
The Method of Isochronous Cycle
Duration Measurement for Serial

Interface IEEE 1394A

Micha�l Sawicki(B) and Andrzej Kwiecień

Institute of Informatics, Silesian University of Technology, Gliwice, Poland
{msawicki,akwiecien}@polsl.pl

Abstract. On one bus IEEE 1394A may be a lot of protocols (eg. IIDC
and SBP-2) that interact. On this bus cycle jitter may occur, which is
not desired in A/V systems. This paper presents a method for measuring
isochronous cycle duration. This method allows detection of cycle jitter.
It is based on dedicated IEEE 1394 Device Driver and do not require reor-
ganization of a topology of communication system. This article presents
the results of measurement of cycle duration in communication system
under test.

Keywords: Serial interface · IEEE 1394A · FireWire
Isochronous transfer · Cycle jitter

1 Introduction

A computer system can contain many different devices that communicate via
the same interface. Therefore, the protocol designer must take into account the
interaction between different communication protocols existing on the same bus.
An example of this situation is a vision system based on the IEEE 1394 bus
(FireWire), which includes recording devices and external mass storage. Figure 1
shows a system consisting of a FireWire camera, a computer and an external
mass storage (hard drive) equipped with a FireWire port. There are two inde-
pendent transfers executed in this case:

– an isochronous image transfer from camera to computer workstation super-
vised by IIDC protocol [2],

– an asynchronous data transfer between computer workstation and external
mass storage under SBP-2 protocol [3].

It is the communication system with the single FireWire bus over which
two communication protocols (IIDC and SPB-2) exist and operate with differ-
ent types of data transfers (isochronous and asynchronous). The asynchronous
transfer may influence the isochronous transfer and disturb the regularity of

c© Springer International Publishing AG, part of Springer Nature 2018
P. Gaj et al. (Eds.): CN 2018, CCIS 860, pp. 206–215, 2018.
https://doi.org/10.1007/978-3-319-92459-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92459-5_17&domain=pdf


The Method of Isochronous Cycle Duration Measurement 207

isochronous data supply, that is basic requirement imposed on transfer of images.
An example of this effect is the oscillation of isochronous cycle duration (called
cycle jitter).

Fig. 1. Scheme of the FireWire communication system

This article presents a method of the cycle jitter detection. It allows to esti-
mate the isochronous cycle duration and detect its oscillation. The first part of
this paper contain characterization of isochronous cycle and explanation of cycle
jitter. The second part presents a method of measuring the isochronous cycle
duration and describes the tools used for this purpose.

Some related works, which presents the analysis of FireWire protocol, can be
found in [7].

2 Isochronous Transfer

The IEEE 1394A standard defines two types of data transfer [6]: asynchronous
and isochronous. Asynchronous data transfer is used to communicate with mass
storage [12] and it is not subject of this article.

Isochronous transfer provides the regularity of data supply (data delivery to
a receiver at regular intervals called isochronous cycles). In addition, isochronous
transfer provides correctness control of received data, however corrupted data
are not retransmitted.

Isochronous transfer is used to deliver short-life data, like video data in the
system in Fig. 1. FireWire port allows only isochronous write operation. Oper-
ations are assigned to isochronous channels (time slots), in which they are exe-
cuted [4]. These operations allow to write the same data to one or multiply
devices simultaneously.



208 M. Sawicki and A. Kwiecień

2.1 Isochronous Cycle

Isochronous data transfer is divided into smaller units (called transactions) exe-
cuted within the 125 µs isochronous cycles (Fig. 2). Each transaction delivers
basic amount of data specified by buffer’s BytesPerFrame parameter [8]. At the
beginning of each isochronous cycle, the Cycle Master (device located on the top
of FireWire tree topology) generates a cycle start packet (CSP). Then, by the
isochronous arbitration process nodes are selected to transmit data in successive
isochronous channels. After completion of the isochronous transactions, if in the
cycle still is free bandwidth [7], the asynchronous data transactions are executed
(asynchronous transfer is also divided into transactions).

Fig. 2. Isochronous cycle in the FireWire port

2.2 Isochronous Cycle Jitter

In the FireWire interface may occur oscillations of the interval between successive
transactions of the same isochronous transfer (Fig. 3). These oscillations are due
to the shift of the beginning of the next cycle caused by the last asynchronous
transaction extension in the previous cycle.1 The cycle jitter is undesirable in
audio-visual (A/V) systems.

Fig. 3. Isochronous cycle jitter

1 The requirement on the FireWire bus is not to break but to complete an asychronous
transaction, which started before the end of nominal ischronous cycle.



The Method of Isochronous Cycle Duration Measurement 209

2.3 Isochronous Arbitration

Isochronous arbitration is a FireWire bus access method [9] applyed by nodes
that want to send isochronous data and is executed during gaps in the transmis-
sion (when bus is at idle). After the CSP broadcast, isochronous nodes, which
initiate write isochronous requests, take part in the isochronous arbitration. After
completion of the arbitration the node is selected, which can access the bus to
execute one isochronous transaction (one isochronous channel).

After completion of the isochronous transaction next nodes compete for bus
access. During isochronous arbitration, competing nodes indicate the desire to
transmit (generate interface state TX REQUEST). This signal is passed through
successive layers of the communication system topology, up to the root (node
located in the first layer). The root grants access the bus for node which
TX REQUEST comes first to one of its ports.

It is obvious that the nodes located closer to the root have precedence in
access to the bus. This feature was used in the method described in Sect. 4.1.

3 Software Access to the FireWire Port

Communication between user’s application and a device requires a specialized
driver, which is installed on operating system. In Microsoft Windows, device
driver works in kernel-mode, so the user application (which works in user-mode)
does not have programmable access to the device. Therefore, applications need
a special diver to communicate with the device. This driver provides an API for
the programmer to manage the device.

VHPD1394 device driver (Versatile High Performance IEEE 1394 Device
Driver) ensures communication between user application and device via FireWire
bus, allowing multiple FireWire devices and multi-user application at the same
time.

3.1 Architecture of VHPD1394 Device Driver

VHPD1394 device driver is one of many modules in the FireWire stack on
Microsoft Windows (Fig. 4). It cooperates with FireWire bus driver, which pro-
vides an interface for FireWire device drivers. On the other hand VHPD1394
provides software interface for user’s application.

This software interface allows to perform isochronous transfers (sending data
in isochronous channel) as well as receiving data in the indicated isochronous
channel. If packets of the same transfer are transmitted in the following cycles,
then data is received with frequency 8 kHz. Microsoft Windows is not Real-
Time operating system, so VHPD1394 groups received isochronous packets in the
streaming buffers. User’s application does not process single packet but processes
single buffer. This buffer does not contain packets, which have been damaged.



210 M. Sawicki and A. Kwiecień

Fig. 4. IEEE 1394 driver stack in Microsoft Windows with VHPD1394

3.2 Data Transmission Using Buffer Queue Streaming Mode

Isochronous data exchange between user’s application and VHPD1394 may be
performed in the Buffer Queue Streaming Mode. In this mode, the application
allocates a buffer pool (Fig. 5), which contains at least two buffers. Received
isochronous packets are sent to the currently active buffer. When buffer is full of
packets VHPD1394 switches (rotates) buffers: filled buffer is passed to the user’s
application and another empty buffer from pool is passed to the VHPD1394
driver. The application is notified of rotation of buffers in the pool. Buffer
processed by the application is returned to the buffer pool and waits to fill
by VHPD1394 driver. In this way it is possible to maintain a continuous flow
of isochronous data. In a similar way data may be transmitted in isochronous
channel.

Fig. 5. Buffer Queue Streaming Mode



The Method of Isochronous Cycle Duration Measurement 211

4 Isochronous Cycle Duration Measurement

To detect cycle jitter, cycle duration must be measured. If the measured time
differs from the nominal value (125 µs) then cycle jitter occurred on the FireWire
bus.

4.1 The Method of Isochronous Cycle Duration Measurement

Each node has a 32-bit counter Cycle Time Register, which is in the address
space of the node [1] and is incremented at frequency of 25 MHz. At the begin-
ning of the isochronous cycle Cycle Controller broadcasts CSP packet using asyn-
chronous write broadcast. After receiving CSP packet each node synchronizes its
local cycle time (value of Cycle Time Register) with time passed as CSP data
[5]. Thus nominally every 125 µs each node performs synchronization cycle time
with Cycle Controller. Therefore it is not possible to directly read cycle duration
on the local node only on the basis of the value of its Cycle Time Register.

Fig. 6. Block diagram of described method

This problem can be solved by adding the node responsible for measuring
the cycle duration to the existing communication system. This node generates



212 M. Sawicki and A. Kwiecień

isochronous packets with smallest data field (4 bytes) using Buffer Queue Stream-
ing Mode and simultaneously measures the duration between successive rotations
of buffers in the pool. Buffers contain only one isochronous packet. Figure 6 shows
described method (as block diagram). This method has been implemented in
the sample FireWire communication system (Fig. 1) using multithreading and
VHDP1394 Device Driver.

This node should be connected close to the system root (Cycle Controller),
because immediately after CSP packet broadcast it must win isochronous arbi-
tration process and get bus access. Then it performs one isochronous transaction
and measures a moment of the beginning of cycle (moment of the buffers rota-
tion in the pool). After each two cycles we get cycle duration by subtracting two
measured values of cycle time.

4.2 Cycle Time Measurement in the Communication System
Under Test

The communication system under test (Fig. 1) consisted of four nodes: one asyn-
chronous (external hard drive), two isochronous (Cycle Controller and FireWire
camera) and one node responsible for cycle duration measurement (Measuring
Computer).

In the first part of the study cycle duration without asynchronous data trans-
fer between external hard drive and computer was measured. Figure 7 shows the
distribution of measured isochronous cycle duration (the first graph). The mea-
sured values are focused on the nominal cycle duration (125 µs), what could be
expected. This distribution is unimode, that confirms the absence of the cycle
jitter.

Microsoft Windows XP Professional was installed on measuring computer.
This operating system is not Real-Time system. If user’s application does not
prepare a buffer before the rotation of buffers in the pool, then transmission dis-
continuity errors may occur. Therefore, for a sufficiently small number of buffers
in the pool these errors may occur. Before the cycle duration measurement, the
suitable (minimum) number of buffers in the pool was set, to protect against
discontinuity errors. The minimum number of buffers depends on a computer,
and may be different for various computers.

In the second part of the study cycle duration with asynchronous data trans-
fer between external hard drive and computer was measured. In this case, cycle
jitter may occur. Figure 7 shows the distribution of measured isochronous cycle
duration (second graph). This distribution is multimode which confirms the exis-
tence of the cycle jitter.

The Fig. 8 shows the cycle duration for two sizes of data field in isochronous
packet generated by measuring computer. Increasing size of data field reduces
available bandwidth for asynchronous data transfer. Therefore, for larger data
packet cycle duration extension is greater than for smaller one. The buffer size
was set to 4 bytes to protect FireWire bus against cycle jitter caused by too
large buffer in measuring computer (computer generating isochronous packets).



The Method of Isochronous Cycle Duration Measurement 213

Fig. 7. The histogram of isochronous cycle time

Fig. 8. Isochronous cycle duration with cycle jitter



214 M. Sawicki and A. Kwiecień

5 Conclusions

The presented method allows to measure isochronous cycle duration and detect
the cycle jitter on the FireWire bus. The cycle jitter is the effect of asynchronous
transaction that was not completed within nominal isochronous cycle. Usually
it happens, when different communication protocols are active at the same time
on the FireWire bus. Cycle jitter is undesirable in communication systems [10]
(e.g. A/V system), which use isochronous transfer.

This method uses dedicated IEEE 1394 Device Driver and do not require reor-
ganization of a topology of FireWire bus. This is the advantage of this method,
because cycle duration measurement and cycle detection do not require expen-
sive protocol analyzers [7,11]. This method uses the Buffer Queue Streaming
Mode, which allows detection of the start of isochronous cycle and register cycle
time.

Another way to measure the isochronous cycle (and cycle jitter) is to use an
expensive protocol analyzer. However, the method presented in the paper does
not require the purchase of FireWire hardware analyzer.

The proposed method has been implemented and tested in a real communica-
tion system (Fig. 1). Cycle duration measurement was performed for two cases:
without asynchronous transfer and with asynchronous data transfer between a
computer and external hard drive, which allowed for cycle jitter detection in
communication system under test (Fig. 7).

References

1. IEEE Std 1394A–2000: IEEE Standard for High Performance Serial Bus
2. IIDC2 Digital Camera Control Specification Ver. 1.0.0 (2012)
3. Serial Bus Protocol 2 Specification
4. Anderson, D.: FireWire System Architecture, Mindshare. Inc. Addison-Wesley

Developers Press, Boston (2000)
5. Park, S., Jang, I., Lee, S., Choi, S., Cho, K., Lee, J.: Improved cycle time synchro-

nization method for isochronous data transfer on wireless 1394 network. In: The
2008 IEEE International Conference on Ultra-Wideband, Hannover (2008)

6. Zahariadis, T., Pramataris, K.: Multimedia home networks: standards and inter-
faces. Comput. Stand. Interfaces 24(5), 425–435 (2002)

7. Steinberg, D., Birk, Y.: An empirical analysis of the IEEE-1394 serial bus protocol.
IEEE Micro 20(1), 58–65 (2000)

8. VHPD1394 Versatile High Performance IEEE 1394 Device Driver for Windows
Reference Manual, Ilmenau (2010)

9. Mielczarek, W.: Digital serial bus FireWire. Silesian University of Technology,
Gliwice (2010)

10. Domański, A., Domańska, J., Czachórski, T., Klamka, J.: The use of a non-integer
order PI controller with an active queue management mechanism. Int. J. Appl.
Math. Comput. Sci. 26(4), 777–789 (2016)



The Method of Isochronous Cycle Duration Measurement 215

11. Maćkowski, M.: The influence of electromagnetic disturbances on data transmission
in USB standard. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol.
39, pp. 95–102. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02671-3 11

12. Sawicki, M.: Analysis of asynchronous data transfer in communication system mod-
els for USB and FireWire. In: Scientific Conference Computer Networks 2012, Stu-
dia Informatica, vol. 33, no 1A (107), Szczyrk (2012)

https://doi.org/10.1007/978-3-642-02671-3_11
https://doi.org/10.1007/978-3-642-02671-3_11

	The Method of Isochronous Cycle Duration Measurement for Serial Interface IEEE 1394A
	1 Introduction
	2 Isochronous Transfer
	2.1 Isochronous Cycle
	2.2 Isochronous Cycle Jitter
	2.3 Isochronous Arbitration

	3 Software Access to the FireWire Port
	3.1 Architecture of VHPD1394 Device Driver
	3.2 Data Transmission Using Buffer Queue Streaming Mode

	4 Isochronous Cycle Duration Measurement
	4.1 The Method of Isochronous Cycle Duration Measurement
	4.2 Cycle Time Measurement in the Communication System Under Test

	5 Conclusions
	References




