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Abstract. A finite-buffer single-channel queueing model with batch
Poisson arrivals and generally-distributed processing times is considered,
in which a variant of a vacation policy is implemented. Namely, every
time when the service station becomes idle, a number of constant vaca-
tion times are being initialized repeatedly, until at least one packet will
income into the accumulating buffer. During the whole vacation period
the processing of packets is suspended. Applying the analytical method
based on the idea of embedded Markov chain and linear-algebraic app-
roach, a compact-form representation for the Laplace transform of the
queueing delay tail distribution is found. The considered queueing sys-
tem can be utilized in performance evaluation of wireless network nodes
with energy saving mechanism based on constant repeated vacations.
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1 Preliminaries

Queueing systems with finite buffer capacities are intensively studied nowadays
due to their wide applications, in particular in modelling the operation of com-
puter and telecommunication networks’ nodes. Models with different-types lim-
itations in the access to the service station seem to be of particular importance,
due to their potential using in energy saving modelling, being one of the most
essential problems in wireless communication. In this case each busy period of
the considered queueing system can be treated as an active period in the opera-
tion of the wireless network node (e.g. wireless sensor network) while, similarly,
each idle time may be considered as a sleep (power saving) period.

In the literature different-type policies are proposed for supporting energy
saving modelling. One of them is the so called multiple vacation policy (MVP in
short). The sense of MVP is in that the service station (e.g. the radio transmit-
ter/receiver of the wireless sensor network’s node) takes a number of repeated
independent vacation periods, every time when the queue of buffered packets
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being directed to the node becomes empty. Successive vacation periods are being
initialized until, at the end of one of them, at least one packet will be detected
(so at least one packet will income into the accumulating buffer). For example,
the mechanism of repeated vacations implemented into the M/G/1-type system
is proposed in [14] (see also [1,18]) in modelling of type I energy-saving mode in
IEEE 802.16e standard, and some performance measures are found there.

It is easy to note that theoretical results obtained for different-type queueing
models with some service limitations are given in the stationary regime, i.e. they
relate to the stochastic characteristics in the case of t → ∞. In practice, there are
some situations in which transient analysis seems to be more recommended. For
example, in the case of rather low intensity of input traffic (as it can be observed
e.g. in some wireless sensor networks), in the case of performance evaluation of
the system shortly after its starting (or after the application of a new control
mechanism) or after the breakdown that destabilizes the system’s operation.

In the paper we study the transient queueing delay in the MX/G/1/N -type
finite-buffer queueing model with batch arrivals and the power saving mechanism
based on a variant of MVP in that successive server vacations in a single MVP
period have constant lengths. Queueing delay (called also virtual waiting time)
at arbitrary fixed time epoch t takes a random value equal to the waiting time
of the packet occurring in the system exactly at time t. Since this time need not
be a “real” arrival moment, hence the term “virtual”. Applying the theoretical
approach based on the idea of embedded Markov chain, the formula of total
probability and linear algebra, the representation for the Laplace transform of
the tail cumulative distribution function (CDF for short) of the queueing delay
at given time t is found, conditioned by the initial level of buffer saturation.

The review of steady-state results for different vacation queueing models can
be found in [4,19]. An infinite-buffer queueing model with BMAP -type input
stream and server vacations is investigated in [17]. Analytical results for finite-
capacity systems with server vacations can be found e.g. in [5,6,15,16,20]. In
particular, one can find the formulae for the stationary waiting-time distribu-
tion in the case of autocorrelated arrival stream in [15,16]. The formula for the
queueing delay distribution in the system with MVP and Poisson arrivals in
equilibrium is derived in [20]. More complex vacation policies can be found in
[2,21]. In [2] M/G/1-type system with server activity controlled by a timer is
studied in the stationary case. The model reduces to the “usual” MVP queue
with a zero-length timer duration. A queueing system with batch Poisson arrivals
and server vacations controlled by the Randomly Timed Gated protocol is inves-
tigated in [21].

Time-dependent (transient) results on the queueing delay distribution in
general-type models with batch arrivals and infinite buffers can be found e.g.
in [7,8]. The approach used there is based on integral equations and Wiener-
Hopf factorization technique. Finite-capacity queue with MVP is studied in [9].
Analytical results on non-stationary queueing delay in systems with more com-
plex control mechanisms can be found in [10–12].
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The remaining part of the article is organized as follows. In the next section
we give the detailed description of the considered queueing model. In Sect. 3 we
obtain a system of integral equations for conditional queueing delay tail CDF.
The corresponding system for Laplace transforms is found in Sect. 4. The solution
of the system, written in a compact form (main result) is given in Sect. 5.

2 Model Description

An MX/G/1/N -type queueing model is considered in which packets arrive
according to a compound Poisson process with rate λ and generally-distributed
group sizes. Namely, exactly k packets arrive simultaneously with probability pk,
where

∑∞
k=1 pk = 1. It is assumed that packets are being processed one by one,

under the FIFO service discipline, with a general-type cumulative distribution
function (CDF for short) F (·) of processing time. The accumulating buffer has
capacity of N − 1 packets, so the maximal system state is assumed to be N .
Every time when the service station becomes idle, a variant of a multiple vaca-
tion policy is being initialized: successive constant vacations of length D > 0
are being started repeatedly until at least one waiting packet will be detected in
the accumulating buffer at the end of one of them. In such a case, at the same
moment the processing restarts and so on.

3 Transient Equations for Queueing Delay Conditional
Distribution

Let us denote by v(t) queueing delay at time t, namely the waiting time of a
packet entering (hypothetically) exactly at time t.

Introduce the queueing delay conditional tail CDF as follows:

Vn(t, x)
def
= P{v(t) > x |X(0) = n}, t > 0, x > 0, (1)

where X(0) stands for the system state at the starting epoch t = 0.
Consider, firstly, the case of the system being empty before its opening and

fix a moment t > 0. Three possible and mutually excluding situation may then
occur:

• the first multiple vacation period ends before t (A);
• the first multiple vacation period ends after t but the system is not empty at

t (B);
• the first packet enters after time t (C).

Let us note that the following equation is then satisfied:

P{(
v(t) > x

) ∩ A |X(0) = 0} =
∞∑

k=0

∫ t

0

λe−λyI{kD ≤ y < (k + 1)D < t}
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×
[

N−1∑

i=1

pi

(
N−i−1∑

r=0

r∑

j=0

{λ[(k + 1)D − y]}j

j!
e−λ[(k+1)D−y]pj∗

r Vi+r(t − (k + 1)D,x)

+ VN (t − (k + 1)D,x)
∞∑

r=N−i

r∑

j=0

{λ[(k + 1)D − y]}j

j!
e−λ[(k+1)D−y]pj∗

r

)

+ VN (t − (k + 1)D,x)
∞∑

i=N

pi

]

dy, (2)

where pj∗
r denotes the rth term of the j-fold convolution of the sequence (pk)

with itself and I{Π} is the indicator of the random event Π.
Similarly, we have

P{(
v(t) > x

) ∩ B |X(0) = 0} =
∞∑

k=0

∫ t

0

λe−λyI{kD ≤ y, (k + 1)D > t}

×
N−1∑

i=1

pi

N−i−1∑

r=0

r∑

j=0

[λ(t − y)]j

j!
e−λ(t−y)pj∗

r F
(i+r)∗

(x − (k + 1)D + t)dy, (3)

where F
j∗

(u)
def
= 1−F j∗(u) and F j∗(u) stands for the i-fold Stieltjes convolution

of the CDF F (·) with itself and is defined as

F 0∗(t) = 1, F 1∗(t) = F (t), F (n+1)∗(t) =
∫ t

0

Fn∗(t − y)dF (y), (4)

where t > 0 and n ≥ 1.
Evidently, P{(v(t) > x

) ∩ C |X(0) = 0} = 0, since then the packet entering
at time t has no waiting time.

Due to the fact that

V0(t, x) = P{(v(t) > x
) ∩ A |X(0) = 0}

+ P{(v(t) > x
) ∩ B |X(0) = 0} + P{(v(t) > x

) ∩ C |X(0) = 0}, (5)

evaluating integrals in (2)–(3), we obtain

V0(t, x) =
∞∑

k=0

e−λ(k+1)DI{(k + 1)D < t}

×
[

N−1∑

i=1

pi

(
N−i−1∑

r=0

r∑

j=0

(λD)j+1

(j + 1)!
pj∗

r Vi+r(t − (k + 1)D,x)

+ VN (t − (k + 1)D,x)
∞∑

r=N−i

r∑

j=0

(λD)j+1

(j + 1)!
pj∗

r

)

+ VN (t − (k + 1)D,x)
∞∑

i=N

pi

]
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+ e−λt
∞∑

k=0

I{(k + 1)D > t}
N−1∑

i=1

pi

N−i−1∑

r=0

F
(i+r)∗

(x − (k + 1)D + t)

×
r∑

j=0

[λ(t − kD)]j+1

(j + 1)!
pj∗

r . (6)

Assume now that the buffer is not empty at the starting time. In such a
case successive departure epochs are Markovian moments in the evolution of the
system (see e.g. [3]). Applying the law of total probability with respect to the
first departure epoch y > 0 after the opening of the system, we obtain

Vn(t, x) =

∫ t

0

[
N−n−1∑

i=0

i∑
j=0

(λy)j

j!
e−λypj∗

i Vn+i−1(t − y, x)

+ VN−1(t − y, x)

∞∑
i=N−n

i∑
j=0

(λy)j

j!
e−λypj∗

i

]
dF (y) +

∫ ∞

t

F
(n−1)∗

(x − y + t)dF (y),

(7)

where 1 ≤ n ≤ N .

4 Linear Equations for Transforms

In this section we transform the original system of Eqs. (6)–(7) to the corre-
sponding linear one written for Laplace transforms.

Indeed, let us introduce the following nomenclature:

vn(s, x)
def
=

∫ ∞

0

e−stVn(t, x)dt; (8)

ar(s)
def
=

∫ ∞

0

e−(λ+s)t
r∑

j=0

(λt)j

j!
pj∗

r dF (t); (9)

αr(s)
def
=

e−(λ+s)D

1 − e−(λ+s)D

r∑

j=0

(λD)j+1

(j + 1)!
pj∗

r ; (10)

bn(s, x)
def
=

∫ ∞

t=0

e−stdt

∫ ∞

y=t

F
(n−1)∗

(x − y + t)dF (y), (11)

β(s)
def
=

e−(λ+s)D

1 − e−(λ+s)D

[
N−1∑

i=1

pi

∞∑

r=N−i

r∑

j=0

pj∗
r

(λD)j+1

(j + 1)!
+

∞∑

i=N

pi

]

(12)

and

γ(s, x)
def
=

∫ ∞

0

e−(λ+s)t
∞∑

k=0

I{(k + 1)D > t}

N−1∑

i=1

pi

N−i−1∑

r=0

F
(i+r)∗

(x − (k + 1)D + t)
r∑

j=0

[λ(t − kD)]j+1

(j + 1)!
pj∗

r dt.

(13)
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Now, the Eqs. (6)–(7) can be rewritten as follows:

v0(s, x) =
N−1∑

i=1

pi

N−i−1∑

r=0

αr(s)vi+r(s, x) + vN (s, x)β(s) + γ(s, x), (14)

vn(s, x) =
N−n−1∑

i=0

ai(s)vn+i−1(s, x) + vN−1(s, x)
∞∑

i=N−n

ai(s) + bn(s, x), (15)

where 1 ≤ n ≤ N .
Let us introduce into Eqs. (14)–(15) the following substitution:

wn(s, x)
def
= vN−n(s, x), (16)

where 0 ≤ n ≤ N .
After this transformation the system (14)–(15) takes the following shape:

n∑

k=−1

ak+1(s)wn−k(s, x) − wn(s, x) = φn(s, x), (17)

where 0 ≤ n ≤ N − 1, and

wN (s, x) =
N−1∑

i=1

pi

N−i−1∑

r=0

αN−i−r(s)wr(s, x) + w0(s, x)β(s) + γ(s, x), (18)

where the functional sequence
(
φn(·, ·)) is defined in the following way:

φn(s, x)
def
= an+1(s)w0(s, x) − w1(s, x)

∞∑

k=n+1

ak(s) − bN−n(s, x). (19)

5 Compact-Form Solution

The general solution of the algebraic system of the form (17) but with infinite
number of equations (written for n ≥ 0) can be written as follows (see [13]):

wn(s, x) = C(s, x)Rn+1(s) +
n∑

k=0

Rn−k(s)φk(s, x), (20)

where n ≥ 0 and the sequence
(
Rn(s)

)
is defined by coefficients ak(s) as follows.

Introduce the following generating functions:

R(s, z)
def
=

∞∑

k=0

zkRk(s), A(s, z)
def
=

∞∑

k=0

zkak(s), |z| < 1. (21)

Now the following relationship is true:

R(s, z) =
z

A(s, z) − z
. (22)
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To find successive terms of the sequence
(
Rk(s)

)
we can use the Maclaurin

expansion. Indeed, if we denote Q(s, z)
def
= z

A(s,z)−z , then we obtain

∞∑

k=0

zkRk(s) =
∞∑

k=0

zk ∂kQ

∂zk

∣
∣
∣
(s,0)

1
k!

(23)

and hence

Rk(s) =
∂kQ

∂zk

∣
∣
∣
(s,0)

1
k!

. (24)

In particular, we have R1(s) = 1
a0(s)

.
Since the number of equations in (17) is finite, we can use the Eq. (18) as

a specific-type boundary condition to find C(s, x) explicitly. In fact, instead of
C(s, x), we will find the formula for w0(s, x). Indeed, the relationship between
C(s, x) and w0(s, x) can be easily obtained from (20). Substituting n = 0, we
get

C(s, x) = w0(s, x)[R1(s)]−1 = w0(s, x)a0(s). (25)

Similarly, since
∑∞

k=0 ak(s) = f(s), where f(·) is the Laplace transform of CDF
F (·), we obtain from (19), written at n = 0,

φ0(s, x) = a1(s)w0(s, x) − w1(s, x)[f(s) − a0(s)] − bN (s, x). (26)

From (17), taking n = 0, we obtain

φ0(s, x) = a0(s)w1(s, x) + a1(s)w0(s, x) − w0(s, x). (27)

Comparing the right sides of (26) and (27), we get w1(s, x) in a function of
w0(s, x), namely

w1(s, x) = [f(s)]−1[w0(s, x) − bN (s, x)]. (28)

The remaining task is to find w0(s, x) explicitly. In order to do it, we write the
representation for wN (s, x) in two different forms: in the first one we use the
general form of solution (20) and in the second one we use the Eq. (18). From
(20) written at n = N (having in mind (25) and (28)) we get

wN (s, x) = w0(s, x)a0(s)RN+1(s) +
N∑

k=0

RN−k(s)

×
{

ak+1(s)w0(s, x) − [f(s)]−1[w0(s, x) − bN (s, x)]
∞∑

i=k+1

ai(s) − bN−k(s, x)
}

.

(29)
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Similarly, applying (25) in (18), we get

wN (s, x) =
N−1∑

i=1

pi

N−i−1∑

r=0

αN−i−r

{
w0(s, x)a0(s)Rr+1(s)

+
r∑

k=0

Rr−k(s)
[
ak+1(s)w0(s, x) − [f(s)]−1[w0(s, x) − bN (s, x)]

∞∑

i=k+1

ai(s)

− bN−k(s, x)
]}

+ w0(s, x)β(s) + γ(s, x). (30)

Comparing the right sides of (29) and (30), we eliminate w0(s, x) as follows:

w0(s, x) = T1(s, x)T2(s, x), (31)

where

T1(s, x)
def
=

{

a0(s)RN+1(s) +
N∑

k=0

RN−k(s)
[
ak+1(s) − (

f(s)
)−1

∞∑

i=k+1

ai(s)
]

−
N−1∑

i=1

pi

N−i−1∑

r=0

αN−i−r(s)

[

a0(s)Rr+1(s) +
r∑

k=0

Rr−k(s)
[
ak+1(s)

− (
f(s)

)−1
∞∑

i=k+1

ai(s)
]
]

− β(s)

}−1

(32)

and

T2(s, x)
def
=

N−1∑

i=1

pi

N−i−1∑

r=0

αN−i−r(s)
r∑

k=0

Rr−k(s)

×
{[

f(s)
]−1

bN (s, x)
∞∑

i=k+1

ai(s) − bN−k(s, x)
}

+ γ(s, x)

−
N∑

k=0

RN−k(s)
{[

f(s)
]−1

bN (s, x)
∞∑

i=k+1

ai(s) − bN−k(s, x)
}

. (33)

Now, collecting the formulae (16), (20), (25) and (31), we obtain the following
main result:

Theorem 1. The Laplace transform of the queueing delay conditional tail CDF
in the considered queueing system with constant repeated vacations can be written
in the following way:

vn(s, x) =
{

a0(s)RN−n+1(s) +
N−n∑

k=0

RN−n−k(s)
[
ak+1(s)

− [
f(s)

]−1
∞∑

i=k+1

ai(s)
]}

T1(s, x)T2(s, x)
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+
N−n∑

k=0

RN−n−k(s)
{[

f(s)
]−1

bN (s, x)
∞∑

i=k+1

ai(s) − bN−k(s, x)
}

, (34)

where 0 ≤ n ≤ N and the formulae for ak(s), bk(s, x), Rk(s), T1(s, x) and
T2(s, x) are given in (9), (11), (24), (32) and (33), respectively.
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