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Abstract. Simultaneous tracking of multiple and small/pixel targets is important
for many applications such as ship, aircraft, and vehicle tracking. This paper
presents a practical and efficient framework for the above problem. The key ideas
in the framework include 3D modeling of multiple cameras and the application of
multiple Extended Kalman Filters (EKF) for multi-target tracking. Many practical
issues such as multiple small targets, measurement noise, false targets, partial or
missing target observations, multiple cameras, etc. have been addressed. Exten-
sive experiments demonstrated the feasibility of the proposed framework.
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1 Introduction

There are many applications that require the tracking of small/pixel targets using
multiple sensors. Image sensors (EO/IR) have many advantages over radars such as
better mobility and lower cost. Hyperspectral imagers is another potential sensor that
can be used for target detection and tracking.

In this project, it is assumed that a set of unmanned air vehicles (UAVs) or other
platforms are used to detect and track multiple targets (vehicles or aircraft), which
appear as pixel targets from long ranges in cameras. Each UAV carries one or more
infrared cameras to capture heat emission from remote objects/aircraft. Figure 1 shows
a sample scenario of target tracking using two cameras. In this scenario, two cameras
are watching a remote site, where three targets are just taking off. In general, there can
be many targets at the same or different times and we have many cameras to track them
simultaneously.

Our pixel target tracking system consists of several key components. First, pixel
targets are detected in each camera. Many algorithms can be used here, including
anomaly detection algorithms [1-6] and foreground/background separation using
sparsity [7]. Second, targets in multiple cameras are associated via a 3D camera geo-
metric model. This model is very important for dealing with multiple targets in multiple
cameras. Third, although sophisticated tracking algorithms such as [8—13] can be used,
a simple and efficient target tracking algorithm based on Extended Kalman Filter
(EKF) [16-18] is used to track the targets. Fourth, a number of practical algorithms
have been utilized to address many practical issues such as false targets, partial or
missing observations, coordination between multiple cameras, etc.
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Fig. 1. Tracking multiple targets using mul- Fig. 2. Geometric model of imaging.

tiple cameras.

Our tracking system is fully automatic, robust, flexible, scalable, efficient and
practical for multiple pixel targets tracking. With all these capabilities, we believe that
our multiple camera based tracking system is able to work in real world situations and
provides a better solution than radar based tracking system in some complex scenario.

In the following, we first present the geometric model of camera and imaging
process in Sect. 2. In Sect. 3, we then describe the geometric model based EKF for 3D
target tracking from 2D camera observations. We combine multiple camera observa-
tions into a single observation vector so that all information can be used simultane-
ously. In this way, information from partial frames are effectively utilized. We further
describe how we perform automatic new target state initialization based on triangu-
lation. In addition, we will also present the strategy for multi-target and multi-group
tracking, which involves automatic camera adjustment and multi-camera coordination.
In Sect. 4, we demonstrate the capability of our tracking system with two simulation
experiments, which includes observation noise, missing targets, false alarms, non-linear
trajectory, multiple target groups, multiple sensors, and long video sequences. Finally,
some remarks will be given in Sect. 5.

2 Geometric Models

Figure 2 shows the camera model. The symbols x, y and z denote the three axes of the
camera. The letter C is the camera location. X is a 3D point and p is the corresponding
image point. x and y are the image coordinate axes; the origin (0, 0) is at bottom left. fis
the focal length of the camera.

Given a 3D point X, its projection on image is p which can be computed by the
following equation [14]

p = KRlI| - CIX (1)
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where X is the homogeneous coordinates of X and p is the homogeneous coordinates of
p. That is,

p=p(1:2)/p(3)andX = X(1:3)/X(4) (2)

K is the camera internal matrix. R is the rotation matrix. For simplicity, we can use
normalized image coordinates

p=K'p. (3)
As a result,
p=R[I|-CX=R(X -C). (4)

In our simulation and tracking studies, we will use the above normalized image
coordinates.

3 Multi-camera Tracking Based on Extended Kalman Filters

3.1 Tracking Using Extended Kalman Filter

We use Extended Kalman Filter (EKF) for its simplicity to perform the 3D object
tracking based on 2D observations. The state vector is represented as

p=[x y z v v VZ]T (5)

where (x, y,z)T is target’s 3D location and (vy, vy, vZ)T is the speed vector. We use a
linear motion model represented by

W= Ay
where

1 0 0 Ar 0 O

01 0 0 At O

A 0 01 0 0 At

/oo 0 1 0 O

0O 00 O 1 o0

0 00 0 0 1

The observation model is given by

p=R(X—-C) (6)
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where X = u(1: 3)

) =p(0)/P) = o)

where i =1,2. R;. is the /™ row of R and [p(1),p(2)] are the normalized image
coordinates.

For M cameras, we combine all the observations together to form a single mea-
surement vector

Z=[p(1) p1(2) p(1) p2(2) ... o pu(l) pu(2)]". (7)

In practice, due to missing pixels/frames or partial observations, it is possible that
only a subset of the sensors have observations of the target. Therefore, the observation
vector (Z) only contains the available information from a subset of the sensors [15].

3.2 Multi-target Tracking

To track multiple targets simultaneously, we maintain an EKF tracker for each target
independently. To update each tracker with new observations, we use nearest neighbor
strategy, i.e. for each image, the point which is closest to prediction position is assigned
as new observation. To cope with missing pixels, we set a distance threshold. If the
closest distance is larger than the threshold, we assume there is no new observation. If a
tracker does not have any new observations for a long time, its covariance matrix will
be large and we drop/stop it.

3.3 Automatic State Initialization for New Targets

The EKF tracker assumes there is an initial state to begin with. For image sensors, the
2D observations do not equal to the 3D positions and cannot be directly used as initial
states. To initialize states, we use triangulation method to generate all possible 3D
points based on the observations from multiple cameras. When there are many cameras
and many false alarms, the number of all possible 3D points could be huge. We use
re-projection error to eliminate a majority of the false targets.

3.4 Tracker Pruning

In the previous paragraph, we mentioned that even with initial tracker elimination
based on re-projection error, there may still be a lot of false tracks. One way to get rid
of false tracks is to use error covariance to measure the confidence of a tracker. If the
covariance is large, the confidence is low. We use the inverse sum of the diagonal
elements of the covariance matrix to indicate the confidence level. If the confidence
level is below a threshold, we terminate the track and its associated EKF tracker.
Usually, if a tracker cannot gain enough observation updates, its covariance will grow
and finally terminate. Using the above technique, most of the false tracks and their
corresponding trackers are eliminated as time goes on.
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With enough time, all the survived tracks will merge to true targets. This leads to
another issue: many tracks may become identical to each other. In practice, we do not
need all of them. For each true target, we only need one tracker. To prune these
redundant trackers, we measure similarity of the state vectors and if two trackers are too
close, the one with lower confidence is terminated.

With tracker pruning, the number of total trackers will gradually converge to the
number of true targets and the system speed will become very fast.

4 Simulations and Tracking Experiments

In this section, we use two simulations to demonstrate the effectiveness of our tracking
system. The first simulation is a simple one, i.e. linear trajectory and single target group,
and no need for camera adjustment. This simulation is used to demonstrate the basic
functions of the tracking system such as robustness to noise, false alarms, missing target
and the capability of automatic initialization. The second simulation is very challenging:
non-linear trajectory, multiple groups, long time (say, 700 frames). This simulation is
used to demonstrate advanced feature of the tracking system such as partial observation,
active tracking, automatic multi-camera coordination, non-linear trajectory and tracker
pruning. In both simulations, we used a simple target detection algorithm (Reed-Xiaoli
Detector [2]) to detect the targets. Other sophisticated algorithms could be used as well
where low false alarms can be achieved. However, the objective of these simulations is
to demonstrate the proposed tracking system rather than target detection.

In the first simulation, we placed 4 cameras and generated 3 targets. The 3 targets
are moving at a constant velocity. Figure 3 shows the simulation setup and the tracking
process. Figure 4 shows the images highlighting the detected target pixel’s locations.
We simulated 30 frames and frame 1, 11, 16, and 26 are shown in Fig. 3. In each
image, there are a random number (from O to 10) of false alarms. In addition, each
target has a probability of 0.1 of missing in an image. The pixel locations are disturbed
with random Gaussian noise with mean of 0.5 pixel. In Fig. 3, the camera is repre-
sented by 3 axes: red is z axis, blue is x axis and green is y axis. Image plane is in the
end of z axis. Green circles represent target observations on images, which include true
target’s image and false alarms. Blue circles are 3 real targets in 3D space. Red crosses
are estimated 3D targets in EKF tracker. Red circles represent the diagonal mean of
EKF covariance matrix. In the beginning, there are 6 EKF trackers, only two of them
are correct. In frame 11, one of the false target’s track (the most right one in frame 1)
disappears. Two false targets’ tracks close to true targets merged to true target’s
location. Starting from frame 16, all false target trackers disappear and only 3 true
target trackers exist and overlap with ground truth position.

In the second simulation, the experimental setup is as follows:

(1) There are 3 targets moving in circles. One target’s speed is different from another
two.

(2) There are 7 cameras.

(3) False alarms range from O to 5 for each image.

(4) There are 700 frames.



Tracking of Multiple Pixel Targets Using Multiple Cameras 489

o 4 o - v v s oo o

I
™~
2 RN
6+
6

5
4 5
3 4
5 3
1 2
0. 1
-1 0
-2, L -1
6 -

> o~ 2

4 ~ /,4'/ 6 6

zx\ 4
N —
0 \\ ///
S o
2 2
(3) Frame 16 (4) Frame 26

Fig. 3. 3D illustration of multi-target multi-camera simulation and tracking.

Other configuration parameters are the same as the previous simulation. Figure 5
shows trajectories of ground truth targets (in black circles) and EKFs (in lines). We can
observe that all three real targets’ trajectories are successfully captured. There are some
false tracks. Most of them are terminated after a short time. Only 1 false track lasts
more than 200 frames. Note that for one of the targets, there are two color lines, i.e.
cyan and blue. This means that there are two corresponding tracks. In the beginning,
the cyan track is tracking the target. However, after several hundred frames, it loses the
target. Fortunately, our system can automatically recover the failed case by automat-
ically initialize new targets. After several frames of failed tracking, a new blue tracker is
created to track the target.

Figure 6 shows a realistic rendering of frame 500. The UAV network are coordi-
nated to cover all targets. Note that for visualization, we highlight the target pixel as
well as false alarms in the image. In reality, they are all single pixels.

Figure 7 shows a set of sample frames. In the beginning, there are many (more than
400) trackers that are initialized. After 10 frames, some trackers’ confidence level
becomes low (see big circles in the image). In frame 70, most false trackers are
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Camera 1 Camera 2 Camera 3 Camera 4

Fig. 4. Simulated images showing the locations of targets as well as false alarms. Columns are
images from different cameras. Rows are images from time frame 1, 11, and 21.

Fig. 5. Ground truth targets trajectory (inblack ~ Fig. 6. Frame 500 with realistic rendering.
circles) and EKF trackers’ trajectory (in lines).  Three axes are the targets and red balls are
(Color figure online) EKF trackers. (Color figure online)
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Fig. 7. 3D illustration of simulation and tracking.

eliminated. Note that in frame 70, the top camera changed its view angle to track the
targets. In frame 200, most cameras changed their view angle. The top camera has
changed at least twice. In frame 500, two target groups are totally separated due to
different running speed. In this frame, both groups received enough attention. The two
left cameras are watching the bottom group and other cameras are watching another
group. Actually, the two right cameras can see both groups. So the bottom target is
covered by 4 cameras and another two targets are covered by 5 cameras. Frame 610 has
similar situation and all of the targets get enough coverage.

5 Conclusions

In this paper, we present a general framework for tracking multiple pixel targets using
multiple cameras. Many practical issues such as missing pixels, partial observations,
measurement noise, multiple targets, etc. have been addressed. Extensive simulations
clearly demonstrated the performance of the framework.
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