
On the Effect of Protected Entry
Servicing Policies on the Response Time

of Ada Tasks

Jorge Garrido(B) , Juan Zamorano , Alejandro Alonso ,
and Juan A. de la Puente

Sistemas de Tiempo Real e Ingenieŕıa de Servicios Telemáticos (STRAST),
Information Processing and Telecommunications Centre,

Universidad Politécnica de Madrid (UPM), Madrid, Spain
{jgarrido,jzamorano,aalonso,jpuente}@dit.upm.es

Abstract. Real-time multiprocessor systems are being used extensively
in industrial applications. Ada provides ample support for such systems,
including a complete tasking model providing time predictability, espe-
cially when restricted by the Ravenscar profile. A fundamental element
of this tasking model is inter-task communication by means of protected
objects. The definition of resource locking policies with bounded priority
inversion is a fundamental aspect of protected objects, which has received
considerable attention, with some interesting results that can be used in
multiprocessor real-time systems. However, there is another important
subject, the service policy for protected entries, that has received less
attention in the research community and is also important in order to
guarantee a predictable time behaviour. The impact of the service model
on the response time analysis of multiprocessor real-time systems is eval-
uated in the paper for the self-service model and the proxy model, and
their relation to the MSRP and the MrsP locking policies is discussed.
Extensions to response time analysis for the proxy model with both lock-
ing policies are also contributed.

Keywords: Real-time systems · Multiprocessor systems
Compiler implementation · Ada Ravenscar profile
Schedulability analysis

1 Introduction

Ada support for multiprocessors allows developers to build real-time embedded
applications with enhanced performance and full control over the execution of
applications on the available processor cores.

This work has been partially funded by the Spanish National R&D&I plan (project
M2C2, TIN2014-56158-C4-3-P).

c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 73–86, 2018.
https://doi.org/10.1007/978-3-319-92432-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_5&domain=pdf
http://orcid.org/0000-0002-8385-2721
http://orcid.org/0000-0001-5412-5691
http://orcid.org/0000-0002-1622-8996
http://orcid.org/0000-0002-7673-9835

74 J. Garrido et al.

Real-time systems require temporal properties of the tasks to be ensured by
the implementation. For hard real-time systems, task deadlines must be guaran-
teed in all cases, including the worst possible conditions. This usually requires
using scheduling methods with a predictable temporal behaviour [10], as well as
analysis methods that enable developers to verify that the temporal behaviour of
the system meets the requirements (see e.g. [7] for a comprehensive presentation
of the topic).

The Ada Real-Time Annex [1, annex D] provides a flexible priority-based
dispatching model that allows developers to use some common scheduling poli-
cies. Dynamic priorities provide additional flexibility. Dispatching domains can
be assigned to the tasks in order to specify the processor or processors on which
they may execute. The flexibility of the full Ada tasking model, however, makes
temporal analysis difficult or even impossible. The Ravenscar profile [1, D.13] was
defined in order to provide a limited tasking model that ensures that static tem-
poral analysis techniques can be applied to real-time systems. In the following,
a multiprocessor system model based on fully-partitioned fixed-priority schedul-
ing with inter-task communication based on shared protected objects (PO) will
be assumed. This model is compatible with the Ravenscar Profile, although not
necessarily limited to it.

Two important aspects of the implementation of protected objects are the
mechanisms used for servicing blocked PO entry queues, and the locking policies
that must be used for minimising the effects of priority inversion [18]. A num-
ber of multiprocessor locking protocols have been proposed [16], among which
MSRP [11] and MrsP [8] have received widest attention.

While the use of resource locking protocols, both in general Ada and the
Ravenscar profile, has been analysed in detail [12], the impact of entry queue
servicing policies on the temporal behaviour of multiprocessor real-time sys-
tems has not been discussed in detail. The aim of this paper is to contribute to
such analysis, with focus on the so-called proxy model. The contents are organ-
ised as follows: Sect. 2 describes the details of entry servicing in Ada protected
objects. Section 3 summarises the main results on real-time analysis of the MSRP
and MrsP protocols. The main contribution is the impact of service models on
response time analysis, which is discussed in Sect. 4. Finally, the conclusions of
the study and suggestions for future work are presented in Sect. 5.

2 Protected Objects in Ada

2.1 Protected Objects and Protected Operations

Protected objects are the preferred mechanism for inter-task communication in
Ada. A protected object consists of one or more private data fields, together with
a set of operations that can be carried out on the data. Protected operations
can be of three kinds: functions, procedures, and entries, and are executed in
mutual exclusion. Only procedures and entries can change the protected data,
and therefore multiple calls to protected functions may be executed concurrently
if the implementation chooses to do so.

On the Effect of Protected Entry Servicing Policies 75

2.2 Protected Entries

Protected entries have a Boolean barrier. When a task issues a call to an entry,
the barrier is evaluated and the call is accepted if the barrier is true. Otherwise,
the calling task is suspended on a queue associated to the entry. Barriers are
reevaluated at the end of every execution of a protected procedure or entry. If
there are any pending calls on entries with open barriers, one of the calls is
selected to be serviced, i.e. removed from the queue and executed.

The service order for pending entries can be specified with a pragma Queu-
ing Policy. The default policy is FIFO. Alternatively, priority order or some other
implementation-defined policy can be defined. The default policy does not spec-
ify which entry queue is to be served first if there are more than one queue with
open barriers.

Pending queued entries take precedence over new calls trying to access the
protected object. In this way, a task that was waiting for change in the state of
the protected object can resume its execution with the guarantee that the state
has not changed again, thus avoiding possible race conditions and starvation [4].
This rule is commonly known as the “eggshell model”.

The evaluation of barriers and the execution of the entry body that is selected
to be serviced at the end of a protected operation can be executed in different
ways, as the standard does not specify which task should serve the entry. Two
possible approaches are the self-service model and the proxy model [14,17].

2.3 Self-service Model

Under this approach, when a task ends a protected operation and an entry with
an open barrier is selected for execution, the task that has called the entry (the
caller task) is resumed, and executes the entry body. This is a simple approach
that allows for parallel execution of both tasks, and may thus be preferable
for multiprocessor implementations. However, execution on monoprocessors may
be less efficient, as it requires more context switches, and may be difficult to
implement on some real-time kernels [15].

2.4 Proxy Model

An alternative approach is the proxy model [14]. In this model, the task ending
a protected operation acts as a server task that reevaluates the barriers and
executes the selected entry body on behalf of the caller task. The process is
repeated while there are pending entries with true barriers. This approach saves
context switches and simplifies the design of the run-time system, which makes
it the method of choice for implementing protected entry servicing on mono-
processors. It can also be used on multiprocessors, although the implementation
may become more complex in this case, depending on whether the caller and the
server task execute on the same or different processors [9].

76 J. Garrido et al.

2.5 Ravenscar Restrictions

The proxy model may make real-time analysis difficult with unrestricted Ada
tasking, since the number of tasks that may be waiting on entry queues may be
high, thus leading to a very long execution time for the server task. However, in
the Ravenscar profile protected objects may have at most one entry, and there
may be at most one waiting task on a closed entry. Therefore, the server task may
have to execute at most one entry body, and its execution time stays bounded,
thus making response time analysis feasible from a practical point of view.

3 Resource Sharing Protocols for Multiprocessor Systems

3.1 Resource Sharing Protocols

A fundamental issue in multiprocessor real-time systems is the definition of
resource access protocols that provide for bounded task blocking. Although other
approaches are possible [16], most of the published work has been aimed at
adapting some well-known monoprocessor methods, such as the Priority Ceiling
Protocol (PCP) [18] or the Stack Resource Policy (SRP) [2,3], to multiprocessor
systems.

The default policy for Ada is Ceiling Locking, which is based on SRP, a gener-
alisation of PCP also valid for Earliest Deadline First (EDF) scheduling. In the
following we examine in detail two multiprocessor protocols derived from SRP
that have received significant attention from the research community, namely
MSRP and MrsP.

3.2 Multiprocessor Stack Resource Policy

The Multiprocessor Stack Resource Policy (MSRP) [11] is an extension of SRP
for multiprocessors. The MSRP system model is defined by a fully partitioned
scheduling with global resources that are, in turn, not bounded to a specific pro-
cessor. In this policy, unsatisfied resource accesses are serviced in FIFO order,
and tasks spin-wait non-preemptively until access is granted. The following prop-
erties are inherited from SRP:

– A task can only be locally blocked before it starts executing.
– A task can only be locally blocked once per activation, bounded to one critical

section length.
– It can be easily implemented on a multiprocessor Ravenscar-compliant kernel

by assigning all global resources a ceiling priority equal to the highest priority
in the system.

– The access cost to a shared resource. i.e. the longest time a task can be
blocked awaiting is bounded.

The access cost to a shared resource is bounded as requests are serviced in
FIFO order and at most one request per processor can be issued at a time,
because shared resource accesses are not preemptable. Therefore, the maximum

On the Effect of Protected Entry Servicing Policies 77

time a task τi running on processor Pm can be spinning waiting to access a
resource rk can be expressed as:

spin(rk, Pm) =
∑

p∈{P−Pm}
max
τx∈Tp

wk
x (1)

where wk
x is the worst-case access time to resource rk which a task τx executing

on a remote processor may experience. The spin time calculated as above is to
be added, for each access, to the task worst-case execution time when carrying
out the schedulability analysis. This result can be improved, as shown by Bran-
denburg and Wieder [5,19], by using holistic analysis and mixed-integer linear
programming techniques to safely reduce the pessimism in the number of times
a remote processor can cause spin delay on each task activation.

Using MSRP with fixed-priority scheduling, as in the Ravenscar profile, has a
major drawback. Since waiting for access to a shared resource is not preemptable,
the blocking incurred by a high-priority task does not depend on its use of shared
resources, but on that of lower-priority tasks, even though the ceiling priorities
of the shared resources are lower than the priority of the high-priority task.
Since high-priority tasks often have short deadlines, especially if priorities are
assigned in deadline-monotonic order, they can be expected to be most affected
by priority inversion.

3.3 Multiprocessor Resource Sharing Protocol

The Multiprocessor resource sharing Protocol (MrsP) [8] was devised to address
the above described drawback in MSRP. This protocol also relies on the prop-
erties of PCP and SRP: resources are assigned a ceiling priority, and all access
requests are performed at that priority. As in MSRP, access requests are dealt
with in FIFO order, and the tasks waiting for access to a resource spin-wait
until they are granted access. However, the spin-wait and access itself are done
at the ceiling priority of the resource, and thus calling tasks can be preempted.
Therefore, tasks with priorities higher than the ceiling priority of the resource
are not blocked by lower-priority tasks accessing the resource.

Another benefit of waiting at ceiling priorities is that, as in MSRP, at most
one task per processor can be trying to access the resource at a time. As a
result, and like in MSRP, the length of the resource FIFO queue is bounded
by the number of processors from where the resource is accessed. A desirable
access cost to a resource would then be the sum of worst access times of each
remote processor, plus the cost of the access to be performed [12], as in Eq. (1)
above. However, since all the shared resource activity is executed at its ceiling
priority, accesses are not guaranteed to be completed without being preempted
by a higher-priority task.

In order to achieve the same access cost with MrsP as with MSRP, it must
be made sure that a task executing an operation on a shared resource makes
progress while other tasks are spin-waiting for the resource. To this end, spin-
waiting tasks must be capable of undertaking the access operation of a locally

78 J. Garrido et al.

preempted task holding the resource lock. This cooperation must respect the
FIFO order [8]. This can be accomplished by delegating the execution on the
waiting task, or by migrating the preempted task to a processor where a task is
spin-waiting for the resource.

The first method is not practical. This approach would require accesses to
shared objects to be atomic, without side effects and potentially being executed
in parallel by waiting task, accepting only one final commit. The second approach
can, on the contrary, be easily implemented since task migration mechanisms are
integrated in most run-times of multiprocessor operating systems. In particular,
an Ada implementation based on a smart modification of the affinities of the
involved entities which may enable this kind of migration is outlined in [6]. The
main drawback of this approach is the overhead caused by such migrations. A
way to account for this overhead and an evaluation of its influence is presented
in [20], where MrsP is shown to provide better schedulability than MSRP, even
including this overhead.

4 Impact of Service Modes in Response Time Analysis

An aspect that has not received enough attention to date is the impact of the
entry queue service models on the response time of multiprocessor real-time
systems. The next paragraphs discuss the main issues related to using the proxy
and the self-service models with MSRP and MrsP.

4.1 Entry Servicing in MSRP

MSRP is compatible with the Ada definition of protected objects, as long as the
ceiling priority of all protected objects is assigned a non-preemptable value, i.e.
one which is higher than any task priority.

The current GNAT implementation of protected objects on multiprocessors
follows the proxy model. As previously explained, a task calling an entry with
a closed barrier is suspended. When a call to another protected procedure or
entry completes, barriers are reevaluated, and pending calls to entries with newly
opened barriers are executed by the calling task, which acts as a server task. Since
the server task executes non-preemptively, all pending entry bodies are executed
until no remaining task is enqueued on an open entry.

The eggshell model implies that the resource is busy while pending entries
are executed by the server task, and thus further calls to protected operations
are postponed until the enqueued requests have been served. This makes the
maximum number of calls to be executed by the server task to be bounded
by the maximum number of tasks that can issue entry calls on the resource.1

Let Ge(rk) be the set of tasks calling entries in resource rk. If |Ge(rk)| is the

1 For this bound to be effective it must be assumed that the task set is static, or at
least that there is a bound on the number of caller tasks for the resource.

On the Effect of Protected Entry Servicing Policies 79

size of this set, the worst-case overhead incurred in each access to a protected
subprogram operation in rk is:

overhead(rk, Pm) = |Ge(rk)| × Ck
e +

∑

p∈{P−Pm}
max
τx∈Tp

wk
x + |Ge(rk)| × Ck

e (2)

where Ck
e is the maximum cost of servicing an entry request in resource rk, P is

the set of all processors, and Pm is the processor on which the server task runs,
as in Eq. (1).

With the Ravenscar profile, the analysis is simplified because there may be
at most one task blocked on an entry, and a protected object can have at most
one entry. The worst-case overhead is then:

overhead(rk, Pm) = Ck
e +

∑

p∈{P−Pm}
max
τx∈Tp

wk
x + Ck

e (3)

4.2 Entry Servicing in MrsP

MrsP does not have a defined behaviour for the Ada entry model. The Ada
implementation proposed in [6] gives no hint on how enqueued entries should
be serviced and analysed under MrsP. In order to complete the protocol defi-
nition, some alternatives for such implementation are explored in the following
paragraphs.

Self-service Model. This approach is widely accepted as best suited for mul-
tiprocessor systems, since it is supposed to better support parallelism. However,
in practice it presents some drawbacks, particularly a loss of efficiency when
implemented on top of POSIX threads, even on monoprocessors [17].

The expected benefit of using self-service in multiprocessor systems comes
from the fact that the task waiting on a closed entry and the task opening
the barrier can be allocated to different processors. However, this can lead to
unexpected blocking in the execution of higher-priority tasks, contrary to the
monoprocessor case, where a task can only be blocked once per activation by a
lower-priority task, and only before the higher-priority task starts executing.

Consider the example depicted in Fig. 1 including tasks τ1 and τ2 with pri-
orities p1 = 1 and p2 = 2, respectively.2 Let τ1 be blocked on an entry belonging
to a protected object r with a ceiling priority pr = 3, and then τ2 is released and
executes non-protected code on the same processor. If the barrier is opened after
a protected operation executing on some other processor, τ1 becomes runnable
again with an active priority of 3, thus preempting τ2.

To prevent such a case, one possibility would be to decrease the active priority
of a task waiting on a closed entry barrier. A similar scheme is used in GNAT
for the proxy model, where the caller task, after locking the protected object,
reverts to its previous active priority, to be rescheduled at that priority once
2 Following Ada convention, a higher value indicates a higher priority.

80 J. Garrido et al.

Fig. 1. Potential delayed priority inversion under self-service model.

Fig. 2. Tasks blocked on closed entry barriers decrease their active priority.

its entry request has been served. This approach is illustrated in Fig. 2. In this
example, τ1 can perform its entry access to the resource (raising again its active
priority to 3) when τ2 execution is completed.

This approach, however, can lead to further issues. A task that is spin-waiting
on an entry call may not be able to access the resource even after the barrier
has been opened by another task, because the priority of the waiting task is not

On the Effect of Protected Entry Servicing Policies 81

Fig. 3. Approach breaking the eggshell model.

Fig. 4. Approach implementing a delayed proxy model.

high enough, as it has been reverted to its basic priority. If there is a new call
to a protected operation in the same object, it should not be accepted until the
pending entry call has been serviced, as per the eggshell model. The second call
is thus delayed even if the entry barrier is now open, thus leading to further
priority inversion. Note that this can also happen when the task that makes the
new call runs on the same processor as the waiting task.

Aside from being highly inefficient, the timing behaviour in such situations
cannot be analysed without adding extra pessimism. Two possible ways of tack-
ling this issue are:

82 J. Garrido et al.

– Letting the new call proceed without serving the entries, thus breaking the
eggshell model (Fig. 3).

– Serving the entries and then letting the new call proceed. This would be
somewhat of a ‘delayed proxy model’ (Fig. 4).

The former option is not compatible with the Ada standard, and therefore will
not be further discussed. The latter one, on the contrary, would not be far from
the current proxy GNAT implementation. Furthermore, as the entry calls are
only executed by delegation, as shown in Fig. 4, when strictly required, paral-
lelism can be improved.

Unfortunately, this solution would only make a true benefit if both the task
calling the entry and that making the new call are hosted on the same processor.
In any other case this solution would complicate the implementation. Executing
a subprogram call (even a function call) would require to check whether there
are remote entry callers queued on open barriers, then to check their scheduling
state (if they are currently running or not) and finally to undertake their access
if necessary to preserve the FIFO order.

In any case, this solution is actually a variant of the proxy model, and its
implications can be studied along with the discussion in the following paragraphs.

Proxy Model. As previously shown, serving outstanding entry calls at the
end of the call that opens the corresponding barriers improves efficiency and is
consistent with the Ada semantics.

Fig. 5. Proxy model entry servicing.

When accesses to protected objects are carried out in a non-preemptive way,
the entry servicing is deterministic: entries are served in FIFO order (as required

On the Effect of Protected Entry Servicing Policies 83

by MSRP and MrsP) by the server task on its own processor, until the barrier
is closed again or all queued entry calls have been served.

However, when accesses to protected objects can be preempted, a different
kind of problem arises, as the servicing of pending entry calls can be delayed by
a preemption of the server task, which compromises response time analysis. In
order to overcome this issue and ensure progress in the server tasks, two possible
solutions can be envisioned:

– To migrate the server task to a processor where the access to the resource
can be completed, according to the helping mechanism presented in Sect. 3.2.

– To perform the entry servicing non-preemptively in order to avoid such situ-
ation.

In general, under MrsP a task holding a resource lock may be preempted.
As explained in Sect. 3, the preempted task is migrated to a remote proces-
sor if there is a task actively waiting for the resource. This approach further
increases the potential access cost to a shared resource, since the migration cost
has to be included in the analysis. The worst-case number of migrations can be
obtained by calculating the number of local higher-priority tasks releases during
the access [20], i.e. for each valid migration target (each processor that hosts at
least one task accessing the resource), calculate the number of times it can suffer
interference from higher-priority tasks. This is calculated by obtaining the ceiling
value of the resource access time divided by the period of each higher-priority
task on the migration targets. This value, multiplied by the measured worst-case
cost of a migration is to be added to the final resource access cost. By adding the
time of servicing an entry to the resource access time, i.e. extending the time in
which the access can be preempted and migrated again, the previously presented
analysis yields a safe upper bound for the overhead induced by migrations under
the proxy model.

The other possible solution is to serve the entry in a non-preemptable way.
While this would limit the overhead in the server task, it might also negatively
affect the response time of higher-priority tasks, even those not accessing the
involved resource. MrsP was designed to avoid or at least reduce the unnec-
essary blocking suffered by higher-priority tasks from resources only used by
lower-priority tasks. However, short non-preemptable sections can still be ben-
eficial with this protocol, as shown in the evaluation made in [20]. Keeping
non-preemptable sections short should not be specially costly in real systems,
especially those implemented with the Ravenscar profile, since entries are mainly
used for task synchronization purposes.

In order to consistently use MrsP with the Ada tasking model, the impact
of servicing entries first, according to the eggshell rules, must be evaluated. The
following equation, which follows a similar approach as (2), can be used to extend
the results in [8] and [13, Eq. 5]:

ek = |map(G(rk))| × (ck + |Ge(rk)| × Ck
e) (4)

where ek is the cost of a single access to a resource rk. Function map(G(rk))
returns the set of processors that host at least one task accessing resource rk

84 J. Garrido et al.

and |map(G(rk))| returns the size of that set. This safely bounds the number of
access requests to rk that can be issued at a time, since, due to the use of ceiling
priorities, only one task per processor can be trying to access the resource at any
given moment. This number is multiplied by the time required for an access to
the resource, that is the sum of is execution time ck, plus the time required to
serve the potentially queued entry calls with barriers now open. For Ravenscar
systems, this equation can be simplified as only one entry request can be queued
per access:

ek = |map(G(rk))| × (ck + Ck
e) (5)

As shown in [20], this way of analysing resource contention is highly pessimistic,
especially when resource access request patterns are uneven among tasks and
processors. Consider a task running on a processor issuing requests to a resource
every few milliseconds, while there is only another task accessing the same
resource from a different processor, with a rate in the order of seconds. Then
it is clearly pessimistic to assume that all accesses from the first task will be
delayed by accesses from the second task. Therefore, the response time analysis
must provide means to reduce that pessimism based on the periodicity of the
requests issued on each processor. This same reasoning can be used to reduce the
pessimism on the need to service entry queue calls present in Eqs. 4 and 5. Given
the semantics of entry calls their frequency may not be comparable to that of
other protected actions. This is particularly true for Ravenscar systems, where
entries are only meant to be used to synchronize tasks, and thus the frequency of
entry requests may be expected to be clearly lower than that of other requests.
If this is the case, it is clearly pessimistic to assume that each non-entry access
will suffer an entry servicing overhead (Fig. 5).

A safe upper bound for the maximum entry-servicing overhead a task τi can
incur on a single activation due to a resource rk can be calculated as:

EN k
i =

∑

τx �=τi

⌈
Ri

T k
x

⌉
(6)

where T k
x is the minimum inter-arrival time of entry requests to resource rk by

a task τx, and Ri is the response time of τi. This result can be used to reduce
the pessimism of the previous equations, and therefore, the cost of all accesses
to a resource rk by τi during an activation can be expressed as:

Ek
i = EN k

i × Ck
e + Nk

i × (|map(G(rk))| × ck) (7)

where Nk
i is the maximum number of times τi accesses rk. Note that, while

Eqs. 6 and 7 are also valid for general Ada tasking, with the Ravenscar profile,
EN k

i can be also safely bounded by Nk
i × |map(G(rk))|, since each access to the

resource can only have to serve at most one entry. In consequence, the lower of
both values is to be used for schedulability analysis.

On the Effect of Protected Entry Servicing Policies 85

5 Conclusions

Protected objects and entries are a powerful mechanism for controlling the syn-
chronization of concurrent tasks. Nevertheless, Ada protected entries exhibit
some peculiarities that have to be taken into account when analysing the tem-
poral behaviour of real-time systems.

Among the possible implementation of protected entry servicing in multipro-
cessors, self-service has a potential for taking advantage of parallel execution to
improve the efficiency of the mechanism. However, it cannot be used with locking
policies based on PCP or SRP, such as MSRP or MrsP, without compromising
the properties of these protocols or violating the eggshell definition.

On the other hand, the proxy model is simpler to implement, and can be
used with MSRP and MrsP. It has also been shown to be analysable for systems
using non-preemptive spin-locking. The overhead caused by the extra execution
time in protected calls, as well as the impact of giving priority to entry servicing
over new calls, as required by the eggshell model, on the response time analysis,
have been calculated, and new response time equations have been derived.

References

1. Ada Reference Manual, ISO/IEC 8652:2012(E) with COR.1:2016 (2016). http://
www.ada-auth.org/arm.html

2. Baker, T.P.: A stack-based resource allocation policy for realtime processes. In:
1990 Proceedings of the 11th Real-Time Systems Symposium, pp. 191–200, Decem-
ber 1990

3. Baker, T.P.: Stack-based scheduling for realtime processes. Real-Time Syst. 3(1),
67–99 (1991)

4. Barnes, J.: Programming in Ada 2012. Cambridge University Press, Cambridge
(2014)

5. Brandenburg, B.B.: Scheduling and locking in multiprocessor real-time operating
systems. Ph.D. thesis, The University of North Carolina at Chapel Hill (2011)

6. Burns, A., Wellings, A.J.: Locking policies for multiprocessor Ada. Ada Lett. 33(2),
59–65 (2013)

7. Burns, A., Wellings, A.: Analysable Real-Time Systems: Programmed in Ada. Cre-
ateSpace Independent Publishing Platform (2016)

8. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource
sharing protocol-MrsP. In: 2013 25th Euromicro Conference on Real-Time Sys-
tems (ECRTS), pp. 282–291. IEEE (2013)

9. Chouteau, F., Ruiz, J.F.: Design and implementation of a Ravenscar extension
for multiprocessors. In: Romanovsky, A., Vardanega, T. (eds.) Ada-Europe 2011.
LNCS, vol. 6652, pp. 31–45. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21338-0 3

10. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for mul-
tiprocessor systems. ACM Comput. Surv. 43(4), 35:1–35:44 (2011).
http://doi.acm.org/10.1145/1978802.1978814

11. Gai, P., Lipari, G., Natale, M.D.: Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip. In: Proceedings of the 22nd
IEEE Real-Time Systems Symposium. IEEE Computer Society (2001)

http://www.ada-auth.org/arm.html
http://www.ada-auth.org/arm.html
https://doi.org/10.1007/978-3-642-21338-0_3
https://doi.org/10.1007/978-3-642-21338-0_3
http://doi.acm.org/10.1145/1978802.1978814

86 J. Garrido et al.

12. Garrido, J., Zamorano, J., Alonso, A., de la Puente, J.A.: Evaluating MSRP and
MrsP with the multiprocessor Ravenscar profile. In: Blieberger, J., Bader, M. (eds.)
Ada-Europe 2017. LNCS, vol. 10300, pp. 3–17. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60588-3 1

13. Garrido, J., Zhao, S., Burns, A., Wellings, A.: Supporting nested resources in MrsP.
In: Blieberger, J., Bader, M. (eds.) Ada-Europe 2017. LNCS, vol. 10300, pp. 73–86.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60588-3 5

14. Giering, E.W., Baker, T.P.: The GNU Ada Runtime Library (GNARL): design and
implementation. In: WADAS 1994: Proceedings of the Eleventh Annual Washing-
ton Ada Symposium & Summer ACM SIGAda Meeting on Ada, pp. 97–107. ACM
Press, New York (1994)

15. Giering, E.W., Mueller, F., Baker, T.P.: Implementing ada 9x features using posix
threads: design issues. In: Proceedings of the Conference on TRI-Ada 1993, TRI-
Ada 1993, pp. 214–228. ACM, New York (1993). http://doi.acm.org/10.1145/
170657.170736

16. Lin, S., Wellings, A.J., Burns, A.: Ada 2012: resource sharing and multiprocessors.
Ada Lett. 33(1), 32–44 (2013)

17. Miranda, J.: A detailed description of the GNU Ada run time (2003). http://www.
iuma.ulpgc.es/users/jmiranda/gnat-rts/

18. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

19. Wieder, A., Brandenburg, B.B.: On spin locks in AUTOSAR: blocking analysis
of FIFO, unordered, and priority-ordered spin locks. In: Proceedings of the IEEE
34th Real-Time Systems Symposium, RTSS 2013, Vancouver, BC, Canada, 3–6
December 2013, pp. 45–56 (2013). https://doi.org/10.1109/RTSS.2013.13

20. Zhao, S., Garrido, J., Burns, A., Wellings, A.: New schedulability analysis for
MrsP. In: 2017 IEEE 23rd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pp. 1–10. IEEE (2017)

https://doi.org/10.1007/978-3-319-60588-3_1
https://doi.org/10.1007/978-3-319-60588-3_1
https://doi.org/10.1007/978-3-319-60588-3_5
http://doi.acm.org/10.1145/170657.170736
http://doi.acm.org/10.1145/170657.170736
http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/
http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/
https://doi.org/10.1109/RTSS.2013.13

	On the Effect of Protected Entry Servicing Policies on the Response Time of Ada Tasks
	1 Introduction
	2 Protected Objects in Ada
	2.1 Protected Objects and Protected Operations
	2.2 Protected Entries
	2.3 Self-service Model
	2.4 Proxy Model
	2.5 Ravenscar Restrictions

	3 Resource Sharing Protocols for Multiprocessor Systems
	3.1 Resource Sharing Protocols
	3.2 Multiprocessor Stack Resource Policy
	3.3 Multiprocessor Resource Sharing Protocol

	4 Impact of Service Modes in Response Time Analysis
	4.1 Entry Servicing in MSRP
	4.2 Entry Servicing in MrsP

	5 Conclusions
	References

