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Chapter 3
Biomineralization

Abstract Usually during biomineralization, organisms gather the precursors (such 
as ions of metals) essential to formation of biominerals directly in their natural envi-
ronments. Marine invertebrates both fossil and recent represent amazing sources of 
biominerals which mostly arose at the early stages of evolution. Consequently broad 
diversity of hypothesis and speculations concerning the mechanisms of biomineral-
ization of amorphous and crystalline phases within biominerals has been established 
during last 50 years of intensive research. The organic matrix has a fundamental role 
in biomineralization, and is inspiration for biomimetics, bioengineering and for the 
oncoming nanotechnologies. This chapter includes the list of most recent references 
related to the modern trends in biomineralization.

Biomineralogy is an interdisciplinary research field dealing with phenomena of 
biomineralization, demineralization, and remineralization, which have been natu-
rally occurring since life began. The best way to understand the basic principles of 
biomineralization on both molecular and nano level lies through multidisciplinary 
experience, knowledge and sophisticated technologies by a coherent synergetic col-
laboration of biologists, chemists, physicians, and materials scientists.

Usually during biomineralization, organisms gather the precursors (such as ions 
of metals) (Currie et  al. 2006) essential to form the biominerals directly in their 
natural environments (water, soil, food). After their transfer into organisms (or 
cells), precursors are stored (mostly within special organelles, or vesicles) and, 
finally, turned into biominerals.

In accordance with classical nucleation theory (Volmer 1939; Nancollas 1982), 
the minerals crystallization begins from the precursor’s ions, which form small clus-
ters of crystals during dynamic process of growth and disintegration, adequately to 
their ionic complementarity. After reaching the critical size, abovementioned clus-
ters evolve into stable forms. Although in opposite to classic theory of nucleation, it 
was proved that formation of the calcium carbonate crystals begin from a transient 
amorphous phase of the precursor, in biomimetic as well as biological systems (see 
for review Nudelman and Sommerdijk 2012; De Yoreo et al. 2015). Hence, the dis-
covery of formation of the calcitic spicules by sea urchin from amorphous calcium 
carbonate phase was described in 1997 (Weiner et al. 2009). Since this year it was 
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reported that other animals are able to use this strategy for both calcite as well as 
aragonite. Nowadays, it was shown that the bone mineral matrix of vertebrate origin 
can be composed from amorphous calcium carbonate as a precursor phase (Weiner 
2006). Papers by Politi et al. 2004, 2008; Beniash et al. 2006 confirmed this strat-
egy. Currently, the major challenge is related to understanding the detailed manner 
of the formation of the primary unstable phases, as well as the mechanism of their 
temporary stabilization, followed by destabilization and the final formation of the 
crystalline products (Weiner et al. 2009). So called nanoscopic prenucleation clus-
ters may play a crucial role being in conflict to the rules of classical nucleation 
theory for calcium carbonates (Pouget et al. 2009; Walker et al. 2017). Interaction 
between intracrystalline biomolecules leads to anisotropic distortion of crystal lat-
tices in biological aragonite and calcite (Pokroy et al. 2004, 2007). Diverse biomin-
eralizing systems contain diverse set of pathways (Lakes 1993; Mann 1993; Mann 
1995; Aizenberg et al. 2005; Meyers et al. 2006; Fratzl 2007; Pouget et al. 2007; 
Dey et al. 2010; De Yoreo et al. 2013; Boskey and Villarreal-Ramirez 2016) which 
are dependent from both the reaction dynamics as well as complexity of the free-
energy landscapes (Cartwright et al. 2012; De Yoreo et al. 2015; Jiang et al. 2018).

Taking into consideration the biological environments, the process of biominer-
alization is divided into an intercellular, extracellular or intracellular process 
(Subburaman et al. 2006). The knowledge about the mechanisms of selection, local-
ization, and concentration of these elements by organism is achieved by evaluation 
of the biologically controlled biomineralization. It was accepted as a fact that the 
organic matter has a significant role in the formation and growing of crystals, as 
well as is important to the formation of the mineralized tissue biomechanical fea-
tures (Weiner 1984). Corresponding organic matter in several mineralized tissues, is 

Fig. 3.1 The foot-like structures of Glass sponge Walteria leucarti (a) octocoral of Isidella sp. (b), 
and the black coral (Antipatharia) show similar behaviour with respect to their attachment to hard 
substrata, however differ in mechanisms of this phenomenon
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able to create two- or three-dimensional templates on which (or into) the crystalline 
phase is formed. Therefore, the oriented adhesion  - one of the most important 
biomineralization mechanisms  - is responsible for the structure formation and 
development of the characteristic physicochemical features of biological matrixes 
(Li et al. 2012; (see also Fig. 3.1). From this view especially those biomineralizing 
organisms (biomineralizers) which are able to produce structures where the organic 
component of the biomineral possesses properties of crystals and the inorganic part 
remains amorphous, are of crucial scientific interest. Typical examples of such 
biomineralizers include broad variety of unicellular and multicellular organisms 
which produce amorphous biosilica (see for review Wysokowski et al. 2018).

It is well recognized that, especially in calcified tissues, the crystal growth and 
orientation are influenced by a distinctive assemblage of special glycoproteins and 
acidic proteins, or both (see for overview Veis and Dorvee 2013; Chen et al. 2014; 
Branson et al. 2016; Polowczyk et al. 2016; Deymier et al. 2017; Kim et al. 2018; 
Jiang et al. 2017; Xu et al. 2018).

One of the fundamental questions formulated by Stephen Mann is “why some 
organisms utilize, for example, silica rather than calcium carbonate as a structural 
material is unknown” (Mann 1995).

The reason for corresponding selection may be based on the atomic and molecu-
lar features of the inorganic phases. Predestination to insert Ca and not Ba into 
biominerals producing protozoans as Acantharia, Remanella and Loxodes 
(Karyorelictida) has been studied previously (Rieder et al. 1982; Fenchel and Finlay 
1984, 1986). This phenomenon is based on ability of these protists possess a spe-
cialized system that distinguish the light elements from the IIa group of the periodic 
system. For organisms, the incorporation of Ba from fresh water is easier than from 
seawater, due to a fact that the ratio of Sr to Ba is 5:1, and 400:l in seawater (Rieder 
et al. 1982).

In this group of elements there is a great difference between the ionic radius. The 
radius increases proportionally with mass of the ion. Therefore, it is assumed that 
there is one general mechanism of the recognition of ions, which has not been 
changed during evolution significantly. This manner may apply the various ions 
radius. Thus, some related organisms could not differentiate between the elements 
such as Loxodes or Remanella. Other specimens from the Karyorelictida order, like 
Trachelocerca or Geleia, modify the naturally occurring ratio of Ca:Sr:Ba to a large 
extent, although they could not discern as well against the lighter elements.

Although, good discrimination of elements from the IIa group is reported in all 
protozoa tested except of one Trachelocerca species which is able to embed Mn.

Why are Ba and Sr embedded towards above-mentioned unicellular creatures? 
Why do they not embed calcium (exclude Prorodon), that they can achieve without 
difficulty? The authors suggested that Remanella as well as Loxodes embedded Sr 
or Ba due to their mass (higher than Ca,) and thus these minerals are more beneficial 
for a mechanoreceptor. However, other question has to be clarified, why is Sr 
embedded in acantharia, and while Ba, Sr or Ca are incorporated in Trachelocerca 
and Geleia?
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Any explanation was found for the Trachelocerca species derived from island 
Sylt in Germany that embeds Ba, Sr, Ca and probably small amount of Mn, while 
other specimens found in northern Italy absorbs Sr, Mn and Ca. It is still not  specified 
which manganese compounds are incorporated into the animal. Probably, in this 
case different incorporation mechanism occurs, another than this one that incorpo-
rate Sr, Ca, and/or Ba (Rieder et al. 1982).

The question about the ability of organisms to select cations is also related to 
phenomenon known as “multiphase biomineralization” proposed by us for the first 
time in 2010 (Ehrlich et al. 2010). We found that organic matrices (i.e. chitin) tem-
plate the formation of both amorphous (silica) and crystalline (aragonite) phases in 
skeletal fibres of selected demosponges of the Verongiida order (Ehrlich et al. 2010). 
Multiphase biomineralization occurs in skeletal formations of diverse marine inver-
tebrates including radula in molluscs (Rinkevich 1993; Brooker et al. 2003), shells 
in brachiopods (Schmahl et  al. 2004a, b, 2008; Merkel et  al. 2007; Goetz et  al. 
2009), as well as teeth of copepods (Miller et al. 1990; Becker et al. 2005; Michels 
et al. 2012, 2015; Michels and Gorb 2015).

3.1  Conclusion

The literature on biomineralization is amazing. A general principles of biomineral-
ization that addresses diverse levels of this phenomenon has been proposed by 
Nancollas (1982), Lowenstam and Weiner (1989), Mann (1995, 2001), Simkiss and 
Wilbur (1989), Addadi and Weiner (1992), Addadi et al. (2002), Cölfen and Mann 
(2003) and the excellent overall sources of information on this and related topics 
have been provided by Bäuerlein (2007), Meyers et al. (2006), Weiner (2006), 
Estroff (2008), Cölfen (2010), De Yoreo et al. (2015), Niu et al. (2013), Smeets et al. 
(2017), and Wood et al. (2017). Nowadays attention is paid on biomineralization of 
viruses (Wang et al. 2018), in foraminiferans (Tyszka et al. 2019), in sponges (Voigt 
et al. 2017), in corals (Mass et al. 2017), in plants (He et al. 2014), fungi (Li and 
Gadd 2017) as well as to biophysical (Rao and Cölfen 2016), medical (Kim et al. 
2018; Götz et  al. 2019) and diverse practical (Ramesh et  al. 2017; Evans 2019) 
aspects of this phenomenon.
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