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A Measurement Study of Campus WiFi
Networks Using WiFiTracer

Chengwei Zhang, Xiaojun Hei, and Brahim Bensaou

Abstract Highly dense and large-scale WiFi networks have been widely deployed
in public areas to provide cost-effective high-speed wireless Internet access for
mobile end users. This emerging practice has been leading to a severe spectrum
usage overlap and channel interference between colocated WiFi networks. To
understand the characteristics of highly dense WiFi networks, we conduct a
measurement study of campus WiFi networks in this chapter. First, we instrument
an Android App to sense WiFi access points (APs) to characterize WiFi networks
in campus areas, including WiFi spectrum and channel usage, AP density, network
distribution, and so on. Our measurement results demonstrate that a large number
of WiFi APs have been widely deployed on campus, and about 80% of the
total APs occupy the 2.4 GHz band, whereas the remainder part are the higher
frequency 5 GHz APs, commonly used by public WiFi networks. The spectrum
overlap and channel interference in the 2.4 GHz band is much more severe than
that in the 5 GHz band. Then, extra WiFi connection measurements are conducted
at selected areas with well-deployed campus WiFi networks, to understand WiFi
connection characteristics while pedestrians are moving around in the coverage
of the WiFi networks. By harvesting data from voluntary Android smart phone
users, the connection setup time composed of Authentication–Association (AA)
time, handshake time, and IP acquisition time is found to be generally affected by
various factors, such as AP density, RSSI levels, etc. To achieve load balancing with
reduced interference and higher WiFi network performance, this field measurement
study may provide guidelines to design the next generation software-defined WiFi
networks.
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2.1 Introduction

WiFi networks have been providing a cost-effective high-speed wireless network
access in the past decades. WiFi-based wireless local area networks are widely
deployed on Edges of Internet for convenient user access due to the following three
benefits: (1) simple technical implementation, (2) low-cost network construction,
and (3) high-bandwidth wireless links [1]. Although only a limited number of
user clients are supported by a single access point (AP) for the WiFi original
design, WiFi network with multiple APs, such as a hotzone [2], has been increasing
for supporting Internet access with a large number of clients in a relative large
area [3, 4]. WiFi networks serving as the major network components have been
envisioned for constructing smart city and even smart country [5].

The communication and entertainment paradigm in people’s daily life has
been gradually reshaped by the rapid penetration of smart phones. A variety of
micro sensors have been integrated in modern smartphones, including accelerom-
eters, gyroscopes, magnetometers, light sensors, global navigation satellite system
(GNSS) as well as Bluetooth and WiFi transceiver modules [6, 7], which can
cooperate with monitoring, positioning, and navigating applications. Due to the
pervasive usage of smart phones, together with the cooperative sensing capability
and users’ mobility, smart phones have been evolving from ordinary mobile devices
into measurement enablers [8, 9]. Users can carry smartphones around during
their daily lives for measuring, collecting, and preprocessing data of user activities
with powerful sensor and microprocessors embedded in smartphones. Recently,
various research projects and applications deeply relying on smartphones and
user mobilities have emerged for different purposes, such as smartphone-based
indoor position system [10], recording physiological indexes of mobile users [11],
monitoring user behavior [12], tracking the air quality of the urban environment
[13], and so on. Mobile measurement applications running on smartphones carried
by a large number of users, which can perform measurements individually and
conduct analysis collaboratively, from the mobile crowd sensing (MCS) measure-
ment [14, 15]. The MCS can fully exploit the limited resources of individual smart
phones, and conveniently deploy real and randomized measurement experiments
rather than well-planned experiments in a large scale [14, 15]. Lane et al. [16] and
Xiao et al. [17] studied the data transmission efficiency and energy consumption
problem of MCS. In particular, recent measurements [18, 19] have shown that
significant energy has been consumed by wireless transceiver modules (WiFi and
3G/4G) of mobile devices during data transmission. These field measurement
studies have greatly pushed forward the innovation of mobile cloud transmission
systems [20, 21] to shift the heavy energy-hungry services for mobile Apps to the
remote clouds, instead of local mobile devices.

In this chapter, we are motivated to conduct a measurement study to characterize
the spectrum interference and the connection bottleneck on campus WiFi networks
using a MCS approach. We developed a MCS platform for tracking the channel
usage and connection bottleneck of campus WiFi APs. An augmented Android
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measurement tool, named WiFiTracer, can automatically probe, maintain, and
upload detected WiFi APs’ information through smart phones from volunteers. For
the large-scale WiFi measurement construction, student participants as anonymous
users have been invited to perform random movement in various ways (driving,
jogging, and walking) on the campus with the measurement APP running on
smartphones for abundant measurement data collection. During this crowd sensing
measurement process, we conducted various experiments to quantify the connection
time for a public campus WLAN. The major results from these experiments are
summarized as follows:

1. We first summerized the WiFi dataset on our campus area. Our results show that
there are considerable and high-density WiFi APs maintained on the campus
area. Over 10,000 WiFi APs and more than 7000 distinct WiFi networks have
been detected.

2. We characterized a public campus WiFi network quantitatively. Our results show
that more than 70% measurement areas have been covered by this public campus
WiFi WLAN. We quantified the interference of this public campus WLAN with
its nearby private WiFi networks. Extra experiments were conducted to compare
campus WiFi networks deployed indoors and outdoors. Measurement results also
show that the dynamic frequency selection (DFS) feature of WiFi APs is not
enabled in the general circumstance.

3. We conducted the WiFi connection setup time on the public campus WiFi
networks during the MCS measurement process. The connection setup time
deviates significantly on the different mobile devices, ranging from the tens of
milliseconds to tens of seconds.

In this chapter, we first introduce the concept of MCS and recent research
progress. Then, we propose and implement a crowd sensing measurement platform.
Next, we dissect the WiFi connection setup process for public WiFi networks.
Afterwards, we report our measurement results mainly on two aspects: channel
interference and connection time. Finally, we conclude this chapter. The mea-
surement results demonstrate the necessity of a configurable and manageable
software-defined WiFi network that can dynamically adjust WiFi channels based
on the current network states to achieve load balancing with reduced interference
and improved WiFi network performance.

2.2 WiFi Measurement Platform

Public campus WiFi networks are widely deployed at public locations through the
campus; for understanding the characteristics of WiFi networks, like channel usage,
AP density, connection time, etc., we are motivated to propose a general WiFi
sensing measurement framework using the MCS way as shown in Fig. 2.1 to pro-
vision the data transmission and sharing of measurement results. The measurement
platform can conveniently cooperate with particular WiFi measurement modules to
inspect various metrics of WiFi networks.
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Fig. 2.1 WiFi measurement architecture using mobile crowd sensing (MCS)

2.2.1 Measurement Framework Overview

The proposed MCS platform, consisting of three major modules including data
acquisition, collection, and analysis, is constructed in Fig. 2.1. Smartphones
equipped with WiFiTracer can successfully turn these typical mobile devices into
WiFi measurement tools for the nearby WiFi information harvest and preprocessing.
WiFi measurement data has been collected and formatted locally on mobile devices
by data acquisition module. Preprocessed data from varied mobile devices will
be collected and analyzed as a repository hosted on a cloud platform by the data
collection module. When the volunteers complete the measurements, Android app
or service running on the framework will automatically upload the local results to
the server with timestamps and user tags. The reward module is used to share the
available WiFi information as an incentive for participants. The server provides
information about available WiFi networks close to the end users and the possible
WiFi network access at the current location, which can be displayed to users through
web pages or the client app. Increasing individual users are willing to contribute
the measured data and acquire better network connection performance potentially
based on the incentive crowd sensing way.

2.2.2 WiFiTracer Architecture

WiFiTracer is an Android mobile app which can run on different Android smart-
phones to explore and aggregate the WiFi network information from the WiFi
client side. Its software architecture is constructed with four major layers as
shown in Fig. 2.2, including application interface, task module, system libraries,
and Android system control. Each layer implements the individual function and
works collaboratively to transform a normal mobile phone into a general portable
measurement device.
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Fig. 2.2 The software architecture of WiFiTracer

– Android system control layer: It provides the necessary physical device drivers
and interfaces for the Android applications and services. Through this layer, the
high-level applications can apply a general unified way to access and manage
various sensors, such as WiFi transceiver, GPS sensor, and so on.

– System library layer: The system dependence libraries, including WiFi Lib.,
GPS Lib. et al., extend the management for the Android resources. Those third-
party libraries can provide additional functions and data sources than those
generic ones. The BaiduMap library, as an extra map provider library, offers
more accurate GPS location service and various data visualization methods on
the map.

– Task module layer: This layer, designed as the main module of WiFiTracer,
consists of three individual components: (1) WiFi management module, (2) GPS
management module, and (3) application configuration module. The WiFi and
GPS management components are used to access the corresponding drivers and
obtain the raw measurement results from the low-level Android devices, such as
WiFi basic information and GPS raw data. The configuration component offers a
flexible interface for higher layers and supports multidimensional measurement
tasks of WiFiTracer.

– User interface layer: This layer provides a friendly operation graphic interface
for end users. A user can configure parameters of the tool, schedule tasks, and
manage low-level sensors of the tool.

2.2.2.1 Measurement Sample

WiFi APs may be sensed repeatedly for multiple times during the measurement
process; therefore, the same WiFi APs may be tagged with different timestamps
and locations during measurement. For the purpose of describing the measurement
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results conveniently, a measurement sample by a single smartphone can be summa-
rized as follows:

oibssid = {t imestamp(ts), round, bssid, ssid, channel, rssi, capabilities, gps}.
(2.1)

oibssid represents the measurement data of WiFi AP which appears for the i-th
time. During each sensing round, ts, round and gps represent the general round
information of WiFi measurement, where ts represents the accurate sensing time on
the smartphone, round records the time number of measurement, and gps stores the
current measurement location. Each WiFi AP’s basic information, including BSSID
(as bssid), SSID (as ssid), the channel frequency (as channel), the signal strength
RSSI (as rssi), and the security mechanism (as capabilities), once sensed during
the measurement process, will be obtained and merged with the general round
information to formulate a unique and complete measurement sample set oibssid .
Therefore, the whole dataset of WiFi APs’ bssid is detected on MCS measurement
process as S; the results of the same WiFi APs (using bssid as the identifier)
compose independent result set Obssid :

Obssid = {oibssid , i ∈ [1,+∞], bssid ⊆ S}. (2.2)

MCS allows using different devices to harvest WiFi network information. The
measurement result sets of different devices can be expressed in Eq. (2.3). The
results of each device can be formed as an independent measurement result set
which can be identified by the unique device ID. The measurement data collected
by WiFiTracer are uploaded to the remote server through the Internet and then are
analyzed afterwards.

ODdevice = {{id, deviceid,Obssidi }, i ∈ [1,+∞], bssidi ⊆ S}. (2.3)

2.2.3 Measurement Sampling Procedure

With the supplement of the MCS mechanism, WiFiTracer can cooperate with
various Android mobile devices for WiFi measurement. The tool implements an
optimized scanning procedure as shown in Algorithm 1, which can significantly
improve the efficiency and accuracy of measurements and avoid unnecessary
multiple sensing rounds on the same locations.

WiFiTracer tracks the dynamics of WiFi APs periodically (such as 10 s) while
the user is in moving states. During the WiFi measurement process, WiFiTracer
obtains and computes the distances between the current measurement location and
the previous measurement location. Once the computed distance is larger than a
threshold (10 m as default), the tool will activate the scanning process to detect
the nearby WiFi APs tagged with timestamps and GPS coordinates to form the
measurement metadata. Results are then stored locally in the Android SQLite
database, and will be uploaded in the cloud repository for further analysis.
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Initialization: Smartphone, WiFi transceiver, and GPS sensor initialized ;
Data: deviceinf o ← deviceinformation, origpos ← currentGPSposition,
Data: period ← userconfiguration, default : 10s,
Data: mindistance ← userconfiguration, default : 10m ;
Result: WiFi measurement dataset on variant mobile devices: Odeviceid ;
while scanning service is not stopped do

if scanperoid = peroid then
currentpos ← currentGPSposition ;
if distance(origpos, currentpos) > mindistance then

activate the WiFi scanning process; scan the WiFi APs nearby ;
scantime ← currenttimestamp, scancount ← currentscancounter ;
record scanresult : (bssid, ssid, f requency, rssi, capabilities) ;

build entity: oi
bssid

: (scantime, scancount, deviceinf o, scanresult, currpos) ;
store the dataset O and upload to the remote server ;
terminate the current service ;

else
exit the current service, start a new round timer for scanning ;
continue ;

origpos ← currpos, scancount = scancount + 1 ;
start a new round timer for scanning ;
continue ;

end
end
User terminates the application, and stop all the functions.

Algorithm 1: Sketch of the WiFiTracer sensing procedure

2.3 Sensing Result Analysis

MCS supports various mobile devices in collaborative measurement and each
mobile device becomes a distinct end-point measurement tool. The measurement
device cooperating with user’s mobility translates the whole experiment to a
randomized distributive measurement process, and the data storage and computation
on the cloud offers convenient data sharing and analysis among all measurement
clients. The main campus of our university has been chosen as the main experiment
area to launch the WiFi measurement. Well-performed Android smartphones,
such as HUAWEI Honor7, ZTE Nubia Z7, etc., have been carefully selected as
measurement devices to operate WiFiTracer tool, and all devices can perform
smoothly on WiFi standard frequencies in both 2.4 and 5 GHz bands for WiFi
standard protocols such as 802.11 a/b/g/n. Participants as anonymous users have
been invited to perform random movement in various ways (driving, jogging and
walking) on the campus with the measurement APP running on smartphones for
abundant measurement data collection.

Participants were requested to perform randomized movement on the main roads
with a relative low speed (≤20 km/h) during each measurement process and almost
took 1.5–2 h to traverse the whole campus measurement areas. In order to cover
the whole measurement areas with sufficient and accurate WiFi metadata, the
entire measurement experiments have been lasted for around 30 days and the total
measurement time is up to almost 100 h. Due to different WiFi networks have variant
radiation coverages, the proposed experiments assumed that most of indoor WiFi
APs and networks were visible on the main roads and could be obtained by the
WiFiTracer.
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Table 2.1 Measurement
dataset

Metric Amount

Scan times 20,210

Data samples 534,210

Independent areas by GPS 13,065

Number of distinct WiFi APs 11,380

Number of distinct WiFi networks 7483

Number of 2.4 GHz APs 10,390

Number of 5 GHz APs 1988

Number of public WiFi APs 2893

2.3.1 Basic WiFi Dataset

By Eq. (2.2), each WiFi AP detected by smartphone applications can be presented
as an independent measuring result set which records the location information and
current signal strength (RSSI). The values of WiFi’s RSSI have a variance relation to
the distance from the measurement node to the AP [22], which implies that a smaller
distance leads to a stronger signal. It is possible that we can choose the APs’ results
with the maximized RSSI value and utilize the GPS information to estimate the real
AP locations.

The distribution of WiFi APs is primarily on roads or near roads because the
measurements were conducted along the main roads of the campus covered by
WiFi APs with intensive quantities. Table 2.1 shows the WiFi sensing measurement
dataset that over 10,000 independent WiFi APs have been successfully sensed and
most of them are private. Private WiFi networks constructed by independent APs
can provide small range network access with passwords or other authentications.
With dense deployment of WiFi networks, it has become an emerging problem for
WiFi networks to reduce the spectrum interference from other WiFi APs.

2.3.2 General Analysis of WiFi Networks

2.3.2.1 Heatmap of WiFi APs’ Distribution

Figure 2.3 shows the heatmap of the WiFi APs distribution, where red areas suggest
high density of WiFi APs deployed. Demonstrate that there is a strong correlation
between the high-density WiFi networks. The circled areas 1 ∼ 6 are official areas,
teaching areas, and living areas where people spend most of daily time. Covered
with orange colors are focused on crossroads or intersections of roads. One reason
is that the intersections are the connections of different roads which potentially have
more chances to measure than normal areas during the random movement under
crowd sensing measurements; the other one is that WiFi APs usually are deployed
with buildings. Hence, Fig. 2.3 indicates the WiFi density near intersections heavier
than normal areas.
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Fig. 2.3 WiFi AP heatmap

2.3.2.2 WiFi Channel Usage

Densely deployed WiFi APs would potentially result in severe spectrum interfer-
ences in WiFi channels. Figure 2.4 depicts channel usages of WiFi networks for
both 2.4 GHz band and 5 GHz band. Results demonstrate that 2.4 GHz band is
the main working band occupied almost 80% in the sensing dataset while 5 GHz
band only accounts for 20%. Private WiFi networks seldom work on 5 GHz band,
and over 95% 5 GHz APs are used for public WiFi networks. IEEE WiFi standard
organization encourages more than 15 channels in 5 GHz band for high-speed WiFi
networks, whereas part of them are allowed to use in different countries, such as
only channels 149–151, 161, and 165 are permitted as legitimate channels in China.

Figure 2.4 shows various channel usages in percentages. Results demonstrate
that channels 1, 6, and 11 in 2.4 GHz are the most popularly used channels among
all channels. The reasonable explanation is that WiFi manufactures usually set the
2.4 GHz WiFi appliances default in these independent channels to avoid the adjacent
channel interference in practical applications. However, even these three channels
are completely independent of each other in the spectrum, and due to the fact
that WiFi users rarely change these default channel settings, the overuse of these
channels would greatly increase the co-channel overlaps and interferences. On the
contrary, channels in 5 GHz are completed isolated from each other and result none
of adjacent channel interferences.
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Fig. 2.4 WiFi channel utilization

2.3.2.3 WiFi AP Hardware Legality

Variant WiFi devices have been widely put into commercial use for the simplicity
and convenience of WiFi network. Figure 2.5 presents top 10 WiFi manufacturers
used in measurement areas. Wireless devices made by TP-Link dominates over 20%,
for their high price–quality ratio of small home routers. Over 35% WiFi devices
marked with “Unknown” cannot find the corresponding manufactures through the
registered manufacturer information provided by IEEE Standard Association (ISA)
[23]. Two reasons can explain why there are so many “Unknown” devices. One
is that the manufacturer list is not updated in time by ISA; the other is that some
factories do not register in ISA at all and produce WiFi devices illegally and
privately.

Table 2.2 shows channel usages of “Unknown” WiFi devices, where the percent-
age of channel 11 is nearly double of channels 1 and 6. Therefore, it can be inferred
that these anonymous manufactures choose the highest channel 11 in 2.4 GHz to
avoid the interferences with other commercial products’ channels. However, joint
consideration with Fig. 2.4, channel 11 has the highest utilization among all the
channels for its overuse by a large quantity of “Unknown” WiFi devices, which
could potentially result much severer co-channel interference than others.
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Table 2.2 Channel usage of
“Unknown” WiFi devices

Channel Number PCT.(%)

1 958 24.0

6 983 24.7

11 1912 48.0

Others 130 3.3

2.3.2.4 Density of WiFi APs and Networks

AP densities at distinct measurement locations are shown in Fig. 2.6. Results in
Fig. 2.6a indicate that over 15 individual WiFi APs have been detected in almost
90% measurement areas and over 100 independent APs have been scanned in
some extremely high-density areas. Under the Extended Service Set(ESS) model,
independent APs may construct a wide-range WiFi network with the same identified
network name. Therefore, densities of WiFi networks would exhibit different char-
acteristics from densities of WiFi APs in the same areas. Figure 2.6b demonstrates
independent WiFi networks at various measurement locations with percentages.
Over 10 independent WiFi networks have been detected in about 80% measurement
areas. Results from densities of WiFi APs and networks illustrate the approximation
to the normal distributions.

2.3.2.5 Utilization in 5 GHz Band

Figure 2.4 illustrates that WiFi channel utilization meets the 80/20 rule, 80% for
2.4 GHz band and 20% for 5 GHz band. Table 2.3 shows that only 5% of 5 GHz
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Fig. 2.6 Density of WiFi APs and distinct networks. (a) Density statistics of WiFi APs. (b)
Density statistics of WiFi networks

Table 2.3 Usage of 5 GHz
WiFi APs

Type Private APs Public APs Total

Number 100 1888 1988

PCT.(%) 5 95 100

APs are used to construct private WiFi networks, even they have better performance
and less interferences than 2.4 GHz APs; whereas 95% ones are used by public WiFi
networks for high quality access.

2.3.3 Characterizing Public Campus WiFi Networks

Through the enhanced scanning measurements for public WiFi networks, more
than 7000 distinct public campus WiFi APs have been successfully scanned
and recorded. Considering the maximum signal strength (RSSI) received at GPS
locations, distributions and coexistent characteristics between public and private
WiFi networks can be merged on the real areas by heatmaps, measurement results
depicted in Fig. 2.7 show that public networks and private networks appear to be
complementary.

2.3.3.1 Indoor vs. Outdoor Channel Usage

Figure 2.8 shows the usage of channels in campus (outdoor/indoor) WiFi networks
differentiate distinctly from private networks. The numbers of the occupied 2.4 GHz
and 5 GHz bands are similar and the channel bands are distributed evenly except
that channel 165 has fewer WiFi APs. We infer that public WiFi networks adopted
the balanced AP deployment strategy to make frequency bands evenly distributed
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Fig. 2.7 Spatial spread density statistics of WiFi networks. (a) Density of public WiFi. (b) Density
of private WiFi
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Fig. 2.8 Channel spatial distribution of campus WiFi channels. (a) Channel usage (outdoors). (b)
Channel usage (indoors)

and reduce co-channel interference in the same network. In the 2.4 GHz band,
public WiFi APs commonly select channels 1, 6, and 11 which are completely
independent from each other and the other channels are not occupied to avoid the
adjacent channel interferences within WiFi networks. However, in the 5 GHz band,
the uniform deployment appears to be enabled without considering the adjacent
channel interference. Considering the coverage and penetrability of 5 GHz WiFi
networks, the proportion of 5 GHz WiFi APs is lower than the outdoor 2.4 GHz WiFi
APs while the proportion of 5 GHz WiFi APs is higher than the indoor 2.4 GHz APs
for providing higher access rate and better access quality.

Figure 2.9 shows RSSI CDFs of public campus WLAN under the indoor and
outdoor environments. Figure 2.9a shows the RSSI CDF from every measurement
record and results have obviously shown that the indoor signal strength is stronger
than outdoors. Due to certain coverage of WiFi APs, a WiFi AP RSSI information
can be measured frequently in the coverage areas. To make a deeper comparison, we
refined the maximal RSSI from the observation set OD; results shown in Fig. 2.9b
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Fig. 2.9 RSSI comparison of indoor and outdoor APs. (a) All RSSI. (b) Max. RSSI

also present that the indoor AP RSSI is much greater than outdoors. Hence, results
prove that deployments of most WLAN APs are dependent on the buildings. Current
mobile devices choose WiFi APs mainly relied on the current AP RSSI, so we can
infer from the measurement that it is much easier to obtain access to available WiFi
APs indoors rather than outdoors, and we also can infer that interferences indoors
are more serious than outdoors.

2.3.3.2 Indoor vs. Outdoor Interference of Public WiFi Networks

For more insights of WiFi networks, extra measurement experiments were also
conducted indoors. Figure 2.10 presents the comparison of WiFi AP density results
between the outdoors and the indoors. As shown in Fig. 2.10a, over 60% outdoor
areas are covered with public WiFi APs ranged from 20 to 60, and nearly 20%
areas are covered with over 60 ones. The adjacent channel interference among WiFi
networks is shown in Fig. 2.10a by public WiFi network density with the green
curve. As the previous analysis in Sect. 2.3.2.2, the default frequencies of most
WiFi APs usually are configured on three independent channels (1, 6, and 11) in
2.4 GHz instead of other channels. Therefore, further public WiFi APs in the same
areas would potentially generate additional co-channel interferences as shown in
Fig. 2.10a with the red curve.

Figure 2.10b shows that 60% indoor areas are covered with public WiFi APs
ranging from 40 to 100, which is doubled with the outdoor result. The extreme
AP density at several indoor locations is over 200. Therefore, more serious
co-channel interference has been discovered indoors through the comparison of
Fig. 2.10. Figure 2.10 shows that public campus WiFi networks suffer the co-
channel interferences from themselves rather than external private WiFi networks.
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Fig. 2.10 CDF of public campus WLAN density. (a) WiFi AP density CDF (outdoors). (b) WiFi
AP density CDF (indoors)

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

C
D

F 
P

er
ce

nt
ag

e 
fo

r D
iff

er
en

t A
P

s 
(%

)

AP number at same locations

Campus AP
Private AP

(a)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140  160P
riv

at
e 

W
iF

i/C
am

pu
s 

W
iF

i d
en

si
ty

 ra
tio

Campus WiFi density on the same locations

Measured WiFi locations

(b)

Fig. 2.11 Public campus WLAN vs private WLAN. (a) CDF of private and public APs. (b)
Density ratio of private/public APs

2.3.3.3 Interference of Hybrid WiFi Networks

Figure 2.11 presents a comparison of densities between public networks and private
networks in measurement areas, where public and private networks construct hybrid
WiFi networks. Figure 2.11a shows that public campus WiFi density is higher than
private WiFi density on the average and 80% measurement areas are covered with
less than 20 private APs. Compared between the private and public WiFi APs,
densities of the public WiFi networks are almost doubled in the same locations.
It can be inferred from results that public WiFi networks are not only affected from
external private networks but also from the internal networks themselves.

To differentiate the network interference of hybrid network in various areas,
we defined the Relative Density Ratio as private AP’s density divided by public
AP’s density at a measurement location for further analysis. The defined ratios with
public WiFi APs in the hybrid network areas is shown in Fig. 2.11b. Results indicate
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that about 90% measurement areas obtain the ratio value smaller than 1, which
implies that the density of public APs is higher than the number of private APs at
the same locations. Results demonstrate that public campus WiFi networks suffer
from the potential interferences not only from those private networks but also from
themselves due to their high-density deployments.

2.3.3.4 Dynamic Frequency Selection Detection

To reduce the impact of spectrum interference, WiFi APs may adopt the DFS feature
which can dynamically adjust the WiFi transmitting frequency based on the channel
utilization of the WiFi APs in the neighborhood to avoid the busy channels and select
the appropriate working channel. As shown in Fig. 2.12, we tracked the number of
channels utilized by the same AP in our dataset. The results show that WiFi APs
enabling DFS account for only 20% over all the measured dataset and about 80%
percentage of WiFi APs do not change channel numbers at all. There might be two
reasons for this observation: one is that these devices may not support DFS; the
other one is that many users enable the DFS without configuring the WiFi devices
appropriately so that AP devices stay with the default factory settings.
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2.4 Characterization of WiFi Connection Time

During the WiFi sensing measurement process, the WiFi connection monitor
module will cooperate with WiFiTracer to record the overall connection process
when the public campus WiFi networks are available to use. Sensing results in
Fig. 2.7 strongly recommend us that the connection measurement experiments
should be conducted in the following distinct areas, such as 1–3 areas on the
map shown in Fig. 2.7a, where public campus WiFi networks have been densely
deployed.

2.4.1 WiFi Connection Dataset

Based on results analyzed from the WiFi sensing dataset, the measurement areas can
be determined for conducting the connection measurement experiments. Students
invited as participants are required to load the connection monitor module in WiFi-
Tracer and to move around in measurement areas during their daily lives. By over
2 months’ measurement, a WiFi connection dataset has been successfully collected
for various data of connection procedures, discussed previously in Sect. 2.2.

Table 2.4 presents a data summary of connection experiments conducted in
chosen areas covered with well-deployed public campus WiFi networks. Over
70,000 times of connection attempts have been successfully observed from the
measurement dataset, and only about 10% attempts have achieved the complete
connection procedure and smoothly set up the data communication link between
WiFi APs and clients. The dataset not only records the connection measurement
results of public campus WiFi networks but also contains private WiFi networks’
connection information for daily usages of participants.

From statistics in Table 2.4, the number of WiFi BSSIDs is much larger than WiFi
SSIDs, which can be inferred that actual public WiFi networks extend the network
coverage with multiple APs under the same SSID (recognizable network name) by
WiFi ESS (extended service set) technique. Once successfully connected to a WiFi

Table 2.4 Connection
measurement dataset

Metric Amounts

Measure duration Over 2 months

Phone models 10

Platforms Android

Total connected WiFi SSIDs 69

Total connected WiFi BSSIDs 2255

Campus WiFi SSIDs 3

Campus WiFi BSSIDs 1643

Observed successful connections 7289

Observed connection attempts 70,516
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network, the basic network information, like SSID, username, and password, will be
automatically recorded and stored locally at WiFi client side in Android system. Due
to WiFi networks normally recognized by SSIDs, this feature will engage the WiFi
client to trigger the connection procedure automatically once the previous connected
networks with the same SSIDs becoming available, which is quite applicable for
connection measurements.

2.4.2 Characterizing Successful WiFi Connections

2.4.2.1 Overall of WiFi Connection Time

Figure 2.13 shows the CDFs of successful connection setup times for chosen WiFi
networks, composed of AA times, handshake times, and IP acquisition (DHCP)
times. Results demonstrate that the DHCP time is much larger than the other phases
in the connection setup procedure, and occupies most of the connection time among
all connection aspects. Furthermore, the AA time and handshake time only dominate
a very small portion of the complete connection setup time, normally under 10%,
and present a quite different trend from the connection time. About 80% successful
connections can be completed within 10 s, which is considerably acceptable for
mobile end users, and the main factor to influence the total connection time is
the DHCP phase, which exhibits the similar variation tendency with the curve of
connection setup time.

Figure 2.14 presents a close observation on the small portions of the connection
setup procedure, which consists of the association phase, AA phase, and handshake
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phase, to demonstrate the detailed interactions during WiFi connections. Results
reveal that these minor time phases are quite short, but vital for the connection setup,
and some can be completed instantly without user’s awareness.

Nearly 90% of association times are under 400 ms and about 80% of AA times
are completed in 1000 ms. Note that the WiFi handshake mechanism, utilized by
WiFi APs and clients to identify each other based on some security specifications
(WPA or WPA2), is optional for the connection setup. If the WiFi network is open
and free accessible for WiFi clients without any security and authentication, the
handshake time will always be 0 ms. About 40% of handshake times remain 0 in the
dataset, due to some WiFi networks configured as “[ESS]” for totally free access
without any security mechanism. Currently, some public WiFi networks utilize
extra authentication portals, such as web access control servers or popular Android
tools like WeChat [24], to verify the clients’ intentions of WiFi connection, which
does not encrypt the wireless communication lines and totally does not need any
handshake procedure. It seems that the omitted handshake phase would shorten
the overall connection process; however, in real environments, this connection
approach needs the manual operations of WiFi clients and substantially lengthens
the connection time than the normal ones.

2.4.2.2 Differentiate WiFi Connection Time by Various Devices

Figures 2.15 and 2.16 show the dissections of the connection time under the variant
mobile devices. Figure 2.15 shows that the connection time range varies from
several milliseconds to several seconds, and all the measured devices have a median
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Fig. 2.16 Minimum, 25th, 50th, 75th percentiles, and maximum of DHCP time

association time smaller than 1 s. 6 phone models have a 75th percentile of less than
500 ms and it is less than 2 s among all the measured phone models.

Figure 2.16 shows that 6 phone models have a median percentile of IP acquisition
time ranging from 3 to 5 s, and for 2 phone models, the time is greater than 6 s.
And, for one model it was greater than 10 s. Measurement results show that the
IP acquisition time is mainly distributed in the range of [2, 10] s. From these two
figures, the IP acquisition time is the dominated part and greatly affects the overall
connection time.
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2.5 Related Work

In this section, we review the measurement studies on WiFi networks. Spectrum
interference of WiFi networks have been examined in passive sniffing in a few
studies. In [25], Rose and Welsh designed the Argos system which deployed 26
stationary devices around a city to sense wireless devices using passive sniffing.
Argos is the first city-level wireless network inspection system that can detect,
measure, and analyze the performance of wireless devices and networks, including
network type, data traffic, and application type, etc. However, due to the specialized
devices and fixed deployment in Argos, it is quite expensive and has low flexibility
in the large deployment and measurement. Applying a similar carrier sensing mech-
anism, in [26] Paul et al. studied the interference of WiFi networks for detecting
misbehaving WiFi nodes. Van Bloem et al. studied the effect of different interference
sources on WiFi network, such as audio and video transmitter, microwave, and
Bluetooth [27]. The results showed that the audio and video transmission have a
serious impact on WiFi networks and lead to poor network performance.

Active measurement has also been applied in WiFi measurement. Sommer and
Barford utilized an Internet measurement web site to the clients and collected
more than 300 million user measurement results in 15 different areas [2]. They
compared various performance issues between WiFi networks and cellular networks
in distinct areas. Their results show that there exists notable room for improving and
optimizing the deployment for these two kinds of networks. In [28], Seneviratne
et al. investigated the WiFi connection setup time in a lab environment. They
examined the whole WiFi connection procedure between smart phones and WiFi
APs. They found that the WiFi connection time is strongly impacted by the DHCP
message transmission and proposed a scheme to accelerate the DHCP process for
reducing the WiFi connection time. Farshad et al. utilized an Android App, RF
Signal Tracker, to measure WiFi APs and networks in a typical European city
(Edinburgh) in [29]. Participants took buses as the carriers on the main roads in
the city and run the measurement tool in smartphones to characterize the urban
WiFi distributions and features using the MCS. WiGLE [30] aggregated the WiFi
measurement data collected by the war-driving measurement tool and constructed
the wireless network mappings on the Google map which was also visualized on
a web site. The results showed that WiFi networks have been hugely increased and
densely deployed in recent years, and WiFi devices have been experiencing potential
channel and spectrum interference in high-density deployment areas.

In this chapter, we designed and implemented a MCS platform to conduct a
comprehensive WiFi measurement study with the focus on two aspects in both spec-
trum interference and connection establishment during mobility in a real campus
network environment. We classified the interferences between the private and public
WiFi network. In particular, we inspected the overall WiFi connection procedure
by dissecting the detailed steps in the connection process with tracking connection
state transitions. We also analyzed the reasons for unsuccessful connections based
on our measurement data. Similar to [29], our results confirm that WiFi network
deployments have been increasingly dense and causing consequences.
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2.6 Conclusion

In this chapter, we conducted a measurement study of increasingly densely deployed
WiFi networks in a campus area based on the MCS mechanism. Due to no planning,
large-scale, and high-density deployment of WiFi networks, our measurement
results show that current WiFi networks have various problems in frequency
interferences. The campus WiFi networks suffer from the potential interferences
not only from private networks but also from themselves for the high-density
deployment in the main channels. With the growth of the public WiFi networks’
deployment density, the intra-network interference is becoming dominating, and
the aggregate interference becomes more severe. By supporting the measurement
tools using the MCS way on Android systems, we chose measurement areas
with well-deployed public campus WiFi networks to investigate the characteristics
of the connection setup time of WiFi networks. The WiFi connection setup is
the prerequisite condition for the WiFi connection and data transmission. Our
measurement results showed that the connection time deviates significantly on
different mobile devices.

Our overall measurement results showed that the current WiFi network deploy-
ments are largely unplanned and disordered and lead to the significant performance
degradation due to inter-/intra-interference, the competition, and sharing of chan-
nels. It may not be sufficient to solve these emerging problems in densely deployed
WiFi networks with the standard 802.11 protocols. Motivated by the findings in this
chapter, we will design and develop software-defined WiFi network infrastructure
and protocols to mitigate the interference and mobility to enhance the performance
and manageability of WiFi networks [31–33]. Our preliminary study have demon-
strated the feasibility of constructing a software-defined WiFi network testbed and
there exists the trade-off between performance and programmability of software-
defined APs [34].
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