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Preface

The 17th International Conference on Unconventional Computation and Natural
Computation (UCNC 2018) was held June 25–29, 2018, on the campus of the IUT de
Fontainebleau at the University of Paris-Est Créteil – Val de Marne, Fontainebleau,
France. The UCNC series of international conferences is genuinely interdisciplinary
and it covers theory as well as experiments and applications. It is concerned with
various proposals for computation that go beyond the Turing model, with
human-designed computation inspired by nature, and with the computational nature of
processes taking place in nature. Typical, but not exclusive, topics are: hypercompu-
tation; chaos and dynamical systems-based computing; granular, fuzzy, and rough
computing; mechanical computing; cellular, evolutionary, molecular, neural, and
quantum computing; membrane computing; amorphous computing, swarm intelli-
gence; artificial immune systems; physics of computation; chemical computation;
evolving hardware; the computational nature of self-assembly, developmental pro-
cesses, bacterial communication, and brain processes.

More information about this conference series and its full history can be found on
the following website: https://www.cs.auckland.ac.nz/research/groups/CDMTCS/
conferences/uc/uc.html

Submissions to UCNC 2018 comprised 22 full papers across a wide variety of
topics, including (but not limited to) quantum computing, algorithmic self-assembly,
and chemical reaction networks. Of these, 15 were accepted for presentation at the
conference and publication in these proceedings. Each submission was reviewed by at
least three, and on average 3.2, Program Committee members. Beyond the contributed
papers and associated talks, UCNC 2018 was greatly enhanced by the plenary talks and
tutorials provided by several prestigious speakers. Satoshi Murata from Tohoku
University, Japan, gave a plenary talk entitled “Molecular Robotics Project.”
Julian Miller from the University of York, UK, presented his plenary talk “The
Alchemy of Computation: How to Use the Unknown.” Lee Cronin from the University
of Glasgow, UK, gave a plenary talk titled “Exploring Computation in Chemical
Systems with Programmable Chemical Arrays.” A tutorial titled “Rule-Based Model-
ing in Systems Biology: A Kappa Tutorial” was provided by Jean Krivine from CNRS
and University of Paris Didérot, France.

The conference was accompanied by four workshops, which were partially included
in the conference program. The Workshop on Membrane Computing was organized by
Rudolf Freund from the Technical University of Vienna, Austria, and Sergiu Ivanov
from the University of Évry, France. The invited speaker for that workshop was Artiom
Alhazov from the Academy of Sciences of Moldova, Moldova.

The Decision Making in Nature Workshop was organized by Makoto Naruse from
the National Institute of Information and Communications Technology, Japan, and
Matteo Cavaliere from Manchester Metropolitan University, UK. The invited speakers

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/uc/uc.html


for this workshop were Taiki Takahasi from Hokkaido University, Japan, and Hirokazu
Hori from the University of Yamanashi, Japan.

The 9th International Workshop on Physics and Computation was organized by
Michael Cuffaro and Philippos Papayannopoulos from the University of Western
Ontario, Canada. The invited speakers for this workshop were Judit X. Madarász from
the Hungarian Academy of Sciences, Hungary, and Oron Shagrir from the Hebrew
University of Jerusalem, Israel.

The Self-Assembly Workshop was organized by Damien Woods from Inria, France,
and it had the following invited speakers: Matt Patitz from the University of Arkansas,
USA, Pierre-Étienne Meunier from Inria, France, and Nicolas Schabanel from CNRS
and ENS Lyon, France.

UCNC 2018 was also co-located with the Machines, Computations, and Univer-
sality Conference (MCU 2018). A joint session was held on June 28 featuring an
invited talk by Damien Woods from Inria, France, entitled “Molecular Computation
with DNA Self-Assembly.”

UCNC 2018 brought together researchers from all over the world to share and
discuss ideas on forms of computation inspired by natural systems and unconventional
methods. Its success as the 17th conference in the series is owed to the great amount of
help from many people and organizations. First and foremost, we would like to thank
the Steering Committee co-chairs, Nataša Jonoska and Jarkko Kari, whose expert
guidance and invaluable advice helped to shape all aspects of the conference. Next, a
huge debt of gratitude is owed to the Program Committee members and external
reviewers, who carefully reviewed all submissions and provided important feedback to
help decide which papers to accept.

Partial financial support for the conference was provided by IUT de
Sénart-Fontainebleau, the University of Paris-Est Créteil, Laboratoire d’Algorithmique
Complexité et Logique, Faculté des Sciences et Technologies of the University of
Paris-Est Créteil, and Institut national de recherche en informatique et en automatique
(Inria). We also thank the administration of IUT de Fontainebleau for the perfect
infrastructure made available to UCNC 2018. Finally, we would like to thank our
secretaries, Nathalie Gillet and Flore Tsila, for their extensive assistance in organizing
the event and for smoothly running the conference.

Special thanks are due to Springer for the efficient cooperation in the timely pro-
duction of this volume, as well as for the financial sponsorship supporting the best
student paper award and some student travel grants.

June 2018 Susan Stepney
Sergey Verlan
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Exploring Computation in Chemical Systems
With Programmable Chemical Arrays

Abhishek Sharma, Juan Manuel Parrilla Gutierrez, and Leroy Cronin

Department of Algorithms and Their Applications, School of Chemistry,
University of Glasgow, Glasgow, G12 8QQ, UK

Lee.Cronin@glasgow.ac.uk

Complex physicochemical processes occurring in nature such as evolution, biological
neural networks, self-assembly have inspired the development of unconventional
computation architectures such as DNA computing, swarm intelligence, evolutionary
algorithms. Molecular computation such as DNA computing utilized information
processing capabilities of DNA base pairs and have shown to solve the Hamiltonian
path problem and 20-variable 3-SAT problem. On the other hand, reaction-diffusion
computers based on excitation media such as Belousov-Zhabotinsky reaction have
shown to have potential for computation arising from demonstrating logic gates, and
solving a Voronoi diagram. The former computation architecture relies on data storage
information processing via molecular recognition principles and latter depends on
interactions between spatiotemporal excitation patterns.

In this talk I will describe a new approach to a computational architecture that
interfaces addressable and programmable grids that connect to a chemical system. The
proposed architecture uses a hybrid approach by combining macroscale
reaction-diffusion and molecular computation capabilities to enhance the information
processing and ease of input-output (I/O) capabilities. The architectures consist of an
array of addressable chemicals either in a phase partitioned physically e.g. droplets or
using reaction diffusion. By addressing the array using either a localized mechanical,
electrical, or optical input and then reading out via a camera the dynamics and com-
putational abilities of the system will be probed. The control over the array allows us to
define macroscale I/O and process control as a “physical firmware”. However, the
information processing occurs at molecular scale via complex molecular reaction
networks within the chemical substrate. Preliminary results from our initial investi-
gations will be presented that explore the encoding, information processing, and
decoding process. The abilities of these systems to solve a particular subset of com-
putational problems will also be presented.



The Alchemy of Computation:
How to Use the Unknown

Julian F. Miller

Department of Electronic Engineering, University of York,
Heslington, York, YO10 5DD, UK
julian.miller@york.ac.uk

The traditional way of solving many kinds of problems is to utilise a small number of
well-understood components and through analysis and logic assemble a larger system
that satisfies the user requirements. It is undeniable that this approach has enabled us to
create extraordinary artefacts and technologies. However, such an approach explores
and utilises only a tiny fraction of the problem solving capabilities of systems. This
issue was highlighted by Michael Conrad’s “price of programmability” which asserts
that conventional programming and design excludes many of the processes that may
lead to us solving the problem.

Biological organisms however have never been designed at all and the various
forms have arisen through a process of natural evolution. It is undeniable that although
this process has not created the technological marvels of today, it has created
extraordinary solutions of survival in a complex world. In doing so, natural evolution
has exploited and utilised a vast number of physical effects and interactions.

In recent years it has become apparent that it is possible to utilise conventional
technology and computing to build unconventional computational systems that do not
pay the price of programmability. These are arrived at through a form of computational
alchemy, in which many possible systems are assembled and assessed without an
understanding of how the parts interact or even the physics of their interaction.

Two techniques are presented that illustrate this. One is called Cartesian Genetic
Programming. In this, graph-based computational structures are evolved to solve many
kinds of problems including electronic circuits, image feature detectors and neural
networks. The other technique, called evolution in materio, applies artificial evolution
to the manipulation of materials to solve computational problems.



Molecular Robotics Project

Satoshi Murata

Tohoku University, 6-6-01 Aobayama, Sendai, Miyagi 980-8579, Japan
murata@molbot.mech.tohoku.ac.jp

Abstract. This talk introduces the molecular robotics project in Japan. This
project was conducted from 2012 to 2017 by ~70 laboratories in Japan supported
by Grant- in-Aid for Scientific Research on Innovative Areas, MEXT, Japan.
The purpose of this project is to develop a methodology for constructing a robot
composed of molecular level elements, such as sensors, processors, ac-tuators
and a structure containing them.

Keywords: Molecular robotics project � Amoeba-type molecular robot
Gel automaton

A “robot” is defined as an “autonomous system” that acquires information from the
external environment with a sensor, processes the information, and exerts an effect on
the environment according to the result. There is also a need for a body (structure) to
distinguish the system from the environment and to integrate these components. In the
molecular robotics project, we worked on the design, production and
integration/control technologies for molecular robotic system [1, 2].

As a prototype, we developed an amoeba type molecular robot [3, 4]. The amoeba
robot is a micro-sized liposome enclosing molecular sensors, molecular actuators
driven by kinesin and microtubules, and a molecular computer. In this robot, the
mechanism called DNA clutch is activated by an input of light signal, and the sliding
movement of microtubule/kinesin is transformed into amoeba-like liposomal defor-
mation. For fabrication of this prototype, the technique of enclosing various molecular
devices in a high density in liposomes, a protocol to drive many different molecular
devices in the same solution have been developed. Another challenge in the project is
to design and fabricate a millimeter scale reaction fields. For this purpose, we propose a
model called “gel automaton” in which an array of gel capsules/beads acting as an
automaton [5]. Theoretical studies of its computational capability and experimental
studies of molecular implementation of the model have been conducted. Along with
these prototypes, various element technologies/tools for molecular robotics have been
developed throughout the project. Some examples are: an RNA nanostructure device
capable of controlling the fate of cancer cell [6], method to accelerate DNA reaction
(toe-hold exchange) speed, method to amplify DNA signal, realizing orthogonal
reaction system in the same solution [7], and etc.

Through this project, we have established a molecular robotics community in Japan
consisting of researchers from various fields of expertise. In addition, we are engaged
in educational activities for young people such as undergraduate students and high
school students to disseminate the awareness of molecular robotics.
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Molecular Computation with DNA
Self-assembly

Damien Woods

Inria, Paris, France

The field of algorithmic self-assembly is concerned with the theory and practice of
having molecules stick together to grow computational structures in an autonomous
bottom-up fashion. Theoretical work focuses on characterising the computational
expressiveness of self-assembly models. Practice is concerned with using molecules,
such as DNA, to implement algorithmic self-assembly programs in the wet-lab. The
presentation will cover both topics. First, there will be an introduction to what it means
to compute during a self-assembly process, an overview of some computational
models, as well as basic mathematical results. Attendees will then hear about how one
goes about designing and experimentally implementing algorithmic self-assembling
DNA tiles in the wet lab, and will see some of our latest results from recent joint work
with David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin and
Erik Winfree.
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P Systems with Activation
and Blocking of Rules

Artiom Alhazov1, Rudolf Freund2(B), and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Academiei 5, 2028 Chişinău, Moldova

artiom@math.md
2 Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria

rudi@emcc.at
3 IBISC, Université Évry, Université Paris-Saclay,

23 Boulevard de France, 91025 Évry, France
sergiu.ivanov@univ-evry.fr

Abstract. We introduce new possibilities to control the application of
rules based on the preceding applications, which can be defined in a
general way for (hierarchical) P systems and the main known deriva-
tion modes. Computational completeness can be obtained even with
non-cooperative rules and using both activation and blocking of rules,
especially for the set modes of derivation. When we allow the applica-
tion of rules to influence the application of rules in previous derivation
steps, applying a non-conservative semantics for what we consider to be
a derivation step, we can even “go beyond Turing”.

1 Introduction

Originally founded by Gheorghe Păun in 1998, see [30], membrane systems, now
known as P systems, are a model of computing based on the abstract notion of a
membrane which can be seen as a container delimiting a region containing objects
which are acted upon by the rewriting rules associated with the membranes.
Quite often, the objects are plain symbols coming from a finite alphabet, i.e.,
multisets (for basic results on multiset computing, for example, see [27]), but
P systems operating on more complex objects (e.g., strings, arrays) are often
considered, too, for instance, see [18].

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [31]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [34] as well as to the Bulletin of the International Membrane Computing
Society [33].

The work is supported by National Natural Science Foundation of China
(61320106005, 61033003, and 61772214) and the Innovation Scientists and Tech-
nicians Troop Construction Projects of Henan Province (154200510012).

c© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney and S. Verlan (Eds.): UCNC 2018, LNCS 10867, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-92435-9_1
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2 A. Alhazov et al.

Nearly thirty years ago, the monograph on regulated rewriting by Jürgen
Dassow and Gheorghe Păun [15] already gave a first comprehensive overview
on many concepts of regulated rewriting, especially for the string case. Yet as it
turned out later, many of the mechanisms considered there for guiding the appli-
cation of productions/rules can also be applied to other objects than strings, e.g.,
to n-dimensional arrays [16]. As exhibited in [22], for comparing the generating
power of grammars working in the sequential derivation mode, many relations
between various regulating mechanisms can be established in a very general set-
ting without any reference to the underlying objects the rules are working on,
using a general model for graph-controlled, programmed, random-context, and
ordered grammars of arbitrary type based on the applicability of rules. Also in
the field of P systems [31,34] where mainly multisets have been considered, such
regulating mechanisms were used, e.g., see [12].

Dynamic evolution of the set of available rules has been considered from the
very beginning of membrane computing. Already in 1999, generalized P systems
were introduced in [17]; in these systems the membranes, alongside the objects,
contain operators which act on these objects, while the P system itself acts on
the operators, thereby modifying the transformations which will be carried out
on the objects in the subsequent steps. Among further ideas on dynamic rules,
one may list rule creation [9], activators [1], inhibiting/deinhibiting rules [14],
and symport/antiport of rules [13]. One of the more recent developments in this
direction are polymorphic P systems [5,7,26], in which rules are defined by pairs
of membranes, whose contents may be modified by moving objects in or out, as
well as P systems with randomized right-hand sides of rules [2,3], where the
right-hand sides are chosen randomly and in different ways from the given set
of rules.

We here follow an approach started to be elaborated in [4], where in the
general framework of sequential systems the applicability of rules is controlled
by the application of rules in the preceding derivation step(s). The application
of a rule in one derivation step may either activate some rules to be applied
in the next derivation step(s) or may block their application. We immediately
observe that the application of a rule requires its activation in a preceding step.
A computation may also take derivation steps without applying a rule as long
as there are some rules activated for future derivation steps. In contrast to the
general framework for control mechanisms as described in [22], we here are not
dealing with the applicability of rules itself but with the possible activation or
blocking of rules by the effective application of rules in preceding steps.

In the following we will establish computational completeness results for var-
ious kinds of one-membrane P systems (resembling multiset grammars) and sev-
eral derivation modes, using activation and blocking of rules to be applied in
succeeding derivation steps. We may even allow the application of rules to influ-
ence previous derivation steps, but using a conservative semantics that consid-
ers derivations to be consistent when such backwards activations or blockings of
rules are not changing the correctness of the derivation, we cannot “go beyond
Turing”, which on the other hand can be achieved by allowing such backwards
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information to change past configurations by triggering the applications of newly
activated rules and by using a less conservative semantics looking at infinite com-
putations on finite multisets as in red-green “P automata”(for instance, see [19]).

Various possibilities of how one may “go beyond Turing” are discussed in
[28], for example, the definitions and results for red-green Turing machines can
be found there. In [8] the notion of red-green automata for register machines
with input strings given on an input tape (often also called counter automata) is
introduced and the concept of red-green P automata for several specific models
of membrane systems is explained. Via red-green counter automata, the results
for acceptance and recognizability of finite strings by red-green Turing machines
are carried over to red-green P automata. The basic idea of red-green automata
is to distinguish between two different sets of states (red and green states) and
to consider infinite runs of the automaton on finite input objects (strings, multi-
sets); allowed to change between red and green states more than once, red-green
automata can recognize more than the recursively enumerable sets (of strings,
multisets), i.e., in that way one can “go beyond Turing”. In the area of P sys-
tems, first attempts to do that can be found in [11,32]. Computations with
infinite words by P automata were investigated in [24].

In [20,21], infinite runs of P automata are considered, taking into account the
existence/non-existence of a recursive feature of the current sequence of configu-
rations. In that way, infinite sequences over {0, 1}, called “observer languages”,
are obtained where 1 indicates that the specific feature is fulfilled by the current
configuration and 0 indicates that this specific feature is not fulfilled. The rec-
ognizing runs of red-green automata then correspond with ω-regular languages
over {0, 1} of a specific form ending with 1ω as observer languages. The special
observer language {0, 1}∗ {1}ω corresponds with the acceptance condition for P
automata called “partial adult halting”. This special acceptance variant for P
automata with infinite runs on finite multisets is motivated by an observation
made for the evolution of time lines described by P systems – at some moment,
a specific part (a succession of configurations) of the evolving time lines, for
example, the part describing time 0, shall not change any more.

We now may also consider variants of P systems with activation and blocking
of rules as well as infinite computations on a given finite multiset. Such an
infinite computation is called valid if each prefix of the computation becomes
stable, i.e., neither the configuration itself nor the set of applicable rules changes
any more. This less conservative semantics for activating and/or blocking the
rules in preceding derivation steps allows us to take the infinite sequence of
stable configurations obtained in this way as the final computation on the given
input and – provided it exists – we may just consider the result of the first
computation step and thus the second configuration to see whether the input
has been accepted. Again this can be seen as looking at a specific part of the
evolving time lines, now the part describing time 1, requiring that it should not
change any more, but now also requesting that the whole computation should
converge.
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In the following section, we recall some notions from formal language theory
as well as the main definitions of the general framework for P systems working
under different derivation modes, see [25]. Then we define the new concept of
activation and blocking of rules based on the applicability of rules within this
general framework of static P systems. In Sect. 4 we prove first results only using
activation of rules. Computational completeness results using both activation
and blocking of rules are established in Sect. 5. Then we extend our systems by
allowing activation and blocking of rules in previous derivation steps in Sect. 6,
and finally even discuss how to “go beyond Turing” in Sect. 7. A summary of
the results obtained in this paper and some future research topics extending the
notions and results considered in this paper are given in Sect. 8.

2 Definitions

After some preliminaries from formal language theory, we define our model for
hierarchical P systems in the general setting of this paper as well as the main
derivation modes considered in the area of membrane systems, see [25]. Then we
define the new variant of controlling rule applications in P systems by activation
and blocking of rules induced by the application of rules in a derivation step.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N0, and
the set of positive integers (natural numbers) by N. An alphabet V is a finite
non-empty set of abstract symbols. Given V , the free monoid generated by V
under the operation of concatenation is denoted by V ∗; the elements of V ∗ are
called strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by
V +. Let {a1, . . . , an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by |x|ai

; the Parikh vector associated with x with
respect to a1, . . . an is

(|x|a1
, . . . , |x|an

)
. The Parikh image of a language L over

{a1, . . . , an} is the set of all Parikh vectors of strings in L, and we denote it by
Ps (L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL. The families of regular and recursively enumerable
string languages are denoted by REG and RE, respectively.

A (finite) multiset over the (finite) alphabet V , V = {a1, . . . , an}, is a map-
ping f : V −→ N0 and can be represented by any string x the Parikh vector
of which with respect to a1, . . . , an is (f (a1) , . . . , f (an)). The set of all finite
multisets over an alphabet V is denoted by V o.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area [15,31].

2.2 Register Machines

As a computationally complete model able to generate (accept) all sets in PsRE
we will use register machines:
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A register machine is a construct M = (n,H,RM , p0, h) where n, n ≥ 1, is
the number of registers, H is the set of instruction labels, p0 is the start label,
h is the halting label (only used for the HALT instruction), and RM is a set of
(labeled) instructions being of one of the following forms:

– p : (ADD (r) , q, s) increments the value in register r and in a non-deterministic
way chooses to continue either with the instruction labeled by q or with the
instruction labeled by s,

– p : (SUB (r) , q, s) decrements the value in register r and continues the com-
putation with the instruction labeled by q if the register was non-empty,
otherwise it continues with the instruction labeled by s;

– h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s), it holds
that q = s; in this case we write p : (ADD (r) , q). Deterministic register machines
can accept all recursively enumerable sets of vectors of natural numbers with k
components using precisely k + 2 registers, see [29].

2.3 A General Model for Hierarchical P Systems

We first recall the main definitions of the general model for hierarchical P systems
and the basic derivation modes as defined, for example, in [25].

A (hierarchical) P system (with rules of type X) working in the derivation
mode δ is a construct

Π = (V, T, μ, w1, . . . , wm, R1, . . . , Rm, f,=⇒Π,δ) where

– V is the alphabet of objects;
– T ⊆ V is the alphabet of terminal objects;
– μ is the hierarchical membrane structure (a rooted tree of membranes) with

the membranes uniquely labeled by the numbers from 1 to m;
– wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
– Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to membrane i;
– f is the label of the membrane from which the result of a computation has to

be taken from (in the generative case) or into which the initial multiset has
to be given in addition to wf (in the accepting case),

– =⇒Π,δ is the derivation relation under the derivation mode δ.

The symbol X in “rules of type X” may stand for “evolution”, “communication”,
“membrane evolution”, etc.

A configuration is a list of the contents of each cell; a sequence of configura-
tions C1, . . . , Ck is called a computation in the derivation mode δ if Ci=⇒Π,δCi+1

for 1 ≤ i < k. The derivation relation =⇒Π,δ is defined by the set of rules in
Π and the given derivation mode which determines the multiset of rules to be
applied to the multisets contained in each membrane.



6 A. Alhazov et al.

The language generated by Π is the set of all terminal multisets which can
be obtained in the output membrane f starting from the initial configuration
C1 = (w1, . . . , wm) using the derivation mode δ in a halting computation, i.e.,

Lgen,δ (Π) =
{

C(f) ∈ T ◦ | C1
∗=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
}

,

where C(f) stands for the multiset contained in the output membrane f of the
configuration C. The configuration C is halting, i.e., no further configuration C ′

can be derived from it.
The family of languages of multisets generated by P systems of type X with

at most n membranes in the derivation mode δ is denoted by Psgen,δOPn (X).
We also consider P systems as accepting mechanisms: in membrane f , we add

the input multiset w0 to wf in the initial configuration C1 = (w1, . . . , wm) thus
obtaining C1[w0] = (w1, . . . , wfw0, . . . , wm); the input multiset w0 is accepted
if there exists a halting computation in the derivation mode δ starting from
C1[w0], i.e.,

Lacc,δ (Π) =
{

w0 ∈ T ◦ | ∃C :
(
C1[w0]

∗=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC
′
)}

.

The family of languages of multisets accepted by P systems of type X with at
most n membranes in the derivation mode δ is denoted by Psacc,δOPn (X).

The set of all multisets of rules applicable in each membrane to a given
configuration can be restricted by imposing specific conditions, thus yielding the
following basic derivation modes (for example, see [25] for formal definitions):

– asynchronous mode (abbreviated asyn): at least one rule is applied;
– sequential mode (sequ): only one rule is applied;
– maximally parallel mode (max): a non-extendable multiset of rules is applied;
– maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
– maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

In [6], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules,
and smaxobjects (the sequential mode is already a set mode by definition).

As many variants of P systems can be flattened to only one membrane, see
[23], throughout the paper we will assume the simplest membrane structure of
only one membrane which in effect reduces the P system to a multiset processing
mechanism, and, observing that f = 1, in what follows we will use the reduced
notation

Π = (V, T,w1, R,=⇒Π,δ) .

3 P Systems with Activation and Blocking of Rules

We now define our new concept of regulating the application of rules at a specific
moment by activation and blocking relations for (generating) P systems.
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A P system with activation and blocking of rules (an AB-P system for short)
of type X working in the derivation mode δ is a construct

ΠAB = (Π,L, fL, A,B,L1,=⇒ΠAB ,δ)

where Π = (V, T,w,R,=⇒Π,δ) is a P system of type X, L is a finite set of labels
with each label having assigned one rule from R by the function fL, A,B are
finite subsets of L × L × 2N, and L1 ⊆ L describes the set of rules which may
be used in the first derivation step. The elements of A and B are of the form
(p, q, T ) with p, q ∈ L and T being a finite subset of N; the elements of T indicate
how many steps in the future the application of p activates (for A) or blocks (for
B) the application of the rule q.

Now let =⇒Π/P,δ, for any set of rules P , P ⊆ R, denote the derivation
relation obtained from =⇒Π,δ by reducing the set of available rules from R to
P . Then a sequence of multisets wi ∈ O, 0 ≤ i ≤ n, with w0 = w is called a valid
derivation of z = wn – we also write w0 =⇒ΠAB ,δ w1 =⇒ΠAB ,δ . . . wn – if and
only if, with Rk denoting the set of rules applied to wk in the k-th derivation
step, for every i, 0 ≤ i < n, the following conditions hold true:

– either wi =⇒Π/Pi,δ wi+1, where Pi is the set of all rules r (identified by their
labels) such that there is a relation (rj , r, T ) ∈ A with i− j ∈ T , which means
that the application of a rule rj in the j-th derivation step has activated
rule r probably to be applied in the i-th derivation step, and there is no rule
relation (rj , r, T ) ∈ B such that i − j ∈ T , which means that the application
of the rule rj in the j-th derivation step would block rule r to be applied in
the i-th derivation step, or

– Pi is empty, i.e., no rule r is activated to be applied i-th derivation step or
every activated rule is blocked, too; in this case we take wi = wi−1 provided
there is still some rule activated to be applied later.

With this interpretation we see that A can be called the set of activating
rule relations and B the set of blocking rule relations. The role of L1 is to get a
derivation started by defining the rules to be applied in the first derivation step.

In the same way as for the original model of P systems we can define the
language generated/accepted by the AB-P system ΠAB , now using the derivation
relation =⇒ΠAB ,δ instead of =⇒Π,δ.

The families of languages of multisets generated/accepted by AB-P systems
of type X in the derivation mode δ (in only one membrane) is denoted by
Psγ,δOP (X,AB), γ ∈ {gen, acc}.

If the set B of blocking rules is empty, then the AB-P system is said to
be a P system with activation of rules (an A-P system for short) of type X;
the corresponding sets of multisets generated/ accepted as well as the respective
families of languages of multisets are denoted in the same way as for AB-P system
by just omitting the B. In this case we will usually not allow the second case in a
derivation of the A-P system that in a derivation step no rule is activated to be
applied. Moreover, an A-P system is called an A1-P system if for all (p, q, T ) ∈ A
we have T = {1}, which means that the rules applied in one derivation step
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activate only the rules which can be applied in the next step; in this case we
only write (p, q) instead of (p, q, T ).

4 Results Below PsRE

It is folklore that sequential P systems with non-cooperative rules (i.e., rules
with exactly one symbol in their left-hand side) can only generate semilinear
sets, i.e., PsREG. Our first example shows that using sequential A1-P systems
with non-cooperative rules we can generate non-semilinear sets.

Example 1. The non-semilinear set {anbm | 1 ≤ n, 1 ≤ m ≤ 2n} can be gener-
ated by a sequential A1-P systems with non-cooperative rules (this type of rules
is abbreviated ncoo):

Π = (V = {a, b, A,B} , T = {a, b} , w = Ab,R,=⇒Π,sequ) ,

R = {A → a, b → BB,A → AA,B → b} ,

ΠAB = (Π,L, fL, A,B = ∅, L1,=⇒ΠAB ,sequ) ,

L = {pa, pb, pA, pB} ,

L1 = {pa, pA, pB} ,

fL = {(pa, A → a) , (pb, b → BB) , (pA, A → AA) , (pB , B → b)} ,

A = {(pa, pa) , (pb, pa) , (pb, pb) , (pb, pA) , (pA, pB) , (pB , pb) , (pB , pB)} .

The set A of activating rule relations is graphically illustrated in the following
figure which shows that this construction is rather similar to using graph control:

pA pB pb pa

With every adding of one symbol A we may at most double the current number
of symbols b using the rules labeled pB and pb. At some moment instead of
activating pA by pb we may switch to pa whereafter only pa can be applied any
more, yielding a terminal multiset provided all symbols B have been derived to
the terminal symbol b before switching from pb to pa. ��

In the following proofs we will simplify the notation for AB-P systems by
writing labeled rules as p : r instead of first listing all rules r in the underlying
P system Π and then in ΠAB listing the labels p as well as finally defining the
function fL by listing all pairs (p, r). In a shorter way, the whole AB-P system
then can be written as ΠAB = (V, T,w,R,A,B,L1,=⇒ΠAB ,δ) with R already
containing the labeled rules.

Corollary 1. PsREG � Psgen,sequOP (ncoo,A1)

Using the maximally parallel derivation mode, we can at least simulate ET0L-
systems:
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Theorem 1. PsET0L ⊆ Psgen,maxOP (ncoo,A1)

Proof (Sketch). Like in P systems with states, see [5], we can use new symbols
tk representing the n tables Tk of the extended tabled Lindenmayer system to
be simulated. Using a rule ti,j : ti → tj then indicates that after the application
of table Ti the table Tj is to be used; hence, all rules in Tj as well as all rules
tj,k : tj → tk for all k and tj,e : tj → λ are activated by corresponding rule
relations in A. The rules tj,e : tj → λ do not activate any rule, which means that
after having applied this rule the computation in the A1-P system ends.

In order to start correctly, we use an initial symbol t0 and define L1 =
{t0,k : t0 → tk | 1 ≤ k ≤ n} which allows us to activate the rules for simulating
any table Tk. ��

5 Computational Completeness Results

In this section we show that several simple variants of P systems become com-
putationally complete when using the control of activation and blocking of rules.

5.1 Sequential P Systems with Non-cooperative Rules

Theorem 2. PsRE = Psγ,sequOP (ncoo,AB) for γ ∈ {gen, acc}.
Proof. The proof idea is to show how to simulate register machines. For a given
register machine M = (n,H,RM , p0, h) we construct an equivalent AB-P system

ΠAB = (V, T,w,R,A,B,L1,=⇒ΠAB ,sequ)

in the following way: For every label p ∈ H \ {h} we use labels
{

lp, l̂p, l̃p

}
for

an ADD-instruction and labels
{

lp, l
′
p, l

′′
p , l̂p, l̃p, l̄p,

}
for a SUB-instruction; for

the final instruction h : HALT we only use the rule lh : h → λ. For any p, we
also use the symbols p, p′, and for each register r its contents is described by the
number of symbols ar in (the configurations of) ΠAB . The starting rule is given
by L1 = {lp0}.

An ADD-instruction p : (ADD (r) , q, s) is simulated by the following labeled
rules in R and rule relations in A:

1. lp : p → p′ar and (lp, l̄p), (lp, l̃p) ∈ A;
2. l̄p : p′ → q, l̃p : p′ → s and (l̄p, lq), (l̃p, ls) ∈ A.

A SUB-instruction p : (SUB (r) , q, s) is simulated by the following labeled
rules in R and rule relations in A and B:

1. lp : p → p′ and (lp, l̂p), (lp, l̃p, 3) ∈ A;
2. l̂p : ar → ar,p and (l̂p, l′′p ), (l̂p, l̄p, 2) ∈ A, (l̂p, l̃p, 2) ∈ B;
3. l′′p : ar,p → λ;
4. l̄p : p′ → q, l̃p : p′ → s and (l̄p, lq), (l̃p, ls) ∈ A.
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If the rule l̂p : ar → ar,p can be applied in the second step, two steps afterwards
it activates l̄p and at the same time blocks l̃p, which has been activated in the
first simulation step and thus will be applied if the register is empty, i.e., if l̂p
cannot be applied. ��

5.2 P Systems Working in the smax-Mode

Theorem 3. PsRE = Psγ,δOP (ncoo,AB) for γ ∈ {gen, acc} and any set
derivation mode δ from {smax, smaxrules, smaxobjects}.
Proof. Again we show how to simulate a register machine M = (n,H,RM , p0, h).
The equivalent AB-P system ΠAB = (V, T,w,R,A,B,L1,=⇒ΠAB ,δ) contains
similar ingredients as the one constructed in the proof of Theorem 2; yet the
simulation of SUB-instructions now allows us to only use activation and blocking
of rules for the next step using the possibility of having several rules applied in
parallel:

1. lp : p → p̄ and (lp, l′p), (lp, l̂p) ∈ A;
2. l′p : p̄ → p′, l̂p : ar → ar,p and (l′p, l̃p), (l̂p, l̄p), (l̂p, l

′′
p ) ∈ A; (l̂p, l̃p) ∈ B;

3. l′′p : ar,p → λ, l̄p : p′ → q, l̃p : p′ → s and (l̄p, lq), (l̃p, ls) ∈ A.

If register r is empty, in the second step only l̃p is activated to be applied in
the third step; otherwise, the application of l̂p activates l̄p and at the same time
blocks l̃p. ��

5.3 (Purely) Catalytic P Systems Working in the max-Mode

A typical variant of rules in P systems are so-called catalytic rules of the form
ca → cv, where c is a catalyst, a symbol which never evolves itself, but helps
another symbol a to evolve into a multiset v. The type of P systems using only
catalytic rules is called purely catalytic (abbreviated pcat); if both catalytic
rules and non-cooperative rules are allowed, we speak of a catalytic P system
(abbreviated cat). In the description of the families of sets of multisets gen-
erated/accepted by such (purely) catalytic P systems the maximal number of
catalysts to be used is indicated as a subscript, i.e., we write pcatn and catn.

The following result then is a consequence of the preceding proofs:

Corollary 2. For γ ∈ {gen, acc} and δ ∈ {max,maxrules,maxobjects},
PsRE = Psγ,δOP (pcat2, AB) and
PsRE = Psγ,δOP (cat1, AB).

Proof. Looking carefully into the proof of Theorem 3, we see that the only rules
where the set mode is needed are those of the form l̂p : ar → ar,p. Using one
catalyst c1, we can use the rules l̂p : c1ar → c1ar,p instead. The remaining details
of the proof of Theorem 3 can remain as they are for the catalytic case.

For the purely catalytic case, we need a second catalyst c2 for all the other
rules, e.g., we take lp : c2p → c2p

′ instead of lp : p → p′. These observations
complete the proof. ��
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6 P Systems Using Backwards Activation and Blocking
of Rules

The definition of AB-P systems given in Sect. 3 can be extended by allowing
the relations in A and B to be of the form (rj , r, T ) with the finite set T also
containing negative integers. In that way rules can be activated or blocked in
previous steps.

A conservative semantics for this extension is calling a derivation
w0 =⇒ΠAB ,δ w1 =⇒ΠAB ,δ . . . wn to be consistent if and only if the available
sets of rules for previous steps are not changed by having rules activated or
blocked backwards in time.

In that way, at least for computationally complete AB-P systems, no increase
in the computational power is obtained.

7 Going Beyond Turing

We are now discussing how to “go beyond Turing” by using a less conservative
semantics for activating and/or blocking the rules in preceding derivation steps.

The main idea is to consider infinite computations on given finite multisets –
compare this with the idea of red-green Turing machines, see [28], and of red-
green register machines, see [8] – and call such an infinite computation valid if
each prefix of the computation becomes stable, i.e., neither the configuration
itself nor the set of applicable rules changes any more. We consider the infinite
sequence of stable configurations obtained in this way as the final computation
on the given input; then – provided it exists – we just consider the stable first
configuration to see whether the input has been accepted. This idea can be used
for all the computationally complete variants of P systems with activation and
blocking of rules considered in this paper.

There are several ways to look at these infinite computations and the devel-
opment of the configurations, yet we have in mind the following, based on the
ideas elaborated in [20]: we consider the time line of evolutions of the config-
urations where in each step every configuration evolves again according to the
actual activations and blockings of rules including the backwards signals.

One interesting construction principle which may be applied for simulating
red-green P systems/automata (starting in red) in all these variants can be the
following:

– in order to even capture sequential P systems with activation and blocking
of rules, we expand the times in the rule relations by a factor of two, hence,
the original computations will happen in each odd derivation step;

– we use two new symbols YES and NO; in the initial configuration we add the
new symbol NO;

– each rule p changing the color from red to green activates the rule pY : NO →
Y ES by the backwards activation (p, pY ,−1) (no such rule is allowed to be
activated in L1);
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– each rule p changing the color from green to red activates the rule pN :
Y ES → NO by the backwards activation (p, pN ,−1) (no such rule is allowed
to be activated in L1);

– the mind change (change of color) is propagated backwards by using the
backwards activation relations (pN , pN ,−2) and (pY , pY ,−2), respectively;

– these rules pN and pY then are used “backwards” in every even derivation
step; the backwards propagation stops when one of these rules is applied in
the second derivation step (as a convention, backwards activation rules have
no effect any more if they activate a rule before time 1);

– if the computation of a red-green P automaton stabilizes in green, i.e., no
mind (color) change from green to red takes place any more, then, of course,
no changes in the second configuration occur any more, i.e., it has become
stable and therefore available for “reading out” the result of the computation.

We conclude that with every kind of P systems with activation and blocking
of rules which allows for the deterministic simulation of register machines we can
simulate the corresponding variant of red-green P automata which characterize
the Σ2-sets in the Arithmetical Hierarchy (see [10]), i.e., with such systems we
at least get Σ2; compare this with the results obtained in [20,21].

It is interesting to mention that only “backwards ” rule activations are used
in the algorithm described above, but no “backwards” rule blockings.

8 Conclusion

We have considered the concept of regulating the applicability of rules based
on the application of rules in the preceding step(s) within a very general model
for hierarchical P systems and for the main derivation modes. These concepts
of activation and blocking of rules can also be extended in a natural way to
the many variants of tissue P systems, i.e., networks of cells where a rule to be
applied can affect multiple cells at the same time.

Especially for the set modes of derivation, the resulting computational power
already reaches computational completeness even with non-cooperative rules and
using both activation and blocking of rules. Using a special semantics for acti-
vating and/or blocking the rules in preceding derivation steps, we could even
show how to “go beyond Turing” with activating rules in preceding derivation
steps. An interesting topic for future research is to investigate how powerful such
AB-P systems are in generating ω-strings.

Acknowledgements. The authors are very grateful for the useful comments of the
referees.
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(ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World
Scientific Publishing, Singapore (1994)

https://doi.org/10.1007/978-3-319-73359-3_2
https://doi.org/10.1007/978-3-319-73359-3_2
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.1007/978-3-642-18123-8_9
https://doi.org/10.1007/978-3-642-18123-8_9
https://doi.org/10.1007/978-3-319-14370-5_9
https://doi.org/10.1007/978-3-319-14370-5_9


14 A. Alhazov et al.

17. Freund, R.: Generalized P-systems. In: Ciobanu, G., Păun, Gh. (eds.) FCT 1999.
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books@cg.at, vol. 321, pp. 13–40. ÖsterreichischeComputer Gesellschaft (2016)

20. Freund, R., Ivanov, S., Staiger, L.: Going beyond turing with P automata: partial
adult halting and regular observer ω-languages. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 169–180. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 12

21. Freund, R., Ivanov, S., Staiger, L.: Going beyond Turing with P automata: regular
observer ω-languages and partial adult halting. IJUC 12(1), 51–69 (2016)

22. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Com-
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Abstract. The recently introduced Thermodynamic Binding Networks
(TBN) model was developed with the purpose of studying self-assembling
systems by focusing on their thermodynamically favorable final states,
and ignoring the kinetic pathways through which they evolve. The model
was intentionally developed to abstract away not only the notion of
time, but also the constraints of geometry. Collections of monomers with
binding domains which allow them to form polymers via complementary
bonds are analyzed to determine their final, stable configurations, which
are those which maximize the number of bonds formed (i.e. enthalpy)
and the number of independent components (i.e. entropy). In this paper,
we first develop a definition of what it means for a TBN to perform a
computation, and then present a set of constructions which are capa-
ble of performing computations by simulating the behaviors of space-
bounded Turing machines and boolean circuits. In contrast to previ-
ous TBN results, these constructions are robust to great variability in
the counts of monomers existing in the systems and the numbers of
polymers that form in parallel. Although the Turing machine simulat-
ing TBNs are inefficient in terms of the numbers of unique monomer
types required, as compared to algorithmic self-assembling systems in
the abstract Tile Assembly Model (aTAM), we then show that a gen-
eral strategy of porting those aTAM system designs to TBNs produces
TBNs which incorrectly simulate computations. Finally, we present a
refinement of the TBN model which we call the Geometric Thermody-
namic Binding Networks (GTBN) model in which monomers are defined
with rigid geometries and form rigid bonds. Utilizing the constraints
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imposed by geometry, we then provide a GTBN construction capable of
simulating Turing machines as efficiently as in the aTAM.

1 Introduction

The study of self-assembling systems has resulted in a wide range of theoretical
models and results, showing powers and limitations of such systems across a large
landscape of variation in component structures, dynamics, and other important
system properties [3,5,7,11,13,14,16,18,19]. Theoretical studies have also given
rise to experimental implementations in which artificial self-assembling systems
are being developed and demonstrated in laboratories [10,21,22]. While at times
theoretical studies are intended solely to explore the mathematical boundaries
between the possible and impossible, at other times they are geared toward
informing researchers on the behaviors of existing physical systems. Toward that
end, theoretical models of self-assembly have been developed which seek to elu-
cidate errors observed in experimental implementations (e.g. the kinetic Tile
Assembly Model [24]), and among these is the Thermodynamic Binding Net-
work (TBN) model [9]. Although such models are generally intended to abstract
away many of the details of physical systems, they are often designed to high-
light certain important aspects and isolate them for study. For the TBN model
in particular, the desire is to focus on thermodynamically favored end states of
systems while ignoring the kinetic pathways through which they evolve, in the
hopes of being able to better design systems whose “sink states” will be those we
desire, and avoid those we don’t, regardless of intermediate states which may be
traversed along the way. Preliminary work with the TBN model [2,9] has pro-
vided initial tools to begin working with self-assembling systems in this model,
and the goal of this paper is to extend them to TBN systems capable of perform-
ing a larger class of computations. Since the notion of what it means to compute
in such a model is not obvious, we provide a definition of computing with TBNs.
We then present a result showing that for any space-bounded Turing machine
there exists a TBN which can simulate it on any input. However, the size of the
set of monomers required for the construction is on the order of the amount of
space used multiplied by the number of time steps of the machine, making it less
efficient than typical algorithmic self-assembling systems. Nonetheless, the con-
struction is robust to the system containing multiple copies of the computation
simulation self-assembling in parallel, and also to large ranges of the numbers of
monomers of each type, which is in contrast to the previous results. We further
extend our construction to the simulation of arbitrary fan-in fan-out Boolean
circuits.

Next, we present results which relate the simulation of computations within
the abstract Tile Assembly Model (aTAM) [24] to TBNs, as there are many
results related to computation in the aTAM (e.g. [6,8,12,15,20,23,25]), which
has been shown to be computationally universal [24]. Along this line, we first
consider a standard class of aTAM systems which are used to simulate Turing
machines (i.e. “zig-zag” systems) and consider what happens if the tiles of those
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systems are interpreted as monomers of a TBN (in a straightforward manner).
We present a set of criteria which are relatively natural and likely to be met by
the computations performed by many Turing machines and which, if true for
a particular Turing machine, demonstrate why a TBN created in such a way
would not correctly simulate the Turing machine’s computations, and would
be capable of outputting incorrect answers. Notably, the argument presented
pertains to all of our currently known approaches to simulating computations
using TBNs which are more monomer-efficient than those of our first result,
leaving an open question of whether or not more efficient simulation is possible
in the TBN model. For our final result, we present a refinement to the TBN
model which we call the Geometric Thermodynamic Binding Networks (GTBN)
model, in which monomers and bonds between them are restricted by geometric
constraints (unlike in the TBN model, but similar to the aTAM), and show
how GTBNs can efficiently simulate arbitrary Turing machines for decidable
languages. Please note that due to space constraints, many technical details can
be found online in [4].

2 Preliminaries

In this section we provide definitions for the TBN model. Due to space con-
straints, definitions for the abstract Tile Assembly Model and zig-zag assembly
systems can be found in [4].

2.1 TBN Model

We use the definitions from [9], the majority of which we repeat here, but please
see [9] for more details and examples.

Let N,Z,Z+ denote the set of nonnegative integers, integers, and positive
integers, respectively. A key type of object in our definitions is a multiset, which
we define in a few different ways as convenient. Let A be a finite set. We can
define a multiset over A using the standard set notion, e.g., c = {a, a, c}, where
a, c ∈ A. Formally, we view multiset c as a vector assigning counts to A. Letting
N

A denote the set of functions f : A → N, we have c ∈ N
A. We index entries by

elements of a ∈ A, calling c(a) ∈ N the count of a in c.
Molecular bonds with precise binding specificity are modeled abstractly as

binding “domains”, designed to bind only to other specific binding domains.
Formally, consider a finite set D of primary domain types. Each primary domain
type a ∈ D is mapped to a complementary domain type (a.k.a., codomain type)
denoted a∗. Let D∗ = {a∗ | a ∈ D} denote the set of codomain types of D. The
mapping is assumed 1-1, so |D∗| = |D|. We assume that a domain of primary
type a ∈ D binds only to its corresponding complementary type a∗ ∈ D∗, and
vice versa. The set D ∪ D∗ is the set of domain types.

We assume a finite set M of monomer types, where a monomer type
m ∈ N

D∪D∗
is a non-empty multiset of domain types, e.g., m = {a, b, b, c∗, a∗}.

A thermodynamic binding network (TBN) is a pair T = (D,M) consisting of a
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finite set D of primary domain types and a finite set M ⊂ N
D∪D∗

of monomer
types. A monomer collection ⇀c ∈ N

M of T is multiset of monomer types; intu-
itively, ⇀c indicates how many of each monomer type from M there are, but not
how they are bound. Since one monomer collection usually contains more than
one copy of the same domain type, we use the term domain to refer to each
copy separately. We similarly reserve the term monomer to refer to a particular
instance of a monomer type if a monomer collection has multiple copies of the
same monomer type.

A single monomer collection ⇀c can take on different configurations depend-
ing on how domains in monomers are bound to each other. To formally model
configurations, we first need the notion of a bond assignment. Let (U, V,E) be
the bipartite graph describing all possible bonds, where U is the multiset of all
primary domains in all monomers in ⇀c , V is the multiset of all codomains in all
monomers in ⇀c , and E is the set of edges between primary domains and their
complementary codomains {{u, v} | u ∈ U, v ∈ V, v = u∗}. A bond assignment
M is a matching on (U, V,E). Then, a configuration α of monomer collection ⇀c
is the (multi)graph (U ∪ V,EM ), where the edges EM include both the edges
in the matching M and an edge between each pair of domains within the same
monomer. Specifically, for each pair of domains di, dj ∈ D ∪ D∗ that are part of
the same monomer in ⇀c , let {di, dj} ∈ EM , calling this a monomer edge, and
for each edge {di, d

∗
i } in the bond assignment M , let {di, d

∗
i } ∈ EM , calling this

a binding edge. Let [⇀c ] be the set of all configurations of a monomer collection
⇀c . For a configuration α, we say the size of a configuration, written |α|, is sim-
ply the number of monomers in it.1 Each connected component in α is called a
polymer. Note that a polymer is itself a configuration, but of a smaller monomer
collection ⇀c ′ ⊆ ⇀c (as ⇀c ′ and ⇀c are multisets). As with all configurations, the
size of a polymer is the number of monomers in it.

Which configurations are thermodynamically favored over others depends
on two properties of a configuration: its bond count and entropy. The enthalpy
H(α) of a configuration is the number of binding edges (i.e., the cardinality of
the matching M). The entropy S(α) of a configuration is the number of polymers
(connected components) of α.

As in [9], we study the particularly interesting limiting case in which enthalpy
is infinitely more favorable than entropy — the other limiting case, with entropy
infinitely more favorable, is degenerate since only configurations with each
monomer unbound to any other are favorable. We say a configuration α is sat-
urated if it has no pair of domains d and d∗ that are both unbound; this is
equivalent to stating that α has maximal bonding among all configurations in
[⇀c ]. We say a configuration α ∈ [⇀c ] is stable (aka thermodynamically favored)
if it is saturated and maximizes the entropy among all saturated configurations,

1 We define the size of a configuration as in [9]. One may consider the size of a con-
figuration instead as the number of domains in it, which may capture more subtle
characteristics since some monomers may have many more domains than others.
However, this distinction does not effectively alter any results in this work.
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i.e., every saturated configuration α′ ∈ [⇀c ] obeys S(α′) ≤ S(α). Let [⇀c ]� denote
the set of stable configurations of monomer collection ⇀c .

2.2 Zig-Zag Simulation of Turing Machines

Due to space constraints, we only briefly mention what it means for a “zig-zag”
aTAM system to simulate a Turing machine M . Essentially, the tape of M at
each time step is represented by a single column of tiles. The columns form from
left to right, with each column completing (by growing one tile at a time in the
upward or downward direction) before the column to its right begins. Each tile
represents one cell of the tape, with one cell also representing the state of the
machine during that computation step (and thus also the head position). An
partial example can be seen in Fig. 1. Therefore, the computation proceeds from
left to right until the machine enters a halting state.
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Fig. 1. An example of zig-zag growth in the aTAM.

3 Simulating Space-Bounded Turing Machines

Our first result proves that for any Turing machine M such that M requires no
more than s tape cells and t time steps (we mention time bound t for efficiency
of monomer types and polymer size, but the result also holds if we assume
the worst case where t = O(2s)), there exists a TBN which simulates M . We
provide definitions of what it means for a TBN to simulate a Turing machine,
then formally state our Theorem and give our proof, which is by construction.

For the remainder of the section, let M be an arbitrary s space-bounded and
t time-bounded Turing machine. Let i be an arbitrary input bit string to M ,
noting that 0 ≤ |i| ≤ s.

Definition 1 uses the following notation.
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1. Let T = (D,M) be a TBN with D a finite set of primary domain types and
M a finite set of monomer types.

2. Let O and I be subsets of M. We call O the set of output monomer types,
and call I the set of input monomer types.

3. Let ⇀c be a monomer collection of T .
4. Let Einput be a function from finite sets of input monomers (i.e. monomers

of types in I) to binary strings of length s. Let S be a finite set of input
monomers and let i be a binary string of length s. If Einput(S) = i, then we
say that S encodes i.

5. Let Eoutput be a map from a finite set of output monomers (i.e. monomers of
types in O) to binary strings of length s. If S is a finite set of monomers and
o ∈ {0, 1}s are such that Eoutput(S) = o, then we say that S encodes o.

Definition 1 says that a monomer collection for a TBN simulates a Turing
machine M on some input i if every stable configuration of the monomer collec-
tion is such that every polymer p that contains a set of monomers with input
monomer type which encodes i also contains the set of monomers with output
monomer type that encodes M(i).2

Definition 1. A monomer collection ⇀c for the TBN T simulates an s space-
bounded Turing machine M on input i if and only if there exist encodings Einput

and Eoutput such that for every stable configuration α in [⇀c ]�, if α contains a
polymer that contains a monomer with type in I, then

1. letting Sin be the set of monomers in α with types in I, Einput(Sin) = i,
2. letting Sout be the set of monomers in α with types in O, Eoutput(Sout) =

M(i), where M(i) is the output of the Turing machine M on input i.

Theorem 1. For any s space-bounded, t time-bounded Turing machine M , there
exists a set of primary domain types D, and sets of monomer types M, Mseed,
and O ⊂ M consisting of monomers with binding domains in D ∪ D∗ such that,
for any valid input i to M , the following properties hold.

1. there exists a monomer type mi ∈ Mseed such that mi encodes i,
2. for Mi = M ∪ {mi}, there exists a monomer collection ⇀c for TBN Ti =

(D,Mi) such that ⇀c simulates M on input i, and
3. the set of output monomer types for the simulation is equal to O.

2 Under some reasonable representation of monomers as binary strings, one might
require that the encoding is sufficiently weak, in FAC0 for example [1,17]. However,
in this paper we do not require such restrictions on encodings in the definition
of “simulation”. We do note that the encodings Einput and Eouput that we use
are straightforward encodings which require checking O(log s) domains in order to
determine the input i. Moreover, we note that to translate M and i to a TBN, we first
translate M and i to an aTAM system via a standard technique and then translate
this aTAM system to a TBN using a straightforward approach whose details can be
found in [4].
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3.1 Overview of the Proof of Theorem 1

In this section we give a brief overview of the construction used to prove Theorem1.
We first note the complexities of the construction. The input monomer Mi must
contain a domain for each input bit, and this is bounded by the amount of space
used by M and thus Mi contains O(s) domains. Since O needs to contain two
monomers for each position in the output, which is the amount of space used by
the machine, |O| = O(s) (and each has 4 domains). Since unique domains and
monomers must be created for each point in time t and space s of the computation
(each with 4 domains), as well as capping monomers for each of those monomers
(with 2 domains each), plus a single input monomer (with s domains), and the
output monomers of O, the sizes of D and M are O(st|Q||Γ |), where Q is the set
of states of M and Γ is its tape library.

The abstract Tile Assembly Model has been shown to be computationally
universal [24], and many aTAM results utilize a construction technique in which
a Turing machine is simulated as a series of columns self-assemble in a zig-zag
manner, with each successive column representing the contents of the tape, the
state of the machine, and the location of the read-write head at successive steps
in time. Despite the fact that the TBN model does not incorporate any geometry
or any notion of time, we are still able to leverage the ideas of an aTAM zig-zag
system simulating a Turing machine to design the domains and monomers of a
TBN.

Fig. 2. A schematic example of a polymer encoding a Turing machine simulation. The
rectangle and squares represent monomers and black lines represent bound domains.

Essentially, for each tile type of the aTAM system, we first design a monomer
with 4 domains roughly equivalent to the tile’s glue labels. Then, using the
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time and space bounds of the Turing machine to determine the height of each
column and the number of columns, we make a copy of each of those monomers
(and their domains) specific for each row and column location. The other main
components are the seed monomer which has a domain for each bit of input to
the Turing machine, end monomers which bind to the monomers representing
the last column of the computation as well as to the seed monomer, and finally
the cap monomers. There is a cap monomer specific to every monomer type m
(except the seed monomers), which has exactly one complementary domain for
each primary domain type on m — e.g., if m = { h(1,1), v(1,2), h∗

(2,1), v∗
(1,1)}, the

corresponding cap monomer is { h∗
(1,1), v∗

(1,2)}. The purpose of cap monomers
is to make the attachment of a monomer onto the large TM simulating polymer
“entropy-neutral”: without capping monomers, binding a monomer to the large
polymer reduces entropy by one; with capping monomers, the binding of the
monomer to the large polymer implies the cap monomer is free, resulting in 0
net entropy gain/loss. Additionally, s end monomers must be bound to the seed
monomer in order to maximize enthalpy, where s is the space used by the TM
simulation. The complete TM simulating polymer —by virtue of binding its end
monomers to the matching computation monomers as well as the seed— implies
a number of free end cap monomers equal to s, creating a net entropy gain of s,
causing the correct simulating polymer to be in the stable configuration.

Although the number of unique monomer types for this construction is high,
an important aspect of it is that, unlike previous results in the TBN model,
the construction is robust to inexact counts of monomer types. In fact, the only
requirements for the counts of monomer types in a collection which correctly
simulates the Turing machine is that the number of input monomers present
is less than or equal to the number of any of the computation monomer or
end monomer types, and that the number of each of the cap monomer types is
greater than the number of any of the other monomer types. Given any collec-
tion in which the counts of monomer types respect these ratios, that collection
correctly simulates the Turing machine (following Definition 1) with I equal to
the input monomer type and O equal to the end monomer types. The single sta-
ble configuration of any such collection will include (1) a polymer for every copy
of the input monomer which contains that input monomer as well as a full set
of computation monomers which represent the entire computation and the out-
put encoded by the end monomers (see Fig. 2 for an example), (2) the leftover,
unused computation and end monomers each in a polymer of size 2 which also
includes its unique cap monomer, and (3) the singleton cap monomers whose
computation or end monomers are incorporated in the computation-simulating
polymers. Such a configuration is saturated and maximizes entropy over all sat-
urated configurations, and thus is stable.
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4 Simulation of Arbitrary Boolean Circuits via TBN
Without a Tile Assembly Pathway

Under the TBN model —with no consideration of a corresponding tile assembly
system— the TM simulation discussed in Sect. 3 is easily generalized to arbitrary
fan-in fan-out Boolean circuits, mainly via the removal of planarity constraints
imposed by the bonds of the aTAM. One may suspect the removal of an accompa-
nying aTAM system also removes the argument for a plausible kinetic pathway,
yet the construction described here is similar enough to the system described in
Sect. 3 to argue that a similar “monomer-by-monomer attachment to a growing
assembly” pathway exists for this construction as well.

An overview of the construction is given here in an explicit example shown
in Fig. 3. The use of seed monomers, capping monomers, and end monomers are
effectively identical to the construction given in Sect. 3. The main difference in
this construction is the construction of the computation monomers: for each gate
g of fan-in i and fan-out o which computes fg : {0, 1}i → {0, 1}o, we construct 2i

computation monomers — one for each possible input to the gate. The monomer
corresponding to a particular input s to the gate exposes domains corresponding
to fg(s) which are complementary with the gate monomers for the gates in C
take input from g.

Fig. 3. An example simulation of an arbitrary Boolean circuit C. (a) shows the circuit
represented as a directed acyclic graph with edges corresponding to the input/outputs
of the gate. (b) shows the TBN polymer which effectively simulates the circuit. (c)
shows an example of the monomer set constructed for each gate in the circuit.



Thermodynamically Favorable Computation via Tile Self-assembly 25

5 A Negative Result on Porting Computing Systems
from the aTAM to the TBN Model

In this section we provide very high-level details of an argument which shows
what occurs when standard aTAM systems which are designed to simulate Tur-
ing machines are treated as TBNs. This is similar to the TBN designed for the
proof of Theorem 1 but without creating unique, hard-coded monomer types for
each location.

Let M be an s-space-bounded Turing machine and TM be a standard zig-
zag aTAM tile set which simulates M . (Note that this argument will also apply
when M is not space-bounded.) For n ∈ N where n is a valid input to M , let
Tn be the set of “input” tile types which assemble the binary representation of
n as a vertical column to serve as the input to TM . Then the aTAM system
TM(n) = (TM ∪ Tn, σn, 2), where σn is simply the first tile of Tn at the origin,
simulates M(n). We refer to the unique terminal assembly of TM(n) as Sn (i.e.
simulation n). Additionally, if X is a set of coordinate locations, by Sn(X) we
refer to the subassembly of Sn contained at the locations of X. Let i �= j �= k be
valid inputs to M , and Si, Sj and Sk be the terminal assemblies of TM(i), TM(j),
and TM(k), respectively, such that the following conditions hold:

1. The outputs M(i) �= M(k)
2. There exist columns (i.e. sets of all tile locations in a given column) c1 and

c2, and individual tile locations l1 and l2 in c1 and c2, respectively, such that:
(a) Si(c1) = Sj(c1) (i.e. both columns have the exact same tile types in each

location) except at location l1, where they have differing tile types with
different glues on their west sides (which would represent different cell
values for the respective simulated tape cells of M)

(b) Sj(c2) = Sk(c2) except at location l2 where they have tile types which
differ in their west glues

(c) Si(l1) = Sk(l2)
(d) Sj(l1) = Sj(l2)
(e) Si(c2) �= Sk(c2)

If a TBN is created to simulate M using the same techniques as for the proof
of Theorem 1 which skip the blow-up performed to make hard-coded monomers
for each location, these conditions of the computation being simulated on input
i allow “splicing” to occur between polymers which could represent computa-
tions on inputs i, j, and k and still retain a polymer in which all domains are
bound, and a configuration with maximum enthalpy and entropy which does not
simulate M(i). The intuitive reason here is that in the hard-coded construction
for Theorem 1, a set of unique monomer types exists for every row and column
of the simulated computation and thus each monomer type occurs no more than
one time in the polymer representing the computation, but in this system the
same monomer types may be reused many times. (See Fig. 4 for a schematic
depiction.) The conditions required by this argument are also relatively natural
and likely to occur for sets of three inputs for a large number of computations, as
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they only require that across two pairs of three different inputs there are points
at which the computations have nearly identical tape contents, and also a tape
cell location whose value is changed at one point and then changed back to the
former value later and the rest of the configuration matches across another pair
of the two inputs. While this result does not show the impossibility of so-called
efficient Turing machine simulation, it implies that, if possible, more innovative
techniques will be required. This leads us to our next result, in which we consider
a variant of the TBN model which imposes geometry on the monomers and their
bonds, and we demonstrate efficient Turing machine simulation.

6 Geometric Thermodynamic Binding Networks

The result of Sect. 3 demonstrates that computation can be simulated by TBNs
when they are composed of location-specific monomers for every location within
the computation, which is quite inefficient compared to, for instance, the number
of unique tile types required to simulate computations within the aTAM. How-
ever, Sect. 5 shows that treating aTAM tiles of computation-simulating systems
directly as monomers of a TBN results in systems with many fewer monomer
types, but which incorrectly simulate computations. Intuitively, the reason for
the failure of such systems is due to the lack of geometry included within the
TBN model, which allows for the domains of any monomer to bind to com-
plementary domains of any other monomers, independent of the patterns of
connections, which would not be the case if the monomers had to conform to
geometric constraints on their sizes and locations. In order to address this issue,
in this section we introduce a refinement to the TBN model which includes such
geometric constraints.

c1 c2

l1 l2

Input OutputSi(0...c1-1) Sj(c1...c2-1) Sk(c2...n-1)
i M(k)

Fig. 4. Schematic view of how portions of three computation-simulating polymers could
be connected together to yield a polymer representing an invalid computation.

6.1 GTBN Model Definition

We define the Geometric Thermodynamic Binding Networks (GTBN) model to
be an extension of the TBN model, with a few notable differences which restrict
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the ways in which polymers can form. A GTBN is a pair T = (D,M) consisting
of a finite set D of primary domain types and a finite set M of monomer types.
But, rather than a monomer simply being defined as a multiset of domains, a
geometric monomer type m ∈ M is instead defined as a polygon p, along with
a set of pairs (d, l) where d ∈ D ∪ D∗ and l ∈ R

2 is the point on the perimeter
of p where d is located.3 Geometric monomers are taken to be rigid polygons,
and given a pair of geometric monomers, m1 and m2 where (di, li) ∈ m1 and
(d∗

i , lj) ∈ m2, if m1 and m2 can be positioned in the plane so that they do not
overlap but the locations li and lj on m1 and m2, respectively, are adjacent to
each other, then those domains can bind. Bonds are rigid and therefore so are
polymers formed by their binding. Geometric monomers and polymers can be
translated and rotated (but not reflected), and can bind together if they can
be positioned such that they do not overlap and complementary domains on
their perimeters are adjacent. In this paper, we will only consider geometric
monomers which are unit squares with at most a single domain on any face,
located in the center of the face. (Note that this is similar to tiles in the aTAM,
but while the aTAM prevents tiles from rotating through two dimensional space,
geometric monomers are allowed to within the GTBN.) Thus, each monomer in
a geometric polymer can be represented by a pair (p,m) where p ∈ N

2 represents
the coordinates of the center of the geometric monomer and m ∈ M the monomer
type, and a geometric polymer is a set of such pairs, and the geometric monomer
binding graph contains edges representing complementary domains which are
adjacent to each other in some polymer.

A major difference between TBNs and GTBNs is that, due to geometric
constraints, it is possible to have a configuration in a GTBN in which there
exists an unbound domain d on some monomer and an unbound domain d∗ on
either that or another monomer, but d and d∗ cannot bind together. That is,
it may be impossible for the monomers (or the polymers containing them) to
be validly positioned so that the domains are adjacent. Therefore, we define
a condition of a GTBN configuration called effectively saturated which occurs
when the configuration either (1) is saturated, or (2) for all pairs of domains d
and d∗ such that both are unbound, there is no valid positioning of the monomers
or polymers containing them such that d and d∗ can be placed adjacent to each
other (i.e. they are geometrically prevented from binding).

6.2 Efficient Simulation of Turing Machines in GTBNs

With the definition of the GTBN model, we are now able to prove that the
geometric constraints of the model allow for efficient, accurate simulation of
Turing machines. In this section we present the theorem statement and a high-
level overview of the proof, which is by construction.

Theorem 2. Let L ∈ DTIME(f(n)) be a decidable language for arbitrary func-
tion f , and M be a Turing machine which decides L. There exists a set of pri-
mary domain types D, and sets of geometric monomer types M, Mseed, and
3 Note that the definitions can naturally be extended to 3D polyhedra.
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O ⊂ M consisting of geometric monomers with binding domains D ∪ D∗ such
that, for any valid input i to M , the following properties hold:

1. there exists a set of geometric monomer types mi ⊂ Mseed such that mi

collectively encodes i,
2. for Mi = M∪mi, there exists a geometric monomer collection ⇀c for GTBN

Ti = (D,Mi) such that ⇀c simulates M on input i, and
3. the set of output geometric monomer types for the simulation is equal to O.

Fig. 5. This illustrates the pairing of two complete computations. The dislodging of
the seed caps creates an entropy bonus of one. This bonus is what makes the final
complete paired construction favorable.

The proof of Theorem 2 is by construction, and begins similarly to the con-
struction for the proof of Theorem1, with the creation of domains and (geo-
metric) monomers of a GTBN T based off of the definition of a zig-zag aTAM
system TM which simulates the Turing machine M , with a few notable differ-
ences. Mainly, it does not require increasing the size of the domain and monomer
sets by creating copies hard-coded for each position in the simulation.

We now note the complexity of this construction. The seed requires O(n)
unique domains and monomers to make the seed, where n is the number of
input bits. The number of computation/end domains and monomers is O(|Q||Γ |),
where Q is the set of states in M and Γ is the tape alphabet. The number of tape
extension monomers is constant. The capping monomers only scale the current
complexity and can be ignored asymptotically. Therefore, the overall bound on
the number of domains and monomers is O(n + |Q||Γ |).

We first note that the geometric monomers are all designed to simply be unit
squares like the aTAM tiles, with single domains located in the center of faces
to represent the tiles’ glues. Since this construction doesn’t require monomers
hard-coded to locations, and in fact doesn’t require a fixed number of rows or
columns, it is able to simulate a tape of steadily increasing length and so utilizes
collections of monomers that combine to extend the length of the tape.

It is ensured that the deterministic path followed by the zig-zag aTAM system
which simulates the same Turing machine is faithfully encoded by the resulting
“computation” polymer of the single stable configuration by the geometric con-
straints placed on the positioning of geometric monomers and the rigidity of
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their bonds, which prevents erroneous “re-wiring” to occur as it could in the
regular TBN example of Sect. 5. However, in order to create an entropy gap
which makes the configuration containing the correct computation simulations
the single stable configuration, since we can no longer have bound domains which
span the full distance of the polymer (as they do from the seed to end monomers
in the proof of Theorem 1), we instead provide an analogous method of freeing
additional caps —thus gaining entropy— by designing the monomers so that
polymers encoding the computation combine in pairs (as seen in Fig. 5).

Thus, an arbitrary halting Turing machine computation can be simulated
efficiently in terms of domain and monomer type counts, both of which are
O(|Q||Γ |) (where Q is the state set and Γ is the tape alphabet). As with the
construction for the proof of Theorem1, this construction is robust over a class
of configurations in which relationships exist between the counts of different cat-
egories of monomers. The inclusion of the fact that the language being decided
L ∈ DTIME(f(n)) is simply to specify the count of computation monomers
which must be included in the collection, relative to input seeds, to ensure
that the computation can be completely represented without running out of
monomers, i.e. O(f(n)2) copies of the computation monomers must be available
per copy of the seed monomer.
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Abstract. We analyze the complexity of building linear assemblies,
sets of linear assemblies, and O(1)-scale general shapes in the staged
tile assembly model. For systems with at most b bins and t tile types,
we prove that the minimum number of stages to uniquely assemble a
1 × n line is Θ(logt n + logb

n
t

+ 1). Generalizing to O(1) × n lines, we

prove the minimum number of stages is O( logn−tb−t log t
b2

+ log log b
log t

) and

Ω( logn−tb−t log t
b2

).
Next, we consider assembling sets of lines and general shapes using

t = O(1) tile types. We prove that the minimum number of stages
needed to assemble a set of k lines of size at most O(1) × n is

O( k logn
b2

+ k
√
logn
b

+log log n) and Ω( k logn
b2

). In the case that b = O(
√

k),
the minimum number of stages is Θ(log n). The upper bound in this spe-
cial case is then used to assemble “hefty” shapes of at least logarithmic
edge-length-to-edge-count ratio at O(1)-scale using O(

√
k) bins and opti-

mal O(log n) stages.

Keywords: Tile self-assembly · Staged self-assembly
DNA computing · Biocomputing

1 Introduction

Modern technology applications increasingly involve precise design and man-
ufacture of materials and devices at the nanoscale. One approach to nanoscale
design is to use self-assembly : local interaction rules that direct the aggregation of
large numbers of simple units. Seeman [15] discovered that short strands of DNA
whose interactions are controlled by attraction between their base sequences can
be programmed to carry out such self-assembly. This approach was subsequently
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extended both experimentally and theoretically by Winfree [16], who introduced
the abstract Tile Assembly Model (aTAM) to describe systems of four-sided
planar tiles which randomly collide and attach if abutting sides have match-
ing glues of sufficient bonding strength. This simple model is computationally
universal [16] and experimentally capable of complex algorithmic behaviors [12].

Staged Tile Assembly. Here we study a tile assembly model introduced by
Demaine et al. [9] that permits carrying out assembly in multiple bins whose
products can be mixed together later, capturing the common experimental tech-
nique of decomposing a complex reaction into stages of simpler reactions. This
model generalizes the two-handed [4] or hierarchical [7] tile self-assembly model
(2HAM). Unlike the aTAM, in which single tiles attach to a multi-tile seed
assembly, the 2HAM permits arbitrary pairs of assemblies to attach provided
they do so via glues of sufficient strength. Growth without a seed occurs naturally
in experimental DNA tile systems [3,14], motivating the study of two-handed
models.

Efficient Assembly. One of the fundamental goals of self-assembly is the design
of efficient systems that assemble given shapes or patterns. Staged systems have
three combinatorial measures of efficiency: the number of tile types (tile com-
plexity), the maximum number of bins used in any stage (bin complexity), and
the number of stages of the system (stage complexity). Numerous constructions
of efficient staged systems that assemble given shapes [9,11] and patterns [10,17]
have been given. Here, we give new, more efficient constructions for assembling
height-1 and height-O(1) rectangles called lines, sets of such lines, and hefty
general shapes of sufficient edge-length-to-edge-count ratio. The results are sum-
marized in Table 1 and described below.

Assembling 1×n Lines. The construction of lines is often used as a subroutine
in the assembly of more complex shapes [9,11] or as a simple benchmark [1,6].
In the 2HAM, assembling 1 × n lines requires n tile types; as a corollary, staged
systems with 1 bin, 1 stage, and n tile types assemble 1 × n lines.

If O(1) bins and O(log n) stages are permitted, then O(1) tile types suffice [9],
demonstrating a trade-off between two measures of staged system complexity.
However, no general trade-off relating all three complexity measures were known
prior to this work for assembling 1 × n lines. Here we obtain tight upper and
lower bounds that completely characterize the trade-off: for systems of at most
t tile types and b bins, the minimum number of stages needed to assemble any
1 × n line is Θ(logt n + logb

n
t + 1) (Theorems 1 and 2).

A precursor to the upper bound construction was used to gener-
ate a set of gadgets to achieve the primary results in [5]. The lower
bound approach (Theorem 2) is novel and is not information-theoretic.
As a result, it holds for all n rather than almost all n, a common limitation
of information-theoretic lower bounds in tile self-assembly.
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Assembling O(1) × n Lines. In the 2HAM, O(1) × n lines can be assembled
using nO(1) tile types [8],1 but a lower bound exceeding Ω( log n

log log n ) remains
open. The assembly of O(1) × n lines has not been studied explicitly in the
staged model, however some constructions of Demaine et al. [11] utilize O(1)×n
line construction as a subroutine.

We give staged systems that use t tile types and b bins that assemble O(1)×
n lines in O( log n−tb−t log t

b2 + log log b
log t ) stages (Theorem 4) and prove that for

almost all n, Ω( log n−tb−t log t
b2 ) stages are required (Theorem 5). The upper bound

implies a number of new results, including the assembly of O(1) × n lines by
systems with O(1) bins, O(1) stages, and O( log n

log log n ) tile types, beating our
lower bound of Ω(log n) tile types for 1 × n lines (Theorem 2).

This result utilizes the bit-pad gadget of [5], and the construction of this pad
is the bottleneck for the complexity we achieve. Used naively, this bit-pad gadget
can be used to assemble O(log n) × n rectangles within the stated complexity.

Here, we combine with bit-pad gadget with a a novel “sideways” counter
to reduce the rectangle height from O(log n) to O(1). This counter involves a
non-deterministic guessing strategy for copying sets of log n bits though a O(1)-
height regions, “deactivating” incorrect copies. This technique solves a common
difficulty in assembling shapes with narrow regions of low “geometric band-
width” [2,8] and may have other applications in two-handed self-assembly.

Assembling O(1) × n Line Sets and General Shapes. Finally, we con-
sider constructing a set of k O(1)-height lines of differing lengths up to n, in
service of general shape construction. The first result is a b-bin, O(k log n

b2 +
k
√
log n
b + log log n)-stage, O(1)-tile system for assembling any such set of lines

(Theorem 6). This is complemented by a lower bound of Ω(k log n
b2 ) (Theorem 7),

optimal within an additive O(log log n) factor for small b.
In the special case of systems with O(

√
k) bins and O(1) tile types, we give

a tight bound of Θ(log n) stages (Theorem 8 and Corollary 1). We then use the
upper bound to efficiently assemble hefty shapes whose edge lengths are at least
logarithmic in the number of edges with a O(1) scale factor increase. This small
scale factor contrasts with the results of [5], where more efficient assembly of
shapes is obtained, but with unbounded scale factor.

We also prove that any such shape can be assembled by a system with O(1)
tile types, O(

√
k) bins, and O(log n) stages (Theorem 9), optimal for nearly

every choice of k and n (Theorem 10) and giving an affirmative answer to a
question of [11].

2 The Staged Self-assembly Model

Here, we give a technical introduction to the two-handed tile assembly model
(2HAM) and the staged self-assembly model. The two-handed tile assembly model

1 The result is given for the aTAM in [8] but the same tile set at temperature 2 in the
2HAM behaves identically.
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Table 1. An overview of old and new results on problems considered in this paper.
Variables t and b denote resource constraints on tile types and bins, respectively. For
line sets, k denotes the number of lines in the set, while n denotes the length of the
longest line. For general shapes, k denotes the number of edges in the shape, while n
denotes the edge length of the minimum-diameter bounding square of the shape. A
hefty shape is a shape whose edges are all length at least logarithmic in the number of
edges.

Bins Tiles Upper bound Lower bound Reference

1 × n lines

O(1) O(1) Θ(log n) Corollary 1,

Theorem 3 of [9]

b t Θ(logt n + logb
n
t
+ 1) Theorems 1 and 2

O(1) × n lines (standard glues)

1 nO(1) 1 Theorem 3.2 of [8]

b t O( logn−t log t−tb
b2

+ log log b
log t

) Ω( logn−t log t−tb
b2

) Theorems 4 and 5

Line sets

b O(1) O( k
√

logn
b

+ k logn
b2

+ log log n) Ω( k logn
b2

) Theorems 6 and 7

O(
√

k) Θ(log n) Theorem8

and Corollary 1

Hefty hole-free shapes

O(k) O(1) O(log n) Ω( logn
k

) Corollary 1 of [11],

Theorem 3 of [9]

O(
√

k) Θ(log n) Theorems 9 and 10

is a model of tile-based assembly processes in which large assemblies can combine
freely, in contrast to the well-studied aTAM that limits assembly to single-tile
addition to a growing seed assembly. An example system is shown in Fig. 1a.

The staged self-assembly model is a generalization of the 2HAM in which the
terminal assemblies of one 2HAM system can be used, in place of single tiles, as
the input assemblies of another 2HAM system. Each system exists in a separate
bin, and the terminal assemblies of a set of bins can be combined as the input
assemblies to another bin in the subsequent stage. A staged system then consists
of a mixing “graph” that defines which bins’ contents are mixed into each bin
in the subsequent stage. Figure 1b shows a small example system.

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue
from a set Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength
str(g1, g2). Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength
str(g1, g2), with str(g1, g2) = 0 unless g1 = g2. Every set Σ contains a special
null glue whose strength with every other glue is 0.

Configurations, Bond Graphs, and Stability. A configuration is a partial
function A : Z

2 → T for some set of tiles T , i.e. an arrangement of tiles on a
square grid. For a given configuration A, define the bond graph GA to be the
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Fig. 1. (a) A 2HAM example that uniquely builds a 2 × 3 rectangle. The top 4 tiles in
the tile set all combine with strength-2 glues building the ‘L’ shape. The tile with blue
and purple glues needs two tiles to cooperatively bind to the assembly with strength
2. All possible producibles are shown with the terminal assembly highlighted. (b) A
simple staged self-assembly example. The system has 3 bins and 3 stages, as shown in
the mixgraph. There are six tiles in our system that we assign to bins as desired. From
each stage only the terminal assemblies are added to the next stage. The result of this
system is the assembly shown in the output bin in stage 3.

weighted grid graph in which each element of dom(A) is a vertex, and the weight
of the edge between a pair of tiles is equal to the strength of the coincident glue
pair. A configuration is said to be τ -stable for positive integer τ if every edge
cut of GA has strength at least τ , and is τ -unstable otherwise.

Assemblies. For a configuration A and vector u = 〈ux, uy〉 with ux, uy ∈ Z
2,

A + u denotes the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For
two configurations A and B, B is a translation of A, written B � A, provided
that B = A + u for some vector u . For a configuration A, the assembly of A
is the set Ã = {B : B � A}. An assembly Ã is a subassembly of an assembly
B̃, denoted Ã 	 B̃, provided that there exists an A ∈ Ã and B ∈ B̃ such that
A ⊆ B. An assembly is τ -stable provided the configurations it contains are τ -
stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there
exist A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃ is
τ -stable.

Two-Handed Assembly and Bins. We define the assembly process in terms
of bins. A bin is an ordered tuple (S, τ) where S is a set of initial assemblies and
τ is a positive integer parameter called the temperature. For a bin (S, τ), the set
of produced assemblies P ′

(S,τ) is defined recursively as follows:

1. S ⊆ P ′
(S,τ).

2. If A,B ∈ P ′
(S,τ) are τ -combinable into C, then C ∈ P ′

(S,τ).

A produced assembly is terminal provided it is not τ -combinable with any
other producible assembly, and the set of all terminal assemblies of a bin (S, τ)
is denoted P(S,τ). Intuitively, P ′

(S,τ) represents the set of all possible supertiles
that can self-assemble from the initial set S, whereas P(S,τ) represents only the
set of supertiles that cannot grow any further.
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The assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′
(S,τ) there

exists a corresponding y ∈ P(S,τ) such that x 	 y. Thus unique production
implies that every producible assembly can be repeatedly combined with others
to form an assembly in P(S,τ).

Staged Assembly Systems. An r-stage b-bin mix graph M is an acyclic r-
partite digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and
edges of the form (mi,j ,mi+1,j′) for some i, j, j′. A staged assembly system is a
3-tuple 〈Mr,b, {T1, T2, . . . , Tb}, τ〉 where Mr,b is an r-stage b-bin mix graph, Ti is
a set of tile types, and τ is an integer temperature parameter.

Given a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, we define a
corresponding bin (Ri,j , τ) where Ri,j is defined as follows:

1. R1,j = Tj (this is a bin in the first stage);

2. For i ≥ 2, Ri,j =
( ⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τ)

)
.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj , and each
bin in any subsequent stage receives an initial set of assemblies consisting of the
terminally produced assemblies from a subset of the bins in the previous stage
as dictated by the edges of the mix graph.2 The output of the staged system
is simply the union of all terminal assemblies from each of the bins in the final
stage.3 We say that this set of output assemblies is uniquely produced if each bin
in the staged system uniquely produces its respective set of terminal assemblies.

Shapes. The shape of an assembly is the polyomino defined by the tile locations,
i.e. dom(A), and is scaled by a factor c by replacing each cell of the polyomino
with a c × c block of cells. A shape is hole-free provided it is simply connected.

Since every shape is a polyomino, its boundary consists of unit-length hori-
zontal and vertical line segments. An edge of a shape is a maximal contiguous
parallel sequence of such segments. A shape with k edges is hefty provided each
edge has length at least 4 log2 k+4

26 = Ω(log k). A shape S is an h×w line provided
S = {y + 1, y + 2, . . . , y + h} × {x + 1, x + 2, . . . x + w} for some x, y ∈ Z

2.

3 Assembling 1 × n Lines

We start by analyzing the parameterized staged complexity of assembling 1 × n
lines using systems with t tile types and b bins. The following upper bound
follows immediately from combining the construction of Lemmas 1 and 2.4

2 The original staged model [9] only considered O(1) distinct tile types, and thus for
simplicity allowed tiles to be added at any stage. Because systems here may have
super-constant tile complexity, we restrict tiles to only be added at the initial stage.

3 This is a slight modification of the original staged model [9] in that the final stage
may have multiple bins. However, all of our results apply to both variants of the
model.

4 The “+1” implies the trivial requirement of at least one stage.
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L R

Fig. 2. A high level example using t = 7 tile types and 11 bins. Note that the growing
assembly in the third stage’s leftmost bin maintains the property that L and R glues are
exposed on the left and right identical to the single tile in the first stage’s leftmost bin.
This two-stage mixing process repeats, each time increasing the length of the assembly
in the leftmost bin by a factor of Θ(t).

Theorem 1. There exists a constant c such that for any b, t, n ∈ N with b, t > c
there exists a staged assembly system with b bins and t tile types whose uniquely
produced output is a 1 × n line using O(logt n + logb

n
t + 1) stages.

Lemma 1. For any b, t, n ∈ N with t ≥ 5 and b ≥ 3
2 t + 5

2 , there exists a staged
assembly system with b bins and t tile types whose uniquely produced output is a
1 × n line using O(logt n + 1) stages.

Lemma 2. For any b, t, n ∈ N with b > 11 and 3
2 t+ 5

2 > b, there exists a staged
assembly system with b bins and t tile types whose uniquely produced output is a
1 × n line using O(logb

n
t−b + 1) stages.

Detailed proofs are omitted due to space constraints. We instead give a brief
overview of the constructions here. Both constructions consider constant frac-
tions t′, b′ of t, b, respectively.

In the case of Lemma 1 (when b ≥ 3
2 t + 5

2 ), t′ copies of a 1 × � assembly are
assembled into a 1 × �t′ assembly in two stages (initially, � = 1). An example of
this technique for a specific t and b can be seen in Fig. 2. Growing by a factor of t′

in O(1) stages implies O(logt n) stages suffice to assemble 1×n lines, where n is
a power of t′. Since this system generates all powers of t′ in intermediate stages,
values of n that are not powers of two are handled by keeping a partial growth
bin where k distinct 1× (t′)i assemblies are concatenated to a growing assembly
each time the ith digit in the base t′ expansion of n is k. If Lemma 1 does not
apply but b ≥ t

2 , then shrinking t by a factor of 3 and applying Lemma 1 implies
O(logt/3 n + 1) = O(logt n + 1) stages suffice.

Otherwise, t/2 > b and Lemma 2 applies. In this case, the above technique
fails because there are too few bins for the t′ tiles used to connect t′ copies of
a 1 × � assembly. Instead, the assembly is grown by factors of b′ (rather than
t′) using b′ tile types as connectors. The t′ − b′ tiles not used as connectors
create a 1 × (t′ − b′) assembly that is assigned in the first stage to each of
the connector tiles’ bins, increasing the length of connectors in the first stage.
Growing by a factor of b′ in O(1) stages using assemblies which start at length
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t′ − b′ implies O(logb
n

t−b + 1) stage complexity. Lengths that are not powers of
b′ are handled identically as in Lemma 1, but utilizing the base b′ (rather than
base t′) expansion of n. Since t

2 > b, O(logb
n

t−b ) = O(logb
n
t ).

3.1 Lower Bound

A lower bound can also be shown for assembling 1 × n lines by proving an
equivalent statement: that a system with s stages, b bins, and t tile types can
uniquely assemble only lines of length O(min(ts, tbs)).

Theorem 2. For any b, t, n ∈ N, a staged system with b bins and t tile types
whose uniquely produced output is a 1 × n line must use Ω(logt n + logb

n
t + 1)

stages.

4 Assembling O(1) × n Lines

We now turn our attention to assembling O(1)×n lines. Theorem 4 assembles a
O(1)×n line using a staged system with t tile types, b bins, and O( log n−tb−t log t

b2 +
log log b
log t ) stages, breaking the Ω(logt n + logb

n
t + 1) lower bound for 1 × n lines.5

A complementary lower bound of Ω( log n−tb−t log t
b2 ) for any constant height is

given by Theorem 5.

4.1 Special Class of O(1) × n Lines

As a warmup, we describe a simpler construction restricted to an infinite set (but
not all) of O(1)×n lines. This simpler construction already beats the trivial lower
bound of n for 1 × n lines in the aTAM. Details of fine-tuning the termination
of the counting, yielding the desired result for all n (Theorem 4), is omitted due
to space constraints.

Theorem 3. For any t, b, n = Ω(1) with n ∈ {i : i = 2m(2m+3),m ∈ N}, there
exists a temperature-2 staged assembly system with b bins and t tile types whose
uniquely produced output is a O(1) × n line using O(log log n) stages.

The construction has four phases:

1. Counter gadgets assemble a horizontal counter that counts from 0 to 2m − 1
for some m ∈ N with n = 2m(2m + 3). Nondeterminism enables efficiently
building all such counter gadgets, but creates many unwanted counter gad-
gets.

2. Deactivator gadgets are assembled. They attach to and deactivate unwanted
counter gadgets for later disposal.

5 Note that the first bound is missing the additive constant to ensure at least one
stage. There is still a requirement of at least one stage, but ‘+1’ may be insufficient
as the term could be negative.
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3. The remaining desired counter gadgets assemble with each other with the
help of gum pads. The horizontal counter of desired length is assembled.

4. Deactivated counter gadgets are “disposed” by attaching to the bottom of
the resulting linear assembly, and the assembly is completed into a rectangle.

Fig. 3. (a) An example of how 4-bit wing gadgets geometrically encode binary strings.
(b) Using O(1) bins and tile types, the number of bits represented on counter gadgets
is doubled every stage. (c) Using vertical lines built from O(1) tile types, left and right
wings are nondeterministically brought together to form a counter gadget.

Phase 1: Assembling Counter Gadgets

– Wing gadgets are rectangular assemblies with geometric bumps on their north
surface, where the bumps geometrically encode an index in binary using m
bits (Fig. 3a).

– A wing gadget has index i provided it geometrically encodes a binary string
representing i, and all m-bit wing gadgets are nondeterministically built using
O(1) tiles, O(1) bins, and O(log m) stages using the mix-graph shown in
Fig. 3b.

– Two wing gadgets are nondeterministically brought together with O(1)-size
assemblies to form counter gadgets, as shown in Fig. 3c.

Phase 2: Deactivating Bad Counter Gadgets

– A deactivator gadget detects counter gadgets whose left and right wings do
not have the same index and deactivates them, preventing their assembly with
other counter gadgets in a later stage (Fig. 4c). A deactivator gadget is built
by assembling an error checker and a deactivator base.

– Error checkers (Fig. 4a) are assemblies of O(1) width and 2m + 3 length that,
given an m-bit left wing and right wing gadget, can bind to those gadgets if
the binary strings represented by those gadgets differ at any of their m bit
locations. These gadgets are built using O(1) tiles, O(1) bins, and O(log m)
stages.



Optimal Staged Self-assembly of Linear Assemblies 41

– Alone, error checkers cannot completely guarantee that a counter gadget will
not interact with the glues of other assemblies. To deactivate the counter
gadgets, error checkers are combined with a deactivator base to create our
deactivator gadgets (Fig. 4b). The deactivator base is built O(1) tiles, O(1)
bins, and O(log m) stages.

– Deactivator gadgets are mixed with counter gadgets to deactivate mismatched
counter gadgets encoding different values on east and west wings (Fig. 4c).
Deactivated counter gadgets are “disposed” later.

Fig. 4. (a) The two different kinds of error checkers. These attached non-
deterministically to the deactivator base using their northern geometric teeth. (b) The
error checker attaching to the base, nondeterministically choosing a location, com-
pleting our deactivator gadget. Through nondeterminism, deactivator gadgets can be
created to detect mismatches at every possible bit location. (c) A deactivator gadget
attaching to a mismatched counter gadget.

Fig. 5. (a) Increment tiles begin adding geometric teeth on the underside of the right
wing. (b) The geometric teeth on the underside of the right wing. They represent the
same number as the top of the right wing after being incremented by one. (c) A gum
pad detects matching geometric teeth and adheres two counter gadgets together.

Phase 3: Line Formation

– Counter gadgets that have not been deactivated are mixed with O(1) incre-
ment tiles that bind to their right wings, exposing a geometric representation
of each wing’s binary string, incremented by 1 (Figs. 5a and b).

– Gum pads allow a pair of left and right wings on two counter gadgets to attach
side-by-side if the indices of the two wings are identical (Fig. 5c). Gum pads
are built using O(1) tile types, O(1) bins, and O(log m) stages.

– Gum pads are mixed with the counter gadgets, allowing them to self-assemble
into a linear assembly of length n that counts horizontally from 0 to 2m − 1.
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Phase 4: Disposal and Finishing

– Deactivated counter gadgets are disposed by attaching to the bottom of the
linear assembly, increasing the assembly’s width by O(1), as shown in Fig. 6a.

– A final bin has O(1) tile types that finish the line by filling any gaps or jagged
edges, so that the end result is a rectangle.

Fig. 6. (a) Disposing of trash assemblies. O(1) tiles are added to the westmost edge
of the counter. Using these tiles, deactivators can attach to the bottom of the counter.
The empty space is filled with O(1) filler tile types. (b) Stopper gadgets for every
number at least 5 assembled and mixed with the counter gadgets. (c) Mixed with gum
pads, the counter gadgets assemble, a horizontal counter counting from 0 to 5; with
stopped counter gadgets as trash.

Complexity. Counter gadgets, deactivator gadgets, and gum pads are all
assembled using a common technique borrowed from [9] that uses O(1) tile types
and O(log m) stages to assemble Θ(m) assemblies (in O(1) bins). The same tech-
nique is also used to assemble the Θ(m) lines used in the deactivator gadgets
and toothed gum and counter gadget “pads”, starting with O(1) bit gadgets and
also using O(1) bins and O(log m) stages. Thus, all aforementioned gadgets can
be assembled in parallel using O(1) tile types, O(1) bins, and O(log m) stages.
Since n = 2m(2m + 3), m = Θ(log n), and O(log m) = O(log log n).

4.2 Generalizing to All n

The construction of Theorem 3 builds counter gadgets using a horizontal count-
ing method to count from 0 to 2m − 1 for any m ∈ N, yielding assemblies of
length n = 2m(2m + 3) for all m ∈ N. General values of n are achieved by
fine-tuning length at two scales: “large scale” via terminating the counter early
at a specific value before the desired n and “small scale” via attaching a smaller
assembly to reach exactly n from where the counter terminated.
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Terminating the counter early is achieved by deactivating “high-value”
counter gadgets with values larger than a specified value using stopper gadgets,
as shown in Fig. 6. Encoding the counter termination value dominates the stage
complexity, giving the following result:

Theorem 4. For any t, b, n ∈ N with t, b = Ω(1), there exists a temperature-2
staged system with b bins and t tile types that assembles a O(1) × n line using
O( log n−tb−t log t

b2 + log log b
log t ) stages.

4.3 Lower Bounds for O(1) × n Lines

Lower bounds for assembling O(1) × n lines are obtained using information-
theoretic arguments based on combining the bound on information content
from [5] with the lower bound of �log2 n� on the number of bits needed to specify
n for almost all n:

Theorem 5. For any b, t ∈ N and almost all n ∈ N, any staged self-assembly
system with b bins and t tile types and uniquely assembles a O(1) × n line must
use Ω( log n−tb−t log t

b2 ) stages.

5 Assembling O(1) × n Line Sets

Now we consider extending the construction of a O(1) × n line to a set of k
such lines, working towards the construction of hefty shapes in Sect. 6. The first
upper bound construction uses parallel instances of the Theorem 4 construction
to assemble multiple lines in parallel with a comparable number of stages.

Theorem 6. Let L = {n1, . . . , nk} ⊆ N with n = max(L). There exists a staged
assembly system with O(1) tile types, b bins, and O(k

√
log n
b + k log n

b2 + log log n)
stages whose uniquely produced output is a set of O(1) × ni lines for all ni ∈ L.

(a) (b) (c)

Fig. 7. (a) A hefty hole-free shape to be constructed. (b) The shape scaled by factor 2
with backbone (green) and vertices (blue). (c) The decomposition of the backbone into
vertices and lines. (Color figure online)
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Theorem 7. Let L = {n1, . . . , nk} ⊆ N with n = max(L). For almost all L,
any staged self-assembly system with O(1) tile types and b bins that assembles
O(1) × ni lines for all ni ∈ L has Ω(k log n

b2 ) stages.

In the case that b = O(
√

log n), the prior two theorems are tight up to
additive terms. However, as b increases, the “crazy mixing” approach [9] used
in the modular construction of Theorem 6 fails to utilize the growing number of
possible mix graphs. The next construction achieves optimal stage complexity
for large bin counts, specifically bin counts scaling with k:

Theorem 8. Let L = {n1, . . . , nk} ⊆ N with n = max(L). There exists a staged
self-assembly system with O(1) tile types, O(

√
k) bins, and O(log n) stages that

assembles O(1) × ni lines for all ni ∈ L.

The following lower bound matches this construction and follows directly
from Theorem 7.

Corollary 1. Let L = {n1, . . . , nk} ⊆ N with n = max(L). For almost all L, any
staged self-assembly system with O(1) tile types and O(

√
k) bins that assembles

O(1) × ni lines for all ni ∈ L has Ω(log n) stages.

6 Assembling Hefty Shapes

The efficient line set assembly result of Theorem 8 can be combined with a
technique of [11] to assemble general shapes optimally:

Theorem 9. Let S be a hefty hole-free shape with k vertices and minimum-
diameter bounding square of edge length n. There exists a τ = 2 staged system
with O(

√
k) bins, O(1) tile types, and O(log n) stages that uniquely produces S

scaled by a factor O(1).

Theorem 10. Let S be a hefty shape with k edges and minimum-diameter
bounding square of edge length n with k = O(n2−ε) for some ε > 0. For almost
all S, any staged self-assembly system with O(1) tile types and O(

√
k) bins that

assembles S has Ω(log n) stages.

The technique of [11] is to first efficiently create the backbone of the given
shape, then fill in the backbone of the shape using O(1) tile types and one
stage (see Fig. 7). For a shape with k vertices (and edges), this approach uses
O(k) bins.

We reduce the bin complexity to O(
√

k) by replacing k separate bins, each
containing a different edge assembly, with O(

√
k) bins, each containing many

edge assemblies each labeled with geometric teeth, similar to the construction
of Theorem 8. In exchange, O(log n) additional stages must be used to assemble
these edge assemblies.
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Abstract. Using an imperfectly prepared state, we show that under a
Lorentz transformation, the evolution of a massive spin-1/2 particle vio-
lates many standard assumptions made in quantum information theory,
including complete positivity. Unlike other recent endeavors in relativis-
tic quantum information, we are able to quantify and maximize how
much information can be transferred through such a quantum process
by calculating the scope. We show that, surprisingly, in many instances
the relativistic noise increases the amount of information that can be
transferred, and in fact, even if the initial state is arbitrarily close to the
completely mixed state, information can still be transferred perfectly.

Keywords: Quantum information · Relativity · Channel capacity

1 Introduction

The study of transmitting spin-momentum entangled particles through relativis-
tic noise was initiated by [1]. However, it is fairly standard to assume that a
quantum system and its environment are in a pure product state [2,3]. The con-
sequences of this assumption are far reaching and are often taken for granted. For
example, from this assumption, one can show that the local dynamics of a quan-
tum system must not decrease entropy, not increase purity, and not increase the
informatic content of a message. We will not foray into the debate about when
this assumption is good enough or valid, but instead consider an example of a
spin-1/2 particle whose spin is entangled with its momentum.

We will use somewhat of a toy model and assume the initial state is in a
superposition of only two definite momentum states, but one could use states
like those described in [1] to generalize our model. In contrast to [1,4], the local
dynamics of our model are linear, which allows us to calculate the maximal
amount of information that can be transferred in a quantum process undergoing
a Lorentz transformation. Although we have taken a simplified approach, the
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reduced dynamics contradict many standard assumptions made about quantum
processes, including all of the ones listed above.

When one sends classical information through a quantum channel, one
chooses a basis of the state space to represent the classical bits. This choice
of basis induces a classical channel with a classical capacity, and each choice
of basis generates a potentially new channel with its own capacity; for a dis-
cussion on capacity see [5]. As we range over every basis of the state space,
we get an interval of capacities which is the scope of that channel [6]. Mar-
tin’s procedure for calculating scope explicitly uses the fact that the channel is
non-expansive in the Bloch representation, and he assumes the information is
encoded in to pure states. As we will show, our maps are expansive, and we do
not have access to the entire state space, so we will modify Martin’s approach
and show how to maximize the information transfer. With our model, we show
that even with an arbitrarily noisy preparation procedure, information can be
sent perfectly through the process by choosing an appropriate communication
basis. The advantage to calculating the scope of a quantum channel is that it
not only gives a procedure for maximizing the capacity, but it does so without
any additional error correcting codes [7]. In some of the examples we use, one of
the communication bases appears not to suffer the effects of relativistic noise. So
the naive approach would be to use that basis to encode information. However,
as we will show, that is not always the optimal communication basis.

Although most of this manuscript is framed in the language of a general quan-
tum communication problem, the topics discussed are directly related to compu-
tation. For instance, in [8], they showed that relativistic effects can increase com-
putational complexity when running algorithms on a quantum computer. Specif-
ically, they showed that in the presence of enough relativistic noise, Grover’s
search algorithm turns linear, negating the computational speed up given by
quantum phenomena.

2 Wigner Angles in Relativity

Consider a massive spin-1/2 quantum elementary particle described by the Dirac
equation. In this case, the relativistic effects on a Dirac spinor are given through
the Wigner rotation [9,10]. That is, the net effect of a Lorentz transformation can
be described by the unitary transformation δÛ , which represents the infinitesimal
Lorentz transformation δΛ(x) in the inertial frame at x. Thus, the effect of an
infinitesimal Lorentz transformation on a spinor ψp,σ of momentum p and spin
projection σ has the following form [9]:

δÛ ψp,σ = N(p, δΛp)
∑

α

δDσα ψδΛp,α, (1)

where N(p, δΛp) is a normalization factor, and the matrix (δDσα)σα provides a
representation of the little group. Physically, this matrix is associated with the
spin-1/2 representation of an infinitesimal Wigner rotation.

We shall mainly concern ourselves with one-particle (positive energy) states
that are in a superposition of states with definite momentum and spin: |p, 0〉 and
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|q, 1〉; for convenience we omit the indices of the 4-momentum of the particle,
and use the computational basis {|0〉, |1〉} to label the spin states. Throughout
this manuscript, we use a treatment similar to that of [1,11] and note that the
expression |p, s〉 denotes a state of definite spin projection s and momentum
p. However, in contrast to massless particles, one can choose a single arbitrary
quantization axis to describe the (potentially non-definite) spin states of massive
particles with different momenta. Lastly, we will take the combined system to
be Hp ⊗Hs, where Hp and Hs are the momentum and spin state Hilbert spaces,
respectively.

In situations where the Wigner rotation takes place along a single direction
(e.g. around the y-axis), the corresponding 2-level unitary transformation is given
by the unitary matrix

D = eiσyΩp/2 =
(

cos (Ωp/2) sin (Ωp/2)
− sin (Ωp/2) cos (Ωp/2)

)
, (2)

where Ωp is the Wigner angle, which in general depends on the momentum p
and the Lorentz transformation Λ.

Taking the quantization axis parallel to the z-direction (i.e. eigenvectors of
the σz spin operator), the effect of the Lorentz transformation on the two positive
energy Dirac states (spin up and spin down) is given by:

Û |p, 0〉 = cos
(

Ωp

2

)
|Λp, 0〉 − sin

(
Ωp

2

)
|Λp, 1〉, (3)

Û |p, 1〉 = sin
(

Ωp

2

)
|Λp, 0〉 + cos

(
Ωp

2

)
|Λp, 1〉. (4)

Note that the concept of the Wigner rotation can be easily generalized for the
study of Dirac states in the presence of classical gravitational fields described by
Einstein’s General Relativity [10,12]. Finally, there have been questions about
the whether or not the linear application of Wigner rotations is problematic.
However, in [15], it was shown there is no problem with the application.

3 The Reduced Density Matrix in Relativity

Recently, there have been discussions about the reduced density matrix and the
appropriate measurement observables related to relativistic spin-1/2 particles
[13,14,16–18]. Specifically, how much information can be ascribed to the reduced
density matrix when the particle has relativistic momentum. In [14], they argue
that since after a Lorentz transformation the measurement statistics of a massive
spin-1/2 particle can depend on the momentum, the spin and momentum are not
independent variables, and therefore the reduced density matrix is meaningless.
Their argument hinges on the fact one cannot compute the expectation value of
|p, 0〉 from its reduced density matrix in every inertial frame, but this revelation
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should not come as a surprise. In fact, if one were to prepare the state |p, 0〉 in
one inertial frame, in a different inertial frame it can transform to |Λp, 1〉 under
a Wigner rotation as seen in Eq. (3). This effect is due to the way the Wigner
rotation mixes the spin and momentum, even when the particle is initially in a
momentum eigenstate.

However, in the reference frame of the observer, the state |p, 0〉 transforms
under the Wigner rotation to the state described in Eq. (3), for which the reduced
density matrix is

trp(U |p, 0〉〈p, 0|U†) =
(

cos2 Ωp/2 0
0 sin2 Ωp/2

)
. (5)

Although that density matrix cannot predict the measurement statistics in every
frame of reference, it correctly predicts the expectation values when using the
standard Pauli spin operators in the measurement device’s frame of reference.
Note this happens even though the spin-measurement depends on the momen-
tum, which manifests as the Wigner angle Ωp.

It is our contention that the results in [14] are more of a commentary on the
observables associated with a relativistic Stern-Gerlach device, rather than the
usefulness of the reduced density matrix. As long as one computes the reduced
density matrix in the measurement device’s frame of reference by properly trans-
forming the initial state with a Wigner rotation, and one uses the correct observ-
ables, there is no ambiguity about the measurement statistics predicted by the
reduced density matrix [13,16,17]. Even though there is no local transforma-
tion rule for the reduced density matrix, it still provides the ability to calculate
informatic quantities like scope, capacity, and entropy. As [18] discusses, there
are at least seven candidates for relativistic spin observables, and none are uni-
versally accepted/rejected as the relativistic spin observable. Since it is still an
open question of how to reconcile a measurement procedure with the mathemat-
ical construction of a relativistic spin observable [18], in the following, we will
not constrain ourselves to a particular preparation or measurement device, like
the Stern-Gerlach, and instead, operate with the most general rules of quan-
tum mechanics. That being said, we conjecture that no matter what observable
one uses, a Lorentz transformation can increase the information content of a
relativistic particle.

4 Quantum Information in Relativity

To analyze the effect of a Lorentz transformation on quantum information, we
will assume there is a black box that produces the state

|Ψ〉 = r|p, 0〉 + s|q, 1〉, (6)

with |r|2 > |s|2. To be clear, when writing the state |m,n〉, we are describing
a particle with momentum m and spin n in reference to a fixed axis in the
laboratory’s frame of reference. We are also assuming that the sender and receiver
have a shared knowledge of this fixed axis.
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When tracing out the momentum, the reduced state is

ρ =
(|r|2 0

0 |s|2
)

. (7)

To an observer, ρ might resemble an imperfectly prepared state in a communica-
tion protocol; i.e., for sufficiently large |r|, ρ might be an adequate approximation
of |0〉〈0|, so that we might attempt to communicate with it. To completely char-
acterize the channel, we must be able to prepare an arbitrary spin state |φ〉. To
do so, we perform a local unitary transformation V of the spin state |0〉 so that
V |0〉 = |φ〉. Globally, the preparation is

I ⊗ V |Ψ〉 = r|p, φ〉 + s|q, φ⊥〉, (8)

where |φ⊥〉 = V |1〉; the reduced state of that system is

|r|2|φ〉〈φ| + |s|2|φ⊥〉〈φ⊥|. (9)

There are many unitary matrices that will map |0〉 to |φ〉, so it’s natural to
wonder if the preparation procedure is well-defined; the answer is yes. The global
state I ⊗ V |Ψ〉 will pick up a phase from V and thus depends on V ; however,
that phase gets traced out. Explicitly, if we want to prepare the arbitrary spin
state |φ〉 = (a b)t (with |a|2 + |b|2 = 1), then the unitary matrix V must be of
the form

V =
(

a −eiθb∗

b eiθa∗

)
. (10)

However, tr p(I ⊗ V |Ψ〉〈Ψ |I ⊗ V ) computes to
(|a|2|r|2 + |b|2|s|2 ab∗(|r|2 − |s|2)

a∗b(|r|2 − |s|2) |a|2|s|2 + |b|2|r|2
)

, (11)

where tr p is the partial trace over the momentum. The phase eiθ does not appear
in the reduced state, and thus the choice of V is inconsequential to the observer.

On a state of the form

ω = |r|2|φ〉〈φ| + |s|2|φ⊥〉〈φ⊥|, (12)

we define the map

ε(ω) = tr p(Û(I ⊗ V )|Ψ〉〈Ψ |(I ⊗ V )†Û†), (13)

which describes the local dynamics under a global Lorentz transformation.
Again, any phase picked up by the choice of V is lost in the partial trace, and
the map is well-defined on such states. Generally, the state space is the convex
hull of the pure states. Since there is no way to generate a pure state with the
black box, it would be meaningless to ask what ε(|φ〉〈φ|) is. However, we can
form all convex combinations of states like ω, and ask how ε operates on them;
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that convex hull is the state space. Since the partial trace and conjugation by Û
are linear operators, ε has a well-defined convex-linear extension,

ε(p1ω1 + p2ω2) = tr p(Û [I ⊗ (p1V1 + p2V2)]|Ψ〉〈Ψ |[I ⊗ (p1V1 + p2V2)]†Û†), (14)

to that convex subspace of density matrices. In fact, ε has a linear extension
to the set of all 2 × 2 matrices, which we will make use of subsequently in our
analysis; however, we do so with the understanding that this is of mathematical
convenience and that we cannot generate every state.

In order to calculate information flow through the relativistic channel, we will
employ the Bloch representation. Each qubit can be written as a 2 × 2 positive
semi-definite Hermitian matrix:

ρ =
I + x · σ

2
(15)

=
1
2

(
1 + x3 x1 − ix2

x1 + ix2 1 − x3

)
, (16)

where σ is a vector whose entries are the Pauli spin matrices. The vector x =
[x1 x2 x3]t is the Bloch vector. Generally, the state space of Bloch vectors is the
ball of radius 1, but in our case, the state space is the ball of radius |r|2 − |s|2.
Each state is represented by a unique Bloch vector, and every channel induces
a unique map on the Bloch vector:

ε

(
I + x · σ

2

)
=

I + f(x) · σ

2
. (17)

When the channel ε is linear and has the completely mixed state as a fixed point,
the induced map is a matrix called the Bloch matrix. The Bloch matrix for ε is

f =
1

|r|2 − |s|2

⎛
⎝

|r|2 cos Ωp − |s|2 cos Ωq 0 −|r|2 sin Ωp + |s|2 sin Ωq

0 |r|2 − |s|2 0
|r|2 sin Ωp − |s|2 sin Ωq 0 |r|2 cos Ωp − |s|2 cos Ωq

⎞
⎠ . (18)

Although f has the appearance of a standard Bloch matrix, f is an expansive
map, so it does not map the unit ball to itself, and thus it does not always map
states to states. To be more precise,

||fx||2 = ||x||2

+
4|r|2|s|2(||x||2 − x2

2) sin2(Ωp/2 − Ωq/2)
(|r|2 − |s|2)2 (19)

≥ ||x||2.
Eq. (19) is not surprising since the process does not make sense on the whole
state space. One can check though that for ||x|| ≤ |r|2−|s|2, ||fx|| ≤ 1; that is, f
maps our state space to valid states. The purity of a quantum state is a measure
of how mixed it is. If ρ has the Bloch vector x, then its purity is calculated as

tr (ρ2) = 1/2(1 + ||x||2). (20)



52 T. Crowder and M. Lanzagorta

Generally, a quantum process must decrease purity; however, as shown in
Eq. (19), when |x2| �= ||x||, the purity of the state undergoing a Lorentz trans-
formation always increases (except for very specific values of Ωp and Ωq).

Since f is expansive, it will not increase the von Neumann entropy,

S(ρ) = −λ+ log2(λ+) − λ− log2(λ−), (21)

where λ± are the eigenvalues of ρ. We can also express the eigenvalues and
entropy in terms of the Bloch vector: if x is the Bloch vector for ρ, then

λ± = 1/2(1 ± ||x||) and (22)
S(ρ) = H((1 + ||x||)/2); (23)

here, H is the base two Shannon entropy (for a discussion on Shannon entropy
see [5]). Since H is strictly decreasing on [1/2, 1] and f is expansive, from the
observer’s prospective, f decreases the entropy of the spin state. If one were to
have Ωp = 2π and Ωq = π, then f maps the mixed state [|r|2 − |s|2 0 0]t to
the pure state [1 0 0]t. In Fig. 1, we have included a plot of the von Neumann
entropy for the specific case of r =

√
9/10 and s =

√
1/10.

Fig. 1. Plot of the entropy pre- and post-evolution for the state in Eq. (7) with r =√
9/10 and s =

√
1/10. The plane gives reference to the entropy pre-evolution, whereas

the entropy post-evolution varies with Ωp and Ωq.

Since the states are getting more pure, it is reasonable to ask how that
affects the amount of information that can be transferred with such a system.
Similar to [4], one can show that the states are becoming more distinguishable
by calculating the probability of error function [19]. However, the calculation for
distinguishability employs an ideal measurement procedure. Generally though,
when classical information is sent through a quantum process, states are prepared
and measured in the same basis, and in general, a positive information flow using
an ideal measurement procedure does not correspond to positive information
flow using a fixed basis [20,21]. To represent classical information with quantum
states, one usually chooses a basis of the state space to represent a 0 and 1. With
each choice of basis, we are implicitly defining a classical channel, each with its
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own classical capacity. The scope of a quantum channel is the range of classical
capacities as one varies over every basis in the state space [6]. In contrast to [4],
the local dynamics of ε are linear, so with a little finesse there is a mechanism
to calculate the scope (in [6], Martin specifically uses the fact that the map is
non-expansive; however, that proof can be modified to work in this case).

In the Bloch representation, the communication bases correspond to antipo-
dal points on the unit 3-sphere ∂B: if u ∈ ∂B, then u represents 0 and −u
represents 1. However, we cannot generate pure states and therefore cannot gen-
erate points on ∂B. Instead, we let

u · (|r|2 − |s|2) (24)

represent 0 and its antipode represent 1. Even though our state preparation is
imperfect, our measurement procedure is not affected by the same shortcomings,
and we can measure with {u,−u}. So, in the following, when we say ‘using the
{u,−u} basis to transmit information,’ we mean preparing states with the Bloch
vectors ±u · (|r|2 − |s|2), and measuring with ±u. Then, the probability that a 0 is
received when a 0 is sent is

P (0|0) = 1/2[1 + (|r|2 − |s|2)(u, fu)]; (25)

note that since the process is unital, the induced classical channel is binary
symmetric and P (1|1) = P (0|0). As we range over every communication basis,
we generate a range of channels, each with a classical capacity. The scope
s(f) ⊆ [0, 1] is that interval of capacities, and each value in that interval is
an achievable capacity when using the corresponding choice of communication
basis. Employing techniques similar to those in [6], the minimal and maximal
capacities are given by (respectively)

1 − H

(
1 + m−

2

)
and 1 − H

(
1 + m+

2

)
, where (26)

m− = inf
|u|=1

[
(|r|2 − |s|2)|(u, fu)|] and

m+ = sup
|u|=1

[
(|r|2 − |s|2)|(u, fu)|] .

As shown in [6], the channels f and (f + f t)/2 have the same scope, so we will
calculate the scope of the latter. In this case, sup[|(u, f+ft

2 u)|] is the absolute
value of the eigenvalue of largest magnitude, and inf[|(u, f+ft

2 u)|] is the absolute
value of the eigenvalue of smallest magnitude when all of the eigenvalues have
the same sign and is 0 otherwise. Then to calculate the scope, first assume that

|r|2 cos Ωp − |s|2 cos Ωq > 0. (27)

Since we initially assumed that |r|2 − |s|2 > 0, if
∣∣|r|2 cos Ωp − |s|2 cos Ωq

∣∣ ≥ |r|2 − |s|2, (28)

the scope is
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s(f) =

[
1 − H

(
1 + |r|2 − |s|2

2

)
, 1 − H

(
1 +

∣∣|r|2 cos Ωp − |s|2 cos Ωq

∣∣
2

)]
; (29)

otherwise, the endpoints are flipped, and the scope is

s(f) =

[
1 − H

(
1 +

∣∣|r|2 cos Ωp − |s|2 cos Ωq

∣∣
2

)
, 1 − H

(
1 + |r|2 − |s|2

2

)]
. (30)

If instead of Eq. (27),

|r|2 cos Ωp − |s|2 cos Ωq ≤ 0, (31)

then the lower endpoint of the scope interval would be replaced with 0, but the
analysis for the upper endpoint would remain the same. The scope calculation
tells us that if the relativistic effects are large enough (see Eq. (29)), the naive
choice of basis is not the optimal one to transmit information. In addition, one
choice of basis could lead to a channel with 0 capacity, while information could
still be transferred with a different choice of basis.

To study a specific example, let us take r =
√

9/10 and s =
√

1/10. Then if

|9/10 cos(Ωp) − 1/10 cos(Ωq)| ≥ 8/10, (32)

the optimal bases to transmit information are {e1,−e1} and {e3,−e3} (the ei

are the standard basis elements for R
3). Consequently, the process has a higher

capacity than if the effects of relativity were not present. This fact goes against
our natural intuition since fe2 = e2, and thus (8/10)e2 would not suffer the
effects of the channel’s noise. So shockingly, when Eq. (32) is satisfied, the noise
is beneficial to the transmission of information. In fact, in the special case where
Ωp = 2π and Ωq = π, the channel has perfect capacity when using {e3,−e3}
to transmit information, whereas one would not achieve perfect capacity if the
sender and receiver shared the same reference frame. In Fig. 2, we have plotted
the channel capacity when using the {e3,−e3} basis versus the {e2,−e2} basis
as we vary over Ωp and Ωq. For a more extreme example, the initial reduced
state can be made arbitrarily close to the completely mixed state, i.e.,

|r|2 = 1/2 + ε and |s|2 = 1/2 − ε (33)

with 0 < ε << 1, and the observer could still receive a copy of the message,
assuming the sender used the correct basis. Even though it would look like
a noisy signal before the Lorentz transformation, when Ωp = 2π and Ωq =
π, information can be transmitted perfectly using {e3,−e3} without any error
correction. In this example, for all but small intervals of Ωp and Ωq, it would be
advantageous to communicate using {e1,−e1} or {e3,−e3} over the “noiseless”
{e2,−e2} basis.
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Fig. 2. The channel capacity when transmitting in the {±e3} basis (which varies over
Ωp and Ωq) and the {±e2} basis (constant plane).

From what we have shown thus far, one can conclude that, in general, this
process is not completely positive. But because this process is linear, we will
calculate its Choi matrix [22],

C =
∑

ij

I ⊗ ε(Eij ⊗ Eij), (34)

and use C to obtain conditions for when the process is completely positive. For
an arbitrary choice of r and s, (when Ωp − Ωq �= nπ) there will always be an
eigenvalue of C that is negative, but so that the calculations do not get out of
hand, let’s continue with r =

√
9/10 and s =

√
1/10. In this case, the Choi

matrix is

1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 cos2
Ωp
2 − cos2

Ωq
2

1
2 (sinΩq − 9 sinΩp)

1
2 (9 sinΩp − sinΩq) 9 cos2

Ωp
2 − cos2

Ωq
2

1
2 (sinΩq − 9 sinΩp) 9 sin2 Ωp

2 − sin2 Ωq
2 sin2 Ωq

2 − 9 sin2 Ωp
2

1
2 (sinΩq − 9 sinΩp)

1
2 (9 sinΩp − sinΩq) sin2 Ωq

2 − 9 sin2 Ωp
2 9 sin2 Ωp

2 − sin2 Ωq
2

1
2 (9 sinΩp − sinΩq)

9 cos2
Ωp
2 − cos2

Ωq
2

1
2 (sinΩq − 9 sinΩp)

1
2 (9 sinΩp − sinΩq 9 cos2

Ωp
2 − cos2

Ωq
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Then ε is completely positive if and only if C is positive semi-definite [22].
However, the eigenvalues of C are 0, 0, and

1 ±
√

9 sin2(Ωp/2 − Ωq/2) + 1

4
. (36)

Since

1 −
√

9 sin2(Ωp/2 − Ωq/2) + 16

4
∈ [−1/4, 0], (37)

this process cannot be completely positive unless Ωp − Ωq = 2nπ, in which case
f is just a rotation of the Bloch sphere. Figure 3 plots the negative eigenvalue of
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Fig. 3. The negative eigenvalue of C plotted with respect to Ωp and Ωq.

Choi’s matrix as we range over Ωp and Ωq. It is well known that if the system
and environment are in a pure product state, then the dynamics are completely
positive; however, the converse is not necessarily true. Here the process is almost
never completely positive, and there is an added degree of subtlety: instead
of system-environment entanglement, the entanglement occurs across internal
degrees of freedom.

5 Conclusion

In summary, using fairly basic assumptions, we showed that relativistic quantum
processes violate many standard assumptions made in quantum informatics by
only assuming an imperfectly prepared state. As shown in Fig. 3, the process is
only completely positive on a set of measure zero. In addition, these processes
are not exotic: preparing the state |Ψ〉 = r|p, 0〉 + s|q, 1〉 in the presence of a
gravitational field would produce non-trivial Wigner rotations. Therefore (off
that set of measure zero) the simple act of preparing and measuring the spin
of such a state on Earth or an orbiting satellite is not a completely positive
process; albeit, this effect would be small and difficult to measure. This unique
behavior can be attributed to the way the Wigner rotation mixes the spin and
momentum. By only measuring the spin state, the information about how the
spin and momentum are mixed is destroyed.

The advantage of using this toy model with a small number of degrees of
freedom is that we can perform analytical computations, such as maximizing
capacity, which would be extremely difficult, if not impossible, had we used a
more realistic model. Nonetheless, we expect that this behavior will also be rel-
evant in those models. In future papers, we will address these challenges. As
another avenue of further research, we wonder if one could employ a stegano-
graphic procedure to transmit information to someone in a different reference
frame. By taking a state similar to the one in Eq. (33), in the preparer’s frame of
reference, the state is “close” to the completely mixed state. But as we showed,
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it can be used to send information perfectly to other frames of reference. Then
using a state like Eq. (33), we could send hidden information from one frame
to another. We plan on exploring the steganographic applications of relativistic
effects in the future. Finally, we wonder if we can use the natural extension to
the Bloch representation described in [23–25] and techniques similar to these
to quantify the information flow of multi-qubit systems undergoing relativistic
effects. Such an analysis might yield insights on the effect of a Lorentz transfor-
mation on a quantum computation.

Acknowledgements. We are grateful to C. Fuchs, K. Martin, and D. Terno for their
helpful discussions during the preparation of this manuscript.
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Abstract. Here we demonstrate the first working example of a liquid
marble-operated sequential binary counting device. We have designed a
lightweight gate that can be actuated by the low mass and momentum of
a liquid marble. By linking a number of these gates in series, we are able
to digitally count up to binary 1111 (upper limit only by our require-
ments). Using liquid marbles in such a system opens up new avenues of
research and design, by way of modifying the coating and/or core of the
liquid marbles, and thereby giving extra dimensions for calculation (e.g.
a calculation that takes into consideration the progress of a chemical
reaction inside a liquid marble). In addition, the new gate design has
multiple uses in liquid marble rerouting.

Keywords: Liquid marbles · Unconventional computing
Binary counter · Logic gate · Particle-coated droplets
Mechanical computing

1 Introduction

1.1 Liquid Marbles

Liquid marbles (LMs) were first reported by Aussillous and Quéré in 2001
[3], and have since become increasingly popular in chemistry, particularly con-
densed matter. They are composed of two parts: a microliter sized core of liquid
(usually water), surrounded by a powder coating. This gives them their other
name ‘particle-coated droplets’. A typical volume of a LM is 10µL, which results
in a typical diameter of 3 mm. A schematic of a LM is shown in Fig. 1. We shall
look at both the core and coating in turn.

The bulk of a LM is composed of the core. This microliter droplet is made
of water generally (because its high surface tension allows for the easiest LM
formation), though glycerol is quite common [4], and even petroleum has been
used [7]. This paper will focus on water-filled LMs.
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Fig. 1. A schematic of a liquid marble. The core is generally comprised of water or
glycerol, and the hydrophobic powder coating could be PTFE, PE, lycopodium grains,
etc. A typical diameter of the entire LM is 3 mm, whilst the powder particle sizes could
be 10 nm to 400µm in diameter. Note the non-homogeneous coating.

The coating of a LM is comprised of a micro- or nano-sized powder, that
(for water cores) is hydrophobic. ‘Hydrophobic’ comes from the Ancient Greek
‘fear of water’. Chemically, hydrophobic powders are normally lacking in polar
intramolecular bonds, which results in few intermolecular hydrogen-bonds form-
ing between the water and the substrate. It is this shortage of attractive forces
that is often (mistakenly) portrayed as a water-repelling repulsive force. Com-
mon examples of LM powder coatings include polytetrafluoroethylene (PTFE)
[5], polyethylene (PE) [1] and modified-lycopodium grains [3]. A variety of pos-
sible powder coatings are demonstrated in Fig. 2. Note the difference in particle
size, especially in the hybrid example shown in Fig. 2(d). This (in combination
with the powders degree of hydrophobicity) gives rise to very different character-
istics of LM lifetime, ruggedness and hysteresis. For a recent overview on these
dependencies, see reference [11].

As can be seen in Figs. 1 and 2, the coating of LMs is not homogeneous.
Rather, it is a mixture of single-layer and multilayer particles. Whether a single-
or multilayer is formed is dependent on the identities of both the core and the
coating. Particles with a very high surface contact angle (such as PTFE) tend
to form single-layers. Conversely, less hydrophobic particles (such as the PE or
nickel) tend to form a multilayer. It can be possible to convert a multilayer
LM into a single-layer, by repeated rolling. The excess particles fall off the LM,
leaving a single-layer.

There are often gaps in the particle coating, where the surface of the core
is exposed to the atmosphere and therefore visible. As (perhaps) anticipated,
this is more common in single-layered LMs. As a LM ages however, it looses
some of its aqueous core to evaporation, which results in a slight contraction
of the shell. This has the effect of closing these exposed sections. One would
intuitively anticipate that this would, in turn, reduce the evaporation rate of the
LM, however this is not the case [11]. The reasons behind this are still unclear,
although a possibility is that the shrinking in pore size causes an increase in the
capillary effect. This would result in the water core being closer to the surface,
and therefore able to evaporate faster.
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(a) (b)

(c) (d)

Fig. 2. Photographs of 10.0µL liquid marbles. All examples have a diameter of 3 mm.
The powder coatings portrayed are (a) PTFE (grain size: 6µm to 10µm), (b) PE
(grain size: 100µm), (c) Nickel (grain size: 4µm to 7µm) and (d) a Nickel-PE hybrid.

One of the main features of LMs, and one of the reasons for their use in
this project, is that they roll with minimal resistance. On a typical surface (e.g.
glass), a water droplet will adhere to the surface, causing resistance to its motion.
Conversely, if a water droplet is placed on a hydrophobic surface (e.g. a non-
stick frying pan), the water droplet will bead up and roll off with ease. A LM is
literally coated in a hydrophobic powder, generating a very large contact angle,
and therefore rolls with extreme ease. This gives LMs great merit in fields as
diverse as glue delivery systems [8] and digital microfluidic bioassays [18].

Liquid marbles are a new, but strong, player in the field of digital microflu-
idics [17]. Microfluidics involves the formation, behavior, and ultimately the
control of microliter quantities of fluid. It is a multidisciplinary area, with
a large and growing interest in automation and high-throughput screening.
Digital microfluidics is when the fluid is in discrete droplets, as oppose to in
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a continuous flow. There are a number of ways to manipulate these droplets, the
most common of which are magnetic [21], electrowetting on dielectric (EWOD)
[10], and surface acoustic wave (SAW) [13]. All of these techniques, however,
require both a pre-treated surface and electricity. By encapsulating the droplet
in a particle coating and forming a LM, there is the potential to remove both
of these limitations. This would allow for the construction of cheap devices for
point-of-care diagnostics in low-resource areas [20].

In order for the microfluidic LMs to increase in capability, there is a require-
ment for behavioral control. Control units will need to be able to route [19],
merge [4], divide [6], and auto-generate [9] LMs. This work demonstrates a new
re-routing technique for LMs, in the form of a mechanical computing device. This
device does not require surface-pretreatment, and is powered by gravity: thereby
removing the limitations of other digital microfluidic manipulation techniques.

1.2 Existing Computational Techniques with Liquid Marbles

Liquid marbles have recently been used experimentally for computation, in a
collision-based interaction gate [9]. In the design, two LMs rolled down slopes
towards each other and collided. The resulting change in vector was then inter-
preted as computation. In this LM interaction gate, the Boolean-determining
signal was the presence (True) or absence (False) of a LM. It was noted that,
due to the soft shell-like nature of the LMs, the collisions observed Margolus
pathways [15], as shown in Fig. 3(a). These differ from the better-known billiard-
ball pathways by allowing for the finite amount of time it takes for a soft-sphere
to deform. This analogy could be broken, however, by increasing the kinetic
energy of the impact above the effective surface tension of the LM. Above this
threshold, the LMs would coalesce, and the system acted like the fusion gate
shown in Fig. 3(b). In both instances the gate implemented and and and-not
logical functions, based on the location of output LMs.

Fig. 3. Diagrams of interaction gates. (a) A Margolus gate, demonstrated using com-
pressible spheres as signals. (b) A fusion gate, where the two signals coalesce to form
one new signal.
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The LM coating used in [9] was a mix of nickel (Ni) and PE, forming a
hybrid LM that was ferromagnetic enough to be held by electromagnets. This
feature was used to enable accurate timings on the interaction gate. Without
this feature, ensuring timings and collisions was intractable.

Recent work [11] has shown that the impact survival time of PE LMs is far
superior to Ni-PE hybrid LMs. Unfortunately, the non-magnetic nature of PE
makes precise synchronization of the LMs arduous. It was decided, therefore,
to develop a computing device that did not require such accurate timings, but
could instead be run sequentially.

2 Liquid Marbles for Mechanical Counting

2.1 Mechanical Flip-Flop Gates

Mechanical flip-flops have been designed previously, though they have always
been actuated by something relatively heavy, such as a coin [2], a ball [16], or even
a can [14]. We have developed a distinct and notably different mechanical flip-
flop, that is designed specifically to be actuated by the low mass and momentum
of a single LM.

Shown in Fig. 4(a), the flip-flop is roughly shaped like an isosceles-triangle,
with the top pointing to either 10 o’clock or 2 o’clock (its two bistable positions,
when compared to the hour hand on the face of a clock). These are visualized in
Fig. 4. When in use, LM #1 approaches the flip-flop from the top and follows the
path guided to it by the flip-flop. As the LM moves along, its mass causes the
flip-flop to ‘flip’. As a result, when LM #2 approaches the flip-flop, it will both
be guided in the other direction and reset the flip-flop to its original position. LM
#3 will then follow the same path as LM #1, and so on. There are two overall
consequences of this: as each LM passes through, the resting position of the
flip-flop oscillates between the two bistable positions—10 o’clock and 2 o’clock;
additionally, alternate LMs exit through alternate pathways. These pathways
are demonstrated in Fig. 4(b).

This design acts like a traditional electronic flip-flop: it is a bistable multi-
vibrator, and each of its two positions can be interpreted as binary 0 or 1. The
rolling LMs act in a similar way to the electronic data signal pulses, changing
the reading as they arrive. The LMs roll by converting their potential energy
into kinetic energy, and so the system is powered by gravity instead of electricity.
The LMs roll along guides, which act like the wires that guide electrons in an
electronic system.

Each flip-flop has been laser cut from 3 mm thick cast acrylic. It has dimen-
sions of 29mm × 14mm × 3mm, and weighs 154 mg. The pivot point (diameter:
0.60 mm), easily seen in Fig. 4(a), has been engineered to be at the center of
mass of the flip-flop.

2.2 Liquid Marble Actuated Mechanical Counter

By linking four of our flip-flop gates in series, we were able to design and con-
struct a proof-of-principle logic device, capable of counting up to binary 1111 or
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(a) (b)

Fig. 4. (a) A photograph of our flip-flop gate. The front has been colored for visibility.
The flip-flop is 29 mm across. (b) A diagram showing the motion that our mechanical
flip-flop gate takes, when actuated using a LM. Starting at the 10 o’clock position,
the LM enters the system and interacts with the flip-flip—rotating the flip-flop to the
2 o’clock position whilst the LM exits to the right. If at the 2 o’clock position when
the LM enters, the flip-flop is rotated to the 10 o’clock position, and the LM exits to
the left. A typical LM has a diameter of 3 mm.

decimal 15. The basic principle is similar to part of a 1965 patent [12]. Our design
schematic is shown in Fig. 5(a) and a photograph of the constructed device is
shown in Fig. 5(b). In this design, a flip-flop is considered to represent binary
0 when pointing to 10 o’clock, and binary 1 when pointing to 2 o’clock. The
memory is read from the bottom up. So decimal 8 would be binary 1000, with
the 1 physically situated at the bottom of the device.

To start, the system should have a clear memory, with all the flip-flops point-
ing to 10 o’clock, and the readout being 0000. When LM #1 enters the system
from the top, it queries the first flip-flop and obeys the logic table shown in
Table 1. On discovering that the first flip-flop reads 0, it changes it to a 1 and
exits to the right (exiting the system). At this point the readout is 0001. One
can consider that the LM has queried the memory, added one to its value, then
rewritten the new value back to the memory: a destructive readout.

Table 1. Logic rules for the liquid marbles to observe, as they pass through the mechan-
ical counting device and interact with flip-flop gates.

Flip-Flop Bit Action

Left 0 Change bit to 1, exit system

Right 1 Change bit to 0, query next bit (or overflow if none)

When LM #2 next enters the system, it queries the first flip-flop and reads
a 1, so it changes it to a 0 and exits to the left towards the second flip-flip. Here



Mechanical Sequential Counting with Liquid Marbles 65

Fig. 5. The (a) CAD design file and (b) a photograph of the LM counting device. It
measures 208 mm × 286mm × 6mm.

it reads a 0, so changes it to a 1 and exits to the right (exiting the system).
At this point the readout is 0010. This continues in a similar manner until the
system reads 1111 (decimal 15), at which point the next LM will cause a memory
overflow and reset the readout to 0000. Stills from a video portraying operation
of the device can be seen in Fig. 6. A more abstract view of the devices operation
can be envisioned, where the two different bistable positions are indicated by a
headless arrow. As a LM moves through the system it causes the flip-flop gates to
alternate position, with 16 total possible states before overflow occurs (24 = 16).
Such a schematic, with all possible states portrayed in order, reading from left
to right & top to bottom, can be seen in Fig. 7.

As the LMs move through the device, it is worthy of note that they do not
slide. Instead, the LMs demonstrate a superposition of both rotational and trans-
lational motion (i.e. rolling). This is in direct contrast to the motion expected
of uncoated droplets. A side effect of this superposition is observed when two
LMs are permitted to roll next to each other. Rather than running together like
smooth ball bearings, they instead bounce off each other. This is caused by the
approaching front of the chasing LM moving vertically down, in direct contrast
to the rear of the leading LM moving vertically up. The clash causes both LM to
temporally pause, and for the chasing LM to actually roll backwards. As such,
the LMs must be timed so that they do not make contact with each other.

The LMs used in the counting device had a core of pure deionized water, with
a volume of 15.0µL. We found that this volume had the optimal mass to actuate
our flip-flop gates. Heavier LMs often deformed or got stuck, whilst lighter LMs
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Stills from a video demonstrating the counting device. These were restaged to
improve clarity. Originals and video are available. The LM approaches from the top,
flips the first gate from right to left, exits to the left, then flips the second gate from
left to right, then exits to the right. The respective relative times of the frames are
0 ms, 99 ms, 233 ms, 466 ms, 533 ms, 633 ms, 733 ms, 1033 ms and 1199 ms.



Mechanical Sequential Counting with Liquid Marbles 67

= =  1

= =  0

Fig. 7. An abstract schematic showing the 16 different positions the flip-flop gates
take as each LM moves through the system. Read from left to right & top to bottom.
Flip-flops are grouped in fours; each group represents the processing of a single LM.
The least significant bit is at the top of a group, and the most significant bit is at
the bottom of each group. On the 16th LM, the device overflows and assumes the first
position (i.e. binary 0000).
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were not able to actuate the gates. We used two different coatings for the LMs.
The first was a Ni-PE coating, originally portrayed in reference [9]. The second
was a pure PE coating, which has recently been shown to make stronger and
longer-lasting LMs in collision-based activities [11]. LMs made from either of
these coatings were able to successfully traverse our counting device.

2.3 Speed-Bumps in the Design Process

As with any R&D adventure, throughout the design of the counting device there
were obstructions to overcome. We hope that this section will help anyone who
intends to repeat or continue this work.

The main difficultly we had to overcome was the design and construction
of a mechanical flip-flop that could be actuated by the small weight of a LM
(∼16mg, less than two grains of sand). This was achieved over multiple iterations
of constructing, testing and optimizing. During this process, we concentrated on
minimizing the mass of the gate (while maintaining structural integrity), as this
would reduce the moment of inertia. This had to be balanced with the limitations
of the equipment available to us. The flip-flops were laser cut from 3 mm acrylic,
and as such were limited by the both the melting of the acrylic and the Gaussian-
style beam of the laser. Consequently, the absolute smallest arm-width we could
cut was 0.8 mm, and the smallest we could reliably cut was 1.0 mm (which we
used in the device).

The design also had to balance the increased moment of inertia caused by
having long ‘arms’, with the increased pivoting ratio. This was achieved through
testing a series of different sizes. During these tests, the pivot location was con-
stantly updated to remain at the center of mass, therefore minimizing the force
required to rotate the gate.

It was necessary to minimize the friction around the pivot. We initially used
PTFE coated wire as the pivot (PTFE is regarded as one of the lowest-friction
materials). However, the PTFE coating required a reduction in the diameter of
the metal core of the wire. This had the unfortunate side effect of making the
pivot too flexible. Instead, a steel pivot was used, which also has a low friction
coefficient. However, this was insufficient, and so we laser-cut our own washers
from 0.25 mm PTFE sheets (we were unable to source a supplier to provide them
small enough). This proved to reduce the friction sufficiently to allow the flip-flop
to rotate around the pivot.

The pitch of the device is critical to its successful operation. If the angle is
too steep, then the LM will run too fast and either mis-actuate the flip-flop or
come off the device entirely. Likewise, if the angle is too gentle, the LM will
either not have enough momentum to actuate the flip-flop, or it will not roll at
all. We discovered, using an in-house rig to adjust and accurately measure the
pitch, that the ideal angle for our device is 52◦ from horizontal for 15µL LMs.
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2.4 Materials and Design

Both the flip-flop gates and the mechanical counting device were designed using
the CAD software Autodesk AutoCAD 2018. They were then laser cut from
3 mm clear cast acrylic. The counting device was made up of a backboard and
a front-board, which was itself composed of a large piece and several smaller
pieces. The separate components of the counting device were held together by
pins and clamps, before being affixed using RS Pro AB-3 Acrylic Adhesive
(RS Components). Steel pins (0.50 mm diameter) were installed as pivots, and
glued in position using epoxy resin. The PTFE washers were also CAD designed
(outer diameter: 10.0 mm, inner diameter: 0.6 mm), before being laser cut from
0.25 mm sheet PTFE. The washers were then placed onto the steel pins before
the flip-flop gates. For optimal performance, our device was tilted at 52◦ from
horizontal.

3 Conclusions and Future Work

This paper demonstrates the first sequential logic device implemented using LMs.
Through the careful design and construction of a light-weight and low-friction
flip-flop gate, a simple proof-of-principle counting device has been constructed.
This device counts upwards in integers, from binary 0000 to 1111 (decimal 0 to
15). This upper limit is only restricted by the size of the constructed device,
leaving the possibility for much larger devices.

We have also reported on the design and construction of a new microflu-
idic LM router: the small mechanical LM-actuated flip-flop. By using gravity to
power the device, and forgoing the traditional surface pre-treatment, develop-
ment of low-resource devices is possible. There is also scope for using the LMs
as cargo-carriers, and having the flip-flop gates act as path-directors.

A possible use for a device like this is in patient-care in challenging envi-
ronments. If a spring-loaded syringe pump was injecting into a patient, then a
small side-branch could be taken off the line. This spur (diverting less than 1%)
could form LMs (using the set-up reported in reference [9]) which run through
the counting system. This would provide a clear non-electrical digital readout of
how much has been injected, compared to the analogue readout of the syringe.
However, this set-up would obviously require pre-calibration.

There is much scope for continued worked in this field. We are already design-
ing a larger and more complex arithmetic machine, to fully take advantage of the
flip-flop gates. Additionally, the use of LMs allows for an entirely new dimension
of programming: the LMs represent a combination of data signals and a clock
pulse, and by varying the coating and/or core of the LM, each can be given a
different purpose and identity. There is also scope for chemical reactions to be
undertaken inside the LMs: for example a reaction that destroys a LM after a
certain amount of time could be used to provide a time-limit on data signals.

In summary, we have produced a working model of a LM-actuated sequential
binary counting device. This proof-of-principle device has enormous scope for
continued development, and we anticipate a variety of designs in the future.
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Abstract. In this paper we define and investigate a binary word oper-
ation that formalizes an experimentally observed outcome of DNA com-
putations, performed to generate a small gene library and implemented
using a DNA recombination technique called Cross-pairing Polymerase
Chain Reaction (XPCR). The word blending between two words xwy1

and y2wz that share a non-empty overlap w, results in xwz. We study
closure properties of families in the Chomsky hierarchy under word blend-
ing, language equations involving this operation, and its descriptional
state complexity when applied to regular languages. Interestingly, this
phenomenon has been observed independently in linguistics, under the
name “blend word” or “portmanteau”, and is responsible for the creation
of words in the English language such as smog (smoke + fog), labradoodle
(labrador + poodle), and Brangelina (Brad + Angelina).

1 Introduction

Cross-pairing Polymerase Chain Reaction (XPCR) is an experimental DNA pro-
tocol introduced in [11] for extracting, from a heterogeneous pool of DNA strands,
all the strands containing a given substrand. XPCR was then employed to imple-
ment several DNA recombination algorithms [13], for the creation of the solution
space for a SAT problem [9], and for mutagenesis [12]. The combinatorial power
of such a technique has been explained by logical-symbolic schemes in [23], while
algorithms to create combinatorial libraries were improved and experimented in
[10,12].

The formal language operation called overlap assembly, introduced in [5]
under the name of self-assembly, and further investigated in [3,7,8], also models
a special case of XPCR: The overlap assembly of two strings αx and xβ that
share a non-empty overlap x, results in the string αxβ. A particular case of
overlap assembly, called “chop operation”, where the overlap consists of a single
letter, was studied in [18,19], and generalized to an arbitrary length overlap in
[20]. Other similar operations have been studied in the literature, such as the
“short concatenation” [4], which uses only the maximum-length (possibly empty)
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overlap y between operands, the “Latin product” of words [14] where the overlap
consists of only one letter, and the operation

⊗
which imposes the restriction

that the non-overlapping part x is not empty [21]. Overlap assembly can also
be considered as a particular case of “semantic shuffle on trajectories” with
trajectory 0∗σ+1∗ or as a generalization of the operation

⊙
N from [6] which

imposes the length of the overlap to be at least N . Many similar biological
phenomena and operations can also be modelled using splicing systems [26,27].
However, modeling these operations often does not require the full power of
splicing. Properties of splicing languages under restrictions such as symmetry
and reflexivity have been studied in [2,15].

Returning to the biological process that motivated the study of overlap assem-
bly, the XPCR procedure has been successfully used to join two different genes if
they are attached to compatible primers [10]. Formally, αAγ and γDβ were com-
bined to produce αAγDβ (here A and D are gene sequences and α, γ and β are
primers used). However, when A = D, that is, when two sequences containing the
same gene were combined by XPCR, the result was not as expected. More specifi-
cally, when using XPCR with two strings αAγ and γAβ, instead of obtaining the
expected αAγAβ, the experiments repeatedly produced the result αAβ.

In this paper, we define and investigate a formal language operation called
word blending, that formalizes this experimentally observed outcome of XPCR:
The word blending of two words xAy1 and y2Az that share a non-empty overlap
A results in xAz. Interestingly, this phenomenon has been observed indepen-
dently in linguistics [16], under the name “blend word” or “portmanteau”, and
is responsible for the creation of words in the English language such as smog
(smoke + fog), labradoodle (labrador + poodle), emoticon (emotion + icon), and
Brangelina (Brad + Angelina).

The paper is organized as follows. Section 2 details the biological motivation
behind the study of word blending, and introduces the main definitions and
notations. Section 3 studies closure properties of the families in the Chomsky
hierarchy under word blending, its right and left inverses, as well as iterated word
blending. Section 4 investigates the decidability of existence of solutions to some
language equations involving word blending, and Sect. 5 studies the descriptional
state complexity of this operation when applied to regular languages.

2 Preliminaries

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all
words over Σ, including the empty word λ, and Σ+ denotes the set of all non-
empty words over Σ. The length of the word w is denoted lg(w). For words
w, x, y, z ∈ Σ∗ such that w = xyz we call the subwords x, y, and z prefix,
infix, and suffix of w, respectively. The sets pref(w), inf(w), and suff(w) contain,
respectively, all prefixes, infixes, and suffixes of w. This notation is extended
to languages as suff(L) =

⋃
w∈L suff(w). The mirror image of a word w ∈ Σ∗

is defined as mi(λ) = λ, and mi(w) = ak . . . a2a1 if w = a1a2 . . . ak. The def-
inition is extended to languages in the natural way, by mi(L) =

⋃
w∈L mi(w).
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The complement of a language L ⊆ Σ∗ is Lc = Σ∗\L. For two languages
L1 and L2, the right quotient of L1 by L2 is defined as L1L

−1
2 = {u ∈

Σ∗|∃uv ∈ L1, v ∈ L2}, and the left quotient of L1 by L2 is defined as
L−1l
2 L1 = {v ∈ Σ∗|∃uv ∈ L1, u ∈ L2}.

The biological phenomenon we model in this paper was observed during the
XPCR-based experiments, initially intended to achieve the catenation of two or
more genes (genomic DNA strands). It was namely observed in [10] that, in the
particular case where the two genes to be catenated were one and the same, that
is, when the two input DNA strands were αAγ and γAβ (here A represents a
gene sequence), the output of a PCR-based amplification with primers α and
β was αAβ. This output was different from the expected αAγAβ, which had
been the anticipated result. (Indeed, experiments using XPCR for the purpose
of catenating two different genes A and D flanked by primers, that is, when
the two input strands were αAγ and γDβ, had resulted in the output αAγDβ.
This “expected” output of XPCR was modelled by the previously mentioned
operation of overlap assembly, given by αAγ + γDβ = αAγDβ).

Generalizing this experimentally newly-observed phenomenon to the case
where the end words of the input strings are different, we model this string
recombination as follows. Given two non-empty words x, y over an alphabet Σ,
we define the word blending, or simply blending, of x with y as

x �� y = {z ∈ Σ+ | ∃α, β, γ1, γ2 ∈ Σ∗, ∃w ∈ Σ+ : x = αwγ1, y = γ2wβ, z = αwβ}.

The definition of blending can be extended to languages L1 and L2 by

L1 �	 L2 =
⋃

x∈L1,y∈L2

x �	 y.

Note that, for a realistic model, we would need additional restrictions such as
the fact that the w, γ1 and γ2 should be of a sufficient length and should not
appear as a substring in the other strings involved.

We can also extend the blending operation to an iterated version on a language.
Let L ⊆ Σ∗ be a language. We define the iterated (word) blending of L by L��0 = L
and L��i = L �	 L��i−1 . We define the iterated blending closure of L by

L��∗ =
⋃

iě0

L��i .

We observe that the result of the iterated blending operation can be generated
by a splicing system with null context splicing rules [17]. Splicing rules in [17] are
of the form (u1, z, u2;u3, z, u4). For such a rule, if we have strings x = x1u1zu2x2

and y = y1u3zu4y2, we obtain the word x1u1zu4y2. A splicing rule is a null
context rule when u1, u2, u3, u4 = λ. It is easy to see that the language L��∗ can
be generated from a splicing scheme with rules of the form (λ,w, λ;λ,w, λ) for
every word w ∈ Σ+. The relationship between iterated blending and splicing
will be discussed in greater detail in Sect. 3.
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3 Closure Properties

In this section, we prove that the families of regular, context-free and recur-
sively enumerable languages are closed under blending, and that the family of
context-sensitive languages is not. The section also contains closure properties
of Chomsky hierarchy families under the right and left inverse of word blending,
as well as under iterated word blending.

The following lemma shows that word-blending is equivalent to a restricted
version where only one-letter overlaps are utilized.

Lemma 1. If x, y are non-empty words in Σ+, then

x �	 y = {z ∈ Σ+ | ∃α, β, γ1, γ2 ∈ Σ∗,∃a ∈ Σ : x = αaγ1, y = γ2aβ, z = αaβ}.

This result can be extended to languages in the natural way. Then from this
lemma, we can show that the word blending of two languages can be obtained
by combining the right quotient, catenation, left quotient and union operations,
as follows.

Proposition 2. Given languages L1, L2 ⊆ Σ+,

L1 �	 L2 =
⋃

a∈Σ

(
L1(aΣ∗)−1

)
a

(
(Σ∗a)−1lL2

)
.

Corollary 3. Every full AFL is closed under word blending.

We note that the families of regular languages, context-free languages and recur-
sively enumerable languages are all full AFLs [28].

Proposition 4. The family of context-sensitive languages is not closed under
word blending.

Proof. Let L0 be a recursively enumerable language over Σ, that is not context-
sensitive. It is known that a context-sensitive language L1 over Σ ∪ {a, b} with
a, b �∈ Σ, can be constructed such that L1 consists of words of the form Pbai

where i ě 0 and P ∈ L0 and, in addition, for every P ∈ L0 there is an i ě 0
such that Pbai ∈ L1 (see, e.g., [28]).

Since it is obvious that L1 �	 {b} = {Pb | P ∈ L0}, which is not context
sensitive, it follows that the family of context sensitive languages is not closed
under word blending with singleton words. ��

Recall that, given a binary word operation 	, the binary word operation ˝ is
called the right-inverse of 	 [22] if and only if for every triplet of words u, y, w ∈
Σ∗ the following relation holds: w ∈ (u 	 y) if and only if y ∈ (u ˝ w). In
other words, the operation ˝ is called the right-inverse of 	 if it can be used to
recover the right operand y in u 	 y, from the other operand u and a word w ∈
(u 	 y) in the result. Define now the binary word operation �	r as u �	r w =
⋃

a∈Σ Σ∗a
((

u(aΣ∗)−1a
)−1l w

)
. Informally, given a word w = αaβ ∈ (αaγ1 �	

γ2aβ), the operation �	r outputs the right operand y = γ2aβ of word blending, if
it is given as inputs the result w = αaβ ∈ (u �	 y) and the left operand u = αaγ1.
The definition of �	r can be extended to languages naturally.
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Proposition 5. The operation �	r is the right-inverse of �	.

Proof. If w ∈ u �	 y, there exist α, β, γ1, γ2 ∈ Σ∗, b ∈ Σ such that
w = αbβ, u = αbγ1, y = γ2bβ by Lemma 1. Then, we have that y =
γ2bβ ∈ Σ∗bβ = Σ∗b

(
(αb)−1l(αbβ)

) ⊆ Σ∗b
((

((αbγ1)(bΣ∗)−1)b
)−1l (αbβ)

)
⊆

⋃
a∈Σ Σ∗a

((
((αbγ1)(aΣ∗)−1)a

)−1l(αbβ)
)
.

If y ∈ u �	r w =
⋃

a∈Σ Σ∗a
((

(u(aΣ∗)−1)a
)−1l w

)
, then there exist b ∈ Σ,

and γ2 ∈ Σ∗, γ3 ∈ (u(bΣ∗)−1)b such that y = γ2b(γ−1l
3 w). This implies that w ∈(

u(bΣ∗)−1
)
b(γ−1l

3 w) =
(
u(bΣ∗)−1

)
b
(
(γ2b)−1l(γ2b(γ−1l

3 w))
)

which is included
in

(
u(bΣ∗)−1

)
b
(
(Σ∗b)−1ly

) ⊆ ⋃
a∈Σ

(
u(aΣ∗)−1

)
a

(
(Σ∗a)−1ly

)
= u �	 y. ��

Corollary 6. The families of regular languages and recursively enumerable lan-
guages are closed under the right inverse of the blending. Moreover, if L1 is an
arbitrary language and L2 is a regular language, then L1 �	r L2 is regular; if
L1 is a regular language and L2 is a context-free language, then L1 �	r L2 is
context-free.

Proposition 7. The family of context-free languages is not closed under the
right inverse of blending.

Proof. Consider the context-free languages L1 = {a$(bi1ai1$) · · · (binain$) | n ě
1, im ě 1 for 1 ď m ď n}, L2 = {(aj1$b2j1) · · · (ajk$b2jk)(aj$c2j) | j ě 1, k ě
1, jm ě 1 for 1 ď m ď k} and the regular language R = {$c∗}.

We now show that (L1 �	r L2) ∩ R = {$c2
n | n ě 2}. Since words in

R start with $ and contain only one symbol $, the only cases in which the
words in L1 �	r L2 have the pattern of the words in R are the cases of word
pairs where the overlap letter is $, and a prefix ending in $ in the word from
L1 matches the prefix ending in the last occurrence of $ in the word from L2.
More precisely, let u = a$bi1ai1$bi2ai2$ · · · bimaim$ · · · binain$ ∈ L1 and v =
aj1$b2j1aj2$b2j2 · · · ajm$b2jmaj$c2j ∈ L2. For a word w ∈ (L1 �	r L2) to belong
to R, we must have

a$bi1ai1$bi2ai2$ · · · bimaim$ = aj1$b2j1aj2$b2j2 · · · ajm$b2jmaj$,

which implies j1 = 1, j2 = i1 = 2j1 = 2, . . . , j = im = 2jm = 2m. Thus,
w = $c2j = $c2

m+1
, which implies (L1 �	r L2) ∩ R = {$c2

n | n ě 2}.
Since the family of context-free languages is closed under intersection with

regular languages, it follows that it is not closed under the right inverse of
blending. ��
Proposition 8. The family of context-sensitive languages is not closed under
the right inverse of blending.

Recall that given a binary word operation 	, the binary word operation ˝ is
called the left-inverse of 	 iff for every triplet of words x, v, w ∈ Σ∗ the following
relation holds: w ∈ (x 	 v) if and only if x ∈ (w ˝ v) [22].
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Proposition 9. The left inverse of blending can be expressed using the right
inverse of blending, and mirror image as w �	l v = mi(mi(v) �	r mi(w)).

Because all families of languages in the Chomsky hierarchy are closed under
mirror image, their closure properties under the left-inverse of word blending are
the same as their closure properties under the right-inverse of word blending.

We now consider the iterated blending operation �	∗. Recall that, as men-
tioned in Sect. 2, for any language L ⊆ Σ∗, the language L��∗ can be generated
by a splicing system with null-context splicing rules defined as 6-tuples, as in [17].
As shown in [1], every splicing system where the rules are defined by 6-tuples, can
also be implemented by a splicing system as defined in [27], which uses 4-tuple
rules (see Definition 10). This connection, together with Proposition 2, allows us
to express iterated word blending using so-called simple splicing systems [24],
themselves a particular case of splicing systems based on 4-tuple splicing rules.

Definition 10 ([27]). Let σ = (Σ,R) be a splicing scheme, where Σ is the
alphabet and R is a set of rules R ⊆ Σ∗#Σ∗$Σ∗#Σ∗. A rule (u1, u2;u3, u4) is
a word u1#u2$u3#u4 ∈ R. For two strings x, y ∈ Σ∗, we have

σ(x, y) = {x1u1u4y2 |x = x1u1u2x2, y = y1u3u4y2;
x1, x2, y1, y2 ∈ Σ∗, u1#u2$u3#u4 ∈ R}.

For a language L, we define σ(L) = L∪⋃
x,y∈L σ(x, y) and we define the iterated

splicing of L by σ∗(L) =
⋃

iě0 σi(L) with σ0(L) = L and σi+1(L) = σ(σi(L)).

Simple splicing schemes are splicing schemes as above, but restricted to rules
of the form (a, λ; a, λ) for a ∈ Σ. Note that for two languages L1 and L2 over Σ,
we now have that

L1 �	 L2 =
⋃

x∈L1,y∈L2

σ��(x, y),

where σ�� is the simple splicing scheme σ�� = (Σ,R) with R = Σ#λ$Σ#λ. This
observation together with Proposition 2 which showed that the word blending
of two languages can be written L1 �	 L2 =

⋃
a∈Σ(L1(aΣ∗)−1)a((Σ∗a)−1lL2),

gives us the following result.

Proposition 11. For any language L ⊆ Σ∗, we have σ��(L) = L �	 L and
σ∗

��(L) = L��∗ .

We note that the splicing scheme σ�� is finite, since the number of rules
depends only on the number of symbols in Σ, and it is unary, since the rules use
words of length at most 1. We also note that, even though in [24] consideration
is restricted to the case when L is a finite language, the properties of the splicing
systems obtained therein imply the following closure properties.

Proposition 12. Every full AFL is closed under iterated word blending.
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Proof. Recall that L��∗ = σ∗
��(L) and that σ∗

�� is finite and unary. For a splicing
rule u1#u2$u3#u4, the words u1 and u4 are called visible sites and u2 and u3

are invisible sites. In [26], it is shown that full AFLs are closed under regular
splicing systems with finitely many visible sites. Since σ∗

�� is finite, the rules of
σ∗

�� contain only finitely many visible sites. ��
Now, we will give an explicit construction for L��∗ when L is a regular lan-

guage. We will require the following lemma concerning the structure of words
generated by the iterated blending operation.

Lemma 13. Let L ⊆ Σ+ be a language. Then for each word w ∈ L��∗ , there
exists n ∈ N such that there are words ui ∈ inf(L), 1 ď i ď n and αj ∈ Σ∗, 1 ď
j ď n and symbols ak ∈ Σ, 1 ď k ď n − 1 where

1. for n > 1,
(a) w = α1a1α2a2 · · · an−1αn,
(b) ui = ai−1αiai ∈ inf(L) for all 2 ď i ď n − 1,
(c) u1 = α1a1 ∈ pref(L) and un = an−1αn ∈ suff(L),

2. u1 = w ∈ L for n = 1.

Proposition 14. Given an NFA A, there exists an NFA A′ recognizing the lan-
guage L(A)��∗ which is effectively constructible.

This construction gives us a way to test whether a regular language L is
closed under iterated blending.

Proposition 15. Let L be a regular language. It is decidable whether or not L
is closed under �	∗.

Let L,B ⊆ Σ∗ be two languages. We say that B is a base of L (with respect
to �	) if L = B��∗ . In [24], it is shown that it is decidable whether or not a
regular language is generated by a simple splicing scheme and a finite language
base. Here, we extend the result to consider the case when the base need not be
finite.

Theorem 16. It is decidable whether or not a regular language has a base over �	∗.

As a consequence, we are able to not only decide whether a regular language
is closed under �	∗, but if it is, we know there always exists a finite base that
generates it.

Corollary 17. Let L be a regular language closed under �	∗. Then L can be
generated by a finite base.

Note that in [24] languages generated by simple splicing schemes are assumed to
have finite bases by definition. There it was also shown that the class of languages
generated by these simple splicing schemes is a subclass of the family of regular
languages. Here we do not have the finite base restriction, and Corollary 17 shows
that allowing regular bases does not give simple splicing schemes and iterated word
blending any more power than restricting bases to be finite.



Word Blending in Formal Languages: The Brangelina Effect 79

4 Decision Problems

This section investigates the existence of solutions to language equations of the
type X �	 L = R and L �	 Y = R, where L,R are given known languages, X,Y
are unknown languages, and �	 is the word blending operation.

Proposition 18. The existence of a solution Y to the equation L �	 Y = R is
decidable for given regular languages L and R.

Proof. According to [22], since �	r is the right-inverse of word blending, if there
exists a solution Y to the given equation, then Y ′ = (L �	r Rc)c is also a solution.
Moreover, in this case Y ′ is the maximal solution, in the sense that it includes
all the other solutions to the equation. Since the family of regular languages is
closed under �	r and complement, the algorithm for deciding the existence of
a solution starts with constructing L �	 Y ′, which is also regular, and checking
whether L �	 Y ′ equals R. As equality of regular languages is decidable [25], if
the answer to the question “Is L �	 Y ′ equal to R?” is “yes”, then a solution to
the equation exists, and Y ′ is such a solution. If the answer is “no”, then the
equation has no solution. ��
Proposition 19. The existence of a solution X to the equation X �	 L = R is
decidable for regular languages L and R.

Proposition 20. The existence of a singleton solution {w} to the equation L �	
{w} = R is decidable for regular languages L and R.

Proof. If R is empty, a singleton solution {w} to the equation L �	 {w} = R
exists if and only if L does not use all the letters from the alphabet Σ. The
decision algorithm will check the emptiness of all regular languages L ∩ Σ∗aΣ∗,
where a ∈ Σ: If any of them is empty, then {w} = {a} is a singleton solution,
otherwise no singleton solution exists.

We now consider the case when R is not empty. If there is a singleton solution
{w} to the equation L �	 {w} = R, where L,R ⊆ Σ+, w ∈ Σ+ then there is a
shortest singleton solution of length k ě 1, denoted by ws = a1a2 · · · ak, with
a1, a2, . . . , ak ∈ Σ. We now want to show that the number of states in any finite
state automaton that accepts R is at least k.

If lg(ws) = 1, then λ /∈ R, so the number of states of any finite state machine
that recognizes R is at least 2, which is greater than the length of ws.

Suppose k ě 2. Define Li = (L �	 ai)ai+1 · · · ak for 1 ď i < k, and define
Lk = L �	 ak. Then, we have R =

⋃k
i=1 Li. Note that L1 �⊆ ⋃k

i=2 Li, as otherwise
a2a3 · · · ak would be a shorter singleton solution than ws—a contradiction.

Let α ∈ L1 ⊆ R; α can be represented as α = α1a1a2 · · · ak, where α1 ∈ Σ∗.
Assume now that R is recognized by a DFA M = (Q,Σ, δ, q0, F ) with n < k
states. Then there is a derivation

q0α1a1a2 · · · ak =⇒∗ qi1a1a2 · · · ak =⇒ qi2a2 · · · ak =⇒ · · · =⇒ qikak =⇒ qik+1 .
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Because M has n < k states, there is a state that occurs twice in the set
{qi2 , qi3 , . . . , qik+1}.

If qij = qik+1 where 2 ď j ď k, then α1a1 · · · aj−1(aj · · · ak)+ ⊆ R, and so
there exists a word α2 ∈ Σ∗ such that α1a1 · · · aj−1(aj · · · ak)+α2 ⊆ L. Thus, we
have α ∈ α1a1 · · · aj−1(aj · · · ak)+α2 �	 ak ⊆ Lk ⊆ ⋃k

i=2 Li.
If qij = qih where 2 ď j < h ď k, then α1a1 · · · aj−1(aj · · · ah−1)+ah · · · ak ⊆

R, and so there exists a word α2 ∈ Σ∗ such that α1a1 · · · aj−1(aj · · · ah−1)+α2 ⊆ L.
Then α ∈ (

α1a1 · · · aj−1(aj · · · ah−1)+α2 �	 ah−1

)
ah · · · ak ⊆ Lh−1 ⊆ ⋃k

i=2 Li.
In either case, for all words α ∈ L1, α ∈ ⋃k

i=2 Li. Thus, we have that L1 ⊆
⋃k

i=2 Li, which is a contradiction.
For the equation L �	 Y = R, if there is a singleton solution, there is a

singleton solution ws of minimal length k, and the number of states in any finite
state machine for R is at least k. If the minimal deterministic finite automaton
that generates R has k states, the algorithm for deciding the existence of a
singleton solution will check all the words β, where lg(β) ď k. The answer is“yes”
if this algorithm finds a string β such that L �	 {β} = R, and “no” otherwise. ��
Proposition 21. The existence of a singleton solution {w} to the equation
{w} �	 L = R is decidable for regular languages L and R.

Proposition 22. The existence of a singleton solution {w} to the equation L �	
{w} = R is undecidable for regular languages R and context-free languages L.

Proof. Assume, for the sake of contradiction, that the existence of a singleton
solution {w} to the equation L �	 {w} = R is decidable for regular languages R
and context-free languages L.

Given an arbitrary context-free language L′ over an alphabet Σ, the context-
free language L1 = #Σ+# ∪ L′$ can be constructed where #, $ /∈ Σ. Note now
that the equation L1 �	 {w} = Σ∗$ has a singleton solution {w} if and only if
L′ = Σ∗ and the solution is {w} = {$}. Thus, if we could decide the problem in
the proposition, we would be able to decide whether or not L′ = Σ∗ for arbitrary
context-free languages L′, which is impossible. ��
Corollary 23. The existence of a solution Y to the equation L �	 Y = R is
undecidable for regular languages R and context-free languages L.

Proposition 24. 1. The existence of a singleton solution {w} to the equation
{w} �	 L = R is undecidable for a regular language R and a context-free
language L.

2. The existence of a solution X to the equation X �	 L = R is undecidable for
a regular language R and a context-free language L.

5 State Complexity

By Proposition 2, the family of regular languages is closed under word blending.
Thus, we can consider the state complexity of the blending operation on two
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regular languages. Recall from Proposition 2 that the blending of two languages
can be expressed as a series of union, catenation, and quotient operations. While
the state complexity of each of these operations is known, the state complexity
of a combination of operations is not necessarily the same as the composition of
the state complexities of the operations [29].

First, for illustrative purposes, we will construct an NFA that recognizes
the blending of two languages given by DFAs. Let Am = (Qm, Σ, δm, sm, Fm)
be a DFA with m ě 1 states that recognizes the language Lm and let An =
(Qn, Σ, δn, sn, Fn) be a DFA with n ě 1 states that recognizes the language Ln.
We construct an NFA B′ = (Q′, Σ, δ′, s′, F ′), where Q′ = Qm ∪ Qn, s′ = sm,
F ′ = Fn, and the transition function δ′ : Q′ × Σ → 2Q′

is defined for all q ∈ Q′

and a ∈ Σ by

δ′(q, a) =

⎧
⎪⎨

⎪⎩

⋃
p∈Qn

δn(p, a) if q ∈ Qm and δm(q, a) is not the sink state,
δm(q, a) if q ∈ Qm and δm(q, a) is the sink state,
δn(q, a) if q ∈ Qn.

In Fig. 1, we define two DFAs Am and An and show the NFA B′ resulting from
the construction described above. Intuitively, the machine B′ operates by first
reading the input word assuming that it is the prefix of some word recognized
by Am. Since the blending occurs on only one symbol, the machine guesses at
which symbol the blend occurs. Once the blend occurs the machine continues
and assumes the rest of the word is the suffix of some word recognized by An.

p0start p1 p2

Am b

a

b

a

c

c

a, b, c

q0start q1

An a, c

b

c

a, b

p0start p1 p2B

b

a

b

a

c

c

a, b, c

q0 q1a, c

b

c

a, b

a, b

a, b
b

b

Fig. 1. The NFA B′ recognizes the blend of the languages recognized by the DFAs Am

and An
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Proposition 25. The NFA B′ recognizes the language Lm �	 Ln.

Now, using the same basic idea, we will construct a DFA that recognizes the
language of the blending of the two languages recognized by two given DFAs Am

and An. We construct a DFA A′ = (Q′, Σ, δ′, s′, F ′) where

– Q′ = Qm × 2Qn ,
– s′ = (sm, H),
– F ′ = {(q, P ) ∈ Qm × 2Qn | P ∩ Fn �= H},
– δ′((q, P ), a) = (δm(q, a), P ′) for a ∈ Σ, where

P ′ =

{⋃
p∈P δn(p, a) if δm(q, a) is the sink state,

⋃
p∈Qn

δn(p, a) otherwise.

Figure 2 shows the DFA A′ that results from following the construction
described above, where Am and An are the DFAs shown in Fig. 1. Each state of
A′ is a pair consisting of a state of Am and a subset of states of An. Informally, we
can divide the computation of a word into two phases. In the first phase, states
of the form (q, P ) are reached where q is not the sink state of Am. Here, the set
P is determined solely by the input symbol as the machine tries to guess the
symbol on which the blending occurs. In the second phase, the machine reaches
states (qH, P ), where qH is the sink state of Am. The second phase only occurs
when the blend occurs and the input that has been read is no longer a prefix of a
word recognized by Am. In this phase, the set P is determined by the transition
function of An. We will show this formally in the following.

Proposition 26. The DFA A′ recognizes the language Lm �	 Ln.

A simple count of the number of states in the state set of A′ gives us as many
as m2n states. We will show that, depending on the size of the alphabet, not all
of these states are necessarily reachable. First, we consider the case where the
alphabet is unary.

Theorem 27. Let Lm and Ln be regular languages defined over a unary alphabet
such that Lm is recognized by an m-state DFA and Ln is recognized by an n-state
DFA. Then the state complexity of Lm �	 Ln is m+n− 1 if both Lm and Ln are
finite or 1 otherwise. Furthermore, this bound is reachable.

Now, we will consider the state complexity when the languages are defined
over alphabets of size greater than 1.

Lemma 28. The DFA A′ requires at most (m−1) ·(k−1)+2n +1 states, where
k = |Σ| ď 2n.

Lemma 29. Let k ě 3 and m,n ě 2. There exist families of DFAs Am with m
states and Bn with n states defined over an alphabet with k letters such that a
DFA recognizing Am �	 Bn requires at least (m − 1) · (k − 1) + 2n + 1 states.

These results together give us the following theorem.
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Fig. 2. The DFA A′ recognizes the blend of the languages recognized by Am and An

from Fig. 1

Theorem 30. Let Am be a DFA with m states recognizing the language Lm and
let An be a DFA with n states recognizing the language Ln, where Lm and Ln

are defined over an alphabet Σ of size k. Then

sc(Lm �	 Ln) ď (m − 1) · (k − 1) + 2n + 1,

and this bound can be reached in the worst case.
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Abstract. Insertion-deletion (or ins-del for short) systems are well stud-
ied in formal language theory, especially regarding their computational
completeness. The need for many variants on ins-del systems was raised
by the computational completeness result of ins-del system with (opti-
mal) size (1, 1, 1; 1, 1, 1). Several regulations like graph-control, matrix
and semi-conditional have been imposed on ins-del systems. Typically,
computational completeness are obtained as trade-off results, reducing
the size, say, to (1, 1, 0, 1, 1, 0) at the expense of increasing other mea-
sures of descriptional complexity. In this paper, we study simple semi-
conditional ins-del systems, where an ins-del rule can be applied only
in the presence or absence of substrings of the derivation string. We
show that simple semi-conditional ins-del system, with maximum per-
mitting string length 2 and maximum forbidden string length 1 and
sizes (2, 0, 0; 2, 0, 0), (1, 1, 0; 2, 0, 0), or (1, 1, 0; 1, 1, 1), are computation-
ally complete. We also describe RE by a simple semi-conditional ins-del
system of size (1, 1, 0; 1, 1, 0) and with maximum permitting and forbid-
den string lengths 3 and 1, respectively. The obtained results complement
the existing results available in the literature.

1 Introduction

Insertion-deletion systems are a computational model based on the operations of
insertion and deletion of substrings in a string. Initially motivated on linguistic
grounds, they more recently became quite popular as a theoretical model for
DNA-based computations, as the basic operations fit well into this area. For
further discussions on the history of this model, as well as giving insights into
the rich literature of this area, we refer to [7,14,15].

In a nutshell, the rules of an insertion-deletion system (or ins-del system)
can be of two types: insertion or deletion, i.e., either, a string is specified that
may be inserted in a prescribed context within the current string, or it may be
c© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney and S. Verlan (Eds.): UCNC 2018, LNCS 10867, pp. 86–100, 2018.
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deleted relative to the context conditions. The potential biological meaning of
such a rule should be clear. The main research question is under which restric-
tions can computational completeness results still be obtained. For instance, it
is known [13] that for each recursively enumerable language (or RE language for
short), there exists an ins-del system where only single symbols are inserted or
deleted, and the allowed context conditions (to the left or to the right) are again
(at most) single symbols. However, if we disallow checking contexts both to the
left and to the right, then not all RE languages can be described; cf. [14]. In
such situations, several regulation mechanisms have been studied and shown to
achieve computational completeness results. From the viewpoint of biocomput-
ing, let us only mention ins-del P systems [8,9], sometimes in disguise [4], tissue
P systems with ins-del rules [10] and semi-conditional ins-del systems [6].

Meduna and Svec have reported on the use of several variants of context
conditions in regulated rewriting in the textbook [11]. Here, (simple) semi-
conditional rules are of particular importance. In the semi-conditional case, the
conditions are sets of words and a rule can be applied if all words from its permit-
ting condition are present and no word from the forbidden condition is present in
the string. A semi-conditional grammar is said to be simple if each rule has only
either a permitting condition or a forbidden condition. Let the maximum length
of a string in the permitting and forbidden set be denoted by i and j, respec-
tively; then the ordered pair (i, j) is called the degree of the semi-conditional
grammar. From a biological point of view, these conditions can be interpreted as
global context conditions, as opposed to the local context conditions traditionally
represented within the ins-del rules themselves.

Ivanov and Verlan initiated the study of semi-conditional ins-del systems
in [6]. They proved that with degree (2, 2), inserting and deleting single symbols
without any local context is sufficient to describe any RE language. Conversely,
extending previous computational incompleteness results on non-regulated ins-
del systems, it was shown in the same paper that ins-del systems that may
insert or delete single symbols in one-sided single-symbol context are not able
to describe the regular language {ab}+, assuming that these systems can also
globally check for single symbols only, i.e., if they are of degree (1, 1).

No previous computational completeness results have been known for other
degrees. This motivates the present study. We think that it might be possi-
ble to also globally check for the presence or absence of short molecular parts
(strings) within biocomputational devices. Furthermore, we managed to cope
with the already mentioned simple restriction on semi-conditional rules. Clearly,
this additional restriction is a technical challenge. More specifically, we prove
that simple semi-conditional ins-del systems of degree (2, 1) are computationally
complete if (i) strings of length two may either be inserted or deleted without
any local conditions, or (ii) only single symbols (with one-sided single-symbol
local context) may be inserted, but strings of length two may be deleted without
any local conditions, or (iii) only single symbols (with one-sided single-symbol
local context) may be inserted and single symbols (with two-sided single-symbol
local context) may be deleted. We finally present a trade-off result for systems
of degree (3, 1).
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2 Preliminaries

Let N denote the set of non-negative integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}.
If Σ is an alphabet (finite set), then Σ∗ denotes the free monoid generated by Σ.
The elements of Σ∗ are called strings or words; λ denotes the empty string. The
morphism from the monoid Σ∗ to N (with addition), defined by a �→ 1 for a ∈ Σ
is called length of a word; usually, we write |w|. Σ≤i collects all words over Σ of
length at most i. A word v is a subword of x ∈ Σ∗ if there are words u,w such
that x = uvw. Let sub(x) ⊆ Σ∗ denote the set of all subwords of x ∈ Σ∗. We
also use the shuffle operation � to describe the effect of insertions at a random
position in the string. wR denotes the reversal of w ∈ Σ∗. For the computational
completeness results, we are using the fact that type-0 grammars in SGNF are
known to characterize the class RE of recursively enumerable languages.

Definition 1 ([5]). A type-0 grammar G = (N,T, P, S) is said to be in Special
Geffert Normal Form, or SGNF for short, if N decomposes as N = N ′ ∪ N ′′,
where N ′′ = {A,B,C,D} and N ′ contains at least the two nonterminals S and
S′, the only non-context-free rules in P are the two erasing rules AB → λ and
CD → λ, the context-free rules are of the following forms:

X → Y b or X → bY, where X,Y ∈ N ′, X �= Y, b ∈ T ∪ N ′′, or S′ → λ.

The way the normal form is constructed is described in [5]. Also, the derivation
of a string is done in two phases. In phase I, the context-free rules are applied
repeatedly; this phase is completed by applying the rule S′ → λ in the derivation.
In phase II, only the non-context-free erasing rules are applied repeatedly until
a terminal string is reached. From its invention, this normal form turned out
to be a very tool for proving computational completeness results for (regulated)
ins-del systems.

Definition 2 ([7,12]). An insertion-deletion system, or ins-del system for
short, is a construct γ = (V, T,A,R), where V is an alphabet, T ⊆ V is the
terminal alphabet, A is a finite language over V , R is a finite set of triplets of
the form (u, η, v)ins or (u, δ, v)del, where (u, v) ∈ V ∗ × V ∗, η, δ ∈ V +.

The pair (u, v) is called the context, η is called the insertion string, δ is called
the deletion string and x ∈ A is called an axiom. If one of the u or v is λ for all
the insertion (deletion) contexts, then we call the insertion (deletion) one-sided.
If both u, v = λ for every insertion (deletion) rule, then it means that the cor-
responding insertion (deletion) can be done freely anywhere in the string and is
called context-free insertion (context-free deletion). The descriptional complexity
of an ins-del system is measured by its size s = (n, i′, i′′;m, j′, j′′), where the
parameters represent resource bounds as given in Table 1.

Definition 3 ([6]). A semi-conditional insertion-deletion system of degree
(i, j), i, j ≥ 0 is a construct Π = (V, T,A,R), where V is a finite alphabet,
T ⊆ V is the terminal alphabet, A ⊆ V ∗ is a finite set of axioms, R is a finite
set of rules of the form [(u, s, v)t,P,F ] where u, s, v ∈ V ∗, t ∈ {ins, del}, P,F
are finite subsets of V ∗.
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Table 1. Parameters in the size of ins-del system.

n = max{|η| : (u, η, v)ins ∈ R}
i′ = max{|u| : (u, η, v)ins ∈ R}
i′′ = max{|v| : (u, η, v)ins ∈ R}

m = max{|δ| : (u, δ, v)del ∈ R}
j′ = max{|u| : (u, δ, v)del ∈ R}
j′′ = max{|v| : (u, δ, v)del ∈ R}

The set P is called the permitting set and F is called the forbidden set. For
clarity, we often use unique labels for rules, even identifying a rule with its label,
i.e., if r ∈ R is a rule (label), then r : [(ur, sr, vr)tr ,Pr,Fr]. The ordered pair
(i, j) is called the degree of the semi-conditional ins-del system Π where i is the
smallest integer such that

⋃
r∈R Pr ⊆ V ≤i and j is the smallest integer such

that
⋃

r∈R Fr ⊆ V ≤j . We write x ⇒r y if Pr ⊆ sub(x) and Fr ∩ sub(x) = ∅ and
either

1. tr = ins and x = x1urvrx2, y = x1ursrvrx2, for some x1, x2 ∈ V ∗; or
2. tr = del and x = x1ursrvrx2, y = x1urvrx2, for some x1, x2 ∈ V ∗.

The language generated by a semi-conditional insertion-deletion system Π is

L(Π) = {w ∈ T ∗ | x ⇒∗ w for some x ∈ A} ,

where ⇒∗ is the reflexive and transitive closure of ⇒=
⋃

r∈R ⇒r. The families of
languages generated by semi-conditional insertion-deletion systems of degree at
most (i, j) having ID size at most s = (n, i′, i′′;m, j′, j′′) is denoted as SCi,jID(s).
If, for each r ∈ R, either Pr = ∅ or Fr = ∅, then the semi-conditional ins-
del system is said to be simple. The families of languages generated by such
simple semi-conditional insertion-deletion (denoted in short as SSCID) systems
of degree at most (i, j) and ID size at most s is denoted as SSCi,jID(s).

Example 1. Consider the non context-free language L1 = {anbncn | n ≥ 1}. We
construct a simple semi-conditional ins-del system Π of degree (1, 1) and ID size
(3, 1, 1; 1, 0, 0) describing L1 as follows: Π = ({A,B, a, b, c}, {a, b, c}, {abc}, R)
where the set of rules of R are given in Table 2.

Table 2. SSCID rules describing {anbncn | n ≥ 1}.

r1 : [(a, aAb, b)ins, ∅, B]

r3 : [(λ, A, λ)del, B, ∅]

r2 : [(b, Bc, c)ins, A, ∅]

r4 : [(λ, B, λ)del, ∅, A]

We will now explain the working of the rules in Table 2. From the rules, we
can see that r1 can be applied in the absence of B and r2 can be applied in
the presence of A, thus, r1 has to be applied before r2 is applied. Note that in
r1, as the contexts are a and b, once aAb is introduced between a and b, the
rule r1 cannot (immediately) be applied again until A is deleted. Similarly, rule
r2 cannot be applied for a second time unless B is deleted. Starting from the
axiom abc, the only applicable rule is r1 which will results in aaAbbc. Now, r3
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cannot be applied, as deleting A requires the presence of B and this symbol is
not introduced yet. So, the only applicable rule is r2 which results in aaAbbBcc.
Now, r4 cannot be applied as it requires the absence of A and A is still present
in the derived string. The only applicable rule is hence r3 which deletes the A
and then the only applicable rule is r4 which deletes the B and results to aabbcc.
A sample derivation is given below for better understanding the system.

abc ⇒r1 aaAbbc ⇒r2 aaAbbBcc ⇒r3 aabbBcc ⇒r4 aabbcc = a2b2c2.

The above process is repeated and as the rules are applied in a deterministic
manner, it is easy to see that L(Π) = L1. �
Remark 1. The purpose of Example 1 is to explain how the system works and
the size used in this example does not necessarily correspond to computational
completeness results obtained in this paper. On the other hand, if a type-0
grammar (in SGNF) is given for L1, then L1 can be simulated by a simple semi-
conditional ins-del system with the sizes that are shown in the computational
completeness result. �

The results of this paper and a sketch on how they complement the existing
results of [6] are given in Table 3.

Table 3. Comparing the results of [6] and this paper.

S. No Result of [6] Complementing result(s) of this paper Reference

1 SC2,2ID(1, 0, 0; 1, 0, 0) = RE SSC2,1ID(2, 0, 0; 2, 0, 0) = RE Theorem 2

2 SC1,1ID(1, 1, 0; 2, 0, 0) � RE SSC2,1ID(1, 1, 0; 2, 0, 0) = RE Theorem 3

3 SC1,1ID(1, 1, 0; 1, 1, 1) � RE SSC2,1ID(1, 1, 0; 1, 1, 1) = RE Theorem 4

4. SC1,1ID(2, 0, 0; 1, 1, 0) = RE SSC2,1ID(2, 0, 0; 2, 0, 0) = RE Theorem 2

SSC3,1ID(1, 1, 0; 1, 1, 0) = RE Theorem 5

SSC3,1ID(1, 0, 1; 1, 1, 0) = RE Theorem 6

3 Main Results

In order to make some of our results simple, we claim the following, similar to
other regulation mechanisms, as for example in [4].

Theorem 1. If s = (n, i′, i′′;m, j′, j′′) is some ID size and (i, j) is some degree,
then SSCi,jID(s) = [SSCi,jID(s′)]R, with s′ = (n, i′′, i′;m, j′′, j′), and moreover,
SSCi,jID(s) = RE if and only if SSCi,jID(s′) = RE.

In order to show that simple semi-conditional ins-del systems of certain sizes
describe RE, we make use of the fact that RE languages can be generated by
grammars in Special Geffert Normal Form where the rules are of the type (i)
p : X → bY (ii) q : X → Y b (iii) f : AB → λ (iv) g : CD → λ and (v)
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h : S′ → λ, where p, q, f, g, h ∈ [1 . . . |P |] are labels associated with each type of
rule of SGNF. We provide a simulation of these rules by rules of simple semi-
conditional ins-del system. The simulation of type g : CD → λ rules is similar
to the simulation of f -type rules. Also, we always simulate the h type rule by
[(λ, S′, λ)del, ∅,M], with M ∈ {M′′,M′′′} as defined below. Therefore, in the
following proofs we mostly discuss the simulations of rules of type p, q, f and
we let

M = {m | m ∈ [1 . . . |P |]}, M ′ = {m′ | m ∈ [1 . . . |P |]},
M ′′ = {m′′ | m ∈ [1 . . . |P |]}, M ′′′ = {m′′′ | m ∈ [1 . . . |P |]},
M′′ = M ∪ M ′ ∪ M ′′, M′′′ = M ∪ M ′ ∪ M ′′ ∪ M ′′′.

We first recall from [6] that SC2,2ID(1, 0, 0; 1, 0, 0) = RE. In the following
we decrease the degree to (2, 1) and further make the system simple but at
the cost of increasing the insertion and deletion lengths from one to two. The
computational completeness of SSC0,2ID(2, 0, 0; 2, 0, 0) is under study.

Theorem 2. SSC2,1ID(2, 0, 0; 2, 0, 0) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF in which the rules
of P are labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system
Π = (V, T, {S}, R) of degree (2, 1) and ID size (2, 0, 0; 2, 0, 0) as follows such that
L(Π) = L(G). The alphabet of Π is V ⊂ N ∪T ∪M′′′. The set of rules of R in Π
is given as follows. (i) For every rule of type p : X → bY in G, the simulating
rules are stated in Fig. 1(a). (ii) For every rule of type q : X → Y b in G, the
simulating rules are stated in Fig. 1(b). (iii) Rules of type f : AB → λ are
simulated by the (SSC)ID rule f1 = [(λ,AB, λ)del, ∅, ∅].

p1 = [(λ, pp′, λ)ins, ∅, M′′′]
p2 = [(λ, p′X, λ)del, {pp′}, ∅]
p3 = [(λ, bp′′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′ ∪ M ′′′]
p4 = [(λ, Y p′′′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′′]
p5 = [(λ, p′′′, λ)del, {p′′′p′′}, ∅]
p6 = [(λ, p′′p, λ)del, {bY }, ∅]

(a) Simulating p : X → bY

q1 = [(λ, qq′, λ)ins, ∅, M′′′]
q2 = [(λ, q′X, λ)del, {qq′}, ∅]
q3 = [(λ, q′′b, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′ ∪ M ′′′]
q4 = [(λ, q′′′Y, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′′]
q5 = [(λ, q′′′, λ)del, {q′′q′′′}, ∅]
q6 = [(λ, qq′′, λ)del, {Y b}, ∅]

(b) Simulating q : X → Y b

Fig. 1. Simulating context-free rules of SGNF by SSC2,1ID(2, 0, 0; 2, 0, 0).

We now proceed to prove that L(Π) = L(G). We initially prove that L(G) ⊆
L(Γ ) by showing that Π correctly simulates the application of the rules of the
types p, q, f . We focus on the p rule simulation, as this is the most complicated
one. The application of p : X → bY to αXβ derives αbY β = w, which is correctly
simulated by Π as follows:

αXβ ⇒p1 αpp′Xβ ⇒p2 αpβ ⇒p3 αbp′′pβ ⇒p4 αbY p′′′p′′pβ ⇒p5 αbY p′′pβ ⇒p6 w.



92 H. Fernau et al.

Simulation idea: We insert strings of length two in a random manner, such that
one symbol of it acts as a marker to stitch to the correct position in the string.
The correct position is verified with permitting strings or deletion strings of
length two, which verifies that the previously introduced string has been inserted
only at a particular correct position. For example, pp′ is randomly inserted by
rule p1 and the rule p2 demands that this insertion happens to the left of the
only non-terminal X present in the string. Similarly, the permitting string in
p5 demands to have the substring p′′′p′′ present in the string, thus Y p′′′ (see
rule p4) is inserted between b and p′′ and bp′′ itself is inserted by rule p3. The
forbidden strings in insertion rules prevent from using of the same rule again
and also indirectly bring the order among the applications of the rules.

We now prove the converse inclusion L(Π) ⊆ L(G) by showing that the rules
stated in Fig. 1(a) can only be used in the intended way.

Consider a sentential form w0 = αXβ derivable in Π and G, where X ∈ N ′

and α, β ∈ (N ′′ ∪ T )∗. Notice that, from the perspective of G, we are (still) in
phase I. The only applicable rule is p1 (or any other insertion rule r1 where
the left-hand side of rule r ix X) since other insertion rules like p3 or p4 forbid
the presence of any non-terminal of N ′. All deletion rules of Fig. 1 require the
presence of rule markers (i.e. elements of M′′′), but sub(w0) ∩ M′′′ = ∅. On
applying the rule p1, pp′ is inserted anywhere in the string thus yielding w1 ∈
pp′
� (αXβ), with pp′ ∈ sub(w1). We cannot apply any insertion rule r1, r3 or

r4, as p′ ∈ Fr1 ∩ Fr3 ∩ Fr4. In particular, this rules out repeated applications of
p1. Also, we cannot apply rule h1 now, as here (and also in any of the further
steps discussed below) some rule marker is present in the string. Hence, we must
apply a deletion rule of Fig. 1 to w1. The application of any r5 or r6 requires
r′′ to appear, which is not the case for w1. By the uniqueness of rule labels,
the only applicable rule is p2 which actually fixes the position of pp′ on the
left of X, thereby deleting p′X. Hence, we obtain a unique string w2 satisfying
w1 ⇒p2 w2 = αpβ. Now, there is a choice in applying r3 or r4 for some rule r. We
focus on r = p in the following, as this is the only possible fruitful continuation,
as we will soon see. If p4 is applied to w2, we get w′

2 ∈ Y p′′′
� αpβ and now p3

cannot be applied, as p′′′ ∈ sub(w′
2) ∩ Fp3.

The derivation is stuck, as no other rule can be applied. In particular, p5 is
not applicable, since p′′ /∈ sub(w′

2). Thus, the only applicable rule on w2 is p3
which inserts bp′′ randomly into w2 yielding w3 ∈ bp′′

�αpβ, with bp′′ ∈ sub(w3).
The re-application of p3 on w3 is stopped since p′′ is a member of its forbidden
set. On applying the only possible rule p4 on w3,1 Y p′′′ is randomly inserted,
resulting in w4 ∈ Y p′′′

� bp′′
� αpβ, with Y p′′′, bp′′ ∈ sub(w4). A careful case

analysis reveals that now p5 is the only applicable rule.2 Since p5 demands that
p′′′p′′ ∈ sub(w4), this crucial rule application fixes several of our previous choices:
(a) Recall that we could have applied any rule r3 (instead of p3) and any rule
r̄4 (instead of p4). But if we would have chosen r̄ �= r, then the substring r′′′r′′

would not be present in w4. We will see in the next step that only r = p is

1 Again, any r4 could be applied, but we will soon see that r = p is enforced.
2 Again, any r5 could be applied, but we will soon see that r = p is enforced.
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possible, which we will therefore use already in the following to avoid clumsy
formulations. (b) Previously, we had the choice inserting Y p′′′, bp′′ anywhere
into w2. However, p′′′p′′ ∈ sub(w4) ensures that Y p′′′ must have been inserted
between b and p′′. Hence, we know that bY p′′′p′′ ∈ sub(w4). Now, w4 ⇒p5 w5

yields bY p′′ ∈ sub(w5). With symbols from M ∪ M ′′ being present in w5, we
understand that only rule p6 is applicable. Also, the deletion operation fixes
that the right-hand side bY introduced with rules r3 and r4 corresponds to that
of p, as this deletion is only possible if r = p. Similarly, bp′′ must have been
inserted to the left of p due to p′′p ∈ sub(w5). Applying p6 on w5 deletes the
markers p′′p, thus yielding w6 = αbY β. This series of rule applications that
yields w6 = αbY β from w0 = αXβ corresponds to the rewriting rule X → bY
of G.

Consider now a sentential form w0 derivable both in Π and in G, with N ′ ∩
sub(w0) = ∅. This means that the derivation of grammar G is in phase II. Hence,
w0 = xyt, where x ∈ {A,C}∗, y ∈ {B,D}∗, t ∈ T ∗. Clearly, if w0 ∈ T ∗, no
further derivation is possible. If AB or CD are substrings of w0, we can (directly)
apply f1 or g1, this way removing this substring as intended. Alternatively, we
can apply r1 for some context-free rule r of G. As we have considered above,
we would have to apply r2 next, but this is not possible due to the absence of
symbols from N ′. Hence, any such attempt will get stuck.

By induction, the previous arguments (that basically present the induction
steps) show that L(Π) ⊆ L(G), thus proving the theorem. �

Next, we recall from [6] that SC1,1ID(1, 1, 0; 2, 0, 0) �= RE. In the following
we show that computational completeness can be achieved if we increase the
degree of the system from (1, 1) to (2, 1), even when maintaining simplicity. The
computational completeness of SSC0,2ID(1, 1, 0; 2, 0, 0) is open for investigation.

Theorem 3. SSC2,1ID(1, 1, 0; 2, 0, 0) = SSC2,1ID(1, 0, 1; 2, 0, 0) = RE.

The reader might wonder why we could not deduce this result by
sequentializing the construction of Theorem 2 or even by starting from a
SSC2,1ID(2, 0, 0; 2, 0, 0) system. In fact, as long as special symbols like rule labels
are introduced as in rule p1 in Fig. 1(a), where a string of two rule labels is
inserted (in this example pp′) we might do the following. First, introduce the
left one of them (in this example it is p) with the context conditions of the previ-
ous simulation (in this example it is M′′′), and then introduce the right one (in
this example it is p′) in the context of the left one (in this example it is p). One
can avoid repetitions by having this newly introduced marker (in this example
it is p′) in the forbidden context. This trick can only work if we do not expect
that this symbol (that we now check for not showing up in the string) may not
already be present in the string. In our example we do not expect p′ to be present
before we introduced it, so we can sequentialize p1 in the described way. How-
ever, this expectation is not met, for instance, when trying to sequentialize rule
p3 in Fig. 1(a) in a similar fashion. Here, we would need different ideas. In more
general terms, this prevents us from starting out from a SSC2,1ID(2, 0, 0; 2, 0, 0)
system in our simulation for proving the claimed computational completeness
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result for SSC2,1ID(1, 1, 0; 2, 0, 0). Hence, we now show a different simulation,
starting from type-0 grammars in SGNF again.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P
are labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system
Π = (V, T, {S}, R) of degree (2, 1) and ID size (1, 1, 0; 2, 0, 0) as follows such
that L(Π) = L(G). The alphabet of Π is V ⊂ N ∪ T ∪ M′′. The set of rules
R of Π is given as follows: (i) For every rule of type p : X → bY in G, the
simulating rules are stated in Fig. 2(a), (ii) For every rule of type q : X → Y b in
G, the simulating rules are stated in Fig. 2(b), (iii) Rules of type f : AB → λ is
simulated by the SSCID rules f1 = [(λ,AB, λ)del, ∅, ∅].

p1 = [(X, p, λ)ins, ∅, M′′]
p2 = [(λ, X, λ)del, {p}, ∅]
p3 = [(p, p′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′]
p4 = [(p′, p′′, λ)ins, ∅, N ′ ∪ M ′′]
p5 = [(p′, Y, λ)ins, {p′p′′}, ∅]
p6 = [(p, b, λ)ins, {pp′}, ∅]
p7 = [(λ, p, λ)del, {bp′, Y p′′}, ∅]
p8 = [(λ, p′, λ)del, ∅, M ]
p9 = [(λ, p′′, λ)del, ∅, M ∪ M ′]

(a) Simulating p : X → bY

q1 = [(X, q, λ)ins, ∅, M′′]
q2 = [(λ, X, λ)del, {q}, ∅]
q3 = [(q, q′, λ)ins, ∅, N ′ ∪ M ′ ∪ M ′′]
q4 = [(q′, q′′, λ)ins, ∅, N ′ ∪ M ′′]
q5 = [(q′, b, λ)ins, {q′q′′}, ∅]
q6 = [(q, Y, λ)ins, {qq′}, ∅]
q7 = [(λ, q, λ)del, {Y q′, bq′′}, ∅]
q8 = [(λ, q′, λ)del, ∅, M ]
q9 = [(λ, q′′, λ)del, ∅, M ∪ M ′]

(b) Simulating q : X → Y b

Fig. 2. Simulation of context-free rules of SGNF by SSC2,1ID(1, 1, 0; 1, 0, 0).

We first explain the idea behind the construction of q rule simulation in Π as
follows. We introduce three markers q, q′, q′′ in order to have qq′q′′ present in the
string. The X of N ′ is deleted before q′ is introduced. So, the effect of executing
q1 through q4 is the same as that of applying the rewriting rule X → qq′q′′.
Then, Y is inserted in between q, q′ and b is inserted in between q′ and q′′.
Note that b cannot be introduced for a second time, as the string will be having
q′bq′′ and not q′q′′ (see rule q5). On deleting the markers, first q is deleted in
the presence of the Y q′ and bq′′ to ensure that Y and b are correctly introduced.
Then, the markers q′ and q′′ are deleted in this order. The order of deletion is
important since otherwise, the rules q3 and/or q4 can be applied again and a
malicious string can be obtained by using the rules q5 and/or q6.

One can show that L(G) ⊆ L(Π) by an inductive argument. The main point
is to understand the simulation of a context-free rule, say, of type q:

αXβ ⇒q1 αXqβ ⇒q2 αqβ ⇒q3 αqq′β ⇒q4 αqq′q′′β ⇒q5

αqq′bq′′β ⇒q6 αqY q′bq′′β ⇒q7 αY q′bq′′β ⇒q8 αY bq′′β ⇒q9 αY bβ.

To show the converse inclusion L(G) ⊇ L(Π), consider a string w0 derivable
both in G and in Π. We discuss possible derivations for w0 in Π and have to
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show that these either get stuck or correspond to derivation steps in G, which
would then entail the claim by induction. Observe that any rules rj for j > 1
require that sub(w0) ∩ M′′ �= ∅, either by the permitting context, or because
this is a requirement of the ins-del rules themselves. Hence, if N ′ ∩ sub(w0) = ∅,
i.e., the SGNF grammar G would work in phase II, we have to apply one of
h1, f1, g1, which directly corresponds to an erasing rule of G.

Therefore, we now consider a sentential form w0 = αXβ derivable in Π
and G, where X ∈ N ′ and α, β ∈ (N ′′ ∪ T )∗. The only applicable rules are some
rules q1 that insert the marker q to the right of X, thus yielding w1 = αXqβ.
Notice that now (and also within the future discussions) always a marker from
M′′ is present in the string, which disables applying rule h1 prematurely. No
rule r3 is applicable, as N ′ ∩sub(w1) �= ∅. For any of the rules r4, r5, r6, r7, r8 to
be applicable, M ′ ∩ sub(w1) �= ∅ is necessary, which is not the case. Similarly, r9
is not applicable. Hence, the only applicable rule is q2 which deletes X yielding
the string w2 = αqβ. Again, none of the rules r4, r5, r6, r7, r8 is applicable,
as M ′ ∩ sub(w1) = ∅. The presence of the marker q disables r1 and r9. As
N ′ ∩ sub(w1) = ∅, no rule r2 is applicable. Due to the uniqueness of the rule
labels, q3 is hence the only applicable rule, with w2 ⇒q3 w3 = αqq′β. As q, q′

are present in w3, any rule like r1, r3, r8, r9 is disabled. The absence of symbols
from N ′ ∪ M ′′ disables applying r2, r4, r5, r7. Label uniqueness leaves us with
applying either q4 or q6. Hence, if w3 ⇒ w4 in Π, then w4 ∈ {αqq′q′′β, αqY q′β}.
If w4 = αqY q′β, a case analysis reveals that if w4 ⇒ w5 in Π, then this must be
due to applying q4, i.e., w5 = αqY q′q′′β. Now, q5 is the only applicable rule, so
that w6 = αqY q′bq′′β is enforced. Alternatively, on w4 = αqq′q′′β, only rules q5
and q6 can apply. However, the order of application of q5, q6 does not matter,
because if q5 is applied, then only q6 can be applied next, and vice versa. Hence,
if w4 ⇒ w5 ⇒ w6 in Π, w6 = αqY q′bq′′β is again enforced.

The presence of symbols from M,M ′,M ′′ and N ′ in the substring qY q′bq′

within w6 prevents applying any of the insertion rules, as well as of any r8 or r9.
Because we can assume that X �= Y in any rule q : X → Y b or p : X → bY of G,
no rule r2 can be applied at this point. The only applicable rule on w6 is hence
q7 which deletes the marker q, thus yielding w7 = αY q′bq′′β. Let us stress that
q7 could not have been applied at any earlier point, as it also checks that both
Y q′ and bq′′ are present within the sentential form. Following the application
of q7, the rules q8, q9 are applied in a deterministic way which will delete the
markers q′, q′′, respectively, from w7 thus finally yielding w9 = αY bβ. A case-
by-case analysis shows that no other rules are applicable within a derivation
w7 ⇒ w8 ⇒ w9 within Π. This series of rule applications yielding w9 = αY bβ
from w0 = αXβ corresponds to the rewriting rule X → Y b. The second claim
SSC2,1ID(1, 0, 1; 2, 0, 0) = RE follows now with Theorem 1. �

It is shown in [6] that SC1,1ID(1, 1, 0; 1, 1, 1) �= RE. Analogous to the previous
theorem, we show in the following that computational completeness of the system
with ID (1, 1, 0; 1, 1, 1) can be achieved if we increase the degree of the systems
from (1, 1) to (2, 1). We prove the result even for simple semi-conditional ins-del
systems. Thus, the size in the following result is optimal. The computational
completeness of SSC0,2ID(1, 1, 0; 1, 1, 1) is under investigation.



96 H. Fernau et al.

Theorem 4. SSC2,1ID(1, 1, 0; 1, 1, 1) = SSC2,1ID(1, 0, 1; 1, 1, 1) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P
are labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system
Π = (V, T, {S}, R) of degree (2, 1) and ID size (1, 1, 0; 1, 1, 1) as follows such
that L(Π) = L(G). The alphabet of Π is V ⊂ N ∪T ∪M′′. The set of rules R of
Π is given as follows: (i) For every rule of type p : X → bY in G, the simulating
rules are stated in Fig. 2(a). (ii) For every rule of type q : X → Y b in G, the
simulating rules are stated in Fig. 2(b). (iii) Rules of type f : AB → λ in G are
simulated by rules as stated in Fig. 3.

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′ \ {f, f ′}]
f4 = [(f, A, f ′)del, ∅, N ′]
f5 = [(f ′, B, f ′′)del, ∅, N ′]
f6 = [(f, f ′, f ′′)del, ∅, ∅]
f7 = [(f, f ′′, λ)del, ∅, {f ′}]
f8 = [(λ, f, λ)del, ∅, {f ′, f ′′}]

Fig. 3. How to simulate f : AB → λ by SSC0,1ID(1, 1, 0; 1, 1, 1)

We now proceed to prove that L(Π) = L(G). We initially prove that L(G) ⊆
L(Π) by showing that Π correctly simulates the application of the rules of the
types p, q, f . The working of the simulation rules for the cases p and q are already
explained in Theorem 3. Hence, we now explain only the working of f .

The idea behind the construction of f rules is follows. We want to pin AB
with the markers and to obtain a substring of the form fAf ′Bf ′′. Though f is
inserted at random, the correct position of f insertion is taken care with rule
f4. Rule f6 is applicable only when A is deleted, since f ′ is inserted to the right
of A and f cannot be present to the left of f ′ unless A is deleted. As only one
f ′ is present in between A and B in the string (see rules f4 and f5) this makes
sure that the A and B that are next to each other only gets deleted. Also, as
f4 and f5 have both left and right context for deleting, we cannot delete more
than one A and one B. To delete f ′ the presence of f ′′ is required which ensures
the presence of B. Finally, the markers f ′, f ′′ and f are deleted. Note that the
permitting sets for all the rules in the simulation of f rule are empty.

Simulation of f : AB → λ: The rule f : AB → λ of G is simulated by rules of Π
as stated in Fig. 3 as follows:

αABβ ⇒f1 αfABβ ⇒f2 αfAf ′Bβ ⇒f3 αfAf ′Bf ′′β ⇒f4

αff ′Bf ′′β ⇒f5 αff ′f ′′β ⇒f6 αff ′′β ⇒f7 αfβ ⇒f8 αβ.

By induction, this shows that L(G) ⊆ L(Π).
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To show the reverse inclusion L(G) ⊇ L(Π), assume that w0 can be derived
both in G and in Π. Hence, w0 ∈ (N ′′ ∪ T )∗(N ′ ∪ {λ})(N ′′ ∪ T )∗. If N ′ ∩
sub(w0) �= ∅, from the perspective of G, we are still simulating phase I. We have
to work through the explanations and case distinctions considered in Theorem 3
once more. A problem could arise if in a sentential form wi considered in these
discussions, (M′′ ∪ N ′) ∩ sub(wi) = ∅, as then rules like f1 become applicable.
However, this is never the case, so that there is no danger in starting a simulation
of an f - or g-rule prematurely (i.e., when still simulating phase I).

Hence, w0 ∈ (N ′′ ∪ T )∗. If w0 ∈ T ∗, nothing remains to be shown. Hence,
w.l.o.g., we consider a sentential form w0 = αABβ in Π (and in G), where
A,B ∈ N ′′ and α, β ∈ (N ′′ ∪ T )∗. At first glance, it may seem that we could
start the simulation with one of the three rules f1 or f2 or f3. If we apply
f2 and f3 (in this sequence, as first applying f3 would block f2, and actually
any derivation starting with f3 on w0 is immediately blocked), then the only
applicable rule is f5 which will delete B between f ′ and f ′′, yielding f ′f ′′ as
a substring of some w′′′, with w0 ⇒f2 w′ ⇒f3 w′′ ⇒f5 w′′′. Alternatively, this
process yielding w′′′ can be described by applying the rewriting rule B → f ′f ′′

to w0. The marker f has neither been introduced earlier nor could be inserted
later, because its insertion rule f1 demands absence of f ′, f ′′ in particular. But,
in the absence of f , it is impossible to delete the markers f ′, f ′′ using the rules
f6 and f7, respectively.

Hence, in order to make a productive move, we have to begin by applying
rule f1 to w0 = αABβ, which randomly inserts the marker f . So, if w0 ⇒f1 w1,
then w1 ∈ f � (αABβ). Notice that f1 cannot be applied again on w1, nor can
g1 be, as these rules require all rule marker symbols to be absent. This kind of
reasoning reminds valid for the whole derivation that we are going to discuss,
disabling unwanted premature starts of other simulations throughout. The only
rules that are applicable on w1 are f2, f3, or f8. As applying f8 simply deletes
the f marker introduced in the previous derivation step, this gives no overall
progress, so that we can ignore this as an unnecessary detour of the derivation
process. Now we apply rules f2 and f3 to w1 in order, as applying f3 first would
lead to a blockage of the derivation. We remark here that it is possible that on
applying f2, the marker f ′ may be placed after any occurrence of A in w1.
Similar is the case with the application of rule f3 with respect to B. Hence in
general, if w0 ⇒f1 w1 ⇒f2 w2 ⇒f3 w3, then w3 ∈ f � f ′

� f ′′
� w0 with

Af ′, Bf ′′ ∈ sub(w3). By the forbidden context conditions, none of the insertion
rules are applicable to w3. In order to apply f4, fAf ′ ∈ sub(w3) is necessary, and
in order to apply f5, f ′Bf ′′ ∈ sub(w3). The only way to get rid of the introduced
markers again is to apply f6, f7 and f8 (in this order). But before being able to
apply f6, the substrings fAf ′ and f ′Bf ′′ of w3 have to be transformed to ff ′

and f ′f ′′, respectively, so that f4 and f5 have to be applied in any order. Hence,
we find w3 ⇒ w4 ⇒ w5, with w5 could have been alternatively derived from w0

by applying the rewriting rule AB → ff ′f ′′. Hence, w5 = αff ′f ′′β, because
w0 = αABβ was also derivable in G, and any such string contains the substring
AB only in one place. It is not hard to see that f6 is the only applicable rule
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now. Application of the rules f6, f7, f8 in a deterministic manner (i.e., each
time there is no other rule that applies, and there is only one location in the
current string that may be transformed) finally yields w8 = αβ. This series of
rule applications, yielding w8 from w0 = αABβ, corresponds to applying the
rewriting rule AB → λ of G. By induction, the claim L(Π) ⊆ L(G) follows.

Theorem 1 now entails SSC2,1ID(1, 0, 1; 1, 1, 1) = RE. �
In the previous theorem, the insertion had one-sided context and deletion

had both the left and right contexts. In this case computational completeness
was achieved with degree (2, 1). If we further wish to have one-sided context for
deletion as well, then computational completeness is achieved with increasing
the degree to (3, 1). These are the first RE results ever for degree (3, 1).

Theorem 5. SSC3,1ID(1, 1, 0; 1, 1, 0) = SSC3,1ID(1, 0, 1; 1, 0, 1) = RE.

Proof. The proof is very similar to the previous one. We will first show that
SSC3,1ID(1, 1, 0; 1, 1, 0) = RE. The second part then follows from Theorem 1.

Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P are
labelled uniquely by numbers [1 . . . |P |]. We construct an SSCID system Π =
(V, T, {S}, R) of degree (3, 1) and ID size (1, 1, 0; 1, 1, 0) as follows such that
L(Π) = L(G). The alphabet of Π is V ⊂ N ∪ T ∪ M′′. The set of rules R of Π
is given as follows: (i) For every rule of type p : X → bY in G, the simulating
rules are stated in Fig. 2(a). (ii) For every rule of type q : X → Y b in G, the
simulating rules are stated in Fig. 2(b). (iii) Rules of type f : AB → λ in G are
simulated as stated in Fig. 4(a). The idea behind the construction of f rules is
very similar to the working of the rules in Fig. 3 and hence omitted. However we
now highlight the difference in the two simulations (stated in Figs. 3 and 4(a)).
Rules f1, f2, f3, f7, f8 in both the simulations are the same. If rules f4, f5, f6
of the former simulation deletes a symbol say α between the contexts c1 and
c2 using the deletion rule (c1, α, c2)del, then the same is taken care by the rules
f4, f5, f6 (respectively) of the latter simulation by their permitting string c1αc2.
Some formal arguments are presented below.
Simulation of f : AB → λ: The intended derivation is the same as the one given
in Theorem 4. This already shows that L(G) ⊆ L(Π) by induction.

To show the reverse inclusion, we consider a sentential form w0 = αABβ in
Π, where A,B ∈ N ′′ and α, β ∈ (N ′′ ∪ T )∗. As in the proof of Theorem 4, we
end up applying f1, f2, f3, in this order, to arrive at w3 ∈ f�f ′

�f ′′
�w0 with

Af ′, Bf ′′ ∈ sub(w3). The only way to continue is to apply rules f4 or f5 (in any
order), with f4 guaranteeing that fAf ′ ∈ sub(w3) and with f5 guaranteeing
that f ′Bf ′′ ∈ sub(w3). Altogether, if f4 and f5 could have been applied, then
w3 = αfAf ′Bf ′′β, as there is only one position in w0 where the substring
AB could occur. Now, w3 ⇒f4 w4 ⇒f5 w5 = αff ′f ′′β, and the same result
is obtained when first applying f5 and then f4. A simple case analysis shows
that only f6 is applicable now, yielding w6 = αff ′′β. From this point on, the
argument continues again as in Theorem 3. �
Theorem 6. SSC3,1ID(1, 1, 0; 1, 0, 1) = SSC3,1ID(1, 0, 1; 1, 1, 0) = RE.
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Proof. Along with the simulations presented in Figs. 2(a) and (b), we present a
simulation of f rule in Fig. 4(b) which is a reflection of the simulation stated in
Fig. 4(a) in order to prove that SSC3,1ID(1, 1, 0; 1, 0, 1) = RE and hence we are
not giving a formal proof. The claim SSC3,1ID(1, 0, 1; 1, 1, 0) = RE again follows
with Theorem 1. �

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′ \ {f, f ′}]
f4 = [(f, A, λ)del, {fAf ′}, ∅]
f5 = [(f ′, B, λ)del, {f ′Bf ′′}, ∅]
f6 = [(f, f ′, λ)del, {ff ′f ′′}, ∅]
f7 = [(f, f ′′, λ)del, ∅, {f ′}]
f8 = [(λ, f, λ)del, ∅, {f ′, f ′′}]

(a) SSC3,1ID(1, 1, 0; 1, 1, 0)

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′ \ {f, f ′}]
f4 = [(λ, A, f ′)del, {fAf ′}, ∅]
f5 = [(λ, B, f ′′)del, {f ′Bf ′′}, ∅]
f6 = [(λ, f ′, f ′′)del, {ff ′f ′′}, ∅]
f7 = [(λ, f, f ′′)del, ∅, {f ′}]
f8 = [(λ, f ′′, λ)del, ∅, {f, f ′}]

(b) SSC3,1ID(1, 1, 0; 1, 0, 1)

Fig. 4. Simulation of the rule f : AB → λ

4 Conclusion and Future Work

In this paper, we introduced the mechanism of simple semi-conditional restric-
tions on the application of rules of ins-del systems. We described recursively
enumerable languages with simple semi-conditional ins-del systems of degrees
(2, 1) and (3, 1), as shown in Table 3, ignoring symmetric results obtainable from
Theorem 1. We list below some most challenging problems in this area.

– While Ivanov and Verlan could prove that semi-conditional ins-del systems
of degree (2, 2) and ID size (1, 0, 0; 1, 0, 0) are computationally complete, it
is open if simple semi-conditional ins-del systems of degree (2, 2) and ID size
(1, 0, 0; 1, 0, 0) characterize RE.

– Again, Ivanov and Verlan could prove that semi-conditional ins-del systems
of degree (1, 1) and ID size (2, 0, 0; 1, 1, 0) are computationally complete, but
even with degree (2, 1), it is unclear whether simple semi-conditional ins-del
systems of this size characterize RE.

– With more limited resources, it seems to be difficult if not impossible to
characterize RE. In such situations, it would be good to see if we can at least
describe all context-free languages or nice sub-classes thereof, as attempted
in similar situations in [1–3].

We also pose the following, a more general, open problem for further study:
Given the degree (i, j) satisfying i, j ≥ 1 and 3 ≤ i+ j ≤ 4, with what sizes does
a simple semi-conditional ins-del system characterize RE?
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Abstract. An expression in a functional programming language can
be compiled into a massively redundant, spatially distributed, concur-
rent computation called a distributed virtual machine (DVM). A DVM
is comprised of bytecodes reified as actors undergoing diffusion on a
two-dimensional grid communicating via messages containing encapsu-
lated virtual machine states (continuations). Because the semantics of
expression evaluation are purely functional, DVMs can employ massive
redundancy in the representation of the heap to help ensure that com-
putations complete even when large areas of the physical host substrate
have failed. Because they can be implemented as asynchronous circuits,
DVMs also address the well known problem affecting traditional machine
architectures implemented as integrated circuits, namely, clock networks
consuming increasingly large fractions of area as device size increases.
This paper describes the first hardware implementation of a DVM. This
was accomplished by compiling a VHDL specification of a special purpose
distributed memory multicomputer with a mesh interconnection network
into a globally asynchronous, locally synchronous (GALS) circuit in an
FPGA. Each independently clocked node combines a processor based
on a virtual machine for compiled Scheme language programs, with just
enough local memory to hold a single heap allocated object and a con-
tinuation.

1 Introduction

Research in artificial life often involves the construction of virtual worlds popu-
lated by artificial organisms reproducing and competing for resources. Whether
the artificial organisms are programs encoded in assembly language [3,23] or
cellular automata [19,29], concrete implementations make their resource use
explicit, which is necessary for meaningful competition. In contrast, in genetic
programming, programs are typically encoded in high-level languages, so that
mutation and crossover can more efficiently explore the space of computations
that solve a given problem [17,25]. Although this permits more rapid evolution,
the resource use of programs encoded in high-level languages can be difficult to
accurately gauge. Ideally, the two approaches could be combined: self-replicating

c© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney and S. Verlan (Eds.): UCNC 2018, LNCS 10867, pp. 101–116, 2018.
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programs written in a high-level language could be compiled into concrete imple-
mentations in a virtual world where they would efficiently evolve into more com-
plex forms by competing for resources.

As a step in this direction, one of us (the second author) recently described
a novel artificial organism based on a self-hosting compiler for a small subset
of Scheme [31]. The gap between abstract self-description (faster evolution) and
concrete implementation (transparent use of resources) was spanned by making
the artificial organism an object program that replicates by compiling its own
source code. Both object program (phenome) and source program (genome)
were reified as a distributed virtual machine (DVM), a spatially distributed,
concurrent computation that can be implemented as an array of communicating
finite state machines, or asynchronous cellular automata.

Unfortunately, simulation of the replication process on a laptop computer
required nearly 8 h to finish. It goes without saying that without a huge speedup,
the importance of self-replicating DVMs based on self-hosting compilers in evolu-
tionary computation research will remain purely theoretical. The work described
in the paper you are reading has, as its very practical goal, the design, imple-
mentation, and testing of a special purpose distributed memory multicomputer
system able to host large numbers of self-replicating DVMs and speed up their
execution by four orders of magnitude.

1.1 Emulation of SIMD by MIMD

At the present time, all of the world’s fastest computers are multicomputers
composed of a large number of general purpose processors with local memory
(nodes) linked by a fast interconnection network. In Flynn’s taxonomy [14],
computers with this architecture are classified as distributed memory, multiple
instruction, multiple data (MIMD) systems (see Fig. 1).

Given the potential of multicomputers to run different programs on different
nodes (the first ‘M’ in MIMD), it’s remarkable that this rarely happens. Indeed,
this capability is not used when solving instances of the class of problems to
which they are most commonly applied, i.e., so-called embarrassingly parallel
problems for which it is possible to achieve a speedup of up to n times on n
nodes [5]. Most commonly, multicomputers function as globally asynchronous,
locally synchronous (GALS) emulations of very large, single instruction, mul-
tiple data (SIMD) systems.1 Although using a multicomputer like this might
not fully exploit its capabilities, it is nevertheless useful because synchronous
implementations of SIMD systems do not scale; a global clock signal cannot
be transmitted to increasing numbers of spatially distributed nodes without a
corresponding increase in transmission latency.

1 This brings to mind the very interesting result concerning the ability of asynchronous
cellular automata to emulate synchronous cellular automata with negligible slow-
down [8].
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1.2 Emulation of SISD by MIMD

Synchronous implementation also limits the scalability of more conventional sin-
gle instruction, single data (SISD) systems. As the number of components in an
integrated circuit implementation of a SISD system increases, the fraction of the
circuit devoted to the distribution of the clock signal increases correspondingly.
This ultimately limits the number of components a fully synchronous circuit can
contain [12].

Fig. 1. Flynn’s taxonomy [14] showing the relationship between SISD, SIMD and
MIMD systems. The distributed virtual machine (DVM) implemented using VHDL
and compiled to an FPGA is a distributed memory MIMD system where the nodes are
processors based on Dybvig’s virtual machine for Scheme [13] with a small amount of
local memory (enough to hold a single heap allocated object and a continuation).

We have seen that multicomputers can host very large SIMD computations,
and in doing so, overcome the scalability limitations of fully synchronous imple-
mentations. It is worth asking whether a multicomputer can likewise host very
large SISD computations, i.e., computations requiring address spaces signifi-
cantly larger than the address space of any single node of the network, and in
doing so, overcome the scalability limitations of synchronous implementations
of SISD systems.

This question has been answered in the affirmative in prior work reported
in this conference on distributed virtual machines (DVMs) [30]. The key insight
underlying DVMs is that expression evaluation can be implemented as a spa-
tially distributed, asynchronous, message passing computation. The program
heap (including the bytecodes representing the compiled program itself) is rei-
fied as a set of actors that can be distributed across the nodes of a distributed
memory MIMD system. Each node combines a general purpose processor with
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a small amount of local memory. Actors can send messages containing encap-
sulated virtual machine states, i.e., continuations, to actors hosted on adjacent
nodes. They can also allocate new heap objects (also reified as actors) on adjacent
nodes (if the nodes are empty). So that any actor can (in principle) communicate
with any other actor, and in order to make space for new heap objects, all actors
are subject to constant random motion (diffusion) which moves them between
adjacent nodes of the network.

It is ironic that in the emulation of a SIMD system by a multicomputer, that
a large part of the system’s distributed memory is inefficiently used representing
millions of identical copies of the same program (one copy per node), while in
the emulation of a SISD system described above, a single copy of the program is
efficiently distributed across all nodes. Sadly, due to the extreme slowness of the
diffusion-based message passing, a DVM system like the above is unlikely to be
built any time soon. Indeed, it is likely to be useful only when solving problems
for which one is willing to wait a long time for the answer, yet also require a
very large address space and cannot be decomposed into parallel subproblems.2

Because this combination of factors is unlikely to occur in practice, it would
seem that DVMs hosted on multicomputers are of purely theoretical interest.
Happily, DVMs do have one advantage relative to conventional SISD systems,
which is, they can use redundancy in the spatially distributed heap to solve
problems more robustly.

1.3 Robust Evaluation of Expressions

Pure functional programming languages possess a property termed referential
transparency that allows programs to be treated like expressions in mathematics
[21]. In particular: (1) the value of an expression cannot depend on the order
of evaluation of its subexpressions; and (2) functions must always return the
same value when applied to the same arguments. Since side-effects would vio-
late both properties, they are strictly forbidden. It follows that heap allocated
objects in pure functional programming are immutable, i.e., once created, they
can never be changed.3 The immutability of heap allocated objects has signifi-
cant implications for DVMs since it means that multiple instances of each object
(including bytecodes) can coexist in the same spatially distributed heap without
inconsistency. Furthermore, multiple continuations representing parallel execu-
tion threads (each at a different point of progress) can also coexist in the same
DVM. Because of referential transparency, objects created on one thread are
completely interchangeable with objects created on other threads.

A DVM hosted on a modular substrate where each module represents a small
fraction of the multicomputer nodes and interconnection network would possess
some interesting features. First, hosted computations could survive the failure of

2 Deep Thought from The Hitch Hiker’s Guide to the Galaxy comes to mind.
3 Despite this apparent limitation, functional programming languages are extremely

expressive and modern compilers exploit referential transparency to perform power-
ful code optimizations.
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a large fraction of the modules comprising the substrate. Second, modules could
be added to the substrate either to replace modules that have failed or to extend
it; hosted computations would proceed uninterrupted. Although this would not
speed up a hosted computation, it would increase the likelihood that it will
finish. Together, these two design features raise the possibility of computations
with lifetimes longer than the hardware that hosts them.

Fig. 2. Dybvig’s virtual machine for evaluating compiled Scheme expressions showing
its registers and associated heap-allocated data structures.

2 Virtual Machine

The process of evaluating expressions by compiling them into bytecodes which
are executed on a VM was first described by Landin [18] for Lisp and was
generalized for Scheme by Dybvig [13]. Because it plays an important role in
our work, it is worth examining Dybvig’s model for Scheme evaluation in some
detail.

Expressions in Scheme can be numbers, booleans, primitive functions, clo-
sures, symbols, and pairs [26]. A closure is an expression with free variables
together with a reference to the lexical environment; these two items suffice to
describe a function in Scheme. Symbols can serve as names for other expressions
and pairs are the basic building blocks of lists. As such, they are used to rep-
resent both Scheme source code and list-based data structures. All other types
are self-evaluating, that is, they are simply constants.

Evaluating an expression which is not a constant or a symbol requires saving
the current evaluation context onto a stack, then recursively evaluating subex-
pressions and pushing the resulting values onto a second stack. The second stack
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is then reduced by applying either a primitive function or a closure to the values
it contains. Afterwards, the first stack is popped, restoring the prior evalua-
tion context. Expressions in Scheme are compiled into trees of bytecodes which
perform these operations when the bytecodes are interpreted. For book keeping
during this process, Dybvig’s VM requires five registers (see Fig. 2).

With the exception of the accumulator, which can point to an expression of
any type, and the program counter, which points to a position in the tree of
bytecodes, each of the registers in the VM points to a heap allocated data struc-
ture comprised of pairs; the environment register points to a stack representing
the values of symbols in enclosing lexical scopes, the arguments register points
to the stack of values which a function (or closure) is applied to, and the frames
register points to a stack of suspended evaluation contexts.

Evaluation occurs as the contents of these registers are transformed by the
interpretation of the bytecodes. For example, the constant bytecode loads the
accumulator with a constant, while the refer bytecode loads it with a value from
the environment stack. Other bytecodes push the frame and argument stacks
(and allocate the pairs which comprise them). For example, the frame bytecode
pushes an evaluation context onto the frame stack while the argument bytecode
pushes the accumulator (which holds the value of an evaluated subexpression)
onto the argument stack. Still other bytecodes pop these stacks. For example, the
apply bytecode restores an evaluation context after applying a primitive function
(or a closure) to the values found in the argument stack, leaving the result in
the accumulator.

The most important of the remaining bytecodes in Dybvig’s VM is close
which constructs a closure and places a pointer to it in the accumulator. We
have extended Dybvig’s VM with a bytecode which is identical to his close
bytecode except that the first value in the enclosed lexical environment of a
closure created by our bytecode is a self-pointer. This device makes it possible
to define recursive functions without the need for a mutable global environment.
In this way, we preserve referential transparency without incurring the overhead
associated with the use of the applicative order Y-combinator.

3 Distributed Virtual Machine

The actors comprising the distributed heap can represent any of the datatypes
permissible in Scheme including numbers, booleans, primitive functions, closures,
and pairs. Significantly, they can also represent the bytecodes of a compiled
Scheme program. Like other heap-objects, a bytecode actor will respond to a get
message by returning its value, but unlike actors representing other heap-objects,
it can also send and receive encapsulated virtual machine states, or continua-
tions. Upon receipt of a continuation, a bytecode actor transforms it in a manner
specific to its type, then passes it on to the next bytecode in the program, and
so on, until the continuation reaches a halt bytecode at which point the accumu-
lator field of the continuation contains the result of evaluating the expression.
In contrast to a conventional VM, where all control is centralized, control in a
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DVM is distributed among the bytecodes which comprise it; instead of fetching
bytecodes to one location where they update centralized virtual machine state,
we encapsulate that state and pass it from one bytecode actor to the next (see
Fig. 3).

Fig. 3. Conventional virtual machine (top) and distributed virtual machine (bottom).
In the DVM, the registers are encapsulated in a message called a continuation which
is passed between bytecodes reified as actors. The sexprs register in the continuation
holds the next free address on the execution thread. No program counter is needed
since each bytecode actor knows the address of its children in the bytecode tree. Each
actor is a finite state machine which transforms the continuation in manner specific to
its type then passes it to the next bytecode in the program. Control is distributed not
centralized.

Recall that applying a function requires the construction of a stack of eval-
uated subexpressions. In the simplest case, these subexpressions are constants,
and the stack is constructed by executing the constant and argument bytecodes
in alternation. We will use this two bytecode sequence to illustrate the operation
of a DVM in more detail.

An actor of type constant bytecode in the locked state loads its accumulator
with the address of its constant valued operand and enters the continue state.
When a bytecode actor in the continue state sees its child in the bytecode tree
in its neighborhood, it overwrites the child actor’s registers with the contents of
its own, sets the child actor’s state to locked, and returns to the ready state.
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The behavior of an actor of type argument bytecode in the locked state is
more complicated. It must push its accumulator onto the argument stack, which
is comprised of heap-allocated pairs. Since this requires allocating a new pair, it
remains in the put state until it sees an adjacent empty site in its neighborhood.
After creating the new pair actor on the adjacent empty site, it increments the
register representing the last allocated heap address (for this execution thread)
and enters the continue state.

For the most part, we have faithfully implemented the heap-based compiler
for Scheme described by Dybvig [13] and have also respected the semantics of his
VM in the implementation of the transformations performed on continuations
by the bytecode actors which comprise our DVMs.

4 Four Implementation Models

In this section we describe four possible approaches to implementing DVMs,
culminating in the approach which is the focus of this paper, a globally asyn-
chronous, locally synchronous circuit implemented using a field programmable
gate array (FPGA).

4.1 Shared Memory Multiprocessor

Erlang [6] is a functional programming language based on the actor model of con-
current computation [4,7,11]. Because communicating processes (actors) do not
share state, all communication is by message passing. Actors can send messages
to others if they possess their identifiers.

Given its support for the actor model, it would be straightforward to imple-
ment a DVM in Erlang; bytecodes and other heap allocated objects would be
represented by actors and unique identifiers would be associated with heap
addresses. A native code compiler would then compile the Erlang source code
into one (or more) object programs which would then run on a uniprocessor (or
a shared memory multiprocessor) system.

Sadly, the DVM implementation described above would have no advantages
relative to a conventional SISD computer. Notably, it would not permit the
simulation of SISD computations with address spaces larger than the memory of
the shared memory multiprocessor. Furthermore, its lack of redundancy would
give it no additional robustness.

4.2 Distributed Memory Multicomputer

This leads to a second possible DVM implementation. Erlang can (in principle)
be compiled to set of programs distributed across the nodes of a multicomputer
[33]. If the number of processors permitted, the addresses of heap allocated
objects could be mapped to actors in one-to-one fashion, and actors (in turn)
to nodes in many-to-one fashion using a static allocation strategy. The fact that



An FPGA Implementation of a Distributed Virtual Machine 109

the mapping is static would allow efficient routing of messages between commu-
nicating processes. Unlike the multiprocessor implementation sketched above, a
multicomputer implementation would indeed be able to simulate a SISD com-
putation with an address space larger than the memory contained in any single
node. Furthermore, if the number of processors permitted redundancy in the
representation of the distributed heap (the one-to-one address to actor map-
ping replaced by a one-to-many mapping), then the implementation would also
be robust to node failure. However, the property which makes routing of mes-
sages relatively efficient, i.e., static allocation, is incompatible with the design
principle of indefinite scalability.

4.3 Movable Feast Machine

In recent work, Ackley et al. [1] introduced the idea of a distributed memory
multicomputer system with an address space of a priori unknown size. Such an
indefinitely scalable computer consists of independently clocked modules which
tile space and only communicate with neighboring modules. Because information
can propagate no faster than the speed of light, and because processing elements
have finite size, processors and memory in an indefinitely scalable computer must
be spatially distributed.

The multicomputer implementation described in the last section is not indef-
initely scalable since the specifics of any static allocation strategy permitting
efficient message routing would necessarily depend on the number of nodes in
the network. This suggests a third possible DVM implementation, based on
reified actors. Unlike actors in the classical actor model, which inhabit an abso-
lute address space indexed by unique global identifiers, reified actors occupy
locations on a 2D grid, and can only communicate with other actors in their
neighborhoods [30]. This restriction, together with the fact that expression eval-
uation can potentially require a message to be sent from any object to any other
object in the address space, necessitates the constant random motion of actors
representing heap allocated objects on the grid.

In more recent work, Ackley, D.H. and Ackley, E.S. [2] describe a concurrent
programming language for implementing reified actor models. In theory, ulam
serves as a high-level interface to a low-level substrate consisting of an array of
asynchronous cellular automata (ACA). In practice, it is a compiled language
that targets an indefinitely scalable modular computer called the Movable Feast
Machine (MFM).

Like the multicomputer implementation, an MFM implementation of a DVM
would be able to simulate a SISD computation with an address space larger than
the memory contained in any single node. It would also be robust to failure of
MFM modules. However, unlike the multicomputer implementation, it would (in
fact) be indefinitely scalable, since modules could (in principle) be added to the
machine and a running DVM computation could make effective use of them by
increasing the redundancy of its heap representation.
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Each module of the MFM contains a single processor with enough memory
to simulate a small contiguous region of the (potentially) infinite 2D grid which
forms the domain of a spatial computation. Although the size of this region is
variable, in typical applications, modules simulate regions comprised of 48 × 48
sites, or 2304 sites per processor. A more direct and potentially much more
efficient DVM implementation would allocate one processor per site, and these
processors would implement the instruction set of the Dybvig virtual machine in
hardware (as opposed to interpreting bytecodes in software).4 These final refine-
ments lead to a fourth possible implementation, the one we actually pursued.

4.4 Field Programmable Gate Array

Although they differ in significant respects, the three implementation models
described thus far have one thing in common, namely, they all represent byte-
codes and other heap allocated objects as communicating processes (actors). In
the multiprocessor and multicomputer implementations, the actors existed in a
non-physical, abstract identifier space. In the MFM implementation, the actors
were reified by assigning them positions on a 2D grid and relying on diffusion for
message passing. The fourth implementation is also actor-based, but the actors
represent processors in a mesh-connected network, not heap allocated objects.

A field programmable gate array (FPGA) consists of an array of pro-
grammable logic blocks together with a configurable interconnection network
[15]. By means of programming in the field, i.e., after manufacture, FPGAs are
capable of implementing a huge combinatorial space of application specific inte-
grated circuits. VHDL is a concurrent programming language designed by the
Dept. of Defense in the 1980s as a hardware description language for very high
speed integrated circuits [22]. Used judiciously, a concurrent program written in
VHDL can be automatically compiled to an FPGA implementation. The com-
pilation (synthesis) process assigns VHDL constructs to individual logic blocks
in specific locations in the device and configures the interconnection network to
implement the specified functionality.

Although VHDL can (like Erlang) be used as a general purpose concurrent
programming language, if it was merely used to implement a simulation of a
DVM where bytecodes and heap allocated objects were represented as commu-
nicating processes (like the three other implementations), then there would be
no reason to believe that the resulting concurrent program would be synthesize-
able, i.e., could be compiled to an FPGA implementation [9]. Furthermore, even
if the program were synthesizeable, then there would be no reason to believe
that its synthesized elements would operate with enough parallelism to produce
a speedup relative to a sequential implementation; a concurrent program at a
different level of abstraction is required to guarantee both of these properties. To
ensure both synthesizeablity and effective parallelism, the communicating VHDL

4 The first integrated circuit implementation of a processor customized for efficient
execution of compiled Lisp programs was described by Steele and Sussman [16].
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processes must represent the nodes of a distributed memory multicomputer host-
ing a DVM, not the heap allocated objects comprising the DVM itself.5

5 Technical Details

In our VHDL specification, the processes modeling multicomputer nodes are
driven by independent local clocks implemented as ring oscillators [24]. A ring
oscillator typically consists of an odd number of NOT gates connected in series
with the last gate connected to the first gate in a feedback loop; see Fig. 4 (top).
The odd number of gates insures that the output of the last gate is inverted
compared to the input of the first gate. When power is applied, the circuit
begins to oscillate spontaneously at a period of approximately twice the sum
of the individual gate delays. The frequency of the oscillator can be decreased
or increased by adding (or removing) an odd number of gates to (or from) the
ring. Unfortunately, the use of ring oscillators in FPGA design is problematic
since most design tools aggressively try to prevent these so-called combinatorial
loops and aggressively optimize away what seem to be superfluous gates. These
optimizations can be overcome using directives that allow for combinatorial loops
and marking gates to be excluded from removal during optimization. We generate
a ring oscillator at each node with a random length between 9 and 31 gates
resulting in a clock frequency in the range 30 MHz–100 MHz.

Fig. 4. Ring oscillator used to provide independent timing signals (top) and 16-bit
Fibonacci linear feedback shift register (LFSR) used for pseudorandom number gener-
ation (bottom) at each node.

The globally asynchronous, locally synchronous circuit requires a source of
randomness to implement the diffusion process that enables message passing.
After exploring pseudorandom number generation using cellular automata, and
true random number generation using ring oscillators, we settled on linear feed-
back shift registers (LFSR), a simple and commonly used method of generating

5 Others have used FPGAs to implement distributed memory multicomputers as
arrays of soft processors [27,28].
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pseudorandom numbers in hardware [20]. More specifically, we used a 16-bit
Fibonacci LFSR in our implementation; see Fig. 4 (bottom). Each node contains
a process implementing the LFSR that is clocked by a local ring oscillator. At
each clock tick, the register shifts right 1 bit and the bit positions called taps
are combined by XOR and fed back to the leftmost (input) bit. The output is
the rightmost bit of the LFSR. A maximum-length period (2n − 1) is produced
if the polynomial defined by the taps has an even number of terms and the tap
indices are co-prime. In our implementation the seed and taps for each of the
16-bit LFSRs are randomly assigned by the code generator.

Communication and transfer of data between two nodes with independent
clocks requires that the two nodes agree both that: (1) the transfer is going to
occur; and (2) that the transfer has finished. If this agreement does not occur,
multiple processes might simultaneously attempt to read or write data to a
single node, resulting in an inconsistent device state. To avoid this problem, our
design uses a four phase handshake protocol to ensure that data transfer between
adjacent nodes is synchronized [10].

6 Experimental Results

We have implemented a DVM with an 8 bit address space on a Xilinx XC7A100
CSG324-2 FPGA [32]. The FPGA chip is manufactured using 28 nm technology
and contains 101,440 logic blocks. The FPGA is hosted on a Trenz Electronics
development board with a 100 MHz clock that communicates with the Xilinx
Vivado Design Suite running on a Windows PC via a JTAG to USB adapter.
We have been able to use this FPGA to implement DVMs with up to 40 nodes.
To demonstrate the speedup due to parallelism in the implementation, we have
conducted an experiment using the expression

(pred (+ 2 3))

where pred is the function that subtracts one. This expression compiles to 12
bytecodes. During evaluation, 5 additional actors representing heap allocated
objects (2 numbers and 3 pairs) are created. It follows that there is enough
room on a 4 × 5 grid to host the actors comprising the distributed heap at its
maximum size of 17.

Density is grid size divided by redundancy. There is a complex relationship
between density and expected evaluation time. Expected evaluation time is a
function of both expected message passing latency and expected object allo-
cation time. Expected message passing latency decreases with increasing den-
sity because senders of messages must wait less time before encountering the
recipients of their messages. However, expected object allocation time increases
because actors allocating objects must wait longer for empty sites to appear in
their neighborhoods.6 It follows that for a given expression and desired level of
robustness, there is a density that minimizes expected evaluation time.

6 Think of the so-called “8-puzzle” and its sliding plastic tiles.
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The experiment was run with three different conditions: 4×5 (×1), 8×5(×1)
and 8 × 5 (×1) where m × n (×k) indicates a grid of size m × n initialized
with k copies of each bytecode actor. These conditions were chosen because the
second and third have twice the number of nodes as the first, while the first and
third have equal actor density. Equal density removes the confounding factors
of different message passing latencies and different object allocation times. It
consequently permits measurement of parallel speedup.

A code generator written in Java generates the VHDL code at the desired
grid size and randomly populates the grid with the bytecode actors representing
the compiled expression at the desired level of redundancy. The VHDL code
is then synthesized by the design tool, which outputs a bitstream that is used
to program the FPGA. We also insert the Integrated Logic Analyzer (ILA)
core into the bitstream so we can capture data from the running device for our
experimental results.

The implementation contains an additional process driven by the 100 MHz
development board clock that increments a 32 bit counter on each clock pulse.
This counter is used to get accurate timing at 10 ns intervals per counter incre-
ment. When a halt bytecode receives a continuation, the counter is stopped and
the ILA is triggered to capture data. The counter value is the time required by
the DVM to evaluate the compiled expression. Three different conditions were
tested and each condition was run ten times. Evaluation times are shown in
Table 1.

Table 1. Evaluation time in microseconds (µs)

4 × 5 (×1) 8 × 5 (×1) 8 × 5 (×2)

Mean 1321.65 1953.48 1585.64

Standard deviation 471.46 603.38 391.80

The 8 × 5 (×1) condition is slower than the 4 × 5 (×1) condition because
the lower actor density increases message passing latency. Actors must diffuse
twice as long on average before bumping into the recipients of their messages.
However, it is not twice as slow, and this is because of the decreased expected
object allocation time of the 8× 5 (×1) condition. A heap containing 17 objects
barely fits on the 4 × 5 grid but there is plenty of room on the 8 × 5 grid.

Consistent with the fact that expected message passing latency decreases
with increasing density, we observe that the 8 × 5 (×2) condition is faster than
the 8 × 5 (×1) condition. However, it is not twice as fast, and this is because
of the increased expected object allocation time of the 8 × 5 (×2) condition. A
heap containing 34 objects barely fits on the 8 × 5 grid but a heap containing
17 objects fits quite easily.

Finally, the evaluation time for the 8 × 5 (×2) condition is only slightly
longer than for the equal density 4 × 5 (×1) condition. This demonstrates that
the FPGA implementation is an actual parallel circuit, solving a problem of twice
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the size in (essentially) the same amount of time. We believe that the evaluation
time for the 8 × 5 (×2) condition is longer because the implementation of the
DVM on the 8 × 5 grid very nearly fills the entire FPGA, resulting in less
efficient component placement by the synthesis algorithm. We hypothesize that
if the experiment were repeated using an FPGA with extra capacity, then the
ratio of the times required to solve the different sized problems in the case of
equal densities would be closer to one.

7 Conclusion

Recent work showed how an expression in a functional programming language
can be compiled into a massively redundant asynchronous spatial computation
called a distributed virtual machine (DVM). Because the semantics of expression
evaluation are purely functional, DVMs can employ massive redundancy in the
representation of the heap to help ensure that computations complete even when
large areas of the physical host substrate have failed [30]. Because they can
be implemented as asynchronous circuits, DVMs also address the well known
problem affecting traditional machine architectures implemented as integrated
circuits, namely, clock networks consuming increasingly large fractions of area
as device size increases.

Although the use of self-replicating DVMs [31] in evolutionary computation
research can potentially combine the advantages of the artificial life and genetic
programming approaches, this cannot happen without a DVM implementation
in hardware that is orders of magnitude faster than current software simula-
tions. In this paper, we have described the first hardware implementation of a
DVM. This was accomplished by synthesizing a globally asynchronous, locally
synchronous circuit in an FPGA from a VHDL specification of a special pur-
pose distributed memory multicomputer with a mesh interconnection network.
The nodes of the multicomputer combine a processor based on Dybvig’s virtual
machine for executing compiled Scheme programs [13] with just enough local
memory to hold a single heap allocated object and a continuation. Each node
contains its own clock and pseudorandom number generator and synchronization
between adjacent nodes is implemented using a four phase handshake protocol. A
working implementation consisting of 40 nodes arranged in a 5×8 grid was used
to evaluate a compiled Scheme expression. Significantly, the measured evalua-
tion times were consistent with a parallel implementation. Use of FPGA devices
with greater numbers of logic blocks will allow the implementation and testing
of DVMs with larger grid sizes, capable of evaluating more complex expressions
and with increased levels of redundancy.
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Abstract. Lindenmayer systems (L-systems) are parallel string rewrit-
ing systems (grammars). By attaching a graphical interpretation to the
symbols in the derived strings, they can be applied to create simulations
of temporal processes, and have been especially successful in the model-
ing of plants. With the objective of automatically inferring L-system
models in mind, here we study the inductive inference problem: the
inference of models from observed strings. Exact algorithms are given
for inferring L-systems that can generate input strings for both deter-
ministic context-free and deterministic context-sensitive L-systems. The
algorithms run in polynomial time assuming a fixed number of alpha-
bet symbols and fixed context size. Furthermore, if a specific matrix
calculated from the input words is invertible, then a context-sensitive
L-system can be automatically created (if it exists) in polynomial time
without assuming any fixed parameters.

1 Introduction

Lindenmayer systems (L-systems) are formal grammars that repeatedly rewrite
strings. By definition, L-system rules are applied to each letter of a string in
parallel to produce a new string, and the process is repeated on the new string.
L-systems can be deterministic or non-deterministic, context-free or context-
sensitive, and parameterized or non-parameterized. Theoretical properties of
L-systems have been reviewed in [1,2].

By attaching a graphical interpretation to the symbols, L-systems can gen-
erate geometric objects (models). This is typically done via turtle interpretation
wherein the turtle has a state consisting of its position and orientation, and
specific symbols of the L-system provide instructions for moving, drawing, and
turning in 2D [3] and 3D [2]. L-systems with turtle interpretation have been
especially successful in the modelling of plants [2,4,5].

There has been relatively less work on methods for inferring L-systems. There
are certain useful techniques for manually inferring models from images and real
plants by experts [5], but existing approaches to automatically infer models from
c© Springer International Publishing AG, part of Springer Nature 2018
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data have limitations; see survey [6]. One could imagine automatically inferring
models from sequences of images over time, and this has been attempted in a pre-
liminary fashion [7]. Acquiring such images digitally is now quite practical, from
cameras in fields taking pictures periodically, to more complicated camera and
sensor setups used in greenhouses, which can create point clouds representations
of the plants [8]. Inference of models would be a useful step towards digitally char-
acterizing plants, understanding the differences between them, and even breed-
ing or designing new (real) plants from models. An intermediate step is to infer
L-system models from strings that describe the plant structure. That is, given a
sequence of strings produced by an unknown L-system, can the L-system itself
be inferred? This problem is known as inductive inference. In [9], an algorithm
was provided that used letter occurrence arithmetic and matrix inversion to infer
a deterministic context-free L-system (D0L-system) from an initial sequence of
strings. A related technique was implemented in [10], which infers D0L-systems
for alphabets with at most two symbols, while calling the problem “immensely
complicated” for alphabets of larger size. Inference of D0L-systems from branch-
ing structures was investigated in [11]. There has also been some investigation
on inference where the given strings are non-consecutive [6,9,11,12]. In [13], an
algorithm is given that infers hierarchical structure from a string by replacing
repeated phrases with D0L-system rules.

In this paper, we review and extend selected algorithms for inductive infer-
ence of L-systems, and analyze their time complexity. Fixed-parameter-tractable
algorithms are those that run in polynomial time if one assumes that a parameter
is fixed [14]. We propose a fixed-parameter-tractable algorithm that can always
infer a deterministic context-sensitive (or context-free) L-system from sequen-
tial data, if such a system exists. This algorithm runs in polynomial time for
context-free systems, assuming the alphabet is of fixed size. For context-sensitive
systems, it runs in polynomial time assuming that the context size is also fixed
(ie. there are constants k and l such that each L-system rule only depends on
at most k symbols of left context and l symbols of right context). Furthermore,
a speedup to this algorithm is described by using letter occurrence arithmetic
(similar to [9] for context-free systems). In particular, if a matrix defined using
a generalization of the Parikh map from letters to subwords calculated on the
input words is invertible, then a context-sensitive L-system can be inferred in
polynomial time without fixing any parameters.

2 Preliminaries

This section provides definitions of the terms and symbols used throughout
the paper.

The set of integers (positive integers, non-negative integers) is denoted by Z

(respectively N, N0). Given a vector v , let v(i) be the ith component of v . If M
is a matrix, let M∗,j be the column vector for the jth column of M . If X is a
finite set, then |X| is the number of elements in X.
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An alphabet is a finite set of symbols. If V is an alphabet, then V ∗ is the set
of all strings (or words) using letters from V . A language L is any subset of V ∗.
The length of a word w is denoted by |w|, and for any letter a ∈ V , |w|a is the
number of occurrences of a’s in w. Also, V i = {w | w ∈ V ∗, |w| = i} and V ≤i =
{w | w ∈ V ∗, |w| ≤ i}. For a language L, alph(L) = {a ∈ V | w ∈ L, |w|a > 0}.
Given a fixed ordering of the letters of V , V = {a1, . . . , ak}, the Parikh map of
w, ψ(w), is the vector (|w|a1 , . . . , |w|ak

). If w ∈ V ∗, a subword of w is any y such
that w = xyz, x, z ∈ V ∗. If w = yz, then y is a prefix of w and z is a suffix of w.
If 1 ≤ i ≤ j ≤ |w|, then w[i, j] is the substring between positions i and j of w.

A context-free L-system (0L-system) is one in which productions are applied
to symbols regardless of their context within the string. The 0L-system is denoted
by G = (V, ω, P ), where V is an alphabet, ω ∈ V ∗ is the axiom, and P ⊆ V ×V ∗

is a finite set of productions. A production (a, x) ∈ P is denoted by a → x.
The letter a is referred to as the production predecessor, and the word x as
its successor. We assume that for each predecessor a ∈ V there is at least one
production a → x in P . The system 0L-system G is said to be deterministic
(D0L-system) if for each a ∈ V there is exactly one such production. Given a
word μ = a1 . . . am ∈ V ∗, we write μ ⇒ ν and say that μ directly derives ν
if ν = x1 · · · xm, where ai → xi ∈ P for all 1 ≤ i ≤ m. The (not necessarily
direct) derivation ⇒∗ is the reflexive and transitive closure of ⇒ (the result of
applying ⇒ zero, one, or more times). The language generated by a 0L-system
G is L(G) = {w | ω ⇒∗ w}. The developmental sequence of length n ∈ N0 is the
sequence of words (w1, w2, . . . , wn), such that ω = w1 ⇒ w2 · · · ⇒ wn. We call
wn the nth word generated by G.

In contrast to 0L-systems, the production chosen for each symbol in a context-
sensitive L-system may depend on the surrounding symbols. Given k, l ∈ N0

such that k + l > 0, a deterministic (context-sensitive) (k, l)-system is a tuple
G = (V, ω, P ), where V and ω are the alphabet and axiom, respectively, and
P is a finite set of productions of the form u < a > v → x. We assume that
a ∈ V , u, v, x ∈ V ∗, |u| ≤ k, and |v| ≤ l. The letter a is called the strict
predecessor, and the words u and v are the left and right context, respectively.
If several context-sensitive productions could potentially be applied to the same
symbol due to differently sized contexts, we assume that the production with the
longest applicable left context, and then the longest applicable right context, will
be chosen. In a deterministic (k, l)-system there is thus exactly one production
that can be applied to any letter in any given context. If μ = a1 . . . am ∈ V ∗,
we write μ ⇒ ν if ν = x1 · · · xm and for any i = 1, . . . , m, the production
ui < ai > vi → xi belongs to P , the left context ui is the longest suffix of
a1 · · · ai−1, and the right context vi is the longest prefix of ai+1ai+2 · · · am among
all the productions in P with the strict predecessor ai.

3 Inferring L-Systems

In this section we study the problem of inferring an L-system from an initial
sequence of words assumed to have been generated by it. We begin with the
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simplest case, the inference of D0L-systems, and use the resulting algorithms in
the more complex case of context-sensitive L-systems.

3.1 Deterministic Context-Free L-Systems

We define the following problem:

D0L Inductive inference problem: Given alphabet V = {a1, . . . , am}
and a sequence of n words over V , � = (w1, . . . , wn), n > 1, determine a
D0L-system G that generates � as the developmental sequence of length n.

We say that G is compatible with � if the developmental sequence of length n
in G is �. We also denote S(�) as the sum of the lengths of words in �: S(�) =
|w1|+· · ·+|wn|. This is used when defining the time complexity of the algorithms
in the paper. Before presenting the full algorithm for inductive inference, an
intermediate algorithm is needed which is used within the full algorithm. The
intermediate algorithm is provided with the lengths of the production successors
for each letter of the alphabet as input, and it is able to determine whether the
input words can produce a D0L-system with these successor lengths.

Proposition 1. Given an alphabet V = {a1, . . . , am}, a sequence � =
(w1, . . . , wn) of n words over V such that V = alph({w1, . . . , wn−1}) and a
set of integers j1, . . . , jm ∈ N0, there exists at most one D0L-system G over V
that is compatible with � and satisfies condition ji = |xi| for each production
ai → xi ∈ P . Furthermore, G can be determined in O(S(�)) time.

A constructive proof of this proposition is given by Algorithm 1. It scans the first
letter of w1, say ai, and creates a production such that ai → xi, where xi consists
of the first ji letters of w2. The algorithm continues with the second letter of w1

and the subsequent letters of w2. As each new letter is encountered, a production
is added to the production set P . After processing all letters of w1, the algorithm
proceeds in the same way for all pairs of consecutive words wp, wp+1 ∈ �, p ≤
n−1. Since V = alph({w1, . . . , wn−1}), every letter as well as its successor will be
encountered, ensuring that every production has been determined. The result is a
D0L-system G compatible with the developmental sequence �. The algorithm will
fail if a letter is encountered for which a production has already been found and
the subsequent letters of the next word do not match the production successor.
It can be seen that this algorithm runs in O(S(�)) time.

Proposition 2. Consider alphabet V = {a1, . . . , am} and a sequence � =
(w1, . . . , wn) of n > 1 words over V . Let ki, 1 ≤ i ≤ m be one plus the length
of the first word in � following the word in which ai occurs for the first time. A
D0L-system G compatible with � can then be found or reported as non-existent
in the worst-case time O((k1k2 · · · km) · S(�)).

The constructive proof of this proposition consists of Algorithm 2 that uses a brute
force approach to find a D0L-system compatible with the developmental sequence
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Algorithm 1. Determines the unique D0L-system G compatible with �, if it
exists.
Input: Alphabet V = {a1, . . . , am}, sequence of words � = (w1, . . . , wn) such that

V = alph({w1, . . . , wn−1}), and the set β = {j1 . . . , jm} of the successor length for
each letter ai.

Output: The D0L-system G over V compatible with �, if one exists, or ∅ otherwise,
1: Let x1, . . . , xm be string variables set to null
2: for p from 1 to n − 1 do
3: Let r ← 1
4: for q from 1 to |wp| do
5: Let i be such that ai is equal to wp[q]
6: if xi is null then
7: xi ← wp+1[r, r + ji − 1]
8: else if xi �= wp+1[r, r + ji − 1] then
9: return ∅

10: end if
11: r = r + ji
12: end for
13: end for
14: return D0L-system with axiom w1 and production set P = {ai → xi | 1 ≤ i ≤ m}.

� by trying all possible combinations of successor lengths. The algorithm begins by
determining, for each letter ai ∈ V , the first word wp ∈ � in which ai occurs. This
requires time O(S(�)). Any D0L-system potentially compatible with � has succes-
sor xi of symbol ai of length |wp+1| at most. There are ki = |wp+1| + 1 (including
zero) possible values for the length ji = |xi| of this successor, and k1 ·k2 · · · km pos-
sible combinations of the lengths j1, . . . , jm, 0 ≤ ji ≤ ki −1, overall. For each such
combination, Algorithm 2 calls Algorithm 1 to find a D0L-system compatible with
�. If, in some iteration, such a D0L-system is found, it is reported as the output
of Algorithm 2. In the opposite case, the algorithm reports that no D0L-system
compatible with the given sequence � exists. As each iteration of Algorithm 1
requires O(S(�)) time, the overall complexity of Algorithm 2 is O(k1 · k2 · · · km ·
S(�)) (or O(S(�)m+1) as an upper bound). This time grows exponentially as m
increases, but, if m is taken to be a fixed variable, the algorithm has polynomial
time complexity with respect to S(�).

The construction presented in [15] with the goal of determining decidability
of the D0L-system existence is very similar to the algorithm given here. We
use Algorithm 2 as a subroutine within the context-sensitive algorithms later in
the paper.

Different D0L-systems may generate the same sequence �. For instance,
the sequences generated by the systems G1 = ({A,B,C}, AB, {A → C,B →
AB,C → C}) and G2 = ({A,B,C}, AB, {A → CA,B → B,C → C}) are the
same. Algorithm 2 can be easily modified to determine every compatible D0L-
system. Instead of returning a D0L-system G as soon as one is found, output G
and continue the procedure.
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Algorithm 2. Solves the D0L inference problem
Input: alphabet V = {a1, . . . , am}, sequence of words � = (w1, . . . , wn),
Output: a D0L-system G over V that gives � as the first n words generated, or ∅ if

none exists
1: Let y1, . . . , ym be integer variables set to −1
2: for each letter position q of each word wp where p is from 1 to n − 1 do
3: Let i be such that ai is equal to wp[q]
4: if yi is equal to −1 then
5: yi ← p
6: end if
7: end for
8: for each vector β = (j1, . . . , jm), where 0 ≤ ji ≤ |wyi+1| do
9: set G to the output of Algorithm 1 with � and β

10: if G �= ∅ then
11: return G
12: end if
13: end for
14: return ∅

Corollary 1. For a fixed alphabet V , and sequence of words � = (w1, . . . , wn),
n > 1 such that V = alph({w1, . . . , wn−1}), there is an algorithm to find every
D0L-system over V that is compatible with � in polynomial time S(�).

3.2 Deterministic Context-Sensitive L-Systems

We now address the inductive inference problem for context-sensitive L-systems.

Deterministic context-sensitive inductive inference problem:
Given an alphabet V = {a1, . . . , am}, context lengths k, l ∈ N, and a
sequence � = (w1, . . . , wn) of n > 1 words over V , find a deterministic
(k, l)-system G that generates � as the developmental sequence of length n.

Similarly to the case of D0L systems, we say that G is compatible with an input
sequence � = (w1, . . . , wn) if � is the developmental sequence of length n in G.

Algorithm 1 can be extended to deterministic (k, l)-systems by replacing pro-
ductions of the form a → x with productions of the form u < a > v → x, for
each substring uav of length k + l + 1 appearing in �. The first k symbols then
are the left context u, the next symbol is the strict predecessor a, and the last
l symbols are the right context v. The inference process thus involves “sliding a
window” of length k+ l+1 over each word of w1, . . . , wn−1. In addition, separate
productions with shorter contexts are considered near the beginning and end of
each word wi. As discussed in Sect. 2, when applying rules for a context-sensitive
L-system, the production with the longest applicable left context and then the
longest applicable right context will be chosen. The left and right contexts can,
however, be shorter than k and l when there are less than that many symbols
of context in the letter a in wi being rewritten, at which point, they are still the
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longest contexts possible. A deterministic (k, l)-system in which the context are
always the longest possible up to the limit k, l is said to be of maximal context.

Formalizing these concepts, given a sequence of words � = (w1, . . . , wn) over
V we define the set of (k, l)-predecessors in �, denoted by Δk,l(�), as the set of
all triplets u < a > v such that:

– a ∈ V ,
– uav is a subword of some w ∈ {w1, . . . , wn−1},
– either |u| = k or 0 ≤ |u| < k and uav is a prefix of w, and
– either |v| = l or 0 ≤ |v| < l and uav is a suffix of w.

We further define a Δk,l(�)-subset (k, l)-system to be a tuple G = (V, ω, P ),
where V is an alphabet, ω ∈ V ∗ is the axiom, and P is a finite set of productions
u < a > v → x such that u < a > v ∈ Δk,l(�). A Δk,l(�)-subset (k, l)-system is
said to be compatible with � if it can generate � as the first sequence of words.

A Δk,l(�)-subset (k, l)-system may be incomplete, in the sense there may be
words generated past wn−1 that have a subword uav such that u < a > v /∈
Δk,l(�). Nevertheless, by taking all remaining words u < a > v /∈ Δk,l(�) such
that |u| ≤ k and |v| ≤ l, and creating productions u < a > v → χ where χ ∈ V ∗

is an arbitrary successor, results in a completely specified deterministic (k, l)-
system. It is thus easy to extend any Δk,l(�)-subset (k, l)-system into a fully
specified deterministic (k, l)-system.

Proposition 3. Given an alphabet V = {a1, . . . , am}, context sizes k and l, a
sequence of n words � = (w1, . . . , wn) over V , and a function f(u, a, v) into N0

defining the length of the successors for predecessors u < a > v ∈ Δk,l(�), there
exists at most one Δk,l(�)-subset (k, l)-system G such that:

– G is compatible with �,
– u < a > v → xu,a,v is a production with f(u, a, v) = |xu,a,v|.
Furthermore, G can be determined in O((k + l) · S(�)) time when data is stored
in the form of a trie.

Proof. We construct Algorithm 3 that extends Algorithm 1 to the context-
sensitive case. The goal is to take the sequence � and a length associated
with each predecessor string in Δk,l(�) as input (these input length corre-
spond to parameters j ∈ β in Algorithm 1), and determine a Δk,l(�)-subset
(k, l)-system compatible with these lengths. To this end, each predecessor string
u < a > v ∈ Δk,l(�) as well as the length of its successor, f(u, a, v), is stored in
a trie data structure. The trie enables the lookup of u < a > v information in
time linearly proportional to |uav|. The algorithm “slides a window” over each
word, w1, . . . , wn−1 ∈ �. As each new predecessor u < a > v is encountered, the
prescribed length of its successor, stored in the trie, is used to determine the
letters from the next word that make up the successor (as done in Algorithm 1).
The result is also stored in the trie. If a successor has previously been found,
the algorithm compares it with the current candidate. If they do not match, the
Δk,l(�)-subset (k, l)-system G sought does not exist. Alternatively, if no conflict
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occurs, the trie contains the inferred Δk,l(�)-subset (k, l)-system G, The time
taken to slide such a window over � is O((k + l) · S(�)). ��

Since each Δk,l(�)-subset (k, l)-system can be extended into a determinis-
tic (k, l)-system by associating all elements not stored in the trie with identity
productions, the following is true:

Corollary 2. Given an alphabet V = {a1, . . . , am}, context sizes k and l, a
sequence of n words � = (w1, . . . , wn) over V , and a function f(u, a, v) to N0

defining the length of the successors for predecessors u < a > v ∈ Δk,l(�), a
deterministic (k, l)-system G can be found, if it exists, such that:

– G is compatible with �,
– u < a > v → xu,a,v is a production with f(u, a, v) = |xu,a,v|.
Furthermore, one such system G, if it exists, can be determined in O((k + l) ·
S(�)) time.

It is also possible to use Algorithm 3 as a subprogram, similar to Algorithm 1,
to consider all possible successor lengths.

Proposition 4. Given an m-letter alphabet V , context sizes k and l, and a
sequence of words � = (w1, . . . , wn) where q is the longest word in �, a Δk,l(�)-
subset (k, l)-system compatible with � can be found, if one exists, in worst case
time O(q(m+1)k+l+1 · (k + l) · S(�)).

Proof. We proceed by constructing Algorithm 4 that extends Algorithm2 to the
context-sensitive case. The algorithm starts by creating an empty trie. It then
scans � while sliding a window, such that when reading u < a > v, it stores this
predecessor as well as the following information associated with it in the trie:

– the first word where u < a > v occurs, denoted by g(u, a, v) with 1 ≤
g(u, a, v) ≤ n − 1,

– a unique natural number denoted by h(u, a, v) such that the jth triple added
to the trie is assigned j.

Both g(u, a, v) and h(u, a, v) can be determined as it is sliding the window. At
the end, it can determine r such that r = |Δk,l(�)| and each h(u, a, v) is a
unique number in {1, . . . , r}. Next, it introduces two vectors α and β with r
components. With a depth-first traversal of the trie, when scanning u < a > v,
the algorithm stores one plus the length of the word following the occurrence of
u < a > v, 1+ |wg(u,a,v)+1|, at position h(u, a, v) of α; the length of the successor
with predecessor u < a > v is strictly less than this amount. The algorithm
continues as with Algorithm 2 through all combinations of β = (j1, . . . , jr), where
0 ≤ ji < α(i), for 1 ≤ i ≤ r. There are

∏
1≤i≤r α(i) such combinations for β,

and it calls Algorithm 3 for each. This is O((k + l) · S(�) · ∏
1≤i≤r α(i)) time.

Simplifying by letting q be the longest word in �, we get O(qr · (k + l) · S(�)).
Here, an upper bound for r is (m+1)k+l+1 since there are m possibilities for ai,
(m + 1)k for u (due to prefixes shorter than k), and similarly for v. Hence, the
time is O(q(m+1)k+l+1 · (k + l) · S(�)). ��
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This can be done in polynomial time if m, k, and l are fixed. For context-
sensitive L-systems in the literature, k and l are often quite small (often only one).
Therefore, for these systems, the time mainly depends on the alphabet size.

By associating any undefined elements in the trie with identity productions,
the following is true:

Corollary 3. Given an m-letter alphabet V , context sizes k and l, and a given
sequence of words � = (w1, . . . , wn) where q is the longest word in �, a deter-
ministic (k, l)-system compatible with � can be found, if one exists, in worst case
O(q(m+1)k+l+1 · (k + l) · S(�)) time.

If the alphabet size and context sizes are fixed, the algorithm runs in poly-
nomial time.

Corollary 4. For a fixed size alphabet V , fixed k and l context sizes, and a given
sequence of words �, there is an algorithm to find a deterministic (k, l)-system
compatible with � in polynomial time, S(�).

4 Speedups Using Letter Occurrence Arithmetic

4.1 Context-Free Case

This section will first present a mathematical approach to speeding up inductive
inference of D0L-systems. The idea as applied to D0L systems is in fact already
known [9], but we review it here as it helps understand the context-sensitive case.
We then extend it to context-sensitive L-systems, for which it was not described
before.

Let G = (V, ω, P ) be a D0L system over alphabet V = {a1, . . . , am}, xi the
successor of production ai → xi ∈ P , and x

(j)
i = |xi|aj

the number of occurrences
of letter aj in this successor for 1 ≤ i, j ≤ m. The growth matrix of G, denoted
by M(G), is then the m × m matrix such that position i, j contains x

(j)
i .

Given a sequence of words � = (w1, . . . , wn) over V = {a1, . . . , am}, and
s, r ∈ N such that 1 ≤ s ≤ s + r − 1 ≤ n, let Ys,r(�) be the r × m matrix
such that element i, j is |ws+i−1|aj

: the number of occurrences of letter aj in
word ws+i−1. In other words, row i of Ys,r(�) is the Parikh map of ws+i−1. We
then have:

⎡

⎢
⎢
⎢
⎢
⎣

y
(1)
1 y

(2)
1 . . . y

(m)
1

y
(1)
2 y

(2)
2 . . . y

(m)
2

...
. . .

...
y
(1)
m y

(2)
m . . . y

(m)
m

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Y1,m(�)

⎡

⎢
⎢
⎢
⎢
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x
(1)
1 x

(2)
1 . . . x

(m)
1

x
(1)
2 x

(2)
2 . . . y

(m)
2

...
. . .

...
x
(1)
m x

(2)
m . . . x

(m)
m

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
M(G)

=

⎡

⎢
⎢
⎢
⎢
⎣

y
(1)
2 y

(2)
2 . . . y

(m)
2

y
(1)
3 y

(2)
3 . . . y

(m)
3

...
. . .

...
y
(1)
m+1 y

(2)
m+1 . . . y

(m)
m+1

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Y2,m(�)

(1)

Now, suppose that we are given an initial sequence of words, � =
(w1, . . . , wm+1), generated by an unknown D0L-system G over V = {a1, . . . , am}.
The growth matrix M of G is a (not necessarily unique) solution to the equation

Y1,m(�)M = Y2,m(�). (2)
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The sum of the entries in row i of M is the length of the presumed successor xi

of ai. Given this length for each i = 1, . . . , m, we can use Algorithm 1 to infer the
D0L-system compatible with �, if it exists. As the word lengths are non-negative
integers, only integer solutions to Eq. 2 are of interest, i.e., we consider Eq. 2 as
a system of linear diophantine equations. The general solution to such a system
can be calculated in polynomial time (Corollary 5.3c of [16]). The solution space
of possible entries in M is further reduced to be finite, because each element x

(j)
i

must satisfy the inequality 0 ≤ x
(j)
i ≤ |wp+1|aj

: the number of occurrences of
letter aj in the successor xi of ai cannot exceed the number of occurrences of aj

in the word wp+1 derived from a word wp in which ai occurs. Although we do not
have a quantitative evaluation of the resulting speedup, the use of diophantine
equations appears to significantly reduce the number of calls to Algorithm1,
compared to the brute-force Algorithm 2.

An important special case occurs when matrix Y1,m(�) is invertible. The
growth matrix M = Y1,m(�)−1Y2,m(�) is then unique. If it contains anything
other than non-negative integers, a D0L-system compatible with the given
sequence � does not exist. If, in contrast, all elements of M are non-negative
integers, Algorithm 1 can find the D0L-system compatible with � (which is then
unique) or determine that such a system does not exist, in O(S(�)) time (Propo-
sition 1). Since the inverse of an m × m matrix can be calculated in O(m2.376)
time ([17] combined with later result on faster matrix multiplication [18]), the
following is immediate:

Proposition 5. Given an m-letter alphabet V and a sequence of words � =
(w1, . . . , wm+1) such that Y1,m(�) is invertible, there is an algorithm that deter-
mines the unique D0L system compatible with �, or reports that none exists, in
time O(S(�) + m2.376). Furthermore, if m is fixed, then the algorithm runs in
time O(S(�)).

Lastly, if more than m + 1 words are given as input, as long as there are
m consecutive words starting at word i such that Yi,m is invertible, then this is
enough to uniquely determine a D0L system if it exists.

4.2 Context-Sensitive Case

This procedure is extended next to work with deterministic (k, l)-systems.
Let k, l ∈ N, and consider a deterministic (k, l)-system G = (V, ω, P ) that

is maximal context. Next, consider some fixed ordering (such as lexicographic)
of all elements in V ≤k < V > V ≤l (all possible windows including maximal
contexts). Let r be the number of these words, and let zi be the ith such word,
for 1 ≤ i ≤ r. Here, if m = |V |, then r ≤ (m + 1)k+lm.

Given a word w ∈ V ∗, define the (k, l)-windowed Parikh vector of w as the
r-coordinate vector ψk,l(w), where for 1 ≤ i ≤ r,

ψk,l(w)(i) = |{q | zi = u < a > v,w[q, s] = uav,
and either k = |u| or |u| < k and q = 1,
and either l = |v| or |v| < l and s = |w|}|.
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This can be explained as follows: Consider position i of the vector where zi =
u < a > v. Intuitively, position i would give the number of times a production
with predecessor u < a > v would get applied when rewriting w with maximal
contexts. When |u| = k and |v| = l, this is the number of times zi occurs as a
subword of w; when |u| < k and |v| = l, this is 1 if uav is a prefix of w and
0 otherwise; when |u| = k and |v| < l, this is 1 if uav is a suffix of w and 0
otherwise; when |u| < k and |v| < l, this is 1 if uav = w and 0 otherwise.

Let i satisfy 1 ≤ i ≤ r, let xi be the string such that (zi = u < a > v) → xi ∈
P , and let x

(j)
i = ψ(xi)(j), for 1 ≤ j ≤ m (ψ(xi) is the normal Parikh vector).

The growth matrix of G, denoted by M(G), is the r × m matrix:

M(G) =

⎡

⎢
⎢
⎢
⎢
⎣

x
(1)
1 x

(2)
1 . . . x

(m)
1

x
(1)
2 x

(2)
2 . . . y

(m)
2

...
. . .

...
x
(1)
r x

(2)
r . . . x

(m)
r

⎤

⎥
⎥
⎥
⎥
⎦

(3)

Let wi be the ith word derived by G, for 1 ≤ i ≤ n (thus ω = w1). Further-
more, let t

(j)
i = ψk,l(wi)(j) for 1 ≤ i < n, 1 ≤ j ≤ r. Let s, r ∈ N be such that

1 ≤ s ≤ s+r−1 ≤ n−1, and let Ts,r(�) be the r×r matrix such that the element
at position i, j is ti+s−1(j) (that is, the rows are ψk,l(ws), . . . , ψk,l(ws+r−1)).
Similar to Eq. 1, we have:

T1,r(�)M(G) = Y2,r(�). (4)

Note Y2,r(�) is an r × m matrix calculated using the normal Parikh map.
Now, suppose that we are given an initial sequence of words � = (w1, . . . , wn)

over V = {a1, . . . , am} and context sizes k, l, and the goal is to determine if this
sequence can be generated by an unknown deterministic (k, l)-system. Then, on
input �, an algorithm can scan one word at a time while sliding a window, and
make a trie to hold Δk,l(�) as with the proof of Proposition 4 (recall Δk,l(�) is
the set of all triplets u < a > v that occur with maximal contexts in all but the
last word of �). Let r = |Δk,l(�)|. A vector α with r components is calculated. In
the trie, when scanning u < a > v, the following are stored: the index of the first
word where u < a > v occurs, g(u, a, v); and some unique number h(u, a, v) from
1 to r giving a position of α. The length 1 + |wg(u,a,v)+1| is stored in position
h(u, a, v) of α. Indeed, after all words u < a > v are added to the trie based on
�, it is possible to calculate r = |Δk,l(�)|, and the h(u, a, v) values then provides
the fixed ordering of the elements in Δk,l(�). This ordering can then be used for
the calculation of ψk,l(wi).

Assume henceforth that n ≥ r + 1. Then, as with D0L systems, an interme-
diate goal is instead to determine all integer matrices M such that

T1,r(�)M = Y2,r(�). (5)

By Eq. 4, if M is the growth matrix of a (k, l)-system that is compatible with �,
then M is a solution to this equation. In this case, the sum of the entries of row
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i gives the length of the successor of the production with predecessor u < a > v,
where h(u, a, v) = i.

Instead of using brute force to try all possibilities of length combinations,
the procedure instead calculates the inverse of T1,r(�) if it exists. If the inverse
does exist, it solves for M as T1,r(�)−1Y2,r(�). Indeed, if there is a (k, l)-system
compatible with �, then M must be the growth matrix of the maximal con-
text (k, l)-system compatible with �. From M , the length of each production is
implied, and Proposition 3 then provides an algorithm to assess compatibility.
In terms of complexity, the trie can be built in O((k+ l) ·S(�)) time. The inverse
can be computed in O(r2.376) if it exists and so M = T1,r(�)−1 · Y2,r(�) can
again be computed in O(r2.376) time. Then the row sums can be stored back in
the trie, and by using Proposition 3, the unique maximal context Δk,l(�)-subset
(k, l)-system, if it exists, can be computed in time O((k + l) · S(�)) time.

Proposition 6. Given an m-letter alphabet V , context sizes k, l, and a sequence
of words � = (w1, . . . , wn) over V , with r = |Δk,l(�)|, n ≥ r + 1, and such that
T1,r(�) is invertible, there is an algorithm that determines the unique maximal
context Δk,l(�)-subset (k, l)-system compatible with �, or reports that none exists,
in time O((k + l) · S(�) + r2.376).

By setting all unused productions not in the trie to be identity productions,
the following is implied:

Corollary 5. Given an m-letter alphabet V , context sizes k, l, and a sequence
of words � = (w1, . . . , wn) over V , with r = |Δk,l(�)|, n ≥ r + 1, and such that
T1,r(�) is invertible, there is an algorithm that determines a deterministic (k, l)-
system compatible with �, or reports that none exist, in time O((k + l) · S(�) +
r2.376).

As with D0L-systems, more generally there can be more than one matrix that
is a solution to Eq. 5. It is again possible to consider Eq. 5 as a system of linear
diophantine equations. Then for each solution of M , Proposition 3 can be used
to assess compatibility. Lastly, to use matrix inversion, if n > r + 1, then it is
only necessary to have Ti,r be an invertible matrix for some i in order to apply
this approach.

5 Conclusions and Future Directions

In this paper, polynomial time algorithms are provided that solve the inductive
inference problem, when the size of the alphabet and the context sizes are fixed.
Then a speedup is provided using letter occurrence arithmetic. For context-
sensitive L-systems, if a matrix defined by using a generalization of the Parikh
map on the input words gives an invertible matrix, then the context-sensitive
system can be inferred in polynomial time in the context lengths and the sum
of the input word lengths. This technique can also be used when the matrix is
not invertible by using solutions to linear diophantine equations.
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Some immediate questions arise from this work. First, is there a complexity
class such that inferring different types of L systems where the alphabet size is
not fixed is hard for that class? Also, can any approaches presented here work
for nondeterministic (or stochastic) L-systems? In addition, from a practical
perspective, can these approaches be combined with a computer vision approach
to automatically infer L-systems from sequences of images?
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Abstract. Reaction systems are a formal model for specifying and
analysing computational processes in which reactions operate on sets of
entities (molecules), providing a framework for dealing with qualitative
aspects of biochemical systems. This paper is concerned with reaction
systems in which entities can have discrete concentrations and reactions
operate on multisets of entities, providing a succinct framework for deal-
ing with quantitative aspects of systems. This is facilitated by a dedicated
linear-time temporal logic which allows one to express and verify a wide
range of behavioural system properties.

In practical applications, a reaction system with discrete concentra-
tions may only be partially specified, and effective calculation of the
missing details would provide an attractive design approach. To develop
such an approach, this paper introduces reaction systems with parame-
ters representing the unknown parts of the reactions. The main result is
a method which attempts to replace these parameters in such a way that
the resulting reaction system operating in a given external environment
satisfies a given temporal logic formula. We provide a suitable encoding
of parametric reaction systems in smt, and outline a synthesis procedure
based on bounded model checking for solving the synthesis problem. We
also provide preliminary experimental results demonstrating the feasibil-
ity of the new synthesis method.

The seminal paper [11] introduced a fundamental reaction systems model
for computational processes inspired by the functioning of a living cell. The
model can capture in a very simple way the basic mechanisms underpinning the
dynamic behaviour of a living cell. A key feature of reaction systems is that
the latter results from the interactions of biochemical reactions based on the
mechanisms of facilitation and inhibition, i.e., the products of reactions may
facilitate or inhibit each other. The basic model of reaction systems represents
the reactions, states, and dynamic processes using (tuples of) finite sets, and so
it directly captures the qualitative aspects of systems. Having said that, more
involved concepts can be introduced using the basic ones.
c© Springer International Publishing AG, part of Springer Nature 2018
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Reaction system related research topics have so far been motivated by bio-
logical issues or by a need to understand computations/processes underlying the
dynamic behaviour of reaction systems (see, e.g., [9,10]). A number of extensions
were also introduced, e.g., reaction systems with time [12], reaction systems with
durations [5], and quantum and probabilistic reaction systems [16]. Mathemati-
cal properties of reaction systems were investigated in, e.g., [1,7,8,13–15,23–26].

Examples of applications of reaction systems to modelling of systems include,
e.g., [4,6]. Verification of reaction systems was discussed in, e.g., [2,3,20]. The
papers [19,22] introduced reaction systems with discrete concentrations of enti-
ties and reactions operating on multisets of entities, resulting in a model allow-
ing direct quantitative modelling. Although there exist other approaches that
support modelling of complex dependencies of concentration levels and their
changes, e.g., chemical reaction networks theory based on [17], reaction systems
provide much simpler framework and the processes of reaction systems take into
account interactions with the external environment. Discrete concentrations can
be simulated in the original qualitative reaction systems, but reaction systems
with discrete concentrations provide much more succinct representations in terms
of the number of entities being used, and allow for more efficient verification [19].
The properties being verified are expressed in rsltl which is a version of the
linear-time temporal logic defined specifically for reaction systems.

In practical applications, a reaction system with discrete concentrations may
have only partially specified reactions, and a reaction mining i.e., an effective
filling in the missing details would provide an attractive design approach. To
develop such an approach, this paper introduces reaction systems with param-
eters representing the unknown parts of the reactions. The main result is a
methodology which attempts to replace these parameters in such a way that
the resulting reaction system satisfies a given rsltl formula when operating
in a given external environment. Intuitively, such a formula might correspond
to a number of observations (runs) of the behaviour of a partially specified sys-
tem. Moreover, the environment is specified using a context automaton which
represents the influence of the bigger system in which the reaction system with
discrete concentrations operates. We provide a suitable encoding of parametric
reaction systems in smt, and propose a synthesis procedure based on bounded
model checking for solving the synthesis problem. We also provide preliminary
successful experimental results demonstrating the scalability of the new synthe-
sis method. The paper is organised in the following way. In the next section, we
recall the basic notations and definitions used by reaction systems with discrete
concentrations. Section 2 introduces parametric reaction systems, and the fol-
lowing section defines smt-based encoding of such systems. Section 4 discusses
experimental evaluation of the synthesis approach introduced in this paper, and
Sect. 5 draws some concluding remarks.

1 Preliminaries

A multiset over a set X is a mapping b : X → {0, 1, . . . }, and its carrier is
carr(b) = {x ∈ X | b(x) > 0}. The empty multiset ∅X is one with the empty
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carrier. B(X) denotes the set of all multisets over X. For a finite B ⊂ B(X),
�(B) is the multiset over X such that �(B)(x) = max({0} ∪ {b(x) | b ∈ B}),
for every x ∈ X. For b,b′ ∈ B(X), b ≤ b′ if b(x) ≤ b′(x), for every x ∈ X.

We use x �→ i for denoting the multiplicity of x in multisets; e.g., {x �→1, y �→2}
is a multiset with one copy of x, two copies of y, and nothing else. If the multiplicity
of an entity is 1, we may also simply omit the value, e.g., {x, y �→2}.

The syntax ofmultiset expressions BE (X) is defined by the following grammar:
a :: = true | e ∼ c | e ∼ e | ¬a | a ∨ a, where ∼ ∈ {<,≤,=,≥, >}, e ∈ X, c ∈ IN.
Then b |=b a means that a holds for b ∈ B(X) assuming that:

b |=b true for every b ∈ B(X),
b |=b e ∼ c iff b(e) ∼ c,
b |=b e ∼ e′ iff b(e) ∼ b(e′),
b |=b ¬a iff b �|=b a,
b |=b a ∨ a′ iff b |=b a or b |=b a

′.

Reaction Systems with Discrete Concentrations. The enabling of biochemical
reactions may depend not only on the availability of reactants and the absence
of inhibitors, but also on their concentration levels. We will now recall an exten-
sion of the basic reaction systems with explicit representation of the discrete
concentration levels of entities (the k-th level of concentration of x is repre-
sented by a multiset containing k copies of x). The model uses multisets rather
than sets of entities, but otherwise retains key features of the original framework.

A reaction system with discrete concentrations (rsc) is a pair rsc = (S,A),
where S is a finite background set (comprising entities) and A is a nonempty finite
set of reactions over the background set. Each reaction is a triple a = (r, i,p)
such that r, i, p are nonempty multisets over S with r(e) < i(e), for every
e ∈ carr(i). The multisets r, i, and p are respectively denoted by ra, ia, and pa

and called the reactant, inhibitor, and product concentration levels of reaction a.
An entity e is an inhibitor of a whenever e ∈ carr(ia).

A reaction a ∈ A is enabled by t ∈ B(S), denoted ena(t), if ra ≤ t and
t(e) < ia(e), for every e ∈ carr(ia). The result of a on t is given by resa(t) = pa

if ena(t), and by resa(t) = ∅S otherwise. Then the result of A on t is resA(t) =
�{resa(t) | a ∈ A}.

Intuitively, t is a state of a biochemical system being modelled, and t(e) is
the concentration level of each entity e (e.g., t(e) = 0 indicates that e is not
present in the current state while t(e) = 1 indicates that e is present at its
lowest concentration level). A reaction a is enabled by t and can take place if
the current concentration levels of all its reactants are at least as high as those
specified by ra, and the current concentration levels of all its inhibitors (i.e.,
entities in the carrier of ia) are below the thresholds specified by ia.

The above gives the behaviour of an rsc as a closed system. To define its oper-
ation as an open system, we need a suitable representation of the environment.
A context automaton over a background set S is a triple ca = (Q, qinit, R), where
Q is a finite set of states, qinit ∈ Q is the initial state, and R ⊆ Q × B(S) × Q
is the transition relation. We assume that, for every q ∈ Q, there exist c ∈ B(S)
and q′ ∈ Q such that (q, c, q′) ∈ R. We also denote (q, c, q′) ∈ R by q

c−→ q′.
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A context restricted reaction system with discrete concentrations (crrsc) [22]
is a pair crrsc = (rsc, ca) such that rsc = (S,A) is an rsc, and ca = (Q, qinit, R)
is a context automaton over S. The dynamic behaviour of crrsc is captured by
the state sequences of its interactive processes, where an interactive process in
crrsc is a triple π = (ζ, γ, δ) such that:

– ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn)
– z0, z1, . . . , zn ∈ Q with z0 = qinit

– c0, c1, . . . , cn,d0,d1, . . . ,dn ∈ B(S) with d0 = ∅S

– (zi, ci, zi+1) ∈ R, for every i ∈ {0, . . . , n − 1}
– di = resA(�{di−1, ci−1}), for every i ∈ {1, . . . , n}.

The sequence γ is the context sequence of π and δ is the result sequence,
while ζ is simply the sequence of states of ca. The state sequence of π is
τ = (w0, . . . ,wn) = (�{c0,d0}, . . . ,�{cn,dn}).
Reaction Systems Linear-Time Temporal Logic. Here we recall the logic (rsltl)
introduced in [22], which captures requirements imposed on paths of crrsc.

The model of a crrsc given by crrsc = (rsc, ca) with rsc = (S,A) and ca =
(Q, qinit, R) is the triple M(crrsc) = (W, winit,−→, L), where: W = B(S)× Q is
the set of states; winit = (∅, qinit) is the initial state; and −→ ⊆ W × B(S)× W

is the transition relation such that, for all w,w′, α ∈ B(S) and q, q′ ∈ Q, we
have ((w, q), α, (w′, q′)) ∈ −→ if (q, α, q′) ∈ R and w′ = resA(�{w, α}).

We write M instead of M(crrsc) when crrsc is understood. We also denote
(w, α, w′) ∈ −→ by w

α−→ w′.
A path of M is an infinite sequence σ = (w0, α0, w1, α1, . . . ) of states and

actions (context multisets) such that wi
αi−→ wi+1, for every i ≥ 0. For every

i ≥ 0, we denote σs(i) = wi = (σb(i), σca(i)) and σa(i) = αi. Moreover, σi =
(wi, αi, wi+1, αi+1, . . . ) is a suffix of σ. By ΠM(w) we denote the set of all the
paths that start in w ∈ W and ΠM =

⋃
w∈W

ΠM(w) is the set of all paths of M.
The syntax of rsltl is given by the following grammar:

φ :: = a | φ ∧ φ | φ ∨ φ | Xaφ | φUaφ | φRaφ,

where a ∈ BE (S). Intuitively, Xaφ means ‘following an action satisfying a, φ
holds in the next state’, φUaφ

′ means ‘φ′ holds eventually, and φ must hold
at every preceding state, following only actions satisfying a’, and φRaφ

′ means
‘following only actions satisfying a, φ′ holds up to and including the first state
where φ holds’.

Let M = (W, winit,−→, L) be a crrsc model and σ ∈ ΠM. The fact that φ
holds over σ is denoted by M, σ |= φ (or σ |= φ if M is understood), where |=
is defined as follows:

σ |= a if σb(0) |=b a
σ |= φ ∨ φ′ if σ |= φ or σ |= φ′

σ |= φ ∧ φ′ if σ |= φ and σ |= φ′

σ |= Xaφ if σa(0) |=b a and σ1 |= φ
σ |= φUaφ

′ if (∃j ≥ 0)(σj |= φ′ and (∀0 ≤ l < j)(σl |= φ and σa(l) |=b a))
σ |= φRaφ

′ if (∀j ≥ 0)(σj |= φ′

or (∃0 ≤ l < j)(σl |= φ and (∀0 ≤ m < l)(σa(m) |=b a))).
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Moreover, a ⇒ φ stands for ¬a ∨ φ, Gaφ for falseRaφ, Faφ for trueUaφ, and
Fφ is the same as Ftrueφ, for every rsltl operator F. Thus, φUφ′ means that
‘φ′ holds eventually, and φ must hold at every preceding state’, and φRφ′ means
that ‘φ′ holds up to and including the first state where φ holds’.

An rsltl formula φ holds in a model M if it holds in all the paths starting in
its initial state, i.e., M |= φ if σ |= φ for all σ ∈ ΠM(winit). A formula φ may
also hold existentially in M, i.e., M |=∃ φ if σ |= φ for some σ ∈ ΠM(winit).

Bounded Semantics for rsltl. We use the bounded model checking approach
which requires us to specify when a given formula holds while considering only
a finite number of states and actions of the prefix of the path being considered.

A path σ = (w0, α0, w1, α1, . . . ) is a (k, l)-loop (or k-loop) if there exist k ≥
l > 0 such that σ = (w0, α0, . . . , αl−2, wl−1)(αl, wl+1, αl+1, . . . , αk−1, wk)ω and
wl−1 = wk. The bounded semantics for rsltl is defined for finite path prefixes.
We define a satisfiability relation that for a given path considers its first k states
and k−1 actions only. The fact that a formula φ holds in a path σ with a bound
k ∈ IN is denoted by σ |=k φ and defined as follows:

– σ is a (k, l)-loop for some 0 < l ≤ k and σ |= φ,
or

– σ |=nl φ, where:
σ |=nl a if σb(0) |=b a
σ |=nl φ ∧ φ′ if σ |=nl φ and σ |=nl φ′

σ |=nl φ ∨ φ′ if σ |=nl φ or σ |=nl φ′

σ |=nl Xaφ if k > 0, σa(0) |=b a, and σ1 |=nl φ
σ |=nl φUaφ

′ if (∃0 ≤ j ≤ k)(σj |=nl φ′ and (∀0 ≤ l < j)(σl |=nl φ
and σa(l) |=b a))

σ |=nl φRaφ
′ if (∃0 ≤ j ≤ k)(σj |=nl φ and ((∀0 ≤ l ≤ j)(σl |=nl φ′)

and (∀0 ≤ l < j)(σa(l) |=b a)))

For a bound k ∈ IN and a crrsc model M, M |=k
∃ φ if there exists σ ∈ ΠM(winit)

such that σ |=k φ. The bounded model checking problem for rsltl is the decision
problem of checking if M |=k

∃ φ, for a given k ∈ IN and M.

Theorem 1 ([22]). Let φ be an rsltl formula and M be a crrsc model. Then,
M |=∃ φ if and only if there exists k ∈ IN such that M |=k

∃ φ.

2 Parametric Reaction Systems

We introduce parametric reaction systems which allow for defining also incom-
plete reactions by using parameters in place of reactant, inhibitor, and prod-
uct sets.

A parametric reaction system (prs) is a triple prs = (S, P,A), where S is
a finite background set, P is a finite set of elements called parameters, and A
is a nonempty finite set of parametric reactions over the background set. Each
parametric reaction in A is a triple a = (r, i, p) such that r, i, p ∈ B(S) ∪ P .
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The elements r, i, and p are respectively denoted by ra, ia, and pa and called the
reactants, inhibitors, and products of parametric reaction a. A parameter valua-
tion of prs is a function v : P ∪B(S) → B(S) such that v(b) = b if b ∈ B(S). We
also write b←v for v(b). The set of all the parameter valuations for prs is denoted
by PVprs . Let v ∈ PVprs . For X ⊆ A we define X←v = {(a←v

r , a←v
i , a←v

p ) | a ∈ X}.
Then, by prs←v we denote the structure (S,A←v) where all the parameters in A
are substituted according to the parameter valuation v. We say that v ∈ PVprs
is a valid parameter valuation if prs←v yields an rsc.

A context-restricted parametric reaction system (crprs) is a pair crprs =
(prs, ca) such that prs = (S, P,A) is a prs and ca = (Q, qinit, R) is a context
automaton over S. For v ∈ PVprs we define crprs←v = (prs←v, ca).

Example 1. We consider a simple prs for a simplified abstract genetic regula-
tory system based on [9]. The system contains two (abstract) genes x and y
expressing proteins X and Y , respectively, and a protein complex Q formed
by X and Y . The background set is defined as S = {x, x̂,X, y, ŷ, Y, h,Q},
where x̂ and ŷ denote RNA polymerase attached to the promoter of genes x
and y, respectively. Here h is used as an abstract inhibitor. Finally, the set of
parametric reactions consists of the following subsets: Ax = {({x}, {h}, {x}),
({x}, {h}, {x̂}), ({x, x̂}, {h}, {X})}, Ay = {({y}, {h}, λ1), (λ2, {h}, {ŷ}), ({y, ŷ},
{h}, λ3)}, AQ = {({X,Y }, {h}, {Q})}. Notice that the reactions of Ay use
parameters λ1, λ2, λ3 to define expression of the protein Y . Suppose that we
investigate the processes starting from the states that already contain x and
y. This leads to the following definition of the context automaton: ca =

({0, 1}, 0, R), where: R = {0 {x,y}−−−→ 1, 1 ∅−→ 1, 1
{h}−−→ 0)}. When the con-

text set contains the entity h, ca reverts back to the initial state, while for
the empty context set the ca remains in the state 1. Then, crprs is defined as
crprs = ((S, P,A), ca), where: P = {λ1, λ2, λ3} and A = Ax ∪ Ay ∪ AQ. �

In this paper, our focus is on the synthesis of a parameter valuation given
some observations expressed with rsltl formulae. Let crprs = (prs, ca) be a
crprs, and F = {φ1, . . . , φn} be a set of rsltl formulae. The aim of parameter
synthesis for crprs is to find a valid parameter valuation v of crprs such that
(M(crprs←v) |=∃ φ1) ∧ · · · ∧ (M(crprs←v) |=∃ φn). Each formula of F corre-
sponds to an interactive process observed in the analysed system via, e.g., exper-
iments or simulations. Therefore, for each such process we expect an individual
path in M(crprs←v) and we solve n the model checking problems for rsltl in
one instance. However, the parameter valuation v is shared among all instances,
which allows us to calculate v such that all properties of F are satisfied.

Example 2. Let us assume we performed an experiment on the system of Exam-
ple 1 where protein Y was expressed. We have the following observations related
to the expression of the protein Y :

– whenever the current state contains y, then y and ŷ are found in the next
state: φc

1 = G¬h(y ⇒ X(y ∧ ŷ));
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– when y and ŷ are present, then Y is finally produced: φc
2 = G¬h((y ∧ ŷ) ⇒

FY );
– the entities y, ŷ, and Y are eventually produced: φr = (F¬hy) ∧ (F¬hŷ) ∧
(F¬hY ).

These observations are made assuming h is not provided in the context set.
Additionally, we observe that the protein Q is not present in the first three
steps of the execution and then, after an arbitrary number of steps it is finally
produced: φd = ¬Q ∧ X(¬Q ∧ X(¬Q ∧ FQ)). The observations are related to a
single interactive process (experiment), therefore we constrain the problem using
the conjunction of all the observations. Finally, the observations are expressed
using the rsltl formula φ = φr ∧ φc

1 ∧ φc
2 ∧ φd. Next, we perform parameter

synthesis for F = {φ}, that is, we obtain a valid parameter valuation v such that
M(crprs←v) |=∃ φ. A parameter valuation v such that λ←v

1 = {y}, λ←v
2 = {y},

λ←v
3 = {Y } is valid and satisfies the requirements of our observations. �

Parameter Constraints. In some cases restricting parameter valuations using
only rsltl formulae may prove to be less efficient than constraining the valuation
using specialised constraints for the parameters of a prs.

For prs = (S, P,A) the parameter constraints PC (prs) are defined using the
following grammar:

c ::= true | λ[e] ∼ c | λ[e] ∼ λ[e] | ¬c | c ∨ c,

where λ ∈ P , e ∈ S, c ∈ IN, and ∼ ∈ {<,≤,=,≥, >}. Intuitively, λ[e] can be
used to refer to the concentration of e ∈ S in the multisets corresponding to the
valuations of λ.

Let v be a parameter valuation of prs. The fact that c holds in v is denoted
by v |=p c and defined as follows:

v |=p true for every v,
v |=p λ[e] ∼ c if λ←v(e) ∼ c,
v |=p λ1[e1] ∼ λ2[e2] if λ←v

1 (e1) ∼ λ←v
2 (e2),

v |=p ¬c if v �|=p c,
v |=p c1 ∨ c2 if v |=p c1 or v |=p c2.

A constrained parametric reaction system (cprs) is a tuple cprs = (S, P,A, c)
such that (S, P,A) is a prs and c ∈ PC (prs). For v ∈ PVprs , we then define
cprs←v = prs←v. A parameter valuation v ∈ PVprs is valid in cprs if it is valid in
prs and v |=p c. A context-restricted cprs (cr-cprs) is a pair cr -cprs = (cprs, ca)
such that cprs = (S, P,A, c) is a cprs and ca is a context automaton over S. We
also denote cr -cprs←v = (cprs←v, ca).

The proposed language of parameter constraints allows for specifying con-
straints on multisets corresponding to parameters and relationships between
them, which is demonstrated in the following example.

Example 3. Suppose λ1, λ2, λ3 ∈ P . To constrain λ←v
1 to be a sub-multiset of

λ←v
2 (i.e., λ←v

1 ⊆ λ←v
2 , for all v), we define submset(λ1, λ2) =

∧
e∈S(λ1[e] ≤
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λ2[e]). To constrain λ←v
3 to be the intersection of λ←v

1 and λ←v
2 (i.e., λ←v

1 ∩λ←v
2 =

λ←v
3 , for all v), we define intersect(λ1, λ2, λ3) as

∧
e∈S(((λ1[e] > λ2[e]) ∧ (λ3[e] = λ2[e])) ∨ ((λ1[e] ≤ λ2[e]) ∧ (λ3[e] = λ1[e]))).

�
The parameter synthesis problem for cr-cprs is defined similarly as for crprs.

Let cr -cprs = (cprs, ca), F = {φ1, . . . , φn} be a rsltl formulae, and c be a
parameter constraint. The aim is to calculate a valid parameter valuation v
of cr -cprs such that (M(cr -cprs←v) |=∃ φ1) ∧ · · · ∧ (M(cr -cprs←v) |=∃ φn).
In the next section, we show how this problem can be solved using an incre-
mental approach, which amounts to checking (M(cr -cprs←v) |=k

∃ φ1) ∧ · · · ∧
(M(cr -cprs←v) |=k

∃ φn) for k ≥ 0, by increasing the value of k until a valid
parameter valuation is found.

3 smt-Based Encoding

In this section we provide a translation of the parameter synthesis problem for
cr-cprs and rsltl into the satisfiability modulo theory (smt) [18] with the integer
arithmetic theory. The smt problem is a generalisation of the Boolean satisfia-
bility problem, where some functions and predicate symbols have interpretations
from the underlying theory.

Let cr -cprs = ((S, P,A, c), (Q, qinit, R)) and F = {φ1, . . . , φn} be a set of
rsltl formulae. Then, we encode the model M(cr -cprs←v), where v is a valid
parameter valuation of cr -cprs. Let k ≥ 0 be an integer, then for each f ∈
{1, . . . , n} we encode any possible path of M(cr -cprs←v) bounded with k. That
is, for each formula φf we encode a separate bounded path representing its
witness. The entities of S are denoted by e1, . . . , em, where m = |S|. For each
φf ∈ F and i ∈ {0, . . . , k} we introduce sets of positive integer variables:

� Pf,i = {pf,i,1, . . . , pf,i,m}, PE
f,i = {pE

f,i,1, . . . , p
E
f,i,m}, Qf = {qf,0, . . . , qf,k}.

Let ta : A → {1, . . . , |A|} be a bijection mapping all the reactions to integers.
Then, for each a ∈ A we also introduce a set of variables encoding products:

� Pp
f,i,a = {pp

f,i,ta(a),1, . . . , p
p
f,i,ta(a),m}.

Let σ.f be a path of M(cr -cprs←v). Then

� pf,i = (pf,i,1, . . . , pf,i,m) and pE
f,i = (pE

f,i,1, . . . , p
E
f,i,m)

are used to encode (σ.f)b(i) and (σ.f)a(i), respectively. With pf,i[j] and pE
f,i[j]

we denote, respectively, pf,i,j and pE
f,i,j . If i ≥ 1, we define, for all a ∈ A:

� pp
f,i = (pp

f,i,1,1, . . . , p
p
f,i,1,m, . . . , pp

f,i,|A|,1, . . . , p
p
f,i,|A|,m).

The following functions map the background set entities to the corresponding
variables of the encoding: for all i ∈ {0, . . . , k} we define tf,i : S → Pf,i and
tE

f,i : S → PE
f,i such that
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� tf,i(ej) = pf,i,j and tE
f,i(ej) = pE

f,i,j for all j ∈ {1, . . . , m}.

For all i ∈ {0, . . . , k} and a ∈ A we define tp
f,i,a : S → Pp

f,i,a such that:

� tp
f,i,a(ej) = pp

f,i,ta(a),j for all j ∈ {1, . . . , m}.

The bijection e : Q → {1, . . . , |Q|} maps states of the context automaton to the
values used in the encoding. Let tp : P → {1, . . . , |P |} be a bijection mapping
all the parameters to their corresponding integers. Then we introduce the tuple
of parameters:

� ppar = (ppar
1,1 , . . . , ppar

1,m, . . . , ppar
|P |,1, . . . , p

par
P,m).

For each parameter λ ∈ P we define

� Ppar
λ = {ppar

tp(λ),1, . . . , p
par
tp(λ),m}

and pmλ : S → Ppar
λ such that pmλ(ej) = ppar

tp(λ),j . Let a ∈ A and s ∈ {ra, ia, pa}.
Then, res(ej) denotes pms(ej) if s ∈ P , and s(ej) otherwise. To define the smt
encoding of the paths we need auxiliary functions that correspond to elements
of the encoding.

Initial state: To encode the initial state of the model for φf ∈ F we define

� Init(pf,i, qf,i) = (
∧

e∈S tf,i(e) = 0) ∧ qf,i = e(qinit),

where all the concentration levels are set to zero, and the context automaton is
in its initial state.

Context: To encode a multiset c ∈ B(S) of context entities we define:

� Ctc(pE
f,i) =

∧
e∈S tE

f,i(e) = c(e)

Parameter correctness: With PC(ppar) we encode the parameter constraints,
require that the concentration levels of the reactants are always lower than the
concentration levels of the inhibitors, and ensure that all the multisets corre-
sponding to the parameters are non-empty, i.e., for each parameter at least one
entity must have positive concentration level:

� PC(ppar) = encpar(c) ∧ (
∧

a∈A

∧
e∈S reia(e) > 0

⇒ (rera(e) < reia(e))) ∧ (
∧

λ∈P

∨
e∈S pmλ(e) > 0)

where encpar(c) is the encoding of c which follows directly from the semantics of
parameter constraints.

Parametric reaction: The parametric reactions a ∈ A are encoded with

� Rcta(pf,i,p
E
f,i,p

p
f,i+1,p

par) =
∧

e∈S((tf,i(e) ≥ rera(e) ∨ tE
f,i(e) ≥ rera(e))

∧(tf,i(e) < reia(e) ∧ tE
f,i(e) < reia(e)) ∧ (tp

f,a,i+1(e) = repa(e))).

The encoding for parametric reactions specifies the required concentration levels
for a ∈ A to be enabled, as well as encodes the concentration levels for the
produced entities. The encoding for the produced entities uses the variables
specific to the encoded reaction.
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Transitions of cprs: Then, we encode the local state changes of cprs with

� Trcprs(pf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par) = (
∧

a∈A Rcta(pf,i,p
E
f,i,p

p
f,i+1,p

par))
∧(∧e∈S tf,i+1(e) = max({0} ∪ ⋃

a∈A{tp
f,a,i+1(e)})).

In this function, we encode the concentration levels for all the entities in the
successor state using the individual concentration levels encoded for all a ∈ A
in Rcta.

Transitions of context automaton: The encoding of the transition relation
of the context automaton is a disjunction of the encoded transitions:

� Trca(qf,i,p
E
f,i, qf,i+1) =

∨
(q,c,q′)∈R(qf,i = e(q) ∧ Ctc(pE

f,i) ∧ qf,i+1 = e(q′)).

Transition relation: The transition relation of the model for cr -cprs is a con-
junction of the transition relations for cprs and ca:

� Trcr-cprs(pf,i, qf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par)
= Trcprs(pf,i,p

E
f,i,p

p
f,i+1,pf,i+1,p

par) ∧ Trca(qf,i,p
E
f,i, qf,i+1).

Paths: Finally, to encode the paths of M(cr -cprs←v) that are bounded with k
we unroll the transition relation up to k and combine it with the encoding of
the initial state of the model:

� Pathskf = Init(pf,0, qf,0)∧(
∧k−1

i=0 Trcr-cprs(pf,i, qf,i, ,p
E
f,i,p

p
f,i+1,pf,i+1,p

par)).

The encoded rsltl formula φf at the position i ∈ {0, . . . , k} is denoted by |[φf ]|ki .
To encode the formula |[φf ]|ki we use our translation presented in Sect. 5 of [22].
However, for each formula φf ∈ F , we use independent sets of variables corre-
sponding to its path, i.e., the variables indexed with f . The encoding Loopskf for
the loop positions is defined for each formula φf ∈ F .

Calculation of Parameter Valuation. We perform the synthesis of the parameter
valuation v by testing the satisfiability of the formula:

⎛

⎝
∧

φf∈F

Pathskf ∧ Loopskf ∧ |[φf ]|k0

⎞

⎠ ∧ PC(ppar).

Therefore, in the first step we test the satisfiability of the formula and then we
extract the valuation of the parameters of P when the formula is satisfiable. That
is, for the satisfied formula we obtain its model, i.e., the satisfying valuations
of the variables used in the formula. Let V (p) be the valuation of a variable
p used in our encoding. Then, the parameter valuations are defined as follows:
λ←v(e) = V (pmλ(e)) for each e ∈ S and λ ∈ P .

4 Experimental Evaluation

In this section we present the results of an experimental evaluation of the trans-
lation presented in Sect. 3. We test our method on the reaction system model for
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the mutual exclusion protocol (Mutex) introduced in [20]. The system consists
of n ≥ 2 processes competing for exclusive access to the critical section. The
background set of crrsc modelling the mutual exclusion protocol is defined as
S =

⋃n
i=1 Si, where the set of background entities corresponding to the i-th pro-

cess is defined as Si = {out i, req i, ini, act i, lock , done, s}, where the entities lock ,
done, and s are shared amongst all the processes. The set of reactions is defined
as A =

⋃n
i=1 Ai ∪ {

({lock}, {done}, {lock})}, where Ai is the set of reactions
associated with the i-th process. The complete description of the system may
be found in [20]. The context automaton ca provides the initial context set and
provides context sets such that only at most two simultaneously active processes
are allowed. We define the crrsc modelling Mutex as crrscM = ((S,A), ca).

Next, we assume here that the system is open and we allow for introducing
new processes that participate in the communication to gain access to the critical
section. Let us assume we are allowed to modify the behaviour of the additional
process (here, the n-th process) only by introducing an additional reaction. Such
an assumption could be justified by a mechanism that accepts new processes to
participate in the protocol only if they contain the reactions of Ai for any i ∈
{1, . . . , n}, while the remaining reactions could be performing some computation
outside of the critical section.

Our aim is to violate the property of mutual exclusion by making the first
and the n-th process enter their critical sections simultaneously. The addi-
tional (malicious) reaction uses the parameters of P = {λr, λi, λp}. Then, we
define the extended model cr -cprsM = ((S, P,A ∪ {(λr, λi, λp)}, c), ca), where
c = ¬λp[inn] ∧

∧
λ∈P,e∈S\Sn

¬λ[e] constrains the additional reaction by requir-
ing that it may produce only entities related to the n-th process and it cannot
produce inn, to avoid trivial solutions. Then, we need to synthesise a parameter
valuation v of cr -cprsM which gives the rsltl property φ = F(in1 ∧ inn), i.e.,
M(cr -cprs←v

M ) |=∃ φ.
The verification tool was implemented in Python and uses Z3 4.5.0 [21]

for smt-solving. We implement an incremental approach, i.e., in a single smt
instance we increase the length of the encoded interactive processes by unrolling
their encoding until witnesses for all the verified formulae are found. Then, the
corresponding parameter valuation is extracted. The verification results1 pre-
sented in Figs. 1 and 2 compare four approaches: the implementation of the
encoding from Sect. 3 (cr -cprs) and its extension (cr -cprsopt) that optimises
the obtained parameter valuations by using OptSMT provided with Z3. Then,
we also use the same encoding for verification of the rsltl property (crrsc),
i.e., we replace all the parameters with the obtained parameter valuations and
test the formula φ in the same way as in [22]. Next, we compare our results
with the ones obtained using the non-parametric method (crrscnp) of [22]. The
results presented are attained from averaging three executions of the bench-
mark. Our experimental implementation provides a valuation v which allows to
violate the mutual exclution property, where λ←v

r = {outn}, λ←v
i = {s}, and

1 The experimental results were obtained using a system equipped with 3.7 GHz Intel
Xeon (E5-1620 v2) processor and 12 GB of memory, running Mac OS X 10.13.2.
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Fig. 2. Synthesis results for Mutex (memory)

λ←v
p = {reqn, done} for all the tested values n ≥ 2. This valuation was obtained

using cr -cprsopt.
When using cr -cprsopt, the memory consumption increases. However, the

method might require less time to calculate the result than cr -cprs. The differ-
ence in time and memory consumption between the parametric (cr -cprs) and the
non-parametric (crrsc) approach is minor. However, crrscnp is the most efficient
of all the approaches tested. This suggests that our parameter synthesis method
might possibly be improved by optimising the encoding used. However, this is
merely a preliminary experimental evaluation and in the future we are going to
test our method on a larger number of systems.
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5 Concluding Remarks

We have presented a method for reaction mining which allows for calculating
parameter valuations for partially defined reactions of reaction systems. We also
demonstrated how the presented method can be used for synthesis of an attack
in which we inject an additional instruction represented by a reaction, where we
use rsltl to express the goal of the attack.

Assuming there is a finite set of allowed concentration levels for the parame-
ters, the presented method also allows for enumerating all the possible parameter
valuations for fixed-length processes. This can be achieved by adding an addi-
tional constraint blocking the parameter valuation obtained in the previous step.

Our method focuses only on existential observations which can be obtained
from simulations or experiments performed on the system. However, when we
consider some widely accepted laws governing the system under investigation,
those should be formulated as universal observations.

Since we use the bounded model checking approach, if no valid parameter val-
uation exists and no bound on k is assumed, then our method does not terminate.

In our future work we are going to focus on complexity considerations of
the parameter synthesis, tackle the problem of universal observations, as well as
optimise the smt encoding.

Acknowledgements. W. Penczek acknowledges the support of the National Centre
for Research and Development (NCBR), Poland, under the PolLux project VoteVerif
(POL-LUX-IV/1/2016).
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Abstract. Card-based cryptography is an attractive and unconven-
tional computation model; it provides secure computing methods using
a deck of physical cards. It is noteworthy that a card-based protocol can
be easily executed by non-experts such as high school students without
the use of any electric device. One of the main goals in this discipline is
to develop efficient protocols. The efficiency has been evaluated by the
number of required cards, the number of colors, and the average num-
ber of protocol trials. Although these evaluation metrics are simple and
reasonable, it is difficult to estimate the total number of operations or
execution time of protocols based only on these three metrics. Therefore,
in this paper, we consider adding other metrics to estimate the execution
time of protocols more precisely. Furthermore, we actually evaluate some
of the important existing protocols using our new criteria.

Keywords: Cryptography · Card-based protocols
Real-life hands-on cryptography · Secure multi-party computations

1 Introduction

Card-based protocols are unconventional computing methods using a deck of
physical cards; their advantage is that they can be executed by humans practi-
cally (e.g. [4,6,13]). To illustrate this, let us explain how to manipulate Boolean
values based on a two-colored deck of cards. Given a black card ♣ and a red
card ♥ , a Boolean value can be expressed as:

♣ ♥ = 0 , ♥ ♣ = 1 .
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Following this encoding, for example, two players, Alice and Bob, can each
put two cards face down on a table representing their private bits a and b,
respectively:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

. (1)

Here, we assume that the backs ? of all cards are indistinguishable and that
the fronts ♣ or ♥ are also indistinguishable if the cards have the same color.
We call the left pair of two face-down cards in (1) a commitment to a. Similarly,
the right pair of two face-down cards are a commitment to b.

Typically, given two input commitments to a, b ∈ {0, 1}, as in (1), a card-
based protocol should generate a commitment to the value of a predetermined
function f(a, b). For instance, we can get a commitment to a∧ b without leaking
any information about a and b, if we execute an AND protocol:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

→ . . . → ? ?
︸ ︷︷ ︸

a∧b

.

As shown in Table 1, there are many existing AND protocols (in committed
format1). This table implies that the design of “efficient” protocols is one of
the goals of card-based protocols; so far, the efficiency has been evaluated in
terms of three metrics: (i) the number of required cards, (ii) the number of
colors, and (iii) the average number of required trials. These evaluation metrics
are simple and reasonable. However, if we are going to actually execute a card-
based protocol, these three metrics are insufficient to accurately estimate the
number of operations that need to be done during the protocol and the overall
execution time of the protocol.

Therefore, in this paper, we introduce new metrics to evaluate protocol effi-
ciency more precisely. That is, we determine all the operations during a protocol,
and then analyze the execution time of each operation. Furthermore, we actually
evaluate all the AND protocols2 shown in Table 1, based on our new criteria by
counting the number of operations thoroughly. We also make a comparison of
the AND protocols and discuss which protocol is the most efficient and practical.
It should be noted that card-based protocols are outside the Turing model [8,9].

The rest of this paper is organized as follows. In Sect. 2, we introduce the AND
protocol invented by Stiglic [15] as an example, and then give a formalization
of the operations in card-based protocols [8]. In Sect. 3, we give new metrics of
efficiency, which directly indicate the execution time of a protocol. In Sect. 4, we
evaluate the existing AND protocols based on our proposed metrics. We conclude
this study in Sect. 5.

1 There are also “non-committed-format” AND protocols [1,7].
2 This paper addresses only AND computation because the other important primitive,

XOR, can be done with only four cards and one trial [10].
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Table 1. The existing AND protocols (in committed format)

Year #Colors #Cards Avg. #Trials

Crépeau and Kilian [2] 1993 4 10 6

Niemi and Renvall [11] 1998 2 12 2.5

Stiglic [15] 2001 2 8 2

Mizuki and Sone [10] 2009 2 6 1

Five-card KWH [5] 2015 2 5 1

Four-card KWH [5] 2015 2 4 3

2 Preliminaries: A Protocol with Operations

In this section, we introduce Stiglic’s AND protocol [15] as an example to
demonstrate the possible operations in card-based protocols. As already seen
in Table 1, this protocol requires a two-colored deck of eight cards and two aver-
age trials. Given input commitments to a and b along with four additional cards
♣ ♣ ♥ ♥ , the protocol proceeds as follows.

1. Arrange the sequence as:

? ?
︸ ︷︷ ︸

a

♥ ♣ ? ?
︸ ︷︷ ︸

b

♣ ♥ → ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

1

? ?
︸ ︷︷ ︸

b

? ?
︸ ︷︷ ︸

0

.

2. Apply a random cut to the sequence of eight cards:

〈 ? ? ? ? ? ? ? ? 〉 → ? ? ? ? ? ? ? ? .

The term random cut means a cyclic shuffle. If we attach numbers to the
cards for the sake of convenience:

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? ,

then a random cut results in one of the following eight sequences (with a
probability of 1/8):

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? ,

2

?
3

?
4

?
5

?
6

?
7

?
8

?
1

? ,
...

8

?
1

?
2

?
3

?
4

?
5

?
6

?
7

? .

Note that a random cut is known to be easily implemented by humans securely
via the Hindu cut [16] (as shown in Fig. 1).
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Fig. 1. The Hindu cut

3. Turn over the first two cards (from the left).
(a) If the revealed cards are ♥ ♥ , we obtain a commitment to a ∧ b as

follows:

♥ ♥ ? ? ? ? ?
︸ ︷︷ ︸

a∧b

? .

(b) If the revealed cards are ♣ ♣ , we obtain

♣ ♣ ? ? ?
︸ ︷︷ ︸

a∧b

? ? ? .

(c) If the revealed cards are ♣ ♥ or ♥ ♣ ,turn over the third card.

i. If the three face-up cards are ♥ ♣ ♣ , we have

♥ ♣ ♣ ? ? ?
︸ ︷︷ ︸

a∧b

? ? .

ii. If the three face-up cards are ♣ ♥ ♥ , we have

♣ ♥ ♥ ? ? ? ? ?
︸ ︷︷ ︸

a∧b

.

iii. If the three face-up cards are ♣ ♥ ♣ or ♥ ♣ ♥ , turn them over
and go back to Step 2.

This is Stiglic’s AND protocol, which we denote by PSti hereinafter. A shuffling
operation called a random cut is used in Step 2 of PSti. The average number of
trials is two, because the probability that Step 3–(c)–iii occurs and we go back to
Step 2 is 1/2. As seen partially in the description of PSti, the possible operations
used in card-based protocols (not just Stiglic’s but others that have not been
described thus far) are turning-over, rearrangement, and shuffling operations,
which can be formalized as follows [8]. Below, we assume a sequence of d cards
Γ = (α1, α2, . . . , αd).

1. Turning-over operation: (turn, i)
A turn operation involves turning over the i-th card αi, as shown in Fig. 2.
The resulting sequence is (α1, . . . , αi−1, βi, αi+1, . . . , αd), where βi is obtained
by turning over αi.
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Fig. 2. Turning-over operation

2. Rearrangement operation: (perm, π)
A perm operation involves the application of a permutation π ∈ Sd (where
Sd represents the symmetric group of degree d) to the sequence, as illustrated
in Fig. 3. The resulting sequence is (απ−1(1), απ−1(2), . . . , απ−1(d)).

Fig. 3. Rearrangement operation

3. Shuffling operation: (shuffle, Π, F)
A shuffle operation involves the application of a permutation π ∈ Π chosen
from a permutation set Π ⊆ Sd according to a probability distribution F ,
as shown in Fig. 4. Note that a set Π along with a distribution F specifies a
shuffle.

Fig. 4. Shuffling operation

3 New Metrics and Execution Time of Protocols

As mentioned in Sect. 2, turn, perm, and shuffle operations are used in card-
based protocols. We need to take these operations into account to analyze the
“execution time” of protocols. In other words, the efficiency evaluation metrics
shown in Table 1, i.e., the number of required cards, the number of colors, and
the average number of trials, are insufficient to estimate the overall execution
time.
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♣♥♥♣♣♥♣♥ X00

♣♥♥♣♥♣♣♥ X01

♥♣♥♣♣♥♣♥ X10

♥♣♥♣♥♣♣♥ X11

♣♥♥♣♣♥♣♥ 1
8
X00 ♥♣♣♥♣♥♥♣ 1

8
(X01 +X10)

♥♥♣♣♥♣♥♣ 1
8
X00 ♣♣♥♣♥♥♣♥ 1

8
(X01 +X10)

♥♣♣♥♣♥♣♥ 1
8
X00 ♣♥♣♥♥♣♥♣ 1

8
(X01 +X10)

♣♣♥♣♥♣♥♥ 1
8
X00 ♥♣♥♥♣♥♣♣ 1

8
(X01 +X10)

♣♥♣♥♣♥♥♣ 1
8
X00 ♥♣♥♣♥♣♣♥ 1

8
X11

♥♣♥♣♥♥♣♣ 1
8
X00 ♣♥♣♥♣♣♥♥ 1

8
X11

♣♥♣♥♥♣♣♥ 1
8
X00 ♥♣♥♣♣♥♥♣ 1

8
X11

♥♣♥♥♣♣♥♣ 1
8
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X11
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(X01 +X10) ♥♣♣♥♥♣♥♣ 1

8
X11

♥♥♣♥♣♣♥♣ 1
8
(X01 +X10) ♣♣♥♥♣♥♣♥ 1

8
X11

♥♣♥♣♣♥♣♥ 1
8
(X01 +X10) ♣♥♥♣♥♣♥♣ 1

8
X11
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8
(X01 +X10) ♥♥♣♥♣♥♣♣ 1

8
X11
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♥♥♣♥♣♣♥♣ X01 +X10

♥♥♣♥♣♥♣♣ X11

⇒ (result, 6, 7)

♣♣♥♣♥♣♥♥ X00

♣♣♥♣♥♥♣♥ X01 +X10

♣♣♥♥♣♥♣♥ X11

⇒ (result, 4, 5)

♣♥♥♣♣♥♣♥ 1
3
X00

♣♥♣♥♣♥♥♣ 1
3
X00
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3
X00

♣♥♥♣♥♣♣♥ 1
3
(X01 +X10)

♣♥♣♣♥♣♥♥ 1
3
(X01 +X10)

♣♥♣♥♥♣♥♣ 1
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3
X11
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3
X11
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3
X11

♥♣♣♥♣♥♣♥ 1
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X00

♥♣♥♣♥♥♣♣ 1
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X00

♥♣♥♥♣♣♥♣ 1
3
X00

♥♣♥♣♣♥♣♥ 1
3
(X01 +X10)

♥♣♣♥♣♥♥♣ 1
3
(X01 +X10)

♥♣♥♥♣♥♣♣ 1
3
(X01 +X10)

♥♣♥♣♥♣♣♥ 1
3
X11

♥♣♥♣♣♥♥♣ 1
3
X11

♥♣♣♥♥♣♥♣ 1
3
X11

♣♥♣♥♣♥♥♣ 1
2
X00

♣♥♣♥♥♣♣♥ 1
2
X00

♣♥♣♣♥♣♥♥ 1
2
(X01 +X10)

♣♥♣♥♥♣♥♣ 1
2
(X01 +X10)

♣♥♣♥♣♣♥♥ 1
2
X11

♣♥♣♣♥♥♣♥ 1
2
X11

♣♥♥♣♣♥♣♥ X00

♣♥♥♣♥♣♣♥ X01 +X10

♣♥♥♣♥♣♥♣ X11

⇒ (result, 7, 8)

♥♣♣♥♣♥♣♥ X00

♥♣♣♥♣♥♥♣ X01 +X10

♥♣♣♥♥♣♥♣ X11

⇒ (result, 5, 6)

♥♣♥♣♥♥♣♣ 1
2
X00

♥♣♥♥♣♣♥♣ 1
2
X00

♥♣♥♣♣♥♣♥ 1
2
(X01 +X10)

♥♣♥♥♣♥♣♣ 1
2
(X01 +X10)

♥♣♥♣♥♣♣♥ 1
2
X11

♥♣♥♣♣♥♥♣ 1
2
X11

(turn, {1, 2})

revealed ♥♥ 1/8revealed ♣♥ 3/8revealed ♣♣ 1/8 revealed ♥♣ 3/8

(turn, {3})(turn, {3})

revealed ♣ 2/3revealed ♥ 1/3revealed ♣ 1/3revealed ♥ 2/3

(turn, {1, 2, 3})(turn, {1, 2, 3})

(shuf, randomcut)(shuf, randomcut)

(shuf, randomcut)

Fig. 5. PSti’s KWH-tree

In Sect. 3.1, we clarify all the operations that need to be considered. In
Sect. 3.2, we count the number of occurrences of each operation for every AND
protocol. In Sect. 3.3, we provide new metrics to estimate the execution time of
protocols.

3.1 Operations to Consider

In addition to the three kinds of operations, i.e., turn, perm, and shuffle, intro-
duced in Sect. 2, we define another operation, named place. The place operation
involves the addition of a card to the sequence with its face up (in order for play-
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♣♥♣♥♠♦♠♦♣♥ X00

♣♥♥♣♠♦♠♦♣♥ X01

♥♣♣♥♠♦♠♦♣♥ X10

♥♣♥♣♠♦♠♦♣♥ X11

♣♥♣♥♠♦♠♦♣♥ 1
2
X00 ♣♥♥♣♠♦♠♦♣♥ 1

2
X01

♥♣♣♥♠♦♠♦♣♥ 1
2
X10 ♥♣♥♣♠♦♠♦♣♥ 1

2
X11

♣♥♣♥♦♠♦♠♣♥ 1
2
X00 ♣♥♥♣♦♠♦♠♣♥ 1

2
X01
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X11
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X01

♠♣♦♥♦♣♥♠♣♥ 1
4
X00 ♠♣♦♥♦♥♣♠♣♥ 1

4
X01

♥♠♣♦♠♣♥♦♣♥ 1
4
X10 ♥♠♣♦♠♥♣♦♣♥ 1

4
X11

♠♣♦♥♠♣♥♦♣♥ 1
4
X10 ♠♣♦♥♠♥♣♦♣♥ 1

4
X11

♣♦♥♠♠♣♥♦♣♥ 1
4
X10 ♣♦♥♠♠♥♣♦♣♥ 1

4
X11

♦♥♠♣♠♣♥♦♣♥ 1
4
X10 ♦♥♠♣♠♥♣♦♣♥ 1

4
X11

(turn, {1, 2, 3, 4})

revealed < ♠♣♦♥ >
1/2

revealed < ♣♠♥♦ >
1/2

shuf, randomcut{5,6,7,8}
)

(perm, (2 3 6 4 7 5))

shuf, randomcut{1,2,3,4}
)

shuf, randomcut{5,6,7,8,9,10}
)

shuf, randomcut{5,6,7,8,9,10}
)

Fig. 6. The first part of PCK’s KWH-tree. The expression <♣♠♥♦> means ♣♠♥♦,
♠♥♦♣, ♥♦♣♠, or ♦♣♠♥.

ers to be able to confirm the color), as shown in Fig. 8. When actually executing
a protocol that requires additional cards, this place operation is necessary.

Therefore, altogether, the actual execution of a card-based protocol invokes
four kinds of operations: place, turn, perm, and shuffle.
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♣♥♣♣♥♣♥♣♣♥ X00

♣♥♣♣♥♥♣♣♥♣ X01

♥♣♣♥♣♣♥♣♣♥ X10

♥♣♣♥♣♥♣♣♥♣ X11

♣♥♣♥♣♣♥♣♥♣ X00

♣♥♣♣♥♣♥♣♣♥ X01

♥♣♣♥♣♥♣♣♥♣ X10

♥♣♣♣♥♥♣♣♣♥ X11

♣♥♣♥♣♣♥♣♥♣ 1
5
(X00 +X01 +X10)

♥♣♥♣♣♥♣♥♣♣ 1
5
(X00 +X01 +X10)

♣♥♣♣♥♣♥♣♣♥ 1
5
(X00 +X01 +X10)

♥♣♣♥♣♥♣♣♥♣ 1
5
(X00 +X01 +X10)

♣♣♥♣♥♣♣♥♣♥ 1
5
(X00 +X01 +X10)

♥♣♣♣♥♥♣♣♣♥ 1
5
X11

♣♣♣♥♥♣♣♣♥♥ 1
5
X11

♣♣♥♥♣♣♣♥♥♣ 1
5
X11

♣♥♥♣♣♣♥♥♣♣ 1
5
X11

♥♥♣♣♣♥♥♣♣♣ 1
5
X11

♣♥♣♥♣♣♥♣♥♣ 1
3
(X00 +X01 +X10)

♣♥♣♣♥♣♥♣♣♥ 1
3
(X00 +X01 +X10)

♣♣♥♣♥♣♣♥♣♥ 1
3
(X00 +X01 +X10)

♣♣♣♥♥♣♣♣♥♥ 1
3
X11

♣♣♥♥♣♣♣♥♥♣ 1
3
X11

♣♥♥♣♣♣♥♥♣♣ 1
3
X11

♥♣♣♥♣♥♣♣♥♣ 1
2
(X00 +X01 +X10)

♥♣♣♣♥♥♣♣♣♥ 1
2
X11

♥♣♥♣♣♥♣♥♣♣ 1
2
(X00 +X01 +X10)

♥♥♣♣♣♥♥♣♣♣ 1
2
X11

♥♣♣♥♣♥♣♣♥♣ 1
2
(X00 +X01 +X10)

♥♣♣♣♥♥♣♣♣♥ 1
2
X11

♥♣♥♣♣♥♣♥♣♣ 1
4
(X00 +X01 +X10)

♥♥♣♣♣♥♣♥♣♣ 1
4
(X00 +X01 +X10)

♥♥♣♣♣♥♥♣♣♣ 1
4
X11

♥♣♥♣♣♥♥♣♣♣ 1
4
X11

♥♣♣♥♣♥♣♣♥♣ X00 +X01 +X10

♥♣♣♣♥♥♣♣♣♥ X11

♥♣♥♣♣♥♣♥♣♣ X00 +X01 +X10

♥♣♥♣♣♥♥♣♣♣ X11

⇒ (result, 7, 8)

♥♣♣♥♣♥♣♣♣♥ X00 +X01 +X10

♥♣♣♣♥♥♣♣♥♣ X11

⇒ (result, 9, 10)

♥♥♣♣♣♥♣♥♣♣ X00 +X01 +X10

♥♥♣♣♣♥♥♣♣♣ X11

⇒ (result, 7, 8)

(turn, {1})
revealed ♥ 2/5revealed ♣ 3/5

(turn, {1})

(shuf, randomcut)

(turn, {2, 3})
revealed ♥♣ 1/4revealed ♣♥ 1/4revealed ♣♣ 1/2

(perm, (4 6 5 7) (9 10))

(shuf, randomcut)

(shuf, {2, 3}, randomcut)

(perm, (9 10))

Fig. 7. PNR’s KWH-tree

Fig. 8. Place operation: adding two cards
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3.2 Analysis of the Number of Operations in Each Protocol

In this subsection, we analyze the number of operations in each of the six existing
AND protocols shown in Table 1. To this end, we use the KWH-tree [5] developed
by Koch, Walzer, and Härtel, which is a diagram showing the state transition.

We first analyze PSti in detail. The KWH-tree of PSti is shown in Fig. 5. This
figure enables us to count all the operations appearing in PSti, as follows.

1. The number of place (adding a card) operations in PSti

The number of place operations in PSti is four, because we add four cards to
execute the protocol.

2. The number of turn (turning over a card) operations in PSti

Firstly, we execute the turn operation four times, because we need to turn
over the four added cards after checking their colors. Secondly, we require
the turn operation twice because of (turn, {1, 2}) after applying the first ran-
dom cut. At this time, the probability that ♣♣ or ♥♥ appears and the
protocol terminates is 1

8 × 2. On the other hand, the probability that the
protocol terminates by (turn, {3}) is 3

8 × 1
3 ×2. If the protocol does not termi-

nate by (turn, {3}), we have to turn over the three face-up cards and execute
(turn, {1, 2}) again after applying a random cut. Consequently, the expected
number of turn operations in PSti is

4 +
∞
∑

n=1

{

(12n − 7) × 1
4

×
(

1
2

)n−1 }

= 12.5.

3. The number of perm (rearranging a sequence of cards) operations
in PSti

We use no perm operation in PSti, and hence the number of utilizations of
the perm operation is 0.

4. The number of shuffle (shuffling a sequence of cards) operations in
PSti

As seen in the calculation for turn, the probability that PSti terminates by
(turn, {1, 2}) is 1

4 . The probability that PSti terminates by (turn, {3}) is 1
4 ,

and the probability that PSti does not terminate and gets into a loop is 1
2 .

Therefore, the expected number of shuffle operations is

∞
∑

n=1

{

n × 1
2

×
(

1
2

)n−1 }

= 2.

Thus, the numbers of place, turn, perm, and shuffle operations are 4, 12.5, 0, and
2, respectively. See the line of PSti in Table 2.

Similarly, we also create the KWH-trees of PCK (Crépeau and Kilian’s proto-
col [2]) and PNR (Niemi and Renvall’s protocol [11]), as shown in Figs. 6 and 7,
respectively; the KWH-tree of PMS (Mizuki and Sone’s protocol [10]) has been
given in some existing literatures (e.g. [9]). Utilizing these KWH-trees, we are
able to count each operation in PCK, PNR, and PMS. Table 2 summarizes the
results.
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In addition, we conducted the same calculation for the two KWH proto-
cols [5]. Table 3 shows the number of operations in the protocols. These proto-
cols need shuffles which have non-uniform probability distributions, and hence,
they need special indistinguishable boxes or envelopes [12] to be implemented.
Therefore, we have judged that these two protocols are more time-consuming
than the other four protocols. Therefore, in the sequel, we focus on the four
protocols in Table 2, which we call “practical” AND protocols.

Table 2. The number of operations in the practical AND protocols

#place #turn #perm #shuffle

PCK [2] 6 21 1 8

PNR [11] 8 28 4.5 7.5

PSti [15] 4 12.5 0 2

PMS [10] 2 4 2 1

Table 3. The number of operations in the KWH protocols [5]

#place #turn #perm #shuffle

Five-card KWH [5] 1 11/3 7/6 14/3

Four-card KWH [5] 0 7 2 8

3.3 Execution Time of Protocols

Here, we present an expression for the execution time of each protocol based on
four metrics. First, we denote the execution time of place, turn, perm, and shuffle
by tplace, tturn, tperm, and tshuf , respectively. In addition, Time(P) denotes the
overall execution time of a protocol P. Then, the execution time of the protocols
in Table 2 can be easily expressed as follows.

1. Crépeau & Kilian’s protocol (PCK).
Time(PCK) = 6tplace + 21tturn + tperm + 8tshuf .

2. Niemi & Renvall’s protocol (PNR).
Time(PNR) = 8tplace + 28tturn + 4.5tperm + 7.5tshuf .

3. Stiglic’s protocol (PSti).
Time(PSti) = 4tplace + 12.5tturn + 2tshuf .

4. Mizuki & Sone’s protocol (PMS).
Time(PMS) = 2tplace + 4tturn + 2tperm + tshuf .

In the next section, we make a comparison to determine the most efficient and
practical protocol.
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4 Comparison of the Protocols

In this section, we evaluate the efficiency of the four practical AND protocols in
Table 2 and discuss which protocol is the most efficient.

4.1 Efficiency Comparison Based on the Execution Time

In this subsection, we compare the execution times of the protocols.
First, we compare each coefficient of equation shown in Sect. 3.3 or Table 2.

Obviously, we obtain the following inequalities:

Time(PSti) < Time(PCK),

Time(PSti) < Time(PNR).

Therefore, PSti is superior to PCK and PNR. Hence, it suffices to compare PSti

with PMS.
At first glance, the coefficients might give us an impression that PMS would be

better than PSti. However, we cannot immediately come to a conclusion because
Time(PMS) has 2tperm while Time(PSti) has no tperm. Therefore, we actually
measured the duration of each operation by manipulating real cards. As a result,
our measurement provides us the following relationship:

tplace = tturn and 0.1tperm < tturn.

Moreover, it is reasonable to assume that

tperm < tshuf

because the shuffling operation generally takes more time than the rearrange-
ment operation. From these findings, we have

Time(PMS) = 2tplace + 4tturn + 2tperm + tshuf
< 2tplace + 14tturn + tperm + tshuf
< 4tplace + 12.5tturn + 2tshuf = Time(PSti).

Therefore, we have Time(PMS) < Time(PSti). This implies that PMS is the
protocol with the least execution time.

4.2 Impact of the Execution Time of Shuffling

In the previous subsection, we assumed that tperm < tshuf holds. In this subsec-
tion, we further investigate how the difference between tperm and tshuf affects the
overall execution time of a protocol. To this end, we regard tshuf as a variable
and other metrics tplace, tturn, and tperm as constants. Specifically, based on our
measurement of the actual execution time, we fix

tplace = tturn = 0.8 (s), tperm = 7tturn.

Then, we vary the value tshuf from three seconds to sixty seconds; Fig. 9 shows
the result. According to this figure, PSti and PMS are considered to be more
efficient.
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Fig. 9. The total execution time of each protocol for different shuffle times

5 Conclusion

The widely-used efficiency evaluation metrics of card-based protocols do not
capture the number of operations fully, and hence, it is difficult to estimate
their execution time accurately. Therefore, we considered all kinds of possible
operations so that we have four metrics, and focused on counting the number
of operations comprehensively to estimate the execution time of protocols. Our
new criteria allows us to evaluate the efficiency of protocols. Thus, we were able
to compare the execution time of the protocols. We concluded that the Mizuki–
Sone AND protocol [10] is the most efficient and practical as an AND protocol
in terms of the execution time.

To count the number of operations, we created KWH-trees for PCK, PNR,
and PSti, as shown in Figs. 7, 6 and 5, respectively. This is the first attempt to
describe KWH-trees for these previous protocols, and we believe that Figs. 7, 6
and 5 themselves form one of the major contributions of this paper.

Our future work involves (i) applying our new criteria to the other existing
protocols (e.g. [3,14]) and (ii) clarifying the variables that affect the execution
time of a shuffle (e.g., the number of cards) and other operations.
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us to improve the presentation of the paper. This work was supported by JSPS KAK-
ENHI Grant Number JP17K00001.
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Abstract. We address a biochemical folding obstacle of “polymerase
trapping” that arises in the remarkable RNA origami tile design frame-
work of Geary, Rothemund and Andersen (Science 2014). We present
a combinatorial formulation of this obstacle, together with an optimisa-
tion procedure that yields designs minimising the risk of encountering the
corresponding topological trap in the tile folding phase. The procedure
has been embedded in an automated software pipeline, and we provide
examples of designs produced by the software, including an optimised
version of the RNA smiley-face tile proposed by Geary and Andersen
(DNA 2014).

Keywords: RNA origami · RNA tiles · RNA nanotechnology
Rational design · Cotranscriptional folding · Grid graphs
Spanning trees

1 Introduction

Following the introduction of Paul Rothemund’s DNA origami technique in
2006 [14], the research area of DNA nanotechnology [15] has made rapid progress
in the rational design of highly complex 2D and 3D DNA nanostructures and
their applications [10,12,13,16,18]. In the past few years, there has also been
increasing interest in using RNA, rather than DNA, as the fundamental construc-
tion material for similar purposes [5,7–9]. One great appeal of this alternative is
that while the production of designed DNA nanostructures typically proceeds by
a multi-stage laboratory protocol that involves synthesising the requisite nucleic
acid strands and hybridising them together in a thermally controlled process,
RNA nanostructures can in principle be produced in quantity by the natu-
ral process of polymerase transcription from a representative DNA template,
isothermally at room temperature, in vitro and eventually in vivo.

The challenge in this approach, however, is that in contrast to DNA, RNA
characteristically exists in single-stranded form, and the varied 3D conformations
of RNA molecules are the result of a given strand folding upon itself in tertiary
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structures whose formation is quite difficult to predict and control algorithmi-
cally. Nevertheless, in the emerging field of RNA nanotechnology, there have also
been several approaches to the rational design of RNA nanostructures [7,9]. For
instance, in “RNA tectonics” [1,3,17], well-characterised elementary structural
modules are linked together by connector motifs to form intricate 2D and 3D
complexes.

On the other hand, the approach of de novo algorithmic structure design,
which has been so successful in the case of DNA origami, has been less explored
in the context of RNA, most likely because of the higher complexity of RNA’s
single-stranded folding kinetics. One notable exception has been the work of
Geary, Rothemund and Andersen [5], which presents an approach to designing
2D “RNA origami tiles” by a systematic scheme of intra-structure couplings of
collinear helical stem segments by crossover and kissing-loop motifs.

Fig. 1. Cotranscriptional folding of a 2D RNA origami tile from a DNA template,
mediated by an RNA polymerase enzyme. Reprinted with permission from [4].

Geary et al. [5] also demonstrate experimentally that the designed tiles can be
folded in the laboratory both by a heat-annealing protocol from prefabricated
RNA strands, and by a cotranscriptional protocol, whereby the RNA strand
folds into its 2D conformation concurrently to being transcribed from its DNA
template by an RNA polymerase enzyme (Fig. 1).

While such cotranscriptional folding of de novo designed RNA nanostructures
is a remarkable achievement, there appear to be some challenges in extending the
methodology of [5] to bigger and more complex structures, related in particular
to risks of kinetic and topological traps in the folding process. We shall discuss
in this paper a systematic design approach that addresses one potentially signif-
icant topological obstacle which we call polymerase trapping. This involves the
cotranscriptional folding of the RNA strand proceeding in such a way that the
design’s intra-structure kissing-loop interactions block its downstream helices
from forming while the structure is still coupled to its large polymerase-DNA
template complex.

In the following, Sect. 2 discusses the basic structure of the RNA origami
tiles from [5] and introduces the polymerase trapping problem. Section 3 then
presents a more abstract view of origami tiles as renderings of 2D grid graphs,
and how minimising the risk of polymerase trapping can be formulated as a
combinatorial optimisation task in this general framework. Section 4 discusses
a branch-and-bound solution method for this task, which requires a somewhat
nontrivial search in the very large space of spanning trees of a given grid graph.
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Section 5 outlines our software pipeline that leads from a bitmap design of a
targeted 2D pattern to a secondary-structure description of an RNA strand
that would fold to render that pattern as a generalised tile, with minimal risk
of polymerase trapping.1 This Section also contains some examples of (almost)
completely trap-free designs, including a smiley-face design embedded on 14×6-
grid, similar to the one presented in article [6]. Section 6 concludes with some
general observations and further challenges.

2 RNA Tiles, Cotranscriptional Folding and Polymerase
Trapping

We start our discussion by considering the structure of the 2H-AE tile, the
simplest design from article [5]. Figure 2a presents a helix-level diagram of the
3D structure of this molecule. The 5’ end of the RNA strand, marked here with a
black dot, is located in the middle of the lower helix. From there the strand winds
towards the right end of the diagram, creates a hairpin loop (marked in red),
crosses to the upper helix, creates another hairpin loop etc. The most interesting
part of the design is the kissing-loop motif (marked in blue) in the middle of the
upper helix. This is a naturally occurring (dimerization initiation site of HIV-1
RNA) arrangement of two antiparallel RNA hairpin loops that hybridise together
trans-helically to form a very precise 180◦ coupling between their respective

(a) Helix diagram of the 2H-AE tile (b) 180◦ KL motif

(c) Strand-path diagram of the 2H-AE tile

Fig. 2. (a) A helix-level diagram of the 2H-AE RNA origami tile from [5]. (b) The
180◦ kissing loop motif used as intra-structure connector. (c) A strand-path schematic
of the tile. Figures (a) and (b) adapted with permission from [5]. (Color figure online)

1 We are currently working on the challenge of transforming the secondary-structure
descriptions to actual RNA sequences, but lab-proof sequence design is a nontrivial
task, and validating that the generated sequences really fold as intended requires
experimental work.
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hairpins: geometrically this is almost as if the helix constituting the stem of
one hairpin continued into the other, even though there is no continuity in the
strand. Figure 2b displays a slightly expanded view of this motif.

Figure 2c exhibits a more abstract strand-path diagram of the structure. Here
the vertical dotted lines indicate the intra-helical stem pairings, and the dashed
horizontal lines the trans-helical kissing-loop interactions. The 5’ end of the
strand is marked with a black dot and the 3’ end with an arrowhead.

A

A*

B B*

C

C*

D

D*

E

E*

FF*

G

G*5' 3'

(a) Strand-path diagram of a 3H-AE tile

A B C D E GA* B* D* E* C* G*

(b) Arc diagram of the 3H-AE tile

Fig. 3. (a) Strand path diagram of a 3H-AE tile. (b) A domain-level arc diagram of
the 3H-AE tile.

Let us then consider the design of a 3H-AE tile, an extension of the 2H-
AE tile with a third helical layer, and using the specific strand-path routing
outlined in Fig. 3a. One could also route the strand and arrange the kissing-loop
connections differently for the same high-level 3 × 2 tile scheme (3 horizontal
helices, 2 vertical cross-over seams), and we will return to this issue in Sect. 3.
But for now let us focus on the specific H-like design shown in Fig. 3a.

In Fig. 3a, each main domain of the strand constituting the tile is labelled
with a capital letter, and its complementary domain with the same letter fol-
lowed by an asterisk. Figure 3b presents an arc diagram that outlines the pair-
ings between these domains: the intervals between tick marks correspond to the
respective strand segments, stem domain pairings are indicated with dotted arcs
and kissing loop interactions with dashed arcs. Note that compared to the 2H-
AE tile from [5], our 3H-AE design has been simplified so that the perimeter
kissing loops (denoted by red in Fig. 2a), which are used to connect tiles to each
other in [5], have been replaced by simple nonpairing tetraloop “caps”.
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Let us then consider how a cotranscriptional folding process for the 3H-AE
tile structure presented in Fig. 3 might proceed. Instead of thinking of the RNA
strand being spooled out of the polymerase starting at the 5’ end and folding
as the appropriate base pairings become available, it may be easier to visualise
the large polymerase-DNA template complex as traversing the 5’-3’ strand route
outlined in Fig. 3a and generating the bases as it goes. Generating the A and B
strand segments is uneventful, and the RNA strand stays linear until sometime
after the A∗ segment has been generated. (In reality of course several transient
nonspecific pairings will arise during the folding process, but we are ignoring
these in this simplified discussion.) Then segment A gets paired to segment A∗,
D to D∗, the kissing loop B–B∗ closes etc.

Consider now what happens when the polymerase reaches domain C∗ which
should constitute a double-strand helix with domain C by winding strand seg-
ment C∗ around C. If kissing loop B–B∗ has already closed, the strand with
the big polymerase-DNA complex coupled to it cannot achieve this, since the
kissing-loop pairing is blocking the pathway.

This topological folding obstacle of “polymerase trapping” is briefly
addressed by Geary and Andersen in article [6] (Sect. 4.4), which discusses the
technical design principles of RNA origami tiles. However, this article does not
explain the background of this design constraint in any detail or formulate it in a
general way. (The authors kindly explained these issues in a personal discussion.)

Viewed more closely, the significance of the polymerase trapping obstacle
depends on the relative timescales of kissing loop formation and the speed of
polymerase transcription. (In a purely combinatorial sense, the problem arises
already in the 2H-AE tile design of Fig. 2a, but there the time from kissing
loop formation to the completion of the transcription is apparently so short
that the issue does not significantly affect the experimental results.) This can
be understood more clearly by considering the situation in the representative
arc diagram: in the case of the 3H-AE tile, the problem is created by the long
forward stem pairing C–C∗ that emerges from inside the kissing loop pairing B–
B∗. The longer the arc, the more time the enclosing kissing loop has to close, and
the higher the likelihood that the folding process gets trapped by this obstacle.

In Sect. 3, we formulate the goal of minimising the risk of polymerase trapping
as a design objective for tile design, and in Sect. 4 we discuss a computational
approach to optimising this objective.

3 Tiles, Grids and Spanning Trees

In this Section, we introduce a combinatorial model for designing 2D RNA
shapes, presented here for rectangular shapes and discussed in a more general
framework in Sect. 4.

In our combinatorial model, we represent an M -helix tall, (N ×u)-turn wide
rectangular shape (tile) by an M ×N grid. We assume the vertical dimension of
the target shape to be a multiple of the diameter of an RNA A-helix (∼2.3 nm)
and the horizontal dimension to be approximately a multiple u of A-helical turns
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(a) The grid model (b) An H spanning tree and tile

(c) A U spanning tree and tile (d) An E spanning tree and tile

Fig. 4. (a) 3 × 2 grid model for a 3-helix tall, ∼2-turn wide RNA rectangular shape, and
(b)–(d) three tiles derived from three different spanning trees of the grid. The tiles are
formed by routing the RNA strands around the spanning tree and bulging out kissing
hairpin loops in towards non-spanning tree edges. In (b)–(d), the thick outer paths
indicate the tiles’ strand routings, the thin internal schematics outline the spanning
trees of the grid, and the dashed horizontal lines in between the loops indicate kissing
loop interactions.

(a) Arc diagram of the U tile

(b) Arc diagram of the E tile

Fig. 5. Arc diagrams of the U and E tiles from Fig. 4. Dotted arcs indicate stem pairings
while dashed arcs show kissing loop pairings. The arc diagram in (a) reveals that the
horizontal spanning tree edge of the U tile has no cost since the corresponding long
stem pairing only crosses the kissing loops in the backward direction. Hence, the U tile
only has a trivial cost due to the second hairpins of the kissing loops. The arc diagram
in (b) shows that the E tile has a zero cost since it has no kissing loops. For clarity, the
stem pairing arcs of the perimeter stem loops have been left out in both (a) and (b).
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(∼3.2 nm), where u ≥ 1 is the minimum number of full-turns needed to imple-
ment an HIV-1 DIS type 180◦ kissing loop complex. For instance, the 3H-AE
tile sketched in Fig. 3 implements a rectangular shape derived from the 3 × 2 grid
illustrated in Fig. 4a. Correspondingly, the 2H-AE tile design by Geary et al. [5]
in Fig. 2a could be rendered from a 2× 2 grid model; the four perimeter hairpin
domains flanking the crossovers would then constitute an approximation error in
the horizontal dimension.

Having employed a grid to model a rectangular shape, we aim to render the
horizontal edges of the grid as either continuous A-helical stem domains, or as
kissing-loop complexes, and a selected set of vertical edges as crossover locations.
Note that since the vertical edges correspond to potential crossover locations,
they essentially have zero length, even though they are presented, for the sake of
clarity, with non-zero length in the schematics. The set of edges corresponding to
the helical domains and the crossover locations are selected based on a spanning
tree of the grid graph.2

Accordingly, in order to design an RNA tile corresponding to the input shape,
a spanning tree of the grid model is first computed and the single stranded RNA
strand is routed twice around this tree.3 Such a routing pairs distal segments of
the RNA strand in an antiparallel fashion on the spanning tree edges, thus mak-
ing it suitable for rendering horizontal spanning tree edges as A-helical domains
and the vertical spanning tree edges as crossovers. Next, at every non-spanning
tree horizontal edge, two hairpins are spliced into the strand routing at the
edge’s endpoints such that the hairpin loops kiss at the centre of the edge. To
ensure every crossover is flanked by helical arms, short stems capped with inac-
tive tetraloops are finally spliced to the routing at perimeter vertices, with the
tetraloops facing horizontally outward. Three different tiles derived in such a
manner from three different spanning trees of the 3× 2 grid in Fig. 4a are shown
in Figs. 4b, c and d. We refer to these three tiles as the “H”, “U” and “E” tiles
based on the resemblance of their associated spanning trees to the respective
Latin letters. (The H tile is the 3H-AE example from Sect. 2.)

After generating a tile from a spanning tree, we can linearise its strand routing
to an arc diagram and investigate it for cotranscriptional polymerase trapping.
Note that the pairings in the tile, and correspondingly the arcs in the arc dia-
gram, are determined by the strand routing; in particular, we place short arcs
corresponding to the stems of the tetraloop capped perimeter hairpins, long-
range stem arcs corresponding to the long-range A-helix stem pairings on the
spanning tree edges, and long-range kissing loop arcs corresponding to the kiss-
ing loop complexes on the non-spanning tree edges. The arc diagram of the H
tile is shown in Fig. 3b, while those of the U and E tiles are shown in Fig. 5.

Recall that cotranscriptional polymerase trapping is a risk if there is a stem-
pairing arc crossing a kissing-loop arc in the forward direction. Moreover, the
trapping is more likely if the later segment of the stem pairing (e.g. segment C∗ in

2 A spanning tree of a graph is a cycle-free subset of the graph that includes all the
vertices of the graph [2, Chap. 23].

3 This standard graph algorithm technique is discussed e.g. in [2, Sect. 35.2].
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Fig. 3b) is transcribed much later than the second hairpin loop of the kissing loop
(e.g. segment B∗ in Fig. 3b.) Hence, in case a stem pairing crosses a kissing loop
in the forward direction, we associate a cost to the stem pairing proportional to
the strand-distance between the second hairpin loop of the kissing loop and the
stem pairing’s second segment. If a stem pairing crosses multiple kissing loops,
we associate with it the maximum cost over all the kissing loops it crosses. In
this formulation, a stem pairing which does not cross any kissing-loop arc in the
forward direction will have zero cost. For instance, the central stem pairing of the
H tile (Fig. 4b) has non-zero cost because it crosses the top kissing loop in the
forward direction (cf. Fig. 3b), but the bottom stem pairing of the U tile (Fig. 4c)
has zero cost since it crosses neither kissing loop in the forward direction (cf.
Fig. 5a). Also note that the stems of tetraloop capped perimeter stem loops have
zero cost since they cross no kissing loops.

We set the cost of a tile to be the maximum over all costs of its stem pairings.
Note that since the stem of the second hairpin of every kissing loop complex (e.g.
stem D–D∗ in Fig. 3b) crosses the kissing loop (e.g. KL B–B∗ in Fig. 3b), every
tile with a kissing loop has this trivial non-zero cost. In this regard, only the
E tile (Fig. 4d) has zero polymerase trapping cost (compare its arc diagram
in Fig. 5b with the other tiles’ arc diagrams). Nevertheless, the U tile has a
cost no more than the trivial hairpin stem cost since the only long range stem
pairing, which corresponds to the horizontal spanning tree edge, has zero cost (cf.
Fig. 5a). In contrast, the H tile has non-trivial cost because the stem pairing on
the spanning tree edge crosses the upper kissing loop (cf. Fig. 3b). Even though
the U tile thus technically has slightly larger cost than the E tile, it is more likely
to stay well-formed than the E tile, due to its two-crossovers-per-row design that
limits rotational flexibility compared to the single crossovers of the E tile. Hence
our tile design scheme always imposes this constraint.

Note that the cost of a stem pairing depends on the 5’ to 3’ routing direction
since the cost definition involves the crossing of a kissing-loop arc in the forward
direction. In this regard, the main stem pairing of the U tile would have had a
non-zero cost if the routing direction was reversed. Indeed, if the transcription
direction was reversed in the arc diagram of Fig. 5a, the stem pairing would have
crossed both kissing-loop arcs in the forward direction. Furthermore note that,
given a fixed spanning tree, the cost of a routing depends also on the starting
point of the routing. For instance, starting a clockwise routing at the lowest left
vertex of the U spanning tree (Fig. 4c) would have yielded a non-trivial cost in the
resulting tile because the spanning-tree-edge stem pairing would then have had a
non-trivial cost. In particular, since the upper segment of the stem pairing would
have preceded the complementary lower segment in the linearisation to an arc
diagram, the stem-pairing arc would have crossed both kissing-loop arcs in the
forward direction. Since there are an infinite number of possible starting points,
we limit routings to only start at vertices. Given the above two considerations,
we associate with a spanning tree the minimum cost among all the possible
combinations of starting points and directions (clockwise or counterclockwise).
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4 Search Algorithm

In principle, we can develop the search for good spanning trees on arbitrary
finite connected subgraphs of the infinite rectangular grid. To model reasonable
2D RNA shapes, we however limit our attention to subgraphs corresponding
to bitmap shapes carved from the infinite grid (see Fig. 6c). In particular, we
shall consider the input to our algorithm to be a finite subgraph derived from a
finite set of connected pixels (faces) of the infinite grid; we consider two pixels
to be connected if there is a common vertex bounding both pixels. The input is
then the set of vertices and edges bounding the selected pixels. To build RNA
tiles out of such partial grids, we follow the same procedure as in the case of
rectangular shapes (cf. Sect. 3), except that in this case, every vertex in the
partial grid which only has one horizontal edge incident to it will be considered
a perimeter/boundary vertex and will be flanked with a tetraloop capped stem
loop in the missing horizontal edge (see e.g. the vertices bounding the eyes of
the smiley-face in Fig. 7).

Finding a good strand routing, i.e. one that is least likely to cause cotranscrip-
tional polymerase trapping, entails searching through a large number of possible
spanning trees of the input grid. For instance, even in the relatively small 6× 6
complete grid, the number of spanning trees is approximately 3.2 ∗ 1015 [11].

Algorithm 1. Find a spanning tree that minimises risk of polymerase trapping
Input: A grid graph G modelling a 2D shape
Output: A minimum cost spanning tree
1: best tree ← Randomly generated spanning tree of G
2: min cost ← Cost(best tree)
3: Recursive search(G,G, some vertex v of G)
4: return best tree
5:
6: procedure Recursive search(G, residual, tree)
7: if tree is a valid spanning tree of G then
8: if Cost(tree) < best cost then
9: min cost ← Cost(tree)

10: best tree ← tree
11: return
12: end if
13: end if
14: new edge ← Select from residual a random edge which is adjacent to tree but

does not create a cycle when added to tree.
15: if Cost(tree ∪ new edge) < min cost then
16: Recursive search(G, residual − new edge, tree ∪ new edge)
17: end if
18: if new edge is not a cut edge in residual then
19: Recursive search(G, residual − new edge, tree)
20: end if
21: end procedure



168 A. Mohammed et al.

To effectively manage such a large search space, we developed a search proce-
dure (Algorithm 1) that applies a branch-and-bound search on the spanning tree
space of the underlying grid graph of the given shape. The branch-and-bound
process conceptually performs an exhaustive search of all spanning trees, but
prunes the search paths based on lower bounds evaluated from partial solutions,
which in this case, correspond to trees spanning an incomplete set of vertices.

The algorithm’s branch-and-bound search tree is based on binary choices
for edges. At each step, the algorithm selects an edge and decides whether to
include or exclude this edge (Lines 15 and 18); two branches corresponding to this
decision are generated in the search tree. The choice edge is selected at random
from the list of edges adjacent to the current spanning tree, i.e. to the current
partial solution (Line 14 of Algorithm1). To bound the search tree effectively,
we use the cost of this spanning tree as the lower bound for all spanning trees
which can be extended from it in the current search path. Note that the search
process here evolves a single partial spanning tree to eventually find a tree that
spans the complete target shape. This structuring of the search tree, combined
with the bounding mechanism, makes it possible to find minimum-cost spanning
trees for large designs such as the smiley-face in Fig. 7. Alternatively, one could
have decided on arbitrary edges instead of edges adjacent to the current tree.
However, this entails growing forests of trees as partial solutions, and leads to
several difficulties in obtaining a lower-bounding function for the search process.

Efficient search through branch-and-bound search is possible because of the
monotonically increasing cost function. Recall that the cost is incurred by stem-
pairing arcs crossing kissing-loop arcs in the forward direction in the arc diagram
representing the routing. When an edge is selected to extend the tree, it only
adds a small segment to be spliced into the arc diagram of a routing around the
tree. Clearly, this can never decrease the strand-distance of the forward crossing
arcs. Therefore, adding edges to any tree can only increase the cost of the tree.
The algorithm also prevents the possibility of a vertex from not being spanned
through a connectivity check before the exclusion of an edge (lines 18–20). This
connectivity check ensures the graph does not become disconnected as the result
of an edge exclusion.

5 Design Pipeline and Examples

We have integrated our spanning tree search algorithm into a software design
pipeline for generating RNA tiles from 2D meshes. The pipeline, along with
a representative example, is presented in Fig. 6. The design process starts in
a custom 2D mesh design tool we developed, whereby the user first sets the
dimensions of the grid and henceforth selects a set of pixels constituting the
target shape. After exporting the mesh as a bitmap, the user can run a script to
generate an RNA secondary structure, including the kissing loop interactions,
in the standard dot-bracket notation.

The pipeline, as shown in Fig. 6a, consists of three modules. The first module,
framed in the “Bitmap to grid graph” box in Fig. 6a, is used to manually design
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Fig. 6. Our software pipeline for designing 2D RNA shapes.

a 2D pattern as a bitmap image and convert it to a grid graph representation in
the standard DIMACS format. For the current example, the input and output
of this module are shown in Figs. 6b and c, respectively. Note that the edges
and vertices bounding the selected pixels define the grid graph. Hence, the right
vertical edge bounding the unselected pixel is not part of the output grid graph.
The second module reads the input grid graph and searches, using Algorithm 1,
for a minimum cost spanning tree. The output spanning tree for the running
example is shown in Fig. 6d. The module outputs the spanning tree in DIMACS
format with additional comments on the starting position and direction of the
minimum cost strand routing. The final module performs a twice around the
tree traversal and generates a secondary structure in dot-bracket notation, aug-
mented with information about the kissing-loop interactions. In our example,
the resulting secondary structure is shown in Fig. 6e, where the matching square
brackets indicate the kissing-loop pairings. This module also allows one to input
secondary structure parameters and other design choices such as the number of
turns per one horizontal edge, size and structure of the perimeter caps, kissing
loop design, etc.

We demonstrate the capability of our software pipeline to produce
polymerase-untrapped designs by running it on our grid representation of the
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Fig. 7. A (near) zero cost strand routing of a smiley-face shape.

smiley-face shape from [6]. We carved the smiley-face from a 14 by 6 canvas by
deleting pixels corresponding to the two eyes, the mouth and the background.
Our algorithm produced a spanning tree and routing, as shown in Fig. 7, which
only has the trivial cost. In the figure, black vertices correspond to the input grid
graph, while grey vertices are only placed to hint at the canvas from which the
shape was carved. The fact that our pipeline found a (near) zero cost solution
illustrates the utility of our algorithmic approach for finding designs that avoid
polymerase trapping even in relatively large shapes. Nevertheless, we note, for
instance, that our supplementary two-crossover-per-row constraint is insufficient
to overcome flexibility in partial grids and further modelling is required to fully
capture other constraints of RNA design of complex shapes.

6 Conclusions and Future Work

In the framework of RNA origami tile design, we have identified the topolog-
ical folding obstacle of polymerase trapping, formulated it as a combinatorial
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problem, and designed an optimisation procedure and operational software to
minimise the risk of encountering this obstacle. The software pipeline still needs
to be extended to include sequence generation, but this involves several further
considerations that we are currently investigating.

In the process, we have observed that in fact zero-cost routings (according to
our present cost measure) are quite prevalent, and are planning another paper
on a combinatorial characterisation of those.

In the actual biochemical setting, our present cost measure and design con-
straints are certainly too simplistic, and other considerations need to be taken
into account. However the optimisation framework should be able to accommo-
date such changes quite conveniently.

Acknowledgments. We thank Ebbe Andersen and Cody Geary for introducing us
to the problem of polymerase trapping in RNA origami tile design, and their encour-
agement to proceed with the solution approach discussed in this paper.
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Abstract. Watson-Crick (WK) finite automata are working on double
stranded DNA molecule that is also called Watson-Crick tape. Subse-
quently, these automata have two reading heads, one for each strand.
While in traditional WK automata both heads read the whole input in
the same physical direction, in 5′ → 3′ WK automata the heads start
from the two extremes (say 5′ end of the strands) and read the input
in opposite direction. In sensing 5′ → 3′ WK automata the process on
the input is finished when the heads meet. Since the heads of a WK
automaton may read longer strings in a transition, in previous models a
so-called sensing parameter took care for the proper meeting of the heads
(not allowing to read the same positions of the input in the last step).
Recently a new model is investigated, which works without the sensing
parameter. In this paper, the deterministic counterpart is studied and
proved to be accept the language class 2detLIN, i.e., the same class that
is accepted by the deterministic variant of the earlier version. However,
using some of restricted variants, e.g., all-final automata, the classes of
the accepted languages are changed showing a more finer hierarchy inside
the class of linear context-free languages.

Keywords: Deterministic Watson-Crick automata
5′ → 3′ WK automata · Finite automata
Linear context-free languages · Hierarchy · Deterministic languages

1 Introduction

From the end of last century, DNA computing has appeared as a relatively new
computational paradigm [1,11]. In contrast, automata theory is from the middle
of the last century and it is one of the bases of computer science. An interesting
combination of these two fields, the theory of Watson-Crick automata (abbrevi-
ated as WK automata), was introduced in [3] as a branch of DNA computing.
They have important relations to formal language and automata theory. To read
more about these automata the book [11] and the survey [2] are recommended.
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A WK automaton works on a double-stranded tape called Watson-Crick tape
(i.e., DNA molecule), whose strands are scanned separately by read only heads.
The symbols in the corresponding cells of the double-stranded tapes are related
by (the Watson-Crick) complementarity relation. Restricted classes having either
or both restrictions on the states, e.g., all states are final, or on the transitions,
e.g., only one of the heads can read in a transition, are analysed. The relation-
ships between various classes of the Watson-Crick automata are investigated in
[3,5,11]. The two strands of a DNA molecule have opposite 5′ → 3′ orienta-
tion. Considering the reverse and the 5′ → 3′ variants, they are more realistic in
the sense, that both heads use the same biochemical direction (that is opposite
physical directions) [3,6,7]. A WK automaton is sensing if it has the informa-
tion whether the heads are at the same position. Some variants of the 5′ → 3′

Watson-Crick automaton with sensing parameter, i.e., with a feature which tells
whether the upper and the lower heads are within a fixed small distance (or meet
at the same position) are discussed in [7–9]. The heads of these automata start
from the opposite ends from the input, assuming the complementarity relation
to be bijective (as it is in the nature), the automaton already has information
about the whole input at the point where the heads meet. Consequently, the
automaton makes the decision on acceptance at that point and the process on
the input is finished. It was shown that the linear context-free languages and
some of their subclasses (e.g., the class of even linear languages) can be charac-
terised by these models. Since the heads of a WK automaton may read longer
strings in a transition, in these models the sensing parameter took care of the
proper meeting of the heads sensing if the heads are close enough to meet in the
next transition. This parameter could also be used to deny acceptance of some
strings, e.g., by not allowing to read the last letter(s) to finish the process in that
way. This idea leaded to the fact that there were no difference of the language
classes accepted by arbitrary and all-final automata. The motivation of the new
model, recently introduced in [10], is to erase the rather artificial term of sensing
parameter from the model. Here, continuing the work started there with the new
model, its deterministic counterpart is investigated. As one of the main results,
we show that the new deterministic model accepts exactly the same class of
languages, namely 2detLIN, that is accepted by the deterministic variant of the
model with sensing parameter. The class 2detLIN was investigated in [9] as a
language class obtained by a two head deterministic finite automata model, i.e.,
the class accepted by deterministic sensing 5′ → 3′ WK automata with sensing
parameter. The class of deterministic linear languages (characterised by deter-
ministic one-turn pushdown automata) and the class 2detLIN are incomparable
sets of languages. This latter is an interesting class of languages containing, e.g.,
all even linear languages. The accepted language classes of various restricted
classes and their relations are also analyzed here showing a more finer hierarchy
than the previous model has provided.
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2 Definitions, Preliminaries

We assume that the reader is familiar with the basic concepts of formal languages
and automata, otherwise she or he is referred, e.g., to [4,12]. We denote the empty
word by λ. The set of non-negative integers is denoted by N.

The two strands of the DNA molecule have opposite 5′ → 3′ orientations.
This proposes taking into account a variant of Watson-Crick finite automata
that parse two strands of a Watson-Crick tape in opposite directions. Figure 1
indicates the initial configuration of such an automaton on the left. (We note
here that the abbreviation WK fits well specially to these automata, since WK
comes from the initial of the name Watson and the last letter of the name Crick.)
The 5′ → 3′ WK automaton is sensing, if the heads sense that they meet. We
are working with models that finishes the computing process at that phase. In
Fig. 1, this moment can be seen on the right. We note that there are also models
which continuing the process and they can accept even some non-context-free
languages [9].

Fig. 1. A sensing 5′ → 3′ WK automaton in the initial configuration and in an accept-
ing configuration (with a final state q).

Here, we follow the definition and description from [10]. (Later on we will
also recall the earlier concept using sensing parameter from, e.g., [9] to show
some results connecting the two models.)

Formally, a Watson-Crick automaton is a 6-tuple M = (V, ρ,Q, q0, F, δ),
where: V is the (input) alphabet, ρ ⊆ V ×V denotes a symmetric binary relation
that is called the complementarity relation, Q represents a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final (or accepting) states and δ

is called transition mapping, it is of the form δ : Q ×
(

V ∗

V ∗

)
→ 2Q, such that it

is nonempty only for finitely many triplets (q, u, v), q ∈ Q,u, v ∈ V ∗.
In sensing 5′ → 3′ WK automata every pair of positions in the Watson-

Crick tape is read by exactly one of the heads in an accepting computation,
and therefore the complementarity relation cannot play importance, instead, for
simplicity, we assume that it is the identity relation. Thus, it is more convenient
to consider the input as a normal word instead the double stranded form. Note
here that complementarity can be excluded from the traditional models as well,
see [5] for details.
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Since δ is not empty only for a finite set of triplets, there is/are a/some
word(s) with maximal length that can be read in a transition by a given automa-
ton. Consequently, let us define the radius r of an automaton by the maximum
length of the substrings of the input that can be read by the automaton in a
transition.

Further, a configuration of a Watson-Crick automaton is a pair (q, w) where
q is the current state of the automaton and w is the part of the input word
which has not been processed (read) yet. For w′, x, y ∈ V ∗, q, q′ ∈ Q, we write a
transition between two configurations as: (q, xw′y) ⇒ (q′, w′) if and only if q′ ∈
δ(q, x, y). We denote the reflexive and transitive closure of the relation ⇒ (one
step of a computation, that is, a transition) by ⇒∗ (computation). Therefore, for
a given w ∈ V ∗, an accepting computation is a sequence of transitions (q0, w) ⇒∗

(qF , λ), starting from the initial state and ending in a final state with no input
left.

The language accepted by a WK automaton M is:

L(M) = {w ∈ V ∗|(q0, w) ⇒∗ (qF , λ), qF ∈ F}.

It was shown in [10] that the class of sensing 5′ → 3′ WK automata that we
have recalled accepts exactly the class of linear context-free languages.

The shortest nonempty word accepted by M is denoted by ws, if it is uniquely
determined. Otherwise we may use the notation ws for any of them (in case there
are more than one word with this condition).

There are some restricted variants of WK automata which are widely known:
F: all-final, i.e., with only final states: if Q = F ;
N: stateless, i.e., with only one state: if Q = F = {q0};
S: simple (at most one head moves in a step) δ : (Q× ((λ, V ∗)∪ (V ∗, λ))) → 2Q.
1: 1-limited (exactly one letter is being read in each step) δ : (Q × ((λ, V ) ∪
(V, λ))) → 2Q.

Clearly, all N WK automata are F WK automata at the same time. Also,
by definition, all 1 WK automata are, in fact, S WK automata also. However,
since the restrictions N and F are about the states, and the restrictions S and
1 are about the length of the words that can be read in a transition (step of a
computation), additional variants are also understood by using mixed constrains
such as F1, N1, FS, NS WK automata.

We start our studies by the following simple observation.
It is clear that an input with at most length r can be processed in one step,

that is, for longer inputs the automaton must make more steps of computation
before accepting them.

Now, we formally state and prove a statement about some classes of languages
accepted by restricted variants.

Lemma 1. Let M be an F1 sensing 5′ → 3′ WK automaton and let the word
w ∈ V + that is in L(M). Let |w| = n, then for each m, where 0 ≤ m ≤ n, there
is at least one word uv ∈ L(M) such that |uv| = m, w = uxv and u, x, v ∈ V ∗.
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Proof. By considering the definition of F1 sensing 5′ → 3′ WK automaton, w
can be accepted in n steps such that in each step, the automaton can read exactly
one letter. Moreover, each state is final, therefore by considering the first m steps
of the n steps, the word uv is accepted by M, where u is read by the left head
and v is read by the right head during these m steps, respectively. �	

Although this lemma is more general and works also for nondeterministic
WK automata, it will also be very helpful studying the deterministic variants.
Remember, that all N1 WK automata are also F1 WK automata at the same
type.

So far, we have not given anything about determinism. We are using the fol-
lowing definition. If at each possible configuration at most one transition step is
possible, then a WK automaton is deterministic. It means that a WK automa-
ton is deterministic if and only if ∀w ∈ V ∗ and ∀q ∈ Q there exists at most one
w′ ∈ V ∗ and q′ ∈ Q such that (q, w) ⇒ (q′, w′).

We note that for the traditional WK automata reading both strands com-
pletely, there are various definitions of determinism (allowing also to play with
the complementarity relation), but for our automata there is only one type of
determinism.

Determinism is a feature that is orthogonal to the earlier special restrictions,
thus we will study here, deterministic sensing 5′ → 3′ WK automata (without
any further restriction), deterministic sensing F 5′ → 3′ WK automata, deter-
ministic sensing N 5′ → 3′ WK automata, deterministic sensing S 5′ → 3′ WK
automata, . . . , deterministic sensing F1 5′ → 3′ WK automata, . . .

Since in this paper we are working only with deterministic sensing 5′ → 3′

WK automata, usually we abbreviate this term, and write shortly only ‘WK
automata’.

3 Results on Deterministic Sensing 5′ → 3′ WK
Automata

In this section, we consider the deterministic variants of these automata; and our
focus is to establish hierarchy results among the classes of accepted languages.

Allowing long strings to read with both heads may confuse the users to
immediately see whether an automaton, in fact, is deterministic. Therefore, we
start with a characterisation of the deterministic WK automata.

Proposition 1. The automaton is not deterministic 5′ → 3′ WK automaton
if and only if ∃q, q1, q2 ∈ Q and wL, wR, uL

1 , uL
2 , uR

1 , uR
2 ∈ V ∗ such that q1 ∈

δ(q, wLuL
1 , uR

1 wR) and q2 ∈ δ(q, wLuL
2 , uR

2 wR) where either

– |ui
1| + |ui

2| = max{|ui
1|, |ui

2|} for i ∈ {L,R} and ∃ui
j �= λ, j ∈ {1, 2}.

or
– uL

1 uR
1 uL

2 uR
2 = λ and q1 �= q2.
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The first case of the condition of the theorem allows the cases when exactly
one of the strings uL

1 , uL
2 , uR

1 , uR
2 is not empty, and cases, when exactly two of

them are nonempty, especially, when uL
1 �= λ, uR

2 �= λ and when uL
2 �= λ, uR

1 �= λ.
In the second case of the condition all four of these words are empty.

Next, we start from the smallest classes of languages showing some proper
hierarchy results in the next subsection, then some incomparability results are
shown to complete the picture among these classes of languages accepted by
restricted classes. Finally, we show that some of the restrictions are not real
restrictions, but more like normal forms. We also show that our deterministic
WK automata accepts exactly the class 2detLIN defined by the deterministic
counterpart of the model working with sensing parameter.

3.1 Proper Hierarchy Results

Now, we are focusing on the most restricted classes to obtain our first hierarchy
results.

Theorem 1. The language class that can be accepted by deterministic N1 sens-
ing 5′ → 3′ WK automata is properly included in the language class accepted by
deterministic NS sensing 5′ → 3′ WK automata.

Proof. Let us consider the language L = {(ab)n|n ∈ N}. The shortest nonempty
word of L is ws = ab and in NS sensing 5′ → 3′ WK automaton it can be
accepted by one of the transitions: (λ, ab) or (ab, λ). By Lemma 1, ws cannot be
the shortest nonempty word accepted by an N1 sensing 5′ → 3′ WK automaton.
In the other hand, the language L, as shown in Fig. 2, can be accepted by an
NS sensing 5′ → 3′ WK automaton. �	

Fig. 2. A deterministic sensing 5′ → 3′ WK automaton of type NS accepting the
language {(ab)n|n ∈ N}.

Theorem 2. The class of languages that can be accepted by deterministic NS
sensing 5′ → 3′ WK automata is properly included in the language class accepted
by deterministic N sensing 5′ → 3′ WK automata.

Proof. Let us consider the language {a2nb2n|n ∈ N}. For this language, the short-
est nonempty word ws is aabb. Let us assume that this language is accepted by
deterministic NS sensing 5′ → 3′ WK automaton. Then, ws is accepted by one
of the transitions: (aabb, λ) or (λ, aabb). However, having any of these transi-
tions the accepted language will be different from the language {a2nb2n|n ∈ N}.
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For instance, consider the transition (aabb, λ). Since the automaton has exactly
one state, this transition returns to the same state and by repeating the tran-
sition, the language {(aabb)n|n ∈ N} can be accepted which language is not a
subset of the language we have assumed the automaton accept. This reasoning
works also for the transition (λ, aabb). Hence, it is impossible to accept the con-
sidered language by deterministic NS sensing 5′ → 3′ WK automaton. What
is remained to prove is that the language L, as it is shown in Fig. 3, can be
accepted by an N sensing 5′ → 3′ WK automaton. �	

Fig. 3. A deterministic sensing 5′ → 3′ WK automaton of type N accepting the lan-
guage {a2nb2n|n ∈ N}.

The next results highlight the difference between the new model (without
sensing parameter) and the old model [9], since deterministic F1 sensing 5′ → 3′

WK automata with sensing parameter were so powerful as deterministic sensing
5′ → 3′ WK automata with sensing parameter without any additional restric-
tions. In the new model, opposite to this, we have a finer hierarchy:

Theorem 3. The language class that can be accepted by deterministic F1 sens-
ing 5′ → 3′ WK automata is properly included in the language class accepted by
deterministic FS sensing 5′ → 3′ WK automata.

Proof. Let us consider the language L = {(ab)nc2m|n ∈ N,m ∈ {0, 1}}. The
word ws of this language is ab or cc which can be accepted by (λ, ab), (ab, λ),
(cc, λ) or (λ, cc) in an FS sensing 5′ → 3′ WK automaton. According to Lemma
1, ws cannot be the shortest nonempty accepted word in any F1 sensing 5′ → 3′

WK automaton. But L can be accepted by an FS sensing 5′ → 3′ WK automaton
(see Fig. 4). �	

Fig. 4. A deterministic sensing 5′ → 3′ WK automaton of type FS accepting the
language {(ab)nc2m|n ∈ N,m ∈ {0, 1}}.
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Theorem 4. The class of languages that can be accepted by deterministic FS
sensing 5′ → 3′ WK automata is properly included in the language class of
deterministic F sensing 5′ → 3′ WK automata.

Proof. Now, we present the language L = {a2nc5qb2n|n ∈ N, q ∈ {0, 1}}. Let
us assume, contrary that L is accepted by a deterministic FS sensing 5′ → 3′

WK automaton. Let the radius of this automaton be r. Let w = a2mb2m ∈ L
with m > r

4 . Then the word w cannot be accepted by using only one of the
transitions from initial state q0, i.e., δ(q0, a2mb2m, λ) or δ(q0, λ, a2mb2m) is not
possible. Since, all states are final and every word of L have the same number
of a’s and b’s then neither prefix nor suffix of w can be accepted by a transition
from q0. This fact contradicts to our assumption, hence L cannot be accepted
by any deterministic FS sensing 5′ → 3′ WK automata. However, the language
L can be accepted by a deterministic F sensing 5′ → 3′ WK automaton (see
Fig. 5). �	

Fig. 5. A deterministic sensing 5′ → 3′ WK automaton of type F accepting the lan-
guage {a2nc5qb2n|n ∈ N, q ∈ {0, 1}}.

Theorem 5. The class of languages that can be accepted by deterministic F
sensing 5′ → 3′ WK automata is properly included in the accepted language
class of deterministic sensing 5′ → 3′ WK automata.

Proof. Consider the language L = {andbnc|n ≥ 1} that can be accepted by
a deterministic sensing 5′ → 3′ WK automaton (without restrictions) as it is
shown in Fig. 6. In the proof of Theorem 6 in [10], we showed that language L
cannot be accepted by any nondeterministic F sensing 5′ → 3′ WK automata.
Hence, there is no deterministic F sensing 5′ → 3′ WK automaton that can
accept language L and the theorem is proven. �	

Fig. 6. A deterministic sensing 5′ → 3′ WK automaton accepts the language
{andbnc|n ≥ 1}.
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Theorem 6. The class of languages accepted by deterministic N/NS/N1 sens-
ing 5′ → 3′ WK automata is properly included in the class of languages that can
be accepted by deterministic F/FS/F1 sensing 5′ → 3′ WK automata (respec-
tively).

Proof. All the three inclusions trivially hold by definition. Let us consider the
regular language a∗b∗. This language can easily be accepted even by a deter-
ministic F1 sensing 5′ → 3′ WK automaton similarly as by deterministic finite
automata using only the left head. Let the automaton have 2 states q and p,
where q is the initial. Both states are final (as we use all final automaton). Let
it be a loop transition by (a, λ) at q and a loop transition (b, λ) at p. Further let
one more transition from q to p by (b, λ). Obviously this is a deterministic F1,
and thus, also FS and F sensing 5′ → 3′ WK automaton accepting the given
language.

On the other side it can easily be shown that a∗b∗ cannot be accepted by any
deterministic N (and thus, neither NS, nor N1) sensing 5′ → 3′ WK automata.
Since both a and b is in the language, the automaton must have loop transition
by reading any of these letters. Having these transitions by using the same head
leads to accept any word of {a, b}∗ including, e.g., baba that is clearly not in the
language. Using different heads in these transitions, e.g., reading a by the left
head while the right head reads nothing and reading b with the right head while
the left head reads nothing (even accepting the desired language), however, leads
to a not deterministic automaton (by Proposition 1). �	

3.2 Incomparability Results

In this subsection we present some results concerning incomparability of some
of the analysed language classes under set theoretical inclusion.

Theorem 7. The class of languages that can be accepted by deterministic N
sensing 5′ → 3′ WK automata is incomparable with the class of languages that
can be accepted by deterministic FS and deterministic F1 sensing 5′ → 3′ WK
automata.

Proof. We present the language L = {a2nb2n|n ∈ N} that can be accepted by
deterministic N sensing 5′ → 3′ WK automaton (Fig. 3). Let us assume that
L is accepted by a deterministic FS sensing 5′ → 3′ WK automaton. Let the
radius of this automaton be r. Let w = a2mb2m ∈ L with m > r

4 . Then the word
w cannot be accepted by using only one of the transitions from initial state q0,
i.e., δ(q0, a2mb2m, λ) or δ(q0, λ, a2mb2m) is not possible. Since, all states are final
and every word of L have the same number of a’s and b’s then neither prefix
nor suffix of w can be accepted by a transition from q0. This fact contradicts to
our assumption, hence this language cannot be accepted by any deterministic
FS sensing 5′ → 3′ WK automata and obviously by F1 sensing 5′ → 3′ WK
automata. Thus, it is shown that the language class accepted by deterministic
N sensing 5′ → 3′ WK automaton is not included in the language class accepted
by deterministic FS and F1 sensing 5′ → 3′ WK automata.
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Now consider language L = {anbm|n ∈ N,m ∈ {0, 1}}. This language can
be accepted by deterministic FS and F1 sensing 5′ → 3′ WK automata (Fig. 7),
however, it is not accepted by any deterministic N sensing 5′ → 3′ WK automata
since a deterministic N sensing 5′ → 3′ WK automaton has one state. The word
b is in L. Also if a word contain a letter b, then the automaton needs a transition
(b, λ) or (λ, b) and it should appear as a loop. It means that, by using this loop, the
automaton can accept the language that contains some words with more than one
letter b which is not subset of L. Hence, the language classes accepted by determin-
istic FS and F1 sensing 5′ → 3′ WK automata are not included in the language
class accepted by deterministic N sensing 5′ → 3′ WK automaton. �	

Fig. 7. A sensing 5′ → 3′ WK automaton of type FS and F1 accepting the language
L = {anbm|n ∈ N,m ∈ {0, 1}}.

Theorem 8. The language class accepted by deterministic NS sensing 5′ → 3′

WK automata is incomparable with the language class accepted by deterministic
F1 sensing 5′ → 3′ WK automata.

Proof. The language L = {(ab)n|n ∈ N} can be accepted by deterministic NS
sensing 5′ → 3′ WK automaton as it was shown in Fig. 2. By using Lemma 1
this language cannot be accepted by any deterministic F1 sensing 5′ → 3′ WK
automata. Thus, the language class accepted by deterministic NS sensing 5′ → 3′

WK automata is not included in the language class accepted by deterministic
F1 sensing 5′ → 3′ WK automata.

Now, let us consider the language L = {anbm|n ∈ N,m ∈ {0, 1}}. This lan-
guage can be accepted by the deterministic F1 sensing 5′ → 3′ WK automaton
shown in Fig. 7. In the proof of Theorem 7, it was shown the language L cannot
be accepted by a deterministic N sensing 5′ → 3′ WK automaton. Therefore
it cannot be accepted by a deterministic NS sensing 5′ → 3′ WK automaton.
Hence the language class accepted by deterministic F1 sensing 5′ → 3′ WK
automaton is not included in the language class accepted by deterministic NS
sensing 5′ → 3′ WK automaton. �	

3.3 Some Equivalent Classes (To 2detLIN)

In this subsection first we show that the restricted version not analysed yet,
namely deterministic S and 1 WK automata accept the same class of languages
as the unrestricted deterministic WK automata. Then we recall the concept of
sensing 5′ → 3′ WK finite automata with sensing parameter. Further, as one of
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our main results we claim that the new model has the same accepting power as
the one with sensing parameter regarding their deterministic counterpart.

As we have already seen in Proposition 1 that deterministic WK-automata
may have some not obvious transitions. Consider, e.g., transitions reading pairs
of strings (aa, babab) and (aaac, bbab) in a state. It is easy to see that to divide
each of those transitions to two allowing only to read the same strings head
by head one after the other, we receive an automaton that is not deterministic
any more. Thus, we cannot use the technique which can easily be used in the
nondeterministic case, we need to work out a more careful technique. However,
with a long technical construction the following theorem can be proven.

Theorem 9. The accepted language classes of deterministic S and 1 sensing
5′ → 3′ WK finite automata are equal to the language class that can be accepted
by deterministic sensing 5′ → 3′ WK finite automata (without restrictions).

Remark 1. Notice that in deterministic sensing S, and so in deterministic sensing
1 5′ → 3′ WK automata, in each state at most one of the heads is allowed to
read. Consequently, the states can be partitioned to two subsets depending on
whether the first (left) head is allowed to move or not.

Now the concept of sensing 5′ → 3′ WK automaton with sensing parameter
is recalled from [8,9]. A 6-tuple M = (V, ρ,Q, q0, F, δs) is a sensing 5′ → 3′ WK
automaton with sensing parameter, where, V , ρ, Q, q0 and F are exactly the
same as in our model and δs is the transition mapping. It is defined using the
sensing condition in the following way:

δs :
(

Q ×
(

V ∗

V ∗

)
× D

)
→ 2Q, where the sensing distance set is defined by

D = {0, 1, . . . , r,+∞} where r is the radius of the automaton. The set D gives
the distance between two heads from 0 to r, and gives +∞, when the distance of
the two heads is more than r. On the other hand, by the set D, the automaton
controls the appropriate meeting of the heads. Some transitions are allowed or
denied depending on the actual distance of the positions of the heads (if it is
not more than r) taking care of reading only string(s) having their length not
more than the distance of the heads. In a sensing 5′ → 3′ WK automaton with

sensing parameter a configuration
(

w1

w2

)
(q, s)

(
w′

1

w′
2

)
contains the state q ∈ Q,

the sensing distance s ∈ D, where the input is
(

w1w
′
1

w2w
′
2

)
with the condition

w1w
′
1 = w2w

′
2. The part w1 has been already processed by the left head (upper

strand) and the part w′
2 has been processed by the right head (lower strand). A

transition between two configurations can be written as:(
w1

w2y

)
(q,+∞)

(
xw′

1

w′
2

)
⇒

(
w1x
w2

)
(q′, s)

(
w′

1

yw′
2

)
for w1, w2, w

′
1, w

′
2, x, y ∈ V ∗

with |w2y| − |w1| > r, q, q′ ∈ Q if and only if w1xw′
1 = w2yw′

2 and q′ ∈
δs

(
q,

(
x
y

)
,+∞

)
, further s =

{ |w2| − |w1x|, if |w2| − |w1x| ≤ r,
+∞, otherwise, and
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(
w1

w2y

)
(q, s1)

(
xw′

1

w′
2

)
⇒

(
w1x
w2

)
(q′, s)

(
w′

1

yw′
2

)
for w1, w2, w

′
1, w

′
2, x, y ∈ V ∗

with 0 ≤ |w2y| − |w1| = s1 ≤ r, and q, q′ ∈ Q if and only if w1xw′
1 = w2yw′

2 and

q′ ∈ δs

(
q,

(
x
y

)
, s1

)
, further s = |w2| − |w1x|.

A sensing 5′ → 3′ WK automaton M with sensing parameter accepts a string

w if and only if
(

λ
w

)
(q0, s0)

(
w
λ

)
⇒∗

(
w′

1

w′
1

)
(qf , 0)

(
w′′

2

w′′
2

)
for qf ∈ F where s0

is +∞ if |w| > r, otherwise |w|. The automaton M accepts the language L(M)
consisting of all such strings. The deterministic sensing 5′ → 3′ WK automata
with sensing parameter were also defined. If there is at most one transition step
allowed in each configuration, then the automaton is deterministic. The language
class that can be accepted by deterministic 5′ → 3′ WK automata with sensing
parameter is denoted by 2detLin, as these are exactly those languages that are
accepted by the deterministic counterpart of a 2-head machine model capable to
accept the linear context-free languages. It is known that 2detLin is incomparable
with the class of deterministic linear languages accepted by deterministic one-
turn pushdown automata [9].

Even we have deterministic sensing 5′ → 3′ WK automata, in this old model,
the possible transitions are depending on the distance of the heads. It is an
important difference between the models that Remark 1 does not hold for deter-
ministic sensing S, and so 1 5′ → 3′ WK automata with sensing parameter. In
any state, the transitions should be uniquely defined only for every fixed sensing
parameter. Thus, it may happen that a transition reading an a with the left
head is allowed with sensing parameter +∞, but the right head may read an
a when the sensing distance is 1 such that the automaton is still deterministic.
Thus, it is not evident at all if our weaker model (without the additional tool,
the parameter) is able to accept the same language class.

However, we can establish the following important result.

Theorem 10. The language class accepted by deterministic sensing 5′ → 3′ WK
automata without sensing parameter equals to the class of languages that can be
accepted by deterministic sensing 5′ → 3′ WK automata with sensing parameter.

Proof. By Theorem 4 in [9] and our Theorem 9, it is enough to show that the
language class accepted by deterministic 1 sensing 5′ → 3′ WK automaton
without sensing parameter equals to the to the class of languages that can be
accepted by a deterministic 1 sensing 5′ → 3′ WK automaton with sensing
parameter. It is obvious that in these latter automata the sensing parameter
set D could include only values ∞ and 1. The proof is constructive in both
directions.

Let us consider, first, the direction to show that the language class accepted
by deterministic 1 sensing 5′ → 3′ WK automaton without sensing parameter is
included in the language class accepted by deterministic 1 sensing 5′ → 3′ WK
automaton with sensing parameter.

Let A′ = (V, id,Q, q0, F, δ′) be the sensing 5′ → 3′ WK automaton
without sensing parameter. The language L(A′) can be accepted by this
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automaton. Let A = (V, id,Q, q0, F, δs) be the sensing 5′ → 3′ WK automa-
ton with sensing parameter. For each transition q′ ∈ δ′ (q, a, λ) where a ∈ V ,

let q′ ∈ δs

(
q,

(
a
λ

)
,+∞

)
be the transition in automaton sensing 5′ → 3′ WK

automaton with sensing parameter when q′ /∈ F , otherwise if q′ ∈ F then both

q′ ∈ δs

(
q,

(
a
λ

)
, 1

)
and q′ ∈ δs

(
q,

(
a
λ

)
,+∞

)
. Similarly this can be done for

transition q′ ∈ δ′ (q, λ, a). It is clear that the automaton A accepts exactly L(A′)
having essentially the same accepting computation.

Technical details of the other direction are omitted here due to the page limit.
�	

We close our results by showing how the new model is applicable to know
more about the language class 2detLIN. Note that some closure properties of
2detLIN was already established in [9]. It was shown that this family is not
closed under union, concatenation, Kleene-closure. We complement those results
by showing the closure under complementation.

Proposition 2. The language class 2detLIN is closed under the operation set
theoretic complement.

Proof. The idea of the proof is as follows. Based on a deterministic 1 5′ → 3′ WK
automaton without sensing parameter in which the transitions for each letter is
defined, one may complement the set of accepting states. �	

4 Conclusions

It was known about sensing 5′ → 3′ Watson-Crick automata that the general
nondeterministic variants (the automata without using any restrictions) of the
new model without sensing parameter and the old model with sensing parame-
ter have the same accepting power, i.e., exactly the linear context-free languages
[7,9,10] are accepted by them. In this paper we have shown that this is also true
for their deterministic counterparts, both of them characterise the class 2detLin.
This result was not straightforward, since the sensing parameter gave more free-
dom in the old model allowing different set of transitions when the heads are close
to the meeting point and when they are not. However, the original automata can
be efficiently simulated with the new model keeping it deterministic. In this way,
by our results, the class 2detLIN can be further analysed using these newer and
simpler automata without the very technical sensing parameter.

A summary of our hierarchy results is shown in Fig. 8. We note that the
deterministic hierarchy of languages investigated in this paper is very similar
to the hierarchy shown for the nondeterministic model in [10], even the classes
are different. Already nondeterministic N1 automata are more powerful than
their deterministic variants. We should also recall that, in the nondeterministic
case, it was trivial to simulate the string reading feature of the automata by
having the restriction to read exactly 1 letter in each transition. This is more
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technical in the deterministic case (Theorem 9). On the other side, the hierarchy
presented here is finer (containing 7 classes) than the hierarchy obtained by the
model with sensing parameter (containing only 4 classes including 2detLin, [9]).

Fig. 8. Hierarchy of classes of languages accepted by deterministic sensing 5′ → 3′

WK finite automata in a Hasse diagram. The language classes are accepted by various
types of deterministic sensing 5′ → 3′ WK finite automata, the types of the automata
are displayed in the figure with the abbreviations: N: stateless, F: all-final, S: simple,
1: 1-limited. The class on the top of the hierarchy is exactly the formerly known class
2detLin. The language classes for which the containment is not shown are incomparable.

Further comparisons of related language classes and properties of the lan-
guage classes defined by the new model are left to the future.
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Abstract. Many forms of programmable matter have been proposed
for various tasks. We use an abstract model of self-organizing particle
systems for programmable matter which could be used for a variety of
applications, including smart paint and coating materials for engineer-
ing or programmable cells for medical uses. Previous research using this
model has focused on shape formation and other spatial configuration
problems (e.g., coating and compression). In this work we study foun-
dational computational tasks that exceed the capabilities of the individ-
ual constant size memory of a particle, such as implementing a counter
and matrix-vector multiplication. These tasks represent new ways to use
these self-organizing systems, which, in conjunction with previous shape
and configuration work, make the systems useful for a wider variety of
tasks. They can also leverage the distributed and dynamic nature of the
self-organizing system to be more efficient and adaptable than on tradi-
tional linear computing hardware. Finally, we demonstrate applications
of similar types of computations with self-organizing systems to image
processing, with implementations of image color transformation and edge
detection algorithms.

1 Introduction

The concept of programmable matter was first defined by Toffoli and Margo-
lus as a computing medium which can be used dynamically and in arbitrary
amounts, controlled by both internal and external events [20]. Examples of pro-
grammable matter exist in nature, such as proteins closing wounds, bacteria
building colonies, and the construction of coral reefs. These examples indicate
potential applications of programmable matter, such as smart paint or coating
materials for engineering, programmable cells for medical purposes, or adaptable
and recyclable building blocks for everyday objects. These applications require
tasks for which programmable matter is uniquely capable, such as shape for-
mation and coating. However, they also require computations resembling those
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done by traditional computers to process information and make decisions. Work
so far using the geometric amoebot model for self-organizing particle systems has
focused on spatial configuration, including demonstrating efficient programmable
matter algorithms for shape formation, coating, and compression (e.g., [2,8,9]).

We introduce solutions using the amoebot model for basic computational
tasks exceeding the capabilities of a single particle, including counting or num-
ber storage, and matrix-vector multiplication. Basic constructions for computa-
tional tasks can then be used as building blocks to solve more complex problems.
Self-organizing particle systems have the potential to increase efficiency of algo-
rithms by using dynamic spatial configurations of these computational build-
ing blocks to minimize communication costs. We describe and analyze a binary
counter algorithm and a matrix-vector multiplication algorithm using the amoe-
bot model. In order to illustrate how our algorithms can be used as part of more
complex systems, we discuss concrete applications of our matrix-vector multipli-
cation approach to the image processing tasks of color transformations and edge
detection.

1.1 Amoebot Model

In the amoebot model, we represent the particle system as a subset of an infinite,
undirected graph G = (V,E), where V is the set of all possible positions a particle
can occupy, and E is the set of all possible transitions between positions in V [7].
In the geometric amoebot model we impose an underlying geometric structure
for G in the form of the equilateral triangular grid, as shown in Fig. 1(a). Each
particle occupies either a single node (i.e., it is contracted) or a pair of two
adjacent nodes (i.e., it is expanded) on the graph, and each node can be occupied
by at most one particle at any point in time, as shown in Fig. 1(b). Two distinct
particles occupying adjacent nodes are connected by a bond and we refer to such
particles as neighbors. The bonds ensure the particle system forms a connected
structure and are used for exchanging information.

Fig. 1. (a) A section of G, where nodes of G are shown as black circles; (b) five particles
on G; the underlying graph G is depicted as a gray mesh; a contracted particle is
depicted as a single black circle and an expanded particle is depicted as two black
circles connected by an edge; (c) labeling of bonds for an expanded particle and a
contracted particle.

Each particle is anonymous, meaning it has no globally unique identifier.
Particles may communicate with each neighbor by reading and writing to their



190 A. Porter and A. Richa

shared constant sized memory, which can equivalently be considered as the abil-
ity to pass a limited number of bounded-size tokens to adjacent particles.1 Par-
ticles move by asynchronously executing a series of expansions and contractions.
If a particle occupies only one node, it is contracted and can expand to an unoc-
cupied adjacent node. An expanded particle can then contract to occupy only
one of the two nodes it occupied while expanded.

We assume a compass-free model, meaning there is no global sense of orien-
tation shared by the particles, and we assume that the particles do not share any
underlying coordinate system in G. In the case of the triangular grid, each parti-
cle p fixes an arbitrary head direction, which specifies an adjacent edge ehead to
p. We assume particles have shared chirality (sense of clockwise direction) and
so they can label their ports in a consistent direction (note that in the presence
of gravity, chirality follows naturally). Ports are labeled from 0 to 5 or from 0 to
9 depending on if the particle is expanded. Possible labelings for two nodes are
shown in Fig. 1(c).

We assume an asynchronous, concurrent system of particles, where conflicts
of movement (e.g., two particles trying to expand into the same empty node loca-
tion) or shared memory (e.g., two adjacent particles trying to write concurrently
onto their shared memory) are resolved arbitrarily so that at most one of the
particles involved in the conflict “wins”. Thus we can rely on the seminal results
for the classical asynchronous model in distributed computing (see, e.g., [14])
that state that any asynchronous execution of the system, where conflicts are
resolved arbitrarily, produces an equivalent outcome as a sequence of atomic
particle activations. Hence, we can assume, without loss of generality, that at
most one particle is active at any point in time. Under this model, we define:

Definition 1. An asynchronous round is given by the elapsed time until each
particle has been activated at least once.

In our context, when a particle is activated it can perform an arbitrary bounded
amount of computation using its local memory and the shared memory of its
neighbors, and at most one movement.

1.2 Related Work

There are a number of existing solutions for programmable matter, which can be
categorized as active and passive systems. In passive systems, the computational
units have no ability to control their motion, so they move and bond only based
on their structure and environmental conditions. Passive systems include DNA
computing and tile assembly models, in which computation occurs as a result of
tiles bonding together in ways controlled by the tile attributes (see, e.g. [16,22].
Work on tile assembly considers computational problems similar to those we
study, including demonstration of a binary counter [18]. However, the specifi-
cations of those systems (passive motion, unlimited supply of tiles of any type,
etc.) differ considerably from ours. Active systems consist of computational units
1 For more details on our message sharing model, please refer to [7].
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that control their actions, motions, and communications to accomplish specific
tasks. Applications of active systems, including shape formation, coating, and
compression, have been explored using robotic implementations (see, e.g. [13]).
These applications have also been explored using abstract models (see, e.g. [5]),
including the amoebot model (see [8] and the referencestherein), which is an
active system. The amoebot system has also been used for the application of
building convex hulls [6], which requires a binary counter or similar computa-
tional primitive.

Classical algorithms for distributed matrix multiplication include Fox’s [10]
and Cannon’s [1]. These divide matrices into consecutive blocks to perform
multiplication. More recent algorithms, including the Scalable Universal Matrix
Multiplication Algorithm (SUMMA) [21] and Distribution-Independent Matrix
Multiplication Algorithm (DIMMA) [4], further reduce the number of necessary
operations. In SUMMA, the matrix is divided into rows and columns of blocks,
and values are then broadcast down columns and across rows. DIMMA improves
on this by adding pipelining to communication and taking advantage of a Least-
Common Multiple strategy to reduce computation requirements. Our simpler
algorithm for matrix-vector multiplication broadcasts values down columns of
the matrix in a way similar to how values are broadcast in SUMMA and DIMMA.

In the field of computer vision and image processing, matrix multiplication
is used to apply operators for fundamental tasks including determining gradient
(see, e.g. [19]) and measuring color invariants such as luminance [11]. Basic color
transformations operators, such as adjustments to brightness, saturation, and
hue are also often used in image editing [12].

An application of these image operators is edge detection, which is an impor-
tant problem due to its applications in feature extraction and recognition. The
edge detection algorithm introduced by Canny uses a series of steps includ-
ing smoothing, filtering, and thresholding to extract edges from an image [3].
Research has been done into how to implement this method efficiently, including
a distributed GPU implementation [15].

1.3 Our Contributions

We address the very basic and general problems of counting and matrix-vector
multiplication. We describe the image processing applications of edge detection
and color transformations, as examples of applications that can use and benefit
from our matrix-vector and matrix-matrix multiplication setup and algorithms.
We assume each instance of these problems is fed into our particle system as a
sequence of values passed through a seed particle. Results are stored distributed
across the system, and can be output by each particle individually or passed to
the seed to output the result as a data stream.

We present an algorithm for a basic binary counter using the amoebot model,
and show that it counts to a value v in O(v) asynchronous rounds. We also
present a two-part algorithm for matrix-vector multiplication using the amoebot
model. The first part of the algorithm is to self-organize particles to set up the
input matrix and vector and the resulting vector entries. The second part of
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the algorithm distributedly performs the actual multiplication (note that these
two algorithmic components run concurrently and there is no need for synchro-
nization). Let h and w denote the number of rows and columns of the matrix
(unknown to the set of particles). We show that the number of asynchronous
rounds it takes to set up the matrix and vector entries is O(hw) and the number
of rounds required for matrix-vector multiplication is O(h + w). Extending this
result by executing a sequence of matrix-vector multiplications, the number of
rounds required for matrix-matrix multiplication is O(y(h + w)) with a second
matrix of height w and width y, for a total of O(hw+y(h+w)) rounds including
setup.

As an example of an application of our approach, we describe and analyze a
simple implementation of Canny edge detection in image processing, which uti-
lizes the setup algorithm introduced for matrix-vector multiplication. We show
this implementation requires O(1) rounds to complete edge detection after the
O(hw) setup is completed (again no synchronization between these two algo-
rithmic phases is needed). Another sample application of our approach in image
processing is that of color transformation, which is setup in the same way with
O(hw) rounds and then requires O(y(h + w)) rounds for multiplication. We
also provide experimental results on actual implementations of the Canny edge
detection algorithm and the color transformation algorithm we consider.

2 Preliminaries

In each of the problems considered here, we categorized particles as being either
in the structure built for the operation or as free particles.

Definition 2. At any point during the execution of the algorithm the structure
refers to the set of particles recruited for use in some operations and assigned a
specific role and position for that operation. They are in one of the states {seed,
matrix, vector, counter, prestop, result}.
Definition 3. At any point during the execution of the algorithm, the set of free
particles consists of those particles that are not yet assigned a specific purpose.
They are in one of the states {leader, follower, inactive}.
Free particles may eventually become part of the structure or remain available
for other uses. As free particles they actively move to make themselves available
to extend the structure if needed, but may continue moving indefinitely if they
are not recruited. Particle states are defined as the corresponding algorithms are
presented in Sects. 3, 4, and 5.

Tokens are small structures (of constant size) of data which are held by
exactly one particle at a time during their existence. Tokens are treated as units
or allowed to carry a value within the constant range determined by their storage
size, depending on the algorithm. Respecting the particles’ memory constraints,
each particle holds at most a constant number of tokens at any time. Configura-
tions and schedules are defined for a set of particles and will be used to analyze
the progress of the entire system toward the final goal.
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Definition 4. A configuration of the particle system at a point in time consists
of the set of state variables Pj for each particle j, including position, current
state, and tokens held.

We use pC(t) to describe the position of token t at configuration C: If particle
j holds t in configuration C, then pC(t) = j (ownership of t is indicated in
Pj). Tokens travel through a predefined sequence of nodes, regardless of which
particles occupy those nodes during the execution of the algorithm.

Definition 5. A token path of length m is a set of particles Pk1 , Pk2 , ..., Pkm

such that Pkl
is adjacent to Pkl+1 and one or more tokens travel from Pkx

to Pky

passing through only particles in the path for some x, y with 1 ≤ x < y ≤ m.

We consider a configuration C to be valid if the system is connected (includ-
ing both the structure and free particle set) and each particle is either contracted
or expanded into adjacent positions with no single position occupied by two par-
ticles. When clear from context, we will refer to the particle j and Pj indistinctly.

In an asynchronous execution, the system progresses through a sequence of
asynchronous rounds (Definition 1). When a particle Pj is activated during an
asynchronous round, if it holds a token t it can pass t to any neighbor which has
available token capacity at the time of the current activation of Pj .

3 Binary Particle Counter Algorithm

The first computational application of the amoebot model we analyze is a binary
counter. The binary counter we describe here will also be used as a primitive for
the matrix-vector multiplication algorithm presented in Sect. 4. In this imple-
mentation, the system contains only the seed particle and a set of initially inac-
tive particles, already forming a line with the seed at the end at round 0.2

We denote the non-seed particles P0, ..., Pn−1 such that P0 is a neighbor of
the seed particle, denoted S, and labeling follows the line of particles moving
away from the seed. Each non-seed particle represents a digit of the counter,
with the particle in line closest to the seed representing the least significant bit
of the counter. Each Pj with j < n−1 receives counting tokens (treated as units)
only from Pj−1 (or S if j = 0). When Pj reaches its token capacity, here defined
as two, it discards one token and attempts to send the other, representing a
carryover, to Pj+1. The value of the system as a whole can then be calculated
using the state of each digit particle to determine the value it represents.

The seed behaves as an interface to the counter. It receives activations from
an external source to increment the counter, upon which it constructs new tokens
and sends those to P0 if there is space in the shared memory with P0. Due to
space limitations, the pseudocode describing this procedure appears in the full
arXiv paper [17].

2 If a line of particles is not readily available, one can easily build one following the
algorithm presented in [9] concurrently with the binary counting procedure – i.e.,
there is no need for synchronization of the phases.
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3.1 Runtime Analysis

All of our algorithms, presented in Sects. 3, 4, and 5, follow an asynchronous
execution. However, for the analyses of these algorithms, we considered execu-
tions according to parallel schedules, since those are easier to handle and will
provide a worst-case scenario in terms of number of rounds for asynchronous
schedules. In a parallel execution, the system progresses through a sequence of
parallel rounds.

Definition 6. During one parallel round starting with configuration C and
resulting in configuration C∗, one of the following is true for each particle p:

1. p occupies the same node(s) in C and C∗,
2. p occupies one node in C and expands to an additional adjacent node during

the round,
3. p occupies two adjacent nodes in C and contracts to a single node during the

round, leaving the other node empty in C∗, or
4. p occupies two adjacent nodes in C and contracts in a handover such that in

C∗ a different particle has expanded into one of the nodes p occupied in C.

Additionally, for each token t, let Pk be such that k = pC(t). Then at the end of
the parallel round one of the following is true:

1. pC∗(t) = pC(t),
2. if a particle Pk′ adjacent to Pk is below capacity in C, pC∗(t) = k′, or
3. if there is a token path length d (labeled as particles Pk1 , ..., Pkd

), for each
1 ≤ l ≤ d − 1 the particle Pkl

in the path has a token tl (such that t = tl for
some l) which needs to move to Pkl+1 , and Pkl

has available token capacity,
then pC∗(tl) = pC(tl) + 1 for each 1 ≤ l ≤ d − 1.

Definition 7. A movement schedule (C0, C1, ...Cf ) is a parallel schedule if each
Ci is a valid configuration and for each i ≥ 0, Ci+1 is reached from Ci in exactly
one parallel round.

In asynchronous execution, the system progresses through a sequence of particle
activations, meaning only one particle is active at a time. When activated, a
particle can perform an arbitrary bounded amount of computation (including
passing tokens) and make at most one movement. An asynchronous round is
the elapsed time until each particle has been activated at least once. When a
particle P is activated, if it holds a token t it can pass t to any neighbor which
has available token capacity at the time of the current activation of P .

Definition 8. A movement schedule (C0, C1, ...Cf ) is an asynchronous schedule
if each Ci is a valid configuration and for each i ≥ 0, Ci+1 is reached from Ci

by execution of one asynchronous round.

We now provide a brief, high-level sketch of the proof that shows that a
counter with n particles can count to v (where v ≤ 2n −1) in Θ(v) asynchronous
rounds (the proofs and more details can be found in our full arXiv paper [17]).



Collaborative Computation in Self-organizing Particle Systems 195

Lemma 1. For any asynchronous particle activation sequence A, there exists
a parallel schedule P such that the number of asynchronous rounds needed by
the binary counter algorithm according to A is at most equal to the number of
parallel rounds required by the algorithm following P.

We can then count the total number of bit flips that occur in the counter to
get the result:

Lemma 2. The parallel binary counter algorithm counts to the value v in O(v)
parallel rounds.

Combining these two results, we get:

Theorem 1. The asynchronous binary counter counts to the value v in Θ(v)
asynchronous rounds.

4 Particle Matrix Multiplication Algorithm

The next computational problem we solve using the amoebot model is matrix-
vector multiplication. As before, the seed acts as a source of external input into
the system. We suppose the system is initially unaware of the dimensions or
values of the matrix and vector to be multiplied, so they will enter the system
through the seed particle. The stream of information entering the system from
the seed can contain values of matrix or vector entries (we assume each fits on a
single particle), end of column markers, and end of vector markers. The seed par-
ticle at no point computes the dimensions of the problem since it receives values
online in sequence from an external source. The seed then passes values, encap-
sulated in tokens, into the system as the algorithm proceeds. As these values are
passed, the system “recruits” particles to represent the different matrix, vector,
and result entries, by having the particles occupy the respective position in the
system. We describe how the necessary matrix-vector result structure is built in
Sect. 4.1. Below we give an abstract description of how the matrix-vector multi-
plication proceeds, assuming we have the necessary particles in place to perform
the respective operations.

a.) b.)

Fig. 2. (a) General matrix-vector multiplication Ax setup for h×w matrix A and w×1
vector x ; (b) general matrix-matrix multiplication AC for h× w matrix A and w × y
matrix C. Shown during final matrix-vector multiplication Acy−1.

Let A be a h × w matrix and x be a w × 1 vector for some nonzero integers
h and w. The result of the matrix vector multiplication Ax is then b, which is
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stored using a set of the binary counters described in Sect. 3. The problem is
streamed into the system in the order: values for each matrix column from top
to bottom, left to right, followed by the values of x ordered from top to bottom.
As vector values reach their final positions, vector particles also generate result
counter tokens, which are passed along to determine how many particles should
position themselves to store the results of the multiplication.

As shown in Fig. 2(a), particles assigned to represent values of x are posi-
tioned across the top of those representing matrix A, such that the line of matrix
particles directly below a vector particle is the corresponding matrix column. The
vector value is then passed down the column and used by each matrix particle it
reaches to produce an individual product. Products are then passed across the
row of matrix columns to where the set of result particles are positioned to store
the product totals.

This algorithm can also be extended to complete matrix-matrix multiplica-
tion. To multiply matrices A and C, the setup is the same as before but with
the first column of C, c0 replacing the vector x . If C has a width of y, after each
column ci is multiplied by A, for i < y, we add a new set of results particles to
store the vector bi. Thus the entire result matrix B can be stored as series of
vectors b0, b1, ..., by−1, as shown in Fig. 2(b).

The matrix, vector, and result particles do not know their indices relative to
the whole system but can orient themselves such that they know which direction
is across the matrix row and which direction is down the matrix column. To
multiply a matrix by multiple vectors in a stream, this setup only needs to be
executed once. If a finished notification is sent to the seed after each matrix-
vector multiplication completes, an additional vector can be used without any
changes to the matrix.

4.1 The Algorithm

We refine the notation of a configuration from Sect. 2 to specify the particles’
functions in the final system. Let Ci = (M0,0,M0,1...M0,w−1,M1,0...Mh−1,w−1,
R0,0, R0,1, ..., R0,w′ , ...R1,0...Rh,w′ , V0, V1...Vw−1) be the configuration at round
i where Mu,v is the configuration of the particle which will eventually be the
matrix particle at position (u, v), Ru,q will be a result particle at position (u, q) in
the results matrix, and Vv is the vector particle at index v in vector x . Let c be the
token capacity of matrix, vector and result particles, and let m be the maximum
value of a matrix or vector entry. We then use w′ to denote the number of columns
of results particles constructed, so 0 ≤ u < h, 0 ≤ v < w, and 0 ≤ q < w′.
Enough result columns are constructed to hold the maximum possible number
of tokens generated, so w′ = �logc(m2w)�. Finally, we denote the minimum
number of particles necessary to complete setup as n′, so n′ = hw+w+hw′. Since
particles are given tasks on a first-come, first-serve basis, particles that remain
free particles throughout execution do not have any effect on the correctness of
the system.

Particles are categorized in configurations based on their final location, but
are all initially free particles (except for the seed particle). At the start of exe-
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cution, the spanning forest algorithm in [9] is used to organize the connected
system of free particles into trees rooted on the seed particle (for completeness,
we present the full spanning forest algorithm in [17] as well). Free particles adja-
cent to the seed are called leaders and all other free particles are followers, so
each leader is the root of a tree of followers. Leader particles move along the sur-
face of the structure (initially consisting of just the seed particle) until they are
assigned a role and position in the structure. As leader particles move, they pull
along their attached trees of follower particles. When follower particles become
adjacent to the structure, they also become leaders and begin moving along the
surface.

Flags are set from the seed, vector, and matrix particles to point to where a
new particle needs to be added to the structure. As a free particle moves along
the surface, it will stop and become part of the structure when one of these flags
points to it. Result particles are similarly recruited by setting flags to point to
where a particle may be needed based on the maximum possible values of the
matrix and vector, but result particles have the option to leave the structure
after multiplication has completed if they are not needed to represent the result.

Tokens travel in a predetermined direction in the set of matrix, vector, and
result particles. For clarity, we extend the range of the position function p(t) for
token t to be ordered pairs representing position in a two-dimensional arrange-
ment of system particles. Input matrix and vector entries are bounded such that
an individual token can carry an input vector or matrix value.

Figure 3(a) conceptually shows a system in the process of executing the setup
algorithm. Note that any notions of “up/down” and “left/right” are relative to
the orientation passed to the system from the seed particle, and do not assume
any absolute orientation of the system. At the depicted point in time, each of
the matrix values m0,0,m1,0... mh,0,m0,1, ....mu−4,v has been streamed into the
system through the seed, and assigned to a corresponding particle. For example,
the value m0,0 is assigned to particle M0,0 at the upper left corner of the matrix.
Additional matrix tokens (squares labeled t) hold the next three matrix values
to be assigned positions.

The next value to be assigned to a token, mu,v is shown at the head of the
stream of values entering the seed particle. A token holding mu,v will follow
the same path as the other tokens depicted, across the row of vector particles
(V0, ...Vv) to the furthest particle, Vv, that has been recruited so far, and then
down the corresponding matrix column. The most recently added matrix par-
ticle, Mu−4,v, will be responsible for recruiting a new matrix particle from the
set of free particles (not shown) to be Mu−3,v and hold the value mu−3,v. This
process will continue until the last column is completed.

The last part of the value stream, shown in the left half of the stream enter-
ing the seed in Fig. 3(a), is the set of vector values. Vector values are assigned
to the first vector particle they reach which does not yet have a value. As each
vector value is assigned, a result counter token (treated as a unit) is gener-
ated and passed down the vector away from the seed. In Fig. 3(b) these are
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a.)

b.)

Fig. 3. Diagram of system setup and notation used. Shapes labeled Vv,Mu,v, or Ru,q

are particles and small squares/circles labeled t are tokens. In (a) the square tokens
hold the matrix values mu−3,v, mu−2,v, and mu−1,v while in (b) the circular tokens are
unit tokens without values. Free particles are not shown.

the circular tokens which are passed from Vw−1 to R0,0 such that R0,0, R1,0, ...
acts as a counter. When the farthest vector particle receives or generates result
counter tokens it begins to recruit particles to start forming the result segment
of the structure. When using multiple matrix-vector multiplications to perform
a matrix-matrix multiplication, the existing result particles at the end of each
matrix-vector product stop performing operations other than passing tokens.
Then new sets of result particles are recruited for each matrix-vector multi-
plication in the sequence. Note that all phases of the algorithm are running
concurrently, and there is no synchronization between phases. In order to prove
the correctness and runtime of our algorithm, we will show that the different
phases of our algorithm eventually correctly terminate in order.

Once the first end of vector marker, f0, is received by the seed, setup will
be completed and the multiplication can be executed, as summarized by the
following steps:

1. each vector particle Vu passes its value vu in a token to matrix particle Mu,0,
2. each matrix particle Mu,v with value mu,v computes the product mu,v · vu,
3. Mu,v passes the vector value vu to Mu+1,v (if Mu+1,v exists) so the vector

value continues to move down the column,
4. Mu,v passes a total of mu,v · vu result counter tokens to Mu,v+1 (or Ru,0 if

Mu,v+1 does not exist), i.e. to the right across the row, and
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5. each result particle Ru,v accepts result counter tokens until at capacity, and
then clears its counter and passes a carry over token to Ru+1,v (executing the
binary counter algorithm relative to its row of result particles).

Once multiplication has completed, the excess particles recruited to be result
particles can be released back to being free, so that the final system configuration
is minimal. Detailed pseudocode descriptions of the algorithms can be found
in [17].

4.2 Correctness and Runtime Analysis

Similarly to the binary counter case, in order to show bounds on the runtime of the
matrix multiplication system, we show bounds for a parallel schedule (Definition 7)
and show that such a parallel schedule is dominated by the asynchronous schedule.
For comparisons of progress in a system, we look at how close particles and tokens
are to their final position nodes of the graph G. We give a high-level sketch of the
proof here; please see [17] for the full proof.

Each matrix value token’s final position is at the particle in the input matrix
structure corresponding to the value. Each vector value token’s final position is at
the bottom matrix particle in the column under the vector particle corresponding
to their value. Each product token’s final position is in the counter representing
the value of the result vector corresponding to the matrix row in which the
product token originated. By comparing progress of tokens and particles toward
their final destinations, we show:

Lemma 3. For any asynchronous particle activation sequence A, there exists
a parallel schedule P such that the number of asynchronous rounds needed by
the matrix-vector multiplication algorithm according to A is at most equal to the
number of parallel rounds required by the algorithm following P.

We first consider the setup phase, which includes particles moving into the struc-
ture configuration of matrix, vector, and result particles and the passing of
tokens corresponding to inputted matrix and vector values. To show that sys-
tem setup completes in O(n′) parallel rounds, we first show that our modified
spanning tree primitive supplies particles to construction as necessary, so that:

Lemma 4. Each matrix and result particle column takes O(h) rounds to fill
with particles in the parallel execution.

Since w + w′ = O(w) columns need to be filled, we get:

Lemma 5. The parallel matrix system setup completes in O(n′) rounds.

Lemma 5, together with Lemma 3, implies:

Theorem 2. The streaming matrix system setup completes in Θ(n′) rounds.

We next consider the actual matrix-vector multiplication process. Multipli-
cation is initiated by each vector particle sending a token representing the value
corresponding to its position down the column of the matrix, such that it is
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seen by the matrix particle at each position which directly multiplies with that
vector value. The amount of computation for the multiplication step is bounded
by the time for tokens to travel down matrix columns and across matrix and
result rows, so we have:

Lemma 6. The parallel matrix-vector multiplier completes in O(h+w) rounds.

Theorem 3. The asynchronous matrix-vector multiplier completes calculations
in Θ(h + w) rounds.

We can extend the result of Theorem 3 for matrix-matrix multiplications,
namely:

Theorem 4. The asynchronous matrix-matrix multiplier for matrices of dimen-
sions h × w and w × y completes calculations in Θ(y(h + w)) rounds.

5 Image Processing Applications

Both the setup and multiplication steps of the matrix-vector multiplication algo-
rithm can be used in image processing applications. Individual particles can be
assigned to store individual pixels or small grids of pixels of an image, and their
proximity to particles holding the corresponding adjacent pixels makes a number
of localized image processing algorithms highly efficient.

We first discuss using the amoebot model to execute the Canny edge detection
algorithm on a single channel image, meaning with a single scalar value for each
pixel. Pixel values are streamed into the system as matrix values and a grid is
established in the same way as in matrix-vector multiplication setup (Sect. 4.1),
but without the requirement of result particles. Thus matrix particles store the
image and can independently start to execute the algorithm as soon as they
receive a value. The Canny edge detection algorithm includes local comparisons
between pixel values and a matrix convolution operation to identify pixels most
likely to be on the edges (see [17] for the full algorithm). Since these operations
do not require information to travel between particles further than a constant
distance, we have that:

Theorem 5. Edge detection will complete in constant time after image setup.

We next discuss how to use the amoebot model to execute image color trans-
formations that use matrix-matrix multiplications. In this application, the input
matrix has a row corresponding to each pixel of the original image and three
columns corresponding to red, green, and blue. The transformation matrix is
then streamed into the system as a sequence of vectors, each of which is mul-
tiplied by the matrix. The values in the transformation matrix determine the
operation, such as filtering or saturation changes.
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6 Simulation Results

As expected, Fig. 4(a) shows that the number of rounds required for the binary
counter to reach a value v increases linearly with v. The results shown are each
for a set of 10 particles arranged in a line before the system begins to execute.
Value counted is the number of distinct counter tokens fed into the system by
the seed particle.

For matrix-vector multiplication, the experiments in Fig. 4(b) show an
approximately linear increase in the number of rounds for system setup and exe-
cution as the number of particles for the matrix-vector structure, n′, increases.

In Fig. 4(c) we show two examples of edge detection on small images. The
implementation discards an outer boundary at each step rather than using an
inference method to fill in nonexistent values around edge pixels, so the images
are padded with borders of zero-value pixels before inputted into the system.
Results of edge detection are shown for a simple 10 × 10 shape and a more
complex 16 × 16 image of a coin.

Figure 4(d) shows the results of color transformations by multiplying an
image matrix by a 3 × 3 operator. The upper right example shows increased
saturation, the bottom left shows conversion to grayscale, and the lower right
shows color filtering.

Fig. 4. (a) Asynchronous rounds per value of v counted in the binary counter; (b) asyn-
chronous rounds per vector dimension in matrix-vector multiplication; (c) edge detec-
tion results (using red component of RGB); (d) color transformation results. (Color
figure online)

7 Discussion

We have described basic computational algorithms that can be used in much
larger computing applications, such as image processing tasks or building convex
hulls [6]. Due to the limitations of the system receiving input through a seed
particle, the binary counter requires Θ(v) asynchronous rounds to count to a
value of v. The setup of the matrix-vector multiplication system is similarly
limited by the input and time to assemble the structure of particles, so it requires
Θ(n′) rounds to setup the n′ particles used to represent the matrix, vector,
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and the vector of the product. However, the actual matrix-vector multiplication
operations benefit from the parallelism of the system and each matrix-vector
multiplication requires only Θ(h + w) asynchronous rounds (recall that h is
the matrix height and w is the matrix width). This is especially beneficial for
a matrix-matrix multiplication which requires only one execution of the setup
algorithm (excluding the setup of additional results particles) to multiply an
input matrix by each column of the other input matrix.
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Abstract. Natural systems often exhibit chaotic behavior in their
space-time evolution. Systems transiting between chaos and order mani-
fest a potential to compute, as shown with cellular automata and artificial
neural networks. We demonstrate that swarms optimisation algorithms
also exhibit transitions from chaos, analogous to motion of gas molecules,
when particles explore solution space disorderly, to order, when particles
follow a leader, similar to molecules propagating along diffusion gradients
in liquid solutions of reagents. We analyse these ‘phase-like’ transitions in
swarm optimization algorithms using recurrence quantification analysis
and Lempel-Ziv complexity estimation. We demonstrate that converging
and non-converging iterations of the optimization algorithms are statis-
tically different in a view of applied chaos, complexity and predictability
estimating indicators.

Keywords: Chaos · Recurrence · Complexity · Swarm · Convergence

1 Introduction

Natural systems not rarely undergo phase transition when performing a com-
putation (as interpreted by humans), e.g. reaction-diffusion chemical systems
produce a solid precipitate representing geometrical structures [10], slime mould
transits from a disorderly network of ‘random scouting’ to a prolonger filaments
of protoplasmic tube connecting source of nutrients [2], ‘hot ice’ computer crys-
tallizes [1]. Computation at the phase transition between chaos and order was
firstly studied by Crutchfield and Young [12], who proposed measures of com-
plexity characterising the transition. The ideas were applied to cellular automata
by Langton [19]: a computation at the edge of chaos occurs due to gliders. Phase
transitions were also demonstrated for a genetic algorithm which fall into a
chaotic regime for some initial conditions [24,31] and network traffic models [25].
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Algorithmic models of evolutionary based optimization, AI and ALife possess
comparable features of the systems with a higher complexity, they simulate [14,
36]. We focus on the behavioral modes: the presence of a random or pseudo-
random cycling (analogous to gaseous phase state), ordered or a stable states
(analogous to solid state), or the chaotic oscillations (transitive states). Each
of the modes could imply different level of a computational complexity or an
algorithm performance as it was revealed on different algorithms [6,7,15]. By
detecting such modes we can control and dynamically tune performance of the
computational systems.

A swarm-like behavior has been extensively examined in studies of Zelinka
et al. [35] where the changing dynamics of an observed algorithm was modeled
by a network structure. The relevance between network features and algorithm
behavior supported the control mechanism that was able to increase the algo-
rithm performance [30]. An extensive empirical review of existing swarm based
algorithms has been brought by Schut [28] where approaches like collective intelli-
gence, self-organization, complex adaptive systems, multi-agent systems, swarm
intelligence were empirically examined and confronted with their real models
which reflected several criteria for development and verification.

We aim to evaluate the dynamics of optimization algorithms, inspired by
evolution and swarm-like behavior. We evaluate the dynamical modes of algo-
rithms based on predictability, complexity and chaos features. At the end, we
statistically examine the difference between estimated modes, they possessed. In
case of successful detection of statistically different modes and their transitions
during the optimization process, the edge of chaos may be examined as well as
controlling tools may be designed. Having these tools may increase the ability
to control the optimization process being on maximal convergence level.

2 Theoretical Background

2.1 Swarm Based Optimization

The optimization algorithms examined in our study are representatives of bio-
inspired single-objective optimization algorithms. They iteratively maintain the
population of candidates migrating through the searched space. Their current
position represents the solution vector X of the optimized problem.

Particle Swarm Optimization implies that the combined particle’s aim
towards the global leader and its previous best position [17]. The composition of
these two stochastically altered directions modifies its current position in order
to find a better optimum of the given function. Several reviewing studies are
available as extensive descriptions of the algorithm and they are also surveying
proposed extensions and variations [4,13].

Differential Evolution (DE) was developed by Storn and Price [29] and it pos-
sesses the features of a self-organizing search as well as an evolutionary based
optimization. This interconnection is deserved due to its three main stages. DE
offers several strategies driving the computation of new positions for its candi-
dates. One of them takes three random candidates to calculate an intermediate
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candidate which creates a new position by binary crossover with an optimized
candidate xi. It takes this new position only if it is better than the current one.

Self-organizing migrating algorithm (SOMA) is a stochastic evolutionary
algorithm was proposed by Zelinka [34]. Ideologically, this algorithms stands
right between purely swarm optimization driven PSO and evolutionary-like DE.
The entire nature of migrating individuals across the search-space is represented
by steps in the defined path length and a stochastic nature of a perturbation
parameter that represents specific version of the mutation. The perturbation
creates binary vector by the adjusted PRT parameter and the given formula

vprt
j =

{
1, if rj < PRT

0, otherwise
, (j = 1, 2, · · · , d) (1)

Applying V prt, the path is perturbed towards new solution using current
particle’s and leaders position.

xt+1
i = xt

i + (xt
L − xt

i)v
prt
i (2)

During each migration loop, each particle performs n steps according to the
adjusted step size and the path length. If the path length is higher than one,
particle will travel longer distance, than is his distance towards the leader.

2.2 Lemplel-Ziv Complexity

According to the Kolmogorov’s definition of complexity, the complexity of an
examined sequence X is the size of a smallest binary program that produces
such sequence [11]. Because this definition is way too general and any direct
computation is not guaranteed within the finite time [11], approximative tech-
niques are frequently employed.

Lempel and Ziv designed a complexity estimation in a sense of Kolmogorov’s
definition, but limiting the estimated program only to two operations: recursive
copy and paste [21]. The entire sequence based on an alphabet ℵ is split into a
set of unique words of unequal lengths, which is called a vocabulary. The approx-
imated binary program making use of copy and paste operations on the vocab-
ulary, is able to reconstruct the entire sequence. Based on the size of vocabulary
(c(X)), the complexity is estimated as CLZ(X) = c(X)(logkc(X) + 1) · N−1,
where k means the size of the alphabet and N is the length of the input
sequence. A natural extension for multi-dimensional LZ complexity was pro-
posed in [37]. In case of a set of l symbolic sequences Xi(i = 1, · · · , l), Lempel
and Ziv’s definitions remain valid if one extends the alphabet from scalar val-
ues xk to l-tuples elements (x1

k, · · · , xl
k). The joined-LZC is than calculated as

CLZ(X1, · · · ,X l) = c(X1, · · · ,X l)(logk2c(X1, · · · ,X l) + 1) · N−1.

2.3 Recurrence Quantification Analysis

The recurrence plot (RP) is the visualization of the recurrence matrix of
m-dimensional system states x ∈ R

m [23]. The closeness of these states for
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a given trajectory x i (i = 1, 2, ..., N) where N is the trajectory length, is thresh-
olded in the Heaviside step function Θ(·) which results in the binary matrix of
recurrence Ri,j(ε) = Θ(ε−‖x i−x j‖). The Euclidean norm is the most frequently
applied distance metric ‖ · ‖ and the threshold value ε can be chosen according
to several techniques [18,23,27,32,33].

If only one-dimensional time series is given, the phase space trajectory has
to be reconstructed from the time series {ui}N

i=1, e.g., by using the time-delay
embedding x i = (ui, ui+τ , ..., ui+(m−1)τ ), where m is the embedding dimension
and τ is the embedding delay [26]. The parameters m and τ may be found using
methods based on false nearest neighbors and auto-correlation [16].

The RQA measures applied in this experiment describe the predictability and
level of chaos in the observed system. Determinism is defined as the percentage
of points that form diagonal lines (Eq. 3)

DET =
N∑

l=2

lP (l)

[
N∑

l=1

lP (l)

]−1

(3)

where P (l) is the histogram of the lengths l of the diagonal lines [23]. Its values,
ranging between zero and one, estimate the predictability of the system.

Divergence is related to the sum of the positive Lyapunov exponents, natu-
rally computing the amount of chaos in the system, and it is defined as follows

DIV = L−1
max, Lmax = max({li; i = 1, · · · , Nl}) (4)

where Lmax is the longest diagonal line in the RP (excluding the main diagonal
line) [23].

3 Experiment Design

Data Preparation. All three examined algorithms attempted to optimize one
common fitness-function, the Rastrigin function, because of its frequent appli-
cation with similar manners and its dimensional scalability that satisfies our

testing purposes: f(x) = A · n +
n∑

i=1

(x2
i − A · cos(2πxi)), where A = 10 and

xi ∈ [−5.12, 5.12]. The function has a global minimum at x = 0 where f(x) = 0.
The adjustment of the optimization algorithms was tuned by random search

hyper-parameter optimization [5] in order to find the optimal adjustment to
perform the best possible convergence. The only fixed hyper-parameters were
the dimension of the optimized function (it also affected the dimension of the
particles, D = 10) and the population size of the algorithm (NP = 40, 60, 100- it
varied in order to see the affect of population size on the appearing dynamics).
The rest of the hyper-parameters were optimized in the ranges according to
Table 1.

The behavior of the optimization algorithms is represented by the posi-
tions (Xt1 = {xt1,1, xt1,2, · · · , xt1,D}) taken by their population members (P =
p1, p2, · · · , pN ) during their migrations/iterations (p1 = Xt1,1,Xt2,1, · · · ,Xtm,1).
All of them are stored for the further examination. The time windows w of
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iterations are taken and transfered into matrices of particles positions where
columns are particle’s coordinates and rows are ordered particles by their pop-
ulation number and time.

(Pwi
= {xti,1, xti,2, · · · , xti,N , xti+1,1, xti+1,2 · · · , xti+1,N , · · · xti+w,N}).

Table 1. The value ranges of hyper-parameters of optimization algorithms to be
adjusted with their meaning.

Parameter Algorithm Meaning Value

c1 PSO global best position multiplier 〈0.5, 1.5〉
c2 PSO local best position multiplier 〈0.5, 1.5〉
w PSO inertia weight 〈0.5, 0.95〉
F DE differential weight 〈0.1, 1.0〉
Cr DE crossover probability 〈0.1, 1.0〉
prt SOMA pertubation probability 〈0.1, 1.0〉
step size SOMA size of the performed step 〈0.1, 1.0〉

Convergence. Applying the before-mentioned algorithms’ hyper-parameters, the
optimization converged towards an optimum. In case of our experiment, the
exclusive finding of a global optimum does not play such an important role
as the fact that algorithms converge towards a fixed point performing various
changes and interactions inside of their swarm. Various visualization settings
(window size, population size) were tested in order to plot the most kinds of
phase shifting behaviors. Figures, depicted as follows (Figs. 2, 3, 4), performed
visually the representatives of the most common kinds.

The changes and interactions inside of their migrating populations are not
usually visible in convergence plots, however changes during the convergence may
be estimated using recurrence plots. For this purpose, three selected windows
of algorithms’ iterations were visualized to spot the differences among them.
Figure 1 illustrates how phases of the algorithm convergences are reflected in
recurrence plots.

Complexity Estimation. The obtained matrix Pwi
served as input for a joint

Lempel-Ziv complexity (LZC) estimation and RQA. For the purpose of joint
LZC estimation, the input matrix was discretized into adjustable number of
letters nl of an alphabet by the given formula. Let pmin = min{pj |1 ≤ j ≤ w},
pmax = max{pj |1 ≤ j ≤ w} and pd = pmax − pmin then each element pj is
assigned value pj ← �nl

pj−pmin

pd
�. The joint-LZC therefore stands, in our case,

for the complexity of time ordered n dimensional tuples (populations).
In case of RQA, there is a possibility to directly use the spatial data repre-

sentation [22], therefore we did not apply the Takens’ embedding theorem and
we directly calculated the thresholded similarity matrix from our source data.
The RQA features like determinism and divergence were calculated.
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Fig. 1. Recurrence plots of the PSO (abc), DE (def), and SOMA (ghi) behavior calcu-
lated as similarities among the particles’ positions Xt grouped into the windows of pop-
ulations Pwi during their (adg) “post-initial” (10th migration), (beh) “top-converging”
(60th migration) and (cfi) “post-converging” (400th migration) phase.

Based on the obtained visualizations (Figs. 2, 3 and 4) we are able to confirm
the visible differences in cases of PSO and SOMA algorithm. These two opti-
mizations are performing similarities when the population is migrating the same
direction. Once the optimum is reached, the similarities decrease. We are not able
to confirm the same in case of DE. Due to the randomly performed crossover
and additional mutation, this algorithm seems to contain more randomness and
evolution-like behavior.
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Further examinations calculated the DET, DIV and LZC values during all of
the migrations. The statistical difference of these complexity indicators among
the converging and non-converging iterations will be examined by ANOVA to
confirm the presence of state transitions [20].

Fig. 2. Progress of the PSO algorithms executed several times with varying populations
and window sizes. Horizontal axis represents the migrations while the vertical line holds
values of average fitness-function of the population (Avg. Fit.) and obtained indicators.
(a) population size 40, window 20, (b) population size 70, window 20, (c) population
size 100, window 30, (d) population size 100, window 40

4 Results

Levels of complexity and the RQA indicators may posses different values based
on a given window size as well as the size of the population, therefore we tried
several combinations of these parameters (3 per each, therefore nine combina-
tions for each algorithm). Only each tenth value of each time set was plotted in
the charts (see Figs. 2, 3 and 4). The values of fitness-function and LZ complex-
ity were normalized into the range between 0 and 1. The determinism returns
such normalized values originally, therefore there was no need for an additional
normalization. In case of the divergence, its values were very low (×E10−3), so
it was necessary to multiply them in order to keep the similar visual scale in
charts.
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Fig. 3. Progress of the DE algorithms executed several times with varying populations
and window sizes. Horizontal axis represents the migrations while the vertical line holds
values of average fitness-function of the population (Avg. Fit.) and obtained indicators.
(a) population size 40, window 20, (b) population size 70, window 20, (c) population
size 70, window 30, (d) population size 70, window 40

Particle Swarm Optimization. The progress of PSO (Fig. 2) possess quickly
decreasing LZC as the population converges towards an optimum and looses
diversity. This behavior is expected as well as some appearing pulses in times
when population probably left a local optimum, which was also reflected by an
additional converges towards some better solution.

The progress of the population was very much predictable as it was eval-
uated by DET which possesed values close to 1 when the convergence of the
population was the highest. Once a found optimum was reached by the major-
ity of the population, DET dropped and evaluated the population’s progress as
unpredictable.

Higher values of DIV imply the presence of chaotic behavior in the system. All
of the evaluations returned only very small values of this indicator therefore the
only small amount of chaos can be confirmed. In the available visual evaluation,
the DIV appears to possess the smallest relation to the progress of the algorithm.
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Fig. 4. Progress of the SOMA algorithms executed several times with varying pop-
ulations and window sizes. Horizontal axis represents the migrations while the ver-
tical line holds values of average fitness-function of the population (Avg. Fit.) and
obtained indicators. (a) population size 40, window 20, (b) population size 40, window
30, (c) population size 40, window 40, (d) population size 100, window 20

Differential Evolution. DE performs elitism during its operation which can be
the reason of an absolute flat progress of all its indicators during last iterations.
The significant increase of LZC values in some cases remains unclear and can
be connected with situation when the population found several optimums of the
same quality and the population randomly switched among them (see Fig. 3).
The values of DET only evaluate the entire progress of DE as unpredictable
almost the same way as the DIV which marked the behavior as chaotic until the
found optimum was reached by the population and any other better solution
was found.

Self-Organizing Migration Algorithm. The progress of the SOMA algorithm has
similarities with both previous algorithms. All indicators are very flat during its
last migrations, because particles remains on their positions in cases when better
solution was not found. The pertubet following of the leader is similarly reflected
by DET as it was in case of PSO, when the behavior of the algorithm was marked
as predictable until the majority of the population reached the found optimum.
The appearance of the chaos is very low the same way as it was in previous
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cases (DIV). The LZC as well as the Fitness dropped very quickly because of
the nature of SOMA. Each particle performed multiple trials (steps as the path
length divided by the step size) and the each population’s individual migrated
towards its best trial. This is the nature of the algorithm and the reason why
it appears as the algorithm with the highest performance in the frame of our
experiments.

4.1 ANOVA Testing

The DET, DIV and LZC values were split into values obtained in different phases
of the optimization. Six groups, marked from 1 to 6, were defined by visual
estimation as follows.

– 1 as progress of PSO algorithm during its converging migrations [10, 60]
– 2 as progress of DE algorithm during its converging migrations [10, 60]
– 3 as progress of SOMA algorithm during its converging migrations [10, 60]
– 4 as progress of PSO algorithm during its non-converging migrations [300,

350]
– 5 as progress of DE algorithm during its non-converging migrations [300, 350]
– 6 as progress of SOMA algorithm during its non-converging migrations [300,

350]

The presence of statistically significant differences among the means of these
groups will confirm the state transitions. Especially we are interested whether
the groups of the same algorithms are different and in which indicators.

1 2 3 4 5 6
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0.8

1
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Fig. 5. Means with standard deviations obtained by ANOVA testing on six defined
groups of data.

ANOVA testing rejected the null hypothesis that says about similarity of the
means across the examined groups of the data (see Fig. 5). Obtained p-values are
0 for ANOVADET and ANOVADIV , and 2.657e − 94 for ANOVALZC . The per-
formed additional post-hoc analysis revealed the specific differences among the
groups according to their means and it is as follows. The means of Determinism
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results were able to differentiate the groups 1 and 3 from the rest of the groups,
while the means of second group were not significantly different from others (5,
6). The separability performance of the means of Divergence were able to sig-
nificantly exclude the groups 2 and three from the rest while the means of the
first group were similar to the fourth group. Both of them differed from the rest
significantly. In case of LZC, the groups 1 and 3 are have means significantly dif-
ferent from the rest of the groups while group 2 possesses this difference against
all of the groups.

These results mean that optimization phases are distinguishable by means
of this complexity measure. From the above mentioned differences of the means,
it is clearly visible that the convergence phases of PSO are separable by the
means of Determinism and LZC while in case of Divergence we are not able to
distinguish among them. In case of DE, its LZC and Divergence means possessed
significant differences between DEs’ convergence phases while Determinism was
not applicable for this task. And finally the case of SOMA. All of the applied
complexity criteria returned significantly different means among the SOMA con-
vergence phases, therefore they are able to be distinguished by these values.

5 Discussion

In contrast to conventional computers, natural systems never stop to function,
therefore by simply observing a physical, chemical or living computer we might
never know when its completed the task and produced result. This phenomenon
was formalized in a framework of inductive Turing machines [8] and advanced in
structural machines [9], however still there is a lack of a definite measure. Some
measures of spatio-temporal dynamics of a computing systemare necessary to infer
weather consider its current state as representing a final solution or wait longer.

In computer experiments with particle swarm optimization we found that it
is possible to detect the convergence of algorithm using RQA and LZ complex-
ity measures. The converging and non-converging iterations of the optimization
algorithms are statistically different in the view of applied chaos, complexity and
predictability estimating indicators. Typically, the degree of RQA Determinism
sharply increases, as if undergoing a phase transition, when fitness approaches
its maximum. Dynamics of LZ complexity follows, in general, the level of fitness.
These results are well in line, and somewhat complement, our previous studies
on the use of dynamics of compressibility of a system’s spatial configurations to
detect when the system completed computation [3].

Our findings may lead to the future work which is related to the estimation
of the edge of chaos in the swarm-like optimization algorithms. It may be applied
in a design of adaptive approaches aiming to control their progress in order to
sustain the best possible performance.
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