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Foreword

The 13th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Madrid, Spain, during June 18–21, 2018. The DisCoTec
series is one of the major events sponsored by the International Federation for Infor-
mation Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination
Models and Languages (the conference celebrated its 20th anniversary in 2018)

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications
and Interoperable Systems (the conference is in its 18th edition)

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems (the conference is in its 38th edition)

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. Each day of the federated event began with a plenary speaker
nominated by one of the conferences.

In addition to the three main conferences, two satellite events took place during June
20–21, 2018:

– ICE, the Workshop on Interaction and Concurrency Experience (in its 11th edition)
– FADL, Workshop on Foundations and Applications of Distributed Ledgers (this

was the first year that the workshop took place)

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference and the Steering
Committee of DisCoTec for its guidance and support. The organization of DisCoTec
2018 was only possible thanks to the dedicated work of the Organizing Committee,
including the organization chairs, Jesús Correas and Sonia Estévez (Universidad
Complutense de Madrid, Spain), the publicity chair, Ivan Lanese (University of
Bologna/Inria, Italy), the workshop chairs, Luis Llana and Ngoc-Thanh Nguyen
(Universidad Complutense de Madrid, Spain and Wroclaw University of Science and
Technology, Poland, respectively), the finance chair, Mercedes G. Merayo (Universi-
dad Complutense de Madrid, Spain), and the webmaster, Pablo C. Cañizares
(Universidad Complutense de Madrid, Spain). Finally, I would like to thank IFIP
WG6.1 for sponsoring this event, Springer’s Lecture Notes in Computer Science team
for their support and sponsorship, and EasyChair for providing the reviewing
infrastructure.

June 2018 Manuel Núñez



Preface

This volume contains the papers presented at the 38th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components, and Systems
(FORTE 2018). It was held as one of the three main conferences of the 13th Inter-
national Federated Conference on Distributed Computing Techniques (DisCoTec),
June 18–21, 2018, in Madrid.

The conference is dedicated to fundamental research on theory, models, tools, and
applications for distributed systems. It solicits original contributions that advance the
science and technologies for distributed systems, with special interest in the areas of:
component- and model-based design; object technology, modularity, software adap-
tation, service-oriented, ubiquitous, pervasive, grid, cloud, and mobile computing
systems; software quality, reliability, availability, and safety; security, privacy, and
trust in distributed systems; adaptive distributed systems; self-stabilization;
self-healing/organizing; verification, validation, formal analysis, and testing of the
above.

The program consisted of ten contributed papers, selected from 28 submissions.
Each submission was reviewed by at least three Program Committee members, with
the help of external experts. The selection was made based on discussions via the
EasyChair conference management system, which was also used to assist with the
assembly of the proceedings.

We wish to thank all authors who submitted to FORTE 2018, all the Program
Committee members for their excellent work, and the external reviewers for their
thorough evaluation of the submissions. We want to say a special thanks to
Joachim Klein, who helped us to generate the conference proceedings. In addition, we
would like to thank the DisCoTec Organizing Committee for providing an excellent
environment for FORTE and other conferences and workshops.

April 2018 Christel Baier
Luís Caires
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A Distributed Coordination
Infrastructure for Attribute-Based

Interaction

Yehia Abd Alrahman1(B) , Rocco De Nicola1 , Giulio Garbi1 ,
and Michele Loreti2

1 IMT School for Advanced Studies Lucca, Lucca, Italy
yehia.abdalrahman@imtlucca.it

2 Università di Camerino, Camerino, Italy

Abstract. Collective-adaptive systems offer an interesting notion of
interaction where run-time contextual data are the driving force for inter-
action. The attribute-based interaction has been proposed as a founda-
tional theoretical framework to model CAS interactions. The framework
permits a group of partners to interact by considering their run-time prop-
erties and their environment. In this paper, we lay the basis for an efficient,
correct, and distributed implementation of the attribute-based interaction
framework. First, we present three coordination infrastructures for mes-
sage exchange, then we prove their correctness, and finally we model them
in terms of stochastic processes to evaluate their performance.

Keywords: Attribute-based interaction · Semantics · Process calculi

1 Introduction

Collective Adaptive Systems (CAS) [12] consists of a large number of components
that interact anonymously, based on their properties and on contextual data, and
combine their behaviours to achieve system-level goals. The boundaries of CAS
are fluid and components may enter or leave the system at any time. Components
may also adapt their behaviours in response to environmental conditions.

Classical communication paradigms handle the interaction among distributed
components by relying on their identities, like in the Actor model [5], or on
channel names, like in channel-based binary communication [18] and broadcast
communication [16]. However, since identities and channels are totally indepen-
dent from run-time properties and capabilities of the interacting components,
programming collective-adaptive behaviour becomes a tedious task.

To mitigate the shortcomings of the classical paradigms when dealing with
CAS, in FORTE’16 [6], we have proposed a kernel calculus, named AbC [1],

This research has been supported by the European projects IP 257414 ASCENS and
STReP 600708 QUANTICOL.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
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for modeling CAS interactions. The idea is to permit the construction of for-
mally verifiable CAS systems by relying on a minimal set of interaction prim-
itives. AbC ’s primitives are attribute-based [4] and abstract from the under-
lying coordination infrastructure (i.e., they are infrastructure-agnostic). They
rely on anonymous multicast communication where components interact based
on mutual interests. Message transmission is non-blocking while reception is
not. Each component has a set of attributes to represent its run-time status.
Communication actions (both send and receive) are decorated with predicates
over attributes that partners have to satisfy to make the interaction possible.
The interaction predicates are also parametrised with local attribute values and
when values change, the interaction groups do implicitly change, introducing
opportunistic interactions.

Basing the interaction on run-time attribute values is indeed a nice idea,
but it needs to be supported by a middleware that provides efficient ways for
distributing messages, checking attribute values, and updating them. A typical
approach is to rely on a centralised broker that keeps track of all components,
intercepts every message and forwards it to registered components. It is then
the responsibility of each component to decide whether to receive or discard
the message. This is the approach used in the Java-based implementation [2]
of AbC . A similar approach, still based on a centralised broker, is used in the
Erlang-based implementation [10]. There however to avoid broadcasts the broker
has an attribute registry where components register their attribute values and
the broker is now responsible for message filtering.

Clearly, any centralised solution may not scale with CAS dynamics and
thus becomes a bottleneck for performance. A distributed approach is definitely
preferable for large systems. However, distributed coordination infrastructures
for managing the interaction of computational systems are still scarce [15] and/or
inefficient [20]. Also the correctness of their overall behaviour is often not obvious.
In this paper, we propose an efficient distributed coordination infrastructure for
message exchange. We prove its correctness with respect to the original semantics
of AbC and finally we evaluate its performance in terms of stochastic simula-
tion. Though this paper assumes perfect communication links and does not deal
with dropped messages or node’s failures, we believe that existing techniques for
resilience and failure-recovery can be integrated transparently.

The rest of this paper is structured as follows: In Sect. 2, we briefly review the
AbC calculus. In Sect. 3, we give a full formal account of a distributed coordina-
tion infrastructure for AbC and its correctness. In Sect. 4, we provide a detailed
performance evaluation and we discuss the results. Finally, Sect. 5 concludes the
paper and surveys related works.

2 AbC in a Nutshell

In this section we briefly introduce the AbC calculus by means of a running
example. We give an intuition of how to model a distributed variant of the
well known Graph Colouring Problem [14] using AbC constructs. We render the
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problem as a typical CAS scenario where a collective of agents, executing the
same code, collaborate to achieve a system-level goal without any centralised
control. The presentation is intended to be intuitive and full details concerning
the example, the syntax, and the semantics of AbC can be found in [1,3].

The problem consists of assigning a colour (an integer) to each vertex in a
graph while avoiding that two neighbours get the same colour. The algorithm
consists of a sequence of rounds for colour selection. At the end of each round at
least one vertex is assigned a colour. A vertex, with identity id. uses messages of
the form (“try”, c, r, id) to inform its neighbours that at round r it wants to select
colour c and messages of the form (“done”, c, r, id) to communicate that colour
c has been definitely chosen at the end of round r. At the beginning of a round,
each vertex selects a colour and sends a try-message to all of its neighbours N.
A vertex also collects try-messages from its neighbours. The selected colour is
assigned to a vertex only if it has the greatest id among those that have selected
the same colour in that round. After the assignment, a done-message (associated
with the current round) is sent to neighbours.

AbC Syntax. An AbCcomponent (C), is either a process P associated with an
attribute environment Γ (denoted by Γ : P ) or the parallel composition C1‖C2

of components. The attribute environment Γ is a partial map from attribute
identifiers a ∈ A to values v ∈ V . Values can be numbers, strings, tuples, etc.

C ::= Γ :P | C1‖C2

Example (step 1/4): Each vertex, in the colouring scenario, can be modelled
in AbC as a component of the form Ci = Γi : PC . The overall system is the
parallel composition of vertices (i.e., C1‖C2‖, . . . , ‖Cn).

The attribute environment of a vertex Γi relies on the following attributes
to control the behaviour of a vertex: The attribute “round” stores the current
round while “used” is a set, registering the colours used by neighbours. The
attribute “counter” counts the number of messages collected by a component
while “send” is used to enable/disable forwarding of messages to neighbours.
Attribute “assigned” indicates if a vertex is assigned a colour while “colour” is
a colour proposal. Finally, attributes id and N are used to represent the vertex
id and the set of neighbours, respectively. These attributes initially have the
following values: round = 0, used = ∅, send = tt, and assigned = ff.

It should be noted that new values for these attributes can only be learnt by
means of message exchange among vertices. ��

The behavior of an AbC process can be generated by the following grammar:

P ::= 0 | α.P | [ã := Ẽ]P | 〈Π〉P | P1 + P2 | P1|P2 | K

The process 0 denotes the inactive process; α.P denotes a process that exe-
cutes action α and continues as P ; process [ã := Ẽ]P behaves as P given that its
attribute environment is first updated by setting the value of each attribute in
the sequence ã to the evaluation of the corresponding expression in the sequence
Ẽ. The attribute updates and the first move of P are atomic; 〈Π〉P denotes an
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Table 1. AbC communication rules

Γ :P λ→−� Γ ′ : P ′

Γ :P λ−→ Γ ′ : P ′
iComp

Γ :P
˜Π(ṽ)→−−−� Γ :P

Γ :P
Π(ṽ)−−−→ Γ :P

fComp

C1
Π(ṽ)−−−→ C′

1 C2
Π(ṽ)−−−→ C′

2

C1 ‖ C2
Π(ṽ)−−−→ C′

1 ‖ C′
2

Com
C1

Π(ṽ)−−−→ C′
1 C2

Π(ṽ)−−−→ C′
2

C1 ‖ C2
Π(ṽ)−−−→ C′

1 ‖ C′
2

Sync

awareness process, it blocks the execution of process P until the predicate Π
evaluates to true; the processes P1 + P2, P1|P2, and K are standard for nonde-
terminism, parallel composition, and process definition respectively. The parallel
operator “|” does not allow communication between P1 and P2, they can only
interleave while the parallel operator “‖” at the component level allows com-
munication between components. The expression this.b denotes the value of
attribute b in the current component.

Example (step 2/4): Process PC , specifying the behaviour of a vertex is now
defined as the parallel composition of these four processes: PC � F | T | D | A.

Process F forwards try-messages to neighbours, T handles try-messages, D
handles done-messages, and A is used for assigning a final colour. ��

The AbC communication actions ranged by α can be either (Ẽ)@Π or Π(x̃).
The construct (Ẽ)@Π denotes an output action, it evaluates the sequence of
expressions Ẽ under the local attribute environment and then sends the result
to the components whose attributes satisfy the predicate Π. Furthermore, Π(x̃)
denotes an input action, it binds to sequence x̃ the corresponding received values
from components whose communicated attributes or values satisfy Π.

Example (step 3/4): We further specify process F and a part of process T .

F � 〈send ∧ ¬assigned〉[colour := min{i 
∈ this.used}, send := ff]
(“try”, this.colour, this.round, this.id)@(this.id ∈ N).F

T � [counter := counter + 1]
((x = “try”) ∧ (this.id > l) ∧ (this.round = z))(x, y, z, l).T + . . .

In process F , when the value of attribute send becomes true, a new colour
is selected, send is turned off, and a message containing this colour and the
current round is sent to all the vertices having this.id as neighbour. The new
colour is the smallest colour that has not yet been selected by neighbours, that
is min{i 
∈ this.used}. The guard ¬assigned is used to make sure that vertices
with assigned colours do not take part in the colour selection anymore.

Process T receives messages of the form (“try”, c, r, id). If r = this.round
then the received message has been originated by a vertex performing the same
round of the algorithm. The condition this.id > l means that the sender has
an id smaller than the id of the receiver. In this case, the message is ignored



A Distributed Coordination Infrastructure for Attribute-Based Interaction 5

(there is no conflict), simply the counter of collected messages (this.counter)
is incremented. Other cases, not reported here, e.g., this.id < l, the received
colour is recorded to check the presence of conflicts. ��
AbC Semantics. The main semantics rules of AbC are reported in Table 1. Rule
iComp states that a component evolves with (send Π(ṽ) or receive Π(ṽ), denoted
by λ) if its internal behaviour, denoted by the relation �→, allows it. Rule fComp
states that a component can discard a message Π(ṽ) if its internal behaviour
does not allow the reception of this message by generating the discarding label
˜Π(ṽ). Rule Com1 states that if C1 evolves to C ′

1 by sending a message Π(ṽ)
then this message should be delivered to C2 which evolves to C ′

2 as a result.
Note that C2 can be also a parallel composition of different components. Thus,
rule Sync states that multiple components can be delivered the same message
in a single transition.

The semantics of the parallel composition operator, in rules Com and Sync
in Table 1, abstracts from the underlying coordination infrastructure that medi-
ates the interactions between components and thus the semantics assumes atomic
message exchange. This implies that no component can evolve before the sent
message is delivered to all components executing in parallel. Individual compo-
nents are in charge of using or discarding incoming messages. Message transmis-
sion is non-blocking, but reception is not. For instance, a component can still
send a message even if there is no receiver (i.e., all the target components discard
the message); a receive operation can, instead, only take place through synchroni-
sation with an available message. However, if we want to use the attribute-based
paradigm to program the interactions of distributed applications, atomicity and
synchrony are neither efficient nor applicable.

One solution is to rely on existing protocols for total-order broadcast to handle
message exchange. However, these protocols are mostly centralised [9] or rely on
consensus [20]. Clearly, centralised solutions have always scalability and efficiency
problems. Furthermore, consensus approaches are not only inefficient [20] but also
impossible in asynchronous systems in the presence of even a single component’s
failure [13]. They also assume that components know each other and can agree on
a specific order. However, this contradicts the main design principles of the AbC
calculus where anonymity and openendedness are crucial factors. Since AbC com-
ponents are agnostic to the infrastructure, they cannot participate in establishing
the total order. Thus, we need an infrastructure that guarantees the total order
seamlessly and without involving the interacting components.

The focus of this paper, as we will see later, is on providing an efficient dis-
tributed coordination infrastructure that behaves in agreement with the parallel
composition operator of AbC . Thus in Table 1, we only formalised the external
behaviour of a component, i.e., its ability to send and receive. The following
example shows how interactions are derived based on internal behaviour.

1 For the sake of brevity, we omit the symmetric rule of Com.
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Example (step 4/4): Consider the vertices C1, C2, and C3 where Γ2(N) = {3},
Γ3(N) = {1, 4}, Γ3(id) = 3, and Γ3(round) = 5. Now C1 sent a try message:

Γ1 :PC
(1∈N)(“try”,3,5,1)−−−−−−−−−−−−→

C′
1

︷ ︸︸ ︷

Γ1[colour ←� 3, send ←� ff] : P ′
C

We have that C2 discards this message because Γ2 
|= (1 ∈ N) while C3

accepts the message (Γ3 |= (1 ∈ N) and the receiving predicate of process T is
satisfied). The system evolves with rule Com as follows:

C1‖C2‖C3
(1∈N)(“try”,3,5,1)−−−−−−−−−−−−→

C ′
1‖C2‖Γ3[counter ←� counter + 1] : P ′

C [“try”/x, 3/y, 5/z, 1/l]

��

3 A Distributed Coordination Infrastructure

In this section, we consider three possible coordination infrastructures that we
have also implemented2 in Google Go. We will refer to them as cluster -based,
ring-based, and tree-based. These infrastructures behave in agreement with the
parallel composition operator of AbC . Our approach consists of labelling each
message with an id that is uniquely identified at the infrastructure level. Com-
ponents execute asynchronously while the semantics of the parallel composition
operator is preserved by relying on the unique identities of exchanged messages.
In essence, if a component wants to send a message, it sends a request to the
infrastructure for a fresh id. The infrastructure replies back with a fresh id and
then the component sends a data (the actual) message with the received id.
A component receives a data message only when the difference between the
incoming data message id and the id of the last received data message equals 1.
Otherwise the data message is added to the component waiting queue until the
condition is satisfied.

In what follows, we give a full formal account of the proposed infrastructures
and also investigate the correctness of the tree-based one. The reason is that we
want to avoid redundancy and also because the tree infrastructure is theoreti-
cally the most challenging one. Actually, the proofs of correctness for the other
infrastructures are simple cases of the tree’s one. Moreover, as we will see in
Sect. 4, the tree exhibits better performance characteristics.

Furthermore to provide compact semantics, we use the following definition
of a Configuration. For the sake of clarity, we will postfix the configuration of a
component, an infrastructure, and a server with the letter a, n, and s respectively.

Definition 1 (Configuration). A configuration C, is a tuple C = 〈c1, . . . , cn〉
which is commutative. The symbol ‘. . . ’ is formally regarded as a meta-variable
ranging over unmentioned elements of the configuration. The explicit ‘. . . ’ is
2 Go implementations: https://github.com/giulio-garbi/goat.

https://github.com/giulio-garbi/goat
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obligatory, and ensures that unmentioned elements of a configuration are never
excluded, but they do not play any role in the current context. Different occur-
rences of ‘. . . ’ in the same context stand for the same set of unmentioned
elements.

We use the reduction relation ∼∼� ⊆ Cfig×Lab×Cfig to define the seman-
tics of a configuration where Cfig denotes the set of configurations, Lab denotes
the set of reduction labels which can be a message m, a silent transition τ , or
an empty label, and ∼∼�∗ denotes the transitive closure of ∼∼�. Moreover, we will
use the following notations:

– We have two kinds of messages, an AbC message ‘msg’ (i.e., Π(ṽ)) and an
infrastructure message ‘m’; the latter can be of three different templates: (i)
request {‘Q’, route, dest}, (ii) reply {‘R’, id, route, dest}, and (iii) data {‘D’, id, src, dest,

msg}. The route field in a request or a reply message is a linked list containing
the addresses of the nodes that the message traversed.

– The notation ?= denotes a template matching.
– The notation T [f ] denotes the value of the element f in T .

Also the following operations will be used: L.get() returns the element at the
front of a list/queue, while L ←� m returns the list/queue resulting from adding
m to the back of L, and L\x removes x from L and returns the rest.

3.1 Infrastructure Component

Now, we formally define a general infrastructure component and its external
behaviour. In the following sections, we proceed by formally defining the pro-
posed infrastructures and their behaviours.

Definition 2 (Infrastructure component). An infrastructure component, a,
is defined by the configuration: a = 〈addr, nid,mid, on,W,X , G〉 where addr
refers to its address, nid (initially 0) refers to the id of the next data message
to be received, mid (initially -1) refers to the id of the most recent reply, on
(initially 0) indicates whether a request message can be sent. W is a priority
waiting queue where the top of W is the data message with the least id, and X
refers to the address of the parent server. Furthermore, G ranges over Γ :P and
[Γ :P ] where [Γ :P ] indicates an AbC component in an intermediate state.

The intermediate state, in Definition 2, is important to allow co-located pro-
cesses (i.e., [Γ : P1|P2] where P1 is waiting an id to send and P2 is willing to
receive) to interleave their behaviours without compromising the semantics.

The semantics of an infrastructure component is reported in Table 2. Rule
Out states that if the AbC component Γ :P encapsulated inside an infrastruc-

ture component is able to send a message Γ : P
Π(ṽ)−−−→ Γ ′ : P ′, the flag on is set

to 1 and Γ : P goes into an intermediate state [Γ : P ]. Rule Med states that
an intermediate state component can only receive a message Π(ṽ) if it was able
to receive it before the intermediate state. Rule Req states that a component
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Table 2. The semantics of a component

sends a request, to the parent server, only if on == 1. In this case, it adds its
address to the route of the message and resets on to 0. Rule RcvR states that
a component receives a reply if the destination field of the reply matches its
address; after that mid gets the value of the id received in the reply. Rule Snd
states that a component Γ : P can send a message Π(ṽ) and evolves to Γ ′ : P ′

only if nid == mid; this implies that a fresh id is received (mid 
= −1) and all
messages with m[id] < mid have been already received. By doing so, an infras-
tructure data message, with msg field equals to Π(ṽ), is sent, nid is incremented,
and mid is reset. Rule RcvD states that a component receives a data message
from the infrastructure if m[id] ≥ nid; this is important to avoid duplicate mes-
sages. The message is then added to the priority queue, W. Finally, rule Hnd
states that when the id of the message on top of W matches nid, component
G is allowed to receive that message; by doing so, nid is incremented and m is
removed.

3.2 Cluster-Based Infrastructure

We consider a set of server nodes, sharing a counter for sequencing messages
and one FIFO queue to store messages sent by components. Cluster nodes can
have exclusive locks on both the cluster’s counter and the queue. Components
register directly to the cluster and send messages to be added to the FIFO queue.
When a server node retrieves a request from the cluster queue, it replies to the
requester with the value of the cluster counter. By doing so, the cluster counter
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Table 3. The Cluster semantics

is incremented. If a server retrieves a data message, it forwards the message to
all components in the cluster except for the sender.

Definition 3 (Cluster node). A server node, s, is defined by the configuration
s = 〈addr, A, M, I〉 where addr is its address, A is a set containing the
addresses of all cluster components, M is a multicast set (initially M = A).
Finally, I is a FIFO input queue.

Definition 4 (Cluster infrastructure). A cluster, N , is defined by the con-
figuration N = 〈addr, ctr, S, A, I〉 where ctr is a counter to generate fresh
ids, initially the value of ctr equals 0, S is a set containing the addresses of the
infrastructure server nodes, and the rest is defined as before.

We start by defining the overall infrastructure semantics and then we zoom
in and we define the semantics of individual servers. The cluster semantics is
reported in Table 3. Rule Qin states that a component sends a message and
the cluster adds it to its input queue. Rule Qout states that the cluster evolves
when a server gets a message from the input queue of the cluster. Rule “a” states
that the cluster evolves when one of its components evolves independently. Rule
Dmsg states that the cluster evolves when a server can forward a data message
to a component in the cluster. Rule Rmsg states that the cluster evolves when a
node sends a reply message to a component. The reply is labeled with the current
value of the the cluster counter and after that the counter is incremented.

The semantics of a cluster node is reported in Table 4. Rule In states that
a node gets a message and adds it to its input queue. Rule Reply states that
if a node gets a request message from its input queue, it sends a reply to the
requester by getting and removing its address from the route of the message.
Rule dFwd states that if a node gets a data message from its input queue, it
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Table 4. Cluster node semantics

forwards the message to all components in the cluster one by one except for
the sender (addr′). Notice that this rule can be applied many times as long as
the multicast set M contains more than one element, i.e., |M| > 1. Once M
has only one element, rule eFwd is applied to forward the message to the last
address in M, resets the multicast set to its initial value, and the message is
removed.

3.3 Ring-Based Infrastructure

We consider a set of server nodes, organised in a logical ring and sharing a counter
for sequencing messages coming from components. Each node manages a group
of components and can have exclusive locks to the ring counter. When a request
message arrives to a node from one of its components, the node acquires a lock
on the ring counter, copies it current value, releases it after incrementing it by
1, and finally sends a reply, carrying a fresh id, to the requester. Data messages
are directly added to the node’s waiting queue; and will be only forwarded to
the node’s components and to the neighbour node when all previous messages
(i.e., with a smaller id) have been received.

Definition 5 (Ring node). A server node, s, is defined by the configuration
s = 〈addr, nid, X , D, M, I,W〉 where X is its neighbour’s address, D is a set
containing the addresses of components connected to this sever node and also the
neighbour’s address X , and M initially equals D. The rest is defined as before.

Definition 6 (Ring infrastructure). A ring, N , is defined by the configura-
tion N = 〈S, A, ctr〉. We have that:

– ∀s ∈ N [S] : s[X ] 
= ⊥ ∧ s[X ] ∈ N [S].
– ∀s1, s2 ∈ N [S] : s1[X ] = s2[X ] implies s1 = s2.

The semantics rules of a ring infrastructure are reported in Table 5. The
rules (s ↔ s) and (s ↔ a) state that a ring evolves when a message m is
exchanged either between two of its servers (s1 and s2) or between a server
and a component respectively. The latter rule concerns only request and data
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Table 5. Ring infrastructure semantics

s1
m

∼∼� s′
1 s2

m
∼∼� s′

2
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′
2} ∪ S′,A, . . .〉n
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s
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∼∼� s′
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s
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∼∼� s′ a
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{‘R’,,{},addr}

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼� s′ a
{‘R’,ctr,{},addr}

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼� a′

〈{s} ∪ S′, {a} ∪ A′, ctr〉n ∼∼� 〈{s′} ∪ S′, {a′} ∪ A′, ctr + 1〉n

Rmsg

messages. Furthermore, the rules (s) and (a) state that a ring evolves when one
of its servers or one of its connected components evolves independently. Finally,
rule Rmsg states that a ring evolves also when a reply is exchanged between a
server node and a component, but in this case the counter of the ring is increased.

The semantics rules of a ring node are reported in Tabel 6. Rule In states
that a node receives a message m and adds it to its input queue (I ←� m) if the
destination field of m matches its own address addr. Rule Reply states that if
a node gets a request message from its input queue m :: I, it sends a reply, to
the requester. Rule wIn states that if a node gets a data message from its input
queue, it adds the message to its waiting queue W only if m[id] ≥ nid otherwise
the message is discarded as stated by rule Discard. This is important to avoid
duplicates. Furthermore, rule dFwd states that when the id of the message on
top of W matches nid (i.e., m[id] == nid), the server starts forwarding m to its
children one by one except for the sender. Notice that this rule can be applied
many times as long as the multicast set M contains more than one element, i.e.,
|M| > 1. Once M has only one element, rule eFwd is applied to forward the
message to the last address in M. As a result, nid is incremented, m is removed
from W, and the multicast set M is reset to its initial value.

3.4 A Tree-Based Infrastructure

We consider a set of servers, organised in a logical tree. A component can be
connected to one server (its parent) in the tree and can interact with others in
any part of the tree by only dealing with its parent. When a component wants
to send a message, it asks for a fresh id from its parent. If the parent is the root
of the tree, it replies with a fresh id, otherwise it forwards the message to its
own parent in the tree. Only the root of the tree can sequence messages.
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Table 6. Ring Node Semantics

Definition 7 (Tree server). A tree server, s, is defined by the configuration:
s = 〈addr, ctr, nid, D, M, I, W, X〉 where D is a set containing the addresses
of the server’s children which include connected components and servers, M is
a multicast set (initially M = D). The rest are defined as before.

Definition 8 (Tree infrastructure). A tree infrastructure, N , is defined by
the configuration: N = 〈S,A〉 where S denotes the set of servers and A denotes
the set of connected components such that:

– ∀s1, s2 ∈ S, we say that s1 is a direct child of s2, written s1 ≺ s2, if and only
if s1[X ] = s2[addr]; ≺+ denotes the transitive closure of ≺.

– ∀s ∈ S, we have that s 
≺+ s.
– The root: ∃s ∈ S such that for any s′ ∈ (S\{s}), s′ ≺+ s and we have that:

• s′[nid] ≤ s[ctr].
• For any message m ∈ s′[W] we have that m[id] ≤ s[ctr].

– A root is unique: if s, s′ ∈ S and s[X ] = s′[X ] = ⊥ then we have that s = s′.
– ∀s ∈ S and for each message m ∈ s[W], we have that m[id] ≥ s[nid].

The semantics rules of a tree infrastructure are reported in Table 7. The rules
(s ↔ s) and (s ↔ a) state that a tree evolves when a message m is exchanged
either between two of its servers (s1 and s2) or between a server and a component
respectively. Furthermore, the rules (s) and (a) state that a tree evolves when
one of its servers or one of its connected components evolves independently.
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Table 7. Tree infrastructure semantics
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a

The semantics rules of a tree server are defined by the rules in Table 8. Rule
In states that a server receives a message m and adds it to the back of its input
queue (I ←� m) if the destination field of m matches its own address addr. Rule
Reply states that if a root server gets a request from the front of its input
queue m :: I ′, it sends a reply to the requester by getting its address from the
route of the message x = route.get(). The id of the reply is assigned the value
of the root’s counter ctr. By doing so, the counter is incremented. On the other
hand, a non-root server adds its address to the message’s route and forwards it
to its parent as stated by rule qFwd. Rule rFwd instead is used for forwarding
reply messages. Rule wIn states that if a server gets a data message from its
input queue I and it is the root or its parent is the source of the message (i.e.,
X == addr′ ∨ X == ⊥), the server evolves silently and the message is added to
its waiting queue. If the condition (X == addr′ ∨ X == ⊥) does not hold, the
message is also forwarded to the parent as stated by rule wNxt. Furthermore,
rule dFwd states that when the id of the message on top of W matches nid
(i.e., m[id] == nid), the server starts forwarding m to its children one by one
except for the sender. Notice that this rule can be applied many times as long
as the multicast set M contains more than one element, i.e., |M| > 1. Once M
has only one element, rule eFwd is applied to forward the message to the last
address in M. As a result, nid is incremented, m is removed from W, and the
multicast set M is reset to its initial value.

Correctness. Since there is a single sequencer in the tree, i.e., the root, two
messages can never have the same id. We only need the following propositions
to ensure that the tree behaves in agreement with the AbC parallel composition
operator. In essence, Proposition 1, ensures that if any component in the tree
sends a request for a fresh id, it will get it. Proposition 3, ensures that any
two components in the tree with different nid will converge to the same one.
However, to prove Proposition 3, we need to prove Lemma 1 and Proposition 2
which guarantee the same results among tree’ servers. This implies that messages
are delivered to all components. Proposition 4 instead ensures that no message
stays in the waiting queue indefinitely. Due to space limitations all proofs are
omitted.

Proposition 1. For any component, with address addr and a parent X ,
connected to a tree infrastructure N , we have that: if 〈addr, on,X , . . .〉a
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Table 8. Tree server semantics

{‘Q′,{addr},X}
∼∼∼∼∼∼∼∼∼∼∼∼∼�〈addr, 0,X , . . .〉a then N ∼∼� ∗N ′ and 〈addr,mid, . . .〉a

{‘R′,id,{},addr}
∼∼∼∼∼∼∼∼∼∼� 〈addr, id, . . .〉a.

Lemma 1. For every two tree nodes s1 and s2 and a tree-based infrastructure
N such that s1, s2 ∈ N [S], we have that:

– If s1 ≺ s2 ∧ s1[nid] < s2[nid] then N ∼∼�∗N ′ and s1[nid] = s2[nid].
– If s2 ≺ s1 ∧ s1[nid] < s2[nid] then N ∼∼�∗N ′ and s1[nid] = s2[nid].

Proposition 2. Let s1 and s2 be two tree nodes and N be a tree-based infras-
tructure, ∀s1, s2 ∈ N [S] ∧ s1[nid] < s2[nid], we have that N ∼∼�∗N ′ and
s1[nid] = s2[nid].
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Proposition 3. Given any two components a1 and a2 in a tree infrastructure
N such that a1[nid] < a2[nid], we have that N ∼∼�∗N ′ and a1[nid] = a2[nid].

Proposition 4. Given a tree infrastructure N = 〈S,A〉, for any c ∈ S ∪ A
where c[W] = m ::W ′, we have that N ∼∼�∗N ′ and c[W] = W ′ ++ W ′′ where ++
returns a priority queue composed by the sub queues W ′ and W ′′.

4 Performance Evaluation

We compare the above mentioned infrastructures by modeling them in terms
of a Continuous Time Markov Process [17]. The state of a process represents
possible infrastructure configurations, while the transitions (that are selected
probabilistically) are associated with events on messages. We can consider three
types of events: a new message sent by a component; a message transmitted from
a node to another in the infrastructure; a message locally handled by a node (i.e.
removed from an input/waiting queue). Each event is associated with a rate that
is the parameter of the exponentially distributed random variable governing the
event duration. We developed a simulator3 for performance evaluation.

To perform the simulation we need to fix three parameters: the component
sending rate λs; the infrastructure transmission rate λt; and the handling rate
λh. In all experiments, we fix the following values: λs = 1.0, λt = 15.0, and
λh = 1000.0 and rely on kinetic Monte Carlo simulation [19]. The infrastructure
configurations are defined as follows:

– C[x, y], indicates a cluster with x nodes and y components;
– R[x, y] indicates a ring with x nodes each of which manages y components;
– T [x, y, z] indicates a tree with x levels. Each node (but the leafs) has y + z

children: y nodes and z components. A leaf node has z components.

We consider two scenarios: (1) Data Providers (DP): In this scenario only
a fraction of components sends data messages that they, for example, acquire
via sensors in the environment where they operate. An example could be a
Traffic Control System where data providers are devices located in the city and
data receivers are the vehicles traveling in the area; (2) communication intensive
(CI): This scenario is used to estimate the performance when all components
send messages continuously at a fixed rate so that we can evaluate situations of
overloaded infrastructures. The former scenario is more realistic for CAS.

We consider two measures: the average delivery time and the average message
time gap. The first measure indicates the time needed for a message to reach
all components, while the latter indicates the interval between two different
messages received by a single component (i.e., an indication of throughput).

3 The simulator: https://bitbucket.org/Lazkany/abcsimulator.

https://bitbucket.org/Lazkany/abcsimulator
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Fig. 1. DP scenario: Avg. Delivery Time for Cluster, Ring, and Tree.

Fig. 2. DP scenario: Avg. Message Time Gap for Cluster, Ring, and Tree.

Data Provider Scenario (DP). We consider configurations with 31 server nodes
155, 310, or 620 components and assume that only 10% of the components is
sending data. The average delivery time is reported in Fig. 1 while the aver-
age message time gap (with confidence intervals) is reported in Fig. 2. The tree
structure offers the best performance while the cluster one is the worst. When
the cluster reaches an equilibrium (at time ∼2000), ∼90 time units are needed
to deliver a message to 155 components while the ring and the tree need only
∼25 and ∼10 time units, respectively. The reason is that in the cluster all server
nodes share the same input queue while in the tree and the ring each server node
has its own queue. We can also observe that the performance of the ring in this
scenario is close to the one of the tree. Moreover, in the cluster, the performance
degrades when the number of components increases. This does not happen for
the tree and the ring. Finally, we can observe that messages are delivered more
frequently in the ring (∼1.9 time units) and the tree (∼1.1 time units) than in
the cluster (∼5.5 time units) as reported in Fig. 2.

Communication Intensive Scenario (CI). We consider infrastructures composed
by 155 components that continuously send messages to all the others. Simula-
tions are performed by considering the following configurations:

– Cluster-based infrastructure: C[10, 155], C[20, 155] and C[31, 155];
– Ring-based infrastructure: R[5, 31] and R[31, 5];
– Tree-based infrastructure: T [5, 2, 5] and T [3, 5, 5].

Figure 3 shows that the cluster has the worst performance. One can easily
notice that when the cluster reaches an equilibrium (∼2000), ∼800 time units
are needed to deliver a message to all components. We also observe that the
number of nodes in the cluster has a minimal impact on this measure because
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Fig. 3. CI scenario: Avg. Delivery Time for Cluster with 10, 20 and 31 servers.

Fig. 4. CI scenario: Avg. Message Time Gap for Cluster with 10, 20 and 31 servers.

they all share the same input queue. The Average Message Time Gap, in Fig. 4,
indicates that in the long run a component receives a message every 6/5.5 time
units.

Better performance can be obtained if the ring infrastructure is used. In the
first two plots of Fig. 5 we report the average delivery time for the configurations
R[5, 31] and R[31, 5]. The last plot compares the average message time gap of the
two configurations. In the first one, a message is delivered to all the components
in 350 time units while in the second one 250 time units are needed. This indicates
that increasing the number of nodes in the ring enhances performance. This is
because in the ring all nodes cooperate to deliver a given message. Also the time
gap decreases, i.e., a message is received every 2.6 and 1.8 time units.

Figure 6 shows how the average delivery time changes during the simulation
for T [5, 2, 5] and T [3, 5, 5]. The two configurations have exactly the same number
of nodes (31) with a different arrangement. The two configurations work almost
in the same way: a message is delivered to all the components in about 120 time
units. Clearly, the tree is 5-time faster than the cluster and 2-time faster than the
ring. Moreover, in the tree-based approach, a message is delivered to components

Fig. 5. CI scenario: Avg. Delivery Time and Avg. Message Time Gap for Ring with 5
and 31 servers.
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Fig. 6. CI scenario: Avg. Delivery Time: Tree/T [5, 2, 5] and T [3, 5, 5].

Fig. 7. CI scenario: Avg. Message Time Gap: Tree/T [5, 2, 5] and T [3, 5, 5].

every ∼1.1 time units as reported in Fig. 7. This means that messages in the tree
are constantly delivered after an initial delay.

The results show that tree infrastructures offer the best performance; cluster-
based ones do not work well while ring-based ones are in between the two.

5 Concluding Remarks, Future Work, and Related Work

The contribution of our paper is twofold: (i) the definition of a distributed tree-
based infrastructure for coordinating attribute-based interaction and its actual
implementation in Google Go; (ii) the proof of correctness of the proposed infras-
tructure and its performance evaluation. The results showed that the tree infras-
tructure has a better performance when compared with others in terms of min-
imising the average delivery time and maximising throughput.

As for future work, we plan to integrate (possibly) existing techniques for
resilience to deal with imperfect communication links, dropped messages, and
node’s failures. Apart from simulation, we will consider large and realistic case
studies to investigate the actual performance of the current Go implementation.

We would like to conclude by relating to existing approaches. For implemen-
tations of attribute-based interaction, we refer to the Java-based [2] and the
Erlang-based [10] implementations. As we mentioned before, these implementa-
tions are centralised while we are aiming for a distributed one.

Many approaches have been proposed to deal with distributed coordination,
but they are difficult to compare as they differ in their assumptions, properties,
objectives, or target applications [11]. However, they can be classified according
to their ordering mechanisms. Below we relate to well-known approaches.

In the fixed sequencer approach [9], a single sequencer maintains the order
of message delivery and components communicate by interacting only with the
sequencer. The cluster infrastructure is a natural distributed extension; and also
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the tree is a generalisation of this approach where instead of a single sequencer,
we consider a propagation tree. The ordering decisions are resolved along tree
paths. Actually, a propagation tree with depth 1 is a fixed sequencer.

The moving sequencer approach [7] avoids the bottleneck of a single sequencer
by transferring the sequencer role among several nodes. Nodes form a logical
ring and circulate a token, carrying a counter and a list of sequenced messages.
Once token is received, a sequencer sequences its messages, sends all sequenced
messages to its connected components, updates the token, and passes it along
with sequenced messages to next node; thus the load is distributed among several
nodes. However, the liveness of the algorithm depends on the token and, if the
number of senders in one node is larger than others, fairness is hard to achieve.
The ring-based infrastructure can be viewed as a generalisation of this technique
where fairness is “resolved” by sharing a common counter.

In the privilege-based approach [8], senders circulate a token and each sender
has to wait for the token. Upon receipt of token, the sender sequences its mes-
sages, sends them to destinations, and passes the token to the next sender. This
approach is not suitable for open systems, since it assumes that all senders know
each other. Also fairness is hard to achieve, e.g., some components send larger
number of messages than others.
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Abstract. Choreographic Programming is a paradigm for distributed
programming, where high-level “Alice and Bob” descriptions of commu-
nications (choreographies) are used to synthesise correct-by-construction
programs. However, implementations of choreographic models use mes-
sage routing technologies distant from their related theoretical models
(e.g., CCS/π channels). This drives implementers to mediate discrep-
ancies with the theory through undocumented, unproven adaptations,
weakening the reliability of their implementations.

As a solution, we propose the framework of Applied Choreographies
(AC). In AC, programmers write choreographies in a language that
follows the standard syntax and semantics of previous works. Then,
choreographies are compiled to a real-world execution model for Service-
Oriented Computing (SOC). To manage the complexity of this task, our
compilation happens in three steps, respectively dealing with: implement-
ing name-based communications using the concrete mechanism found in
SOC, projecting a choreography to a set of processes, and translating
processes to a distributed implementation in terms of services.

1 Introduction

Background. In Choreographic Programming, programs are choreographies of
communications used to synthesise correct implementations through an EndPoint
Projection (EPP) procedure [1]. The generated code is guaranteed to follow the
behaviour specified in the choreography and to be deadlock-free [2]. For these
reasons, the communities of business processes and Service-Oriented Computing
(SOC) widely adopted choreographies, using them in standards (e.g., WS-CDL [3]
and BPMN [4]), languages [5–12], and type systems and logics [13–16].

Example 1. Below, we give a representative example of a choreography. In the
example, we implement a simple business protocol among a client process c,
a seller service located at lS and a bank service located at lB (locations are
abstractions of network addresses, or URIs). At line 1, the client c asks the seller
and the bank services to create two new processes, respectively s and b. The three
processes c, s, and b can now communicate over a multiparty session k, intended
as in Multiparty Session Types [13]: when a session is created, each process
gets ownership of a statically-defined role, which identifies a message queue that
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the process uses to asynchronously receive messages from other processes. For
simplicity, at line 1, we assign role C to process c, S to s, and B to b. At line 2,
over session k, the client c invokes operation buy of the seller s with the name
of a product it wishes to buy, which the seller stores in its local variable x. As
usual, processes have local state and run concurrently. At line 3, the seller uses
its internal function mkOrder to prepare an order (e.g., compute the price of the
product) and sends it to the bank on operation openTx, for opening a payment
transaction. At line 4, the client sends its credit card information cc to the bank
on operation pay. Then, at line 5, the bank makes an internal choice on whether
the payment can be performed (with internal function closeTx, which takes the
local variables cc and order as parameters). The bank then notifies the client
and the seller of the final outcome, by invoking them both either on operation
ok or ko.

1 start k : c[C] <=> lS.s[S], lB.b[B];
2 k : c[C].product —> s[S].buy(x);
3 k : s[S].mkOrder(x) —> b[B].openTx(order);
4 k : c[C].cc —> b[B].pay(cc);
5 if b.closeTx(cc, order)
6 { k : b[B] —> c[C].ok(); k : b[B] —> q[S].ok() }

7 else
8 { k : b[B] —> c[C].ko(); k : b[B] —> q[S].ko() }

Motivation. In previous definitions of EPP, both the choreography language
and the target language abstract from how real-world frameworks support com-
munications [2,5,14,15,17], by modelling communications as synchronisations
on names (cf. [18,19]). Thus, the implementations of choreographic program-
ming [11,12] significantly depart from their respective formalisations [2,8]. In
particular, the implemented EPPs realise channel creation and message rout-
ing with additional data structures and message exchanges [1,20]. The specific
communication mechanism used in these implementations is message correlation.
Correlation is the reference message routing technology in Service-Oriented Com-
puting (SOC)—the major field of application of choreographies—and it is sup-
ported by mainstream technologies (e.g., WS-BPEL [21], Java/JMS, C#/.NET).
The gap between formalisations and implementations of choreographic program-
ming can compromise its correctness-by-construction guarantee.

Contributions. We reduce the gap between choreographies and their imple-
mentations by developing Applied Choreographies, a choreographic framework
consisting of three calculi: the Frontend Calculus (FC), which offers the well-
known simplicity of abstract channel semantics to programmers; the Backend
Calculus (BC), which formalises how abstract channels can be implemented on
top of message correlation; and the Dynamic Correlation Calculus (DCC), an
abstract model of Service-Oriented Computing where distributed services com-
municate through correlation. Differently from BC, DCC has no global view on
the state of the system (which is instead distributed), and there are no multi-
party synchronisation primitives.
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Our main contribution is the definition of a behaviour-preserving compiler
from choreographies in FC to distributed services in DCC, which uses BC as
intermediate representation. This is the first correctness result of an end-to-
end translation from choreographies to an abstract model based on a real-world
communication mechanism. Our compiler proceeds in three steps:

– it projects (EPP) a choreography, describing the behaviours of many par-
ticipants, into a composition of modules called endpoint choreographies, each
describing the behaviour of a single participant;

– it generates the data structures needed by BC to support the execution of
the obtained endpoint choreographies using message correlation;

– it synthesises a correct distributed implementation in DCC, where the multi-
party synchronisations in choreographies are translated to correct distributed
handshakes (consisting of many communications) on correlation data.

Full definitions and proof sketches are in [22].

2 Frontend Calculus

We start by presenting the Frontend Calculus (FC), which follows the structure
of Compositional Choreographies [23]. The main novelty is in the semantics,
which is based on a notion of deployment and deployment effects that will ease
the definition of our translation. Remarkably, it also yields a new concise for-
malisation of asynchrony in choreographies.

Syntax. In the syntax of FC (Fig. 1), C denotes an FC program. FC programs
are choreographies, as in Example 1, and we often refer to them as Frontend
choreographies. A choreography describes the behaviour of some processes. Pro-
cesses, denoted p, q ∈ P, are intended as usual: they are independent execution
units running concurrently and equipped with local variables, denoted x ∈ Var.
Message exchanges happen through a session, denoted k ∈ K, which acts as a
communication channel. Intuitively, a session is an instantiation of a protocol,
where each process is responsible for implementing the actions of a role defined
in the protocol. We denote roles with A, B ∈ R. A process can create new pro-
cesses and sessions at runtime by invoking service processes (services for short).
Services are always available at fixed locations, denoted l ∈ L, meaning that
they can be used multiple times (in process calculus terms, they act as repli-
cated processes [24]). Locations are novel to choreographies: they are addresses of
always-available services able to create processes at runtime (cf. public channels
in [2,23]).

Processes communicate by exchanging messages. A message consists of two
elements: (i) a payload, representing the data exchanged between two processes;
and (ii) an operation, which is a label used by the receiver to determine what
it should do with the message—in object-oriented programming, these labels
are called method names [25]; in service-oriented computing, labels are typically
called operations as in here. Operations are denoted o ∈ O.
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In the rest of the section, we comment the syntax of FC and present its seman-
tics. However, before doing that, we dedicate the next paragraph to illustrate with
an example the purpose and relationship between complete and partial actions.

Fig. 1. Frontend Calculus, syntax.

Complete and Partial Actions. As in [23], FC supports modular development
by allowing choreographies, say C and C ′, to be composed in parallel, written
C | C ′. A parallel composition of choreographies is also a choreography, which
can thus be used in further parallel compositions. Composing two choreographies
in parallel allows the processes in the two choreographies to interact over shared
location and session names. In particular, we distinguish between two kinds of
terms inside of a choreography: complete and partial actions. A complete action
is internal to the system defined by the choreography, and thus does not have
any external dependency. By contrast, a partial action defines the behaviour
of some processes that need to interact with another choreography in order to
be executed. Therefore, a choreography containing partial actions needs to be
composed with other choreographies that provide compatible partial actions. To
exemplify the distinction between complete and partial actions, let us consider
the case of a single communication between two processes.

Complete interaction Composed partial actions

k : c[C].product —> s[S].buy( x )

k : c[C].product —> S.buy

|

k : C —> s[S].buy( x )

Above, on the left we have the communication statement as written at line 2
of Example 1. This is a complete action: it defines exactly all the processes that
should interact (c and s). On the right, we implement the same action as the
parallel composition of two modules, i.e., choreographies with partial actions. At
the left of the parallel we write a send action, performed by process c to role S
over session k, at the right of the parallel we write the complementary reception
from a role C and performed by process s over the session k. More specifically,
we read the send action as “process c sends a message as role C with payload
product for operation buy to the process playing role S on session k”. Dually, we
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read the receive action as “process s receives a message for role S and operation
buy over session k and stores the payload in variable x”. The compatible roles,
session, and operation used in the two partial actions make them compliant.
Thus, the choreography on the left is operationally equivalent to the one on the
right. Observe that partial actions do not mention the name of the process on
the other end—for example, the send action performed by process c does not
specify that it wishes to communicate with process s precisely. This supports
some information hiding: a partial action in a choreography can interact with
partial actions in other choreographies, independently from the process names
used in the latter. Expressions and variables used by senders and receivers are
also kept local to statements that define local actions.

By equipping FC with both partial and complete actions, we purposefully
made FC non-minimal. However, while a minimal version of FC (i.e., equipped
with either partial or complete actions) can capture well-known choreographic
models like [2,5–8], we included both kinds of actions to describe a comprehensive
language for programmers. On the one hand, complete actions offer a concise
syntax to express closed systems, as found in other choreographic models. On the
other hand, partial actions support compositionality in Frontend choreographies,
allowing developers to write FC modules separately and possibly reuse the same
module in multiple compositions.

Complete Actions. We start commenting the syntax of FC from complete
actions, marked with a shade in Fig. 1. In term (start), process p starts a new
session k together with some new processes q̃ (q̃ is assumed non-empty). Process
p, called active process, is already running, whereas each process q in

︷ ︸

l.q, called
service process, is dynamically created at the respective location l. Each process
is annotated with the role it plays in the session. Term (com) models a commu-
nication: on session k, process p sends to process q a message for its operation
o; the message carries the evaluation of expression e (we assume expressions to
consist of standard computations on local variables) on the local state of p whilst
x is the variable where q will store the content of the message.

Partial Actions. Partial actions correspond to the terms obtained by respec-
tively splitting the (start) and (com) complete terms into their partial coun-
terparts. In term (req), process p requests some external services respectively
located at l̃, to create some external processes and start a new session k. By
“external”, we mean that the behaviour of such processes is defined in a sepa-
rate choreography module, to be composed in parallel. Role annotations follow
those of term (start). Term (acc) is the dual of (req) and defines a choreography
module that provides the implementation of some service processes. We assume
(acc) terms to always be at the top level (not guarded by other actions), cap-
turing always-available choreography modules. In term (send), process p sends a
message to an external process that plays B in session k. Dually, in term (recv),
process q receives a message for one of the operations oi from an external process
playing role A in session k, and then proceeds with the corresponding continua-
tion (cf. [26]).
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Other Terms. In a conditional (cond), process p evaluates a condition e in
its local state to choose between the continuations C1 and C2. Term (par) is
standard parallel composition, which allows partial actions in two choreographies
C1 and C2 to interact. Respectively, terms (def), (call), and (inact) model the
definition of recursive procedures, procedure calls, and inaction. Some terms bind
identifiers in continuations. In terms (start) and (acc), the session identifier k and
the process identifiers q̃ are bound (as they are freshly created). In terms (com)
and (recv), the variables used by the receiver to store the message are bound
(x and all the xi, respectively). In term (req), the session identifier k is bound.
Finally, in term (def), the procedure identifier X is bound. In the remainder, we
omit 0 or irrelevant variables (e.g., in communications with empty messages).
Terms (com), (send), and (recv) include role annotations only for clarity reasons;
roles in such terms can be inferred, as shown in [1].

Semantics. The semantics of FC follows the standard principles of asynchronous
multiparty sessions (cf. [13]) and it is formalised in terms of reductions of the
form D,C → D ′, C ′, where D is a deployment. Deployments store the states of
processes and the message queues that support message exchange in sessions.
We start by formalising the notion of deployment.

Deployment. As in multiparty session types [13], we equip each pair of roles in a
session with a dedicated asynchronous queue to communicate in each direction.
Formally, let Q = K × R × R be the set of all queue identifiers; we write
k[A〉B] ∈ Q to identify the queue from A to B in session k. Now, we define D as an
overloaded partial function defined by cases as the sum of two partial functions
fs : P ⇀ Var ⇀ Val and fq : Q ⇀ Seq(O ×Val) whose domains and co-domains
are disjoint: D = fs(z) if z ∈ P, fq(z) if z ∈ Q.

Function fs maps a process p to its state, which is a partial function from
variables x, y ∈ Var to values v ∈ Val. Function fq stores the queues used in
sessions. Each queue is a sequence of messages m̃ = m1:: . . . ::mn | ε (ε is the
empty queue), where each message m = (o, v) ∈ O × Val contains the operation
o it was received on and the payload v.

Programmers do not deal with deployments. We assume that choreographies
without free session names start execution with a default deployment that con-
tains empty process states. Let fp(C) return the set of free process names in C

and, with abuse of notation, ∅ be the undefined function for any given signature.

Definition 1 (Default Deployment). Let C be a choreography without free
session names. The default deployment of D for C is defined as the function
mapping all free names in C to empty states, i.e., D[p �→ ∅ | p ∈ fp(C)].

Reductions. In our semantics, choreographic actions have effects on the state of a
system—deployments change during execution. At the same time, a deployment
also determines which choreographic actions can be performed. For example, a
communication from role A to role B over session k requires a queue k[A〉B] to
exist in the deployment of the system.
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We formalise the notion of which choreographic actions are allowed by a

deployment and their effects using transitions of the form D
δ

−→ D ′, read “the
deployment D allows for the execution of δ and becomes D ′ as the result”.
Actions δ are defined by the following grammar: start k : p[A] <=>

︷ ︸

l.q[B],
session start, k : p[A].e —> B.o, send in session, k : A —> q[B].o(x), receive in
session.

We report the rules defining D
δ

−→ D ′ in the top-half of Fig. 2.

Fig. 2. FC: top-half deployment transitions, bottom-half semantics (selected).

Rule �D|Start� states that the creation of a new session k between an exist-
ing process p and new processes q̃ results in updating the deployment with: a
new (empty) state for each of the new processes q in q̃ (

[
q �→ ∅ | q ∈ {q̃}

]
);

and a new (empty) queue between each pair of distinct roles in the session
(
[
k[C〉E] �→ ε | {C, E} ⊆ {A, B̃}

]
). Rule �D|Send� models the effect of a send action. In

the premise, we use the auxiliary function ↓ to evaluate the local expression e

in the state of process p, obtaining the value v to use as message payload. Then,
in the conclusion, we append a message with its payload—(o, v)—to the end of
the queue from the sender’s role to the receiver’s role (k[A〉B]). We assume that
function ↓ always terminates—in practice, this can be obtained by using time-
outs. Rule �D|Recv� models the effect of a reception. If the queue k[A〉B] contains in
its head a message on operation o, it is always possible to remove it from the
queue and to store its value v under variable x in the state of the receiver.

Using deployment transitions, we can now define the rules for reductions
D,C → D ′, C ′. We call a configuration D,C a running choreography. The reduc-
tion relation → for FC is the smallest relation closed under the (excerpt of) rules
given in the bottom-half of Fig. 2. Rule �C|Start� creates a new session, by ensuring
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that both the new session name k ′ and new processes r̃ are fresh wrt D (D#k ′, r̃).
We use the fresh names in the continuation C, by using a standard substitution
C[k ′/k][̃r/q̃]. Rule �C|Send� reduces a send action, if it is allowed by the deployment.
Rule �C|Recv� reduces a message reception, if the deployment allows for receiving
a message on one of the branches in the receive term (j ∈ I). Recalling the cor-
responding rule �D|Recv�, this can happen only if the deployment D has a message
for operation oj in the queue k[A〉B]. Rule �C|Eq� closes → under the congruences
≡C and �C. Structural congruence ≡C is the smallest congruence supporting α-
conversion, recursion unfolding, and commutativity and associativity of parallel
composition. The swap relation �C is the smallest congruence able to exchange
the order of non-interfering concurrent actions. Rule �C|Eq� also enables the reduc-
tion of complete communications on (com) terms with the equivalence

k : p[A].e —> q[B].o(x);C ≡C k : p[A].e —> B.o;k : A —> q[B].{o(x);C}

unfolding complete communications into the corresponding send and receive
terms.

Typing. We equip FC with a typing discipline based on multiparty session
types [13,26], which checks that partial actions composed in parallel are com-
patible. Our typing discipline is a straightforward adaptation of that presented
for Compositional Choreographies [23], so we omit most details here (reported
in [22]). However, the type system also gives us important information that will
be critical in the compilation that we will develop later. Specifically, we mainly
use types to keep track of the location that each process has been created at,
the types of variables, the roles played by processes in open sessions, the role
played by the processes spawned at each location in a choreography, and the
status of message queues. Keeping track of this information is straightforward;
hence, for brevity, we simply report the definition of the main elements of the
typing environment Γ that we use to store it.

Γ :: = Γ, l̃ : G〈A|B̃|C̃〉 | Γ, k[A] : T | Γ, p : k[A] | Γ, p.x : U | Γ, p@l | k[B〉A] : T | ∅

In Γ , a service typing l̃ : G〈A|B̃|C̃〉 types with the (standard, from [23,26]) global
type G any session started by contacting the services at the locations l̃. Role A
is the role of the active process, whereas roles B̃ are the respective roles of the
service processes located at l̃. (The roles C̃ are used to keep track of whether the
implementation of some roles is provided by external choreography modules.) A
session typing k[A] : T defines that role A in session k follows the local type T . An
ownership typing p : k[A] states that process p owns the role A in session k. A
location typing p@l states that process p runs at location l. The typing p.x : U
states that variable x has type U in the state of process p. Finally, the buffer
typing k[A〉B] : T states that the queue k[A〉B] contains a sequence of messages
typed by the local type T .

A typing judgement Γ 
 D,C establishes that D and C are typed according
to Γ . If such a Γ exists, we say that D,C is well-typed.
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Thanks to Γ , we can define a formal notion of coherence co, useful to check
if a given set of Frontend modules can correctly execute a typed session:

Definition 2 (Coherence). co(Γ) holds iff ∀ k ∈ Γ , ∃ G s.t.

– l̃ : G〈A|B̃|C̃〉 ∈ Γ ∧ C̃ = B̃ and
– ∀ A ∈ roles(G), k[A] : T ∈ Γ ∧ T = �G�A

∧ ∀ B ∈ roles(G) \ {A}, Γ 
 k[A〉B] : �G�
A
B

Coherence checks that (i) all services needed to start new sessions are present
and (ii) all the roles in every open session are correctly implemented by some
processes. To do this, given a global type G, co uses function �G�A to extract
the local type of a role A in G and function �G�

A
B to extract the local type of the

queue where role B receives from role A in G.
Well-typed Frontend choreographies that contain all necessary modules never

deadlock.

Theorem 1 (Deadlock freedom). Γ 
 D,C and co(Γ) imply that either (i)
C ≡ 0 or (ii) there exist D ′ and C ′ such that D,C → D ′, C ′.

3 Backend Calculus

We now present the Backend Calculus (BC). Formally, the syntax of programs
in BC is the same as that of FC. The only difference between BC and FC is in
the semantics: we replace the notions of deployment and deployment effects with
new versions that formalise message exchanges based on message correlation, as
found in Service-Oriented Computing (SOC) [21].

Deployments in BC. Deployments in BC capture communications in SOC,
where data trees are used to correlate messages to input queues. We first infor-
mally introduce correlation.

Message Correlation. Processes in SOC run within services and communicate
asynchronously: each process can retrieve messages from an unbound number of
FIFO queues, managed by its enclosing service. To identify queues, services use
some data, called correlation key. When a service receives a message from the
network, it inspects its content looking for a correlation key that points one of
its queues. If a queue can be found, the message is enqueued in its tail. As noted
in the example, messages in SOC contain correlation keys as either part their
payload or in some separate header. As in [27], we abstract from such details.

Data and Process state. Data in SOC is structured following a tree-like format,
e.g., XML or JSON. We use trees to represent both the payload of messages and
the state of running processes (as in, e.g., BPEL [21] and Jolie [28]). Formally,
we consider rooted trees t ∈ T , where edges are labelled by names, ranged over
by x, and ∅ is the empty tree. We assume that all outgoing edges of a node
have distinct labels and that only leaves contain values of type Val ∪ L, i.e.,
basic data (int, str, . . . ) or locations. Variables x are paths to traverse a tree:
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x, y :: = x.x | ε , where ε is the empty path (often omitted). Given a path
x and a tree t, x(t) is the node reached by following x in t; otherwise, x(t) is
undefined. Abusing notation, when x(t) is a leaf, then x(t) denotes also the value
of the node. To manipulate trees, we will use the (total) replacement operator
t� ( x, t ′ ). If x(t) is defined, t� ( x, t ′ ) returns the tree obtained by replacing in t

the subtree rooted in x(t) by t ′. If x(t) is undefined, t� ( x, t ′ ) adds the smallest
chain of empty nodes to t such that x(t) is defined and it stores t ′ in x(t).

Backend Deployment. We can now define the notion of deployment for BC,
denoted D. Formally, D is an overloaded partial function defined by cases as the
sum of three partial functions gl : L ⇀ Set(P), gm : L × T ⇀ Seq(O × T ),
and gs : P ⇀ T whose domains and co-domains are disjoint: D(z) = gl(z) if z ∈
L, gm(z) if z ∈ L × T , and gs(z) if z ∈ P.

Function gl maps a location to the set of processes running in the service at
that location. Given l, we read D(l) = {p1, . . . , pn} as “the processes p1, . . . , pn

are running at the location l” (we assume processes to run at most at one
location). Function gm maps a couple location-tree to a message queue. This
reflects message correlation as informally described above, where a queue resides
in a service, i.e., at its location, and is pointed by a correlation key. Given a couple
l : t, we read D(l : t) = m̃ as “the queue m̃ resides in a service at location l

and is pointed by correlation key t”. The queue m̃ is a sequence of messages
m̃:: = m1:: · · · ::mn | ε and a message of the queue is m:: = (o, t), where t is
the payload of the message and o is the operation on which the message was
received. Function gs maps a process to its local state. Given a process p, the
notation D(p) = t means that p has local state t.

Deployment Effects in BC. In BC, we replace FC deployment effects (i.e.,

the rules for D
δ

−→ D ′) with the ones reported in Fig. 3, commented below.

Fig. 3. Deployment effects for Backend Choreographies.
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Rule �D |Start� simply retrieves the location of process p (the one that requested
the creation of session k) and uses Rule �D |Sup� to obtain the new deployment D ′

that supports interactions over session k. Namely, D ′ is an updated version of D
with: (i) the newly created processes for session k and (ii) the queues used by the
new processes and p to communicate over session k. In addition, in D ′, (iii) the
new processes and p contain in their states a structure, rooted in k and called
session descriptor, that includes all the information (correlation keys and the
locations of all involved processes) to support correlation-based communication
in session k. Formally, this is done by Rule �D |Sup� where we 1© retrieve the starter
process, here called q1, which is the only process already present in D. Then,
given a tree t, we ensure it is a proper session descriptor for session k, i.e., that:

2© t contains the location li of each process. The location is stored under path
Bi.l, where Bi is the role played by the i-th process in the session;

3© t contains a correlation key tij for each ordered couple of roles Bi, Bj under
path Bi.Bj, such that 4© there is no queue in D at location lj pointed by
correlation key tij;

Finally, we assemble the update of D in four steps:

5© we obtain D1 by adding in D the processes q2, . . . , qn at their respective
locations;

6© we obtain D2 by adding to D1 an empty queue ε for each couple lj : tij;
7© we update D2 to store in the state of (the starter) process q1 the session

support t under path k;
8© we further update D2 such that each new created process (q2, . . . , qn) has

in its state just the session descriptor t rooted under path k.

We deliberately define in �D |Sup� the session descriptor t with a set of constrains
on data, rather than with a procedure to obtain the data for correlation. In this
way, our model is general enough to capture different methodologies for creating
correlation keys (e.g., UUIDs or API keys).

Rule �D |Send� models the sending of a message. From left to right of the
premises: we retrieve the location l of the receiver B from the state of the sender
p; we retrieve the correlation key tc in the state of p (playing role A) to send
messages to role B; we compute the payload of the message by evaluating the
expression e against the local state of the sender p. Then we obtain the updated
deployment by adding message (o, tm) in the queue pointed by l : tc that we
found via correlation.

Rule �D |Recv� models a reception. From left to right of the premises: we find the
correlation key tc for the queue that q (playing role B) uses to receive from A in
session k; we retrieve the location l of q; we access the queue pointed by l : tc

and retrieve message (o, tm); we obtain a partial update of D in D ′ removing
(o, tm) from the interested queue; we obtain the updated deployment by storing
the payload tm in the state of q under path x.

Encoding FC to BC. Runtime terms D,C in FC can be translated to BC
simply by encoding D to an appropriate Backend deployment, since the syntax
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of choreographies is the same. For this translation, we need to know the roles
played by processes and their locations, which is not recorded in D. We extract
this information from the typing of C.

Definition 3 (Encoding FC in BC). Let D,C be well-typed: Γ 
 D,C. Then,
its Backend encoding is defined as 〈〈D〉〉Γ , C, where 〈〈D〉〉Γ is given by the algorithm
in Listing 1.1.

Commenting the algorithm of 〈〈D〉〉Γ , at line 2 it includes in D all (located)
processes present in D (and typed in Γ) and instantiate their empty states. At
line 3 it translates the state (i.e., the association Variable-Value) of each process
in D to its correspondent tree-shaped state in D. At lines 4–7, for each ongoing
session in D (namely, for each couple of processes, each playing a role in a given
session), it sets the proper correlation keys and queues in D and, for each queue,
it imports and translates the sequence of related messages.

The encoding from FC to BC guarantees a strong operational correspon-
dence.

Theorem 2 (Operational Correspondence (FC ↔ BC)). Let Γ 
 D,C.
Then:

1. (Completeness) D,C → D ′, C ′ implies 〈〈D〉〉Γ , C → 〈〈D ′〉〉Γ ′
, C ′ for some Γ ′ s.t.

Γ ′ 
 D ′, C ′;
2. (Soundness) 〈〈D〉〉Γ , C → D, C ′ implies D,C → D ′, C ′ and D = 〈〈D ′〉〉Γ ′

for
some Γ ′ s.t. Γ ′ 
 D ′, C ′.

4 Dynamic Correlation Calculus

We now introduce the Dynamic Correlation Calculus (DCC), the target language
of our compilation. To define DCC, we considered a previous formal model for
Service-Oriented Computing, based on correlation [27]. However, we found the
calculus in [27] too simple for our purposes: there, each process has only one
message queue, while here we need to manage many queues per process (as
in our Backend deployments). Hence, to define DCC, we basically extend the
calculus in [27] to let processes create and receive from multiple queues. Beside
the requirement of this work, many languages for SOC (e.g., BPEL [21]) let
processes create and receive from multiple queues, which makes DCC a useful
reference calculus in general.
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Syntax. The syntax of DCC, reported in Fig. 4, comprises two layers: Services,
ranged over by S, and Processes, ranged over by P.

In the syntax of services, term (srv) is a service, located at l, with a Start
Behaviour Bs and running processes P (both described later on) and a queue
map M. The queue map is a partial function M : T ⇀ Seq(O×T ) that, similarly
to function gm in BC deployments, associates a correlation key t to a message
queue. We model messages as in BC: a message is a couple (o, t) where o is
the operation on which the message has been received and t the payload of the
message. Services are composed in parallel in term (net).

Fig. 4. Dynamic Correlation Calculus, syntax.

Concerning behaviours, in DCC we distinguish between start behaviours Bs

and process behaviours B. Process behaviours define the general behaviour of
processes in DCC, as described later on. Start behaviours use term !(x) to indi-
cate the availability of a service to generate new local processes on request. At
runtime, the start behaviour Bs of a service is activated by the reception of a
dedicated message that triggers the creation of a new process. The new process
has (process) behaviour B, which is defined in Bs after the !(x) term, and an
empty state. The content of the request message is stored in the state of the
newly created process, under the bound path x. As in BC, also in DCC paths
are used to access process states.

Operations (o), procedures (X), variables (x, which are paths), and expres-
sions (e, evaluated at runtime on the state of the enclosing process) are as in
BC. Terms (choice) and (output) model communications. In a (choice), when a
message can be received from one of the operations oi from the queue corre-
lating with e, the process stores under xi the received message, it discards all
other inputs, and executes the continuation Bi. When only one input is available
in a (choice), we use the contracted form o(x) from e;B. Term (output) sends
a message on operation o, with content e2, while e1 defines the location of the
service where the addressee (process) is running and e3 is the key that correlates
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with the receiving queue of the addressee. Term (reqst) is the dual of (acpt) and
asks the service located at e1 to spawn a new process, passing to it the message
in e2. Term (cqueue) models the creation of a new queue that correlates with
the key contained in variable x. Other terms are standard.

Semantics. In Fig. 5, we report a selection of the rules defining the semantics
of DCC, a relation → closed under a (standard) structural congruence ≡ that
supports commutativity and associativity of parallel composition. To enhance
readability, in rules we omit irrelevant elements with the place-holder -. We
comment the rules. Rule �DCC|Recv� models message reception: if the queue correlat-
ing with tc (obtained from the evaluation of expression e against the state of the
receiving process) has a message on operation oj, we remove the message from
the queue and assign the payload to the variable xj in the state of the process.
Rule �DCC|Newque� adds to M an empty queue (ε) correlating with a key stored in
x. As for BC in rule �D |Sup�, we do not impose a structure for correlation keys,
yet we require that they are distinct within their service. Rule �DCC|Send� models
message delivery between processes in different services: the rule adds the mes-
sage from the sender at the end of the correlating queue of the receiver. Rule
�DCC|Start� accepts the creation of a new processes in a service upon request from
an external process. The spawned process has B2 as its behaviour and an empty
state, except for x that stores the payload of the request.

Fig. 5. Dynamic Correlation Calculus, semantics (selected).

5 Compiler from FC to DCC and Properties

We now present our main result: the correct compilation of FC programs into
networks of DCC services. Given a term D,C in FC, our compilation consists of
three steps: (1) it projects C into a parallel composition of endpoint choreogra-
phies, each describing the behaviour of a single process or service in C; (2) it
encodes D to a Backend deployment; (3) it compiles the Backend choreography,
result of the two previous steps, into DCC programs.
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Step 1: Endpoint Projection (EPP). Given a choreography C, its EPP,
denoted �C�, returns an operationally-equivalent composition of endpoint chore-
ographies. Intuitively, an endpoint choreography is a choreography that does
not contain complete actions—terms (start) and (com) in FC—describing the
behaviour of a process, which can be either a service process or an active one.
Our definition of EPP is a straightforward adaptation of that presented in [23],
so we omit it here (see [22] for the full definition). First, we define a process
projection to derive the endpoint choreography of a single process p from a
choreography C, written �C�p. Then, we formalise the EPP of a choreography as
the parallel composition of (i) the projections of all active processes and (ii) the
merging of all service processes accepting requests at the same location. In the
definition below, we use two standard auxiliary operators: the grouping operator
�C�l returns the set of all service processes accepting requests at location l, and
the merging operator C � C ′ returns the service process whose behaviour is the
merge of the behaviours of all the service processes accepting requests at the
same location.

Definition 4 (Endpoint Projection). Let C be a choreography. The endpoint
projection of C, denoted �C�, is:

�C� =
∏

p ∈ fp(C)

�C�p |
∏

l

⎛

⎝
⊔

p ∈ �C�l
�C�p

⎞

⎠

Example 2. As an example, let C be lines 5–8 of Example 1. Its EPP �C� is the
parallel composition of the endpoint choreographies of processes c, s, and b, let
them be respectively �C�c, �C�s, and �C�b, then �C� = �C�c | �C�s | �C�b

�C�b = if b.closeTx(cc, order) {

k : b[B] —> C.ok;k : b[B] —> S.ok

} else {

k : b[B] —> C.ko;k : b[B] —> S.ko

}

�C�c = k : B —> c[C].{ ok(), ko() }

�C�s = k : B —> s[S].{ ok(), ko() }

As shown above, the projection of the conditional is homomorphic on the
process (b) that evaluates it. The projection of (com) terms results into a partial
(send) for the sender — as in the two branches of the conditional in �C�b — and
a partial (recv) for the receiver — as in �C�c and �C�s. Note that the EPP merges
branching behaviours: in �C�c and �C�s the two complete communications are
merged into a partial reception on either operation ok or ko.
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Below, C ≺ C ′ is the standard pruning relation [14], a strong typed bisim-
ilarity such that C has some unused branches and always-available accepts. In
FC, the EPP preserves well-typedness and behaviour:

Theorem 3 (EPP Theorem). Let D,C be well-typed. Then,

1. (Well-typedness) D, �C� is well-typed.
2. (Completeness) D,C → D ′, C ′ implies D, �C� → D ′, C ′′ and �C ′� ≺ C ′′.
3. (Soundness) D, �C� → D ′, C ′ implies D,C → D ′, C ′′ and �C ′′� ≺ C ′.

Step 2: Encoding to BC. After the EPP, we use our deployment encoding
to obtain an operationally-equivalent system in BC. From Theorems 2 and 3 we
derive Corollary 1:

Corollary 1. Let Γ 
 D,C. Then:

1. (Completeness) D,C → D ′, C ′ implies 〈〈D〉〉Γ , �C� → 〈〈D ′〉〉Γ ′
, C ′′ for some Γ ′

s.t. Γ ′ 
 D ′, C ′′ and �C ′� ≺ C ′′;
2. (Soundness) 〈〈D〉〉Γ , �C� → D, C ′ implies D,C → D ′, C ′′ for some Γ ′ s.t. Γ ′ 


D ′, C ′′, 〈〈D ′〉〉Γ ′
= D and �C ′′� ≺ C ′.

Step 3: from BC to DCC. Given Γ 
 D,C, where C is a composition of
endpoint choreographies as returned by our EPP, we define a compilation D,C Γ

into DCC by using the deployment encoding from FC to BC. To define D,C Γ,
we use:

– C|l, to return the endpoint choreography for location l in C (e.g.,
acc k : l.p[A];C ′′);

– C|p, to return the endpoint choreography of process p in C;
– C Γ, to compile an endpoint choreography C to DCC, using the (selected)

rules in Fig. 6;
– l ∈ Γ , a predicate satisfied if, according to Γ , location l contains or can spawn

processes;
– D|l returns the partial function of type T ⇀ Seq(O ×T ) that corresponds to

the projection of function gm in D with location l fixed.

Definition 5 (Compilation). Let Γ 
 D,C, where C is a composition of end-
point choreographies, and D = 〈〈D〉〉Γ . The compilation D,C Γ is defined as

Intuitively, for each service 〈Bs, P,M〉l in the compiled network: (i) the start
behaviour Bs is the compilation of the endpoint choreography in C accepting
the creation of processes at location l; (ii) P is the parallel composition of the
compilation of all active processes located at l, equipped with their respective
states according to D = 〈〈D〉〉Γ ; (iii) M is the set of queues in D corresponding to
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Fig. 6. Compiler from Endpoint Choreographies to DCC.

location l. We comment the rules in Fig. 6, where the notation � is the sequence
of behaviours �i∈[1,n](Bi) = B1; . . . ;Bn.

Requests. Function start defines the compilation of (req) terms: it compiles
(req) terms to create the queues and a part of the session descriptor of a valid
session support (mirroring rule �D |Sup�) for the starter. Given a session identifier
k, the located role of the starter (lA.A), and the other located roles in the ses-
sion (

︷ ︸

lB.B), function start returns DCC code that: (s1) includes in the session
descriptor all the locations of the processes involved in the session. In (s2) it
adds all the keys correlating with the queues of the starter for the session, it
requests the creation of all the service processes for the session, and it waits for
them to be ready using the reserved operation sync. Finally, (s3) it sends to
them the complete session descriptor obtained after the reception (in the sync

step) of all correlation keys from all processes.

Accepts. Term (acc) defines the start behaviour of a spawned process at a
location. Given a session identifier k, the role B of the service process, and the
service typing G〈A|C̃|D̃〉 of the location, function accept compiles the code that:
(a1) accepts the request to spawn a process, (a2) creates its queues and keys,
updates the session descriptor received from the starter, and sends it back to
the latter (a3). Finally with (a4) the new process waits to start the session.

Example 3. We compile the first two lines of the choreography C in Example 1.

D, �C� Γ= 〈0, Pc〉lC
| 〈BS,0〉lS

| 〈BB,0〉lB

where Pc =

⎧

⎨

⎩

k.S.l = lS;k.B.l = lB;ν〉k.S.C; ?@k.S.l(k); sync(k) from k.S.C;ν〉k.B.C; ?@k.B.l(k);
sync(k) from k.B.C; start@k.S.l(k) to k.C.S; start@k.B.l(k) to k.C.B;
/* end of start-request */ buy@k.S.l(product) to k.C.S; ...

and BS =
{

!(k);ν〉k.C.S;ν〉k.B.S; sync@k.C.l(k) to k.S.C; start(k) from k.C.S;
/* end of accept */ buy(x) from k.C.S; ...

We omit to report BB, which is similar to BS.
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Properties. We report the main properties of our compilation to DCC.
In our definition, we use the term projectable to indicate that, given a chore-

ography C, we can obtain its projection �C�. Theorem 4 defines our result, for
which, given a well-typed, projectable Frontend choreography, we can obtain its
correct implementation as a DCC network.

Theorem 4 (Applied Choreographies). Let D,C be a Frontend choreogra-
phy where C is projectable and Γ 
 D,C for some Γ . Then:

1. (Completeness) D,C → D ′, C ′ implies 〈〈D〉〉Γ , �C� Γ
→

+ 〈〈D ′〉〉Γ ′
, C ′′ Γ ′

and
�C ′� ≺ C ′′ and for some Γ ′, Γ ′ 
 D ′, C ′.

2. (Soundness) 〈〈D〉〉Γ , �C� Γ
→

∗ S implies D,C →
∗ D ′, C ′ and S →

∗

〈〈D ′〉〉Γ ′
, C ′′ Γ ′

and �C ′� ≺ C ′′ and for some Γ ′, Γ ′ 
 D ′, C ′.

By Theorems 1 and 4, deadlock-freedom is preserved from well-typed chore-
ographies to their final translation in DCC. We say that a network S in DCC
is deadlock-free if it is either a composition of services with terminated running
processes or it can reduce.

Corollary 2. Γ 
 D,C and co(Γ) imply that D, �C�
Γ

is deadlock-free.

6 Related Work and Discussion

Choreography Languages. This is the first correctness result of an end-to-end
translation from choreographies to an abstract model based on a real-world com-
munication mechanism. Previous formal choreography languages specify only
an EPP procedure towards a calculus based on name synchronisation, leaving
the design of its concrete support to implementors. Chor and AIOCJ [11,29]
are the respective implementations of the models found in [2,8]. However, the
implementation of their EPP significantly departs from their respective formal-
isation, since the former are based on message correlation. This gap breaks the
correctness-by-construction guarantee of choreographies—there is no proof that
the implementation correctly supports synchronisation on names. Implementa-
tions of other frameworks based on sessions share similar issues. For example,
Scribble [7] is a protocol definition language based on multiparty asynchronous
session types [13] used to statically [30] and dynamically [31,32] check compli-
ance of interacting programs. Our work can be a useful reference to formalise
the implementation of these session-based languages.
Delegation. Delegation supports the transferring of the responsibility to continue
a session from a process to another [13] and it was introduced to choreographies
in [2]. Introducing delegation in FC is straightforward, since we can just import
the development from [2]. Implementing it in BC and DCC would be more
involved, but not difficult: delegating a role in a session translates to moving the
content of a queue from a process to another, and ensuring that future messages
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reach the new process. The mechanisms to achieve the latter part have been
investigated in [30], which would be interesting to formalise in our framework.
Correlation keys. In the semantics of BC, we abstract from how correlation keys
are generated. With this loose definition we capture several implementations,
provided they satisfy the requirement of uniqueness of keys (wrt to locations).
As future work, we plan to implement a language, based on our framework, able
to support custom procedures for the generation of correlation keys (e.g., from
database queries, cookies, etc.).
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15. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distrib. Com-
put. 31(1), 51–67 (2018)
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Abstract. We study the issue of data consistency in distributed sys-
tems. Specifically, we consider a distributed system that replicates its
data at multiple sites, which is prone to partitions, and which is assumed
to be available (in the sense that queries are always eventually answered).
In such a setting, strong consistency, where all replicas of the system
apply synchronously every operation, is not possible to implement. How-
ever, many weaker consistency criteria that allow a greater number of
behaviors than strong consistency, are implementable in available dis-
tributed systems.

We focus on determining the strongest consistency criterion that can
be implemented in a convergent and available distributed system that
tolerates partitions. We focus on objects where the set of operations can
be split into updates and queries. We show that no criterion stronger
than Monotonic Prefix Consistency (MPC) can be implemented.

1 Introduction

Replication is a mechanism that enables sites from different geographical loca-
tions to access a shared data type with low latency. It consists of creating copies
of this data type on each site of a distributed system. Ideally, replication should
be transparent, in the sense that the users of the data type should not notice
discrepancies between the different copies of the data type.

An ideal replication scheme could be implemented by keeping all sites synchro-
nized after each update to the data type. This ideal model is called strong consis-
tency, or linearizability [1]. The disadvantage of this model is that it can cause large
delays for users, and worse the data type might not be available to use at all times.
This may happen, for instance, if some sites of the system are unreachable, i.e.,
partitioned from the rest of the network. Briefly, it is not possible to implement
strong consistency in a distributed system while ensuring high availability [2–4].
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High availability (hereafter availability for short) means that sites must answer
users’ requests directly, without waiting for outside communication.

Given this impossibility, developers rely on weaker notions of consistency,
such as causal consistency [5]. Weaker consistency criteria do not require sites
to be exactly synchronized as in strong consistency. For instance, causal consis-
tency allows different sites to apply updates to the data type in different orders,
as long as the updates are not causally related. Informally, a consistency crite-
rion specifies the behaviors that are allowed by a replicated data type. In this
sense, causal consistency is more permissive than strong consistency. We also
say that strong consistency is stronger than causal consistency, as strong consis-
tency allows strictly fewer behaviors than causal consistency. A natural question
is then: What is the strongest consistency criterion that can be implemented by
a replicated data type? We focus in this paper on data types where the set of
operations can be split into two disjoint sets, updates and queries. Updates mod-
ify the state and but do not return values, while queries return values without
modifying the state.

In [4], it was proven that nothing stronger than observable causal consistency
(a variant of causal consistency) can be implemented. It is an open question
whether observable causal consistency itself is actually implementable. More-
over, [4] does not study consistency criteria that are not comparable to observ-
able causal consistency. Indeed, there exist consistency criteria that are neither
stronger than causal consistency, nor weaker, and which can be implemented by
a replicated data type.

In our paper, we explore one such consistency criterion. More precisely, we
prove that, under some conditions which are natural in a large distributed system
(availability and convergence), nothing stronger than monotonic prefix consis-
tency (MPC) [6] can be implemented. This result does not contradict the result
from [4], since MPC and causal consistency are incomparable.

The reason why MPC and observable causal consistency are incomparable
is as follows. MPC requires all sites to apply updates in the same order (but not
necessarily synchronized at the same time, as in strong consistency), while causal
consistency allows non-causally related updates to be applied in different orders.
On the other hand, causal consistency requires all causally-related updates to be
applied in an order respecting causality, while MPC requires no such constraint.

Overall, our contribution is to prove that, for a notion of behaviors where the
time and place of origin of updates do not matter, nothing stronger than MPC can
be implemented in a distributed setting. Moreover, we remark that clients that
only have the observability defined in Sect. 3 cannot tell the difference between
a strongly consistent implementation and an MPC implementation.

In the rest of this paper, we first give preliminary notions and a formal def-
inition of the problem we are addressing (Sects. 2 and 3). We then turn our
attention to the MPC model by defining it formally and through an implementa-
tion (Sect. 4). We prove that, given the observability mentioned above, and under
conditions natural in a large-scale network (availability, convergence), nothing
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stronger than MPC can be implemented (Sect. 6). Then we compare MPC with
other consistency models (Sect. 7), and conclude (Sect. 8).

To improve the presentation, some proofs are deferred to the appendix.

2 Replicated Implementations

An implementation of a replicated data type consists of several sites that com-
municate by sending messages. Messages are delivered asynchronously by the
network, and can be reordered or delayed. To be able to build implementations
that provide liveness guarantees, we assume all messages are eventually delivered
by the network.

Each site of an implementation maintains a local state. This local state
reflects the view that the site has on the replicated data type, and may con-
tain arbitrary data. Each site implements the protocol by means of an update
handler, a query handler, and a message handler.

The update handler is used by (hypothetical) clients to submit updates to
the data type. The update handler may modify the local states of the site, and
broadcast a message to the other sites. Later, when another site receives the
message, its message handler is triggered, possibly updating the local state of
the site, and possibly broadcasting a new message.

The query handler is used by clients to make queries on the data type. The
query handler returns an answer to the client, and is a read-only operation that
does not modify the local state or broadcast messages.

Remark 1. Our model only supports broadcast and not general peer-to-peer
communication, but this is without loss of generality. We can simulate send-
ing a message to a particular site by writing the identifier of the receiving site in
the broadcast message. All other sites would then simply ignore messages that
are not addressed to them.

In this paper, we consider implementations of the list data type. The list
supports an update operation of the form write(d), with d ∈ N, which adds the
element d to the end of the list. The list also supports a query operation read
that returns the whole list � ∈ N

∗, which is a sequence of elements in N.

Definition 1. Let Upd = {write(d) | d ∈ N} be the set of updates, and Ans =
{read(�) | � ∈ N

∗} be the set of all possibles answers to queries.

We focus on the list data type because queries return the history of all updates
that ever happened. In that regard, lists can encode any other data type whose
operations can be split in updates and queries, by adding a processing layer after
the query operation of the list returns all updates. Data types that contain oper-
ations which are queries and updates at the same time (e.g. the Pop operation of
a stack) are outside the scope of this paper. We now proceed to give the formal
syntax for implementations, and then the corresponding operational semantics.

Definition 2. An implementation I is a tuple
(Q, ι,P,Msg,msg handler, update handler, query handler) where
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– Q is a non-empty set of local states,
– P is a non-empty finite set of process identifiers,
– ι : P → Q associates to each process an initial local state,
– Msg is a set of messages,
– msg handler : Q ×Msg → Q × Msg⊥ is a total function, called the handler of

incoming messages, which updates the local state of a site when a message is
received, and possibly broadcasts a new message,

– update handler : Q ×Upd → Q ×Msg⊥ is a total function, called the handler
of updates, which modifies the local state when an update is submitted, and
possibly broadcasts a message.

– query handler : Q → Ans is a total function, called the handler of client
queries, which returns an answer to client queries.

The set Msg⊥ is defined as Msg � {⊥}, where ⊥ is a special symbol denoting
the fact that no message is sent.

Before defining the semantics of implementations, we introduce a few nota-
tions. We first define the notion of an action, used to denote events that happen
during the execution. Each action contains a unique action identifier aid ∈ N,
and the process identifier pid ∈ P where the action occurs.

Definition 3. A broadcast action is a tuple (aid, pid, broadcast(mid,msg)),
and a receive action is a tuple (aid, pid, receive(mid,msg)), where mid ∈ N

is the message identifier and msg ∈ Msg is the message. An update action or a
write action is a tuple (aid, pid, write(d)) where d ∈ N. Finally, a query action
or a read action is a tuple (aid, pid, read(�)) where � ∈ N

∗.

Executions are then defined as sequences of actions, and are considered up to
action and message identifiers renaming.

Definition 4. An execution e is a sequence of broadcast, receive, query and
update actions where no two actions have the same identifier aid, and no two
broadcast actions have the same message identifier mid.

We now describe how implementations operate on a given site pid ∈ P.

Definition 5. We say that a sequence of actions σ1 . . . σn . . . from site pid fol-
lows I if there exists a sequence of states q0 . . . qn . . . such that q0 = ι(pid), and
for all i ∈ N\{0}, we have:

1. if σi = (aid, pid, write(d)) with d ∈ N, then update handler(qi−1, write(d)) =
(qi, ). This means that upon a write action, a site must update its state as
defined by the update handler;

2. if σi = (aid, pid, read(�)) with � ∈ N
∗, then query handler(qi−1) = read(�)

and qi = qi−1. This condition states that query actions do not modify the
state, and that the answer read(�) given to query actions must be as specified
by the query handler, depending on the current state qi−1;

3. if σi = (aid, pid, broadcast(mid,msg)), then qi = qi−1. Broadcast actions do
not modify the local state;
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4. if σi = (aid, pid, receive(mid,msg)), then msg handler(qi−1,msg) = (qi, ).
The reception of a message modifies the local state as specified by msg handler.

Moreover, we require that broadcast actions are performed if and only if they
are triggered by the handler of incoming messages, or the handler of clients
requests. Formally, for all i > 0, σi = (aid, pid, broadcast(mid,msg)) if and
only if either:

5. ∃ write(d) ∈ Upd and aid ′ ∈ N such that σi−1 = (aid ′, pid, write(d)) and
update handler(qi−1, write(d)) = (qi,msg), or

6. ∃ aid ′ ∈ N, mid ∈ N, and msg ′ ∈ Msg such that
σi−1 = (aid ′, pid, receive(mid,msg)) and msg handler(qi−1,msg ′) =
(qi,msg).

When all conditions hold, we say that q0 . . . qn . . . is a run for σ1 . . . σn . . . .
Note that when a run exists for a sequence of actions, it is unique.

We then define the set of executions generated by I, denoted �I�. In partic-
ular, this definition models the communication between sites, and specifies that
a receive action may happen only if there exists a broadcast action with the
same message identifier preceding the receive action in the execution. Moreover,
a fairness condition ensures that, in an infinite execution, every broadcast action
must have a corresponding receive action on every site.

Definition 6. Let I be an implementation. The set of executions generated by
I is �I� such that e ∈ �I� if and only if the three following conditions hold:

– Projection: for all pid ∈ P, the projection e|pid follows I,
– Causality: for every receive action σ = (aid, pid, receive(mid,msg)), there

exists a broadcast action (aid ′, pid ′, broadcast(mid,msg)) before σ in e,
– Fairness: if e is infinite, then for every site pid ∈ Pid and every broadcast

action (aid ′, pid ′, broadcast(mid,msg)) performed on any site pid ′, there
exists a receive action (aid, pid, receive(mid,msg)) in e,

where e|pid is the subsequence of e of actions performed by process pid:

– ε|pid = ε;
– ((aid, pid, x).e)|pid = (aid, pid, x).(e|pid);
– ((aid, pid ′, x).e)|pid = e|pid whenever pid ′ �= pid.

Remark 2. The implementations we consider are available by construction, in
the sense that any site allows any updates or queries to be done at any time,
and answers to queries directly. This is ensured by the fact that our update and
query handlers are total functions. More precisely, the item 1 of Definition 5
(together with Definition 6) ensures that updates can be performed at any time
through the update handler (update availability).

The broadcast action that happens right after an update action must be
thought of as happening right after the update. Broadcast actions do not involve
actively waiting for responses, and as such do not prevent availability.

Similarly, the item 2 of Definition 5 ensures that any query of any site is
answered immediately, only using the local state of the site (query availability).
We later formalize this in Lemmas 1 and 2.
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For the rest of the paper, we consider that updates are unique, in the sense
that an execution may not contain two update actions that write the same value
d ∈ N. This assumption only serves to simplify the presentation of our result,
and can be done without loss of generality, as updates can be made unique by
attaching a unique timestamp to them.

3 Problem Definition

In this section, we explain how we compare implementations using the notion of
a trace. Informally, the trace of an execution corresponds to what is observable
from the point of view of clients using the data type.

Our notion of a trace is based on two assumptions: (1) Clients know the
order of the queries they have done on a site, but not the relative positions of
their queries with respect to other clients’ queries. (2) The origin of updates
is not relevant from a client’s perspective. This models publicly accessible data
structures where any client can disseminate a transaction in the network, and
the place and time where the transaction was created are not relevant for the
protocol execution.

More precisely, a trace records an unordered set of updates (without their
site identifiers), and records for each site the sequence of queries that happened
on this site.

Definition 7. A trace (tr,W ) is a pair where tr is a labelled partially ordered
set (see hereafter for more details), and W is a subset of N. The trace (tr,W )
corresponding to an execution e is denoted tr(e), where tr = (A,<, label) is a
labelled partially ordered set such that:

– A is the set of action identifiers of query actions of e;
– < is a transitive and irreflexive relation over A, sometimes called the program

order, ordering queries performed on the same site; more precisely, we have
aid < aid ′ if aid, aid ′ ∈ A are action identifiers performed by the same site,
and that appear in that order in e;

– label : A → Ans is the labelling function such that for any aid ∈ A, label(aid)
is the answer of the query action corresponding to aid in e;

and W ⊆ N is the set of elements that appear in an update action of e.

Example 1. Consider the execution e in Fig. 1, and its corresponding trace tr(e).
(pid1, pid2, pid3 ∈ P are site identifiers, mid1,mid2,mid3 ∈ N are unique message
identifiers, and msg1,msg2,msg3 ∈ Msg are messages).

Then, we compare implementations by looking at the set of traces they pro-
duce. The fewer traces an implementation produces, the stronger it is, and the
closer it is to strong consistency.

Definition 8. The notation tr() is extended to sets of executions point-wise. An
implementation I1 is stronger than I2, denoted I1 	 I2 iff

tr(�I1�) ⊆ tr(�I2�)
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(188, pid1, write(3))·
(3713, pid1, broadcast(mid3,msg3))·
(152, pid1, write(1))·
(16, pid1, broadcast(mid1,msg1))·
(137, pid1, read[])·
(2448, pid3, read[])·
(37, pid2, write(2))·
(164, pid2, broadcast(mid2,msg2))·
(189, pid2, read[2])·
(733, pid3, receive(mid2,msg2))·
(133, pid3, receive(mid1,msg1))·
(111, pid2, receive(mid1,msg1))·
(17, pid3, read[2, 1])·
(12, pid1, read[2])·
(15, pid2, read[2, 1])·

pid1 :
read[]

137

read[2]

12

pid2 :
read[2]

189

read[2,1]

15

pid3 :
read[]

2448

read[2,1]

17

Fig. 1. An execution e read from top to bottom, then left to right
(188, 3713, . . . , 189, 733, . . . , 15) and its corresponding trace tr(e) = (tr,W ) (right).
The bullets represent the action identifiers of tr (written under the bullet), and the
corresponding labels are represented right above. The arrows represent the program
order < of tr. The set of writes is W is {1,2,3} (from actions 152, 37, and 188 respec-
tively).

The implementations I1 and I2 are said to be equivalent, denoted I1 ≈ I2,
iff I1 	 I2 and I2 	 I1. Moreover, I1 is strictly stronger than I2, denoted
I1 ≺ I2, iff I1 	 I2 and I1 �≈ I2.

Our goal is to find an implementation I which is minimal in the 	 ordering,
i.e., for which there does not exist an implementation I ′ strictly stronger than I.

4 Definition of Monotonic Prefix Consistency (MPC)

Often called consistent prefix [6,7], the MPC model requires that all sites of the
replicated system agree on the order of write operations (i.e., updates on the
state). More precisely, this means that given two read operations (possibly on
two different sites), one read has to return a list of writes which is a prefix of the
other. Moreover, read operations which execute on the same site are monotonic.
This means that subsequent reads at the same site reflect a non-decreasing prefix
of writes, i.e., the prefix must either increase or remain unchanged. The trace
given in Fig. 1 satisfies these constraints.

Note that the order on write operations on which the sites agree does not nec-
essarily satisfy causality among these operations nor real-time. In other words,
the order in which clients submit write operations does not translate into any
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constraints on the order in which these updates apply at all sites. Moreover, MPC
does not guarantee that a read operation will return all of the preceding writes,
only a prefix of these writes. For instance, some sites can be later than other
sites in applying some updates.

Definition 9. Given two lists �1, �2 ∈ N
∗, we say that �1 is a prefix of �2,

denoted �1 � �2, if there exists �3 ∈ N
∗ such that �2 = �1 · �3. Moreover, �1 is a

strict prefix of �2, denoted �1 � �2, if �1 � �2 and �1 �= �2.

By abuse of notation, we extend the prefix order to elements of Ans, which
are of the form read(�) where � is a list (see Definition 1). Moreover, we also use
the prefix notations for other types of sequences, such as executions. We now
formally define MPC.

Definition 10. MPC is the set of traces (tr,W ) where tr = (A,<, label) satisfying
the following conditions:

– Monotonicity: A query aid ′ done after aid on the same site cannot return a
smaller list. For all aid, aid ′ ∈ A, if aid < aid ′, then label(aid) � label(aid ′).

– Prefix: Queries done on different sites are compatible, in the sense that one
is a prefix of the other. For any all aid, aid ′ ∈ A, label(aid) � label(aid ′) or
label(aid ′) � label(aid).

– Consistency: Queries only return elements that come from a write. For all
aid ∈ A, and for any element d ∈ N of label(aid), we have d ∈ W .

5 Feasibility of MPC

In this section, we provide a toy implementation (Fig. 2) whose traces are all in
MPC, to show that MPC is indeed implementable. The idea is to let Site 1 decide
on the order of all update operations. In general, the consensus mechanism for
implementing MPC can be arbitrary, and symmetric with respect to sites, but we
present this one for its simplicity.

For ease of presentation, we assume here that update and message handlers
can be different depending on the site. This can be simulated in our original
definition by using the ι function (Definition 2, Sect. 2), which defines a particular
initial state for each site.

Each site maintains a local state (in Q) which is the prefix of updates as
decided by Site 1. Upon receiving an update (line 16), Site i with i > 1 forwards
the update to Site 1. When receiving an update (line 12) or when receiving a
forwarded message (line 20), Site 1 updates its local state, and broadcasts an
Apply messages for the other sites. Finally, when receiving an Apply messages
(line 25), Site i with i > 1, updates its local state.

We assume that the Apply messages sent by Site 1 are received in the same
order in which they are sent, which can be implemented by having Site 1 add
a local version number to each broadcast message, and having sites with i > 1
cache messages until all previous messages have been received. Similarly, we
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1 // Each site stores an element of Q , defined as a list of numbers
2 type Q = Li s t [ Nat ]
3
4 abstract class Msg
5 // Forwarded messages go from Site i to Site 1, for all i > 1
6 case class Forwarded (d : Nat ) extends Msg
7 // Apply messages originate from Site 1 and go to Site i , for i > 1
8 case class Apply (d : Nat ) extends Msg
9

10 // The update handler for Site 1 appends element ‘ upd ’ to q ,
11 // and tells the other sites to do the same with Apply ( upd )
12 def update handler ( q : Q, upd : Upd) = ( append (q , upd ) , Apply (upd ) )
13
14 // The update handler for Site i > 1 sends a message Forwarded ( upd )
15 // which is destined for Site 1, and does not modify the state
16 def update handler ( q : Q, upd : Upd) = (q , Forwarded (upd ) )
17
18 // Message handler for Site 1 ( ignores Apply messages )
19 def msg handler (msg : Msg) = msg match {
20 case Forwarded (d) => ( append (q , d ) , Apply (upd ) )
21 }
22
23 // Message handler for Site i > 1 ( ignores Forwarded messages )
24 def msg handler (msg : Msg) = msg match {
25 case Apply (d) => ( append (q , d ) , ⊥)
26 }
27
28 // The query handler of any site returns the local state
29 def query handler ( q : Q) = q

Fig. 2. An implementation of MPC which is centralized at Site 1.

assume that each message which is sent by a site is treat at most once by each
of the other sites. We omit these details in Fig. 2. Finally, the query handler of
each site (line 29) simply returns the list maintained in the local state.

We now prove that all the traces of the implementation described in Fig. 2
satisfy MPC.

Proposition 1. Let I be the implementation of Fig. 2. Then I 	 MPC.

The formal proof is in Appendix A. It relies on the observation that the
implementation maintains the following invariant:

– (Related to Monotonicity) The list maintained in the local state Q of each
site grows over time.

– (Related to Prefix) At any moment, given two lists �1 and �2 of two sites, �1
is a prefix of �2 or vice versa. Any list is always a prefix of (or equal to) the
list of Site 1.

– (Related to Consistency) The list of a site only contains values that come
from some update.

6 Nothing Stronger Than MPC in a Distributed Setting

We now proceed to our main result, stating that there exists no convergent
implementation stronger than MPC. Convergent in our setting means that every
write action performed should eventually be taken into account by all sites. We
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formalize this notion in Sect. 6.1. This convergence assumption prevents trivial
implementations, for instances ones that do not communicate and always return
the empty list for all queries.

In Sect. 6.2, we prove several lemmas that hold for all implementations. We
make use of these lemmas to prove our main theorem in Sect. 6.3.

6.1 Convergence Property

Convergence is formalized using the notion of eventual consistency (see e.g. [8,9]
for definitions similar to the one we use there). A trace is eventually consistent if
every write is eventually propagated to all sites. More precisely, for every action
write(d), the number of queries that do not contain d in their list must be finite.
Note that this implies that all finite traces are eventually consistent.

Definition 11. A trace (tr,W ) with tr = (A,<, label) is eventually consistent if
for every d ∈ W , the set {aid ∈ A | d �∈ label(aid)} is finite. An implementation
is convergent if all of its traces are eventually consistent.

6.2 Properties of Implementations

Lemmas 1, 2, and 3 describe basic closure properties of the set of executions
generated by implementations in our setting. The semantics described in Sect. 2
ensures that new updates and queries can always be performed following an exist-
ing execution. Moreover, queries never modify the state, and therefore removing
a read action from an execution does not affect its validity (Lemma 3).

Lemma 1 (Update Availability). Let I be an implementation. Let e be a
finite execution in �I�, and let (tr,W ) = tr(e). Let d ∈ N. Then, there exists an
execution e′ ∈ �I� such that e is a prefix of e′ and tr(e′) = (tr,W ∪ {d}).

Proof. Since e ∈ �I�, we know by Definitions 5 and 6 that e|pid fol-
lows I and that there exists a run q0, . . . , qn for e|pid. Let (qn+1,msg) =
update handler(qn, write(d)). We distinguish two cases:

(1) If msg = ⊥, let e′ = e · (aid, pid, write(d)), where aid ∈ N is a fresh action
identifier that does not appear in e, and pid is any process identifier in P.

(2) If msg ∈ Msg, let e′ = e · (aid1, pid, write(d)) · (aid2, broadcast(mid,msg)),
where aid1, aid2 are fresh action identifiers, and mid is a fresh message
identifier.

In both cases, we construct a new run by adding the state qn+1 at the end
of the run q0, . . . , qn (once in case 1, and twice in case 2). By Definition 5,
this ensures that e′|pid follows I, and we then obtain e′ ∈ �I� by Definition 6.
Moreover, we have tr(e′) = (tr,W ∪ {d}), which concludes our proof. �

The next lemma shows that the implementation is available for queries. This
means that given a finite execution, we can perform a query on any site and
obtain an answer, as ensured by the definitions given in Sect. 2. The proof is in
Appendix B.
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Lemma 2 (Query Availability). Let I be an implementation. Let e ∈ �I� be
a finite execution and pid ∈ P. Then, there exist aid ∈ N and � ∈ N

∗ such that
the execution e′ = e · (aid, pid, read(�)) belongs to �I�.

We then prove it is possible to remove any query action from an execution.

Lemma 3 (Invisible Reads). Let I be an implementation. Let e ∈ �I� be an
execution (finite or infinite) of the form e1 ·(aid, pid, read(�)) ·e2, where aid ∈ N,
pid ∈ P and � ∈ N

∗. Then, e1 · e2 ∈ �I�.

Lemma 4 shows that, given an infinite sequence of increasing finite execu-
tions e1 . . . , en, . . . that satisfy a fairness condition, the limit execution (which
is infinite) also belongs to �I�. The fairness condition states that each broadcast
that appears in an execution ei must have corresponding receive actions for each
of the other sites pid ∈ P in some executions ej .

Definition 12. Given an infinite sequence of finite sequences e1 . . . , en, . . . ,
such that for all i ≥ 1, ei � ei+1, the limit e∞ of e1 . . . , en, . . . is the (unique)
infinite sequence such that for all i, ei � e∞.

Lemma 4 (Limit). Let I be an implementation. Let e1 . . . , en, . . . be an infinite
sequence of finite executions, such that for all i ≥ 1, ei ∈ �I�, ei � ei+1, and
such that for all i ≥ 1, for all broadcast actions in ei, and for all pid ∈ P, there
exists j ≥ 1 such that ej contains a corresponding receive action.

Then, the limit e∞ of e1 . . . , en, . . . belongs to �I�.

We finally prove in Lemma 5 that, given any finite execution e, it is possible
to add a query action that returns a list containing all the elements W appearing
in some write action of e. The proof relies on extending e into an infinite exe-
cution e∞ with an infinite number of queries. Our convergence assumption then
ensures that only finitely many of those queries can ignore W (that is, return
a list that does not contain all elements of W ). This shows that there exists a
query operation (actually, infinite many) in e∞ that returns a list containing all
elements of W . We can therefore take the finite prefix of e∞ that ends with this
query operation.

Lemma 5 (Convergence). Let I be a convergent implementation. Let e ∈ �I�
be a finite execution and pid ∈ P. Let W ⊆ N be the set of elements appearing
in an update action of e, i.e., W = {d ∈ N | ∃(aid, pid, write(d)) ∈ e}.

Then, e can be extended in an execution e · e′ · (aid, pid, read(�)) ∈ �I� where
� ∈ N

∗ contains every element of W , i.e., W ⊆ {d ∈ N | d ∈ �}. Moreover, we
can define such an extension e′ that does not contain any query or update actions.

Proof. We build an infinite sequence of finite executions e1, . . . , en, . . . , where
for every i ≥ 1, ei ∈ �I�. Moreover, we have e1 = e and for every i ≥ 1, ei � ei+1,
and ei+1 is obtained from ei as follows.

For every broadcast action (aid1, pid1, broadcast(mid,msg)) in ei, and for
every pid2 ∈ P, if there is no receive action ( , pid2, receive(mid,msg)) in ei, then
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we add one when constructing ei+1. Moreover, if the message handler specifies
that a message msg ′ should be sent when msg is received, we add a new broadcast
action that sends msg ′, immediately following the receive action. Finally, using
Lemma 2, we add a query action (read) on site pid.

Then, we define e∞ to be the limit of e1, . . . , en, . . . By Lemma 4, we have
e∞ ∈ �I�. Since I is convergent, we know that e∞ is eventually consistent. This
ensures that for every d ∈ W , out of the infinite number of queries that belong
to e∞, only finitely many do not contain d.

Therefore, there exists i ≥ 1 such that ei ends with a query action that
contains every element of W . By construction, ei is of the form e · e′′ ·
(aid, pid, read(�)). Using Lemma 3, we remove every query action that appears
in e′′, and obtain an execution of the form e · e′ · (aid, pid, read(�)) where � ∈ N

∗

contains every element of W , and where e′ does not contain any query or update
actions. �

6.3 Nothing Is Stronger Than MPC in a Distributed Setting

We now proceed with the proof that no convergent implementation is strictly
stronger than MPC. We start with an implementation I that is strictly stronger
than MPC and derive a contradiction.

More precisely, using the lemmas proved in Sect. 6.2, we prove that any trace
of MPC belongs to tr(�I�). First, we show in Lemma 6 that this holds for finite
traces, by using an induction on the number of write operations in the trace. For
each write operation w, we apply Lemma 5 in order to force the sites to take
into account w.

Lemma 6. Let I be a convergent implementation such that I ≺ MPC, and let
t be a finite trace of MPC. Then, there is a finite execution e ∈ �I� such that
tr(e) = t.

Proof. Let t = (tr,W ). We proceed by induction on the size of W , denoted n.

Case n = 0. In that case, the set W is empty. First, by definition of �I�, we
have ε ∈ �I� where ε is the empty execution. Then, for each read operation in
t, and using Lemma 2, we add a read operation to the execution. We obtain an
execution e ∈ �I�.

We then have to prove that tr(e) = t, meaning that all the read operations
of e return the empty list, as in t. By our assumption that I ≺ MPC, we know
that tr(e) ∈ MPC. By definition of MPC, and since e contains no write operation,
the Consistency property of MPC ensures that all the read actions of e return the
empty list. Therefore, we have tr(e) = t, which concludes our proof.

Case n > 0. We consider two subcases. (1) There exists a write w ∈ W whose
value does not appear in tr. We consider the trace t′ = (tr,W\{w}). By definition
of MPC, t′ belongs to MPC, and we deduce by induction hypothesis that there exists
an execution e′ ∈ �I� such that tr(e′) = t′. By Lemma 1, we extend e′ in an
execution e ∈ �I� so that tr(e) = t, which is what we wanted to prove.
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(2) All the writes of W appear in the reads of tr. By the Consistency and
Prefix properties of MPC, there exists a non-empty sequence � ∈ N

+ of elements
from W , such that all read actions return a prefix of �, and there exist read
actions that return the whole list �.

Let � = �′ · d, where d ∈ N is the last element of �. Let t′ be the trace
(t′r,W \ {d}), such that t′r is the trace tr where every query action labelled by
� is replaced by a query action labelled by �′, and implicitly, every query action
labelled by any prefix of �′ is unchanged. Let R the set of the newly added query
actions, and let P ⊆ P be the set of site identifiers that appear in an action of R.

By definition of MPC, we have t′ ∈ MPC. By induction hypothesis, we deduce
that there exists a finite execution e′ ∈ �I� such that tr(e′) = t′.

Then, by Lemma 1, we add at the end of e′ an update action (on some site
pid ∈ P and with some fresh aid ∈ N), which is of the form (aid, pid, write(d)),
so we get an execution e′′ ∈ �I� such that tr(e′′) = (t′r,W \{d}∪{d}) = (t′r,W ).

Using Lemma 5, we extend e′′ in an execution e′′′ by adding queries to the
sites in P , as many as were replaced by queries in R. Since I ≺ MPC, and since
by Lemma 5, the answers to these queries must contain all the elements of �, we
conclude that the only possible answer for all these queries is the entire list �.

Finally, we use Lemma 3 to remove the queries R from e′′′, and we obtain an
execution in �I� whose trace is t. �

We then extend Lemma 6 to infinite executions.

Theorem 1. Let I be a convergent implementation. Then, I is not strictly
stronger than MPC: I �≺ MPC.

Proof. Assume that I is strictly stronger than MPC i.e. I ≺ MPC. Our goal is to
prove that MPC 	 I therefore leading to a contradiction. In terms of traces, we
want to prove that MPC ⊆ tr(�I�).

Let t = (tr,W ) ∈ MPC. We need to show that t ∈ tr(�I�).

Case where t is finite. Proven in Lemma 6.

Case where t is infinite. Let tr = (A,<, label). We first order all the
query actions in A as a sequence aid1, . . . , aidn, . . . such that for every i ≥ 1,
label(aidi) � label(aidi+1), and for every i, j ≥ 1, aidi < aidj (in the program
order of tr) implies i < j. Defining such a sequence is possible thanks to the
Monotonicity property of MPC.

For each i ≥ 1, we define a finite trace ti that contains all query actions aidj
with j ≤ i, and the subset Wi of W that contains all elements appearing in these
query actions, i.e. Wi = {d ∈ W | d ∈ label(aidi)}. Our goal is to construct an
execution ei ∈ �I� such that tr(ei) = ti, and such that for all i ≥ 1, ei � ei+1.
We then define e∞ as the limit of e1, . . . , en, . . . By Lemma 4, we have e∞ ∈ �I�.
Since tr(e∞) = t, we deduce that t ∈ tr(�I�), which concludes the proof.

We now explain how to construct ei, for every i ≥ 1, by induction on i. Let
e0 be the empty execution and t0 = tr(e0). For i ≥ 0, we define ei+1 by starting
from ei, and extending it as follows. By induction, we know that tr(ei) = ti, and
want to extend it into an execution ei+1 such that tr(ei+1) = ti+1.
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The next step of the proof is similar to the proof of Lemma 5. For every
broadcast action (aid1, pid1, broadcast(mid,msg)) in ei, and for every pid2 ∈ P,
if there is no receive action ( , pid2, receive(mid,msg)) in ei, then we add one
when constructing ei+1. Moreover, if the message handler specifies that a message
msg ′ should be sent when msg is received, we add a new broadcast action that
sends msg ′, immediately following the receive action.

Then, similarly to the construction in Lemma 6, we add update and query
actions (using Lemmas 1, 2, and 5) in order to obtain an execution ei+1 such
that tr(ei+1) = ti+1. �

7 Comparison with Other Consistency Criteria

Relation between MPC and other consistency criteria. Consistency criteria are
usually defined in terms of full traces that contain both the read and write oper-
ations in the program order (see e.g., [8]). The definition of trace we used in
this paper (Definition 7, Sect. 3) puts the writes in an unordered set, unrelated
to the read operations. This choice is justified in large-scale, open, implemen-
tations, such as blockchain protocols. Indeed, in these systems, any participant
can perform a write operation (e.g., a blockchain transaction), and the origin of
the write has no relevance for the protocol.

When considering full traces, MPC as a consistency criterion is strictly weaker
than strong consistency. Indeed, MPC allows a trace where a read preceded by a
write on the same site ignores that write.

As explained in the introduction, MPC is not comparable to causal consistency.
MPC allows full traces that causal consistency forbids and vice versa. Therefore,
our result stating that nothing stronger than MPC that can be implemented in a
distributed setting does not contradict earlier results of [4,10], which show that
nothing stronger than variants of causal consistency can be implemented.

Relation with Other Criteria When Using our Notion of a Trace. When using
our notion of a trace, MPC is strictly stronger than causal consistency. First, MPC
is stronger than causal consistency because every trace of MPC can be produced
by a causally consistent system. The main reason is that our notion of a trace
does not capture any causality relation. Moreover, there are some traces that
causal consistency produces and that do not belong to MPC, e.g. a trace where
Site 1 has a read[1, 2] operation, Site 2 has a read[2, 1], and where write(1)
and write(2) are not causally related as they happen at the same time (this
explains that MPC is strictly stronger than causal consistency).

Moreover, it is interesting to note that, for our notion of a trace, the traces
allowed by MPC are exactly the traces allowed by strong consistency. This entails
that, if the replicated data type is used by clients that only have the observability
defined by our traces, then there is no need to implement strong consistency. In
short, MPC and strong consistency are indistinguishable to these clients.
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8 Conclusion

We have investigated the question of what is the strongest consistency crite-
rion that can be implemented when replicating a data structure, in distributed
systems under availability and partition-tolerance requirements. Earlier work
had established the impossibility of implementing strong consistency in such a
system model, but left open the question of the strongest criteria that can be
implemented. In this paper we have focused on the Monotonic Prefix Consis-
tency (MPC) criterion. We proposed an implementation of MPC and showed that
no criterion stronger than MPC can be implemented.

It is worth noting that blockchain protocols, such as the Bitcoin protocol [11],
implement MPC with high probability: the traces that the protocol produces are
traces that belong to MPC with high probability. This was shown in [12,13]. More
precisely, the authors proved that the blockchains of two honest participants
are compatible, in the sense that one should be a prefix of the other with high
probability, when ignoring the last blocks1. This property is called consistency
in [12], and it corresponds to the Prefix property we give in Sect. 4. Moreover, it
was shown [12,13] that the blockchain of an honest participant only grows over
time. This property is called future-self consistency in [12], and it corresponds
to the Monotonicity property we give in Sect. 4.

In future work we plan to investigate how the strongest achievable consis-
tency criterion depends on observability – that is, the information encoded in
a trace – and study conditions for the (non)existence of a strongest consistency
criterion. We are also interested in extending our result to other system models.
Specifically, answering the question of what is the strongest consistency criterion
that can be implemented in systems where the origin of updates do matter for
the protocol. Also, the question whether MPC is the strongest implementable
consistency criterium in a probabilistic setting, remains open.

A Proof of Feasibility of MPC

Proposition 1. Let I be the implementation of Fig. 2. Then I 	 MPC.

Proof. Let e ∈ �I�, we establish an inductive invariant that holds for every
finite prefix e′ of e. Let A be the set of action identifiers of e′. Let � ∈ N

∗ be the
sequence of values that appear in a broadcast message Apply from Site 1, in the
order they appear in e′.

Let P be the set of process identifiers. For each site pid ∈ P, consider the
unique run r for the projection e′|pid, and let �pid ∈ N

∗ be the sequence main-
tained in the local state of Site pid at the end of the run r.

Let t′ = tr(e′) be the trace of e′, with t′ = (tr,W ).
Then, we have the following properties.

1 In Bitcoin-like protocols, the most recent blocks are ignored as they are considered
unsafe to use until newer blocks are appended after them.



56 A. Girault et al.

1. For every Apply(d) message with d ∈ N that appears in e′ (from Site 1), we
have d ∈ W .

2. For every Forwarded(d) message with d ∈ N that appears in e′ (from Site i
with i > 1), we have d ∈ W .

3. The elements of � are in W .
4. For every pid ∈ P, lpid � �.
5. For every query ( , pid, read �′) in e with pid ∈ P, we have �′ � �pid.
6. Consistency: For all aid ∈ A, and for any element d ∈ N of label(aid), we

have d ∈ W .
7. Prefix: For any all aid, aid ′ ∈ A, label(aid) � label(aid ′) or label(aid ′) �

label(aid).
8. Monotonicity: For all aid, aid ′ ∈ A, if aid < aid ′, then label(aid) �

label(aid ′).

We can see that this invariant holds for the empty execution, and that any
action that the implementation can take maintains it.

B Closure Properties of Implementations

Lemma 2 (Query Availability). Let I be an implementation. Let e ∈ �I� be
a finite execution and pid ∈ P. Then, there exist aid ∈ N and � ∈ N

∗ such that
the execution e′ = e · (aid, pid, read(�)) belongs to �I�.

Proof. Similar to the proof of Lemma 1, but using the query handler, instead of
the update handler. This proof is also simpler, as there is no need to consider
messages, since the query handler cannot broadcast any message. Therefore, in
this proof, only case 1 needs to be considered. �

Lemma 3 (Invisible Reads). Let I be an implementation. Let e ∈ �I� be an
execution (finite or infinite) of the form e1 ·(aid, pid, read(�)) ·e2, where aid ∈ N,
pid ∈ P and � ∈ N

∗. Then, e1 · e2 ∈ �I�.

Proof. This is a direct consequence of Definition 5, which specifies that query
actions do not modify the local state of sites, and do not broadcast messages. �

Lemma 4 (Limit). Let I be an implementation. Let e1 . . . , en, . . . be an infinite
sequence of finite executions, such that for all i ≥ 1, ei ∈ �I�, ei � ei+1, and
such that for all i ≥ 1, for all broadcast actions in ei, and for all pid ∈ P, there
exists j ≥ 1 such that ej contains a corresponding receive action.

Then, the limit e∞ of e1 . . . , en, . . . belongs to �I�.

Proof. According to Definition 6, we have three points to prove.

(1) (Projection) First, we want to show that, for all pid ∈ P, the projection
e∞|pid follows I. For all i ≥ 1, we know that ei ∈ �I�, and deduce that
ei|pid follows I. Let ri be the run of ei|pid. Note that for all i ≥ 1, we have
ri � ri+1. Let r∞

pid be the limit of the runs r1, . . . , rn, . . . By construction,
r∞
pid is a run of e∞|pid, which shows that e∞|pid follows I.
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(2) (Causality) We need to prove that every receive action σ in e∞ has a corre-
sponding broadcast action σ′ that precedes it in e∞. Let ei be a prefix of e∞

that contains σ. Since ei ∈ �I�, we know that there exists a broadcast action
σ′ corresponding to σ, and that precedes σ in ei. Finally, since ei � e∞, σ′

precedes σ in e∞.
(3) (Fairness) We want to prove that for every broadcast action σ of e∞ and for

every site pid ∈ P, there exists a corresponding receive action σ′. Let ei be
a prefix of e∞ that contains σ. By assumption of the current lemma, there
exists j ≥ 1 such that ej contains a receive action σ′ corresponding to σ.
Moreover, since ej � e∞, σ′ belongs to e∞, which concludes our proof.

�
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Abstract. Cyber-Physical Systems (CPSs) are integrations of network-
ing and distributed computing systems with physical processes. Although
the range of applications of CPSs include several critical domains, their
verification and validation often relies on simulation-test systems rather
then formal methodologies. In this paper, we use a recent version of
the expressive Modest Toolset to implement a non-trivial engineer-
ing application, and test its safety model checker prohver as a formal
instrument to statically detect a variety of cyber-physical attacks, i.e.,
attacks targeting sensors and/or actuators, with potential physical con-
sequences. We then compare the effectiveness of the Modest Toolset
and its safety model checker in verifying CPS security properties when
compared to other state-of-the-art model checkers.

1 Introduction

Cyber-Physical Systems (CPSs) are integrations of networking and distributed
computing systems with physical processes, where feedback loops allow the latter
to affect the computations of the former and vice versa. CPSs have three main
components: the physical plant, i.e., the physical process that is managed by
the CPS; the logics, i.e., controllers, intrusion detection systems (IDSs), and
supervisors that govern and control the physical process; the connecting network.

Historically, CPSs relied on proprietary technologies and were implemented
as stand-alone networks in physically protected locations. However, in recent
years the situation has changed considerably: commodity hardware, software
and communication technologies are used to enhance the connectivity of these
systems and improve their operation.

This evolution has triggered a dramatic increase in the number of attacks
to the security of cyber-physical and critical systems, e.g., manipulating sensor
readings and, in general, influencing physical processes to bring the system into a
state desired by the attacker. Some notorious examples are: (i) the Stuxnet worm,
which reprogrammed PLCs of nuclear centrifuges in Iran [7], (ii) the attack
on a sewage treatment facility in Queensland, Australia, which manipulated
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Fig. 1. A threat model for CPSs

the SCADA system to release raw sewage into local rivers [27], or the (iii) the
recent cyber-attack on the Ukrainian power grid, again through the SCADA
system [15].

The common feature of the systems above is that they are all safety critical
and failures may cause catastrophic consequences. Thus, the concern for conse-
quences at the physical level puts CPS security apart from standard IT secu-
rity, and demands for ad hoc solutions to properly address such novel research
challenges.

The physical plant of a CPS is often represented by means of a discrete-time
state-space model1 consisting of two difference equations of the form

xk+1 = Axk +Buk + wk

yk = Cxk + ek

where xk ∈ R
n is the current (physical) state, uk ∈ R

m is the input (i.e., the con-
trol actions implemented through actuators), wk ∈ R

n is the system uncertainty,
yk ∈ R

p is the output (i.e., the measurements from the sensors), and ek ∈ R
p

is the measurement error. A, B, and C are matrices modelling the dynamics of
the physical system.

Cyber-physical attacks typically tamper with both the physical (sensors and
actuators) and the cyber layer. In particular, cyber-physical attacks may affect
directly the sensor measurements or the controller commands (see Fig. 1):

– Attacks on sensors consist of reading and possibly replacing the genuine sen-
sor measurements yk with fake measurements yak .

– Attacks on actuators consist of reading, dropping and possibly replacing
the genuine controller commands uk with malicious commands ua

k, affecting
directly the actions the actuators may execute.

One of the central problem in the safety verification of CPSs is the reach-
ability problem: can an unsafe state be reached by an execution of the system
(possibly under attack) starting from a given initial state? In general, the reach-
ability problem for hybrid systems (and hence CPSs) is stubbornly undecidable,
although boundaries of decidability have been extensively explored in the past
couple of decades [1,14,17,26,30]. Thus, despite the undecidability of the safety
problem, a number of formal verification tools for hybrid systems have been
recently proposed, based on approximation techniques to obtain an estimation
of the set of reachable states: SpaceEx [10], PHAVer [9] and SpaceEx AGAR [3], for
1 See [31] for a taxonomy of the time-scale models used to represent CPSs.
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linear/affine dynamics, and HSolver [23], C2E2 [6] and FLOW∗ [5], for non-linear
dynamics. Among these, the hybrid solver PHAVer addresses the exact verifica-
tion of safety properties of hybrid systems with piecewise constant bounds on the
derivatives, so-called rectangular hybrid automata [14]. Affine dynamics are han-
dled by on-the-fly overapproximation and partitioning of the state space based
on user-provided constraints and the dynamics of the system. To force termina-
tion and manage the complexity of the computations, methods to conservatively
limit the number of bits and constraints are adopted.

Contribution. We implement in the Modest Toolset [12], an integrated collec-
tion of tools for the design and the formal analysis of stochastic hybrid automata,
a simple but totally realistic and nuanced cyber-physical system. The example
has been proposed by Lanotte et al. [19] to highlight different classes of attacks
on sensors and actuators, in a way that is basically independent on the size
of the system. Our case study is implemented in the main modelling language
HModest [11], a process-algebra based language that has an expressive pro-
gramming language-like syntax to design complex systems.

The current version of the toolset comprises several analysis backends, in
particular it provides a safety model checker, called prohver, that relies on a
modified version of the hybrid solver PHAVer [9]. We use prohver to analyse
three simple but significative cyber-physical attacks targeting sensors and/or
actuators of our case study by compromising either the corresponding physical
device or the communication network used by the device. The three attacks
have already been carefully studied in [19] focussing on the time aspects of the
attacks (begin, duration, etc.) and the physical impact on the system under
attack (deadlock, unsafe behaviour, etc.). Here, we test the safety model checker
prohver as an automatic tool to get the same (or part of the) results that have
been manually proved in [19]. We then compare its effectiveness in verifying CPS
security properties, when compared to other state-of-the-art models checkers,
such as PRISM [16], UPPAAL [2] and Real-Time Maude [22].

Outline. In Sect. 2 we give a brief description of the Modest Toolset. In Sects. 3
and 4 we first describe and then implement in HModest our case study. In Sect. 5
we put under stress the safety model checker prohver for a security analysis of
our case study under three different cyber-physical attacks. In Sect. 6 we draw
conclusions, compare the expressivity of the Modest Toolset with respect to
other model-checkers, and discuss related work in the context of formal methods
for CPS security.

2 The Modest Toolset

The Modest Toolset [4] has been originally proposed as an integrated collec-
tion of tools for the design and the formal analysis of stochastic timed automata
(STA). More recently, it has been extended to add differential equations and
inclusions as an expressive way to model continuous system evolutions [11].
Thus, the current version of the toolset [12] is now based on the rich seman-
tic foundation of networks of stochastic hybrid automata (SHA), i.e., sets of
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automata that run asynchronously and can communicate via shared actions and
global variables.

SHA combine three key modelling concepts:

– Continuous dynamics to represent continuous processes, such as physical laws
or chemical reactions, the evolution of general continuous variables over time
can be described using differential (in)equations.

– Nondeterminism to model concurrency (via an interleaving semantics) or the
absence of knowledge over some choice, to abstract from details, or to repre-
sent the influence of an unknown environment.

– Probability to model situations in which an outcome is uncertain but the
probabilities of the outcomes are known; these choices may be discrete (“prob-
abilistic”) or continuous (“stochastic”).

The current version of the Modest Toolset comprises analysis backends
for model checking timed automata (mctau) and probabilistic timed automata
(mcpta), and for statistical model checking of stochastic timed automata
(modes). However, in this paper we focus on the safety model checker for SHA,
called prohver, that relies on a modified version of the hybrid solver PHAVer [9].

The main modelling language is HModest [11], a process-algebra based
language that has an expressive programming language-like syntax to design
complex models in a reasonably concise manner. Here, we provide a brief and
intuitive explanation of the main constructs.

A HModest specification consists of a sequence of declarations (constants,
variables, actions, and sub-processes) and a main process behaviour. The most
simple process behaviour is expressed by (prefixing) actions that may be used for
synchronising parallel components. The construct do serves to model loops, i.e.,
unguarded iterations that can be exited via the special action break. There is a
construct par to launch two or more processes in parallel, according to an inter-
leaving semantics. The construct alt models nondeterministic choice. The invari-
ant construct serves to control the evolution of continuous variables. Furthermore,
all constructs can be decorated with guards, to represent enabling conditions, by
means of the when construct. We can use both invariant and when constructs to
specify that a behaviour should be executed after a precise amount of time. Thus,
we can write invariant(c ≤ k) when (c ≥ k) P(), where c is a clock variable and
k a real value, to model that the process P() may start is execution only after k
time units; if k = 0 then the execution of P() may start immediately.

In order to better explain these constructs, we model a small example
described by means of a standard timed process-calculus notation (say, Hen-
nessy and Regan’s TPL [13]). Consider a Master and a Slave process that may
synchronise via a private synchronisation channel sync, and use a private chan-
nel ins to allow the Master to send instructions to the Slave. Depending on the
received instructions, the Slave either synchronises with the Master and then
restart, or sleeps for one time unit and then ends its execution. Once synchro-
nised, the Master sleeps for two time units. Formally,
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Master def= ins〈go〉; sync; sleep(2); ins〈end〉
Slave def= ins(i); if (i = go) {sync;Slave} else {sleep.stop}

and the compound system is given by

(Master ‖ Slave)\{ins , sync} .

Figure 2 shows an implementation in HModest of the system above. Both
master and slave declare private clocks that are reset each time is necessary to
impose a specific time delay. Value-passing communication is implemented via
the two actions go and end ; the testing via nondeterministic choice.

1 // declarations
2 action sync, go, end;
3 process Master(){ // process declaration
4 clock cm;
5 invariant(cm <= 0) when(cm >= 0) go; sync {= cm = 0 =};
6 invariant(cm <= 2) when(cm >= 2) end
7 }
8 process Slave(){ // process declaration
9 clock cs ;

10 do{ alt{ :: go; sync
11 :: end {= cs = 0 =}; invariant(cs <= 1) when(cs >= 1) break
12 }
13 }
14 }
15

16 // main behaviour
17 par { :: Master() :: Slave()
18 }

Fig. 2. Master and Slave processes in HModest

Besides these operators, the case study that we will present in the next section
includes specifications over continuous variables, such as constraints over the
derivate of continuous variables of the form a ≤ ẋ ≤ b, with a and b constant
(as in rectangular hybrid automata), or nondeterministic initialisations of the
form z ∈ [a, b]. The former requirement is realised in HModest by means of an
invariant construct: invariant(der(x ≥ a) && der(x ≤ b)). The latter constraint
is implemented via the any construct. For instance, any(z, z >= a && z <= b)
returns a value nondeterministically chosen in the real interval [a, b].

The safety model checker prohver allows the verification of reachability prop-
erties of the form Pmax(♦time≤T e). This query returns un upper bound of the
probability of reaching the states characterised by the deterministic expression
e within the time bound T .2 Moreover, as the models may be nondeterministic,
Pmax() computes the probability over all possible resolutions of nondeterminism.

2 Later in the paper, we will show how to get the exact probability.
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3 A Case Study

In this section, we describe the case study recently introduced in [19]. Here,
we wish to remark that while the example is quite simple, it is actually far
from trivial and designed to describe a wide number of attacks. Furthermore,
for simplicity, in the description of the case study we use a discrete-time model,
although in its implementation we will adopt a continuous notion of time.

Consider a CPS Sys in which the temperature of an engine is maintained
within a certain range by means of a cooling system controlled by a controller.
The system is also equipped with a IDS that does runtime safety verification.
Let’s describe both the physical and the cyber component of the CPS Sys.

The physical environment of Sys is constituted by:

– a variable temp, initialised to 0, for the current temperature of the engine;
– a sensor sens measuring the temperature of the engine;
– an actuator cool to turn on/off the cooling system; cool ranges over the set

{−1,+1} to denote active and inactive cooling, respectively;
– the evolution equation tempk+1 = tempk+coolk+wk, where wk ∈ [−0.4,+0.4]

denotes the uncertainty associated to temp; thus the variable temp is
increased (resp., is decreased) of one degree per time unit if the cooling system
is inactive (resp., active) up to a bounded uncertainty wk;

– a measurement equation sensk = tempk+ek, where ek ∈ [−0.1,+0.1] denotes
the noise associated to the sensor sens;

– an invariant function returning the Boolean true if the state variable temp
lays in the interval [0, 20], false otherwise;

– a safety function returning the Boolean true if the safety conditions are satis-
fied, false otherwise; the safety of the CPS depends on a (fictitious) variable
stress keeping track of the level of stress of the mechanical parts of the engine
due to high temperatures; stress ranges over the set {0, 1, 2, 3, 4, 5}, where 0
means no stress and 5 high stress; formally, stressk+1 = min(5, stressk +1) if
tempk > 9.9, while stressk+1 = 0 if tempk ≤ 9.9.

Let us define the cyber component of the CPS Sys. For simplicity, we use a
simple process-calculus notation similar to that of Lanotte and Merro’s CaIT [18].
The logics of Sys is modelled by means of two parallel processes: Ctrl and IDS .
The former models the controller activity, consisting in reading the temperature
of the engine and in governing the cooling system; whereas the latter models a
simple intrusion detection system that attempts to detect and signal abnormal
behaviours of the system. Intuitively, Ctrl senses the temperature of the engine
via the sensor sens (reads the sensor) at each time slot. When the sensed tem-
perature is above 10◦, the controller activates the coolant via the actuator cool
(sending a command to the actuator). The cooling activity is maintained for
5 consecutive time units. After that time, the controller synchronises with the
IDS component via a synchronisation channel sync, and then waits for instruc-
tions, via a value-passing channel ins. The IDS component checks whether the
sensed temperature is still above 10. If this is the case, it sends an alarm of “high
temperature”, via a specific channel, and then says to Ctrl to keep cooling for
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a further 5 time units; otherwise, if the temperature is not above 10, the IDS
component requires Ctrl to stop the cooling activity. More formally,

Ctrl = read sens(x).if (x > 10) {Cooling} else {sleep.Ctrl}
Cooling = write cool〈on〉.sleep(5).Check

Check = sync.ins(y).if (y = keep_cooling) {sleep(5).Check}
else {write cool〈off〉.sleep.Ctrl}

IDS = sync.read sens(x).if (x > 10) ins〈keep_cooling〉.{alarm〈high_temp〉.sleep.IDS}
else {ins〈stop〉.sleep.IDS}

The whole cyber component of Sys is given by the parallel composition of the two
processes Ctrl and IDS in which the channels sync and ins have been restricted:
(Ctrl ‖ IDS )\{sync, ins}.
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Fig. 3. Simulations in MATLAB of Sys (Color figure online)

In Fig. 3, the left graphic collect a campaign of 100 simulations of our engine
in MATLAB, lasting 250 time units each, showing that the value of the state
variable temp when the cooling system is turned on (resp., off) lays in the interval
(9.9, 11.5] (resp., (2.9, 8.5]); these bounds are represented by the dashed horizon-
tal lines. The right graphic of the same figure shows three possible evolutions
in time of the state variable temp: (i) the first one (in red), in which the tem-
perature of the engine always grows as slow as possible and decreases as fast as
possible; (ii) the second one (in blue), in which the temperature always grows
as fast as possible and decreases as slow as possible; (iii) and a third one (in
yellow), in which, depending whether the cooling is off or on, temperature grows
or decreases of an arbitrary offset laying in the interval [0.6, 1.4].

4 An Implementation in HModest

In this section, we provide our implementation in HModest of the case study
presented in the previous section. The whole system is divided in three high level
processes running in parallel (see Fig. 4):



A Modest Security Analysis of Cyber-Physical Systems 65

1 // global clock and global action declarations
2 clock global clock ;
3 action on, off ;
4 ...
5 // global variable declarations
6 var sens = 0; der(sens) = 0;
7 bool safe = true;
8 bool is deadlock = false ;
9 ...

10 //process declarations
11 process Plant() {
12 var temp = 0;
13 ...
14 par { :: Engine() :: Sensors() :: Actuators() :: Safety() }
15 }
16 process Logics() {
17 ...
18 par { :: Ctrl() :: IDS() }
19 }
20 process Network() {
21 ...
22 par { :: Proxy actuator() :: Proxy sensor() }
23 }
24

25 // main
26 par { :: Plant() :: Logics() :: Network() }

Fig. 4. Implementation in HModest of Sys

– Plant(), modelling the physical aspects of the system;
– Logics(), describing the logical (or cyber) component of a CPS;
– Network(), representing the network connecting Plant() and Logics().

The process Plant() consists of the parallel composition of four processes:
Engine(), Actuators(), Sensors() and Safety() (see Fig. 5). The former models the
dynamics of the variable temp depending on the cooling activity. The tempera-
ture evolves in a continuous manner, and its rate is described by means of differ-
ential inclusions of the form a ≤ ẋ ≤ b implemented via the construct invariant.
The on action triggers the coolant and drives the process Engine() into a state
CoolOn() in which the temperature decreases at a rate comprised in the range
[−DT−UNCERT,−DT+UNCERT]. On the other hand, in the presence of a off
action the engine moves into a CoolOff() state in which the coolant is turned off, so
that the temperature increases at a rate ranging in [DT−UNCERT,DT+UNCERT].

The second parallel component of Plant() is the process Sensors() that
receives the requests to read the temperature, originating from the Logics(),
and serves them according to the measurement equation seen in the previous
section. This is modelled by updating the variable sens with an arbitrary real
value laying in the interval [temp −NOISE, temp +NOISE].

The process Actuators() relays the commands of the controller Ctrl() to the
Engine() to turn on/off the cooling system.

The last parallel component of the process Plant() is the process Safety().
This process defines a local variable stress depending on the temperature reached
by the engine; we recall that stress = 0 denotes no stress while stress = 5
represents maximum stress. Here, is worth mentioning that the variable stress



66 R. Lanotte et al.

1 const real DT = 1;
2 const real UNCERT = 0.4; // uncertainty of variable temp
3 const real NOISE = 0.1; // sensor noise
4 clock c;
5

6 process Engine() {
7 process CoolOn() {
8 invariant( der(temp) >= (−DT − UNCERT) && der(temp) <= (−DT + UNCERT) )
9 alt { :: on; CoolOn() :: off ; CoolOff() }

10 }
11 process CoolOff() {
12 invariant( der(temp) >= (DT − UNCERT) && der(temp) <= (DT + UNCERT) )
13 alt { :: on; CoolOn() :: off ; CoolOff() }
14 }
15 CoolOff()
16 }
17

18 process Sensors() {
19 do { // detect temperature and write it in variable sens
20 read sensor {= sens = any(z, z >= temp − NOISE && z <= temp + NOISE), c = 0 =};
21 invariant(c <= 0) when(c >= 0) ack sensor
22 }
23 }
24

25 process Actuators(){
26 do { :: cool on actuator {= c = 0 =}; invariant(c <= 0) when(c >= 0) on // cool on
27 :: cool off actuator {= c = 0 =}; invariant(c <= 0) when(c >= 0) off // cool off
28 }
29 }
30

31 process Safety(){
32 var stress = 0; der( stress ) = 0; // no continuous dynamics for stress
33 do { invariant(c <= 0) when(c >= 0)
34 alt{ :: when(temp >= 0 && temp <= 20) // invariant is preserved
35 alt{ :: when(temp > 9.9 && stress <= 3) {= stress = stress+1 =}
36 :: when(temp <= 9.9) {= stress = 0, safe = true =}
37 :: when(temp > 9.9 && stress >= 4) {= stress = 5, safe = false =}
38 // safety is violated
39 }
40 :: when(temp > 20 || temp < 0) {= is deadlock = true =}; stop // system deadlock
41 };
42 invariant(c <= 1) when(c >= 1) {= c = 0 =} // move to the next time unit
43 }
44 }

Fig. 5. Plant() sub-processes

could be implemented either as a bounded integer variable, which would increase
the discrete complexity of the underlying hybrid automaton, or as a continuous
variable with dynamics set to zero (i.e., der(stress) = 0 ) that would increase the
continuous complexity of the automaton. We have adopted the second option as
it ensures better performances. The Safety() process sets the global Boolean
variable safe to false only when the system reaches the maximum stress, i.e.,
stress = 5, and reset it to true otherwise. Thus, this variable says when the
CPS is currently in a state that is violating the safety conditions. Similarly, the
global Boolean variable is_deadlock is set to true whenever the system invariant
is violated; in that case the whole CPS stops.

The process Logics() consists of the parallel composition of two processes:
Ctrl() and IDS() (see Fig. 6). The former senses the temperature by trigger-
ing a read_sensor_ctrl action to request a measurement and waits for an
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1 clock c;
2 process Ctrl() {
3 process Check() {
4 do{ invariant(c <= 0) when(c >= 0) tau;
5 invariant(c <= 5) when(c >= 5) {= c = 0 =}; // keep cooling for 5 time units
6 invariant(c <= 0) when(c >= 0) sync ids; // activate IDS
7 alt { // wait for instructions
8 :: keep cooling {= c = 0 =} // keep cooling a further 5 time units
9 :: stop cooling {= c = 0 =};

10 invariant(c <= 0) when(c >= 0) set cool off; // turn off the coolant
11 invariant(c <= 1) when(c >= 1) {= c = 0 =}; // move to the next time slot
12 invariant(c <= 0) when(c >= 0) break // returns the control to Ctrl()
13 }
14 }
15 }
16 // main Ctrl()
17 do { invariant(c <= 0) when(c >= 0) read sensor ctrl; // request temperature sensing
18 ack sensor ctrl {= c = 0 =};
19 invariant(c <= 0) when(c >= 0)
20 alt { :: when(sens <= 10) tau {= c = 0 =}; // temperature is ok
21 invariant(c <= 1) when(c >= 1) {= c = 0 =} // move to the next time slot
22 :: when(sens > 10) set cool on {= c = 0 =}; // turn on the cooling
23 invariant(c <= 0) when(c >= 0) Check() // check whether temperature drops
24 }
25 }
26 }
27

28 process IDS() {
29 do{ sync ids {= c = 0 =};
30 invariant(c <= 0) when(c >= 0) read sensor ids; // request temperature sensing
31 ack sensor ids ;
32 invariant(c <= 0) when(c >= 0)
33 alt { :: when(sens <= 10) stop cooling // temperature is ok
34 :: when(sens > 10) keep cooling; // temperature is not ok, keep cooling
35 invariant(c <= 0) when(c >= 0) {= alarm = true =}; // fire the alarm
36 invariant(c <= 0) when(c >= 0) {= alarm = false =}
37 }
38 }
39 }

Fig. 6. Logics() sub-processes

ack_sensor_ctrl action to read the measurement in the variable sens. Depend-
ing on the value of sens the controller decides whether to activate or not the
cooling system. If sens ≤ 10 the process sleeps for one time unit and then check
the temperature again. If sens > 10 then the controller activates the coolant
by emitting the set_cool_on action that will reach the Engine() (via the Net-
work()’s proxy). Afterwards the control passes to the process Check() that veri-
fies whether the current cooling activity is effective in dropping the temperature
below 10. The process Check() maintains the cooling activity for 5 consecutive
time units. After that, it synchronises with the process IDS() via the action
sync_ids, and waits for instructions from IDS(): (i) keep cooling for other 5
time units and then check again, or (ii) stop the cooling activity and returns.
These two instructions are represented by means of the actions keep_cooling
and stop_cooling , respectively.

The second component of the process Logics() is the process IDS(). The IDS()
process waits for the synchronisation action sync_ids from Check(). Then, it
triggers the action read_sensor_ids to request a measurement and waits for
the ack_sensor_ids action to read the measurement. If sens ≤ 10 it signals to
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Ctrl() to stop cooling (via the action), otherwise, if sens > 10, it signals to keep
cooling and fires an alarm by setting a global Boolean variable alarm to true
(for verification reasons we immediately reset this variable to false).

The process Network() consists of the parallel composition of two processes:
Proxy_actuator() and Proxy_sensor() (see Fig. 7). The former provides the
remote actuation. Basically, it forwards the actuators commands originating from
the process Ctrl() to the process Actuators(). The process Proxy_sensor() waits
for requests of measurement originating from processes Ctrl() or IDS() (we use
different actions for each of them) and relay these requests to the process Sen-
sor() that implements the measurement equation. When the temperature has
been detected an ack signal is returned and propagated up to the requesting
process.

1 process Network() {
2 clock c;
3 process Proxy actuator() {
4 do { alt { :: set cool on {= c = 0 =};
5 invariant(c <= 0) when(c >= 0) cool on actuator
6 :: set cool off {= c = 0 =};
7 invariant(c <= 0) when(c >= 0) cool off actuator
8 }
9 }

10 }
11 process Proxy sensor(){
12 do { alt { :: read sensor ctrl {= c = 0 =};
13 invariant(c <= 0) when(c >= 0) read sensor;
14 ack sensor;
15 invariant(c <= 0) when(c >= 0) ack sensor ctrl
16 :: read sensor ids {= c = 0 =};
17 invariant(c <= 0) when(c >= 0) read sensor;
18 ack sensor;
19 invariant(c <= 0) when(c >= 0) ack sensor ids
20 }
21 }
22 }
23

24 par{ :: Proxy actuator() :: Proxy sensor() }
25 }

Fig. 7. Network() process

Verification. We conduct our safety verification using 4 notebooks with the follow-
ing set-up: (i) 2.8GHz Intel i7 7700 HQ, with 16GB memory, and Linux Ubuntu
16.04 operating system; (ii) Modest Toolset Build 3.0.23 (2018-01-19).

In order to assess the correct functioning of our implementation, we verify a
number of properties of our CPS Sys by means of the safety model checker pro-
hver. Here, it is important to recall that prohver relies on the hybrid solver PHAVer
which computes an overapproximation of the reachable states to ensure termina-
tion and accelerate convergence [9]. As consequence, the probability returned by
the verification of a generic property Pmax (♦T eprop) is an upper bound of the
exact probability, and hence it is significant only when equal to zero (i.e., when
the property is not satisfied). However, as our CPS Sys presents a linear dynam-
ics it is possible to compute the exact probability by launching our analyses
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with the no_cheap_contain_return_others flag (see [8]) which enables
the exact computation of the reachable sets, with obvious implications on the
time required to complete the analyses. As our case study does not present a
probabilistic behaviour, the results of our analyses will always range in the set
{0, 1} (unsatisfied/satisfied) with a 100% accuracy.

Furthermore, as a formula �e is satisfied if and only if ♦¬e is unsatisfied,
we can use prohver to verify properties expressed in terms of time bounded LTL
formulae of the form �[0,T ]eprop or ♦[0,T ]eprop. Actually, in our analyses we will
always verify properties of the form �[0,T ]eprop, relying on the quicker overap-
proximation when proving that the property is satisfied, and resorting to the
slower exact computation when proving that the property is not satisfied.

Thus, we have formally proved that in all possible executions that are (at
most) 100 time instants long the temperature of the system Sys oscillates in the
real interval [2.9, 11.5] (after a short initial transitory phase):

�[0,100](global_clock ≥ 5 =⇒ (temp ≥ 2.9 ∧ temp ≤ 11.5)) .

More generally, our implementation of Sys satisfies the following three properties:

– �[0,100](¬deadlock), saying that the system does not deadlock;
– �[0,100](safe), saying that the system does not violate the safety conditions;
– �[0,100](¬alarm): saying that the IDS does not fire any alarm.

The verification of these three properties requires around 15min each, thanks to
the underlying overapproximation.

In the next section, we will verify our CPS in the presence of three dif-
ferent cyber-physical attacks targeting either the sensor sens or the actuator
cool . The reader can consult our models at http://profs.scienze.univr.it/~merro/
MODEST-FORTE/.

5 A Static Security Analysis

In this section, we use the safety model checker prohver to test its limits when
doing static security analysis of CPSs. In particular, we implement three simple
cyber-physical attacks targeting our system Sys:

– a DoS attack on the actuation mechanism that may push the system to violate
the safety conditions and hence in the invariant conditions;

– a DoS attack on the sensor that may deadlock the CPS without being noticed
by the IDS;

– an integrity attack on the sensor, again undetected by the IDS , that may
drive the CPS into a unsafe state but only for a limited period of time.

These attacks are implemented by tampering with either the physical devices
(actuators and/or sensors) or the communication network (man-in-the-middle).
In order to implement an attack on the sensor (resp., actuator) we suppose
the attacker is able to compromise the Sensors() (resp., Actuators()) process.

http://profs.scienze.univr.it/~merro/MODEST-FORTE/
http://profs.scienze.univr.it/~merro/MODEST-FORTE/
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Whereas the attacks targeting the communication network compromise either
the Proxy_sensor() or the Proxy_actuator() process, depending whether they
are targeting the sensor or the actuator. In general, attacks on the communica-
tion network do not require a deep knowledge on the physical dynamics of the
CPS.

1 process E Proxy actuator(){
2 clock c;
3 do{ alt{ :: set cool on {= c = 0=};
4 invariant(c <= 0) when(c >= 0)
5 alt{ // drop the cool on command in the time instant m
6 :: when(global clock == m) tau
7 // in the other time instants forward correctly
8 :: when(global clock < m || global clock > m) cool on actuator
9 }

10 :: set cool off {= c = 0=};
11 invariant(c <= 0) when(c >= 0) cool off actuator
12 }
13 }
14 }

Fig. 8. DoS attack to the actuator

Attack 1. The first attack targets the actuator cool in a very simple manner.
It operates exclusively in a specific time instant m, when it tries to drop the
command to turn on the cooling system coming from the controller. Figure 8
shows the implementation of this man-in-the-middle attack compromising the
Proxy_actuator() process.

We recall that the controller will turn on the cooling system only if it senses a
temperature above 10 (as NOISE = 0.1, this means temp > 9.9). It is not difficult
to see that this may happen only if m > 7 (in the time instant 7 the maximum
temperature that may be reached by the engine is 7 · (DT+UNCERT) = 7 · (1+
0.4) = 9.8◦). Since the process Ctrl() never re-send commands to the actuator, if
the attacker is successful in dropping the command to turn on the cooling system
in the time slot m then the temperature will continue to rise, and after 2 time
instants, in the time instant m+2, the system will violate the safety conditions.
This is noticed by the IDS() that will fire alarms every 5 time instants, until the
CPS deadlocks because temp > 20.

We have verified the same properties stated in the previous section for the
system Sys in isolation. None of those properties holds when the attack above
operates in an instant m > 7. In particular, for m > 7 the system becomes
unsafe in the time instant m + 2, and the IDS() detects the violation of the
safety conditions with a delay of only 2 time instants. Summarising:
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Attack 1: tested properties m ≤ 7 m > 7
�[0,100](¬deadlock) ✔ ✖
�[0,100](safe) ✔ ✖
�[0,100](¬alarm) ✔ ✖
�[0,m+1](safe) ✔ ✔
�[0,m+2](safe) ✔ ✖
�[0,m+3](¬alarm) ✔ ✔
�[0,m+4](¬alarm) ✔ ✖

The properties above have been proved for all discrete time instants m, with
0 ≤ m ≤ 96. The longest among these analyses required 20min when overap-
proximating and at most 7h when doing exact verification.

Attack 2. The second attack compromises the sensor in order to provide fake
measurements to the controller. The compromised sensor operates as follows:
(i) in any time instant smaller than or equal to 1 the sensor works correctly,
(ii) in any time instant greater than 1 the sensor returns the temperature sensed
at time 1. Figure 9 provides an implementation of the compromised sensor.

In the presence of this attack, the process Ctrl() will always detect a tem-
perature below 10 and never activate the cooling system or the IDS. The system
under attack will move to an unsafe state until the system invariant will be
violated and the system will deadlock. Indeed, in the worst case scenario, after

 9.9
DT+UNCERT� = 
 9.9

1.4� = 8 time instants the value of temp will be above 9.9◦,
and after further 4 time instants the system will violate the safety conditions.
Furthermore, in the time instant = 
 20

1.4� = 15 the invariant may be broken and
the system may deadlock because the state variable temp reaches 20.4◦. This is
a lethal attack as it causes a deadlock of the system. It is also a stealthy attack
as it remains unnoticed until the end.

1 process E Sensors(){
2 clock c;
3 do{
4 alt{ :: when(global clock <= 1) //normal behaviour
5 req sensor {= sens = any(z, z >= temp−NOISE && z <= temp+NOISE), c = 0 =};
6 invariant(c <= 0) when(c >= 0) ack sensor
7 :: when(global clock > 1) //attack
8 req sensor {= c = 0 =}; //the measurement remains unchanged
9 invariant(c <= 0) when(c >= 0) ack sensor

10 }
11 }

Fig. 9. DoS attack to the sensor



72 R. Lanotte et al.

The results of our security analysis are summarised in the following table:

Attack 2: tested properties
�[0,100](¬alarm) ✔
�[0,100](safe) ✖
�[0,100](¬deadlock) ✖
�[0,11] (safe) ✔
�[0,12] (safe) ✖
�[0,14] (¬deadlock) ✔
�[0,15] (¬deadlock) ✖

The longest among these analyses required 35min when overapproximating and
at most 5 h when doing exact verification. Please, notice that this attack does not
require any specific knowledge of the sensor device (such as the measurement
equation). Thus, the same goal could be obtained by means of a man-in-the-
middle attack that compromises the Proxy_sensor() process.

Attack 3. Our last attack is a variant of the previous one as it provides the con-
troller with a temperature decreased by an offset (in this case 2), for n consecu-
tive time instants. Unlike the previous attack, in case of encrypted communica-
tion, this attack cannot be mounted in the network as it requires the knowledge
of the measurement equation. Figure 10 shows the implementation of a com-
promised sensor device acting as required. Basically, when global_clock <= n
the compromised sensor returns a measurement affected by the offset; on the
other hand, when global_clock > n the sensor works correctly and returns the
authentic measurement.

The effects of this attack on the system depends on its duration n.

– For n ≤ 7 the attack is harmless as the variable temp may not reach a (critical)
temperature above 9.9; thus, all properties seen for the system in isolation
remain valid when the system is under attack.

– For n = 8, the variable temp might reach a temperature above 9.9 and the
attack would delay the activation of the cooling system of one time instant.
As a consequence, the system might get into an unsafe state in the time

1 process E Sensors() {
2 clock c;
3 do { req sensor {= c = 0 =};
4 invariant(c <= 0) when(c >= 0)
5 alt { :: when(global clock <= n) //send corrupted measurement
6 {= sens = any(z, z >= (temp − 2 − NOISE) && z <= (temp − 2 + NOISE)),
7 c = 0 =};
8 :: when(global clock > n) //send authentic measurement
9 {= sens = any(z, z >= (temp − NOISE) && z <= (temp + NOISE)), c = 0 =}

10 };
11 invariant(c <= 0) when(c >= 0) ack sensor
12 }
13 }

Fig. 10. Integrity attack to the sensor device
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instants 12 and 13, but no alarm will be fired (stealthy attack). This is proved
by verifying the following properties:

• �[0,100]((global_clock < 12 ∨ global_clock > 14) =⇒ safe) ✔
• �[0,100]((global_clock ≤ 12 ∧ global_clock ≥ 12) =⇒ safe) ✖
• �[0,100]((global_clock ≤ 13 ∧ global_clock ≥ 13) =⇒ safe) ✖
• �[0,100](¬alarm) ✔.

– For n > 8 the system may get into an unsafe state in a time instant between
12 and n+12. The IDS will fire the alarm but it will definitely miss a number
of violations of safety conditions as after the instant n+6 it does not fire any
alarm, although we prove there are unsafe states. This is a temporary attack
as the system behaves correctly after the time instant n+ 12. Summarising:

• �[0,100](¬deadlock) ✔
• �[0,100]((global_clock < 12 ∨ global_clock > n+ 12) =⇒ safe) ✔
• �[0,100]((global_clock ≥ 12 ∧ global_clock ≤ n+ 12) =⇒ safe) ✖
• �[0,100]((global_clock > n+ 6 ∧ global_clock ≤ n+ 12) =⇒ safe) ✖
• �[0,100]((global_clock < n+1 ∨ global_clock > n+ 6) =⇒ ¬alarm) ✔
• �[0,100]((global_clock ≥ n+1 ∧ global_clock ≤ n+6) =⇒ ¬alarm) ✖.

The properties above have been proved for all discrete time instants n, with
0 ≤ n ≤ 85. The longest among these analyses required 1h when overapproxi-
mating and at most 7h when doing exact verification.

6 Conclusions

As said in the Introduction, the safety model checker within the Modest
Toolset relies on a modified version of the hybrid solver PHAVer, whose spec-
ification language is a slight variation of hybrid automata supporting composi-
tional reasonings, where input and output variables are clearly distinguished [20].
Although, PHAVer would be a good candidate for the verification of small CPSs,
we preferred to specify our case study in the high-level language HModest, sup-
porting: (i) differential inclusion to model linear CPSs with constant bounded
derivatives; (ii) linear formulae to express nondeterministic assignments within a
dense interval; (iii) compositional programming style inherited from process alge-
bra (e.g., parallel composition, nondeterministic choice, loops, etc.); (iv) shared
actions to synchronise parallel components.

In HModest, we have implemented a simple but totally realistic and nuanced
cyber-physical system together with three cyber-physical attacks targeting the
sensor or the actuator of the system. In particular, we have proposed: (i) a DoS
attack on the actuator that operates as a man-in-the-middle on the connecting
network; (ii) a DoS attack on the sensor that is achieved by compromising the
sensor device; (iii) an integrity attack on the sensor, again by compromising the
sensor device. Our implementation is quite clean and concise, although the cur-
rent version of the language has still some problems in representing both instan-
taneous and delayed behaviours in an effective manner (we did not use the elegant
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delay() construct as each instance introduces a new clock, with heavy implica-
tions on the verification performance). Furthermore, in order to verify our safety
and invariant conditions we have implemented a Safety() process that is not
really part of our CPS. From a designer point of view it would have been much
more practical to use some kind of logic formula, such as: ∃♦(�[t,t+5]temp > 9.9).

For the security analysis we have used the safety model checker prohver.
Basically, we have verified LTL properties on the system under attack. Although,
we have verified most of the properties that have been manually proved in [19],
we have not been able to capture time properties on the responsiveness of the
IDS to violations of the safety conditions. Properties such as:

– there are integers m and k such that the system may have an unsafe state
at some instant n > m, and the IDS detects this violation with a delay of at
least k time instants (k being a lower bound of the reaction time of the IDS);

– there is an instant n where the IDS fires an alarm but neither an unsafe state
nor a deadlock occurs between the instants n−k and n+k: this would provide
a tolerance of the occurrence of false positive.

Note that prohver has been designed to do probabilistic model-checking, while
in this paper we only do model checking. Actually, one of the reasons why we
implemented our case study in HModest is because we aim at strengthening
our security analysis by resorting to probabilistic model checking. This would
allow us to replace nondeterministic uncertainty and nodeterministic noise with
probability distributions (for instance, normal distributions are very common in
this context).

A Comparison With Other Model-Checkers. We tried to verify our case study
also with other model-checkers for distributed systems providing high-level
specification languages and expressive query languages, such as PRISM [16],
UPPAAL [2] and Real-Time Maude [22]. In particular, as our example has a dis-
crete notion of time we started looking at verification tools supporting discrete
time.

PRISM, for instance, relies on Markov decision processes or discrete-time
Markov chains, depending whether one is interested in modelling nondetermin-
ism or not. It supports the verification of both CTL and LTL properties (when
dealing with nonprobabilistic systems). This allowed us to express the formula
∃♦(�[t,t+5]temp > 9.9) to verify violations of the safety conditions, avoiding the
implementation of the Safety() process. However, using integer variables to rep-
resent state variables with a fixed precision requires the introduction of extra
transitions (to deal with nondeterministic errors) that significantly complicates
the PRISM model.

In this respect, UPPAAL appears to be more efficient than PRISM, as we
have been able to concisely express the error occurring in integer state vari-
ables thanks to the select() construct, in which the user can fix the granularity
adopted to approximate a dense interval. This discrete representation provides
an under-approximation of the system behaviour; thus, a finer granularity trans-
lates into an exponential increase of the complexity of the system, with obvious



A Modest Security Analysis of Cyber-Physical Systems 75

consequences on the verification performance. UPPAAL has provided us with
a simple way to implement the preemptive power of cyber-physical attacks by
assigning priorities to processes. Thus, a system under attack can be easily rep-
resented by simply putting in parallel the system and the attacker. The tool
supports the verification of a simplified version of CTL properties (no nesting of
path formulae is allowed). Thus, as in HModest, we cannot express the formula
∃♦(�[t,t+5]temp > 9.9) and we had to implement a Safety() process.

Finally, we tried to model our case study in Real-Time Maude, a completely
different framework for real-time systems, based on rewriting logic. The language
supports object-like inheritance features that are quite helpful to represent com-
plex systems in a modular manner. Communication channels have been used to
implement our attacks on the physical devices. Furthermore, we used rational
variables for a more concise discrete representation of state variables. We have
been able to verify LTL and T-CTL properties, although the verification process
resulted to be very slow due to a proliferation of rewriting rules when fixing a
reasonable granularity to approximate dense intervals. As the verification logic
is quite powerful, there is no need to implement the Safety() process.

Formal Methods for CPS Security. A few works use formal methods for CPS
security, although they apply methods, and most of the time have goals, that
are quite different from ours. As already said, the case study has been taken
from [19]. In that paper the authors present a threat model for a formal study
of a variety of cyber-physical attacks. They also propose a formal technique to
assess the tolerance of CPSs to classes of attacks. The paper provides a stepping
stone for formal and automated analysis techniques for checking the security of
CPSs.

In [28,29], Vigo presents an attack scenario that addresses some of the pecu-
liarities of a cyber-physical adversary, and discussed how this scenario relates
to other attack models popular in the security protocol literature. Unlike us,
this paper focuses on DoS attacks without taking into consideration timing
aspects. Rocchetto and Tippenhaur [25] introduce a taxonomy of the diverse
attacker models proposed for CPS security and outline requirements for gener-
alised attacker models; in [24], they then propose an extended Dolev-Yao attacker
model suitable for CPS security. In their approach, physical layer interactions
are modelled as abstract interactions between logical components to support
reasoning on the physical-layer security of CPSs. This is done by introducing
additional orthogonal channels. Time is not represented. Nigam et al. [21] work
around the notion of Timed Dolev-Yao Intruder Models for Cyber-Physical Secu-
rity Protocols by bounding the number of intruders required for the automated
verification of such protocols. Following a tradition in security protocol analysis,
they provide an answer to the question: How many intruders are enough for ver-
ification and where should they be placed? They also extend the strand space
model to CPS protocols by allowing for the symbolic representation of time, so
that they can use Real-Time Maude [22] along with SMT support. Their notion
of time is however different from ours, as they focus on the time a message needs
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to travel from an agent to another. The paper does not mention physical devices,
such as sensors and/or actuators.
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Abstract. Process calculi are expressive specification languages for con-
currency. They have been very successful in two research strands: (a) the
analysis of security protocols and (b) the enforcement of correct message-
passing programs. Despite their shared foundations, languages and rea-
soning techniques for (a) and (b) have been separately developed. Here
we connect two representative calculi from (a) and (b): we encode a
(high-level) π-calculus for multiparty sessions into a (low-level) applied
π-calculus for security protocols. We establish the correctness of our
encoding, and we show how it enables the integrated analysis of security
properties and communication correctness by re-using existing tools.

1 Introduction

This paper connects two distinct formal models of communicating systems: a
process language for the analysis of security protocols [12], and a process language
for session-based concurrency [9,10]. They are representative of two separate
research strands:

(a) Process models for security protocols, such as [12] (see also [7]), rely on vari-
ants of the applied π-calculus [1] to establish properties related to process
execution (e.g., secrecy and confidentiality). These models support cryp-
tography and term passing, but lack support for high-level communication
structures.

(b) Process models for session-based communication, such as [10] (see also
[11]), use π-calculus variants equipped with type systems to enforce cor-
rect message-passing programs. Security extensions of these models target
properties such as information flow and access control (cf. [2]), but usually
abstract away from cryptography.

We present a correct encoding that connects two calculi from these two strands:
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– A, a (low-level) applied π-calculus in which processes explicitly describe term
communication, cryptographic operations, and state manipulation [12];

– S, a (high-level) π-calculus in which communication actions are organized as
multiparty session protocols [5,10].

Our aim is to exploit the complementary strenghts of A and S to analyze commu-
nicating systems that feature high-level communication structures (as in session-
based concurrency [9,10]) and use cryptographic operations and global state in
protocol exchanges.

Our encoding of S into A describes how the structures typical of session-based,
asynchronous concurrency can be compiled down, in a behavior-preserving man-
ner, as process implementations in which communication of terms takes place
exploiting rich equational theories and global state. To our knowledge, ours is
the first work to relate process calculi for the analysis of communication-centric
programs (S) and of security protocols (A), as developed in disjoint research
strands.

We believe our results shed light on both (a) and (b). In one direction,
they define a new way to reason about multiparty session processes. Process
specifications in S can now integrate cryptographic operations and be ana-
lyzed by (re)using existing methods. In fact, since A processes can be faith-
fully translated into multiset rewriting rules using SAPIC [12] (which can
in turn be fed into the Tamarin prover [14]), our encoding bridges the gap
between S processes and toolsets for the analysis of security properties:

Session π-calculus (S)
High-level Protocol Structures

Applied π-calculus (A)
Term Passing / Global State

Multiset Rewrite Rules
(Input to Tamarin)

[14]This paper

Interestingly, this connection can help to enforce communication correctness: we
show how SAPIC/Tamarin can check local formulas representing local session
types [10].

In the other direction, our approach allows us to enrich security protocol
specifications with communication structures based on sessions. This is relevant
because the analysis of security protocols is typically carried out on models
such as, e.g., Horn clauses and rewriting rules, which admit efficient analysis
but that lead to too low-level specifications. Our developments fit well in this
context, as the structures intrinsic to session-based concurrency can conveniently
describe communicating systems in which security protocols appear intertwined
with higher-level interaction protocols.

This rest of the paper is organized as follows. Section 2 introduces the Two-
Buyer Contract Signing Protocol, a protocol that is representative of the kind
of systems that is hard to specify using S or A alone. Section 3 recalls the
definitions of S and A, and also introduces S�, which is a variant of S that is
useful in our developments. Section 4 defines the encoding of S into A, using S� as
stepping stone, and establishes its correctness (Theorems 1, 2, and 3). Section 5
shows how our encoding can be used to reduce the enforcement of protocol
conformance in S to the model checking of local formulas for A (Theorems 4
and 5). Section 6 revisits the Two-Buyer Contract Signing Protocol: we illustrate
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Fig. 1. The trusted Buyers-Seller protocol.

its process specification using S minimally extended with constructs from A,
and show how key correctness properties can be mechanically verified using
SAPIC/Tamarin. The paper closes by discussing related works and collecting
concluding remarks (Sect. 7). Additional technical material and further examples
are given in an appendix available online [15].

2 A Motivating Example: The Trusted Buyers-Seller
Protocol

The Trusted Buyers-Seller Protocol extends the Two-Buyer Protocol [10], and
proceeds in two phases. The first phase follows the global session type in [10],
which offers a unified description of the way in which two buyers (B1 and B2)
interact to purchase a book from a seller (S). In the second phase, once B1

and B2 agree in the terms of the purchase, the role of S is delegated to a
trusted third party (T ), which creates a contract for the transaction and collects
the participants’ signatures. This second phase relies on the contract signing
protocol [8], which may resolve conflicts (due to unfulfilled promises from B1

and B2) and abort the conversation altogether. In this protocol, one key security
property is authentication, which ensures that an attacker cannot impersonate
Bi, S, or T . Relevant properties of communication correctness include fidelity
and safety : while the former ensures that processes for Bi, S, and T follow
the protocols specified by global/local types, the latter guarantees that such
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processes do not get into errors at runtime. The protocol is illustrated in Fig. 1
and described next:

First Phase. B1, B2, and S start by establishing a session, after execut-
ing the Needham-Schroeder-Lowe (NSL) authentication protocol. Subsequently,
they interact as follows:

1. B1 sends the book title to S. Then, S replies back to both B1 and B2 the
quote for the title. Subsequently, B1 tells B2 how much he can contribute.

2. If the amount is within B2’s budget, then he accepts to perform the transac-
tion, informs B1 and S, and awaits the contract signing phase. Otherwise, if
the amount offered by B1 is not enough, B2 informs S and B1 his intention
to abort the protocol.

3. Once B1 and B2 have agreed upon the purchase, S will delegate the session
to the trusted party T , which will lead the contract signing phase. Upon
completion of this phase, S (implemented by T ) sends B1 the delivery date
for the book.

Second Phase. At this point, the trusted authority T , B1, and B2 interact as
follows:

4. T creates a new contract ct and a new memory cell s, useful to record infor-
mation about the contract. T sends the contract ct to B1 and B2 for them
to sign. T can start replying to the following requests: success (in case of
successful communication), abort (request to abort the protocol), or resolve
(request to solve a conflict).

5. Upon reception of contract ct from T , B1 sends to B2 his promise to sign it.
Subsequently, B1 expects to receive B2’s promise:

• If B1 receives a valid response from B2, his promise is converted into a
signature (〈signature1〉), which is sent back. Now, B1 expects to receive a
valid signature from B2: if this occurs, B1 sends to T a success message;
otherwise, B1 sends T a resolve request, which includes the promise by
B2 and his own signature.

• If B1 does not receive a valid promise from B2, then B1 asks T to cancel
the purchase (an abort request), including his own promise (〈promise1〉)
in the request.

6. Upon reception of contract ct from T , B2 checks whether he obtained a valid
promise from B1; in that case, B2 replies by sending his promise to sign it
(〈promise2〉). Now, B2 expects to receive B1’s signature on ct: if the response
is valid, B2 sends its own signature (〈signature2〉) to B1; otherwise, B2 asks T
to resolve. If B2 does not receive a valid promise, then it aborts the protocol.

Clearly, S and A offer complementary advantages in modeling and analyzing
the Trusted Buyers-Seller Protocol. On the one hand, S can represent high-level
structures that are typical in the design of multiparty communication protocols.
Such structures are essential in, e.g., the exchanges that follow session establish-
ment in the first phase (which involves a step of session delegation to bridge with
the second phase) and the handling of requests success, abort and resolve in
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the second phase. Hence, S and its type-based verification techniques can be
used to establish fidelity and safety properties. However, S is not equipped with
constructs for directly representing cryptographic operations, as indispensable
in, e.g., the NSL protocol for session establishment and in the exchanges of sig-
natures/promises in the contract sigining phase. The lack of these constructs
prevents the formal analysis of authentication properties. On the other hand,
A compensates for the shortcomings of S, for it can directly represent crypto-
graphic operations on exchanged messages, as required to properly model the
contract signing phase and, ultimately, to establish authentication. While A can
represent the high-level communication structures mentioned above, it offers a
too low-level representation of them, which makes reasoning about fidelity and
safety more difficult than in S.

Our encoding from S into A, given in Sect. 4, will serve to combine the
individual strengths of both languages. In Sect. 6, we will revisit this exam-
ple: we will give a process specification using an extension of S with some con-
structs from A. This is consistent, because A is a low-level process language,
and our encoding will define how to correctly compile S down to A (constructs
from A will be treated homomorphically). Moreover, we will show how to use
SAPIC/Tamarin to verify that implementations for B1, B2, S, and T respect
their intended local types.

3 Two Process Models: A and S

3.1 The Applied π- Calculus (A)

Preliminaries. As usual in symbolic protocol analysis, messages are modelled
by abstract terms (t, t′, . . .). We assume a countably infinite set of variables V, a
countably infinite set of names N = PN∪FN (FN for fresh names, PN for public
names), and a signature Σ (a set of function symbols, each with its arity).

We denote by TΣ the set of well-sorted terms built over Σ, N , and V. The set
of ground terms (i.e., terms without variables) is denoted MΣ . A substitution is
a partial function from variables to terms. We denote by σ = {t1/x1, . . . , tn/xn}
the substitution whose domain is Dom(σ) = {x1, . . . , xn}. We say σ is grounding
for t if tσ is ground. We equip the term algebra with an equational theory =E ,
which is the smallest equivalence relation containing identities in E, a finite set
of pairs the form M = N where M,N ∈ TΣ , that is closed under application of
function symbols, renaming of names, and substitution of variables by terms of
the same sort. Furthermore, we require E to distinguish different fresh names,
i.e., ∀a, b ∈ FN : a �= b ⇒ a �=E b.

Given a set S, we write S∗ and S# to denote the sets of finite sequences of
elements and of finite multisets of elements from S. We use the superscript #
to annotate the usual multiset operations, e.g., S1 ∪#S2 denotes the union of
multisets S1, S2. Application of substitutions is extended to sets, multisets, and
sequences as expected.

The set of facts is F := {F (t1, . . . , tk)| ti ∈ TΣ , F ∈ Σfact of arity k},
where Σfact is an unsorted signature, disjoint from Σ. Facts will be used to
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Table 1. Syntax of A: terms and processes.

M, N ::= x, y | p | n | f(M1, . . . , Mn) (f ∈ Σ)
P, Q ::= 0 | out(M, N);P | in(M, N);P | P | Q | !P | νn;P |

insert((M, N));P | delete M ;P | lookupM asx inP elseQ |
lock M ;P | unlock M ;P | event F ;P | if M = N then P else Q

annotate protocols (via events) and to define multiset rewrite rules. A fixed
set of fact symbols will be used to encode the adversary’s knowledge, freshness
information, and the messages on the network. The remaining fact symbols are
used to represent the protocol state. For instance, fact K(m) denotes that m is
known by the adversary.

Syntax and Semantics. The grammar for terms (M,N) and processes (P,Q),
given in Table 1, follows [12]. In addition to usual operators for concurrency, repli-
cation, and name creation, the calculus A inherits from the applied π-calculus [1]
input and output constructs in which terms appear both as communication sub-
jects and objects. Also, A includes a conditional construct based on term equality,
as well as constructs for reading from and updating an explicit global state:

– insert((M,N));P first binds the value N to a key M and then proceeds as P .
Successive inserts may modify this binding; delete M ;P simply “undefines”
the mapping for the key M and proceeds as P .

– lookupM asx inP elseQ retrieves the value associated to M , binding it to
variable x in P . If the mapping is undefined for M then the process behaves
as Q.

– lock M ;P and unlock M ;P allow to gain and release exclusive access to a
resource/key M , respectively, and to proceed as P afterwards. These opera-
tions are essential to specify parallel processes that may read/update a com-
mon memory.

Moreover, the construct event F ;P adds F ∈ F to a multiset of ground facts
before proceeding as P . These facts will be used in the transition semantics for
A, which is defined by a labelled relation between process configurations of the
form (E ,S,P, σ,L), where: P is a multiset of ground processes representing the
processes executed in parallel; E ⊆ FN is the set of fresh names generated by
the processes; S : MΣ → MΣ is a partial function modeling stored information
(state); σ is a ground substitution modeling the messages sent to the environ-
ment; and L ⊆ MΣ is the set of currently acquired locks. We write S(M) = ⊥
to denote that there is no information stored for M in S. Also, notation L\M
stands for the set L\{M ′|M ′ =E M}.

We also require the notions of frame and a deduction relation. A frame νñ.σ
consists of a set of fresh names ñ and a substitution σ: it represents the sequence
of messages that have been observed by an adversary during a protocol execution
and secrets ñ generated by the protocol, a priori unknown to the adversary.
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Table 2. Deduction rules for A. In rule [Appl]: ˜t = (t1, . . . , tn).

a ∈ (FN∪ PN) \ ñ
[Name]

νñ.σ � a

νñ.σ � t t =E t′
[Eq]

νñ.σ � t′
x ∈ Dom(σ)

[Frame]
νñ.σ � xσ

νñ.σ � ti [App]
νñ.σ � f t̃

Table 3. Operational semantics for A.

Standard Operations

(E, S, P ∪# {0}, σ, L) −→A (E, S, P, σ, L)
(E, S, P∪#{P | Q}, σ, L) −→A (E, S, P∪#{P, Q}, σ, L)

(E, S, P∪#{!P}, σ, L) −→A (E, S, P ∪# {!P, P}, σ, L)
(E, S, P∪#{νa;P}, σ, L) −→A

(E ∪ {a′}, S, P∪#{P{a′/a}}, σ, L) C0

(E, S, P, σ, L)
K(M)−−−−→A (E, S, P, σ, L) C1

(E, S, P∪#{out(M, N);P}, σ, L)
K(M)−−−−→A

(E, S, P ∪#{P}, σ∪{N/x}, L) C2

(E, S, P ∪#{in(M, N);P}, σ, L)
K(〈M,Nτ〉)−−−−−−−−→A (E, S, P ∪#{Pτ}, σ, L) C3

(E, S, P∪#{out(M, N);P, in(M ′, N ′);Q}, σ, L) −→A (E, S, P ∪#{P, Qτ}, σ, L) C4
(E, S, P ∪# {if M = N then P else Q}, σ, L) −→A (E, S, P∪#{P}, σ, L) C5
(E, S, P∪#{if M = N then P else Q}, σ, L) −→A (E, S, P∪#{Q}, σ, L) C6

(E, S, P ∪# {event F ;P}, σ, L) F−−→A (E, S, P∪#{P}, σ, L)

Operations on Global State

(E, S, P∪#{insert((M, N));P}, σ, L) −→A (E, S[M �→ N ], P∪#{P}, σ, L)
(E, S, P∪#{delete M ;P}, σ, L) −→A (E, S[M ⊥→� ], P∪#{P}, σ, L)

(E, S, P∪#{lookupM asx inP elseQ}, σ, L) −→A (E, S, P∪#{P{V/x}}, σ, L) C7
(E, S, P∪#{lookupM asx inP elseQ}, σ, L) −→A (E, S, P∪#{Q}, σ, L) C8

(E, S, P∪#{lock M ;P}, σ, L) −→A (E, S, P∪#{P}, σ, L ∪ {M}) C9
(E, S, P∪#{unlock M ;P}, σ, L) −→A (E, S, P∪#{P}, σ, L\M)

where:

C0: if a′ fresh C5: if M =E N
C1: if νE.σ � M C6: if M �=E N
C2: if x is fresh, νE.σ � M C7: if ∃N.N =E M and S(N)=E V
C3: if ∃τ.νE.σ � M and νE.σ � Nτ and τ grounding for N C8: if ∀N.N =E M ⇒ S(N) = ⊥
C4: if M =E M ′ and ∃τ.N =E N ′τ and τ grounding for N ′ C9: if M /∈E L

The deduction relation νñ.σ � t models the adversary’s ability to compute new
messages from observed ones: it is the smallest relation between frames and
terms defined by the rules in Table 2.

Transitions are of the form (E ,S,P, σ,L) F−−→A (E ′,S ′,P ′, σ′,L′), where F is

a set of ground facts (see Table 3). We write −−→A for ∅−−→A and
f−−→A for

{f}−−−→A.
As usual, −−→∗

A denotes the reflexive, transitive closure of −−→A. Transitions
denote either standard process operations or operations on the global state;
they are sometimes denoted −−→AP

and −−→AS
, respectively.
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Table 4. Process syntax and naming conventions for S.

u ::= x | a (Identifiers) n ::= s | a (Names) e ::= v | x | e = e′ | . . . (Expressions)
c ::= s[p] | x (Channels) v ::= a | true | false | s[p] (Values)

m ::= (q � p :v) | (q � p :c) | (q � p : l) (Messages)

P ::= u[p](y).P (Req)
| u[p](y).P (Acc)
| c!〈p, e〉.P (Send)
| c?(p, x).P (Recv)

| c!〈〈p, c〉〉.P (Deleg)
| c?((q, y)).P (Recep)
| c ⊕ 〈p, l〉.P (Select)
| c&(p, {li : Pi}i∈I) (Branch)
| if e then P else Q (Condit.)

| P |Q (Parallel)
| 0 (Inaction)
| (νn)P (N.Hiding)
| s[p̃] : h (M. Queue)
h ::= h·m | ∅ (Queue)

3.2 Multiparty Session Processes (S)

Syntax. The syntax of processes, ranged over by P,Q, . . . and that of expres-
sions, ranged over by e, e′, . . ., is given by the grammar of Table 4, which also
shows name conventions. We assume two disjoint countable set of names: one
ranges over shared names a, b, . . . and another ranges over session names s, s′, . . ..
Variables range over x, y, . . .; participants (or roles) range over the naturals and
are denoted as p, q, p′, . . .; labels range over l, l′, . . . and constants range over
true, false, . . .. We write p̃ to denote a finite sequence of participants p1, . . . , pn

(and similarly for other elements). Given a session name s and a participant p,
we write s[p] to denote a (session) endpoint.

The intuitive meaning of processes is as in [5,10]. The processes u[p](y).P
and u[p](y).Q can respectively request and accept to initiate a session through
a shared name u. In both processes, the bound variable y is the placeholder
for the channel that will be used in communications. After initiating a session,
each channel placeholder will replaced by an endpoint of the form s[pi] (i.e.,
the runtime channel of pi in session s). Within an established session, process
may send and receive basic values or session names (session delegation) and
select and offer labeled, deterministic choices (cf. constructs c ⊕ 〈p, l〉.P and
c&(p, {li : Pi}i∈I)). The input/output operations (including delegation) specify
the channel and the sender or the receiver, respectively.

Message queues model asynchronous communication. A message (p � q : v)
indicates that p has sent a value v to q. The empty queue is denoted by ∅. By
h ·m we denote the queue obtained by concatenating message m to the queue h.
By s[p̃] : h we denote the queue h of the session s initiated between participants
p̃ = p1, . . . , pn; when the participants are clear from the context we shall write
s : h instead of s[p̃] : h.

Request/accept actions bind channel variables, value receptions bind value
variables, channel receptions bind channel variables, hidings bind shared and
session names. In (νs)P all occurrences of s[p] and queue s inside P are bound.
We denote by fn(Q) the set of free names in Q. A process is closed if it does
not contain free variables or free session names. Unless stated otherwise, we only
consider closed processes.
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Table 5. Structural congruence for S processes.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) (νa)0 ≡ 0 (νs)(s : ∅) ≡ 0
(νr)P | Q ≡ (νr)(P | Q), if r /∈ fn(Q) (νr)(νr′)P ≡ (νr′)(νr)P, where r ::= a | s

s[p̃] :h · (q � p :ζ) · (q′ � p′ :ζ′) · h′ ≡ s[p] :h · (q′ � p′ :ζ′) · (q � p :ζ) · h′, if p �= p′ or q �= q′

Table 6. Reduction rules for S (Rule [If-F] omitted).

a[p1](y)P1 | . . . | a[pn−1](y)Pn−1 | a[pn](y).Pn −→S [Init]
(νs)(P1{s[p1]/y} | . . . | Pn−1{s[pn−1]/y} | Pn{s[pn]/y} | s[p̃] : ∅)

s[p]!〈q, e〉.P | s : h −→S P | s :h·(p � q :v) (e ↓ v) [Send]
s[p]!〈〈q, s′[p′]〉〉.P | s : h −→S P | s :h · (p � q :s′[p′]) [Deleg]

s[p] ⊕ 〈q, l〉.P | s : h −→S P | s :h·(p � q : l) [Sel]
s[p]?(q, x).P | s : (q � p :v)·h −→S P{v/x} | s[p̃] :h [Recv]

s[p]?((q, y)).P | s : (q � p :s′[p′]) · h −→S P{s′[p′]/y} | s[p̃] :h [SRecv]
s[p] &(q, {li : Pi}i∈I) | s : (q � p : lj)·h −→S Pj | s : h (j ∈ I) [Branch]

if e then P else Q −→S P (e ↓ true ) [If-T]
P ≡ P ′ and P ′ −→S Q′ andQ ≡ Q′ ⇒ P −→S Q [Str]

P −→S P ′ ⇒ E[P ] −→S E[P ′] [Ctx]

Semantics. S processes are governed by a reduction semantics, which relies on
a structural congruence relation, denoted ≡ and defined by adding α-conversion
to the rules of Table 5. Reduction rules are given in Table 6; we write P −→S

P ′ for a reduction step. We rely on the following syntax for contexts: E ::=
[ ] | P | (νa)E | (νs)E | E | E.

We briefly discuss the reduction rules. Rule [Init] describes the initiation of
a new session among n participants that synchronize over the shared name a.
After session initiation, the participants will share a private session name (s in
the rule), and an empty queue associated to it (s[p̃] : ∅ in the rule). Rules [Send],
[Deleg] and [Sel] add values, channels and labels, respectively, into the message
queue; in Rule [Send], e ↓ v denotes the evaluation of the expression e into a
value v. Rules [Recv], [SRecv] and [Branch] perform complementary de-queuing
operations. Other rules are self-explanatory.

3.3 The Calculus S�

We now introduce S�, a variant of S which will simplify the definition of our
encoding into A. The syntax of S� processes is as follows:

P,Q ::= 0 | u[p](ỹ).P | u[p](ỹ).P | P | Q | (νn)P | if e then P else Q
| cpq!〈e : msg〉.P | cpq?((y)).P | cpq?(x).P | cpq!〈〈c′

p′q′ : chan〉〉.P |
| cpq ⊕ 〈l : lbl〉.P | cpq &({li : Pi}i∈I) | spq : h

where cpq denotes a channel annotated with participant identities, h ::= h·m | ∅
and m ::= 〈msg, v〉 | 〈chan, spq〉 | 〈lbl, l〉. The main differences between S and S�

are:
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– Intra-session communication relies on annotated channels, and output pre-
fixes include a sort for the communicated messages (msg for values, chan for
delegated sessions, lbl for labels).

– While S uses a single queue per session, in S� for each pair of participants
there will be two queues, one in each direction. This simplifies the definition
of structural congruence ≡ for S�, which results from that for S as expected
and is omitted.

– Constructs for session request and acceptance in S� depend on a sequence
of variables, rather than on a single variable. In these constructs, denoted
u[p](ỹ).P and u[p](ỹ).P , respectively, ỹ is a sequence of variables of the form
ypq, for some p, q.

With these differences in mind, the reduction semantics for S�, denoted −→S� ,
follows that for S (Table 6). Reduction rules for S� include the following:

a[1](ỹ1).P1 | . . . | a[n − 1](ỹn−1).Pn−1 | a[n](ỹn).Pn −→S� [Init∗]
(νs)(P1{s/y} | . . . | Pn−1{s/y} | Pn{s/y} | ỹ1{s/y} : ∅ | . . . | ỹn{s/y} : ∅)

ypq!〈e : msg〉.P | ypq : h −→S� P | ypq : h · 〈msg, v〉 (e ↓ v) [Send∗]
ypq?(x).P | yqp : 〈msg, v〉 · h −→S� P{v/x} | yqp : h [Recv∗]

Notice that in Rule [Init∗], we only need to write Pi{s/y}: after reduction,
these variables will be of the form spq. In that rule, each ỹi{s/y} : ∅ denotes
several queues (one for each name ypq ∈ ỹi), rather than a single queue.

It is straightforward to define an auxiliary encoding ([ · ]) : S �→ S�. For
instance:

([s[p]!〈q, e〉.P ]) = spq!〈e : msg〉.([P ]) ([s[p]?(q, x).P ]) = sqp?(x).([P ])
([s[p]!〈〈q, zp′〉〉.P ]) = spq!〈〈zp′ : chan〉〉.([P ]) ([s[p]?((q, x)).P ]) = sqp?((x)).([P ])

The full encoding, given in [15], enjoys the following property:

Theorem 1. Let P ∈ S. Then: (a) If P −→S P ′, then ([P ]) −→S� ([P ′]).
(b) If ([P ]) −→S� R, then there exists P ′ ∈ S such that P −→S P ′ and ([P ′]) = R.

Given the encoding ([·]) : S �→ S� and Theorem 1 above, we now move on to define
an encoding �·� : S∗ �→ A. By composing these encodings (and their correctness
results—Theorems 2 and 3), we will obtain a behavioral-preserving compiler of
S into A.

4 Encoding S� into A

We now present our encoding �·� : S∗ �→ A and establish its correct-
ness. The encoding is defined in Table 7; it uses the set of facts FS =
{honest, sndnonce, rcvnonce, sndchann, rcvchann, out, inp, dels, recs, sel, bra, close} .
Facts will be used as event annotations in process executions, and also for model
checking communication correctness via trace formulas in the following section.
Our encoding will rely on the equational theory for pairing, which is embedded
in Tamarin prover [14], and includes function symbols 〈 , 〉, fst and snd, for
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Table 7. Encoding from S� to A.

pairing and projection of first and second parameters of a pair. Communication
within a secure established session is expressed by the manipulation of queues,
which will be stored in the set of states S. In SAPIC, we implement queues ypq
and yqp as q(y, p, q) and q(y, q, p), respectively, where q is a function symbol for
queues. Also, spq : ∅ is implemented as insert((spq, init)).

Session Initiation. The (high-level) mechanism of session initiation of Rule [Init]
in S� (Table 6) is implemented in A by following the Needham-Schroeder-Lowe
(NSL) authentication protocol [13]; see Table 7 (top). We use NSL because
it is simple, and it has already been formalized in SAPIC. For simplicity,
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we present the implementation for three participants; the extension to n partic-
ipants is as expected. The encoding creates queues for intra-session communi-
cation using processes insert((s̃ij , ∅)). The security verification uses the built-
in library asymmetric-encryption available in Tamarin [14], and assumes the
usual signature and equational theory for public keys pk, secret keys sk, asym-
metric encryption aenc and decryption dec.

Intra-session Communication. Process �cpq!〈e : msg〉.P � first acquires a lock in
the queue cpq to avoid interference. Then, a lookup as process checks the state
of cpq and enqueues message 〈msg, v〉 at its end. Finally, the encoding signals this
operation by executing event out(cpq, v) before unlocking cpq and proceeding as
as �P �. The encoding of session delegation �cpq!〈〈c : chan〉〉.P � is very similar: the
only differences are the sort of the communicated object and the event signaled
at the end (dels(cpq, c′)).

As above, process �cpq?(x).P � first acquires a lock and checks the queue cqp.
If it is of the form 〈msg,−〉 then it stores it in a variable zv: it consumes the
first part (fst(zv)) and updates cqp with the second part. The implementation
then signals an event event inp(cpq, zv) before unlocking cqp and proceeding as
�P �. Process �cpq?((x)).P � (reception of a delegated session) is similar; in this
case, the queue should contain a value of sort chan and the associated event is
recs(cpq, fst(zv)).

Process �0� simply executes an event close. In the prototype SAPIC imple-
mentation of our encoding, this event mentions the name of the corresponding
session cqp.

Finally, process �cpq : h� is 0 because we implement queues using the
global state in A. The implementation of the remaining constructs in A is self-
explanatory.

Remark 1. Since our encoding operates on untyped processes, we could have
sort mismatches in queues (cf. Rule [If-F]). To avoid this, encodings of input-like
processes (e.g., spq?(x).P ), use the input of a dummy value that allows processes
to reduce.

Correctness of �·�. We first associate to each ground process P ∈ S∗ a process
configuration via the encoding in Table 7. Below we assume that s̃, I, and I ′

may be empty, allowing the encoding of communicating processes (obtained after
session initiation); we also assume that the set of (free) variables in P (denoted
var(P )) can be instantiated with ground terms that can be deduced from the
current frame.
Definition 1 Suppose an S� process R ≡ (νs)(

∏

i∈I Pi |
∏

j,k∈I′ spjqk
: hj,k),

with var(R) = {x1, . . . , xn}. A process configuration for R, denoted C[�R�], is
defined as:

(E∪{s},S ∪ {spjqk
: hj,k | j, k ∈ I ′},

{

∏

i∈I

�Pi�
}

, σ,L),

where var(R) ⊆ dom(σ) and σ is grounding for xi, i = 1, . . . , n.
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With some abuse of notation we say that C is a process configuration for
R. Observe that different process configurations C,C ′, . . . can be associated to
a same process R ∈ S once one considers variations of E ,S, σ,L.

Theorem 2 (Completeness). Let P ∈ S�. If P −→S� P ′ then for all process
configuration C, there exists a process configuration C ′ such that C[�P �] −−→∗

A

C ′[�P ′�].

Proof. The proof is by structural induction, analyzing the rule applied in
P −→S� P ′ via encoding in Table 7 and the rules in Table 3. See [15] for details.

��

To prove soundness, we rely on a Labeled Transition System for S�, denoted
P

λ−→ P ′. Such an LTS, and the proof of the theorem below, can be found in [15].

Theorem 3 (Soundness). Let P ∈ S� and C be such that C[�P �] −−→AP
R.

Then there exist P ′ ∈ S�, a C ′, and λ such that R −−→∗
A C ′[�P ′�] and P

λ−→ P ′.

5 Multiparty Session Types and Their Local Formulas

Using ([ · ]) and �·�, in this section we connect well-typedness of processes in
S [10] with the satisfiability of local formulas, which model the execution of A
processes.

5.1 Global and Local Types

Rather than defining multiparty session types for A processes, we would like
to model checking local types by re-using existing tools for A: SAPIC [12] and
Tamarin [14]. Concretely, next we shall connect typability for S processes with
satifiability for A processes. To formalize these results, we first recall some essen-
tial notions for multiparty session types; the reader is referred to [5,10] for an
in-depth presentation.

Global types G,G′ describe multiparty session protocols from a vantage point;
they offer a complete perspective on how two or more participants should inter-
act. On the other hand, local (session) types T, T ′ describe how each participant
contributes to the multiparty protocol. A projection function relates global and
local types: the projection of G onto participant n is denoted G|n. The syntax for
global and local types, given in Table 8 is standard [10]. A complete description
of session types can found in [15].

Example 1. Figure 2 gives three global types for the protocol in Sect. 2: while
Ginit represents the first phase, both Gcontract and Gsign are used to represent
the second. In Gsign, we use Gresolvei

to denote a global protocol for resolving
conflicts; see [15] for details.
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Table 8. Global and local types [10].

S ::= bool | nonce | msg | temp | . . . | G Sorts U ::= S | T Exchange Types

(Global Types)G ::= p → q : 〈U〉.G | p → q : {li : Gi}i∈I | end
(Local Types) T ::=!〈p, U〉.T | ?(p, U).T | ⊕ 〈p, {li : Ti}〉 | &(p, {li : Ti}) | end

Ginit : (I.1) 3 → 1 : 〈Title〉
(I.2) 1 → {2, 3} : 〈quote〉
(I.3) 3 → 2 : 〈quote’〉
(I.4) 2 → {1, 3} :

{
ok : Gcontract
¬ok : end

Gb :
(1′) 1 → 2 : 〈T 〉

T = (Gcontract)|1

Gcontract : (c.1) 1 → {2, 3} : 〈contract〉
(c.2) 3 → 2 : 〈promise〉

(c.3) 2 → 3 :

⎧⎪⎪⎨
⎪⎪⎩

ok : 2 → 3 : 〈promise〉
3 → 2 :

{
ok : Gsign
¬ok : 3 → 1 : abort

¬ok : end

Gsign : (s.1) 3 → 2 : 〈signature1〉

(s.1) 2 → 3 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ok : 2 → 3 : 〈signature2〉

3 → 1 :

⎧⎨
⎩

success : 3 → 1 : 〈address〉
1 → 3 : 〈date〉

¬success : 1 → 3 : Gresolve1
¬ok : 2 → 1 : Gresolve2

Fig. 2. Global Types for the Trusted Buyer-Seller Protocol (Sect. 2).

Typing judgements for expressions and processes are of the form Γ � e : S
or Γ � P �Δ, where Γ ::= ∅ | Γ, x : S and Δ ::= ∅ | Δ, c : T . The standard envi-
ronment Γ assigns variables to sorts and service names to closed global types;
the session environment Δ associates channels to local types. We write Γ, x : S
only if x /∈ dom(Γ ), where dom(Γ ) denotes the domain of Γ . We adopt the same
convention for a : G and c : T , and write Δ,Δ′ only if dom(Δ) ∩ dom(Δ′) = ∅.
Typing rules are as in [5,10]; as discussed in those works, typability for S pro-
cesses ensure communication correctness in terms of session fidelity (well-typed
processes respect prescribed local protocols) and communication safety (well-
typed processes do not feature communication errors), among other properties.

5.2 Satisfiability of Local Formulas from A

Following the approach in [12], properties of processes in A will be established via
analysis of traces, which describe the possible executions of a process. This will
allow us to prove communication correctness of S processes, using encoding �·�.
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Definition 1 (Traces of P [12]). Given a ground process P ∈ A, we define the
set of traces of P , denoted by traces(P ), as

traces(P ) =
{

[F1, . . . , Fn]
∣

∣ (∅, {P}, ∅, ∅)
F1===⇒ . . .

Fn===⇒ (En, Sn, Pn, σn, Ln)

}

We will denote by trP , a trace from a set traces(P ), for some process P . We
will write tr when P is clear from the context. Notice that, trP = trQ does
not necessarily imply that P = Q: each process may implement more than one
session in different ways.

SAPIC and Tamarin [14] consider two sorts: temp and msg. Each variable of
sort s will be interpreted in the domain D(s); in particular, we will denote by
Vtemp the set of temporal variables, which is interpreted in the domain D(temp) =
Q; also, Vmsg is the set of message variables, which is interpreted in the domain
D(msg) = M. Below, we will adopt a function θ : V → M ∪ Q that maps
variables to terms respecting the variable’s sorts, that is θ(x : s) ∈ D(s).

Definition 2 (Trace atoms [12]). A trace atom has of one of the forms:

A ::= ⊥ | t1 ≈ t2 | i � j | i
.= k | F@i

denoting, respectively, false, term equality, timepoint ordering, timepoint equal-
ity, or an action for a fact F and a timepoint i. The construction of trace formula
ϕ respects the usual first-order convention:

ϕ,ψ ::= A | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ϕ ↔ ψ | (∃x : s).ϕ | (∀x : s).ϕ

Given a process P , in the definition below, tr denotes a trace in traces(P ),
idx(tr) denotes the positions in tr, and tri denotes the i-th position in tr.

Definition 3 (Satisfaction relation [12]). The satisfaction relation (tr, θ) � ϕ
between a trace tr, a valuation θ, and a trace formula ϕ is defined as follows

(tr, θ) � ⊥ never
(tr, θ) � i � j iff θ(i) < θ(j)
(tr, θ) � i

.= j iff θ(i) = θ(j)

(tr, θ) � t1 ≈ t2 iff t1θ =E t2θ
(tr, θ) � ¬ϕ iff not (tr, θ) � ϕ
(tr, θ) � ϕ1 ∧ ϕ2 iff (tr, θ) � ϕ1 and (tr, θ) � ϕ2

(tr, θ) � F@i iff θ(i) ∈ idx(tr) and Fθ =E trθ(i)
(tr, θ) � (∃x : s).ϕ iff there exists u ∈ D(s) such that (tr, θ[x �→ u]) � ϕ

Satisfaction of (∀x : s)ϕ, ϕ∨ψ and ϕ ⇒ ψ can be obtained from the cases above.

5.3 From Local Types to Local Formulas

Below we assume s is an established session between participants p and q. Given
k : temp and a trace formula ϕ, we write ϕ(k) to say that there is a fact F such
that F@k is an atom in ϕ. Below we assume that S is a subsort of msg.
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Definition 4 (Local Formula). Given a local type T and an endpoint s[p],
its local formula Φs[p](T ) is defined inductively as follows:

Φs[p](!〈q, S〉.T ) = ∃i, z.(out(spq, z)@i ∧ ψ(Φs[p](T ))
Φs[p](?(q, U).T ) = ∃i, z.(inp(spq, z)@i ∧ ψ(Φs[p](T ))
Φs[p](⊕〈q, {li : Ti}i∈I〉) = ∃i.

∨

j∈I(sel(spq, lj)@i ∧ ψ(Φs[p](Tj))
Φs[p](&(q, {li : Ti}i∈I)) = ∃i.

∨

j∈I(bra(spq, lj)@i ∧ ψ(Φs[p](Tj))
Φs[p](end) = ∃i.close@i.

where ψ(Φs[p](T )) := ∀k.(Φs[p](T )(k) ⇒ i � k)) the quantified variables have
sorts i, j, k : temp and z : S, and variables i and z are fresh. The extension
of Φ( ) to session environments, denoted ̂Φ( ), is as expected: ̂Φ(Δ, s[p] : T ) =
̂Φ(Δ) ∧ Φs[p](T ).

Remark 2. Since each local type is associated to a unique local formula, the
mapping Φ ( ) is invertible. That said, from a local formula ϕ we can obtain
the corresponding type Φ−1(ϕ). For instance, for the local formula ϕout :=
∃iz.(out(spq, z)@i ∧ ψ(Φs[p](T )), one has Φ−1(ϕout) = s[p] :!〈q, S〉.Φ−1

s[p](ϕ
′). The

other cases are similar.

The following theorems give a bi-directional connection between (a) well-
typednesss and (b) satisfiability of the corresponding local formulas (see [15]):

Theorem 4. Let Γ � P � Δ be a well-typed S process. Also, let tr ∈
traces(�([P ])�). Then there exists a θ such that (tr, θ) � ̂Φ(Δ).

Theorem 5. Let tr and ϕ be a trace and a local formula, respectively. Suppose
θ is an instantiation such that (tr, θ) � ϕ. Then there is a P ∈ S such that

Γϕ � P � Φ−1(ϕ) where Γϕ = {θ(x) : sort(x) | x ∈ dom(θ)}

Example 2. The projection of Ginit onto participant 3 (Buyer1), under session s
is: s[3] :!〈1, string〉.?(1, int).!〈2, int〉.&(2, {ok : (Gcontract|3), ¬ok : end}).

The local formula associated is:

Φs[3](T ) = ∃i1, z1.out(s31, z1)@i1 ∧ (∃i2z2.inp(s31, z2)@i2 ∧ (∃i3z3.out(s32, z3))@i3

∧ (∃i4i5z4.((bra(s32, ok)@i4 ∧ Φs[3](T
′)) ∨ bra(s32, ¬ok)@i4 ∧ close@i5)))

∧ ((i1 < i2 < i3 < i4 ∧ ψ(Φs[3](T
′))) ∨ (i1 < i2 < i4 < i5 ∧ ψ(Φs[3](T

′))))

where T ′ is the projection of Gcontract onto participant 3.

6 Revisiting the Two-Buyer Contract Signing Protocol

We recall the motivating example introduced in Sect. 2. Using a combination
of constructs from S and A, we first develop a protocol specification which is
compiled down to A using our encoding; the resulting A process can be then used



Relating Process Languages for Security and Communication Correctness 95

to verify authentication and protocol correctness properties in SAPIC/Tamarin.
Figure 2 shows the corresponding global types, and their associated local types
(obtained via projection following [10]).

An alternative approach to specification/verification would be as follows.
First, specify the protocol using S only, abstracting away from cryptography, and
using existing type systems for S to enforce protocol correctness. Then, compile
this resulting S specification down to A, where the resulting specification can be
enhanced with cryptographic exchanges and authentication properties can be
enforced with SAPIC/Tamarin.

6.1 Process Specification

Process specifications for Bi and S are as follows:

B1=a[3](y).y[3]!〈1, “Title”〉.y[3]?(1, x1).y[3]!〈2, x1 div 2〉.y[3]&(2, {ok : Bsct
1 , ¬ok : 0})

B2 = a[2](y).y[2]?(1, x2).y[2]?(3, x3).ifx2 − x3 ≤ 99 then y[2] ⊕ 〈{1, 3}, ok〉.Bsct
2

else y[2] ⊕ 〈{1, 3}, ¬ok〉.0
S = a[1](y).y[1]?(3, x1).y[1]!〈{2, 3}, quote〉.y[1]&(2, {ok : b[2](z).y[2]!〈〈1, y〉〉.z[2]?(1, x4).

y[1]!〈2, date〉.0, ¬ok : 0}))

where processes Bsct
1 and Bsct

2 , which implement the contract signing phase, are
as in Tables 9 and 10, respectively. The specification for the trusted authority T
is as follows:

b[1](z).z[1]?((2, t)).νsk(T ); t[3]!〈{1, 2}, pk(sk(T ))〉.y[1]?(3, z2).y[1]?(2, z3).(νs)insert((s, init)).

(ν ct)t[3]!〈{1, 2}, ct〉.t[3]&({1, 2}, {abort :P T
Ab, res1 : P T

R1
, res2 :P T

R2
, success :z[1]!〈2, ok〉.0})}

where processes PT
Ab, PT

R1
, and PT

R2
are given in Tables 11 and 12. Process T

illustrates how we may combine constructs from S (important to represent, e.g.,
session establishment on b and delegation from S) and features from A (essential
to, e.g., manipulate the memory cell s, which records contract information).
Indeed, T uses the A construct insert to initialize the cell s and lookup as
to update it. Therefore, the sound and complete encoding proposed in Sect. 4
allows us to specify processes in A, while retaining the high-level constructs
from S.

To model the second phase of the protocol, we consider a Private Contract
Signature

Σpcs = {aenc( , ), senc( , ), pk( ), sk( ), pcs, sign, tsign, sdec(, ), adec(, ),

sconvert, tconvert, pcsver, sverif}

with function symbols for promises and signatures, and for verifying the validity
of exchanged messages. As for constructors: pcs(x, y, w, z) is the promise of x
to y to sign contract z given by w; sign(x, y) is the signature of x in z; pk(x)
is the public key of x; sk(x) is the secret key of x; aenc(x, y) is the asymmetric
encryption of y using key x; and senc(x, y) is the symmetric encryption of y using
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Table 9. Bsct
1 : B1’s contract signing processes.[m]X denotes 〈m, sign(sk(x), m)〉

Table 10. Bsct
2 : B2’s contract signing processes.

Table 11. P T
Ab: abort process executed by T

key x. Destructor sdec(, ) (resp. adec(, )) enforces symmetric (resp. asymmetric)
decryption; the other destructors (sconvert, tconvert, pcsver, sverif) are
defined from the rules in Epcs:

sdec(x, senc(x, y)) −→ y
adec(sk(x), aenc(pk(x), y)) −→ y
sver(pk(x), z, sign(x, z)) −→ true

tconvert(w, pcs(x, y, pk(w), z)) −→ sign(x, z)
pcsver(pk(x), y, w, z, pcs(x, y, w, z)) −→ true

sconvert(x, pcs(x, y, w, z)) −→ sign(x, z)

Table 13 shows the translation of B1 in A, using our encoding. For simplicity,
we omit the details related to the session establishment (using NSL), which follow
Table 7. Process specifications for B2, S, and T in A can be obtained similarly.
As mentioned in Sect. 4, the communication is done via updating session queues
sij , for i, j = 1, 2, 3.
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Table 12. P T
res1 e P T

res2 : resolve processes executed by T

Table 13. Translation of B1 into A.

6.2 Using SAPIC/Tamarin to Verify Authentication and Local
Session Types

We conclude this section by briefly discussing how to use our developments to
verify properties associated to authentication and protocol correctness.

Concerning authentication, we can use SAPIC/Tamarin to check the cor-
rectness of the authentication phase implemented by NSL. The proof checks
that events honest( ), sndnonce( , , ), rcvnonce( , , ), and rcvchann( , , ) occur
in the order specified by the encoding in Table 7. This way, e.g., the follow-
ing lemma verifies the correctness of the specification of the fragment of NSL
authentication with respect to participant B2:

lemma B2 NSL correctness :
exists − trace
(All pk12 pk1s pk2 pks #i #j #k #l.

honest(pk12)@i & honest(pk1s)@j & honest(pk2)@k & honest(pks)@l

=⇒ (Ex x y z s #j1 #k1 #l1.rcvnonce(pk12, pk2, x, y)@j1 & sndnonce(pk2, pk12, z)@k1

& rcvchann(pk12, pk2, s)@l1&j1 < k1 & k1 < l1))
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The lemma below says that the session channel exchanged using NSL is
secret. The proof relies on asymmetric-encryption, which is built in the
Tamarin library.

lemma Chann is secret :
(All pk12 pk2 pk1s pks s z n x y w z n2 #i #j #l #i1 #i2 #j1 #j2 #k1 #l1 #l2.

(honest(pk12)@i& honest(pk2)@j & honest(pk1s)@k & honest(pks)@l
& sndnonce(pk2, pk12, z)@i1 & rcvnonce(pk2, pk12, n, z)@j1& sndnonce(pk12, pk2, w)@i2
& rcvnonce(pk12, pk2, n2, w)@j2 & sndnonce(pks, pk1s, x)@i3 & rcvnonce(pks, pk1s, y, x)@j2
& sndchann(pk12, k2, s)@k1 & rcvchann(pk12, pk2, s)@k2 & sndchann(pk1s, pks, s)@l1
& rcvchann(pk12, pk2, s)@l2) =⇒ not(Ex #j. KU(s)@j))

We now consider properties associated to fidelity/safety of processes with respect
to their local types. The lemma below ensures protocol fidelity of B1 and B2 with
respect to the corresponding projections of the global type Ginit, presented in
Fig. 2. The corresponding local formula can be obtained following Definition 4:

lemma B1 B2 protocol fidelity :
exists − trace
(Ex x y z s #j #j1 #k #k1 #l.out(s31, x)@j & inp(s31, z)@k & out(s32, s)@l & j < k & k < l

& ((bra(s32, ok))@j1 & l < j1) | (bra(s32, ¬ok)@k1 & l < k1 & Φ(Gcontract|3))) &
(Ex x y z s #j #j1 #k #k1 #l. inp(s21, z)@k & inp(s23, s)@l & j < k & k < l

&((sel(s23, ok)@j1 & l < j1 & Φ(Gcontract|2)) | (sel(s23, ¬ok)@k1 & l < k1))

Using similar lemmas, we can also prove protocol fidelity for processes S and
T with respect to the projections of the global types presented in Fig. 2.

7 Related Works and Concluding Remarks

We have connected two distinct process models: the calculus S for multiparty
session-based communication [10] and the calculus A for the analysis of security
protocols [12]. To our knowledge, this is the first integration of sessions (in the
sense of [11]) within process languages for security protocol analysis. Indeed,
research on security extensions to behavioral types (cf. the survey [2]) seems to
have proceeded independently from approaches such as those overviewed in [7].
The work in [6] is similar in spirit to ours, but is different in conception and
details, as it uses a session graph specification to generate a cryptographic func-
tional implementation that enjoys session integrity. Extensions of session types
(e.g., [4,16]) address security issues in various ways, but do not directly support
cryptographic operations, global state, nor connections with “applied” languages
for (automated) verification, which are all enabled by our approach.

Our work should be mutually beneficial for research on (a) behavioral types
and contracts and on (b) automated analysis of security protocols: for the former,
our work enables the analysis of security properties within multiparty session
protocols; for the latter, our approach enables protocol specifications enriched
with high-level communication structures based on sessions. In ongoing work,
we have used SAPIC/Tamarin to implement our encodings and the verification
technique for communication correctness, based on local formulas (Definition 4).
Results so far are very promising, as discussed in Sect. 6.
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In future work, we intend to explore our approach to process specification
and verification in the setting of ProVerif [3], whose input language is a typed
applied π-calculus. We also plan to connect our approach with existing type
systems for secure information flow and access control in multiparty sessions [4].

Acknowledgements. We are grateful to the anonymous reviewers for their use-
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Abstract. Controlling resource usage in distributed systems is a chal-
lenging task given the dynamics involved in access granting. Consider,
e.g., the setting of floating licenses where access can be granted if the
request originates in a licensed domain and if the number of active users
is within the license limits. Access granting in such scenarios is given
in terms of floating authorizations, addressed in this paper as first class
entities of a process calculus model, encompassing the notions of domain,
accounting and delegation. We present the operational semantics of the
model in two equivalent alternative ways, each informing on the spe-
cific nature of authorizations. We also introduce a typing discipline to
single out systems that never get stuck due to lacking authorizations,
addressing configurations where authorization assignment is not stati-
cally prescribed in the system specification.

1 Introduction

Despite the continuous increase of computational resources, their usage will
always nevertheless be subject to accessibility and availability. Regardless
whether such resources are of hardware or software in nature, they might have
finite or virtually infinite capabilities. Physical examples, that can be mapped
to finite capabilities directly, include devices such as printers or cell phones, and
components of a computing system such as memory or processors. Virtual exam-
ples, such as a shared memory cell or a web service, can be more easily seen as
having infinite potential but often their availability is also finitely constrained.
In general, ensuring proper resource usage is a crucial yet non trivial task, given
the highly dynamic nature of access requests and the flexibility necessary to
handle such requests, while ensuring secure and efficient system operation.

For security purposes it is crucial to control that access is granted only to
authorized users, but also to enforce that access granting is subject to availabil-
ity. Concrete examples include a wireless access point that has a given access
policy and a limited capacity on the number of connected devices, and a soft-
ware application that is licensed to be used by an institution in a bounded way.
Both examples address limited capabilities that are accessible in a shared way
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to authorized users. We thus identify a notion of floating authorization, adopt-
ing the terminology from the licensing realm, where access to resources can be
granted to any authorized user in a given domain up to the point the capacity is
reached. We also identify a notion of implicit granting since users may be granted
access directly when using the resource (e.g., running the licensed software).

Considering the licensing setting, we find further examples that inform on
the dynamic nature of authorizations. For example, a user deploys a software
application on the cloud and provides the license himself (cf. Bring Your Own
License [6]), potentially losing access to run the application locally given the
capacity constraints. We identify here a notion of authorization delegation, where
the intention to yield or obtain an authorization is explicit. We therefore distill
the following dimensions in a floating authorizations model: domain so as to
specify where access may be (implicitly) granted; accounting so as to capture
capacity; and delegation so as to model (explicit) authorization granting.

In this paper, we present a model that encompasses these dimensions, devel-
oped focusing on a process calculus tailored for communication centered systems.
In our model the only resources considered are communication channels, so our
exploration on authorization control is carried out considering authorizations
refer to channels and their usage (for communication) is controlled. Our devel-
opment builds on the π-calculus [14], which provides the basis to model commu-
nicating systems including name passing, and on a model for authorizations [8],
from where we adopt the language constructs for authorization domain scope
and delegation. We adapt here the interpretation for authorization domains so
as to encompass accounting, which thus allows us to model floating authoriza-
tions. To the best of our knowledge, ours is the first process calculus model
that addresses floating resources (in our case authorizations) as first class enti-
ties. Naturally, this does not mean our language cannot be represented in more
canonical models, only that we are unaware of existing approaches that offer
abstractions that support reasoning on floating resources in a dedicated way.

After presenting the model, we show a typing discipline that ensures systems
never incur in authorization errors, i.e., systems that are blocked due to lacking
authorizations. Our type analysis addresses systems for which the authorization
assignment is not statically given in the system specification, in particular when
authorizations for (some) received names are already held by the receiving par-
ties, a notion we call contextual authorizations. We first discuss some examples
that informally introduce our model.

1.1 Model Preview

We present our language by resorting to the licensing setting for the sake of
a more intuitive reading. First of all, to model authorization domains we con-
sider a scoping construct, and we write (license)University to represent that
the University domain holds one license. This means that one use of license
within University is authorized. In particular, if University comprises two stu-
dents that are simultaneously active, which we dub Alice and Bob, we may
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write (license)(Alice | Bob) in which case either Alice or Bob can be granted the
license that is floating, but not both of them.

The idea is to support a notion of accounting, so when one of the stu-
dents uses the license the scope is confined accordingly. For example, if
Bob uses the license and evolves to LicensedBob then the system evolves to
Alice | (license)LincensedBob where the change in the scope denotes that license
is not available to Alice anymore. The evolution of the system is such that the
authorization is directly confined to Bob, who is using it, so as to model implicit
granting. At this point Alice cannot implicitly grab the authorization and gets
stuck if she tries to use license. Hence, name license may be shared between
Alice and Bob, so the (change of) scoping does not mean the name is privately
held by LicensedBob, just the authorization.

Now consider that Bob and Carol want to explicitly exchange an autho-
rization, which can be carried out by a delegation mechanism supported by
two communication primitives. We write auth〈license〉.UnlicensedBob to rep-
resent the explicit delegation of one authorization for license via communica-
tion channel auth, after which activating configuration UnlicensedBob. Instead,
by auth(license).LicensedCarol we represent the dual primitive that allows to
receive one authorization for license via channel auth after which activating
configuration LicensedCarol . So by

(license)(auth)auth〈license〉.UnlicensedBob | (auth)auth(license).LicensedCarol

we represent a system where the authorization for license can be transferred
leading to

(auth)UnlicensedBob | (auth)(license)LicensedCarol

where the scope of the authorization for license changes accordingly. The under-
lying communication is carried out by a synchronization on channel auth, for
which we remark the respective authorizations (auth) are present. In fact, in
our model channels are the only resources and their usage is subject to the
authorization granting mechanism.

Our model supports a form of fairness and does not allow a “greedy”
usage of resources. For example, in the configuration (license)(Alice | (license)
LincensedBob) the user LincensedBob can only be granted the closest (license)
first, not interfering with Alice, but can be also granted the top-level license if
he needs both licenses.

We remark that no name passing is involved in the authorization delegation
mechanism and that name license is known to both ends in the first place.
Instead, name passing is supported by dedicated primitives, namely

(comm)comm!license.Alice | (comm)comm?x .Dylan

represents a system where the name license can be passed via a synchronization
on channel comm, leading to the activation of Alice and Dylan where, in the
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latter, the placeholder x is instantiated by license. Notice that the synchroniza-
tion can take place since the authorizations to use channel comm are given, one
for each endpoint.

Name passing allows to model systems where access to channels changes
dynamically (since the communicated names refer to channels) but, as hinted
in the previous examples, knowing a name does not mean being authorized to
use it. So, for instance, (comm)comm?x .x !reply .0 specifies a reception in (autho-
rized) comm where the received name is then used to output reply , leading to
an inactive state (denoted by 0). Receiving license in channel comm leads to
(comm)license!reply .0 where the authorization for comm is still present but no
authorization for license is acquired as a result of the communication. Hence
the output specified using license is not authorized and cannot take place. We
remark that an authorization for reply is not required, hence communicating
a name does not entail usage for the purpose of authorizations. By separating
name passing and authorization delegation we are then able to model systems
where unauthorized intermediaries (e.g., brokers) may be involved in forwarding
names between authorized parties without ever being authorized to use such
names. For example (comm)comm?x .(forward)forward !x .0. which requires no
further authorizations.

Configuration (comm)comm?x .(auth)auth(x ).LicensedDylan shows a possi-
ble pattern for authorizing received names where, after the reception on comm,
an authorization reception for the received name (using placeholder x) via auth
is specified, upon which the authorization to use the received name is acquired.
Another possibility for enabling authorizations for received names is to use the
authorization scoping, e.g., (comm)comm?x .(x )LicensedDylan where the autho-
rization (x) is instantiated by the received name. This example hints on the fact
that the authorization scoping is a powerful mechanism that may therefore be
reserved in some circumstances to the Trusted Computing Base, resorting to
authorization delegation elsewhere.

To introduce the last constructs of our language, consider the system

!(license)license?x.(x)license〈x〉.0 | (νfresh)(license)license!fresh.license(fresh).0

where a licensing server is specified on the left hand side, used in the specification
given on the right hand side. By (νfresh)Domain we represent the creation of
a new name which is private to Domain, so the specification on the right hand
side can be read as first create a name, then send it via channel license, after
which receive the authorization to use the fresh name via channel license and
then terminate (the received authorization is not actually used in this simple
example). On the left hand side, we find a replicated (i.e., repeatably available)
reception on channel license, after which an authorization scope for the received
name is specified that may then be delegated away.

We now present our type analysis returning to the university scenario. Con-
sider (exam)(minitest)(alice)alice?x.x!task .0 where there are available autho-
rizations for exam and for minitest , and where alice is waiting to receive the
channel on which she will send task . Assuming that she can only receive exam
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or minitest the authorizations specified are sufficient. Which authorization will
actually be used depends on the received name, so the authorization is implicitly
taken when the received channel is used. However, if a name viva is sent then
the provided authorizations do not suffice.

In order to capture the fact that the above configuration is authorization
safe, provided it is inserted in a context that matches the assumptions described
previously, our type analysis records the names that can be safely communi-
cated. For instance, we may say that only names exam and minitest can be
communicated in channel alice. Also, consider that exam and minitest can only
receive values that are not subject to authorization control. We then denote by
{alice}({exam,minitest}(∅)) the type of channel alice in such circumstances,
i.e., that it is not subject to replacement (we will return to this point), and
that it can be used to communicate exam and minitest that in turn cannot be
used for communication (typed with ∅), reading from left to right. Using this
information, we can ensure that the specification given for alice above is safe,
since all names that will possibly be used in communications are contextually
authorized.

To analyze the use of the input variable x we then take into account that
it can be instantiated by either exam or minitest (which cannot be used for
channel communication) so the type of x is {exam,minitest}(∅). Hence the need
to talk about possible replacements of a name, allowing us to uniformly address
names that are bound in inputs. Our types, denoted γ(T ), are then built out
of two parts, one addressing possible replacements of the name identity itself
(γ), and the other informing on the (type of the) names that may be exchanged
in the channel (T ). The typing assumption alice : {alice}({exam,minitest}(∅))
informs on the possible contexts where the system above can be safely used.
For instance, it is safe to compose with the system (alice)alice!minitest where
minitest is sent to alice, since the name to be sent belongs to the names expected
on alice. Instead, consider configuration

(exam)(minitest)((alice)alice?x.x!task .0 | (bob)bob?x.x!task .0)

which is also safe and addressed by our typing analysis considering typing
assumptions alice : {alice}({exam}(∅)) and bob : {bob}({minitest}(∅)). Notice
that which authorization is needed by each student is not statically specified
in the system, which is safe when both exam and minitest are sent given the
authorization scopes can be confined accordingly. Clearly, the typing specifica-
tion already yields a specific association.

The typing analysis shown in Sect. 3 addresses such configurations where
authorizations for received names may be provided by the context. In Sect. 2
we present the operational semantics of our language considering two equivalent
alternatives that inform on the specific nature of authorizations in our model.
We refer to the supporting document [13] for additional material, namely proofs
of the results reported here.
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Table 1. Syntax of processes.

2 A Model of Floating Authorizations

In this section, we present our process model, an extension of the π-calculus [14]
with specialized constructs regarding authorizations adopted from a model for
authorizations [8]. The syntax of the language is given in Table 1, assuming a
countable set of names N , ranged over by a, b, c, . . . , x, y, z, . . . We briefly present
the constructs adopted from the π-calculus. An inactive process is represented
by 0. By P | P we represent two processes simultaneously active, that may
interact via synchronization in channels. The name restriction construct (νa)P
specifies the creation of a channel name a that is known only to the process P.
The output prefixed process a!b.P sends the name b on channel a and proceeds
as P, and the input prefixed process a?x.P receives a name on channel a and
replaces name x in P with the received name.

The remaining constructs involve authorization specifications. Term (a)P is
the authorization scoping, representing that process P has one authorization to
use channel a. In contrast with name restriction, name a is not private to P .
Term a〈b〉.P represents the process that delegates one authorization for name b
along name a and proceeds as P. Term a(b).P represents the dual, i.e., a process
which receives one authorization for name b along name a and proceeds as (b)P.
Term !(a)a?x.P allows to specify infinite behavior: the process receives the name
along (authorized) name a and substitutes x in P with the received name, which
is activated in parallel with the original process. We adopt a simple form of
infinite processes, but we remark that a general replication construct can be
encoded following standard lines using replicated input, as discussed later.

In (νx)P, a?x.P and !(a)a?x.P the name x is binding with scope P. As usual,
we use fn(P ) and bn(P ) to denote the sets of free and bound names in P, respec-
tively. In (a)P occurrence of the name a is free and occurrences of names a and
b in processes a〈b〉.P and a(b).P are also free. We remark that in our model
authorization scope extrusion is not applicable since a free name is specified,
unlike name restriction, and constructs to send and receive authorizations only
affect the scope of authorizations. For the rest of presentation we use the fol-
lowing abbreviations: αa stands for a!b, a?x, a〈b〉 or a(b) (including when b = a)
and (νã) stands for (νa1) . . . (νan).

2.1 Action Semantics

As in the π-calculus, the essence of the behavior of processes can be seen as
communication. Specific to our model is that two processes ready to synchronize
on a channel must be authorized to use the channel. For example, consider
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that (a)a!b.P | (a)a?x.Q can evolve to (a)P | (a)Q{b/x}, since both sending
and receiving actions are authorized, while (a)a!b.P | a?x.Q lacks the proper
authorization on the receiving end, hence the synchronization cannot occur.
Another specific aspect of our language is authorization delegation. For example,
in (a)(b)a〈b〉.P | (a)a(b).Q both actions along name a are authorized and the
delegating process has the authorization on b, hence the delegation can take
place, leading to (a)P | (a)(b)Q where the authorization scope for b changes.
If actions along name a are not authorized or the process delegating lacks the
authorization for b, then the synchronization is not possible. We formally define
the behavior of processes by means of a labeled transition system and afterwards
by means of a reduction semantics, which are shown equivalent but inform in
somewhat different ways on the specific nature of authorizations in our model.

The labeled transition system (LTS) relies on observable actions, ranged over
by α, defined as follows:

α ::= (a)ia!b | (a)ia?b | (a)i(b)ja〈b〉 | (a)ia(b) | (νb)(a)ia!b | τω

where ω is of the form (a)i+j(b)k and i, j, k ∈ {0, 1} and it may be the case
that a = b. We may recognize the communication action prefixes together with
annotations that capture carried/lacking authorizations and bound names. Intu-
itively, a communication action tagged with (a)0 represents the action lacks an
authorization on a, while (a)1 represents the action is carrying an authorization
on a. In the case for authorization delegation two such annotations are present,
one for each name involved. As in π-calculus, (νb) denotes that the name in the
object of the output is bound. In the case of internal steps, the ω identifies the
lacking authorizations, and we use τ to abbreviate τ(a)0(b)0 where no authoriza-
tions are lacking. By n(α), fn(α) and bn(α) we denote the set of all, free and
bound names of α.

The transition relation is the least relation included in P × A × P, where P
is the set of all processes and A is the set of all actions, that satisfies the rules
in Table 2, which we now briefly describe. The rules (l-out), (l-in), (l-out-a),
(l-in-a) capture the actions that correspond to the communication prefixes. In
each rule the continuation is activated under the scope of the proper autho-
rizations so as to realize confinement. The labels are not decorated with any
authorizations, representing that the actions are not carrying any authoriza-
tions, omitting (a)0 annotations. In contrast, replicated input is authorized by
construction, which is why in (l-in-rep) the label is decorated with the autho-
rization. Rule (l-par) lifts the actions of one of the branches (the symmetric
rule is omitted) while avoiding unintended name capture; rule (l-res) says that
actions of P are also actions of (νa)P, provided that the restricted name is not
specified in the action; and (l-open) captures the bound output case, opening
the scope of the restricted name a, thus allowing for scope extrusion, all three
rules adopted from the π-calculus.

Rule (l-scope-int) shows the case of a synchronization that lacks an autho-
rization on a, so in the conclusion the action exhibited no longer lacks the respec-
tive authorization and leads to a state where the authorization scope is no longer
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Table 2. LTS rules.

present. We use ω(a) to abbreviate (a)2(b)k, (a)1(b)k, and (b)i+j(a)1, for a given
b (including the case b = a), in which case ω is obtained by the respective expo-
nent decrement. We remark that in contrast to the extrusion of a restricted name
via bound output, where the scope floats up to the point a synchronization (rule
(l-close) explained below), authorization scopes actually float down to the level
of communication prefixes (cf. rules (l-out), (l-in), (l-out-a), (l-in-a)), so as to
capture confinement. Rule (l-scope-ext) follows similar lines as (l-scope-int) as
it also refers to lacking authorizations, specifically for the case of an (external)
action that is not carrying a necessary authorization. We use a to denote both
an action that specifies a as communication subject (cf. αa) and is annotated
with (a)0 (including bound output), and of the form (b)ib〈a〉 where i ∈ {0, 1}
(which includes (a)1a〈a〉). By (a)a we denote the respective annotation expo-
nent increase. Rule (l-scope) captures the case of an action that is not lacking an
authorization on a, in which case the action crosses seamlessly the authorization
scope for a.

The synchronization of parallel processes is expressed by the last three rules,
omitting the symmetric cases. In rule (l-comm) one process is able to send and
other to receive a name b along name a so the synchronization may take place.
If the sending and receiving actions are not carrying the appropriate authoriza-
tions, then the transition label τω specifies the lacking authorizations (the needed
two minus the existing ones). In rule (l-close) one process is able to send a bound
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name a and the other to receive it, along name b, so the synchronization may
occur leading to a configuration where the restriction scope is specified (avoiding
unintended name capture) so as to finalize the scope extrusion. The authoriza-
tion delegation is expressed by rule (l-auth), where an extra annotation for ω
is considered given the required authorization for the delegated authorization.
Carried authorization annotations, considered here up to permutation, thus iden-
tify, in a compositional way, the requirements for a synchronization to occur.

2.2 Reduction Semantics

Reduction is defined as a binary relation between processes, denoted →, so
P → Q specifies that process P evolves to process Q in one computational
step. In order to identify processes which differ syntactically but have the same
behavior, we introduce the structural congruence relation ≡, which is the least
congruence relation between processes satisfying the rules given in Table 3. Most
rules are standard considering structural congruence in the π-calculus. In addi-
tion we adopt rules introduced previously [8] that address authorization scopes,
including (sc-auth-inact) that allows to discard unused authorizations.

Regarding authorization scoping, we remark there is no rule which relates
authorization scoping and parallel composition. Adopting a rule of the sort
(a)(P | Q) ≡ (a)P | (a)Q would represent introducing/discarding one authoriza-
tion, thus interfering with authorization accounting. We distinguish (a)(P | Q)
where the authorization is shared between P and Q and (a)P | (a)Q where two
authorizations are specified, one for each process. Another approach could be a
rule of the sort (a)(P | Q) ≡ P | (a)Q, which also may affect the computational
power of a process. For example, processes a!b.0 | (a)0 and (a)(a!b.0 | 0) are
clearly not to be deemed equal.

Structural congruence is therefore not expressive enough to isolate two autho-
rized processes willing to synchronize. To define the reduction relation we intro-
duce an auxiliary notion of static contexts with one and two holes and operation

Table 3. Structural congruence.

Table 4. Contexts with one and two holes.
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Table 5. drift rules.

drift that allows to single out configurations where communication can occur.
Intuitively, reduction is possible if two processes have active prefixes ready for
synchronization and each holds the proper authorization.

Static contexts are defined in Table 4 following standard lines. We use ·1 and
·2 notation to avoid ambiguity, i.e., when C[·1, ·2]=C′[·1] | C′′[·2] then C[P,Q]=
C′[P ] | C′′[Q]. Note that in Table 4 there is no case for name restriction construct
(νa), which allows to identify specific names and avoid unintended name capture.
Remaining cases specify holes can occur in parallel composition and underneath
the authorization scope, the only other contexts underneath which processes
are deemed active. We omit the symmetric cases for parallel composition since
contexts will be used up to structural congruence.

Operator drift plays a double role: on the one hand it is defined only when the
hole/holes is/are under the scope of the appropriate number of authorizations
in the context; on the other hand, when defined, it yields a context obtained
from the original one by removing specific authorizations (so as to capture con-
finement). In our model, the specific authorizations that are removed for the
sake of confinement are the ones nearest to the occurrence of the hole. Operator
drift is defined inductively on the structure of contexts by the rules shown in
Table 5, both for contexts with one hole (rules prefixed with c-) and for contexts
with two holes (rules prefixed with c2-). For the one hole case, drift(C[·]; ã; d̃)
takes a context and lists of names ã and d̃, in which the same name can appear
more than once. The first list carries the names of authorizations that are to be
removed and the second carries the names of authorizations that have already
been removed. Similarly, drift(C[·1, ·2]; ã; b̃; d̃; ẽ) takes a context with two holes,
two lists of names ã and b̃ representing the names of authorizations which are to
be removed and two list of names d̃ and ẽ representing names of authorizations
already removed. Lists ã and d̃ refer to the ·1 hole while b̃ and ẽ refer to the ·2
hole.
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We briefly comment on the rules shown in Table 5, reading from conclusion to
premises. The rule where the authorization is removed from the context (c-rem)

specifies that the name is passed from the “to be removed” list to the “has been
removed” list, where we use ã, c to refer to the list that contains ã and c and
likewise for d̃, c. In the rule where the authorization is preserved in the context
(c-skip), we check if the name is not in the second list, hence only authorizations
that were not already removed proceeding towards the hole can be preserved.
This ensures the removed authorizations are the ones nearest to the hole. The
rule for parallel composition (c-par) is straightforward and the base rule (c-end)

is defined only if the first list is empty. This implies that the operator is defined
only when all authorizations from the first list are actually removed from the
context up to the point the hole is reached. Note that when defining the operator
for some context C[·] and some list of names ã that are to be removed from the
context, no authorizations have been removed and the respective list d̃ is empty.
For example,

drift((a) · ; a; ∅) = ·
drift((a)((a) · | R); a; ∅) = (a)( · | R)
drift( · ; a; ∅) is undefined
drift((a)(b) · ; a, b; ∅) = ·
drift((a) · ; a, b; ∅) is undefined
drift((a) · | (b)0; a, b; ∅) is undefined.

Rule (c2-spl) describes the case for two contexts with one hole each, in which
case the respective operator is used to obtain the resulting context, considering
the name lists ã and d̃ for the context on the left hand side and b̃ and ẽ for the
context on the right hand side. The remaining rules follow exactly the same lines
of the ones for contexts with one hole, where authorization removal addresses
left and right hole in a dedicated way. For example,

drift((b)(a)(a)( ·1 | ·2 ); a, b; a; ∅; ∅) = ·1 | ·2
drift((b)(a)( ·1 | (a) ·2 ); a, b; a; ∅; ∅) = ·1 | ·2
drift((a)(b) ·1 | (a) ·2 ; a, b; a; ∅; ∅) = ·1 | ·2
drift((b)( ·1 | (a)(a) ·2 ); a, b; a; ∅; ∅) is undefined.

The derivation for the case of two holes relies on the derivations for the cases
of one hole and is possible only if the axioms for empty contexts hold. Thus,
the operator is undefined if the proper authorizations are lacking. As before,
lists d̃ and ẽ are used only internally by the operator and we abbreviate
drift(C[·1, ·2]; ã; b̃; ∅; ∅) with drift(C[·1, ·2]; ã; b̃).

We may now present the reduction rules, shown in Table 6. Rule (r-comm)

states that two processes can synchronize on name a, passing name b from emit-
ter to receiver, only if both processes are under the scope of, at least one per
each process, authorizations for name a. The yielded process considers the con-
text where the two authorizations have been removed by the drift operator, and
specifies the confined authorizations for a which scope only over the continu-
ations of the communication prefixes P and Q. Analogously to (r-comm), rule
(r-auth) states that two process can exchange authorization (b) on a name a
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Table 6. Reduction rules.

only if the first process is under the scope of authorization b and if both processes
are authorized to perform an action on name a. As before, the yielded process
considers the context where the authorizations have been removed by the drift
operator. The authorization for b is removed for the delegating process and con-
fined to the receiving process so as to model the exchange. Finally, the rule
(r-stru) closes reduction under structural congruence, and rule (r-newc) closes
reduction under the restriction construct (νa). Note there are no rules that close
reduction under parallel composition and authorization scoping, as these con-
structs are already addressed by the contexts in (r-comm) and (r-auth). There is
also no rule dedicated to replicated input since, thanks to structural congruence
rule (sc-rep), a single copy of replicated process may be distinguished and take
a part in a synchronization captured by (r-comm).

As mentioned previously, we may encode a general form of replication, that
we may write as !P , as

(νa)((a)a!a.0 | !(a)a?x.(P | a!a.0))

where a �∈ fn(P ), since in two steps it reduces to

P | (νa)((a)(P | a!a.0) | !(a)a?x.(P | a!a.0)).

where both a copy of P and the original process are active. Notice that since
a �∈ fn(P ) the process ((a)(P | a!a.0) does not require any further authorizations
on a.

Synchronizations in our model are tightly coupled with the notion of autho-
rization, in the sense that in the absence of the proper authorizations the syn-
chronizations cannot take place. We characterize such undesired configurations,
referred to as error processes, by identifying the redexes singled-out in the reduc-
tion semantics which are stuck due to the lack of the necessary authorizations.
This is the case when the premise of the reduction rules does not hold, hence
when the drift operator is not defined.

Definition 1 (Error). Process P is an error if P ≡ (νc̃)C[αa.Q, α′
a.R] and

1. αa = a!b, α′
a = a?x and drift(C[·1, ·2]; a; a) is undefined, or

2. αa = a〈b〉, α′
a = a(b) and drift(C[·1, ·2]; a, b; a) is undefined.
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Notice that the definition is aligned with that of reduction, where structural
congruence is used to identify a configuration that directly matches one of the
redexes given for reduction, but where the respective application of drift is unde-
fined.

We may show that (fully authorized) τ transitions match reductions.

Theorem 1 (Harmony). P → Q if and only if P
τ−→≡ Q.

Both presentations of the semantics inform on the particular nature of autho-
rizations in our model. On the one hand, the labeled transition system is more
explicit in what concerns authorization manipulation; on the other hand, the
reduction semantics identifies the pairs of processes that may synchronize, and
is therefore useful to identify communication errors in a direct way and more
amenable to use in the proofs of our typing results.

3 Type System

In this section, we present a type discipline that allows to statically identify safe
processes, hence that do not exhibit unauthorized actions (cf. Definition 1). As
mentioned before, our typing analysis addresses configurations where authoriza-
tions can be granted contextually. Before presenting the type language, we intro-
duce auxiliary notions that cope with name generation, namely symbol annota-
tions and well-formedness.

Since the process model includes name restrictions and types contain name
identities, we require a symbolic handling of bound names when they are included
in type specifications. Without loss of generality, we refine the process model for
the purpose of the type analysis adding an explicit symbolic representation of
name restrictions. In this way, we avoid a more involved handling of bound names
in typing environments.

Formally, we introduce a countable set of symbols S ranged over by r, s, t, . . . ,
disjoint with the set of names N , and symbol κ not in N ∪ S. Also, in order to
introduce a unique association of restricted names and symbols, we refine the
syntax of the name creation construct (νa)P in two possible ways, namely (νa :
r)P and (νa : κ)P, decorated with symbol from S or with symbol κ, respectively.
We use sym(P ) to denote a set of all symbols from S in process P. Names
associated with symbols from S may be provided contextual authorizations,
while names associated with symbol κ may not.

For the purpose of this section we adopt the reduction semantics, adapted
here considering refined definitions of structural congruence and reduction. In
particular for structural congruence, we omit axiom (sc-res-inact) (νa)0 ≡
0 and we decorate name restriction accordingly in rules (sc-res-swap),
(sc-res-extr) and (sc-scope-auth)—e.g., P | (νa : r)Q ≡ (νa : r)(P | Q) and
P | (νa : κ)Q ≡ (νa : κ)(P | Q) keeping the condition a /∈ fn(P ). We remark that
the omission of (sc-res-inact) is used in process models where name restriction
is decorated with typing information (cf. [1]).
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Table 7. Typing rules.

The annotations with symbols from S allow to yield a unique identification
of the respective restricted names. The well-formed processes we are interested
in have unique occurrences of symbols from S and no occurrences of symbols
from S in the body of replicated inputs. We may show that well-formedness is
preserved under (adapted) structural congruence and reduction, and that typable
processes are well-formed.

We may now introduce the type language, which syntax is given by γ ::= ϕ | κ
and T ::= γ(T ) | ∅. Types inform on safe instantiations of names that are subject
to contextual authorizations, when γ is a set of names from N and of symbols
from S (denoted ϕ), and when names are not subject to contextual authoriza-
tions (κ). In γ(T ) type T characterizes the names that can be communicated in
the channel, and type ∅ represents names that cannot be used for communica-
tion. A typing environment Δ is a set of typing assumptions of the form a : T .
We denote by names(T ) the set of names that occur in T and by names(Δ) the
set of names that occur in all entries of Δ.
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The type system is defined by the rules given in Table 7. A typing judgment
Δ 
ρ P states that P uses channels as prescribed by Δ and that P can only
be placed in contexts that provide the authorizations given in ρ, which is a
multiset of names (from N , including their multiplicities). The use of a multiset
can be motivated by considering process a!b.0 | a?x.0 that can be typed as
a : {a}({b}(∅)) 
ρ a!b.0 | a?x.0 where necessarily ρ contains {a, a} specifying
that the process can only be placed in contexts that offer two authorizations on
name a (one is required per communicating prefix).

We briefly discuss the typing rules. Rule (t-stop) says that the inactive
process is typable using any Δ and ρ. Rule (t-par) states that if processes
P1 and P2 are typed under the same environment Δ, then P1 | P2 is typed
under Δ as well. Also if P1 and P2 own enough authorizations when contexts
provide authorizations ρ1 and ρ2, respectively, then P1 | P2 will have enough
authorizations when the context provides the sum of authorizations from ρ1 and
ρ2. By ρ1 � ρ2 we represent the addition operation for multisets which sums the
frequencies of the elements. The condition sym(P1)∩sym(P2) = ∅ is necessary to
ensure well-formedness. Rule (t-auth) says that (a)P and P are typed under the
same environment Δ, due to the fact that scoping is a non-binding construct.
If P owns enough authorizations when the context provides ρ � {a}, then (a)P
can be safely placed in a context that provides ρ.

Rule (t-new) states that if P is typable under an environment that contains
an entry for a, then (νa : r)P is typed under the environment removing the entry
for a and where each occurrence of name a in Δ is substituted by the symbol
r. By Δ{r/a} we denote the environment obtained by replacing occurrences of
a by r in every assumption in Δ, hence in every type, excluding when a has an
entry in Δ. Condition r /∈ sym(P ) is necessary to ensure well-formedness and
a /∈ ρ,names(T ) says that the context cannot provide authorization for name a
and ensures consistency of the typing assumption.

The symbolic representation of a bound name in the typing environment
enables us to avoid the case when a restricted (unforgeable) name could be sent
to a process that expects to provide a contextual authorization for the received
name. For example consider process (a)(d)a?x.x!c.0 | (νb : r)(a)a!b.0 where a
contextual authorization for d is specified, a configuration excluded by our type
analysis since the assumption for the type of channel a carries a symbol (e.g.,
a : {a}({r}(∅))) for which no contextual authorizations can be provided. Notice
that the typing of the process in the scope of the restriction uniformly handles the
name, which leaves open the possibility of considering contextual authorizations
for the name within the scope of the restriction.

In rule (t-new-rep) the difference with respect to rule (t-new) is that no
substitution is performed, since the environment must already refer to symbol κ
in whatever pertains to the restricted name. For example to type process (νb :
κ)(a)a!b.0 the type of a must be γ(κ(T )), for some γ and T , where κ identifies
the names communicated in a are never subject to contextual authorizations.

Rule (t-out) considers that P is typed under an environment where types of
names a and b are such that all possible replacements for name b (specified in
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γ′′) are safe to be communicated along name a (which is formalized by γ′′ ⊆ γ′,
where γ′ is given in the type of a), and also that T (the carried type of b)
matches the specification given for a. In such case, the process a!b.P is typed
under the same environment. There are two possibilities to ensure name a is
authorized, namely the context may provide directly the authorization for name
a or it may provide authorizations for all replacements of name a, formalized
as a /∈ ρ ⇒ γ ⊆ ρ. Notice this latter option is crucial to address contextual
authorizations and that in such case γ does not contain symbols, since ρ by
definition does not. Rule (t-in) follows similar principles.

Rule (t-rep-in) considers the continuation is typed with an assumption for
the input bound name x and that the expected context provides authorizations
only for name a. In such a case, the replicated input is typable considering the
environment obtained by removing the entry for x, which must match the car-
ried type of a, provided that x /∈ ρ,names(Δ) since it is bound to this process.
Also, the fact that process P does not contain any symbol from S is necessary
to ensure the unique association of symbols and names when copies of the repli-
cated process are activated (see the discussion on example (4) at the end of
this Section). In that case, process !(a)a?x.P can be placed in any context that
conforms with Δ and provides (any) ρ.

Rules (t-deleg) and (t-recep) consider the typing environment is the same
in premises and conclusion. The handling of the subject of the communication
(a) is similar to, e.g., rule (t-out) and the way in which the authorization is
addressed in rule (t-recep) follows the lines of rule (t-auth). In rule (t-deleg),
the authorization for b is added to the ones expected from the context. Notice
that in such way no contextual authorizations can be provided for delegation,
but the generalization is direct.

For the sake of presenting the results, we say process P is well-typed if
Δ 
∅ P and Δ only contains assumptions of the form a : {a}(T ) or a : κ(T ). At
top level the typing assumptions address the free names of the process, which
are not subject to instantiation. Free names are either characterized by a :
{a}(T ) which says that a is the (final) instantiation, or by a : κ(T ) which
says that a cannot be granted contextual authorizations. For example, process
(a)a!b.0 | (a)(b)a?x.x!c.0 is typable under the assumption that name b has type
{b}({c}(∅)), while it is not typable under the assumption κ({c}(∅)). The fact that
no authorizations are provided by the context (ρ = ∅) means that the process P
is self-sufficient in terms of authorizations.

We may now present our results, starting by mentioning some fundamen-
tal properties. We may show that typing derivations enjoy standard properties
(Weakening and Strengthening) and that typing is preserved under structural
congruence (Subject Congruence). As usual, to prove typing is preserved under
reduction we may also show an auxiliary result that addresses name substitution
(cf. Lemma 3.1 [13]). Noticeably, even though subtyping is not present, the result
uses an inclusion principle that already hints on substitutability. Our first main
result says that typing is preserved under reduction.
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Theorem 2 (Subject Reduction). If P is well-typed, Δ 
∅ P and P → Q
then Δ 
∅ Q.

Not surprisingly, since errors involve redexes, the proof of Theorem 2 is inter-
twined with the proof of the error absence property, given in our second main
result which captures the soundness of our typing analysis.

Proposition 1 (Type Soundness). If P is well-typed then P is not an error.

As usual, the combination of Theorem 2 and Proposition 1 yields type safety,
stating that any configuration reachable from a well-typed one is not an error.
Hence type safety ensures that well-typed processes will never incur in a config-
uration where the necessary authorizations to carry out the communications are
lacking.

We extend the example shown in the Introduction to illustrate the typing
rules:

(alice)alice!exam.0 | (exam)(minitest)(alice)alice?x.x!task .0 (1)

Considering assumption alice : {alice}({exam,minitest}(∅)), and assuming that
the type of exam is {exam}(∅), by rule (t-out) we conclude that it is safe to
send name exam along alice, since the (only) instantiation of exam is contained
in the carried type of alice. Now let us place process (1) in a context restricting
exam:

(νexam : r)((alice)alice!exam.0 | (exam)(minitest)(alice)alice?x.x!task .0) (2)

To type this process, the assumption for alice specifies type {alice}
({r,minitest}(∅)), representing that in alice a restricted name can be commu-
nicated. Hence, the process shown in (2) cannot be composed with others that
rely on contextual authorizations for names exchanged in alice, and can only be
composed with processes like (alice)alice?x.(x)x!task or that use authorization
delegation. Now consider process:

!(license)license?x.(νexam : r)((x)x!exam.0 | (x)(exam)x?y.y!task .0) (3)

that models a server that receives a name and afterwards is capable of both
receiving (on the lhs) and sending (a fresh name, on the rhs) along the received
name. Our typing analysis excludes this process since it specifies a symbol (r)
in the body of a replicated input. In fact, the process may incur in an error, as
receiving alice twice leads to:

(νexam1 : r)((alice)alice!exam1 .0 | (exam1 )(alice)alice?y.y!task .0)
| (νexam2 : r)((alice)alice!exam2 .0 | (exam2 )(alice)alice?y.y!task .0). (4)

where two copies of the replicated process are active in parallel, and where
two different restricted names can be sent on alice, hence the error is reached
when the contextual authorization does not match the received name (e.g.,
(exam2 )(alice)exam1 !task .0).
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In order to address name generation within replicated input, we use dis-
tinguished symbol κ that types channels that are never subject to contextual
authorizations, even within the restriction scope. Hence replacing the r annota-
tion by κ in the process shown in (3) does not yield it typable, since a contextual
authorization is expected for name exam and may lead to an error like before.
However, process:

!(license)license?x.(νexam : κ)(alice)alice!exam.0 (5)

is typable, hence may be composed with contexts compliant with alice :
{alice}(κ(T )), i.e., that do not rely on contextual authorizations for names
received on alice.

4 Concluding Remarks

In the literature, we find a plethora of techniques that address resource usage con-
trol, ranging from locks that guarantee mutual exclusion in critical code blocks
to communication protocols (e.g., token ring). Several typing disciplines have
been developed to ensure proper resource usage, such as [5,10,15], where capa-
bilities are specified in the type language, not as a first class entity in the model.
Therefore in such approaches it is not possible to separate resource and capa-
bility like we do. We distinguish an approach that considers accounting [5], in
the sense that the types specify the number of messages that may be exchanged,
therefore related to the accounting presented here.

We also find proposals of models that include capabilities as first class enti-
ties, addressing usage of channels and of resources as communication objects,
such as [4,9,12,16]. More specifically, constructs for restricting (hiding and fil-
tering) the behaviors allowed on channels [9,16], usage specification in a (bind-
ing) name scope construct [12], and authorization scopes for resources based
on given access policies [4]. We distinguish our approach from [9,16] since the
proposed constructs are static and are not able to capture our notion of a float-
ing resource capability. As for [12], the usage specification directly embedded in
the model resembles a type and is given in a binding scoping construct, which
contrasts with our non-binding authorization scoping. Also in [4] the provided
detailed usage policies are associated to the authorization scopes for resources.
In both [4,12] the models seem less adequate to capture our notion of floating
authorizations as access is granted explicitly and controlled via the usage/policy
specification, and for instance our notion of confinement does not seem to be
directly representable.

We have presented a model of floating authorizations, a notion we believe
is unexplored in the existing literature. We based our development on previous
work [8] where a certain form of inconsistency when handling the authoriza-
tion granting in delegation was identified, while in this work granting is han-
dled consistently thanks to the interpretation of accounting. We remark that
adding choice to this work can be carried out in expected lines. More interest-
ing would be to consider non-consumptive authorizations, that return to their
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original scope after (complete) use. We also presented a typing analysis that
addresses contextual authorizations, which we also believe is unexplored in the
literature in the form we present it here. Our typing rules induce a decidable
type-checking procedure, since rules are syntax directed, provided as usual that
a (carried) type annotation is added to name restrictions. Albeit the work pre-
sented here is clearly of a theoretical nature, we hope the principles developed
here may be conveyed to, e.g., the licensing domain where we have identified
related patents [2,3,6] for the purpose of certifying license usage.

A notion of substitutability naturally arises in our typing analysis and we
leave to future work a detailed investigation of a subtyping relation that captures
such notion. We believe our approach can be extended by considering some form
of usage specifications like the ones mentioned above [4,12], by associating to
each authorization scoping more precise capabilities in the form of behavioral
types [11]. This would also allow us to generalize our approach addressing certain
forms of infinite behavior, namely considering recursion together with linearity
constraints that ensure race freedom. It would also be interesting to resort to
refinement types [7] to carry out our typing analysis, given that our types can
be seen to some extent as refinements on the domain of names.
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tions. This work has been partially supported by the Ministry of Education and Science
of the Republic of Serbia, project ON174026, and EU COST Action IC1405 (Reversible
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Villetaneuse, France

laure.petrucci@lipn.univ-paris13.fr
2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands

J.C.vandePol@utwente.nl

Abstract. This paper considers the consistency problem for Parametric
Interval Markov Chains. In particular, we introduce a co-inductive defini-
tion of consistency, which improves and simplifies previous inductive def-
initions considerably. The equivalence of the inductive and co-inductive
definitions has been formally proved in the interactive theorem prover
PVS.

These definitions lead to forward and backward algorithms, respec-
tively, for synthesizing an expression for all parameters for which a given
PIMC is consistent. We give new complexity results when tackling the
consistency problem for IMCs (i.e. without parameters). We provide a
sharper upper bound, based on the longest simple path in the IMC. The
algorithms are also optimized, using different techniques (dynamic pro-
gramming cache, polyhedra representation, etc.). They are evaluated on
a prototype implementation. For parameter synthesis, we use Constraint
Logic Programming and the PARMA library for convex polyhedra.

1 Introduction

Markov Chains (MC) are widely used to model stochastic systems, like random-
ized protocols, failure and risk analysis, and phenomena in molecular biology.
Here we focus on discrete time MCs, where transitions between states are gov-
erned by a state probability distribution, denoted by μ : S×S → [0, 1]. Practical
applications are often hindered by the fact that the probabilities μ(s, t), to go
from state s to t, are unknown. Several solutions have been proposed, for instance
Parametric Markov Chains (PMC) [7] and Interval Markov Chains (IMC) [14],
in which unknown probabilities are replaced by parameters or intervals, respec-
tively, see Figs. 1a and b. Following [9], we study their common generalization,
Parametric Interval Markov Chains (PIMC, Fig. 1c), which allow intervals with
parametric bounds. PIMCs are more expressive than IMCs and PMCs [2]. PIMCs
allow to study the boundaries of admissible probability intervals, which is useful
in the design exploration phase. This leads to the study of parameter synthesis
for PIMCs, started in [12].
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Fig. 1. Examples of a PMC (a), an IMC (b), and of their generalization PIMC (c).
The MC (d) implements the PIMC (c), as shown by the dashed edges, and formalized
in Definition 7. We drop self-loops with probability 1 (or [1, 1]) in all terminal nodes.

IMCs can be viewed as specifications of MCs. An IMC is consistent if there
exists an MC that implements it. The main requirements on the implementa-
tion are: (1) all behaviour of the MC can be simulated by the IMC, preserving
probabilistic information; and (2) the outgoing transition probabilities for each
state sum up to 1. The consistency synthesis problem for PIMCs is to compute
all parameter values leading to a consistent IMC. E.g., PIMC in Fig. 1c1 is con-
sistent when q = 0, p = 1, or when p + q = 1, r = 1. The witness MC of Fig. 1d
corresponds to p = 1

4 , q = 3
4 , r = 1.

Contribution. This paper studies the consistency synthesis problem for PIMCs.
We improve the theory in [12], which gave an inductive definition of n-
consistency. Basically, a state is n-consistent if it has a locally consistent subset
of successors, which are in turn all (n − 1)-consistent. Here local consistency
checks that there is a solution within the specified bounds that sums up to 1.
That paper provided an expression for n-consistency. There are two drawbacks
from an algorithmic perspective: all possible subsets of successors must be enu-
merated, and a sufficiently large upper bound for n must be provided. It has
been shown that taking the number of states for n is sufficient.

We address both problems. First we simplify the inductive definition and
show that for IMCs, the enumeration over the subset of successors is not neces-
sary. Instead, we can restrict to a single candidate: the set of all (n−1)-consistent
successors. Second, we provide a smaller upper bound for n. We show that it
is sufficient to take the length of the longest simple path in the IMC. However,
the length of the longest simple path cannot be efficiently computed (this would
solve the Hamiltonian path problem, which is NP-complete).

Our main contribution is to provide an alternative, co-inductive definition of
consistency, dropping the need to reason about n altogether. Instead, we define
consistency as the largest set, such that a state is consistent if the set of its con-

1 In the following, for the sake of readability, we do not consider linear combinations
of parameters as bounds of the intervals. However, allowing them would not change
the results.
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sistent successors is locally consistent. We have formally proved the equivalence
between all these definitions in the interactive theorem prover PVS [17]. The
complete PVS proof development is available online 2.

Based on the simplified inductive definition, we provide a polynomial time
forward algorithm to check that an IMC is consistent. Based on the new co-
inductive definition, we provide a polynomial backward algorithm. Again, the
number of iterations is bounded by the length of the longest simple path, without
having to compute it.

Finally, we provide algorithms to compute an expression for all parameters
for which a PIMC is consistent. Unfortunately, to obtain an expression we must
fall back on subset enumeration. The forward algorithm can be implemented as a
Constraint Logic Program, so Prolog + CLP(Q) can be used directly to compute
a list of all solutions, basically as a disjunction of conjunctions of linear inequa-
tions over the parameters. We introduce two optimizations: caching intermediate
results and suppressing subsumed solutions. The backward algorithm for IMCs
can be viewed as computing the maximal solution of a Boolean Equation Sys-
tem. Generalizing this to PIMCs, we now compute the maximal solution of an
equation system over disjunctions of conjunctions of constraints. Such equation
systems can be solved by standard iteration, representing the intermediate solu-
tions as powerdomains over convex closed polyhedra. We implemented this using
the Parma Polyhedra Library [1].

Related Work. One of the first results on synthesis for PMCs [7] computes the
probability of path formulas in PCTL as an expression over the parameters. Since
then, the efficiency and numeric stability has been improved considerably [8,18].
On such models, the realizability (or well-defined) property is considered [13,
16] which mainly differs from the consistency we address in that they consider
consistency of all states, while we have the option to avoid some states (and
their successors) by assigning null-probability to some edges. Model checking
for IMCs is studied, for instance in [5,6]. For continuous-time Markov Chains,
precise parameter synthesis is studied as well [4]. However, PIMCs are more
expressive (concise) than PMCs and IMCs, as shown in [2]. As far as we know,
besides reachability, there are no model checking results for PIMCs.

Other specification formalisms include Constraint Markov Chains [11], with
arbitrary constraints on transitions, and Abstract Probabilistic Automata [10],
which add non-deterministic transitions. We believe that our work can be
extended in a straightforward manner to CMCs with linear constraints. For
APA the situation is probably quite different. Another branch of research has
investigated the synthesis of parameters for timed systems, but that is out of
the scope of this paper.

PIMCs, and the related consistency problem, have been introduced in [9].
Our backward algorithm for IMCs is somewhat similar in spirit to the pruning
operator of [9]. We provide a sharper upper bound on the number of required
iterations. That paper addresses the existence of a consistent parameter valuation
2 The complete text of the proofs, their PVS formalisation, Prolog programs, and

experimental data can be found at http://fmt.cs.utwente.nl/∼vdpol/PIMC2018.zip.

http://fmt.cs.utwente.nl/~vdpol/PIMC2018.zip
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for a restricted subclass of PIMCs, where parameters occur only locally. The
parameter synthesis problem for the full class of PIMCs was considered in [12].
We improved on their theory, as explained before. Our experiments (Sect. 6)
show that our algorithms and optimizations are more efficient than the approach
in [12].

Very recently, [2] also introduced a CLP approach for checking the existence
of a consistent parameter valuation. Their contribution is a CLP program of
linear size in the PIMC. Their CLP is quite different from ours: basically, they
introduce a Boolean variable for each state and a real variable for each transition
probability of the Markov Chain that implements the PIMC. So solving the CLP
corresponds to searching for a satisfying implementation.

2 Parametric Interval Markov Chains

As Parametric Interval Markov Chains allow for describing a family of Markov
Chains, we first define these.

Definition 1 (Markov Chain). A Markov Chain (MC) is a tuple
(S, s0, μ,A, V ), where:

– S is a set of states and s0 ∈ S is the initial state;
– μ : S × S → [0, 1] is the transition probability distribution s.t.:

∀s ∈ S :
∑

s′∈S μ(s, s′) = 1;
– A is a set of labels and V : S → A is the labelling function.

Notation 2. Let P be a set of parameters, i.e. variable names. We denote by
Int[0, 1](P ) the set of pairs [a, b] with a, b ∈ [0, 1] ∪ P . Given x ∈ Int[0, 1](P ), we
denote by x� and xu its left and right components. If x is an interval, this corre-
sponds to its lower and upper bounds. The same notation is used for functions
which result in an interval.

Example 3. [0.3, 0.7], [0, 1], [0.5, 0.5], [p, 0.8], [0.99, q], [p, q] are all in Int[0, 1]
({p, q}).

Definition 4 ((Parametric) Interval Markov Chain). A Parametric Inter-
val Markov Chain (PIMC) is a tuple (P, S, s0, ϕ,A, V ) where:

– P is a set of parameters;
– S is a set of states and s0 ∈ S is the initial state;
– ϕ : S × S → Int[0, 1](P ) is the parametric transition probability constraint;
– A is a set of labels and V : S → A is the labelling function.

An Interval Markov Chain (IMC) is a PIMC with P = ∅ (we drop P every-
where).

Note that Definitions 1 and 4 are very similar, but for PIMCs and IMCs the
well-formedness of the intervals and of the probability distribution will be part
of the consistency property to be checked (see Definition 11).
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(a) A Parametric Interval Markov Chain
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(b) An Interval Markov Chain

Fig. 2. Running examples

When ambiguity is possible, we will use a subscript to distinguish the models,
e.g. SM, SI and SP will denote the set of states of respectively a MC, an IMC
and a PIMC.

If all intervals are point intervals of the form [p, p], this PIMC is actually a
Parametric Markov Chain [7].

Example 5. Figure 2a shows our running example of a PIMC with two parame-
ters p and q (taken from [12]). Figure 2b shows a particular IMC.

Definition 6 (Support). The support of a probability distribution μ at a state
s ∈ SM is the set: sup(μ, s) := {s′ ∈ SM | μ(s, s′) > 0}.

Similarly, for a parametric transition probability constraint ϕ at a state s ∈
SP the support is the set: sup(ϕ, s) := {s′ ∈ SP | ϕu(s, s′) > 0}.
Assumption: From now on, we will assume that I is finitely branching, i.e. for
all s ∈ S, sup(ϕ, s) is a finite set. For the algorithms in Sect. 4 we will even
assume that S is finite.

PIMCs and IMCs can be viewed as specifications of MCs.

Definition 7 (A MC implements an IMC). Let M = (SM, sM0, μ,A, VM)
be a MC and I = (SI , sI0, ϕ,A, VI) an IMC. M implements I (M � I) if there
exists a simulation relation R ⊆ SM × SI , s.t. ∀sM ∈ SM and sI ∈ SI , if
sMRsI , then:

1. VM(sM) = VI(sI)
(the source and target states have the same label)

2. There exists a probabilistic correspondence δ : SM × SI → [0, 1], s.t.:
(a) ∀s′

I ∈ SI :
∑

s′
M∈SM μ(sM, s′

M) · δ(s′
M, s′

I) ∈ ϕ(sI , s′
I)

(the total contribution of implementing transitions satisfies the specifica-
tion)

(b) ∀s′
M ∈ SM : μ(sM, s′

M) > 0 ⇒ ∑
s′

I∈SI δ(s′
M, s′

I) = 1
(the implementing transitions yield a probability distribution)

(c) ∀s′
M ∈ SM, s′

I ∈ SI : δ(s′
M, s′

I) > 0 ⇒ s′
MRs′

I
(corresponding successors are in the simulation relation)
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(d) ∀s′
M ∈ SM, s′

I ∈ SI : δ(s′
M, s′

I) > 0 ⇒ μ(sM, s′
M) > 0 ∧ ϕu(sI , s′

I) > 0
(δ is only defined on the support of μ and ϕ)

Definition 8 (Consistency). An IMC I is consistent if for some MC M, we
have M � I.

A PIMC is consistent if there exist parameter values such that the corre-
sponding IMC is consistent.

Intuitively, this definition states that the implementation is an MC, whose
behaviour is allowed by the specification IMC, i.e., the IMC can simulate the
MC. Clause (2d) was not present in the original definition [9], but it is convenient
in proofs. We first show that limiting δ to the support of μ and ϕ does not alter
the implementation relation.

Lemma 9. Definition 7 with clauses (2a)–(2c) is equivalent to Definition 7 with
(2a)–(2d).

Proof. Assume, there exist R, sMRsI and δ that satisfy conditions (2a)–(2c) of
Definition 7. Define:

δ′(s′
M, s′

I) :=
{

δ(s′
M, s′

I) if μ(sM, s′
M) > 0 and ϕu(sI , s′

I) > 0;
0 otherwise.

Note that if μ(sM, s′
M) > 0 and ϕu(sI , s′

I) = 0 then δ(s′
M, s′

I) = 0 by (2a). Now
properties (2a)–(2d) can be easily checked for δ′. 	

Example 10. For Fig. 3, checking condition (2a) for t1 boils down to 0.1 · 0.3 +
0.6 · 0.2 = 0.15 ∈ [0.1, 0.2]. Checking condition (2b) for s1 requires 0.7 + 0.3 = 1.

s0

s3

s2

s1

t0

t3

t2

t1

R

0.1

0.6

0.3

[0.1,0.2]
[0.1,0.3]

[0.5,0.8]

0.3

0.7

0.2

0.8
0.2

0.8

Fig. 3. The Markov Chain (left) implements the Interval Markov Chain (right)
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3 Consistency of Interval Markov Chains

In this section we study consistency of Interval Markov Chains; we will return
to Parametric IMCs in Sect. 5. Intuitively, an IMC is consistent if it can be
implemented by at least one MC. From now on, we will drop the labelling V ,
since it plays no role in the discussion on consistency, and thus consider an
arbitrary IMC I = (S, s0, ϕ).

3.1 Local Consistency

Local consistency of a state s ∈ S is defined with respect to a set X ⊆ S of its
successors, and its probability constraint ϕ(s, ·). It ensures the existence of some
probability distribution satisfying the interval constraints on transitions from s
to X: the collective upper bound should be greater than or equal to 1 (condition
up(ϕ, s,X)), the collective lower bound less than or equal to 1 (low(ϕ, s,X)).
Moreover, each lower bound should be smaller than the corresponding upper
bound, and the states outside X should be avoidable, in the sense that they
admit probability 0 (local(ϕ, s,X)).

Definition 11 (Local consistency). The local consistency constraints for a
state s ∈ S and a set X ⊆ S is LC (ϕ, s,X) s.t.:

LC (ϕ, s,X) := up(ϕ, s,X) ∧ low(ϕ, s,X) ∧ local(ϕ, s,X), where
up(ϕ, s,X) :=

∑
s′∈X ϕu(s, s′) ≥ 1

low(ϕ, s,X) :=
∑

s′∈X ϕ�(s, s′) ≤ 1
local(ϕ, s,X) := (∀s′ ∈ X : ϕ�(s, s′) ≤ ϕu(s, s′)) ∧ (∀s′ ∈ X : ϕ�(s, s′) = 0)

We obtain the following facts, which can be directly checked from the defini-
tions. Note that from Lemma 12(1) and (2) it follows that we may always restrict
attention to the support of (ϕ, s): LC (ϕ, s,X) ≡ LC (ϕ, s,X ∩ sup(ϕ, s)).

Lemma 12. For X,Y ⊆ S:

1. If X ⊆ Y and LC (ϕ, s,X) then LC (ϕ, s, Y ).
2. If LC (ϕ, s,X) then also LC (ϕ, s,X ∩ sup(ϕ, s)).

Proof. 1. Assume X ⊆ Y and LC (ϕ, s,X), hence up(ϕ, s,X), low(ϕ, s,X) and
local(ϕ, s,X).
From up(ϕ, s,X), we have

∑
s′∈X ϕu(s, s′) ≥ 1, so we get up(ϕ, s, Y ):

∑

s′∈Y

ϕu(s, s′) = (
∑

s′∈X

ϕu(s, s′)+
∑

s′∈Y \X

ϕu(s, s′)) ≥ (1+
∑

s′∈Y \X

ϕu(s, s′)) ≥ 1

From local(ϕ, s,X), we have ∀s′ ∈ Y \X : ϕ�(s, s′) = 0, and from low(ϕ, s,X),
we have

∑
s′∈X ϕ�(s, s′) ≤ 1, so we get low(ϕ, s, Y ):

∑

s′∈Y

ϕ�(s, s′) = (
∑

s′∈X

ϕ�(s, s′) +
∑

s′∈Y \X

ϕ�(s, s′)) =
∑

s′∈X

ϕ�(s, s′) + 0 ≤ 1
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Finally, from local(ϕ, s,X), it holds that for s′ ∈ Y , if s′ ∈ X then ϕ�(s, s′) ≤
ϕu(s, s′), else ϕ�(s, s′) = 0, which also implies ϕ�(s, s′) ≤ ϕu(s, s′). If s′ ∈ Y
then s′ ∈ X, so ϕ�(s, s′) = 0. So we get local(ϕ, s, Y ). This proves that
LC (ϕ, s, Y ).

2. Assume LC (ϕ, s,X), hence up(ϕ, s,X), low(ϕ, s,X) and local(ϕ, s,X). Note
that if s′ ∈ X \ sup(ϕ, s), by definition of sup, we obtain ϕu(s, s′) = 0 and by
local(ϕ, s,X), we obtain ϕ�(s, s′) = 0.

∑
s′∈X∩sup(ϕ,s) ϕu(s, s′) =

∑
s′∈X ϕu(s, s′) − ∑

t∈X\sup(ϕ,s) ϕu(s, s′)
=

∑
s′∈X ϕu(s, s′) − 0 ≥ 1

∑
s′∈X∩sup(ϕ,s) ϕ�(s, s′) =

∑
s′∈X ϕ�(s, s′) − ∑

s′∈X\sup(ϕ,s) ϕ�(s, s′)
=

∑
s′∈X ϕ�(s, s′) − 0 ≤ 1

Finally, if s′ ∈ X ∩ sup(ϕ, s) then s′ ∈ X, so ϕ�(s, s′) ≤ ϕu(s, s′).
Otherwise, s′ ∈ X or s′ ∈ X \ sup(ϕ, s), but in both cases ϕ�(s, s′) = 0. 	


3.2 Co-inductive Definition of Global Consistency

Global consistency of (P)IMCs can be defined in several ways, e.g. co-inductively
and inductively. Here, we introduce a new co-inductive definition of global con-
sistency, as a greatest fixed point (gfp). We first introduce an abbreviation for
the set of locally consistent states w.r.t. a set X:

Notation 13. LCϕ(X) := {s | LC (ϕ, s,X)}
Next, we define Cons as the greatest fixed point of LCϕ. Intuitively, from

consistent states one can keep taking locally consistent steps to other consistent
states.

Definition 14 (Global consistency, co-inductive). Cons := gfp(LCϕ).

Lemma 15. From the definition of greatest fixed point, Cons is the largest set
C s.t. C ⊆ LCϕ(C):

1. s ∈ Cons ≡ s ∈ LCϕ(Cons) ≡ s ∈ LCϕ(Cons ∩ sup(ϕ, s))
2. If C ⊆ LCϕ(C) then C ⊆ Cons.
Proof. (1) holds because Cons is a fixed point; the second equation uses
Lemma 12(2); (2) holds because Cons is the greatest fixed point. (Tarski) 	

We motivate the definition of consistency by the following two theorems:

Theorem 16. Let M = (SM, sM0, μ) be a MC, I = (SI , sI0, ϕ) an IMC, and
assume M � I. Then sI0 ∈ Cons.
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Proof. Since M � I, there is a simulation relation R, with sM0RsI0, and for all
sM ∈ SM, sI ∈ SI , if sMRsI , there is a correspondence δ, satisfying properties
(2a)–(2d) of Definition 7. We will prove that {sI | ∃sM : sMRsI} ⊆ Cons. Since
sM0RsI0, it will follow that sI0 ∈ Cons.

We proceed using the gfp-property (Lemma 15(2)), so it is sufficient to prove:

{sI ∈ SI | ∃sM ∈ SM : sMRsI} ⊆ LCϕ({sI ∈ SI | ∃sM ∈ SM : sMRsI}).

Let sI ∈ SI be given with sM ∈ SM s.t. sMRsI . Define X := {s′
I ∈ SI | ∃s′

M ∈
SM : δ(s′

M, s′
I) > 0}. Clearly, if s′

I ∈ X, then for some s′
M ∈ SM, δ(s′

M, s′
I) > 0

and by the correspondence property of Definition 7(2c), s′
MRs′

I . So X ⊆ {sI ∈
SI | ∃sM ∈ SM : sMRsI}. Thus, by monotonicity, Lemma12(1), it is sufficient
to show that sI ∈ LCϕ(X).

To check that sI ∈ LCϕ(X), we first check that the corresponding transitions
yield a probability distribution:

∑
s′

I∈X

∑
s′

M∈SM μ(sM, s′
M) · δ(s′

M, s′
I)

=
∑

s′
I∈SI

∑
s′

M∈SM μ(sM, s′
M) · δ(s′

M, s′
I) (if s′

I �∈ X, δ(s′
M, s′

I) = 0 by def. of X)

=
∑

s′
M∈SM μ(sM, s′

M) · (∑s′
I∈SI δ(s′

M, s′
I)) (by

∑
-manipulation)

=
∑

s′
M∈SM μ(sM, s′

M) · 1 (δ is a prob. distrib. by Definition 7(2b))

= 1 (μ is a prob. dist. by Definition 1 of MC)

By Definition 7(2a), ∀s′
I ∈ X, ϕ�(sI , s′

I) ≤ ∑
s′

M∈SM μ(sM, s′
M) ·

δ(s′
M, s′

I) ≤ ϕu(sI , s′
I). By the computation above,

∑
s′

I∈X ϕ�(sI , s′
I) ≤ 1 and

∑
s′

I∈X ϕu(sI , s′
I) ≥ 1, proving low(ϕ, sI ,X) and up(ϕ, sI ,X), respectively. For

s′
I ∈ X we already established ϕ�(sI , s′

I) ≤ ϕu(sI , s′
I). For s′

I ∈ X, by defini-
tion of X: ∀s′

M : δ(s′
M, s′

I) = 0. Thus, ϕ�(sI , s′
I) ≤ 0 by the computation above,

proving local(ϕ, sI ,X). This proves sI ∈ LCϕ(X). 	

Conversely, we prove that a consistent IMC can be implemented by at least one
MC. Note that the proof of Theorem17 provides the construction of a concrete
MC.

Theorem 17. For IMC I = (S, s0, ϕ), if s0 ∈ Cons, then there exist a proba-
bility distribution μ and a MC M = (Cons, s0, μ) such that M � I.
Proof. Assume I is consistent. Consider an arbitrary state s ∈ Cons. We will
define μ(s, s′) in between ϕ�(s, s′) and ϕu(s, s′), scaling it by a factor p such that
μ(s) sums up to 1. Define L :=

∑
s′∈Cons ϕ�(s, s′) and U :=

∑
s′∈Cons ϕu(s, s′).

Set p := 1−L
U−L (or 0 if L = U). Finally, we define μ(s, s′) := (1 − p) · ϕ�(s, s′) +

p · ϕu(s, s′).
By Lemma 15, s ∈ LCϕ(Cons), thus L ≤ 1 ≤ U . Hence 0 ≤ p ≤ 1, and indeed

ϕ�(s, s′) ≤ μ(s, s′) ≤ ϕu(s, s′). We check that μ(s) is a probability distribution:
∑

s′∈Cons μ(s, s′) =
∑

s′∈Cons

(
(1 − p) · ϕ�(s, s′) + p · ϕu(s, s′)

)

= (1 − p)L + pU = L + p(U − L) = L + 1−L
U−L (U − L) = 1

Finally, we show that M implements I. Define R := {(s, s) | s ∈ Cons}.
Define δ(s′, s′) := 1 and δ(s′, s′′) := 0 for s′ = s′′. Properties (2a)–(2c) of
Definition 7 follow directly from the definition of δ, so by Lemma 9, M � I. 	
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3.3 Inductive n-Consistency

Next, we define n-consistency for a state s ∈ S in an IMC, inductively. This
rephrases the definition from [12]. Intuitively, n-consistent states can perform n
consistent steps in a row. That is, they can evolve to (n − 1)-consistent states.

Definition 18 (Consistency, inductive). Define sets Consn ⊆ S by recur-
sion on n:

Cons0 = S,
Consn+1 = LCϕ(Consn).

Lemma 19. We have the following basic facts on local consistency:

1. Consn+1 ⊆ Consn

2. If m ≤ n then Consn ⊆ Consm.
3. If Consn+1 = Consn and s ∈ Consn then ∀m : s ∈ Consm.

Proof

1. Induction on n. n = 0 is trivial. Let s′ ∈ Consn+2 = LCϕ(Consn+1).
By induction hypothesis, Consn+1 ⊆ Consn, so by the monotonicity
Lemma 12(1), s′ ∈ LCϕ(Consn) = Consn+1, indeed.

2. Induction on n − m, using (1).
3. If m > n, we prove the result with induction on m − n. Otherwise the result

follows from (2). 	

Next, we show that universal n-consistency coincides with global consistency.
Note that this depends on the assumption that the system is finitely branching.

Theorem 20. Let sup(ϕ, s) be finite for all s. Then s ∈ Cons ≡ ∀n : s ∈
Consn.

Proof. ⇒: Induction on n. The base case is trivial. Assume s ∈ Cons. Then
s ∈ LCϕ(Cons). By induction hypothesis, Cons ⊆ Consn. So, by monotonicity,
Lemma 12(1), s ∈ LC (Consn) = Consn+1.

⇐: Assume that s ∈ ⋂
n≥0 Consn. Define Yn := Consn ∩ sup(ϕ, s). By

Lemma 19(1), s ∈ Consn+1 = LC (Consn) = LCϕ(Yn) and Yn is a decreasing
sequence of finite sets (since ϕ has finite support). Hence it contains a smallest
member, say Ym. For Ym, we have s ∈ LCϕ(Ym) and Ym ⊆ ⋂

n≥0 Consn. By
monotonicity, Lemma 12(1), s ∈ LCϕ(

⋂
n≥0 Consn). So we found another fixed

point, and by Lemma15(2),
⋂

n≥0 Consn ⊆ Cons, so indeed s ∈ Cons. 	
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Fig. 4. Infinitely-
branching IMC

The following example shows that the condition on
finite branching is essential. The situation is similar to
the equivalence of the projective limit model with the
bisimulation model in process algebras [3].

Example 21. Let t
[0,1]−→ ti,∀i and ti+1

[0,1]−→ ti, see Fig. 4.
Then ∀i : ti is i-consistent, but not (i + 1)-consistent
(since no transition exits t0). So t is n-consistent for all
n. However, no ti is globally consistent, and LC (t, ∅) =
⊥, so t is not globally consistent either.
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Finally, we would like to limit the n that we need to check. It has been shown
before [12] that when the number of states is finite, n = |S| is sufficient. We now
show that we can further bound the computation to the length of the longest
simple path.

Definition 22 (Paths properties). We define a (reverse) path of length n as
a sequence s0, . . . , sn−1, such that for all 0 ≤ i < n, ϕu(si+1, si) > 0. The path is
simple if for all i, j, with 0 ≤ i < j < n, we have si = sj. This path is bounded
by m if n ≤ m.

Note that, for instance, a path (s0, s1, s2) has length 3 according to this defini-
tion. The essential argument is provided by the following lemma:

Lemma 23. If s ∈ Consn+1\Consn+2, then there exists a s′, with ϕu(s, s′) > 0,
such that s′ ∈ Consn \ Consn+1.

Proof. Assume s ∈ Consn+1 and s ∈ Consn+2. By Lemma 12(2): s ∈
LCϕ(Consn ∩ sup(ϕ, s)). Now if Consn ∩ sup(ϕ, s) ⊆ Consn+1, by monotonicity
we would have s ∈ LCϕ(Consn ∩ sup(ϕ, s)) ⊆ LCϕ(Consn+1) = Consn+2, which
contradicts the assumption. So there must be some s′ ∈ Consn with ϕu(s, s′) > 0
and s′ ∈ Consn+1. 	


Since Consn+1(s) depends on Consn of its direct successors only, consistency
information propagates along paths. In particular, it propagates no longer than
the longest simple path. This can be made more formal as follows:

Theorem 24. If all simple paths from s are bounded by m, then:

Consm(s) ≡ ∀n : Consn(s)

Proof. We first prove the following statement by induction on n:

(*) If s ∈ Consn \ Consn+1, then there exists a simple path from s of
length n + 1, s0, . . . , sn = s, such that for all 0 ≤ i ≤ n, si ∈ Consi+1.

Case n = 0: we take the path [s]. Case n+1: Let s ∈ Consn+1 but s ∈ Consn+2.
By Lemma 23, we obtain some s′ with ϕu(s, s′) > 0 and s′ ∈ Consn \ Consn+1.
By induction hypothesis, we get a simple path s0, . . . , sn = s′, with for all
0 ≤ i ≤ n, si ∈ Consi+1. Extend this path with sn+1 := s. We must show that
the extended path is still simple, i.e. si = s for i ≤ n. Since s ∈ Consn+1, by
Lemma 19(2), s ∈ Consi+1 but si ∈ Consi+1, so s = si.

Finally, to prove the theorem, assume s ∈ Consm, with all simple paths from
s bounded by m. We prove s ∈ Consn by induction on n. If n ≤ m, s ∈ Consn

by Lemma 19(2). Otherwise, assume as induction hypothesis s ∈ Consn. Note
that there is no simple path from s of length n + 1 since n + 1 > m. By the
statement (*), we obtain s ∈ Consn+1. So ∀n : s ∈ Consn. 	
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To summarize, if the longest simple path from s0 in I = (S, s0, ϕ) is of length
m, we can compute s0 ∈ Consm. From Theorem 24, it follows that ∀n : s0 ∈
Consn. By Theorem 20, we then obtain s0 ∈ Cons. By Theorem 17 we then know
that there exists a Markov Chain M = (S, s0, μ), s.t. M � I. Conversely, if
there exists any M′ = (S′, s′

0, μ
′) s.t. M′ � I, we know by Theorem 16 that I

is consistent.

Example 25. Let us consider again the IMC in Fig. 2b. The longest simple paths
from state 0 are [0, 2, 1, 3] and [0, 2, 4, 3], of length 4. Hence to check consistency
of the IMC, it suffices to check that state 0 is in Cons4.

4 Algorithms for Consistency Checking of IMCs

In this section, the developed theory is used to provide algorithms to check
the consistency of a finite IMC (S, s0, ϕ) (i.e. without parameters). In the next
section, we will synthesize parameters for PIMCs that guarantee their consis-
tency. For IMCs, we present a forward algorithm and a backward algorithm,
which are both polynomial. The justification of these algorithms is provided by
the following Corollary to Lemma 12 and Definitions 14 and 18.

Corollary 26. Let IMC (S, s0, ϕ) be given, let s ∈ S and n ∈ N.

1. s ∈ Consn+1 ≡ s ∈ LCϕ(Consn ∩ sup(ϕ, s)).
2. s ∈ Cons ≡ s ∈ LCϕ(Cons ∩ sup(ϕ, s)).

The backward variant (Algorithm1) follows our simple co-inductive defini-
tion, rephrased as Corollary 26(2). Initially, it is assumed that all states are con-
sistent (true), which will be actually checked by putting them in the work list
Q. When some state s is not locally consistent (LC, according to Definition 11),
it is marked false (line 5) and all predecessors t of s that are still considered
consistent, are put back in the work list Q (lines 7–9).

The forward Algorithm 2 is based on the inductive definition of consistency,
rephrased in Corollary 26(1). It is called with a consistency level m and a state s
to check if s ∈ Consm. It stores and reuses previously computed results, to avoid
unnecessary computations. In particular, for each state, we store both the max-
imal level of consistency demonstrated so far (in field pc, positive consistency,
initially 0), and the minimal level of inconsistency (in field nc, negative consis-
tency, initially ∞). We exploit monotonicity to reuse these cached results: By
Lemma 19(2), if a state is n-consistent for some n ≥ m, then it is m-consistent as
well (lines 1–2 of Algorithm 2). By contraposition, if a state is not n-consistent
for n ≤ m, then it cannot be m-consistent (lines 3–4). In all other cases, all
successors t ∈ sup(ϕ, s) are recursively checked and the (m − 1)-consistent ones
are collected in C (lines 5–8). Finally, we check the local consistency (LC) of C
(line 9), and store and return the result of the computation in lines 9–14.

Lemma 27. Let |S| be the number of states of the IMC and let |ϕ| :=
|{(s, t) | ϕu(s, t) > 0}| be the number of edges. Let d be the maximal degree
d := maxs|sup(ϕ, s)|.
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Algorithm 1. Consistency (backward)
consistent(s)
Require: t.cons = true (∀t ∈ S)
1: Q := S
2: while Q �= ∅ do
3: pick r from Q; Q := Q \ {r}
4: X :={t∈sup(ϕ, r) | t.cons=true}
5: if ¬LC(ϕ, r, X) then
6: r.cons := false
7: for all t s.t. r ∈ sup(ϕ, t) do
8: if t.cons = true then
9: Q := Q ∪ {t}

10: return s.cons

Co-inductive (backward) and inductive
(forward) algorithms for checking consis-
tency of IMCs.

Algorithm 2. Consistency (forward)
consistent(m)(s)
Require: t.pc = 0, t.nc = ∞ (∀t ∈ S)
1: if m ≤ s.pc then
2: return true
3: else if m ≥ s.nc then
4: return false
5: C := ∅

6: for all t ∈ sup(ϕ, s) do
7: if consistent(m − 1)(t) then
8: C := C ∪ {t}
9: if LC(ϕ, s, C) then

10: s.pc := m
11: return true
12: else
13: s.nc := m
14: return false

1. Algorithm1 has worst-case time complexity O(|ϕ| · d) and space complexity
O(|S|).

2. Algorithm2 has worst-case time complexity O(|S| · |ϕ|) and space complexity
O(|S| · log2 |S|).

Proof. Note that in Algorithm 1 every state is set to ⊥ at most once. So every
state s is added to Q at most |ϕu(s)|+1 = O(d) times. Handling a state requires
checking its incoming and outgoing edges, leading to O(|ϕ| · d) time complexity.
Only one bit per state is stored. Algorithm 2 is called at most m ≤ |S| times
per state. Every call inspects the outgoing edges a constant number of times,
leading to time complexity O(|S| · |ϕ|). It stores two integers, which are at most
|S|, which requires 2�log2 |S|� + 1 bits. 	


Algorithm 2 could start at m equal to the length of the longest simple path,
which cannot be efficiently computed in general. Algorithm1 does not require
computing any bound.

5 Parameter Synthesis for Parametric IMCs

In this section, we reconsider intervals with parameters from P . In particular,
we present algorithms to synthesize the exact constraints on the parameters for
which a PIMC is consistent. Note that given a PIMC and concrete values for
all its parameters, we actually obtain the corresponding IMC, by just replacing
the parameters by their values. This allows us to reuse all theoretical results on
consistency from Sect. 3 on IMCs.

In particular, we can view parameters as “logical variables”, and view a
PIMC as a collection of IMCs. For instance, consider a PIMC (P, S, s0, ϕ) with
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parameters P = {p, q}. Given a state s and a finite set of states X ⊆ S, the
expression LC (ϕ, s,X) can be viewed as a predicate over the logical variables p
and q (appearing as parameters in ϕ). Also Cons(s) and Consn(s) can be viewed
as predicates over p and q. In PVS, we can use universal quantification to lift
results from IMCs to PIMCs. For instance, for PIMCs over P , Lemma 19.1 reads:
∀p, q : ∀s ∈ S : Consn+1(s) ⇒ Consn(s).

Inspecting the expression LC (ϕ, s,X) in Definition 11, one realizes that it is
actually a constraint over p and q in linear arithmetic. However, due to the recur-
sive/inductive nature of Definitions 14 and 18, Cons and Consn are not immedi-
ately in the form of a Boolean combination over linear arithmetic constraints.
We can rephrase the definition using an enumeration over all subsets of succes-
sors, similar to [12]. Since we consider finite PIMCs, the enumeration ∃X ⊆ S
corresponds to a finite disjunction. Doing this we get the following variation of
the inductive and co-inductive consistency definition:

Corollary 28. Let IMC (S, s0, ϕ) be given, and let s ∈ S, n ∈ N

1. s ∈ Consn+1 ≡ ∃X ⊆ sup(ϕ, s) : s ∈ LCϕ(X) ∧ X ⊆ Consn

2. s ∈ Cons ≡ ∃X ⊆ sup(ϕ, s) : s ∈ LCϕ(X) ∧ X ⊆ Cons
Proof. We only prove (1), since (2) is similar.

⇒: Choosing X := Consn is sufficient by Lemma 19(1).
⇐: If for some X, s ∈ LCϕ(X ∩ sup(ϕ, s)) and X ⊆ Consn, then by

monotonicity, Lemma 12(1), s ∈ LCϕ(Consn ∩ sup(ϕ, s)), so s ∈ Consn+1 by
Lemma 19(1). 	


It becomes clear that the synthesised parameter constraints will be Boolean
combinations over linear arithmetic constraints. In particular, expressions in
DNF (disjunctive normal form) provide clear insight in all possible parameter
combinations. The number of combinations can be quite large, but we noticed
that in many examples, most of them are subsumed by only a few maximal
solutions. In particular, we will use the following notations for operators on
DNFs:

– �, ⊥ denote true and false (universe and empty set)
– 
 for their union (including subsumption simplification)
– 	 for their intersection (including transformation to DNF and simplification)
– � for their (semantic) subsumption relation

We have experimented with two prototype realizations of our algorithms. One
approach is based on CLP (constraint logic programming) in SWI-Prolog [19] +
CLP(Q). We wrote a small meta-program for the subsumption check. The other
approach is based on Parma Polyhedra Library [1]. In particular, its Pointset
Powerset Closed Polyhedra provide efficient implementations of the operations
on DNFs.
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5.1 Inductive Approach

In the inductive approach, Corollary 28(1) gives rise to a set of equations on
variables vn,s (state s is n-consistent):

let v0,s = �
let vn+1,s =

⊔

X⊆sup(ϕ,s)

(
LCϕ(X) 	

�

t∈X

vn,t

)

Starting from the initial state v|S|,s0 , we only need to generate the reachable
equations that are not pruned away by inconsistent LCϕ(X) constraints, and we
need to compute each equation only once. Note that there will be at most |S|2
reachable equations. The number of conjunctions per equation is bounded by 2d,
the number of X ⊆ sup(ϕ, s), and for each X we build a conjunction of length
O(d). So, the size of the whole set of equations is bounded by O(|S|2.d.2d).
In general, however, there is no polynomial upper bound on the size of the
corresponding solution. Also, note that by Theorem24, we could replace |S| by
the length of the longest simple path.

The set of equations can be interpreted directly as a Constraint Logic Pro-
gram in Prolog, with predicates cons(N,S). Prolog will compute the dependency
tree for s ∈ Consn, by backtracking over all choices for X. Along the way, all
encountered LCϕ predicates are asserted as constraints to the CLP solver. This
has the advantage that locally inconsistent branches will be pruned directly,
without ever generating their successors. By enumerating all feasible solutions,
we obtain the complete parameter space as a disjunction of conjunctive con-
straints.

However, the computation tree has a lot of duplicates, and the number of
returned results is very high, since we start out with a deeply nested and-or-
expression. We provide a more efficient version in Algorithm3. Here recompu-
tations are avoided by caching all intermediate results in a Table (see lines 3
and 12). For each enumerated subset of successors X (lines 12), the algorithm
checks (n − 1)-consistency. Note that we “shortcut” this computation as soon
as we find that either X is not locally consistent, or some t ∈ X is not (n − 1)-
consistent (line 8). The final optimization is to suppress all subsumed results
in the resulting conjunctions and disjunctions. We show this by using 	 and 
.
This drastically reduces the number of returned disjunctions.

We have implemented Algorithm 3 in Prolog+CLP, using meta-programming
techniques to suppress subsumed results. Alternatively, one could implement the
algorithm directly on top of the Parma Polyhedra Library.

5.2 Co-inductive Approach

Next, we show how to encode co-inductive consistency in a Boolean Equation
System (BES) (over sets of polyhedra). Here, the equations will be recursive.
The largest solution for variable vi indicates that state si is consistent. This
solution provides then a description of the set of all parameters for which the
PIMC is consistent.
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Algorithm 3. Inductive Parameter
Synthesis Algorithm Cons(s, n)
Require: Initialize: Table := ∅

1: if n = 0 then
2: return 	
3: if ∃R : (s, n, R) ∈ Table then
4: return R
5: D := ⊥
6: for all X ⊆ sup(ϕ, s) do
7: C := LCϕ(X)
8: while X �= ∅ ∧ C �= ⊥ do
9: pick t from X; X := X \ {t}

10: C := C � Cons(t, n − 1)
11: D := D � C
12: add (s, n, D) to Table
13: return D

Algorithm 4. Co-inductive Parameter
Synthesis Algorithm
Require: Initialize: s.sol := 	 (∀s ∈ S)
1: Q := S
2: while Q �= ∅ do
3: pick s from Q; Q := Q \ {s}
4: sol :=

⊔
X⊆sup(ϕ,s)

(LCϕ(X) � �
t∈X t.sol)

5: if sol � s.sol then
6: s.sol := sol
7: for all t s.t. s ∈ sup(ϕ, t) do
8: if t.sol �= ⊥ then
9: Q := Q ∪ {t}

10: return s0.sol

Inductive and co-inductive algorithms for
parameter synthesis in PIMCs.

Definition 29 (BES in DNF). Given a PIMC P = (P, S, s0, ϕ), we define
the BES as the following set of equations, for each formal variable vs, s ∈ S:

{
vs =

⊔

X⊆sup(ϕ,s)

(
LCϕ(X) 	

�

t∈X

vt

) ∣
∣
∣ s ∈ S

}

We can bound the size of this BES and the number of iterations for its
solution. Again, the size of the final solution cannot be bounded polynomially.

Lemma 30. For each PIMC P = (P, S, s0, ϕ), with out-degree bounded by d,
the corresponding BES has size O(|S|.d.2d). The BES can be solved in O(�)
iterations, where � is the length of the longest simple path in P.

Proof. We have |S| equations of size at most O(d.2d) each. The BES can be
solved by value iteration. Let Fs denote the right hand side of the equation for
vs. We can compute the largest solution by iteration and substitution as follows:

σ0 = λs.�
σn+1 = λs.Fs[vt �→ σn(t) | t ∈ S]

By monotonicity, σn ⊇ σn+1 (pointwise). We can terminate whenever σn ⊆ σn+1.
Since it can be proved by induction that σn ≡ Consn, the process terminates
within � steps by Lemma 24. 	


Solving this BES can be done by straightforward value iteration, see
Lemma 30. The intermediate expressions can be viewed as collections of polyhe-
dra, represented e.g. by the Parma Polyhedra Library as Powersets of Convex
Polyhedra [1]. Algorithm 4 provides a variant of the iteration in Lemma30. Here
we only update the polyhedra for nodes whose successors have been modified. To
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this end, we maintain a worklist Q of states that we must check initially (line 1)
or when their successors are updated (line 9). This algorithm can be viewed as
the parametric variant of the backward Algorithm1.

Example 31. On the example in Fig. 2a, Definition 29 gives rise to the following
equation system (simplifying trivial arithmetic inequalities and global bounds
0 ≤ p, q ≤ 1).

v0 = v1 v2 = v1 & p=1
| v2 | v2 & q=1
| v1 & v2 | v1 & v2 & p+q>=1

v1 = v1 & v3 & q>=0.3 & q=<0.7 | v1 & v4 & p>=0.5
v3 = v3 | v2 & v4 & q>=0.5
v4 = false | v1 & v2 & v4 & p+q>=0.5

We solve the simplified BES by value iteration as follows. In Approximation 0,
each vi=true. We show approximations 1–3, which is the stable solution. From
the final result, we can conclude that the initial state in Fig. 2a is consistent, if
and only if 0.3 ≤ q ≤ 0.7 ∨ q = 1.

Approximation: 1 Approximation: 2 Approximation: 3
v0 = true v0 = p+q>=0.5 v0 = q>=0.3 & q=<0.7

| q>=0.3 & q=<0.7 | q=1
v1 = q=<0.7 & q>=0.3 v1 = q>=0.3 & q=<0.7 v1: idem
v2 = p+q>=0.5 v2 = p+q>=1 & q>=0.3 & q=<0.7 v2: idem

| q=1
v3 = true v3 = true v3 = true
v4 = false v4 = false v4 = false

6 Experiments

To get an indication of the effectiveness of our algorithms and optimizations, we
performed some experiments in a Prolog prototype implementation on Lehmann
and Rabin’s randomized dining philosophers from Prism [15]. First, we modi-
fied that DTMC to an IMC by replacing probabilities like 0.1666 by intervals
[0.1, 0.2]. This made the consistency analysis numerically more stable. Subse-
quently, we replaced some probabilities by parameters to get a PIMC, and exper-
imented with different intervals as featured in the first column of Table 1, for
one parameter P or two parameters P and Q. The number of edges with these
parameters is given in the third column of the table. We compared the inductive
algorithm for increasing n-consistency with the co-inductive algorithm. Column
CLP shows our Prolog implementation of the inductive algorithm from [12].
CLP+opt corresponds to the inductive Algorithm3, including our optimizations,
i.e. caching and subsumption. PPL shows our co-inductive Algorithm4. We car-
ried out the experiments on the model for 3 philosophers (956 states, 3625 edges)
and 4 philosophers (9440 states, 46843 edges).
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Table 1. Experimental results. All entries are time in seconds. Timeout was 1 h.

Interval(s) Model Param. edges CLP
n-inductive

CLP+opt
n-inductive

PPL
co-inductive

n = 2 n = 3 n = 10 n = 50 n = ∞
[P, P + 0.1] phils3 723 0.01 0.02 3.82 82.01 5.08

phils4 14016 0.03 0.14 51.84 2506.61 360.02

[0, P ] phils3 723 0.29 Timeout 5.45 123.42 8.78

phils4 14016 181.15 Timeout 82.18 Timeout 1605.94

[P, 1] phils3 723 0.21 Timeout 5.02 102.36 8.67

phils4 14016 100.57 Timeout 77.62 3300.53 1016.90

[P, Q] phils3 723 0.35 Timeout 27.35 Timeout 10.33

phils4 14016 472.79 Timeout 118.64 Timeout 1649.00

[0, P ], [0.3, Q] phils3 723+1416 0.30 Timeout 122.66 Timeout 18.33

phils4 14016+688 318.91 Timeout 834.77 Timeout 2575.11

[P, 1], [0.3, Q] phils3 723+1416 0.22 Timeout 13.53 893.27 13.52

phils4 14016+688 161.69 Timeout 84.61 Timeout 1853.24

Table 1 shows the results; all times are measured with the SWI-Prolog library
statistics. Increasing n-consistency highly impacts the performance. It is clear
that caching and subsumption provide useful optimizations, since we can now
compute consistency for much higher n. The co-inductive variant with PPL
wins, since it is always faster than CLP+opt for n = 50. We also observe that
the increase time from 3 to 4 philosophers is considerable. This is consistent with
the complexity result (note that for phil4, d ≈ 5 so d · 2d ≈ 150).

Note that PPL computes consistency constraints for all states and for all n,
whereas CLP only computes this for small n and the initial state. As an example,
the constraint computed by PPL for 3 philosophers, 2 parameters, intervals [0, P ]
and [0.3, Q] is (3P ≥ 0.5 ∧ Q ≥ 0.34) ∨ (2P + Q ≥ 1 ∧ p ≥ 0.25 ∧ 3Q ≥ 1).

7 Perspectives

Using inductive and co-inductive definitions of consistency, we provided forward
and backward algorithms to synthesize an expression for all parameters for which
a PIMC is consistent. The co-inductive variant, combined with a representation
based on convex polyhedra, provides the most efficient algorithm. We believe that
our work extends straightforwardly when the intervals are replaced by arbitrary
linear constraints, since both CLP and PPL can handle linear constraints. The
resulting formalism would generalize (linear) Constraint Markov Chains [11] by
adding global parameters. Also, our approach should apply directly to parameter
synthesis for consistent reachability [12].

We also plan to experiment with other case studies, e.g. the benchmarks
of [2], with an implementation that is more elaborate than our initial prototype.
This would give insight on how the algorithms scale up w.r.t. the number of
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parameters and of parametric edges. Finally, [2] gives a polynomial size CLP with
extra variables, but doesn’t address the parameter synthesis problem. Polynomial
size CLP programs without extra variables can be obtained using if-then-else,
e.g. (v0?1 : 0) + (v1?1 : 0) + (v2?p : 0) ≤ 1. However, we don’t know of a method
to solve equation systems with conditionals without expanding them to large
intermediate expressions.
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Abstract. Dynamic information flow control is a promising technique
for ensuring confidentiality and integrity of applications that manipulate
sensitive information. While much progress has been made on increas-
ingly powerful programming languages ranging from low-level machine
languages to high-level languages for distributed systems, surprisingly
little attention has been devoted to libraries and APIs. The state of the
art is largely an all-or-nothing choice: either a shallow or deep library
modeling approach. Seeking to break out of this restrictive choice, we
formalize a general mechanism that tracks information flow for a lan-
guage that includes higher-order functions, structured data types and
references. A key feature of our approach is the model heap, a part of
the memory, where security information is kept to enable the interaction
between the labeled program and the unlabeled library. We provide a
proof-of-concept implementation and report on experiments with a file
system library. The system has been proved correct using Coq.

1 Introduction

While useful, access control is not enough: it is crucial what applications do with
the data after access has been granted [25]. Information flow control tracks the
propagation of data in programs, thus enforcing confidentiality and integrity poli-
cies. Due to the widespread use of highly dynamic languages, such as JavaScript,
there has been a growing interest in dynamic information flow control. There
are two basic kinds of flows to consider: explicit and implicit [5], related to the
notions of data flow and control flow. Dynamic information flow is tracked at
runtime by extending the data with security labels, which are propagated and
checked against a security policy during execution. The detection of potential
security violations cause program execution to halt.

While much progress has been made on increasingly powerful programming
languages ranging from low-level machine languages to high-level languages for
distributed systems, surprisingly little attention has been devoted to libraries
and APIs1. The main challenge is when the library is not written in the language
1 For elegance of expression, when we write library in this paper we refer to both

libraries and APIs.
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itself, and thus not compatible with the labeled semantics of the program. There
are mainly two situations where this occurs: (1) when the library is part of the
standard execution environment, and (2) when the library is brought into the
language using some form of foreign function interface (FFI). In such cases,
values passing between the program and the library must be translated. The
process of translating values from one programming language to another is known
as marshaling.

Marshaling of labeled values additionally entails that security labels must
be removed from the values being passed from the program to the library, and
reattached on the values returned from the library to the program. We refer
to those steps as unlabeling and relabeling of the values, and the description of
how it should be done as a library model. The main difference between standard
marshaling and marshaling of labeled values is the latter removes information
from the values passed to the library. To be able to correctly relabel values
going from the library to the program, the labels removed during the unlabeling
process must be used, since the returned value contains no security information.
This means that the library models are inherently stateful—the removed labels
are stored in a model state used when relabeling.

Library models can be split into two categories: deep and shallow models [14].
Deep models track information flow inside the library, requiring precise mod-
eling of the execution of the library, while shallow models are limited to the
security labels on the boundary of the library. Often, deep models necessitate
reimplementation of parts of the library functionality within the model, making
them difficult to create and maintain. Shallow models, on the other hand, are
significantly more lightweight, but possibly too imprecise. In this work, we are
interested in the boundary between deep and shallow models.

Current state of the art in dynamic information-flow tracking does not fit
this classification entirely, in part due to ad-hoc handling of libraries. To the
extent addition of new libraries is supported, the models used tend towards
shallow models. This is true for, e.g., FlowFox [13], and experimental extensions
of JSFlow [15]. On the other hand, JSFlow and FlowFox both use deep models to
provide fine grained information-flow tracking for built in libraries. JSFlow, e.g.,
implements the full ECMA-262 version 5 standard using what is best considered
a deep approach.

In recent work, Hedin et al. [17] initiate a framework for tracking information
flow in libraries. The setting is a labeled program and an unlabeled library that
share the same core semantics (split semantics) in order to limit the marshaling
to security labels only. Their work targets a focused functional language with
higher-order functions (which allows for both callbacks and promises to exist),
and structured data in terms of lists. It does not, however, handle side effects,
which means that many libraries cannot be modeled in a satisfactory way. As an
example, it is unavoidable for a standard file system library to maintain state to
keep track of open files, stream positions and buffers. The success of a function
read(path, success, fail) is dependent both on the file path and the state
of the library which must be reflected by security models for the library.
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The combination of state and higher-order functions significantly complicates
the library models and the model state over the ones used by Hedin et al. If the
state is first-class (i.e., it can be sent around as values, as in languages with
mutable references, records or objects) the situation is further complicated. This
is the setting we are interested in handling, as it captures the essence of many
of the problems found when modeling real libraries.

Fig. 1. Model heap illustration

To this end we introduce a model heap,
allowing library values to be tied to a muta-
ble model state, which allows for secure
modeling of the interaction between first-
class state and higher-order functions.

Consider the file system example,
depicted in Fig. 1. When the program calls
the library function read, the library func-
tion is first lifted into the program using the
corresponding function model defined by the library model, LModel. The lifting
(illustrated by the dotted arrow in the figure) is done by means of wrapping
and results in an unlabeled function that can be called by the program. When
the wrapper is called with labeled arguments, a new call model state, CModel,
is created and used to hold the labels of the arguments, since the underlying
library function requires unlabeled values. As can be seen in the figure, the call
model state is connected to the library model state and together they define the
model state that the function model of read interacts with. Any other values,
including higher-order functions and first-class state, defined in the library share
the same library model state, which guarantees that they have the same view of
the library state, even in the presence of mutability.

There are two main benefits of our work over ad-hoc modeling of libraries.
First, it lowers the modeling effort significantly, and, second, given that the
models properly describe the library, it guarantees noninterference. Both benefits
stem from expressing the models in a simplified model language that controls
the marshaling process, thus sidestepping the need to reimplement it repeatedly.

Considering the dimension of shallow and deep models, our work can be seen
as exploring the boundary. Shallow models are expressed solely in terms of the
boundary labels, while our work gains access to intermediate labels when models
for lazy marshaling, higher-order functions and first-class state are triggered.
In addition, it is relatively easy to extend our system to allow models to use
the runtime values allowing for dependent models [17]. Compared to fully deep
models, our work is limited to the information passing between the program and
the library at the point of passing. Thus, intermediate values and labels that do
not participate in cross-boundary activity is without reach. While deep models
in theory have access to more information and therefore have the potential to
be more precise, it is unclear if the added precision is significant in practice, in
particular in the light of the added implementation cost.

Contributions. The main contributions of this paper are:
– We have created a language containing three cornerstones of library modeling:

higher-order functions, first-class state, and structured values (the syntax
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and semantics are presented in Sect. 2 and Sect. 3, respectively, while Sect. 6
discusses correctness).

– We have implemented a prototype and used it to explore the interaction
between the different features of the language (examples that illustrate our
mechanism are reported in Sect. 4).

– We have conducted a case study on a file system library, inspired by the file
system library in node.js [10], showing that our language is able to handle
stateful libraries (the case study is reported in Sect. 5).

– We have formalized the language and its correctness proof in Coq [19].

The scope of the prototype is to experimentally verify applicability of models,
not to assess performance in a full-scale implementation. The prototype serves
as a complement to the formal proof to create a system that is both correct and
useful. The full version of the paper, along with the formalization in Coq and
the proof-of-concept prototype can be found at [27].

2 Syntax

The language we present is a small functional language with split semantics
and lazy marshaling. The syntax of the language is defined as follows, where n
denotes numbers and x denotes identifiers.

e ::= n | x | if e1 then e2 else e3 | let x = e1 in e2 | fun x = e | e1 e2 |
xlib | e1 ⊕ e2 | �e | head e | tail e | e1 : e2 | [ ] | (e1, e2) | ( ) |
ref e | !e | { x : e } | e.x | e1 := e2 | e1 ; e2 | upg e �

The syntax of the language is entirely standard apart from the xlib construction
that lifts a library value to a program value, and upg e � that gives the result of
the expression a given label, � ::= L | H. For simplicity, we identify sets with
the meta variables ranging over them. Let X range over lists of X for any set X,
where [ ] denotes the empty list and · denotes the cons operator. An application
in the language is a triple (dp, dl,m), where the first component is the labeled
program, the second component is the unlabeled library and the third component
is the library model. Throughout the rest of this paper, we use program when
referring to the labeled part, and library when referring to the unlabeled part.

The top-level definitions, d, allow for named definitions of functions and
values d ::= fun f(x) = e | let x = e. The top-level model definitions, m, allow
for named definitions of models and labels m ::= mod x :: γ | lbl x :: κ, where γ
denotes relabel models and κ denotes label terms. The label terms, κ ::= � | α |
κ1 � κ2 are terms that evaluate to labels in a given model state and consist of
labels, �, label variables, α, and the least upper bound of two label terms. The
relabel models, γ, used to relabel library values, are defined as follows

γ ::= κ | (γ1, γ2)κ | [γ]κ | (ϕ → γ, ζ)κ | ref(ϕ, γ)κ

where ϕ denotes unlabel models, used to unlabel program values, and ζ denotes
effect constraints defined below. All values are given a label by a label term, and
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the relabeling of structured values follows the structure of the value. To relabel a
function, we must know how to unlabel the argument, how to relabel the result,
and how the function interacts with the model state. To relabel a reference we
must know how to unlabel the values written and how to relabel the values read.
The unlabel models, ϕ, are defined as follows.

ϕ ::= α | #αα | (ϕ1, ϕ2)α | [ϕ]α

Unlabeling of values is performed by storing the label of the value in the cor-
responding label variable in the model state. As for relabeling, unlabeling of
structured values follows the structure of the value. Unlabeling of functions and
references introduces an abstract name, #α, used by library functions to tie any
interaction to their model state in the effect constraints, ζ.

ζ ::= !#α → ϕ | κ � #α ← γ | κ � #α γ → ϕ | κ � α ← κ

In the order of definition: a library function that reads a labeled reference defines
how to unlabel the read value, a library function that writes to a labeled reference
defines the security context in which the write occurs and how to relabel the value
to be written, a library function that calls a labeled function defines the security
context in which the call occurs, how to relabel the parameter and how to unlabel
the result, and finally, a library function that modifies the library state defines
the security context of the update and how the security model changes.

3 Semantics

We define the semantics step-wise in three parts. The first part defines the labeled
values, and the execution environment. The second part defines the evaluation
relation and how the function representations of the values are created and used
in the semantics. Finally, the third part defines how values are marshaled between
the program and the library. For space reasons, parts of the semantic definitions
have been left out. We refer the reader to the full version of this paper [27] for
the missing definitions.

3.1 Values

In order to differentiate between the labeled semantics and the unlabeled seman-
tics, we use X̂ to denote an entity in the labeled semantics corresponding to the
entity X in the unlabeled semantics. We only give the labeled values. The unla-
beled values are defined analogously. The values in the language, v̂, are integers
n, tuples, higher-order functions F̂ , lists (Ĥ, T̂ ), references (R̂, Ŵ ), and records
Ô, where higher-order functions, lists, references and records are represented as
(pairs of) functions in order to simplify the marshaling.

v̂ ::= n� | (v̂1, v̂2)� | ()� | F̂ � | (Ĥ, T̂ )� | [ ]� | (R̂, Ŵ )� | Ô�
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The labels, �, form a two-point upper semi-lattice L � H, where L denotes low
(public) and H denotes high (private). Let �1 � �2 denote the least upper bound
of �1 and �2, and let v̂�2 = v�1��2 for v̂ = v�1 .

The execution environment is a triple (ς, Γ,Σ) of the security context, ς,
the stack, and the heap. The security context ς ranges over labels �. The stack
Γ is a triple of stacks (ρ̂, ρ, ρ̈), containing pointers to the labeled frames, the
unlabeled frames and the model frames, respectively. The heap Σ is a triple
of heaps, (σ̂, σ, σ̈), consisting of the labeled heap, the unlabeled heap and the
model heap. The labeled and unlabeled heaps can contain values (for imple-
menting references), and frames, whereas the model heap only contains frames.
The labeled and unlabeled frames, ω̂ and ω, are maps from identifiers to values,
and the model frames, ω̈ are maps from identifiers to model items. Each frame
represents a scope, and together with the corresponding stacks they form scope
chains. The model items, ϊ ::= � | γ | ζ, consists of labels, relabel models and
effect constraints.

3.2 Evaluation Relations

The evaluation relation for program execution is of the form ς, Γ |= (Σ1, e) →
(Σ2, v̂), read “expression e evaluates in the environment consisting of the secu-
rity context, ς, the stack, Γ , and the heap, Σ1, resulting in the updated heap Σ2

and value v̂”. Similarly, library execution is of the form ς, Γ |= (Σ1, e) � (Σ2, v),
where the unlabeled semantics is parameterized over the security context to
model that the context is global and always available to the marshaling func-
tions2.

Figure 2 contains a selection of the semantic rules of the program semantics
related to the marshaling of values.

The rules of the core language are standard. Whenever an integer is created
(int), it is always originally labeled L. Variables are retrieved from the labeled
heap using lookupL in var. If-statements (if-true and if-false) evaluate the
conditional expression and based on the result select which branch to take. The
branch taken is evaluated in a security context of ς � � and the returned value
is raised to �, where � is the label of the result of the conditional expression.

Function closures are represented as functions, F̂ : (ς, Γ,Σ1, v̂) → (Σ2, v̂),
created by lclos (fun) in the following way.

lclos(ρ̂′, x, e) = λ(ς, (ρ̂, ρ, ρ̈), (σ̂1, σ1, σ̈1), v̂1) . (Σ, v̂2)
where σ̂2 = σ̂1[ρ̂ 	→ {x 	→ v̂ς

1}], ρ̂ fresh
and ς, (ρ̂ · ρ̂′, ρ, ρ̈) |= ((σ̂2, σ1, σ̈1), e) → (Σ, v̂2)

The function closure will, when interacted with, create a new pointer to a labeled
frame containing the mapping of the parameter name x and the actual value v̂1,
which is raised to the current security context. The function expression e is then

2 In an operational semantics global non-constant values must be passed around during
execution, similar to in a pure functional language.
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Fig. 2. Selected labeled semantics

evaluated, using the newly created pointer along with the updated heap. When
applying a function closure (app), the body of the function is executed in the
program semantics, under the elevated context consisting of the current security
context raised to the label of the function closure. Creation and application of
library closures, F : (ς, Γ,Σ1, v) → (Σ2, v), is analogous.

Safe implementation of marshaling of references requires the ability to trap
and modify reads and writes in order to marshal the values passed by the interac-
tion. For this reason, references are represented as pairs of functions, one function
for reading the reference, R̂ : (ς, Γ,Σ1) → (Σ2, v̂), and one function for updating
the reference, Ŵ : (ς, Γ,Σ1, v̂) → Σ2. This allows us to marshal references by
wrapping the read and the write functions in functions that perform the mar-
shaling of the values at the time of interaction, similar to lazy marshaling of
lists [17]. Most languages do not support the creation of functions that are trig-
gered on interaction with values such as references or objects, which means they
cannot support marshaling of first-class mutable state. A notable exception to
this is JavaScript that allows methods to be tied to different aspects of object
interaction via the use of Proxy objects [22].
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Creation of references given a fresh pointer into the labeled heap is defined
by lread and lwrite as follows.

lread(ρ̂) = λ(ς, Γ, (σ̂, σ, σ̈)) . ((σ̂, σ, σ̈), v̂), where v̂ = σ̂[ρ̂]
lwrite(ρ̂) = λ(ς, Γ, (σ̂1, σ1, σ̈1), v̂) . (σ̂2, σ1, σ̈1)

where v� = σ̂1[ρ̂], ς � �, σ̂2 = σ̂1[ρ̂ 	→ v̂ς ]

References (ref) are created by selecting a fresh heap location made to point
to the value of the reference. The heap location is then used to create a pair
of access functions. The created reference follows the same intuition as for all
created values. All values are labeled L upon creation, which is why the pair of
access functions are labeled L in ref. Note that the value that the reference is
referring to may be labeled differently, due to the distinction between reference
as a value and the value the reference is referring to. Dereferencing (deref) uses
the read function of the reference to get the value to be read, while assignment
(assign) uses the write function. Creation and use of library references, R :
(ς, Γ,Σ1) → (Σ2, v) and W : (ς, Γ,Σ1, v) → Σ2 is analogous.

It is worthwhile to point out the no-sensitive upgrade (NSU) check in lwrite,
which demands that the context, which the label of the reference is a part of,
is lower or equal to the label of the referenced value, ς � �. Allowing labels of
values to change freely leads to an unsound system, due to the possibility of
implicit flows into the labels themselves [1,28].

Disregarding the encoding of functions and references into functions, up to
this point, the labeled and unlabeled semantics are equivalent to their standard
formulations. The essence of this paper is in the marshaling of values between the
program and the library, performed by the unlabeling and relabeling functions,
defined in the following section.

3.3 Marshaling

All interaction between the program and the library is initiated by lifting named
library values into the program. This is done (lib) by looking up the value,
and the corresponding relabel model used to relabel the value. Interaction with
the relabeled value may cause further marshaling. Unlabeling of a value is done
w.r.t. an unlabel model, ϕ, which defines how to store the removed label(s) in the
model state. Relabeling of a value is done w.r.t. a relabel model, γ, which defines
how to compute the label in terms of the model state. Formally, unlabeling
is a function of the form v̂ ↓ς,Γ,Σ1 ϕ = (Σ2, v) taking a labeled value v̂, an
environment, ς, Γ,Σ1 and an unlabel model ϕ and returning an updated heap,
Σ2, and an unlabeled value v. Similarly, relabeling is a function of the form
v ↑Γ,Σ γ = v̂, taking an unlabeled value, v, an environment, Γ,Σ, and a relabel
model, γ, and returning a labeled value v̂. The only modified part of the heap
for both unlabeling and relabeling is the model heap.

There are six types of values: integers, tuples, lists, records, higher-order
functions and references. In the rest of this section we describe how to evaluate
label terms (used when relabeling) and how to marshal higher-order functions
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and references. We refer the reader to the full version of this paper [27] for the
treatment of the other constructs.

[[α]]Γ,Σ =

{
�, if lookupM(Γ,Σ, α) = �

L, otherwise
[[�]]Γ,Σ = �
[[κ1 � κ2]]Γ,Σ = [[κ1]]Γ,Σ � [[κ2]]Γ,Σ

Label Terms. Evaluation of label
terms is done w.r.t. a model state,
where lookupM is used to traverse
the model scope chain to find the
first label corresponding to a given
label variable.

Higher-Order Functions. Marshaling of higher-order functions involves both
marshaling the functions as values as well as ensuring the parameter and return
value are properly marshaled.

Unlabeling. Unlabeling a program closure removes and stores the label and
returns a library closure created by wrapping the program closure. The library
closure is tied to the abstract name, π, used by the wrapper to relabel the
parameters before the call and unlabel the result after the call.

F̂ � ↓ς,Γ,Σ #πα = (updateM(ς, Γ,Σ, α, �),u-lclos(F̂ , �,#π))

u-lclos(F̂ , �1,#π) = λ(ς, Γ,Σ1, v1) . (Σ3, v2)
where κ � γ → ϕ = lookupM(Γ,Σ1, π)

�2 = |[κ|]Γ,Σ1

v̂1 = v1 ↑Γ,Σ1 γ

(Σ2, v̂2) = F̂ (ς � �1 � �2, Γ,Σ1, v̂1)
(Σ3, v2) = v̂2 ↓ς��1��2,Γ,Σ2 ϕ

The translation of a program
closure, F̂ , into an library clo-
sure is performed by u-lclos, that
takes the program closure, the
label of the program closure and
the abstract name. When the
library closure returned by u-
lclos is applied the following occurs. First, the function call model bound to
the abstract name is fetched using lookupM. The function call model contains
a label term representing the security context of the application, how to relabel
the parameter and how to unlabel the return value. Second, the relabel model, γ,
is used to relabel the parameter, v1. Third, the program closure is called in the
security context of the call raised to the label of the closure and the evaluation
of the context label term, κ. The result of the call is a labeled value, v̂2. Finally,
v̂2 is unlabeled which gives the result, v2, of the application of the unlabeled
closure. Notice that all relabeling and unlabeling is done with respect to the
model state of the caller.

Relabeling. Relabeling a library closure is done by labeling the program closure
created by wrapping the library closure. The wrapper unlabels the arguments
before the call and relabels the result of the call.

F ↑Σ,(ρ̂,ρ,ρ̈) (ϕ → γ, ζ)κ = l-uclos(F, ρ̈, (ϕ → γ, ζ))[[κ]](ρ̂,ρ,ρ̈),Σ

The process is controlled by the function relabel model, (ϕ → γ, ζ)κ, where the
evaluation of κ gives the label of the wrapper closure.
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l-uclos(F, ρ̈
2
, (ϕ → γ, ζ)) =

λ(ς, (ρ̂, ρ, ρ̈
1
), (σ̂, σ, σ̈), v̂1). (Σ4, v̂2)

where Σ1 = (σ̂, σ, σ̈[ρ̈ 	→ ∅]), ρ̈ fresh
(Σ2, v1) = v̂1 ↓ς,(ρ̂,ρ,ρ̈·ρ̈

2
),Σ1 ϕ

Σ3 = {|ζ|}ς,(ρ̂,ρ,ρ̈·ρ̈
2
),Σ2

(Σ4, v2) = F (ς, (ρ̂, ρ, ρ̈ · ρ̈
1
), Σ3, v1)

v̂2 = v2 ↑(ρ̂,ρ,ρ̈·ρ̈
2
),Σ4 γ

The translation of the library
closure, F , into a program clo-
sure is performed by l-uclos,
which takes the library closure,
the current model frame stack,
the unlabel model for the param-
eters, ϕ, the relabel model for the
return value, γ, and the effect
constraints, ζ. When called the
program closure produces a fresh frame pointer, pointing to a new model frame
in the model heap. The parameter to the library function is unlabeled based
on the unlabel model, ϕ, and the effect constraints, ζ, are evaluated to update
the model state accordingly. After that, the library function is called with the
unlabeled parameter in the security context, ς, of the call. The result of the
function call is relabeled with the relabel model, γ, and returned to the program.
Note that all labeling and unlabeling is done w.r.t. the model frame stack of
the unlabeled closure. Also note that the order is important; if the unlabeling
of the parameter occurs after evaluating the effect constraints, the label of the
parameter cannot be used when updating the model state with the side effects.

Effect Constraints. Effect constraints define how a library function interacts
with unlabeled program functions and references and how the library function
changes the model state. Model state changes are effectuated on call to the
library function whereas effect constraints that define interaction with unlabeled
program functions and references are stored in the model state. When a library
function or reference is interacted with, the abstract name will tie the interaction
to the corresponding effect constraint in the model state of the interaction. The
meaning of the effect constraints is defined as follows

{|!#α → ϕ|}ς,Γ,Σ = defineM(Γ,Σ, α, ϕ)
{|κ � #α ← γ|}ς,Γ,Σ = defineM(Γ,Σ, α, κ � γ)

{|κ � #α γ → ϕ|}ς,Γ,Σ = defineM(Γ,Σ, α, κ � γ → ϕ)
{|κ1 � α ← κ2|}ς,Γ,Σ = updateM(ς � [[κ1]]Γ,Σ , Γ,Σ, α, [[κ2]]Σ,Γ )

when ς � [[κ1]]Γ,Σ � lookupM(Γ,Σ, α)

where defineM binds the name α to its corresponding model value in the top
model frame, if α is not defined in that model frame, updateM updates the label
pointed to by α in the scope chain, or inserts it if it is not present, and lookupM
returns the model value that is the first to match the name α in the scope chain.

References. Marshaling of references shares some similarities with marshaling
of higher-order functions. Calling a function passes the argument and the return
value in opposite directions, similar to reading and writing to a reference.
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Unlabeling. Unlabeling a program reference removes and stores the label, and
the read and write functions are wrapped to create library counterparts.

(R̂, Ŵ )� ↓ς,Γ,Σ #πα =
(updateM(ς, Γ,Σ, α, �), (u-lread(R̂, �,#π),u-lwrite(Ŵ , �,#π)))

The read and the write functions are translated independently w.r.t. the abstract
name #π.

u-lread(R̂, �,#π) = λ(ς, Γ,Σ1) . (Σ3, v)
where ϕ = lookupM(Γ,Σ1, π)

(Σ2, v̂) = R̂(ς � �, Γ,Σ1)
(Σ3, v) = v̂ ↓ς��,Γ,Σ2 ϕ

The program read function, R̂
is translated by u-lread, which
takes the read function, the label
of the reference and the abstract
name. When the resulting library
read function is interacted with,
the program read function is used to get the labeled value of the ref-
erence. This value must be unlabeled before being returned, which is
done by looking up a program reference read model, ϕ, in the model
state of the interaction. It is the model of the caller, i.e., a library
function model that provides the read model for the references it reads.

u-lwrite(Ŵ , �,#π) = λ(ς, Γ,Σ1, v) . Σ2

where κ � γ = lookupM(Γ,Σ1, π)
v̂ = v ↑Γ,Σ1 γ

Σ2 = Ŵ (ς � � � [[κ]]Γ,Σ1 , Γ,Σ, v̂)

The program write function,
Ŵ is translated by u-lwrite, which
takes the write function, the label
of the reference and the abstract
name. When the resulting library
write function is used, the associ-
ated program reference write model, κ � γ, is fetched in the current model state.
This model defines both how to relabel the written unlabeled value, and the con-
text in which the write occurs. Then the unlabeled value, v is relabeled before
being written using the labeled write function in a context consisting of the cur-
rent security context of the call raised to the reference label and the evaluation
of the context label term, κ.

Relabeling. Relabeling a library reference is done by translating the read and
write functions into program counterparts and relabeling the result.

(R,W ) ↑Σ,(ρ̂,ρ,ρ̈) ref(ϕ, γ)κ = (l-uread(R, ρ̈, γ), l-uwrite(W, ρ̈, γ, ϕ))[[κ]](ρ̂,ρ,ρ̈),Σ

The read and the write functions are translated independently w.r.t. the relabel
model, ref(ϕ, γ)κ.

l-uread(R, ρ̈
2
, γ) = λ(ς, (ρ̂, ρ, ρ̈

1
), Σ1) . (Σ2, v̂)

where (Σ2, v) = R(ς, (ρ̂, ρ, ρ̈
1
), Σ1)

v̂ = v ↑(ρ̂,ρ,ρ̈
2
),Σ2 γ

The library read function, R,
is translated by l-uread, which
takes the read function, the cur-
rent model frame stack, and the
relabel model, γ. When the resulting program read function is interacted with,
the unlabeled read function is used to fetch the unlabeled value of the reference.
The result is relabeled using the relabel model in the model state of the reference
and the result is returned.
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l-uwrite(W, ρ̈
2
, γ, ϕ) = λ(ς, (ρ̂, ρ, ρ̈

1
), Σ1, v̂) . Σ3

where � = [[lblterm(γ)]](ρ̂,ρ,ρ̈
2
),Σ1 , ς � �

(Σ2, v) = v̂ς ↓ς,(ρ̂,ρ,ρ̈
2
),Σ1 ϕ

Σ3 = W (ς, (ρ̂, ρ, ρ̈
1
), Σ2, v)

The library write func-
tion W is translated by
l-uwrite, which takes the
write function, the current
model frame stack, the rela-
bel model, γ, and the unlabel model, ϕ. The reason l-uwrite takes the relabel
model in addition to the unlabel model is that it is used to calculate the label
against which the NSU check is made. The label of the stored value is repre-
sented by the label term of the relabel model, extracted by the lblterm function,
defined in the obvious way by pattern matching. If the write is allowed, the
labeled value to be written to the library reference is raised to the context ς,
before being unlabeled using the unlabel model, ϕ. Finally, the unlabeled value
is written to the library reference, using the unlabeled write function.

Interaction with the Model Heap. To see how higher-order functions and
references interact with the model heap, consider the code snippet below to the
right. The program calls the library function f, which takes a parameter, and

let (g, r) = lib f 10
in r := upg 15 H;

g 20
%%
lbl l :: L
mod r :: ref (l, l)
mod f :: x -> (y -> l, r)
fun f x = let r = ref x

in (\y. !r, r)

creates a reference r initially set to the value of
the parameter. f returns a pair, where the first ele-
ment is a function that, given any argument, will
dereference the reference and the second element is
the actual reference. This pair is stored as (g, r).
Thereafter, r is assigned the value 15H , before g is
called with the parameter 20L.

The following occurs w.r.t. relabeling and unlabeling in the program, where
the initial setting can be seen in Fig. 3.

Fig. 3. Initial structure

When f is lifted to the program, l-uclos is used to relabel the library closure,
which will copy the model frame stack to the wrapped f and store the function
model x → (y → l, r). In the example, the resulting program closure is applied
to 10L, which causes a new model frame to be allocated on the model heap,
into which the argument is unlabeled, causing L to be stored in the new model
frame as the label for x, and the pointer to the new model frame is stored in
the model frame stack. After this, the actual unlabeled function is called, which



Information Flow Tracking for Side-Effectful Libraries 153

results in the returned pair being relabeled. The relabeling of the pair results
in l-uclos being used to relabel \y. !r with the model y → l, and l-uread and
l-uwrite being used to relabel r with the reference model r. The key here is that
the relabeling occurs in the same model state, which means that the produced
program function and reference will be bound to the same model frame stack.
This causes writes to the reference to modify the model frame shared with the
function, ensuring that they have the same view of the model of the reference.
The entire process is highlighted in Fig. 4.

Fig. 4. Calling relabeled closure

When the program writes to the reference (r := upg 15 H), the closure from
l-uwrite is triggered, causing l in the shared model frame to be updated to H,
which can be seen in Fig. 5. Note that the pointer to the model frame created
from the call to the wrapped f is removed from the model frame stack. This
ensures any subsequent calls to the wrapped f, as well as any created wrappers
will not be able to use that model frame, as it belongs only to the first call to
the wrapped f and the created wrappers within the call. When the function g is
called, it will trigger its l-uclos wrapper and, as can be seen in Fig. 6, the model
y → l is used in the l-uclos wrapper for g, with l being used to relabel the result.
Since l was modified by the writing to the reference (Fig. 5), the shared view of
the library model state, will make the function g return a secret value.

Fig. 5. Writing to r
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Fig. 6. Calling g

4 Examples

In the following section we provide some examples to highlight how the language
would interact with common programming techniques. The language used in this
section is an extended version of the language of the paper. The major differences
are the addition of records, functions with multiple arguments, a limited form
of pattern matching, and optional unlabeling. The extensions are all present as
experimental features in the implementation. In all examples, the code above %%
is the program and the code below is the library.

Writebacks. Returning two or more results from a function can be done in two
ways: (1) tupling the result, or (2) by using writebacks. When using writebacks
for, e.g., reading a file, the read function is provided a pointer to a place in the
memory where the contents of the file should be stored instead of returning a
pointer to the data.

let buf = ref 0
fun main () = (lib action) buf;

!buf
%%
let data = 42
mod action :: #b -> L {| #b <- H |}
fun action b = b := data; ()

In our language, writebacks can be
modeled by passing program references
to the library as shown to the right. In
the example, the program variable buf
is a program reference. The reference is
passed to the library function action
that writes the result to the buffer. When interacting with a program refer-
ence, the reference is given an abstract name (b for buffer in this case) that the
function interacting with the buffer uses to relabel the interaction.

In case the function used the writeback under secret control, represented by
the model mod action :: #b -> L {| H |- #b <- H |}, the example would
fail due to NSU. The reason being the value the reference buf is pointing to is
public, and is not allowed to change label under secret control. Modifying the
declaration of buf to be let buf = ref (upg 0 H) solves this, as the reference
will point to a secret value.
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fun main () =
(lib action) (upg 42 H);
print !(lib errno)

%%
lbl l :: L
mod errno :: ref (l, l)
let errno = ref 0

mod action :: a -> L {| l <- a |}
fun action x = if x == 1

then errno := 1
else ();
()

Library State. Libraries often keep state,
e.g., error codes, computation results or
options set by the program. Typical exam-
ples are the predefined object properties
$1,..,$9 from JavaScript RegExp [23].

The example to the right shows how
state can be used to store error informa-
tion. In the example, the function action
may fail depending on the value of the
parameter. The reason it failed is stored into the library reference errno, which is
modeled by a security label used to relabel program reads and writes of the refer-
ence. Since the update of errno is conditional, it means that the value of errno is
dependent of the argument of the action function. To model this, the argument
label is stored in the model variable a, which is used to update the security label
of errno. Note that the update of the security label is independent on whether
the operation fails or not. This is needed to ensure that the label of errno is
independent of secrets. The label of errno indicates that the error code is public.
Consider the case where an action sets the error code under secret control, repre-
sented by the following model mod action :: a -> L {| H |- l <- a |}. If
such an action was used our system would halt execution, since the update of
the error code would trigger NSU.

fun main () = (lib set) (upg 42 H);
(lib getAsync) print;
(lib get) ()

%%
lbl l :: L
let buf = ref 0

mod set :: a -> a {| l <- a |}
fun set x = buf := x

mod get :: _ -> l
fun get () = !buf

mod getAsync :: #cb -> L {| #cb l -> _ |}
fun getAsync cb = cb !buf; ()

The One-Place Buffer. In the pre-
vious example, the library state
is exposed to the program, which
can freely read and write to errno.
Frequently it is good practice to
hide the internal state of the
library and only allow the pro-
gram to access it indirectly via the
functions of the library. We exem-
plify this by implementing a sim-
ple one-place buffer, seen to the
right. While simple, the example captures the essence of, e.g., buffered file access.

Since there is no model for buf, it is not accessible from the program. Instead,
the state of the library is modeled using the label l. This label is used by the
operations that give the program access to the buffer contents. When setting the
value of the buffer via set, the label of the value is used to update the label of
the library state. When reading, either via the synchronous function get or via
the asynchronous function getAsync, l is used to relabel the dereferenced value
from buf. In the synchronous case by relabeling the dereferenced value directly,
and in the asynchronous case by relabeling the parameter to the callback. Note
the use of the wildcard to indicate values that are not important for the model.
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Stored Callbacks. Stored callbacks are callbacks that are saved in the internal
state of the library and used, e.g., to signal the occurrence of some event. A typi-
cal example of stored callbacks is the event handlers present in many languages.

fun main () = lib event := print;
(lib fire) (upg 42 H)

%%
lbl l :: L
mod event :: ref (l, #event^l)
let event = ref 0

mod fire :: a -> L {| #event a -> _ |}
fun fire x = !event x; ()

Consider the program to the right
that registers an event handler by
storing the event handler (print in
this case) in the event reference of
the library. The relabel model of the
event will unlabel the function and
give it the abstract name event.

The event is triggered by calling the fire function, which takes the event
data and passes it to the stored event handler. In the example, the fire function
may be called from the program. In a practical setting, events may be triggered
by interacting with the library (e.g., by adding values to a data structure) or
from the library itself to indicate that certain events, such as mouse movement
or clicks, have occurred.

In the example, it is not possible to fetch the event handler from
the library and call it. In order to allow for this, we have to change
the relabel model for the library reference to relabel read interactions
as functions, changing the event model to be mod event :: ref (a -> b
{| #event a -> b |}^l, #event^l). To understand the new relabel model
we must recognize that unlabeled program functions that are passed back need
to be relabeled as any other library function. In this case, the library function
that should be relabeled calls the unlabeled program function, and needs a cor-
responding call model. The result is a function that unlabels its argument into
the label variable a, which is used to relabel the argument before calling the
program function. The result of calling the program function is unlabeled into
the label variable b, which in turn is used to relabel the result of the relabeled
function.

5 Case Study

lbl l :: L
mod state :: ref (l, l)
let state = ref 1

For case study, we model an API inspired by the fs
API of node.js [10]. In the interest of exposition we
model the file system state as a single label as shown
to the right. The extension of the model to nested records is simple but space
demanding.

Examples of functions in the API are the rmdir function and its synchronous
sibling rmdirSync. Both will, given a path, remove the folder pointed to by the
path. In addition, rmdir also takes a callback that is called with an error if the
removal of the folder pointed to by the path fails.
mod rmdirSync :: a -> l + a {| l <- a |}
mod rmdir :: (a, #cb) -> L {| l <- a, #cb (l + a) -> b |}

We use the name a to represent the path and the abstract name cb to represent
the callback. From a modeling standpoint, we need to ensure that the level of
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the path is propagated to the state, since removing the folder influences the
file system state. We can see this in the effect constraint l <- a, where the
label of the path is propagated to the label of the state. The success of the
operation is depending on the library state and the security label of the path, l
+ a. Where rmdirSync returns the result, rmdir communicates the result to the
callback as an argument, #cb (l + a). The immediate return value of the latter
is undefined, regardless of the outcome of the operation and hence labeled L.

A more complex function in the API is createWriteStream that returns a
record. Calling createWriteStream with a path and an optional argument that
defines options (e.g. the encoding) returns a WriteStream.
mod createWriteStream :: (a, b)

-> { path : a
, bytesWritten : a + b + l
, open : #op -> L {| #op (a + b + l) -> o |}
, close : #cl -> L {| #cl (a + b + l) -> c |}
}

The WriteStream has four parts; the fields path and bytesWritten, as well as
the events open and close. For the model of the returned record, the property
path is modeled by the argument a, which is the label of the path. The prop-
erty bytesWritten, which corresponds to the amount of bytes written so far,
is modeled as the least upper bound of a, b and l, i.e., the path, the options
and the current library state. The events are modeled as functions that accept
(and store) callbacks—the event handler—as modeled by the properties open
and close. When the stream is opened or closed, the path, the options and the
current library state all influence the parameter to those callbacks.

To contrast the case study with the examples, note that Sect. 4 makes the
assumption that the source code of the library is available (albeit not supporting
the labeled semantics) whereas this section makes the assumption it is not. Both
cases are common, and can be modeled in our approach. In case the source code
is indeed available an interesting line of future work is to look at the possibilities
of automatically deducing models, e.g., using something similar to summary
functions [26].

6 Correctness

The correctness of the language is complicated by the fact that it is parameter-
ized over a library model that defines how to marshal values between the program
and the library. Since we make no assumption on the implementation language
of the library or the availability of the source code we cannot reason about the
correctness of the model w.r.t. the library. Instead we assume the correctness of
library models in terms of three hypotheses used in the noninterference proof.
The low-equivalence definition, the model hypotheses and more information on
the proof can be found in the full version of the paper [27].

We prove noninterference assuming that the library model correctly mod-
els the library as the preservation of a low-equivalence relation under execution.
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Apart from covering a larger language, the proof improves over [17] in two impor-
tant aspects: (1) it significantly weakens the model hypothesis, and (2) the proof
has been formalized in Coq [19].

Theorem 1. (Noninterference of labeled execution)

(Γ,Σ1)  (Γ ′, Σ′
1) ∧ ς, Γ |= (Σ1, e) → (Σ2, v̂) ∧
ς, Γ ′ |= (Σ′

1, e) → (Σ′
2, v̂

′) ⇒ (Γ,Σ2)  (Γ ′, Σ′
2) ∧ v̂  v̂′

Proof. By mutual induction on labeled and unlabeled evaluation (via u-lclos and
l-uclos). The theorem makes use of confinement, i.e., that evaluation under high
security does not modify the public part of the environment.

7 Related Work

Bielova and Rezk present a comprehensive taxonomy of information flow mon-
itors [4]. Some monitors [3,14–16] and secure multi-execution [6,12,13,20,24]
mechanisms have been integrated in a browser. Bichhawat et al. instrumented
the WebKit JavaScript interpreter [3]. While taking advantage of the current
optimizations in the interpreter, it loses the differentiation between the program
and library execution. FlowFox [13], which implements secure multi-execution
(SME) [6], modifies the SpiderMonkey engine in two ways: (1) augmenting the
internal objects representing the JavaScript context with a current execution
level, as well as a boolean indicating if SME is active, and (2) augmenting the
internal representation of JavaScript values with a security level. Unfortunately,
API calls are only treated as I/O actions. JSFlow [16] is an information-flow
aware JavaScript interpreter, augmented with security labels on the JavaScript
values. In order to allow for libraries in JSFlow, deep hand-written models must
be used, with reimplementation of the libraries as a result [15]. To allow for
scaling, JSFlow attempts to automatically wrap libraries, albeit in an ad-hoc
manner. While the correctness of simple examples are easy to see, the correct-
ness and scalability when passing, e.g., functions to and from the library remain
unclear. Bauer et al. [2] developed a light-weight coarse-grained run-time mon-
itor for Chromium, using taint tracking, to help reasoning about information
flow in a fully fledged browser. In this work, formal models of, e.g., cookies,
history and the document object model (DOM) are defined, as well as event
handlers, to model the browser internals and help prove noninterference. Heule
et al. [18] provided a theoretical foundation for a language-based approach for
coarse-grained dynamic information flow control, that can be applied to any
programming language where external effects can be controlled. A first step for
handling libraries in environments where dynamic information flow control is
not possible was taken by Hedin et al. [17], falling short by not supporting refer-
ences, and thereby not allowing for first-class mutable state in combination with
higher-order functions.

Findler and Feleisen’s higher-order contracts [9] address the problem of check-
ing contracts at the boundary between statically type-checked and dynami-
cally type-checked code. The problem relates to the problem of interfacing with
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libraries where it is impossible to check dynamic information flow control. In par-
ticular, when considering function values crossing the boundary, the compliance
of such function values with their respective contracts is undecidable. Findler
and Feleisen proposed to wrap the function and check the contract at the point
where the function is called. This is comparable to how we handle structured
data, including references and function values. A question for future work is if
we can remove our abstract identifiers for function values and references, and
instead inject the unlabeling/relabeling functionality using proxies, similar to
how it is done in higher-order contract checking [8]. If a contract is violated,
the proper assignment of blame must be given [7,11]. In static information flow
checking, the assignment of blame has been investigated by King et al. for infor-
mation flow violations [21]. Although our work can be seen as an application
of dynamic higher-order contract checking for information flow contracts, we do
not consider assigning blame. Indeed, runtime detection of a library which does
not obey the specified contract (i.e. the given model) is not possible in this work.

8 Conclusion

Based on a central idea of a model heap, we have developed a foundation for
information flow tracking in the presence of libraries with side effects in a lan-
guage with higher-order functions, first-class state and lazy-marshaling—three
cornerstones of practical libraries. We have implemented a prototype to verify
the examples and performed a larger case study that shows that the language
is able to model key parts of a real file system library. In addition, we have
formalized the language and its correctness proof in Coq.

Future work includes support for model abstraction and application, and
dependent models. Thanks to the three cornerstones, we believe modeling
JavaScript objects does not require development of new theory, indicating that
it is possible to use this technique in tools like JSFlow.
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160 A. Sjösten et al.

5. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

6. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: S&P
(2010)

7. Dimoulas, C., Findler, R.B., Flanagan, C., Felleisen, M.: Correct blame for con-
tracts: no more scapegoating. In: POPL (2011)

8. Dimoulas, C., New, M.S., Findler, R.B., Felleisen, M.: Oh Lord, please don’t let
contracts be misunderstood (functional pearl). In: ICFP (2016)

9. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP (2002)
10. File System–Node.js v9.2.0 Documentation. https://nodejs.org/api/fs.html.

Accessed Nov 2017
11. Greenberg, M., Pierce, B.C., Weirich, S.: Contracts made manifest. In: POPL

(2010)
12. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a web browser

with flexible and precise information flow control. In: CCS (2012)
13. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: Secure multi-execution of

web scripts: theory and practice. J. Comput. Secur. 22, 469–509 (2014)
14. Hedin, D., Bello, L., Sabelfeld, A.: Information-flow security for JavaScript and its

APIs. J. Comput. Secur. 24, 181–234 (2015)
15. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow

in JavaScript and its APIs. In: SAC (2014)
16. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: CSF

(2012)
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Kim Völlinger(B) and Samira Akili

Humboldt University of Berlin, Berlin, Germany
voellinger@hu-berlin.de

Abstract. A major problem in software engineering is assuring the cor-
rectness of a distributed system. A certifying distributed algorithm (CDA)
computes for its input-output pair (i, o) an additional witness w – a for-
mal argument for the correctness of (i, o). Each CDA features a witness
predicate such that if the witness predicate holds for a triple (i, o, w), the
input-output pair (i, o) is correct. An accompanying checker algorithm
decides the witness predicate. Consequently, a user of a CDA does not have
to trust the CDA but its checker algorithm. Usually, a checker is simpler
and its verification is feasible. To sum up, the idea of a CDA is to adapt
the underlying algorithm of a program at design-time such that it veri-
fies its own output at runtime. While certifying sequential algorithms are
well-established, there are open questions on how to apply certification to
distributed algorithms. In this paper, we discuss distributed checking of a
distributed witness; one challenge is that all parts of a distributed witness
have to be consistent with each other. Furthermore, we present a method
for formal instance verification (i.e. obtaining a machine-checked proof
that a particular input-output pair is correct), and implement the method
in a framework for the theorem prover Coq.
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1 Introduction

A major problem in software engineering is assuring the correctness of dis-
tributed systems. A distributed system consist of computing components that
can communicate with each other. An algorithm that is designed to run on a
distributed system is called a distributed algorithm. The correctness of a dis-
tributed algorithm usually relies on subtle arguments in hand-written proofs.
Consequently, these proofs can easily be flawed. While complete formal veri-
fication is often too costly, testing is not sufficient if the system is of critical
importance. Runtime verification tries to bridge this gap by being less costly
than complete verification while still using mathematical reasoning.
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We investigate certifying distributed algorithms. A certifying distributed algo-
rithm (CDA) computes for its input-output pair (i, o) additionally a witness
w – a formal argument for the correctness of the input-output pair (i, o). Each
CDA features a witness predicate such that if the witness predicate holds for a
triple (i, o, w), the input-output pair (i, o) is correct. A “correct” CDA always
computes a witness such that the witness predicate holds. However, the idea
is that a user of a CDA does not have to trust the algorithm. That is why,
an accompanying checker algorithm decides the witness predicate at runtime.
The user of a CDA has to trust neither the implementation nor the algorithm
nor the execution. However, the user has to trust the checker to be sure that if
the checker accepts on (i, o, w), the particular input-output pair (i, o) is correct.
Usually, a checker is simple and its verification feasible. By combining a CDA
with program verification (e.g. verifying the checker), we gain formal instance
correctness (i.e. a machine-checked proof that a particular input-output pair is
correct). To sum up, the idea of a CDA is to adapt the underlying algorithm of
a program at design-time such that it verifies its input-output pair at runtime.
Hence, using a CDA is a formal method and a runtime verification technique.

While certifying sequential algorithms are well-established [19], there are
open questions on how to apply certification to distributed algorithms [29]. In
particular, there are various ways of applying the concept of certification to
distributed algorithms. For instance, one question is whether to verify the input-
output pair of a component or the distributed input-output pair of the system.
Another question is whether the witness is checked by a distributed or sequential
checker.

In this paper, we introduce a class of CDAs which features distributed check-
ing of a distributed witness that verifies the correctness of a distributed input-
output pair. Particularly, we discuss the challenge that all parts of a distributed
witness have to be consistent with each other (Sect. 2). Moreover, we present a
method for formal instance verification where we integrate the notion of consis-
tency. We implement the method in a framework for the theorem prover Coq
such that a verified distributed checker can be deployed on a real distributed
system (Sect. 3). Our Coq formalization is on GitHub1. Moreover, we discuss
related work (Sect. 4), as well as our contributions and future work (Sect. 5).

2 Certifying Terminating Distributed Algorithms

A distributed algorithm is designed to run on a distributed system, e.g. a net-
work. We assume networks that are asynchronous, static and id-based. We model
the topology of a network as a connected undirected graph G = (V,E) with
V = {1, 2, ..., n}: a vertex represents a component and an edge a channel. A
distributed algorithm consists of an algorithm for each component such that all
components together solve one problem (e.g. leader election or coloring) [17,25].
Components communicate with each other by sending messages via the channels.
1 https://github.com/voellinger/verified-certifying-distributed-algorithms/tree/

master/Framework.

https://github.com/voellinger/verified-certifying-distributed-algorithms/tree/master/Framework
https://github.com/voellinger/verified-certifying-distributed-algorithms/tree/master/Framework


On a Verification Framework for Certifying Distributed Algorithms 163

A distributed algorithm can be either designed to terminate or to run continu-
ously (e.g. a communication protocol). In this paper, we focus on terminating
distributed algorithms. Thus, we deal with verifying a distributed input-output
pair. In contrast, for a non-terminating algorithm, we would verify a behavior
during the execution.

The rest of this Section is organized as follows. We start by defining the
interface of a CDA. (Sect. 2.1). Moreover, we give a small example of a CDA to
illustrate our formalization (Sect. 2.2). Subsequently, we define a witness predi-
cate (Sect. 2.3) and a consistent witness (Sect. 2.4). For distributed checking of
the witness predicate, we discuss how to decide a set of predicates for each com-
ponent (Sect. 2.5). Finally, we define a class of CDAs (Sect. 2.6) and present the
accompanying distributed checker of such a CDA (Sect. 2.7).

2.1 Interface of a CDA

The input of a distributed algorithm is distributed over the network in the way
that each component gets a part of it. A terminating distributed algorithm com-
putes an output in the way that each component computes a part of it. We call
the algorithm of a component a sub-algorithm of the distributed algorithm, and
a component’s part of the (distributed) input/output its sub-input/sub-output.
As usual when considering distributed algorithms, we abstract from distributing
the input and collecting the sub-output.

Analogously to the computation of the output, a CDA additionally computes
a distributed witness. We then call the algorithm of a component a certifying
sub-algorithm of the CDA, and a component’s part of the witness its sub-witness.
We distinguish between a witness and a potential witness. While a witness is a
proper correctness argument, a potential witness is an artifact computed by an
untrusted algorithm. We formally define a witness in Sect. 2.3.

For our formalization, we assume that an input assigns values to variables,
and analogously, for an output and potential witness. A variable gets assigned
exactly one value for a sub-input. An input is composed of all sub-inputs, and
thus, in contrast, the same variable may get assigned multiple values. That is
why, we distinguish two types of assignments for our formalization. For sets A
and B, a function f : A → B is an assignment of A in B. A relation r ⊆ A × B
is a weak assignment of A in B. We denote the set of all assignments of A in B
as [A] and the set of all weak assignments of A in B as �A� (assuming B from
the context).

Let I, O and W be finite sets of variables for the input, the output and the
potential witness, respectively. For readability, we use different sets even though
they do not have to be disjoint. We assume subsets Iv ⊆ I, Ov ⊆ O and Wv ⊆ W
of variables for each component v ∈ V such that I = ∪v∈V Iv, O = ∪v∈V Ov and
W = ∪v∈V Wv. Let V al be a set of values. For each v ∈ V , let the sets of
assignments [Iv], [Ov] and [Wv] in V al be the sets of sub-inputs, sub-outputs,
and sub-witnesses. Let the sets of weak assignments �I�, �O� and �W � in V al be
the sets of inputs, outputs and potential witnesses. The following holds for an
input: if we have a sub-input iv ∈ [Iv] for each v ∈ V , then the weak assignment



164 K. Völlinger and S. Akili

i = ∪v∈V iv is the according input. The same holds each for an output and a
potential witness.

In the sequel, we fix

– the graph G as the network topology,
– the set V al as a domain,
– the sets of weak assignments �I�, �O� and �W � in V al as inputs, outputs and

potential witnesses,
– and the sets [Iv], [Ov] and [Wv] in V al for each v ∈ V as sub-inputs, sub-

outputs, and sub-witnesses of v.

Moreover, we assume the minimal sub-input of a component is its own ID and
the IDs of its neighbors in the network graph. Hence, the minimal input is the
network itself.

2.2 Example: Witness for a Bipartite Network

As an example, consider distributed bipartite testing [5] where the components
decide together whether the underlying network graph is bipartite (i.e. its ver-
tices can be divided into two partitions such that each edge has a vertex in each
partition). The input is the network itself presented by the sub-input of each
component: the component’s ID and the IDs of its neighbors in the network. In
the case of a bipartite network, the sub-output of each component is ‘true’. While
in the case of a non-bipartite network, some components have the sub-output
‘false’ and the other components ‘true’. In either case, the output is composed
of those sub-outputs.

We consider a certifying variant of distributed bipartite testing. It follows
from the definition of bipartiteness that a bipartition of the network’s compo-
nents is a witness for a network being bipartite. The witness is distributed in the
way that each component has a bipartition of its neighborhood as a sub-witness.
For the more sophisticated witness of a non-bipartite network, see [28].

For a better understanding of the formalization, consider the concrete net-
work shown in Fig. 1 where e.g. the sub-input i3 ∈ [I3] of component 3 assigns
the value {6} ∈ P(V) to the variable nbrs3 ∈ I3. In the remainder of this Section,
we refer to this example to illustrate concepts.

2.3 Witness Predicate

For the problem to be solve by a terminating distributed algorithm, we assume a
specification given as a precondition φ ⊆ �I� and a postcondition ψ ⊆ �I�× �O�.
In the following, we fix the specification over input-output pairs as

∀i ∈ �I�, o ∈ �O� : ψ(i, o) ∨ ¬φ(i)

We define a witness predicate over inputs, outputs and potential witnesses for
the φ-ψ specification, and define the notion of a witness:
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Fig. 1. Example of a bipartite network with the CDA interface and the sub-input,
sub-output and sub-witness of components 3 and 6. P(V) denotes the power set of V.

Definition 1 (witness predicate, witness, complete).

(i) A predicate Γ ⊆ �I� × �O� × �W � with the witness property

∀i ∈ �I�, o ∈ �O�, w ∈ �W � : Γ (i, o, w) −→ (ψ(i, o) ∨ ¬φ(i))

is a witness predicate for a φ-ψ specification.
(ii) If (i, o, w) ∈ Γ , w is a witness for the correctness of (i, o).
(iii) Γ is a complete witness predicate if additionally holds

∀i ∈ �I�, o ∈ �O�, w ∈ �W � : Γ (i, o, w) ←− (ψ(i, o) ∨ ¬φ(i))

Note that an algorithm computes a potential witness w since it may be that
(i, o, w) /∈ Γ . However, if clear from context, we simply say witness from now on.

The witness predicate of the bipartite example states that the witness is a
bipartition in the network. Its witness property follows by the definition of bipar-
titeness. Since the witness predicate holds with a biimplication, it is complete.

2.4 Consistency of a Distributed Witness

In the bipartite example, a sub-witness contains the colors of the neighbours – a
bipartition of the neighborhood. Note that the sub-witnesses of neighbors have
some common variables. In the example shown in Fig. 1, the components 3 and 6
have the variable color3 in common. Consequently, in order to form a bipartition
in the network, the common variables have to be consistent in their assignment.

In the general case, all sub-witnesses have to be consistent with each other
in order to form a proper argument for the correctness of an input-output pair.

Definition 2 (consistent). Let w ∈ �W � be a witness.

(i) For u, v ∈ V : sub-witnesses wu ⊆ w and wv ⊆ w are consistent if and only
if for all a ∈ Wu ∩ Wv holds wu(a) = wv(a).

(ii) w is consistent if and only if w ∈ [W ].
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In the example of bipartite testing (Fig. 1), the sub-witnesses of components 3
and 6 have common variables: W3 ∩ W6 = {color3, color6}. Since w3(color3) =
black = w6(color3) and w3(color6) = white = w6(color6), the sub-witnesses w3

and w6 are consistent.
A witness is trivially consistent if for all u, v ∈ V pairwise holds Wu ∩ Wv = ∅.

However, having a trivially consistent witness is often only possible by having a
trivial distribution of the witness, since the witness is basically centralized, i.e.
Wv = W for one v ∈ V and holds Wu = ∅ for all other u ∈ V . For instance, in
the bipartite example, one component v ∈ V has to have the whole bipartition
of the network and network topology as a sub-witness then. Assume there is
one other component u that has a part of the bipartition and the topology as
its sub-witness. Then the two bipartitions presented in wv and wu have to be
related to each other. Otherwise, the two bipartitions together may not form a
bipartition. Hence, Wv ∩ Wu �= ∅ – a contradiction to the witness being trivially
consistent. As a consequence, there are usually some components u, v ∈ V with
common variables in their sub-witnesses, i.e. Wu ∩ Wv �= ∅.

Lemma 1. A witness is consistent if and only if all of its sub-witnesses are
pairwise consistent.

Proof. Let w ∈ [W ] be a consistent witness. Then for all a ∈ W there is a unique
value w(a). Thus, for all u, v ∈ V with wu, wv ∈ w holds wu(a) = w(a) = wv(a)
if a ∈ Wu ∩ Wv. Consequently, all sub-witnesses are pairwise consistent.

For the other direction, assume all sub-witnesses of w ∈ �W � are pairwise
consistent. For all a ∈ W , there is a at least one component, w.l.o.g. v ∈ V , with
a ∈ Wv since W = ∪v∈V Wv. For every component u ∈ V with a ∈ Wu holds
wu(a) = wv(a). Hence, w ∈ [W ] is consistent.

The need for consistency arises because the witness is distributed. Hence,
certifying sequential algorithms do not have to deal with consistency (c.f. [19]).
As a consequence, checking becomes more challenging for certifying distributed
algorithms. To avoid checking consistency of all sub-witnesses pairwise, we
restrict ourselves to a connected witness. We define a connected witness over all
a-components:

Definition 3 (a-component). If a ∈ Wv for a component v ∈ V , then v is an
a-component.

Definition 4 (connected). A witness w ∈ �W � is connected if for all a ∈ W ,
the sub-graph induced by the the a-components is connected.

In the example shown in Fig. 1, the witness is connected. For instance, the com-
ponents 2, 3 and 6 are the color6-components and they induce a connected
sub-graph.

As an example for a witness that is not connected, assume a bipartite net-
work where components belonging to the same partition solve one task together.
Moreover, assume a part of this task is agreeing on some choice with one con-
sent (i.e. a consensus problem [17]). In order to verify that all components of one
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partition agree on their choice, the sub-witness of a component consists of its
own choice and of the choices of the components in 1-hop-distance – components
that share a neighbor are in 1-hop-distance. For example in Fig. 1, component 3
is in 1-hop-distance of component 2. The components in 1-hop-distance always
belong to the same partition. The witness predicate is satisfied if each compo-
nent agrees on its choice with the components in a 1-hop-distance. The witness
is not connected since only components of the same partition share variables in
their sub-witnesses, and therefore do not induce a connected subgraph.

Lemma 2. Let Γ ⊆ �I�×�O�×�W � be a predicate. For every triple (i, o, w) ∈ Γ
where w is not connected, there is a triple (i, o, w) ∈ Γ where w′ is connected.

Proof. Since w ∈ �W � is not connected, there are components u, v ∈ V with
a ∈ Wu ∩ Wv such that there is no path p = (u, x1, x2, ..., xm, v) between u and
v with all components xl on the path having a ∈ Wxl

for l = 1, 2, ..,m.
We construct a connected witness w′ from w. We add for each such outlined

pair of components u, v on one path between u and v the missing variables a ∈
Wu ∩ Wv. W.l.o.g. let this path be p = (u, x1, x2, ..., xm, v). For each component
xl for l = 1, 2, ...,m is W ′

xl
:= Wxl

∪ {a}. It follows that w′ is connected.
To ensure (i, o, w′) ∈ Γ , we construct the sub-witnesses w′

xl
by adding the

assignments of u (or analogously v): w′
xl

:= wxl
∪ {(a,wu(a))|a ∈ W ′

xl
\ Wxl

}
for all l = 1, 2, ...,m. Since w and w′ are the union of the sub-witnesses, it holds
w = w′, and therefore (i, o, w′) ∈ Γ .

For a connected witness, it is sufficient to check the consistency in each
neighborhood.

Definition 5 (consistent neighborhood). Let w ∈ �W � be a witness. v ∈ V
has a consistent neighborhood if and only if for all neighbors u of v holds the
sub-witnesses wv ⊆ w and wu ⊆ w are consistent.

Theorem 1. Let w ∈ �W � be a connected witness. w is consistent if and only
if the neighborhood is consistent for all v ∈ V .

Proof. If w is consistent, then it follows from Lemma 1 that all sub-witnesses of
w are pairwise consistent. Thus, for each v ∈ V the neighborhood is consistent.

For the other direction, let u, v ∈ V with a ∈ Wu ∩ Wv. From the definition
of a connected witness follows, there exists a path between the a-components
u and v over a-components. Since on this path all neighboring components are
consistent, it follows by transitivity that u and v are consistent. Thus, the witness
w is consistent.

For some CDAs, a sub-witness of a component v holds variables of the sub-
output of a component u, c.f. [28–30]. Revisit the example where the components
of one partition in a bipartite network solve a consensus problem. The sub-output
of a component is its own choice. Part of the sub-witness of a component is the
choices of the components in 1-hop-distance. Hence, the sub-witness of a compo-
nent consists partly of sub-outputs of other components. For the shared variables,
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the sub-outputs and sub-witnesses have to be consistent in their assignments.
Since we do not want to check the consistency between sub-witnesses and sub-
outputs or sub-inputs, we define a complete witness:

Definition 6 (complete). A witness w ∈ �W � is complete if for all u, v ∈ V
and all a ∈ Wu holds if a ∈ Iv ∪ Ov, then a ∈ Wv.

Note that if for all v ∈ V holds iv ⊆ wv and ov ⊆ wv, then the witness is
complete.

2.5 Distributable Witness Predicate

In Sect. 2.7, we present a distributed checker that decides the witness predicate.
However, the Definition 1 of the witness predicate is defined over the input, out-
put and potential witness of a CDA and does not take into account sub-inputs,
sub-outputs and sub-witnesses of the components. For distributed checking of
the witness predicate, we define predicates that are decided for each component
over the sub-input, sub-output and sub-witness, and are then combined to decide
the witness predicate (c.f. [28]). A witness predicate is distributable in a network
if some predicates hold for all components while others hold for at least one:

Definition 7 (distributable, completely).

(i) Let i ∈ �I� be an input and its sub-inputs iv ∈ [I] for v ∈ V such that
i = ∪v∈V iv, let o ∈ �O� be an output and its sub-outputs ov ∈ [O] for
v ∈ V such that o = ∪v∈V ov, and let w ∈ �W � be a potential witness and
its sub-witnesses wv ∈ [W ] for v ∈ V such that w = ∪v∈V wv. A predicate
Γ ⊆ �I� × �O� × �W � is distributable if one of the following holds:
1. Γ is universally distributable with a predicate γ ⊆ [I] × [O] × [W ] if:

(∀iv ∈ [Iv], ov ∈ [Ov], wv ∈ [Wv] : γ(iv, ov, wv)) −→ Γ (i, o, w).
2. Γ is existentially distributable with a predicate γ ⊆ [I] × [O] × [W ] if:

(∃iv ∈ [Iv], ov ∈ [Ov], wv ∈ [Wv] : γ(iv, ov, wv)) −→ Γ (i, o, w).
3. There exist distributable predicates Γ1, Γ2 such that

(Γ1(i, o, w) ∧ Γ2(i, o, w)) −→ Γ (i, o, w).
4. There exist distributable predicates Γ1, Γ2 such that

(Γ1(i, o, w) ∨ Γ2(i, o, w)) −→ Γ (i, o, w).
(ii) If the implications of 1-4 are also biimplications, then Γ is completely dis-

tributable.

The predicates Γ1 and Γ2 “divide” the witness predicate in universally or exis-
tentially distributable predicates that are linked together by a conjunction or
disjunction. We call the predicates Γ1 and Γ2 the distribution-predicates of Γ ,
and a predicate γ a sub-predicate of a universally or existentially distributable
predicate.

Revisit the example of bipartite testing (Sect. 2.2), the witness predicate
holds if the witness is a bipartition of the network. This witness predicate is
universally distributable with a distribution-predicate that is satisfied if there is
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a bipartition of the neighborhood for all components, and a sub-predicate stating
that the sub-witness of component is a bipartition of the neighborhood. For an
example of a not simply universally distributable witness predicate, see [28].

Note that not every predicate is distributable since we allow only conjunction
and disjunction of distributable predicates (see rules 3 and 4). As a consequence,
we cannot form a nesting of quantifiers for instance. However, the chosen restric-
tions enable us to decide the sub-predicates γ for each component independently,
and to evaluate distribution-predicates in the whole network by using a spanning
tree (c.f. Sect. 2.7). A more complex structure than a spanning tree would be
needed to evaluate nested quantification in the network.

2.6 A Class of Certifying Distributed Algorithms

We define a class of certifying distributed algorithm that terminate and verify
their distributed input-output pair at runtime by a distributed witness such that
the distributable witness predicate is decided by a distributed checker:

Definition 8 (Certifying Distributed Algorithm). A certifying distributed
algorithm solving a problem specified by a φ-ψ specification computes for each
input i ∈ �I� an output o ∈ �O�, and a witness w ∈ �W � in the way that each
component v ∈ V computes for a sub-input iv ∈ [I], a sub-output ov ∈ [O] and
a sub-witness wv ∈ [W ] such that i = ∪v∈V iv, o = ∪v∈V ov and w = ∪v∈V wv.
Let Γ ⊆ �I�× �O�× �W � be a complete witness predicate for a φ-ψ specification.
The following holds:

(i) (i, o, w) ∈ Γ ,
(ii) Γ is completely distributable,
(iii) w is consistent,
(iv) w is complete with iv ⊆ wv and ov ⊆ wv for all v ∈ V , and
(v) w is connected.

From (i) follows the correctness of the input-output pair (i, o). With (ii), we
enable distributed checking of Γ . Usually, there are some components u, v ∈ V
with common variables in their sub-witnesses, i.e. Wu ∩ Wv �= ∅. Hence, the
distributed witness has to be consistent as stated in (iii). By having a complete
and connected witness as stated in (iv) and (v), we enable distributed checking
of the consistency of the witness. Note that a connected witness is no restriction
on the kind of possible correctness arguments following from Lemma 2.

Remark 1. For every distributed algorithm solving a problem specified by φ and
ψ, there is a certifying variant belonging to the outlined class. A terminating
distributed algorithm can always compute a witness for a correct input-output
pair, e.g. the history of computation and communication for each component.
The witness predicate then is satisfied if the computation and communication is
in accordance with the algorithm.
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However, proving the witness property then becomes complete verification of
the distributed algorithm. Hence, a challenge is to find a “good” witness (c.f. [19]
for certifying sequential algorithms). Finding a witness is a creative task just like
developing an algorithm. However, design patterns such as using characterizing
theorems or a spanning tree help.

There are two perspectives on a CDA: the one of the developer and the one
of the user. The developer proves the correctness of his/her algorithm. By the
definition of a CDA, the developer has for instance to prove that the algorithm
computes a witness for all input-output pairs. For the user, however, it is enough
to be convinced that his/her particular input-output pair is correct. To this end,
the user has to understand the witness property of the witness predicate and to
understand that the witness predicate is distributable. The user does not have
to understand that the witness predicate is complete or that it is completely
distributable. If the witness predicate is satisfied, the particular input-output
pair is correct; if not, the output or the witness is not correct. Consequently,
using a CDA comes at the expense of incomplete correctness.

Since for a satisfied witness predicate, the user still has to trust in the witness
property, we discuss machine-checked proofs for a reduced trust base in Sect. 3.

2.7 Distributed Checker of a Distributed Witness

Let Γ be a distributable witness predicate with distribution-predicates
Γ1, Γ2, .., Γk and according sub-predicates γj , j = 1, 2, .., k. For distributed check-
ing of Γ , each component has a sub-checker that checks the completeness of its
sub-witness, the consistency of the sub-witnesses in the neighborhood, decides
the sub-predicates for its component, and plays its part in checking the con-
nectivity of the witness, and in evaluating the witness predicate. We assume a
sub-checker gets a trusted copy of the sub-input (c.f. [19]). After termination is
detected (e.g. as in [25]), a sub-checker receives the sub-output and sub-witness
of its component, and starts checking. We assume a spanning tree as a communi-
cation structure in the network. This spanning tree is either reused or computed
as discussed in Sect. 3.

Completeness. For each v ∈ V , let the predicate compv denote whether wv is
complete: iv ⊆ wv and ov ⊆ wv. The sub-checker of v decides compv(iv, ov, wv).

Connectivity. For each variable a ∈ W in each connected subgraph ofpg
a-components, the components select the a-component with the smallest ID
as a leader: First, each component v suggests itself as a leader for all its vari-
ables a ∈ Wv to its neighbors. If a component receives a message containing
a suggestion of a smaller leader for one of its variables, it updates the leader
and forwards the message to all neighbors. After detection of termination, each
component v holds a list associating the according leader ID with each variable:
((a1, v1), (a2, v2), ..., (am, vm)) with aj ∈ Wv, vj ∈ V and j = 1, 2, ...,m. Note
that a component v does not forward a message if it receives a suggestion for a
leader of a variable a /∈ Wv. Thus, if there are two different leaders for the same
variable a in the network, then the subgraph of a-components is unconnected
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and thereby the witness is not connected. Deciding whether there are multiple
leaders for one for one variable can be done by using a spanning tree. Since we
use a spanning tree as well for deciding the witness predicate, we describe this
step as part of the evaluation.

Consistency. For each v ∈ V , let the predicate consv ⊂ [Wv]× [Wu1]× [Wu2]×
... × [Wul] denote whether the neighborhood of v is consistent with neighbors
u1, u2, ..., ul ∈ V . We assume the sub-checkers of neighbors can communicate
with each other. It follows from Theorem 1 that the consistency of a con-
nected witness can be decided by a distributed algorithm where a component
only once exchanges messages with its neighbors. Each sub-checker sends the
sub-witness of its component to the neighboring sub-checkers. Subsequently,
a sub-checker of each component v compares the sub-witness wv with each
of the received sub-witnesses: If for all a ∈ Wv ∩ Wui, wv(a) = wui(a), then
consv(wv, wu1, wu2, ...wul) holds.

Sub-Predicates. Each sub-checker of a component v ∈ V decides each sub-
predicate γ1, γ2,..., γk for the triple (iv, ov, wv). Finally, the sub-checker holds a
k-tuple containing the according evaluated sub-predicates.

Fig. 2. A certifying sub-algorithm of v ∈ V and its sub-checker.

Evaluation. Figure 2 shows a component with its sub-checker: Each sub-checker
of a component v with neighbors u1, u2, ..., ul ∈ V holds a k + 3-tuple consist-
ing of k evaluated predicates, the evaluated predicates compv and consv, and
the list of associated leaders for each a ∈ wv. To evaluate the witness predi-
cate, the sub-checkers combine their tuples by using the rooted spanning tree:
Starting by the leaves, each sub-checker gets the tuple of each child and com-
bines it with its own tuple: if the j-th sub-predicate is universally distributable,
then the j-th position of both tuples is combined by logical conjunction; other-
wise the j-th sub-predicate is existentially distributable and logical disjunction
is used instead. Let the predicate Comp denote whether each sub-witness is
complete and the predicate Cons denote whether a witness w is consistent in
the network; hence, both predicates are treated as universally distributable. For
the connectivity, each component compares the chosen leaders of itself and its
children. If a variable has multiple leaders, the component sends ‘false’ to its
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parent otherwise a list with the so far chosen leaders. If a component receives
false from a child, it just sends ‘false’ to its parent. Finally, the root cre-
ates the tuple (Γ1(i, o, w), Γ2(i, o, w), .., Γk(i, o, w), Comp(w), Cons(w), Con(w))
where the predicate Con is fulfilled if there are no multiple leaders for a vari-
able – hence the witness is connected. The root evaluates the witness predicate
by combining the distribution-predicates accordingly. The evaluation terminates
when root receives a message from all its children; if the witness is complete,
connected and consistent, and the witness predicate satisfied, the root accepts.
All sub-checkers together build a distributed checker of Γ . From the definition
of a CDA and the outlined distributed checker follows: if the distributed checker
accepts on a triple (i, o, w), then (i, o) ∈ ψ or (i) /∈ φ.

3 Framework: Formal Instance Verification

We present a method for formal instance verification for CDAs (c.f. [29]). While
formal verification establishes the correctness for every input-output pair at
design-time, formal instance verification establishes the correctness for a par-
ticular input-output pair at runtime. In analogy to formal verification, formal
instance verification requires a machine-checked proof. Hence, we have formal
instance correctness for a particular input-output pair if there is a machine-
checked proof for the correctness of this pair. While formal verification is often
too costly, formal instance verification is often feasible but at the expense of not
being complete.

To achieve formal instance correctness, we combine CDAs with theorem prov-
ing and program verification. We give an overview of the proof obligations to
solve (Sect. 3.1). We implement the method in a framework for the proof assis-
tant Coq (Sect. 3.2).

3.1 Proof Obligations for Formal Instance Verification

Using a CDA comes with a trust base: for example we have to trust that the
witness predicate has the witness property or that the distributed checker algo-
rithm is correct. According proofs have to be provided by the developer of the
CDA but usually only exist on paper. Even if a distributed checker algorithm
is correct on paper, the implemented distributed checker program could still be
flawed. Assume a CDA with a witness predicate Γ , we have to solve the following
proof obligations (PO) to obtain formal instance correctness:

PO I The implemented termination detection is correct.
PO II Witness predicate Γ has the following properties:

(i) Γ has the witness property (c.f. Sect. 2.3)
(ii) Γ is distributable (c.f. Sect. 2.5).

PO III The Theorem 1 for distributed checking of consistency (c.f. Sect. 2.3).
PO IV The implemented distributed checker is correct (c.f. Sect. 2.7):

(i) Each sub-checker checks if its sub-witness is complete.
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(ii) Each sub-checker takes part in checking if the witness is connected.
(iii) Each sub-checker checks the consistency sub-witnesses in the neighbor-

hood.
(iv) Each sub-checker decides the sub-predicates for its component.
(v) Each sub-checker takes part in evaluation of Γ .

By solving these proof obligations, it follows: If the distributed checker accepts
on an input, output and witness, we have a machine-checked proof that the
particular input-output pair is correct. Note that the computation of the output
is not mentioned in the proof obligations; the CDA is treated as a black box.

According to the concept of certifying algorithms the verification of the
checker should be easier than verifying the actual algorithm. We note that for
our class of CDA the checker has to perform five tasks making it seemingly com-
plex. Note that, except for PO IV(iv), each task only needs to be verified once
for the outlined class of CDA. As a consequence, the verification effort for each
certifying algorithm is the same in the distributed setting as in the sequential
setting.

3.2 Overview of the Framework

We use the proof assistant Coq [14] for theorem proving and program verifi-
cation. Coq provides a higher-order logic, a programming language, and some
proof automations. Even though Coq’s programming language is not turing-
complete (since every program halts), Coq implements a mechanism to extract
programs to functional programming languages like OCaml. To model a net-
work in Coq, we use the graph library Graph Basics [8] for the topology, and
the framework Verdi [31] for the communication. By using Verdi, we extract
a distributed checker that can be deployed on a real network.

The framework is illustrated in Fig. 3. The network model and the CDA
model are fundamental for all proof obligations. The network model consists of
a formalization of the network’s topology and communication. The CDA model
consists of the CDA Interface – a formalization of the sub-input/output/witness
and witness-predicate of a particular CDA – and a verified termination detection
algorithm. We use theorem proving to show for the witness predicate Γ that it
has the witness property and that it is distributable (PO II) as well as for the
proof of Theorem 1 (PO III). We use program verification for the termination
detection algorithm (PO I) as well as for the distributed checker (PO IV). Some
proof obligations have to be proven for each CDA (indicated by an arrow), others
have to be proven only once for the outlined class of CDAs. In this paper, we
focus on the latter ones. Note that computation of a spanning tree is an implicit
part of termination detection (PO I) and evaluation PO IV(v). Hence, it makes
sense to verify the computation once and then to reuse the spanning tree. Verified
Coq programs can be extracted to verified OCaml programs.

We formalized the network model and CDA interface, and solved the proof
obligations that deal with the consistency of the witness (PO III and PO IV(iii)).
We formalized the notion of consistency and solved PO III (proof of Theorem 1)
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Fig. 3. A Coq framework for formal instance verification using CDAs.

in Coq. The formalization follows the definitions and the proof in Sect. 2.3
tightly. We forgo giving details in this paper. In the remainder of this section, we
explain the network model and CDA interface (Sect. 3.3). We discuss the verifi-
cation of the distributed consistency check (Sect. 3.4) and describe its extraction
such that it runs on a real network (Sect. 3.5). PO IV(i), PO IV(ii), PO IV(v)
follow the same approach as the distributed consistency check and are work-in-
progress.

3.3 Network Model and CDA Interface

Topology. Since GraphBasics offers a connected graph, the representation
of a network is straightforward. We assume that a component and its checker
are two logical components which are co-located on one physical component. A
vertex of the connected graph Component represents the physical component.

Communication. We model the communication between a component and its
sub-checker, and between sub-checkers. To implement the communication of the
distributed checker, we specify the following definitions given by Verdi: The
type of a sub-checker (Name), the set of sub-checkers (Nodes), the state each
sub-checker maintains (Data) and a function to initialize this state (initData).
Verdi distinguishes between internal (Input and Output) and external mes-
sages (Msg): While internal messages are exchanged between logical compo-
nents running on the same physical component, external messages are exchanged
across the network. We use internal messages for the communication between a
component and its sub-checker, and external messages for the communication
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Fig. 4. Outline of the implementation of the consistency check of a sub-checker.

between sub-checkers. For the behaviour of a sub-checker, we implement the func-
tions InputHandler and NetHandler. The InputHandler runs if a sub-checker
receives an internal message and the (NetHandler) runs if a sub-checker receives
an external message. For our network model, we assume reliable communication.

Combining Verdi and Graph Basics. Verdi does not offer to specify the
topology of a network. However, to reason about properties such as consistency
in a neighborhood, we have to specify the underlying topology of a network. That
is why, we combine Verdi with Graph Basics. To this end, we instantiate the
set of Nodes in the network with the vertices of the topology graph.

CDA Interface. We abstract from the actual computation of a CDA. How-
ever, as a sub-checker needs to process sub-input, sub-output and sub-witness,
we have to formalize them. The CDA interface consists of a formalization of
the sub-input, sub-witness and sub-output as well as the structure of the wit-
ness predicate (i.e. if the distribution-predicates of the witness predicate are
universally or existentially distributable). The latter is used by a sub-checker to
perform the distributed evaluation of the witness predicate.

Initialization of a Sub-Checker. A sub-checker needs knowledge about its
neighborhood; we implement the initData function (Fig. 4 l. 19) such that each
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sub-checker is initialized with the IDs of its neighbors. Furthermore a sub-checker
is initialized with the CDA Interface. We divide the CDA interface into two
parts: The first part is independent from the actual computation of the CDA
and contains the minimal sub-input and structure of the witness predicate. To
this end, we define the internal message Checkerknowledge. The second part
contains additional sub-input, the sub-output and sub-witness. To this end, we
define the internal message Checkerinput. We define the InputHandler of a sub-
checker such that it initializes the sub-checker’s state with the values obtained
from Checkerknowledge and Checkerinput (Fig. 4 l. 20–28).

3.4 Checking Consistency in the Neighborhood

To check the consistency of a witness, each sub-checker checks the consistency
in its neighborhood (Theorem 1). In our implementation the state of each sub-
checker contains a list of its neighbors (nbrslist). We use nbrslist to keep
track of the messages received from the neighbors. Additionally, the state con-
tains the boolean initialized which indicates if the sub-checker is initialized
as described in the previous section, and the boolean consistent which indi-
cates if the sub-witness of the component is consistent with all sub-witnesses
received so far (Fig. 4 l. 10–17). When a sub-checker receives a sub-witness from
a neighbor, it removes the neighbor from its nbrslist. As a result, if nbrslist
is empty, a sub-checker received a sub-witness from each of its neighboring sub-
checkers. Subsequently, a sub-checker calls the function Consistency Nbr which
takes two sub-witnesses as an input and returns true if they are consistent. If
Consistency Nbr returns true, the checker sets consistent to true. After being
set to false once, the value of consistent cannot become true again. If the
consistency check fails for at least one neighborhood, the witness is inconsistent.

Verification of the Consistency Check. For the verification of the consis-
tency check, we show that if the consistency check succeeds, the neighborhood
of each sub-checker is consistent. After initialization, if a sub-checker s received
and processed a sub-witness from each neighboring sub-checker and consistent
is true, consistency in the neighborhood of s holds:

Theorem 2 (in Coq). ∀ s, initialized(s) ∧ nbrslist(s) = empty ∧
consistent(s) −→ Neighborhood Consistency (s)

We prove this theorem in the following steps using Coq. First, we show that for
all reachable network states that the following lemmas hold for each sub-checker
s:

Lemma 3 (in Coq). All components in nbrslist(s) are neighbors of s.

Lemma 4 (in Coq). From initialized(s) follows that, if nbrslist(s) is
empty, a message was received from each neighbor of s.

Lemma 5 (in Coq). From initialized(s) follows that, if consistent(s) is
true, the witness is consistent with each witness received so far.
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We prove the Lemmas 1–3 by inductive state invariants [31]. A property is an
inductive state invariant if it holds in the initial state (defined by the initState
function – Fig. 4 l. 19) and each state reachable by processing a message. Note
that Lemma 2 and 3 rely on the value of initialized which has nothing to
do with Verdi’s initState function but with the initialization of our network
model described in the previous section. As a next step, we verify the func-
tion Consistency Nbr by proving that it returns true for two sub-witnesses if
and only if the sub-witnesses are consistent. Finally, we show that the Lemmas
1–3 and the correctness of the function Consistency Nbr together imply the
correctness of Theorem 2.

3.5 Extraction of a Distributed Checker

To run our distributed checker on a real network we extract it to Ocaml and link
it with the Verdi Shim – a small library which e.g. provides network primitives.
In order to extract our distributed checker we have to provide a specific topology
and instantiate the types of the CDA interface accordingly.

The trusted computing base of a distributed checker consists of the following:
Coq’s proof checker and extraction mechanism – both proven on paper, the
Ocaml compiler – widely used, Verdi’s Shim and the underlying operating
system.

4 Related Work

Literature offers numerous certifying algorithms [1–4,6,9–13,15,18–20,22–24,
27]. A theory of certifying algorithms and further reading is given in [19]. A for-
mal instance verification method is discussed in [26]. All this work is on sequential
algorithms. To the best of our knowledge, there is little research on certifying
distributed algorithms. A certifying variant of a routing algorithm was presented
in [30], a discussion on how to distribute a witness predicate over a network
in [28], and a method for formal instance verification in [29]. Moreover, CDAs
share similarities to self-stabilizing algorithms [7], proof labeling schemes [16],
and decentralized runtime verification [21].

In this paper, we built up on previous work [28,29]. We integrated the idea of
a consistent witness, and focused on distributed checking of consistency and the
witness predicate in contrast to [28]. Moreover, we discussed proof obligations
that have to be proven only once for the outlined class of CDAs while in [29] one
particular case study is discussed. Moreover, we integrated Verdi for verification
of a distributed program. As a consequence, the verified distributed checker runs
on a real network in contrast to [29].

5 Discussion

We considered CDAs which verify an input-output pair at runtime. There are
many open questions on how to apply the concept of certification to distributed
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algorithms. We focused on the distributed checking of a distributed witness. In
order to form a valid correctness argument a distributed witness has to be con-
sistent. By a restriction to connected witnesses, consistency can be checked in
the neighborhoods (Theorem 1). We presented a method for formal instance ver-
ification, and implemented this method in a framework for Coq. Moreover, we
discussed a verified implementation of the consistency check as an example of a
task of the distributed checker. We showed how to deploy the verified distributed
checker on a real network.

In the discussed framework, some proof obligations require manual work for
each CDA (Sect. 3). For the proof obligations PO II(i) and PO II(ii) we have
to find a proof. Automatic theorem provers can help to partly automate this
undecidable task. However, using different tools creates an overhead: We have
to formalize a proof obligation for different tools, and to show that the differ-
ent formalizations are equivalent. Moreover, the tools add up on the trust base
(c.f [26]). For the proof obligation PO IV(iv) we have to verify the correctness
of the checkers task to decide the sub-predicates. By restricting to simple sub-
predicates, i.e. sub-predicates that can be expressed as a propositional logic for-
mula, we could use a verified program that gets a sub-predicate and generates a
decision procedure correct by construction. By implementing and verifying such
a program in Coq, we could easily integrate it to the presented framework.

We focused on terminating distributed algorithms. However, some distributed
algorithms are intended to run continuously such as communication protocols.
On a synchronous network, each round could additionally consist of a checking
phase. By restricting to a universally distributable witness predicate, a sub-
checker can raise an alarm if a sub-predicate does not hold. If not restricting
to universally distributable witness predicates, the overhead of the evaluation
of the witness predicate could be reduced by evaluating each k rounds. As a
consequence, a bug would be discovered with a possible delay.

We focused on networks. However, for shared memory systems, the consis-
tency of a distributed witness could be guaranteed by sharing the according
variables between neighbors. The witness still has to be connected however. An
alternative is to have sub-checkers that act like an interface of its component.
That way, a sub-checker could check whether all messages sent are consistent
with the internal state of its component, that its component does not corrupt
messages when forwarding them, and that its component reads out a message
properly. By that, the computed witness would be consistent. However, an over-
head would be created during the computation.
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2 Scania, Södertälje, Sweden

Abstract. A contracts theory embeds non-monotonic composition
(with respect to implementation) if the fact that a composition of two
components implements a specification S does not generally follow from
one of these components implementing S. In contrast to monotonic com-
position, non-monotonic composition offers the additional expressiveness
of specifying properties that only hold locally for a component since non-
monotonic composition does not enforce all properties to be preserved
when composing. Despite that this additional expressiveness is clearly
needed, it implies that cases where monotony is indeed desired needs
to be managed explicitly. The present paper elaborates on this topic by
introducing a contracts theory embedding non-monotonic composition,
and exploring conditions for ensuring monotonic composition in the con-
text of this theory.

Keywords: Contracts · Non-monotonic · Composition · Satisfiability

1 Introduction

The notion of contracts was first introduced in [10] as a pair of pre- and post-
conditions [8] to be used in formal specification of software (SW) components.
More recent, general contracts theories [2,6,9,11–13] consider a wider notion of
a contract applicable for components in any domain (SW, hardware, physical,
etc.). In such general theories, a contract (A,G) expresses a commitment of a
component to guarantee the implementation of a specified property G, given
that the component is composed with an environment implementing a specified
property A.

More concretely, despite using different terminology and notation, such gen-
eral contracts theories [2,6,9,11–13] are all grounded in the following concepts:

– component C;
– composition × on pairs of components;
– specification S; and
– implementation relation |= on components and specifications.
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Defined from these concepts, a contract is a pair (A,G) of specifications and is
satisfied by a component C if E × C |= G for each component E |= A.

Another common characteristic of general contracts theories [2,6,9,11–13] is
that they embed monotonic composition (with respect to implementation), i.e.

C |= S => ∀C′. C′ × C |= S. (1)

An example is the theory in [2] where components and specifications both are
characterized by assertions, i.e., sets of value sequences, over the same (universal)
set of variables. Composition × and implementation |= are instantiated by ∩ and
⊆, respectively, which means that (1) translates to C ⊆ S => ∀C′. C′ ∩ C ⊆ S,
which generally holds.

Despite previous general contracts theories [2,6,9,11–13] embedding mono-
tonic composition, there is at least one strong reason why a general contracts
theory by itself should not enforce (1), i.e., why a contracts theory should embed
non-monotonic composition instead.

This reason is that theories embedding monotonic composition is inherently
limited to specification of properties that are preserved through composition.
Formulated differently, a theory with monotonic composition does not support
specifying properties that only hold locally for a component since all properties
are preserved when composing. This means that it is not possible to express,
e.g., that a component shall not constrain a variable x to any particular value,
but that the composition of this component and another shall constrain x. In
an engineering context, this could correspond to a specification expressing that
“a subsystem shall not send out a particular signal” – a property that will not
be preserved when composed with a component that sends out the signal.

Thus, in contrast to embedding monotonic composition, embedding non-
monotonic composition in a contracts theory offers the additional expressiveness
of specifying purely local properties. Despite that this additional expressive-
ness is clearly needed, there are many cases where we do want composition to
be monotonic with respect to implementation. Since a theory embedding non-
monotonic composition does not ensure this by itself, in such a theory, it is
necessary to understand the conditions for when composition is monotonic and
when it is not.

More explicitly, in a theory embedding non-monotonic composition, consider
that the guarantee of a contract (A,G) expresses a property intended to be
global, i.e. always preserved through composition. If a component C satisfying
(A,G) is first composed with a component E |= A, it follows that E × C |= G;
however, if E × C is later composed with another component C′, it does not
generally follow that C′ ×E×C |= G, and thus, this has to be ensured explicitly.
More generally, independent of the order in which components are composed, it
needs to be ensured that for each E |= A and C satisfying (A,G), it holds that
C′ × E × C |= G, which is equivalent to

∀C. (C satisfies (A,G) ⇒ C′ × C satisfies (A,G)) . (2)

Since (2) is not embedded in a contracts theory with non-monotonic compo-
sition, ensuring (2) needs to be done explicitly. The present paper elaborates on
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this topic by introducing a contracts theory embedding non-monotonic compo-
sition, and exploring conditions for ensuring (2) in the context of this theory.

The introduction of this contracts theory constitutes a first contribution.
Similar to the previously exemplified theory [2], in the introduced theory,
components are characterized by assertions and composition is set intersec-
tion; however, in contrast to [2], specifications are sets of assertions instead
of just assertions, and implementation is instantiated by ∈ instead of ⊆. The
proposed theory embeds non-monotonic composition since (1) instantiates to
C ∈ S => ∀C′. C′ ∩ C ∈ S, which clearly does not generally hold.

As a second contribution, conditions for ensuring (2) are presented. This
includes a sufficient condition, which is that component C′ satisfies contract
(G|G). It is shown that this condition is in fact also necessary if, for each G ∈ G,
there exists a component that satisfies (A, {G}). Furthermore, it shown that
monotonic composition with respect to composition can also be ensured by a
condition based on having components C, C′, and each E ∈ A implement special
types of specifications, called interface port specifications, which ensure that the
set of variables constrained by components C′ and E∩C are respectively disjoint,
and thus, that the components are isolated from each other.

As previously mentioned, general contracts theories [2,6,9,11–13] all embed
monotonic composition, instead of non-monotonic composition as in the con-
tracts theory presented in this paper. However, there are contracts meta theo-
ries [1,3] that are not limited to monotonic composition. More specifically, these
meta theories support instantiating theories embedding non-monotonic composi-
tion, but also contracts theories embedding monotonic composition. Thus, these
meta theories are defined at a level agnostic to whether composition is mono-
tonic or non-monotonic, which means that these meta theories naturally do
not support reasoning about properties that are specific to contracts theories
embedding non-monotonic composition. In contrast, the present paper studies
the concept of non-monotonic composition in depth, presenting several theorems
and propositions manifesting properties inherent to this concept.

The rest of the paper is organized as follows. Section 2 presents established
concepts from previous contracts theories. Section 3 introduces, as a first con-
tribution, a novel contracts theory where composition is non-monotonic with
respect to implementation. Section 4 then presents, as a second contribution,
conditions to ensure monotony of composition in this contracts theory. Section 5
summarizes the paper and draws conclusions.

2 Preliminaries

This section presents definitions already established in [13], which in turn draws
on the contracts theory in [2].

Let Ξ = {x1, . . . , xN} denote the set of variables considered, and we call this
the universal set of variables. Similarly, let T≥0 ⊆ R denote the universal set
of time points considered. T≥0 can be defined to be a continuous, e.g. if T≥0 is
defined by [0, 1000], or discrete, e.g. if T≥0 = {0.1 ∗ n|n ∈ {0, 1, 2, . . . , 10000}}.
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The time points in T≥0 do not represent absolute time, but instead, time relative
to the start of execution or observation of the system. Furthermore, T≥0 contains
0 and no negative time points.

Definition 1 (Run, see [13]). A run ω = (x1(t), . . . , xN (t)) is a vector valued
function, with the elements being the variables in Ξ, and defined on a time
subinterval Tω ⊆ T≥0 starting at time 0, i.e. 0 ∈ Tω.

For example, a run can be a trace [5,7,14] or an execution as presented in [11].
Note that two different runs may be defined on two different time intervals.

Let Ω denote the set of all possible runs.

Definition 2 (Behavior, see [13]). A behavior B is a, possibly empty, set of
runs.

This notion corresponds to an assertion as presented in [2,4].

Example 1. Consider a universal set of variables Ξ = {x, y}. Examples of runs
are ω1 = (x(t), y(t)) = (t, et) and ω2 = (t, 2et) defined on an interval Tω = [0, 10].
These two runs can be combined to form four different behaviors B1 = {},
B2 = {(t, et)}, B3 = {(t, 2et)}, and B4 = {(t, et), (t, 2et)}.

Example 2. Let Ξ = {x, y} where x and y are Boolean variables and Tω = {0}
for all runs. Examples of behaviors are B1 = {(0, 0)} , B2 = {(0, 1)}, B3 =
{(0, 0), (0, 1)}, and B4 = {(0, 0), (1, 1)}.

Let ω[X] denote the subvector of ω having the variables X ⊆ Ξ. For example,
if Ξ = {a, b, c, d}, then ω[{b, d}] = (b, d). If X = ∅, then let ω[X] = ∅.

Definition 3 (Projection, see [13]). The projection of behavior B onto a set
of variables X ⊆ Ξ, denoted projX B, is the set of runs:

{ω ∈ Ω | ∃ν ∈ B.ν[X] = ω[X]}.

Note that projection is called extended projection in [13] and is defined using
slightly different notation. Note also that if B 
= ∅, then proj∅ B = Ω and
projΞ B = B. Furthermore, for any variable set Y , it holds projY ∅ = ∅ and
projY Ω = Ω.

Example 3. For the behaviors defined in Example 2, it holds that proj{x} B1 =
proj{x} B2 = {(0, 0), (0, 1)} and proj{x} B3 = B3, and proj{x} B4 = Ω.

Let {x}C denote the complement set of {x}, i.e. {x}C = Ξ \ {x}.

Definition 4 (Behavior Constrains, see [13]). A behavior B constrains a
variable x if

proj{x}C B 
= B.



Preserving Contract Satisfiability Under Non-monotonic Composition 185

Let XB denote the set of variables constrained by B. Note that XΩ = ∅ and
X∅ = ∅.

Example 4. For the behaviors discussed in Examples 2 and 3, it holds {y}C =
{x}. Furthermore, proj{y}C B1 = proj{x} B1 
= B1. Therefore B1 constrains x. In
fact, B1 also constrains y, and therefore XB1 = {x, y}.

Since proj{x} B3 = B3, it holds that B3 does not constrain y. However, behav-
ior B3 does constrain x since proj{y} B3 = {(0, 0), (0, 1), (1, 0), (1, 1)} 
= B3.

3 Composition, Specifications, and Contracts

Based upon the definition of behavior in Sect. 2 and as the first contribution of
the paper, this section presents the basis of a contracts theory in which specifi-
cations are represented as sets of behaviors. The achievement is a theory where
composition is non-monotonous with respect to implementation of specifications.

3.1 Composition

We assume that each component is characterized by a behavior. When two com-
ponents, characterized by behaviors B1 and B2 respectively, are put together,
we assume that a new behavior, called the composition of B1 and B2, is formed
and that it conforms to the following definition.

Definition 5 (Composition of Behaviors). The composition of two behav-
iors B1 and B2 is their intersection B1 ∩ B2.

3.2 Specifications

A specification S expresses an intended property of a component. Commonly
such an intended property is called a ‘requirement’. If a behavior implements a
specification, then this really means that the component characterized by the
behavior has the intended property expressed by S. These notions are now for-
malized in the following two definitions.

Definition 6 (Specification). A specification S is a, possibly empty, set of
behaviors.

Definition 7 (Behavior Implements Specification). A behavior B imple-
ments a specification S if B ∈ S.

Note that the empty set ∅ can be a specification, and considering that ∅ can
also be a behavior, the set {∅} can be a specification.

Example 5. Let Ξ = {x, y} and Tω = {0}. Then

S = {{(0, 0), (0, 1)}, {(0, 1)}, {(0, 0), (1, 1)}}
is a possible specification. Behavior B3 = {(0, 0), (0, 1)} implements S and
also B4 = {(0, 0), (1, 1)} implements S. However, the composition B3 ∩
{(0, 0), (1, 1)} = {(0, 0)} does not implement S.
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Example 5 highlights the fact that even though the two behaviors B3 and B3

individually implement the specification S, their composition does not. That is,
composition is non-monotonic with respect to implementation of specification.

3.3 Contracts

In alignment with the notion of contract and satisfy as introduced in Sect. 1, this
section presents the instantiation resulting from the definitions of specification
and implementation presented in Sect. 3.2.

A contract is a pair (A,G) of specifications expressing an intended property
of a composition of two behaviors E and B where E ∈ A.

Definition 8 (Contract). A contract is a pair (A,G) of specifications, where:

(i) G is non-empty and called guarantee; and
(ii) A is possibly empty and called assumption.

Definition 9 (Behavior Satisfies Contract). A behavior B satisfies a con-
tract (A,G) if, for each E implementing A, it holds that the composition E ∩ B
implements G.

If the instantiations of specification and implements are written out, we
obtain that a behavior B satisfies a contract (A,G) if, and only if,

∀A ∈ A. A ∩ B ∈ G (3)

Note that a contract (A,G) is trivially satisfied if A = ∅.

3.4 Specification Is Agnostic to Set of Variables

As discussed above, a consequence of Definitions 6 and 7 of specification and
implements is that composition is not inherently monotonic with respect to
implementation. However, in many cases monotony is indeed desirable. One such
case is when a specification represents an intended relation on a proper subset
of the universal set Ξ. An example is when S1 expresses an intended property
x = 0 and where x ⊂ Ξ. Consider a first component that itself implements S1 by
setting x = 0 and not constraining any other variables. If this first component
is composed with a second component that does not in any way constrain x,
then we should expect that their composition also implements S1. As a funda-
mental concept to support such reasoning, we introduce the notion of agnostic
specification:

Definition 10 (Specification is Agnostic to Set of Variables). A specifi-
cation S is agnostic to a set of variables X if

∀B ∈ S. (∀B′. projXC B′ = projXC B ⇒ B′ ∈ S).
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A specification is agnostic to a set of variables X if the fact whether or not
a behavior implements the specification is independent on whether or not the
behavior constrains variables in X.

Example 6. Let Ξ = {x, y} where x and y are Boolean variables and Tω = {0}.
Two examples of specifications that are agnostic to {y} are:

– {{(0, 0)}, {(0, 1)}, {(0, 0), (0, 1)}}
– {{(0, 0)}, {(0, 1)}, {(0, 0), (0, 1)}, {(1, 1)}, {(1, 0)}, {(1, 0), (1, 1)}}.

Any proper subset of these behavior sets are not agnostic to {y}. Three such
examples are:

– {{(0, 0)}}
– {{(0, 0)}, {(0, 1)}}
– {{(0, 0), (0, 1), (1, 0), (1, 1)}}.

Now, to illustrate how the concept of agnostic specification can be used
to ensure monotonic composition with respect to implementation of specifica-
tion, consider again the previously introduced specification S1. Assume that S1,
expressed by x = 0, is agnostic to {y}. Since the first component implements S1,
it holds B1 ∈ S1. Also, since the first component does not constrain any other
variables than x, it holds that B1 does not constrain y. For any behavior B2

constraining only y, it holds proj{x} B2 = Ω (see Proposition 2 in Appendix A).
Next, we will use the following proposition with proof given in Appendix A:

Proposition 1. Let B1 and B2 be two behaviors such that XB1 ∩XB2 = ∅. Then,
for an arbitrary set of variables Y , it holds

projY (B1 ∩ B2) = projY B1 ∩ projY B2.

By using Proposition 1, we derive that

proj{x}(B1 ∩ B2) = proj{x} B1 ∩ proj{x} B2 = proj{x} B1 ∩ Ω = proj{x} B1 (4)

Specification S1 being agnostic to {y} means according to Definition 10 that

∀B′. proj{x} B
′ = proj{x} B1 ⇒ B′ ∈ S1 (5)

Combining (4) and (5), implies that the composition B′ = B1 ∩ B2 ∈ S1.
In summary, the fact is that since S1, expressing x = 0, is agnostic to y, the

composition of any behavior in S1 with any other behavior that only constrains y
will result in a behavior also in S1. This fact will be generalized in Sect. 4.3
presenting a similar condition, but in terms of satisfying a contract instead of
implementing a specification.
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4 Preserving Contract Satisfiability Under
Non-monotonic Composition

Section 3 presented a contracts theory where components are characterized by
behaviors, composition is set intersection, specifications are behavior sets, and
implementation is defined by ∈. As previously mentioned in Sect. 1, the proposed
theory embeds non-monotonic composition since (1) instantiates to B ∈ S =>
∀B′. B′ ∩B ∈ S, which clearly does not generally hold. As also stated in Sect. 1,
this means that it follows that (2) also does not hold, i.e., it does not hold that

∀B. B satisfies (A,G) ⇒ B′ ∩ B satisfies (A,G). (6)

However, ensuring (6) is desirable for any use-case where G expresses a property
that is intended to be implemented by a composition of B′ and the composition
B ∩ E of a component B satisfying (A,G) and a component E ∈ A.

In order to be able to support such use-cases, this section now proceeds
to present conditions for ensuring (6). This includes a sufficient and necessary
condition of (6); however, to gradually introduce this condition to the reader, a
condition is first presented that is only sufficient and not necessary, but that is
less technical and directly follows from the necessary and sufficient condition.

4.1 Sufficient Condition for Preserving Satisfiability

Consider constructing a contract (A′,G′) for component B′ such that (6) is
ensured if B′ satisfies the contract. Since G′ is intended to express a property of
the composition of B′ and a behavior A ∈ A′, and G is to be implemented by
the composition, it makes sense that G′ = G. Regarding the assumption A′, to
enforce that the composition of B′ and any behavior implementing G also imple-
ments G, each behavior implementing G should be in A′. Since G contains each
behavior implementing it, it also makes sense that A′ = G. Indeed, as shown in
the following corollary, if B′ satisfies (G,G), then (6) holds.

Corollary 1. Given a contract (A,G), if a behavior B′ satisfies (G,G), then

∀B. B satisfies (A,G) ⇒ B′ ∩ B satisfies (A,G).

Proof. This corollary follows from Theorem 1 in Sect. 4.2 since Definition 11
implies that RG(A,G) ⊆ G, which means, in accordance with (3), that: B′ satis-
fies (G,G) ⇒ B′ satisfies (RG(A,G),G).

Example 7. Let Ξ = {x, y} where x and y are Boolean variables and Tω = {0}.
Consider a contract (A,G) where A = {A1,A2} = {{(0, 0)}, {(0, 0), (0, 1)}} and
G = {G1,G2,G3} = {{(0, 0)}, {(1, 0)}, {(0, 0), (1, 0)}}.

Behavior B = {(0, 0), (1, 1)} satisfies the contract (A,G) since

A1 ∩ B = {(0, 0)} ∩ {(0, 0), (1, 1)} = {(0, 0)} = G1 ∈ G
A2 ∩ B = {(0, 0), (0, 1)} ∩ {(0, 0), (1, 1)} = {(0, 0)} = G1 ∈ G.
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Behavior B′
1 = {(0, 0), (1, 0), (1, 1)} satisfies the contract (G,G) since

G1 ∩ B′
1 = {(0, 0)} ∩ {(0, 0), (1, 0), (1, 1)} = {(0, 0)} = G1 ∈ G

G2 ∩ B′
! = {(1, 0)} ∩ {(0, 0), (1, 0), (1, 1)} = {(1, 0)} = G2 ∈ G

G3 ∩ B′
1 = {(0, 0), (1, 0)} ∩ {(0, 0), (1, 0), (1, 1)} = {(0, 0), (1, 0)} = G3 ∈ G.

Then, in agreement with Corollary 1, composition B′
1 ∩ B satisfies (A,G) since

A1∩B′
1 ∩ B = {(0, 0)} ∩ {(0, 0), (1, 0), (1, 1)} ∩ {(0, 0), (1, 1)} = {(0, 0)} = G1 ∈G

A2∩B′
1∩B = {(0, 0), (0, 1)}∩{(0, 0), (1, 0), (1, 1)} ∩ {(0, 0), (1, 1)} = {(0, 0)} = G1 ∈G.

On the other hand, the behavior B′
2 = {(0, 1), (1, 0), (1, 1)} does not satisfy the

contract (G,G) since

G1 ∩ B′
2 = {(0, 0)} ∩ {(0, 1), (1, 0), (1, 1)} = ∅ 
∈ G.

Also so we see that the composition B′
2 ∩ B does not satisfy (A,G) since

A1 ∩ B′
2 ∩ B = {(0, 0)} ∩ {(0, 1), (1, 0), (1, 1)} ∩ {(0, 0), (1, 1)} = ∅ 
∈ G.

4.2 Necessary and Sufficient Condition for Preserving Satisfiability

Section 4.1 presented Corollary 1 expressing a condition for ensuring (6). As
previously mentioned, this condition is a sufficient, but not necessary condition
of (6).

This is due to the fact that the assumption in the contract (G,G) may include
behaviors that cannot be a composition of a behavior satisfying (A,G) and a
behavior A ∈ A. The subset of G obtained by removing such behaviors from G
is here called the realizable guarantee of (A,G).

Definition 11 (Realizable Guarantee of Contract). The realizable guar-
antee of a contract (A,G), denoted RG(A,G), is the specification {A ∩ B | A ∈
A ∧ B satisfies (A,G)}.

As expressed in the following proposition, contracts (A,G) and (A,RG(A,G))
are satisfied by the exact same behaviors.

Proposition 2. A behavior satisfies a contract (A,G) if and only if the behavior
satisfies (A,RG(A,G)).

Proof. Follows directly from (3) and Definition 11.

Having B′ satisfy (RG(A,G),G) instead of (G,G) is indeed sufficient for ensur-
ing (6). The behaviors in G \RG(A,G) are not compositions of a behavior B sat-
isfying (A,G) and a behavior A ∈ A; therefore, these behaviors can be excluded
from the assumption of (G,G) since the implication in (6) is trivially true for
any behavior B that does not satisfy (A,G). The following theorem not only
shows that it is indeed the case that B′ satisfying (RG(A,G),G) is sufficient for
ensuring (6), but that this is in fact also a necessary condition.
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Theorem 1. Given a contract (A,G), a behavior B′ satisfies (RG(A,G),G) if
and only if:

∀B. B satisfies (A,G) ⇒ B′ ∩ B satisfies (A,G). (7)

The proof of Theorem 1 follows after the following lemma.

Lemma 1. A behavior satisfies a contract (A1 ∪ . . . ∪ AN ,G) if the behavior
satisfies each contract (Ai,G).

Proof of Lemma 1. In accordance with (3), consider as given a behavior B such
that ∀Ai ∈ Ai.Ai ∩B ∈ G. It follows directly that ∀A ∈ (A1∪ . . .∪AN ).A∩B ∈ G,
which means that B satisfies (A1 ∪ . . . ∪ AN ,G) in accordance with (3).

Proof of Theorem 1. For the if-only case, in accordance with (3), consider as
given

∀A ∈ RG(A,G).A ∩ B′ ∈ G. (8)

Consider an arbitrary behavior B that satisfies (A,G), which means that ∀A ∈
A.A∩B ∈ RG(A,G) in accordance with Proposition 2 and (3). This and (8) imply
∀A ∈ A.A ∩ B ∩ B′ ∈ G, which means that B′ ∩ B satisfies (A,G) in accordance
with (3). This also holds for each B satisfying (A,G) since B characterizes an
arbitrary behavior, and (7) hence holds.

For the if case, consider that (7) holds. It follows in accordance with (3) that

∀B. (B satisfies (A,G) ⇒ (∀A′ ∈ A.A′ ∩ B′ ∩ B ∈ G)) .

Notably, ∀A′ ∈ A.A′ ∩ B′ ∩ B ∈ G can be rewritten as ∀A ∈ {A′ ∩ B | A′ ∈
A}.A ∩ B′ ∈ G, which in accordance with (3) means that

∀B.B satisfies (A,G) ⇒ B′ satisfies ({A ∩ B | A ∈ A},G).

This and Lemma 1 imply that B′ satisfies(⋃
B,B satisfies (A,G)

{A ∩ B | A ∈ A} ,G
)

,

which is equivalent to B′ satisfying ({A ∩ B | A ∈ A,B satisfies (A,G)},G). In
accordance with Definition 11, this means that B′ satisfies (RG(A,G),G), which
ends the proof.

4.3 Preserving Satisfiability Through Interface Port Specifications

Similar to Sects. 4.1 and 4.2, this section presents a condition for preserving con-
tract satisfiability; however, in contrast to the conditions presented in Sects. 4.1
and 4.2, rather than ensuring (6), this condition is sufficient for

∀B ∈ IX . B satisfies (A,G) ⇒ B′ ∩ B satisfies (A,G) , (9)

where IX = {B | XB ⊆ X}. In contrast to (6), which quantifies over each
behavior, formula (9) quantifies over each behavior B that implements a special
type of specification, here denoted IX and called interface port specification,
which expresses only a restriction on the set of variables that B can constrain.
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Definition 12 (Interface Port Specification). An interface port specifica-
tion for X is a specification {B | XB ⊆ X}.

Prior to presenting a theorem ensuring (9), an example will be studied.

Example 8. Consider Ξ = {x, y, u, v} where x, y, u, and v are Boolean variables
and Tw = {0}. Let B′ be a behavior and (A,G) a contract where:

(a) B′ = {(x, y, u, v) ∈ Ω | u = v};
(b) G = {B 
= ∅ | ∀(x, y, u, v) ∈ B. x = 1}; and
(c) A = {B| ∀(x, y, u, v) ∈ B. y = 1} ∩ I{x,y}.

Consider a behavior B = {(x, y, u, v) ∈ Ω | x = y}, and an arbitrary behavior
A ∈ A. Their intersection A∩B is behavior {(x, y, u, v) ∈ Ω | x = y = 1}, which
implements G. This means that in order for (9) to hold, behavior B′ ∩ A ∩ B
must also implement G. This is indeed the case since B′ ∩A∩B = {(x, y, u, v) ∈
Ω | x = y = 1 and u = v}, contained in G.

In accordance with Definitions 10 and 12, conditions (a)–(c) in Example 8
respectively imply:

(i) B′ ∈ I{u,v};
(ii) G is agnostic to {u, v, y} ⊇ {u, v} and ∅ /∈ G; and
(iii) A ⊆ I{u,v}C .

As will be shown in the following theorem, conditions (i)–(iii) ensure that
if a behavior B satisfies (A,G) and implements an interface specification for
a set disjoint to {u, v}, e.g. {x, y} as in Example 8, then it holds that
B′ ∩ B satisfies (A,G).

Theorem 2. Given a contract (A,G) and two disjoint sets of variables X and
Y , if

(i) B′ ∈ IY

(ii) G is agnostic to a set Z ⊇ Y and ∅ /∈ G; and
(iii) A ⊆ IY C ,

then it holds: ∀B ∈ IX . B satisfies (A,G) ⇒ B′ ∩ B satisfies (A,G).

The lemmas used in the following proof can be found in Appendix A.

Proof. Assume (i)–(iii), and an arbitrary behavior B ∈ IX satisfying (A,G),
i.e., ∀A ∈ A.A ∩ B ∈ G in accordance with (3). From (i), in accordance with
Definition 12, it follows that XB′ ⊆ Y . In accordance with Lemma 4, this and
(ii) imply that G is agnostic to XB′ . For an arbitrary A ∈ A, in accordance with
Definition 10 and since A ∩ B ∈ G, it follows that(

projXC
B′ (B

′ ∩ (A ∩ B)) = projXC
B′ (A ∩ B)

)
⇒ B′ ∩ (A ∩ B) ∈ G. (10)

In accordance with Definition 12, B ∈ IX and (iii) imply XB ⊆ X and XA ⊆ Y C,
respectively. Since X ∩ Y = ∅ was given, it follows that XB ⊆ Y C, and further
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that XA ∪XB ⊆ Y C. Then in accordance with Lemma 5 and since A∩B 
= ∅ due
to ∅ /∈ G in (ii), it holds that XA∩B ⊆ Y C, which means that XA∩B∩XB′ = ∅ since
XB′ ⊆ Y . In accordance with Proposition 1, this means that (10) is equivalent
to (

projXC
B′ (B

′) ∩ projXC
B′ (A ∩ B) = projXC

B′ (A ∩ B)
)

⇒ B′ ∩ (A ∩ B) ∈ G. (11)

In accordance with Lemma 2, it holds that projXC
B′ (B

′) = Ω, which means that
the left side of the implication in (11) is equivalent to Ω ∩ projXC

B′ (A ∩ B) =
projXC

B′ (A ∩ B). Since Ω includes all runs, it follows that projXC
B′ (A ∩ B) =

projXC
B′ (A ∩ B), which means that it follows that the right side of the impli-

cation in (11) holds, i.e., B′ ∩ (A ∩ B) ∈ G. Since A characterizes an arbi-
trary behavior in A, in accordance with (3), B′ ∩ B satisfies (A,G). Since B
characterizes an arbitrary behavior B ∈ IX satisfying (A,G), it follows that
∀B ∈ IX . B satisfies (A,G) ⇒ B′ ∩ B satisfies (A,G), which ends the proof.

Example 9. Consider contract (A,G) and behavior B′ from Example 8. As
previously mentioned, it holds that: (i) B′ ∈ I{u,v}; (ii) G is agnostic to
{u, v, y} ⊇ {u, v} and ∅ /∈ G; and (iii) A ⊆ I{u,v}C . In accordance with The-
orem 2, to establish that the composition of B′ and a behavior B satisfies
contract (A,G), it suffices to show that B satisfies (A,G) and implements an
interface specification for a subset of {x, y}. An example of such a behavior is
B = {(x, y, u, v) ∈ Ω | x = y}, presented in Example 8.

5 Conclusion

As argued for, and exemplified in Sect. 1, to support properties that may be
invalidated through composition, a contracts theory should not have composition
inherently monotonic with respect to implementation. Therefore, the paper has
presented, as a first contribution, the basis for a novel contracts theory where
composition is non-monotonic with respect to implementation. The key solution
is that specifications are represented as sets of sets of runs instead of only sets
of runs as in previous theories.

The general support from non-monotony implies that cases where monotony
is indeed desired needs to be managed explicitly. To support this, the paper has,
as a second contribution, presented Corollary 1 and Theorems 1 and 2, which
each provides conditions to ensure monotony of composition with respect to
implementation when indeed desired.

A Propositions and Lemmas

The following two lemmas are used to prove Propositions 1 and 2, which follow
after the lemmas.
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Lemma 2. For any two sets of variables X and Y , it holds that

projY (projX B) = projX∩Y B.

Proof. Consider an arbitrary ω ∈ projY (projX B). In accordance with Defini-
tion 3, this means that ∃μ . ω[Y ] = μ[Y ] ∧ μ ∈ {ω′ ∈ Ω|ω′[X] = ν[X], ν ∈ B}.
This can be rewritten as ∃ν∃μ . ω[Y ] = μ[Y ] ∧ μ[X] = ν[X] ∧ ν ∈ B. Since
X ∩ Y ⊆ X and X ∩ Y ⊆ Y , and μ[X] = ν[X] and ω[Y ] = μ[Y ], it holds
that μ[X ∩ Y ] = ν[X ∩ Y ] and ω[X ∩ Y ] = μ[X ∩ Y ], which also means that
ω[X ∩ Y ] = ν[X ∩ Y ]. Thus, it holds ∃ν . ω[X ∩ Y ] = ν[X ∩ Y ] ∧ ν ∈ B. In accor-
dance with Definition 3, this means that ω ∈ projX∩Y B. Since ω represents an
arbitrary run in projY (projX B), it must hold that each run in projY (projX B)
is also in projX∩Y B, which means that projY (projX B) ⊆ projX∩Y B.

Next consider an arbitrary ω ∈ projX∩Y B. In accordance with Definition 3,
this means that ∃ν . ω[X ∩ Y ] = ν[X ∩ Y ] ∧ ν ∈ B. Create a run μ such that
μ[X] = ν[X] and μ[XC] = ω[XC]. Since μ[XC] = ω[XC], ω[X ∩ Y ] = ν[X ∩ Y ],
and Y ⊆ XC ∪ (X ∩ Y ), it follows that ω[Y ] = μ[Y ]. Thus, we have shown that
∃ν∃μ . ω[Y ] = μ[Y ]∧μ[X] = ν[X]∧ν ∈ B, which can, as previously mentioned, be
rewritten as ∃μ . ω[Y ] = μ[Y ]∧μ ∈ {ω′ ∈ Ω|ω′[X] = ν[X], ν ∈ B}. In accordance
with Definition 3, this means that ω ∈ projY (projX B). Since ω represents an
arbitrary run in projX∩Y B, it must hold that each run in projX∩Y B is also
in projY (projX B), which means that projX∩Y B ⊆ projY (projX B). Since it
was previously also shown that projY (projX B) ⊆ projX∩Y B, it follows that
projY (projX B) = projX∩Y B, which ends the proof.

Lemma 3. It holds that projXB
B = B.

Proof. In accordance with Definition 4, it holds that proj{x}C B = B for each
variable in XC

B = {x1, . . . , xN}. It follows that

proj{x1}C(proj{x2}C(. . . proj{xN}C(B) . . .)) = B.

It follows in accordance with Lemma 2 that proj{x1}C∩...∩{xN}C B = B and since
XB = {x1}C ∩ . . . ∩ {xN}C, it also holds that projXB

B = B, which ends the
proof.

Proposition 1. Let B1 and B2 be two behaviors such that XB1 ∩XB2 = ∅. Then,
for an arbitrary set of variables Y , it holds

projY (B1 ∩ B2) = projY B1 ∩ projY B2.

Proof. To prove projY (B1 ∩ B2) ⊆ projY B1 ∩ projY B2, assume ω ∈ projY (B1 ∩
B2). According to Definition 3, this means that there exist a ν ∈ (B1 ∩B2) such
that ν[Y ] = ω[Y ]. Thus for i = 1, 2, it holds that ν ∈ Bi and ν[Y ] = ω[Y ], and
therefore that ω ∈ projY Bi, which ends the proof.

To prove also that projY B1 ∩ projY B2 ⊆ projY (B1 ∩B2), consider an arbi-
trary run ω ∈ projY B1 ∩ projY B2. According to Definition 3 this means that:

∃ν1 ∈ B1.ν1[Y ] = ω[Y ]
∃ν2 ∈ B2.ν2[Y ] = ω[Y ]
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Now consider the vector ν = (ν1[XB1 ], ν2[X
C
B1

]). Clearly it holds that ω[Y ] =
ν[Y ].

Since ν1 ∈ B1, and ν[XB1 ] = ν1[XB1 ], it holds according to Definition 3
that ν ∈ projXB1

B1. Then, according to Lemma 3, it also holds that ν1 ∈ B1.
Similarly, since ν2 ∈ B2, and ν[XB2 ] = ν2[XB2 ], it must hold that ν ∈ B2.

Thus, we have shown that ν ∈ B1 ∩ B2 and that ω[Y ] = ν[Y ]. Therefore,
according to Definition 3, it holds that ω ∈ projY (B1 ∩ B2), which ends the
proof.

Proposition 2. It holds that projY B = Ω if Y ∩ XB 
= ∅.
Proof. In accordance with Lemma 3, it holds that projY B = projY (projXB

B),
and further that projY B = projY ∩XB

B in accordance with Lemma 2. If Y ∩XB 
=
∅, it follows that projY B = proj∅ B = Ω.

The following two lemmas are used to prove Theorem 2.

Lemma 4. If a behavior set Q is agnostic to a variable set X, then it is also
agnostic to any variable set Y ⊆ X.

Proof. Consider a B ∈ Q and a B′ such that projY C B′ = projY C B. Since XC ⊆
Y C , it holds according to Lemma 2, that

projXC B′ = projXC projY C B′ = projXC projY C B = projXC B

From this equality and since Q is agnostic to X, it follows that B′ ∈ Q. Thus,
we have shown that Q is agnostic to also Y .

Lemma 5. Given two behaviors B and B′ where B∩B′ 
= ∅, it holds that XB∩B′ ⊆
XB ∪ XB′ .

Proof. Assume XB∩B′ � XB∪XB′ , which will be shown to lead to a contradiction.
This means that there exists an x such that x /∈ XB, x /∈ XB′ , and x ∈ XB∩B′ .
In accordance with Definition 4, this respectively means that

B = proj{x}C B (12)

B′ = proj{x}C B′, and (13)

B ∩ B′ 
= proj{x}C (B ∩ B′). (14)

Proposition 1 and (14) imply B ∩ B′ 
= proj{x}C B ∩ proj{x}C B′, which in
combination with (12) and (13) imply that B ∩ B′ 
= B ∩ B′. Since this is a
contradiction, assumption XB∩B′ � XB ∪ XB′ must be false, and it must rather
hold that XB∩B′ ⊆ XB ∪ XB′ , which completes the proof.
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