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Abstract. A finite-buffer queueing model with Poisson arrivals and
exponential processing times is investigated. Every time when the system
becomes empty, the service station begins a generally distributed single
working vacation period, during which the processing is provided with
another (slower) rate. After the completion of the vacation period the
processing is being continued normally, with original speed. The next
working vacation period is being initialized at the next time at which
the system becomes empty, and so on. Identifying Markov epochs in the
evolution of the considered model, the system of Volterra-type integral
equations for the time to buffer overflow tail distribution function, condi-
tioned by the initial buffer state, is built. The solution of the correspond-
ing system written for Laplace transforms is given in a compact-form
using the linear algebraic approach. The considered queueing model can
be used in modelling of the network node in which the typical processing
rate changes periodically, due to e.g. introducing a priority traffic.

Keywords: Buffer overflow · Memoryless property
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1 Introduction

Queueing models with different-type vacation policies are investigated exten-
sively and the number of publications in this topic is still increasing. This kind
of systems can be successfully applied in modelling and analyzing the phenomena
occurring in telecommunication and computer networks. In particular, they are
very useful tool when the service stations (e.g. servers, network nodes) can use
the idle period to perform some additional tasks. Different variations of vacation
policy can be used then to describe the considered problem more precisely.

One of such variations is the working vacation (WV) policy proposed in 2002
by Servi and Finn. In [10] the authors introduce an M/M/1 queue with WV
policy to model the behaviour of a reconfigurable WDM (wavelength-division
multiplexing) optical access network. Each time the server with WV finishes
the processing of the last job waiting in the queue, it switches to a WV mode.
During the WV period another (usually slower) rate of service is offered, instead
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of suspending it completely. The idle resources can be used simultaneously to
accomplish tasks not related to the processing of the queue, e.g. some mainte-
nance work. Some variants of WV systems can be applied e.g. in modelling of
the operation of a network node in which the typical processing rate changes
periodically, due to e.g. introducing a priority traffic.

Baba [1] extended the investigation of WV queues to a GI/M/1 queue, and
derived the steady-state distribution for the number of customers in the system.
In [14] Wu and Takagi obtained the stationary distributions for the queue size
and the time a customer stays in the system in case of an M/G/1 WV model.
Banik [2] used the method of embedded Markov chain and a supplementary vari-
able to compute the queue-length distribution, the probability of blocking, and
the mean waiting time in the GI/M/1 WV queue with finite buffer. An M/G/1
retrial queue was analyzed in [4]. The method of supplementary variable was
used to obtain the stationary queue-size distribution in the case of a model with
vacation interruption. In [12] the authors investigated an M/M/1 retrial queue
with WV and feedback under N-policy. The probability generating function of
the number of customers present in the system in the steady state of an M/G/1
queue with exponential WV and gated service discipline was obtained in [9].

While the literature concerning WV queues is growing fast, most of the results
relates only to the stationary characteristics of the system. However, in some
cases the steady-state analysis does not give the sufficient insight into the sys-
tem’s behaviour, e.g. in some situations the convergence rate to the stationary
distributions can be very slow. The transient analysis can also be imposed by the
high variability of the system parameters or the need of observing the behaviour
of the server shortly after its opening or applying a new control mechanism.

The transient results for queueing models with the WV regime can be found
e.g. in [11,13]. In [11] the time-dependent system-size probabilities were obtained
in the case of the M/M/1 queue with heterogeneous service and customers’
impatience. One can find the transient distribution of the number of customers
in the case of the M/M/c model in [13]. In [6,7] an M/M/1/N queue with
WV policy was investigated and transient distributions of the queue size and
the virtual waiting time of a customer were obtained. In [5] the time dependent
analysis of queueing delay behaviour in the case of a GI/M/1/N queue was
accomplished.

This paper concerns the analysis of an M/M/1/N queue with a generally
distributed working vacations. The incoming stream of packets is described by
a Poisson process with rate λ. When, after completion of processing a job in
normal mode (with rate μ), the server finds the queue empty, it switches to the
WV mode and it comes back to the normal mode after a random, generally
distributed, amount of time with the cumulative distribution function (CDF)
G(·). During the WV period, the arriving jobs are served with the different rate
μ∗ (<μ). After completion of the WV, the rate of service is switched back to μ.
If a job enters the system while there are already N jobs present, it is lost due
to the buffer overflow. In the paper we deal with a CDF of the time to the
first buffer overflow in the considered model. Applying the analytical approach
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based on identifying Markov moments in the evolution of the system, continuous
total probability formula and linear algebra, we obtain the representation for the
Laplace transform (LT) of the tail CDF of the time to the first buffer overflow,
conditioned by the number of packets accumulated in the buffer at the starting
moment.

The phenomenon of losses is typical in packet-oriented telecommunication
and computer networks (e.g. in IP routers) or in automated production systems,
where some tasks have to be redirected to another production line or a magazine
in the case of exhaustion of the available capacity for accumulation the incoming
traffic. As it seems, the well-known performance measure as the loss ratio does
not give sufficient knowledge about the probabilistic nature of the process of
losses. The in-depth analysis requires e.g. the information about the probability
distribution of the time to buffer saturation.

The rest of the paper is organized as follows. In Sect. 2 the investigated
problem is defined, and a useful algebraic result is presented. Sections 3 and
4 contain the necessary solutions used in Sect. 5 to solve the main problem. In
Sect. 5 the LT of the time to buffer overflow distribution is derived using algebraic
approach based on theorem stated in Sect. 2. Section 6 contains some numerical
examples.

2 Equations for Time-to-Buffer-Overflow Distribution

Introduce the CDF of the time τ to the first buffer overflow as follows:

Bn(t)
def
= P {τ > t |X(0) = n} , t > 0, (1)

where X(0) stands for the initial buffer state, n ∈ {0, 1, ..., N − 1}.
We assume, that if the queue is empty at the opening, then the WV period

initialize the evolution of the system. Otherwise, it starts the operation in normal
mode. Using the method of embedded Markov chain and the formula of total
probability with respect to the moment when WV period ends, we can write the
first equation (for n = 0):

B0(t) =
∫ t

0

N−1∑
k=0

P slow
0 (u, k)Bk(t − u)dG(u) + [1 − G(t)]Bslow

0 (t), (2)

where

P slow
0 (u, k) = P

{(
X(u) = k) ∧ (

sup
v∈[0,u]

X(v) ≤ N − 1
) |X(0) = 0

}
(3)

is the probability that in the time interval of length u the number of jobs present
in the system will change from 0 to k, and it will not reach N (i.e. the buffer
overflow will not occur) and

Bslow
0 (t)

def
= P {τ > t |X(0) = 0} , t > 0
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is the CDF of the time to the first buffer overflow in the M/M/1/N system
without WV policy where the parameter of input stream is the same as in
original model and the service parameter is μ∗. In the case the system starts
the evolution being non-empty and in normal mode, using the formula of total
probability with respect to the first Markov event after the opening, we get,
similarly

Bn(t) = λ

∫ t

0

e−(λ+μ)xBn+1(t − x)dx + μ

∫ t

0

e−(λ+μ)xBn−1(t − x)dx + e−(λ+μ)t, (4)

where 1 ≤ n ≤ N − 2, and, finally,

BN−1(t) = μ

∫ t

0

e−(λ+μ)xBN−2(t − x)dx + e−(λ+μ)t. (5)

In (4)–(5) the summand with coefficient λ (μ) in front of the integral corresponds
to the situation, where the arrival of a new job (the end of processing a job)
occurs first. The last summand is the probability of no events before t.

To find explicit formulae for the functions Bn(t), 0 ≤ n ≤ N − 1, we need to
find the representations of P slow

0 (t, k) and Bslow
0 (t). In the analytical approach

we use the following algebraic result (see [8]):

Theorem 1. Let (τk), k ≥ 0, τ0 �= 0 and (θk), k ≥ 1 be two given sequences.
Each solution of the following system of linear equations:

n−2∑
k=−1

τk+1yn−k − yn = θn, n ≥ 2,

can be written in the following way:

yn = MRn−1 +
n∑

k=2

Rn−kθk, n ≥ 2,

where M ∈ R, and (Rk), k ≥ 0 is a sequence defined recursively as follows:

R0 = 0, R1 = τ−1
0 , Rk+1 = R1(Rk −

k∑
i=0

τi+1Rk−i).

3 Time to Buffer Overflow in a Reliable System

Let us consider a reliable system (without working vacation policy) that pro-
cesses the arriving packets with a slower speed μ∗. We can write the following
system of equations (using the formula of total probability with respect to the
first event after opening):
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Bslow
0 (t) = λ

∫ t

0

e−λxBslow
1 (t − x)dx + e−λt,

Bslow
n (t) = λ

∫ t

0

e−(λ+μ∗)xBslow
n+1 (t − x)dx + μ∗

∫ t

0

e−(λ+μ∗)xBslow
n−1 (t − x)dx

+ e−(λ+μ∗)t, (6)

where 1 ≤ n ≤ N − 2, and

Bslow
N−1(t) = μ∗

∫ t

0

e−(λ+μ∗)xBslow
N−2(t − x)dx + e−(λ+μ∗)t. (7)

The interpretation of this equations is similar to the analogous ones from Sect. 2.
After introducing LTs bslow

i (s) =
∫ ∞
0

e−stBslow
i (t)dt, 0 ≤ i ≤ N − 1, we can

rewrite this system in the form

bslow
0 (s) =

λ

λ + s
bslow
1 (s) +

1
λ + s

, (8)

bslow
n (s) =

λ

λ + μ∗ + s
bslow
n+1 (s) +

μ∗

λ + μ∗ + s
bslow
n−1 (s) +

1
λ + μ∗ + s

, (9)

where 1 ≤ n ≤ N − 2, and

bslow
N−1(s) =

μ∗

λ + μ∗ + s
bslow
N−2(s) +

1
λ + μ∗ + s

. (10)

If we define the following sequence:

a∗
0(s) =

λ

λ + μ∗ + s
, a∗

2(s) =
μ∗

λ + μ∗ + s
, a∗

k(s) = 0, k �= 0, 2,

and

φ∗
n(s) = − 1

λ + μ∗ + s
− δn,1a

∗
2(s)b

slow
0 (s),

where δi,j is the Kronecker delta function (i.e. δi,j = 1 when i = j and δi,j = 0
otherwise), then the system (9) can be rewritten as follows:

n−1∑
k=−1

a∗
k+1(s)b

slow
n−k (s) − bslow

n (s) = φ∗
n(s), 1 ≤ n ≤ N − 2. (11)

In consequence, the solution of (8), (10) and (11) can be written in the
following way (see Theorem 1):

bslow
n (s) = M∗(s)R∗

n(s) +
n∑

k=1

R∗
n−k(s)φ∗

k(s), 1 ≤ n ≤ N − 1, (12)
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where M∗(s) is an unknown function, and R∗
k(s) is a sequence defined recursively

as follows:

R∗
0(s) = 0, R∗

1(s) = (a∗
0(s))

−1
, R∗

k+1(s) = R∗
1(s) (R∗

k(s) − a∗
2(s)R

∗
k−1(s)) , (13)

for 1 ≤ k ≤ N − 2.

Introducing (12) into the right side of (10), we get:

bslow
N−1(s) =a∗

2(s)
[
M∗(s)R∗

N−2(s) +
N−2∑
k=1

R∗
N−2−k(s)

×
(
− 1

λ + μ∗ + s
− δ1,ka∗

2(s)b
slow
0 (s)

)]
+

1
λ + μ∗ + s

. (14)

Similarly, writing (12) for n = N − 1, we obtain:

bslow
N−1(s) = M∗(s)R∗

N−1(s) +

N−1∑

k=1

R∗
N−1−k(s)

(
− 1

λ + μ∗ + s
− δ1,ka∗

2(s)b
slow
0 (s)

)]
. (15)

Comparing the right sides of (14) and (15), we eliminate M∗(s) as a function
of bslow

0 (s) :

M
∗
(s) =

(
λ + μ

∗
+ s

)−1 (
a

∗
2(s)R

∗
N−2(s) − R

∗
N−1(s)

)−1 (16)

×
[
N−2∑

k=1

(
a

∗
2(s)R

∗
N−k−2(s) − R

∗
N−k−1(s)

)
+ μ

∗
b
slow
0 (s)

(
a

∗
2(s)R

∗
N−3(s) − R

∗
N−2(s)

) − 1

]
.

Referring now to (8), (12) and (16), we get

b∗
0(s) =

1

λ + s

{
λR∗

1(s)
(
a∗
2(s)R

∗
N−2(s)− R∗

N−1(s)
)−1

×
[

N−2∑

k=1

(
− 1

λ + μ∗ + s
− δ1,ka∗

2(s)b
slow
0 (s)

)(
R∗

N−1−k(s)− a∗
2(s)R

∗
N−2−k(s)

)

− 1

λ + μ∗ + s

]
+ 1

}
,

and hence, after simplification,

bslow
0 (s) = T slow

1 (s)T slow
2 (s), (17)

where

T slow
1 (s)

def
=

(
s + λ + μ∗ (

a∗
2(s)R

∗
N−2(s)− R∗

N−1(s)
)−1 (

a∗
2(s)R

∗
N−3(s)− R∗

N−2(s)
)
)−1

(18)

and

T slow
2 (s)

def
=

(∑N−2
k=0

(
a∗
2(s)R

∗
N−k−2(s) − R∗

N−k−1(s)
) − 1

)
(
a∗
2(s)R

∗
N−2(s) − R∗

N−1(s)
) . (19)
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4 Solution for Pslow
0 (t,m)

Let us note that if we take (see (3))

P slow
n (t,m) = P

{(
X(t) = m) ∧ (

sup
v∈[0,t]

X(v) ≤ N − 1
) |X(0) = n

}
,

where 0 ≤ n ≤ N − 1, then the following system is satisfied:

P slow
0 (t,m) = λ

∫ t

0

e−λxP slow
1 (t − x,m)dx + δm,0e−λt,

P slow
n (t,m) = λ

∫ t

0

e−(λ+μ∗)xP slow
n+1,m(t − x,m)dx

+ μ∗
∫ t

0

e−(λ+μ∗)xP slow
n−1 (t − x,m)dx + δm,ne−(λ+μ∗)t,

where 1 ≤ n ≤ N − 2, and

P slow
N−1(t,m) = μ∗

∫ t

0

e−(λ+μ∗)xP slow
N−2(t − x,m)dx + δm,N−1e−(λ+μ∗)t.

After introducing LTs pslow
i (s) =

∫ ∞
0

e−stP slow
i (t)dt, 0 ≤ i ≤ N − 1, we get

pslow
0 (s,m) =

λ

λ + s
pslow
1 (s,m) +

δm,0

λ + s
, (20)

pslow
n (s,m) =

λ

λ + μ∗ + s
pslow

n+1 (s,m) +
μ∗

λ + μ∗ + s
pslow

n−1 (s,m) +
δm,n

λ + μ∗ + s
,

(21)

where 1 ≤ n ≤ N − 2, and

pslow
N−1(s,m) =

μ∗

λ + μ∗ + s
pslow

N−2(s,m) +
δm,N−1

λ + μ∗ + s
. (22)

Comparing (20)–(22) to (8)–(10), we conclude that (compare (17)–(19))

pslow
0 (s,m) = T slow

1 (s)T slow
3 (s,m),

where

T slow
3 (s,m)

def
=

(∑N−2
k=0 δm,k

(
a∗
2(s)R

∗
N−k−2(s) − R∗

N−k−1(s)
) − δm,N−1

)
(
a∗
2(s)R

∗
N−2(s) − R∗

N−1(s)
) .
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5 Main Result

Introducing LTs bi(s) =
∫ ∞
0

e−stBi(t)dt, 0 ≤ i ≤ N − 1 into Eqs. (2), (4) and
(5), we get

b0(s) =
N−1∑
k=0

bk(s)p̂k(s) + d(s), (23)

bn(s) =
λ

λ + μ + s
bn+1(s) +

μ

λ + μ + s
bn−1(s) +

1
λ + μ + s

, (24)

for 1 ≤ n ≤ N − 2, and

bN−1(s) =
μ

λ + μ + s
bN−2(s) +

1
λ + μ + s

, (25)

where we denote

p̂k(s)
def
=

∫ ∞

0

e−stP slow
0 (t, k)dG(t),

d(s)
def
=

∫ ∞

0

e−stBslow
0 (t)[1 − G(t)]dt.

The solution of (24)–(25) is given by (compare (12))

bn(s) = M(s)Rn(s) +
n∑

k=1

Rn−k(s)φk(s), 1 ≤ n ≤ N − 1, (26)

where now the sequence
(
Rk(s)

)
is recursively defined using

a0(s) =
λ

λ + μ + s
, a2(s) =

μ

λ + μ + s
, ak(s) = 0, k �= 0, 2,

and

φn(s) = − 1
λ + μ + s

− δn,1a2(s)b0(s).

Substituting (26) into (23), we obtain

b0(s) =
N−1∑
k=1

p̂k(s)
[
M(s)Rk(s) +

k∑
i=1

Rk−i(s)
(
− 1

λ + μ + s
− δ1,ia2(s)b0(s)

)]

+ b0(s)p̂0(s)b0(s), (27)

and hence

M(s) = A(s)b0(s) + B(s),
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where

A(s)
def
=

1 + a2(s)
∑N−1

k=1 p̂k(s)Rk−1(s) − p̂0(s)∑N−1
k=1 p̂k(s)Rk(s)

,

and

B(s)
def
=

(λ + μ + s)−1
∑N−1

k=1 p̂k(s)
∑k

i=1 Rk−i(s) − d(s)∑N−1
k=1 p̂k(s)Rk(s)

.

The remaining task is to find the representation for b0(s). To do it, let us use
(26) on the right side of (25) and compare to the right side of (26) written for
n = N − 2. We obtain:

b0(s) = [A(s) (a2(s)RN−2(s)− RN−1(s))− a2(s) (a2(s)RN−3(s)− RN−2(s))]
−1 (28)

×
⎡

⎣

(∑N−2
k=1 (a2(s)RN−k−2(s)− RN−k−1(s))− 1

)

(s + λ + μ)
− B(s)(a2(s)RN−2(s)− RN−1(s))

⎤

⎦ .

6 Numerical Examples

In this section, we present some numerical examples for M/M/1/10 system
with WV. The length of the WV period follows the distribution G(t) =
1
2 (1 − exp (−ct)) + 1

4 (2 − exp (−3t) − exp (−t)), and the parameters of arrival
process, service in normal and in the WV mode are λ, μ and μ∗, respectively. In
the following examples, we present the values of B0(5) in dependence of μ and
the mean length of the WV period E(TWV ).

Example 1. Let us consider the M/M/1/10 model with WV with λ = 1, 3, 5,
μ∗ = 1 and c = 0.1 (E(TWV ) = 0.46). We compute B0(5) for ten different values
of μ.

In Figs. 1, 2 and 3 the behaviour of B0(5) in dependence of μ is presented
for λ = 1, 3, 5. The Fig. 1 shows the numerical result for λ = 1. We see, that as
the value of service rate rises, the probability, that the time to the first buffer
overflow is greater than 5 decreases. As one can note, in this scenario the ratio
between λ and μ never exceeds 1, therefore the system will cope with arriving
jobs and will often take the vacations. In WV mode, the server operates with
rate μ∗ = 1 which is equal to λ, thus the more time the system spends in WV
mode, the probability of buffer overflow before the moment t increases.

As shown on the Figs. 2 and 3, B0(5) increases as long as the ratio ρ = λ/μ
is greater than 1. Then, as described previously, the server will more often take
the vacations, thus the probability of no buffer saturation before t = 5 decreases.

Example 2. We consider the M/M/1/10 model with WV with λ = 2, 5, 7, μ = 5
and μ∗ = 1. We compute B0(5) for different values of E(TWV ).
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Fig. 1. The values of B0(5) in dependence of μ for λ = 1
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Fig. 2. The values of B0(5) in dependence of μ for λ = 3

The Figs. 4, 5 and 6 present values of B0(5) in dependence of E(TWV ) for
three different values of λ.

In the first scenario (Fig. 4), when λ = 2, the probability, that there will be
no buffer overflow before t = 5 increases simultaneously with the mean length
of vacation period. The ratio ρ = 0.4 and ρ∗ = λ/μ∗ = 1, therefore, the load of
the server never exceedes 1.
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Fig. 3. The values of B0(5) in dependence of μ for λ = 5
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Fig. 4. The values of B0(5) in dependence of E(TWV ) for λ = 2, μ = 5 and μ∗ = 1.

As one can note, for λ = 5 (Fig. 5), the probabilities B0(5) increase in case
of short WV period and begin to decrease starting at a value of E(TWV ) ≈ 1.
The longer the WV period lasts, the longer the load is ρ∗ = 5 instead of ρ = 1.
The similar observation can be made in the case of λ = 7 (Fig. 6).
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Fig. 5. The values of B0(5) in dependence of E(TWV ) for λ = 5, μ = 5 and μ∗ = 1.
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Fig. 6. The values of B0(5) in dependence of E(TWV ) for λ = 10, μ = 5 and μ∗ = 1.

7 Conclusions

In the paper, the M/M/1/N−queue was investigated using the embedded
Markov chain technique, the formula of total probability and linear algebra.
The explicit representation of the LT of the transient conditional tail CDF of
the time to the first buffer overflow is found. To obtain the CDF, one of many dif-
ferent approaches of numerical LT inversion may be applied, e.g. Dubner-Abate
or Gaver-Stehfest method (see [3]). To give an insight into the considered model,
the obtained result was illustrated with some numerical examples.
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