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Abstract. This paper presents a comparative study of several state-of-the-art
target tracking algorithms, including conventional and deep learning ones, for
low quality videos. A challenge video data set known as SENSIAC, which
contains both optical and infrared videos at long ranges (1000 m–5000 m), was
used in our investigations. It was found that none of the trackers can perform
well under all conditions. It appears that the field of video tracking still needs
some serious development in order to reach maturity.
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1 Introduction

Target tracking using optical and infrared imagers has many applications such as
security monitoring and surveillance operations. Compared to radar [1, 2], multi-
spectral [3, 4], and hyperspectral sensors [5, 6], optical and infrared imagers are low
cost and easy to install and operate. In recent years, there are new tracking algorithms
using track-learn-detect [7], compressive sensing [8, 9], deep learning [10], tracking by
detection [11], and references therein. These algorithms have been proven to work well
in benchmark data sets. However, the benchmark videos are of high resolution and high
quality. In contrast, some realistic videos such as the SENSIAC videos [12] are of low
quality in terms of resolution and environmental conditions.

One objective of this research is to compare some representative tracking algorithms
in the literature using the SENSIAC data [12], which have both optical and infrared
videos at various ranges. We do not have any preference on any particular tracking
algorithms. In fact, we also include Kalman tracker [13–15], which is probably the
oldest algorithm in the literature. Another objective is to see if deep learning approaches,
due to recent hype in deep learning, are better than conventional algorithms.

This paper is organized as follows. In Sect. 2, we will briefly review the tracking
algorithms in this study. Although the algorithms are not exhaustive, they are repre-
sentative methods of many state-of-the-art algorithms in the literature. Section 3 focuses
on an extensive comparative study using actual videos. Two performance metrics were
used to compare different algorithms. Finally, some concluding remarks are included in
Sect. 4.
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2 Tracking Algorithms

The following approaches are by no means an exhaustive list of current methods.
However, they are representative methods in target tracking in recent years. Some deep
learning approaches were not included because our PCs do not have the necessary
hardware or software to run them. We briefly outline the key ideas of each method
below.

2.1 STAPLE Tracker [16]

For this algorithm, the histogram of oriented gradients (HOG) features are extracted
from the most recent estimated target location and used to update the models of the
tracker. Then a template response is calculated using the updated models and the
extracted features from the next frame. To be able to estimate the location of the target,
the histogram response is needed along with the template response. The histogram
response is calculated by updating the weights in the current frame. Then the per-pixel
score is computed using the next frame. This score and the weights, calculated before,
are used to determine the integral image, and ultimately, the histogram response.
Together, with the template and histogram response, the tracker is able to estimate the
location of the target.

The STAPLE tracker [16] is able to successfully track the target of interest until the
end of a video when there is no occlusion. Even with a camera that is not stationary,
STAPLE [16] is able to keep a tight bounding box around the target and the bounding
box appears to scale according to the target. However, the scaling of the bounding box
is too little to be significant. There are some cases where the bounding box does not
completely encase the entire target, but it will still follow and track the target when
there is partial encasement by the bounding box. One major issue that STAPLE [16]
suffers from is the case of occlusions. Once the target becomes occluded, STAPLE [16]
is unable to redetect the target to track again after emerging from the occlusion.
Overall, STAPLE [16] works well for targets that do not become occluded.

2.2 Long-Term Correlation Tracking (LCT) Tracker [17]

This algorithm starts by using the initial bounding box and expanding it to specify a
search window. Features are then extracted from within the search window to estimate
the target location. After the location has been computed, the scaling is then calculated
for the bounding box. Then the program checks to make sure that the correct target is
being tracked. If it is not, then the tracker performs redetection by finding possible
states and chooses the most accurate state by comparing the confidence scoring for each
state. After redetection, the appearance and motion model are updated. This update is
performed regardless of whether or not the redetection module is performed. This cycle
is continued until the end of the video.

The LCT tracker [17] is able to successfully track the target of interest until the end
of the video. This algorithm has proven to be quite robust in that it is able to handle
occlusions and a non-stationary camera. Although the LCT [17] is able to handle cases
of light to moderate occlusion, it is unsuccessful when there is heavy occlusion. Such
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as when a target is under a heavy shadow that spans multiple frames. It has been found
that the LCT [17] is unsuccessful because of the dramatic changes the shadows make
on the appearance model of the target. Another minor fault of this algorithm is the
dynamic scaling of the bounding box. When the orientation of the target changes and
the bounding box is scaled, there are some cases when the bounding box becomes too
large and covers more area around the target of interest than desired. Overall, the LCT
[17] algorithm is robust and able to handle most cases of occlusion.

2.3 Fusion of STAPLE and LCT

The Fusion of STAPLE [16] and LCT [17] merges the two algorithms into one pro-
gram. We implemented this fusion algorithm. The reasoning for this merge is to
combine the best features of the two algorithms and resolve the main issues that each
algorithm suffers as individual programs. It just so happens that the issues with
STAPLE [16] can be resolved by the LCT [17] and the issues with the LCT [17] can be
resolved with the STAPLE [16]. This Fusion tracker is able to successfully track the
target of interest until the end of the video while keeping a tight fitting bounding box
around the target. This includes cases with light to medium occlusion.

Figure 1 illustrates the fusion based tracker. The fusion tracker works by running
the STAPLE [16] and LCT [17] trackers simultaneously. Since the bounding box
information from the STAPLE [16] tracker has a more desirable result, STAPLE [16] is
used to visualize the location of the target. The LCT [17] is used to detect occlusion
and for redetection. Once occlusions are detected, a flag is raised and the program waits
for 5 frames to pass so that the target has some time to emerge from the occlusion.
Once the flag is raised and the 5 frames have passed, STAPLE [16] is reset and
initialized with the location information from the LCT [17]. The purpose of resetting
STAPLE [16] is to clear the history of the appearance and motion model. This cycle
continues until the end of the video.

Fig. 1. Fusion of STAPLE and LCT tracking algorithms.
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2.4 Kalman Tracker

Although Kalman tracker is easy to understand, we could not find a good Kalman
tracker in the internet. So we implemented this by ourselves. The Kalman tracker is
able to successfully track a moving target at close range until the end of the video if
there are no occlusions and the camera is stationary. It has been found that the Kalman
tracker has issues when the target is stationary because of its reliance on motion to be
able to successfully track. Detection of motion is only performed every ten frames to
ensure that there are notable differences between two frames. Overall, the Kalman
tracker works for close range targets captured with a stationary camera.

Figure 2 illustrates the Kalman tracker. Given an initial position and velocity, a
prediction of the next location is calculated for the first frame. Then, the same calcu-
lation is made for frames in between intervals of 10. For every other 10 frames, the
Kalman filter parameters are updated using the motion of the target. More specifically,
the measurement residual and Kalman gain are updated to predict a more accurate state
estimate. This cycle continues until the end of the video.

2.5 Hierarchical Convolutional Features for Visual Tracking (CF
Tracker)

This is deep learning based tracker. As shown in Fig. 3, the CF tracker starts off the
tracking by cropping out a search window from the first frame based on the initial
position that is used as an input for the program. Once the search window has been
established, convolutional features are extracted with spatial interpolation. Once this
has been completed, a confidence score is computed for each VGG net layer. This score
is used to estimate the closest target location for the next frame. Then another area is
cropped out from the whole frame using the newest estimate and the convolutional
features are extracted with interpolation to update the correlation filters for each layer.
This cycle is repeated until the end of the video is reached.

Fig. 2. Kalman tracking algorithm.

524 C. Kwan et al.



The CF tracker performs similarly to the STAPLE and LCT tracker. It is able to
track the target until the end of the video in most cases. This tracker is able to keep a
bounding box around the target when the camera is not stationary and the scaling of the
bounding box is adaptive, much like the STAPLE bounding box. However, the
bounding box size changes are too small to be significant. One issue of this tracker is
that the computational time is quite long. For one video of approximately 1,875 frames,
the tracker takes about 30 min to complete. Although the tracker has not been tested on
videos with occlusion, it appears that it would not handle occlusion very well due to the
similar behavior with the STAPLE. Furthermore, the code does not have a function or
algorithm for redetection.

3 Experiments

3.1 SENSIAC Database Description

All the tracking algorithms have been tested using the SENSIAC database [12], which
contain different vehicles and human targets at multiple ranges. These videos are
captured using both optical and mid-wave infrared (MWIR) cameras. This data set is
available for purchase [12]. In this paper, we focus only on vehicles.

For vehicles, there are a total of nine targets. It is important to note that two targets
were excluded because not all scenarios were available for the particular targets. These
targets vary in size from a pickup truck to a tank. For each target, there are a total of 18
scenarios, nine for daytime and nine for night time. These nine daytime and nighttime
scenarios vary in range from the target to the camera used to capture the video. The
range starts from 1,000 m and ends at 5,000 m with an interval of 500 m. All the
vehicles drive in a circular pattern at speeds specified within the ground truth files
associated with each scenario. In total, there are 162 videos for vehicles.

3.2 Vehicle Tracking Results

Although there are quite a few performance metrics for evaluating different trackers in
the literature, only two different performance metrics were performed on each of the

Fig. 3. Deep learning tracker.
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scenarios. This is because only the ground truth center locations of the vehicles are
available in the database. The first one was the distance precision (DP), which com-
putes the average number of frames the estimate location was within range of the
ground truth location. The second performance metric is the center location error
(CLE), which computes the average distance between the ground truth location and the
estimated location. The following tables are the averages of all targets for a particular
range for each tracking algorithm.

Optical Camera Results. Table 1 summarizes the averaged CLE of tracking results of
different algorithms at different ranges. It should be noted that there are a number of
vehicles at each range. Smaller CLEs mean better performance. It can be seen that
Kalman tracker works well for ranges less than or equal to 2000 m. STAPLE works
well for ranges longer than 2000 m. Table 2 shows the averaged Distance Precision

Table 1. Averaged Center Location Error (CLE) for all cases. Optical videos.

CLE

Algorithms
LCT STAPLE Fusion Kalman CF

Ranges Day 1000 26.2451 24.3939 18.1098 5.5431 28.1734
1500 18.3854 15.8202 12.5347 7.1036 16.0348
2000 9.4061 11.1048 7.0533 3.3757 12.8006
2500 67.3546 38.8866 61.0648 97.7282 45.8926
3000 57.8209 13.6605 21.7178 80.7708 22.0208
3500 19.1763 14.2882 49.8143 87.3758 26.9078
4000 32.0739 6.7583 49.2002 105.4559 20.6885
4500 31.1081 17.6424 23.9859 66.0445 23.2431
5000 35.2556 24.7713 33.1415 51.2991 29.2628

Table 2. Averaged Distance Precision (DP) at threshold of 20 pixels for all cases.

DP (20 pixel threshold)

Algorithms
LCT STAPLE Fusion Kalman CF

Ranges Day 1000 0.3339 0.3574 0.5253 0.9898 0.3597
1500 0.6352 0.6013 0.8247 0.9860 0.6350
2000 0.9910 0.8650 0.9998 0.9986 0.8660
2500 0.2700 0.6502 0.4535 0.2140 0.5336
3000 0.3261 0.9293 0.7583 0.2536 0.7773
3500 0.7830 0.9100 0.3890 0.2239 0.6539
4000 0.4808 0.9587 0.3254 0.3459 0.7217
4500 0.3591 0.6466 0.4985 0.1648 0.5196
5000 0.3564 0.5851 0.4464 0.3192 0.5090
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(DP) at threshold of 20 pixels for all cases. Again, it can be seen that the Kalman
tracker works well for short ranges and STAPLE works well for long ranges. Com-
pared to the conventional trackers, the deep learning based tracker (CF) only performs
moderately well in long ranges. The fusion approach works well only when there are
occlusions, which are not present in the SENSIAC videos. In terms of computational
speed, Kalman and STAPLE are the fastest, followed the LCT, fusion, and CF.

Figure 4 shows the averaged DP at three ranges. The trends are similar to what we
observe in Tables 1 and 2.

Infrared Camera Results. Different from the optical videos that have only day time
videos, the infrared videos have both day and night time videos. Table 3 shows the
averaged CLE results for all cases. In both day and night time cases, STAPLE performs
quite well for all ranges. All other algorithms do not perform that well. Similarly,
Table 4 shows the averaged DP results for all cases. Again, STAPLE performs well in
almost all cases. Figures 5, 6 and 7 plot the DP results for different ranges. We can
observe the similar trends mentioned above. In terms of computational speed, Kalman
and STAPLE are the fastest, followed the LCT, fusion, and CF.

(a) Videos at range of 1000 m  (b) Videos at range of 3000 m

(c) Videos at range of 5000 m
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Fig. 4. Average DP at various ranges. Optical videos.
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Table 3. Averaged Center Location Error (CLE) for all cases. Infrared videos.

CLE

Algorithms

LCT STAPLE Fusion Kalman CF
Ranges Day 1000 32.6376 24.6038 53.2527 89.1767 71.2136

1500 22.6851 13.9725 17.5248 75.4930 63.8537
2000 10.2987 15.5561 38.2592 59.2863 23.4091
2500 55.6768 47.5998 56.6269 115.8784 52.7754

3000 52.3696 24.0137 23.8464 85.4935 42.6051
3500 29.5317 8.5811 50.1563 82.4144 39.9273

4000 29.2585 10.6956 13.4652 45.4083 32.8579
4500 25.9339 21.1822 25.3266 67.7747 42.2674
5000 29.6687 20.6289 20.7262 132.2764 27.0285

Night 1000 18.0577 29.7589 27.5016 80.0698 19.7410
1500 12.5835 17.6375 17.2377 8.9518 12.2514

2000 7.5399 11.9845 11.9410 7.9800 8.9405
2500 37.1904 8.4052 8.3242 33.3183 72.2683
3000 37.9731 7.3029 19.4694 51.0178 45.3617

3500 24.5018 6.8555 25.5366 53.5819 31.9712
4000 15.5882 5.6554 17.9157 33.1909 11.8107

4500 23.6879 8.3042 19.2317 30.6024 18.9383
5000 30.1010 15.4727 15.5971 158.9508 53.6705

Table 4. Averaged Distance Precision (DP) at threshold of 20 pixels for all cases.

DP (20 pixel threshold)

Algorithms

LCT STAPLE Fusion Kalman CF
Ranges Day 1000 0.4533 0.3361 0.5508 0.7006 0.4058

1500 0.8022 0.6575 0.7530 0.6873 0.3521
2000 0.9077 0.7704 0.6330 0.5085 0.6684
2500 0.2952 0.4457 0.3660 0.2935 0.2466

3000 0.3306 0.6832 0.6915 0.0999 0.3058
3500 0.5648 0.9211 0.3554 0.1018 0.2832

4000 0.4543 0.8544 0.8038 0.1949 0.3678
4500 0.4119 0.6080 0.4651 0.0276 0.3276
5000 0.3751 0.5880 0.5940 0.2469 0.5035

Night 1000 0.5554 0.3552 0.4456 0.4715 0.5247
1500 0.7544 0.5654 0.6362 0.9860 0.8069

2000 0.9620 0.7824 0.8503 0.9666 1.0000
2500 0.5775 0.8954 0.9027 0.6246 0.4941
3000 0.5303 0.9304 0.8347 0.4708 0.5638

3500 0.6578 0.9599 0.7717 0.3769 0.5397
4000 0.7932 0.9619 0.6293 0.4003 0.8157

4500 0.5329 0.8743 0.5227 0.3767 0.6773
5000 0.3797 0.7411 0.7426 0.0094 0.5394
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Fig. 5. Average distance precision for videos at range of 1000 m. Left: Infrared videos at day
time; right: infrared videos at night time.
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Fig. 6. Average distance precision for videos at range of 3000 m. Left: Infrared videos at day
time; right: infrared videos at night time.
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Fig. 7. Average distance precision for videos at range of 5000 m. Left: Infrared videos at day
time; right: infrared videos at night time.
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4 Conclusions

In this paper, we address target tracking for low quality videos. The low quality is
caused by long range data acquisition as well as environmental conditions due to poor
illumination and camera motions. Five representative trackers were used in our com-
parative study. Two performance metrics (center location error and distance precision)
were used in our experiments. It was observed that one tracker known as STAPLE
performed quite well whereas the deep learning based tracker did not work as well as
STAPLE. A somewhat surprising results is that the Kalman tracker also works well up
to 2000 m for optical videos. It is our belief that the field of target tracking still needs a
lot of research, including deep learning based methods.
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