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Abstract. It is crucial to analyze coma and quasi-brain-death patients’
EEG (electroencephalography) by using different signal processing meth-
ods, in order to provide reliable scientific references for supporting BDD
(brain death determination). In this paper, we proposed the multi-
indicator dynamic analysis measure which was by combining Dynamic
2T-EMD (turning tangent empirical mode decomposition) and Dynamic
ApEn (approximate entropy) to comprehensively analyze offline coma
and quasi-brain-death patients’ EEG from dynamic EEG energy and
dynamic complexity. Firstly, 60s EEG randomly selected from 36 cases
of patients’ EEG (coma: 19; quasi-brain-death: 17) were analyzed to show
the overall dynamic energy and complexity distribution for 2 groups. Sec-
ondly, one coma patient’s EEG, one quasi-brain-death patient’s EEG,
and one special patient’s EEG which was from coma to quasi-brain-
death state were processed to present individual characteristics. Results
show intuitively that patients in coma state have higher dynamic EEG
energy and lower complexity distribution than patients in quasi-brain-
death state.
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1 Introduction

The human brain consists of medulla oblongata, pons, midbrain, cerebellum,
diencephalon, and telencephalon, among which oblongata, pons and midbrain are
called brainstem [1]. The concept of brain death was firstly proposed in 1959 [2].
There are three different definitions of brain death so far, which are total brain
death, brainstem death and diffuse cortical death, after being constantly revised.
The first BDD standard in human history was proposed in 1968, which was the
complete, irreversible and permanent loss of brain and brainstem function [3].

In the clinic practice of BDD, professional physicians need to carry out a
number of strict conformation tests, which might take risks such as the risk
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resulted by apnea test and risk caused by taking long time during whole tests
process. So it is important to use advanced signal processing methods to process
EEG, in order to provide reliable and objective scientific criteria and to avoid
misjudgment for supporting clinic judgment of BDD.

Some signal processing methods were applied to process EEG from different
perspectives. For example, ICA (independent component analysis) was applied to
remove noise and artifacts and extract weak brain activity components from EEG
in the project of BDD [4]. And some complexity methods were applied to obtain
statistic features of EEG signals [5]. And information fusion via fission based on
EMD was used to differentiate coma and brain-death EEG [6]. Moreover, EMD
based methods were applied to process EEG signals from mono-channel static
EEG energy indicator [7].

In this paper, we proposed the multi-indicator dynamic analysis measure to
comprehensively process patients’ EEG from dynamic EEG energy and dynamic
complexity aspects, which was based on by combining Dynamic 2T-EMD (turn-
ing tangent empirical mode decomposition) algorithm and Dynamic ApEn
(approximate entropy) algorithm. There were 2 parts of work included. Firstly,
the principle of the multi-indicator dynamic analysis measure, the Dynamic 2T-
EMD algorithm and the Dynamic ApEn algorithm were briefly illustrated. Sec-
ondly, two experiment measures were conducted from both overall and individ-
ual perspectives. Specifically, from the overall perspective, 60s EEG data were
selected randomly from every of 36 cases of coma and quasi-brain-death patients’
EEG, and analyzed by the multi-indicator dynamic measure proposed to get the
dynamic EEG energy and dynamic complexity trend characteristics for coma
group and quasi-brain-death group. And from individual perspective, 60s EEG
data from every of two typical EEG and one special EEG were selected randomly
and processed by the measure. Here the two typical EEG were from two patients
that including one coma patient and one quasi-brain-death patient, and one spe-
cial EEG came from one patient who was from coma state to quasi-brain-death
state. Results show obviously that the distribution of dynamic EEG energy of
coma patients’ EEG are higher than that of brain-death patients’ EEG, and
at the same time the trend of dynamic complexity of coma patient’s EEG are
lower than that of brain-death patient’s EEG from both overall and individual
perspectives, which is helpful to provide more reliable and more accurate results
for supporting BDD.

2 Methods

2.1 The Multi-indicator Dynamic Analysis Measure

The multi-indicator dynamic analysis measure was used to study the dynamic
distribution characteristics of EEG from multi-perspective for every time win-
dow, which was conducted through a combination of different dynamic algo-
rithms.

The key of the measure lied in dynamics and different indicators. Firstly,
compared with static EEG analysis, dynamic EEG analysis has the following two
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advantages [8]. (i) Dynamic EEG analysis can observe changes of vital signs, and
help physicians evaluate and predict patients’ state trend [9]. (ii) The accuracy
and reliability of results can be improved by dynamic analysis.

The brief principle is shown in Fig. 1. In Fig. 1, a segment of off-line raw
EEG signals was divided into multiple time windows by introducing the time
window and the time step. And as the time window and time step sliding, EEG
data were analyzed by applying Dynamic 2T-EMD and Dynamic ApEn algo-
rithms to obtain the dynamic EEG energy distribution and dynamic complexity
distribution in time domain.

Fig. 1. The principle of multi-indicator dynamic analysis measure.

2.2 Dynamic 2T-EMD Algorithm

2T-EMD is a fully data-driven algorithm of signal processing for single and
multiple channels signals. It can decompose a given signal s(t) into a finite set
of IMFs (Intrinsic Mode Functions)

∑N
n=1 IMFn from low frequency to high

frequency and a monotonic residual signal r(t), shown in (1) [10].

s(t) =
N∑

n=1

IMFn + r(t) (1)

Dynamic 2T-EMD algorithm is the extended form of 2T-EMD by introducing
time window Δt and time step Δλ, and it’s used to analyze EEG data to obtain
dynamical EEG energy distribution with the time window Δt and time step Δλ
sliding [11]. Here EEG energy is defined as the value by multiplying power spec-
trum within the frequency band by corresponding recording time. Specifically,
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take the simple case as an example, when Δt = Δλ, for a multivariate signal
with n components from T1 to T2

{−→s (k · Δt)}Kk=0 = {−→s (0 · Δt),−→s (1 · Δt), . . . ,−→s (K · Δt)} (2)

Where T1 is the start time of signal processing, and then

T2 = T1 + K · Δt = T1 + K · Δλ (3)

And K is the number of time windows in the given time from T1 to T2. Then
after processed by Dynamic 2T-EMD, we can obtain results shown in following
formula.

{−→s (k · Δt)}Kk=0 =

{
N∑

i=1

−−−→
IMF i(k · Δt) + −→r N (k · Δt)

}K

k=0

(4)

2.3 Dynamic ApEn Algorithm

The approximate entropy is defined as a similarity vector that continues to main-
tain a similar conditional probability over a certain threshold when the dimension
increases from m to m + 1 [12]. And its physical meaning is the probability that
the time series produces a new pattern when the dimension changes. Specifically,
the smaller the approximate entropy is, the lower the complexity is, the smaller
the probability that the time series produces new patterns is, that is to say, it
has a certain regularity and predictability [13].

More specifically, compute the time series −→x (n) = {x(1), x(2)..., x(N)}, (n =
1, 2, ..., N) to obtain the ApEn(−→x (n), m, r) of the sequence, where m is the
length of the series of vectors, r is threshold. And m-dimensional vectors −→v (k) =
{x(k), x(k + 1), ..., x(k + m − 1)} is firstly constructed from −→x (n), and then use−→v (i) and −→v (j) (i, j ≤ N −m+1) to represent −→x (n). The distance between −→v (i)
and −→v (j) can be represent as shown below, where d is the maximum norm.

d[−→v (i),−→v (j)] = maxk=1,2,...m[|x(i + k − 1) − x(j + k − 1)|] (5)

Given a threshold r, Bm,r(i) is defined as the number of −→v (i) and −→v (j) in
the threshold for each i ≤ N −m+1. Then we define Cm,r(i) as the conditional
probability that −→v (i) and −→v (j) are similar at the threshold.

Cm,r(i) =
Bm,r(i)

N − m + 1
(6)

Where i ≤ N − m + 1, and φm,r, the average of Cm,r(i), which is also the
entropy average is expressed as below.

φm,r =
1

N − m + 1

N−m+1∑

i=1

log Cm,r(i) (7)
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Then ApEn(−→x (n),m, r) can be expressed as below.

ApEn(−→x (n),m, r) = φm,r − φm+1,r (8)

Dynamic ApEn algorithm is the extension of existing ApEn algorithm by
introducing a running window Δt, which can reflect the dynamic complexity
change of the whole recording time and avoid the loss of detail information.

2.4 The EEG Recording

The EEG data we used in the paper were recorded in EEG preliminary exami-
nation in a Chinese hospital from June 2004 to March 2006, with the permission
of patients’ families [14]. During the EEG recording, patient was lying on the
bed in the ICU. And the EEG data was detected by the portable NEUROSCAN
ESI-64 system and a laptop computer. Six exploring electrodes (Fp1, Fp2, F3,
F4, F7, F8) as well as one ground electrode (GND) were placed on the forehead,
and two reference electrodes (A1, A2) were placed on earlobes. And the sam-
pling frequency was 1000 Hz and the electrode resistance was lower than 8 KΩ.
The placement of electrodes was shown in Fig. 2. In this paper, the EEG of 35
coma and quasi-brain-death patients (male: 21; female: 14) with a total of 36
cases of EEG (coma: 19; quasi-brain-death: 17), in which there were one case of
EEG in coma and one case of EEG in quasi-brain-death included in the same
special patient whose state was from coma in the first EEG recording process
to quasi-brain-death state in the second EEG recording process after 10 h. And
since the recording time for each case of EEG was different, 60s EEG data were
selected randomly from 36 cases of EEG to process in order to unify the time of
EEG being processed in the dynamic analysis.

Fig. 2. The placement of 9 electrodes.
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3 Results and Discussion

There were 2 parts in this section. Firstly, in order to give an overall dynamic
distribution results for coma group and quasi-brain-death group, we selected
randomly 60s EEG data from every of 36 cases of coma and quasi-brain-death
EEG, and analyzed by the multi-indicator dynamic measure proposed. Secondly,
two typical cases of EEG from two different patients who were in coma and
quasi-brain-death state respectively, and one special patient whose EEG was
from coma state to quasi-brain-death state were processed to give the 3 cases of
individual dynamic distributions.

3.1 Results and Discussion for 2 Groups

In this part, 19 cases of EEG data for coma group and 17 cased of EEG data for
quasi-brain-death group were analyzed by the multi-indicator dynamic measure
based on Dynamic 2T-EMD and Dynamic ApEn. Here the time window of both
Dynamic 2T-EMD and Dynamic ApEn were set to 1 s and no overlap among
time windows. Then we took mean value of every second for channels averaged
for coma group and quasi-brain-death group respectively due to the two group
were not balanced. As shown in Fig. 3, it is obviously observed that the range of
mean dynamic EEG energy for channels averaged for coma group is 2.3 × 104–
4.5 × 104, is higher than that for quasi-brain-death group which is 4.0 × 103–
4.7 × 103, and at the same time the mean dynamic complexity distribution for
channels averaged for coma group is lower than that of quasi-brain-death group,
in which the range of dynamic complexity for coma group and quasi-brain-death
group are 0.328–0.5 and 0.999–1.101 respectively. Moreover, the overall mean
value and standard deviation of EEG energy for coma group and quasi-brain-
death group are 2.9 × 104 ± 3.6 × 103 and 4.4 × 103 ± 2.0 × 102, respectively;
and that of ApEn for coma and quasi-brain-death group are 0.4048 ± 0.0390,
1.0499 ± 0.0219, separately. That can be observed there exists larger individual
differences.

Fig. 3. Dynamic mean EEG and complexity distribution of average channel for coma
group and quasi-brain-death group.
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And as shown in Fig. 4, we also analyzed the dynamic EEG energy distribu-
tion for every channel (Fp1, Fp2, F3, F4, F7 and F8) for both coma group and
quasi-brain-death group. The mean dynamic EEG energy and dynamic ApEn
distributions characteristics for every channel for coma and quasi-brain-death
group are consistent with the distributions of average channels for 2 groups, in
which the fluctuation range of dynamic EEG energy for 2 groups at 6 channels
are 2.4×104–5.5×104, 2.2×104–4.8×104, 2.6×104–4.9×104, 2.2×104–4.1×104,
1.8 × 104–4.0 × 104 and 1.7 × 104–3.3 × 104 respectively, while that for quasi-
brain-death group are 3.3×103–4.6×103, 3.7×103–5.0×103, 3.9×103–5.3×103,
4.4×103–5.4×103, 3.6×103–5.7×103 and 4.2×103–6.2×103 respectively, no more
than 1.0× 104, and the fluctuation range of dynamic complexity for coma group
at 6 channels are 0.2696–0.4806, 0.2986–0.5209, 0.2859–0.4769, 0.3466–0.5360,
0.3031–0.5044 and 0.3455–0.5594 respectively, no more than 0.6, and the fluctu-
ation range of dynamic complexity for quasi-brain-death group at 6 channels are
0.9874–1.1473 and 0.9645–1.1330, 1.0138–1.1479, 1.0348–1.1754, 0.9731–1.1245
and 0.8802–1.0338 respectively.

3.2 Results and Discussion for 3 Cases

In this part, we selected 60s EEG data from the coma patient’s EEG with record-
ing time of 937 s as well as 60s EEG data from the brain-death patient’s EEG
with recording duration of 905 s. As is shown in Fig. 5, it is intuitively observed
the dynamic change of EEG energy and ApEn for the two typical cases. The
range of dynamic EEG energy of the coma patient’s EEG is 3.5× 104–1.1× 105,
while it’s 1.8×103–4.1×103 for the brain-death patient’s EEG. At the same time,
the results show that the ApEn of coma patient’s EEG fluctuate in the range of
0.0128–0.1764, and no more than 1, while the ApEn of brain-death patient’s EEG
changes in the range of 0.6194–1.4176. Moreover, the special patient’ EEG whose
state was from coma to quasi-brain-death state was processed, in which 60s EEG
data from coma EEG segment and 60s EEG data from quasi-brain-death seg-
ment were selected to analyzed by the measure proposed. It is shown that for
the same patient, the EEG energy and complexity distribution characteristics for
coma state and quasi-brain-death state are consistent with that for coma group
and quasi-brain-death group. And the distribution range of EEG energy for the
special patient’ EEG decrese from 1.7 × 104–4.1 × 104 to 2.4 × 103–5.8 × 103,
at the same time the fluctuate range of comlexity increse from 0.0725–0.3045 to
0.9304–1.3178. As shown in Fig. 6.

The more obvious the brain activity is, The higher the EEG energy is. And
the lower the ApEn is, the lower of the complexity is, then the smaller the
probability that the sequence generate the new pattern is, that is to say, it
has a certain regularity and predictability. So it can be infer that there exists
brain activity for coma group while there is almost no brain activity for quasi-
brain-death group since the dynamic EEG energy distribution for coma group
is obviously higher than that for quasi-brain-death group. Moreover, And it can
be also infer that there exists the brain activity rhythm in EEG for coma group
while there are almost disorder noise in EEG for quasi-brain-death group as
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Fig. 4. Dynamic mean EEG energy and complexity of 6 channels for coma group and
quasi-brain-death group.

Fig. 5. Dynamic EEG energy and complexity distribution of average channel for one
coma patient and one quasi-brain-death patient.
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the dynamic ApEn distribution for coma group is lower than that for quasi-
brain-death group. And dynamic distribution can provide more accurate and
reliable results compared with static values. Furthermore, since the BDD is a
serious issue, it is necessary to use different methods to improve the accuracy
of results. For example, measures of synchronization for EEG has been widely
used to analyzed real EEG [15], and especially applied in Alzheimer’s disease
EEG analysis [16]. This can be used as another EEG processing methods for
supporting BDD in the future.

Fig. 6. Dynamic EEG energy and complexity distribution of average channel for the
patient who was from coma to quasi-brain-death state.

4 Conclusion

In this paper, The multi-indicator dynamic analysis measure was proposed,
which was by combining Dynamic 2T-EMD algorithm and Dynamic ApEn algo-
rithm to comprehensively analyze patients’ EEG signals from dynamic EEG
energy and dynamic complexity indicators. And 36 cases of coma and quasi-
brain-death patients’ EEG were analyzed to show the overall dynamic distribu-
tion characteristics for coma group and quasi-brain-death group. Then 3 patients’
EEG including one coma patient’s EEG, one quasi-brain-death patient’s EEG
and one patient’ EEG from which was from coma to quasi-brain-death state were
processed from individual perspective. Results show intuitively that patients in
coma state have higher EEG energy and lower complexity at the same time
than patients in brain-death state from dynamic aspect. And this work can pro-
vide more accurate and reliable results for supporting BDD and also helpful to
develop real-time EEG preliminary examination systems.
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