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Abstract. Many forms of programmable matter have been proposed
for various tasks. We use an abstract model of self-organizing particle
systems for programmable matter which could be used for a variety of
applications, including smart paint and coating materials for engineer-
ing or programmable cells for medical uses. Previous research using this
model has focused on shape formation and other spatial configuration
problems (e.g., coating and compression). In this work we study foun-
dational computational tasks that exceed the capabilities of the individ-
ual constant size memory of a particle, such as implementing a counter
and matrix-vector multiplication. These tasks represent new ways to use
these self-organizing systems, which, in conjunction with previous shape
and configuration work, make the systems useful for a wider variety of
tasks. They can also leverage the distributed and dynamic nature of the
self-organizing system to be more efficient and adaptable than on tradi-
tional linear computing hardware. Finally, we demonstrate applications
of similar types of computations with self-organizing systems to image
processing, with implementations of image color transformation and edge
detection algorithms.

1 Introduction

The concept of programmable matter was first defined by Toffoli and Margo-
lus as a computing medium which can be used dynamically and in arbitrary
amounts, controlled by both internal and external events [20]. Examples of pro-
grammable matter exist in nature, such as proteins closing wounds, bacteria
building colonies, and the construction of coral reefs. These examples indicate
potential applications of programmable matter, such as smart paint or coating
materials for engineering, programmable cells for medical purposes, or adaptable
and recyclable building blocks for everyday objects. These applications require
tasks for which programmable matter is uniquely capable, such as shape for-
mation and coating. However, they also require computations resembling those
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done by traditional computers to process information and make decisions. Work
so far using the geometric amoebot model for self-organizing particle systems has
focused on spatial configuration, including demonstrating efficient programmable
matter algorithms for shape formation, coating, and compression (e.g., [2,8,9]).

We introduce solutions using the amoebot model for basic computational
tasks exceeding the capabilities of a single particle, including counting or num-
ber storage, and matrix-vector multiplication. Basic constructions for computa-
tional tasks can then be used as building blocks to solve more complex problems.
Self-organizing particle systems have the potential to increase efficiency of algo-
rithms by using dynamic spatial configurations of these computational build-
ing blocks to minimize communication costs. We describe and analyze a binary
counter algorithm and a matrix-vector multiplication algorithm using the amoe-
bot model. In order to illustrate how our algorithms can be used as part of more
complex systems, we discuss concrete applications of our matrix-vector multipli-
cation approach to the image processing tasks of color transformations and edge
detection.

1.1 Amoebot Model

In the amoebot model, we represent the particle system as a subset of an infinite,
undirected graph G = (V,E), where V is the set of all possible positions a particle
can occupy, and E is the set of all possible transitions between positions in V [7].
In the geometric amoebot model we impose an underlying geometric structure
for G in the form of the equilateral triangular grid, as shown in Fig. 1(a). Each
particle occupies either a single node (i.e., it is contracted) or a pair of two
adjacent nodes (i.e., it is expanded) on the graph, and each node can be occupied
by at most one particle at any point in time, as shown in Fig. 1(b). Two distinct
particles occupying adjacent nodes are connected by a bond and we refer to such
particles as neighbors. The bonds ensure the particle system forms a connected
structure and are used for exchanging information.

Fig. 1. (a) A section of G, where nodes of G are shown as black circles; (b) five particles
on G; the underlying graph G is depicted as a gray mesh; a contracted particle is
depicted as a single black circle and an expanded particle is depicted as two black
circles connected by an edge; (c) labeling of bonds for an expanded particle and a
contracted particle.

Each particle is anonymous, meaning it has no globally unique identifier.
Particles may communicate with each neighbor by reading and writing to their
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shared constant sized memory, which can equivalently be considered as the abil-
ity to pass a limited number of bounded-size tokens to adjacent particles.1 Par-
ticles move by asynchronously executing a series of expansions and contractions.
If a particle occupies only one node, it is contracted and can expand to an unoc-
cupied adjacent node. An expanded particle can then contract to occupy only
one of the two nodes it occupied while expanded.

We assume a compass-free model, meaning there is no global sense of orien-
tation shared by the particles, and we assume that the particles do not share any
underlying coordinate system in G. In the case of the triangular grid, each parti-
cle p fixes an arbitrary head direction, which specifies an adjacent edge ehead to
p. We assume particles have shared chirality (sense of clockwise direction) and
so they can label their ports in a consistent direction (note that in the presence
of gravity, chirality follows naturally). Ports are labeled from 0 to 5 or from 0 to
9 depending on if the particle is expanded. Possible labelings for two nodes are
shown in Fig. 1(c).

We assume an asynchronous, concurrent system of particles, where conflicts
of movement (e.g., two particles trying to expand into the same empty node loca-
tion) or shared memory (e.g., two adjacent particles trying to write concurrently
onto their shared memory) are resolved arbitrarily so that at most one of the
particles involved in the conflict “wins”. Thus we can rely on the seminal results
for the classical asynchronous model in distributed computing (see, e.g., [14])
that state that any asynchronous execution of the system, where conflicts are
resolved arbitrarily, produces an equivalent outcome as a sequence of atomic
particle activations. Hence, we can assume, without loss of generality, that at
most one particle is active at any point in time. Under this model, we define:

Definition 1. An asynchronous round is given by the elapsed time until each
particle has been activated at least once.

In our context, when a particle is activated it can perform an arbitrary bounded
amount of computation using its local memory and the shared memory of its
neighbors, and at most one movement.

1.2 Related Work

There are a number of existing solutions for programmable matter, which can be
categorized as active and passive systems. In passive systems, the computational
units have no ability to control their motion, so they move and bond only based
on their structure and environmental conditions. Passive systems include DNA
computing and tile assembly models, in which computation occurs as a result of
tiles bonding together in ways controlled by the tile attributes (see, e.g. [16,22].
Work on tile assembly considers computational problems similar to those we
study, including demonstration of a binary counter [18]. However, the specifi-
cations of those systems (passive motion, unlimited supply of tiles of any type,
etc.) differ considerably from ours. Active systems consist of computational units
1 For more details on our message sharing model, please refer to [7].
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that control their actions, motions, and communications to accomplish specific
tasks. Applications of active systems, including shape formation, coating, and
compression, have been explored using robotic implementations (see, e.g. [13]).
These applications have also been explored using abstract models (see, e.g. [5]),
including the amoebot model (see [8] and the referencestherein), which is an
active system. The amoebot system has also been used for the application of
building convex hulls [6], which requires a binary counter or similar computa-
tional primitive.

Classical algorithms for distributed matrix multiplication include Fox’s [10]
and Cannon’s [1]. These divide matrices into consecutive blocks to perform
multiplication. More recent algorithms, including the Scalable Universal Matrix
Multiplication Algorithm (SUMMA) [21] and Distribution-Independent Matrix
Multiplication Algorithm (DIMMA) [4], further reduce the number of necessary
operations. In SUMMA, the matrix is divided into rows and columns of blocks,
and values are then broadcast down columns and across rows. DIMMA improves
on this by adding pipelining to communication and taking advantage of a Least-
Common Multiple strategy to reduce computation requirements. Our simpler
algorithm for matrix-vector multiplication broadcasts values down columns of
the matrix in a way similar to how values are broadcast in SUMMA and DIMMA.

In the field of computer vision and image processing, matrix multiplication
is used to apply operators for fundamental tasks including determining gradient
(see, e.g. [19]) and measuring color invariants such as luminance [11]. Basic color
transformations operators, such as adjustments to brightness, saturation, and
hue are also often used in image editing [12].

An application of these image operators is edge detection, which is an impor-
tant problem due to its applications in feature extraction and recognition. The
edge detection algorithm introduced by Canny uses a series of steps includ-
ing smoothing, filtering, and thresholding to extract edges from an image [3].
Research has been done into how to implement this method efficiently, including
a distributed GPU implementation [15].

1.3 Our Contributions

We address the very basic and general problems of counting and matrix-vector
multiplication. We describe the image processing applications of edge detection
and color transformations, as examples of applications that can use and benefit
from our matrix-vector and matrix-matrix multiplication setup and algorithms.
We assume each instance of these problems is fed into our particle system as a
sequence of values passed through a seed particle. Results are stored distributed
across the system, and can be output by each particle individually or passed to
the seed to output the result as a data stream.

We present an algorithm for a basic binary counter using the amoebot model,
and show that it counts to a value v in O(v) asynchronous rounds. We also
present a two-part algorithm for matrix-vector multiplication using the amoebot
model. The first part of the algorithm is to self-organize particles to set up the
input matrix and vector and the resulting vector entries. The second part of
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the algorithm distributedly performs the actual multiplication (note that these
two algorithmic components run concurrently and there is no need for synchro-
nization). Let h and w denote the number of rows and columns of the matrix
(unknown to the set of particles). We show that the number of asynchronous
rounds it takes to set up the matrix and vector entries is O(hw) and the number
of rounds required for matrix-vector multiplication is O(h + w). Extending this
result by executing a sequence of matrix-vector multiplications, the number of
rounds required for matrix-matrix multiplication is O(y(h + w)) with a second
matrix of height w and width y, for a total of O(hw+y(h+w)) rounds including
setup.

As an example of an application of our approach, we describe and analyze a
simple implementation of Canny edge detection in image processing, which uti-
lizes the setup algorithm introduced for matrix-vector multiplication. We show
this implementation requires O(1) rounds to complete edge detection after the
O(hw) setup is completed (again no synchronization between these two algo-
rithmic phases is needed). Another sample application of our approach in image
processing is that of color transformation, which is setup in the same way with
O(hw) rounds and then requires O(y(h + w)) rounds for multiplication. We
also provide experimental results on actual implementations of the Canny edge
detection algorithm and the color transformation algorithm we consider.

2 Preliminaries

In each of the problems considered here, we categorized particles as being either
in the structure built for the operation or as free particles.

Definition 2. At any point during the execution of the algorithm the structure
refers to the set of particles recruited for use in some operations and assigned a
specific role and position for that operation. They are in one of the states {seed,
matrix, vector, counter, prestop, result}.
Definition 3. At any point during the execution of the algorithm, the set of free
particles consists of those particles that are not yet assigned a specific purpose.
They are in one of the states {leader, follower, inactive}.
Free particles may eventually become part of the structure or remain available
for other uses. As free particles they actively move to make themselves available
to extend the structure if needed, but may continue moving indefinitely if they
are not recruited. Particle states are defined as the corresponding algorithms are
presented in Sects. 3, 4, and 5.

Tokens are small structures (of constant size) of data which are held by
exactly one particle at a time during their existence. Tokens are treated as units
or allowed to carry a value within the constant range determined by their storage
size, depending on the algorithm. Respecting the particles’ memory constraints,
each particle holds at most a constant number of tokens at any time. Configura-
tions and schedules are defined for a set of particles and will be used to analyze
the progress of the entire system toward the final goal.
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Definition 4. A configuration of the particle system at a point in time consists
of the set of state variables Pj for each particle j, including position, current
state, and tokens held.

We use pC(t) to describe the position of token t at configuration C: If particle
j holds t in configuration C, then pC(t) = j (ownership of t is indicated in
Pj). Tokens travel through a predefined sequence of nodes, regardless of which
particles occupy those nodes during the execution of the algorithm.

Definition 5. A token path of length m is a set of particles Pk1 , Pk2 , ..., Pkm

such that Pkl
is adjacent to Pkl+1 and one or more tokens travel from Pkx

to Pky

passing through only particles in the path for some x, y with 1 ≤ x < y ≤ m.

We consider a configuration C to be valid if the system is connected (includ-
ing both the structure and free particle set) and each particle is either contracted
or expanded into adjacent positions with no single position occupied by two par-
ticles. When clear from context, we will refer to the particle j and Pj indistinctly.

In an asynchronous execution, the system progresses through a sequence of
asynchronous rounds (Definition 1). When a particle Pj is activated during an
asynchronous round, if it holds a token t it can pass t to any neighbor which has
available token capacity at the time of the current activation of Pj .

3 Binary Particle Counter Algorithm

The first computational application of the amoebot model we analyze is a binary
counter. The binary counter we describe here will also be used as a primitive for
the matrix-vector multiplication algorithm presented in Sect. 4. In this imple-
mentation, the system contains only the seed particle and a set of initially inac-
tive particles, already forming a line with the seed at the end at round 0.2

We denote the non-seed particles P0, ..., Pn−1 such that P0 is a neighbor of
the seed particle, denoted S, and labeling follows the line of particles moving
away from the seed. Each non-seed particle represents a digit of the counter,
with the particle in line closest to the seed representing the least significant bit
of the counter. Each Pj with j < n−1 receives counting tokens (treated as units)
only from Pj−1 (or S if j = 0). When Pj reaches its token capacity, here defined
as two, it discards one token and attempts to send the other, representing a
carryover, to Pj+1. The value of the system as a whole can then be calculated
using the state of each digit particle to determine the value it represents.

The seed behaves as an interface to the counter. It receives activations from
an external source to increment the counter, upon which it constructs new tokens
and sends those to P0 if there is space in the shared memory with P0. Due to
space limitations, the pseudocode describing this procedure appears in the full
arXiv paper [17].

2 If a line of particles is not readily available, one can easily build one following the
algorithm presented in [9] concurrently with the binary counting procedure – i.e.,
there is no need for synchronization of the phases.
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3.1 Runtime Analysis

All of our algorithms, presented in Sects. 3, 4, and 5, follow an asynchronous
execution. However, for the analyses of these algorithms, we considered execu-
tions according to parallel schedules, since those are easier to handle and will
provide a worst-case scenario in terms of number of rounds for asynchronous
schedules. In a parallel execution, the system progresses through a sequence of
parallel rounds.

Definition 6. During one parallel round starting with configuration C and
resulting in configuration C∗, one of the following is true for each particle p:

1. p occupies the same node(s) in C and C∗,
2. p occupies one node in C and expands to an additional adjacent node during

the round,
3. p occupies two adjacent nodes in C and contracts to a single node during the

round, leaving the other node empty in C∗, or
4. p occupies two adjacent nodes in C and contracts in a handover such that in

C∗ a different particle has expanded into one of the nodes p occupied in C.

Additionally, for each token t, let Pk be such that k = pC(t). Then at the end of
the parallel round one of the following is true:

1. pC∗(t) = pC(t),
2. if a particle Pk′ adjacent to Pk is below capacity in C, pC∗(t) = k′, or
3. if there is a token path length d (labeled as particles Pk1 , ..., Pkd

), for each
1 ≤ l ≤ d − 1 the particle Pkl

in the path has a token tl (such that t = tl for
some l) which needs to move to Pkl+1 , and Pkl

has available token capacity,
then pC∗(tl) = pC(tl) + 1 for each 1 ≤ l ≤ d − 1.

Definition 7. A movement schedule (C0, C1, ...Cf ) is a parallel schedule if each
Ci is a valid configuration and for each i ≥ 0, Ci+1 is reached from Ci in exactly
one parallel round.

In asynchronous execution, the system progresses through a sequence of particle
activations, meaning only one particle is active at a time. When activated, a
particle can perform an arbitrary bounded amount of computation (including
passing tokens) and make at most one movement. An asynchronous round is
the elapsed time until each particle has been activated at least once. When a
particle P is activated, if it holds a token t it can pass t to any neighbor which
has available token capacity at the time of the current activation of P .

Definition 8. A movement schedule (C0, C1, ...Cf ) is an asynchronous schedule
if each Ci is a valid configuration and for each i ≥ 0, Ci+1 is reached from Ci

by execution of one asynchronous round.

We now provide a brief, high-level sketch of the proof that shows that a
counter with n particles can count to v (where v ≤ 2n −1) in Θ(v) asynchronous
rounds (the proofs and more details can be found in our full arXiv paper [17]).
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Lemma 1. For any asynchronous particle activation sequence A, there exists
a parallel schedule P such that the number of asynchronous rounds needed by
the binary counter algorithm according to A is at most equal to the number of
parallel rounds required by the algorithm following P.

We can then count the total number of bit flips that occur in the counter to
get the result:

Lemma 2. The parallel binary counter algorithm counts to the value v in O(v)
parallel rounds.

Combining these two results, we get:

Theorem 1. The asynchronous binary counter counts to the value v in Θ(v)
asynchronous rounds.

4 Particle Matrix Multiplication Algorithm

The next computational problem we solve using the amoebot model is matrix-
vector multiplication. As before, the seed acts as a source of external input into
the system. We suppose the system is initially unaware of the dimensions or
values of the matrix and vector to be multiplied, so they will enter the system
through the seed particle. The stream of information entering the system from
the seed can contain values of matrix or vector entries (we assume each fits on a
single particle), end of column markers, and end of vector markers. The seed par-
ticle at no point computes the dimensions of the problem since it receives values
online in sequence from an external source. The seed then passes values, encap-
sulated in tokens, into the system as the algorithm proceeds. As these values are
passed, the system “recruits” particles to represent the different matrix, vector,
and result entries, by having the particles occupy the respective position in the
system. We describe how the necessary matrix-vector result structure is built in
Sect. 4.1. Below we give an abstract description of how the matrix-vector multi-
plication proceeds, assuming we have the necessary particles in place to perform
the respective operations.

a.) b.)

Fig. 2. (a) General matrix-vector multiplication Ax setup for h×w matrix A and w×1
vector x ; (b) general matrix-matrix multiplication AC for h× w matrix A and w × y
matrix C. Shown during final matrix-vector multiplication Acy−1.

Let A be a h × w matrix and x be a w × 1 vector for some nonzero integers
h and w. The result of the matrix vector multiplication Ax is then b, which is
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stored using a set of the binary counters described in Sect. 3. The problem is
streamed into the system in the order: values for each matrix column from top
to bottom, left to right, followed by the values of x ordered from top to bottom.
As vector values reach their final positions, vector particles also generate result
counter tokens, which are passed along to determine how many particles should
position themselves to store the results of the multiplication.

As shown in Fig. 2(a), particles assigned to represent values of x are posi-
tioned across the top of those representing matrix A, such that the line of matrix
particles directly below a vector particle is the corresponding matrix column. The
vector value is then passed down the column and used by each matrix particle it
reaches to produce an individual product. Products are then passed across the
row of matrix columns to where the set of result particles are positioned to store
the product totals.

This algorithm can also be extended to complete matrix-matrix multiplica-
tion. To multiply matrices A and C, the setup is the same as before but with
the first column of C, c0 replacing the vector x . If C has a width of y, after each
column ci is multiplied by A, for i < y, we add a new set of results particles to
store the vector bi. Thus the entire result matrix B can be stored as series of
vectors b0, b1, ..., by−1, as shown in Fig. 2(b).

The matrix, vector, and result particles do not know their indices relative to
the whole system but can orient themselves such that they know which direction
is across the matrix row and which direction is down the matrix column. To
multiply a matrix by multiple vectors in a stream, this setup only needs to be
executed once. If a finished notification is sent to the seed after each matrix-
vector multiplication completes, an additional vector can be used without any
changes to the matrix.

4.1 The Algorithm

We refine the notation of a configuration from Sect. 2 to specify the particles’
functions in the final system. Let Ci = (M0,0,M0,1...M0,w−1,M1,0...Mh−1,w−1,
R0,0, R0,1, ..., R0,w′ , ...R1,0...Rh,w′ , V0, V1...Vw−1) be the configuration at round
i where Mu,v is the configuration of the particle which will eventually be the
matrix particle at position (u, v), Ru,q will be a result particle at position (u, q) in
the results matrix, and Vv is the vector particle at index v in vector x . Let c be the
token capacity of matrix, vector and result particles, and let m be the maximum
value of a matrix or vector entry. We then use w′ to denote the number of columns
of results particles constructed, so 0 ≤ u < h, 0 ≤ v < w, and 0 ≤ q < w′.
Enough result columns are constructed to hold the maximum possible number
of tokens generated, so w′ = �logc(m2w)�. Finally, we denote the minimum
number of particles necessary to complete setup as n′, so n′ = hw+w+hw′. Since
particles are given tasks on a first-come, first-serve basis, particles that remain
free particles throughout execution do not have any effect on the correctness of
the system.

Particles are categorized in configurations based on their final location, but
are all initially free particles (except for the seed particle). At the start of exe-
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cution, the spanning forest algorithm in [9] is used to organize the connected
system of free particles into trees rooted on the seed particle (for completeness,
we present the full spanning forest algorithm in [17] as well). Free particles adja-
cent to the seed are called leaders and all other free particles are followers, so
each leader is the root of a tree of followers. Leader particles move along the sur-
face of the structure (initially consisting of just the seed particle) until they are
assigned a role and position in the structure. As leader particles move, they pull
along their attached trees of follower particles. When follower particles become
adjacent to the structure, they also become leaders and begin moving along the
surface.

Flags are set from the seed, vector, and matrix particles to point to where a
new particle needs to be added to the structure. As a free particle moves along
the surface, it will stop and become part of the structure when one of these flags
points to it. Result particles are similarly recruited by setting flags to point to
where a particle may be needed based on the maximum possible values of the
matrix and vector, but result particles have the option to leave the structure
after multiplication has completed if they are not needed to represent the result.

Tokens travel in a predetermined direction in the set of matrix, vector, and
result particles. For clarity, we extend the range of the position function p(t) for
token t to be ordered pairs representing position in a two-dimensional arrange-
ment of system particles. Input matrix and vector entries are bounded such that
an individual token can carry an input vector or matrix value.

Figure 3(a) conceptually shows a system in the process of executing the setup
algorithm. Note that any notions of “up/down” and “left/right” are relative to
the orientation passed to the system from the seed particle, and do not assume
any absolute orientation of the system. At the depicted point in time, each of
the matrix values m0,0,m1,0... mh,0,m0,1, ....mu−4,v has been streamed into the
system through the seed, and assigned to a corresponding particle. For example,
the value m0,0 is assigned to particle M0,0 at the upper left corner of the matrix.
Additional matrix tokens (squares labeled t) hold the next three matrix values
to be assigned positions.

The next value to be assigned to a token, mu,v is shown at the head of the
stream of values entering the seed particle. A token holding mu,v will follow
the same path as the other tokens depicted, across the row of vector particles
(V0, ...Vv) to the furthest particle, Vv, that has been recruited so far, and then
down the corresponding matrix column. The most recently added matrix par-
ticle, Mu−4,v, will be responsible for recruiting a new matrix particle from the
set of free particles (not shown) to be Mu−3,v and hold the value mu−3,v. This
process will continue until the last column is completed.

The last part of the value stream, shown in the left half of the stream enter-
ing the seed in Fig. 3(a), is the set of vector values. Vector values are assigned
to the first vector particle they reach which does not yet have a value. As each
vector value is assigned, a result counter token (treated as a unit) is gener-
ated and passed down the vector away from the seed. In Fig. 3(b) these are
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a.)

b.)

Fig. 3. Diagram of system setup and notation used. Shapes labeled Vv,Mu,v, or Ru,q

are particles and small squares/circles labeled t are tokens. In (a) the square tokens
hold the matrix values mu−3,v, mu−2,v, and mu−1,v while in (b) the circular tokens are
unit tokens without values. Free particles are not shown.

the circular tokens which are passed from Vw−1 to R0,0 such that R0,0, R1,0, ...
acts as a counter. When the farthest vector particle receives or generates result
counter tokens it begins to recruit particles to start forming the result segment
of the structure. When using multiple matrix-vector multiplications to perform
a matrix-matrix multiplication, the existing result particles at the end of each
matrix-vector product stop performing operations other than passing tokens.
Then new sets of result particles are recruited for each matrix-vector multi-
plication in the sequence. Note that all phases of the algorithm are running
concurrently, and there is no synchronization between phases. In order to prove
the correctness and runtime of our algorithm, we will show that the different
phases of our algorithm eventually correctly terminate in order.

Once the first end of vector marker, f0, is received by the seed, setup will
be completed and the multiplication can be executed, as summarized by the
following steps:

1. each vector particle Vu passes its value vu in a token to matrix particle Mu,0,
2. each matrix particle Mu,v with value mu,v computes the product mu,v · vu,
3. Mu,v passes the vector value vu to Mu+1,v (if Mu+1,v exists) so the vector

value continues to move down the column,
4. Mu,v passes a total of mu,v · vu result counter tokens to Mu,v+1 (or Ru,0 if

Mu,v+1 does not exist), i.e. to the right across the row, and
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5. each result particle Ru,v accepts result counter tokens until at capacity, and
then clears its counter and passes a carry over token to Ru+1,v (executing the
binary counter algorithm relative to its row of result particles).

Once multiplication has completed, the excess particles recruited to be result
particles can be released back to being free, so that the final system configuration
is minimal. Detailed pseudocode descriptions of the algorithms can be found
in [17].

4.2 Correctness and Runtime Analysis

Similarly to the binary counter case, in order to show bounds on the runtime of the
matrix multiplication system, we show bounds for a parallel schedule (Definition 7)
and show that such a parallel schedule is dominated by the asynchronous schedule.
For comparisons of progress in a system, we look at how close particles and tokens
are to their final position nodes of the graph G. We give a high-level sketch of the
proof here; please see [17] for the full proof.

Each matrix value token’s final position is at the particle in the input matrix
structure corresponding to the value. Each vector value token’s final position is at
the bottom matrix particle in the column under the vector particle corresponding
to their value. Each product token’s final position is in the counter representing
the value of the result vector corresponding to the matrix row in which the
product token originated. By comparing progress of tokens and particles toward
their final destinations, we show:

Lemma 3. For any asynchronous particle activation sequence A, there exists
a parallel schedule P such that the number of asynchronous rounds needed by
the matrix-vector multiplication algorithm according to A is at most equal to the
number of parallel rounds required by the algorithm following P.

We first consider the setup phase, which includes particles moving into the struc-
ture configuration of matrix, vector, and result particles and the passing of
tokens corresponding to inputted matrix and vector values. To show that sys-
tem setup completes in O(n′) parallel rounds, we first show that our modified
spanning tree primitive supplies particles to construction as necessary, so that:

Lemma 4. Each matrix and result particle column takes O(h) rounds to fill
with particles in the parallel execution.

Since w + w′ = O(w) columns need to be filled, we get:

Lemma 5. The parallel matrix system setup completes in O(n′) rounds.

Lemma 5, together with Lemma 3, implies:

Theorem 2. The streaming matrix system setup completes in Θ(n′) rounds.

We next consider the actual matrix-vector multiplication process. Multipli-
cation is initiated by each vector particle sending a token representing the value
corresponding to its position down the column of the matrix, such that it is
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seen by the matrix particle at each position which directly multiplies with that
vector value. The amount of computation for the multiplication step is bounded
by the time for tokens to travel down matrix columns and across matrix and
result rows, so we have:

Lemma 6. The parallel matrix-vector multiplier completes in O(h+w) rounds.

Theorem 3. The asynchronous matrix-vector multiplier completes calculations
in Θ(h + w) rounds.

We can extend the result of Theorem 3 for matrix-matrix multiplications,
namely:

Theorem 4. The asynchronous matrix-matrix multiplier for matrices of dimen-
sions h × w and w × y completes calculations in Θ(y(h + w)) rounds.

5 Image Processing Applications

Both the setup and multiplication steps of the matrix-vector multiplication algo-
rithm can be used in image processing applications. Individual particles can be
assigned to store individual pixels or small grids of pixels of an image, and their
proximity to particles holding the corresponding adjacent pixels makes a number
of localized image processing algorithms highly efficient.

We first discuss using the amoebot model to execute the Canny edge detection
algorithm on a single channel image, meaning with a single scalar value for each
pixel. Pixel values are streamed into the system as matrix values and a grid is
established in the same way as in matrix-vector multiplication setup (Sect. 4.1),
but without the requirement of result particles. Thus matrix particles store the
image and can independently start to execute the algorithm as soon as they
receive a value. The Canny edge detection algorithm includes local comparisons
between pixel values and a matrix convolution operation to identify pixels most
likely to be on the edges (see [17] for the full algorithm). Since these operations
do not require information to travel between particles further than a constant
distance, we have that:

Theorem 5. Edge detection will complete in constant time after image setup.

We next discuss how to use the amoebot model to execute image color trans-
formations that use matrix-matrix multiplications. In this application, the input
matrix has a row corresponding to each pixel of the original image and three
columns corresponding to red, green, and blue. The transformation matrix is
then streamed into the system as a sequence of vectors, each of which is mul-
tiplied by the matrix. The values in the transformation matrix determine the
operation, such as filtering or saturation changes.
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6 Simulation Results

As expected, Fig. 4(a) shows that the number of rounds required for the binary
counter to reach a value v increases linearly with v. The results shown are each
for a set of 10 particles arranged in a line before the system begins to execute.
Value counted is the number of distinct counter tokens fed into the system by
the seed particle.

For matrix-vector multiplication, the experiments in Fig. 4(b) show an
approximately linear increase in the number of rounds for system setup and exe-
cution as the number of particles for the matrix-vector structure, n′, increases.

In Fig. 4(c) we show two examples of edge detection on small images. The
implementation discards an outer boundary at each step rather than using an
inference method to fill in nonexistent values around edge pixels, so the images
are padded with borders of zero-value pixels before inputted into the system.
Results of edge detection are shown for a simple 10 × 10 shape and a more
complex 16 × 16 image of a coin.

Figure 4(d) shows the results of color transformations by multiplying an
image matrix by a 3 × 3 operator. The upper right example shows increased
saturation, the bottom left shows conversion to grayscale, and the lower right
shows color filtering.

Fig. 4. (a) Asynchronous rounds per value of v counted in the binary counter; (b) asyn-
chronous rounds per vector dimension in matrix-vector multiplication; (c) edge detec-
tion results (using red component of RGB); (d) color transformation results. (Color
figure online)

7 Discussion

We have described basic computational algorithms that can be used in much
larger computing applications, such as image processing tasks or building convex
hulls [6]. Due to the limitations of the system receiving input through a seed
particle, the binary counter requires Θ(v) asynchronous rounds to count to a
value of v. The setup of the matrix-vector multiplication system is similarly
limited by the input and time to assemble the structure of particles, so it requires
Θ(n′) rounds to setup the n′ particles used to represent the matrix, vector,
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and the vector of the product. However, the actual matrix-vector multiplication
operations benefit from the parallelism of the system and each matrix-vector
multiplication requires only Θ(h + w) asynchronous rounds (recall that h is
the matrix height and w is the matrix width). This is especially beneficial for
a matrix-matrix multiplication which requires only one execution of the setup
algorithm (excluding the setup of additional results particles) to multiply an
input matrix by each column of the other input matrix.
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