACK.
The PAD score shall be rendered in the range between 0 and 100 provided by the
attack detection techniques. Bona fide presentations shall tend to generate lower
scores. Presentation attacks shall tend to generate higher scores. The abstract value
FAILURE_TO_COMPUTE shall indicate that the computation of the PAD score
has failed. The level of supervision expresses the surveillance during the capture
process. Possible abstract values are UNKNOWN, CONTROLLED, ASSISTED,
OBSERVED, UNATTENDED.

In the absence of standardized assessment methods, a PAD score would be
encoded on a range of 0 (i.e., indicative of an attack) to 100 (i.e., indicative of a
genuine capture attempt) the reliability that the transmitted biometric sample can be
trusted. Any decision based on this information is at the discretion of the receiver.
The described PAD data record is likely to become an integral part of the repre-
sentation header in ISO/IEC 19794-x. Remaining challenges are to allow optional
encoding since a capture device may or may not encode such additional information
and further to achieve backwards compatibility with already deployed system that
needs to parse DIFs according to 19794-1:2006 or 19794-1:2011.

22.6 Testing and Reporting

In order to evaluate the reliability of a PAD record that is transmitted two evaluations
are foreseen. The first relevant information is to report for the capture device, which
was encoding the interchange record, a meaningful performance testing result that
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was generated by an independent testing laboratory. Test procedures as such are
well known since the biometric performance testing standards ISO/IEC 19795-1
was established in 2006 [20]. The framework for Biometric Performance Testing
and Reporting was developed on the basis of established concepts such as the Best
Practices in Testing and Reporting Performance of Biometric Devices [21] and it
defines in which way algorithm errors such as false-match-rate (FMR) and false-
non-match-rate (FNMR) as well as system errors such as false-accept-rate (FAR)
and false-reject-rates (FRR) must be reported. For testing of presentation attack
detection unfortunately such established concepts did not exist in the past. Thus,
various national approaches have been proposed and were discussed as the standard
ISO/IEC 30107 was developed. However, some metrics appear familiar to a testing
expert and are indeed derived from biometric performance testing metrics.

An evaluation should determine whether artefacts with abnormal properties are
accepted by the traditional biometric system and can result in higher-than-normal
acceptance against bona fide enrolee references. This can be measured with the (1)
Impostor Attack Presentation Match Rate (IAPMR): defined as: “in a full system
evaluation of a verification system, the proportion of impostor attack presentations
using the same PAI species in which the target reference is matched.”

Moreover, when it comes to the testing of the detection component ISO/IEC
30107-3 introduces three levels of PAD evaluation namely: (1) PAD subsystem eval-
uation: This level evaluates only a PAD system, which is either hardware or software
based (2) Data Capture subsystem evaluation: This will evaluate the data capture
subsystem that may or may not include the PAD algorithms but is focused more
on the biometric sensor itself (3) Full system evaluation: provided the end-to-end
system evaluation.

Metrics for PAD Subsystem Evaluation

The PAD subsystem is evaluated using two differentmetrics, namely, [17]: (1) Attack
Presentation Classification Error Rate (APCER): defined as the proportion of pre-
sentation attacks incorrectly classified as Bona Fide presentations (2) Bona Fide
Presentation Classification Error Rate (BPCER): defined as the proportion of Bona
Fide presentations incorrectly classified as presentation attacks.

The APCER can be calculated as follows:

APCER = 1

NPAI S

NPAI S∑

i=1

(1− RESi ) (22.1)

where, NPAI S is the number of attack presentations for the given Presentation Attack
Instrument (PAI) [15]. RESi takes the value 1 if the i th presentation is classified as
an attack presentation and value 0 if classified as Bona Fide presentation.
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While, the BPCER can be calculated as follows:

BPCER =
∑NBF

i=1 RESi
NBF

(22.2)

where NBF is the number of Bona Fide presentations. RESi takes the value 1 if
the i th presentation is classified as an attack presentation and value 0 if classified as
Bona Fide presentation.

22.7 Conclusion and Future Work

This chapter introduces the standardization work that began a few years back in the
area of presentation attack detection. Now that metrics are well established the pub-
lished standards can contribute to mature taxonomy of presentation attack detection
terms in future literature. The encoding details of the PAD interchange record are
ready to be deployed in large-scale applications.

A challenge with the now established testing and reporting methodology is that
unlike for biometric performance testing aka technology testing a large corpus of
testing samples (i.e., PAI species) cannot be assumed to be available. Top national
laboratories are in possession of no more than 60 PAI species for a fingerprint recog-
nition system. In this case, it becomes essential that the proportion is computed not
to a potentially large number of samples all of one single PAI species that are all of
similar material properties and stemming from the same biometric source. At least
the denominator should be defined by the number of PAI species. Note that one sin-
gle artefact species would correspond to the set of fingerprint artefacts all made with
the same recipe and the same materials but with different friction ridge patterns
from different fingerprint instances. A complementary measure to the APCER is the
BPCER, which should always be reported jointly.

An essential difference of PAD testing is that obviously there is beyond the mere
statistical observations as expressed byAPCER andBPCERmetrics the need to cate-
gorize the attack potential itself. Suchmethodology is well established in the scope of
Common Criteria testing that developed the Common Methodology for Information
Technology Security Evaluation [22]. It might be desirable to replace the indication
of a defined level of difficulty according to an attack potential attribute of a biometric
presentation attack expressing the effort expended in the preparation and execution
of the attack in terms of elapsed time, expertise, knowledge about the capture device
being attacked, window of opportunity and equipment, graded as no rating,minimal,
basic, enhanced-basic, moderate or high. Such gradings are established in Common
Criteria testing and would allow a straightforward understanding of a PAD result for
security purposes.

By separation of work tasks in ISO/IEC JTC1 discussion of security-related topics
is not in scope of ISO/IEC 30107. However, the Common Criteria concept of attack
potential should be seen as both a good categorization for the criticality of an attack
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and the precondition to conduct later a security evaluation based on the results of a
ISO/IEC 30107 metric. However, this link needs to be established, and thus there is
space for many activities as future work.

This work has started recently with the ISO/IEC 19989 multipart standard, which
will be developed in the years ahead.
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Glossary

ACE: Average Classification Error
Anti-Spoofing (term to be deprecated): countermeasure to spoofing
APCER: Attack Presentation Classification Error Rate
ASV: Automatic Speaker Verification
AUC: Area Under ROC

BEAT: Biometrics Evaluation and Testing
BPCER: Bona Fide Presentation Classification Error Rate

CFCCIF: Cochlear Filter Cepstral Coefficients with Instantaneous Frequency
CNN: Convolutional Neural Network
CQCC: Constant Q Cepstral Coefficients
CQT: Constant Q Transform

DET: Detection-Error Tradeoff

EER: Equal Error Rate
EPC: Expected Performance Curve
EPSC: Expected Performance and Spoofability Curve

FAR: False Accept Rate
FerrFake: Rate of misclassified fake fingerprints, see APCER
FerrLive: Rate of misclassified live fingerprints, see BPCER
FFR: False Fake Rate
FLR: False Living Rate
FMR: False Match Rate
FN: False Negative
FNMR: False Non-match Rate
FNR: False Negative Rate, FNSPD: False Non-suspicious Presentation Detection
FP: False Positive
FPR: False Positive Rate
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FRR: False Reject Rate
FSPD: False Suspicious Presentation Detection

GFAR: Global False Accept Rate
GFRR: Global False Reject Rate
GMM: Gaussian Mixture Model
GRU: Gated Recurrent Unit

HTER: Half Total Error Rate

IAPMR: Impostor Attack Presentation Match Rate

LBP: Local Binary Pattern
LFAR: Liveness False Accept Rate
LFCC: Linear Frequency Cepstral Coefficients
LPQ: Local Phase Quantization
LSTM: Long Short-Term Memory
LWIR: Long-wave Infrared

MLP: Multi-layer Perceptron
MS-LBP: Multi-scale Local Binary Pattern

NIR: Near-Infrared

OCT: Optical Coherence Tomography

PA: Presentation Attack
PAD: Presentation Attack Detection
PAI: Presentation Attack Instrument

RNN: Recurrent Neural Network
ROC: Receiver Operating Characteristic
rPPG: Remote photo-plethysmography

Spoofing (term to be deprecated): attempt to impersonate a biometric system, see PA
SRC: Sparse Representation based Classifier
STFT: Short-Term Fourier Transform
SVM: Support Vector Machine
SWIR: Short-Wave Infrared

TABULA RASA: Trusted Biometrics under Spoofing Attacks
TPR: True Positive Rate

VC: Voice Conversion

WER: Weighted Error Rate
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