
The Implementation of a Pointer Network
Model for Traveling Salesman Problem

on a Xilinx PYNQ Board

Shenshen Gu1(B), Tao Hao1, and Shaofu Yang2

1 School of Mechatronic Engineering and Automation, Shanghai University,
Shanghai 200072, China
gushenshen@shu.edu.cn

2 School of Computer Science and Engineering, Southeast University,

Nanjing 211189, China

Abstract. In this paper, a pointer network model for traveling salesman
problem (TSP) was implemented on a Xilinx PYNQ board which sup-
ports Python and Jupyter notebook and is equipped with ZYNQ SOC.
We implement a pointer network model for solving TSP with Python
and Theano firstly, then train the model on a GPU platform, and even-
tually deploy the model on a PYNQ board. Unlike traditional neural net-
work implementation, hardware libraries on PYNQ (Overlays) are used
to accelerate the pointer network model application. The experimental
results show that the pointer network model for TSP can be deployed
on the embedded system successfully and achieve good performance.

Keywords: Pointer networks · Traveling salesman problem · Theano
PYNQ · FPGA

1 Introduction

In recent years, deep neural networks (DNNs) are widely used in many arti-
ficial intelligence applications, particularly tasks involving computer vision [1],
speech recognition [2], and robotics [3]. Currently, DNN models usually require
a Graphics Processing Unit (GPU) to accelerate computation, so they mostly
have been developed and applied on large machines with powerful computation
capacity. With increasingly need of DNN models deployed in mobile devices,
there is a growing concern in deep learning area about how to deploy power-
ful and cost-effective DNN models in an embedded system. DNN on embedded
system projects have been launched by some researchers [4]. A TensorFlow-
on-Raspberry-pi Project was issued by Sam Abrahahms. In addition, a Binary
Neural Network project that converts the floating-point parameters into binary
values on an FPGA [5] has been published by a Xilinx research group. Deep
learning models can be trained off-line and then implemented onto embedded
system, so that the system only needs to focus on improving the throughput of
forward propagation.
c© Springer International Publishing AG, part of Springer Nature 2018
T. Huang et al. (Eds.): ISNN 2018, LNCS 10878, pp. 130–138, 2018.
https://doi.org/10.1007/978-3-319-92537-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92537-0_16&domain=pdf


Implementation of a Pointer Network Model on PYNQ 131

Meanwhile, DNNs have made remarkable achievements in solving combina-
torial optimization problems. For instance, Vinyals solves the traveling salesman
problem (TSP) with recurrent neural networks (RNNs) [6]. TSP is a classical
example of combinatorial optimization arising in many areas of theoretical com-
puter science. It can be described as follows. Given a set of city coordinates,
one needs to search the space of permutations to find an optimal sequence of
nodes with minimal total tour length. TSP plays an important role in microchip
design, DNA sequencing, and robot path planning. In [6], a new architecture
termed as Pointer network is proposed for solving large scale TSPs. In this net-
work, attention mechanism is used as a pointer to select a position from the
input sequence as an output symbol. The pointer network is shown as a simple
and effective model for solving TSPs. Therefore, it is meaningful to deploy the
pointer network in an embedded system for various wearable applications.

FPGA is very suitable for parallel computing, and have been widely used
to accelerate the neural network and machine learning algorithm [7]. Nowadays,
most embedded devices are composed of ARM-based processor and the hard-
ware programmability of an FPGA, such as Xilinx Zedboard, ZYBO, and so on.
Python has more advantages in scientific computation and data processing than
other programming languages. Due to the fact that a lot of software libraries
in Python exist, which make data sampling, analysis, and processing very con-
venient. Python has consistently been ranked the top of Lists of Programming
languages for deep learning. Motivated by the release of PYNQ from Xilinx
which aids in the interfacing with custom hardware in the FPGA fabric and
providing many useful utilities, such as downloading bitstreams from within the
application, we consider how to use Python in an FPGA development environ-
ment.

Currently, many popular open-source deep learning framework programming
tools such as TensorFlow, Theano, Caffe all support Linux platform, and all
support Python interface. Comparing these neural network framework tools, we
found that Theano is the most suitable for PYNQ development board. Because
Theano can be installed on PYNQ easily and runs well under a 32bit Linux
Operation System (OS). What’s more, the support of Theano for customized
layer is very high.

The rest of this paper is organized as follows. In Sect. 2, recurrent neural net-
work and architecture of pointer network are introduced briefly. Section 3 intro-
duces how to implement the pointer network model for TSP based on Theano
and FPGA accelerator Overlay design in detail. Next, in Sect. 4, the training
process of the model and performance on PYNQ board are shown. Finally, a
conclusion is drawn to summarize this work in Sect. 5.

2 Recurrent Neural Network and Pointer Network Model

In this section, we first introduce RNNs, especially Long Short Term Memory
(LSTM) which is the basic cell of pointer networks. And then, the architecture
of the pointer network model will be described.



132 S. Gu et al.

2.1 Recurrent Neural Network

RNNs are becoming an increasingly popular way to process and predict
sequences of data. RNNs have shown excellent performance in problems such as
speech recognition, machine translation and scene analysis. RNNs are recurrent
because they perform the same computations for all the elements of a sequence
of inputs, and the output of each element depends on not only the current input
but also all the previous computations.

As a special RNN architecture, LSTM implements a learned memory con-
troller for avoiding vanishing or exploding gradients [8]. LSTM is a network that
consists of cells (LSTM blocks) linked to each other. Each LSTM block con-
tains three types of gate: Input gate, Output gate and Forget gate, respectively,
which perform the functions of writing, reading, and resetting on the cell mem-
ory. There are some variations on the LSTM architecture and all those variations
have similar performance as shown in [9]. This is the vanilla LSTM [10], which
can be formulated as follows:

it = σ (Wxixt + Whiht−1 + bi) (1)
ft = σ (Wxfxt + Whfht−1 + bf ) (2)
ot = σ (Wxoxt + Whoht−1 + bf ) (3)
c̃t = tanh (Wxcxt + Whcht−1 + bc) (4)
ct = ft ∗ ct−1 + it ∗ c̃t (5)
ht = ot ∗ tanh (ct) (6)

where i, f and o represent input, forget, and output gate respectively, x is the
input vector of the layer, W is the model paraments, c is memory cell activation,
c̃ is the candidate memory cell gate, h is the layer output vector, σ is the logistic
sigmoid function, and ∗ is element wise multiplication. And t − 1 represents
results from the previous time step.

2.2 Architecture of Pointer Networks

The architecture of pointer networks in [6] is applied to solve TSP. Given an
input sequence, this type of deep neural architecture (see Fig. 1) combines the
popular sequence-to-sequence learning framework [11] with a modified Attention
Mechanism [12] to learn the conditional probability of an output whose values
correspond to positions in an input sequence.

To solve the problem that the encoder output dictionary size depends on the
length of the input sequence, the pointer network adjusts the standard attention
mechanism to create pointers to elements in the input sequence. The following
modification to the attention model was proposed:

ui
j = vT tanh(W1ej + W2di) j ∈ {1, 2, · · · , n} (7)

p (Ci |C1, · · · , Ci−1, P ) = softmax
(
ui

)
(8)



Implementation of a Pointer Network Model on PYNQ 133

Fig. 1. Architecture of the pointer network (encoder in blue, decoder in yellow) (Color
figure online)

where softmax normalizes the vector ui (of length n) to be an output distribution
over the dictionary of inputs, and v, W1,W2 are learnable parameters. Note that
unlike the standard attention mechanism, the pointer network model does not
use the encoder states to propagate extra information to the decoder, but instead
uses ui

j as pointers to the input sequence elements [13].
Figure 1 illustrates the architecture of the pointer network, which mainly

consists of encoder network and decoder network. An encoder converts the
input sequence to a code (blue) that is fed to a decoder (yellow). The
input/output pairs (P,CP ) for TSP are illustrated in detail. The input sequence
P = {P1, . . . , Pn} is the cartesian coordinates representing the cities. CP =
{C1, . . . , Cn} is a permutation of integers from 1 to n representing the optimal
path.

3 Implementation

In this section, the pointer network model for TSP design, training, and deploy-
ment methods and procedures will be concretely described. The training of the
neural network will consume much computing resource and time, so we use a
GPU to train the network, and then deploy the model on PYNQ board.

3.1 Implementation of Pointer Network Model for TSP Based on
Theano

Figure 2 shows the procedure of implementing a pointer network model. The
first step is to generate TSP training dataset, preprocess the data and then load
it. We set the maximum and minimum number of nodes in a set of data, then
generate the random number between maximum and minimum as the number of
nodes, and then generate randomly plane coordinates in the [0, 1]× [0, 1] square.
Without loss of generality, in the training dataset, we always start from the first



134 S. Gu et al.

Fig. 2. Scheme of implementing a pointer network model

city in order to keep consistency. For small scale TSP, dynamic programming
algorithm are implemented to obtain exact solutions. For large scale TSP, due
to the importance of TSP, many good and efficient algorithms have provided
reasonable approximate solutions, so we can use benchmark for TSP to create
samples. The training data is saved as tsp.pkl.gz.

The second step is to make parameter initialization module. The initial value
for the weights and biases of the neural network need to be configured. The next
step is to build the pointer network model. We first define the LSTM cell function
module, and then according to the architecture of pointer network in Sect. 2.2,
make an encoder network and a decoder network with LSTM cell. The softmax
function, used in the output layer, is a kind of normalization function that can
convert a vector into a probability distribution form and give every element a
probability, whose definition is described as follows.

σ(z)j =
exp (zj)

∑K
k=1 exp (zk)

j ∈ 1, . . . ,K (9)

The cross-entropy is more suitable for training RNN, which is used as loss
function to calculate the gap between the prediction and the actual values. The
definition of the cross-entropy function is described as follows.

H (p, q) = −
n∑

i=1

p (x) log (q (x)) (10)

Stochastic Gradient Descent (SGD) algorithm is used to update the weights
of the neural network according to loss function. Above functions can be imple-
mented conveniently with Python and Theano. The final step is to train the



Implementation of a Pointer Network Model on PYNQ 135

model and save the trained pointer network model. The trained model will be
saved in a npz file, which saves several arrays into a single file in uncompressed
format. Then the trained model can be used to predict results.

3.2 FPGA Accelerator Overlay Design

PYNQ provides an Overlay framework to support interfacing with the board’s
IO. However, any custom logic must be created and integrated by the developer.
A Vivado project for a Zynq design consists of the PL design and the PS config-
uration settings. For PS configuration, it covers settings for system clocks and
the clocks used in the PL. And, the PS settings in their Vivado project should
be ensured to match the PYNQ image settings. The PL clock configuration are
set as Table 1.

Table 1. PL clock configuration

PL Clock FCL CLK0 FCL CLK1 FCL CLK2 FCL CLK3

Frequency 100.00 MHz 142.86 MHz 200.00 MHz 166.67 MHz

The schedule of creating a PYNQ overlay is described as follows. Hardware
accelerators should be first designed and implemented to an IP through Vivado
HLS, a high-level synthesis tool. Based on a base design which includes most
of the peripheral interface overlay provided by the PYNQ project, a Vivado
project is created and IPs are added to a block design and the design is synthe-
sized, implemented, and a bitstream is generated, a tcl file of the block design
is exported.

The communication between the PL and PS depends on an AXI interface. An
IP with AXI interface can be easily created in Vivado Design Suite. In addition,
PYNQ includes the MMIO Python class to simplify communication between
the Zynq PS and PL. Once the overlay has been created, and the memory map
can be known through Address Editor in Vivado, the MMIO can be used to
access memory mapped locations in the PL. Matrix multiplication operations
are the most frequent operation in the neural network, so a matrix multiplication
accelerator is designed in this paper. Figure 3 shows the connection between the
matrix multiplication and the Zynq processor.

Fig. 3. The connection between the matrix multiplication and the Zynq processor



136 S. Gu et al.

4 Experimental Results

To test the effectiveness of the implementation, a pointer network model for
TSP was trained by supervised learning. The weights of neural networks were
updated by SGD algorithm with a learning rate of 0.01. All the parameters were
initialized obeying random distribution in [−0.08, 0.08].

We obtained the loss values of 1000 epochs in the training process. As is
shown in Fig. 4, the loss values are gradually reducing with the increase of train-
ing epochs, which means the training algorithms works well.

Fig. 4. The loss values of 1000 epochs

The PYNQ board should be configured as required. After booting up the
linux system in the PYNQ board, we could view and run the notebooks inter-
actively through our browser. The final size of the trained model is about 5 MB,
which needed to be copied to the board file system, and loaded in Jupyter note-
book. Then the model on PYNQ board can be used to predict the result of the
TSP.

After installing the essential package, the trained model was deployed suc-
cessfully on the PYNQ board. In our experiment, the PYNQ’s CPU was clocked
at frequency of 665 MHz. For different scale of TSP, the inference time of run-
ning pointer network models on the PC (equipped with Intel i5-2450M CPU @
2GHz and 4 GB RAM), PYNQ board without Overlay and PYNQ board with
Overlay respectively is shown in Table 2. It is found that the performance of
the pointer network model deployed on PYNQ board is nearly comparable to
that on conventional PC. In addition, Overlay can promote the performance of
PYNQ board to some degree.



Implementation of a Pointer Network Model on PYNQ 137

Table 2. Performance of the pointer network model

Number of nodes 10 20 30 40 50

Inference time on PC (sec.) 0.21 0.35 0.61 0.72 0.82

Inference time on PYNQ without Overlay (sec.) 0.29 0.44 0.71 0.83 0.96

Inference time on PYNQ with Overlay (sec.) 0.24 0.38 0.65 0.76 0.85

The core chip of PYNQ is a ZYNQ SOC XC7Z020-1CLG400C, which has
plentiful programmable logic resource. The FPGA resource utilization is shown
in Table 3. In our experiment, BRAM and LUT are mainly used. BRAM resource
is used to restore the weights. LUT resource is consumed to register and routing.

Table 3. FPGA resource utilization

Resource Utilization Available Utilization%

LUT 32414 53200 60.93

LUTRAM 2619 17400 15.05

FF 39252 106400 36.89

BRAM 74.50 140 53.21

DSP 11 220 5.0

IO 96 125 76.80

BUFG 6 32 18.75

MMCM 2 4 50.00

5 Conclusions

In this paper, a pointer network model for TSP is implemented with python
and Theano and trained on a GPU platform. Furthermore, the trained model is
deployed on PYNQ board through Jupyter notebook. As deep neural networks
have delivered state-of-the-art performances in the fields of speech recognition,
machine translation and machine vision, the deployment of well-trained neural
networks to embedded equipment is a trend of future development. FPGA is a
very promising accelerator for deep neural network due to its strong parallel-
process capability, reconfigurability and low power consumption. Experimental
results show that the implementation of pointer network for TSP is successful
and the performance is promising which suggests that it can be applied to various
models and fields.

Acknowledgments. The work described in the paper was supported by the National
Science Foundation of China under Grant 61503233.



138 S. Gu et al.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015). Nature Publishing Group

2. Li, S., Wu, C., Li, H., Li, B., Wang, Y., Qiu, Q.: FPGA acceleration of recurrent
neural network based language model. In: Proceedings of the IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 111–118. IEEE Press (2015)

3. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J.
Robot. Res. 34(4–5), 705–724 (2015). SAGE Publications Sage UK, London

4. Hao, Y., Quigley, S.: The implementation of a deep recurrent neural network lan-
guage model on a Xilinx FPGA. arXiv preprint arXiv:1710.10296 (2017)

5. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M.,
Vissers, K.: Finn: a framework for fast, scalable binarized neural network infer-
ence. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 65–74 (2017)

6. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, pp. 2692–2700 (2015)

7. Guan, Y., Yuan, Z., Sun, G., Cong, J.: FPGA-based accelerator for long short-
term memory recurrent neural networks. In: Proceedings of the 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 629–634. IEEE
Press (2017)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10),
2222–2232 (2017)

10. Chang, A.X.M., Martini, B., Culurciello, E.: Recurrent neural networks hardware
implementation on FPGA. arXiv preprint arXiv:1511.05552 (2015)

11. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

12. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

13. Milan, A., Rezatfighi, S.H., Garg, R., Dick, A.R., Reid, I.D.: Data-driven approx-
imations to NP-hard problems. In: Proceedings of the 31st AAAI Conference on
Artficial Intelligence (AAAI 2017), pp. 1453–1459 (2017)

http://arxiv.org/abs/1710.10296
http://arxiv.org/abs/1511.05552
http://arxiv.org/abs/1409.0473

	The Implementation of a Pointer Network Model for Traveling Salesman Problem on a Xilinx PYNQ Board
	1 Introduction
	2 Recurrent Neural Network and Pointer Network Model
	2.1 Recurrent Neural Network
	2.2 Architecture of Pointer Networks

	3 Implementation
	3.1 Implementation of Pointer Network Model for TSP Based on Theano
	3.2 FPGA Accelerator Overlay Design

	4 Experimental Results
	5 Conclusions
	References




