
Sh Programming 10

Abstract

This chapter covers sh programming. It explains sh scripts and different versions of sh. It compares
sh scripts with C programs and points out the difference between interpreted and compiled
languages. It shows how to write sh scripts in detail. These include sh variables, sh statements, sh
built-in commands, regular system commands and command substitution. Then it explains sh
control statements, which include test conditions, for loop, while loop, do-until loop, case
statements, and it demonstrates their usage by examples. It shows how to write sh functions and
invoke sh functions with parameters. It also shows the wide range of applications of sh scripts by
examples. These include the installation, initialization and administration of the Linux system.

The programming project is for the reader to write a sh scripts which recursively copies files and
directories. The project is organized in a hierarchy of three sh functions; cpf2f() which copies file to
file, cpf2d() which copies file into a directory and cpd2d() which recursively copies directories.

10.1 sh Scripts

A sh script (Bourne 1982; Forouzan and Gilberg 2003) is a text file containing sh statements for the
command interpreter sh to execute. As an example, we may create a text file, mysh, containing

#! /bin/bash

comment line

echo hello

Use chmod +x mysh to make it executable. Then run mysh. The first line of a sh script usually begins
with the combination of #!, which is commonly called a shebang.When the main sh sees the shebang,
it reads the program name for which the script is intended and invokes that program. There are many
different versions of sh, e.g. bash of Linux, csh of BSD Unix and ksh of IBM AIX, etc. All the sh
programs perform essentially the same task but their scripts differ slightly in syntax. The shebang
allows the main sh to invoke the proper version of sh to execute the script. If the shebang is not
specified, it runs the default sh, which is /bin/bash in Linux. When bash executes the mysh script, it will
print hello.

Springer International Publishing AG, part of Springer Nature 2018
K. C. Wang, Systems Programming in Unix/Linux, https://doi.org/10.1007/978-3-319-92429-8_10

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92429-8_10&domain=pdf
https://doi.org/10.1007/978-3-319-92429-8_10

10.2 sh Scripts vs. C Programs

sh scripts and C programs have some similarities but they are fundamentally different. The following
lists a sh script and a C program side by side in order to compare their syntax form and usage.

------------ sh ------------------------ C ------------------

INTERPRETER: read & execute | COMPILE-LINKED to a.out

|

mysh a b c d | a.out a b c d

$0 $1 $2 $3 $4 | main(int argc, char *argv[])

First, sh is an interpreter, which reads a sh script file line by line and executes the lines directly. If a
line is an executable command, sh executes the command directly if it’s a built-in command.
Otherwise, it forks a child process to execute the command and waits for the child to terminate before
continuing, exactly as it does a single command line. In contrast, a C program must be compile-linked
to a binary executable first. Then run the binary executable by a child process of the main sh. Second,
in C programs, every variable must have a type, e.g. char, int, float, derived types like structs, etc. In
contrast, in sh scripts, everything is string. So there is no need for types since there is only one type,
namely strings. Third, every C program must have a main() function, and each function must define a
return value type and arguments, if any. In contrast, sh scripts do not need a main function. In a sh
script, the first executable statement is the entry point of the program.

10.3 Command-line parameters

A sh script can be invoked with parameters exactly as running a sh command, as in

mysh one two three

Inside the sh script, the command line parameters can be accessed by the position parameters $0, $1,
$2, etc. The first 10 command line parameters can be accessed as $0 to $9. Other parameters must be
referenced as ${10} to ${n} for n>¼10. Alternatively, they can be brought into view by the shift
command, which will be shown later. As usual, $0 is the program name itself and $1 to $n are
parameters to the program. In sh the built-in variables $# and $* can be used to count and display the
command-line parameters.

$# ¼ the number of command-line parameters $1 to $n
$* ¼ ALL command-line parameters, including $0

In addition, sh also has the following built-in variables related to command executions.

$$ ¼ PID of the process executing the sh
$? ¼ last command execution exit status (0 if success, nonzero otherwise)

284 10 Sh Programming

Example Assume the following mysh script is run as

mysh abc D E F G H I J K L M N

1 2 3 4 5 6 7 8 9 10 11 12

1. #! /bin/bash

2. echo \$# = $# # $# = 12

3. echo \$* = $* # $* = abc D E F G H I J K L M N

4. echo $1 $9 $10 # abc K abc0 (note: $10 becomes abc0)

5. echo $1 $9 ${10} # abc K L (note: ${10} is L)

6. shift # replace $1, $2 .. with $2, $3,...

7. echo $1 $9 ${10} # D L M

In sh, the special char $ means substitution. In order to use $ as is, it must be either single quoted or
back quoted by \, similar to \n , \r, \t, etc. in C. In Lines 2 and 3, each \$ is printed as is with no
substitution. In Line 4, $1 and $9 are printed correctly but $10 is printed as abc0. This is because sh
treats $10 as $1 concatenated with 0. Before echoing, it substitutes $1 with abc, making $10 as abc0. In
Line 5, ${10} is printed correctly as L. The reader may try to echo other position parameters ${11} and
${12}, etc. Line 6 shifts the position parameters once to the left, making $2¼$1, $3¼$2, etc. After a
shift, $9 becomes L and ${10} becomes M.

10.4 Sh Variables

Sh has many built-in variables, such as PATH, HOME, TERM, etc. In addition to built-in variables,
the user may use any symbol as sh variable. No declaration is necessary. All sh variable values are
strings. An unassigned sh variable is the NULL string. A sh variable can be set or assigned a value by

variable=string # NOTE: no white spaces allowed between tokens

If A is a variable, then $A is its value.

Examples

echo A ==> A

echo $A ==> (null if variable A is not set)

A="this is fun" # set A value

echo $A ==> this is fun

B=A # assign “A” to B

echo $B ==> A (B was assigned the string "A")

B=$A (B takes the VALUE of A)

echo $B ==> this is fun

10.5 Quotes in sh

Sh has many special chars, such as $, /, *, >, <, etc. To use them as ordinary chars, use \ or single quotes
to quote them.

10.5 Quotes in sh 285

Examples:

A=xyz

echo \$A ==> $A # back quote $ as is

echo ’$A’ ==> $A # NO substitution within SINGLE quotes

echo "see $A" ==> see xyz # substitute $A in DOUBLE quotes

In general, \ is used to quote single chars. Single quotes are used to quote long strings. No substitution
occurs within single quotes. Double quotes are used to preserve white spaces in double quoted strings
but substitution will occur within double quotes.

10.6 sh Statements

sh statements include all Unix/Linux commands, with possible I/O redirections.

Examples:

ls

ls > outfile

date

cp f1 f2

mkdir newdir

cat < filename

In addition, the sh programming language also supports statements for testing conditions, loops and
cases, etc. which controls the executions of sh programs.

10.7 sh Commands

10.7.1 Built-in Commands

sh has many built-in commands, which are executed by sh without forking a new process. The
following lists some of the commonly used built-in sh commands.
. file : read and execute file
break [n] : exit from the nearest nth nested loop
cd [dirname] : change directory
continue [n] : restart the nearest nth nested loop
eval [arg . . .] : evaluate args once and let sh execute the resulting command(s).
exec [arg . . .] : execute command by this sh, which will exit
exit [n] : cause sh to exit with exit status n
export [var ..] : export variables to subsequently executed commands
read [var . . .] : read a line from stdin and assign values to variables
set [arg . . .] : set variables in execution environment
shift : rename position parameters $2 $3 . . . as $1 $2. . . .
trap [arg] [n] : execute arg on receiving signal n
umask [ddd] : set umask to octal ddd
wait [pid] : wait for process pid, if pid is not given, wait for all active children

286 10 Sh Programming

The read Command: When sh executes the read command, it waits for an input line from stdin.
It divides the input line into tokens, which are assigned to the listed variables. A common usage of read
is to allow the user to interact with the executing sh, as shown by the following example.

echo -n "enter yes or no : " # wait for user input line from stdin

read ANS # sh reads a line from stdin

echo $ANS # display the input string

After getting the input, sh may test the input string to decide what to do next.

10.7.2 Linux Commands

sh can execute all Linux commands. Among these, some commands have become almost an integral
part of sh because they are used extensively in sh scripts. The following lists and explains some of
these commands.

The echo Command: echo simply echoes the parameter strings as lines to stdout. It usually
condenses adjacent white spaces into a single space unless quoted.

Examples

echo This is a line # display This is a line

echo "This is a line" # display This is a line

echo -n hi # display hi without NEWLINE

echo there # display hithere

The expr Command: Since all sh variables are strings, we can not change them as numerical value
directly. For example,

I=123 # I assigned the string “123”

I=I + 1 # I assigned the string “I + 1”

Rather than incrementing the numerical value of I by 1, the last statement merely changes I to the string
“I + 1”, which is definitely not what we hoped (I¼124). Changing the (numerical) values of sh
variables can be done indirectly by the expr command. Expr is a program, which runs as

expr string1 OP string2 # OP = any binary operator on numbers

It first converts the two parameter strings to numbers, performs the (binary) operation OP on the
numbers and then converts the resulting number back to a string. Thus,

I=123

I=$(expr $I + 1)

changes I from “123” to “124”. Similarly, expr can also be used to perform other arithmetic operations
on sh variables whose values are strings of digits.

10.7 sh Commands 287

The pipe Command: Pipes are used very often in sh scripts to act as filters.

Examples:

ps –ax | grep httpd

cat file | grep word

Utility Commands: In addition to the above Linux commands, sh also uses many other utility
programs as commands. These include

awk: data manipulation program.
cmp: compare two files
comm: select lines common to two sorted files
grep: match patterns in a set of files
diff: find differences between two files
join : compare two files by joining records with identical keys
sed: stream or line editor
sort: sort or merge files
tail: print the lasst n lines of a file
tr: one-to-one char translation
uniq: remove successive duplicated lines from a file

10.8 Command Substitution

In sh, $A is substituted with the value of A. Likewise, when sh sees `cmd` (in grave quotes) or $(cmd),
it executes the cmd first and substitutes $(cmd) with the result string of the execution.

Examples

echo $(date) # display the result string of date command

echo $(ls dir) # display the result string of ls dir command

Command substitution is a very powerful mechanism. We shall show its usage throughout the latter
part of this chapter.

10.9 Sh Control Statements

Sh is a programming language. It supports many execution control statements, which are similar to
those in C.

10.9.1 if-else-fi statement

The syntax of if-else-fi statement is

288 10 Sh Programming

if [condition] # NOTE: must have white space between tokens

then

statements

else # as usual, the else part is optional

statements

fi # each if must end with a matching fi

Each statement must be on a separate line. However, sh allows multiple statements on the same line if
they are separated by semi-colon ;. In practice, if-else-fi statements are often written as

if [condition]; then

statements

else

statements

fi

Examples: By default, all values in sh are strings, so they can be compared as strings by

if [s1 = s2] # NOTE: white spaces needed between tokens

if [s1 != s2]

if [s1 \< s2] # \< because < is a special char

if [s1 \> s2] etc. # \> because > is a special char

In the above statements, the left bracket symbol [is actually a test program, which is executed as

test string1 COMP string2 OR [string1 COMP string2]

It compares the two parameter strings to decide whether the condition is true. It is important to note that
in sh 0 is TRUE and nonzero is FALSE, which are exactly opposite of C. This is because when sh
executes a command, it gets the exit status of the command execution, which is 0 for success and
nonzero otherwise. Since [is a program, its exit status is 0 if the execution succeeds, i.e. the tested
condition is true, and nonzero if the tested condition is false. Alternatively, the user may also use the sh
built-in variable $? to test the exit status of the last command execution.

In contrast, the operators -eq, -ne, -lt, -gt , etc. compare parameters as integer numbers.

if ["123" = "0123"] is false since they differ as strings

if ["123" -eq "0123"] is true since they have the same numerical value

In addition to comparing strings or numerical values, the TEST program can also test file types and file
attributes, which are often needed in file operations.

if [-e name] # test whether file name exists

if [-f name] # test whether name is a (REG) file

if [-d name] # test whether name is a DIR

if [-r name] # test whether name is readable; similarly for -w, -x, etc.

if [f1 -ef f2] # test whether f1, f2 are the SAME file

10.9 Sh Control Statements 289

Exercise: How does the test program tests files type and file attributes, e.g. readable, writeable, etc.?
In particular, how does it determine whether f1 –ef f2?

HINT: stat system call.

Compound if-elif-else-fi statement: This is similar to if-else if-else in C except sh uses elif instead of
else if. The syntax of compound if-elif-else-fi statement is

if [condition1]; then

commands

elif [condition2]; then

commands

additional elif [condition3]; then etc.

else

commands

fi

Compound Conditions: As in C, sh allows using && (AND) and || (OR) in compound conditions,
but the syntax is more rigid than C. The conditions must be enclosed in a pair of matched double
brackets, [[and]].

Examples

if [[condition1 && condition2]]; then

if [[condition1 && condition2 || condition3]]; then

As in C, compound conditions can be grouped by () to enforce their evaluation orders.

if [[expression1 && (expression2 || expression3)]]; then

10.9.2 for Statement

The for statement in sh behaves as for loop in C.

for VARIABLE in string1 string2 stringn

do

commands

done

On each iteration, the VARIABLE takes on a parameter string value and execute the commands
between the keywords do and done.

290 10 Sh Programming

Examples:

for FRUIT in apple orange banana cherry

do

echo $FRUIT # print lines of apple orange banana cherry

done

for NAME in $*

do

echo $NAME # list all command-line parameter strings

if [-f $NAME]; then

echo $NAME is a file

elif [-d $NAME]; then

echo $NAME is a DIR

fi

done

10.9.3 while Statement

The sh while statement is similar to while loop in C

while [condition]

do

commands

done

sh will repeatedly execute the commands inside the do-done keywords while the condition is true. It is
expected that the condition will change so that the loop will exit at some point in time.

Example: The following code segment creates directories dir0, dir1,.., dir10000

I=0 # set I to "0" (STRING)

while [$I != 10000] # compare as strings; OR while [$I \< 1000] as numbers

do

echo $I # echo current $I value

mkdir dir$I # make directories dir0, dir1, etc

I=$(expr $I + 1) # use expr to inc I (value) by 1

done

10.9.4 until-do Statement

This is similar to the do-until statement in C.

until [$ANS = "give up"]

do

echo -n "enter your answer : "

read ANS

done

10.9 Sh Control Statements 291

10.9.5 case Statement

This is similar to the case statement in C also, but it is rarely used in sh programming.

case $variable in

pattern1) commands;; # note the double semicolons ;;

pattern2) command;;

patternN) command;;

esac

10.9.6 continue and break Statements

As in C, continue restarts the next iteration of the nearest loop and break exits the nearest loop. They
work exactly the same as in C

10.10 I/O Redirection

When entering a sh command, we may instruct sh to redirect I/O to files other than the default stdin,
stdout, sterr. I/O redirections have the following form and meaning:

> file stdout goes to file, which will be created if non-existing.
>> file stdout append to file
< file use file as stdin; file must exist and have r permission.
<< word take inputs from "here" file until a line containing only “word"

10.11 Here Documents

An output command can be instructed to take inputs from stdin, echo them to stdout until a prearranged
keyword is encountered.

Examples:

echo << END

keep enter and echo lines until a line with only

END

cat << DONE

keep enter and echo lines until

DONE

These are commonly known as here documents. They are typically used in a sh script to generate long
blocks of descriptive text without echoing each line individually.

292 10 Sh Programming

10.12 sh Functions

sh functions are defined as

func()

{

function code

}

Since sh executes commands line by line, all functions in a sh script must be defined before any
executable statements. Unlike C, there is no way to declare function prototypes in sh scripts. Sh
functions are invoked in exactly the same way as executing a sh script file. The sh statement

func s1 s2 ... sn

calls the sh func, passing as parameters (strings) s1 to sn. Inside the called function, the parameters are
referenced as $0, $1 to $n. As usual, $0 is the function name, and $1 to $n are position parameters
corresponding to the command-line parameters. When a function execution finishes, $? is its exit
status, which is 0 for success and nonzero otherwise. The value of $? can be changed by the explicit
return value of a function. However, in order to test $? of the last execution, it must be assigned to a
variable and test that variable instead.

Examples of sh functions:

#! /bin/bash

testFile() # test whether $1 is a REG file

{

if [-f $1]; then

echo $1 is a REG file

else

echo $1 is NOT a REG file

}

testDir() # test whether $1 is a DIR

{

if [-d $1]; then

echo $1 is a DIR

else

echo $1 is NOT a DIR

}

echo entry point here # entry point of the program

for A in $* # for A in command-line parameter list

do

testFile $A # call testFile on each command-line param

testDir $A # call testDir on each command-line param

done

10.12 sh Functions 293

Exercise: In the following sh program

testFile() # test whether $1 is a REG file; return 0 if yes, 1 if not

{

if [-f $1]; then

return 0

else

return 1

}

for A in f1 D2 # assume f1 is a REG file, D2 is a DIRectory

do

testFile $A # testFile return $?=0 or 1

if [$? = 0]; then

echo $A is a REG file

else

echo $A is not a REG file

fi

done

The result is always “$A is a REG file” even if $A is a directory. Explain why?

Modify the program code to make it work properly.

10.13 Wild Cards in sh

Star Wildcard: The most useful wildcard in sh is the *, which expands to all files in the current
directory.

Examples
file * : list information of all files in the current directory.
ls *.c : list all files ends with .c in the current directory.

? Wildcard: inquires chars in a file name

Examples
file ??? : all files names with exactly 3 chars
ls *.?? : all file names with 2 chars following a dot.

[] Wildcard : Inquire about chars within a pair of [] in filenames.

Examples
file *[ab]* : all file names containing the chars a or b
ls *[xyz]* : list all file names containing x or y or z
ls *[a-m]* : list all file names containing chars in the range of a to m

294 10 Sh Programming

10.14 Command Grouping

In sh scripts, commands can be grouped together by either { } or ().

{ ls; mkdir abc; ls; } : execute the list of commands in { } by the current sh. The only usefulness of
command grouping by { } is to execute them in the same environment, e.g. to redirect I/O for all the
commands in the group.

The more useful command grouping is by () which is executed by a subsh (process).

(cd newdir; ls; A¼value; mkdir $A): execute commands in () by a subsh process. The subsh process
may change its working directory without affecting the parent sh. Also, any assigned variables in
the subsh will have no effect when the subsh process terminates.

10.15 eval Statement

eval [arg1 arg1 .. argn]

eval is a built-in command of sh. It is executed by sh itself without forking a new process. It
concatenates the input argument strings into a single string, evaluates it once, i.e. perform variable
and command substitutions, and present the resulting string for sh to execute.

Example:

a="cat big.c | more"

$a # error: because sh would execute the command cat with big.c, |, more as

files. cat would fail on | because it’s not a file.

eval $a # OK : eval substitutes $a with “cat big.c | more” first, then let sh

execute the resulting command line cat big.c | more.

Example: Assume

A=’$B’; B=’abc*’; C=newdir; CWD=/root; /root/newdir is a DIR

For the command line

cp $A ‘pwd‘/$C # grave quoted command pwd

sh evaluates the command line in the following steps before executing it.
(1). Parameter substation: Scan the command line, substitute any $x with its value but do it only

once, i.e. no substitutions again for any resulting $ symbols. The line becomes

cp $B ‘pwd‘/newdir

(2). Command substitution: perform `pwd` with substitution. Sh will execute the resulting line

cp $B /root/newdir

10.15 eval Statement 295

This will result in an error if the current directory does not have any file named $B. However, if we
change the original command line to

eval cp $A $(pwd)/$C

sh will evaluate the command line first before executing it. After eval, the line becomes

cp abc* /root/newdir

(3). Wildcard expansion: When sh executes the line, it expands new* to file names that begin with
abc. This will copy all file names beginning with abc to the target directory.

It should be noted that we can always achieve the same effect of eval manually with a few additional
statements. Using eval saves a few substitution statements but it may also makes the code hard to
understand. Therefore, any unnecessary use of eval should be avoided.

10.16 Debugging sh Scripts

A sh script can be run by a sub sh with the –x option for debugging, as in

bash –x mysh

The sub sh will show each sh command to be executed, including variable and command substitutions,
before executing the command. It allows the user to trace command executions. In case of error, sh will
stop at the error line and show the error message.

10.17 Applications of sh scripts

sh scripts are most often used to perform routine work that involves lengthy sequence of commands.
We cite some examples where sh scripts are found to be very useful.

Example 1: Most users have the experience of installing Linux to their computers. The Linux
installing packages are written in sh scripts. During the installing process, it can interact with the
user, find out available hard disks on the users computer, partition and format the disk partitions,
download or extract files from the installation media and install the files to their directories until the
installation process completes. Attempting to install Linux manually would be very tedious and almost
impossible.

Example 2: When a user login to a Linux system, the login process executes a series of sh scripts,

.login, .profile, .bashrc, etc.

to configure the execution environment of the user process automatically. Again, it would be
impractical to do all these steps manually.

296 10 Sh Programming

Example 3: Instead of using Makefiles, simple compile-link tasks can be done by sh scripts
containing the compile and link commands. The following shows a sh script which generates a
MTX operating system kernel image and user mode command programs on a virtual disk named
VFD (Wang 2015).

#---------- mk script of the MTX OS ------------–

VFD=mtximage

generate MTX kernel image file

as86 -o ts.o ts.s # assemble .s file

bcc -c -ansi t.c # compile .c files

ld86 -d -o mtx ts.o t.o OBJ/*.o mtxlib 2> /dev/null

write MTX kernel image to /boot directory of VFD

mount -o loop $VFD /mnt

cp mtx /mnt/boot # mtx kernel image in /boot directory

umount /mnt

generate User mode command binaries in /bin of VFD

(cd USER; mkallu) # command grouping

echo all done

#---------------- end

Example 4: Create user accounts for a CS class on a Linux machine. At the author’s institution,
enrollment in the CS360, Systems Programming, class averages 70 students every semester. It would
be too tedious to create all the students accounts on a Linux machine by hand. This is done by the
following steps using sh scripts.

(1). The Linux command

sudo useradd -m -k DIR -p PASSWORD -s /bin/bash LOGIN

creates a new user account with login name LOGIN and password PASSWORD. It creates a user
home directory /home/LOGIN, which is populated with files in the -k DIR directory. It creates a
line in /etc/passwd for the new user account and adds a line in /etc/shadow for the encrypted
PASSWORD. However, the PASSWORD used in the useradd command must be encrypted
password, not the original password string. Converting password string to encrypted form can
be done by the crypt library function. The following C program enc.c also converts a PASS-
WORD string into encrypted form.

/******* enc.c file **********/

#define _XOPEN_SOURCE

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

printf("%s\n", crypt(argv[1], "1"));

}

gcc -o enc -lcrypt enc.c # generate the enc file

10.17 Applications of sh scripts 297

(2). Assume that roster.txt is a class roster file containing lines of students ID and name

ID name # name string in lowercase

(3). Run the following sh script mkuser < roster.txt

---------------- mkuser sh script file ---------------------

#! /bin/bash

while read LINE # read a line of roster file

do

I=0

for N in $LINE # extract ID as NAME0, name as NAME1

do

eval NAME$I=$N # set NAME0, NAME1, etc.

I=$(expr $I + 1) # inc I by 1

done

echo $NAME0 $NAME1 # echo ID and name

useradd -m -k h -p $(./enc $NAME0) -s /bin/bash $NAME1

done

(4). User home DIR contents: Every user’s home directory, /home/name, can be populated with a set
of default DIRs and files. For the CS360 class, every user home directory is populated with a
public_html directory containing an index.html file as the user’s initial Web page for the user to
practice Web programming later.

10.18 Programming Project: Recursive File Copy by sh Script

The programming project is for the reader to use most sh facilities to write a meaningful and useful
program in sh script. The requirement is to write a sh script

myrcp f1 f. fn-1 fn

which copies f1, f2, .. fn-1 to fn, where each fimay be either a REG/LNK file or a DIR. For simplicity,
exclude special files, which are I/O devices. The myrcp program should behave exactly the same as
Linux’s command cp –r command. The following is a brief analysis of the various cases of the
program requirements.

(1). n<2: show usage and exit
(2). n>2: fn must be an existing DIR.
(3). n¼2: copy file to file or file to DIR or DIR1 to DIR2
(4). Never copy a file or DIR to itself. Also, do not copy if DIR2 is a descendant of DIR1

The above case analysis is incomplete. The reader must complete the case analysis and formulate an
algorithm before attempting to write any code.

Hint and Helps: for the command line myrcp f1 f. fn

298 10 Sh Programming

(1). echo n = $# # n = value of n

(2). last = \S{$#}; eval echo last = $last # last = fn

(3). for NAME in $*

do

echo $NAME # show f1 to fn

done

(4). Implement the following functions

cpf2f(): copy $1 to $2 as files, handle symbolic links

cpf2d(): copy file $1 into an existing DIR $2 as $2/$(basename $1)

cod2d(): recursively copy DIR $1 to DIR $2

Sample solution of myrcp program

cpf2f() # called as cpf2f f1 f2

{

if [! -e $1]; then

echo no such source file $1

return 1

fi

if [$1 -ef $2]; then

echo "never copy a file to itself"

return 1

fi

if [-L $1]; then

echo "copying symlink $1"

link=$(readlink $1)

ln -s $link $2

return 0

fi

echo "copying $1 to $2"

cp $1 $2 2> /dev/null

}

cpf2d() # called as cpf2d file DIR

{

newfile=$2/$(basename $1)

cpf2f $1 $newfile

}

cpd2d() # called as cpd2d dir1 dir2

{

reader FINISH cpd2d code

}

**************** entry point of myrcp ****************

case analysis;

for each f1 to fn-1 call cpf2f() or cpf2d() or cpd2d()

10.18 Programming Project: Recursive File Copy by sh Script 299

10.19 Summary

This chapter covers sh programming. It explains sh scripts and different versions of sh. It compares
sh scripts with C programs and points out the difference between interpreted and compiled languages.
It shows how to write sh scripts in detail. These include sh variables, sh statements, sh built-in
commands, regular system commands and command substitution. Then it explains sh control
statements, which include test conditions, for loop, while loop, do-until loop, case statements, and it
demonstrates their usage by examples. It shows how to write sh functions and invoke sh functions with
parameters. It also shows the wide range of applications of sh scripts by examples. These include the
installation, initialization and administration of the Linux system.

The programming project is for the reader to write a sh scripts which recursively copies files and
directories. The project is organized in a hierarchy of three sh functions; cpf2f() which copies file to
file, cpf2d() which copies file into a directory and cpd2d() which recursively copies directories.

References

Bourne, S.R., The Unix System, Addison-Wesley, 1982
Forouzan, B.A., Gilberg, R.F., Unix and Shell Programming, Brooks/Cole, 2003
Wang, K.C., Design and Implementation of the MTX Operating System, Springer International Publishing AG, 2015

300 10 Sh Programming

	Chapter 10: Sh Programming
	10.1 sh Scripts
	10.2 sh Scripts vs. C Programs
	10.3 Command-line parameters
	10.4 Sh Variables
	10.5 Quotes in sh
	10.6 sh Statements
	10.7 sh Commands
	10.7.1 Built-in Commands
	10.7.2 Linux Commands

	10.8 Command Substitution
	10.9 Sh Control Statements
	10.9.1 if-else-fi statement
	10.9.2 for Statement
	10.9.3 while Statement
	10.9.4 until-do Statement
	10.9.5 case Statement
	10.9.6 continue and break Statements

	10.10 I/O Redirection
	10.11 Here Documents
	10.12 sh Functions
	10.13 Wild Cards in sh
	10.14 Command Grouping
	10.15 eval Statement
	10.16 Debugging sh Scripts
	10.17 Applications of sh scripts
	10.18 Programming Project: Recursive File Copy by sh Script
	10.19 Summary
	References

