
Computational Completeness of Simple
Semi-conditional Insertion-Deletion

Systems

Henning Fernau1,2,3, Lakshmanan Kuppusamy1,2,3,
and Indhumathi Raman1,2,3(B)

1 Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT,
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de
2 School of Computer Science and Engineering, VIT, Vellore 632 014, India

{klakshma,indhumathi.r}@vit.ac.in
3 School of Information Technology and Engineering, VIT, Vellore 632 014, India

Abstract. Insertion-deletion (or ins-del for short) systems are well stud-
ied in formal language theory, especially regarding their computational
completeness. The need for many variants on ins-del systems was raised
by the computational completeness result of ins-del system with (opti-
mal) size (1, 1, 1; 1, 1, 1). Several regulations like graph-control, matrix
and semi-conditional have been imposed on ins-del systems. Typically,
computational completeness are obtained as trade-off results, reducing
the size, say, to (1, 1, 0, 1, 1, 0) at the expense of increasing other mea-
sures of descriptional complexity. In this paper, we study simple semi-
conditional ins-del systems, where an ins-del rule can be applied only
in the presence or absence of substrings of the derivation string. We
show that simple semi-conditional ins-del system, with maximum per-
mitting string length 2 and maximum forbidden string length 1 and
sizes (2, 0, 0; 2, 0, 0), (1, 1, 0; 2, 0, 0), or (1, 1, 0; 1, 1, 1), are computation-
ally complete. We also describe RE by a simple semi-conditional ins-del
system of size (1, 1, 0; 1, 1, 0) and with maximum permitting and forbid-
den string lengths 3 and 1, respectively. The obtained results complement
the existing results available in the literature.

1 Introduction

Insertion-deletion systems are a computational model based on the operations of
insertion and deletion of substrings in a string. Initially motivated on linguistic
grounds, they more recently became quite popular as a theoretical model for
DNA-based computations, as the basic operations fit well into this area. For
further discussions on the history of this model, as well as giving insights into
the rich literature of this area, we refer to [7,14,15].

In a nutshell, the rules of an insertion-deletion system (or ins-del system)
can be of two types: insertion or deletion, i.e., either, a string is specified that
may be inserted in a prescribed context within the current string, or it may be
c© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney and S. Verlan (Eds.): UCNC 2018, LNCS 10867, pp. 86–100, 2018.
https://doi.org/10.1007/978-3-319-92435-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92435-9_7&domain=pdf

Simple Semi-conditional Insertion-Deletion Systems 87

deleted relative to the context conditions. The potential biological meaning of
such a rule should be clear. The main research question is under which restric-
tions can computational completeness results still be obtained. For instance, it
is known [13] that for each recursively enumerable language (or RE language for
short), there exists an ins-del system where only single symbols are inserted or
deleted, and the allowed context conditions (to the left or to the right) are again
(at most) single symbols. However, if we disallow checking contexts both to the
left and to the right, then not all RE languages can be described; cf. [14]. In
such situations, several regulation mechanisms have been studied and shown to
achieve computational completeness results. From the viewpoint of biocomput-
ing, let us only mention ins-del P systems [8,9], sometimes in disguise [4], tissue
P systems with ins-del rules [10] and semi-conditional ins-del systems [6].

Meduna and Svec have reported on the use of several variants of context
conditions in regulated rewriting in the textbook [11]. Here, (simple) semi-
conditional rules are of particular importance. In the semi-conditional case, the
conditions are sets of words and a rule can be applied if all words from its permit-
ting condition are present and no word from the forbidden condition is present in
the string. A semi-conditional grammar is said to be simple if each rule has only
either a permitting condition or a forbidden condition. Let the maximum length
of a string in the permitting and forbidden set be denoted by i and j, respec-
tively; then the ordered pair (i, j) is called the degree of the semi-conditional
grammar. From a biological point of view, these conditions can be interpreted as
global context conditions, as opposed to the local context conditions traditionally
represented within the ins-del rules themselves.

Ivanov and Verlan initiated the study of semi-conditional ins-del systems
in [6]. They proved that with degree (2, 2), inserting and deleting single symbols
without any local context is sufficient to describe any RE language. Conversely,
extending previous computational incompleteness results on non-regulated ins-
del systems, it was shown in the same paper that ins-del systems that may
insert or delete single symbols in one-sided single-symbol context are not able
to describe the regular language {ab}+, assuming that these systems can also
globally check for single symbols only, i.e., if they are of degree (1, 1).

No previous computational completeness results have been known for other
degrees. This motivates the present study. We think that it might be possi-
ble to also globally check for the presence or absence of short molecular parts
(strings) within biocomputational devices. Furthermore, we managed to cope
with the already mentioned simple restriction on semi-conditional rules. Clearly,
this additional restriction is a technical challenge. More specifically, we prove
that simple semi-conditional ins-del systems of degree (2, 1) are computationally
complete if (i) strings of length two may either be inserted or deleted without
any local conditions, or (ii) only single symbols (with one-sided single-symbol
local context) may be inserted, but strings of length two may be deleted without
any local conditions, or (iii) only single symbols (with one-sided single-symbol
local context) may be inserted and single symbols (with two-sided single-symbol
local context) may be deleted. We finally present a trade-off result for systems
of degree (3, 1).

88 H. Fernau et al.

2 Preliminaries

Let N denote the set of non-negative integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}.
If Σ is an alphabet (finite set), then Σ∗ denotes the free monoid generated by Σ.
The elements of Σ∗ are called strings or words; λ denotes the empty string. The
morphism from the monoid Σ∗ to N (with addition), defined by a �→ 1 for a ∈ Σ
is called length of a word; usually, we write |w|. Σ≤i collects all words over Σ of
length at most i. A word v is a subword of x ∈ Σ∗ if there are words u,w such
that x = uvw. Let sub(x) ⊆ Σ∗ denote the set of all subwords of x ∈ Σ∗. We
also use the shuffle operation � to describe the effect of insertions at a random
position in the string. wR denotes the reversal of w ∈ Σ∗. For the computational
completeness results, we are using the fact that type-0 grammars in SGNF are
known to characterize the class RE of recursively enumerable languages.

Definition 1 ([5]). A type-0 grammar G = (N,T, P, S) is said to be in Special
Geffert Normal Form, or SGNF for short, if N decomposes as N = N ′ ∪ N ′′,
where N ′′ = {A,B,C,D} and N ′ contains at least the two nonterminals S and
S′, the only non-context-free rules in P are the two erasing rules AB → λ and
CD → λ, the context-free rules are of the following forms:

X → Y b or X → bY, where X,Y ∈ N ′, X �= Y, b ∈ T ∪ N ′′, or S′ → λ.

The way the normal form is constructed is described in [5]. Also, the derivation
of a string is done in two phases. In phase I, the context-free rules are applied
repeatedly; this phase is completed by applying the rule S′ → λ in the derivation.
In phase II, only the non-context-free erasing rules are applied repeatedly until
a terminal string is reached. From its invention, this normal form turned out
to be a very tool for proving computational completeness results for (regulated)
ins-del systems.

Definition 2 ([7,12]). An insertion-deletion system, or ins-del system for
short, is a construct γ = (V, T,A,R), where V is an alphabet, T ⊆ V is the
terminal alphabet, A is a finite language over V , R is a finite set of triplets of
the form (u, η, v)ins or (u, δ, v)del, where (u, v) ∈ V ∗ × V ∗, η, δ ∈ V +.

The pair (u, v) is called the context, η is called the insertion string, δ is called
the deletion string and x ∈ A is called an axiom. If one of the u or v is λ for all
the insertion (deletion) contexts, then we call the insertion (deletion) one-sided.
If both u, v = λ for every insertion (deletion) rule, then it means that the cor-
responding insertion (deletion) can be done freely anywhere in the string and is
called context-free insertion (context-free deletion). The descriptional complexity
of an ins-del system is measured by its size s = (n, i′, i′′;m, j′, j′′), where the
parameters represent resource bounds as given in Table 1.

Definition 3 ([6]). A semi-conditional insertion-deletion system of degree
(i, j), i, j ≥ 0 is a construct Π = (V, T,A,R), where V is a finite alphabet,
T ⊆ V is the terminal alphabet, A ⊆ V ∗ is a finite set of axioms, R is a finite
set of rules of the form [(u, s, v)t,P,F] where u, s, v ∈ V ∗, t ∈ {ins, del}, P,F
are finite subsets of V ∗.

Simple Semi-conditional Insertion-Deletion Systems 89

Table 1. Parameters in the size of ins-del system.

n = max{|η| : (u, η, v)ins ∈ R}
i′ = max{|u| : (u, η, v)ins ∈ R}
i′′ = max{|v| : (u, η, v)ins ∈ R}

m = max{|δ| : (u, δ, v)del ∈ R}
j′ = max{|u| : (u, δ, v)del ∈ R}
j′′ = max{|v| : (u, δ, v)del ∈ R}

The set P is called the permitting set and F is called the forbidden set. For
clarity, we often use unique labels for rules, even identifying a rule with its label,
i.e., if r ∈ R is a rule (label), then r : [(ur, sr, vr)tr ,Pr,Fr]. The ordered pair
(i, j) is called the degree of the semi-conditional ins-del system Π where i is the
smallest integer such that

⋃
r∈R Pr ⊆ V ≤i and j is the smallest integer such

that
⋃

r∈R Fr ⊆ V ≤j . We write x ⇒r y if Pr ⊆ sub(x) and Fr ∩ sub(x) = ∅ and
either

1. tr = ins and x = x1urvrx2, y = x1ursrvrx2, for some x1, x2 ∈ V ∗; or
2. tr = del and x = x1ursrvrx2, y = x1urvrx2, for some x1, x2 ∈ V ∗.

The language generated by a semi-conditional insertion-deletion system Π is

L(Π) = {w ∈ T ∗ | x ⇒∗ w for some x ∈ A} ,

where ⇒∗ is the reflexive and transitive closure of ⇒=
⋃

r∈R ⇒r. The families of
languages generated by semi-conditional insertion-deletion systems of degree at
most (i, j) having ID size at most s = (n, i′, i′′;m, j′, j′′) is denoted as SCi,jID(s).
If, for each r ∈ R, either Pr = ∅ or Fr = ∅, then the semi-conditional ins-
del system is said to be simple. The families of languages generated by such
simple semi-conditional insertion-deletion (denoted in short as SSCID) systems
of degree at most (i, j) and ID size at most s is denoted as SSCi,jID(s).

Example 1. Consider the non context-free language L1 = {anbncn | n ≥ 1}. We
construct a simple semi-conditional ins-del system Π of degree (1, 1) and ID size
(3, 1, 1; 1, 0, 0) describing L1 as follows: Π = ({A,B, a, b, c}, {a, b, c}, {abc}, R)
where the set of rules of R are given in Table 2.

Table 2. SSCID rules describing {anbncn | n ≥ 1}.

r1 : [(a, aAb, b)ins, ∅, B]

r3 : [(λ, A, λ)del, B, ∅]

r2 : [(b, Bc, c)ins, A, ∅]

r4 : [(λ, B, λ)del, ∅, A]

We will now explain the working of the rules in Table 2. From the rules, we
can see that r1 can be applied in the absence of B and r2 can be applied in
the presence of A, thus, r1 has to be applied before r2 is applied. Note that in
r1, as the contexts are a and b, once aAb is introduced between a and b, the
rule r1 cannot (immediately) be applied again until A is deleted. Similarly, rule
r2 cannot be applied for a second time unless B is deleted. Starting from the
axiom abc, the only applicable rule is r1 which will results in aaAbbc. Now, r3

90 H. Fernau et al.

cannot be applied, as deleting A requires the presence of B and this symbol is
not introduced yet. So, the only applicable rule is r2 which results in aaAbbBcc.
Now, r4 cannot be applied as it requires the absence of A and A is still present
in the derived string. The only applicable rule is hence r3 which deletes the A
and then the only applicable rule is r4 which deletes the B and results to aabbcc.
A sample derivation is given below for better understanding the system.

abc ⇒r1 aaAbbc ⇒r2 aaAbbBcc ⇒r3 aabbBcc ⇒r4 aabbcc = a2b2c2.

The above process is repeated and as the rules are applied in a deterministic
manner, it is easy to see that L(Π) = L1.
�
Remark 1. The purpose of Example 1 is to explain how the system works and
the size used in this example does not necessarily correspond to computational
completeness results obtained in this paper. On the other hand, if a type-0
grammar (in SGNF) is given for L1, then L1 can be simulated by a simple semi-
conditional ins-del system with the sizes that are shown in the computational
completeness result.
�

The results of this paper and a sketch on how they complement the existing
results of [6] are given in Table 3.

Table 3. Comparing the results of [6] and this paper.

S. No Result of [6] Complementing result(s) of this paper Reference

1 SC2,2ID(1, 0, 0; 1, 0, 0) = RE SSC2,1ID(2, 0, 0; 2, 0, 0) = RE Theorem 2

2 SC1,1ID(1, 1, 0; 2, 0, 0) � RE SSC2,1ID(1, 1, 0; 2, 0, 0) = RE Theorem 3

3 SC1,1ID(1, 1, 0; 1, 1, 1) � RE SSC2,1ID(1, 1, 0; 1, 1, 1) = RE Theorem 4

4. SC1,1ID(2, 0, 0; 1, 1, 0) = RE SSC2,1ID(2, 0, 0; 2, 0, 0) = RE Theorem 2

SSC3,1ID(1, 1, 0; 1, 1, 0) = RE Theorem 5

SSC3,1ID(1, 0, 1; 1, 1, 0) = RE Theorem 6

3 Main Results

In order to make some of our results simple, we claim the following, similar to
other regulation mechanisms, as for example in [4].

Theorem 1. If s = (n, i′, i′′;m, j′, j′′) is some ID size and (i, j) is some degree,
then SSCi,jID(s) = [SSCi,jID(s′)]R, with s′ = (n, i′′, i′;m, j′′, j′), and moreover,
SSCi,jID(s) = RE if and only if SSCi,jID(s′) = RE.

In order to show that simple semi-conditional ins-del systems of certain sizes
describe RE, we make use of the fact that RE languages can be generated by
grammars in Special Geffert Normal Form where the rules are of the type (i)
p : X → bY (ii) q : X → Y b (iii) f : AB → λ (iv) g : CD → λ and (v)

Simple Semi-conditional Insertion-Deletion Systems 91

h : S′ → λ, where p, q, f, g, h ∈ [1 . . . |P |] are labels associated with each type of
rule of SGNF. We provide a simulation of these rules by rules of simple semi-
conditional ins-del system. The simulation of type g : CD → λ rules is similar
to the simulation of f -type rules. Also, we always simulate the h type rule by
[(λ, S′, λ)del, ∅,M], with M ∈ {M′′,M′′′} as defined below. Therefore, in the
following proofs we mostly discuss the simulations of rules of type p, q, f and
we let

M = {m | m ∈ [1 . . . |P |]}, M ′ = {m′ | m ∈ [1 . . . |P |]},
M ′′ = {m′′ | m ∈ [1 . . . |P |]}, M ′′′ = {m′′′ | m ∈ [1 . . . |P |]},
M′′ = M ∪ M ′ ∪ M ′′, M′′′ = M ∪ M ′ ∪ M ′′ ∪ M ′′′.

We first recall from [6] that SC2,2ID(1, 0, 0; 1, 0, 0) = RE. In the following
we decrease the degree to (2, 1) and further make the system simple but at
the cost of increasing the insertion and deletion lengths from one to two. The
computational completeness of SSC0,2ID(2, 0, 0; 2, 0, 0) is under study.

Theorem 2. SSC2,1ID(2, 0, 0; 2, 0, 0) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF in which the rules
of P are labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system
Π = (V, T, {S}, R) of degree (2, 1) and ID size (2, 0, 0; 2, 0, 0) as follows such that
L(Π) = L(G). The alphabet of Π is V ⊂ N ∪T ∪M′′′. The set of rules of R in Π
is given as follows. (i) For every rule of type p : X → bY in G, the simulating
rules are stated in Fig. 1(a). (ii) For every rule of type q : X → Y b in G, the
simulating rules are stated in Fig. 1(b). (iii) Rules of type f : AB → λ are
simulated by the (SSC)ID rule f1 = [(λ,AB, λ)del, ∅, ∅].

p1 = [(λ, pp′, λ)ins, ∅, M′′′]
p2 = [(λ, p′X, λ)del, {pp′}, ∅]
p3 = [(λ, bp′′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′ ∪ M ′′′]
p4 = [(λ, Y p′′′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′′]
p5 = [(λ, p′′′, λ)del, {p′′′p′′}, ∅]
p6 = [(λ, p′′p, λ)del, {bY }, ∅]

(a) Simulating p : X → bY

q1 = [(λ, qq′, λ)ins, ∅, M′′′]
q2 = [(λ, q′X, λ)del, {qq′}, ∅]
q3 = [(λ, q′′b, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′ ∪ M ′′′]
q4 = [(λ, q′′′Y, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′′]
q5 = [(λ, q′′′, λ)del, {q′′q′′′}, ∅]
q6 = [(λ, qq′′, λ)del, {Y b}, ∅]

(b) Simulating q : X → Y b

Fig. 1. Simulating context-free rules of SGNF by SSC2,1ID(2, 0, 0; 2, 0, 0).

We now proceed to prove that L(Π) = L(G). We initially prove that L(G) ⊆
L(Γ) by showing that Π correctly simulates the application of the rules of the
types p, q, f . We focus on the p rule simulation, as this is the most complicated
one. The application of p : X → bY to αXβ derives αbY β = w, which is correctly
simulated by Π as follows:

αXβ ⇒p1 αpp′Xβ ⇒p2 αpβ ⇒p3 αbp′′pβ ⇒p4 αbY p′′′p′′pβ ⇒p5 αbY p′′pβ ⇒p6 w.

92 H. Fernau et al.

Simulation idea: We insert strings of length two in a random manner, such that
one symbol of it acts as a marker to stitch to the correct position in the string.
The correct position is verified with permitting strings or deletion strings of
length two, which verifies that the previously introduced string has been inserted
only at a particular correct position. For example, pp′ is randomly inserted by
rule p1 and the rule p2 demands that this insertion happens to the left of the
only non-terminal X present in the string. Similarly, the permitting string in
p5 demands to have the substring p′′′p′′ present in the string, thus Y p′′′ (see
rule p4) is inserted between b and p′′ and bp′′ itself is inserted by rule p3. The
forbidden strings in insertion rules prevent from using of the same rule again
and also indirectly bring the order among the applications of the rules.

We now prove the converse inclusion L(Π) ⊆ L(G) by showing that the rules
stated in Fig. 1(a) can only be used in the intended way.

Consider a sentential form w0 = αXβ derivable in Π and G, where X ∈ N ′

and α, β ∈ (N ′′ ∪ T)∗. Notice that, from the perspective of G, we are (still) in
phase I. The only applicable rule is p1 (or any other insertion rule r1 where
the left-hand side of rule r ix X) since other insertion rules like p3 or p4 forbid
the presence of any non-terminal of N ′. All deletion rules of Fig. 1 require the
presence of rule markers (i.e. elements of M′′′), but sub(w0) ∩ M′′′ = ∅. On
applying the rule p1, pp′ is inserted anywhere in the string thus yielding w1 ∈
pp′
� (αXβ), with pp′ ∈ sub(w1). We cannot apply any insertion rule r1, r3 or

r4, as p′ ∈ Fr1 ∩ Fr3 ∩ Fr4. In particular, this rules out repeated applications of
p1. Also, we cannot apply rule h1 now, as here (and also in any of the further
steps discussed below) some rule marker is present in the string. Hence, we must
apply a deletion rule of Fig. 1 to w1. The application of any r5 or r6 requires
r′′ to appear, which is not the case for w1. By the uniqueness of rule labels,
the only applicable rule is p2 which actually fixes the position of pp′ on the
left of X, thereby deleting p′X. Hence, we obtain a unique string w2 satisfying
w1 ⇒p2 w2 = αpβ. Now, there is a choice in applying r3 or r4 for some rule r. We
focus on r = p in the following, as this is the only possible fruitful continuation,
as we will soon see. If p4 is applied to w2, we get w′

2 ∈ Y p′′′
� αpβ and now p3

cannot be applied, as p′′′ ∈ sub(w′
2) ∩ Fp3.

The derivation is stuck, as no other rule can be applied. In particular, p5 is
not applicable, since p′′ /∈ sub(w′

2). Thus, the only applicable rule on w2 is p3
which inserts bp′′ randomly into w2 yielding w3 ∈ bp′′

�αpβ, with bp′′ ∈ sub(w3).
The re-application of p3 on w3 is stopped since p′′ is a member of its forbidden
set. On applying the only possible rule p4 on w3,1 Y p′′′ is randomly inserted,
resulting in w4 ∈ Y p′′′

� bp′′
� αpβ, with Y p′′′, bp′′ ∈ sub(w4). A careful case

analysis reveals that now p5 is the only applicable rule.2 Since p5 demands that
p′′′p′′ ∈ sub(w4), this crucial rule application fixes several of our previous choices:
(a) Recall that we could have applied any rule r3 (instead of p3) and any rule
r̄4 (instead of p4). But if we would have chosen r̄ �= r, then the substring r′′′r′′

would not be present in w4. We will see in the next step that only r = p is

1 Again, any r4 could be applied, but we will soon see that r = p is enforced.
2 Again, any r5 could be applied, but we will soon see that r = p is enforced.

Simple Semi-conditional Insertion-Deletion Systems 93

possible, which we will therefore use already in the following to avoid clumsy
formulations. (b) Previously, we had the choice inserting Y p′′′, bp′′ anywhere
into w2. However, p′′′p′′ ∈ sub(w4) ensures that Y p′′′ must have been inserted
between b and p′′. Hence, we know that bY p′′′p′′ ∈ sub(w4). Now, w4 ⇒p5 w5

yields bY p′′ ∈ sub(w5). With symbols from M ∪ M ′′ being present in w5, we
understand that only rule p6 is applicable. Also, the deletion operation fixes
that the right-hand side bY introduced with rules r3 and r4 corresponds to that
of p, as this deletion is only possible if r = p. Similarly, bp′′ must have been
inserted to the left of p due to p′′p ∈ sub(w5). Applying p6 on w5 deletes the
markers p′′p, thus yielding w6 = αbY β. This series of rule applications that
yields w6 = αbY β from w0 = αXβ corresponds to the rewriting rule X → bY
of G.

Consider now a sentential form w0 derivable both in Π and in G, with N ′ ∩
sub(w0) = ∅. This means that the derivation of grammar G is in phase II. Hence,
w0 = xyt, where x ∈ {A,C}∗, y ∈ {B,D}∗, t ∈ T ∗. Clearly, if w0 ∈ T ∗, no
further derivation is possible. If AB or CD are substrings of w0, we can (directly)
apply f1 or g1, this way removing this substring as intended. Alternatively, we
can apply r1 for some context-free rule r of G. As we have considered above,
we would have to apply r2 next, but this is not possible due to the absence of
symbols from N ′. Hence, any such attempt will get stuck.

By induction, the previous arguments (that basically present the induction
steps) show that L(Π) ⊆ L(G), thus proving the theorem.
�

Next, we recall from [6] that SC1,1ID(1, 1, 0; 2, 0, 0) �= RE. In the following
we show that computational completeness can be achieved if we increase the
degree of the system from (1, 1) to (2, 1), even when maintaining simplicity. The
computational completeness of SSC0,2ID(1, 1, 0; 2, 0, 0) is open for investigation.

Theorem 3. SSC2,1ID(1, 1, 0; 2, 0, 0) = SSC2,1ID(1, 0, 1; 2, 0, 0) = RE.

The reader might wonder why we could not deduce this result by
sequentializing the construction of Theorem 2 or even by starting from a
SSC2,1ID(2, 0, 0; 2, 0, 0) system. In fact, as long as special symbols like rule labels
are introduced as in rule p1 in Fig. 1(a), where a string of two rule labels is
inserted (in this example pp′) we might do the following. First, introduce the
left one of them (in this example it is p) with the context conditions of the previ-
ous simulation (in this example it is M′′′), and then introduce the right one (in
this example it is p′) in the context of the left one (in this example it is p). One
can avoid repetitions by having this newly introduced marker (in this example
it is p′) in the forbidden context. This trick can only work if we do not expect
that this symbol (that we now check for not showing up in the string) may not
already be present in the string. In our example we do not expect p′ to be present
before we introduced it, so we can sequentialize p1 in the described way. How-
ever, this expectation is not met, for instance, when trying to sequentialize rule
p3 in Fig. 1(a) in a similar fashion. Here, we would need different ideas. In more
general terms, this prevents us from starting out from a SSC2,1ID(2, 0, 0; 2, 0, 0)
system in our simulation for proving the claimed computational completeness

94 H. Fernau et al.

result for SSC2,1ID(1, 1, 0; 2, 0, 0). Hence, we now show a different simulation,
starting from type-0 grammars in SGNF again.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P
are labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system
Π = (V, T, {S}, R) of degree (2, 1) and ID size (1, 1, 0; 2, 0, 0) as follows such
that L(Π) = L(G). The alphabet of Π is V ⊂ N ∪ T ∪ M′′. The set of rules
R of Π is given as follows: (i) For every rule of type p : X → bY in G, the
simulating rules are stated in Fig. 2(a), (ii) For every rule of type q : X → Y b in
G, the simulating rules are stated in Fig. 2(b), (iii) Rules of type f : AB → λ is
simulated by the SSCID rules f1 = [(λ,AB, λ)del, ∅, ∅].

p1 = [(X, p, λ)ins, ∅, M′′]
p2 = [(λ, X, λ)del, {p}, ∅]
p3 = [(p, p′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′]
p4 = [(p′, p′′, λ)ins, ∅, N ′ ∪ M ′′]
p5 = [(p′, Y, λ)ins, {p′p′′}, ∅]
p6 = [(p, b, λ)ins, {pp′}, ∅]
p7 = [(λ, p, λ)del, {bp′, Y p′′}, ∅]
p8 = [(λ, p′, λ)del, ∅, M]
p9 = [(λ, p′′, λ)del, ∅, M ∪ M ′]

(a) Simulating p : X → bY

q1 = [(X, q, λ)ins, ∅, M′′]
q2 = [(λ, X, λ)del, {q}, ∅]
q3 = [(q, q′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′]
q4 = [(q′, q′′, λ)ins, ∅, N ′ ∪ M ′′]
q5 = [(q′, b, λ)ins, {q′q′′}, ∅]
q6 = [(q, Y, λ)ins, {qq′}, ∅]
q7 = [(λ, q, λ)del, {Y q′, bq′′}, ∅]
q8 = [(λ, q′, λ)del, ∅, M]
q9 = [(λ, q′′, λ)del, ∅, M ∪ M ′]

(b) Simulating q : X → Y b

Fig. 2. Simulation of context-free rules of SGNF by SSC2,1ID(1, 1, 0; 1, 0, 0).

We first explain the idea behind the construction of q rule simulation in Π as
follows. We introduce three markers q, q′, q′′ in order to have qq′q′′ present in the
string. The X of N ′ is deleted before q′ is introduced. So, the effect of executing
q1 through q4 is the same as that of applying the rewriting rule X → qq′q′′.
Then, Y is inserted in between q, q′ and b is inserted in between q′ and q′′.
Note that b cannot be introduced for a second time, as the string will be having
q′bq′′ and not q′q′′ (see rule q5). On deleting the markers, first q is deleted in
the presence of the Y q′ and bq′′ to ensure that Y and b are correctly introduced.
Then, the markers q′ and q′′ are deleted in this order. The order of deletion is
important since otherwise, the rules q3 and/or q4 can be applied again and a
malicious string can be obtained by using the rules q5 and/or q6.

One can show that L(G) ⊆ L(Π) by an inductive argument. The main point
is to understand the simulation of a context-free rule, say, of type q:

αXβ ⇒q1 αXqβ ⇒q2 αqβ ⇒q3 αqq′β ⇒q4 αqq′q′′β ⇒q5

αqq′bq′′β ⇒q6 αqY q′bq′′β ⇒q7 αY q′bq′′β ⇒q8 αY bq′′β ⇒q9 αY bβ.

To show the converse inclusion L(G) ⊇ L(Π), consider a string w0 derivable
both in G and in Π. We discuss possible derivations for w0 in Π and have to

Simple Semi-conditional Insertion-Deletion Systems 95

show that these either get stuck or correspond to derivation steps in G, which
would then entail the claim by induction. Observe that any rules rj for j > 1
require that sub(w0) ∩ M′′ �= ∅, either by the permitting context, or because
this is a requirement of the ins-del rules themselves. Hence, if N ′ ∩ sub(w0) = ∅,
i.e., the SGNF grammar G would work in phase II, we have to apply one of
h1, f1, g1, which directly corresponds to an erasing rule of G.

Therefore, we now consider a sentential form w0 = αXβ derivable in Π
and G, where X ∈ N ′ and α, β ∈ (N ′′ ∪ T)∗. The only applicable rules are some
rules q1 that insert the marker q to the right of X, thus yielding w1 = αXqβ.
Notice that now (and also within the future discussions) always a marker from
M′′ is present in the string, which disables applying rule h1 prematurely. No
rule r3 is applicable, as N ′ ∩sub(w1) �= ∅. For any of the rules r4, r5, r6, r7, r8 to
be applicable, M ′ ∩ sub(w1) �= ∅ is necessary, which is not the case. Similarly, r9
is not applicable. Hence, the only applicable rule is q2 which deletes X yielding
the string w2 = αqβ. Again, none of the rules r4, r5, r6, r7, r8 is applicable,
as M ′ ∩ sub(w1) = ∅. The presence of the marker q disables r1 and r9. As
N ′ ∩ sub(w1) = ∅, no rule r2 is applicable. Due to the uniqueness of the rule
labels, q3 is hence the only applicable rule, with w2 ⇒q3 w3 = αqq′β. As q, q′

are present in w3, any rule like r1, r3, r8, r9 is disabled. The absence of symbols
from N ′ ∪ M ′′ disables applying r2, r4, r5, r7. Label uniqueness leaves us with
applying either q4 or q6. Hence, if w3 ⇒ w4 in Π, then w4 ∈ {αqq′q′′β, αqY q′β}.
If w4 = αqY q′β, a case analysis reveals that if w4 ⇒ w5 in Π, then this must be
due to applying q4, i.e., w5 = αqY q′q′′β. Now, q5 is the only applicable rule, so
that w6 = αqY q′bq′′β is enforced. Alternatively, on w4 = αqq′q′′β, only rules q5
and q6 can apply. However, the order of application of q5, q6 does not matter,
because if q5 is applied, then only q6 can be applied next, and vice versa. Hence,
if w4 ⇒ w5 ⇒ w6 in Π, w6 = αqY q′bq′′β is again enforced.

The presence of symbols from M,M ′,M ′′ and N ′ in the substring qY q′bq′

within w6 prevents applying any of the insertion rules, as well as of any r8 or r9.
Because we can assume that X �= Y in any rule q : X → Y b or p : X → bY of G,
no rule r2 can be applied at this point. The only applicable rule on w6 is hence
q7 which deletes the marker q, thus yielding w7 = αY q′bq′′β. Let us stress that
q7 could not have been applied at any earlier point, as it also checks that both
Y q′ and bq′′ are present within the sentential form. Following the application
of q7, the rules q8, q9 are applied in a deterministic way which will delete the
markers q′, q′′, respectively, from w7 thus finally yielding w9 = αY bβ. A case-
by-case analysis shows that no other rules are applicable within a derivation
w7 ⇒ w8 ⇒ w9 within Π. This series of rule applications yielding w9 = αY bβ
from w0 = αXβ corresponds to the rewriting rule X → Y b. The second claim
SSC2,1ID(1, 0, 1; 2, 0, 0) = RE follows now with Theorem 1.
�

It is shown in [6] that SC1,1ID(1, 1, 0; 1, 1, 1) �= RE. Analogous to the previous
theorem, we show in the following that computational completeness of the system
with ID (1, 1, 0; 1, 1, 1) can be achieved if we increase the degree of the systems
from (1, 1) to (2, 1). We prove the result even for simple semi-conditional ins-del
systems. Thus, the size in the following result is optimal. The computational
completeness of SSC0,2ID(1, 1, 0; 1, 1, 1) is under investigation.

96 H. Fernau et al.

Theorem 4. SSC2,1ID(1, 1, 0; 1, 1, 1) = SSC2,1ID(1, 0, 1; 1, 1, 1) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P
are labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system
Π = (V, T, {S}, R) of degree (2, 1) and ID size (1, 1, 0; 1, 1, 1) as follows such
that L(Π) = L(G). The alphabet of Π is V ⊂ N ∪T ∪M′′. The set of rules R of
Π is given as follows: (i) For every rule of type p : X → bY in G, the simulating
rules are stated in Fig. 2(a). (ii) For every rule of type q : X → Y b in G, the
simulating rules are stated in Fig. 2(b). (iii) Rules of type f : AB → λ in G are
simulated by rules as stated in Fig. 3.

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′ \ {f, f ′}]
f4 = [(f, A, f ′)del, ∅, N ′]
f5 = [(f ′, B, f ′′)del, ∅, N ′]
f6 = [(f, f ′, f ′′)del, ∅, ∅]
f7 = [(f, f ′′, λ)del, ∅, {f ′}]
f8 = [(λ, f, λ)del, ∅, {f ′, f ′′}]

Fig. 3. How to simulate f : AB → λ by SSC0,1ID(1, 1, 0; 1, 1, 1)

We now proceed to prove that L(Π) = L(G). We initially prove that L(G) ⊆
L(Π) by showing that Π correctly simulates the application of the rules of the
types p, q, f . The working of the simulation rules for the cases p and q are already
explained in Theorem 3. Hence, we now explain only the working of f .

The idea behind the construction of f rules is follows. We want to pin AB
with the markers and to obtain a substring of the form fAf ′Bf ′′. Though f is
inserted at random, the correct position of f insertion is taken care with rule
f4. Rule f6 is applicable only when A is deleted, since f ′ is inserted to the right
of A and f cannot be present to the left of f ′ unless A is deleted. As only one
f ′ is present in between A and B in the string (see rules f4 and f5) this makes
sure that the A and B that are next to each other only gets deleted. Also, as
f4 and f5 have both left and right context for deleting, we cannot delete more
than one A and one B. To delete f ′ the presence of f ′′ is required which ensures
the presence of B. Finally, the markers f ′, f ′′ and f are deleted. Note that the
permitting sets for all the rules in the simulation of f rule are empty.

Simulation of f : AB → λ: The rule f : AB → λ of G is simulated by rules of Π
as stated in Fig. 3 as follows:

αABβ ⇒f1 αfABβ ⇒f2 αfAf ′Bβ ⇒f3 αfAf ′Bf ′′β ⇒f4

αff ′Bf ′′β ⇒f5 αff ′f ′′β ⇒f6 αff ′′β ⇒f7 αfβ ⇒f8 αβ.

By induction, this shows that L(G) ⊆ L(Π).

Simple Semi-conditional Insertion-Deletion Systems 97

To show the reverse inclusion L(G) ⊇ L(Π), assume that w0 can be derived
both in G and in Π. Hence, w0 ∈ (N ′′ ∪ T)∗(N ′ ∪ {λ})(N ′′ ∪ T)∗. If N ′ ∩
sub(w0) �= ∅, from the perspective of G, we are still simulating phase I. We have
to work through the explanations and case distinctions considered in Theorem 3
once more. A problem could arise if in a sentential form wi considered in these
discussions, (M′′ ∪ N ′) ∩ sub(wi) = ∅, as then rules like f1 become applicable.
However, this is never the case, so that there is no danger in starting a simulation
of an f - or g-rule prematurely (i.e., when still simulating phase I).

Hence, w0 ∈ (N ′′ ∪ T)∗. If w0 ∈ T ∗, nothing remains to be shown. Hence,
w.l.o.g., we consider a sentential form w0 = αABβ in Π (and in G), where
A,B ∈ N ′′ and α, β ∈ (N ′′ ∪ T)∗. At first glance, it may seem that we could
start the simulation with one of the three rules f1 or f2 or f3. If we apply
f2 and f3 (in this sequence, as first applying f3 would block f2, and actually
any derivation starting with f3 on w0 is immediately blocked), then the only
applicable rule is f5 which will delete B between f ′ and f ′′, yielding f ′f ′′ as
a substring of some w′′′, with w0 ⇒f2 w′ ⇒f3 w′′ ⇒f5 w′′′. Alternatively, this
process yielding w′′′ can be described by applying the rewriting rule B → f ′f ′′

to w0. The marker f has neither been introduced earlier nor could be inserted
later, because its insertion rule f1 demands absence of f ′, f ′′ in particular. But,
in the absence of f , it is impossible to delete the markers f ′, f ′′ using the rules
f6 and f7, respectively.

Hence, in order to make a productive move, we have to begin by applying
rule f1 to w0 = αABβ, which randomly inserts the marker f . So, if w0 ⇒f1 w1,
then w1 ∈ f � (αABβ). Notice that f1 cannot be applied again on w1, nor can
g1 be, as these rules require all rule marker symbols to be absent. This kind of
reasoning reminds valid for the whole derivation that we are going to discuss,
disabling unwanted premature starts of other simulations throughout. The only
rules that are applicable on w1 are f2, f3, or f8. As applying f8 simply deletes
the f marker introduced in the previous derivation step, this gives no overall
progress, so that we can ignore this as an unnecessary detour of the derivation
process. Now we apply rules f2 and f3 to w1 in order, as applying f3 first would
lead to a blockage of the derivation. We remark here that it is possible that on
applying f2, the marker f ′ may be placed after any occurrence of A in w1.
Similar is the case with the application of rule f3 with respect to B. Hence in
general, if w0 ⇒f1 w1 ⇒f2 w2 ⇒f3 w3, then w3 ∈ f � f ′

� f ′′
� w0 with

Af ′, Bf ′′ ∈ sub(w3). By the forbidden context conditions, none of the insertion
rules are applicable to w3. In order to apply f4, fAf ′ ∈ sub(w3) is necessary, and
in order to apply f5, f ′Bf ′′ ∈ sub(w3). The only way to get rid of the introduced
markers again is to apply f6, f7 and f8 (in this order). But before being able to
apply f6, the substrings fAf ′ and f ′Bf ′′ of w3 have to be transformed to ff ′

and f ′f ′′, respectively, so that f4 and f5 have to be applied in any order. Hence,
we find w3 ⇒ w4 ⇒ w5, with w5 could have been alternatively derived from w0

by applying the rewriting rule AB → ff ′f ′′. Hence, w5 = αff ′f ′′β, because
w0 = αABβ was also derivable in G, and any such string contains the substring
AB only in one place. It is not hard to see that f6 is the only applicable rule

98 H. Fernau et al.

now. Application of the rules f6, f7, f8 in a deterministic manner (i.e., each
time there is no other rule that applies, and there is only one location in the
current string that may be transformed) finally yields w8 = αβ. This series of
rule applications, yielding w8 from w0 = αABβ, corresponds to applying the
rewriting rule AB → λ of G. By induction, the claim L(Π) ⊆ L(G) follows.

Theorem 1 now entails SSC2,1ID(1, 0, 1; 1, 1, 1) = RE.
�
In the previous theorem, the insertion had one-sided context and deletion

had both the left and right contexts. In this case computational completeness
was achieved with degree (2, 1). If we further wish to have one-sided context for
deletion as well, then computational completeness is achieved with increasing
the degree to (3, 1). These are the first RE results ever for degree (3, 1).

Theorem 5. SSC3,1ID(1, 1, 0; 1, 1, 0) = SSC3,1ID(1, 0, 1; 1, 0, 1) = RE.

Proof. The proof is very similar to the previous one. We will first show that
SSC3,1ID(1, 1, 0; 1, 1, 0) = RE. The second part then follows from Theorem 1.

Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P are
labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system Π =
(V, T, {S}, R) of degree (3, 1) and ID size (1, 1, 0; 1, 1, 0) as follows such that
L(Π) = L(G). The alphabet of Π is V ⊂ N ∪ T ∪ M′′. The set of rules R of Π
is given as follows: (i) For every rule of type p : X → bY in G, the simulating
rules are stated in Fig. 2(a). (ii) For every rule of type q : X → Y b in G, the
simulating rules are stated in Fig. 2(b). (iii) Rules of type f : AB → λ in G are
simulated as stated in Fig. 4(a). The idea behind the construction of f rules is
very similar to the working of the rules in Fig. 3 and hence omitted. However we
now highlight the difference in the two simulations (stated in Figs. 3 and 4(a)).
Rules f1, f2, f3, f7, f8 in both the simulations are the same. If rules f4, f5, f6
of the former simulation deletes a symbol say α between the contexts c1 and
c2 using the deletion rule (c1, α, c2)del, then the same is taken care by the rules
f4, f5, f6 (respectively) of the latter simulation by their permitting string c1αc2.
Some formal arguments are presented below.
Simulation of f : AB → λ: The intended derivation is the same as the one given
in Theorem 4. This already shows that L(G) ⊆ L(Π) by induction.

To show the reverse inclusion, we consider a sentential form w0 = αABβ in
Π, where A,B ∈ N ′′ and α, β ∈ (N ′′ ∪ T)∗. As in the proof of Theorem 4, we
end up applying f1, f2, f3, in this order, to arrive at w3 ∈ f�f ′

�f ′′
�w0 with

Af ′, Bf ′′ ∈ sub(w3). The only way to continue is to apply rules f4 or f5 (in any
order), with f4 guaranteeing that fAf ′ ∈ sub(w3) and with f5 guaranteeing
that f ′Bf ′′ ∈ sub(w3). Altogether, if f4 and f5 could have been applied, then
w3 = αfAf ′Bf ′′β, as there is only one position in w0 where the substring
AB could occur. Now, w3 ⇒f4 w4 ⇒f5 w5 = αff ′f ′′β, and the same result
is obtained when first applying f5 and then f4. A simple case analysis shows
that only f6 is applicable now, yielding w6 = αff ′′β. From this point on, the
argument continues again as in Theorem 3.
�
Theorem 6. SSC3,1ID(1, 1, 0; 1, 0, 1) = SSC3,1ID(1, 0, 1; 1, 1, 0) = RE.

Simple Semi-conditional Insertion-Deletion Systems 99

Proof. Along with the simulations presented in Figs. 2(a) and (b), we present a
simulation of f rule in Fig. 4(b) which is a reflection of the simulation stated in
Fig. 4(a) in order to prove that SSC3,1ID(1, 1, 0; 1, 0, 1) = RE and hence we are
not giving a formal proof. The claim SSC3,1ID(1, 0, 1; 1, 1, 0) = RE again follows
with Theorem 1.
�

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′ \ {f, f ′}]
f4 = [(f, A, λ)del, {fAf ′}, ∅]
f5 = [(f ′, B, λ)del, {f ′Bf ′′}, ∅]
f6 = [(f, f ′, λ)del, {ff ′f ′′}, ∅]
f7 = [(f, f ′′, λ)del, ∅, {f ′}]
f8 = [(λ, f, λ)del, ∅, {f ′, f ′′}]

(a) SSC3,1ID(1, 1, 0; 1, 1, 0)

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′ \ {f, f ′}]
f4 = [(λ, A, f ′)del, {fAf ′}, ∅]
f5 = [(λ, B, f ′′)del, {f ′Bf ′′}, ∅]
f6 = [(λ, f ′, f ′′)del, {ff ′f ′′}, ∅]
f7 = [(λ, f, f ′′)del, ∅, {f ′}]
f8 = [(λ, f ′′, λ)del, ∅, {f, f ′}]

(b) SSC3,1ID(1, 1, 0; 1, 0, 1)

Fig. 4. Simulation of the rule f : AB → λ

4 Conclusion and Future Work

In this paper, we introduced the mechanism of simple semi-conditional restric-
tions on the application of rules of ins-del systems. We described recursively
enumerable languages with simple semi-conditional ins-del systems of degrees
(2, 1) and (3, 1), as shown in Table 3, ignoring symmetric results obtainable from
Theorem 1. We list below some most challenging problems in this area.

– While Ivanov and Verlan could prove that semi-conditional ins-del systems
of degree (2, 2) and ID size (1, 0, 0; 1, 0, 0) are computationally complete, it
is open if simple semi-conditional ins-del systems of degree (2, 2) and ID size
(1, 0, 0; 1, 0, 0) characterize RE.

– Again, Ivanov and Verlan could prove that semi-conditional ins-del systems
of degree (1, 1) and ID size (2, 0, 0; 1, 1, 0) are computationally complete, but
even with degree (2, 1), it is unclear whether simple semi-conditional ins-del
systems of this size characterize RE.

– With more limited resources, it seems to be difficult if not impossible to
characterize RE. In such situations, it would be good to see if we can at least
describe all context-free languages or nice sub-classes thereof, as attempted
in similar situations in [1–3].

We also pose the following, a more general, open problem for further study:
Given the degree (i, j) satisfying i, j ≥ 1 and 3 ≤ i+ j ≤ 4, with what sizes does
a simple semi-conditional ins-del system characterize RE?

100 H. Fernau et al.

References

1. Fernau, H., Kuppusamy, L., Raman, I.: Graph-controlled insertion-deletion systems
generating language classes beyond linearity. In: Pighizzini, G., Câmpeanu, C.
(eds.) DCFS 2017. LNCS, vol. 10316, pp. 128–139. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60252-3 10

2. Fernau, H., Kuppusamy, L., Raman, I.: Investigations on the power of matrix
insertion-deletion systems with small sizes. Accepted with Natural Computing
(2017)

3. Fernau, H., Kuppusamy, L., Raman, I.: On describing the regular closure of the lin-
ear languages with graph-controlled insertion-deletion systems. In: RAIRO Infor-
matique théorique et Applications/Theoretical Informatics and Applications (2017,
Submitted)

4. Fernau, H., Kuppusamy, L., Raman, I.: On path-controlled insertion-deletion sys-
tems. Accepted with Acta Informatica (2017)

5. Freund, R., Kogler, M., Rogozhin, Yu., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G., (eds.) Proceedings Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, vol.
31. EPTCS, pp. 88–98 (2010)

6. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion sys-
tems. Fundamenta Informaticae 138, 127–144 (2015)

7. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

8. Krassovitskiy, A., Rogozhin, Yu., Verlan, S.: Computational power of insertion-
deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)

9. Krishna, S.N., Rama, R.: Insertion-deletion P systems. In: Jonoska, N., Seeman,
N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 360–370. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-48017-X 34

10. Kuppusamy, L., Rama, R.: On the power of tissue P systems with insertion and
deletion rules. In: Pre-Proceedings of Workshop on Membrane Computing, vol. 28.
Report RGML, pp. 304–318. University of Tarragona, Spain (2003)

11. Meduna, A., Svec, M.: Grammars with Context Conditions and Their Applications.
Wiley-Interscience, New York (2005)

12. Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New Comput-
ing Paradigms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03563-4

13. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2(4), 321–336 (2003)

14. Verlan, S.: On minimal context-free insertion-deletion systems. J. Automata Lang.
Comb. 12(1–2), 317–328 (2007)

15. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

https://doi.org/10.1007/978-3-319-60252-3_10
https://doi.org/10.1007/978-3-319-60252-3_10
https://doi.org/10.1007/3-540-48017-X_34
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-662-03563-4

	Computational Completeness of Simple Semi-conditional Insertion-Deletion Systems
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusion and Future Work
	References

