
António Casimiro
Pedro M. Ferreira (Eds.)

 123

LN
CS

 1
08

73

23rd Ada-Europe International Conference
on Reliable Software Technologies
Lisbon, Portugal, June 18–22, 2018, Proceedings

Reliable Software
Technologies –
Ada-Europe 2018

Lecture Notes in Computer Science 10873

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

António Casimiro • Pedro M. Ferreira (Eds.)

Reliable Software
Technologies –
Ada-Europe 2018
23rd Ada-Europe International Conference
on Reliable Software Technologies
Lisbon, Portugal, June 18–22, 2018
Proceedings

123

Editors
António Casimiro
University of Lisbon
Lisbon
Portugal

Pedro M. Ferreira
University of Lisbon
Lisbon
Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-92431-1 ISBN 978-3-319-92432-8 (eBook)
https://doi.org/10.1007/978-3-319-92432-8

Library of Congress Control Number: 2018944394

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5522-5739
http://orcid.org/0000-0003-2369-0115

Preface

The 23rd edition of the International Conference on Reliable Software Technologies
(Ada-Europe 2018) took place in Lisbon, returning to Portugal 12 years after Porto in
2006. The previous editions of the conference were held in Spain (Santander, 1999,
Palma de Mallorca, 2004, Valencia, 2010, Madrid, 2015), France (Toulouse, 2003,
Brest, 2009, Paris, 2014), the UK (London, 1997, York, 2005, Edinburgh, 2011),
Austria (Vienna, 2017 and 2002), Switzerland (Montreux, 1996, Geneva, 2007),
Sweden (Uppsala, 1998, Stockholm, 2012), Germany (Potsdam, 2000, Berlin, 2013),
Italy (Venice, 2008, Pisa, 2016), and Belgium (Leuven, 2001).

The Faculty of Sciences of the University of Lisbon was the lead organizer for this
edition, with aid from an international core team that included members of
Ada-Europe, the organization that oversees and sponsors the conference series.

The conference took place in the week of June 18–22, 2018, with a rich program for
both technical content and social opportunities. The scientific program featured 10
papers selected among 27 peer-reviewed submissions, grouped into five presentation
sessions scheduled in the central days of the conference week, to address the following
topics: safety and security, Ada 202X, handling implicit overhead, real-time schedul-
ing, and new application domains. The proceedings contained in this volume reflect
these contributions (see the Table of Contents for details).

The conference program also included 12 industrial contributions arranged in four
industrial presentation sessions. The regular sessions were complemented by four more
presentations selected among the regular submitted papers, as well as by vendor pre-
sentations. Vendor exhibitions completed the core program.

The first and the last day of the conference were dedicated to tutorials and work-
shops. A total of ten tutorials took place, eight of which were half-day tutorials and 2
full-day ones. On Monday the program included the workshop on Runtime Verification
and Monitoring Technologies for Embedded Systems (RUME), and on Friday the fifth
edition of the Workshop on Challenges and New Approaches for Dependable and
Cyber-Physical Systems Engineering (DeCPS) took place. The proceedings from this
part of the conference program will be published, in successive instalments, in the Ada
User Journal, the quarterly magazine of Ada-Europe.

The scientific and industrial submissions originated from 19 countries from Europe,
Asia, North and South America and Africa. Thanks to that wealth, the final program
was an international digest of contributions from Austria, France, Germany, Italy,
Norway, Poland, Portugal, South Korea, Spain, Sweden, Switzerland, the UK, and the
USA.

Each of the three days of the technical program opened with a keynote talk focusing
on topics of interest to the conference scope. The three keynote talks were:

– “Security and Dependability Challenges of IT/OT Integration” by Paulo
Esteves-Veríssimo, from the University of Luxembourg, Luxembourg, who argued
about the need for paradigms and techniques to endow systems with the capacity of

defeating incremental adversary power and sustaining perpetual and unattended
operation, in a systematic and automatic way.

– “From Physicist to Rocket Scientist, and How to Make a CubeSat That Works” by
Carl Brandon, from the Vermont Technical College, USA, who explained how to
have a successful CubeSat, where many others have failed, in which the reliability
of SPARK/Ada software plays a big part.

– “Vulnerabilities in Safety, Security, and Privacy” by Erhard Plödereder, from the
University of Stuttgart, Germany, who discussed the differences and commonalities
in threats that affect safety, security, or privacy in today’s systems, also arguing that
vulnerabilities made possible by programming language features form a common
base for violating safety, security, or privacy.

The tutorial program covered the following topics:

– “Recent Developments in SPARK 2014,” Peter Chapin, Vermont Technical Col-
lege, USA

– “Access Types and Memory Management in Ada 2012,” Jean-Pierre Rosen, Ada-
log, France

– “Design and Architecture Guidelines for Trustworthy Systems,” William Bail,
The MITRE Corporation, USA

– “Numerics for the Non-Numerical Analyst,” Jean-Pierre Rosen, Adalog, France
– “Requirements Development for Safety- and Security-Critical Systems,” William

Bail, The MITRE Corporation, USA
– “Scheduling Analysis of AADL Architecture Models,” Frank Singhoff,

Lab-STICC/UBO, France and Pierre Dissaux, Ellidiss Technologies, France
– “Writing Contracts in Ada,” Jacob Sparre Andersen, JSA Research & Innovation,

Denmark
– “Introduction to Libadalang,” Raphaël Amiard and Pierre-Marie de Rodat, Ada-

Core, France
– “Unit-Testing with Ahven,” Jacob Sparre Andersen, JSA Research & Innovation,

Denmark
– “Frama-C, a Framework for Analyzing C Code,” Julien Signoles, France

The industrial program featured the following presentations:

– “Managing the Endianness of Software Building Blocks with GNAT Ada Pragmas:
A Case Study,” Patricia Lopez Cueva and Marco Panunzio

– “Using Ada in Non-Ada Systems,” Ahlan Marriott
– “Easy Ada Tooling with Libadalang,” Pierre-Marie de Rodat and Raphaël Amiard
– “Ariane 6 Flight Software Designed for a Simpler Validation,” Philippe Gast and

Cyrille Pierre
– “I3DS A Modular Sensor Suite for Space Robotics,” Kristoffer Nyborg Gregertsen
– “Multi-Concern Dependability-Centered Assurance for Space Systems via Con-

certoFLA,” Barbara Gallina, Zulqarnain Haider, Anna Carlsson, Silvia Mazzini,
and Stefano Puri

– “Applying Formal Timing Analysis to Satellite Software,” Andreas Wortmann

VI Preface

– “Multicore Timing Analysis for Safety-Critical Software,” Ian Broster, Guillem
Bernat, Francisco Cazorla, Christos Evripidou, and Suzana Milutinovic

– “KhronoSim: Simulation and Testing of Real-Time Critical Cyber-Physical
Systems,” Gonçalo Gouveia, João Esteves, Cláudio Maia, and Luis Miguel Pinho

– “C Guidelines Compliance and Deviations (the MISRA and CERT Cases),”
Maurizio Martignano

– “Agile in Safety Critical Projects,” Pawel Zakrzewski
– “AGILE-R: Agile Software Development for Railways,” Silvia Mazzini, John

Favaro, Guido Ioele, Paolo Panaroni, Giancarlo Gennaro, and Umile Paone

Complementing the regular sessions, the program of the conference included the
following technical presentations:

– “The IRONSIDES Project: Final Report,” Barry Fagin and Martin Carlisle
– “Concurrent Reactive Objects in Rust—Secure by Construction,” Marcus Lindner,

Jorge Aparicio, and Per Lindgren
– “Alire: A Library Repository Manager for the Open Source Ada Ecosystem,”

Alejandro R. Mosteo
– “Real-Time Ada Applications on Android,” Alejandro Pérez Ruiz, Mario Aldea

Rivas, and Michael González Harbour

We would like to acknowledge the work of all the people who contributed, with
various responsibilities and official functions, to the making of the conference program
overall. The success of the conference depends in large part on the quality of the
program contents. The authors of the selected contributions are to be thanked first and
foremost for that. The members of the Program and Industrial Committees had the
difficult task of screening the submissions and selecting the contributions to include in
this proceedings volume and in the Ada User Journal.

The Organizing Committee put it all together: Nuno Neves (Conference Chair);
Marcus Völp (Special Session Chair); José Rufino and Marco Panunzio (Industrial
Co-chairs); David Pereira (Tutorial and Workshop Chair); Dirk Craeynest (Publicity
Chair); Ahlan Marriott and José Neves (Exhibition Co-chairs). All of them deserve our
gratitude for their effort.

We hope that the attendees enjoyed every element of the conference program as
much as we did in organizing it.

June 2018 António Casimiro
Pedro Ferreira

Preface VII

Organization

General Chair

Nuno Neves LASIGE/University of Lisbon, Portugal

Program Chair

António Casimiro LASIGE/University of Lisbon, Portugal

Special Session Chair

Marcus Völp University of Luxembourg, Luxembourg

Tutorial and Workshop Chair

David Pereira CISTER/ISEP, Portugal

Industrial Co-chairs

Marco Panunzio Thales A.S., France
José Rufino LASIGE/University of Lisbon, Portugal

Publication Chair

Pedro Ferreira LASIGE/University of Lisbon, Portugal

Exhibition Co-chairs

José Neves GMV Skysoft, Portugal
Ahlan Marriott White Elephant GmbH, Switzerland

Publicity Chair

Dirk Craeynest Ada-Belgium and KU Leuven, Belgium

Local Secretariat

Madalena Almeida Viagens Abreu, Portugal

Sponsoring Institutions

AdaCore
PTC
RAPITA Systems
Ellidiss Software
CRITICAL Software
LASIGE/FCT

Program Committee

Mario Aldea Universidad de Cantabria, Spain
Ezio Bartocci Vienna University of Technology, Austria
Johann Blieberger Vienna University of Technology, Austria
Rakesh Bobba Oregon State University, USA
Bernd Burgstaller Yonsei University, South Korea
António Casimiro LASIGE/University of Lisbon, Portugal
Juan A. de la Puente Universidad Politécnica de Madrid, Spain
Virgil Gligor Carnegie Mellon University, USA
Michael González

Harbour
Universidad de Cantabria, Spain

J. Javier Gutiérrez Universidad de Cantabria, Spain
Jérôme Hugues ISAE, France
Ruediger Kapitza Technische Universität Braunschweig, Germany
Hubert Keller Karlsruhe Institute of Technology, Germany
Raimund Kirner University of Hertfordshire, UK
Adam Lackorzynski TU Dresden and Kernkonzept GmbH, Germany
Kristina Lundkvist Mälardalen University, Sweden
Franco Mazzanti ISTI-CNR, Italy
Laurent Pautet Telecom ParisTech, France
Luís Miguel Pinho CISTER/ISEP, Portugal
Erhard Plödereder Universität Stuttgart, Germany
Jorge Real Universitat Politècnica de València, Spain
José Ruiz AdaCore, France
Sergio Sáez Universitat Politècnica de València, Spain
Elad Schiller Chalmers University of Technology, Sweden
Frank Singhoff Université de Bretagne Occidentale, France
Jorge Sousa Pinto University of Minho, Portugal
Tucker Taft AdaCore, USA
Elena Troubitsyna Åbo Akademi University, Finland
Santiago Urueña GMV, Spain
Tullio Vardanega Università di Padova, Italy
Marcus Völp University of Luxembourg, Luxembourg

X Organization

Industrial Committee

Ian Broster Rapita Systems, UK
Luís Correia EMPORDEF-TI, Portugal
Dirk Craeynest Ada-Belgium and KU Leuven, Belgium
Thomas Gruber Austrian Institute of Technology (AIT), Austria
Andreas Jung European Space Agency, The Netherlands
Ismael Lafoz Airbus Defence and Space, Spain
Ahlan Marriott White Elephant, Switzerland
Maurizio Martignano Spazio IT, Italy
Marco Panunzio Thales Alenia Space, France
Paul Parkinson Wind River, UK
Jean-Pierre Rosen Adalog, France
José Rufino LASIGE/University of Lisbon, Portugal
Emilio Salazar GMV, Spain
Helder Silva EDISOFT, Portugal
Jacob Sparre Andersen JSA Consulting, Denmark
Andreas Wortmann OHB System, Germany

Additional Reviewers

Akshith Gunasekaran
Rahma Bouaziz
Hai Nam Tran
Hector Perez
Wenbo Xu

Organization XI

Contents

Safety and Security

Using Safety Contracts to Verify Design Assumptions During Runtime 3
Omar Jaradat and Sasikumar Punnekkat

Tool-Supported Safety-Relevant Component Reuse: From
Specification to Argumentation . 19

Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson,
and Stefano Puri

Ada 202X

Safe Dynamic Memory Management in Ada and SPARK 37
Maroua Maalej, Tucker Taft, and Yannick Moy

Safe Non-blocking Synchronization in Ada2x . 53
Johann Blieberger and Bernd Burgstaller

Handling Implicit Overhead

On the Effect of Protected Entry Servicing Policies on the
Response Time of Ada Tasks . 73

Jorge Garrido, Juan Zamorano, Alejandro Alonso,
and Juan A. de la Puente

Improved Cache-Related Preemption Delay Estimation for Fixed
Preemption Point Scheduling . 87

Filip Marković, Jan Carlson, and Radu Dobrin

Real-Time Scheduling

Combined Scheduling of Time-Triggered and Priority-Based Task
Sets in Ravenscar . 105

Jorge Real, Sergio Sáez, and Alfons Crespo

Theory and Practice of EDF Scheduling in Distributed
Real-Time Systems . 123

J. Javier Gutiérrez and Héctor Pérez

New Application Domains

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 141
Sara Royuela, Xavier Martorell, Eduardo Quiñones,
and Luis Miguel Pinho

Microservice-Based Agile Architectures: An Opportunity for Specialized
Niche Technologies . 158

Stefano Munari, Sebastiano Valle, and Tullio Vardanega

Author Index . 175

XIV Contents

Safety and Security

Using Safety Contracts to Verify Design
Assumptions During Runtime

Omar Jaradat(B) and Sasikumar Punnekkat

School of Innovation, Design and Engineering,
Mälardalen University, Väster̊as, Sweden

{omar.jaradat,sasikumar.punnekkat}@mdh.se

Abstract. A safety case comprises evidence and argument justifying
how each item of evidence supports claims about safety assurance. Sup-
porting claims by untrustworthy or inappropriate evidence can lead to
a false assurance regarding the safe performance of a system. Having
sufficient confidence in safety evidence is essential to avoid any unan-
ticipated surprise during operational phase. Sometimes, however, it is
impractical to wait for high quality evidence from a system’s operational
life, where developers have no choice but to rely on evidence with some
uncertainty (e.g., using a generic failure rate measure from a handbook
to support a claim about the reliability of a component). Runtime moni-
toring can reveal insightful information, which can help to verify whether
the preliminary confidence was over- or underestimated. In this paper,
we propose a technique which uses runtime monitoring in a novel way
to detect the divergence between the failure rates (which were used in
the safety analyses) and the observed failure rates in the operational life.
The technique utilises safety contracts to provide prescriptive data for
what should be monitored, and what parts of the safety argument should
be revisited to maintain system safety when a divergence is detected. We
demonstrate the technique in the context of Automated Guided Vehicles
(AGVs).

Keywords: Confidence · Safety contracts · Safety case
Safety argument · Monitoring · Runtime · Failure rate
Probability of failure · Through-life safety assurance

1 Introduction

Safety critical systems are those systems whose failure could result in loss of
life, significant property damage or damage to the environment [1]. Factories
are often categorised as safety critical systems since failures of these systems,
under certain conditions, can lead to severe consequences [2]. Assuring safety for
such systems should provide justified confidence that all potential risks due to
system failures are either eliminated or acceptably mitigated. Hence, all failures
which might expose the manufacturing processes to hazards shall be analysed

c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-92432-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_1&domain=pdf

4 O. Jaradat and S. Punnekkat

and controlled as part of pre-deployment safety assurance and monitored and
controlled as part of operational phase.

Developers of some safety critical systems build a safety case to demonstrate
the safety aspect of their system by identifying all unreasonable risks and describ-
ing, in the light of the available evidence, how these risks have been eliminated
or adequately mitigated. Typically, a safety case comprises both safety evidence
(e.g. safety analyses, software and hardware inspection reports, or functional
test results) and a safety argument (i.e., reasoning) explaining that evidence.
The safety argument shows which claims the developer uses each item of evi-
dence to support and how those claims, in turn, support broader claims about
system behaviour, hazards addressed, and, ultimately, acceptable safety [3].

An organisation building a safety case should be accountable for the own-
ership of the risks to be controlled by adopting an appropriate safety manage-
ment system, performing a hazard assessment, selecting appropriate controls,
and implementing them [4]. In order to help building a sufficient and credible
(i.e., on a scientific basis) confidence in the safe performance of a system, its
safety case shall always communicate the actual safe performance of the sys-
tem, and shall always contain only acceptable items of evidence that this system
meets its safety requirements. However, an item of evidence is valid only in the
operational and environmental context in which it is obtained or to which it
applies. More clearly, as the system evolves after deployment, there could be a
mismatch between our communicated understanding of the system safety by the
safety case and the safety performance of the system in actual operation, which
might invalidate many of the prior assumptions made, undermine the collected
items of evidence and thus defeat safety claims [5]. Despite the improvements in
operational safety monitoring, there is insufficient clarity on how to utilise the
analysis results of the monitored data on the documented confidence in safety
cases.

In safety critical systems, failure rates are sometimes used as quantitative
criteria while performing safety assessment (i.e., Probabilistic Safety Assessment
(PSA)). Failure Rate (FR =λ) is defined as the probability per unit time that
a component experiences a failure at time “t”, given that the component was
operating at time “0” and has survived to time “t” [6]. Failure rates can be
deemed as a reliability prediction that together with the consequences (Risk =
probability of failure * consequence of failure) determine the Safety Integrity
Level (SIL), which in turn specifies a target level of risk reduction that should
be considered by a safety function or instrument. The quality of the failure rate
measure determines the quality of the PSA. Hardware components are usually
provided by generic failure rates which are derived by the statistical analyses of
the failure frequency [7]. Failure frequency is usually obtained by the test results
and the historical data of the components. Although the calculation of a generic
failure rate is based on complex models which include factors using specific
component data such as temperature, environment, and stress [6], it is, at its
best, just a probability that is still subject to a percentage error even if it is used
in the same context as in specifications. Assuming the perfection of the failure

Using Safety Contracts to Verify Design Assumptions During Runtime 5

rate calculations is not judicious and can be misleading. Hence, a minimum
level of fault tolerance in the architectural design of the safety functions should
be considered. For example, the functional safety standards IEC 61508 [8] and
IEC 61511 [9] recognise that there is always some degree of uncertainty in the
assumptions made in calculation of failure rate and probability [10].

In this paper, we propose a novel technique to detect the discrepancies
between the failure rates of system’s components during their operational life
and their generic failure rates used for analysis and assurance during the design
time. Since it is infeasible to monitor the failure rates of all components of a sys-
tem, the technique utilises probabilistic Fault Tree Analysis (FTA) to evaluate
the criticality of the system components, and selects the most critical ones for
monitoring. The technique derives safety contracts for the selected components
and associate them with the relevant events in the FTA and the relevant parts
in the safety case. If a discrepancy is detected between an observed failure rate
(λO) and a generic failure rate (λG) of the same component, where λO > λG,
then the relevant contract should be flagged and the referred parts of both the
FTA and the safety case should be revisited.

Our hypothesis is that using safety contracts for monitoring the failure rates
during the operational life of a system can help to provide essential feedback
on the overall confidence in safety. More clearly, getting more precise measure
of failure rates than the predicted ones will (1) improve the efficacy of the sys-
tem design to reduce the risk (mitigate by design), (2) define stronger evidence
(e.g., refine or rectify the test results) and (3) highlight the required preventive,
corrective, perfective or adaptive maintenance for safer operation

In this paper, we specifically make the following four contributions:

1. A novel technique to continuously reassess the failure rates and use the results
to suggest system changes or maintenance

2. A new way to derive safety contracts to facilitate the traceability between the
system design, safety analysis and the safety case

3. An example of how to argue more compelling over the failure rate in the light
of the derived evidence from the operational phase

4. An example of how to carry out a through-life safety assurance

The rest of the paper is organised as follows: In Sect. 2, we present our app-
roach to verify the design assumptions during runtime by safety contracts. In
Sect. 3, we apply our technique to an AGV system to illustrate the main steps.
In Sect. 4, we discuss how the suggested approach enables a through-life safety
assurance. Finally, we conclude and describe the future directions in Sect. 5.

2 Using Safety Contracts to Verify Design Assumptions
During Runtime

Failures of components in safety critical systems are typically divided into four
modes, namely, Safe Detected (SD), Safe Undetected (SU), Dangerous Detected
(DD), and Dangerous Undetected (DU). DD and DU failures can cause loss of

6 O. Jaradat and S. Punnekkat

a safety function while we believe that we are protected and this might happen
in fraction of diagnostic interval in case of DD failures or during the unknown
downtime in case of DU failures [11]. DU failures are typically due to either
random or systematic failures. In this paper, we specifically focus on dangerous
failures (DD and DU). Whenever FTAs are constructed to evaluate hazards,
the basic event failure data must describe only failures that contribute to that
hazard and thus only dangerous failure rates (λD) should be included for the
basic events, where λD = λDD + λDU .

In this section, we propose a technique that aims to determine the λD of
particular HW components in their operational life (observed λD = λD O) and
compare the results with the design assumptions of these components (generic
λD = λD G) to ultimately highlight any discrepancies between λD O and λD G.
The technique uses criticality importance measure to rank the components from
the most to the less critical so that safety engineers can select particular compo-
nents for monitoring when it is infeasible to monitor all of them. The technique
also uses sensitivity analysis to determine whether a highlighted discrepancy is
acceptable or not. The technique heavily depends on probabilistic FTAs, and it
comprises 8 steps as follows:

2.1 Determine the PFD or the PFH in the FTA

In this step, we calculate the PFD (Probability of Failure on Demand) or the
PFH (Probability of Failure per Hour) using a probabilistic FTA where each
component is specified by its λD G. The selection between PFD and PFH is
based on the demand of a safety function. More clearly, if the safety function
will be working in a continuous mode, then we have to select PFH [8]. However,
if the safety function is expected to work once per year (at most), then PFD
should be selected [8]. To calculate the PFD or PFH of an FTA, four sub-steps
should be performed as follows:

A. Calculate the Failure Probability of the Basic Events: There are
different formulas used to calculate PFD depending on different factors, such
as system’s structure (K-out-of-N structures), Common Cause Factor (CCF),
operational maintenance, safety standards obligations, etc. For example, Exida
(a leading product certification and knowledge company) provides a realistic
formula to calculate the PFD [12]. However, the difference between PFD formulas
will not be influential in our technique. For the sake of simplicity, we adopt the
PFD formula given in [13]. Formula 1 shows how we calculate the PFD for the
basic events:

PFD(i) = λD,i ∗ τ (1)

where i denotes the basic event and τ is the proof test interval. The component
reparation or replacement time is assumed to be short and thus it is negligible.

The main difference between calculating PFD and PFH is in the logic of
determining the probability of failures for the basic events. To calculate the
PFH for the FTA’s events, Formula 1 should be replaced with Formula 2, which

Using Safety Contracts to Verify Design Assumptions During Runtime 7

is basically the famous unreliability exponential equation where only λD is con-
sidered. Unreliability in the context of functional safety is interpreted as the
probability of a function to fail during a given time interval.

PFH(i) = 1 − e−λDt (2)

For calculating the PFD or PFH, we assume the failure rates of all components
are constants, independent and have the same τ . We also assume that all poten-
tial CCFs are explicitly modelled as basic events in the FTAs. The rest of the
sub-steps (B, C and D) are the same irrespective of we use PFD or PFH.

B. Determine Minimal Cut Set (MCS) in the FTA: The MCS is defined
as: “A cut set in a fault tree is a set of basic events whose (simultaneous) occur-
rence ensures that the top event occurs. A cut set is said to be minimal if the set
cannot be reduced without losing its status as a cut set” [14]. There are several
algorithms to find the MC. We apply Mocus cut set algorithm [14].

C. Calculate the Failure Probability of the Determined MCS: Cal-
culating the probability of occurrence for the top event in a FTA with many
MCS requires calculating the probability of those MCS. The failure probability
of each determined MCS in the previous sub-step should be calculated according
to formula 3 [11], as follows:

Q̌j(t) =
∏

i∈Cj

qi(t) (3)

where qi(t) denotes the probability of basic event i at time t, Q̌j(t) is the prob-
ability that minimal cut set j is in failed state at time t, i ∈ Cj denotes the
minimal cut set j that contains the basic event i.

D. Calculate the PFD or PFH of the Top Event: We calculate the actual
PFD or PFH by the upper bound approximation formula 4 [11] using the deter-
mined MCS, as follows:

PFDAct(Top), PFHAct(Top) =
k∑

j=1

Q̌j(t) (4)

So far, all PFD or PFH calculations are based on λD G. We refer to the
result of the probability calculation based on λD G as Actual or Act. The
PFDAct(Top) or PFHAct(Top) are design assumptions which will be compared
with the observed λ to check the correctness/validity of the design assumptions.

2.2 Identify the Most Critical Components

Monitoring every single component in safety critical systems is infeasible espe-
cially since such systems become bigger and more sophisticated over time. How-
ever, some components in a system are more critical for the system safety than

8 O. Jaradat and S. Punnekkat

other components. The objective of this step is to identify the most critical com-
ponents in a system w.r.t the FTA. There are different measures through which
FTA’s events can be ranked based on their importance (e.g., Birnbaum, Criti-
cality Importance, Fussel-Vesely Importance, Risk Achievement Worth (RAW)).
In our technique, however, we are interested to rank the components based on
their contributions to system safety. More specifically, we are interested in the
components whose failures have the maximum impact on system safety. RAW
is a measure that focuses on the ‘worth’ of the basic event in ‘achieving’ the
present level of risk and indicates the importance of maintaining the current
level of reliability for the basic event [14]. RAW is often used as an importance
measure to rank components in terms of safety significance [15] and hence we
will adopt it for our work.

The failure probability of the component i at time t may be described as:

P (i) =

{
0 if the component is functioning at time t

1 if the component is in a failed state at time t

The RAW, IRAW (i|t) is the ratio of the (conditional) system unreliability if
component i is P (1), and it is calculated as follows [14]:

IRAW (i|t) =
1 − h(0i, p(t))
1 − h(p(t))

for i = 1, 2, ..., n (5)

where h(0i, p(t)) is the probability of top event with component i = P (1),
and h(p(t)) is probability of top event. All basic events should be ranked from
the most important to the less important. The most important event is the event
for which Formula 5 has the maximum value.

2.3 Refine the Identified Critical Parts

The idea of this step is to discuss with system developers (e.g., safety engineers)
and refine the ranked list of the critical components. This step is important,
since it embeds the system level knowledge and experience of engineers regard-
ing the uncertainty in a generic λ as well as helps as a validation step in the
decision making process. For example, it could be the case that a high ranked
critical component in the list has a stable λG and systems engineers decide not
to monitor it. That is, it is envisaged that some events may be removed from
the list or the rank of some of them change. Moreover, the list can be extended
to add any additional events by the developers.

2.4 Perform Sensitivity Analysis

The idea of this step is to determine the maximum allowable λD (λD Max) of
the system components which are selected for monitoring. More specifically, we
need to define the upper- and lower bounds of the acceptable λD of each event
in the MCS, where PFDAct(Top) or PFHAct(Top) is less than or equal to the

Using Safety Contracts to Verify Design Assumptions During Runtime 9

required probabilities PFDReq(Top) or PFHReq(Top), respectively. The required
probability is described as safety requirements by the safety standards (e.g., SIL,
ASIL and DAL). It is important for our technique to determine to which extent
PFDAct(i) or PFHAct(i) can be deviated while PFDAct(Top) or PFHAct(Top)
still satisfies PFDReq(Top) or PFHReq(Top), respectively. To this end, two main
activities should be performed, as follows:

Determine the Maximum Allowable qi, Max(t) for Each Component. The
qi,Max(t) for each component should be determined with respect to PFDReq(Top)
or PFHReq(Top). Formula 6 should be used to determine qi,Max(t) for each
component at a time.

PFDReq(Top), PFHReq(Top) − (
∑

Q̌i/∈Cj
(t))

∑
Q̌i∈Cj

(t)¬qi(t)
=

∑
Q̌i∈Cj

(t)
∑

Q̌i∈Cj
(t)¬qi(t)

(6)

where i /∈ Cj denotes the minimal cut set j that does not contain basic event i.
Determine λD M ax for Each Component. Once we have qi,Max(t) for a
component it is easy to determine its λD,Max. Formula 7 determines λD,Max in
case of PFD, as follows:

λD,Max =
qi,Max(t)

τi
(7)

Formula 8 determines λD,Max in case of PFH, as follows:

λD Max =
− ln(qi,Max(t))

τi
(8)

After calculating λD,Max for all events, the latter should be ranked from the
most sensitive to the less sensitive to change. The most sensitive event is the
event for which Formula 9 is the minimum:

Sensitivity(λDi,G) =
λDi,Max − λDi,G

λDi,G
(9)

2.5 Derive Safety Contracts

In this step, safety contracts should be derived from FTAs. The main objectives
of deriving safety contracts are: (1) highlight the most important components
to make them visible up front for developers attention [16], and (2) record the
thresholds of λD(i) to continuously compare them with the monitoring results
(λD O). Hence, if λD O of component i exceeds the guaranteed λD Max(i) in
the contract of that component, then we can infer that the contract in question
is broken and the related FTA should be re-assessed in the light of the λD O.
Another objective to derive safety contracts is to associate these contracts with
safety arguments as reference points so that developers know the related part of
the argument when they review a FTA and vice versa. To this end, we introduce
two templates to derive contracts. The first contract template is for deriving a
contract for the top event only. The top event safety contract is annotated with

10 O. Jaradat and S. Punnekkat

the abbreviation “TE” in the upper-right corner of the contract to denote that
this contract is derived for a Top Event as shown in Fig. 1-A.

The second contract template is for deriving a safety contract for each event
in the MCS (i.e., events related to important components). This type of contracts
is referred to as “monitoring safety contracts” and it is is annotated with the
abbreviation “BE” in the upper-right corner to denote that this contract is
derived for a Basic Event as shown in Fig. 1-B.

Fig. 1. A. Contract template: Top Event. B. Contract template: Basic Event

2.6 Associate Safety Contracts with Safety Arguments

In this step, all safety contracts which were derived in Step 4 should be associated
with safety arguments. This step assumes that the safety argument should come
down to a claim that the “probability of failure of hazard H due to component
failure is acceptable”, in turn supported by a context element about what that
probability is in the context of an applicable definition of acceptable, in turn sup-
ported by the FTA as evidence. An Assurance Claim Points (ACP) [17] should
be created between the claim about the acceptable probability and the evidence,
where a separate confidence argument should extend this ACP to argue over the
quality of the used failure rates to calculate PFDAct(Top) or PFHAct(Top).

It is necessary that the argument should be clearly structured and the items of
evidence to be clearly asserted to support the argument [18]. There are several
ways to represent safety arguments (e.g., textual, tabular, graphical, etc.). In
this paper, we use the Goal Structuring Notation (GSN) [18], which provides a
graphical means of communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The basic notations of GSN are shown
in Fig. 2 (in the upper left side corner). A goal structure shows how goals are
successively broken down into (‘solved by’) sub-goals until eventually supported
by direct reference to evidence. GSN can clarify the argument strategies adopted

Using Safety Contracts to Verify Design Assumptions During Runtime 11

Fig. 2. A. A probability of failure argument with an association of a top event safety
contract. B. Confidence argument with an association of a monitoring safety contract

(i.e., how the premises imply the conclusion), the rationale for the approach
(assumptions, justifications) and the context in which goals are stated.

Assertions in a safety argument relate to the sufficiency and appropriateness
of the inferences declared in the argument, the context and assumptions used
and the evidence cited [17]. For example, when an item of evidence is used to
support a claim, it is asserted that this evidence is sufficient to support the claim.
However, a simple ‘SolvedBy’ relation between the evidence and the claim will
not satisfy a reviewer’s concerns to reach a certain level of confidence, such as,
‘why the reviewer should believe that the evidence is appropriate for the claim?’
or ‘whether it is trustworthy’.

Hawkins et al. [17] introduced “An assured safety argument” as a new struc-
ture for arguing safety in which the safety argument is accompanied by a confi-
dence argument that documents the confidence in the structure and bases of the
safety argument. Hawkins suggests that instead of decomposing the arguments
further to argue over the appropriateness and trustworthiness of the supporting
evidence, an ACP can be created to indicate an assertion in the safety argument.
An ACP is indicated in GSN with a named black rectangle on the relevant link
and a confidence argument should be developed for each ACP [17]. Three types
of assertions were defined as ACPs as follow:

1. Asserted inference: the ACP for an asserted inference is the link between the
parent claim and its strategy or sub-claims

2. Asserted context: the ACP for asserted context is the link to the contextual
element

3. Asserted solution: the ACP for asserted solutions is the link to the solution
element

12 O. Jaradat and S. Punnekkat

Asserted
Context

Goal

Goal

Strategy

Solution

Context

ACP.S3

A
ss

e
rt

e
d

In

fe
re

n
c
e

ACP.C1
ACP.I1

A
ss

e
rt

e
d

S

o
lu

ti
o

n Contract_ID
TE

Fig. 3. Types of ACPs with an example of each usage [17]

In this step, we suggest to use the principle of the ACP. Hence, the top
event safety contract should be associated with the ACP (i.e., asserted solution)
between the GSN goal which claims the acceptability of the hazard probability
due to a component failure and the GSN solution which refers to the relevant
FTA. Whereas, each monitoring safety contract should be associated with a
GSN goal about the relevant component in the confidence argument. Figure 2-A
shows a pattern of PFD or PFH argument and an example of top event safety
contract association. Figure 2-B shows a confidence argument pattern with an
association of a monitoring safety contract. Figure 3 instantiates an example of
each ACP type and it also represents our suggested traceability means which
associates the derived contracts from FTAs with safety arguments (the dotted
part in the figure).

2.7 Determine λD O Using the Data from Operation and Compare
it to the Guaranteed λD M ax in Safety Contracts

In this step, λD O of specified components should be obtained during the compo-
nents’ runtime. Using runtime monitors is one way to obtain data from operation.
There are many proposed architectures to detect or test a system (or parts of it)
for bad behaviour [19]. We provide a monitoring logic which requires two param-
eters (inputs) from any monitoring framework, namely, the number of recorded
failures (i.e., DD and DU) as well as τ in time unit (e.g., hours). Algorithm 1
should be used to determine λD O using the data from operation and compare
it to the guaranteed λD Max. The more we monitor a component and record
its failures the more confident we will be in its actual λD in a specific context.
The calculated level of confidence can reveal how long we still need to monitor
a component to reach a certain level of confidence. Hence, our algorithm also
calculates the confidence level of λD O(i)70% and λD O(i)90% continuously and
cumulatively using the Chi-Squared distribution. The calculated levels of confi-
dence of a monitored component are automatically inserted into its “monitoring
safety contract” and get updated continuously so that developers and assessors
can review them in the FTA and the safety argument.

Using Safety Contracts to Verify Design Assumptions During Runtime 13

2.8 Update the Safety Contracts and Re-visit the Safety Argument

If a monitoring safety contract is broken it means that there is at least one broken
top event safety contract as well. In this case, the broken safety contracts should
be used to trace the FTA events and elements of safety arguments (for which
the contracts were derived). As a result of doing this, developers can specify
the entry point of the impact of failure in the safety analysis and the safety
argument. It is worth mentioning that we assume the existence of a redundant
component of the failing component. Hence, a broken safety contract does not
necessarily lead to a total system failure.

Algorithm 1. The monitoring logic to determine λD O and compare it to
λD Max

Data: MissionTime, τ , λD Max, λDU O, DUfailures = 0, λDD O, DDfailures =
0, λD O, Num Comp, CL90, CL70;

Result: Determine λD O and compare it to λD Max

1 TotMonTime = clock(); \\Comment: start monitoring the mission time
2 while TotMonTime ≤ MissionTime do
3 Test Interval Monitor = clock(); \\Comment: start the monitoring time of

the test interval time
4 while Test Interval Monitor ≤ τ do
5 if a DD failure is found then
6 DDfailures++; \\Comment: add an observed failure from a

diagnosis log file
7 end
8 if a DU failure is recorded then
9 DUfailures++; \\Comment: add an observed failure which was

inserted manually
10 end
11 λDU O = 1/((TotMonTime * Num Comp) / DUfailures); \\Comment:

calculate λDU O

12 λDD O = 1/((TotMonTime * Num Comp) / DDfailures); \\Comment:
calculate λDD O

13 λD O = λDU O + λDD O; \\Comment: calculate λD O

14 CL70 = Chi-
Squared(X2

70%,2(DUfailures+DUfailures+1))/(2*Num Comp*TotMonTime);
\\Comment: λD O70%

15 CL90 = Chi-
Squared(X2

90%,2(DUfailures+DUfailures+1))/(2*Num Comp*TotMonTime);
\\Comment: λD O90%

16 if λD O ≥ λD Max then
17 Contract [C] is broken; \\Comment: highlight the broken contract

whenever λD O ≥ λD Max

18 end

19 end
20 Test Interval Monitor = 0; \\Comment: reset the τ timer to start a new one

21 end

14 O. Jaradat and S. Punnekkat

3 Motivating Example: Automated Guided Vehicles
(AGVs)

AGVs are being extensively used for more than 40 years now. They are used
for intelligent transportation and distribution of materials in warehouses and
auto-production lines. There are different setups and operational assumptions
for each application of AGVs in industry. In our example, however, the AGVs
are a number of battery-powered vehicles whose movements are autonomous.
The AGVs are interfaced to automated warehouse and holding area, and to the
machine tools, so that stock movement requirements can be fulfilled. The plant,
in our example, is not fully automated so that people cannot be fully excluded
from the areas where the AGVs work. Clearly, one of the most important safety
features of the AGV vehicles is their ability to detect obstacles and stop quickly
in order to avoid a collision with humans, hazardous objects (e.g., flammable
materials, electrical resources, other AGVs, etc.). After performing safety anal-
ysis, a number of safety hazards were identified. In this paper, we will focus on
one hazard, which is: Loss of obstacle detection while the vehicle is in motion. A
redundant 2-D LiDAR sensor with all-round (360◦) visibility is used for detect-
ing obstacles within up to 30 m range. Information about detected obstacles are
sent to the control system to determine the manoeuvring strategy to ultimately
avoid any potential collision.

According to the likelihood of occurrence, potential consequences and other
safety countermeasures in the AGVs, the obstacle detection function is assigned
SIL 3 (Safety Integrity Level) according to IEC 61508. Moreover, since the
function under discussion operates in a high demand (i.e., in a continuous mode),
the allowable frequency of dangerous failure according to the same standard is
PFH < 10−7. The proof test interval τ is assumed as 1 year (i.e., 8760 h) for
all components. Figure 4 shows an overview of the AGV design (on upper left-
hand corner). The figure also shows the FTA of the system where the top event
together with the basic events are specified by λD G.

Applying the first 5 steps in Sect. 2 is straightforward. Table 1 provides the
results of the steps 1–5. The Refine column reflects the experts judgment that
is supported by the RAW and Sensitivity ranking. For the sake of giving a clear
example of what should be done next, we assume that Control system got the
highest priority for monitoring (the grey row in Table 1). Hence, two contracts
should be derived in the case: (1) TE contract TB CSM and, (2) BE contract
(i.e., monitoring contract) TE CSSense.

Step 6 requires associating the derived contracts with the safety argument.
For AGV system example, we use our suggested GSN patterns in Sect. 2.6 to
create the confidence argument first and then associate the contracts with it
through an ACP. Figure 2 presents our safety argument and the role of the
proposed monitoring technique to provide supportive evidence for the articulated
claims about the failure rates in the argument. Figure 1 shows the derived TE
and BE for the top event CSSense and the basic event CSFails. The figure also
shows the GSN and FTA references which reveal the associations (or traceability)
of the contracts with the safety argument and the FTA, respectively.

Using Safety Contracts to Verify Design Assumptions During Runtime 15

Loss of obstacles
detection by an AGV

CSSense

No power from
the battery to the
control system
NofPwrBattry

Wiring fault between
the battery and the

control system
WiringFPwrRCS

No signal from
LiDAR sensor A

NoSigfSenA

Wiring fault between
LiDAR sensor A and

control system
WiringCSBA

No signal from
LiDAR sensor B

NoSigfSenB

No signal from LiDAR
sensors to the control

system
NoSigfLiDSens

Wiring fault between
LiDAR sensor B and

control system
WiringCSBB

 5E-12 /H
PFH 4.38E-08 /H

No processing of the
LiDAR signals by the

control system
NoProcess

Stuck to the faulty/empty
battery after switching to
the functioning battery

StuckWroBattry

Wiring fault between
LiDAR sensor B and

the battery
WiringPwrB

Wiring fault between
LiDAR sensor B and

the battery
WiringPwrA

LiDAR sensor B
fails

LiDARBFail

LiDAR sensor
A fails

LiDARAFail

 8.40E-12 /H
PFH 7.36E-08 /H

Stuck to the empty/faulty
battery after switching to
the functioning battery

StuckWroBattryA

Stuck to the empty/faulty
battery after switching to
the functioning battery

StuckWroBattryB

Control system
failure

CSFailure

 3E-12 /H
PFH 2.63E-08 /H

 5E-12 /H
PFH 4.38E-08 /H

 2E-10 /H
PFH 1.75E-06

 3E-12 /H
PFH 1.31E-08 /H

 3E-12 /H
PFH 1.31E-08 /H

 5E-12 /H
PFH 4.38E-08 /H

 5E-12 /H
PFH 4.38E-08 /H

 5E-12 /H
PFH 4.38E-08 /H

 4E-13 /H
PFH 3.50E-09 /H

 2E-10 /H
PFH 1.75E-06

B
ra

k
e

B
ra

k
e

2-D LiDAR x2
under the hood

Control
system

M
a

in
 B

a
tte

ry

Drive MotorDrive Motor

B
a

c
k

u
p

 B
a

tte
ry

TE_CSSense

T
B
_
C
S
M

Fig. 4. An overview of AGV’s and its probabilistic FTA (CSSense FTA)

Table 1. A summary of the results of applying the steps 1–5

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5
No. Events λλλD,G PFH RAW Max PFH λλλD Max Sensitivity Refine Contract
1 CSSense (Top) 8.4E-12 7.36E-08 10−7 TE CSSense
2 CSFails 4E-13 3.50E-09 13589269.0946 2.99E-08 3.41E-12 7.5380 1 TB CSM
3 WiringFPwrRCS 5E-12 4.38E-08 13589268.5470 7.02E-08 8.02E-12 0.6030
4 StuckWroBattry 3E-12 2.63E-08 13589268.7851 5.27E-08 6.02E-12 1.0051 3
5 LiDARAFail 2E-10 1.75E-06 26.3559 1.42E-02 1.63E-06 8137.5 2
6 WiringCSBA 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499
7 StuckWroBattryA 3E-12 2.63E-08 26.3559 1.42E-02 1.63E-06 542499 3
8 WiringPwrA 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499
9 LiDARBFail 2E-10 1.75E-06 26.3559 1.42E-02 1.63E-06 8137.5 2
10 WiringCSBB 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499
11 StuckWroBattryB 3E-12 2.63E-08 26.3559 1.42E-02 1.63E-06 542499 3
12 WiringPwrB 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499

4 A Through-Life Safety Assurance Technique

Denney et al. [5] introduced the term “Dynamic Safety Cases (DSCs)” as a
novel operationalisation of the concept of through-life safety assurance. The main
motivation for introducing DSCs is that the appreciable degree of certainty about
the expected runtime behaviour of a system might not be precise or it perhaps
over- or underestimate the actual behaviour, which can create deficiencies in the

16 O. Jaradat and S. Punnekkat

reasoning about the safety performance of that system. Hence, there is a need
for a new class of safety assurance techniques that exploit the runtime related
data (operational data) to continuously assess and evolve the safety reasoning
to, ultimately, provide through-life safety assurance [5]. The suggested lifecycle
of DSCs comprises four main activities as follows [5]:

1. Identify the sources of uncertainty in a safety case.
2. Monitor the runtime operation of the related system to collect data about

system and environment variables, events, and assurance deficits in the safety
argument(s).

3. Analyse the collected operational data from the former activity to examine
whether the defined thresholds are met, and to update the confidence in the
associated claims.

4. Respond to operational events that affect safety assurance. Deciding on
the appropriate response depends on a combination of factors including the
impact of confidence in new data, the available response options already
planned, the level of automation provided, and the urgency with which certain
stakeholders have to be alerted.

In this section, we explain how using the described technique in Sect. 2
enables a through-life safety assurance, where we (1) identify a source of uncer-
tainty, (2) provide a runtime monitoring mechanism, (3) analyse the collected
operational data, and (4) suggest a response to the operational events.

1. Identify a source of uncertainty: Evidence supporting a claim about a predic-
tion of a hardware failure rate may be obtained from different sources. Hand-
books produced by commercial, military or government sources can support a
claimed prediction of a hardware failure rate. A hardware vendor or an expert
might also support such claims. The explicit logic of a claim about a failure
rate prediction and its supported evidence is that the predicted likelihood of
component C to fail during time T of operation is λ because a handbook,
a vendor or an expert “says so”. The implicit assumption of such claims is
that the actual λ will conform to the predicted λ during the operational life.
This assumption is an obvious source of uncertainty (i.e., lack of confidence)
which can influence the level of confidence in the safety argument. Hence, it
is particularly important to know whether or not the actual failure rate of a
component during the operational life will be similar to the predicted (i.e.,
generic) rate as the evidence suggests.

2. Monitor the actual failure rate: Algorithm 1 provides the runtime monitor-
ing logic through which the number of failures of a hardware component is
continuously calculated during runtime.

3. Analyse the collected operational data: Algorithm 1 also analyses the calcu-
lated number of failures by comparing it with a predefined threshold.

Using Safety Contracts to Verify Design Assumptions During Runtime 17

4. Respond to operational events: If an observed λ exceeds the generic λ and
it is not tolerated by the maximum allowed λ, then a safety contract is bro-
ken. The monitoring algorithm highlights broken contracts indicating that an
additional safety countermeasure should be considered, such as replacing a
hardware component with an ultra reliable component or add a redundant
component. Since the contracts under monitoring by the algorithm is asso-
ciated with ACPs in the safety argument, a broken contract indicates the
affected GSN elements in the argument.

5 Discussion and Conclusion

Numerous studies and data analysis have shown either a decreasing or increasing
failure rate with time. Runtime monitoring enables a new source of data which
improves our perception of some functions, components, and behaviours within
safety critical systems. Monitoring a property of interest of a system component
and analysing the collected data enable us to know more about this component
(e.g., the way it behaves, fails, etc.). As a result, we can improve our confidence in
safety based upon more conscious reasoning that replaces the intuitive evidence
by more cognitive one. Some safety standards require monitoring and re-assessing
the reliability parameters which were used during the design time. For example,
IEC 61511-1 [9] requires operators to monitor and assess whether reliability
parameters of the Safety Instrumented Systems (SIS) are in accordance with
those assumed during the design time [10]. Although runtime monitoring is not
a new technique, there is no single way to specify what to monitor, why and
how. Safety contracts, on the other hand, are useful for building, reusing or
maintaining safety critical systems. The cost of maintaining system components
can be drastically reduced by using contracts as system developers may rework
the components with knowledge of the constraints placed upon them [20].

In this paper, we proposed a novel technique to monitor the runtime of a
system and detect the divergence between the failure rates (which were used in
the safety analyses) and the observed failure rates in the operational life. The
technique enables through-life safety assurance by utilising safety contracts to
provide prescriptive data for what should be monitored, and what parts of the
safety argument should be revisited to maintain system safety when a divergence
is detected. Future work will focus on creating a more in-depth case study to
validate both the feasibility and efficacy of the technique for software and hard-
ware applications. We also plan to formally define safety contracts and to fully
automate the application of the technique.

Acknowledgment. This work has been partially supported by the Swedish Foun-
dation for Strategic Research (SSF) (through SYNOPSIS and FiC Projects) and the
EU-ECSEL (through SafeCOP project).

18 O. Jaradat and S. Punnekkat

References

1. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of
the 24th International Conference on Software Engineering (ICSE), pp. 547–550,
May 2002

2. Jaradat, O., Sljivo, I., Habli, I., Hawkins, R.: Challenges of safety assurance for
industry 4.0. In: European Dependable Computing Conference (EDCC). IEEE
Computer Society, September 2017

3. Jaradat, O., Graydon, P., Bate, I.: An approach to maintaining safety case evi-
dence after a system change. In: Proceedings of the 10th European Dependable
Computing Conference (EDCC), UK (2014)

4. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quanti-
fying confidence in assurance arguments. Saf. Sci. 92(Supplement C), 53–65 (2017)

5. Denney, E., Pai, G., Habli, I.: Dynamic safety cases for through-life safety assur-
ance. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 2, pp. 587–590, May 2015

6. Reliability prediction basics. Technical report, ITEM Software Inc. (2007)
7. Pittiglio, P., Bragatto, P., Delle Site, C.: Updated failure rates and risk manage-

ment in process industries. Energy Procedia 45(Supplement C), 1364–1371 (2014).
ATI 2013 - 68th Conference of the Italian Thermal Machines Engineering Associ-
ation

8. Functional safety of electrical/electronic/programmable electronic safety-related
systems. IEC 61508-4 (2010)

9. Functional safety - Safety instrumented systems for the process industry sector.
IEC 61511-1 (2016)

10. Generowicz, M., Hertel, A.: Reassessing failure rates. Technical report, I&E Sys-
tems Pty Ltd. (2017)

11. Rausand, M.: Reliability of Safety-critical Systems: Theory and Applications.
Wiley, Hoboken (2014)

12. van Beurden, I., Goble, W.M.: The Key Variables Needed for PFDavg Calculation.
White paper, Exida, Sellersville, PA 18960, USA, July 2015

13. Goble, W.M.: Control System Safety Evaluation and Reliability, 2nd edn. (1998)
14. Rausand, M., Høyland, A.: System Reliability Theory: Models and Statistical

Methods and Applications. Wiley, Hoboken (2004)
15. van der Borst, M., Schoonakker, H.: An overview of PSA importance measures.

Reliab. Eng. Syst. Saf. 72(3), 241–245 (2001)
16. Jaradat, O., Bate, I., Punnekkat, S.: Using sensitivity analysis to facilitate the

maintenance of safety cases. In: Proceedings of the 20th International Conference
on Reliable Software Technologies (Ada-Europe), pp. 162–176, June 2015

17. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems Safety,
pp. 3–23. Springer, London (2011). https://doi.org/10.1007/978-0-85729-133-2 1

18. GSN Community Standard Version 1. Technical report, Origin Consulting (York)
Limited, November 2011

19. Kane, A.: Runtime monitoring for safety-critical embedded systems. PhD thesis,
Carnegie Mellon University, September 2015

20. Bates, S., Bate, I., Hawkins, R., Kelly, T., McDermid, J., Fletcher, R.: Safety case
architectures to complement a contract-based approach to designing safe systems.
In: Proceedings of the 21st International System Safety Conference (ISSC) (2003)

https://doi.org/10.1007/978-0-85729-133-2_1

Tool-Supported Safety-Relevant
Component Reuse: From Specification

to Argumentation

Irfan Sljivo1(B), Barbara Gallina1, Jan Carlson1, Hans Hansson1,
and Stefano Puri2

1 Mälardalen University, Väster̊as, Sweden
{irfan.sljivo,barbara.gallina,jan.carlson,hans.hansson}@mdh.se

2 Intecs, SpA, Pisa, Italy
stefano.puri@intecs.it

Abstract. Contracts are envisaged to support compositional verifica-
tion of a system as well as reuse and independent development of their
implementations. But reuse of safety-relevant components in safety-
critical systems needs to cover more than just the implementations.
As many safety-relevant artefacts related to the component as possible
should be reused together with the implementation to assist the inte-
grator in assuring that the system they are developing is acceptably
safe. Furthermore, the reused assurance information related to the con-
tracts should be structured clearly to communicate the confidence in the
component. In this work we present a tool-supported methodology for
contract-driven assurance and reuse. We define the variability on the
contract level in the scope of a trace-based approach to contract-based
design. With awareness of the hierarchical nature of systems subject to
compositional verification, we propose assurance patterns for arguing
confidence in satisfaction of requirements and contracts. We present an
implementation extending the AMASS platform to support automated
instantiation of the proposed patterns, and evaluate its adequacy for
assurance and reuse in a real-world case study.

1 Introduction

Software-intensive systems are rarely developed from scratch. Instead, compo-
nents developed previously are reused for building new systems [1]. The same
trend is visible in safety-critical systems, which usually need to be assured that
they are acceptably safe to be deployed. The assurance entails gathering a body
of evidence in form of a safety assurance case to communicate that any unreason-
able risk in the system has been mitigated. Due to this, reuse of components in
such systems is not complete without the reuse of assurance information associ-
ated with the component. While reuse of safety-related components is very much
present in safety-critical systems development, the lack of systematic approaches
to managing reuse of both components and their accompanying assurance infor-
mation has shown to be dangerous in the past [2].
c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 19–33, 2018.
https://doi.org/10.1007/978-3-319-92432-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_2&domain=pdf

20 I. Sljivo et al.

To address the issue of reuse in safety-critical systems, some reuse principles
have been promoted through the safety standards. For example, the automotive
functional safety standard ISO 26262 [3] with its concept of Safety Element out-
of-Context (SEooC) for reuse of components together with the related safety
assurance information. It promotes principles that should be followed to begin
the assurance process on the level of the SEooC, which is being developed inde-
pendently from the system in which it will be used. The purpose of the early
start of the assurance process is to support the integrator of the SEooC in assur-
ing their system according to the standard. Ideally, if all suppliers would provide
their components as SEooC, the integrator should have an easier job of assuring
that the integrated system is acceptably safe. The core aspect of SEooC devel-
opment are assumptions on the context in which the SEooC component could be
reused, such that their validation upon reuse establishes whether the component
and the related assurance information is reusable in the particular context.

To support SEooC development and reuse, we have proposed to use assump-
tion/guarantee component contracts in our previous work [4]. A contract is a pair
of assertions called assumptions and guarantees, where the component guaran-
tees a certain behaviour, given that the environment in which it is deployed
fulfils the assumptions [5]. Such contracts provide a systematic way to capture
the context assumptions and relate them with the properties that the SEooC
component implements. We have proposed to relate contracts with the assurance
information [4] and support contract-driven assurance by automating the gen-
eration of assurance argument-fragments on satisfaction of both such contracts
and the system requirements that can be validated via those contracts.

Reusable components such as SEooC are often characterised with param-
eters that are used to tailor the behaviour of the component in the different
settings in which the component is reused. To address such need for variability
at the contract level, we have made a distinction between strong and weak con-
tracts [6]. On the one hand, the strong contracts are those whose assumptions
should be met by every context in which the component is reused, hence its
guarantees are always offered by the component. On the other hand, the weak
contract assumptions do not need to be satisfied by every context in which the
component is reused, but when they are met, only then the component offers the
corresponding weak guarantees. This variability on the contract level can be used
to identify which assumed safety requirements offered by the SEooC component
are relevant in the system in which the SEooC is reused. Hence, the safety case
information related to those requirements and contracts can also be identified
for reuse. To set the ground for tool support, we have proposed a generic SEooC
MetaModel (SEooCMM) that defines relationships between SEooC components,
contracts, requirements and assurance assets [4]. The basic elements needed for
the tool support are a system modelling tool compliant with the SEooCMM, a
contract checking engine, and a safety case modelling tool.

In this paper we present our efforts to provide tool-support for contract-based
design that incorporates strong and weak contracts as well as the automated

Tool-Supported Safety-Relevant Component Reuse 21

generation of assurance arguments. We turn to the AMASS1 platform for our
implementation as it includes the needed tools for system modelling (CHESS2),
contract checking (OCRA3) and safety assurance case modelling (OpenCert4).
Two challenges arise when using the AMASS platform for contract-driven reuse
and assurance: (1) the contract-based design framework [7] implemented in
OCRA does not distinguish between the strong and weak contracts; (2) the
connection between the system and assurance modelling domains is not clearly
defined. To address the first challenge, we define the strong and weak contracts
in the scope of the contract-based framework implemented in OCRA. More-
over, we present how refinement checking can be adapted to support strong and
weak contracts through the interaction of CHESS and OCRA. To address the
second challenge, we first identify the information needed to perform contract-
driven assurance and extend CHESS to allow for its modelling. We structure
that information by extending the argument pattern for assurance of contract
satisfaction to account for the hierarchical component decomposition defined
through the notion of refinement. Then, we develop a transformation from the
system model to the assurance model that automatically instantiates the defined
argument-fragment for each component in the system. Finally, we validate the
tool-supported contract-based assurance and reuse methodology in a real-world
case study.

As assurance cases are gaining popularity, there is an increasing number
of tools supporting their development with particular focus on automation
capabilities. For example, Safety.Lab [8] focuses on model-based safety anal-
ysis and generates an argument structure from rich models of various safety-
relevant artefacts. The Eclipse-based Resolute tool [9] facilitates generating
assurance arguments from architectural models. The Evidence Confidence Asses-
sor (EviCA) [10] is a diagramming tool that supports automated generation
of confidence arguments related to manually created arguments. The Advo-
CATE [11] toolset includes a variety of automated features for assurance case cre-
ation and analysis. AdvoCATE automates instantiation of pre-developed argu-
mentation pattern from a hazard and safety requirement analysis. While we
also automatically instantiate a pre-developed pattern, we do so from architec-
tural models enriched with assumption/guarantee contracts coupled with safety-
relevant artefacts. This allows us to filter the relevant artefacts and provide
additional support for reuse and tailoring of context-specific automated argu-
ment generation.

The rest of the paper is organised as follows: In Sect. 2, we present some back-
ground information. We present the tool-supported methodology for contract-
driven assurance and reuse in Sect. 3. In Sect. 4, we present our case study.
Finally, we bring conclusions and indicate future work in Sect. 5.

1 AMASS - Architecture-driven, Multi-concern and Seamless Assurance and Certifi-
cation of Cyber-Physical Systems, https://amass-ecsel.eu/.

2 https://www.polarsys.org/chess.
3 https://ocra.fbk.eu/.
4 https://www.polarsys.org/projects/polarsys.opencert.

https://amass-ecsel.eu/
https://www.polarsys.org/chess
https://ocra.fbk.eu/
https://www.polarsys.org/projects/polarsys.opencert

22 I. Sljivo et al.

2 Background

In this section we first present the tools and concepts we build upon, and then
we present the system description of the considered case study.

2.1 AMASS Platform

The AMASS platform encompasses different tools, but we focus on the three
tools that facilitate system modelling (CHESS), formal verification of assumption
guarantee contracts (OCRA), and assurance case modelling (OpenCert). An
overview of the three tools is shown in Fig. 1. In the reminder of the section, we
present the tools together with their underlying theoretical concepts.

OCRA

Othello
System

Specification

Contract
checking
results

Argumentation
editor

CDO
Server

CHESS Model

OCRA
verification

engine

Fig. 1. The overview of the tool information flow

System Modelling: CHESS provides an editor to model all phases of system
development: from requirements definition, architecture modelling to software
design and its deployment to hardware. In the CHESS toolset, components can
be modelled as component types or component instances. Component types can
be seen as elements out of context, and component instances as the in-context rep-
resentation of the corresponding component types. Component instances inherit
the attributes of the corresponding component type. System modelling in CHESS
includes support for contract-based design, which relies on describing behaviours
of components in terms of contracts. CHESS supports modelling of both strong
and weak contracts and their association with components and system require-
ments. Moreover, delegationConstraint modelling element can be used to instan-
tiate a component parameter in the given system model. Furthermore, CHESS
facilitates interfacing with OCRA, such that the CHESS model together with the
contracts is exported in the Othello System Specification (OSS) format used by
OCRA. The contract checking is done by OCRA and the result is back-propagated
to the CHESS model, as shown in Fig. 1.

Contract-Based Design: OCRA [7] is a tool for compositional verification
of logic-based contract refinement built upon the OSS language, supporting a

Tool-Supported Safety-Relevant Component Reuse 23

trace-based approach to contract based design. The semantics of both compo-
nents and contracts is built around the notion of a trace, i.e., the observable part
of an execution of a component. Following the trace-based semantics, a compo-
nent S is described with a set VS of variables that are visible outside of the
component, and a set of all traces over VS is denoted as Tr(VS). Then, an envi-
ronment of S is a subset of Tr(VS). Assuming an assertion language, an assertion
A can be described by an associated set of ports VA and a semantics �A� defined
as a subset of Tr(VA). Building on top of the assertion language, a contract C =
(A,G) of the component S is a pair of assertions namely assumptions (A) and
guarantees (G) over VS . An environment E is said to be a correct environment of
C iff E ⊆ �A�. Contract refinement represents the backbone of checking the com-
ponent decomposition [7]. Informally, a set of contracts of the sub-components
refines a contract of the composite component if: (i) the assumptions of all sub-
component contracts are met by the other sub-components and the environment
defined by the assumptions of the composite component contract; and (ii) the
sub-component contracts deployed in the environment defined by the compos-
ite contract assumptions imply the composite contract guarantees. For a formal
definition of the refinement refer to [7].

Safety Case Modelling: A safety assurance case is often defined as an
explained and well-founded (supported by evidence) structured argument to
show that the system is acceptably safe to operate in a given context [12].
It is often required (explicitly or implicitly) by safety standards such as ISO
26262. Safety case is composed of all the work products gathered during the
development of a safety-critical system. The spine of a safety case is a safety
argument which connects the safety requirements and the evidence supporting
and justifying those requirements. Goal Structuring Notation (GSN) [12] is a
graphical argumentation notation used for safety case modelling. Since similar
rationales exist behind specific arguments in different contexts, argument pat-
terns of reusable reasoning are defined by generalising the specific details of
an argument. The basic elements of GSN are shown in Fig. 3, for more details
we refer the reader to the GSN Standard document [12]. To provide a better
portability and exchange of the safety arguments, a Structured Assurance Case
Meta-model (SACM) [13] standard is developed by Object Management Group.
Since SACM captures the basic argumentation elements and their relationships,
it can be used to instantiate different compliant meta-models for different argu-
mentation notations such as GSN and Claims-Arguments-Evidence (CAE).

OpenCert is an assurance and certification tool environment with a safety
argumentation modelling editor compliant with the standardised SACM. It fur-
ther includes a Connected Data Objects5 (CDO) server that supports collabo-
rative modelling. In particular, it stores the safety case models in a database on
a CDO server such that different distributed clients can access the models and
work on the same safety case concurrently.

5 https://www.eclipse.org/cdo/.

https://www.eclipse.org/cdo/

24 I. Sljivo et al.

2.2 The Motivating Case

In this paper we will use a wheel-loader use case [4] to validate our approach.
Wheel-loaders are usually equipped with a loading arm, which can perform up
and down movements. The Loading Arm Control Unit (LACU) is the software
control unit that coordinates the arm movement. The LACU architecture mod-
elled in CHESS is shown in Fig. 2. It consist of a component providing the current
arm position, and an arm controller which sends the arm movement command.
Moreover, it includes the Loading Arm Automatic Positioning (LAAP) compo-
nent which can automatically move the arm to a pre-defined position. In this
particular LACU the position is fixed (whereas it in other cases can be modified
by the operator), while the maximum ground speed of the vehicle is 70 km/h and
the speed limit for moving the arm is 20 km/h, as shown in Fig. 2. The LAAP
component is developed independently of this system as a SEooC.

The LACU safety analysis revealed the following system hazards: (1) unin-
tended arm movement, and (2) arm movement during high speed (i.e., when
the maximum speed of is greater than the ground speed limit). Some of the
safety requirements defined to minimise the risks of those hazards from occur-
ring are SR1: “The stop position of the loading arm shall not deviate more than
±0.04 rad” and SR2: “The loading arm shall be disabled during high speed”.

Fig. 2. The CHESS diagram of the LACU architecture

3 Contract-Driven Assurance and Reuse

In this section, we present the methodology for supporting contract-driven assur-
ance and reuse of safety relevant components. We first describe how to assure
safety requirements validated through contract-based design. Then, we focus on
the support for the contract-driven reuse of the components and their assurance
information in the context of a trace-based approach to contract-based design.

3.1 Contract-Driven Assurance

To assure that a system such as LACU satisfies a given safety requirement based
on the related contract, we need to provide evidence that the contract correctly

Tool-Supported Safety-Relevant Component Reuse 25

represents the requirement (often said that its guarantees formalise the require-
ment) and evidence that the contract is satisfied with sufficient confidence in the
given system context. We refer to this argument strategy as the contract-based
requirements satisfaction pattern, shown in Fig. 3.

While compositional verification of a system using contracts establishes valid-
ity of a particular requirement on the system model in terms of contracts,
confidence that the system implementation actually behaves according to the
contracts should also be assured. Hence, to drive the system assurance using
contracts we have associated assurance assets with each contract. Those assets
can be different kinds of evidence that increase confidence that the component
(i.e., the implementation of the contracts) behaves according to the contract,
i.e., that the component deployed in any environment that satisfies the con-
tract assumptions exhibits the behaviours specified in the corresponding con-
tract guarantees. To argue that a contract is satisfied with sufficient confidence
we need to assure that the component actually behaves according to the con-
tract, and that the environment in which the component is deployed satisfies the
contract assumptions [14]. But when we deal with hierarchical systems where
contracts are defined on each hierarchical level with well defined decomposition
conditions, then to argue that the composite component behaves according to
the contract, we should explicitly argue over the component decomposition. The
argument-pattern in Fig. 4 presents an extended contract-satisfaction argument
pattern [14] with contract decomposition.

The extension assures that for each of the contracts on the composite com-
ponent level (e.g., LACU) related to the requirement we are assuring, we should
ensure that we have confidence in the component decomposition described by
the refinement relationship (the contractDecomp goal). The goal is decomposed
such that we argue over confidence in all subcomponent contracts specified
through the refinement relationship. While the contractDecomp goal assures that
what the component offers is supported by the confidence in the internal sub-
component specification, the contractAssume goal assures that the environment
of the component/system meets the relevant assumptions.

3.2 Contract-Driven Reuse of Safety-Relevant Components

Reuse is intrinsic to contract-based design. It enables checking if a component
can be reused in a particular system, i.e., whether the system meets its demands

contracts
The list of {component} contracts

formalizing {requirement}:
{contractList}

reqConf
{requirement} is saƟsfied with sufficient confidence

reqImplementa on
{requirement} is correctly formalized
by the related {component} contracts

contConf
The set of {component} contracts
formalizing {requirement} are saƟsfied
with sufficient confidence

Goal Strategy ContextSoluƟon Undeveloped Element SupportedBy InContextOfUninstanƟated element Away Goal

The basic GSN
symbols legend

Fig. 3. Contract-driven requirement satisfaction assurance argument pattern

26 I. Sljivo et al.

contractDesc
{informal descripƟon of contract}

contractConfidence
{contract} is saƟsfied with sufficient confidence

contractDec
The list of contracts refining

{contract}: {contractRefinedBy}

contractDecomp
{contract} decomposiƟon
is correct

contractReq
The contract formalizes {requirement}

Away Goal
The contractN is saƟsfied
with sufficient confidence

ComponentN Module
Contract N of

sub-component N

DC-Str
Argument over all sub-component

contracts refining {contract}

contractComplete
{contract} is sufficiently complete

contractAssume
{contract} assumpƟons are
saƟsfied with sufficient confidence

Fig. 4. Contract satisfaction assurance argument pattern

and whether the component meets the demands of the system. The support
for reuse in contract-based design has been mainly focused on components (i.e.,
implementations of contracts) and not reusable components as implementations
of a set of contracts for different environments that may or may not be satisfiable
together. As mentioned in Sect. 1, we refer to contracts that are not required
to be satisfied by all correct environments as weak contracts. Conversely, the
strong contracts define all the correct environments, i.e., all correct environments
need to comply with all the strong contracts, while typically only some correct
environments need to comply with a particular weak contract.

We formally describe the strong and week contracts in terms of environ-
ments in the context of the trace-based contract framework [7]: for a compo-
nent S described with a set of strong contracts ξS(S) and a set of weak con-
tracts ξW (S), we say that an environment E is a correct environment of S if:
∀(A,G) ∈ ξS(S), E ⊆ �A�, i.e., for an environment of S to be correct, it must sat-
isfy the assumptions of all the strong contract of S. We denote with E(S) all the
correct environments of S. Such correct environments may or may not satisfy the
assumptions of the weak contracts of S. While this provides some flexibility in
specification of contracts, it may also mean that some weak contracts may never
be validated in any of the correct environments e.g., if a weak contract is contra-
dicting a strong contract. For S not to contain such unnecessary weak contracts
we require that each weak contract of S has at least one correct environment
that satisfies its assumptions, i.e.,: ∀(A,G) ∈ ξW (S),∃E ∈ E(S), E ⊆ �A�.

The problem with specifying such contracts is that if we try to check refine-
ment by considering all the specified weak contracts, the check will fail since a
single environment might not be able to meet the assumptions of all the weak
contracts. To overcome this problem without redefining the notion of contract
refinement, we can either (i) filter the weak contracts before checking the refine-
ment, such that only weak contracts whose assumptions are met by the current
environment are included in the refinement check; or (ii) transform the weak
contracts in a different format such that refinement can be performed:

Weak Contract Filtering: While a SEooC is described with sets of both
strong and weak contracts, when instantiated to a particular correct environ-
ment E then, for the purpose of refinement check, it is enough to describe the

Tool-Supported Safety-Relevant Component Reuse 27

SEooC instantiation with a subset of contracts that are applicable in the envi-
ronment E. Given a SEooC component S and its instantiation S′ in a correct
environment E ∈ E(S), the set of contracts of S′ denoted with ξ(S′), which
contains the contracts considered during refinement check, is a union of all the
strong contracts from ξS(S) and only those weak contracts from ξW (S) whose
assumptions are satisfied by the environment E.

Weak Contract Transformation: Instead of filtering only some weak con-
tract to perform the refinement check, the refinement check could be performed
if the weak contracts are transformed such that they do not impose restrictions
on the environment. This can be done if the weak contract assumptions are
relaxed. For a weak contract C = (A,G) of a component S, a relaxed counter-
part of this weak contract would be C ′ = (true;A =⇒ G), where true represents
an assertion satisfied by all environments. The relaxed counterpart has relaxed
assumptions, hence it differs from the corresponding weak contract in terms of
environments, but they are the same from the perspective of implementations.
Since the assumption of C ′ is satisfied by every correct environment of S, it
can be regarded as a strong contract. Since any contract that is refined by C is
also refined by C’, either form can be used for the sake of checking refinement
of a weak contract. If we have a set of weak contracts and we transform them
to their relaxed form and conjunct them to a single contract by conjunction of
their guarantees, then any contract that is refined by at least one of those weak
contracts is also refined by the conjuncted contract. The SEooC instantiation
in a particular context does not require contract filtering in this case, but the
in-context component can inherit both strong and weak contracts. Since the
refinement check by considering all the strong and weak contracts would fail in
case of two weak contracts that do not share the same correct environments,
we transform the weak contracts to the appropriate format described as follows:
given a SEooC component S and its instantiation S′ in a correct environment
E ∈ E(S), the set of contracts of S′ denoted with ξ(S′), which contains the con-
tracts considered during refinement check, is a union of all the strong contracts
from ξS(S) and the conjuncted contract of all the weak contracts in their relaxed
form from ξW (S).

Although this approach allows all the contract specifications to be used for
checking the refinement, it does not reveal which weak contracts are relevant in
the environment E, i.e., assumptions of which weak contract are satisfied by E.
Not knowing which weak contract is relevant in the current environment means
that we do not know which weak contract and its assurance assets we should use
in the assurance case. For the sake of reuse we still need to check which weak
contracts are relevant in the environment E.

3.3 Tool Support

We build upon the synergy of the three tools presented in Sect. 2 and implement
the contract-driven assurance and reuse methodology by developing new and

28 I. Sljivo et al.

upgrading the existing plugins within the tools. We extend CHESS to support
SEooCMM by adding the possibility to capture information about assurance
assets and their relation to the corresponding contracts. With OCRA results
back-propagated to the CHESS model, we perform automated weak contract fil-
tering for the component instances. Upon updating the CHESS model, we then
automatically instantiate the contract-driven assurance argumentation patterns
for each component in the CHESS model. The generated argumentation is stored
on a CDO server which can be accessed by any OpenCert argumentation editor
connected to the CDO server. In the reminder of the section we detail the imple-
mentation (available on the CHESS 6 and OpenCert7 repositories) of refinement
checking with strong and weak contracts as an extension of CHESS and the
automatic argument generation as an OpenCert plugin.

Refinement Checking with Strong and Weak Contracts: As mentioned
in Sect. 3.2, to use a contract checking engine such as OCRA, which does not
distinguish between strong and weak contracts, we can either support “weak
contract filtering” as a part of reusable component instantiation or weak contract
transformation to an appropriate format. We extend CHESS so that we can check
all the weak contract validity and automatically update the component instance
by indicating which weak contracts are valid in the given environment.

To fully support the presented methodology, we have also implemented the
second solution that includes all weak contracts in contract refinement checking.
The choice of which type of refinement with strong and weak contract to use is
up to the user, as it allows for different possibilities. When the users are manually
selecting which weak contracts they want in the given context, then they may
have to manually check which of them are relevant for their system. Conversely,
when the user selects to perform refinement check with all the weak contracts,
then if any of the weak contracts meet the system demands, the refinement will
be successful and the weak contracts applicable in the given context will be
automatically indicated without the need to manually select them. Our CHESS
extensions to support the contract-driven assurance and reuse are hosted in the
following CHESS plugins:

– org.polarsys.chess.contracts.transformations – contains model to text [15]
transformation for generating the .oss file representing the model;

– org.polarsys.chess.contracts.integration – contains interface for communicat-
ing with OCRA.

Automated Argument-Fragment Generation: To facilitate automated
instantiation of the contract-driven assurance pattern from Sect. 3, we imple-
ment the ArgumentGenerator plugin8 within OpenCert. The user is prompted
to select both the source CHESS model and the target assurance case in the CDO
6 https://git.polarsys.org/c/chess.
7 https://git.polarsys.org/c/opencert.
8 org.eclipse.opencert.chess.argumentGenerator.

https://git.polarsys.org/c/chess
https://git.polarsys.org/c/opencert

Tool-Supported Safety-Relevant Component Reuse 29

repository. The plugin generates a set of argument-fragments from the source
CHESS model and stores them in the corresponding target assurance case in
the CDO repository. The ArgumentGenerator assumes that the CHESS model
contains contract specifications and that the contract refinement check has been
performed such that the status of both strong and weak contracts is updated to
indicate if the contract is validated in the given context or not. The argument
generation creates an argument-fragment for each component. The connection
between different argument-fragments is done through away goals. The resulting
argument-fragments can be viewed in the target assurance case by anyone with
access to the CDO server from an OpenCert argumentation editor.

4 LACU Case Study

In this section, we present our case study with the objective to apply the tool-
supported contract-driven assurance and reuse methodology on a real-world case
and evaluate its adequacy for automated support of assurance and reuse of assur-
ance assets. We first present the failure propagation modelling in CHESS of the
LACU and its in-context components, as well as the reusable LAAP component.
Then, we discuss the contract checking results, and present the automatically
generated argument-fragments.

4.1 Failure Propagation Modelling

To analyse the satisfaction of the safety requirement SR1 mentioned in Sect. 2.2,
we model LACU with faults as different input/output ports of the components.
For example, we consider the deviation of ±0.04 rad from the stop position to be a
fault of the LACU arm positioning command represented by the fault PWMFlow
port. Hence, the goal of the contract corresponding to such an interpretation
of SR1 would be to guarantee that fault PWMFlow never occurs. To guaran-
tee such a property in the context of the LACU defined by the parameters
specified in Fig. 2, both one of the angle sensors and the ground speed sen-
sor need to provide correct values. Furthermore, the operator inputs LAAPRe-
quest and operatorControlLever should be fault free as well. This is captured in
the LACU fault propagation contract in Fig. 5. To ensure that the component
decomposition with respect to the fault propagation is done correctly, we define
fault propagation contracts on the sub components as well. Figure 5 presents the
contracts for LACU, and its armPositioning and armController sub-components,
as these are the components modelled for the particular wheel-loader.

The contracts of LAAP as a reusable component are specified separately, as
they deal with not just this particular wheel-loader, but also other wheel-loaders
that may support dynamic automatic positioning or that may or may not be
able to move at high speed. We define four different weak contracts for the four
different environments based on the two aspects of the wheel-loaders: dynamic
automatic positioning and high-speed capability. In all environments the LAAP
depends on fault-free user input, hence all contracts have the same assumptions

30 I. Sljivo et al.

Fig. 5. The LACU strong contracts specified in CHESS

Fig. 6. LAAP fault propagation weak contracts specified in CHESS

considering fault free LAAPRequest and operatorControlLever. But on top of
those conditions, for LAAP to ensure it will not issue a faulty arm positioning
command in each of the four environments it needs additional conditions to be
met, sometimes stronger and sometimes weaker. The LAAP weak contracts for
the four contexts modelled9 in CHESS are shown in Fig. 6. In particular, for the
LAAPFlow not to be faulty when the wheel-loader is capable of high speed and
has a static automatic positioning setpoint, the only additional assumption on
the environment is that the ground speed sensor is not faulty, as captured by the
LAAP fault propagation W1 contract. On the other hand, when in addition to
the high speed capability, the setpoint is dynamic, then the LAAP component
requires not only ground sensor to be fault free, but also the LAAP setpoint value
to be correct (the LAAP fault propagation W2 contract). Conversely, when the
vehicle is not capable of high-speed and when the setpoint is static, then
LAAP has no additional constraints (the LAAP fault propagation W3 contract).
Finally, when the vehicle is not capable of high speed and the setpoint is not
static, then the only additional constraint is on the correctness of the LAAP
setpoint value (the LAAP fault propagation W4 contract).

4.2 LACU Assurance

To assure SR1 related to the fault propagation contracts of LACU, we first vali-
date the weak contracts and then perform a refinement check. The weak contract

9 The contract type information is attached to the component and not shown here.

Tool-Supported Safety-Relevant Component Reuse 31

validity check identifies that only the LAAP fault propagation W1 weak contract
is valid in the given LACU context. Hence, only that contract is selected in the
LAAP component instance. The informal description of each of the contracts is
added to the CHESS model, as well as relations to the requirements. Once all
the information is saved in the CHESS model and the status of the contracts is
updated, we can proceed to automatically generate argument-fragments for each
component in the system. Figure 7 shows the screenshot of the Opencert interface
presenting the result of the automatic instantiation of the contract-satisfaction
argument pattern (Fig. 4) based on the information from the CHESS model of
LACU. The list of automatically generated argument-fragment diagrams for each
LACU component is in the top-left corner of the OpenCert interface.

Fig. 7. Preview of the LACU automatically generated argument-fragment in OpenCert

4.3 Discussion

Contract-based design inherently supports reuse of components in form of con-
tract implementations. But to fully understand the behaviour of a component
and its safety implications, the context in which that behaviour is exhibited
needs to be known. While component contracts represent a way of capturing a
part of that context, additional context information is typically needed when
dealing with safety-relevant components. In this case study, we have demon-
strated how contract-based design can support reuse beyond implementations,
to also include safety assurance artefacts related to those implementations.

32 I. Sljivo et al.

Whether we perform the development of safety-relevant components in- or
out-of-context, for reuse or just for a single system, different stakeholders are
usually involved in the development process. For example, the expert perform-
ing the contract specification in a formal specification language such as OSS is
not necessarily the same stakeholder as the one performing assurance modelling.
Adoption of contracts just as any other formal specification is often hindered
by the fact that not everyone can master a formal language [16]. Hence, for the
stakeholder performing assurance modelling that should build upon different
contract checks, we deem it is useful to accompany the contracts with additional
information by the stakeholder that actually specified the contracts. Further-
more, a potential verifier assigned to verify certain behaviours of the component
specified in a contract can directly associate that evidence with the contract and
describe the results. While the goal of the LACU case study was not to evaluate
the influence of our methodology on the quality of communication between differ-
ent stakeholders in the development, during testing of the AMASS platform and
collaborating on both modelling and assuring different systems, we could expe-
rience some of the communication benefits. Capturing all the safety assurance
relevant information provided by different stakeholders in safety-critical system
development in a traceable way has the potential of enhancing the collabora-
tion between different stakeholders in building an assurance case. Moreover, by
automatically generating parts of the argumentation, the safety engineer gets a
head-start in assuring the system safety.

5 Conclusions and Future Work

Reuse of safety-relevant components in safety-critical systems needs to cover
more than just the implementation. Enriching contract-based design by associ-
ating contracts with assurance information enables us to reuse assurance arte-
facts together with the accompanying contract implementations. Furthermore,
enabling variability modelling of the contract specifications in terms of strong
and weak contracts allows us to provide greater support for reuse of components
explicitly developed for reuse in different contexts. We have presented a tool sup-
port for the methodology by introducing system modelling with strong and weak
contracts and their alignment with trace-based contract-based design. Further-
more, we have enabled automatic instantiation of assurance argument-fragments
from the enriched system models. The presented tool support and the case study
illustrate the feasibility of our contract-driven assurance and reuse methodology
to assist in assuring requirements satisfaction and reusing assurance information.

To reap the full benefits of contract-driven assurance and reuse, further exten-
sions to the AMASS platform are needed. Extending the underlying meta-model
to connect the contracts with component failure behaviour could enable instan-
tiation of many argument patterns that focus on failure behaviour. Furthermore,
the traceability between the system and assurance modelling achieved through
the contracts could be further enriched to support analysis and assurance of the
interplay of multiple system concerns such as safety and security.

Tool-Supported Safety-Relevant Component Reuse 33

Acknowledgements. This work is supported by the EU and VINNOVA via the
ECSEL Joint Undertaking projects AMASS (No 692474) and SafeCop (No 692529),
as well as the Swedish Foundation for Strategic Research (SSF) via the FiC project.

References

1. Varnell-Sarjeant, J., Andrews, A.A., Stefik, A.: Comparing reuse strategies: an
empirical evaluation of developer views. In: 8th International Workshop on Quality
Oriented Reuse of Software, pp. 498–503. IEEE (2014)

2. Jézéquel, J.-M., Meyer, B.: Design by contract: the lessons of Ariane. IEEE Com-
put. 30(1), 129–130 (1997)

3. International Organization for Standardization (ISO). ISO 26262: Road vehicles –
Functional safety. ISO (2011)

4. Sljivo, I., Gallina, B., Carlson, J., Hansson, H., Puri, S.: A method to generate
reusable safety case argument-fragments from compositional safety analysis. J.
Syst. Softw. Spec. Issue Softw. Reuse 131, 570–590 (2016)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinke-
meier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.G.:
Contracts for system design. Research report RR-8147, Inria, November 2012

6. Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Strong and weak contract formal-
ism for third-party component reuse. In: 3rd International Workshop on Software
Certification, pp. 359–364. IEEE, November 2013

7. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97(3), 333–348 (2014)

8. Ratiu, D., Zeller, M., Killian, L.: Safety.Lab: model-based domain specific tooling
for safety argumentation. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP
2015. LNCS, vol. 9338, pp. 72–82. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24249-1 7

9. Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M.: Resolute: an assurance case
language for architecture models. ACM SIGADA Ada Lett. 34(3), 19–28 (2014)

10. Nair, S., Walkinshaw, N., Kelly, T., de la Vara, J.L.: An evidential reasoning app-
roach for assessing confidence in safety evidence. In: 26th International Symposium
on Software Reliability Engineering, pp. 541–552. IEEE (2015)

11. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Softw.
Eng., 1–65 (2017)

12. Goal Structuring Notation Working Group. GSN Community Standard V1.0. Ori-
gin Consulting (York) Limited (2011)

13. Object Management Group. SACM: Structured Assurance Case Metamodel. Tech-
nical report, V1.0 (2013). http://www.omg.org/spec/SACM

14. Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Generation of safety case argument-
fragments from safety contracts. In: Bondavalli, A., Di Giandomenico, F. (eds.)
SAFECOMP 2014. LNCS, vol. 8666, pp. 170–185. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10506-2 12

15. Object Management Group. MOFM2T: MOF Model to Text Transformation Lan-
guage. Technical report, V1.0 (2008). http://www.omg.org/spec/MOFM2T

16. Filipovikj, P., Nyberg, M., Rodriguez-Navas, G.: Reassessing the pattern-based
approach for formalizing requirements in the automotive domain. In: 22nd Inter-
national Requirements Engineering Conference. IEEE, August 2014

https://doi.org/10.1007/978-3-319-24249-1_7
https://doi.org/10.1007/978-3-319-24249-1_7
http://www.omg.org/spec/SACM
https://doi.org/10.1007/978-3-319-10506-2_12
https://doi.org/10.1007/978-3-319-10506-2_12
http://www.omg.org/spec/MOFM2T

Ada 202X

Safe Dynamic Memory Management
in Ada and SPARK

Maroua Maalej1(B), Tucker Taft2, and Yannick Moy1

1 AdaCore, Paris, France
{maalej,moy}@adacore.com
2 AdaCore, New York, USA

taft@adacore.com

Abstract. Handling memory in a correct and efficient way is a step
toward safer, less complex, and higher performing software-intensive sys-
tems. However, languages used for critical software development such as
Ada, which supports formal verification with its SPARK subset, face
challenges regarding any use of pointers due to potential pointer alias-
ing. In this work, we introduce an extension to the Ada language, and
to its SPARK subset, to provide pointer types (“access types” in Ada)
that provide provably safe, automatic storage management without any
asynchronous garbage collection, and without explicit deallocation by
the user. Because the mechanism for these safe pointers relies on strict
control of aliasing, it can be used in the SPARK subset for formal verifi-
cation, including both information flow analysis and proof of safety and
correctness properties. In this paper, we present this proposal (which has
been submitted for inclusion in the next version of Ada), and explain how
we are able to incorporate these pointers into formal analyses.

Keywords: Compilation · Safe pointers · Formal verification
Memory management

1 Introduction

Standard Ada supports safe use of pointers (“access types” in Ada) via strong
type checking, but safety is guaranteed only for programs where there is no
explicit deallocation of pointed-to objects – explicit deallocation is considered
“unchecked” programming in Ada, meaning that the programmer is responsible
for ensuring that the deallocation is not performed prematurely. Ada can provide
automatic reclamation of the entire memory pool associated with a particular
pointer type when the pointer type goes out of scope, but it does not automat-
ically reclaim storage prior to that point. It is possible for a user to implement
abstract data types that do some amount of automatic deallocation at the object
level, but this requires additional programming, and typically has certain limita-
tions. As part of its strong type checking, Ada also prevents dangling references
to objects on the stack or the heap, by providing automatic compile-time check-
ing of “accessibility” levels, which reflect the lifetimes of stack and heap objects.
c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 37–52, 2018.
https://doi.org/10.1007/978-3-319-92432-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_3&domain=pdf

38 M. Maalej et al.

Conversions between pointer types are restricted to ensure pointers never outlive
the objects they designate. Values of a pointer type are by default initialized to
null to prevent use of uninitialized pointers, and run-time checks verify that a
null pointer is never dereferenced.

SPARK is a subset of the Ada programming language, targeted at the most
safety- and security-critical applications. SPARK starts with the basic Ada fea-
tures oriented toward building reliable and long-lived software, then adds restric-
tions that ensure that the behavior of a SPARK program is unambiguously
defined, and simple enough that formal verification tools can perform an auto-
matic assessment of conformance between a program specification and its imple-
mentation. The SPARK language and toolset for formal verification have been
applied over many years to on-board aircraft systems, air traffic control systems,
cryptographic systems, and rail systems [8,9].

As a consequence of our focus in SPARK on proof automation and usability,
we have forbidden the use in SPARK of programming language features that
either prevent automatic proof, or require extensive user effort in annotating
the program. Pointer types are the main example of this for SPARK. SPARK
supports many Ada features that can make up for the lack of pointers: by-
reference parameter passing, the ability to specify the address of objects, and
the support for arrays as first-class objects. On the other hand, pointers are
sometimes desirable, which forces one to exclude from formal SPARK analysis
the parts of a program that make use of pointers. While there are idioms that
facilitate this isolation of pointers in non-SPARK parts of a program [2], it would
be desirable to provide some level of support for pointers in SPARK.

In this work, we propose a restricted form of pointers for Ada that is safe
enough to be included in the SPARK subset. As our main contribution, we
show how to adapt the ideas underlying the safe pointers from permission-based
languages like Rust [3] or ParaSail [13], to safely restrict the use of pointers in
more traditional imperative languages like Ada. In Sect. 2, we provide rationale
for the rules that we propose to include in the next version of Ada, which takes
into account specifics of Ada such as by-copy/by-reference parameter passing
and exception handling. In Sect. 3, we outline how these rules make it possible
to formally verify SPARK programs using such pointers. Finally, we present
related work and conclude.

2 A Proposal for Ownership Types in Ada

Pointers (access types) are essential to many complex Ada data structures, but
they also have downsides, and can create various safety and security problems.
When attempting to prove properties of a program, particularly those with mul-
tiple threads of control, the enemy is often the unknown “aliasing” of names
introduced by access types and certain uses of (potentially) by-reference param-
eters. We say that two names may alias if they have the possibility to refer to
overlapping memory regions. By unknown aliasing of names, we mean the case
where two distinct names might refer to the same object, without the compiler

Safe Dynamic Memory Management in Ada and SPARK 39

being aware of it. A rename introduces an alias, but not an “unknown alias,”
because the compiler is fully aware of such an alias. However, if a global variable
is passed by reference as a parameter to a subprogram that also has direct access
to the same global, the by-reference parameter and the global are now aliases
within the subprogram, and the compiler generating its code has no way of know-
ing this, hence they are “unknown aliases.” One approach is to always assume
the worst, but that makes analyses much harder, and in some cases infeasible.
Access types also introduce unknown aliasing, and in most cases, an analysis tool
will not be sure whether the aliases exist, and will again have to make worst-case
assumptions, which again may make any interesting proof infeasible.

The question that emerges in this context is: can we create a subset of access-
type functionality that supports the creation of interesting data structures with-
out bringing along the various problems associated with unknown aliasing? The
notion of pointer “ownership” has emerged as one way to “tame” pointer prob-
lems, while preserving flexibility [12]. The goal is to allow a pattern of use of
pointers that avoids dangling references as well as storage leaks, by provid-
ing safe, immediate, automatic reclamation of storage rather than relying on
unchecked deallocation, while also not having to fall back on the time and space
vagaries of garbage collection. As a side benefit, we can also get safer use of point-
ers in the context of parallelism. We propose the use of pointer ownership (as
well as additional rules, detailed in [1], disallowing “aliasing” involving parame-
ters) to provide safe, automatic, parallelism-friendly heap storage management
while allowing the flexible construction of pointer-based data structures, such as
trees, linked lists, hash tables, etc.

Although we took inspiration from Rust and ParaSail to produce this pro-
posal, it is also different in many ways, due to the different objectives pursued in
Ada and SPARK. Firstly, this proposal is designed to work with existing features
of Ada such as by-copy/by-reference parameter passing and exception handling:
raising an exception should not lead to memory leaks, and upon handling of a
raised exception, objects should not be left in an inconsistent state. Secondly,
this proposal relies on Ada’s exiting mechanisms for avoiding uninitialized or
dangling pointers: uninitialized and freed pointers should be set to null so that
dereferencing such pointers results in a run-time error.

By relying on pointer ownership, we can ensure that pointer-based struc-
tures in SPARK can be supported while preserving SPARK’s strict anti-aliasing
parameter passing rules, thereby allowing the SPARK proof tools to prove the
same range of safety and correctness properties, including freedom from data
races, even in programs that use pointer-based structures in conjunction with
concurrent and parallel programming constructs (see Sect. 3).

2.1 Ownership Types

In this section, we describe the Ownership aspect, a Boolean value that can be
specified True for an Ada access type, with the effect that the compiler enforces
an additional set of rules to ensure that there can be at most one writable access
path to the data designated (i.e. pointed to) by an object of such an access type,

40 M. Maalej et al.

or alternatively one or more read-only access paths via such access objects,
but never both concurrently. This is known as the Concurrent-Read-Exclusive-
Write (CREW) access policy [11]. The CREW policy prevents multiple access
via different objects to the same memory area whenever one of those access
objects is modifying that area.

In addition to access types, Ownership can also be specified True for compos-
ite types, allowing for a record, an array, or even a private type with potentially
multiple components that are access objects with Ownership True. Any object
of a type with Ownership True is called an ownership object. In addition, we use
the more general term managed object to refer to any object that is reachable
by following ownership access objects. Here is the overall taxonomy:

– Ownership objects: objects of a type with Ownership aspect True, including:
• Owning access objects: access-to-variable objects with Ownership aspect

True;
• Observing access objects: access-to-constant objects with Ownership

aspect True;
• Composite ownership objects: records and arrays with Ownership aspect

True;
– Other managed objects: non-ownership objects that are pointed to by an

owning or observing access object.

In the remainder, we presume that all objects in the code samples we present
are managed objects; we refer the reader to [1] for further details on the Owner-
ship aspect specification, and specific rules that apply to non-ownership managed
objects. Note also that some of the Ownership rules will be expressed in terms of
“names” rather than “objects,” since objects do not really exist at compile-time,
when these rules are intended to be enforced.

In the next section, we will focus on owning and observing access objects,
which as parameters are passed by copy in Ada, before we consider the situation
of composite ownership objects, for which we require pass-by-reference. As it
turns out, when worrying about the number of ways one can reach an object,
passing a parameter by copy or by reference can make a difference, particularly
in the context of propagating and handling exceptions.

2.2 Ownership for Access Objects

To ensure safe memory management, the basic rule is that at most one object
that gives update access may be used at one time to refer to a designated object,
and while such an updater exists, access via any other object is disallowed. There
might be multiple access objects that designate the same object (or some part
of it) at certain times, but all of them must provide only read access.

The manipulation of ownership access objects in the program is limited to
the following three kinds of operations:

– Moving : An assignment operation that leads to moving the value of one access
object into another, leaving behind a null;

Safe Dynamic Memory Management in Ada and SPARK 41

– Borrowing : The declaration of a short-term read-write reference by copying
an existing access object, borrowing its value for the lifetime of the borrower.

– Observing : The declaration of a short-term object that gives read-only access,
by copying an existing access object, observing the object(s) reachable from
it for the lifetime of the observer.

Given an access object, it should have one of three possible states at any
point in its scope:

– Unrestricted : the object may be dereferenced and used to read or update the
designated object;

– Observed : the object may be used for read-only access to all or part of the
designated object, or part of some object directly or indirectly reachable via
a chain of owning access objects from the designated object;

– Borrowed : the object’s ownership has been temporarily transferred to another
object, and while in such a state the original access object is not usable for
reading or updating the designated object (nor for any other purpose).

Moving Access Values. The move operation involves a complete transfer of
the ownership from the right hand side to the left hand side in an assignment
operation, where both left- and right-hand-side objects are owning access vari-
ables in the unrestricted state. After the assignment, the right-hand side gets
set to null, and the newly assigned object becomes the (unrestricted) owner. By
setting the original access object to null, any name that starts with a dereference
of that original access object is effectively “destroyed”; even if an exception is
raised before we explicitly assign a new value to the right-hand side, there is
no danger a handler for the exception will be able to dereference the old value
of the right-hand side. Being able to use the old value to reach the designated
object would, at a minimum, violate our CREW policy, and could cause havoc
if the designated object had been deallocated after the move, but prior to the
exception being raised.

In addition to setting the right-hand side to null, a move also finalizes and
deallocates the object, if any, designated by the left-hand side prior to the assign-
ment. This automatic deallocation means memory is reclaimed as soon as it is
no longer accessible, thereby preventing memory leaks, without the need for an
asynchronous garbage collector. This is safe to do, because a move requires the
left-hand side to be in the unrestricted state, meaning that it is the only access
object pointing to the object about to be deallocated.

In addition to considering certain assignment statements to be moves, we also
consider the assignments inherent in passing by copy an out or in out parameter
to be moves, as well as returning a value from a function. Updating a subcom-
ponent of a composite object is also considered a move, but we consider these
in the section focused on composite types (see below).

Figure 1 illustrates an example of “move” operations. Objects X and Y are
access-to-variable objects of the named type Int Ptr. At a Swap procedure call
site, the actual parameter X, which is required to be in the unrestricted state, is

42 M. Maalej et al.

copied in to the formal X Param. The ownership of X.all (X.all is Ada’s notation
for dereferencing X – X.all denotes the object designated by X) is similarly
moved from X to X Param. This requires setting X to null until the subprogram
returns (to ensure safety in the presence of an exception), at which point the
final value of X Param is copied back to X. Variable X then reasserts its ownership
over X.all. Similar state transitions apply for Y and Y Param. At lines �4, �6, and
�7, we have additional move operations, which consist of moving, respectively,
the objects X Param, Y Param, and Tmp. Thanks to our move-related rules, even
such a straightforward implementation of the Swap procedure for access types is
nevertheless guaranteed to be alias safe while Swap is executing, both from the
caller perspective and from inside Swap itself, since the ownership is transferred
as part of each access-to-variable object assignment.

1 t y p e I n t P t r i s a c c e s s i n t e g e r ;
2

3 p r o c edu r e Swap (X Param , Y Param : i n ou t I n t P t r) i s
4 Tmp : I n t P t r := X Param ;
5 beg in
6 X Param := Y Param ;
7 Y Param := Tmp ;
8 end Swap ;
9

10 X : I n t P t r := new I n t e g e r ’ (7) ;
11 Y : I n t P t r := new I n t e g e r ’ (1 1) ;
12

13 Swap (X, Y) ;

Fig. 1. Example of moving the ownership of an object.

Borrowing Access Values. We say that an access value has been “borrowed”
if that value has been copied into a short-lived (owning) access-to-variable object.
A borrowing operation is a temporary transfer of the ownership of the said
borrowed object until the end of the scope of the borrower. We want the original
access object to still designate the same object until the borrower goes away.
As a result, while an access object is in the borrowed state, its value may not
be changed; furthermore, to preserve our CREW policy, we disallow using or
copying it again until the current borrower goes away; in the borrowed state,
the original access object is completely “dead” – it cannot be read nor be the
target of an assignment. Furthermore, borrowing applies recursively down the
tree rooted at the original access object, meaning that at the point where a name
is borrowed, every name with that name as a prefix, is similarly borrowed.

The assignment operations that are considered borrowing are those that ini-
tialize a stand-alone object of an anonymous access-to-variable type, or a con-
stant or an in parameter of a (named or anonymous) access-to-variable type.
We also consider as borrowing passing an object of a composite ownership type
as a parameter of mode out or in out – see Sect. 2.3 below. The code snippet
of Fig. 2 is a simple example of borrowing. X and Y are both access-to-variable

Safe Dynamic Memory Management in Ada and SPARK 43

objects. We want to swap the objects designated by the two pointers (their “con-
tents”) using the Swap Contents procedure. To that end, we declare X Param and
Y Param as formal parameters of mode in. Objects X and Y become borrowed in
the caller, and inside Swap Contents X Param and Y Param are the borrowers,
in the unrestricted state. This state allows reading and updating via these for-
mal parameters, which enables swapping the value of their designated objects.
Note that we allow an in parameter or a constant of an owning access type to
provide read/write access to its designated object to accommodate existing Ada
practice in the use of such “constant” access-to-variable values to nevertheless
update their designated objects.

1 t y p e I n t P t r i s a c c e s s i n t e g e r ;
2

3 p r o c edu r e Swap Conten t s (X Param , Y Param : i n I n t P t r) i s
4 Tmp : i n t e g e r := X Param . a l l ;
5 b eg in
6 X Param . a l l := Y Param . a l l ;
7 Y Param . a l l := Tmp ;
8 end Swap Conten t s ;
9

10 X : I n t P t r := new I n t e g e r ’ (1 3) ;
11 Y : I n t P t r := new I n t e g e r ’ (1 7) ;
12

13 Swap Conten t s (X, Y) ;

Fig. 2. Example of borrowing via in parameters.

Observing Access Values. We say an access-to-variable object is “observed”
when its value has been copied into an “observer,” and both the original access
object and the copy, starting at that point, can only be used for read access to
the designated object. The original object remains in the observed state until
the end of the scope of the observer. While being observed, neither the observed
object nor the observer is allowed to be moved or borrowed. The original access
object cannot be used as the target of an assignment since we need the observed
object to continue to designate the same object as long as any observers exist.
As with borrowing, observing applies recursively down the tree rooted at the
original access object, meaning that at the point where a name is observed,
every name with that name as a prefix, is similarly observed.

We consider as observing the assignment operations used to initialize stand-
alone objects of an anonymous access-to-constant type, as well as in parameters
of such a type. In the code snippet of Fig. 3, X Param and Y Param are access-
to-constant objects of an anonymous type. Since the assignment of the value of
X to X Param as well as to Y Param are part of the initialization of the target
objects, this initiates the observing, and while X Param and Y Param exist they
provide read-only access. Note that this allows us to call the function Sum using
X as a first and second parameter – upon the first occurrence of X it enters the
observed state, but we can still observe it further.

44 M. Maalej et al.

1 t y p e I n t P t r i s a c c e s s i n t e g e r ;
2

3 f u n c t i o n Sum (X Param , Y Param : a c c e s s c o n s t a n t I n t e g e r) r e t u r n
4 I n t e g e r i s
5 b eg in
6 r e t u r n X Param . a l l + Y Param . a l l ;
7 end Sum ;
8

9 X : I n t P t r := new I n t e g e r ’ (4 2) ;
10

11 Y : c o n s t a n t I n t e g e r := Sum (X, X) ;

Fig. 3. Example of observing via access-to-constant parameters.

Preventing Read-Write Aliasing. We have seen that the observing rules
allow multiple access objects to observe the same designated object. In the scope
of these objects, the original object is in the observed state; its designated object
cannot be written, so there is no read-write aliasing problem here.

We have seen that after borrowing an object, its name allows neither reading
nor updating until the borrowing ends. For example, this prevents a call to
Swap Contents(X, X), as borrowing X via parameter X Param makes it illegal to
borrow it again via parameter Y Param. The actual order of evaluation does not
matter here, as any other order would also be illegal.

We have also seen that after moving an object, its value is set to null, which
prevents accessing the designated object again through the original name. This
rule by itself does not prevent a call to Swap(X, X), but moving X into parameter
X Param makes X null, so that if it is then moved into parameter Y Param, the
value null will be passed, ensuring that a run-time check will prevent read-write
aliasing. In fact, in current Ada, passing the same object twice in the same
call as an out or in out parameter is illegal, so this existing Ada rule will catch
simple cases such as this at compile time. Furthermore, as part of our proposed
extension to Ada, an additional restriction No Parameter Aliasing is defined,
which prevents at compile time the more complex cases as well. We refer the
reader to [1] for further details on the No Parameter Aliasing restriction.

2.3 Extension to Composite Types

The rules presented previously for access objects are extended in natural ways
to composite ownership objects (records or arrays with owning access objects as
subcomponents) to enforce the Concurrent-Reads-Exclusive-Write principle.

Moving Composite Values. As with access objects, the composite move oper-
ation is a complete transfer of the ownership from the right hand side composite
object to the left hand side object as part of an assignment operation. And as
with access objects, a composite object to be moved must be in the unrestricted
state before the assignment. The rules that apply for moving an access object
are applied here to each access subcomponent of the composite type: access sub-
components of the moved objects are set to null after being copied, and to avoid

Safe Dynamic Memory Management in Ada and SPARK 45

memory leaks, if the prior value of the subcomponent in the target composite
object is different from the new value, the object designated by this prior value
is finalized and its storage deallocated.

As before, we consider as a move each assignment operation for a compos-
ite ownership type where the target is a variable (or the “return object” of a
function), but this time we do not consider passing of out or in out parameters
to be moves, because for composite ownership objects, parameters are passed
by reference and no true copying is occurring. Composite parameter passing is
described further below. In the code snippet of Fig. 4, Rec is a record with com-
ponents of an owning access type. The move operation occurs at line �9 where R
is moved to S, which involves moving R.X into S.X and moving R.Y into S.Y. As a
result, the objects originally designated by S.X and S.Y are deallocated and R.X
and R.Y end up null after the assignment.

1 t y p e I n t P t r i s a c c e s s I n t e g e r ;
2 t yp e Rec i s r e c o r d
3 X, Y : I n t P t r ;
4 end r e c o r d ;
5

6 R : Rec := (. . .) ;
7 S : Rec := (. . .) ;
8

9 S := R ;

Fig. 4. Example of moving a composite object.

Borrowing Composite Values. Borrowing composite ownership objects
occurs when passing such an object as an out or in out parameter, consistent
with these composite ownership objects being passed by reference. Note how
this differs from out or in out parameters of an access type, which are passed by
copy and are thus considered as being moved as part of parameter passing. Ada
normally allows composite objects to be passed either by copy or by reference,
but for ownership composite types, we specify that they must always be passed
by reference, to avoid having two different sets of rules for composite objects
that would depend on whether the type is passed by copy or by reference.

In the code snippet of Fig. 5, procedure Swap Rec has an in out formal param-
eter R of a record type. At the point of call to Swap Rec, the actual parameter
name R1 becomes borrowed until returning from Swap Rec, with the borrower
being the formal parameter name R. Inside Swap Rec, the formal parameter R is
initially in the unrestricted state, hence its components R.X and R.Y can be suc-
cessively moved in and out through the call to Swap, and then borrowed through
the call to Swap Contents. Note that subcomponents of a composite type can
be individually moved and borrowed, without impacting the state of other non-
overlapping subcomponents of the same composite object. We refer the reader
to [1] for further details.

46 M. Maalej et al.

1 p r o c edu r e Swap Rec (R : i n ou t Rec) i s −− R1 i s borrowed
2 beg in
3 Swap (R .X, R .Y) ;
4 Swap Conten t s (R .X, R .Y) ;
5 end Swap Rec ;
6

7 R1 : Rec := (. . .) ;
8

9 Swap Rec (R1) ;

Fig. 5. Example of borrowing via a composite in out parameter.

Observing Composite Values. Observing composite ownership objects
occurs when passing such an object as an in parameter, or initializing a stand-
alone constant object of such a type.

In the code snippet of Fig. 6, procedure Sum Rec has an in formal parameter
R of a record type. At the point of call to Sum Rec, the actual parameter name R1
becomes observed, with the formal parameter R as the observer, until returning
from Sum Rec. Inside Sum Rec, the formal parameter R is initially in an observed
state, hence its components R.X and R.Y can only be read (observed) through the
call to Sum.

1 f u n c t i o n Sum Rec (R : i n Rec) r e t u r n I n t e g e r i s
2 b eg in
3 r e t u r n Sum (R .X, R .Y) ;
4 end Sum Rec ;
5

6 R1 : Rec := (. . .) ;
7

8 Y : I n t e g e r := Sum Rec (R1) ;

Fig. 6. Example of read only access to an object of a composite type.

Traversing Data Structures with Local Variables. In the rules for borrow-
ing access values (Sect. 2.2), initializing a stand-alone object of an anonymous
access-to-variable type corresponds to borrowing the access object being copied.
Similarly, in the rules for observing access values (Sect. 2.2), initializing a stand-
alone object of an anonymous access-to-constant type corresponds to observing
the object being copied. Without these special cases, such initializations might
be treated as moves, which would not allow for a non-destructive traversal of a
recursive data structure, since every assignment to such a “handle” would deal-
locate its prior designated object and set to null the object that was moved.
Hence, such an object of an anonymous access type acts as a kind of short-term
“handle” on the tree of objects rooted at the original access object.

We also allow certain kinds of updates to such “handles,” in order to allow
traversing the data structure by changing where the handle points. In the borrow-
ing case (for an access-to-variable object), we allow the borrower to be updated
to point to an object within the tree rooted at the prior value of the borrower;

Safe Dynamic Memory Management in Ada and SPARK 47

this is not considered a new borrowing action, as the existing borrower remains
the only object providing any read or write access to the subtree rooted at its
original value. By limiting the initial borrowing to the initialization of a new
stand-alone object, we ensure that borrowing lasts only as long as the lifetime
of the “handle.” If we allowed any given assignment statement to initiate a
new borrowing action, tracking when such borrowing would end might require
complex data-flow analysis, potentially across conditional and iterative paths in
the program. Somewhat less stringent restrictions are applied when updating
an observer – the observer may be updated to point to an already observed
object with a compatible scope. Again, doing otherwise might require complex
data-flow analysis to determine the extent of the observing action.

In the code snippet of Fig. 7, local variable Walker is a stand-alone object of
an anonymous access-to-constant type, which allows traversing the input binary
search tree, so as to find the maximal value (obtained by searching for the
rightmost leaf of the tree). After initializing Walker with the value of parameter
T, T becomes observed, and Walker starts in the observed state (thus preventing
updates to T.all through Walker). The data structure traversal is performed by
the instruction of line �16.

1 t y p e Rec ;
2 t yp e Tree i s a c c e s s Rec ;
3 t yp e Rec i s r e c o r d
4 Data : N a t u r a l ;
5 Le f t , R igh t : Tree ;
6 end r e c o r d ;
7

8 f u n c t i o n Max (T : i n Tree) r e t u r n I n t e g e r i s
9 Walker : a c c e s s c o n s t a n t Rec := T ; −− Walker o b s e r v e s T

10 Max Value : N a t u r a l := 0 ;
11 b eg in
12 wh i l e Walker /= n u l l l oop
13 i f Walker . Data > Max Value t h en
14 Max Value := Walker . Data ;
15 end i f ;
16 Walker := Walker . R igh t ; −− a s s i gnmen t t o Walker
17 end loop ;
18 r e t u r n Max Value ;
19 end Max ;

Fig. 7. Example of traversing a data structure with read-only access: Max on a Binary
Search Tree.

In the code snippet of Fig. 8, local variable Walker is a stand-alone object of
an anonymous access-to-variable type, which allows traversing the input binary
search tree to insert the input value V at the correct leaf position (obtained by
searching for the branch where this value would be stored, if it were already
present). After initializing Walker with a copy of the value of parameter T, T
becomes borrowed, and Walker starts its life in the unrestricted state (thus

48 M. Maalej et al.

allowing updates via Walker to the tree pointed to by T). The data structure
traversal is performed by the instruction of line �8 and �15. Insertion in the tree
is performed at lines �10 and �17.

1 p r o c edu r e I n s e r t (T : i n Tree ; V : Na t u r a l) i s
2 Walker : a c c e s s Rec := T ;
3 beg in
4 l oop
5 i f V < Walker . Data t h en
6 i f Walker . L e f t /= n u l l t h en
7 Walker := Walker . L e f t ;
8 e l s e
9 Walker . L e f t := Bu i l d Le a f (V) ;

10 e x i t ;
11 end i f ;
12 e l s i f V > Walker . Data t h en
13 i f Walker . R igh t /= n u l l t h en
14 Walker := Walker . R igh t ;
15 e l s e
16 Walker . R igh t := Bu i l d Le a f (V) ;
17 e x i t ;
18 end i f ;
19 end i f ;
20 end loop ;
21 end I n s e r t ;

Fig. 8. Example of traversing a data structure with read and update access: Insert
into a Binary Search Tree. Build Leaf(V) creates a node with Data= V, and Left, and
Right components both null.

3 Formal Verification with Ownership Types in SPARK

The existing SPARK restrictions imposed on its current subset of Ada ensure
that an assignment to one variable cannot change the value of some other visible
variable. This property is essential to allow sound modular static analysis, where
each subprogram can be analyzed independently while detecting all possible
violations of the kinds targeted by the analysis.

This is currently enforced by forbidding all use of access types in SPARK,
and by restricting aliasing between parameters and global variables so that only
benign aliasing is permitted (i.e. aliasing that does not cause interference). The
aliasing restrictions are as follows:

– Two output parameters should never be aliased.
– An input and an output parameter should not be aliased, unless the input

parameter is always passed by copy.
– An output parameter should never be aliased with a global variable referenced

by the subprogram.
– An input parameter should not be aliased with a global variable updated by

the subprogram, unless the input parameter is always passed by copy.

Safe Dynamic Memory Management in Ada and SPARK 49

To understand why aliasing matters in SPARK, consider procedure Add One
in Fig. 9. If X Param and Y Param are not aliased, then the result of calling
Add One on actual parameters X and Y will increase their contents by one. If X
and Y are aliased, then calling Add One on X and Y will increment the underlying
content by two.

1 p r o c edu r e Add One (X Param , Y Param : i n I n t P t r) i s
2 b eg in
3 X Param . a l l := X Param . a l l + 1 ;
4 Y Param . a l l := Y Param . a l l + 1 ;
5 end Add One ;

Fig. 9. A simple procedure where aliasing would create problems in SPARK.

If SPARK ignored aliasing, it would conclude that procedure Add One always
increments by exactly one the content of each of its parameters X Param and
Y Param. In particular, it could prove the following postcondition on the proce-
dure.

1 p r o c edu r e Add One (X Param , Y Param : i n I n t P t r) w i th
2 Po s t => X Param . a l l = X Param . a l l ’ Old + 1
3 and Y Param . a l l = Y Param . a l l ’ Old + 1 ;

Indeed, by presuming that the assignment to X Param.all on line �2 does not
influence the value of Y Param.all, proof would be able to derive that the values
Y Param.all has been incremented by 1. Similarly, flow analysis could derive
wrong data dependencies if possible aliasing is not taken into account.

This wrong postcondition would allow a proof that an incorrect assertion
is satisfied in the code snippet of Fig. 10, while in fact it fails at run time.
Thus, normal Ada pointers could not be treated like any other component in
SPARK, given the possibility for aliasing. But the rules we have described for
ownership objects precisely prevent aliasing when one of the objects can be
written. This is analogous to the rules in SPARK for preventing aliasing between
by-reference parameters, and these rules allow SPARK to treat such pointers like
other components.

1 X : I n t P t r := new I n t e g e r ’ (1) ;
2 (. . .)
3

4 Add One (X, X) ;
5 pragma As s e r t (Y. a l l = 2) ; −− i n c o r r e c t a s s e r t i o n

Fig. 10. Example of proof of an incorrect assertion due to the presence of aliasing in
SPARK.

In the case of Add One, this means that SPARK analysis will be able to con-
clude that the postcondition above is satisfied by the implementation of Add One.

50 M. Maalej et al.

But unsafe calls such as Add One(X, X) will be rejected both by compilation and
analysis.

The SPARK tools also provide detection of potential data races in pro-
grams that use concurrent and parallel programming constructs. This detection
depends on the strict anti-aliasing conditions on parameters, and provides a
sound assurance that no two threads concurrently manipulate the same data, if
either has update access. This matches the CREW condition imposed on access
objects through the proposed ownership rules, and means that the SPARK tools
can handle pointer-based structures that obey these rules, in the same way it
already handles record- and array-based structures, enabling provably safe con-
current and parallel programming in SPARK even when enhanced with this more
flexible data structuring capability.

4 Related Work

C-like languages are mostly based on pointers and often sacrifice safety for per-
formance purposes. To overcome safety shortcoming and manage the storage of
a pointer, C++ introduces the notion of unique pointers. An object defined as
a unique ptr has the ability to take ownership of an object. It becomes respon-
sible for its deletion at some point. Although these rules help provide greater
language safety, the unique pointer concept is limited because it prohibits pointer
arithmetic and copy assignments.

Separation logic [10] is an extension of Hoare-Floyd logic that allows reason-
ing about pointers. In general, it is not well integrated with deductive verifica-
tion, and, in particular, is not supported by most SMT provers.

Dafny associates each object with its dynamic frame, the set of pointers
that it owns [7]. This dynamic version of Ownership is enforced by modeling
the Ownership of pointers in logic, generating verification conditions to detect
violations of the single-owner model, and proving them using SMT provers. In
Spec#, Ownership is similarly enforced by proof, to detect violations of the
so-called Boogie methodology [4].

The inspiration for much of our work springs from the systems programming
languages Cyclone [5], Rust [3], and ParaSail [13], which achieve absence of
harmful aliasing by enforcing an Ownership type system on the memory pointed
to by objects. Rust and ParaSail are recent programming languages providing
safe systems programming, with a focus on memory safety for concurrent pro-
grams. Rust and ParaSail also deal with the lifetime of allocated memory, while
preventing dangling pointer references.

The most closely related work to ours springs from Jaloyan et al. [6] anti-
aliasing rules. In [6], access-to-variable objects and composite objects with access
subcomponent objects are considered as deep variables and their ownership
states are transferred in the same way when used to call subprograms. Actual
deep parameters are considered as borrowed and the durations of borrows are
only limited to the duration of procedure calls. It turns out that their rules
do not allow traversing a linked data structure with read/write permission, or

Safe Dynamic Memory Management in Ada and SPARK 51

even traversing with read-only permission. In our work, the distinction between
stand-alone access objects and composite ones and moving or observing compos-
ite objects instead of borrowing them has allowed us to support safely traversing
a data structure for read or update.

In our work, we use a permission-based mechanism for detecting poten-
tially harmful aliasing, in order to make the presence of pointers transparent
for automated provers. Our approach does not require additional user annota-
tions required in some of the previously mentioned techniques. We instead rely on
the existing distinctions in Ada between in and in out parameters, and between
access-to-variables and access-to-constants. We thus achieve high automation
and usability, which was one of our goals in supporting pointers in SPARK.

5 Conclusion

We have presented an extension to the Ada language to provide pointer types
(“access types” in Ada) that provide provably safe, automatic storage manage-
ment without any asynchronous garbage collection, and without explicit deallo-
cation by the user. Although we took inspiration from Rust and ParaSail, the
extension we propose differs so as to work well with existing features of Ada such
as by-copy/by-reference parameter passing and exception handling, and because
we rely on the existing mechanisms in Ada for preventing access to uninitialized
pointers and freed memory.

This extension relies on the notion of ownership, where only one access object
can provide update access to the designated object at any given time. Owner-
ship of a designated object can be moved to another object through assignment,
which deallocates the object previously designated by the target of the assign-
ment and leaves the source of the assignment null. Ownership can also be bor-
rowed giving a short-term borrower read-write access to the designated object.
Finally, the value of a designated object can be observed by multiple read-only
observers, with limited lifetimes. Collectively, these mechanisms enforce a prin-
ciple of Concurrent-Reads-Exclusive-Write.

Because the mechanism for these safe pointers relies on a strict control of
aliasing, they can be used in the SPARK subset for formal verification, which
includes both analysis of flows and proof of properties, including in the presence
of multiple threads of control.

This proposal has been formalized as Ada Issue [1] for inclusion in a future
version of Ada. We have also implemented a prototype of these permission rules
in the GNAT/GCC compiler for Ada developed at AdaCore. Our implementation
successfully proves the safety of all programs presented in this article.

Acknowledgements. We thank the anonymous reviewers for their remarks, and
Georges-Axel Jaloyan for his initial work on the design, formalization and implemen-
tation of these ownership rules for Ada and SPARK.

52 M. Maalej et al.

References

1. AdaCore: Access value ownership and parameter aliasing (2018). http://www.ada-
auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0240-1.txt

2. AdaCore, Thales: Implementation guidance for the adoption of SPARK (2017).
https://www.adacore.com/books/implementation-guidance-spark

3. Balasubramanian, A., Baranowski, M.S., Burtsev, A., Panda, A., Rakamaric, Z.,
Ryzhyk, L.: System programming in rust: Beyond safety. In: Proceedings of the
16th Workshop on Hot Topics in Operating Systems, HotOS 2017, Whistler, BC,
Canada, 8–10 May 2017, pp. 156–161 (2017)

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

5. Grossman, D., Morrisett, J.G., Jim, T., Hicks, M.W., Wang, Y., Cheney, J.: Region-
based memory management in cyclone. In: Proceedings of the 2002 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
Berlin, Germany, 17–19 June 2002, pp. 282–293 (2002)

6. Jaloyan, G.A., Moy, Y., Paskevich, A.: Borrowing safe pointers from rust in spark.
In: International Conference on Computer-Aided Verification - 29th International
Conference, Heidelberg, Germany (2018, in submission)

7. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

8. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

9. O’Neill, I.: SPARK - a language and tool-set for high-integrity software develop-
ment. In: Industrial Use of Formal Methods: Formal Verification (2012)

10. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of th 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22–25 July 2002, Copenhagen, Denmark, pp. 55–74 (2002)

11. Sant, P.M.: Concurrent read, exclusive write. In: Pieterse, V., Black, P.E. (eds.)
Dictionary of Algorithms and Darta Structures (2004). https://www.nist.gov/
dads/HTML/concurrentReadExcluWrt.html

12. Svoboda, D., Wrage, L.: Pointer ownership model. In: Proceedings of the 47th
Hawaii International Conference on System Sciences (HICSS 2014), 6–9 Jan 2014,
Waikoloa, Hawaii, pp. 5090–5099 (2014)

13. Taft, S.T.: Multicore programming in ParaSail. In: Romanovsky, A., Vardanega,
T. (eds.) Ada-Europe 2011. LNCS, vol. 6652, pp. 196–200. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21338-0 16

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0240-1.txt
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0240-1.txt
https://www.adacore.com/books/implementation-guidance-spark
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://www.nist.gov/dads/HTML/concurrentReadExcluWrt.html
https://www.nist.gov/dads/HTML/concurrentReadExcluWrt.html
https://doi.org/10.1007/978-3-642-21338-0_16

Safe Non-blocking Synchronization
in Ada2x

Johann Blieberger1(B) and Bernd Burgstaller2(B)

1 Institute of Computer Engineering, Automation Systems Group,
TU Wien, Vienna, Austria
blieb@auto.tuwien.ac.at

2 Department of Computer Science, Yonsei University, Seoul, Korea
bburg@yonsei.ac.kr

Abstract. The mutual-exclusion property of locks stands in the way
to scalability of parallel programs on many-core architectures. Locks do
not allow progress guarantees, because a task may fail inside a critical
section and keep holding a lock that blocks other tasks from access-
ing shared data. With non-blocking synchronization, the drawbacks of
locks are avoided by synchronizing access to shared data by atomic read-
modify-write operations.

To incorporate non-blocking synchronization in Ada 202x, program-
mers must be able to reason about the behavior and performance of
tasks in the absence of protected objects and rendezvous. We there-
fore extend Ada’s memory model by synchronized types, which support
the expression of memory ordering operations at a sufficient level of
detail. To mitigate the complexity associated with non-blocking synchro-
nization, we propose concurrent objects as a novel high-level language
construct. Entities of a concurrent object execute in parallel, due to a
fine-grained, optimistic synchronization mechanism. Synchronization is
framed by the semantics of concurrent entry execution. The program-
mer is only required to label shared data accesses in the code of con-
current entries. Labels constitute memory-ordering operations expressed
through aspects and attributes. To the best of our knowledge, this is the
first approach to provide a non-blocking synchronization construct as a
first-class citizen of a high-level programming language. We illustrate the
use of concurrent objects by several examples.

1 Introduction

Mutual exclusion locks are the most common technique to synchronize multi-
ple tasks to access shared data. Ada’s protected objects (POs) implement the
monitor-lock concept [12]. Method-level locking requires a task to acquire an
exclusive lock to execute a PO’s entry or procedure. (Protected functions allow
concurrent read-access in the style of a readers–writers lock [11].) Entries and
procedures of a PO thus effectively execute one after another, which makes it
straight-forward for programmers to reason about updates to the shared data
encapsulated by a PO. Informally, sequential consistency ensures that method
c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 53–69, 2018.
https://doi.org/10.1007/978-3-319-92432-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_4&domain=pdf

54 J. Blieberger and B. Burgstaller

calls act as if they occurred in a sequential, total order that is consistent with
the program order of each participating task. I.e., for any concurrent execution,
the method calls to POs can be ordered sequentially such that they (1) are con-
sistent with program order, and (2) meet each PO’s specification (pre-condition,
side-effect, post-condition) [11].

Although the sequential consistency semantics of mutual exclusion locks
facilitate reasoning about programs, they nevertheless introduce potential con-
currency bugs such as dead-lock, live-lock and priority inversion. The mutual-
exclusion property of (highly-contended) locks stands in the way to scalability of
parallel programs on many-core architectures [16]. Locks do not allow progress
guarantees, because a task may fail inside a critical section, e.g., by entering an
endless loop, and thereby prevent other tasks from accessing shared data.

Given the disadvantages of mutual exclusion locks, it is thus desirable to
give up on method-level locking and allow method calls to overlap in time. Syn-
chronization is then performed on a finer granularity within a method’s code, via
atomic read-modify-write (RMW) operations. In the absence of mutual exclusion
locks, the possibility of task-failure inside a critical section is eliminated, because
critical sections are reduced to single atomic operations. These atomic operations
are provided either by the CPU’s instruction set architecture (ISA), or the lan-
guage run-time (with the help of the CPU’s ISA). It thus becomes possible to
provide progress guarantees, which are unattainable with locks. In particular, a
method is non-blocking , if a task’s pending invocation is never required to wait
for another task’s pending invocation to complete [11].

1 -- Initial values:
2 Flag := False;
3 Data := 0;

1 -- Task 1:
2 Data := 1;
3 Flag := True;

1 -- Task 2:
2 loop
3 R1 := Flag;
4 exit when R1;
5 end loop;
6 R2 := Data;

1 Data : Integer with Volatile;
2 Flag : Boolean with Atomic;

)b()a(

Fig. 1. (a) Producer-consumer synchronization in pseudo-code: Task 1 writes the Data

variable and then signals Task 2 by setting the Flag variable. Task 2 is spinning on the
Flag variable (lines 2 to 5) and then reads the Data variable. (b) Labeling to enforce
sequential consistency in Ada 2012.

Non-blocking synchronization techniques are notoriously difficult to imple-
ment and the design of non-blocking data structures is an area of active research.
To enable non-blocking synchronization, a programming language must provide
a strict memory model. The purpose of a memory model is to define the set of
values a read operation in a program is allowed to return [1].

To motivate the need for a strict memory model, consider the producer-
consumer synchronization example in Fig. 1(a) (adopted from [18] and [4]). The

Safe Non-blocking Synchronization in Ada2x 55

programmer’s intention is to communicate the value of variable Data from Task 1
to Task 2. Without explicitly requesting a sequentially consistent execution, a
compiler or CPU may break the programmer’s intended synchronization via the
Flag variable by re-ordering memory operations that will result in reading R2
= 0 in Line 6 of Task 2. (E.g., a store–store re-ordering of the assignments in
lines 2 and 3 of Task 1 will allow this result.) In Ada 2012, such re-orderings
can be ruled out by labeling variables Data and Flag by aspect volatile.
The corresponding variable declarations are depicted in Fig. 1(b). (Note that by
[8, C.6§8/3] aspect atomic implies aspect volatile, but not vice versa.)

The intention for volatile variables in Ada 2012 was to guarantee that all
tasks agree on the same order of updates [8, C.6§16/3]. Updates of volatile
variables are thus required to be sequentially consistent, in the sense of Lamport’s
definition [14]: “With sequential consistency (SC), any execution has a total order
over all memory writes and reads, with each read reading from the most recent
write to the same location”.

However, the Ada 2012 aspect volatile has the following shortcomings:

1. Ensuring SC for multiple tasks without atomic access is impossible. Non-
atomic volatile variables therefore should not be provided by the language.
Otherwise, the responsibility shifts from the programming language imple-
mentation to the programmer to ensure SC by pairing an atomic (implied
volatile) variable with each non-atomic volatile variable (see, e.g., Fig. 1(b)
and [17] for examples). (Note that a programming language implementation
may ensure atomicity by a mutual exclusion lock if no hardware primitives
for atomic access to a particular type of shared data are available.)

2. Requiring SC on all shared variables is costly in terms of performance on
contemporary multi-core CPUs. In Fig. 1, performance can be improved by
allowing a less strict memory order for variable Data (to be addressed in
Sect. 2).

3. Although Ada provides the highly abstract PO monitor-construct for blocking
synchronization, there is currently no programming primitive available to
match this abstraction level for non-blocking synchronization.

Contemporary CPU architectures relax SC for the sake of performance [2,9,
18]. It is a challenge for programming language designers to provide safe, efficient
and user-friendly non-blocking synchronization features. The original memory
model for Java contained problems and had to be revised [15]. It was later found
to be unsound with standard compiler optimizations [19]. The C++11 standard
(cf. [13,20]) has already specified a strict memory model for concurrent and par-
allel computing. We think that C++11 was not entirely successful both in terms
of safety and in terms of being user-friendly. In contrast, we are convinced that
these challenges can be met in the upcoming Ada 202x standard.

It has been felt since Ada 95 that it might be advantageous to have language
support for synchronization based on atomic variables. For example, we cite [10,
C.1]: “A need to access specific machine instructions arises sometimes from other
considerations as well. Examples include instructions that perform compound

56 J. Blieberger and B. Burgstaller

operations atomically on shared memory, such as test-and-set and compare-and-
swap, and instructions that provide high-level operations, such as translate-and-
test and vector arithmetic.”

Ada is already well-positioned to provide a strict memory model in conjunc-
tion with support for non-blocking synchronization, because it provides tasks as
first-class citizens. This rules out inconsistencies that may result from thread-
functionality provided through libraries [6].

To provide safe and efficient non-blocking synchronization for Ada 202x, this
paper makes the following contributions:

1. We extend Ada’s memory model by introducing synchronized types, which
allow the expression of memory ordering operations consistently and at a
sufficient level of detail. Memory ordering operations are expressed through
aspects and attributes. Language support for spin loop synchronization via
synchronized variables is proposed.

2. We propose concurrent objects (COs) as a high-level language construct to
express non-blocking synchronization. COs are meant to encapsulate the intri-
cacies of non-blocking synchronization as POs do for blocking synchroniza-
tion. Contrary to POs, the entries and procedures of COs execute in parallel,
due to a fine-grained, optimistic synchronization mechanism.

3. We provide an alternative, low-level API on synchronized types, which pro-
vides programmers with full control over the implementation of non-blocking
synchronization semantics. Our main purpose with the low-level API is to
provoke a discussion on the trade-off between abstraction versus flexibility.

4. We illustrate the use of concurrent objects and the alternative, low-level API
by several examples.

The remainder of this paper is organized as follows. We summarize the state-
of-the-art on memory models and introduce synchronized variables in Sect. 2. We
introduce aspects and attributes for specifying memory ordering operations in
Sect. 3. We specify concurrent objects in Sect. 4 and discuss task scheduling in the
presence of COs in Sect. 5. Section 6 contains two CO example implementations
with varying memory consistency semantics. We discuss our low-level API in
Sect. 7. Section 8 contains our conclusions.

Due to space constraints, we have issued a technical report [5], which contains
additional programming examples and the rationale for the design of the pro-
posed non-blocking synchronization mechanisms. Although the paper is intended
to be comprehensive without the appendices, we felt the additional material
might nevertheless be useful. For the same reason of constrained space, the
description of our approach cannot be compared to the specification of Ada on
RML-level.

2 The Memory Model

For reasons outlined in Sect. 1, we do not consider the Ada 2012 atomic and
volatile types here. Rather, we introduce synchronized types and variables. Syn-
chronized types provide atomic access. We propose aspects and attributes for

Safe Non-blocking Synchronization in Ada2x 57

specifying a particular memory model to be employed for reading/writing syn-
chronized variables.

Fig. 2. System model from [18]. “Core” refers to the software’s view of a core, which
may be an actual core or a thread context of a multithreaded core.

Modern multi-core computer architectures are equipped with a memory hier-
archy that consist of main memory, caches and registers. We assume the sys-
tem model depicted in Fig. 2. It is important to distinguish between memory
consistency and coherence. We cite from [18]: ‘For a shared memory machine,
the memory consistency model defines the architecturally visible behavior of its
memory system. Consistency definitions provide rules about loads and stores (or
memory reads and writes) and how they act upon memory. As part of support-
ing a memory consistency model, many machines also provide cache coherence
protocols that ensure that multiple cached copies of data are kept up-to-date.’

The purpose of a memory consistency model (or memory model, for short)
is to define the set of values a read operation is allowed to return [1]. To facil-
itate programmers’ intuition, it would be ideal if all read/write operations of
a program’s tasks are sequentially consistent. However, the hardware memory
models provided by contemporary CPU architectures relax SC for the sake of
performance [2,9,18]. Enforcing SC on such architectures may incur a noticeable

58 J. Blieberger and B. Burgstaller

performance penalty. The workable middle-ground between intuition (SC) and
performance (relaxed hardware memory models) has been established with SC
for data race-free programs (SC-for-DRF) [3]. Informally, a program has a data
race if two tasks access the same memory location, at least one of them is a
write, and there are no intervening synchronization operations that would order
the accesses. “SC-for-DRF” requires programmers to ensure that programs are
free of data races under SC. In turn, the relaxed memory model of a SC-for-DRF
CPU guarantees SC for all executions of such a program.

It has been acknowledged in the literature [1] that Ada 83 was perhaps the
first widely-use high-level programming language to provide first-class support
for shared-memory programming. The approach taken with Ada 83 and later
language revisions was to require legal programs to be without synchronization
errors, which is the approach taken with SC-for-DRF. In contrast, for the Java
memory model it was perceived that even programs with synchronization errors
shall have defined semantics for reasons of safety and security of Java’s sand-
boxed execution environment. (We do not consider this approach in the remain-
der of this paper, because it does not align with Ada’s current approach to regard
the semantics of programs with synchronization errors as undefined, i.e., as an
erroneous execution, by [8, 9.10§11].) The SC-for-DRF programming model and
two relaxations were formalized for C++11 [7]. They were later adopted for C11,
OpenCL 2.0, and for X10 [22] (without the relaxations).

On the programming language level to guarantee DRF, means for synchro-
nization (ordering operations) have to be provided. Ada’s POs are well-suited for
this purpose. For non-blocking synchronization, atomic operations can be used
to enforce an ordering between the memory accesses of two tasks. It is one goal
of this paper to add language features to Ada such that atomic operations can
be employed with DRF programs. To avoid ambiguity, we propose synchronized
variables and types, which support the expression of memory ordering operations
at a sufficient level of detail (see Sect. 3.1).

The purpose of synchronized variables is that they can be used to safely trans-
fer information (i.e., the value of the variables) from one task to another. ISAs
provide atomic load/store instructions only for a limited set of primitive types.
Beyond those, atomicity can only be ensured by locks. Nevertheless, computer
architectures provide memory fences (see e.g., [11]) to provide means for ordering
memory operations. A memory fence requires that all memory operations before
the fence (in program order) must be committed to the memory hierarchy before
any operation after the fence. Then, for data to be transferred from one thread to
another it is not necessary to be atomic anymore. I.e., it is sufficient that (1) the
signaling variable is atomic, and that (2) all write operations are committed to
the memory hierarchy before setting the signaling variable. On the receiver’s
side, it must be ensured that (3) the signaling variable is read atomically, and
that (4) memory loads for the data occur after reading the signaling variable
(Listing 1.2 provides an example.)

Safe Non-blocking Synchronization in Ada2x 59

In addition to synchronized variables, synchronized types and aspect
Synchronized Components are convenient means for enhancing the usefulness
of synchronized variables.

The general idea of our proposed approach is to define non-blocking con-
current objects similar to protected objects (cf., e.g., [11]). However, entries of
concurrent objects will not block on guards; they will spin until the guard evalu-
ates to true. In addition, functions, procedures, and entries of concurrent objects
are allowed to execute and to modify the encapsulated data in parallel. Private
entries for concurrent objects are supported. It is their responsibility that the
data provides a consistent view to the users of the concurrent object. Concur-
rent objects will use synchronized types for synchronizing data access. Several
memory models are provided for doing this efficiently. It is the responsibility of
the programmer to ensure that the entries of a concurrent object are free from
data races (DRF). For such programs, the non-blocking semantics of a concur-
rent object will provide SC in the same way as protected objects do for blocking
synchronization.

2.1 Synchronizing Memory Operations and Enforcing Ordering

For defining ordering relations on memory operations, it is useful to introduce
some other useful relations.

The synchronizes-with relation can be achieved only by use of atomic types
in the sense of Ada 2012 or synchronized types in our notion. Even if monitors
or protected objects are used for synchronization, the runtime implements them
employing synchronized types. The general idea is to equip read and write oper-
ations on a synchronized variable with information that will enforce an ordering
on the read and write operations. Our proposal is to use aspects and attributes
for specifying this ordering information. Details can be found below.

The happens-before relation is the basic relation for ordering operations in
programs. In a program consisting of only one single thread, happens-before
is straightforward. For inter-thread happens-before relations the synchronizes-
with relation becomes important. If operation X in one thread synchronizes-with
operation Y in another thread, then X happens-before Y. Note that the happens-
before relation is transitive, i.e., if X happens-before Y and Y happens-before Z,
then X happens-before Z. This is true even if X, Y, and Z are part of different
threads.

We define different memory models. These memory models originated from
the DRF [3] and properly-labeled [9] hardware memory models. They were for-
malized for the memory model of C++ [7]. The “sequentially consistent” and
“acquire-release” memory models provide SC for DRF. The models can have
varying costs on different computer architectures. The “acquire-release” mem-
ory model is a relaxation of the “sequentially consistent” memory model. As
described in Table 1, it requires concessions from the programmer to weaken SC
in turn for more flexibility for the CPU to re-order memory operations.

Sequentially Consistent Ordering is the most stringent model and the eas-
iest one for programmers to work with. In this case all threads observe the

60 J. Blieberger and B. Burgstaller

same, total order of operations. This means, a sequentially consistent write
to a synchronized variable synchronizes-with a sequentially-consistent read of
the same variable.

Relaxed Ordering does not obey synchronizes-with relationships, but oper-
ations on the same synchronized variable within a single thread still obey
happens-before relationships. This means that although one thread may write
a synchronized variable, at a later point in time another thread may read an
earlier value of this variable.

Acquire-Release Ordering when compared to relaxed ordering introduces
some synchronization. In fact, a read operation on synchronized variables
can then be labeled by acquire, a write operation can be labeled by release.
Synchronization between release and acquire is pairwise between the thread
that issues the release and that acquire operation of a thread that does the
first read-acquire after the release.1 A thread issuing a read-acquire later may
read a different value than that written by the first thread.

Table 1. Memory order and constraints for compilers and CPUs

Memory order Involved
threads

Constraints for reordering memory accesses
(for compilers and CPUs)

Relaxed 1 No inter-thread constraints

Release/acquire 2 (1) Ordinary storesa originallyb before release

(in program order) will happen before the
release fence (after compiler optimizations and
CPU reordering)
(2) Ordinary loads originally after acquire (in
program order) will take place after the acquire
fence (after compiler optimizations and CPU
reordering)

Sequentially consistent All (1) All memory accesses originally before
the sequentially consistent one (in program
order) will happen before the fence (after com-
piler optimizations and CPU reordering)
(2) All memory accesses originally after the
sequentially consistent one (in program
order) will happen after the fence (after
compiler optimizations and CPU reordering)

aMemory accesses other than accesses to synchronized variables.
bBefore optimizations performed by the compiler and before reordering done by the
CPU.

It is important to note that the semantics of the models above have to
be enforced by the compiler (for programs which are DRF). I.e., the compiler

1 In global time!

Safe Non-blocking Synchronization in Ada2x 61

“knows” the relaxed memory model of the hardware and inserts memory fences
in the machine-code such that the memory model of the high-level program-
ming language is enforced. Compiler optimizations must ensure that reordering
of operations is performed in such a way that the semantics of the memory model
are not violated. The same applies to CPUs, i.e., reordering of instructions is
done with respect to the CPU’s relaxed hardware memory model, constrained
by the ordering semantics of fences inserted by the compiler. The constraints
enforced by the memory model are summarized in Table 1.

3 Synchronization Primitives

3.1 Synchronized Variables

Synchronized variables can be used as atomic variables in Ada 2012, the only
exception being that they are declared inside the lexical scope (data part) of a
concurrent object. In this case aspects and attributes used in the implementation
of the concurrent object’s operations (functions, procedures, and entries) are
employed for specifying behavior according to the memory model. Variables are
labeled by the boolean aspect Synchronized.

Read accesses to synchronized variables in the implementation of the con-
current object’s operations may be labeled with the attribute Concurrent Read,
write accesses with the attribute Concurrent Write. Both attributes have a
parameter Memory Order to specify the memory order of the access. (If the
operations are not labeled, the default values given below apply.) In case of read
accesses, Memory Order can be either Sequentially Consistent, Acquire, or
Relaxed. The default value is Sequentially Consistent. For write accesses
the values allowed are Sequentially Consistent, Release, and Relaxed. The
default value is again Sequentially Consistent.

For example, assigning the value of synchronized variable Y to synchronized
variable X is given like

X’Concurrent Write(Memory Order => Release) :=
Y’Concurrent Read(Memory Order => relaxed);

In addition we propose aspects for specifying variable specific default values
for the attributes described above. In more detail, when declaring synchronized
variables the default values for read and write accesses can be specified via
aspects Memory Order Read and Memory Order Write. The allowed values are
the same as those given above for read and write accesses. If these memory
model aspects are given when declaring a synchronized variable, the attributes
Concurrent Read and Concurrent Write need not be given for actual read and
write accesses of this variable. However, these attributes may be used to tem-
porarily over-write the default values specified for the variable by the aspects.
For example

X: integer with Synchronized, Memory Order Write => Release;
Y: integer with Synchronized, Memory Order Read => Acquire;

. . .
X := Y;

62 J. Blieberger and B. Burgstaller

does the same as the example above but without spoiling the assignment
statement.

Aspect Synchronized Components relates to aspect Synchronized in the
same way as Atomic Components relates to Atomic in Ada 2012.

3.2 Read-Modify-Write Variables

If a variable inside the data part of a concurrent object is labeled by the aspect
Read Modify Write, this implies that the variable is synchronized. Write access
to a read-modify-write variable in the implementation of the protected object’s
operations is a read-modify-write access. The read-modify-write access is done
via the attribute Concurrent Exchange. The two parameters of this attribute
are Memory Order Success and Memory Order Failure. The first specifies the
memory order for a successful write, the second one the memory order if the
write access fails (and a new value is assigned to the variable).

Memory Order Success is one of Sequentially Consistent, Acquire,
Release, and Relaxed.

Memory Order Failure may be one of Sequentially Consistent, Acquire,
and Relaxed. The default value for both is Sequentially Consistent. For
the same read-modify-write access the memory order specified for failure must
not be stricter than that specified for success. So, if Memory Order Failure =>
Acquire or Memory Order Failure => Sequentially Consistent is specified,
these have also be given for success.

For read access to a read-modify-write variable, attribute Concurrent Read
has to be used. The parameter Memory Order has to be given. Its value is
one of Sequentially Consistent, Acquire, Relaxed. The default value is
Sequentially Consistent.

Again, aspects for variable specific default values for the attributes
described above may be specified when declaring a read-modify-write vari-
able. The aspects are Memory Order Read, Memory Order Write Success, and
Memory Order Write Failure with allowed values as above.

3.3 Synchronization Loops

As presented below synchronization by synchronized variables is performed via
spin loops. We call these loops sync loops.

4 Concurrent Objects

4.1 Non-blocking Synchronization

Besides the aspects and attributes proposed in Sect. 3 that have to be used for
implementing concurrent objects, concurrent objects are different from protected
objects in the following way. All operations of concurrent objects can be exe-
cuted in parallel. Synchronized variables have to be used for synchronizing the

Safe Non-blocking Synchronization in Ada2x 63

executing operations. Entries have Boolean-valued guards. The Boolean expres-
sions for such guards may contain only synchronized variables declared in the
data part of the protected object and constants. Calling an entry results either
in immediate execution of the entry’s body if the guard evaluates to true, or in
spinning until the guard eventually evaluates to true. We call such a spin loop
sync loop.

4.2 Read-Modify-Write Synchronization

For concurrent objects with read-modify-write variables the attributes proposed
in Sect. 3 apply. All operations of concurrent objects can be executed in parallel.
Read-modify-write variables have to be used for synchronizing the executing
operations. The guards of entries have to be of the form X = X’OLD where X
denotes a read-modify-write variable of the concurrent object. The attribute
OLD is well-known from postconditions. An example in our context can be found
in Listing 1.1.

If during the execution of an entry a read-modify-write operation is reached,
that operation might succeed immediately, in which case execution proceeds after
the operation in the normal way. If the operation fails, the whole execution of the
entry is restarted (implicit sync loop). In particular, only the statements being
data-dependent on the read-modify-write variable are re-executed. Statements
not being data-dependent on the read-modify-write variables are executed only
on the first try.2 Precluding non-data-dependent statements from re-execution
is not only a matter of efficiency, it sometimes makes sense semantically, e.g.,
for adding heap management to an implementation.

5 Scheduling and Dispatching

We propose a new state for Ada tasks to facilitate correct scheduling and dis-
patching for threads synchronizing via synchronized or read-modify-write types.
If a thread is in a sync loop, the thread state changes to “in sync loop”. Note
that sync loops can only happen inside concurrent objects. Thus they can be
spotted easily by the compiler and cannot be confused with “normal” loops.
Note also that for the state change it makes sense not to take place during the
first iteration of the sync loop, because the synchronization may succeed imme-
diately. For read-modify-write loops, iteration from the third iteration on may
be a good choice; for spin loops, an iteration from the second iteration on may
be a good choice.

In this way the runtime can guarantee that not all available CPUs (cores)
are occupied by threads in state “in sync loop”. Thus we can be sure that at
least one thread makes progress and finally all synchronized or read-modify-write

2 For the case that the compiler cannot figure out which statements are data-
dependent, we propose an additional Boolean aspect only execute on first try

to tag non-data-dependent statements.

64 J. Blieberger and B. Burgstaller

variables are released (if the program’s synchronization structure is correct and
the program does not deadlock).

After leaving a sync loop, the thread state changes back to “runable”.

6 Examples

Non-blocking Stack. Listing 1.1 shows an implementation of a non-blocking
stack using our proposed syntax for concurrent objects.

1 subtype Data i s Integer;
2

3 type List;
4 type List_P i s a c c e s s List;
5 type List i s
6 record
7 D: Data;
8 Next: List_P;
9 end record ;

10

11 Empty: except ion ;
12

13 concurrent Lock_Free_Stack
14 i s
15 entry Push(D: Data);
16 entry Pop(D: out Data);
17 pr iva t e
18 Head: List_P with Read Modify Write ,
19 Memory Order Read => Relaxed ,
20 Memory Order Write Success => Release ,
21 Memory Order Write Failure => Relaxed ;
22 end Lock_Free_Stack;
23

24 concurrent body Lock_Free_Stack i s
25 entry Push (D: Data)
26 un t i l Head = Head ’OLD i s
27 New_Node: List_P := new List;
28 begin
29 New_Node. a l l := (D => D, Next => Head);
30 Head := New_Node;
31 end Push;
32

33 entry Pop(D: out Data)
34 un t i l Head = Head ’OLD i s
35 Old_Head: List_P;
36 begin
37 Old_Head := Head;
38 i f Old_Head /= nu l l then
39 Head := Old_Head.Next;
40 D := Old_head.D;
41 e l s e
42 r a i s e Empty;
43 end i f ;
44 end Pop;
45 end Lock_Free_Stack;

Listing 1.1. Non-blocking Stack Implementation Using Proposed New Syntax

The implementation of entry Push (lines 25–31) works as follows. In Line 29
a new element is inserted at the head of the list. Pointer Next of this element is
set to the current head. The next statement (Line 3.) assigns the new value to
the head of the list. Since variable Head has aspect Read Modify Write (line 18),

Safe Non-blocking Synchronization in Ada2x 65

this is done with RMW semantics, i.e., if the value of Head has not been changed
(since the execution of Push has started) by a different thread executing Push
or Pop (i.e., Head = Head’OLD), then the RMW operation succeeds and exe-
cution proceeds at Line 31, i.e., Push returns. If the value of Head has been
changed (Head /= Head’OLD), then the RMW operation fails and entry Push is
re-executed starting from Line 29. Line 27 is not re-executed as it is not data
dependent on Head.

Several memory order aspects apply to the RMW operation (Line 3.) which
are given in lines 19–21: In case of a successful execution of the RMW, the value
of Head is released such that other threads can read its value via memory order
acquire. In the failure case the new value of Head is assigned to the “local copy”
of Head (i.e., Head’OLD) via relaxed memory order. “Relaxed” is enough because
RMW semantics will detect if the value of Head has been changed by a different
thread anyway.

The implementation of entry Pop (lines 33–44) follows along the same lines.
Memory management needs special consideration: In our case it is enough to

use a synchronized counter that counts the number of threads inside Pop. If the
counter equals 1, memory can be freed. Ada’s storage pools are a perfect means
for doing this without spoiling the code.

This example also shows how easy it is to migrate from a (working) blocking
to a (working) non-blocking implementation of a program. Assume that a work-
ing implementation with a protected object exists, then one has to follow these
steps:

1. Replace keyword protected by keyword concurrent.
2. Replace protected operations by DRF concurrent operations, thereby adding

appropriate guards to the concurrent entries.
3. Test the non-blocking program which now has default memory order

sequentially consistent.
4. Carefully relax the memory ordering requirements: Add memory order aspects

and/or attributes Acquire, Release, and/or Relaxed to improve performance
but without violating memory consistency.

Generic Release-Acquire Object. Listing 1.2 shows how release-acquire
semantics can be implemented for general data structures with help of one syn-
chronized Boolean.

1 gene r i c
2 type Data i s p r i va t e ;
3 package Generic_Release_Acquire i s
4

5 concurrent RA
6 i s
7 procedure Write (d: Data);
8 entry Get (D: out Data);
9 pr iva t e

10 Ready: Boolean := false with Synchronized ,
11 Memory Order Read => Acquire ,
12 Memory Order Write => Release ;
13 Da: Data;
14 end RA;

66 J. Blieberger and B. Burgstaller

15

16 end Generic_Release_Acquire;
17

18 package body Generic_Release_Acquire i s
19

20 concurrent body RA i s
21

22 procedure Write (D: Data) i s
23 begin
24 Da := D;
25 Ready := true;
26 end Write:
27

28 entry Get (D: out Data)
29 when Ready i s
30 -- spin -lock until released , i.e., Ready = true;
31 -- only sync. variables and constants allowed in guard expression
32 begin
33 D := Da;
34 end Get;
35 end RA;
36

37 end Generic_Release_Acquire;

Listing 1.2. Generic Release-Acquire Object

7 API

As already pointed out, we feel that providing concurrent objects as first-class
citizens is the right way to enhance Ada with non-blocking synchronization on
an adequate memory model. On the other hand, if the programmer needs syn-
chronization on a lower level than concurrent objects provide, an API-based app-
roach (generic function Read Modify Write in package Memory Model) would be
a viable alternative. Listing 1.3 shows such a predefined package Memory Model.
It contains the specification of generic function Read Modify Write, which allows
to use the read-modify-write operation of the underlying computer hardware.

Exposing sync loops to the programmer makes it necessary to introduce a new
aspect sync loop to let the runtime perform the state change to “in sync loop”
(cf. Sect. 5). Because the correct use of this aspect on the part of the programmer
cannot be ensured, the information transferred to the runtime may be false or
incomplete, giving rise to concurrency defects such as deadlocks, livelocks, and
other problems.

1 package Memory_Model i s
2

3 type Memory_Order_Type i s (
4 Sequen t i a l l y Cons i s t en t ,
5 Relaxed ,
6 Acquire ,
7 Release);
8

9 subtype Memory_Order_Success_Type i s Memory_Order_Type;
10

11 subtype Memory_Order_Failure_Type i s Memory_Order_Type
12 range Sequen t i a l l y Con s i s t en t .. Acquire ;
13

14 gene r i c
15 type Some_Synchronized_Type i s p r i va t e ;
16 with func t i on Update return Some_Synchronized_Type;
17 Read_Modify_Write_Variable: in out Some_Synchronized_Type
18 with Read Modify Write ;

Safe Non-blocking Synchronization in Ada2x 67

19 Memory Order Success : Memory_Order_Success_Type :=
20 Sequen t i a l l y Con s i s t en t ;
21 Memory Order Failure : Memory_Order_Failure_Type :=
22 Sequen t i a l l y Con s i s t en t ;
23 f unc t i on Read Modify Write return Boolean;
24

25 end Memory_Model;

Listing 1.3. Package Memory Model

8 Conclusion and Future Work

We have presented an approach for providing safe non-blocking synchronization
in Ada 202x. Our novel approach is based on introducing concurrent objects for
encapsulating non-blocking data structures on a high abstraction level. In addi-
tion, we have presented synchronized and read-modify-write types which support
the expression of memory ordering operations at a sufficient level of detail. Con-
current objects provide SC for programs without data races. This SC-for-DRF
memory model is well-aligned with Ada’s semantics for blocking synchronization
via protected objects, which requires legal programs to be without synchroniza-
tion errors [8, 9.10§11].

Although Ada 2012 provides the highly abstract protected object monitor-
construct for blocking synchronization, there was previously no programming
primitive available to match this abstraction level for non-blocking synchroniza-
tion. The proposed memory model in conjunction with our concurrent object
construct for non-blocking synchronization may bar users from having to invent
ad-hoc synchronization solutions, which have been found error-prone with block-
ing synchronization already [21].

Until now, all previous approaches are based on APIs. We have listed a
number of advantages that support our approach of making non-blocking data
structures first class language citizens. In contrast, our approach for Ada 202x
encapsulates non-blocking synchronization inside concurrent objects. This safe
approach makes the code easy to understand. Note that concurrent objects are
not orthogonal to objects in the sense of OOP (tagged types in Ada). However,
this can be achieved by employing the proposed API approach (cf. Sect. 7).
In addition, it is not difficult to migrate code from blocking to non-blocking
synchronization. Adding memory management via storage pools integrates well
with our modular approach and does not clutter the code.

A lot of work remains to be done. To name only a few issues: Non-blocking
barriers (in the sense of [8, D.10.1]) would be useful; details have to be elaborated.
Fully integrating concurrent objects into scheduling and dispatching models and
integrating with the features for parallel programming planned for Ada 202x
have to be done carefully.

Acknowledgments. This research was supported by the Austrian Science
Fund (FWF) project I 1035N23, and by the Next-Generation Information Computing
Development Program through the National Research Foundation of Korea (NRF),
funded by the Ministry of Science, ICT & Future Planning under grant NRF2015-
M3C4A7065522.

68 J. Blieberger and B. Burgstaller

References

1. Adve, S.V., Boehm, H.-J.: Memory models: a case for rethinking parallel languages
and hardware. Commun. ACM 53(8), 90–101 (2010)

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

3. Adve, S.V., Hill, M.D.: Weak ordering–a new definition. In: Proceedings of the
17th Annual International Symposium on Computer Architecture, ISCA 1990, pp.
2–14. ACM, New York (1990)

4. Barnes, J.: Ada 2012 Rationale: The Language – The Standard Libraries. LNCS,
vol. 8338. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45210-
9

5. Blieberger, J., Burgstaller, B.: Safe non-blocking synchronization in Ada 202x.
CoRR, abs/1803.10067 (2018)

6. Boehm, H.-J.: Threads cannot be implemented as a library. SIGPLAN Not. 40(6),
261–268 (2005)

7. Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2008, pp. 68–78. ACM, New York (2008)

8. Brukardt, R.L. (ed.) Annotated Ada Reference Manual, ISO/IEC 8652:2012/Cor
1:2016 (2016)

9. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. SIGARCH Comput. Archit. News 18(2SI), 15–26 (1990)

10. Barnes, J. (ed.): Ada 95 Rationale: The Language – The Standard Libraries. LNCS,
vol. 1247. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0051526

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2012)

12. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM
17(10), 549–557 (1974)

13. ISO/IEC: Working Draft N4296, Standard for Programming Language C++. ISO,
Geneva, Switzerland (2014)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

15. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, pp. 378–391. ACM, New York (2005)

16. Scott, M.L.: Shared-Memory Synchronization. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, San Francisco (2013)

17. Simpson, H.: Four-slot fully asynchronous communication mechanism. IEE Proc.
E Comput. Digit. Tech. 137, 17–30 (1990)

18. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture, vol. 16. Morgan & Clay-
pool, San Francisco (2011)

19. Ševč́ık, J., Aspinall, D.: On validity of program transformations in the Java memory
model. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27–51. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70592-5 3

20. Williams, A.: C++ Concurrency in Action. Manning Publ. Co., Shelter Island
(2012)

https://doi.org/10.1007/978-3-642-45210-9
https://doi.org/10.1007/978-3-642-45210-9
https://doi.org/10.1007/BFb0051526
https://doi.org/10.1007/978-3-540-70592-5_3

Safe Non-blocking Synchronization in Ada2x 69

21. Xiong, W., Park, S., Zhang, J., Zhou, Y., Ma, Z.: Ad hoc synchronization consid-
ered harmful. In: Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI 2010, Berkeley, CA, USA, pp. 163–176.
USENIX Association (2010)

22. Zwinkau, A.: A memory model for X10. In: Proceedings of the 6th ACM SIGPLAN
Workshop on X10, X10 2016, pp. 7–12. ACM, New York (2016)

Handling Implicit Overhead

On the Effect of Protected Entry
Servicing Policies on the Response Time

of Ada Tasks

Jorge Garrido(B) , Juan Zamorano , Alejandro Alonso ,
and Juan A. de la Puente

Sistemas de Tiempo Real e Ingenieŕıa de Servicios Telemáticos (STRAST),
Information Processing and Telecommunications Centre,

Universidad Politécnica de Madrid (UPM), Madrid, Spain
{jgarrido,jzamorano,aalonso,jpuente}@dit.upm.es

Abstract. Real-time multiprocessor systems are being used extensively
in industrial applications. Ada provides ample support for such systems,
including a complete tasking model providing time predictability, espe-
cially when restricted by the Ravenscar profile. A fundamental element
of this tasking model is inter-task communication by means of protected
objects. The definition of resource locking policies with bounded priority
inversion is a fundamental aspect of protected objects, which has received
considerable attention, with some interesting results that can be used in
multiprocessor real-time systems. However, there is another important
subject, the service policy for protected entries, that has received less
attention in the research community and is also important in order to
guarantee a predictable time behaviour. The impact of the service model
on the response time analysis of multiprocessor real-time systems is eval-
uated in the paper for the self-service model and the proxy model, and
their relation to the MSRP and the MrsP locking policies is discussed.
Extensions to response time analysis for the proxy model with both lock-
ing policies are also contributed.

Keywords: Real-time systems · Multiprocessor systems
Compiler implementation · Ada Ravenscar profile
Schedulability analysis

1 Introduction

Ada support for multiprocessors allows developers to build real-time embedded
applications with enhanced performance and full control over the execution of
applications on the available processor cores.

This work has been partially funded by the Spanish National R&D&I plan (project
M2C2, TIN2014-56158-C4-3-P).

c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 73–86, 2018.
https://doi.org/10.1007/978-3-319-92432-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_5&domain=pdf
http://orcid.org/0000-0002-8385-2721
http://orcid.org/0000-0001-5412-5691
http://orcid.org/0000-0002-1622-8996
http://orcid.org/0000-0002-7673-9835

74 J. Garrido et al.

Real-time systems require temporal properties of the tasks to be ensured by
the implementation. For hard real-time systems, task deadlines must be guaran-
teed in all cases, including the worst possible conditions. This usually requires
using scheduling methods with a predictable temporal behaviour [10], as well as
analysis methods that enable developers to verify that the temporal behaviour of
the system meets the requirements (see e.g. [7] for a comprehensive presentation
of the topic).

The Ada Real-Time Annex [1, annex D] provides a flexible priority-based
dispatching model that allows developers to use some common scheduling poli-
cies. Dynamic priorities provide additional flexibility. Dispatching domains can
be assigned to the tasks in order to specify the processor or processors on which
they may execute. The flexibility of the full Ada tasking model, however, makes
temporal analysis difficult or even impossible. The Ravenscar profile [1, D.13] was
defined in order to provide a limited tasking model that ensures that static tem-
poral analysis techniques can be applied to real-time systems. In the following,
a multiprocessor system model based on fully-partitioned fixed-priority schedul-
ing with inter-task communication based on shared protected objects (PO) will
be assumed. This model is compatible with the Ravenscar Profile, although not
necessarily limited to it.

Two important aspects of the implementation of protected objects are the
mechanisms used for servicing blocked PO entry queues, and the locking policies
that must be used for minimising the effects of priority inversion [18]. A num-
ber of multiprocessor locking protocols have been proposed [16], among which
MSRP [11] and MrsP [8] have received widest attention.

While the use of resource locking protocols, both in general Ada and the
Ravenscar profile, has been analysed in detail [12], the impact of entry queue
servicing policies on the temporal behaviour of multiprocessor real-time sys-
tems has not been discussed in detail. The aim of this paper is to contribute to
such analysis, with focus on the so-called proxy model. The contents are organ-
ised as follows: Sect. 2 describes the details of entry servicing in Ada protected
objects. Section 3 summarises the main results on real-time analysis of the MSRP
and MrsP protocols. The main contribution is the impact of service models on
response time analysis, which is discussed in Sect. 4. Finally, the conclusions of
the study and suggestions for future work are presented in Sect. 5.

2 Protected Objects in Ada

2.1 Protected Objects and Protected Operations

Protected objects are the preferred mechanism for inter-task communication in
Ada. A protected object consists of one or more private data fields, together with
a set of operations that can be carried out on the data. Protected operations
can be of three kinds: functions, procedures, and entries, and are executed in
mutual exclusion. Only procedures and entries can change the protected data,
and therefore multiple calls to protected functions may be executed concurrently
if the implementation chooses to do so.

On the Effect of Protected Entry Servicing Policies 75

2.2 Protected Entries

Protected entries have a Boolean barrier. When a task issues a call to an entry,
the barrier is evaluated and the call is accepted if the barrier is true. Otherwise,
the calling task is suspended on a queue associated to the entry. Barriers are
reevaluated at the end of every execution of a protected procedure or entry. If
there are any pending calls on entries with open barriers, one of the calls is
selected to be serviced, i.e. removed from the queue and executed.

The service order for pending entries can be specified with a pragma Queu-
ing Policy. The default policy is FIFO. Alternatively, priority order or some other
implementation-defined policy can be defined. The default policy does not spec-
ify which entry queue is to be served first if there are more than one queue with
open barriers.

Pending queued entries take precedence over new calls trying to access the
protected object. In this way, a task that was waiting for change in the state of
the protected object can resume its execution with the guarantee that the state
has not changed again, thus avoiding possible race conditions and starvation [4].
This rule is commonly known as the “eggshell model”.

The evaluation of barriers and the execution of the entry body that is selected
to be serviced at the end of a protected operation can be executed in different
ways, as the standard does not specify which task should serve the entry. Two
possible approaches are the self-service model and the proxy model [14,17].

2.3 Self-service Model

Under this approach, when a task ends a protected operation and an entry with
an open barrier is selected for execution, the task that has called the entry (the
caller task) is resumed, and executes the entry body. This is a simple approach
that allows for parallel execution of both tasks, and may thus be preferable
for multiprocessor implementations. However, execution on monoprocessors may
be less efficient, as it requires more context switches, and may be difficult to
implement on some real-time kernels [15].

2.4 Proxy Model

An alternative approach is the proxy model [14]. In this model, the task ending
a protected operation acts as a server task that reevaluates the barriers and
executes the selected entry body on behalf of the caller task. The process is
repeated while there are pending entries with true barriers. This approach saves
context switches and simplifies the design of the run-time system, which makes
it the method of choice for implementing protected entry servicing on mono-
processors. It can also be used on multiprocessors, although the implementation
may become more complex in this case, depending on whether the caller and the
server task execute on the same or different processors [9].

76 J. Garrido et al.

2.5 Ravenscar Restrictions

The proxy model may make real-time analysis difficult with unrestricted Ada
tasking, since the number of tasks that may be waiting on entry queues may be
high, thus leading to a very long execution time for the server task. However, in
the Ravenscar profile protected objects may have at most one entry, and there
may be at most one waiting task on a closed entry. Therefore, the server task may
have to execute at most one entry body, and its execution time stays bounded,
thus making response time analysis feasible from a practical point of view.

3 Resource Sharing Protocols for Multiprocessor Systems

3.1 Resource Sharing Protocols

A fundamental issue in multiprocessor real-time systems is the definition of
resource access protocols that provide for bounded task blocking. Although other
approaches are possible [16], most of the published work has been aimed at
adapting some well-known monoprocessor methods, such as the Priority Ceiling
Protocol (PCP) [18] or the Stack Resource Policy (SRP) [2,3], to multiprocessor
systems.

The default policy for Ada is Ceiling Locking, which is based on SRP, a gener-
alisation of PCP also valid for Earliest Deadline First (EDF) scheduling. In the
following we examine in detail two multiprocessor protocols derived from SRP
that have received significant attention from the research community, namely
MSRP and MrsP.

3.2 Multiprocessor Stack Resource Policy

The Multiprocessor Stack Resource Policy (MSRP) [11] is an extension of SRP
for multiprocessors. The MSRP system model is defined by a fully partitioned
scheduling with global resources that are, in turn, not bounded to a specific pro-
cessor. In this policy, unsatisfied resource accesses are serviced in FIFO order,
and tasks spin-wait non-preemptively until access is granted. The following prop-
erties are inherited from SRP:

– A task can only be locally blocked before it starts executing.
– A task can only be locally blocked once per activation, bounded to one critical

section length.
– It can be easily implemented on a multiprocessor Ravenscar-compliant kernel

by assigning all global resources a ceiling priority equal to the highest priority
in the system.

– The access cost to a shared resource. i.e. the longest time a task can be
blocked awaiting is bounded.

The access cost to a shared resource is bounded as requests are serviced in
FIFO order and at most one request per processor can be issued at a time,
because shared resource accesses are not preemptable. Therefore, the maximum

On the Effect of Protected Entry Servicing Policies 77

time a task τi running on processor Pm can be spinning waiting to access a
resource rk can be expressed as:

spin(rk, Pm) =
∑

p∈{P−Pm}
max
τx∈Tp

wk
x (1)

where wk
x is the worst-case access time to resource rk which a task τx executing

on a remote processor may experience. The spin time calculated as above is to
be added, for each access, to the task worst-case execution time when carrying
out the schedulability analysis. This result can be improved, as shown by Bran-
denburg and Wieder [5,19], by using holistic analysis and mixed-integer linear
programming techniques to safely reduce the pessimism in the number of times
a remote processor can cause spin delay on each task activation.

Using MSRP with fixed-priority scheduling, as in the Ravenscar profile, has a
major drawback. Since waiting for access to a shared resource is not preemptable,
the blocking incurred by a high-priority task does not depend on its use of shared
resources, but on that of lower-priority tasks, even though the ceiling priorities
of the shared resources are lower than the priority of the high-priority task.
Since high-priority tasks often have short deadlines, especially if priorities are
assigned in deadline-monotonic order, they can be expected to be most affected
by priority inversion.

3.3 Multiprocessor Resource Sharing Protocol

The Multiprocessor resource sharing Protocol (MrsP) [8] was devised to address
the above described drawback in MSRP. This protocol also relies on the prop-
erties of PCP and SRP: resources are assigned a ceiling priority, and all access
requests are performed at that priority. As in MSRP, access requests are dealt
with in FIFO order, and the tasks waiting for access to a resource spin-wait
until they are granted access. However, the spin-wait and access itself are done
at the ceiling priority of the resource, and thus calling tasks can be preempted.
Therefore, tasks with priorities higher than the ceiling priority of the resource
are not blocked by lower-priority tasks accessing the resource.

Another benefit of waiting at ceiling priorities is that, as in MSRP, at most
one task per processor can be trying to access the resource at a time. As a
result, and like in MSRP, the length of the resource FIFO queue is bounded
by the number of processors from where the resource is accessed. A desirable
access cost to a resource would then be the sum of worst access times of each
remote processor, plus the cost of the access to be performed [12], as in Eq. (1)
above. However, since all the shared resource activity is executed at its ceiling
priority, accesses are not guaranteed to be completed without being preempted
by a higher-priority task.

In order to achieve the same access cost with MrsP as with MSRP, it must
be made sure that a task executing an operation on a shared resource makes
progress while other tasks are spin-waiting for the resource. To this end, spin-
waiting tasks must be capable of undertaking the access operation of a locally

78 J. Garrido et al.

preempted task holding the resource lock. This cooperation must respect the
FIFO order [8]. This can be accomplished by delegating the execution on the
waiting task, or by migrating the preempted task to a processor where a task is
spin-waiting for the resource.

The first method is not practical. This approach would require accesses to
shared objects to be atomic, without side effects and potentially being executed
in parallel by waiting task, accepting only one final commit. The second approach
can, on the contrary, be easily implemented since task migration mechanisms are
integrated in most run-times of multiprocessor operating systems. In particular,
an Ada implementation based on a smart modification of the affinities of the
involved entities which may enable this kind of migration is outlined in [6]. The
main drawback of this approach is the overhead caused by such migrations. A
way to account for this overhead and an evaluation of its influence is presented
in [20], where MrsP is shown to provide better schedulability than MSRP, even
including this overhead.

4 Impact of Service Modes in Response Time Analysis

An aspect that has not received enough attention to date is the impact of the
entry queue service models on the response time of multiprocessor real-time
systems. The next paragraphs discuss the main issues related to using the proxy
and the self-service models with MSRP and MrsP.

4.1 Entry Servicing in MSRP

MSRP is compatible with the Ada definition of protected objects, as long as the
ceiling priority of all protected objects is assigned a non-preemptable value, i.e.
one which is higher than any task priority.

The current GNAT implementation of protected objects on multiprocessors
follows the proxy model. As previously explained, a task calling an entry with
a closed barrier is suspended. When a call to another protected procedure or
entry completes, barriers are reevaluated, and pending calls to entries with newly
opened barriers are executed by the calling task, which acts as a server task. Since
the server task executes non-preemptively, all pending entry bodies are executed
until no remaining task is enqueued on an open entry.

The eggshell model implies that the resource is busy while pending entries
are executed by the server task, and thus further calls to protected operations
are postponed until the enqueued requests have been served. This makes the
maximum number of calls to be executed by the server task to be bounded
by the maximum number of tasks that can issue entry calls on the resource.1

Let Ge(rk) be the set of tasks calling entries in resource rk. If |Ge(rk)| is the

1 For this bound to be effective it must be assumed that the task set is static, or at
least that there is a bound on the number of caller tasks for the resource.

On the Effect of Protected Entry Servicing Policies 79

size of this set, the worst-case overhead incurred in each access to a protected
subprogram operation in rk is:

overhead(rk, Pm) = |Ge(rk)| × Ck
e +

∑

p∈{P−Pm}
max
τx∈Tp

wk
x + |Ge(rk)| × Ck

e (2)

where Ck
e is the maximum cost of servicing an entry request in resource rk, P is

the set of all processors, and Pm is the processor on which the server task runs,
as in Eq. (1).

With the Ravenscar profile, the analysis is simplified because there may be
at most one task blocked on an entry, and a protected object can have at most
one entry. The worst-case overhead is then:

overhead(rk, Pm) = Ck
e +

∑

p∈{P−Pm}
max
τx∈Tp

wk
x + Ck

e (3)

4.2 Entry Servicing in MrsP

MrsP does not have a defined behaviour for the Ada entry model. The Ada
implementation proposed in [6] gives no hint on how enqueued entries should
be serviced and analysed under MrsP. In order to complete the protocol defi-
nition, some alternatives for such implementation are explored in the following
paragraphs.

Self-service Model. This approach is widely accepted as best suited for mul-
tiprocessor systems, since it is supposed to better support parallelism. However,
in practice it presents some drawbacks, particularly a loss of efficiency when
implemented on top of POSIX threads, even on monoprocessors [17].

The expected benefit of using self-service in multiprocessor systems comes
from the fact that the task waiting on a closed entry and the task opening
the barrier can be allocated to different processors. However, this can lead to
unexpected blocking in the execution of higher-priority tasks, contrary to the
monoprocessor case, where a task can only be blocked once per activation by a
lower-priority task, and only before the higher-priority task starts executing.

Consider the example depicted in Fig. 1 including tasks τ1 and τ2 with pri-
orities p1 = 1 and p2 = 2, respectively.2 Let τ1 be blocked on an entry belonging
to a protected object r with a ceiling priority pr = 3, and then τ2 is released and
executes non-protected code on the same processor. If the barrier is opened after
a protected operation executing on some other processor, τ1 becomes runnable
again with an active priority of 3, thus preempting τ2.

To prevent such a case, one possibility would be to decrease the active priority
of a task waiting on a closed entry barrier. A similar scheme is used in GNAT
for the proxy model, where the caller task, after locking the protected object,
reverts to its previous active priority, to be rescheduled at that priority once
2 Following Ada convention, a higher value indicates a higher priority.

80 J. Garrido et al.

Fig. 1. Potential delayed priority inversion under self-service model.

Fig. 2. Tasks blocked on closed entry barriers decrease their active priority.

its entry request has been served. This approach is illustrated in Fig. 2. In this
example, τ1 can perform its entry access to the resource (raising again its active
priority to 3) when τ2 execution is completed.

This approach, however, can lead to further issues. A task that is spin-waiting
on an entry call may not be able to access the resource even after the barrier
has been opened by another task, because the priority of the waiting task is not

On the Effect of Protected Entry Servicing Policies 81

Fig. 3. Approach breaking the eggshell model.

Fig. 4. Approach implementing a delayed proxy model.

high enough, as it has been reverted to its basic priority. If there is a new call
to a protected operation in the same object, it should not be accepted until the
pending entry call has been serviced, as per the eggshell model. The second call
is thus delayed even if the entry barrier is now open, thus leading to further
priority inversion. Note that this can also happen when the task that makes the
new call runs on the same processor as the waiting task.

Aside from being highly inefficient, the timing behaviour in such situations
cannot be analysed without adding extra pessimism. Two possible ways of tack-
ling this issue are:

82 J. Garrido et al.

– Letting the new call proceed without serving the entries, thus breaking the
eggshell model (Fig. 3).

– Serving the entries and then letting the new call proceed. This would be
somewhat of a ‘delayed proxy model’ (Fig. 4).

The former option is not compatible with the Ada standard, and therefore will
not be further discussed. The latter one, on the contrary, would not be far from
the current proxy GNAT implementation. Furthermore, as the entry calls are
only executed by delegation, as shown in Fig. 4, when strictly required, paral-
lelism can be improved.

Unfortunately, this solution would only make a true benefit if both the task
calling the entry and that making the new call are hosted on the same processor.
In any other case this solution would complicate the implementation. Executing
a subprogram call (even a function call) would require to check whether there
are remote entry callers queued on open barriers, then to check their scheduling
state (if they are currently running or not) and finally to undertake their access
if necessary to preserve the FIFO order.

In any case, this solution is actually a variant of the proxy model, and its
implications can be studied along with the discussion in the following paragraphs.

Proxy Model. As previously shown, serving outstanding entry calls at the
end of the call that opens the corresponding barriers improves efficiency and is
consistent with the Ada semantics.

Fig. 5. Proxy model entry servicing.

When accesses to protected objects are carried out in a non-preemptive way,
the entry servicing is deterministic: entries are served in FIFO order (as required

On the Effect of Protected Entry Servicing Policies 83

by MSRP and MrsP) by the server task on its own processor, until the barrier
is closed again or all queued entry calls have been served.

However, when accesses to protected objects can be preempted, a different
kind of problem arises, as the servicing of pending entry calls can be delayed by
a preemption of the server task, which compromises response time analysis. In
order to overcome this issue and ensure progress in the server tasks, two possible
solutions can be envisioned:

– To migrate the server task to a processor where the access to the resource
can be completed, according to the helping mechanism presented in Sect. 3.2.

– To perform the entry servicing non-preemptively in order to avoid such situ-
ation.

In general, under MrsP a task holding a resource lock may be preempted.
As explained in Sect. 3, the preempted task is migrated to a remote proces-
sor if there is a task actively waiting for the resource. This approach further
increases the potential access cost to a shared resource, since the migration cost
has to be included in the analysis. The worst-case number of migrations can be
obtained by calculating the number of local higher-priority tasks releases during
the access [20], i.e. for each valid migration target (each processor that hosts at
least one task accessing the resource), calculate the number of times it can suffer
interference from higher-priority tasks. This is calculated by obtaining the ceiling
value of the resource access time divided by the period of each higher-priority
task on the migration targets. This value, multiplied by the measured worst-case
cost of a migration is to be added to the final resource access cost. By adding the
time of servicing an entry to the resource access time, i.e. extending the time in
which the access can be preempted and migrated again, the previously presented
analysis yields a safe upper bound for the overhead induced by migrations under
the proxy model.

The other possible solution is to serve the entry in a non-preemptable way.
While this would limit the overhead in the server task, it might also negatively
affect the response time of higher-priority tasks, even those not accessing the
involved resource. MrsP was designed to avoid or at least reduce the unnec-
essary blocking suffered by higher-priority tasks from resources only used by
lower-priority tasks. However, short non-preemptable sections can still be ben-
eficial with this protocol, as shown in the evaluation made in [20]. Keeping
non-preemptable sections short should not be specially costly in real systems,
especially those implemented with the Ravenscar profile, since entries are mainly
used for task synchronization purposes.

In order to consistently use MrsP with the Ada tasking model, the impact
of servicing entries first, according to the eggshell rules, must be evaluated. The
following equation, which follows a similar approach as (2), can be used to extend
the results in [8] and [13, Eq. 5]:

ek = |map(G(rk))| × (ck + |Ge(rk)| × Ck
e) (4)

where ek is the cost of a single access to a resource rk. Function map(G(rk))
returns the set of processors that host at least one task accessing resource rk

84 J. Garrido et al.

and |map(G(rk))| returns the size of that set. This safely bounds the number of
access requests to rk that can be issued at a time, since, due to the use of ceiling
priorities, only one task per processor can be trying to access the resource at any
given moment. This number is multiplied by the time required for an access to
the resource, that is the sum of is execution time ck, plus the time required to
serve the potentially queued entry calls with barriers now open. For Ravenscar
systems, this equation can be simplified as only one entry request can be queued
per access:

ek = |map(G(rk))| × (ck + Ck
e) (5)

As shown in [20], this way of analysing resource contention is highly pessimistic,
especially when resource access request patterns are uneven among tasks and
processors. Consider a task running on a processor issuing requests to a resource
every few milliseconds, while there is only another task accessing the same
resource from a different processor, with a rate in the order of seconds. Then
it is clearly pessimistic to assume that all accesses from the first task will be
delayed by accesses from the second task. Therefore, the response time analysis
must provide means to reduce that pessimism based on the periodicity of the
requests issued on each processor. This same reasoning can be used to reduce the
pessimism on the need to service entry queue calls present in Eqs. 4 and 5. Given
the semantics of entry calls their frequency may not be comparable to that of
other protected actions. This is particularly true for Ravenscar systems, where
entries are only meant to be used to synchronize tasks, and thus the frequency of
entry requests may be expected to be clearly lower than that of other requests.
If this is the case, it is clearly pessimistic to assume that each non-entry access
will suffer an entry servicing overhead (Fig. 5).

A safe upper bound for the maximum entry-servicing overhead a task τi can
incur on a single activation due to a resource rk can be calculated as:

EN k
i =

∑

τx �=τi

⌈
Ri

T k
x

⌉
(6)

where T k
x is the minimum inter-arrival time of entry requests to resource rk by

a task τx, and Ri is the response time of τi. This result can be used to reduce
the pessimism of the previous equations, and therefore, the cost of all accesses
to a resource rk by τi during an activation can be expressed as:

Ek
i = EN k

i × Ck
e + Nk

i × (|map(G(rk))| × ck) (7)

where Nk
i is the maximum number of times τi accesses rk. Note that, while

Eqs. 6 and 7 are also valid for general Ada tasking, with the Ravenscar profile,
EN k

i can be also safely bounded by Nk
i × |map(G(rk))|, since each access to the

resource can only have to serve at most one entry. In consequence, the lower of
both values is to be used for schedulability analysis.

On the Effect of Protected Entry Servicing Policies 85

5 Conclusions

Protected objects and entries are a powerful mechanism for controlling the syn-
chronization of concurrent tasks. Nevertheless, Ada protected entries exhibit
some peculiarities that have to be taken into account when analysing the tem-
poral behaviour of real-time systems.

Among the possible implementation of protected entry servicing in multipro-
cessors, self-service has a potential for taking advantage of parallel execution to
improve the efficiency of the mechanism. However, it cannot be used with locking
policies based on PCP or SRP, such as MSRP or MrsP, without compromising
the properties of these protocols or violating the eggshell definition.

On the other hand, the proxy model is simpler to implement, and can be
used with MSRP and MrsP. It has also been shown to be analysable for systems
using non-preemptive spin-locking. The overhead caused by the extra execution
time in protected calls, as well as the impact of giving priority to entry servicing
over new calls, as required by the eggshell model, on the response time analysis,
have been calculated, and new response time equations have been derived.

References

1. Ada Reference Manual, ISO/IEC 8652:2012(E) with COR.1:2016 (2016). http://
www.ada-auth.org/arm.html

2. Baker, T.P.: A stack-based resource allocation policy for realtime processes. In:
1990 Proceedings of the 11th Real-Time Systems Symposium, pp. 191–200, Decem-
ber 1990

3. Baker, T.P.: Stack-based scheduling for realtime processes. Real-Time Syst. 3(1),
67–99 (1991)

4. Barnes, J.: Programming in Ada 2012. Cambridge University Press, Cambridge
(2014)

5. Brandenburg, B.B.: Scheduling and locking in multiprocessor real-time operating
systems. Ph.D. thesis, The University of North Carolina at Chapel Hill (2011)

6. Burns, A., Wellings, A.J.: Locking policies for multiprocessor Ada. Ada Lett. 33(2),
59–65 (2013)

7. Burns, A., Wellings, A.: Analysable Real-Time Systems: Programmed in Ada. Cre-
ateSpace Independent Publishing Platform (2016)

8. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource
sharing protocol-MrsP. In: 2013 25th Euromicro Conference on Real-Time Sys-
tems (ECRTS), pp. 282–291. IEEE (2013)

9. Chouteau, F., Ruiz, J.F.: Design and implementation of a Ravenscar extension
for multiprocessors. In: Romanovsky, A., Vardanega, T. (eds.) Ada-Europe 2011.
LNCS, vol. 6652, pp. 31–45. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21338-0 3

10. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for mul-
tiprocessor systems. ACM Comput. Surv. 43(4), 35:1–35:44 (2011).
http://doi.acm.org/10.1145/1978802.1978814

11. Gai, P., Lipari, G., Natale, M.D.: Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip. In: Proceedings of the 22nd
IEEE Real-Time Systems Symposium. IEEE Computer Society (2001)

http://www.ada-auth.org/arm.html
http://www.ada-auth.org/arm.html
https://doi.org/10.1007/978-3-642-21338-0_3
https://doi.org/10.1007/978-3-642-21338-0_3
http://doi.acm.org/10.1145/1978802.1978814

86 J. Garrido et al.

12. Garrido, J., Zamorano, J., Alonso, A., de la Puente, J.A.: Evaluating MSRP and
MrsP with the multiprocessor Ravenscar profile. In: Blieberger, J., Bader, M. (eds.)
Ada-Europe 2017. LNCS, vol. 10300, pp. 3–17. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60588-3 1

13. Garrido, J., Zhao, S., Burns, A., Wellings, A.: Supporting nested resources in MrsP.
In: Blieberger, J., Bader, M. (eds.) Ada-Europe 2017. LNCS, vol. 10300, pp. 73–86.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60588-3 5

14. Giering, E.W., Baker, T.P.: The GNU Ada Runtime Library (GNARL): design and
implementation. In: WADAS 1994: Proceedings of the Eleventh Annual Washing-
ton Ada Symposium & Summer ACM SIGAda Meeting on Ada, pp. 97–107. ACM
Press, New York (1994)

15. Giering, E.W., Mueller, F., Baker, T.P.: Implementing ada 9x features using posix
threads: design issues. In: Proceedings of the Conference on TRI-Ada 1993, TRI-
Ada 1993, pp. 214–228. ACM, New York (1993). http://doi.acm.org/10.1145/
170657.170736

16. Lin, S., Wellings, A.J., Burns, A.: Ada 2012: resource sharing and multiprocessors.
Ada Lett. 33(1), 32–44 (2013)

17. Miranda, J.: A detailed description of the GNU Ada run time (2003). http://www.
iuma.ulpgc.es/users/jmiranda/gnat-rts/

18. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

19. Wieder, A., Brandenburg, B.B.: On spin locks in AUTOSAR: blocking analysis
of FIFO, unordered, and priority-ordered spin locks. In: Proceedings of the IEEE
34th Real-Time Systems Symposium, RTSS 2013, Vancouver, BC, Canada, 3–6
December 2013, pp. 45–56 (2013). https://doi.org/10.1109/RTSS.2013.13

20. Zhao, S., Garrido, J., Burns, A., Wellings, A.: New schedulability analysis for
MrsP. In: 2017 IEEE 23rd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pp. 1–10. IEEE (2017)

https://doi.org/10.1007/978-3-319-60588-3_1
https://doi.org/10.1007/978-3-319-60588-3_1
https://doi.org/10.1007/978-3-319-60588-3_5
http://doi.acm.org/10.1145/170657.170736
http://doi.acm.org/10.1145/170657.170736
http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/
http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/
https://doi.org/10.1109/RTSS.2013.13

Improved Cache-Related Preemption
Delay Estimation for Fixed Preemption

Point Scheduling

Filip Marković(B), Jan Carlson, and Radu Dobrin

School of Innovation Design and Technology (IDT),
Mälardalen University, Väster̊as, Sweden

{filip.markovic,jan.carlson,radu.dobrin}@mdh.se

Abstract. Cache-Related Preemption Delays (CRPD) can significantly
increase tasks’ execution time in preemptive real-time scheduling, poten-
tially jeopardising the system schedulability. In order to reduce the cumu-
lative CRPD, Limited Preemptive Scheduling (LPS) has emerged as
a scheduling approach which limits the maximum number of preemp-
tions encountered by real-time tasks, thus decreasing CRPD compared
to fully preemptive scheduling. Furthermore, an instance of LPS, called
Fixed Preemption Point Scheduling (LP-FPP), defines the exact points
where the preemptions are permitted within a task, which enables a more
precise CRPD estimation. The majority of the research, in the domain
of LP-FPP, estimates CRPD with pessimistic upper bounds, without
considering the possible sources of over-approximation: (1) accounting
for the infeasible preemption combinations, and (2) accounting for the
infeasible cache block reloads. In this paper, we improve the analysis
by accounting for those two cases towards a more precise estimation of
the CRPD upper bounds. The evaluation of the approach on synthetic
tasksets reveals a significant reduction of the pessimism in the calculation
of the CRPD upper bounds, compared to the existing approaches.

Keywords: Real-time systems · CRPD analysis · WCET analysis
Limited Preemptive Scheduling · Fixed preemption point approach

1 Introduction

In preemptive real-time systems, each preemption causes a preemption delay
which needs to be accounted in the timing analysis. The main part of preemption
delay comes from the memory cache blocks which need to be reloaded from
higher memory units before the preempted task is able to be executed again,
and it is called Cache-Related Preemption Delay (CRPD). CRPD may increase
the worst-case execution time of a task up to 33%, as shown by Pellizzoni et al.
[1], thus making a significant impact on the system schedulability. Therefore, it
is important to compute the upper bounds on this delay as tight as possible.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 87–101, 2018.
https://doi.org/10.1007/978-3-319-92432-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_6&domain=pdf

88 F. Marković et al.

In order to control the CRPD, Limited Preemptive Scheduling (LPS) has
emerged as a scheduling paradigm which has the ability to reduce the number
of preemptions encountered by real-time tasks, thus reducing the CRPD experi-
enced by the preempted tasks. LPS has been instantiated in several approaches,
e.g., Preemption Thresholds Scheduling proposed by Wang and Saksena [2],
Deferred Preemption Scheduling proposed by Baruah [3], and Fixed Preemption
Points (LP-FPP), proposed by Burns [4]. LP-FPP facilitates the estimation of
CRPD, compared to other LPS approaches, because in this approach each task
is divided in non-preemptive regions, separated by offline predefined preemption
points. Since the tasks can be preempted only at the predefined preemption
points, this approach allows for a more precise CRPD estimation compared to
the other LPS approaches, where preemption points are unknown before run-
time. However, the existing works on LP-FPP use pessimistic CRPD estimations
which may be significantly tightened through a more detailed CRPD analysis.

The computation of CRPD needs to take into account several factors, such as:
(1) cache blocks belonging to a preempted task that may be evicted, called use-
ful cache blocks (UCB), (2) cache blocks that are accessed by a preempting
task which may evict useful cache blocks of a preempted task, called evict-
ing cache blocks (ECB). Since LP-FPP considers predefined non-preemptive
regions, those two types of cache blocks are static and known for each preemp-
tion point. Many papers in LP-FPP scheduling, e.g., [5–7] assume estimation
of CRPD which accounts that all of the preempted points are preempted, and
each point exhibits the maximum possible eviction scenario of their useful cache
blocks. However, this over-provisional computation is very pessimistic compared
to a tighter upper bound that can be computed by considering more realistic
system behaviour.

There are two important sources of over-approximation that can be consid-
ered when estimating CRPD in the LP-FPP domain, and they are intertwined
between the infeasible preemption combinations, and the infeasible reloads of
the useful cache memory blocks, in more details:

– In a majority of the cases, some preemption combinations are infeasible, i.e.,
one task can rarely preempt another task instance at all preemption points.

– The existing CRPD analysis over-approximates the number of useful cache
block (UCB) reloads in the preempted task. This number can be significantly
reduced by analysing the cache block access throughout the task execution.

In this work, we address both potential sources of over-approximation jointly,
accounting for the infeasible reloads and the infeasible preemption combinations.
We achieve this by building on the constraint satisfaction model which we pro-
posed in [8], thus even more significantly reducing the pessimism in the CRPD
estimation.

The remainder of the paper is organised as follows: In Sect. 2 we describe the
system model used in the paper. The motivating example is described in Sect. 3.
The proposed method is described in Sect. 4, followed by the experimental results
in Sect. 5. In Sect. 6 we enlist the related work, and we conclude the paper in
Sect. 7.

Improved Cache-Related Preemption Delay Estimation 89

2 System Model

While the proposed approach is independent of the underlying scheduler, without
loss of generality, in this paper we consider a sporadic task model scheduled under
the Fixed Priority paradigm on a single processor. A taskset Γ is composed of
n tasks, ordered in a decreasing priority order, where the individual task τi is
described with the following parameters: Pi, Ci, Ti,Di. The priority of a task is
denoted with Pi, the worst case execution time (WCET) without preemption
delay with Ci, the minimum inter-arrival time of each task instance with Ti, and
the relative deadline with Di (Fig. 1).

Fig. 1. Task with two preemption points (PPi,1 and PPi,2 with respective worst case
CRPD values ξi,1 and ξi,2) which form three non-preemptive regions (δi,1, δi,2 and δi,3

with respective worst case execution times qi,1, qi,2 and qi,2)

Since in this paper we consider LP-FPP scheduling, each task is divided by
di predefined preemption points. Individual preemption points are denoted with
PP i,k, where 1 ≤ k ≤ di, and the maximum possible preemption delay at each
point is denoted with ξi,k. The preemption points separate the task into di + 1
non-preemptive regions, denoted with δi,k, each with WCET of qi,k, such that
Ci =

∑di+1
k=1 qi,k.

In order to allow for a more precise CRPD estimation considering a direct-
mapped cache, we extend the system model with detailed information about the
cache usage within a task. Considering each preemption point PP i,k, we define
the following:

– UCBi,k – a set of useful cache blocks at PP i,k. As proposed by Lee et al. [9],
and superseded by Altmeyer et al. [10], a memory block m is in UCBi,k, if
and only if:
(a) m must1 be cached at PP i,k, and
(b) m may be reused on at least one control flow path starting at PP i,k

without eviction2 of m on this path.

1 In the original definition, Altmeyer used must to eliminate the cases where the
useful cache block eviction is accounted by both: WCET and CRPD analysis, while
it should be accounted only by the CRPD analysis. However, a useful cache block
still may be cached, but its eviction will not be accounted by both analysis.

2 Refers only to self-eviction by τi.

90 F. Marković et al.

Considering each non-preemptive region δi,k, we define the following set:

– ECBi,k – a set of evicting cache blocks of δi,k, such that m ∈ ECBi,k if and
only if m may be accessed during the execution of δi,k. The evicting cache
block set of the whole task τi is defined with ECBi, such that:

ECBi =
di+1⋃

k=1

ECBi,k

3 Sources of CRPD Over-Approximation

Many papers in LP-FPP scheduling, e.g., [5–7] assume an estimation of CRPD
which accounts for a worst case that all of the preemption points are preempted,
and each point exhibits the maximum possible eviction scenario of their useful
cache blocks. Thus, for a task τi, the worst case execution time with accounted
CRPD is computed as: Cγ

i = Ci +
∑di

r=1 ξr,k. This computation can lead to a
significant over-estimation. We describe the two cases which can be a source
of the CRPD over-approximation: (1) accounting for the infeasible preemption
combinations, (2) accounting for the infeasible useful cache block reloads.

3.1 Infeasible Preemptions

In Fig. 2 we show a task τ2 with three preemption points and four non-preemptive
regions with their worst case execution times. We also show a preempting task
τ1 with C1 = 20 and T1 = 65.

We show a scenario where it is obvious that if τ1 preempts τ2 at PP 2,1, then
it cannot preempt also on PP 2,2. This is the case because the next instance of τ1
cannot be released before the latest start time of the third non-preemptive region
δ2,3. Let us assume that the instance of τ2 started to execute. If the instance of
τ1 is released during the execution of δ2,1, thus definitely preempting at PP 2,1,
can the next instance of τ1 preempt τ2 at PP 2,2? We first compute the maximum
time interval between the start time of δ2,1 and the start time of δ2,3, and we get:

q2,1 + C1 + ξ2,1 + q2,2 = 59

However, the next instance of τ1 comes earliest 65 time units after the start of
τ2, which is less than the latest start time of δ2,3. Therefore, preempting at both
PP 2,1 and PP 2,2 is infeasible. By analysing the other infeasible preemptions
from the example shown in Fig. 2 we would see that τ1 can preempt τ2 only in
two scenarios: (1) τ1 preempts τ2 at PP 2,1 and PP 2,3, or (2) τ1 preempts τ2 only
at PP 2,2. Assuming that τ2 is preempted by τ1 at all three points is safe, but it
might be a significant over-approximation. To find which of feasible preemption
combinations results in a maximum CRPD is not a trivial problem, especially
with the higher number of preempting tasks, and it is solved in Sect. 4.

Improved Cache-Related Preemption Delay Estimation 91

Fig. 2. A preempted task τ2 with three preemption points (PP 2,1, PP 2,2 and PP 2,3),
and four non-preemptive regions with worst case CRPD at each point. Top of the
figure: preempting task τ1 with C1 = 20, and T1 = 65.

3.2 Infeasible Useful Cache Block Reloads

In Fig. 3, we show the same tasks: τ2 with its useful cache block sets, and
the preempting task τ1 with a set of its evicting cache blocks. Inside the non-
preemptive regions we show the accessed memory blocks, e.g., during the first
non-preemptive region of τ3 those are: 1, 2, 3, and 4. Since they are all used in
the remaining part of the task execution, they belong to the UCB2,1 set. Notice
that for the second non-preemptive region, the only accessed memory block is
1, but the UCB2,2 is equal to {2, 3, 4} since the memory blocks 2, 3, and 4 are
cached and may be reused in the remaining part of the task execution.

Let us ignore for now the analysis from the previous example and assume
that τ1 may preempt τ2 at all three preemption points. Considering memory
block 2, it may be evicted when τ1 preempts τ2 at PP 2,1, or at PP 2,2. The
existing CRPD analysis would account for two reloads, because memory block
2 is in the useful cache block sets of both points and in ECB1 of τ1, but this is
an over-approximation, since the analysis would over-approximate the number
of reloads. The same holds for memory blocks 3 and 4, since τ1 may evict them
at any of the three points, but at most one reload should be accounted for.

Fig. 3. A preempted task τ1 with three preemption points with defined UCB sets
(UCB2,1, UCB2,2, and UCB2,3), and four non-preemptive regions. The cache block
accesses throughout the task execution are shown as circled memory block numbers
inside the task.

92 F. Marković et al.

Fig. 4. A preempting task τi with a memory block m accessed before preemption point
PP i,k and re-accessed at δi,l. Top: A preempted task τh that evicts m and preempts
τi at all preemption points between PP i,k and δi,l.

Accounting for the precise number of the useful cache block reloads is the main
problem that we address in this paper.

In order to reduce the over-approximation of the useful-cache block reloads
in the CRPD estimation, we use the fact that:
Between two accesses of a memory block m, by a task τi, at most one reload
should be accounted for in the CRPD analysis for τi. More detailed:

Let UCBi,k be a useful cache block set at PP i,k of a preempted task τi, and
let m be a memory block such that m ∈ UCBi,k. Then at most one reload of m
should be accounted by CRPD for τi, until the first succeeding non-preemptive
region δi,l, where k < l, such that m ∈ ECBi,l.

The existing papers in the domain of CRPD estimation account for the
reloads based on useful-cache blocks at the preemption points, thus they would
account for the l − k − 1 cache block reloads from PP i,k to δi,l. Although m
may be useful at all preemption points between two consecutive accesses of τi,
accounting that τi reloaded m at each preemption point can be a significant
over-approximation (see Fig. 4).

4 Computing Tighter CRPD Bounds

In this paper we address both sources of over-approximation that are described
in the previous section. The previously proposed CRPD method [8] for LP-FPP
task model addressed the problem of infeasible preemptions by using a constraint
satisfaction model. However, that solution may result in over-approximating
CRPD values since it does not consider infeasible reloads. Therefore, in order to
jointly solve both problems, we improve the previously proposed constraint sat-
isfaction model such that it even further reduces the pessimism in the resulting
CRPD values. The overview of the method is described in Algorithm1. The algo-
rithm considers a taskset Γ with tasks ordered in a decreasing priority order. For
each task τi it computes the CRPD γi and updates its WCET which accounts
for the CRPD Cγ

i . The constraint satisfaction model is defined in three steps:

Improved Cache-Related Preemption Delay Estimation 93

1. First, we generate the variables that represent the possible preemptions from
the preempting tasks at different preemption points of the preempted task.

2. Second, we generate the constraints which define infeasible preemption com-
binations.

3. Third, we generate a goal function which accounts for the infeasible useful
cache block reloads, described in Sect. 3, jointly accounting for the infeasible
preemption combinations.

In the following subsections we use the example defined (in Sect. 3) in Figs. 2
and 3.

Data: Task set Γ
Result: Set γ of CRPD values for each task from Γ

1 γ ← ∅
2 for i ← 2 to n do
3 Vi ← Generate variables that represent all preemptions on τi

4 Ci ← Generate constraints which define infeasible preemption combinations
5 Gi ← Generate a goal function
6 γi ← Compute CRPD bound solving the constraint problem: Vi, Ci and Gi

7 γ ← γ ∪ γi

8 Cγ
i ← Ci + γi

9 end
10 return γ

Algorithm 1. Algorithm for tightening the upper bounds of CRPD in a
taskset.

4.1 Variables

For each preempted task τi, we generate di × (i − 1) boolean variables, where di

is the number of preemption points of τi, and (i − 1) is a number of higher pri-
ority (preempting) tasks. Each boolean variable Xh,k represents the case where
an instance of the preempting task τh can affect the preemption cost of the
preemption point PP i,k. The set Vi of boolean variables is formally defined as:

Vi =
{
Xh,k ∈ {0, 1} ∣

∣ (1 ≤ h < i) ∧ (1 ≤ k ≤ di)
}

Considering the running example from Figs. 2 and 3, the set V of τ2 is:

V2 =
{
X1,1∈{0, 1}, X1,2∈{0, 1}, X1,3∈{0, 1}}

4.2 Constraints

The constraints describe the infeasible preemption combinations. Considering
two instances of a preempting task τh and their potential preemptions at two
preemption points PP i,k and PP i,l (1 ≤ l ≤ di) of the preempted task τi, we
showed in [8] that the following proposition holds:

94 F. Marković et al.

Proposition 1. If the maximum time interval from the start time of δi,k until
the start time of δi,l+1 is less or equal to the minimum inter-arrival period Th

then task τh cannot affect one instance of τi at both preemption points PP i,k

and PP i,l.

The maximum time interval Ik,l
i from the start time of δi,k until the start

time of δi,l+1 is defined as the least fixed point of the following recursion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ik,l
i (0) =

l∑

w=k

(qi,w + ξi,w) +
∑

h∈hp(τi)

Cγ
h

Ik,l
i (z) =

l∑

w=k

(qi,w + ξi,w) +
∑

h∈hp(τi)

(⌊
Ik,l
i (z−1)

Th

⌋

+ 1

)

Cγ
h

Therefore, we generate a constraint whenever the inequality Ik,l
i ≤ Th holds.

Since the constraint expresses the case when τh cannot affect τi at the two
points PP i,k and PP i,l, it has the following form:

Xh,k + Xh,l ≤ 1

Meaning that only one of the two preemptions is possible, Xh,k or Xh,l. The
whole set Ci of constraints is formally defined as:

Ci =
{
Xh,k + Xh,l ≤ 1

∣
∣ (1 ≤ h < i) ∧ (1 ≤ k < l ≤ di) ∧ (Ik,l

i ≤ Th)
}

Considering the running example from Figs. 2 and 3, we compute that: I1,2
2 = 62,

and 62 ≤ T1; I2,3
2 = 55, and 55 ≤ T1; and I1,3

2 = 99, and 99 > T1. Considering
this, the set C2 of τ2 is:

C2 =
{
X1,1 + X1,2 ≤ 1; X1,2 + X1,3 ≤ 1

}

↑ ↑
I1,2
2 ≤ T1 I2,3

2 ≤ T1

As discussed previously, the scenario where the instances of τ1 preempt τ2 at
both PP 2,1 and PP 2,2 is not possible. Also, the scenario where τ1 preempts both
PP 2,2 and PP 2,3 is not possible. Preempting at PP 2,1 and PP 2,3 is however
possible, as are the scenarios of preempting only at one or none of the three
preemption points.

4.3 Goal Function

Finally, we define the goal function of the constraint satisfaction model. The goal
function computes the maximum CRPD considering the infeasible preemption
combinations defined by the constraints, but also accounts for the precise number
of useful cache block reloads which should be accounted by the CRPD estimation.

In order to account for the precise maximum number of useful cache block
reloads, we generate a goal function based on observation from Sect. 3.2. For

Improved Cache-Related Preemption Delay Estimation 95

each useful cache block m at PP i,k (m ∈ UCBi,k) we first need to define a
sequence of the non-preemptive regions during which m can be reloaded at most
once by τi.

Therefore, we define the set A(i, k,m), which for a task τi denotes a sequence
of preemption points from PP i,k during which we need to account for at most
one reload of m. Formally:

A(i, k,m) = {l | k < l ≤ di ∧ ∀l′(k < l′ ≤ l) ⇒ m /∈ ECBi,l′} (1)

Considering the example in Fig. 3, A(2, 3, 1) = {2, 3}, since these preemption
points (PP i,2, and PP i,2) succeed PP i,1, and precede the non-preemptive region
(δi,4) where memory block 3 is re-accessed by τi. The CRPD estimation should
account for maximum one reload of memory block 3 even if there are preempting
tasks that may evict m at several of the preemption points.

We propose the following goal function in order to account for both the
infeasible preemptions, and the precise number of useful cache block reloads:

Gi = Maximize :

∑

PP i,k∈τi

∑

m∈UCBi,k

[

min
(

1,
∑

{Xh,k | τh ∈ hp(τi) ∧ m ∈ ECBh}
)

×
(

1 − min
(

1,
∑

r∈A(i,m,k)

∑
{Xh,r | τh ∈ hp(τi) ∧ m ∈ ECBh}

))]

× BRT

The goal function consists of two expressions which compute the maximum
number of necessary cache block reloads for τi, which multiplied by the block
reload time BRT results into the upper bound γi on the CRPD.

The first expression (line 1) of the goal function iterates over the useful cache
blocks of the preemption points, one by one, accounting for the evictions from the
higher priority tasks at those specified points. The minimum function accounts
for at most one eviction of a memory block, even if it is in the evicting cache
block set of more than one higher priority task. For a single memory block m,
where m ∈ UCBi,k at PP i,k, the minimum function on line one will result in:

� 1: if there is at least one preemption from a task with m in its evicting cache
block set.

� 0: if there are no preemptions from the preempting tasks with m in their
evicting cache block sets.

The second expression (line 2) of the goal function accounts for the precise
number of useful cache block reloads. It computes if there is an eviction of
memory block m, from PP i,k until the first following non-preemptive region
where m is re-accessed, given by A(i, k,m). If m is evicted during this interval,
the expression results in 1, otherwise it results in 0.

Let us consider a memory block m at the specified preemption point PP i,k

such that m ∈ UCBi,k, and let us assume that m is re-accessed by τi at δi,l+1.
Next, we need to account for only one reload of m, from PP i,k until δi,l+1. The
goal function will result in:

96 F. Marković et al.

� 0: if there are no feasible preemptions from the preempting tasks with m in
their evicting cache block sets. This is the case because the first expression
results in 0 and it is multiplied with the second expression.

� 0: if m is in the evicting cache block set of at least one task that preempts
at PP i,k, but also in the evicting cache block set of at least one task that
preempts from PP i,k+1 until PP i,l. This is the case because both of the
expressions result in 1, which finally results in: 1 × (1 − 1) = 0.

� 1: if m is in the evicting cache block set of at least one task that preempts
at PP i,k, and there are no further preemption points until δi,l+1 where m
is evicted. This is the case because the first expression results in 1 and the
second expression results in 0, which finally results in: 1 × (1 − 0) = 1.

For any memory block m, the formulation will account for at most one reload
from PP i,k until δi,l+1, accounting it in the last preemption point where m is
evicted during this interval. Reloads of the previous preemption points where m
is evicted in this interval will not be accounted for since they will result in 0.

Let us take for example memory block 3 from Figs. 2 and 3. First time it is
accessed by τ2 is at the non-preemptive region δ2,1. Then, it is re-accessed by τ2
at δ2,4. It can be evicted either at PP 2,1 or PP 2,3, as shown in Sect. 4.2, but the
analysis should account for only one reload. The goal function for this memory
block at all preemption points is shown bellow.

G = Maximize : BRT × (

... + ... + X1,1 × (1 − min(1,X1,2 + X1,3)) + ... ← k = 1

... + ... + X1,2 × (1 − min(1,X1,3)) + ... ← k = 2

... + ... + X1,3 × (1 − 0) + ...
) ← k = 3

↑ ↑ ↑ ↑
m = 1 m = 2 m = 3 m = 4

We omitted the remaining parts of the nested sum for other m and k values
of the goal function. Considering the memory block 3 and its possible eviction
at PP i,1 we get that it is X1,1 × (1 − min(1,X1,2 + X1,3)). This means that a
preemption at PP 2,1 contributes to the CRPD only if there is no preemption
at PP 2,2 or PP 2,3. Similar formulation holds for the same block at PP 2,2 and
PP 2,3, except in case of PP 2,3 the set A(2,3,3) results in 0, since there are no
preemption points after PP 2,3 where memory block 3 can be useful.

5 Evaluation

In the following experiments we used the open-source constraint programming
solver Choco [11] on a device with 2,9 GHz Intel Core i5 processor and 8 GB
1867 MHz DDR3 RAM memory. In the experiments we evaluated three meth-
ods for CRPD estimation: the method proposed in this paper, the method
which accounts only for the infeasible preemption combinations [8], and the
over-approximation which accounts for the maximum eviction at all preemption
points.

Improved Cache-Related Preemption Delay Estimation 97

Experiment Setup: In all of the experiments, tasksets are generated with the
fixed utilisation of 0.8, using the U-unifast algorithm [12]. We randomly gener-
ated the minimum inter-arrival times from the uniform distribution [5ms, 5s], as
it reasonably corresponds to real systems. The worst case execution times are
calculated such that: Ci = Ti×Ui, and the priorities are assigned considering the
rate monotonic order. We also randomly generated a number of non-preemptive
regions from uniform distribution from 1 until 10.

Regarding the cache setup we used the one described by Altmeyer et al. [13],
where memory blocks are represented with integer values from 0 to 256, and
the maximum cache size CS is 256. Block reload time BRT is set to 8µs. The
evicting cache block set of a task ECBi is generated using U-unifast algorithm
such that CU =

∑n
1 |ECBi|/CS, where |ECBi| is the number of cache blocks

in the ECBi. In cases when the algorithm returned values above 1, we assigned
all cache blocks to ECBi. Useful cache block set UCBi of a task is randomly
generated from ECBi using the reload factor RF , representing the assumed
reuse factor which in real system varies from very low (0%), to high (30%).
Therefore, UCBi = RF × |ECBi|, where RF is uniformly generated from the
range [0, 0.3]. Next, we randomly generated useful cache block sets UCBi,k for
each non-preemptive region from uniform distribution [0, 100 × |UCBi|], and
accordingly added evicting cache blocks such that the sequence of the consecutive
useful cache block sets is bounded by two memory block accesses.

First Experiment: In the first experiment, we evaluated the CRPD estimation
average over the generated tasksets, varying the total cache utilization from 20%
to 90% (see Fig. 5), and the number of tasks in each taskset was fixed to 10. We
show the estimations of the CRPD upper bounds computed by the method pro-
posed in this work IPR (standing for accounting the infeasible preemptions and
reloads), method proposed in [8] IP (standing for accounting only the infeasible
preemptions), and the over-approximation OA which accounts for the maximum
eviction at all preemption points. As expected, IPR estimates considerably less
pessimistic upper bounds compared to IP and OA. Moreover, it is evident that
the benefit of using IPR is even larger with the increase of cache utilisation

20 30 40 50 60 70 80 90
Cache utilisation (%)

0

500

1000

1500

2000

2500

3000

3500

C
R

P
D

 (
m

ic
ro

 s
ec

on
ds

) IPR
IP
OA

Fig. 5. CRPD estimation per taskset for different levels of cache utilization, calculated
as the average over the 2000 generated tasksets.

98 F. Marković et al.

compared to IP . For example, when CU = 20%, the average taskset CRPD
estimation using IPR is 181µs, which is significantly reduced compared to the
estimation of 324µs when using IP (by 44%), and the estimation of 601µs when
using OA (by 70%). When CU = 90%, the average taskset CRPD estimation
using IPR is 1040µs, which is a reduction ratio of 58% compared with the bound
of 2432µs when using IP , and 70% compared to the estimation of 3280µs when
using OA. This is the case since by increasing cache utilisation, more preempting
tasks share the evicting cache blocks, which furthermore increases the number
of infeasible reloads that should be accounted by the CRPD analysis.

Second Experiment: In the second experiment, we evaluated the CRPD esti-
mation average over the generated tasksets, varying the number of tasks from
3 to 10 (see Fig. 6). In this experiment, we fixed the total cache utilisation to
40%. The results reveal that the IPR dominates the other two approaches (IP
and OA) even when increasing the number of tasks in a taskset. This is the
case since by increasing the number of tasks, we also increase the number of
preempting tasks and thus the number of possible preemptions. For example,
when n = 7, the average taskset CRPD estimation using IPR is 470µs, which
is a reduction of 48% compared to the bound of 896µs when using IP , and
even 69% compared to the estimation of 1560µs when using OA. However, the
average analysis time increases with the number of tasks in a taskset, from 48 ms
when n = 3, to 2772 ms when n = 10. Since the analysis time varies a lot among
different cases, we used a time limit of 40 s per taskset analysis, and if it failed
to provide a value within this time bound, it instead reported the CRPD value
computed with OA. However, the proposed solution is an offline method and the
analysis time can be significantly improved by using different solvers.3

3 4 5 6 7 8 9 10

Number of tasks

0

500

1000

1500

2000

C
R

P
D

 (
m

ic
ro

 s
ec

on
ds

) IPR
IP
OA

Fig. 6. CRPD estimation per taskset, for different taskset sizes, calculated as the aver-
age over the 2000 generated tasksets.

3 We extracted a few of the most time-consuming (more than 40 s) cases from the
evaluation, and with IBM CPLEX [14] they were solved in less than 200 ms.

Improved Cache-Related Preemption Delay Estimation 99

6 Related Work

The majority of the work about CRPD analysis considers only the fully preemp-
tive real-time systems. The two dominant approaches for computing the CRPD
were UCB-union [15] and ECB-union (extended from the ECB-only approach
proposed by Busquets-Mataix et al. [16], and later Tomiyama and Dutt [17]). In
these approaches it is assumed that the evicting cache block sets of the preempt-
ing tasks always definitely evict the useful cache blocks of the preempted task
in a same manner, without consideration that the preemptions might result in
a smaller CRPD values than the prior accounted ones. In order to account for
this possibility, Staschulat et al. [18] proposed a CRPD analysis based on mul-
tisets. However, their approach over-approximates the number of intermediate
preemptions between the preempting tasks and also the number of preemptions
that may impact on the response time of the preempted task. These sources of
over-approximation were later addressed by Altmeyer et al. [19] using the ECB-
and UCB-Union multiset approaches. However, neither of those works accounts
for the infeasible preemptions. Ramaprasad and Miller [20] analysed the feasible
preemptions considering the worst case placement of preemptions on each job of
a preempted task throughout the hyper-period. However, their work addresses
only periodic task systems.

Considering LP-FPP approaches, the majority of the proposed schedulability
analysis, e.g., [5–7] use the over-approximation that accounts for the worst case
eviction at each preemption point. Cavicchio et al. [21] improved the analysis
for such systems, considering the preemption point selection that uses a detailed
CRPD computation for each pair of adjacent preemption points, therefore being
able to significantly improve the CRPD precision and reduce the pessimism in
the analysis compared to previous works. However, they did not account for the
infeasible preemption combinations and the infeasible useful cache block reloads,
which may be a source of a significant over-approximation in LP-FPP real-time
systems, which are addressed in this paper.

7 Conclusions

In this paper, we proposed an improved Cache-Related Preemption Delay
(CRPD) analysis for sporadic real-time systems under Fixed Preemption Point
Scheduling, which reduces the pessimism in CRPD estimation compared to
previous approaches. We first identified two potential sources of CRPD over-
approximation: (1) infeasible preemption combinations, and (2) infeasible useful
cache block reloads. In order to address those problems and compute more pre-
cise CRPD upper bounds, we proposed a constraint satisfaction model. The
evaluation results show that the proposed approach significantly reduces the
upper bounds on CRPD estimation, compared to previous methods.

In future work, we will investigate the proposed method integrating it with
the schedulability analysis for LP-FPP systems, also evaluating the potential
benefits of its use considering different task and cache parameters. We will also

100 F. Marković et al.

address fully preemptive real-time systems, considering the identified sources of
over-approximation which hold for such systems as well.

References

1. Pellizzoni, R., Bui, B.D., Caccamo, M., Sha, L.: Coscheduling of CPU and I/O
transactions in COTS-based embedded systems. In: Real-Time Systems Sympo-
sium, pp. 221–231. IEEE (2008)

2. Wang, Y., Saksena, M.: Scheduling fixed-priority tasks with preemption threshold.
In: Sixth International Conference on Real-Time Computing Systems and Appli-
cations, RTCSA 1999, pp. 328–335. IEEE (1999)

3. Baruah, S.: The limited-preemption uniprocessor scheduling of sporadic task sys-
tems. In: 17th Euromicro Conference on Real-Time Systems (ECRTS 2005), pp.
137–144. IEEE (2005)

4. Burns, A., Son, E.S.: Preemptive priority based scheduling: an appropriate engi-
neering approach. In: Advances in Real-Time Systems, pp. 225–248 (1994)

5. Bertogna, M., Xhani, O., Marinoni, M., Esposito, F., Buttazzo, G.: Optimal selec-
tion of preemption points to minimize preemption overhead. In: 2011 23rd Euromi-
cro Conference on Real-Time Systems (ECRTS), pp. 217–227. IEEE (2011)

6. Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-
time systems. A survey. IEEE Trans. Ind. Inform. 9(1), 3–15 (2013)

7. Peng, B., Fisher, N., Bertogna, M.: Explicit preemption placement for real-time
conditional code. In: 2014 26th Euromicro Conference on Real-Time Systems
(ECRTS), pp. 177–188. IEEE (2014)

8. Markovic, F., Carlson, J., Dobrin, R.: Tightening the bounds on cache-related pre-
emption delay in fixed preemption point scheduling. Presented at the 17th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2017). OASIcs-
OpenAccess Series in Informatics, vol. 57. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2017)

9. Lee, C.-G., Han, J., Seo, Y.-M., Min, S.L., Ha, R., Hong, S., Park, C.Y., Lee, M.,
Kim, C.S.: Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling. IEEE Trans. Comput. 47(6), 700–713 (1998)

10. Altmeyer, S., Burguiere, C.: A new notion of useful cache block to improve the
bounds of cache-related preemption delay. In: 21st Euromicro Conference on Real-
Time Systems, ECRTS 2009, pp. 109–118. IEEE (2009)

11. CHOCO: Open Source Java Library for Constraint Programming. http://www.
choco-solver.org/. Accessed 13 Apr 2017

12. Bini, E., Buttazzo, G.C.: Measuring the performance of schedulability tests. Real
Time Syst. 30(1–2), 129–154 (2005)

13. Sebastian, A., Roeland, D., Will, L., Robert, I.D.: Evaluation of cache partitioning
for hard real-time systems. In: Proceedings of Euromicro Conference on Real-Time
Systems (ECRTS), pp. 15–26 (2014)

14. IBM ILOG CPLEX. https://www.ibm.com/analytics/data-science/prescriptive-
analytics/cplex-optimizer. Accessed 25 Feb 2018

15. Tan, Y., Mooney, V.: Timing analysis for preemptive multitasking real-time sys-
tems with caches. ACM Trans. Embed. Comput. Syst. (TECS) 6(1), 7 (2007)

16. Busquets-Mataix, J.V., Serrano, J.J., Ors, R., Gil, P., Wellings, A.: Adding instruc-
tion cache effect to schedulability analysis of preemptive real-time systems. In:
Proceedings of 1996 IEEE Real-Time Technology and Applications Symposium,
pp. 204–212. IEEE (1996)

http://www.choco-solver.org/
http://www.choco-solver.org/
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

Improved Cache-Related Preemption Delay Estimation 101

17. Tomiyama, H., Dutt, N.D.: Program path analysis to bound cache-related preemp-
tion delay in preemptive real-time systems. In: Proceedings of the Eighth Interna-
tional Workshop on Hardware/Software Codesign, pp. 67–71. ACM (2000)

18. Staschulat, J. Schliecker, S., Ernst, R.: Scheduling analysis of real-time systems
with precise modeling of cache related preemption delay. In: Proceedings of the
17th Euromicro Conference on Real-Time Systems (ECRTS 2005), pp. 41–48. IEEE
(2005)

19. Altmeyer, S., Davis, R.I., Maiza, C.: Improved cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems. Real Time
Syst. 48(5), 499–526 (2012)

20. Ramaprasad, H., Mueller, F.: Tightening the bounds on feasible preemptions. ACM
Trans. Embed. Comput. Syst. (TECS) 10(2), 27 (2010)

21. Cavicchio, J., Tessler, C., Fisher, N.: Minimizing cache overhead via loaded cache
blocks and preemption placement. In: 2015 27th Euromicro Conference on Real-
Time Systems (ECRTS), pp. 163–173. IEEE (2015)

Real-Time Scheduling

Combined Scheduling of Time-Triggered
and Priority-Based Task Sets

in Ravenscar

Jorge Real1(B), Sergio Sáez2, and Alfons Crespo1

1 Instituto de Automática e Informática Industrial,
Universitat Politècnica de València, Camı́ de Vera, s/n, 46022 València, Spain

{jorge,alfons}@disca.upv.es
2 Instituto Tecnológico de Informática,

Universitat Politècnica de València, Camı́ de Vera, s/n, 46022 València, Spain
ssaez@disca.upv.es

Abstract. Time-triggered and priority-based are the two major
approaches for scheduling real-time systems. Both have their own advan-
tages and drawbacks and none is superior in the general case. While
time-triggered schedules excel at determinism and jitter control, they
are hard to design and lack flexibility. Priority-based scheduling, on the
other hand, keeps the logical and timing aspects of real-time applications
conveniently separated from each other, at the cost of indeterminism and
larger input and output jitter for all but the highest-priority tasks.

In a previous paper, we presented a model and a related Ada imple-
mentation to support the combined execution of time-triggered and
priority-based task sets, aiming to obtain the best of both worlds. This
paper presents continuation of that work in two directions. One is the
extension of the original model to support more behavioural patterns; the
other is providing a Ravenscar implementation, targeting high-integrity
systems. We conclude that Ravenscar is expressive enough to support
most of the patterns in the original full-Ada version, and those that
require forbidden features (such as dynamic priorities) are not out of
reach if the time-triggered scheduler is implemented at the runtime level.

Keywords: Real-time systems · Time-triggered scheduling
Ravenscar profile · High-integrity systems · Embedded systems

1 Introduction

There are two major approaches to real-time task scheduling. One is time-
triggered (TT) scheduling, whereby each task is executed during the time inter-
vals dictated by a fixed plan, designed in advance. The other is priority-based

This work has been partly supported by the Spanish Government’s project M2C2
(TIN2014-56158-C4-1-P-AR) and the European Commission’s projects ENABLE-S3
and AQUAS (ECSEL-JU, Contracts 692455 and 737475).

c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 105–122, 2018.
https://doi.org/10.1007/978-3-319-92432-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_7&domain=pdf

106 J. Real et al.

(PB) scheduling, where the intervals when a task executes are decided at run
time, based on the task’s priority. The priority of a task can in turn be static or
dynamic, leading to several variations of the idea. Another significant variation
of PB scheduling schemes stems from whether they are preemptive or not.

There are pros and cons to both approaches. TT scheduling is superior in
terms of predictability, correctness by design, runtime simplicity and reduced
jitter (i.e., precise and rapid task release), but a TT schedule is difficult to
design for non-trivial cases – actually, it is an NP-complete problem [1]. Another
interesting property of TT systems is that access to shared resources is simpler,
provided all tasks execute non-preemptively; whereas PB preemptive systems
require mechanisms to enforce mutual exclusion in the access to shared resources.
A fundamental advantage of PB over TT scheduling is that it keeps a convenient
separation of concerns between timing and functional requirements, making PB
systems easier to modify and maintain. Sporadic and aperiodic tasks are also
more naturally incorporated in PB systems than they are in TT systems, which
are bound to using polling schemes.

In previous papers we have proposed an architecture to support applications
that include a mix of TT and PB workload [2,3]. The idea was to divide the
application into two subsets of tasks, one scheduled according to a TT plan,
and the other one scheduled by a PB scheduler. The implementation of this
architecture reserves the highest priority of a PB scheduler to the TT subset
of tasks, and lets the PB subset execute during the spare time left by the TT
workload, using the rest of priority levels. The TT schedule is driven by an Ada
timing event handler (like a timer interrupt handler), which allows the system
to react promptly to the arrival of time events, hence keeping a reduced release
jitter for TT tasks.

Combining TT and PB scheduling helps mitigating their drawbacks and tak-
ing advantage of their benefits. For example, the TT load can be reduced to just
the set of more jitter-sensitive tasks (such as control or communication tasks),
hence leading to simpler plan design; whereas the rest of tasks (logging, user
interface, optimisation tasks,...) can benefit from the advantages of PB schedul-
ing. The price to pay with this combined scheduling approach is that it requires
an underlying PB scheduler, which cannot be as efficient as a TT scheduler,
since it has to deal with context switches between tasks. In summary, a com-
bined TT-PB scheduling scheme gives good results for jitter control, slot-based
communication and reuse of pre-designed TT schedules. The paper [2] positions
this approach with respect to other methods pursuing similar goals.

In this paper, we adapt the technique proposed in [2,3] to the Ravenscar
profile [4], towards facilitating its adoption in high-integrity, certifiable, real-
time and embedded systems, which are target niches of Ravenscar. The relative
simplicity of a Ravenscar scheduler (compared to a full-Ada scheduler), would
reduce the overhead imposed by the underlying PB scheduler. Despite the restric-
tions of Ravenscar compared to the full-Ada tasking model, we have found
it possible to replicate and even extend the model with TT mechanisms that
we had not considered previously, which in turn enable new TT task patterns.

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 107

These new features, however, require the TT support to be implemented at the
runtime level, rather than a user level library, hence our proposal for a new Ada
package Ada.Dispatching.TTS.

The rest of this paper is organised as follows. Section 2 describes the sys-
tem model. Section 3 proposes a variety of behavioural patterns for TT tasks,
and in Sect. 4 we describe design and implementation aspects of the TT sched-
uler. We present experimental results in Sect. 5, focusing on jitter measure-
ments obtained from running the TT scheduler on an embedded board using
ARM’s STM32F407VGT6 micro-controller unit. We finally give our conclusions
in Sect. 6.

2 System Model: The Time-Triggered Plan

Our system model combines two disjoint subsets of tasks: one subset scheduled
according to an offline, static TT plan, and the other subset scheduled under
a PB, preemptive scheduler. Both subsets run on a common PB scheduler, but
the TT workload uses a higher priority level than any task in the PB subset.
Consequently, PB tasks do not interfere the execution of the TT plan1. We
will therefore limit ourselves to describing the system model for the TT plan.
Note that, since we are aiming at a Ravenscar implementation of the model,
the PB subset can only be scheduled under a fixed-priority scheme such as Rate
Monotonic or Deadline Monotonic [5,6]; but nothing in our model precludes
the use of dynamic priority algorithms such as EDF [5] for the PB subset, or
even a combination of schedulers using different priority bands, if the underlying
runtime supported the full-Ada tasking model.

A TT plan is a cyclic sequence of actions to be executed at particular points
in time. The plan is described by means of an ordered list of time slots, each of
its own slot duration. If a slot starts at time t, its lifetime goes from t to t+slot
duration. There are no gaps between slots: each slot starts just at the end of the
previous slot in the plan. In other words, the duration of the plan is the sum of
slot durations.

Fig. 1. A 12-slot time-triggered plan. Slots with sequence numbers 2, 4 and 10 are
regular slots for works 1 and 2, as indicated; slots 0 and 6 are continuation slots for
work 1; slot 8 is an optional slot for work 3; and slot 11 is a mode-change slot. The
rest are slots.

Figure 1 shows a 12-slot example plan, with slots sequentially numbered from
0 to 11. Using the time scale in milliseconds at the bottom of the plan, it can be
1 Blocking is possible between TT and PB tasks if they share resources, but not

interference. This aspect is further discussed in Sect. 3.

108 J. Real et al.

seen that the plan has a duration of 80 ms, slot 0 has a duration of 5 ms, slot 11
takes 6 ms from time 74 ms to 80 ms, etc. There are five possible types of slots
in a plan, all of them represented in Fig. 1:

– A regular slot defines a time interval reserved for the execution of a TT
task (a work). It is denoted by a regular Work Id, a positive integer value
that identifies the particular work to execute during the slot duration. The
underlying TT scheduler will make the work start to execute as soon as
feasible after the start time of the slot. In Fig. 1, slots 2, 4 and 10 are regular
slots corresponding to works 1 or 2 as indicated.
The duration of a regular slot must be sufficient, by design, to accommodate
the worst-case execution time of the work it serves. If a work overruns its reg-
ular slot then the scheduler will resort to raising a Program Error exception,
since an overrun violates the schedulability assumptions of TT scheduling. If,
on the contrary, a work completes before the end of the slot duration, then
the rest of the slot remains available for PB tasks. A TT task must always be
ready to use its allocated regular slots in the plan. Failing this, the scheduler
will raise Program Error as well. The following type of slot is more permissive
in this regard.

– An optional slot is like a regular slot except that it can be omitted. A TT
task may decide to use or not to use an assigned optional slot in the plan. If
it does use it (the task is ready to start when the optional slot starts) then
it has the same semantics as a regular slot, including overrun control at the
end of the slot. But if the task is not waiting for the start of the slot when
it starts, it is not considered an error and the slot duration is made available
for PB tasks. In Fig. 1, slot 8 is an optional slot for work 3, indicated with
parentheses.
Optional slots are useful for tasks that may or may not require to use their
allocated slot, such as a communication task when it has nothing to say; or
a sporadic task whose activation event has not occurred.

– A continuation slot can be regarded as a special kind of regular slot, in the
sense that it is associated to a particular Work Id. In Fig. 1, slots 0 and 6 are
continuation slots. They are marked with a regular Work Id plus a letter ‘c’,
indicating continuation.
What is special about these slots is that the work they host does not need
to be completed by the end of the slot: it can be continued in future slots.
Failing to finish by the end of a continuation slot is not an overrun. Instead,
the work is held at the end of the slot and resumed at the start of the next
slot in the plan that is marked with its Work Id. There may be a number of
consecutive continuation slots for a given work. Overrun will only be checked
when the plan reaches a regular slot for this work. We will refer to the last,
non-continuation slot of a series, as a terminal slot. In Fig. 1, slots 4 and 10
are terminal slots for work 1, given that they are preceded by continuation
slots 0 and 6 for work 1, respectively.
This type of slot is useful to split a large TT task into smaller pieces in a
way that is essentially transparent to the task code. We will visit this pattern

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 109

in Sect. 3. Continuation slots require asynchronously holding and resuming
a running task, which in turn requires support from the runtime system.
This is the reason why our implementation of the TT scheduler (Sect. 4) is an
extension of the runtime system, in the form of a new package Ada.Dispatching.TTS.
The hold/release mechanism is indeed to be taken very carefully, specially
with regard to its interaction with protected actions2. But it is doable under
certain, controlled restrictions as we will show.

The following two types of slots correspond to scheduler actions exclusively
and they have no associated TT task to execute, hence they carry no Work Id
value.

– An empty slot defines a time interval during which no TT work is planned.
This is useful for inserting gaps in the plan to make the CPU available to PB
tasks. Even though there is no TT task to execute during an empty slot, there
will be scheduler actions executed at the beginning of the slot, as described
in Sect. 4. In Fig. 1, slots 1, 3, 5, 7 and 9 are empty slots.

– A mode-change slot is similar to an empty slot in the sense that it has
no associated work to execute. But additionally, it defines a time in the plan
where it is possible to substitute the current plan with a new one. By placing
mode change slots in the plan, the designer determines the exact points in
the plan where a mode change can occur. If there is a pending mode-change
request to process at the start of a mode-change slot, then the new plan will
start at the end of the slot. This ability to change mode at defined points
in time introduces a degree of flexibility that off-line, static schedules do not
possess by nature. In Fig. 1, slot 11 is a mode-change slot, indicated with a
curved arrow.

For comparison with the TT plan model we defined in previous papers [2,3],
the model we have just defined introduces the new types of continuation and
optional slots. The former are motivated by feedback received from participants
at the 18th International Real-Time Ada Workshop suggesting that “[...] one
should be able to divide a long-running time-triggered task into segments that
would be executed across several slots [so that] spreading the TT task execution
across several slots [would give] chances for other tasks to execute in between
these slots.” [7]. With this type of slots we want to give support to this concept,
although it has relevant implications that we will present in Sect. 3.2, in the
context of patterns using this type of slots.

Note that in this model we are assuming that a plan is executed on a single
CPU: there are no overlapping slots. This assumption will help us keep the rest
of this paper as simple as possible. However, note also that in a multiprocessor
system, the model is applicable provided that it is fully partitioned, i.e., there
is only one plan per processor and tasks are statically assigned to CPUs. With
careful synchronisation of plans, it is also conceivable to allow data sharing
2 This difficulty alone can explain the general lack of support for the standard package

Ada.Asynchronous Task Control.

110 J. Real et al.

between tasks running in different CPUs. Beyond this restrictive setup, we have
also suggested to use controlled forms of migration between plans, so that a task
can alternate slots in plans on different processors, to balance the overall TT
workload [2]. But we will assume a single-processor platform for the rest of this
paper.

3 Time-Triggered Task Patterns

The model described in the previous section grants time slots for the execution
of TT tasks, leaving time gaps to be used by PB tasks running at lower priority
levels. The ability to use regular, continuation and optional slots, opens the
possibility to define a number of behavioural patterns for the TT tasks using
them. This section proposes a set of such patterns. From some of these patterns
we will derive further requirements for the design and implementation of the
TT scheduler that will be presented in Sect. 4. We classify the patterns in the
categories described in the following four sections.

3.1 Patterns Using Regular Slots

The simplest pattern we can think of is a TT task that accommodates all its
execution time within the duration of one slot. We call this a Simple TT Task
pattern. The task structure is simply an infinite loop where it waits for the
arrival of its next slot and then executes its sequence of statements, just before
suspending itself again until the arrival of its next slot.

The top half of Fig. 2 represents an example of this pattern, showing the
execution of three iterations of a simple TT task. The task uses the scheduler
service Wait For Activation to wait for the arrival of the next regular slot in the plan
for the TT task with Work Id = 1 (for example). At the beginning of each slot,
the scheduler releases the work and lets it run at the highest priority among all
application tasks. The priority-based subset is therefore disabled to run, since
it must use strictly lower priorities than TT tasks. When the task completes
within the slot duration (first and second cases in the top part of Fig. 2), it is
suspended by a new call to Wait For Activation. The time not used by the TT task
becomes available for the lower-priority PB tasks.

If, for whatever reason, the execution time of a simple TT task exceeds the
slot duration, this is considered a hard deadline violation and Program Error is raised.
The TT scheduler is thus in charge of making this check at the end of regular
slots.

A simple TT task may have its own local state, which is kept across successive
releases. It can also share data with other simple TT tasks, because this type
of task executes in mutual exclusion with other simple TT tasks (there are no
overlapping slots). If the task needs to share data with pre-emptable PB tasks
(or sliced TT tasks, as we’ll see later), then it needs to do it via protected objects.
In such case, it may experience blocking that must be taken into account when
deciding the slot duration.

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 111

Fig. 2. TT task patterns using only regular slots. The Simple TT Task pattern (top)
uses Work Id = 1. The I-F pattern (bottom) uses two regular slots, one for each part.

The Initial-Final pattern (I-F, for short) is for TT tasks that can be sub-
divided in two parts, both with strict jitter requirements and both requiring
overrun control. This pattern can be easily obtained by sequential composition
of two simple TT patterns, as shown in the bottom part of Fig. 2, which shows
the execution of two iterations of an I-F task. The loop is split in two parts,
first the initial and then the final, and both use the same Work Id when calling
Wait For Activation – not necessarily as a restriction, but just to keep the plan more
human-readable. Note that the slots for the initial and final parts need not have
the same duration. Overrun must be checked for both parts.

Regarding data sharing, the considerations we made about simple TT tasks
apply also to the case of an I-F task. Note however that communication between
the initial and final parts is straightforward, since both parts are carried out by
the same task.

A further variation is the Initial-Mandatory-Final pattern (I-M-F, for short),
which uses three consecutive regular slots to perform a logically related sequence
of TT actions. This scheme is typical in embedded control systems, where the
initial part acquires some environment data, the mandatory part makes some
calculations with the acquired data, and the final part applies the results of
the mandatory part to actuators of the controlled system. The logical structure

112 J. Real et al.

would be defined by three calls to Wait For Activation using the same Work Id, each
preceding the statements of the initial, mandatory and final parts. The same
considerations regarding overrun detection and data sharing we made for simple
and I-F tasks, apply to I-M-F tasks: overrun is checked for each and every part
of the task.

Actually, this pattern can be generalised to a form I-{M}-F, where there are
one or more slots dedicated to execute overrun-controlled parts of the mandatory
section. If we do not want overrun control in all the intermediate slots, then we
need to use continuation slots.

3.2 Patterns Using Continuation Slots

Continuation slots allow one to break a long running TT task into slices in a way
that is transparent to the application code, i.e., it does not require the task to
make explicit calls to Wait For Activation at particular points of its execution. Slicing
is dynamic and occurs at run time, rather than statically hardcoded. The TT
scheduler will hold and resume the task at points dictated by the plan. Like a
simple TT task, it just calls Wait For Activation and then performs its work. But
execution of the work can be split accross several consecutive continuation slots.
A sliced TT task requires the use of one or more continuation slots, ending with
a terminal, regular slot.

Fig. 3. Sliced Task Pattern.

Figure 3 shows two iterations of execution of a sliced TT task. This task can
make use of up to three consecutive slots, which is reflected in the plan as two
continuation slots (marked ‘1c’) and one terminal, regular slot (marked simply
‘1’). The task structure does not differ in structure from the simple TT task
described in Sect. 3.1, but the semantics are totally different due to the use of
continuation slots. In other words, one needs to look at the plan to distinguish
a simple TT task from a sliced TT task.

In the two iterations shown in Fig. 3, the task is held (by the TT scheduler)
at the end of exhausted continuation slots, and resumed at the start of its next
slot in the plan. Exceeding the lifetime of a continuation slot is not an overrun

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 113

situation. In the first iteration, the task completes its work within its terminal
slot (a regular slot). In the second, the task overruns the terminal slot, hence
Program Error occurs.

These two cases are relatively simple to consider, but we need to look
into more possible situations. Given the pattern structure, the task will call
Wait For Activation as soon as it is done with the Do My Work Sliced sequence of state-
ments. This may well happen during a continuation slot, before the terminal slot
of the sequence. The task may use up to three slots to complete, but it could
take less. If that is the case, then the scheduler needs to ignore the pending call
to Wait For Activation until the first slot of the next sliced sequence. An early wait
for activation must therefore be propagated until the next continuation slot after
the next terminal slot, i.e., the next start of a sliced sequence.

Figure 4 shows the possible cases of early completion of a three-slot sliced
task. In the first case, the task completes in the second slot of a three-slot
sequence. When the terminal slot of this sequence arrives, the scheduler has
to avoid waking up the task at the start of the slot and checking for overrun
at the end. The effect of Wait For Activation must be postponed and the task must
remain blocked waiting for the start of a new sequence of slots. This is marked as
“Propagate” in Fig. 4. In the second case, the task completes even earlier, during
the first slot of the sequence. The effects of Wait For Activation must be propagated
to the next two slots. A new sequence of the sliced TT task starts after the next
regular (terminal) slot.

Fig. 4. Two iterations of a three-slot sliced task completing before the terminal slot,
requiring propagation of early Wait For Activation calls.

As indicated previously, the need to hold and resume a running task has
implications that must be taken into account. The problem is specially relevant
if the sliced task shares data with other TT tasks or PB tasks. Since the task
can be held asynchronously, this data sharing can only be protected. But holding
the task while it is running a protected action is not acceptable, and letting it
finish a long protected action could enlarge the release jitter of the next slot. To
mitigate the effects of these two issues, at a cost, there are two design aspects
to consider:

114 J. Real et al.

1. A sliced task can only share data with other TT or PB tasks by means of a
protected object. To avoid holding the task while it is running a protected
action, the ceiling priority of the protected object must be set at a level that
effectively disables interrupts. This is the only way to avoid the execution of
the (interrupt-driven) TT scheduler while a sliced task is executing a pro-
tected action.

2. As a consequence of the previous point, protected actions involving a sliced
TT task must be as short as possible. Typically, they should only involve
word-sized data exchanges and perhaps a simple condition evaluation. As
few cycles as possible, because we are meanwhile blocking interrupts. If the
protected action cannot be so short, then there are still alternatives. One is
to design the plan so that all continuation slots are followed by empty slots
of sufficient duration to absorb the potential blocking time of the runtime
system. If this is not possible, because the data exchange required is large,
then it is still possible to make use of multiple buffering techniques in order
to reduce the need for mutual exclusion to just the time to swap a pointer.

A final consideration regarding continuation slots and their use by sliced TT
tasks is that mode changes are not allowed in the middle of sliced sequences,
because that would break their logic. This must be avoided by design, because
the mode-change slots in the plan determine exactly when mode changes are
acceptable.

Sliced sequences can also be combined with parts supported by regular slots.
The Initial-Mandatory Sliced-Final pattern (I-Ms-F) is a variant of the I-M-F
pattern where the mandatory part is sliced. The InitialMandatory Sliced-Final
pattern (IMs-F, note the missing dash between the ‘I’ and ‘M’ parts) is a slight,
though important modification of I-Ms-F that allows the mandatory part to start
executing immediately after the initial part, without waiting for the next slot
in the plan. Both patterns have the same representation in the plan, taking one
regular slot for the initial part (so that it is subject to overrun control), then one
or more continuation slots ending with a terminal slot for the sliced mandatory
part, plus one regular slot for the final part.

Note that the IMs-F pattern requires specific support from the TT scheduler.
Since IMs-F allows the mandatory sliced part to start as soon as the initial part is
done, during the first regular slot, we are effectively transforming the semantics
of the Initial part’s regular slot into that of a continuation slot. The scheduler
must therefore be informed of the termination of the initial part so that, if the
initial part is not done by the end of the slot, then there is an overrun; but
if it has completed, then the slicing regime has started and the hold/resume
mechanism has to apply to the already started sliced mandatory part. This TT
scheduler service is called Continue Sliced.

Figure 5 shows these two patterns (I-Ms-F and IMs-F) for a sliced mandatory
part of two slots. The top line represents the TT plan, common to both patterns.
The structures of the patterns are shown to the left. The middle row represents
a normal execution of an I-Ms-F task. After completing the initial part before
the end of the first slot, the task waits for the next activation, hence delaying

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 115

Fig. 5. Two variants of tasks with a sliced mandatory part: I-Ms-F and IMs-F.

the start of the mandatory part to the next slot. Since the first slot is regular,
the initial part runs under overrun control. The sliced mandatory part takes
the next continuation slot and a part of the second continuation slot and then
waits for the arrival of the terminal slot, which it uses to execute the final part.
In the IMs-F pattern in Fig. 5, use of this scheduler service is represented by
the call to Continue Sliced . If the scheduler has not received this call by the end of
the first slot, then the initial part has overrun; otherwise, the initial part was
completed during the first slot and the running task is held/resumed as a sliced
subsequence of this pattern. The final part of the pattern requires a previous
call to Wait For Activation, as already described for other patterns with a final part.

3.3 TT Patterns with Non-TT Parts

This type of pattern makes it possible for a TT task to include parts that are
executed in the PB level, in competition with the PB subset of tasks. A TT
scheduler service, Leave TT Level, allows a TT task to abandon the TT level and
continue execution under the PB regime. This is useful to execute parts that are
not subject to strict jitter requirements, or that may be difficult to integrate in
the TT plan.

As an example, consider a control task with jitter-sensitive initial and final
parts. These parts are used for reading the plant state and for sending com-
mands to actuators, respectively. After reading sensors, the initial part rapidly
calculates a first approximation to the control output, to be later applied during
the final part. Until that time arrives, an intermediate part tries to improve this
calculation by means of an optimisation algorithm that may take disparate exe-
cution times, depending on changing environment conditions (e.g., the number
of objects detected by a radar). If this middle part had to be included in the TT
plan, then the plan would have to provide sufficient slots for the worst-case exe-
cution of the optimisation algorithm. But if we could execute this optimisation
part as any other PB task, with a selected priority below the TT level, then it
would not require slots in the plan, hence keeping it simpler. At the end of the

116 J. Real et al.

middle part, the task would go back to the TT level to execute the final part
with minimal jitter and using the best output possible in the available time.

Figure 6 shows the execution of such Initial-Priority Based-Final pattern,
or I-P-F. The pattern requires just two regular slots in the plan for the ini-
tial and final parts. In the figure, there is a regular slot for another, unrelated
work (Work Id = 2) in between these two slots of the I-P-F task, which uses
Work Id = 1. The initial part executes during the first slot and, when com-
pleted, issues a call Leave TT Level to inform the scheduler that the task continues
with the execution of the non-TT part at a priority in the PB region. From that
moment on, the PB part continues in competition with higher-priority PB tasks
and other TT tasks, such as that with Work Id = 2. The PB part eventually
completes with a call to Wait For Activation, which makes the task return to the TT
level and wait for a regular slot to execute the final part.

Fig. 6. Initial-Priority Based-Final pattern (I-P-F)

The implementation of the Leave TT Level mechanism requires changing the pri-
ority of the TT task at runtime, which, at first sight, appears to be in con-
tradiction with the Ravenscar model of fixed priorities. However, a Ravenscar
runtime has to actually support a limited form of dynamic priorities, because it
is needed to implement the Ceiling Locking policy for protected objects. Han-
dling PB parts as required by Leave TT Level can be supported as well in Ravenscar.
Without going into the implementation details that we will visit in Sect. 4, the
problem of scheduling a task with TT and PB parts can be seen as if the task had
a base priority in the PB level, at which it runs its PB phase, and an active pri-
ority at the TT level when it runs in a TT slot. The mechanism does not need to
change the priority of a task other than the running task, as for Ceiling Locking
case. And the changes between base and active priorities occur only as a result
of statements executed by the same task that is affected by the priority changes,
as is the case for protected actions.

The Leave TT Level mechanism can also be used to compose other interesting
patterns. For example, a periodic PB task with one TT phase, to be executed
during a regular slot in the plan. This slot could be used to synchronise the task

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 117

with the arrival of slots in the plan, for mutually exclusive communication or
data exchange with other tasks, or for accessing a shared resource in general,
such as in a slot-based communication protocol.

3.4 TT Patterns with Optional Slots

The inclusion of optional slots in the model opens the door to other flexible
patterns. The Priority Based-Optional Final pattern (P-[F]) described now, uses
a non-TT part and an optional slot. This pattern fits a periodic PB task that may
or may not use a TT regular slot, for example to synchronise or communicate
with other TT or PB tasks. At the TT level, the task requires just an optional
slot per activation in the plan. At the PB level, the task executes as any other
periodic or sporadic task.

Figure 7 shows three full iterations of a P-[F] task with a periodic PB part.
In the first iteration, the task completes the priority-based part and then calls
Wait For Activation, because the boolean Needed was True. As a result, the final part
is executed at the TT level at the start of the next (optional) slot for this
work. In the second iteration, Needed is False and hence the task skips the call
to Wait For Activation and re-enters the loop to execute the delay sentence instead.
Consequently, the task skips its next slot in the plan. If the slot was regular,
then this no-show situation would end up in Program Error. But because the
slot is optional, the scheduler knows that this absence of a task waiting for a
just started slot is intended and taken care of by the application.

Fig. 7. The P-[F] pattern (Priority Based-Optional Final) combines the use of non-TT
parts and optional slots.

3.5 Patterns: Looking Back

As we mentioned in the introduction, our aim with this work was to revisit our
previously proposed model and implementation of combined TT-PB schedul-
ing [2,3]. The goal was to make our implementation Ravenscar-compatible,
and hence making it susceptible for consideration in the high-integrity domain.

118 J. Real et al.

Given that Ravenscar is a restrictive subset of the tasking model of Ada, one
could think that, a priory, something will need to be sacrificed. We have found
that this almost not true.

Looking back at the patterns we proposed in [2,3], the only mechanism we
have not included is the self cancellation mechanism, which requires the use
of Ada’s asynchronous transfer of control, a feature that is (wisely) absent in
Ravenscar, because it is not an adequate feature in a high-integrity context, due
to the indeterminism it introduces. So this is a sacrifice that stems logically from
our new context assumptions.

But it is to be noticed that, despite the Ravenscar restrictions, we have been
able to replicate all the functionalities provided by the full-Ada scheduler —the
cancellation mechanism mentioned above was implemented by the TT tasks, not
the scheduler—. In addition, we have extended the model to include continuation
and optional slots, which suggest a number of new patterns.

4 Design and Implementation Details

The TT scheduler enforces a TT plan, which is represented by an array of slot
descriptors. Since not all slots carry the same information, we represent a slot
by means of a variant record with the discriminant determining the type of slot,
i.e., whether it hosts a TT work or it is an empty or mode-change slot. All slots
have a Slot Duration field, and regular slots include also:

– Work Id - The TT work identifier.
– Is Continuation - A boolean that marks the slot as a continuation slot.
– Is Optional - A boolean indicating whether the slot is an optional slot or not.

An important source of information for the scheduler is the dynamic status
of all TT tasks. The scheduler uses the work status to determine the actions to
be taken during a slot switch. The status of a TT work is represented by the
following boolean fields of a Work Control Block record:

– Has Completed - Indicates that a work does not require more time at TT level.
This flag is set to True when the TT task calls Wait For Activation or Leave TT Level.

– Is Waiting - Indicates whether the work task is waiting for a new slot or not.
This flag is set to True when the work calls Wait For Activation.

– Is Sliced - When this flag is True, it means that this work is currently running
sliced, hence it may need to be held/resumed. This flag is set to True when
the work invokes Continue Sliced or when it enters a continuation slot, and it is
set to False when the work is at the start of a terminal slot.

In our implementation, the TT scheduler is the handler of a timing event that
is set to occur at the start of each slot in the plan. As such, it runs at the highest
interrupt priority (ARM D.15 14/2 [8]). Based on the slot and work descriptors,
the scheduler decides the actions to take during a slot switch. Table 1 describes

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 119

some of these actions, limited to the case of regular and continuation slots, for
short.

The top part of Table 1 the actions to take at the end of a TT work slot. These
are Hold task, to hold the running TT task when it exhausts a slot and must
continue sliced in future slots; and raise Program Error when overrun is detected,
i.e., the task has not completed and it is not running sliced. If Has Completed is
True, then there are no actions to take. To support Hold, our implementation of
Ada.Dispatching.TTS uses runtime operations to suspend and extract from the ready
queue the low-level thread behind the TT task. This is the reason why a sliced
part can only use protected objects with ceiling at the highest interrupt priority,
as mentioned in Sect. 3.2.

Table 1. Scheduler actions upon a slot switch, depending on work status and slot type.
The top part lists actions with regard to the exhausted slot (Actions at END of slot).
Actions related to the immediately starting slot (Actions at START of slot) take the
bottom part.

*Common Actions ≡ Work.Is Sliced ← Slot.Is Continuation; Set Handler

The bottom part of Table 1 lists scheduler actions related to the immediately
starting slot. The actions that are common to most cases in this table (denoted
CA) are to mark the work as sliced when it enters a continuation slot, and to
set the timing event handler to the end of this starting slot. Transferring the
Is Continuation property of the slot to the Is Sliced attribute of the work effectively
propagates the sliced condition of the TT task until the terminal slot, for which
Is Continuation will be False.

The scheduler must also perform some actions upon calls to its public ser-
vices. These may affect the work status and also the active priority of the caller’s
underlying thread. Note that it is the task itself who changes its own work status
and priority, if needed, while running a scheduler protected operation. Table 2
summarises these update operations. For example, when a TT task invokes
Leave TT Level, its work status is marked as completed and its priority demoted
to the task’s base priority – so the base priority of the task implementing the

120 J. Real et al.

Table 2. How and when the work status and TT task priority are modified by the scheduler.

Invoked procedure Changes to work status Changes to task prio

Has Completed Is Sliced Is Waiting

Wait For Activation True True Priority’Last

Continue Sliced True

Leave TT Level True Task’Base Priority

TT pattern must be determined according to the required priority level when it
runs in the PB level. For readers interested in the full details of the TT sched-
uler, its code is available on GitHub [9], along with a basic library of TT utilities
to ease the construction of TT plans.

5 Experimental Results

We have performed experiments to evaluate the performance of the scheduler,
mainly in terms of jitter. The hardware platform is an STM32F4 Discovery
board at 168 MHz clock frequency, running a modified version of the GNAT
ravenscar-full runtime from AdaCore’s GNAT GPL 2017. Apart from adding
the Ada.Dispatching.TTS package to the runtime, we have changed the timing event
and delay resolution of the GNAT runtime from the original 1 ms to 10µs. We
have measured an additional overhead of 3.5% due to this modification.

In order to compare the Ravenscar TT scheduler with the full-Ada version,
we have used the same task set we used in [2]. The top part of Fig. 8 shows the
cumulative frequency histogram of measured release jitters of three TT tasks,
W1, W2 and W3 and two PB tasks, T4 and T5. . W1 is a simple TT task and works
2 and 3 are I-F tasks with parts identified as WI2, WF2, WI3 and WF3. The jitter
is measured with respect to the theoretical activation time, i.e. the start time of
the slot for TT tasks or the time expression used in the delay statements of the
periodic PB tasks. As it happened with our previous full-Ada implementation,
the PB tasks suffer variable release jitter, ranging from 7µs to 400 ms, due to
interference from TT tasks and higher-priority PB tasks. Their minimal jitter is
however shorter than that of the TT tasks, due to the TT scheduler overhead.
Note that the jitter for TT tasks is not only short but also very predictable,
always within the range of 22 to 24µs.

Taking this high predictability into account, we have tested an optimisation
strategy that consists in anticipating the start time of slots by a fixed offset
(20µs in our case) so that the TT scheduler overhead is not paid for at the
start, but at the end of the TT slot. This overhead is unavoidable and has to be
taken into account when the plan is built, but moving it to the end of the slot
drastically improves the release jitter of TT tasks. The bottom part of Fig. 8
shows the release jitter incurred after applying this slot anticipation idea, which
now ranges from 3 to 4µs. These results clearly outperform those previously

Combined Scheduling of Time-Triggered and Priority-Based Task Sets 121

Fig. 8. Release jitter on a STM32F4 Discovery at 168MHz. The top part reflects the jitter
incurred by TT tasks with scheduler overhead. The bottom part shows how the jitter of
TT tasks is further reduced with a slot anticipation of 20µs.

obtained with a full-Ada implementation using MarteOS [10] on a Pentium III
processor at 800 MHz, which varied from 30 to 70µs.

6 Conclusions

This paper has presented the results of transforming a full-Ada architecture for
combined TT-PB scheduling [2,3] to make it Ravenscar-compatible. Our aim was
to make this scheduling strategy compatible with a more appropriate program-
ming model for high-integrity and embedded systems. Our first efforts focused
on a user-level library supporting the scheduler, but we soon moved to a runtime
library, so that the scheduler could support continuation slots (via hold/resume)

122 J. Real et al.

and non-TT slots (via priority demotion), thus improving expressiveness and
making room for more possible patterns. We have also introduced the concept
of optional slot, and included provision for, now tolerable, no-show situations.

We have made Ada.Dispatching.TTS a generic package, where the number of TT
work identifiers is a generic parameter. This allows us to keep the size of data
structures to the minimum necessary for the number of TT tasks to be scheduled.
The experimental results are encouraging, even better than those obtained in
full-Ada with a much faster processor. No doubt, the simplicity of the Ravenscar
runtime has to do with these results.

We are aware that the applicability of TT technology is very much subject
to the availability of tools to help building plans and checking their consistency.
In line with the former goal, we are incorporating a library of TT utilities to
facilitate building the plan and using predesigned TT patterns. An initial version
of this work-in-progress library is available in GitHub [9] (version v0.2.0 at the
time of writing).

References

1. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, San Francisco (1979)

2. Real, J., Sáez, S., Crespo, A.: Combining time-triggered plans with priority sched-
uled task sets. In: Bertogna, M., Pinho, L.M., Quiñones, E. (eds.) Ada-Europe
2016. LNCS, vol. 9695, pp. 195–212. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39083-3 13

3. Real, J., Sáez, S., Crespo, A.: Combined scheduling of time-triggered plans and
priority scheduled task sets. Ada Lett. 36(1), 68–76 (2016)

4. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
Profile in high-integrity systems. Technical report YCS-2017-348, University of
York, June 2017

5. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. J. ACM 20(1), 46–61 (1973)

6. Leung, J., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Perform. Eval. (Netherlands) 2(4), 237–250 (1982)

7. Real, J., Rogers, P.: Session summary: experience. Ada Lett. 36(1), 101–102 (2016)
8. ISO/IEC-JTC1-SC22-WG9: Ada Reference Manual ISO/IEC 8652:2012(E) (2012).

http://www.ada-europe.org/manuals/LRM-2012.pdf
9. Sáez, S., Real, J.: TTS Ravenscar runtime source code. Version v0.2.0, March 2018.

https://doi.org/10.5281/zenodo.1206197
10. Rivas, M.A., González Harbour, M.: MaRTE OS: an Ada kernel for real-time

embedded applications. In: Craeynest, D., Strohmeier, A. (eds.) Ada-Europe 2001.
LNCS, vol. 2043, pp. 305–316. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45136-6 24

https://doi.org/10.1007/978-3-319-39083-3_13
https://doi.org/10.1007/978-3-319-39083-3_13
http://www.ada-europe.org/manuals/LRM-2012.pdf
https://doi.org/10.5281/zenodo.1206197
https://doi.org/10.1007/3-540-45136-6_24
https://doi.org/10.1007/3-540-45136-6_24

Theory and Practice of EDF Scheduling
in Distributed Real-Time Systems

J. Javier Gutiérrez(&) and Héctor Pérez

Software Engineering and Real-Time Group,
Universidad de Cantabria, 39005 Santander, Spain

{gutierjj,perezh}@unican.es

Abstract. The behavior of EDF schedulers has been very extensively studied
for single-processor systems and there is also a lot of work on scheduling and
schedulability analysis techniques dealing with EDF in homogeneous multi-
processor systems. However, if distributed systems are considered, only a small
number of schedulability analysis techniques are available and there is only a
little information on practical experience with this kind of systems. For dis-
tributed systems where a clock synchronization mechanism is not available, a
recent work has theoretically shown how a feasible deadline assignment can
significantly increase the utilization of processing resources while keeping the
system schedulable (i.e., meeting all the timing requirements). On the other
hand, Ada provides support for building applications scheduled by EDF. This
paper proposes a set of experiments to contrast the theoretical results on
scheduling deadline assignment in a distributed real-time application against
those obtained through its real execution.

Keywords: Distributed systems � Real-time � EDF � Schedulability analysis
Scheduling deadline assignment � Ada applications

1 Introduction

The Earliest Deadline First (EDF) scheduling policy is present in different software
layers such as real-time operating systems (SHaRK [1], ERIKA [2] or OSEK/VDX
[3]), real-time communication networks (CAN Bus [4] or general purpose networks [5,
6]), real-time distribution middleware (RT-CORBA [7]), or real-time programming
languages (Java RTSJ [8], or Ada [9]). Since the initial work in [10], the EDF
scheduling policy has been very widely studied for single-processor systems from
different perspectives of theory and practice, even in comparison with other industrially
accepted scheduling policies such as fixed priority [11, 12]. There are also many works
concerning EDF and multiprocessor systems [13], where EDF schedulers are well
defined and can be classified into global scheduling (tasks may migrate from one

This work has been funded in part by the Spanish Government under grant
TIN2014-56158-C4-2-P (M2C2). We would also like to thank Dr. Mario Aldea for his invaluable
help in the implementation of the platform used in this work.

© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 123–137, 2018.
https://doi.org/10.1007/978-3-319-92432-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_8&domain=pdf

processor to another, e.g. [14]) or partitioned scheduling (fixed allocation of tasks to
processors, e.g. [15, 16]). An evaluation of these two kinds of schedulers in a real-time
operating system is done in [17].

In the case of real-time distributed systems, there is not an equivalent body of
knowledge about the behavior of EDF scheduling. A recent study [18] shows how the
utilization of processors that can be achieved while keeping the system schedulable
strongly depends on: (1) the availability of a global clock (i.e., a clock synchronization
mechanism); and (2) the scheduling deadline assignment technique used when tasks are
composed of a sequence of sub-tasks with precedence relations which may be executed
in different processors. In [18] two kinds of EDF policies are considered:

• Local-clock EDF (LC-EDF), where scheduling deadlines of each sub-task are ref-
erenced to their release times in their own processor, so clock synchronization
among processors is not required.

• Global-clock EDF (GC-EDF), where scheduling deadlines of each sub-task are
referenced to the release time of the task (first sub-task), possibly in a different
processor, and thus requiring clock synchronization.

In general GC-EDF performs better than LC-EDF. One interesting result in [18] is
the unexpected behavior found for LC-EDF that was summarized with the phrase
“more haste less speed”. This means that the assignment of larger scheduling deadlines
to sub-task that did not comply with the end-to-end deadline of the task yields lower
worst-case response times, thus improving schedulability. In the exploitation of this
phenomenon, different techniques for the assignment of scheduling deadlines in
LC-EDF were tested and proposed in [18].

On the other hand, Ada has supported EDF in its Real-Time Annex [9] since 2005.
Furthermore, this scheduling policy continues to attract the attention of the Ada
community. For example, this can be seen in the proposals for defining a new EDF
Ravenscar profile [19], or for integrating the new synchronization protocol for EDF
called DFP (Deadline Floor inheritance Protocol [20]) into the Ada standard [21].

The unexpected behavior observed for the LC-EDF policy occurs under a
worst-case situation when applying response time analysis techniques, which are
pessimistic (i.e. the worst-case response times calculated are upper bounds of the real
ones). In this paper, we propose to fill the gap between theory and practice for real-time
distributed systems scheduled by LC-EDF. The objective is twofold:

1. We want to evaluate the execution of a simple synthetic application under some of
the scheduling deadline assignments tested in [18]. The purpose is to find out, for
the different assignment techniques, whether the average and worst response times
observed follow the same behavior as the worst-case response times obtained by the
analysis or not.

2. We also want to verify whether the Ada language is able to support the LC-EDF
policy for distributed real-time systems.

It should be noticed that we do not intend to provide the exact characterization of a
real distributed application, but just to ascertain the trends in a real execution of the
application for comparison with the behavior predicted by theory.

124 J. J. Gutiérrez and H. Pérez

The paper is organized as follows. In Sect. 2 we provide a review of the model that
we use for the distributed system as well as a short description of the schedulability
analysis and scheduling deadlines assignment techniques for LC-EDF. The simple
example of a distributed application that will be used in our tests is introduced in Sect. 3.
Section 4 shows the results of the schedulability analysis for the scheduling deadline
assignment techniques considered. A description of how the example using the LC-EDF
scheduling policy could be implemented in Ada is given in Sect. 5. Section 6 discusses
the performance evaluation of the application for the different scheduling deadline
assignments. Finally, in Sect. 7 the conclusions of this work are presented.

2 The System Model and the Schedulability Analysis
and Optimization Techniques for LC-EDF

This section briefly describes the model, the schedulability analysis technique and
some of the scheduling deadline assignment algorithms used in [18] for LC-EDF. We
will use MAST (Modeling and Analysis Suite for Real Time Applications) [22], which
integrates the tools needed in this work as well as a model [23] aligned with MARTE
(Modeling and Analysis of Real-Time Embedded systems) [24], a standard defined by
the OMG (Object Management Group) for modeling and analysis of real-time and
embedded systems.

The MAST model considers a system composed of distributed end-to-end flows
(following the terminology of the OMG’s MARTE standard) with periodic or sporadic
activations. Each end-to-end flow Ci is released by a periodic sequence of external
events with period Ti, and contains a set of steps that model tasks and messages. Each
periodic release of an end-to-end flow causes the execution of the set of steps, each step
being released when the preceding one in its end-to-end flow finishes its execution. We
assume that tasks and messages are statically assigned to processors and networks
(migration is not allowed), and that the relative phasing of the activations of different
end-to-end flows is arbitrary.

Figure 1 shows an example of one end-to-end flow with three steps. The arrival of
the external event that releases the end-to-end flow is represented by a thick horizontal
arrow labeled ei, and has a period of Ti. The thin horizontal arrows represent the release
of the following steps in the end-to-end flow; a step cannot be executed before the
preceding step has been completed. We assume that events represented in the figure are
instantaneous and any activity in the system is modeled as a step. The j-th step of
end-to-end flow Ci is identified as sij; it is characterized by its worst-case execution
time Cij and its best-case execution time Cb

ij. The timing requirements that we consider
are end-to-end deadlines, Di, that start at the end-to-end flow instance’s period, and
must be met by the final step in the flow. We allow deadlines to be larger than the
periods. As a result of the schedulability analysis, each step sij also has a worst-case
response time (or an upper bound on it) Rij, and a best-case response time (or a lower
bound on it) Rb

ij. The worst-case response time estimation of the last step can be
compared with the end-to-end deadline in order to determine the schedulability of the
system.

Theory and Practice of EDF Scheduling 125

We allow the external event that triggers an end-to-end flow to have a maximum
release jitter Ji1 in relation to the corresponding activation of the end-to-end flow. Other
steps sij may also have an initial release jitter Jij. Despite this jitter, global deadlines and
response times always refer to the theoretical start of their respective instance’s period
(tin), not to the actual release of the end-to-end flow. We assume that Jij may be larger
than the period of its end-to-end flow, Ti. For each step sij scheduled by the LC-EDF
policy, a local scheduling deadline Sdij is defined, which is referenced to the release
time of its associated step in its own processing resource, thus allowing the use of the
local clock.

This subset of the MAST model enables the response time analysis technique
developed in [25] for LC-EDF to be applied. This technique is equivalent to the one
developed by Spuri [26] for GC-EDF and obtains an estimation of the worst-case
response times. The calculation of the best-case response times permits a better esti-
mation of jitter, thus reducing the estimated worst-case response times and increasing
the schedulability of the system. We will compute a lower bound on the best-case
response time as the sum of the best-case execution times of the current step and all the
previous ones in the end-to-end flow.

In this work, we evaluate four of the scheduling deadline assignment techniques
described in [18] within their interpretation for LC-EDF:

• Ultimate Deadline (UD) [27], which obtains the scheduling deadlines by assigning
the end-to-end deadline of an end-to-end flow (Di) to each one of its steps.

• Effective Deadline (ED) [27], which obtains the scheduling deadlines by consid-
ering that if a step finishes its execution within its assigned deadline, the following
steps in the same end-to-end flow will have to complete within their worst-case
execution time.

• Proportional Deadline (PD) [27], which calculates scheduling deadlines by dis-
tributing the end-to-end deadline (Di) proportionally to the worst-case execution
time of each step (Cij.).

• Proportional Deadline with Global Scheduling Deadline (PD-GSD) [18], which
works as PD does, but converts the scheduling deadlines obtained for LC-EDF into
GC-EDF ones. Thus, the scheduling deadline of step sij equals the sum of all deadlines
(assigned by PD) of the preceding steps in the end-to-end flow, including itself.

Fig. 1. The model of the end-to-end flow Ci

126 J. J. Gutiérrez and H. Pérez

A priori, PD could be the only algorithm that makes sense for LC-EDF, as we
might think that if local deadlines are guaranteed for each step, the end-to-end deadline
will be guaranteed. However, [18] showed that the remaining scheduling deadline
assignment techniques are able to obtain shorter worst-case response times in general,
PD-GSD being the best technique for the majority of the cases. Further details on the
description of these algorithms as well as on their scheduling capabilities can be found
in [18].

3 The Distributed Application

We present a simple example of a distributed application consisting of two processors
(CPU1 and CPU2) connected through a communication network, and executing six
end-to-end flows, all of them with the same structure: two tasks allocated in a different
processor; the first one activated periodically and triggering the second one through a
message on the network. For the sake of simplicity and taking into account that we do
not have an LC-EDF-compliant network available, we consider the messages sent
through the network instantaneous, so we will not model them. This can be done
without loss of generality by selecting sufficiently long periods and execution times to
minimize the effect of communications. This selection will also minimize the effects of
the overhead due to the operating system or communication drivers, which will be
present in the real implementation. Figure 2 shows the architecture of the example.

For this example, we propose two different configurations with the characteristics
shown in Table 1. Both configurations have the same periods for the end-to-end flows,
and we also consider that end-to-end deadlines are as in the case denominated T1 in
[25], i.e., D = T + 1/3T for this example. The values of the execution times have been
carefully selected to show the differences in the response times obtained by the analysis
when it is applied to the different scheduling deadlines assignments. The worst-case
execution times expressed in Table 1 are fixed, i.e. the best-case execution times of

Fig. 2. Architecture of the distributed application

Theory and Practice of EDF Scheduling 127

tasks equal the worst-case execution times. The CPU utilizations are: 86.01% for CPU1
and 85.41% for CPU2 in Configuration 1, and 89.83% for CPU1 and 91.91% for CPU2
in Configuration 2.

4 Scheduling Deadline Assignments and Schedulability
Analysis

After modeling the proposed application with MAST, we applied the scheduling
deadline assignment techniques introduced in Sect. 3. Table 2 shows the scheduling
deadlines assigned to tasks by the different techniques for both configurations. As can
be seen, the trivial UD technique produces the same assignment for both configura-
tions, and PD is the only technique in which the scheduling deadlines assigned to tasks
(steps) are within the bounds of the end-to-end deadline of the end-to-end flow.

Table 1. Characteristics of the simple distributed application (times in ms)

e2e flow Ti Di Configuration 1 Configuration 2
Ci1 Ci2 Ci1 Ci2

C1 150 200 22 25 37 32
C2 840 1120 155 217 193 159
C3 1350 1800 346 386 364 366
C4 1650 2200 178 148 158 138
C5 3150 4200 189 223 189 223
C6 30000 40000 1150 1472 1150 1472

Table 2. Scheduling deadlines (Sdij) assigned to tasks by each technique (times in ms)

Task Configuration 1 Configuration 2
UD ED PD PD-GSD UD ED PD PD-GSD

s11 200 175 93.617 93.617 200 168 107.246 107.246
s12 200 200 106.383 200 200 200 92.754 200
s21 1120 903 466.667 466.667 1120 961 614.091 614.091
s22 1120 1120 653.333 1120 1120 1120 505.909 1120
s31 1800 1414 850.82 850.82 1800 1434 897.534 897.534
s32 1800 1800 949.18 1800 1800 1800 902.466 1800
s41 2200 2052 1201.23 1201.23 2200 2062 1174.32 1174.32
s42 2200 2200 998.77 2200 2200 2200 1025.68 2200
s51 4200 3977 1926.7 1926.7 4200 3977 1926.7 1926.7
s52 4200 4200 2273.3 4200 4200 4200 2273.3 4200
s61 40000 38528 17543.86 17543.86 40000 38528 17543.86 17543.86
s62 40000 40000 22456.14 40000 40000 40000 22456.14 40000

128 J. J. Gutiérrez and H. Pérez

Table 3 shows the results of applying the response time analysis [25] to the dif-
ferent scheduling deadline assignments. Only the worst-case response times of the final
tasks (steps) of the end-to-end flow are shown, as they are the ones that should be
compared with the end-to-end deadlines. The response times that do not meet the
corresponding end-to-end deadlines are in bold face. We can observe that analytical
results are as expected from [18]:

• Only the PD-GSD technique enables the end-to-end deadlines to be met for all the
end-to-end flows in both configurations, while PD achieves this objective for
Configuration 1.

• For Configuration 2, which has higher utilization, PD obtains higher response times
in general than the remaining techniques.

• For Configuration 1, PD-GSD outperforms the worst-case response times obtained
by PD for the end-to end flows with larger deadlines, without jeopardizing those
with shorter deadlines.

• Although UD and ED do not allow the schedulability of both configurations, they
obtain the lowest worst-case response times for the end-to end flows with shorter
deadlines.

5 Ada Implementation of the LC-EDF Example

Support for EDF scheduling has been included in the Ada standard since the 2005
revision. Among the basic facilities defined in the language are the EDF_Across_
Priorities task dispatching policy and mechanisms to set tasks’ relative and absolute
deadlines. Furthermore, Ada facilitates the development of periodic and sporadic EDF
tasks by supporting the procedures illustrated in Fig. 3. On the one hand, the
Delay_Until_And_Set_Deadline procedure is valuable for implementing periodic EDF
tasks, as it delays the calling task until the value of Delay_Until_Time and the task
becomes ready at that point with a deadline set to Delay_Until_Time plus Dead-
line_Offset. On the other hand, the Suspend_Until_True_And_Set_Deadline procedure
is handy for implementing EDF tasks activated by external events such as a network
message, as it blocks the calling task until the suspension object passed as a parameter is

Table 3. Worst-case response times of the end-to-end flows obtained by the analysis for each
scheduling deadline assignment (times in ms)

e2e flow Configuration 1 Configuration 2
UD ED PD PD-GSD UD ED PD PD-GSD

C1 47 47 47 47 69 69 215.717 69
C2 466 584 706,56 878 490 651 1091.86 965
C3 1370 1470 1421 1461 1482 1612 1763,23 1678
C4 2153 2153 1786,56 1765,23 2350 2282 2247.72 1882,32
C5 4349 4349 3793,37 3336 5306 5306 4156.37 3529
C6 19435 19435 18120 16978 25046 25046 25987 25046

Theory and Practice of EDF Scheduling 129

set to true; at that point, the task becomes ready with a deadline set to Ada.Real_Time.
Clock plus TS (Time_Span as shown in Fig. 3).

It is worth noting that the Suspend_Until_True_And_Set_Deadline procedure is
suitable for simple synchronization scenarios, as it is based on the suspension object
mechanism which is a low-level primitive equivalent to a binary semaphore. Therefore,
it cannot handle nested activations (i.e., when the suspension object is set to true
successive activations are lost). However, nested activations are common in distributed
systems where response times are usually higher than periods, thus requiring the use of
a higher-level synchronization mechanism.

Figure 4 shows the sequence diagram for the execution of an end-to-end flow in the
proposed LC-EDF example. As can be seen, three different kinds of tasks can be
defined:

Fig. 3. Ada facilities for setting the scheduling deadline in LC-EDF

Fig. 4. Sequence diagram for the implementation of the end-to-end flows

130 J. J. Gutiérrez and H. Pérez

• Periodic tasks, which periodically execute their code and send a message through
the network in order to activate the remote tasks.

• Sporadic tasks (remote), which wait for the arrival of the external event to start its
execution.

• Communication task, which waits for the arrival of incoming network messages to
signal the triggering event to the corresponding sporadic task.

In our example, execution times for a given task can be simulated using busy loops
based on CPU-time clocks, which have been included in the language since Ada 2005.

6 Performance Measurements

The hardware platform used for the example consists of two industrial embedded
computers following the PC/104 architecture. Each computer is based on a single Intel
Pentium III processor with a clock rate of 800 MHz, and it communicates through an
Ethernet network at 100 Mbits/s. This hardware is suitable for our purpose, as our study
deals with distributed systems based on single core processors. The software platform is
based on the GNAT-GPL-2014 compiler [28] for the proposed application running on
top of the real-time operating system called MaRTE OS (v1.9) [29, 30]. This operating
system follows the Minimal Real-Time POSIX.13 subset, and it also implements the
EDF scheduling policy that can be used from Ada and C applications [31].

To the best of our knowledge, there are no implementations for those Ada facilities
related to the suspension object described in Sect. 5. Although we have tried to
implement them in the context of MaRTE OS, a stable version is not available yet so
we decided to leave this development for future work. As we wanted to measure the
execution times of a distributed application scheduled by EDF, we decided to build an
equivalent distributed application written in C, which directly uses the MaRTE OS
facilities for EDF. Basically, the Ada tasks were turned into threads and the suspension
object was replaced by a semaphore. The latter change has the advantage that sema-
phores can handle nested activations of the remote part of the end-to-end flow. Even
though the Ada code could not be evaluated, it still remains a good example of an
elegant implementation for this application.

Without having a global clock and in order to properly compare the measurements
of response times in the real application to those obtained by the schedulability analysis
(shown in Sect. 4), we will separately estimate the response times of both steps of the
end-to-end flow: the first part (a task activated periodically) is measured from its
activation until the corresponding message is sent; the second part (the remote task
activated by the message) is measure from the arrival of the message until the end of
the simulated execution. Then, the end-to-end response time is calculated by adding the
measured response times of both parts for each activation of the external event. For this
purpose, the response time obtained in the first step of the end-to-end flow is sent to the
second step embedded in the message. After finishing the second step, the end-to-end
response time is calculated and stored for later processing. It should be noticed that the
time spent in the network is not included in these measurements, which is coherent with

Theory and Practice of EDF Scheduling 131

the kind of schedulability analysis that we have done. Once the experiment has fin-
ished, the best, average and worst response times are calculated for each end-to-end
flow.

Each individual time measurement within a step is obtained as the difference of two
reads of the monotonic clock. This clock is based on the TSC (Time Stamp Counter)
available in the Pentium architecture. On the other hand and in order to be precise in the
implementation of the execution times of the steps, a simple library is used to load the
CPU with the execution of a given amount of time. This library is based on iteratively
checking the CPU-time clock until the specified time is met. Each step has its own
CPU-time clock to count only the time that it is using the CPU. Thus, by applying this
methodology, we can obtain quite accurate results when measuring the response times
of the end-to-end flows without clock synchronization. For the interpretation of the
results obtained, the following issues should be taken into account:

• Similarly to the analysis, the contribution of the transmission times of messages to
the response times has not been considered. However, these transmissions impact
the activation jitter of the remote task, which indirectly influences the response
times of the real application. We think that this impact may be negligible since the
timing parameters of tasks and the transmission times of messages differ by at least
two orders of magnitude.

• In the real application, the execution times of tasks also include an overhead due to
the transmission and reception of messages and the management of the timing
parameters for each activation. To estimate this overhead, we have measured the
round trip execution of an end-to-end flow without the simulated load. Table 4
shows the values of the total response time and also the time spent in the remote part
of the end-to-end flow for 100000 executions with a message size of 64 bytes.

• There is also extra overhead introduced by the operating system and the commu-
nication task. This overhead should be negligible compared to the execution times
of our application.

Tables 5 and 6 show the response times (best, average and worst) of the end-to-end
flows for the configurations and scheduling deadline assignments proposed in our
distributed application. Each test has been executed for 6 h and the size of the messages
interchanged by tasks is 64 bytes. Taking into account these results and also those
obtained in the response time analysis (see Table 3), the following observations can be
made:

• The response time analysis technique used is pessimistic, i.e. it obtains upper safe
bounds of the worst-case response times. On the other hand, it is probable that we
have not found the worst-case situation for some end-to-end flows in the execution

Table 4. Evaluation of the task’s overhead and message transmission (times in ls)

Best Average Worst

Total 184 195 198
Remote task 45 52 74

132 J. J. Gutiérrez and H. Pérez

of the application. Figure 5 shows the difference between the analytical and
observed values for the worst-case response times. This difference is relative to the
analytical one and expressed as a percentage. We can see that this difference is low
for the end-to-end flows with shorter deadlines (C1 to C4) for both configurations

Table 5. Response times of the end-to-end flows measured in the Ada application for each
scheduling deadline assignment and Configuration 1 (times in ms)

e2e flow UD ED
Best Average Worst Best Average Worst

C1 47 47 48 47 47 48
C2 419 445 466 419 449 559
C3 873 1202 1315 873 1142 1315
C4 374 1144 2127 373 1176 2128
C5 650 1528 2840 509 1580 3290
C6 11583 14187 16825 11969 14246 16706

e2e flow PD PD-GSD
Best Average Worst Best Average Worst

C1 47 47 48 47 47 48
C2 419 468 698 419 585 856
C3 873 1087 1335 873 1127 1462
C4 373 1121 1747 373 818 1723
C5 507 1619 2995 506 1348 2188
C6 12229 14200 16703 11966 14237 16631

Table 6. Response times of the end-to-end flows measured in the Ada application for each
scheduling deadline assignment and Configuration 2 (times in ms)

e2e flow UD ED
Best Average Worst Best Average Worst

C1 69 69 70 69 69 70
C2 421 464 491 421 474 619
C3 981 1304 1428 981 1232 1428
C4 397 1191 2281 397 1231 2212
C5 731 1923 3522 593 1781 3552
C6 16159 19925 23365 15843 19882 23183

e2e flow PD PD-GSD
Best Average Worst Best Average Worst

C1 69 69 70 69 69 70
C2 421 479 643 421 629 966
C3 981 1230 1453 981 1301 1654
C4 410 1133 1793 365 887 1789
C5 731 1803 3072 593 1738 2850
C6 16162 19887 23309 16090 20065 23340

Theory and Practice of EDF Scheduling 133

and all the assignment techniques except for PD in Configuration 2. In this latter
case, the analysis obtains particularly pessimistic results that cannot be observed in
the real execution. PD-GSD is the technique that produces tighter worst-case
response times and all of them are within the deadlines. As predicted by theory
(see Table 3), C4 misses the deadline with the ED and UD assignments in Con-
figuration 2 (see Table 6), but the worst-case observed for C5 is much lower than
the analytical value.

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

An
al
y

ca
lW

CR
T-
M
ea
su
re
d
W
CR

T
(%

)

Configura on 1

UD ED PD PD-GSD

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

An
al
y

ca
lW

CR
T-
M
ea
su
re
d
W
CR

T
(%

)

Configura on 2

UD ED PD PD-GSD

Fig. 5. Differences between analytical and observed values for the worst-case response times
relative to the analytical ones

134 J. J. Gutiérrez and H. Pérez

• Negative values in Fig. 5 mean that the analytical value obtained for the worst case
is lower than the observed one. This is the case of C1 for all the scheduling deadline
assignment techniques and in both configurations except for PD in Configuration 2.
It also happens for the PD-GSD assignment in Configuration 1 (C3) and Config-
uration 2 (C2), and for UD in Configuration 2 (C2). In all these cases, the deviations
are low and they can be justified by the overheads that have not been considered in
the analysis.

• As a general conclusion about the worst-case response time, we can say that UD
and ED benefit end-to-end flows with shorter deadlines to the detriment of the other
ones, while PD-GSD balances the worst-case response times of all the end-to end
flows, which allow the deadlines to be met. In contrast to theory, PD in the real
application does not show a radically different behavior to PD-GSD. Compared to
PD-GSD, PD benefits end-to-end flows with shorter deadlines.

• In relation to the average execution times, we cannot obtain a general behavior
pattern. For example, ED, UD and PD obtain lower average response times than
PD-GSD for C2 in both configurations, but the latter achieves a very low average
response time for C4.

• The best-case response times obtained by all the assignment techniques in both
configurations are quite similar. The response time analysis technique applied uses
the sum of the best-case execution times of steps as a lower bound on the best-case
response time of the end-to-end flow. For example, the best-case response time for
C3 in Configuration 2 is 364 + 366 = 730 ms (see Table 1). However, the best-case
measured is 981 ms for all the assignment techniques. The analysis could be
improved with a better estimation of the best-case response times, which would
contribute to reducing the activation jitter of the remote tasks.

7 Conclusions

In this paper we have reported findings about using LC-EDF scheduling in distributed
real-time systems. This is based on a previous result that showed that the assignment of
longer scheduling deadlines could yield lower worst-case response times under some
circumstances according to the scheduling theory. To contrast this result, our work has
focused on checking whether this unexpected behavior is also reproducible in a
practical application. To this end, the proposed application has been executed exten-
sively, using 4 different scheduling deadline assignment techniques: UD, ED, PD and
PD-GSD.

This paper shows that PD-GSD is the most precise assignment technique, as well as
being the only one that allows deadlines to be met in theory and practice. The poor
performance predicted by theory for the PD assignment has not been corroborated by our
experiments. The average behavior is quite similar for all circumstances, and it does not
enable clear conclusions about whether one technique performs better than the others.
Finally, a better estimation of the best-case response times in the analysis could be
possible, but it is an open topic for further research. From the results obtained in the paper,
we can conclude that the behavior of EDF in distributed systems is still difficult to predict.

Theory and Practice of EDF Scheduling 135

Although EDF has been widely studied for single-processor real-time systems,
further research is still required in the case of distributed real-time systems in order to
extend the use of this scheduling policy. Furthermore, providing Ada implementations
supporting EDF may help in its adoption, so we have plans to complete the imple-
mentation of the EDF facilities defined by the Ada standard in the MaRTE OS kernel.

References

1. SHaRK (Soft Hard Real-Time Kernel) home page. http://shark.sssup.it/
2. ERIKA Enterprise: Evidence home page. http://www.evidence.eu.com/
3. Diederichs, C., Margull, U., Slomka, F., Wirrer, G.: An application-based EDF scheduler for

OSEK/VDX. In: Design, Automation and Test in Europe, DATE 2008, pp. 1045–1050
(2008)

4. Pedreiras, P., Almeida, L.: EDF message scheduling on controller area network. Comput.
Control Eng. J. 13(4), 163–170 (2002)

5. Di Natale, M., Meschi, A.: Scheduling messages with earliest deadline techniques. Real
Time Syst. 20(3), 255–285 (2001)

6. Qian, T., Mueller, F., Xin, Y.: Hybrid EDF packet scheduling for real-time distributed
systems. In: Proceedings of the 27th Euromicro Conference on Real-Time Systems, Lund,
Sweden, pp. 37–46 (2015)

7. OMG (Object Management Group): Realtime Corba Specification, v1.2 (2005), http://www.
omg.org/spec/RT/1.2/

8. RTSJ (Real-Time Specification for Java) home page. http://www.rtsj.org
9. ISO/IEC, 2012: Ada 2012 Reference Manual. Language and Standard Libraries -

International Standard ISO/IEC 8652:2012(E) (2012)
10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time

environment. J. ACM 20(1), 46–61 (1973)
11. Buttazzo, G.: Rate monotonic vs. EDF: judgment day. Real Time Syst. 29(1), 5–26 (2005)
12. Davis, R.I., Burns, A., Baruah, S., Rothvoß, T., George, L., Gettings, O.: Exact comparison

of fixed priority and EDF scheduling based on speedup factors for both pre-emptive and
non-pre-emptive paradigms. Real Time Syst. 51(5), 561–601 (2015)

13. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv. 43(4), 35:1–35:44 (2011). https://dl.acm.org/citation.cfm?id=1978814

14. Bertogna, M., Cirinei, M., Lipari, G.: Schedulability analysis of global scheduling
algorithms on multiprocessor platforms. IEEE Trans. Parallel Distrib. Syst. 20(4), 553–
566 (2009)

15. Baruah, S., Fisher, N.: Non-migratory feasibility and migratory schedulability analysis of
multiprocessor real-time systems. Real Time Syst. 39(1–3), 97–122 (2008)

16. Baruah, S.: Partitioned EDF scheduling: a closer look. Real Time Syst. 49(6), 715–729
(2013)

17. Gracioli, G., Fröhlich, A.A., Pellizzoni, R., Fischmeister, S.: Implementation and evaluation
of global and partitioned scheduling in a real-time OS. Real Time Syst. 49(6), 669–714
(2013)

18. Rivas, J.M., Gutiérrez, J.J., Palencia, J.C., González Harbour, M.: Deadline assignment in
EDF schedulers for real-time distributed systems. IEEE Trans. Parallel Distrib. Syst. 26(10),
2671–2684 (2015)

19. Burns, A.: An EDF run-time profile based on Ravenscar. Ada Lett. XXXIII(1), 24–31
(2013)

136 J. J. Gutiérrez and H. Pérez

http://shark.sssup.it/
http://www.evidence.eu.com/
http://www.omg.org/spec/RT/1.2/
http://www.omg.org/spec/RT/1.2/
http://www.rtsj.org
https://dl.acm.org/citation.cfm?id=1978814

20. Burns, A., Gutiérrez, M., Aldea, M., González Harbour, M.: Deadline-floor inheritance
protocol for edf scheduled embedded real-time systems with resource sharing. IEEE Trans.
Comput. 64(5), 1241–1253 (2015)

21. Burns, A., Wellings, A.: The deadline floor protocol and Ada. Ada Lett. XXXVI(1), 29–34
(2016)

22. MAST home page. http://mast.unican.es/
23. González Harbour, M., Gutiérrez, J.J., Drake, J.M., López, P., Palencia, J.C.: Modeling

distributed real-time systems with MAST 2. J. Syst. Architect. 59(6), 331–340 (2013)
24. Object Management Group: UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded Systems. OMG Document, v1.1 formal/2011–06-02 (2011)
25. Rivas, J.M., Gutiérrez, J.J., Palencia, J.C., González Harbour, M.: Optimized deadline

assignment and schedulability analysis for distributed real-time systems with local EDF
scheduling. In: Proceedings of the 8th International Conference on Embedded Systems and
Applications, ESA 2010, Las Vegas, Nevada, USA, pp. 150–156 (2010)

26. Spuri, M.: Holistic analysis for deadline scheduled real-time distributed systems. Technical
report RR-2873, INRIA, France (1996)

27. Liu, J.: Real-Time Systems. Prentice Hall, Upper Saddle River (2000)
28. GNAT compiler. https://www.adacore.com
29. Rivas, M.A., González Harbour, M.: MaRTE OS: an Ada kernel for real-time embedded

applications. In: Craeynest, D., Strohmeier, A. (eds.) Ada-Europe 2001. LNCS, vol. 2043,
pp. 305–316. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45136-6_24

30. MaRTE OS home page. http://marte.unican.es
31. Aldea Rivas, M., González Harbour, M., Ruiz, J.F.: Implementation of the Ada 2005 task

dispatching model in MaRTE OS and GNAT. In: Kordon, F., Kermarrec, Y. (eds.)
Ada-Europe 2009. LNCS, vol. 5570, pp. 105–118. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-01924-1_8

Theory and Practice of EDF Scheduling 137

http://mast.unican.es/
https://www.adacore.com
http://dx.doi.org/10.1007/3-540-45136-6_24
http://marte.unican.es
http://dx.doi.org/10.1007/978-3-642-01924-1_8
http://dx.doi.org/10.1007/978-3-642-01924-1_8

New Application Domains

Safe Parallelism: Compiler Analysis
Techniques for Ada and OpenMP

Sara Royuela1(B), Xavier Martorell1, Eduardo Quiñones1,
and Luis Miguel Pinho2

1 Barcelona Supercomputing Center, Barcelona, Spain
{sara.royuela,xavier.martorell,eduardo.quinones}@bsc.es

2 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
lmp@isep.ipp.pt

Abstract. There is a growing need to support parallel computation in
Ada to cope with the performance requirements of the most advanced
functionalities of safety-critical systems. In that regard, the use of parallel
programming models is paramount to exploit the benefits of parallelism.

Recent works motivate the use of OpenMP for being a de facto stan-
dard in high-performance computing for programming shared memory
architectures. These works address two important aspects towards the
introduction of OpenMP in Ada: the compatibility of the OpenMP syn-
tax with the Ada language, and the interoperability of the OpenMP and
the Ada runtimes, demonstrating that OpenMP complements and sup-
ports the structured parallelism approach of the tasklet model.

This paper addresses a third fundamental aspect: functional safety
from a compiler perspective. Particularly, it focuses on race conditions
and considers the fine-grain and unstructured capabilities of OpenMP.
Hereof, this paper presents a new compiler analysis technique that: (1)
identifies potential race conditions in parallel Ada programs based on
OpenMP or Ada tasks or both, and (2) provides solutions for the detected
races.

1 Introduction

The parallel computation paradigm has irrupted in all computing domains,
including safety-critical systems, to cope with the increasing need of higher levels
of performance to implement advanced functionalities (e.g. autonomous driving
[1]). Despite the clear benefits of parallel computation, it also introduces hazards
regarding safety and reliability, crucial concepts for critical systems.

This trend has also arrived to Ada [2], a language used in safety-critical and
high-security domains, and designed to keep safeness. Two main (and comple-
mentary) research lines are tackling the extension of Ada to support parallelism:
(a) the simple yet powerful tasklet model [3–7] that, based on a fully strict fork-
join model, is able to exploit structured parallelism on shared memory archi-
tectures, and (b) the incorporation of OpenMP into Ada, to efficiently exploit

c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 141–157, 2018.
https://doi.org/10.1007/978-3-319-92432-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_9&domain=pdf

142 S. Royuela et al.

structured and unstructured parallelism [8,9] (Sect. 3 provides more details of
the two approaches). This paper is framed in the latter case.

OpenMP [10] has become a de facto standard for shared-memory systems as
a result of being successfully used for decades in high-performance computing
(HPC). The model has recently gained much attention in the embedded field as
it addresses key issues for such systems: (a) the coupling of a main processor to
one or more accelerators, (b) the tasking model, capable of expressing fine-grain
and highly-dynamic parallelism, and (c) its time predictability properties.

Current works have addressed two fundamental pillars towards the adoption
of OpenMP into Ada: (1) the compatibility of the OpenMP syntax with the
Ada language [8], and (2) the compatibility of the OpenMP and the Ada exe-
cution models [9]. The former proves that OpenMP provides an equivalent and
compatible interface to that of the tasklet model, guaranteeing the same safety
features. The latter analyses the interoperability between the OpenMP and the
Ada runtimes with a threefold objective: (a) fulfill both specifications without
jeopardizing safety, (b) use OpenMP as an implementation of the tasklet model,
and (c) incorporate OpenMP directives in Ada programs. This paper focuses on
the third fundamental and yet unaddressed pillar: ensure functional safety in
the presence of parallel computation from a compiler perspective.

The most frequent errors in parallel computation are deadlocks, race condi-
tions and starvation, among others. Most of these errors can effectively be iden-
tified and solved using compiler techniques. Furthermore, compilers may always
take a conservative approach overreacting when the solution is not decidable at
compile time. In this regard, recent works propose to extend the Ada [4] and the
OpenMP [11] specifications to include new aspects and directives, respectively, to
address race conditions and deadlocks (among other issues) when whole-program
analysis is not possible.

In particular, this paper focuses on race conditions because this kind of
error is closely related with the exploitation of the fine-grained and unstruc-
tured parallel capabilities of the OpenMP tasking model. In this context, this
paper advances one step towards safe parallel execution in Ada by proposing
a new compiler analysis technique that: (1) allows identifying race conditions
that can potentially appear in Ada programs parallelized with both OpenMP
and Ada tasks, and (2) provides solutions for the detected races. The specific
contributions of the paper are the following:

1. A control flow graph that represents the semantics of Ada and OpenMP, and
allows the analysis of a program combining, or not, such languages.

2. The adaptation of OpenMP compiler analysis techniques developed for
sequential languages (C, C++ and Fortran) to the Ada concurrent language.

3. A compiler method based on techniques for enhancing the programmability
of OpenMP, that: (1) detects race conditions in Ada programs using or not
OpenMP, and (2) provides users with directions to solve the errors.

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 143

2 Background

2.1 The Ada Concurrent Model

The Ada concurrency model is based on the notion of task, a unit of concur-
rency that represents an independent thread of control. All, the tasks and the
mechanisms for inter-task communication and synchronization, are introduced at
language level in order to allow building safer programs. As an illustration, Ada
95 [12] introduced protected objects to allow controlling how data is accessed,
thus eliminating race conditions.

Additionally, in 1997, Burns et al. introduced the Ravenscar profile [13], a
subset of the Ada programming language that allows high integrity applica-
tions to be analyzed for their timing properties by pursuing three main goals:
(1) ensuring predictable execution, (2) simplifying the runtime support, and
(3) eliminating constructs with high overhead. The limitations imposed by the
Ravenscar profile have an inevitable impact in the complexity of correctness anal-
yses, e.g. tasks can only communicate through shared objects (tasks entries are
not allowed, so the rendezvous mechanism cannot be used), tasks are assumed
to be non-terminating, and tasks and protected objects cannot be dynamically
allocated.

Along the same lines, SPARK [14], a language that subsets Ada to enable
the formal verification of programs, eliminates race conditions by forcing any
global object referenced from a task to be marked as Part Of that task, or be a
synchronized object1 [15].

2.2 The OpenMP Tasking Model

The tasking model appears in OpenMP 3.0 from the need of productively imple-
menting certain types of parallelism: unbounded loops, recursion, unstructured
parallelism, etc. It is based on the notion of task2, a specific instance of exe-
cutable code and its data environment, generated when a thread encounters cer-
tain language construct (e.g. task, taskloop and parallel). Other constructs,
such as taskwait and depend, allow for tasks synchronization. The runtime
system is responsible of creating and executing the tasks, which can be exe-
cuted immediately after creation, or deferred. This depends on two factors: (1)
task scheduling constraints (e.g. dependencies with other tasks described in the
depend clauses), and (2) thread availability.

The uncertainty introduced by the tasking model regarding when the tasks
are executed represents a challenge with respect to determining which por-
tions of code are concurrent. Furthermore, the relaxed-consistency memory
model of OpenMP (allowing private, firstprivate, lastprivate and shared

1 Spark considers the following synchronized objects: protected objects, atomic objects
(all accesses are atomic), and suspension objects (a kind of private semaphore).

2 The term task in OpenMP is not related to Ada tasks. OpenMP tasks are lightweight
parts of the code that can be executed in parallel by worker threads. In that regard,
OpenMP tasks are very similar to Ada tasklets [16].

144 S. Royuela et al.

attributes), and the way data-sharing attributes may be defined3 add extra com-
plexity for the user, reducing the programmability, and increasing the possibili-
ties of introducing errors.

3 Related Work

In the last years, several works are leading the introduction of fine-grain paral-
lelism in Ada. This is so due to the increasing demand of computational capa-
bilities of the systems using such a programming language. There are two main
approaches: (1) the implementation of a parallel model built in the Ada core
language, named tasklet model [3–7], and (2) the introduction of OpenMP in
pure Ada applications [8,9]. The latter is gaining attention lately due to several
reasons: (a) OpenMP is a mature parallel programming model, under continuous
revision by an expert and experienced committee, (b) OpenMP is flexible yet
robust, allowing the definition of both structured and unstructured parallelism,
as well as the use of heterogeneous architectures, and (c) most compiler (e.g.
GNU, Intel) and chip vendors in HPC (e.g. Intel, ARM, PowerPC, etc.) and the
real-time domain (e.g. Kalray MPPA, TI Keystone II) support OpenMP.

In this context, different works have already explored the safety requirements
necessary for OpenMP to be used in safety-critical environments, and they point
to two main directions: time predictability and functional safety. About the
former, the OpenMP tasking model has been proven to be analyzable regarding
its time properties [17–20], thus valid to ensure that deadlines can be fulfilled.
About the latter, different studies conclude that including some modifications in
the OpenMP specification, as well as implementing some guidelines in OpenMP
frameworks (including both the compiler and the runtime), may enable OpenMP
programs to meet the correctness requirements of a safety-critical system [8,11].

This paper focuses on how the compiler can address functional safety. In this
context, several compiler analysis techniques exist to check OpenMP programs
for diverse errors, mainly deadlocks and race conditions. Among the former,
Kroenig et al. developed a technique for detecting deadlocks in C/Pthreads pro-
grams [21] that can easily be applied to OpenMP because Pthreads mutexes
(e.g. pthread mutex lock) are comparable to OpenMP locking routines (e.g.
omp set lock). Among the latter, Ma et al. created a tool for detecting race
conditions in OpenMP programs with a fixed number of threads [22], and
Basupalli et al. developed a robust technique for detecting race conditions in
OpenMP programs using affine constructs [23]. Finally, Royuela et al. developed
a series of algorithms focused on the OpenMP tasking model to find incoherences
in data-sharing and dependence clauses, as well as race conditions [24].

On another level, several methodologies exist to analyze Ada concurrent
programs. These include two important aspects: (1) the representation used to
describe the concurrent semantics of Ada programs, and (2) the technique used
3 OpenMP allows three ways to determine the data-sharing attributes: predetermined,

implicitly determined, and explicitly determined. The first two kinds are defined by
several rules in the specification, the latter requires explicit definition by the user.

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 145

to implement analysis on top of a given representation. Regarding the former,
the most common representations used for Ada analytics are Petri nets [25],
control flow graphs [26], and different forms of task graphs such as program
reachability graphs [27], real-time task digraphs [28] and system dependence
nets [29]. Concerning the latter, most analysis techniques for Ada are based on
model checking4, which allows the automatic verification of a system’s correct-
ness. In this sense, Faria et al. developed ATOS [30], a tool that automatically
extracts a SPIN model [31] from an Ada program, as well as a set of desirable
properties from a specification annotated by the user in the program, inspired
by the SPARK annotation language. Resembling ATOS, GNATprove [32] is a
formal verification tool for Ada, based on the GNAT compiler [33] and Meyer’s
design by contract paradigm [34]. These contracts must be explicitly stated by
programmers as preconditions and postconditions for functions and procedures,
and loop invariants, all in the syntax of Ada 2012.

4 Motivation

The Ada Reference Manual [35] distinguishes three kinds of errors: (1) those
that can be detected at compile time, (2) those that can be detected at run
time, and (3) those that do not need to be detected. The nature of Ada is
to prevent users from making errors, providing a series of mechanisms for data
synchronization and mutual exclusion, among others. Still, it is the responsibility
of the programmers to use these mechanisms in order to avoid errors such as race
conditions and deadlocks. Section 3 introduces some state-of-the-art techniques
for correctness checking. On the one hand, model checking based techniques are
very mature, although their usefulness depends on contracts that are also written
by programmers, hence are liable to have errors. On the other hand, techniques
based on petri-nets or reachability graphs mostly tackle deadlocks, because these
representations do not describe data flow information, but states. Hence, there
is a lack of static techniques for data race detection in Ada programs.

OpenMP also provides mechanisms for data synchronization and mutual
exclusion, but the correct use of these mechanisms relies on the programmer.
This is stated in the specification, when it says that “application developers
are responsible for correctly using the OpenMP API to produce a conforming
program5”. Still, many static and dynamic techniques have been developed for
OpenMP correctness checking to enhance productivity in parallel programming,
as we introduce in Sect. 3. Two of them are particularly interesting to us because,
although developed to enhance the programmability of OpenMP, they are also

4 Model checking mechanisms allow exhaustively and automatically checking a given
model regarding a given specification. Typically, hardware or software components
are checked against safety requirements such as the absence of deadlocks and other
critical states that can cause a system to crash.

5 An OpenMP conforming program is that which follows all rules and restrictions of
the OpenMP specification.

146 S. Royuela et al.

useful to detect race conditions. The first technique, named auto-scope, automat-
ically defines the scope of the variables in a task construct (i.e. the data-sharing
clauses) [36], and the second technique, named auto-deps, discovers the depen-
dencies among tasks (i.e. dependence clauses) [37]. If whole program analysis is
possible, the only limitation of the algorithms concerns the use of third-party
libraries which code is not visible. Anyhow, the algorithms are sound and, when
a variable cannot be automatically determined, it is reported to the user.

Overall, despite the specification of both Ada and OpenMP do not require
correctness checking mechanisms to ensure programs are free from errors, includ-
ing those is fundamental to increase productivity in parallel programming. In
that regard, we note a lack of mechanisms for detecting race conditions in Ada,
which is particularly important in case of safety environments to ensure a cor-
rect operation of the system. This paper considers the algorithms developed for
OpenMP and propose the adaptation of these to handle Ada semantics. With
this, we are able to detect race conditions in pure Ada programs and in mixed
Ada/OpenMP programs as well.

The work uses for this paper the Ada Ravenscar profile, due to its simpler
concurrency model. This restriction is not related to the safety of the analysis,
which is independent from the model, but to the complexity of the control flow
graph that needs to be extracted and analyzed. Section 5.4 provides information
on how the approach extends to less restrictive models, being the goal that the
approach is used with full Ada.

5 Proposal: Compiler Analysis for Mixed Ada
and OpenMP Tasks

This section explains our proposal to solve race conditions in mixed Ada and
OpenMP programs. It is structured as follows: first we present the singularities
of Ada/OpenMP programs, then we show how we represent Ada/OpenMP pro-
grams, next we introduce the algorithm used to detect race conditions in such
programs, and finally we show the results of applying the algorithm to a partic-
ular test case. For illustration purposes, we use the Ada application Ravenscar,
defined in Sect. 7 of the Ada Ravenscar Profile Guide [38] as test case. The sys-
tem modeled in this application includes a periodic process (Regular Producer)
that handles offers for a variable amount of workload (Small Whetstone). When
the requested workload exceeds a given threshold (Due Activation), the excess
load is processed by a sporadic process (On Call Producer). Additionally, inter-
rupts may appear at any point (External Event Server), and different priorities
are used to ensure preference among the different tasks.

Figure 1 shows the HRT-HOOD6 representation of the Ravenscar application.
There, red dashed boxes represent tasks, blue dotted boxes represent packages
with functions and procedures, and yellow double-lined boxes represent pro-
tected objects with entries and procedures. The Ravenscar code illustrates the
6 Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) is an object-

based structured design method for hard real-time systems [39].

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 147

expressiveness of the Ravenscar profile, for it includes several features of Ada
that are of our interest: protected objects, other shared data, synchronous and
asynchronous synchronizations, etc.

REGULAR PRODUCER
7C

ON CALL PRODUCER
5S

REQUEST BUFFER

Deposit

Extract

9Pr

EXTERNAL EVENT SERVER
11I

EVENT_QUEUE
Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3S

EVENT_QUEUE
Interrupt_Simulator

‘LastI

ACTIVATION LOG

Read

Write

PrACTIVATION LOG READER

Signal

Wait

P

AUXILIARY

Due_AcƟvaƟon

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_AcƟvaƟon_Cyclic

Synchronize_AcƟvaƟon_Sporadic

P

Task
Protected Object
FuncƟon/Procedure

PACKAGE NAME
Subprogram name

priorityType

P Passive object
Pr Protected object
S Sporadic object
C Cyclic object
I Interrupt sporadic object

Fig. 1. HRT-HOOD representation of the Ravenscar application. (Color figure online)

To exemplify how the analysis handles the two levels of parallelism (Ada
coarse grain tasks and OpenMP fine grain tasks), we have introduced an
OpenMP computation in the Small Whetstone procedure, which turns into the
entry point of a sensor fusion operation. This new functionality is described in
Fig. 2 using the syntax proposed in Ada to use OpenMP [8]. There, the parallel
construct initiates parallel execution by creating a team of threads. Then, the
single construct indicates that only one thread will execute the inner state-
ments. Finally, the taskloop construct indicates that the iterations of the most
outer loop are split into chunks that can be executed in parallel by the threads
in the current team using OpenMP tasks. In this implementation, the parameter
of the Small Whetstone procedure indicates the operation to carry out: 1 means
reading sensor A, 2 means reading sensor B, and 3 means fusing the two sensors
by adding up its values. Sensor A is read periodically from Regular Producer,
sensor B is read sporadically from On Call Producer, and the fusion is performed
sporadically from Activation Log Reader.

5.1 Mixing Ada and OpenMP

As introduced previously, pure Ada programs define concurrency by means of
tasks, while OpenMP creates parallelism by means of the parallel construct,

148 S. Royuela et al.

Fig. 2. OpenMP code inserted in the Production Workload package of the Ravenscar
application.

and distributes it by means of worksharing and tasking constructs. When both
languages are used together, concurrency may be defined at multiple levels:
between Ada tasks, between OpenMP tasks, and between Ada and OpenMP
tasks. Table 1 summarizes our approach to resolve race conditions in each case.

Table 1. Solutions for race conditions in an Ada/OpenMP application.

Race condition between Solution

Ada tasks Ada mechanisms: protected object

Ada and OpenMP tasks

OpenMP tasks Different binding regions

Same binding region OpenMP mechanisms:
* Synchronization constructs and clauses:
taskwait, barrier, depend
* Mutual exclusion constructs:
critical, atomic
* Data-sharing attributes:
private, firstprivate, lastprivate

Ada protected objects are a robust and lightweight mechanism for mutual
exclusion and data synchronization. For this reason, they are to be used when-
ever possible to solve race conditions, i.e. when race conditions occur between

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 149

Ada tasks, between Ada and OpenMP tasks, and between OpenMP tasks that
belong to different binding regions7. The last case is particularly interesting
because in C/C++/Fortran OpenMP8 programs, tasks belonging to different
binding regions cannot be concurrent unless there are nested parallel regions.
Tasks in such situation cannot be synchronized, and only data synchronization
is available via the flush operation, a highly unrecommended mechanism when
safety is essential due to the difficulty of analyzing its behavior. The extra layer
of concurrency introduced by Ada unlocks this scenario, hence only protected
objects are safe enough to synchronize data. Finally, to exploit the flexibility
of OpenMP, race conditions between OpenMP tasks that belong to the same
binding region are to be solved using OpenMP mechanisms: mutual exclusion
constructs (i.e. atomic and critical constructs), synchronization constructs
(e.g. taskwait and barrier), synchronization clauses (i.e. depend) and data-
sharing clauses (e.g. private, firstprivate and lastprivate).

5.2 Representation of an Ada/OpenMP Program

As introduced in Sect. 3, several representations allow expressing the semantics
of an Ada program (e.g. reachability graphs, Petri nets, control flow graphs, etc.).
However, some representations are not suitable for our purpose, for instance Petri
nets and reachability graphs, because these express states whereas data flow
information is hidden. Furthermore, these representations have other limitations
such as the state explosion problem, and the inability of representing recursive
programs. Hence, to represent the behavior of an Ada/OpenMP program we
use the classic control flow graph (CFG) representation extended to support
Ada concurrency and OpenMP parallelism. Our graph draws from the parallel
control flow graph for C/C++ and OpenMP/OmpSs [40] developed by Royuela
et al. [24], and the control flow graph for Ada developed by Fechete et al. [26].

To ease the reading we show the CFGs of the original Ravenscar application
and the new OpenMP code separately, in Figs. 3 and 4 respectively (the complete
CFG of the Ada code is displayed in AppendixA). The CFG of the original
Ravenscar code shows the code executed at elaboration time (top of the figure),
and the Ada code run during the execution of the program (rest of the figure).
Each partial CFG represents a task (Regular Producer, On Call Producer and
Activation Log Reader). The special nodes En and Ex express the entry and the
exit points of each task, and the OpenMP code is pointed with dashed-dotted
purple lines. Finally, the turquoise square boxes at the bottom represent some
significant shared data, and the edges relating this boxes to the CFG nodes
symbolize the type of access to the data: read (dotted dark red), write (solid
yellow) and read/write (dashed green).

Regarding the OpenMP code, it is independent from the Ada code because
the data structures being used are different. However, it is important to note that
7 In OpenMP, the binding region is the enclosing region that determines the execution

context. The binding region of a task is the innermost enclosing parallel region.
8 The OpenMP API is an specification for defining parallelism in C, C++ and Fortran

programs.

150 S. Royuela et al.

Request_Buffer.
Deposit

AcƟvaƟon_Manager.
Synchronize_AcƟvaƟon_

Sporadic

AcƟvaƟon_Log
_Reader.Wait

ProducƟon_Workload.
Small_Whetstone

AcƟvaƟon_Log.
Read

En

Ex

AcƟvaƟon_Manager.
Synchronize_AcƟvaƟon_

Cyclic

ProducƟon_Workload.
Small_Whetstone

Auxiliary.
Due_AcƟvaƟon

On_Call_Producer.
Start

Auxiliary.
Check_Due

AcƟvaƟon_Log
_Reader.Signal

En

Ex

AcƟvaƟon_Manager.
Synchronize_AcƟvaƟon_

Sporadic

En

Request_Buffer.
Extract

ProducƟon_Workload.
Small_Whetstone

Ex

On_Call_Producer

AcƟvaƟon_Manager.
IniƟalize

Regular_Producer Ac va on_Log_Reader

AcƟvaƟon_Time

OPENMP CODE

My_Request_Buffer(Insert_Index) Local_Suspension_Object

Read
Write

Elabora on
me

Program
execu on

Fig. 3. Simplified CFG of the Ravenscar application. (Color figure online)

the OpenMP parallel tasks are inherently concurrent because they are called
from within different Ada tasks, which are in turn concurrent.

Definition 1. A block of concurrency, or concurrent block, is a set of portions
of code that may execute in parallel.

Since the application meets the Ravenscar profile, the CFG is particularly
simple because all tasks are created at library level, meaning that they start
executing at the beginning of the program (after elaboration) and terminate
when the program ends (task allocators, task termination and abortion, and task
hierarchies, among others, are not allowed). Hence, there are only two blocks of
concurrency (split by blue lines in the CFG) that correspond to the code executed
during elaboration, and the rest of the code.

5.3 Correctness Analysis

Inspired by the algorithms presented in the scope of OpenMP to automatically
determine the data-scoping attributes [36] and the dependence clauses [37] of
an OpenMP task, we present an algorithm able to find data-race conditions
in Ada concurrent programs, containing or not OpenMP tasks. The high-level
description of the algorithm is outlined in Listing 1.

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 151

En

I := 1

J := 1

M_A(I,J) := 1.0

J := J + 1

I := I + 1

En

Ex

En

Regular_Producer.
Small_Whetstone(1)

I

On_Call_Producer.
Small_Whetstone(2)

Ac va on_Log_Reader.
Small_Whetstone(3)

J

M_A(I,J)

I := 1

J := 1

M_B(I,J) := 1.0

J := J + 1

I := I + 1

Ex

I J

M_B(I,J)

I := 1

J := 1

M_C(I,J) :=
M_A(I,J) + M_B(I,J)

J := J + 1

I := I + 1

Ex

I J

M_C(I,J)

taskloop

Read_Sensor_B Fuse_Sensors

OpenMP
parallelism

Ada
concurrency

Read
Write

Read/Write

taskloop taskloop

Read_Sensor_A

Fig. 4. CFG of the OpenMP code introduced in the Small Whetstone procedure. (Color
figure online)

Algorithm 1. High-level description of the race detection algorithm.

1. Build the inter-procedural CFG of the program.
2. Recognize the blocks of concurrency (in a Ravenscar application this is as

simple as splitting the elaboration code and the rest of the code).
3. For each concurrent block, look for concurrent accesses to shared data, where

at least one of the accesses is a write. If that occurs:
(a) If all accesses to the shared data are within OpenMP tasks that belong

to the same binding region, then:
– If the operations are commutative [41], then protect the accesses with
an atomic or a critical construct.

– Otherwise, there are two approaches:
* Use full synchronizations: insert a taskwait or barrier con-
struct between the two accesses.
* Use partial synchronizations: follow the algorithm to automati-
cally determine the dependence clauses of an OpenMP tasks [37].

(b) Otherwise, propose to wrap the shared data in a protected object.

Applying the two first steps of the algorithm to our test case results in the
CFGs presented in Sect. 5.2. All Ada and OpenMP tasks correspond to the same
block of concurrency, hence potential race conditions may occur among all Ada
and OpenMP tasks. However, since OpenMP and Ada tasks manage different
share data, we can treat them separately.

152 S. Royuela et al.

Applying the third step on the original Ravenscar code reveals that: (a) Acti-
vation Time is not in a race condition because the read and the write accesses
are in different concurrent blocks, (b) Local Suspension Object is not in a race
condition because the operations performed on it are atomic with respect to each
other, as the standard says, and (c) My Request Buffer(Insert Index) is not in a
race condition because this object is part of the protected object Request Buffer.
The results of the algorithm on the original Ravenscar application successfully
found that the code contains no race conditions.

Regarding the analysis of the OpenMP code note that the OpenMP data-
sharing rules indicate that there is a private copy of the induction variable of the
taskloop for each thread. As a result, applying the third step of the algorithm
on the OpenMP code reveals that accesses to variables I and J are not in a race
condition. On the other hand, accesses to the matrices M A and M B are in a
race condition because the write access to M A and M B from Read Sensor A
and Read Sensor B respectively collide with the read access to both variables
from Fuse Sensor. The results of the algorithm indicate the use of partial syn-
chronizations in the form of task dependence clauses, which are shown in Fig. 5.

Fig. 5. Snippet of the OpenMP code inserted in the Production Workload package of
the Ravenscar application including the dependence clauses proposed by the correct-
ness analysis.

5.4 Safe Parallelism Beyond the Ravenscar Profile

This work currently assumes a restricted model, where Ada applications follow
the Ravenscar profile [38], and considering only the sharing of variables declared
in the same scope. This restriction is not related to the approach per se, but to

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 153

the complexity of the CFG as well as the program code visibility required for the
analysis. Hence, to support the full Ada concurrency model, the CFG must be
extended as to include further edges between tasks (e.g. master dependencies,
task termination, rendezvous, etc.). These edges must be taken into account
to determine the concurrency blocks (considering when tasks come to life and
terminate), and also to tune the accuracy of the results of the race condition
algorithm (considering when data is actually accessed, if possible). The compiler
approach in this analysis must always be conservative in the sense that false
positives are acceptable, but false negatives are inadmissible.

Another important consideration is the introduction of full program analysis
to allow the algorithm addressing the data sharing of variables declared in any
scope. In this sense, we consider the proposals for both Ada [4] and OpenMP [11]
to cope with this limitation, both consisting in annotations added to APIs of
those applications which are to be used as third-party libraries. The Ada anno-
tations include the aspects Global and Potentially Blocking to resolve race
conditions and deadlocks respectively, and the OpenMP annotations include the
directives globals and usage to resolve race conditions and illegal nesting9

(including nested regions that can cause deadlocks).

6 Conclusions

This paper provides one step further in the work to enable OpenMP fine-grained
parallelism in Ada, by addressing the safety of the code in the presence of parallel
computation. For this, the paper proposes compiler analysis techniques that can
identify potential race conditions in Ada, both considering Ada tasks and paral-
lel OpenMP code. These techniques are built on top of three components: (a) a
graph representation that includes both control- and data-flow dependencies of
concurrent and parallel code, (b) an adaptation of existent compiler techniques
developed for sequential languages to consider Ada tasks, and (c) compiler meth-
ods that detect data races and guide the programmer in solving them.

Together with previous works, this paper provides a solution to enable the
use of the OpenMP fine-grained tasking model, which can be used together with,
or supporting, the existent Ada parallel tasklet model.

Acknowledgments. This work was supported by the Spanish Ministry of Science and
Innovation under contract TIN2015-65316-P, and by the FCT (Portuguese Foundation
for Science and Technology) within the CISTER Research Unit (CEC/04234).

A Complete CFG of the Ravenscar Application

This appendix includes the complete CFG of the Ada code used to illustrate
the proposal of this paper, extracted from the Ada Ravenscar Profile Guide [38]
(Fig. 6).
9 The OpenMP specification (Sect. 2.17 [10]) defines a series of rules that determine

which constructs cannot be nested within each other.

154 S. Royuela et al.

Re
qu

es
t_

Bu
ffe

r.
De

po
sit

Ac
Ɵv

aƟ
on

_M
an

ag
er

.
Sy

nc
hr

on
ize

_A
cƟ

va
Ɵo

n_
Sp

or
ad

ic

Ac
Ɵv

aƟ
on

_L
og

_R
ea

de
r.W

ai
t

Pr
od

uc
Ɵo

n_
W

or
kl

oa
d.

Sm

al
l_

W
he

ts
to

ne

Ac
Ɵv

aƟ
on

_L
og

.
Re

ad

En Ex

Ac
Ɵv

aƟ
on

_M
an

ag
er

.
Sy

nc
hr

on
ize

_A
cƟ

va
Ɵo

n_
Cy

cl
ic

Pr
od

uc
Ɵo

n_
W

or
kl

oa
d.

Sm

al
l_

W
he

ts
to

ne

Au
xi

lia
ry

.
Du

e_
Ac

Ɵv
aƟ

on

O
n_

Ca
ll_

Pr
od

uc
er

.
St

ar
t

Au
xi

lia
ry

.
Ch

ec
k_

Du
e

Ac
Ɵv

aƟ
on

_L
og

_R
ea

de
r.S

ig
na

l

En Ex

Ac
Ɵv

aƟ
on

_M
an

ag
er

.
Sy

nc
hr

on
ize

_A
cƟ

va
Ɵo

n_
Sp

or
ad

ic

En

Re
qu

es
t_

Bu
ffe

r.
Ex

tr
ac

t

Pr
od

uc
Ɵo

n_
W

or
kl

oa
d.

Sm

al
l_

W
he

ts
to

ne

Ex

Ac
Ɵv

aƟ
on

_M
an

ag
er

.
Sy

nc
hr

on
ize

_A
cƟ

va
Ɵo

n_
Sp

or
ad

ic

Ev
en

t_
Q

ue
ue

.
Ha

nd
le

r.W
ai

t

Ac
Ɵv

aƟ
on

_L
og

.W

rit
e

En Ex

O
n_

Ca
ll_

Pr
od

uc
er

Ac
Ɵv

aƟ
on

_M
an

ag
er

.
In

iƟ
al

ize

Re
gu

la
r_

Pr
od

uc
er

Ac

va
on

_L
og

_R
ea

de
r

Ex
te

rn
al

_E
ve

nt
_S

er
ve

r

Ev
en

t_
Q

ue
ue

.
Ha

nd
le

r.S
ig

na
l

En Ex

In
te

rr
up

t_
Si

m
ul

at
or

Ac
Ɵv

aƟ
on

_T
im

e

Ba
rr

ie
r

Ac
Ɵv

aƟ
on

_C
ou

nt
er

O
PE

N
M

P
CO

DE

Re
qu

es
t_

Co
un

te
r

Ru
n_

Co
un

t

Fa
ct

or

Re
ad

W

rit
e

Re
ad

/W
rit

e

Cu
rr

en
t_

Si
ze

In
se

rt
_I

nd
ex

Ba
rr

ie
r

Re
sp

on
se

M
y_

Re
qu

es
t_

Bu
ffe

r(
In

se
rt

_I
nd

ex
)

Ta
sk

_S
ta

rt
_T

im
e

Sy
st

em
_S

ta
rt

_T
im

e
N

ex
t_

Ti
m

e

Lo
ca

l_
Su

sp
en

sio
n_

O
bj

ec
t Ac
Ɵv

aƟ
on

_T
im

e

Po
ll_

Ti
m

e
:=

Ad

a.
Re

al
_T

im
e.

Cl
oc

k
+

W
ai

tT
im

e;

de
la

y
un

Ɵl

Po
ll_

Ti
m

e;

Po
ll_

Ti
m

e
:=

 P
ol

l_
Ti

m
e

+
W

ai
tT

im
e;

Po
ll_

Ti
m

e

W
ai

t_
Ti

m
e El

ab
or

a
on

m

e

Pr
og

ra
m

ex

ec
u

on

F
ig
.
6
.

C
o
n
tr

o
l

fl
ow

g
ra

p
h

o
f

th
e
R
a
ve
n
sc
a
r

a
p
p
li
ca

ti
o
n

d
efi

n
ed

in
S
ec

t.
7

o
f

th
e

A
d
a

R
av

en
sc

a
r

P
ro

fi
le

G
u
id

e,
co

n
ta

in
in

g
a
cc

es
se

s
to

sh
a
re

d
d
a
ta

.

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 155

References

1. NVIDIA: Automotive (2017). https://www.nvidia.com/en-us/self-driving-cars
2. AdaCore: Automotive (2018). https://www.adacore.com/industries/automotive
3. Pinho, L.M., Moore, B., Michell, S.: Parallelism in Ada: status and prospects. In:

George, L., Vardanega, T. (eds.) Ada-Europe 2014. LNCS, vol. 8454, pp. 91–106.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08311-7 8

4. Taft, S.T., Moore, B., Pinho, L.M., Michell, S.: Safe parallel programming in Ada
with language extensions. ACM SIGAda Ada Lett. 34(3), 87–96 (2014)

5. Pinho, L.M., Moore, B., Michell, S., Tucker Taft, S.: An execution model for fine-
grained parallelism in Ada. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe
2015. LNCS, vol. 9111, pp. 196–211. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19584-1 13

6. Pinho, L.M., Moore, B., Michell, S., Taft, S.T.: Real-time fine-grained parallelism
in Ada. ACM SIGAda Ada Lett. 35(1), 46–58 (2015)

7. Taft, T., Moore, B., Pinho, L.M., Michell, S.: Reduction of parallel computation
in the parallel model for Ada. ACM SIGAda Ada Lett. 36(1), 9–24 (2016)

8. Royuela, S., Martorell, X., Quiñones, E., Pinho, L.M.: OpenMP tasking model for
Ada: safety and correctness. In: Blieberger, J., Bader, M. (eds.) Ada-Europe 2017.
LNCS, vol. 10300, pp. 184–200. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60588-3 12

9. Royuela, S., Pinho, L.M., Quiñones, E.: Converging safety and high-performance
domains: integrating OpenMP into Ada. In: Design, Automation & Test in Europe,
March 2018

10. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face 4.5 (2015). http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

11. Royuela, S., Duran, A., Serrano, M.A., Quiñones, E., Martorell, X.: A functional
safety OpenMP∗ for critical real-time embedded systems. In: de Supinski, B.R.,
Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017.
LNCS, vol. 10468, pp. 231–245. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65578-9 16

12. Ada Resource Association: Ada 95 Reference Manual. ISO/IEC 8652:1995(E) with
COR.1 (2000). http://www.adaic.org/resources/add content/standards/95lrm/
RM.pdf

13. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar tasking profile for high
integrity real-time programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS,
vol. 1411, pp. 263–275. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055011

14. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity: Sample Chapters. Pearson Education, London (2003)

15. Taft, S.T., Schanda, F., Moy, Y.: High-integrity multitasking in SPARK: static
detection of data races and locking cycles. In: 17th International Symposium on
High Assurance Systems Engineering, pp. 238–239. IEEE (2016)

16. Michell, S., Moore, B., Pinho, L.M.: Tasklettes – a fine grained parallelism for Ada
on multicores. In: Keller, H.B., Plödereder, E., Dencker, P., Klenk, H. (eds.) Ada-
Europe 2013. LNCS, vol. 7896, pp. 17–34. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38601-5 2

17. Serrano, M.A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., Quiñones, E.:
Timing characterization of OpenMP4 tasking model. In: International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, pp. 157–166.
IEEE Press, October 2015

https://www.nvidia.com/en-us/self-driving-cars
https://www.adacore.com/industries/automotive
https://doi.org/10.1007/978-3-319-08311-7_8
https://doi.org/10.1007/978-3-319-19584-1_13
https://doi.org/10.1007/978-3-319-19584-1_13
https://doi.org/10.1007/978-3-319-60588-3_12
https://doi.org/10.1007/978-3-319-60588-3_12
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1007/978-3-319-65578-9_16
https://doi.org/10.1007/978-3-319-65578-9_16
http://www.adaic.org/resources/add_content/standards/95lrm/RM.pdf
http://www.adaic.org/resources/add_content/standards/95lrm/RM.pdf
https://doi.org/10.1007/BFb0055011
https://doi.org/10.1007/BFb0055011
https://doi.org/10.1007/978-3-642-38601-5_2
https://doi.org/10.1007/978-3-642-38601-5_2

156 S. Royuela et al.

18. Serrano, M.A., Melani, A., Bertogna, M., Quiñones, E.: Response-time analysis of
DAG tasks under fixed priority scheduling with limited preemptions. In: Design,
Automation & Test in Europe, pp. 1066–1071. IEEE, March 2016

19. Melani, A., Serrano, M.A., Bertogna, M., Cerutti, I., Quiñones, E., Buttazzo, G.:
A static scheduling approach to enable safety-critical OpenMP applications. In:
22nd Asia and South Pacific Design Automation Conference, pp. 659–665. IEEE,
January 2017

20. Sun, J., Guan, N., Wang, Y., He, Q., Yi, W.: Scheduling and analysis of real-
time OpenMP task systems with tied tasks. In: Proceedings of Real-Time Systems
Symposium (2017)

21. Kroening, D., Poetzl, D., Schrammel, P., Wachter, B.: Sound static deadlock anal-
ysis for C/Pthreads. In: 31st International Conference on Automated Software
Engineering, pp. 379–390. IEEE, September 2016

22. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: 42nd International Conference on
Parallel Processing, pp. 510–516. IEEE, October 2013

23. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: ompVerify: polyhedral analysis for the OpenMP programmer. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21487-5 4

24. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: 12th International Conference on Computing Frontiers, p. 7.
ACM, May 2015

25. Evangelista, S., Kaiser, C., Pradat-Peyre, J.-F., Rousseau, P.: Quasar: a new tool
for concurrent Ada programs analysis. In: Rosen, J.-P., Strohmeier, A. (eds.) Ada-
Europe 2003. LNCS, vol. 2655, pp. 168–181. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-44947-7 12

26. Fechete, R., Kienesberger, G., Blieberger, J.: A framework for CFG-based static
program analysis of Ada programs. In: Kordon, F., Vardanega, T. (eds.) Ada-
Europe 2008. LNCS, vol. 5026, pp. 130–143. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68624-8 10

27. Qi, X., Xu, B.: An approach to slicing concurrent Ada programs based on program
reachability graphs. Int. J. Comput. Sci. Netw. Secur. 6(1), 29–37 (2005)

28. Mohaqeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of syn-
chronous digraph real-time tasks. In: 28th Euromicro Conference on Real-Time
Systems, pp. 176–186. IEEE, July 2016

29. Wang, B., Gao, H., Cheng, J.: Definition-use net and system dependence net gen-
erators for Ada 2012 programs and their applications. Ada User J. 38(1), 37–55
(2017)

30. Faria, J.M., Martins, J., Pinto, J.S.: An approach to model checking Ada programs.
In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe 2012. LNCS, vol. 7308, pp. 105–
118. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30598-6 8

31. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

32. AdaCore, Altran, Astrium Space Transportation, CEA-LIST, ProVal at INRIA
and Thales Communications: Project Hi-Lite: GNATprove (2017). http://www.
open-do.org/projects/hi-lite/gnatprove

33. GNU: GNAT (2016). https://www.gnu.org/software/gnat
34. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York

(1988)

https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/3-540-44947-7_12
https://doi.org/10.1007/3-540-44947-7_12
https://doi.org/10.1007/978-3-540-68624-8_10
https://doi.org/10.1007/978-3-540-68624-8_10
https://doi.org/10.1007/978-3-642-30598-6_8
http://www.open-do.org/projects/hi-lite/gnatprove
http://www.open-do.org/projects/hi-lite/gnatprove
https://www.gnu.org/software/gnat

Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP 157

35. Ada Resource Association: Ada Reference Manual, ISO/IEC 8652:2012(E) (2012).
http://archive.adaic.com/standards/83lrm/html

36. Royuela, S., Duran, A., Liao, C., Quinlan, D.J.: Auto-scoping for OpenMP tasks.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 29–43. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30961-8 3

37. Royuela, S., Duran, A., Martorell, X.: Compiler automatic discovery of OmpSs
task dependencies. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol.
7760, pp. 234–248. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37658-0 16

38. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
Profile in high integrity systems. ACM SIGAda Ada Lett. 24(2), 1–74 (2004)

39. Burns, A., Wellings, A.J.: HRT-HOOD: a structured design method for hard real-
time systems. Real-Time Syst. 6(1), 73–114 (1994)

40. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Process. Lett. 21(02), 173–193 (2011)

41. Lippe, E., van Oosterom, N.: Operation-based merging. In: Proceedings of the
Fifth ACM SIGSOFT Symposium on Software Development Environments, SDE
5, pp. 78–87. ACM, New York (1992)

http://archive.adaic.com/standards/83lrm/html
https://doi.org/10.1007/978-3-642-30961-8_3
https://doi.org/10.1007/978-3-642-30961-8_3
https://doi.org/10.1007/978-3-642-37658-0_16
https://doi.org/10.1007/978-3-642-37658-0_16

Microservice-Based Agile Architectures:
An Opportunity for Specialized Niche

Technologies

Stefano Munari, Sebastiano Valle(B), and Tullio Vardanega

Department of Mathematics, University of Padua,
Torre Archimede, Via Trieste, 63, 35121 Padova, Italy

stefanomunari.sm@gmail.com, valle.sebastiano93@gmail.com,
tullio.vardanega@math.unipd.it

Abstract. This work discusses lessons learned from the development of
a medium-size peer-to-peer distributed software system centered around
asynchronous computation and message-/stream-oriented communica-
tion. Albeit foreign to traditional high-integrity systems, these architec-
tural characteristics are making rapid headway into large-scale mission-
critical and business-critical software infrastructures, thus becoming can-
didate solutions for the design of reliable systems. We wanted our soft-
ware architecture to be agile, that is, versatile, easy to evolve and modify,
and resilient enough not to degrade across changes. To meet this goal,
we adopted the microservices style, which afforded us the choice of best-
of-breed technology to implement the individual system parts. Embrac-
ing heterogeneity while seeking agility however challenged our ability to
design effective solutions for component coordination and interaction, as
well as the goodness of fit of the used technologies for system integra-
tion and testing. Reflecting on our experience, we distill the lessons we
learned in terms of architectural patterns, highlighting the pros and cons
we saw in the microservices style and in our technologies selection.

Keywords: Microservices architecture · Distributed systems
Agility · Scalability · Heterogeneity · Patterns

1 Introduction

Nowadays, software systems are ubiquitous: Internet of Things (IoT) devices,
swarms of drones and self-driving cars are perhaps the most prominent examples
of computer-based services that are becoming part of everyone’s life [1].

It is not difficult to predict that the degree of criticality of modern comput-
ing systems will grow proportionally to their pervasiveness. This unstoppable
trend will likely turn into critical infrastructure several systems that were not
regarded as such at their origin. Amazon and Google are two most notable
sources of applications and services infrastructures progressively expanding into
the business-critical and mission-critical systems camp. Some of those systems,
c© Springer International Publishing AG, part of Springer Nature 2018
A. Casimiro and P. M. Ferreira (Eds.): Ada-Europe 2018, LNCS 10873, pp. 158–174, 2018.
https://doi.org/10.1007/978-3-319-92432-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92432-8_10&domain=pdf

Microservice-Based Agile Architectures 159

such as autonomous cars, air traffic control systems, medical systems, already
have a significant impact on human society: a downtime in their infrastructure
could cost billions of dollars [2], and their faulty behavior can cost lives [3]. These
observations suggest that most future systems will need to take availability and
reliability into account as non-negotiable qualities.

It is interesting to look back at how software engineering practices, designated
to pursue measurable conformance with requirements, evolved, in the face of the
explosion in size and criticality of software systems.

In the late 1970s, Myers [4] defined software testing principles and practices
(e.g., black-box testing) to limit the quantity of residual software faults in deliv-
ered products, while acknowledging that not all of them could be eradicated
in that manner. Testing acquired greater prominence in the V model, to help
assert requirements coverage and earn confidence in the system reliability. Sadly,
waterfall-cycle experience has shown that (large) fractions of the planned test
campaign are liable to omission as their execution occurs late in the development
process, maximally exposed to the risk of time and cost overruns.

In the early 2000s, agile methodologies made their grand entrance into soft-
ware engineering practice, rapidly becoming the dominant choice among indus-
trial practitioners. Seeking a cure to the vulnerability of prior solutions (too
rigid and, consequently, too fragile), Beck [5,6] proposed extreme programming
(XP) principles and test-driven development (TDD). One trait of XP that has
not derailed since, recommends automating testing and integration to render the
development process more efficient. These very principles are now being taken
up in DevOps practices [7]. TDD instead reverses the waterfall model by lifting
tests to steer software design and thus provide instant feedback to developers.
In TDD, each test has to be written before implementing the respective func-
tionality, therefore focusing more deeply (as driven by immediate verification)
on the decomposition of the possible use-cases to distill the behavior of every
individual software unit. TDD can be applied to both top-down (integration
tests with mock objects) and bottom-up (unit tests) approaches. For instance,
a top-down approach combined with Continuous Integration (CI) helps uncover
system integration problems earlier in the development process. According to
Martin [8], TDD helps design organic architectures, getting rid of major bugs
early in the software development life-cycle, thereby reducing the final costs of
the software project.

The massive growth in size (lines of code), scale (distribution and deploy-
ment), and liveness of modern software systems poses a further massive chal-
lenge to software engineering practice by making traditional big-bang integra-
tion increasingly more impractical, if at all possible. This trend widens the gap
between development (and test) and production environment, to the point that
the former can hardly capture the (extreme) characteristics of the latter [9]. As
a testimony to the relevance of this problem and its need for “lateral thinking”,
Netflix, supplier of large-scale live, business-critical distributed software services,
conceived Chaos Engineering [9], a practice that aims to discover unpredictable
failures of a complex distributed system running in production mode by injecting
faults in isolated parts of it and monitoring the outcome of it.

160 S. Munari et al.

Contribution. Since the most interesting distributed systems are private for obvi-
ous reasons of intellectual property, little knowledge is available on their software
architecture and the best practices that were applied to build them [10]. Open-
source and academic projects that experiment in this field therefore are a useful
means to raise the awareness and the quality of discussion on the state of dis-
tributed computing. With this work, we present our design and implementation
experience on a long-running academic project, which we developed exploring
several state-of-the-art features and technologies. In particular, we designed,
built and deployed a medium-size distributed system that realizes a city-traffic
simulator usable through a streaming service. Even if smaller-scale than any of
the systems we mentioned earlier, this work of ours exhibits traits that overlap
with modern distributed services. We trust that the practices we experienced
and the lessons we learned in our project may provide some insight on recur-
rent problems that industrial practitioners encounter when dealing with modern,
heterogeneous, agile and reliable distributed systems.

The remainder of this paper is organized as follows. Section 2 surveys the
state-of-the-art of distributed systems, focusing on the principles that we fol-
lowed. Section 3 presents our solution in terms of architectural principles and
technology selection. Section 4 reviews and evaluates our choices after the expe-
rience on our reference scenario. Finally, Sect. 5 distills some lessons learned.

2 Requirements

Hardware is intrinsically prone to wear and tear due to its tangible nature. Soft-
ware instead does not decay per se over time, but is equally subject to faults.
Where continuity of service is paramount, utmost attention has to be given to
the supremely important quality of software reliability, and reflect in consequent
architectural choices and implementation decisions. Reliability reflects the con-
tinuity of service warranted to end users. The common metrics used for it (e.g.,
MTBF, failure rate) consider downtime periods and number of failures incurred
over time. While very familiar to the niche of cognizant developers, this seem-
ingly obvious dimension of concern has for a long time escaped the attention
of those working without the pressure of certification or qualification bodies.
Recent events show how far this oblivion had spread.

In 2017, Amazon experienced an outage that triggered a four-hour downtime
to a large number of commercial websites deployed on its cloud infrastructure.
The failure occurred as an operator debugging the billing process on some dis-
tributed servers, hence underneath the services provisioned to the affected cus-
tomers, accidentally shut down almost an entire region of servers. This event
resulted in service disruption costs of ∼$150 million, seriously undermining the
company’s credibility as a reliable cloud provider.

In 2008, a corruption in the main database forced Netflix to shut down the
whole system for 4 days. This catastrophe taught Netflix the lesson to depart
from their earlier monolithic system and move toward a microservice-based archi-
tecture. That change-over took 8 years to complete for good, and, reportedly,

Microservice-Based Agile Architectures 161

allowed them to reduce the downtime-per-year duration to 52 min, while being
able to apply thousands of production changes per day.

In the past, mission-critical systems (those whose failure would crush the cor-
responding investment) used to be a small niche in software business. Presently,
numerous business-critical systems are acquiring mission-critical traits as well,
since a single failure in them can imperil the future of a whole enterprise. As a
consequence, software reliability has returned to be a top concern, and motivated
market leaders to develop and deploy a new host of best practices [11].

2.1 Architectural Principles

Our vision encompasses an evolving architecture, which is capable of mutating
over time as need arises, instead of crystallizing in a fixed structure. In this
section, we define the principles that inspired our architectural decisions.

(P1) Agility. An agile architecture is able to evolve over time while assuring
the continuity of the services exposed by its interface. If the system is able to
serve user requests incurring no downtime during updates, we can say that the
system is agile. For a proof-of-concept that explores the agility of a microservices-
based architecture, see [12]. Big players in the Cloud computing, messaging and
video streaming service businesses, such as Amazon AWS, Google, Netflix and
Facebook, have already embraced this principle.

(P2) Versatility. A distributed system is versatile if its composing parts can be
used in different contexts. This principle implicitly embodies portability, whereby
a portable component does not make any assumption on the platform(s) on which
it is deployed. At the same time, being versatile also means being potentially
reusable in different software systems, application context and not just execution
platforms. A distributed system that uses versatile components can mutate its
composition over time while maintaining (or extending) its goal, like a pattern
that can have different instantiations, but just a single meaning, and one and
the same interface to the outside.

(P3) Scalability. A distributed system is scalable when it is able to assure stable
yield in the face of dynamic variation in the user load within one and the same
active configuration [13]. When the system infrastructure is subject to a pay-per-
use cost policy, scalability needs to become elastic, and the system components
should be able to grow (scale out) or shrink (scale in) as needed, thus avoiding
both under- and over-provisioning.

According to [14], scalability can be measured over the 3 axes shown in Fig. 1.

– Vertical scalability (Y-axis): this property is achieved when the system’s per-
formance can elastically adapt to the current workload by adding or removing
resources from a running node transparently to the end user.

162 S. Munari et al.

Fig. 1. The scale cube [14]

– Horizontal scalability (X-axis): a system scales horizontally, aka scales out,
when its design allows cloning one or more services (replicas) and distributing
load among them in full transparency to the user. A system able to scale out
can also be fault-tolerant, as the effects of local crashes in individual replicas
can be kept hidden to the user, as long as one or more (hot) replicas are able
to instantaneously replace the failing node.

– In-depth scalability (Z-axis): the need for this property arises in the face of
large amounts of stored data. A database is partitioned in disjoint subsets
of data (i.e., shards) based on records attributes used as key when routing
requests to shards. This approach improves fault isolation and transaction
scalability since a failure makes inaccessible only part of the data and requests
for multiple transactions may be distributed among several nodes.

In our project we did not have important storage needs. Our architecture did
therefore focus only on vertical and horizontal scaling.

(P4) Simplicity. Seeking simplicity helps avoid bloated and unmaintainable
architectures, by designing just the essential components and “small”, focused,
interfaces for them. Simplicity has a more retrospective connotation; it therefore
often fails to catch the developer’s attention early enough. Performing periodic
refactoring may be a useful discipline to not lose sight of it. Refactoring, however,
postulates agility.

2.2 Technology Requirements

No one software technology fits all needs. Conversely, different technologies are
versed to solve different problems. Similarly, each microservice carries out a dis-
tinct, self-contained functionality of the system. The decoupled nature of the
microservices architectural style allows integrating multiple best-of-breed tech-
nologies (each with their own stack) into a reliable whole, without entangling
the corresponding needs and dependencies.

Hereafter, we outline the main technology requirements that guided the real-
ization of our architecture as an aggregation of several heterogeneous and multi-

Microservice-Based Agile Architectures 163

threaded components, which frequently interact with each other under the same
umbrella, for delivering a reliable service.

(T1) High-level abstractions. Mature technologies capable of expressing concur-
rency at program level and of controlling it for predictability and performance are
essential to implement multi-threading reliably. This is an enabler to distributed
computing, and consequently also in demand for microservices architectures.

(T2) Modern testing framework. An agile architecture (in the sense of Sect. 2.1)
should rest on a framework that can nimbly sustain increments. For example,
incremental and continuous integration practices along with automated tests,
executable in reproducible and isolated scenarios, provide rapid and valuable
feedback for the developer and help steer the course of development.

(T3) Beware dependencies. Versatile systems leverage flexibility and seek inter-
operability among heterogeneous parts. Achieving this goal is massively aided
by making components interact at the highest possible level, e.g., HTTP(S).

(T4) Economy matters. Development concerns should not overlook efficiency,
which relates to the quantity of human resources that the project needs to deploy.
This consideration suggests narrowing the spectrum of technologies that have to
be mastered, while also selecting them based on the value that they can deliver
to the final product (which looks back at the principles discussed in Sect. 2.1.

Table 1 provides a synoptic view of our requirements.

Table 1. Project requirements

Code Name Purpose

P1 Agility Sustain increments without giving up stability

P2 Versatility Facilitate reuse

P3 Scalability Cope with variable amounts of demand

P4 Simplicity Design easy-to-change systems

T1 Abstraction Enable Inversion of Control

T2 Testing Automatically verify software properties

T3 Interoperability Connect heterogeneous technologies

T4 Economy Bear technical debt to stay on schedule

3 Solutions

We now discuss the principal architectural patterns that we used in our project.
Subsequently, we review the technology selection that preluded implementation.

164 S. Munari et al.

3.1 Patterns

Owing to space limit, we focus on two patterns, which turned out to be especially
useful in meeting the principles recalled in Sect. 2.1.

The Layering pattern facilitates decomposing the system into a hierarchi-
cal structure since handling the intricacy of a distributed system can be very
challenging.

The Pipe and Filter pattern instead helps guide the design of the data-flow
traits of the system.

Layering. This pattern is inspired by the UNIX protection rings and the TCP/IP
model (which are veritable evergreens), and advocated by Martin [8] as a vector
of a “clean” architecture. The fundamental idea behind this pattern is to separate
and isolate the responsibilities of each part of the system.

A distributed system can be viewed as a cohesive set of functionalities which
operate at different levels of abstraction (Fig. 2a). To mitigate the inordinate
growth of complexity, concentrating (for implementation, verification and main-
tenance) on one specific concern should allow transparently ignoring other con-
cerns. Yet, if the system parts do not have a clear (distinct, self-contained, not
overlapping) role in the intended collaborations, the system architecture will
suffer coupling, and the interface between components will be disorderly.

One useful recipe in this regard is to decompose the system into isolated
layers whose adjacent pairs (typically co-located) communicate vertically, and
the symmetrical peers (typically remote) communicate horizontally, as shown
in Fig. 2b. Vertical communication between heterogeneous concerns needs well-
defined call interfaces. Horizontal communication between homogeneous remote
peers needs protocols.

Arguably, layering helps achieve versatility (P2) as it allows individual parts
(layers) to be considered in isolation and be deployed or reused individually so
long as their required interfaces are satisfied in place.

Pipe and Filter. This idea derives from the UNIX pipe-and-filter architectural
style and has a significant positive impact on distributed systems. Its core con-
cept is separating data from behavior. As Hohpe and Woolf [15] observe, this
pattern divides a large processing task in a sequence of small and reusable steps
of progress, thereby yielding natural parallelism.

A great variety of services imply continuous streams of data and messages to
process, e.g., social networks, messaging services and video streaming providers.
These systems need to process streams of data which can vary in size and amount,
while being able to scale and to stay available and operative as the load increases.
Moreover, these systems may not have a full a-priori knowledge of the features
which characterize the processed data.

The whole processing can be decomposed in atomic steps called filters, each
of them responsible for exactly one task. Filters expose a common interface and
are connected among them by pipes, which provide basic producer-consumer

Microservice-Based Agile Architectures 165

(a) Structure (b) Communication

Fig. 2. Layering pattern

capabilities, e.g., queues or channels. This decomposition process can be recur-
sively applied starting from the higher levels of the architecture, as shown in
Fig. 3. System throughput is limited by the slowest filter in the chain, which
becomes its bottleneck. Furthermore, messages and streams of any sort can be
wrapped in a uniform-type bundle that can be processed by all pipes and filters.

The resulting processing pipeline guarantees scalability (P3): filters can be
parallelized since each data flow is independent of the others. Also, the Pipe
and Filter architecture embodies simplicity (P4), because each part (filter) is
responsible for a single task, and they can be composed as needed.

Fig. 3. Pipe and Filter architecture

3.2 Technology Selection

Our reference domain represents the traffic of a city (e.g., commuters, vehicles,
transits), with inherent traits of (independent) parallelism and (collaborative)
concurrency. We want our system to be able to sustain variable traffic load
and balance it across service nodes as needed. This means designing it as a

166 S. Munari et al.

distributed system. To be scalable and agile, our system needs to employ asyn-
chronous communications. To this end, we chose a message-oriented approach,
leveraging a message broker. Finally, to manage a software development that
uses microservices, we need automated provisioning.

Based on these premises, we now illustrate how the scouted technologies
respond to the requirements elicited in Sect. 2.2.

Concurrency. C++, Java and Ada implement the shared memory model, i.e.,
the interaction among threads is ruled by the state of shared memory regions.
The former two languages do not provide complete and reliable concurrency
abstractions [16]. Conversely, Ada guarantees thread-safe, polling-free access to
shared (logical) resources in a concurrent environment through Protected Objects.
Recently, C++17 has improved in this direction by introducing readers-writer
locks1, which mimic the semantics of Protected Objects.

The actor model is a completely different concurrency paradigm, initially
implemented by Erlang [17] for soft real-time systems. This paradigm leverages
asynchronous message passing between reactive entities, because each actor exe-
cutes only after receiving a message. Concurrency hazards are avoided by pro-
cessing one message at a time, hence allowing only single-threaded changes to
the state of an actor. Since actors communicate with each other via messages,
there is no restriction on their location.

Go provides another interesting concurrency model, inspired on the long-
known communicating sequential processes (CSP) concept [18]. In this paradigm,
goroutines (i.e., lightweight threads in Go) exchange information by means of
typed and thread-safe queues called channels. This concurrency model slightly
differs from the one implemented by Erlang since channels in Go can be con-
sumed in an arbitrary order. On the other hand, channels may exchange data
over several machines, therefore removing the need of sharing memory.

We choose Ada to implement our business logic. We found it offering a reliable
and mature technology to handle concurrency (T1), with the extra bonus of
strong typing (with a large range of static checks), object-oriented programming,
and real-time events.

As a token to the rationale of our choice, at the core of our simulator a con-
troller schedules and then executes activities, which represent the actions of trav-
ellers in our system. Ada’s task abstraction and its accompanying Ada.Real Time
package enabled us to develop and test the controller with relatively little effort.

Distribution. A software technology intended for distribution should natively (in
its runtime) include high-level primitives such as send or receive (T1), catering
for process isolation and statelessness.

Ada or Go do not come with handy dependency-injection frameworks to
manage distribution, so they do not represent a convenient choice in terms of
economy (T4). Conversely, actor model-based solutions match our idea of dis-
tributed computing. Hence, we consider two state-of-the-art implementations of

1 http://en.cppreference.com/w/cpp/thread/shared mutex.

http://en.cppreference.com/w/cpp/thread/shared_mutex

Microservice-Based Agile Architectures 167

this model: Open Telecom Platform (OTP) [17] and Akka2. OTP is an Erlang
standard library that natively supports location-transparent primitives and dis-
tributed computation. Akka is a Scala/Java framework inspired by OTP. Erlang
and Java run on two different virtual machines (i.e., BEAM and JVM) and this
difference significantly affects the behavior of their actor model implementations.
With Akka, concurrent modifications may occur to the internal state of an actor.
This is not possible in OTP. Moreover, as the JVM shares a common heap for
all threads, garbage collection causes global pauses in the system run time. Con-
versely, thanks to the process isolation guaranteed by BEAM, the independent
heap of each Erlang actor (i.e., lightweight thread) is garbage-collected sepa-
rately without affecting the execution of any other actor. Furthermore, BEAM
supports hot code swapping, allowing updates to the actor’s code without stop-
ping running processes (P1).

On these grounds, we chose Erlang and OTP in favor of Scala and Akka.
In particular, we chose Elixir3, an Erlang dialect, which we deemed to offer a
gentler learning curve, and a number of features like the Mix build tool that can
improve overall productivity (T4).

We wanted the application-level entities in our system to use asynchronous
and reliable communication services, provided for by a middleware layer com-
pletely decoupled from the application logic. Instances of where this need arises
in our design are the travellers who commute from one area (i.e., a node in our
system infrastructure) to another, or wish to book a parking spot at their point
of destination, which has to happen as determined by the city fabric. Let us
illustrate how such as an application scenario develops in our system implemen-
tation. When an application-level entity resident on node S issues a request R
for transport to a destination d (a building or a street), the following steps occur,
as depicted in Fig. 4).

1. the middleware routes R to the destination node D of the system, where d is
located, by looking it up in its routing table;

2. before passing R to the upper (application) layer, the middleware of D stores
the correlation id and the source node S of R in its cache (i.e., Redis4 in
Fig. 4);

3. when the middleware of node D receives the answer A to R, it checks whether
a request with a matching correlation id exists in its cache and, if it does, it
subsequently routes A back to the node S where R originated;

4. the middleware of S sends A to its application layer, where it will be handled
by an event loop.

We implemented this and other services by composing several Elixir actors.
Our implementation leveraged advanced high-level abstractions (e.g., supervision
trees), which enabled us to concentrate on realizing the desired service policies
achieving reliability without losing efficiency (T4).
2 https://akka.io/.
3 https://elixir-lang.org/.
4 https://redis.io/.

https://akka.io/
https://elixir-lang.org/
https://redis.io/

168 S. Munari et al.

Fig. 4. Handling of a request

Message Brokers. There exists a broad variety of message brokers with dif-
ferent delivering, storing and filtering capabilities. Kafka [19] and RabbitMQ5

represent two solutions characterized by high-throughput capabilities [20]. Kafka
was initially developed at LinkedIn as a log processor with particular emphasis
on partitioning and durability, whereas RabbitMQ offers more flexibility and
advanced filtering options, which makes it better suited for real-time processing.

On balance, we chose RabbitMQ because: (i) it supports several standard
protocols (e.g., AMQP, MQTT), which allows us to meet requirement (T3); and
(ii) it is easy to deploy, as it supports dynamic scaling (P3), as well as to use,
as it provides fresh and exhaustive documentation and tutorials (T4).

Another factor that made us lean toward RabbitMQ is its seamless integra-
tion with Erlang and therefore with Elixir. In particular, several libraries exist
that weave RabbitMQ with GenStage, i.e., a recently introduced Elixir data-
flow oriented abstraction. RabbitMQ and AMQP also provide a neat separation
between direct (synchronous) queues, which can be used for inter-node com-
munication, and topic (asynchronous) queues, which can be used in a publish-
subscribe fashion to generate events for the frontend component of the system.

Microservices. Docker6 is an open-source container platform, which has become
the de-facto standard for the implementation of microservices.

Docker offers an agile way to package code and related dependencies in an iso-
lated “runnable” environment that guarantees low start-up times (P1), typically
in the order of ms [12]. Docker helps optimize the infrastructure costs by instan-
tiating individual containers as lightweight and isolated user-space processes,
which share the OS kernel among them, without need for hypervisor-based arbi-
tration, hence without hypercall-API or HW virtualization.

Docker also provides Docker Compose, which assists the user in configur-
ing different deployment environments, addressing specific development and test
needs.

5 https://www.rabbitmq.com/.
6 https://www.docker.com/.

https://www.rabbitmq.com/
https://www.docker.com/

Microservice-Based Agile Architectures 169

Docker Swarm7 is an even higher-level tool, shipped with the standard instal-
lation from Docker 1.12.0 onwards, as a native mode to manage clusters of Docker
Engines8. The gist of Docker Swarm is to automate most part of the features
that it provides (e.g., service discovery, load balancing, TLS authentication),
only requiring very little configuration on the user side. Being a native Docker
solution, Docker Swarm enjoys fast deployment and excellent integration with
direct use by means of the Docker API.

Kubernetes is a technology-agnostic (T3) cluster orchestration system, which
embodies replication and service discovery as its core primitives. Google con-
ceived Kubernetes after over 10 years of experimentation with container man-
agement systems [21], and that solution has been subsequently adopted by Open-
Stack and other big players, e.g., Ebay, Yahoo, Comcast.

Both Docker Swarm and Kubernetes are open-source. They support declar-
ative configuration recipes (YAML), provide high-availability through replica-
tion, and are supported by common Cloud platforms like AWS and emerging
container-OS technologies like Rancher9. Kubernetes is complex to configure,
but more mature and fault-tolerant than Docker Swarm, which is very tightly
tied to the underlying Docker Engine.

With attention to requirement T4, we chose Docker to implement our
microservice architecture, and Docker Swarm for orchestration. Docker helps
achieve agility (P1), scalability (P3) and versatility (P2), while Docker Swarm
is a simple-to-use solution that does not incur further dependencies (cf. T4).

Docker was one of the key technologies in our system: it was essential to iso-
late and package code dependencies in standalone containers. Hence, by leverag-
ing the container abstraction, our system can smoothly mix several best-of-breed
niche technologies.

Configuration Management and Automation. Among the available testing frame-
works, we choose xUnit [6] because it is simple to use (P4, T4), thanks to sup-
port for an assertion-based verification of test cases. xUnit is flexible as it allows
grouping together independent unit tests by means of suites based on test fix-
tures, which define the required set-up and tear-down scenarios.

We chose this framework as it is widely supported as a plug-in by a large
number of project management tools (e.g., Eclipse or Apache Maven), which is
a token of its maturity. In particular, we used its AUnit and ExUnit instances
to respectively test Ada and Elixir code.

For the purposes of Continuous Integration (CI), we considered Travis10 and
Jenkins11, which are the dominant solutions in the professional market. We even-
tually choose the latter, due to our satisfactory previous experience with it (T4),
with the additional bonus of being open-source as opposed to the proprietary
nature of the former.
7 https://docs.docker.com/engine/swarm/.
8 A Docker Engine is the OS-level service which handles the container runtime.
9 https://rancher.com/rancher-os/.

10 https://travis-ci.org/.
11 https://jenkins.io/.

https://docs.docker.com/engine/swarm/
https://rancher.com/rancher-os/
https://travis-ci.org/
https://jenkins.io/

170 S. Munari et al.

In terms of Cloud services, we have had previous experience with Digital
Ocean and AWS, with the latter faring better for reliability and maturity.

We therefore used an Amazon Elastic Compute Cloud (or EC2) instance
to install our CI server. Using the Github integration plug-in, we configured a
Github webhook to trigger our Jenkins master node hosted on AWS after each
commit on selected repository branches (Fig. 5). The Jenkins master schedules
a job to a specific Jenkins slave which draws changes from a remote branch and
then it notifies through e-mail the intended developer in case of failure.

Fig. 5. CI workflow

We extensively used the Make tool and GNAT Project Manager (GPR) for
building and testing of the Ada component. The presence of numerous of external
libraries (e.g., GNATColl, dynamically linked, and an AI library written in C++,
statically linked) increased the complexity of our build process.

We also used Mix, the software project management tool bundled with the
Elixir installation, which eases defining different deployment environments, han-
dling dependencies, configuring the project structure and the test environment.

The aggregation of these automation tools helped us greatly to achieve agility
and reliability, reducing the cost of change in the long run (T2).

4 Evaluation

In conclusion, we discuss our retrospective assessment of how far much our design
and implementation decisions were able to meet the architectural and technology
requirements discussed in Sects. 4.1 and 4.2 respectively. The and conjunction
in between the two parts of this challenge is the key trait of this discussion:
selecting technologies that are best-of-breed in their own camp is a viable decision
only as long as they can integrate seamlessly into a system (Fig. 6), and the
corresponding development process, that have the sought properties.

4.1 Principles

Pursuing the architectural principles singled out in Sect. 2.1 was hard.
We learned that agility (P1) can be reached thanks to the combination of

adopting the microservices architectural style and using the technologies that
associate well with it, e.g., Docker and the Erlang ecosystem. We also found that

Microservice-Based Agile Architectures 171

Fig. 6. The software architecture and the corresponding technology choices

managing container updates within a medium-large codebase cleanly, requires
experience and becomes extremely hard for early adopters. Admittedly, our solu-
tion instance has much room for improvement in this respect.

Versatility (P2) is possible even in large systems, and the layering pattern
(Sect. 3.1) promotes cohesion and reusability of each single tier. Retrospectively,
however, we realized that architectural principles alone do not assure sufficient
portability, as technology support plays a large part (best if gently, but firmly
proactive) in making that possible. For example, Docker forces (as opposed to
loosely suggests) one to implement in ways that actively pursue portability and
reusability, owing to the decoupling that stems from embracing the microservices
style.

Simplicity (P3) can be evaluated subjectively, hence without standard
metrics. Nevertheless, using cut-to-the-bone interfaces in the communication
between our business logic and middleware layers, allowed us to define a clear
boundary between major architectural parts of our system.

Our hands-on experience has taught us that scalability (P4) can be achieved
concretely, and in fact rather easily, with a microservices architecture. Scalability
was also aided by adopting the Pipe and Filter pattern, which we adhered to
assuring the statelessness of the individual parts of it.

To ripe the full yield of our architectural principles, however, part of the
project effort (especially its initial segment) should be devoted to putting into

172 S. Munari et al.

place a robust and productive deployment system, without which incremental
integration would be a hard-to-reach objective.

4.2 Technologies

Ada is most effective to handle concurrency. Yet, having been designed with
embedded systems in mind, it is closed to interoperability and tooling. These
shortcomings make Ada’s learning curve steeper than other comparable lan-
guages (Table 2). Elixir is “a modern Erlang”, hence it earns all the Erlang bene-
fits plus an easy-to-use feel and good support by a thriving community. Neverthe-
less, Elixir has a serious drawback in dynamic typing, which hinders debugging.
RabbitMQ provides support for standard protocols, it actually turned out to be
simple and reliable, and integrates perfectly with Docker containers. Docker is
not fully supported by Windows and its higher level tools have a perceptibly
limited flexibility. Finally, Jenkins is straightforward to use, but it lacks working
plug-ins for Docker Compose; nevertheless, this limitation can be obviated with
a custom (even though unpractical) solution, e.g., shell scripts.

Table 2. Evaluation summary

Ambit Technology Pros Cons

Concurrency,
Testing, IDE,
Project
Management

Ada, AUnit,
GPS, GPR

Reliability, Inversion of
Control, Modularity

Low
interoperability,
Steep learning
curve

Middleware,
Testing, Project
Management

Elixir, exUnit,
Mix

Resiliency, Simplicity,
Inversion of Control,
Performance,
Productivity

Dynamic Typing,
Awkward error
reporting

Broker RabbitMQ Simplicity, Monitoring
tools

-

Containerization,
Configuration,
Orchestration

Docker, Docker
Compose, Docker
Swarm

Agility, Efficiency,
Simplicity

Limited
portability, Lack of
flexibility

CI Jenkins Simplicity, Flexibility Poor Docker
support

5 Lessons Learned

Our system comprised ∼100 k SLOC (50% of which written in Ada) and took us
one year to develop, from design to implementation, continuous integration, and
deployment, for a 3-student team working remotely outside of academic hours,
equivalent to 250 person-days of effort. We trust this quantity of effort qualifies

Microservice-Based Agile Architectures 173

our project experience as a sound case study for interested practitioners to draw
concrete indications on the present and the future of reliable distributed systems
in relation to current state-of-the-art of microservices solutions.

Ultimately, in our endeavor we learned that container-based solutions allow
niche technologies to emerge as a real alternative for in-the-large software sys-
tems, as long as these technologies come with high-level support for interoperabil-
ity, such as e.g. HTTP(S) and seamless integration with automated production
tools such as e.g., Jenkins.

References

1. Vashi, S., Ram, J., Modi, J., Verma, S., Prakash, C.: Internet of things (IoT):
a vision, architectural elements, and security issues. In: 2017 International Con-
ference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp.
492–496, February 2017

2. Charette, R.N.: Why software fails [software failure]. IEEE Spectr. 42(9), 42–49
(2005). https://doi.org/10.1109/MSPEC.2005.1502528

3. Blair, M., Obenski, S., Bridickas, P.: Patriot missile defense: Software problem led
to system failure at Dhahran. Report GAO/IMTEC-92-26 (1992)

4. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, New
York (2011)

5. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2000)

6. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
Boston (2003)

7. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

8. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Prentice Hall, Englewood Cliffs (2017)

9. Basiri, A., Behnam, N., de Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J.,
Rosenthal, C.: Chaos engineering. IEEE Softw. 33(3), 35–41 (2016)

10. Pääkkönen, P., Pakkala, D.: Reference architecture and classification of technolo-
gies, products and services for big data systems. Big Data Res. 2(4), 166–186
(2015). https://doi.org/10.1016/j.bdr.2015.01.001

11. Maurer, B.: Fail at scale. Queue 13(8), 30:30–30:46 (2015).
http://doi.acm.org/10.1145/2838344.2839461

12. Simioni, A., Vardanega, T.: In pursuit of architectural agility: experimenting with
microservices. Submitted to IEEE International Conference on Services Computing
(2018)

13. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis (2000). aAI9980887

14. Abbott, M.L., Fisher, M.T.: The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise. Pearson Education (2009)

15. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2004)

16. Goetz, B., Peierls, T.: Java Concurrency in Practice. Pearson Education (2006)
17. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010).

http://doi.acm.org/10.1145/1810891.1810910

https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1016/j.bdr.2015.01.001
http://doi.acm.org/10.1145/2838344.2839461
http://doi.acm.org/10.1145/1810891.1810910

174 S. Munari et al.

18. Hoare, C.A.R.: Communicating sequential processes. In: Hansen, P.B. (ed.) The
Origin of Concurrent Programming, pp. 413–443. Springer, New York (1978).
https://doi.org/10.1007/978-1-4757-3472-0 16

19. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of the NetDB, pp. 1–7 (2011)

20. Dobbelaere, P., Esmaili, K.S.: Kafka versus RabbitMQ: a comparative study of two
industry reference publish/subscribe implementations: industry paper. In: Proceed-
ings of the 11th ACM International Conference on Distributed and Event-Based
Systems, DEBS 2017, pp. 227–238. ACM, New York (2017). http://doi.acm.org/
10.1145/3093742.3093908

21. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.:
Borg, omega, and kubernetes. Commun. ACM 59(5), 50–57 (2016).
http://doi.acm.org/10.1145/2890784

https://doi.org/10.1007/978-1-4757-3472-0_16
http://doi.acm.org/10.1145/3093742.3093908
http://doi.acm.org/10.1145/3093742.3093908
http://doi.acm.org/10.1145/2890784

Author Index

Alonso, Alejandro 73

Blieberger, Johann 53
Burgstaller, Bernd 53

Carlson, Jan 19, 87
Crespo, Alfons 105

de la Puente, Juan A. 73
Dobrin, Radu 87

Gallina, Barbara 19
Garrido, Jorge 73
Gutiérrez, J. Javier 123

Hansson, Hans 19

Jaradat, Omar 3

Maalej, Maroua 37
Marković, Filip 87
Martorell, Xavier 141

Moy, Yannick 37
Munari, Stefano 158

Pérez, Héctor 123
Pinho, Luis Miguel 141
Punnekkat, Sasikumar 3
Puri, Stefano 19

Quiñones, Eduardo 141

Real, Jorge 105
Royuela, Sara 141

Sáez, Sergio 105
Sljivo, Irfan 19

Taft, Tucker 37

Valle, Sebastiano 158
Vardanega, Tullio 158

Zamorano, Juan 73

	Preface
	Organization
	Contents
	Safety and Security
	Using Safety Contracts to Verify Design Assumptions During Runtime
	1 Introduction
	2 Using Safety Contracts to Verify Design Assumptions During Runtime
	2.1 Determine the PFD or the PFH in the FTA
	2.2 Identify the Most Critical Components
	2.3 Refine the Identified Critical Parts
	2.4 Perform Sensitivity Analysis
	2.5 Derive Safety Contracts
	2.6 Associate Safety Contracts with Safety Arguments
	2.7 Determine D_O Using the Data from Operation and Compare it to the Guaranteed D_Max in Safety Contracts
	2.8 Update the Safety Contracts and Re-visit the Safety Argument

	3 Motivating Example: Automated Guided Vehicles (AGVs)
	4 A Through-Life Safety Assurance Technique
	5 Discussion and Conclusion
	References

	Tool-Supported Safety-Relevant Component Reuse: From Specification to Argumentation
	1 Introduction
	2 Background
	2.1 AMASS Platform
	2.2 The Motivating Case

	3 Contract-Driven Assurance and Reuse
	3.1 Contract-Driven Assurance
	3.2 Contract-Driven Reuse of Safety-Relevant Components
	3.3 Tool Support

	4 LACU Case Study
	4.1 Failure Propagation Modelling
	4.2 LACU Assurance
	4.3 Discussion

	5 Conclusions and Future Work
	References

	Ada 202X
	Safe Dynamic Memory Management in Ada and SPARK
	1 Introduction
	2 A Proposal for Ownership Types in Ada
	2.1 Ownership Types
	2.2 Ownership for Access Objects
	2.3 Extension to Composite Types

	3 Formal Verification with Ownership Types in SPARK
	4 Related Work
	5 Conclusion
	References

	Safe Non-blocking Synchronization in Ada2x
	1 Introduction
	2 The Memory Model
	2.1 Synchronizing Memory Operations and Enforcing Ordering

	3 Synchronization Primitives
	3.1 Synchronized Variables
	3.2 Read-Modify-Write Variables
	3.3 Synchronization Loops

	4 Concurrent Objects
	4.1 Non-blocking Synchronization
	4.2 Read-Modify-Write Synchronization

	5 Scheduling and Dispatching
	6 Examples
	7 API
	8 Conclusion and Future Work
	References

	Handling Implicit Overhead
	On the Effect of Protected Entry Servicing Policies on the Response Time of Ada Tasks
	1 Introduction
	2 Protected Objects in Ada
	2.1 Protected Objects and Protected Operations
	2.2 Protected Entries
	2.3 Self-service Model
	2.4 Proxy Model
	2.5 Ravenscar Restrictions

	3 Resource Sharing Protocols for Multiprocessor Systems
	3.1 Resource Sharing Protocols
	3.2 Multiprocessor Stack Resource Policy
	3.3 Multiprocessor Resource Sharing Protocol

	4 Impact of Service Modes in Response Time Analysis
	4.1 Entry Servicing in MSRP
	4.2 Entry Servicing in MrsP

	5 Conclusions
	References

	Improved Cache-Related Preemption Delay Estimation for Fixed Preemption Point Scheduling
	1 Introduction
	2 System Model
	3 Sources of CRPD Over-Approximation
	3.1 Infeasible Preemptions
	3.2 Infeasible Useful Cache Block Reloads

	4 Computing Tighter CRPD Bounds
	4.1 Variables
	4.2 Constraints
	4.3 Goal Function

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Real-Time Scheduling
	Combined Scheduling of Time-Triggered and Priority-Based Task Sets in Ravenscar
	1 Introduction
	2 System Model: The Time-Triggered Plan
	3 Time-Triggered Task Patterns
	3.1 Patterns Using Regular Slots
	3.2 Patterns Using Continuation Slots
	3.3 TT Patterns with Non-TT Parts
	3.4 TT Patterns with Optional Slots
	3.5 Patterns: Looking Back

	4 Design and Implementation Details
	5 Experimental Results
	6 Conclusions
	References

	Theory and Practice of EDF Scheduling in Distributed Real-Time Systems
	Abstract
	1 Introduction
	2 The System Model and the Schedulability Analysis and Optimization Techniques for LC-EDF
	3 The Distributed Application
	4 Scheduling Deadline Assignments and Schedulability Analysis
	5 Ada Implementation of the LC-EDF Example
	6 Performance Measurements
	7 Conclusions
	References

	New Application Domains
	Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP
	1 Introduction
	2 Background
	2.1 The Ada Concurrent Model
	2.2 The OpenMP Tasking Model

	3 Related Work
	4 Motivation
	5 Proposal: Compiler Analysis for Mixed Ada and OpenMP Tasks
	5.1 Mixing Ada and OpenMP
	5.2 Representation of an Ada/OpenMP Program
	5.3 Correctness Analysis
	5.4 Safe Parallelism Beyond the Ravenscar Profile

	6 Conclusions
	A Complete CFG of the Ravenscar Application
	References

	Microservice-Based Agile Architectures: An Opportunity for Specialized Niche Technologies
	1 Introduction
	2 Requirements
	2.1 Architectural Principles
	2.2 Technology Requirements

	3 Solutions
	3.1 Patterns
	3.2 Technology Selection

	4 Evaluation
	4.1 Principles
	4.2 Technologies

	5 Lessons Learned
	References

	Author Index

